
XML Toolkit for z/OS

User’s Guide

SA22-7932-06

���

XML Toolkit for z/OS

User’s Guide

SA22-7932-06

���

Note

Before using this information and the product it supports, be sure to read the general information under “Notices” on page

99.

Seventh Edition, 2008

This edition applies to Version 1 Release 9 of XML Toolkit for z/OS (5655-J51) and to all subsequent releases and

modifications until otherwise indicated in new editions.

This is a major revision of SA22–7932–05.

IBM welcomes your comments. A form for readers’ comments may be provided at the back of this document, or you

may address your comments to the following address:

 International Business Machines Corporation

 Department 55JA, Mail Station P384

 2455 South Road

 Poughkeepsie, NY 12601-5400

 United States of America

 FAX (United States & Canada): 1+845+432-9405

 FAX (Other Countries):

 Your International Access Code +1+845+432-9405

 IBMLink™ (United States customers only): IBMUSM10(MHVRCFS)

 Internet e-mail: mhvrcfs@us.ibm.com

 World Wide Web: http://www.ibm.com/servers/eserver/zseries/zos/webqs.html

If you would like a reply, be sure to include your name, address, telephone number, or FAX number.

Make sure to include the following in your comment or note:

v Title and order number of this document

v Page number or topic related to your comment

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any

way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 2008. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

http://www.ibm.com/servers/eserver/zseries/zos/webqs.html

Contents

Figures . v

Tables . vii

About this document . ix

Who should use this User’s Guide? ix

What is in the User’s Guide? ix

Summary of changes . xi

Chapter 1. Introduction . 1

Why XML? . 1

APIs . 1

DOM . 1

SAX . 3

DOM vs SAX . 5

XPath . 6

Validation . 6

XML Toolkit for z/OS . 7

z/OS specific parser classes . 8

Deprecated DOM support . 11

Toolkit packaging strategy . 11

Toolkit support for both z/OS UNIX System Services and MVS environments 12

Chapter 2. How to access XML data 13

How to access data sets . 13

Relative URIs . 13

Absolute URIs . 14

Considerations when using the Xalan C++ commands 14

DTDs, Schema and other embedded files 14

Chapter 3. Encoding issues 15

Encoding and XML . 15

XML and z/OS . 16

Avoiding conversion . 17

Chapter 4. How to use Toolkit XPLINK support 19

Using Toolkit XPLINK support 19

Building an XPLINK application 19

Running an XPLINK application 20

Chapter 5. How to use the XML Parser, C++ Edition 21

Using the sample applications 22

Rule for running non-XPLINK samples 24

Rule for running XPLINK samples 24

z/OS UNIX Environment . 24

Building sample applications for the z/OS UNIX Environment 24

Using your sample applications on the z/OS UNIX Environment 27

MVS Environment . 28

Building sample applications for the MVS Environment 28

Using your sample applications on the MVS Environment 30

Multi-threading considerations 31

Using UNIX pthreads . 32

© Copyright IBM Corp. 2008 iii

||

Using MVS multi-tasking . 32

Chapter 6. How to use z/OS specific parser classes 33

Using a SAX2XMLReader class 33

Constructing a zXercesDOMParser 38

Constructing a DOMBuilder . 44

Using samples for the z/OS specific parser classes 49

Chapter 7. How to use the XSLT Processor, C++ Edition 51

Using the sample applications 52

Rule for running non-XPLINK samples 53

Rule for running XPLINK samples 53

z/OS UNIX Environment . 53

Building sample applications for the z/OS UNIX Environment 53

Using your sample applications on the z/OS UNIX Environment 56

MVS Environment . 57

Building sample applications for the MVS Environment 57

Using your sample applications on the MVS Environment 60

Chapter 8. How to use the XML Toolkit command line utilities 63

How to use the XSLT Processor, C++ Edition command line utility 63

Chapter 9. Where to go for more information 67

Appendix A. Building samples for native MVS using JCL 69

Building XML Parser, C++ Edition samples for native MVS using JCL 69

Building XSLT Processor, C++ Edition samples for native MVS using JCL . . . 71

Appendix B. Calling XML Parser, C++ Edition from COBOL 75

Source code samples . 75

Compilation instructions . 83

Setup instructions . 84

Appendix C. Parser environment and instance reuse 85

Appendix D. Accessibility . 97

Using assistive technologies . 97

Keyboard navigation of the user interface 97

z/OS information . 97

Notices . 99

Trademarks . 100

Index . 101

iv XML Toolkit for z/OS User’s Guide

||
||
||
||
||

Figures

1. DOM Parsing Model . 3

2. SAX Parsing Model . 5

3. Open source parsing model . 9

4. z/OS parsing model . 10

5. Non-valid XML file to be processed via DDNAME 82

6. JCL to compile, bind and run the sample code . 83

© Copyright IBM Corp. 2008 v

||
||

vi XML Toolkit for z/OS User’s Guide

Tables

 1. DOM vs SAX . 5

 2. Expected Validation Results . 6

 3. Interfaces and Specifications for the Toolkit Parser 7

 4. Interfaces and Specifications for the Toolkit Processor 8

 5. z/OS UNIX vs. MVS . 12

 6. Product Files Required to Build Sample XML Applications for z/OS UNIX Environments 25

 7. Library Files Required to Run Sample XML Applications on z/OS UNIX 27

 8. Product Files Required to Build Sample XML Applications for MVS Environments 28

 9. Library Files Required to Run Sample XML Applications on MVS 30

10. SAX2XMLReader APIs and behaviors in z/OS . 34

11. SAX2 features and behaviors in z/OS . 36

12. SAX2 properties and behaviors in z/OS . 38

13. zAbstractDOMParser APIs and behaviors in z/OS 39

14. zXercesDOMParser APIs and behaviors in z/OS 43

15. DOMBuilder APIs and behaviors in z/OS . 46

16. DOMImplementation APIs and behaviors in z/OS 47

17. DOMBuilder features and behaviors in z/OS . 48

18. Xerces features and behaviors in z/OS . 48

19. Xerces properties and behaviors in z/OS . 49

20. Product Files Required to Build Sample XML Applications for z/OS UNIX Environments 54

21. Library Files Required to Run Sample XML Applications on z/OS UNIX 56

22. Product Files Required to Build Sample XML Applications for MVS Environments 58

23. Library Files Required to Run Sample XML Applications on MVS 60

24. Flags and Arguments for the Xalan Executable . 63

25. Flags and Arguments for the testXSLT Executable 64

© Copyright IBM Corp. 2008 vii

||
||
||
||
||
||
||
||
||
||

viii XML Toolkit for z/OS User’s Guide

About this document

This document provides information you need to use V1.9.0 of XML Toolkit for

z/OS™. It contains instructions on how to use the following components:

v XML Parser, C++™ Edition

v XSLT Processor, C++ Edition

Note: XML Parser, Java Edition and XSLT Processor, Java Edition are not

supported in Toolkit V1.9.0.
It also provides information on the z/OS specific classes in the XML Parser, C++

Edition which utilize the z/OS XML System Services component to parse XML

documents. When the z/OS specific classes are used, a portion of the parse is

performed by z/OS XML System Services, which can take advantage of the more

competitive zAAP specialty engines (if present).

Information on how to use Toolkit V1.8.0 and Toolkit V1.7.0 is available from the

XML Toolkit for z/OS User’s Guide V1R8 and the XML Toolkit for z/OS User’s Guide

V1R7. Both documents can be downloaded from the following Web site:

http://www-1.ibm.com/servers/eserver/zseries/software/xml/

Who should use this User’s Guide?

This document is for application programmers, system programmers, and end users

working on a z/OS system and using the Toolkit.

This document assumes that readers are familiar with the z/OS system and with the

information for z/OS and its accompanying products.

The Toolkit home page,

http://www.ibm.com/servers/eserver/zseries/software/xml/

offers information about the Toolkit releases, the Program Directory, and installation

instructions.

What is in the User’s Guide?

This document describes how to use the Toolkit XML Parser, C++ Edition and XSLT

Processor, C++ Edition, and how to utilize the z/OS XML System Services parser.

Using the document, you will:

v Receive an introduction to XML and the XML Toolkit.

– Read about XML and its implications in today’s world.

– Learn about the components of the XML Toolkit.

– Learn about the APIs that are implemented by the Toolkit.

– Read about the process of validation.

– Discover how to access data sets using XML.

v Understand how to use the XML Parser, C++ Edition in the XML Toolkit.

– Learn about the C++ XML parser.

– Review samples of how to use the C++ XML parser.

– Understand how to use the z/OS specific parser classes that utilize the z/OS

XML System Services component.

- Learn about the z/OS specific parser classes.

© Copyright IBM Corp. 2008 ix

|
|

|

|

|
|
|
|
|
|
|

|
|
|

|

|

|

|

|

|

|

|

|

|
|

|

- Review the APIs associated with the z/OS specific parser classes.

- Review the provided samples that use the z/OS specific parser classes.

v Understand how to use the XSLT Processor, C++ Edition in the XML Toolkit.

– Learn about the C++ XSLT processor.

– Review samples of how to use the C++ XSLT processor.

v Find out where you can learn more about the XML Toolkit and all its

components.

x XML Toolkit for z/OS User’s Guide

|

|

|

|

|

|
|

Summary of changes

Summary of Changes

for SA22-7932-06

XML Toolkit Version 1 Release 9

 This document is a refresh of XML Toolkit for z/OS User’s Guide, SA22-7932-05,

which supports XML Toolkit Version 1 Release 9.

New Information

v An introduction to new support that allows XML Toolkit users performing

non-validating parsing to indicate that z/OS z/OS XML System Services be used

as an underlying parsing technology: “z/OS specific parser classes” on page 8

v Chapter 6, “How to use z/OS specific parser classes,” on page 33

Changed Information

Deleted Information

This document contains terminology, maintenance, and editorial changes. Technical

changes or additions to the text and illustrations are indicated by a vertical line to

the left of the change.

Summary of Changes

for SA22-7932-05

XML Toolkit Version 1 Release 9

 This document contains information previously presented in XML Toolkit for z/OS

User’s Guide, SA22-7932-04, which supports XML Toolkit Version 1 Release 8.

New Information

v Three new appendixes added: Appendix A, “Building samples for native MVS

using JCL,” on page 69, Appendix B, “Calling XML Parser, C++ Edition from

COBOL,” on page 75, andAppendix C, “Parser environment and instance reuse,”

on page 85.

v New information added to each ″How to use...″ chapter.

Changed Information

Deleted Information

Summary of Changes

for SA22-7932-04

XML Toolkit Version 1 Release 8

 This document contains information previously presented in XML Toolkit for z/OS

User’s Guide, SA22-7932-03, which supports XML Toolkit Version 1 Release 7.

New Information

v XPLINK support: Chapter 4, “How to use Toolkit XPLINK support,” on page 19

v Deprecated DOM support: “Deprecated DOM support” on page 11

v New information added to each ″How to use...″ chapter.

© Copyright IBM Corp. 2008 xi

Changed Information

Deleted Information

Summary of Changes

for SA22-7932-03

XML Toolkit Version 1 Release 7

 This document contains information previously presented in XML Toolkit for z/OS

User’s Guide, SA22-7932-02, which supports XML Toolkit Version 1 Release 6.

New Information

v New information added to each ″How to use...″ chapter.

Changed Information

Deleted Information

v Removed ″How to use the XML Parser, Java Edition″ chapter.

v Removed ″How to use the XML Processor, Java Edition″ chapter.

v Removed ″How to use the XSLT Processor, Java Edition command line utility″

chapter.

xii XML Toolkit for z/OS User’s Guide

Chapter 1. Introduction

Why XML?

XML allows you to tag data in a way that is similar to how you tag data when

creating an HTML file. XML incorporates many of the successful features of HTML,

but was also developed to address some of the limitations of HTML. XML tags may

be user-defined through a schema for later validation, which can either be a

Document Type Definition (DTD) or a document written in the XML Schema

language. In addition, namespaces can help ensure you have unique tags for your

XML document. The syntax of XML has more restrictions than HTML, but this

results in faster and cheaper browsing. The ability to create your own tagging

structure gives you the power to categorize and structure data for both ease of

retrieval and ease of display. XML is already being used for publishing, as well as

for data storage and retrieval, data interchange between heterogeneous platforms,

data transformations, and data displays. As it evolves and becomes more powerful,

XML may allow for single-source data retrieval and data display.

The benefits of using XML vary but, overall, marked-up data and the ability to read

and interpret that data provide the following benefits:

v With XML, applications can more easily read information from a variety of

platforms. The data is platform-independent, so now the sharing of data between

you and your customers can be simplified.

v Companies that work in the business-to-business (B2B) environment are

developing DTDs and schemas for their industry. The ability to parse

standardized XML documents gives business products an opportunity to be

exploited in the B2B environment.

v XML data can be read even if you do not have a detailed picture of how that data

is structured. Your clients will no longer need to go through complex processes to

update how to interpret data that you send to them because the DTD or schema

gives the ability to understand the information.

v Changing the content and structure of data is easier with XML. The data is

tagged so you can add and remove elements without impacting existing

elements. You will be able to change the data without having to change the

application.

However, despite all the benefits of using XML, there are some things to be aware

of. First of all, working with marked up data can be additional work when writing

applications because it physically requires more pieces to work together. Given the

benefits of using XML, this additional work up front can reduce the amount of work

needed to make a change in the future. Second, although it is a recommendation

developed by the World Wide Web Consortium (W3C), XML, along with its related

technologies and standards including Schema, XPath, and DOM/SAX APIs, are still

a developing technology.

APIs

DOM

The Document Object Model (DOM) specification is an object-based interface

developed by the World Wide Web Consortium (W3C) that builds an XML document

as a tree structure in memory. An application accesses the XML data through the

tree in memory, which is a replication of how the data is actually structured. The

DOM also allows you to dynamically traverse and update the XML document.

© Copyright IBM Corp. 2008 1

DOM uses a set of C/C++ APIs to interact with the XML data.

The DOM API is ideal when you want to manage XML data or access a complex

data structure repeatedly. The DOM API:

v Builds the data as a tree structure in memory.

v Parses an entire XML document at one time.

v Allows applications to make dynamic updates to the tree structure in memory.

v Allows applications to randomly access any item in the memory tree structure.

v Allows applications to generate an XML document by starting with an empty tree,

populating it with the desired data, and then serializing it as an XML character

document.

Using the DOM API preserves the structure of the document (and the relationship

between elements) and does the parsing up front so that you do not have to do the

parsing process over again each time you access a piece of data. If you choose to

validate your document, you can be assured that the syntax of the data is valid

when you are working with it. However, the DOM API requires additional memory to

be allocated and freed, initialized and read, translating to increased machine cycles.

In addition, the DOM API is, by nature, a four-step process:

1. The application invokes the parser, passing it an XML document.

2. The parser parses the entire document and builds a DOM tree structure in

memory.

3. Completion status is returned to the application.

4. The application utilizes DOM APIs to access and optionally modify data in the

DOM tree.

The following is a schematic of the DOM parsing model.

2 XML Toolkit for z/OS User’s Guide

For information on the Toolkit support for DOM APIs, see the Interfaces and

Specifications chart for Toolkit Parser on page 7.

SAX

The Simple API for XML (SAX) specification is an event-based interface developed

by members of the XML-DEV mailing list. It uses the parser to access XML data as

a series of events in a straight line, which means that the parser finds information in

the XML document without retaining state (or context) information.

When writing applications using the SAX specification, you will use a set of C/C++

APIs to interact with the XML data.

The SAX API can provide faster and less costly processing of XML data when you

do not need to access all of the data in an XML document. Part of the reason for

this performance benefit not seen in DOM arises from the fact that SAX places

more burden on the application than does DOM. Often, applications that might

Figure 1. DOM Parsing Model

Chapter 1. Introduction 3

naturally tend to be inclined to use DOM, instead use SAX and work around its

limitations, in order to take advantage of those performance benefits. The SAX API

does the following:

v Accesses data through a series of events, eliminating the need to build a tree

structure in memory.

v Assists the application in determining the most efficient way to build an internal

model.

v Allows you to access a small number of elements at one time rather than an

entire document.

The SAX API is best for applications that need access to a subset of the data and

do not need to understand its relationship to surrounding elements. SAX is also

ideal for information that is both generated by and readable by a machine.

However, SAX can only traverse the XML document in a single pass, which makes

it more expensive when you want to access data repeatedly from an XML

document. When it comes to saving needed information from the document or

keeping its own understanding of relationships between elements (if that is

important), SAX places more burden on the application than does DOM.

The SAX parsing model is a three-step process:

1. The application invokes the parser passing it an XML document. It also passes

in the addresses of event handlers for the various SAX events.

2. The parser parses the document, calling the application’s event handlers for

each token encountered in the XML document.

3. When the document is complete, control is returned to the application.

The following is a schematic of the SAX parsing model.

4 XML Toolkit for z/OS User’s Guide

For information on the Toolkit support for SAX APIs, see the Interfaces and

Specifications chart for Toolkit Parser on page 7.

DOM vs SAX

The DOM and SAX APIs can each parse documents efficiently given appropriate

conditions. The following table summarizes and compares the characteristics of the

DOM API with those of the SAX API:

 Table 1. DOM vs SAX

DOM SAX

Type of Interface Object based Event based

Object Model Created automatically Must be created by

application

Element Sequencing Preserved Can be preserved or not,

depending on the application

Figure 2. SAX Parsing Model

Chapter 1. Introduction 5

Table 1. DOM vs SAX (continued)

DOM SAX

Speed of Initial Data

Retrieval

Slower Faster

Stored Information Better for complex structures Better for simple structures

Validation Optional Optional

Ability to update XML

document

Yes (in memory) No

XPath

XPath is a language for addressing parts of an XML document, designed to be

used by XSLT and other XML-related technologies. It provides basic facilities for

manipulation of strings, numbers and booleans. XPath is also designed so that it

has a natural subset that can be used for matching (testing whether or not a node

matches a pattern). For information on the Toolkit support for XPath, see the

Interfaces and Specifications chart for Toolkit Processors on page 8.

Validation

A valid document is one that follows the XML syntax and also conforms to the rules

of an associated DTD or XML Schema. (A well-formed document is one that follows

the XML syntax.)

Validation is the process of comparing an XML document with a specified DTD or

XML Schema. It ensures that the document uses only those tags that have been

defined in the DTD or XML Schema as well as ensuring that it conforms to the

element rules specified in the DTD or XML Schema.

Validation of an XML document is expensive in terms of machine cycles. If the

document is received from a reliable source and the format of the document has

been predetermined, validation may not be necessary. However, using validation

ensures that only elements defined in the DTD or XML Schema are used and,

therefore, the structure of the XML document remains consistent.

If you do not want to validate the document each time you access data, you can, as

an example, code an application so that it may reject tags that it does not recognize

and takes an appropriate error path. If you do this, you may want to use validation

during testing and initial implementation of a new version of an application or

temporarily until the source of a document has been accredited.

The following table summarizes the expected results of validation:

 Table 2. Expected Validation Results

Validate Against a DTD or

XML Schema Do Not Validate

Document Is Valid Once validation is completed,

parsing continues.

Validation is ignored and

processing continues.

Document Is Not Valid Validation will result in an

error response that will help

you determine the error.

Parsing is discontinued.

Validation is ignored and

processing continues.

6 XML Toolkit for z/OS User’s Guide

XML Toolkit for z/OS

The XML Toolkit for z/OS (Toolkit) provides the base infrastructure to integrate

vertical/industry-specific data formats, structures, schemas, and metadata to ensure

industry compliance of data representation and content. Some of its key uses

include categorizing and tagging data for exchange in disparate environments, as

well as transforming ad hoc unstructured data to XML records, enabling you to

search, cross-reference, and share records.

The Toolkit includes the XML Parser, C++ Edition. The XML Parser, Java Edition is

no longer supported in the Toolkit as equivalent support exists in the Java SDK 1.4

and later versions. The XML Parser, C++ Edition is a port of IBM’s XML4C parser. It

is tested and packaged for use on z/OS. XML4C is based on open source code

from the Xerces Apache project of the Apache Software Foundation.

The XML Parser, C++ Edition has a set of classes closely resembling the standard

SAX2 and DOM classes with slight alterations. These changes allow the XML

Parser, C++ Edition to utilize the z/OS XML System Services component to parse

XML documents. When these z/OS specific classes are used, a portion of the parse

is performed by z/OS XML System Services, gaining a raw performance

improvement, along with the ability to take advantage of the more competitive zAAP

specialty engines (if present).

In addition to the parser, Toolkit V1.9.0 also includes the XSLT Processor, C++

Edition. The XSLT Processor, Java Edition is no longer supported in the Toolkit as

equivalent support exists in the Java SDK 1.4 and later versions. The XSLT

Processor, C++ Edition is a port of IBM’s XSLT4C XSLT processor (formerly known

as LotusXSL-C++). It is tested and packaged for use on z/OS. The processor is an

implementation of the W3C recommendations for XSL Transformations (XSLT)

Version 1.0 and XML Path Language (XPath) Version 1.0. XSLT4C is based on

open source code from the Xalan Apache project of the Apache Software

Foundation. It allows users to transform XML documents into other XML documents,

HTML, or text, and run on multiple platforms.

The Toolkit includes z/OS world-class service and support.

For more information about the Toolkit product, visit the Toolkit Web site at:

http://www.ibm.com/servers/eserver/zseries/software/xml/

The following two tables presents a quick summary of the major features found in

the XML Toolkit for z/OS. Symbols in the tables have the following meaning:

v ″-″: feature absent;

v ″S″: completely supported;

v ″P″: subset;

v ″X″: experimental.

 Table 3. Interfaces and Specifications for the Toolkit Parser

Interfaces and Specifications C++ Edition parser

DOM 1.0 S

DOM 2.0 S

DOM 3.0 P,X

SAX 1.0 S

SAX 2.0 S

Chapter 1. Introduction 7

|
|
|
|
|
|
|

Table 3. Interfaces and Specifications for the Toolkit Parser (continued)

Interfaces and Specifications C++ Edition parser

XML 1.0 S

XML 1.1 S

XML Namespaces 1.0 S

XML Namespaces 1.1 S

XML Schema 1.0 S

 Table 4. Interfaces and Specifications for the Toolkit Processor

Interfaces and Specifications C++ Edition processor

XSL Transformations S

XPATH 1.0 S

XML 1.1 S

XML Namespaces 1.1 S

Sample applications are provided with the Toolkit to help demonstrate its features.

The procedures required to set up and configure these sample applications for MVS

and z/OS UNIX environments are described in the chapters that follow.

z/OS specific parser classes

The capability exists within the XML Parser, C++ Edition that allows an application

to take advantage of the z/OS XML System Services component. A set of z/OS

specific parser classes have been implemented in the XML Parser, C++ Edition to

provide this ability. These classes were created to closely mimic the existing SAX2

and DOM interfaces. They allow many applications to exploit the improved cost and

performance characteristics of the z/OS XML System Services component with

minimal changes to their code.

The figure below illustrates the flow when using the existing embedded open source

parser. Applications may continue to use this existing parser functionality without

modifications to their code.

8 XML Toolkit for z/OS User’s Guide

|

|
|
|
|
|
|
|

|
|
|
|

When an application does what is referred to as a “Parse using existing parser

classes” in the application box, it will use the existing embedded open source

parser to parse the XML document. This consists of an XMLReader, an XML

Scanner (which is configurable), the XMLDocumentHandler interface which feeds

the results back to the application via an event generator that will either generate

SAX callback events or will create a DOM tree in memory.

The figure below illustrates the flow when using the new capability provided by the

z/OS specific parser classes. In order to take advantage of this functionality, minor

code modifications are required.

Figure 3. Open source parsing model

Chapter 1. Introduction 9

|

|
|
|
|
|
|
|
|
|

|
|
|
|

When an application does what is referred to a “Parse using new z/OS specific

parser classes”, it will invoke the z/OS XML System Services component to parse

the XML document. The document is passed to z/OS XML System Services in one

or more input buffers and will be returned in one or more output buffers. As output

buffers are consumed by the new classes, the event generator will generate either

SAX2 callbacks or create a DOM tree in memory.

Note: This implementation does not have a configurable scanner nor does it

implement the XMLDocumentHandler interface.

There are some benefits to using the classes that take advantage of z/OS XML

System Services:

v z/OS XML System Services can take advantage of redirection of work to zAAP

specialty engines, if present.

v Significant performance improvements are possible.

There are some significant differences in behavior in the z/OS specific parser

classes that must be considered when deciding if you can use these. Not all of the

functionality of the existing base parser classes exists in the new z/OS specific

parser classes. The functionality that is most widely used is implemented where

possible given that we must conform to the behavior of the z/OS XML System

Services component:

v z/OS release 1.7 or higher is required.

v Validation via either an internal or external DTD or a schema is not supported.

v The z/OS XML System Services component is a namespace compliant parser

only. You may not specify an option to make the parser non-namespace

compliant.

v There is no implementation of the XML Entity Resolver. z/OS XML System

Services will resolve entity references that are defined in the internal DTD and

Figure 4. z/OS parsing model

10 XML Toolkit for z/OS User’s Guide

|

|
|
|
|
|
|
|
|
|

|
|

|
|

|
|

|

|
|
|
|
|
|

|

|

|
|
|

|
|

substitute the replacement text for the entity. However, there is no notification

given to the application that this has happened.

v There is no ability to force namespaces to be URI conformant.

v Different error messages will be displayed when an XML document contains an

error.

– The new error messages provide an offset to the character in error, not a line

and column number.

– In most cases, the return and reason codes from z/OS XML System Services

are displayed as opposed to a specific description of the error.

v SAX1 and deprecated DOM are not supported.

v The SAX2XMLFilter class is not supported.

v The XMLDocumentHandler interface is not implemented.

v The z/OS XML System Services C/C++ APIs, which are called by the z/OS

specific parser classes, are compiled XPLINK for optimum performance. You

should build your application using XPLINK and bind it with the XPLINK version

of the XML Parser, C++ Edition DLLs, otherwise you must set the following

environment variable: :

export _CEE_RUNOPTS="XPLINK(ON)"

If you mix non-XPLINK and XPLINK compiled code, there will be a significant

performance degradation during execution. It is strongly recommended that when

using the new z/OS specific parser classes, that only XPLINK compiled code is

used. This will provide the best possible performance. If, however, your

application cannot be compiled XPLINK, you should use the non-XPLINK version

of the parser to avoid this performance penalty.

For more information on the z/OS specific parser classes, including the APIs,

examples, and sample programs, see Chapter 6, “How to use z/OS specific parser

classes,” on page 33. More information on the z/OS XML System Services parser,

including return and reason code descriptions, can be found in the z/OS XML

System Services User’s Guide and Reference located at http://www.ibm.com/
servers/eserver/zseries/zos/xml/.

Deprecated DOM support

The previously deprecated DOM code has been removed from the main XML

Toolkit Parser DLL to reduce the DLL’s footprint. If you want to use the deprecated

DOM code, you will need to include the new sidedeck for the deprecated DOM

code. The DLL and sidedeck names are listed in Table 6 on page 25 and Table 8 on

page 28.

Toolkit packaging strategy

The Toolkit V1.9.0 package contains three levels of the Toolkit: V1.9.0, V1.8.0, and

V1.7.0. This packaging strategy was developed to compensate for the lack of

upward compatibility between Toolkit releases. By making three levels of the Toolkit

available to customers (current level plus 2 back levels), support is available to

customers using a level of the Toolkit other than the current level. For example, if

Toolkit V1.9.0 is the current level, the Toolkit package will have included in it levels

V1.9.0, V1.8.0, and V1.7.0. A customer who may be installing a product that

requires Toolkit V1.8.0 can still obtain and install V1.8.0 (assuming they don’t

already have it) because it is included in the current V1.9.0 Toolkit package.

Chapter 1. Introduction 11

|
|

|

|
|

|
|

|
|

|

|

|

|
|
|
|
|

|

|
|
|
|
|
|

|
|
|
|
|
|

http://www.ibm.com/servers/eserver/zseries/zos/xml/
http://www.ibm.com/servers/eserver/zseries/zos/xml/

Toolkit support for both z/OS UNIX System Services and MVS

environments

The Toolkit supports applications running on both z/OS UNIX System Services and

MVS environments. To better understand how the Toolkit provides this support, you

need to recognize the differences between these two types of environments, and

the applications supported on them. The following table provides an introductory

comparison of these two environments:

 Table 5. z/OS UNIX vs. MVS

z/OS UNIX Environment MVS Environment

Parallel Processing Model pthreads tasks

JES Batch Processing posix enabled batch non-posix batch

File access HFS or data sets data sets only

Command environment UNIX shell or BPXBATCH TSO or batch

For more information on how these environments compare, visit the following Web

page:

http://www.ibm.com/servers/eserver/zseries/zos/unix/release/ncomp2.html

12 XML Toolkit for z/OS User’s Guide

http://www.ibm.com/servers/eserver/zseries/zos/unix/release/ncomp2.html

Chapter 2. How to access XML data

The XML parser (as well as the XSLT processor) was designed to utilize the

Uniform Resource Identifiers (URI) standard to access files. This standard is

described in RFC 2396 . Most APIs that need to access data support both absolute

URIs and relative URIs, aside from the following exception: The XSLT processor

output parameter only supports relative URIs.

How to access data sets

The URI design is based on a hierarchical file system naming scheme. Traditional

MVS data set naming schemes do not fit directly within this scheme so some

adaptation has been required in order to be able to access data sets from XML.

Fortunately, there is a precedent for accessing data sets when running a C++

program from UNIX and that is to prefix the data set name with ’//’. Here is an

example:

 //’USER1.SAMPLE.XML(PERSON1)’

 //SAMPLE.XML(PERSON1)

The ’//’ tells a C++ program running from the UNIX APIs to look for the name as a

data set rather than in an HFS. The single quotes tell it not to add on the user’s

default high level qualifier. In addition, if you are running from a batch or started

task environment, the data set can be accessed via DD statements in the JCL. The

following is an example:

 //DD:SAMPFILE(PERSON1)

Where the following DD is also defined in the JCL:

 //SAMPFILE DD DSN=USER1.SAMPLE.XML,DISP=SHR,

 // VOL=SER=BPXLK2,UNIT=3390

All the examples above will access the same member of the same data set.

Relative URIs

In the cases where relative URIs are allowed, these data set definitions can be

used instead of the traditional hierarchical file system parameters. Using this format,

there is no ’path’ distinction as in a hierarchical system. Here is an example

invocation of the SAXCount sample program passing a data set name:

 SAXCount ’//sample.xml(person1)’

The quotes are needed so that UNIX doesn’t see the parentheses as errors. MVS

also has a convention of adding a default high level qualifier if one is present. If you

don’t want to have the default high level qualifier added on, use single quotes

around the data set name and double quotes around the whole parameter:

 SAXCount "//’user1.sample.xml(person1)’"

When used in batch, JCL requires single quotes around the parameters, so you

must use a pair of single quotes:

 PARM=’/ //’’user1.sample.xml(person2)’’’

© Copyright IBM Corp. 2008 13

http://www.ietf.org/rfc/rfc2396.txt

You may have noticed that there is an extra ’/’ in the beginning of the parameters.

This is required by JCL to separate run-time options from the parameters.

Absolute URIs

Data sets can also be specified using absolute URIs. (Note: The XSLT Processor,

C++ Edition does not support absolute URIs). Since the convention for accessing

data sets is to start with a ’//’ and this convention is also used to distinguish the

absolute URIs with host names, you can only specify an absolute URI using the

host format. The host name itself is still optional. Here are some examples:

 SAXCount ’file:////sample.xml(person1)’

 SAXCount ’file://localhost//sample.xml(person1)’

 SAXCount "file:////’user1.sample.xml(person1)’"

 PARM=’/ file:////’’user1.sample.xml(person2)’’’

In addition, when using XML in a batch or started task environment, you can use

the //DD: format to access a data set that is defined via a DD statement. The

following is an example:

 SAXCount ’file:////dd:sampfile(person1)’

Considerations when using the Xalan C++ commands

Most interfaces that need to access data support both absolute URIs and relative

URIs. The following are some known exceptions:

v The Xalan command output parameter only supports relative URIs.

v The Xalan command input parameters (for the XML file and the XSL file) support

all URIs for UNIX files, but only absolute URIs for MVS data sets.

For more information on the Xalan command, see Chapter 8, “How to use the XML

Toolkit command line utilities,” on page 63. For more information on Xalan itself,

see “XML Toolkit for z/OS” on page 7.

DTDs, Schema and other embedded files

The conventions described above also apply to files which are referenced within

XML documents, such as DTDs. Here is an example xml DOCTYPE statement to

access a data set:

DOCTYPE personnel SYSTEM "file:////’USER1.SAMPLE.DTD(PERSON1)’"

14 XML Toolkit for z/OS User’s Guide

Chapter 3. Encoding issues

The promise of XML is that it is portable and works on all platforms. Making this

work effectively and efficiently requires program design that takes into account the

specific situation pertinent to a particular application (for example, where the

document originates, where it is likely to be processed, the performance

requirements, the throughput requirements, where the document is stored and how

it is likely to be accessed). Proper encoding of XML documents will require thought

and consideration at application design time.

The following information is intended to give application programmers guidance on

how to deal with encoding of XML documents on z/OS.

Encoding and XML

This section presents the encoding rules in a simple and straightforward manner as

background to the discussion of encoding of XML on z/OS. It is not intended to

reproduce the detail of the XML 1.0 specification or to cover every possible case.

The XML standard defines encoding fairly rigorously. If the document is not in

UTF-8 or UTF-16, the encoding of the document must be specified via the

encoding= attributes on the processing instruction. Also, even though it is possible

for the encoding specified via the transport protocol to override the encoding

declaration, it is strongly advised that the actual encoding of the document match

the encoding specified on the encoding= attribute. Problems can occur if the

document is converted from one code page to another without the encoding=

attribute being changed. There are places where conversion takes place without the

knowledge of the application programmer. Examples of these include file transfer

using ftp (File Transfer Program) without the binary option and storing files in a

database using DRDA.

Whenever possible, avoid letting these types of conversions take place so that

mismatches do not occur. The XML parser for z/OS converts the document to

Unicode for processing and is capable of handling many different code pages. Also,

converting from one code page to another can cause loss of data if there are code

points in the original code page that are not present in the target code page.

Avoiding conversion prior to calling the parser results in the most efficient (from a

performance perspective) and least error-prone solution. Conversion is expensive

and if the document is converted before the parser is invoked, two conversions

actually occur - once from the original code page and once to Unicode within the

parser. Therefore, use the binary option on ftp and equivalent file transfer

mechanisms.

XML is intended to be a portable data format. The truly portable encoding is

Unicode. Therefore whenever possible, it is best to use Unicode as the encoding for

XML documents. However, not all platforms provide easy to use facilities for

handling Unicode. As a compromise, ASCII is another portable encoding that is

better supported via facilities. It is recommended that XML documents intended for

use on other platforms be encoded in US ASCII or UTF-8 or UTF-16. This also

provides performance benefits because the XML parser is optimized for these

encodings.

© Copyright IBM Corp. 2008 15

XML and z/OS

The current XML W3C recommendation (XML 1.0) specification defines CR

(Carriage Return), LF (Line Feed), and the combination CR-LF (Carriage Return

followed by Line Feed) as acceptable white space characters. These characters are

to be converted to LF by the XML parser. Unfortunately, the XML 1.0 specification

does not define NEL (New Line or Next Line) as acceptable.

This presents a problem on z/OS because the most common end-of-line character

on z/OS is NEL. The C ’\n’ string converts to NEL, and editors and file I/O routines

in the C runtime insert NEL to indicate end-of-line in byte oriented file systems like

the HFS (Hierarchical File System). Therefore, if the XML document is created

using C or C++ and the application programmer does not do any special

programming to avoid it, the line ending character will be NEL. This is not

recommended for XML documents because by nature, they are intended to be

portable. The NEL is common on z/OS but not on other platforms and therefore is

not portable.

Unfortunately, this means that the application programmer has to be aware of this

fact and program around it. There are two options available to programmers writing

code to create XML documents.

1. The simplest way to create portable XML documents is to use iconv() to convert

them to ASCII or Unicode before sending them out of the application program.

The runtime function iconv() will convert the NEL to LF in ASCII and the

problem is therefore avoided.

2. Another option is to define a literal for LF and use it instead of the string ’\n’ to

create line breaks. This approach works if the file will not be edited or otherwise

manipulated on z/OS (remember, most mainframe editors insert NEL

characters!). Also, if this file is edited on z/OS, the document will appear to be a

single line (since there aren’t any NEL characters in it) and therefore will not be

very readable.

Note: This is not an issue in the native MVS environment where file systems are

record oriented and typically do not require end of line characters.

If you need to edit or view the file on z/OS, it is best to convert it to ASCII and then

use viascii (available at z/OS Unix Tools) to edit it.

For the other case, where the program is processing a received XML document, the

situation is more complex. The fastest (and in some cases, the simplest) solution is

to not convert the file into EBCDIC. If the file is in ASCII or Unicode, then it will

have LF as the end-of-line indicator and there won’t be any problem with the line

ending. However, this is much more complex for a z/OS application program to deal

with. Depending on the specific situation (for example, development/test vs

production), conversion may or may not be required. However, the recommendation

to avoid conversion if at all possible, still holds, especially in a production

environment where the cost of conversion can be prohibitive. For development/test

situations, where the file may have to be viewed or edited for debugging purposes,

conversion may be the right answer. The parser converts all the data into Unicode

so converting the data to EBCDIC after parsing is required. At this point, only data

that is required needs to be converted, rather than the entire XML document. Note

that converting small strings may be less efficient than converting larger strings.

Also, handling Unicode or ASCII data in a z/OS program does require care in

programming and isn’t always simple. All these factors need to be considered in a

set of trade-offs when designing the application.

16 XML Toolkit for z/OS User’s Guide

http://www.ibm.com/servers/eserver/zseries/zos/unix/bpxa1toy.html

If the file is in EBCDIC and has been created or modified on a z/OS system, then

the line ending character is typically a NEL. The XML Parser, C++ Edition will

accept XML documents that have a NEL as a line termination character. Even

though these are non-compliant XML documents, the parser will normalize the

line-endings to LF. However, because these documents are non-compliant, they

may not be accepted by parsers on other platforms. In general, EBCDIC is not a

portable encoding so IBM does not recommend using EBCDIC for XML documents

going between platforms or on the Internet.

Note: XML 1.1 does support NEL

Avoiding conversion

Most transport protocols have mechanisms to avoid conversions. Here are some of

the more common products used for transport and the options to turn off conversion

(if they exist). Detailed descriptions of these options and their uses are in the

documentation associated with each product.

File Transfer Program (FTP)

The binary option prevents FTP from converting the file.

MQSeries

Do not specify MQGMO_CONVERT option on the MQGET call.

DRDA It is not possible to turn off conversion except by using ’FOR BIT DATA’ but

this can have other side effects. The DB2 XML Extender has filters that

convert LF to NEL and vice versa to ensure that the document is correct.

Chapter 3. Encoding issues 17

18 XML Toolkit for z/OS User’s Guide

Chapter 4. How to use Toolkit XPLINK support

Extra Performance Linkage (XPLINK) is a relatively new call linkage between

programs that have the potential for a significant performance increase when used

in an environment of frequent calls between small functions or subprograms. The

Object Oriented aspect of C++ causes much C++ code to fall into this category.

An XPLINK copy of the XML Parser, C++ Edition and the XSLT Processor, C++

Edition library files and sidedecks are provided for customers in addition to the

non-XPLINK versions. A listing of these files along with the build and run steps

required to use XPLINK are presented in the following chapters: Chapter 5, “How to

use the XML Parser, C++ Edition,” on page 21 and Chapter 7, “How to use the

XSLT Processor, C++ Edition,” on page 51.

Using Toolkit XPLINK support

Under certain circumstances, it may be appropriate to use the new XPLINK Toolkit

code. If you have an existing application that is pure XPLINK and you need to do

XML parsing, you should see a performance improvement if you were previously

using your XPLINK application with the non-XPLINK XML Parser, C++ Edition. This

is because when you use your XPLINK application with the non-XPLINK XML

Parser, C++ Edition, you incur a significant performance penalty each time you call

the XML Parser, C++ Edition. This performance penalty is a result of having to run

through additional code to convert the XPLINK stack structure and register

conventions to the format that the non-XPLINK XML Parser, C++ Edition expected.

When the XML Parser, C++ Edition finishes converting, there is additional overhead

(another performance penalty) restoring the XPLINK environment upon return. As a

result, you should see a significant benefit by calling an XPLINK XML Parser, C++

Edition from your XPLINK application, since you’ll be avoiding the performance

penalties of having to do the XPLINK to non-XPLINK, and then back XPLINK code

conversions.

If your application is non-XPLINK, then you should continue to use the non-XPLINK

XML Parser, C++ Edition. Calling the XPLINK XML Parser, C++ Edition from a

non-XPLINK application will most likely perform worse than if you continue to use

the non-XPLINK XML Parser, C++ Edition.

If you can convert your non-XPLINK application to be 100 percent XPLINK, then

you should see a significant benefit using the XPLINK XML Toolkit code.

For best results, you want all of the code you are calling to be built using XPLINK.

For example, you would not want to bind an XPLINK application with the XPLINK

XML Parser, C++ Edition main DLL (libxml4c5_6_0.xplink.dll) and the non-XPLINK

deprecated DOM DLL (libxml4c-depdom5_6_0.dll).

For more information on XPLINK, refer to the z/OS Language Environment

Programming Guide Chapter 3, ″Using Extra Performance Linkage (XPLINK).

Building an XPLINK application

In order to build an XPLINK application, you need to specify the XPLINK compiler

option (-Wc,XPLINK) during compilation. When link-editing your application, you must

use the DFSMS binder and specify the XPLINK binder option (-Wl,XPLINK). You

also need to include the XPLINK sidedeck on the bind step.

© Copyright IBM Corp. 2008 19

The samples provided in the Toolkit are pre-built non-XPLINK. If you want to build

an XPLINK version of them, you can set an environment variable that has been

added in support of XPLINK. The environment variable, once set, will apply the

correct compiler and binder options in the Makefile and the correct XPLINK

sidedeck will also be included. To build an XPLINK copy of the samples, do the

following:

export OS390_XPLINK=1

For the XSLT Processor, C++ Edition samples there is an extra step needed to

pickup the correct version of the Standard C++ library (see Chapter 7, “How to use

the XSLT Processor, C++ Edition,” on page 51 for more information).

Running an XPLINK application

If the initial program you call is compiled XPLINK, then Language Environment will

initialize the enclave as an XPLINK environment. If your initial program is

non-XPLINK, and you are calling an XPLINK program later on, then you need to

specify the XPLINK(ON) runtime option so that calls may be made between XPLINK

and non-XPLINK programs.

When you build the samples and use the OS390_XPLINK environment variable,

XPLINK(ON) runtime options never needs to be set.

20 XML Toolkit for z/OS User’s Guide

Chapter 5. How to use the XML Parser, C++ Edition

Samples have been provided to demonstrate the features of the XML Parser, C++

Edition. These samples use simple applications written on top of the SAX and DOM

API’s. See “Why XML?” on page 1 for more information on the APIs. The following

samples can be found in the samples directory:

SAXCount

counts the elements, attributes, spaces and characters in an XML file

SAX2Count

same as SAXCount, except uses SAX 2.0

SAXPrint

parses an XML file and prints it out

SAX2Print

same as SAXPrint, except uses SAX 2.0

DOMCount

counts the elements, attributes, spaces and characters in an XML file

DOMPrint

parses an XML file and prints it out

MemParse

parses XML in a memory buffer, outputting the number of elements and

attributes

Redirect

redirects the input stream for external entities

PParse

demonstrates progressive parsing

PSVIWriter

exposes the underlying PSVI of the parsed XML file

SCMPrint

parses an XSD file and prints information about the Schema Component

Model

StdInParse

demonstrates streaming XML data from standard input

EnumVal

shows how to enumerate the markup declarations in a DTD validator

SEnumVal

shows how to enumerate the markup declarations in a Schema validator

CreateDOMDocument

creates a DOM tree in memory from scratch

Rule: These samples are only examples of how to exploit the XML Parser, C++

Edition. You will need to modify your own applications accordingly.

Pre-built versions of the samples for the z/OS UNIX environment are included in the

Toolkit. These can be used to illustrate XML concepts, validate XML documents,

and validate DTDs and schemas during development. See “Using the sample

applications” on page 22 section for instructions on how to use these pre-built

© Copyright IBM Corp. 2008 21

versions. Also, source code is provided in the Toolkit for all of the samples to aid

developers in getting started with their applications.

Rule: The prebuilt samples shipped with the Toolkit are the non-XPLINK versions. If

you want to use the XPLINK versions of the samples, then you must build your own

copy of them.

The procedures for building and using your built samples differ depending on the

target environment. The procedures for building your samples are outlined in

sections “z/OS UNIX Environment” on page 24 and “Building sample applications

for the MVS Environment” on page 28. The procedures for using your built samples

are outlined in sections “Using your sample applications on the z/OS UNIX

Environment” on page 27 and “Using your sample applications on the MVS

Environment” on page 30

The XML Parser, C++ Edition component is installed in /usr/lpp/ixm/IBM/xml4c-
5_6 by default. It contains the following sub-directories:

/doc contains online APIs and design documentation

/include

used for building samples

/lib used for running the parser code

/bin used for the samples

In addition to the sub-directories, the Toolkit includes the following data sets:

hlq.SIXMLOD1

used for running the parser code in an MVS environment

hlq.SIXMEXP

used to build applications for an MVS environment

Using the sample applications

Note: The pre-built samples can be run in a z/OS UNIX command environment.

Before running the samples, you must ensure that several environment variables

are set properly. First, set up an environment variable to point to the location where

the XML Toolkit, C++ Parser component was installed:

 export XERCESCROOT=/usr/lpp/ixm/IBM/xml4c-5_6

Then type in the following command statements:

 export LIBPATH=$XERCESCROOT/lib:$LIBPATH

 export PATH=$XERCESCROOT/bin:$PATH

You are now set to run the sample applications. For example, to run the DOMPrint

application from the $XERCESCROOT/bin directory, type the following command

statement:

 cd $XERCESCROOT/samples/data

 DOMPrint -v=always -wenc=IBM-1047-s390 -wfpp=on personal.xml

 (use "-v=auto" for personal-schema.xml)

22 XML Toolkit for z/OS User’s Guide

This sample application will then parse the personal.xml file, construct the DOM

tree, and invoke DOMWriter::writeNode() to serialize the resultant DOM tree back to

an XML stream. The following is a sample output from DOMPrint:

<?xml version="1.0" encoding="IBM-1047-s390" standalone="no" ?>

<!DOCTYPE personnel SYSTEM "personal.dtd">

<personnel>

 <person id="Big.Boss">

 <name>

 <family>Boss</family>

 <given>Big</given>

 </name>

 <email>chief@foo.com</email>

 <link subordinates="one.worker two.worker three.worker four.worker five.worker"/>

 </person>

 <person id="one.worker">

 <name>

 <family>Worker</family>

 <given>One</given>

 </name>

 <email>one@foo.com</email>

 <link manager="Big.Boss"/>

 </person>

 <person id="two.worker">

 <name>

 <family>Worker</family>

 <given>Two</given>

 </name>

 <email>two@foo.com</email>

 <link manager="Big.Boss"/>

 </person>

 <person id="three.worker">

 <name>

 <family>Worker</family>

 <given>Three</given>

 </name>

 <email>three@foo.com</email>

 <link manager="Big.Boss"/>

 </person>

 <person id="four.worker">

 <name>

 <family>Worker</family>

 <given>Four</given>

 </name>

 <email>four@foo.com</email>

 <link manager="Big.Boss"/>

 </person>

 <person id="five.worker">

 <name>

 <family>Worker</family>

Chapter 5. How to use the XML Parser, C++ Edition 23

<given>Five</given>

 </name>

 <email>five@foo.com</email>

 <link manager="Big.Boss"/>

 </person>

</personnel>

Help for each of the samples can be displayed by using the -? parameter. For

example, to display help for the MemParse sample, type the following:

MemParse -?

This will display the following text:

Usage:

MemParse [options]

This program uses the SAX Parser to parse a memory buffer

containing XML statements, and reports the number of

elements and attributes found.

Options:

-v=xxx Validation scheme [always | never | auto*].

-n Enable namespace processing. Defaults to off.

-s Enable schema processing. Defaults to off.

-f Enable full schema constraint checking. Defaults to off.

-? Show this help.

* = Default if not provided explicitly.

Rule for running non-XPLINK samples

In order to run the non-XPLINK samples, the XML Parser, C++ Edition requires the

run-time library provided by Language Environment, SCEERUN, to be made

available in the program search order. The best way to do this is by adding

SCEERUN data set in the LNKLST. If you do not wish to add SCEERUN to the

LNKLST, access SCEERUN data set through STEPLIB.

Rule for running XPLINK samples

In order to run the XPLINK samples, the XML Parser, C++ Edition requires the

run-time libraries provided by Language Environment, SCEERUN and SCEERUN2,

to be made available in the program search order. The best way to do this is by

adding the SCEERUN and SCEERUN2 data sets into the LNKLST. If you do not

wish to add SCEERUN and SCEERUN2 to the LNKLST, access SCEERUN and

SCEERUN2 data sets through STEPLIB.

z/OS UNIX Environment

Building sample applications for the z/OS UNIX Environment

Before being able to build the provided samples, the system environment must be

configured correctly. Doing so requires the use of the GNU make utility (gmake). To

download gmake go to:

http://www.ibm.com/servers/eserver/zseries/zos/unix/bpxa1ty1.html#gmake

24 XML Toolkit for z/OS User’s Guide

After you have downloaded gmake, issue the following command against the install

file:

 pax -rzf

This will place the gmake program into the /bin directory (the /bin directory was

created by the pax command). For additional information on using gmake, see the

IBM redbook Open Source Software for OS/390 UNIX, SG24-5944 available online

at:

http://www-1.ibm.com/servers/eserver/zseries/zos/unix/redbook/index.html

Please note that all references to gmake refer to the GNU make utility.

Product files are required to build the XML Parser, C++ Edition on z/OS UNIX.

These files and their descriptions are displayed in the following table:

 Table 6. Product Files Required to Build Sample XML Applications for z/OS UNIX

Environments

Product file name Product file description

files in the include directory C++ header files contained in the include

directory. These are required in order to

compile application code.

non-XPLINK product files

libxml4c5_6_0.x The definition side-deck contained in the lib

directory that describes the XML Parser, C++

Edition external functions and the variables.

This is required in order to bind application

code.

libxml4c-depdom5_6_0.x The definition side-deck that describes the

previously deprecated DOM APIs; it is only

required if you are using these APIs.

XPLINK product files

libxml4c5_6_0.xplink.x The definition side-deck contained in the lib

directory that describes the XML Parser, C++

Edition external functions and the variables.

This is required in order to use XPLINK to

bind application code.

libxml4c-depdom5_6_0.xplink.x The definition side-deck that describes the

previously deprecated DOM APIs; it is only

required if you are using these APIs and

compiling with XPLINK.

Rules for invoking the XML Parser, C++ Edition in z/OS UNIX

Any application that is to invoke the XML Parser, C++ Edition parser under the z/OS

UNIX System Services environment must include libxml4c5_6_0.x, (or

libxml4c5_6_0.xplink.x if using XPLINK), when they bind. The binder uses the

definition side-deck to resolve references to functions and variables defined in

libxml4c5_6_0.dll (libxml4c5_6_0.xplink.dll if using XPLINK).

If you are using the deprecated DOM APIs, you need to include the

libxml4c-depdom5_6_0.x sidedeck, or for XPLINK applications, the

libxml4c-depdom5_6_0.xplink.x sidedeck.

Chapter 5. How to use the XML Parser, C++ Edition 25

The next thing you need to do is set the XML4C root path. To set it correctly, issue

the following command statement:

export XERCESCROOT=/usr/lpp/ixm/IBM/xml4c-5_6

Now, you need to obtain access to a copy of the samples directory to which you

have write access. Unless you are a superuser, you normally will not have write

access to the samples subdirectory that was shipped with the product. In this case,

you will need to do the following:

1. Create a new directory that you have write access to, for example:

 cd $HOME

 mkdir mysamples

2. Set a new environment variable that contains the full path to this new directory,

as follows:

 export XERCESCOUT=$HOME/mysamples

3. Copy the samples directory to your directory:

 cp -r /usr/lpp/ixm/IBM/xml4c-5_6/samples $XERCESCOUT

Since the XERCESCOUT environment variable is set, that copy of the samples

subdirectory will be used. The binary files will be stored in a ″bin″ subdirectory.

After you have copied the samples directory, you need to set up environment

variables. This is done through the following sequence:

 unset _CXX_CXXSUFFIX

 export CXX=c++

 export CXXFLAGS="-2"

If debugging is desired, the -g option can be used instead of the -2 option in the

export CXXFLAGS statement.

The next statement is only required for building XPLINK samples:

export OS390_XPLINK=1

Once the environment variables have been properly set, Makefiles must be created.

The directory in which you create the Makefiles depends on where you are building

the samples. If you have set the XERCESCOUT environment variable, type the

following:

 cd $XERCESCOUT/samples

 configure

Finally, to build the samples, type the following in the directory in which you created

the Makefiles:

 export _CXX_CXXSUFFIX=cpp

 export _CXX_CCMODE=1

 gmake

26 XML Toolkit for z/OS User’s Guide

After issuing the gmake command, the build process is completed. The samples are

built into the $XERCESCOUT/bin directory. Proceed to the next section to see how to

run your newly built sample applications.

Using your sample applications on the z/OS UNIX Environment

Library files are required to run XML Parser, C++ Edition on z/OS UNIX. These files

can be found in the $XERCESCROOT/lib directory. The file names and their

descriptions are displayed in the following table:

 Table 7. Library Files Required to Run Sample XML Applications on z/OS UNIX

Library File Name Library File Description

non-XPLINK library files

libxml4c5_6_0.dll XML Parser, C++ Edition library file

libxml4c5_6_0-depdom.dll library file for the previously deprecated DOM

API

libicudata33.0.dll, libicudata_stub33.0.dll,

libicuuc33.0.dll, libicui18n33.0.dll

ICU library files

XPLINK library files

libxml4c5_6_0.xplink.dll XML Parser, C++ Edition library file

libxml4c-depdom5_6_0.xplink.dll library file for the previously deprecated DOM

API

libicudata33.0.xplink.dll,

libicudata_stub33.0.xplink.dll,

libicuuc33.0.xplink.dll, libicui18n33.0.xplink.dll

ICU library files

Before running the samples, you must ensure that several environment variables

are set properly. First, set up an environment variable to point to the location where

the XML Parser, C++ Edition component was installed:

 export XERCESCROOT=/usr/lpp/ixm/IBM/xml4c-5_6

Then type in the following command statements:

 export LIBPATH=$XERCESCROOT/lib:$LIBPATH

Then set the PATH to locate the samples you have just built:

export PATH=$XERCESCOUT/bin:$PATH

You are now set to run your sample applications. For example, to run the

SAXCount application from the $XERCESCOUT/bin directory, type the following

command statement:

 SAXCount $XERCESCROOT/samples/data/personal.xml

This sample application will then count the number of elements, attributes, spaces

and characters in the XML file personal.xml .

Chapter 5. How to use the XML Parser, C++ Edition 27

MVS Environment

Building sample applications for the MVS Environment

Before being able to build the provided samples, the system environment must be

configured correctly. Doing so requires the use of the GNU make utility (gmake). To

download gmake go to:

http://www.ibm.com/servers/eserver/zseries/zos/unix/bpxa1ty1.html#gmake

After you have downloaded gmake, issue the following command against the install

file:

 pax -rzf

This will place the gmake program into the /bin directory (the /bin directory was

created by the pax command). For additional information on using gmake, see the

IBM redbook Open Source Software for OS/390 UNIX, SG24-5944 available online

at:

http://www-1.ibm.com/servers/eserver/zseries/zos/unix/redbook/index.html

Please note that all references to gmake refer to the GNU make utility.

Product files are required to build the XML Parser, C++ Edition on MVS. These files

and their descriptions are displayed in the following table:

 Table 8. Product Files Required to Build Sample XML Applications for MVS Environments

Product file name Product file description Data set name

files in the include directory C++ header files contained in

the include directory. These

are required in order to

compile application code.

non-XPLINK product files

IXM4C56X Definition side-deck that

describes the XML Parser,

C++ Edition functions and the

variables.

hlq.SIXMEXP

IXMDD56X Definition side-deck that

describes the previously

deprecated DOM APIs; it is

only required if you are using

these APIs.

hlq.SIXMEXP

XPLINK product files

IXM4C6XX Definition side-deck that

describes the XML Parser,

C++ Edition functions and the

variables. This is required in

order to use XPLINK to bind

application code.

hlq.SIXMEXP

IXMDD6XX Definition side-deck that

describes the previously

deprecated DOM APIs; it is

only required if you are using

these APIs and XPLINK.

hlq.SIXMEXP

28 XML Toolkit for z/OS User’s Guide

Rules for invoking the XML Parser, C++ Edition in native MVS

Any application that is to invoke the XML Parser, C++ Edition parser under the

native MVS environment must include either of the following definition side-decks

when they bind: IXM4C56X (for non-XPLINK applications) or IXM4C6XX (for

XPLINK applications). The binder uses the definition side-deck to resolve

references to functions and variables defined in the IXM4C56 or IXM4C6X. In

addition to the above, any applications that wish to use previously deprecated DOM

APIs must also include either of the following definition side-decks: IXMDD56X (for

non-XPLINK applications) or IXMDD6XX (for XPLINK applications). The binder uses

the definition side-deck to resolve references to functions and variables defined in

the IXMDD56 or IXMDD6X.

Rules for building samples in native MVS

To be able to run the sample applications, you must first allocate a data set to hold

the executables. The following is an example of a data set allocation:

 userid.SAMPLES.rel.LOAD, 500 tracks on 3390, Record format:U,

 Record Length: 0, Block size: 32760, ORG: PDSE,

 Directory blocks: 0

You should allocate a minimum of 500 tracks.

If you are building samples from multiple releases, you will need a unique PDSE for

each release, for example: SAMPLES.V180 .LOAD for samples from Toolkit V1.8.0

and SAMPLES.V190 .LOAD for samples from Toolkit V1.9.0.

 The next thing you need to do is set the XML4C root path. To set it correctly, issue

the following command statement:

export XERCESCROOT=/usr/lpp/ixm/IBM/xml4c-5_6

Now, you need to obtain access to a copy of the samples directory to which you

have write access. Unless you are a superuser, you normally will not have write

access to the samples subdirectory that was shipped with the product. In this case,

you will need to do the following:

1. Create a new directory that you have write access to, for example:

 cd $HOME

 mkdir mysamples

2. Set a new environment variable that contains the full path to this new directory,

as follows:

 export XERCESCOUT=$HOME/mysamples

3. Copy the samples directory to your directory:

 cp -r /usr/lpp/ixm/IBM/xml4c-5_6/samples $XERCESCOUT

Since the XERCESCOUT environment variable is set, that copy of the samples

subdirectory will be used. The binary files are stored in the MVS data set pointed to

Chapter 5. How to use the XML Parser, C++ Edition 29

|
|
|

|

by the LOADMOD environment variable. If XERCESCOUT is not set, the copy of the

samples in the HFS that the product resides in will be used, and the binary files will

be stored there.

After you have copied the samples directory, you need to set up environment

variables. This is done through the following sequence:

 export LOADMOD=userid.SAMPLES.rel.LOAD

 export LOADEXP=hlq.SIXMEXP

 export OS390BATCH=1

 unset _CXX_CXXSUFFIX

 export CXX=c++

 export CXXFLAGS="-2"

If debugging is desired, the -g option can be used instead of the -2 option in the

export CXXFLAGS statement.

The next statement is only required if your building XPLINK samples:

export OS390_XPLINK=1

Once the environment variables have been properly set, Makefiles must be created.

Type the following:

 cd $XERCESCOUT/samples

 configure

.

You are now ready to build the samples. Type the following in the directory in which

you created the Makefiles:

 export _CXX_CXXSUFFIX=cpp

 export _CXX_XSUFFIX_HOST=SIXMEXP

 export _CXX_CCMODE=1

 gmake

After you have issued the gmake command, the build process is completed. The

built samples are placed into the userid.SAMPLES.rel.LOAD data set. Proceed to

the next section to see how to run your newly built sample applications.

Using your sample applications on the MVS Environment

Library files are required to run XML Parser, C++ Edition on MVS. The following

table is a list of library files required, a short description of the files, and the data

set names of where these files are located.

 Table 9. Library Files Required to Run Sample XML Applications on MVS

Library file name Library file description Library data set name

non-XPLINK library files

IXM4C56 XML Parser, C++ Edition

library file

hlq.SIXMLOD1

IXMDD56 previously deprecated DOM

API library file

hlq.SIXMLOD1

30 XML Toolkit for z/OS User’s Guide

Table 9. Library Files Required to Run Sample XML Applications on MVS (continued)

Library file name Library file description Library data set name

non-XPLINK library files

IXMI33UC ICU library file (explicitly

loaded by IXM4C56)

hlq.SIXMLOD1

IXMI33DA ICU library file hlq.SIXMLOD1

IXMI33D1 ICU library file hlq.SIXMLOD1

IXMI33IN ICU library file hlq.SIXMLOD1

XPLINK library files

IXM4C6X XML Parser, C++ Edition

library file

hlq.SIXMLOD1

IXMDD6X previously deprecated DOM

API library file

hlq.SIXMLOD1

IXMI33XC ICU library file (explicitly

loaded by IXM4C6X)

hlq.SIXMLOD1

IXMI33XA ICU library file hlq.SIXMLOD1

IXMI33X1 ICU library file hlq.SIXMLOD1

IXMI33XN ICU library file hlq.SIXMLOD1

Before you run the samples, you must make sure that you have access to the

library, SIXMLOD1. You can ask your system programmer to install SIXMLOD1 in

LNKLST. If the SIXMLOD1 data set cannot be placed in LNKLST, you can STEPLIB

the data set for each application that requires it. You can invoke the samples from

TSO or a JCL job. For example, you can submit the following JCL to run

SAXCount.

//USERJOB JOB MSGLEVEL=(1,1),CLASS=A

//TEST EXEC PGM=SAXCOUNT,

//* HFS file input

// PARM=’//usr/lpp/ixm/IBM/xml4c-5_6/samples/data/personal.xml’

//*

//* DDNAME input

//* PARM=’///DD:XMLDATA(PERSONAL)’

//* PARM=’DD:XMLDATA(PERSONAL)’

//*

//* Data set input

//* PARM=’"//’’USERID.XML.DATA(PERSONAL)’’"’

//* PARM=’"//XML.DATA(PERSONAL)"’

//*

//STEPLIB DD DSN=hlq.SIXMLOD1,DISP=SHR

// DD DSN=userid.SAMPLES.rel.LOAD,DISP=SHR

//*XMLDATA DD DSN=userid.XML.DATA,DISP=SHR

/*

Multi-threading considerations

The following are multi-threading considerations for the XML Parser, C++ Edition.

Chapter 5. How to use the XML Parser, C++ Edition 31

Using UNIX pthreads

Within a program, an instance of the parser may be used without restriction from a

single thread, or an instance of the parser can be accessed from multiple threads,

provided the application guarantees that only one thread has entered a method of

the parser at any one time.

When two or more parser instances exist in a process, the instances can be used

concurrently, without external synchronization. That is, in an application containing

two parsers and two threads, one parser can be running within the first thread

concurrently with the second parser running within the second thread.

Similar rules apply to XML4C DOM documents. Multiple document instances may

be concurrently accessed from different threads, but any given document instance

can only be accessed by one thread at a time.

DOMStrings allow multiple concurrent readers. All DOMString const methods are

thread safe, and can be concurrently entered by multiple threads. Non-const

DOMString methods, such as appendData(), are not thread safe and the application

must guarantee that no other methods (including const methods) are executed

concurrently with them.

The application also needs to guarantee that only one thread has entered either the

method XMLPlatformUtils::Initialize() or the method

XMLPlatformUtils::Terminate() at any one time.

Using MVS multi-tasking

Care must be taken when using the parser in a multi-tasking environment within a

single address space. Each task that wishes to use a parser must initialize its own

parser environment via a call to XMLPlatformUtils::Initialize(). It follows then

that each task must have its own parser instance and cannot share parser data

structures, such as DOMString.

32 XML Toolkit for z/OS User’s Guide

Chapter 6. How to use z/OS specific parser classes

This topic describes how to use the z/OS specific parser classes that will utilize

z/OS XML System Services to parse an XML document, instead of the embedded

open source parser. Examples are provided to illustrate how to convert existing

code to use this function. Samples are provided to enable use of this function. The

APIs, features, and properties supported are listed along with any z/OS unique

behaviors for SAX2XMLReader, zXercesDOMParser, and DOMBuilder. For a

complete description of the APIs, features and properties refer to the HTML

documentation provided with the product.

Using a SAX2XMLReader class

In order to use the new, z/OS specific parser classes to parse XML files using

SAX2, you will need to create an instance of the SAX2XMLReader class. This is

the same base class you would use to parse an XML document using the

embedded open source parser. However, instead of using the SAX2

XMLReaderFactory::createXMLReader() method, you will use a new z/OS specific

zXMLReaderFactory::createXMLReader() method. This will give you access to the

z/OS specific parser classes that will use the z/OS XML System Services to parse

the XML document instead of the embedded open source parser.

The example below shows the code you need in order to create an instance of

SAX2XMLReader that will use the new z/OS specific parser classes. Changes from

the existing SAX2 implementation are in bold.

 #include <xercesc/sax2/SAX2XMLReader.hpp>

 #include <xercesc/zparsers/zXMLReaderFactory.hpp>

 #include <xercesc/sax2/DefaultHandler.hpp>

 #include <xercesc/util/XMLString.hpp>

 #if defined(XERCES_NEW_IOSTREAMS)

 #include <iostream>

 #else

 #include <iostream.h>

 #endif

 XERCES_CPP_NAMESPACE_USE

 int main (int argc, char* args[]) {

 try {

 XMLPlatformUtils::Initialize();

 }

 catch (const XMLException& toCatch) {

 char* message = XMLString::transcode(toCatch.getMessage());

 cout << "Error during initialization! :\n";

 cout << "Exception message is: \n"

 << message << "\n";

 XMLString::release(&message);

 return 1;

 }

 char* xmlFile = "x1.xml";

 SAX2XMLReader* parser = zXMLReaderFactory::createXMLReader();

 parser->setFeature(XMLUni::fgSAX2CoreValidation, false);

 parser->setFeature(XMLUni::fgSAX2CoreNameSpaces, true);

 DefaultHandler* defaultHandler = new DefaultHandler();

 parser->setContentHandler(defaultHandler);

 parser->setErrorHandler(defaultHandler);

© Copyright IBM Corp. 2008 33

|

|

|
|
|
|
|
|
|
|

|
|

|
|
|
|
|
|
|
|

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

try {

 parser->parse(xmlFile);

 }

 catch (const XMLException& toCatch) {

 char* message = XMLString::transcode(toCatch.getMessage());

 cout << "Exception message is: \n"

 << message << "\n";

 XMLString::release(&message);

 return -1;

 }

 catch (const SAXParseException& toCatch) {

 char* message = XMLString::transcode(toCatch.getMessage());

 cout << "Exception message is: \n"

 << message << "\n";

 XMLString::release(&message);

 return -1;

 }

 catch (...) {

 cout << "Unexpected Exception \n" ;

 return -1;

 }

 delete parser;

 delete defaultHandler;

 return 0;

 }

The next section lists the SAX2XMLReader APIs and any unique behaviors for the

z/OS specific parser classes.

 Table 10. SAX2XMLReader APIs and behaviors in z/OS

SAX2XMLReader APIs

Unique class behavior in

z/OS environment

virtual ContentHandler * getContentHandler() const =0 None

virtual const XMLCh * getURIText (unsigned int uriId) const =0 None

virtual unsigned int getSrcOffset () const =0 Not supported,

SAXNotSupportedException

thrown.

virtual DTDHandler * getDTDHandler () const =0 Always returns NULL

virtual Grammar * getRootGrammar ()=0 Always returns NULL

Grammar

virtual EntityResolver * getEntityResolver () const =0 Always returns NULL

EntityResolver

virtual ErrorHandler * getErrorHandler () const =0 None

virtual bool getFeature(const XMLCh *const name) const =0 None

virtual void * getProperty (const XMLCh *const name) const =0 None

virtual void setContentHandler(ContentHandler

*consthandler)=0

None

virtual void setDTDHandler (DTDHandler *const handler)=0 Not supported,

SAXNotSupportedException

thrown.

virtual void setEntityResolver(EntityResolver *const resolver)=0 Only a NULL resolver is

supported. Otherwise

SAXNotSupportedException

thrown.

virtual void setErrorHandler (ErrorHandler *const handler)=0 None

34 XML Toolkit for z/OS User’s Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

||

|
|
|

||

||

||
|
|

||

||
|

||
|

||

||

||

|
|
|

||
|
|

||
|
|
|

||

Table 10. SAX2XMLReader APIs and behaviors in z/OS (continued)

SAX2XMLReader APIs

Unique class behavior in

z/OS environment

virtual void setFeature (const XMLCh *const name, const bool

value)=0

None

virtual void parse (const InputSource &source)=0 None

virtual void parse (const XMLCh *const systemId)=0 None

virtual void parse (const char *const systemId)=0 None

virtual DeclHandler * getDeclarationHandler () const =0 Always returns a NULL

DeclHandler

virtual LexicalHandler * getLexicalHandler () const =0 None

virtual void setDeclarationHandler (DeclHandler *const

handler)=0

Only a NULL handler is

supported. Otherwise

SAXNotSupportedException

thrown.

virtual PSVIHandler* getPSVIHandler() const Always returns a NULL

PSVIHandler

virtual void setPSVIHandler(PSVIHandler* const handler) Only a NULL handler is

supported. Otherwise

SAXNotSupportedException

thrown.

virtual XMLEntityResolver* getXMLEntityResolver() const Always returns a NULL

XMLEntityResolver

virtual void setPSVIHandler(PSVIHandler* const handler) Only a NULL handler is

supported. Otherwise

SAXNotSupportedException

thrown.

virtual void setXMLEntityResolver(XMLEntityResolver* const

resolver)

Only a NULL

XMLEntityResolver is

supported. Otherwise

SAXNotSupportedException

thrown.

virtual void setLexicalHandler(LexicalHandler *const handler)=0 None

virtual XMLValidator * getValidator () const =0 Always returns a NULL

XMLValidator

virtual int getErrorCount () const =0 Always returns either 0 or

1

virtual bool getExitOnFirstFatalError () const =0 Always returns TRUE

virtual bool getValidationConstraintFatal () const =0 Always returns TRUE

virtual Grammar * getGrammar (const XMLCh *const

nameSpaceKey)=0

Always returns a NULL

Grammar

virtual void setValidator (XMLValidator *valueToAdopt)=0 Not supported, throws

SAXNotSupportedException

virtual void setExitOnFirstFatalError (const bool newState)=0 Only newState = TRUE is

supported, FALSE will

throw

SAXNotSupportedException

Chapter 6. How to use z/OS specific parser classes 35

|

|
|
|

|
|
|

||

||

||

||
|

||

|
|
|
|
|
|

||
|

||
|
|
|

||
|

||
|
|
|

|
|
|
|
|
|
|

||

||
|

||
|

||

||

|
|
|
|

||
|

||
|
|
|

Table 10. SAX2XMLReader APIs and behaviors in z/OS (continued)

SAX2XMLReader APIs

Unique class behavior in

z/OS environment

virtual void setValidationConstraintFatal (const bool

newState)=0

Only newState = TRUE is

supported, FALSE will

throw

SAXNotSupportedException

virtual bool parseFirst (const XMLCh *const systemId,

XMLPScanToken &toFill)=0

None

virtual bool parseFirst (const char *const systemId,

XMLPScanToken &toFill)=0

None

virtual bool parseFirst (const InputSource &source,

XMLPScanToken &toFill)=0

None

virtual bool parseNext (XMLPScanToken &token)=0 None

virtual void parseReset (XMLPScanToken &token)=0 None

virtual Grammar * loadGrammar (const InputSource &source,

const short grammarType, const bool toCache=false)=0

Not supported, throws

SAXNotSupportedException

virtual Grammar * loadGrammar (const XMLCh *const

systemId, const short grammarType, const bool

toCache=false)=0

Not supported, throws

SAXNotSupportedException

virtual Grammar * loadGrammar (const char *const systemId,

const short grammarType, const bool toCache=false)=0

Not supported, throws

SAXNotSupportedException

virtual void resetCachedGrammarPool()=0 Not supported, throws

SAXNotSupportedException

virtual void setInputBufferSize (const size_t bufferSize) This setting is ignored

virtual void installAdvDocHandler (XMLDocumentHandler *const

toInstall)=0

None

virtual bool removeAdvDocHandler (XMLDocumentHandler

*const toRemove)=0

None

The following table lists the SAX2 features and any unique behaviors for the z/OS

specific parser classes. These features may be set using the

SAX2XMLReader::setFeature(const XMLCh* const, const bool). The current

settings of a feature may be queried with the function bool

SAX2XMLReader::getFeature(const XMLCh* const).

 Table 11. SAX2 features and behaviors in z/OS

SAX2 features

Unique class behavior in

z/OS environment

http://xml.org/sax/features/namespaces Only TRUE is supported,

FALSE will throw

SAXNotSupportedException

http://xml.org/sax/features/namespace-prefixes None

http://xml.org/sax/features/validation Only FALSE is supported,

TRUE will throw

SAXNotSupportedException

http://apache.org/xml/features/validation/dynamic None

http://apache.org/xml/features/validation/schema Only FALSE is supported,

TRUE will throw

SAXNotSupportedException

36 XML Toolkit for z/OS User’s Guide

|

|
|
|

|
|
|
|
|
|

|
|
|

|
|
|

|
|
|

||

||

|
|
|
|

|
|
|

|
|

|
|
|
|

||
|

||

|
|
|

|
|
|

|
|
|
|
|
|

||

|
|
|

||
|
|

||

||
|
|

||

||
|
|

Table 11. SAX2 features and behaviors in z/OS (continued)

SAX2 features

Unique class behavior in

z/OS environment

http://apache.org/xml/features/validation/schema-full-checking Only FALSE is supported,

TRUE will throw

SAXNotSupportedException

http://apache.org/xml/features/nonvalidating/load-external-dtd Only FALSE is supported,

TRUE will throw

SAXNotSupportedException

http://apache.org/xml/features/continue-after-fatal-error Only FALSE is supported,

TRUE will throw

SAXNotSupportedException

http://apache.org/xml/features/validation-error-as-fatal Only FALSE is supported,

TRUE will throw

SAXNotSupportedException

http://apache.org/xml/features/validation/use-
cachedGrammarInParse

Only FALSE is supported,

TRUE will throw

SAXNotSupportedException

http://apache.org/xml/features/validation/cache-
grammarFromParse

Only FALSE is supported,

TRUE will throw

SAXNotSupportedException

http://apache.org/xml/features/standard-uri-conformant Only FALSE is supported,

TRUE will throw

SAXNotSupportedException

http://apache.org/xml/features/calculate-src-ofs Only FALSE is supported,

TRUE will throw

SAXNotSupportedException

http://apache.org/xml/features/validation/identity-constraint-
checking

Only FALSE is supported,

TRUE will throw

SAXNotSupportedException

http://apache.org/xml/features/generate-synthetic-annotations Only FALSE is supported,

TRUE will throw

SAXNotSupportedException

http://apache.org/xml/features/validate-annotations Only FALSE is supported,

TRUE will throw

SAXNotSupportedException

http://apache.org/xml/features/schema/ignore-annotations Only TRUE is supported,

FALSE will throw

SAXNotSupportedException

http://apache.org/xml/features/disable-default-entity-resolution Only TRUE is supported,

FALSE will throw

SAXNotSupportedException

http://apache.org/xml/features/validation/schema/skip-dtd-
validation

Only TRUE is supported,

FALSE will throw

SAXNotSupportedException

http://apache.org/xml/features/validation/ignoreCachedDTD Only TRUE is supported,

FALSE will throw

SAXNotSupportedException

The following table lists the SAX2 Properties and any unique behavior for the z/OS

specific parser classes. The SAX2XMLReader::setProperty(const XMLCh* const,

void*) method can be used to set a property. However in the current implementation

none of the properties below are valid. The current setting of a property would

normally be queried with the the void* SAX2XMLReader::getProperty(const XMLCh*

Chapter 6. How to use z/OS specific parser classes 37

|

|
|
|

||
|
|

||
|
|

||
|
|

||
|
|

|
|
|
|
|

|
|
|
|
|

||
|
|

||
|
|

|
|
|
|
|

||
|
|

||
|
|

||
|
|

||
|
|

|
|
|
|
|

||
|
|
|
|
|
|
|
|

const) method.

 Table 12. SAX2 properties and behaviors in z/OS

SAX2 properties

Unique class behavior

in z/OS environment

http://apache.org/xml/properties/schema/external-
schemaLocation

Not supported, will throw

SAXNotSupportedException

http://apache.org/xml/properties/schema/external-

noNamespaceSchemaLocation

Not supported, will throw

SAXNotSupportedException

http://apache.org/xml/properties/scannerName Not supported, will throw

SAXNotSupportedException

http://apache.org/xml/properties/security-manager Not supported, will throw

SAXNotSupportedException

Constructing a zXercesDOMParser

The zXercesDOMParser class provides the ability to use the z/OS XML System

Services to parse an XML document. Unlike the SAX2XMLReader class which may

be used as a common base class for accessing both the embedded open source

parser or the new z/OS specific parser classes, the zXercesDOMParser and

zAbstractDOMParser classes are both entirely new classes. The methods they

support are the same as XercesDOMParser and AbstractDOMParser, however a

new pointer type (zXercesDOMParser*) is required to use the z/OS specific parser

classes. Using this new pointer type will result in z/OS XML System Services being

used to parse the XML document instead of the embedded open source parser.

The example below shows the code you need in order to create an instance of the

zXercesDOMParser class that will use the new z/OS specific parser classes.

Changes from the existing XercesDOMParser implementation are in bold.

 #include <xercesc/zparsers/zXercesDOMParser.hpp>

 #include <xercesc/dom/DOM.hpp>

 #include <xercesc/sax/HandlerBase.hpp>

 #include <xercesc/util/XMLString.hpp>

 #include <xercesc/util/PlatformUtils.hpp>

 #if defined(XERCES_NEW_IOSTREAMS)

 #include <iostream>

 #else

 #include <iostream.h>

 #endif

 XERCES_CPP_NAMESPACE_USE

 int main (int argc, char* args[]) {

 try {

 XMLPlatformUtils::Initialize();

 }

 catch (const XMLException& toCatch) {

 char* message = XMLString::transcode(toCatch.getMessage());

 cout << "Error during initialization! :\n"

 << message << "\n";

 XMLString::release(&message);

 return 1;

 }

 zXercesDOMParser* parser = new zXercesDOMParser();

 parser->setValidationScheme(zXercesDOMParser::Val_Never);

 parser->setDoNamespaces(true);

38 XML Toolkit for z/OS User’s Guide

|

||

|
|
|

|
|
|
|

|
|
|
|

||
|

||
|
|

|
|

|
|
|
|
|
|
|
|
|

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

ErrorHandler* errHandler = (ErrorHandler*) new HandlerBase();

 parser->setErrorHandler(errHandler);

 char* xmlFile = "x1.xml";

 try {

 parser->parse(xmlFile);

 }

 catch (const XMLException& toCatch) {

 char* message = XMLString::transcode(toCatch.getMessage());

 cout << "Exception message is: \n"

 << message << "\n";

 XMLString::release(&message);

 return -1;

 }

 catch (const DOMException& toCatch) {

 char* message = XMLString::transcode(toCatch.msg);

 cout << "Exception message is: \n"

 << message << "\n";

 XMLString::release(&message);

 return -1;

 }

 catch (...) {

 cout << "Unexpected Exception \n" ;

 return -1;

 }

 delete parser;

 delete errHandler;

 return 0;

 }

The zAbstractDOMParser and zXercesDOMParser APIs are listed below along with

any unique behaviors for the z/OS implementations. These APIs contain “setter” (for

example, void setDoNamespaces (const bool newState)) and “getter” (for example,

bool getDoNamespaces () const) methods for setting and querying the features and

properties that control the behavior of the parser.

 Table 13. zAbstractDOMParser APIs and behaviors in z/OS

zAbstractDOMParser APIs

Unique class behavior in

z/OS environment

void reset() None

DOMDocument * adoptDocument() None

DOMDocument * getDocument() None

const XMLValidator & getValidator () const always returns a NULL

XMLValidator

ValSchemes getValidationScheme () const always returns Val_Never

bool getDoSchema () const always returns FALSE

bool getValidationSchemaFullChecking () const always returns FALSE

bool getIdentityConstraintChecking () const always returns FALSE

int getErrorCount () const always returns either 0 or

1

bool getDoNamespaces () const always returns TRUE

bool getExitOnFirstFatalError () const always returns TRUE

bool getValidationConstraintFatal () const always returns TRUE

bool getCreateEntityReferenceNodes () const always returns FALSE

Chapter 6. How to use z/OS specific parser classes 39

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|

||

|
|
|

||

||

||

||
|

||

||

||

||

||
|

||

||

||

||

Table 13. zAbstractDOMParser APIs and behaviors in z/OS (continued)

zAbstractDOMParser APIs

Unique class behavior in

z/OS environment

bool getIncludeIgnorableWhitespace () const always returns FALSE

XMLCh * getExternalSchemaLocation () const always returns a NULL

schema location

XMLCh * getExternalNoNamespaceSchemaLocation () const always returns a NULL

schema location

SecurityManager* getSecurityManager() const always returns a NULL

SecurityManager

bool getLoadExternalDTD () const always returns FALSE

bool getCreateCommentNodes () const always returns TRUE

bool getCalculateSrcOfs () const always returns FALSE

bool getStandardUriConformant () const always returns FALSE

PSVIHandler * getPSVIHandler () always returns a NULL

PSVIHandler

const PSVIHandler * getPSVIHandler () const always returns a NULL

PSVIHandler

bool getCreateSchemaInfo () const always returns FALSE

bool getGenerateSyntheticAnnotations () const always returns FALSE

bool getValidateAnnotations () const always returns FALSE

bool getIgnoreAnnotations () const always returns TRUE

bool getDisableDefaultEntityResolution () const always returns FALSE

bool getSkipDTDValidation () const always returns TRUE

void setGenerateSyntheticAnnotations (const bool newValue) only FALSE is supported,

TRUE will throw

DOMException

void setValidateAnnotations (const bool newValue) only FALSE is supported,

TRUE will throw

DOMException

void setDoNamespaces (const bool newState) Only TRUE is supported,

FALSE will throw

DOMException

void setExitOnFirstFatalError (const bool newState) Only TRUE is supported,

FALSE will throw

DOMException

void setValidationConstraintFatal (const bool newState) Only TRUE is supported,

FALSE will throw

DOMException

void setCreateEntityReferenceNodes (const bool create) Only FALSE is supported,

TRUE will throw

DOMException

void setIncludeIgnorableWhitespace (const bool include) Only FALSE is supported,

TRUE will throw

DOMException

void setValidationScheme (const ValSchemes newScheme) Only Val_Never is

supported, any other value

will throw DOMException

40 XML Toolkit for z/OS User’s Guide

|

|
|
|

||

||
|

||
|

||
|

||

||

||

||

||
|

||
|

||

||

||

||

||

||

||
|
|

||
|
|

||
|
|

||
|
|

||
|
|

||
|
|

||
|
|

||
|
|

Table 13. zAbstractDOMParser APIs and behaviors in z/OS (continued)

zAbstractDOMParser APIs

Unique class behavior in

z/OS environment

void setDoSchema (const bool newState) Only FALSE is supported,

TRUE will throw

DOMException

void setValidationSchemaFullChecking (const bool

schemaFullChecking)

Only FALSE is supported,

TRUE will throw

DOMException

void setIdentityConstraintChecking (const bool newState) Only FALSE is supported,

TRUE will throw

DOMException

void setExternalSchemaLocation (const XMLCh *const

schemaLocation)

Not supported, throws a

DOMException error

void setExternalSchemaLocation (const char *const

schemaLocation)

Not supported, throws a

DOMException error

void setExternalNoNamespaceSchemaLocation (const XMLCh

*const noNamespaceSchemaLocation)

Not supported, throws a

DOMException error

void setExternalNoNamespaceSchemaLocation (const char

*const noNamespaceSchemaLocation)

Not supported, throws a

DOMException error

void setSecurityManager (SecurityManager *const

securityManager)

only a NULL

securityManager is

supported, otherwise

throws DOMException

void setLoadExternalDTD (const bool newState) only FALSE is supported,

TRUE will throw

DOMException

void setCreateCommentNodes (const bool create) None

void setCalculateSrcOfs (const bool newState) only FALSE is supported,

TRUE will throw

DOMException

void setStandardUriConformant (const bool newState) only FALSE is supported,

TRUE will throw

DOMException

void useScanner (const XMLCh *const scannerName) Not supported, throws a

DOMException error

void useImplementation (const XMLCh *const

implementationFeatures)

Not supported, throws a

DOMException error

virtual void setPSVIHandler (PSVIHandler *const handler) Not supported, throws a

DOMException error

void setCreateSchemaInfo (const bool newState) only FALSE is supported,

TRUE will throw

DOMException

void setIgnoreAnnotations (const bool newValue) only TRUE is supported,

FALSE will throw

DOMException

void setDisableDefaultEntityResolution (const bool newValue) only FALSE is supported,

TRUE will throw

DOMException

Chapter 6. How to use z/OS specific parser classes 41

|

|
|
|

||
|
|

|
|
|
|
|

||
|
|

|
|
|
|

|
|
|
|

|
|
|
|

|
|
|
|

|
|
|
|
|
|

||
|
|

||

||
|
|

||
|
|

||
|

|
|
|
|

||
|

||
|
|

||
|
|

||
|
|

Table 13. zAbstractDOMParser APIs and behaviors in z/OS (continued)

zAbstractDOMParser APIs

Unique class behavior in

z/OS environment

void setSkipDTDValidation (const bool newValue) only TRUE is supported,

FALSE will throw

DOMException

void parse (const InputSource &source) None

void parse (const XMLCh *const systemId) None

void parse (const char *const systemId) None

bool parseFirst (const XMLCh *const systemId,

XMLPScanToken &toFill)

None

bool parseFirst (const char *const systemId, XMLPScanToken

&toFill)

None

bool parseFirst (const InputSource &source, XMLPScanToken

&toFill)

None

bool parseNext (XMLPScanToken &token) None

void parseReset (XMLPScanToken &token) None

virtual void handleElementPSVI (const XMLCh *const

localName, const XMLCh *const uri, PSVIElement

*elementInfo)

Not supported

virtual void handlePartialElementPSVI (const XMLCh *const

localName, const XMLCh *const uri, PSVIElement

*elementInfo)

Not supported

virtual void handleAttributesPSVI (const XMLCh *const

localName, const XMLCh *const uri, PSVIAttributeList

*psviAttributes

Not supported

bool getDoValidation () const Always returns FALSE

void setDoValidation (const bool newState) only FALSE is supported,

TRUE will throw

DOMException

bool getExpandEntityReferences () const Always returns TRUE

void setExpandEntityReferences (const bool expand) only TRUE is supported,

FALSE will throw

DOMException

DOMNode * getCurrentNode() None

XMLScanner * getScanner() const None

GrammarResolver * getGrammarResolver() const Always returns a NULL

GrammarResolver

bool getParseInProgress() const None

void setCurrentNode (DOMNode *toSet) None

virtual DOMElement * createElementNSNode (const XMLCh

*fNamespaceURI, const XMLCh *qualifiedName)

None

void resetPool() None

bool isDocumentAdopted () const None

42 XML Toolkit for z/OS User’s Guide

|

|
|
|

||
|
|

||

||

||

|
|
|

|
|
|

|
|
|

||

||

|
|
|

|

|
|
|

|

|
|
|

|

||

||
|
|

||

||
|
|

||

||

||
|

||

||

|
|
|

||

||
|

Table 14. zXercesDOMParser APIs and behaviors in z/OS

zXercesDOMParser APIs

Unique class behavior in

z/OS environment

ErrorHandler * getErrorHandler() None

const ErrorHandler * getErrorHandler() const None

EntityResolver * getEntityResolver() Always returns a NULL

EntityResolver

const EntityResolver * getEntityResolver() Always returns a NULL

EntityResolver

XMLEntityResolver * getXMLEntityResolver () Always returns a NULL

XMLEntityResolver

const XMLEntityResolver * getXMLEntityResolver () const Always returns a NULL

XMLEntityResolver

bool isCachingGrammarFromParse() const Always returns FALSE

bool isUsingCachedGrammarInParse () const Always returns FALSE

Grammar * getGrammar (const XMLCh *const nameSpaceKey) Not supported, throws

SAXNotSupportedException

Grammar * getRootGrammar () Not supported, throws

SAXNotSupportedException

const XMLCh * getURIText (unsigned int uriId) const None

unsigned int getSrcOffset () const Not supported, throws

SAXNotSupportedException

bool getIgnoreCachedDTD () const Always returns TRUE

void setErrorHandler (ErrorHandler *const handler) None

void setEntityResolver (EntityResolver *const handler) Only a NULL

EntityResolver is

supported

void setXMLEntityResolver (XMLEntityResolver *const handler) Only a NULL

XMLEntityResolver is

supported

void cacheGrammarFromParse (const bool newState) Only FALSE is supported,

TRUE throws

SAXNotSupportedException

void useCachedGrammarInParse (const bool newState) Only FALSE is supported,

TRUE throws

SAXNotSupportedException

void setIgnoreCachedDTD (const bool newValue) Only TRUE is supported,

FALSE, throws

SAXNotSupportedException

void resetDocumentPool () None

virtual void error (const unsigned int errCode, const XMLCh

*const msgDomain, const XMLErrorReporter::ErrTypes errType,

const XMLCh *const errorText, const XMLCh *const systemId,

const XMLCh *const publicId, const XMLSSize_t lineNum, const

XMLSSize_t colNum)

None

virtual void resetErrors () None

virtual void endInputSource (const InputSource &inputSource) Not supported

virtual bool expandSystemId (const XMLCh *const systemId,

XMLBuffer &toFill)

Not supported

Chapter 6. How to use z/OS specific parser classes 43

||

|
|
|

||

||

||
|

||
|

||
|

||
|

||

||

||
|

||
|

||

||
|

||

||

||
|
|

||
|
|

||
|
|

||
|
|

||
|
|

||

|
|
|
|
|

|

||

||

|
|
|

Table 14. zXercesDOMParser APIs and behaviors in z/OS (continued)

zXercesDOMParser APIs

Unique class behavior in

z/OS environment

virtual void resetEntities () Not supported

virtual InputSource * resolveEntity (const XMLCh *const

publicId, const XMLCh *const systemId, const XMLCh *const

baseURI=0)

Not supported, throws

SAXNotSupportedException

virtual InputSource * resolveEntity (XMLResourceIdentifier

*resourceIdentifier)

Not supported, throws

SAXNotSupportedException

virtual void startInputSource (const InputSource&inputsource) Not supported

Grammar * loadGrammar (const InputSource &source, const

short grammarType, const bool toCache=false)

Not supported, throws

SAXNotSupportedException

Grammar * loadGrammar (const XMLCh *const systemId, const

short grammarType, const bool toCache=false)

Not supported, throws

SAXNotSupportedException

Grammar * loadGrammar (const char *const systemId, const

short grammarType, const bool toCache=false)

Not supported, throws

SAXNotSupportedException

void resetCachedGrammarPool () Not supported, throws

SAXNotSupportedException

Constructing a DOMBuilder

DOMBuilder is an interface introduced by the W3C DOM Level 3.0 Abstract

Schemas and Load and Save Specification. DOMBuilder provides the ″Load″

interface for parsing XML documents and building the corresponding DOM

document tree from various input sources.

A DOMBuilder instance is obtained from the DOMImplementationLS interface by

invoking its createDOMBuilder method. There are no new z/OS specific classes

externalized here that you need to be aware of. The only change needed to access

the z/OS specific parser classes is the string that is passed in on the

DOMImplementationRegistry::getDOMImplementation(const XMLCh *features)

method needs to be the Unicode string “zScanner LS” instead of “LS” . This will

result in your code using the z/OS specific parser classes which will utilize z/OS

XML System Services to parse the XML document instead of the embedded open

source parser.

The example below shows the code you need in order to create an instance of

DOMBuilder that will use the new z/OS specific parser classes. Changes from the

existing DOMBuilder implementation are in bold.

 #include <xercesc/dom/DOM.hpp>

 #include <xercesc/util/XMLString.hpp>

 #include <xercesc/util/PlatformUtils.hpp>

 #if defined(XERCES_NEW_IOSTREAMS)

 #include <iostream>

 #else

 #include <iostream.h>

 #endif

 XERCES_CPP_NAMESPACE_USE

 int main (int argc, char* args[]) {

 try {

 XMLPlatformUtils::Initialize();

44 XML Toolkit for z/OS User’s Guide

|

|
|
|

||

|
|
|

|
|

|
|
|
|

||

|
|
|
|

|
|
|
|

|
|
|
|

||
|
|

|
|

|
|
|
|

|
|
|
|
|
|
|
|
|

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

}

 catch (const XMLException& toCatch) {

 char* message = XMLString::transcode(toCatch.getMessage());

 cout << "Error during initialization! :\n"

 << message << "\n";

 XMLString::release(&message);

 return 1;

 }

 static const XMLCh gLS[] = {chLatin_z, chLatin_S, chLatin_c, chLatin_a, chLatin_n,

chLatin_n, chLatin_e, chLatin_r, chSpace,

chLatin_L, chLatin_S, chNull};

 DOMImplementation *impl = DOMImplementationRegistry::getDOMImplementation(gLS);

 DOMBuilder* parser = ((DOMImplementationLS*)impl)->createDOMBuilder(DOMImplementationLS::MODE_SYNCHRONOUS, 0);

 // optionally you can set some features on this builder

 if (parser->canSetFeature(XMLUni::fgDOMValidation, false))

 parser->setFeature(XMLUni::fgDOMValidation, false);

 if (parser->canSetFeature(XMLUni::fgDOMNamespaces, true))

 parser->setFeature(XMLUni::fgDOMNamespaces, true);

 // optionally you can implement your DOMErrorHandler (e.g. MyDOMErrorHandler)

 // and set it to the builder

 MyDOMErrorHandler* errHandler = new myDOMErrorHandler();

 parser->setErrorHandler(errHandler);

 char* xmlFile = "x1.xml";

 DOMDocument *doc = 0;

 try {

 doc = parser->parseURI(xmlFile);

 }

 catch (const XMLException& toCatch) {

 char* message = XMLString::transcode(toCatch.getMessage());

 cout << "Exception message is: \n"

 << message << "\n";

 XMLString::release(&message);

 return -1;

 }

 catch (const DOMException& toCatch) {

 char* message = XMLString::transcode(toCatch.msg);

 cout << "Exception message is: \n"

 << message << "\n";

 XMLString::release(&message);

 return -1;

 }

 catch (...) {

 cout << "Unexpected Exception \n" ;

 return -1;

 }

 parser->release();

 delete errHandler;

 return 0;

 }

The next section lists the DOMBuilder APIs and any unique behaviors for the z/OS

specific parser classes.

Chapter 6. How to use z/OS specific parser classes 45

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

Table 15. DOMBuilder APIs and behaviors in z/OS

DOMBuilder APIs

Unique class behaviors in

z/OS environment

virtual DOMErrorHandler * getErrorHandler ()=0 None

virtual const DOMErrorHandler * getErrorHandler () const =0 None

virtual DOMEntityResolver * getEntityResolver ()=0 Always returns a NULL

DOMEntityResolver

virtual const DOMEntityResolver * getEntityResolver () const

=0

Always returns a NULL

DOMEntityResolver

virtual XMLEntityResolver* getXMLEntityResolver() Always returns a NULL

XMLEntityResolver

virtual const XMLEntityResolver* getXMLEntityResolver()

const

Always returns a NULL

XMLEntityResolver

virtual DOMBuilderFilter * getFilter ()=0 Always returns a NULL filter

virtual const DOMBuilderFilter * getFilter () const =0 Always returns a NULL filter

virtual void setErrorHandler (DOMErrorHandler *const

handler)=0

None

virtual void setEntityResolver (DOMEntityResolver *const

handler)=0

Only a NULL

DOMEntityResolver is

supported. Otherwise throws

DOMException.

virtual void setXMLEntityResolver (XMLMEntityResolver

*const handler)=0

Only a NULL

XMLEntityResolver is

supported. Otherwise throws

DOMException.

virtual void setFilter (DOMBuilderFilter *const filter)=0 Not supported. Throws

DOMException.

virtual void setFeature (const XMLCh *const name, const

bool state)=0

None

virtual bool getFeature (const XMLCh *const name) const =0 None

virtual bool canSetFeature (const XMLCh *const name, const

bool state) const = 0

None

virtual DOMDocument * parse (const DOMInputSource

&source)=0

None

virtual DOMDocument * parseURI (const XMLCh *const

systemId)=0

None

virtual DOMDocument * parseURI (const char *const

systemId)=0

None

virtual void parseWithContext (const DOMInputSource

&source, DOMNode *const contextNode, const short

action)=0

None

virtual void * getProperty (const XMLCh *const name) const

=0

None

virtual void setProperty (const XMLCh *const name, void

*value)=0

None

virtual void release ()=0 None

virtual void resetDocumentPool ()=0 None

46 XML Toolkit for z/OS User’s Guide

||

|
|
|

||

||

||
|

|
|
|
|

||
|

|
|
|
|

||

||

|
|
|

|
|
|
|
|
|

|
|
|
|
|
|

||
|

|
|
|

||

|
|
|

|
|
|

|
|
|

|
|
|

|
|
|

|

|
|
|

|
|
|

||

||

Table 15. DOMBuilder APIs and behaviors in z/OS (continued)

DOMBuilder APIs

Unique class behaviors in

z/OS environment

virtual Grammar * loadGrammar (const DOMInputSource

&source, const short grammarType, const bool

toCache=false)=0

Not supported. Throws

DOMException.

virtual Grammar * loadGrammar (const XMLCh *const

systemId, const short grammarType, const bool

toCache=false)=0

Not supported. Throws

DOMException.

virtual Grammar * loadGrammar (const char *const systemId,

const short grammarType, const bool toCache=false)=0

Not supported. Throws

DOMException.

virtual Grammar * getGrammar (const XMLCh *const

nameSpaceKey) const =0

Not supported. Throws

DOMException.

virtual Grammar * getRootGrammar () const = 0 Not supported. Throws

DOMException.

virtual const XMLCh * getURIText (unsigned int uriId) const

=0

Not supported. Throws

DOMException.

virtual void resetCachedGrammarPool ()=0 Not supported. Throws

DOMException.

virtual unsigned int getSrcOffset () const =0 Not supported. Throws

DOMException.

 Table 16. DOMImplementation APIs and behaviors in z/OS

DOMImplementation APIs

Unique class behaviors in

z/OS environment

virtual DOMDocument * createDocument (MemoryManager

*const manager=XMLPlatformUtils::fgMemoryManager)=0

None

static zzDOMImplementationImpl * getImplementation () None

static bool loadDOMExceptionMsg (const

DOMException::ExceptionCode msgToLoad, XMLCh *const

toFill, const unsigned int maxChars)

None

static bool loadDOMExceptionMsg (const

DOMRangeException::RangeExceptionCode msgToLoad,

XMLCh *const toFill, const unsigned int maxChars)

None

virtual bool hasFeature (const XMLCh *feature, const XMLCh

*version) const =0

None

virtual DOMDocumentType * createDocumentType (const

XMLCh *qualifiedName, const XMLCh *publicId, const

XMLCh *systemId)=0

None

virtual DOMDocument * createDocument (const XMLCh

*namespaceURI, const XMLCh *qualifiedName,

DOMDocumentType *doctype, MemoryManager *const

manager=XMLPlatformUtils::fgMemoryManager)=0

None

virtual zzDOMImplementationImpl * getInterface (const

XMLCh *feature)=0

None

virtual DOMBuilder * createDOMBuilder (const short mode,

const XMLCh *const schemaType, MemoryManager *const

manager=XMLPlatformUtils::fgMemoryManager,

XMLGrammarPool *const gramPool=0)=0

None

virtual DOMInputSource * createDOMInputSource ()=0 None

Chapter 6. How to use z/OS specific parser classes 47

|

|
|
|

|
|
|

|
|

|
|
|

|
|

|
|
|
|

|
|
|
|

||
|

|
|
|
|

||
|

||
|
|

||

|
|
|

|
|
|

||

|
|
|

|

|
|
|

|

|
|
|

|
|
|

|

|
|
|
|

|

|
|
|

|
|
|
|

|

||

Table 16. DOMImplementation APIs and behaviors in z/OS (continued)

DOMImplementation APIs

Unique class behaviors in

z/OS environment

virtual DOMImplementation*

zDOMImplementationImpl::getInterface(const XMLCh*)

Not supported. Throws

DOMException.

The following DOMBuilder and Xerces features can be set using the

DOMBuilder::setFeature(const XMLCh* const, const bool) method. The current

setting can be queried using the DOMBuilder::getFeature(const XMLCh* const)

method. The DOMBuilder::canSetFeature(const XMLCh* const, const bool) method

can be called to determine whether setting a feature to a specific value is

supported.

 Table 17. DOMBuilder features and behaviors in z/OS

DOMBuilder features

Unique class behaviors in z/OS

environment

cdata-sections Only TRUE is supported, FALSE throws

SAXNotSupportedException

comments

charset-overrides-xml-encoding

datatype-normalization

entities

canonical-form

infoset Only FALSE is supported, TRUE throws

SAXNotSupportedException

namespaces Only TRUE is supported, FALSE throws

SAXNotSupportedException

namespace-declarations Only TRUE is supported, FALSE throws

SAXNotSupportedException

supported-mediatypes-only

validate-if-schema

validation

whitespace-in-element-content

 Table 18. Xerces features and behaviors in z/OS

Xerces features

Unique class behaviors in

z/OS environment

http://apache.org/xml/features/validation/schema Only FALSE is supported,

TRUE throws

SAXNotSupportedException

http://apache.org/xml/features/validation/schema-full-checking Only FALSE is supported,

TRUE throws

SAXNotSupportedException

http://apache.org/xml/features/nonvalidating/load-external-dtd Only FALSE is supported,

TRUE throws

SAXNotSupportedException

http://apache.org/xml/features/continue-after-fatal-error Only FALSE is supported,

TRUE throws

SAXNotSupportedException

http://apache.org/xml/features/validation-error-as-fatal

48 XML Toolkit for z/OS User’s Guide

|

|
|
|

|
|
|
|
|
|
|
|
|
|
|

||

|
|
|

||
|

||

||

||

||

||

||
|

||
|

||
|

||

||

||

||
|

||

|
|
|

||
|
|

||
|
|

||
|
|

||
|
|

||

Table 18. Xerces features and behaviors in z/OS (continued)

Xerces features

Unique class behaviors in

z/OS environment

http://apache.org/xml/features/validation/cache-
grammarFromParse

Only FALSE is supported,

TRUE throws

SAXNotSupportedException

http://apache.org/xml/features/standard-uri-conformant None

http://apache.org/xml/features/calculate-src-ofs Only FALSE is supported,

TRUE throws

SAXNotSupportedException

http://apache.org/xml/features/validation/identity-constraint-
checking

Only FALSE is supported,

TRUE throws

SAXNotSupportedException

http://apache.org/xml/features/generate-synthetic-annotations None

http://apache.org/xml/features/validate-annotations None

http://apache.org/xml/features/schema/ignore-annotations None

http://apache.org/xml/features/disable-default-entity-resolution None

http://apache.org/xml/features/validation/schema/skip-dtd-
validation

None

http://apache.org/xml/features/validation/ignoreCachedDTD None

http://apache.org/xml/features/dom-has-psvi-info None

http://apache.org/xml/features/dom/user-adopts-
DOMDocument

None

The following Xerces properties would normally be set using the

DOMBuilder::setProperty(const XMLCh* const, const bool) method. The current

setting would be queried using the DOMBuilder::getProperty(const XMLCh* const)

method. However, in the current implementation, none of these properties are

supported.

 Table 19. Xerces properties and behaviors in z/OS

Xerces properties

Unique class behaviors in

z/OS environment

http://apache.org/xml/properties/schema/external-
schemaLocation

Not supported, throws

SAXNotSupportedException

http://apache.org/xml/properties/schema/external-
noNamespaceSchemaLocation

Not supported, throws

SAXNotSupportedException

http://apache.org/xml/properties/scannerName Not supported, throws

SAXNotSupportedException

http://apache.org/xml/properties/parser-use-DOMDocument-
from-Implementation

Not supported, throws

SAXNotSupportedException

http://apache.org/xml/properties/security-manager Only a NULL security

manager is supported,

otherwise throws

SAXNotSupportedException

Using samples for the z/OS specific parser classes

Samples have been provided below to enable use of the z/OS specific parser

classes. The following samples are located in the zsamples directory:

Chapter 6. How to use z/OS specific parser classes 49

|

|
|
|

|
|
|
|
|

||

||
|
|

|
|
|
|
|

||

||

||

||

|
|
|

||

||

|
|
|

|
|
|
|
|
|

||

|
|
|

|
|
|
|

|
|
|
|

||
|

|
|
|
|

||
|
|
|
|

|
|

|
|

zSAX2Count

This program creates a SAX2XMLReader object that will use z/OS XML

System Services to parse the XML document(s). Upon completion of the

parse, it prints the number of elements, attributes, spaces and characters

found in each XML file.

zSAX2Print

This program creates a SAX2XMLReader object that will use z/OS XML

System Services to parse an XML document. It then prints the data

returned by the various SAX2 handlers for the specified XML file.

zDOMCount

This program invokes DOMBuilder to create a parser object that uses z/OS

XML System Services to parse the input document(s). It then builds the

DOM tree, and then prints the number of elements found in each XML file.

zDOMPParse

This program demonstrates the progressive parse capabilities of the parser

using z/OS XML System Services to parse an XML document. It does a

scanFirst() call followed by a loop which calls scanNext(). Upon completion

of the scanNext() loop, it reports the number of elements encountered

during the parse.

zDOMPrint

This program invokes the z/OS XML System Services parser to parse the

input document and build the DOM tree. It then utilizes DOMWriter to

serialize the DOM tree.

zMemParse

This program uses the z/OS XML System Services parser to parse a

memory buffer containing XML statements. It reports the number of

elements, attributes, spaces and characters encountered during the parse.

zPParse

This program demonstrates the progressive parse capabilities of the z/OS

XML System Services parser. It does a scanFirst() call followed by a loop

which calls scanNext(). Upon completion of the scanNext() loop, it reports

the number of elements, attribute, spaces, and characters encountered

during the parse.

Rule: These samples are only examples of how to use the specific z/OS parser

classes. You will need to modify your own applications accordingly.

Pre-built versions of the samples for the z/OS UNIX environment are included in the

Toolkit. The process for building and running these samples is the same as for the

open source parser classes in XML Parser, C++ Edition. See Chapter 5, “How to

use the XML Parser, C++ Edition,” on page 21 for more information on this.

Note: When following the instructions in Chapter 5, “How to use the XML Parser,

C++ Edition,” on page 21, make sure to use the zsamples directory in place

of the samples directory. Also, if you do not build the zsamples using

XPLINK, then the following environment variable needs to be set in order to

prevent a failure:

export _CEE_RUNOPTS="XPLINK(ON)"

50 XML Toolkit for z/OS User’s Guide

|
|
|
|
|

|
|
|
|

|
|
|
|

|
|
|
|
|
|

|
|
|
|

|
|
|
|

|
|
|
|
|
|

|
|

|
|
|
|

|
|
|
|
|

|

|

Chapter 7. How to use the XSLT Processor, C++ Edition

Samples have been provided to demonstrate the features of the XSLT Processor,

C++ Edition. These samples use simple applications written on top of the SAX,

DOM, and Xalan API’s. See “Why XML?” on page 1 for more information on the

APIs. The following samples can be found in the samples directory:

CompileStylesheet

use a compiled stylesheet to perform a series of transformations

DocumentBuilder

programmatically constructs an XML document, applies the foo.xsl

stylesheet to this document, and writes the output to foo.out

ExternalFunctions

implements, installs, and illustrates the usage of three extension functions

ParsedSourceWrappers

performs a transformation with input in the form of a pre-built XercesDOM

or XalanSourceTree

SerializeNodeSet

serializes the node set returned by the application of an XPath expression

to an XML document

SimpleTransform

uses the foo.xsl stylesheet to transform foo.xml, and writes the output to

foo.out

SimpleXPathAPI

uses the XPathEvaluator interface to evaluate an XPath expression from

the specified context node of an XML file and displays the nodeset returned

by the expression

SimpleXPathCAPI

uses the XPathEvaluator C interface to evaluate an XPath expression and

displays the string value returned by the expression

StreamTransform

processes character input streams containing a stylesheet and an XML

document, and writes the transformation output to a character output

stream

TraceListen

trace events during a transformation

TransformToXercesDOM

performs a simple transformation but puts the result in a Xerces

DOMDocument

UseStylesheetParam

set a stylesheet parameter that the stylesheet uses during the

transformation

XalanTransform

uses the XalanTransformer class and the associated C++ API to apply an

XSL stylesheet file to an XML document file and write the transformation

output to either an output file or to a stream

XalanTransformerCallback

returns transformation output in blocks to a callback function, which writes

the output to a file

© Copyright IBM Corp. 2008 51

XPathWrapper

use this sample to find out what a given XPath expression returns from a

given context node in an XML file

Rule: These samples are only examples of how to exploit the XSLT Processor,

C++ Edition. You will need to modify your own applications accordingly.

Pre-built versions of the samples for the z/OS UNIX environment are included in the

Toolkit. These can be used to illustrate XML concepts, validate XML documents,

and validate DTDs and schemas during development. See “Using the sample

applications” on page 52 section for instructions on how to use these pre-built

versions.

Rule: The prebuilt samples shipped with the Toolkit are the non-XPLINK versions. If

you want to use the XPLINK versions of these samples, you must build your own

copy of them.

The procedures for building and using your built samples differ depending on the

target environment. The procedures for building your samples are outlined in

sections “Building sample applications for the z/OS UNIX Environment” on page 53

and “Building sample applications for the MVS Environment” on page 57. The

procedures for using your built samples are outlined in sections “Using your sample

applications on the z/OS UNIX Environment” on page 56 and “Using your sample

applications on the MVS Environment” on page 60

The XSLT Processor, C++ Edition component is installed in /usr/lpp/ixm/IBM/
xslt4c-1_10 by default. It contains the following sub-directories:

/doc contains online APIs and design documentation

/include

used for building samples

/lib used for running the processor code

/bin used for the samples

In addition to the sub-directories, the Toolkit includes the following data sets:

hlq.SIXLMOD1

used for running the processor code in an MVS environment

hlq.SIXMEXP

used to build applications for an MVS environment

Using the sample applications

Set up an environment variable to point to the location where the XSLT Processor,

C++ Edition component was installed:

 export XALANCROOT=/usr/lpp/ixm/IBM/xslt4c-1_10

You also need to set up an environment variable to point to the location where the

XML Parser, C++ Edition component was installed. Here is how you do that:

 export XERCESCROOT=/usr/lpp/ixm/IBM/xml4c-5_6

Next, type in the following command statements:

52 XML Toolkit for z/OS User’s Guide

export LIBPATH=$XALANCROOT/lib:$XERCESCROOT/lib:$LIBPATH

 export PATH=$XALANCROOT/bin:$PATH

You must now copy the sample files to a temporary directory. Here is how you do

that:

 mkdir $HOME/xslsamples

 cd $HOME/xslsamples

 cp $XALANCROOT/samples/SimpleTransform/foo.* .

You are now set to run the sample applications. For example, to run the

SimpleTransform application, in the $XALANCROOT/samples/SimpleTransform/

directory type the following:

 SimpleTransform

This sample application will then use the foo.xsl stylesheet to transform foo.xml,

and write the output to foo.out. The pre-built samples can be run in a z/OS UNIX

command environment.

Rule for running non-XPLINK samples

In order to run the non-XPLINK samples, the XSLT Processor, C++ Edition requires

the run-time library provided by Language Environment, SCEERUN, to be made

available in the program search order. The best way to do this is by adding

SCEERUN data set in the LNKLST. If you do not wish to add SCEERUN to the

LNKLST, access SCEERUN data set through STEPLIB.

Rule for running XPLINK samples

In order to run the XPLINK samples, the XSLT Processor, C++ Edition requires the

run-time libraries provided by Language Environment, SCEERUN and SCEERUN2,

to be made available in the program search order. The best way to do this is by

adding the SCEERUN and SCEERUN2 data sets into the LNKLST. If you do not

wish to add SCEERUN and SCEERUN2 to the LNKLST, access SCEERUN and

SCEERUN2 data sets through STEPLIB.

z/OS UNIX Environment

Building sample applications for the z/OS UNIX Environment

Next, the system environment must be configured correctly. Doing so requires the

use of the GNU make utility (gmake). To download gmake go to:

http://www.ibm.com/servers/eserver/zseries/zos/unix/bpxa1ty1.html#gmake

After you have downloaded gmake, issue the following command against the install

file:

 pax -rzf

This will place the gmake program into the /bin directory (the /bin directory was

created by the pax command). For additional information on using gmake, see the

IBM redbook Open Source Software for OS/390 UNIX, SG24-5944 available online

at:

http://www-1.ibm.com/servers/eserver/zseries/zos/unix/redbook/index.html

Chapter 7. How to use the XSLT Processor, C++ Edition 53

Please note that all references to gmake refer to the GNU make utility.

Product files are required to build the XSLT Processor, C++ Edition on z/OS UNIX.

These files and their descriptions are displayed in the following table:

 Table 20. Product Files Required to Build Sample XML Applications for z/OS UNIX

Environments

Product file name Product file description

non-XPLINK product files

libxslt4c.1_10_0.x the definition side-deck that describes the

XSLT Processor, C++ Edition functions and

the variables

libxml4c5_6_0.x The definition side-deck contained in the lib

directory that describes the XSLT Processor,

C++ Edition external functions and the

variables. This is required in order to bind

application code.

libxml4c-depdom5_6_0.x The definition side-deck that describes the

previously deprecated DOM APIs; it is only

required if you are using these APIs.

XPLINK product files

libxslt4c.1_10_0.xplink.x The definition side-deck that describes the

XSLT Processor, C++ Edition functions and

the variables. This is required in order to use

XPLINK to bind application code.

libxml4c5_6_0.xplink.x The definition side-deck contained in the lib

directory that describes the XSLT Processor,

C++ Edition external functions and the

variables. This is required in order to use

XPLINK to bind application code.

libxml4c-depdom5_6_0.xplink.x The definition side-deck that describes the

previously deprecated DOM APIs; it is only

required if you are using these APIs and

XPLINK.

Rules for invoking the XSLT Processor, C++ Edition in z/OS UNIX

Any application that is to invoke the XSLT Processor, C++ Edition processor under

the z/OS UNIX System Services environment must include libxslt4c.1_10_0.x and

libxml4c5_6_0.x, (or libxslt4c.1_10_0.xplink.x and libxml4c5_6_0.xplink.x if using

XPLINK), when they bind. The binder uses the definition side-deck to resolve

references to functions and variables defined in libxslt4c.1_10_0.dll and

libxml4c5_6_0.dll (libxslt4c.1_10_0.xplink.dll and libxml4c5_6_0.xplink.dll if using

XPLINK).

If you are using the deprecated DOM APIs, you need to include the

libxml4c-depdom5_6_0.x sidedeck, or for XPLINK applications, the

libxml4c-depdom5_6_0.xplink.x sidedeck.

 Now set up an environment variable to point to the location where the XSLT

Processor, C++ Edition component was installed:

 export XALANCROOT=/usr/lpp/ixm/IBM/xslt4c-1_10

54 XML Toolkit for z/OS User’s Guide

You also need to set up an environment variable to point to the location where the

XML Parser, C++ Edition component was installed. Here is how you do that:

 export XERCESCROOT=/usr/lpp/ixm/IBM/xml4c-5_6

Next, you need to obtain access to a copy of the samples directory to which you

have write access. Unless you are a superuser, you normally will not have write

access to the samples subdirectory that was shipped with the product. In this case,

you will need to do the following:

1. Create a new directory that you have write access to, for example:

 cd $HOME

 mkdir mysamples

2. Set a new environment variable that contains the full path to this new directory,

as follows:

 export XALANCOUT=$HOME/mysamples

3. Copy the samples directory to your directory:

 cp -r /usr/lpp/ixm/IBM/xslt4c-1_10/samples $XALANCOUT

Since the XALANCOUT environment variable is set, that copy of the samples

subdirectory will be used. The binary files will be stored in a ″bin″ subdirectory.

After you have copied the samples directory, you need to set up environment

variables. This is done through the following sequence:

 export CXX=c++

 export CXXFLAGS="-2"

If debugging is desired, the -g option can be used instead of the -2 option in the

export CXXFLAGS statement.

The next statement is only required for building XPLINK samples:

export OS390_XPLINK=1

Next, you need to set up some information for the non-XPLINK Standard C++

Library sidedeck. Here is how you do that:

Note: The below export statement is not required if using XPLINK; the contents of

the _CXX_PSYSIX variable are loaded by default when using XPLINK. Also,

if _CXX_PSYSIX was previously set and you are now building an XPLINK

version, unset the variable.

For z/OS 1.9 or higher releases:

 export _CXX_PSYSIX=\

 "{_PLIB_PREFIX}.SCEELIB(C128N)":\

 "{_CLIB_PREFIX}.SCLBSID(IOSTREAM,COMPLEX)"

For z/OS 1.8 and earlier releases:

Chapter 7. How to use the XSLT Processor, C++ Edition 55

export _CXX_PSYSIX=\

 "{_PLIB_PREFIX}.SCEELIB(C128N)":\

 "{_CLIB_PREFIX}.SCLBSID(IOC,IOSTREAM,COMPLEX,COLL)"

where {_PLIB_PREFIX} and {_CLIB_PREFIX} are set to a default (for example,

CEE and CBC, respectively) during custom installation, or using user overrides.

Rule: All three segments of the above example must be entered on the same

command line.

Finally, to build the samples, type the following in the directory in which you created

the Makefiles:

 export _CXX_CXXSUFFIX=cpp

 export _CXX_CCMODE=1

 cd $XALANCOUT/samples

 gmake

After issuing the gmake command, the build process is completed. The samples are

built into the $XALANCOUT/bin directory.

Using your sample applications on the z/OS UNIX Environment

Library files are required to run XSLT Processor, C++ Edition on z/OS UNIX. These

files can be found in the $XALANCROOT/lib and $XERCESCROOT/lib directories.

The file names and their descriptions are displayed in the following table:

 Table 21. Library Files Required to Run Sample XML Applications on z/OS UNIX

Library File Name Library File Description

non-XPLINK library files

libxslt4c.1_10_0.dll,

libxslt4cMessages.1_10_0.dll

XSLT Processor, C++ Edition library files

libxml4c5_6_0.dll XML Parser, C++ Edition library file

libxml4c-depdom5_6_0.dll library file for the previously deprecated DOM

API

libicudata33.0.dll, libicudata_stub33.0.dll,

libicuuc33.0.dll, libicui18n33.0.dll

ICU library files

XPLINK library files

libxslt4c.1_10_0.xplink.dll,

libxslt4cMessages.1_10_0.xplink.dll

XSLT Processor, C++ Edition library files

libxml4c5_6_0.xplink.dll XML Parser, C++ Edition library file

libxml4c-depdom5_6_0.xplink.dll library file for the previously deprecated DOM

API

libicudata33.0.xplink.dll,

libicudata_stub33.0.xplink.dll,

libicuuc33.0.xplink.dll, libicui18n33.0.xplink.dll

ICU library files

Before running the samples, you must ensure that several environment variables

are set properly. First, set up an environment variable to point to the location where

the XSLT Processor, C++ Edition component was installed:

 export XALANCROOT=/usr/lpp/ixm/IBM/xslt4c-1_10

56 XML Toolkit for z/OS User’s Guide

You also need to set up an environment variable to point to the location where the

XML Parser, C++ Edition component was installed. Here is how you do that:

 export XERCESCROOT=/usr/lpp/ixm/IBM/xml4c-5_6

Then type in the following command statements:

 export LIBPATH=$XALANCROOT/lib:$XERCESCROOT/lib:$LIBPATH

 export ICU_DATA=$XERCESCROOT/lib

Then set the PATH to locate the samples you have just built:

 export PATH=$XALANCOUT/bin:$PATH

You are now set to run your sample applications. For example, to run the

SimpleTransform application from the $XALANCOUT/bin directory, type the

following command statement:

 cd $XALANCOUT/samples/SimpleTransform

 SimpleTransform

This sample application will then use the foo.xsl stylesheet to transform foo.xml,

and write the output to foo.out.

MVS Environment

Building sample applications for the MVS Environment

Before being able to build the provided samples, the system environment must be

configured correctly. Doing so requires the use of the GNU make utility (gmake). To

download gmake go to:

http://www.ibm.com/servers/eserver/zseries/zos/unix/bpxa1ty1.html#gmake

After you have downloaded gmake, issue the following command against the install

file:

 pax -rzf

This will place the gmake program into the /bin directory (the /bin directory was

created by the pax command). For additional information on using gmake, see the

IBM redbook Open Source Software for OS/390 UNIX, SG24-5944 available online

at:

http://www-1.ibm.com/servers/eserver/zseries/zos/unix/redbook/index.html

Please note that all references to gmake refer to the GNU make utility.

Product files are required to build the XSLT Processor, C++ Edition on MVS. These

files and their descriptions are displayed in the following table:

Chapter 7. How to use the XSLT Processor, C++ Edition 57

Table 22. Product Files Required to Build Sample XML Applications for MVS Environments

Product file name Product file description Data set name

files in the include directory C++ header files contained in

the include directory. These

are required in order to

compile application code.

non-XPLINK product files

IXMLC20X Definition side-deck that

describes the XSLT

Processor, C++ Edition

functions and variables.

hlq.SIXMEXP

IXM4C56X Definition side-deck that

describes the XML Parser,

C++ Edition functions and the

variables.

hlq.SIXMEXP

IXMDD56X Definition side-deck that

describes the previously

deprecated DOM APIs; it is

only required if you are using

these APIs.

hlq.SIXMEXP

XPLINK product files

IXMLX20X Definition side-deck that

describes the XSLT

Processor, C++ Edition

functions and variables.This

is required in order to use

XPLINK to bind application

code.

hlq.SIXMEXP

IXM4C6XX XPLINK definition side-deck

that describes the XML

Parser, C++ Edition functions

and the variables. This is

required in order to use

XPLINK to bind application

code.

hlq.SIXMEXP

IXMDD6XX Definition side-deck that

describes the previously

deprecated DOM APIs; it is

only required if you are using

these APIs and XPLINK.

hlq.SIXMEXP

Rule: Any non-XPLINK application that is to invoke the XSLT Processor, C++

Edition parser under the native MVS environment must include the

IXMLC20X and IXM4C56X definition side-decks when they bind. The binder

uses the definition side-decks to resolve references to functions and

variables defined in the IXMLC20 and IXM4C56. Any XPLINK application that

is to invoke the XSLT Processor, C++ Edition parser under the native MVS

environment must include the IXMLX20X and IXM4C6XX definition

side-decks when they bind. The binder uses the definition side-decks to

resolve references to functions and variables defined in the IXMLX20 and

IXM4C6X.

58 XML Toolkit for z/OS User’s Guide

To be able to run the sample applications, you must first allocate a data set to hold

the executables. If you have already allocated a data set for XML Parser, C++

Edition, skip this step. The following is an example of a data set allocation:

 userid.SAMPLES.rel.LOAD, 400 tracks on 3390, Record format:U,

 Record Length: 0, Block size: 32760, ORG: PDSE,

 Directory blocks: 0

Rule: If you are building samples from multiple releases, you will need a unique

PDSE for each release, for example: SAMPLES.V190 .LOAD for samples

from Toolkit V1.9.0 and SAMPLES.V180 .LOAD for samples from Toolkit

V1.8.0.

Next, you must ensure that several environment variables are set properly. First, set

up an environment variable to point to the location where the XSLT Processor, C++

Edition component was installed:

 export XALANCROOT=/usr/lpp/ixm/IBM/xslt4c-1_10

You also need to set up an environment variable to point to the location where the

XML Parser, C++ Edition component was installed. Here is how you do that:

 export XERCESCROOT=/usr/lpp/ixm/IBM/xml4c-5_6

Then, you need to obtain access to a copy of the samples directory to which you

have write access. Unless you are a superuser, you normally will not have write

access to the samples subdirectory that was shipped with the product. In this case,

you will need to do the following:

1. Create a new directory that you have write access to, for example:

 cd $HOME

 mkdir mysamples

2. Set a new environment variable that contains the full path to this new directory,

as follows:

 export XALANCOUT=$HOME/mysamples

3. Copy the samples directory to your directory:

 cp -r /usr/lpp/ixm/IBM/xslt4c-1_10/samples $XALANCOUT

Since the XALANCOUT environment variable is set, that copy of the samples

subdirectory will be used. The binary files are stored in the MVS data set pointed to

by the LOADMOD environment variable.

After you have copied the samples directory, you need to set up environment

variables. This is done through the following sequence:

 export LOADMOD=userid.SAMPLES.rel.LOAD

 export LOADEXP=hlq.SIXMEXP

 export OS390BATCH=1

 export CXX=c++

 export CXXFLAGS="-2"

Chapter 7. How to use the XSLT Processor, C++ Edition 59

If debugging is desired, the -g option can be used instead of the -2 option in the

export CXXFLAGS statement.

The next statement is only required if you are building XPLINK samples:

export OS390_XPLINK=1

Next, you need to set up some information for the non-XPLINK Standard C++

Library sidedeck. Here is how you do that:

Note: The below export statement is not required if using XPLINK; the contents of

the _CXX_PSYSIX variable are loaded by default when using XPLINK. Also,

if _CXX_PSYSIX was previously set and you are now building an XPLINK

version, unset the variable.

For z/OS 1.9 or higher releases:

 export _CXX_PSYSIX=\

 "{_PLIB_PREFIX}.SCEELIB(C128N)":\

 "{_CLIB_PREFIX}.SCLBSID(IOSTREAM,COMPLEX)"

For z/OS 1.8 and earlier releases:

 export _CXX_PSYSIX=\

 "{_PLIB_PREFIX}.SCEELIB(C128N)":\

 "{_CLIB_PREFIX}.SCLBSID(IOC,IOSTREAM,COMPLEX,COLL)"

where {_PLIB_PREFIX} and {_CLIB_PREFIX} are set to a default (for example,

CEE and CBC, respectively) during custom installation, or using user overrides.

Rule:: All three segments of the above example must be entered on the same

command line.
You are now ready to build the samples. The following sequence shows how to

build the samples:

 export _CXX_CXXSUFFIX=cpp

 export _CXX_XSUFFIX_HOST=SIXMEXP

 export _CXX_CCMODE=1

 gmake

After you have issued the gmake command, the build process is now completed.

The built samples are placed into the userid.SAMPLES.rel.LOAD data set.

Using your sample applications on the MVS Environment

Library files are required to run XSLT Processor, C++ Edition on MVS. The following

table is a list of library files required, a short description of the files, and the data

set names of where these files are located.

 Table 23. Library Files Required to Run Sample XML Applications on MVS

Library file name Library file description Library data set name

non-XPLINK library files

IXMLC20 XSLT Processor, C++ Edition

library file

hlq.SIXMLOD1

IXMMSG20 XSLT Processor, C++ Edition

message handling

hlq.SIXMLOD1

IXM4C56 XML Parser, C++ Edition

library file

hlq.SIXMLOD1

60 XML Toolkit for z/OS User’s Guide

Table 23. Library Files Required to Run Sample XML Applications on MVS (continued)

Library file name Library file description Library data set name

non-XPLINK library files

IXMDD56 previously deprecated DOM

API library file

hlq.SIXMLOD1

IXMI33UC ICU library file hlq.SIXMLOD1

IXMI33DA ICU library file hlq.SIXMLOD1

IXMI33D1 ICU library file hlq.SIXMLOD1

IXMI33IN ICU library file hlq.SIXMLOD1

XPLINK library files

IXMLX20 XSLT Processor, C++Edition

library file

hlq.SIXMLOD1

IXMMXG20 XSLT Processor, C++ Edition

message handling

hlq.SIXMLOD1

IXM4C6X XML Parser, C++ Edition

library file

hlq.SIXMLOD1

IXMDD6X previously deprecated DOM

API library file

hlq.SIXMLOD1

IXMI33XC ICU library file hlq.SIXMLOD1

IXMI33XA ICU library file hlq.SIXMLOD1

IXMI33X1 ICU library file hlq.SIXMLOD1

IXMI33XN ICU library file hlq.SIXMLOD1

Before you run the samples, you must make sure that you have access to the

library, SIXMLOD1. You can ask your system programmer to install SIXMLOD1 in

LNKLST. If the SIXMLOD1 data set cannot be placed in LNKLST, you can STEPLIB

the data set for each application that requires it. You can invoke the samples from

TSO or a JCL job. For example, you can submit the following JCL to run

TRACELSN.

//USERJOB JOB MSGLEVEL=(1,1),CLASS=A

//TEST1 EXEC PGM=TRACELSN,

//* HFS file input

// PARM=’/-tt’

//STEPLIB DD DSN=hlq.SIXMLOD1,DISP=SHR

// DD DSN=userid.SAMPLES.rel.LOAD,DISP=SHR

Chapter 7. How to use the XSLT Processor, C++ Edition 61

62 XML Toolkit for z/OS User’s Guide

Chapter 8. How to use the XML Toolkit command line utilities

How to use the XSLT Processor, C++ Edition command line utility

To perform a transformation, you can call the XSLT Processor, C++ Edition from the

command line. Xalan is a simple executable providing a command-line interface for

performing XSLT transformations .The following describes how you can use Xalan

to perform transformations:

1. Set XALANCROOT to be /usr/lpp/ixm/IBM/xslt4c-1_10

2. Set XERCESCROOT to be /usr/lpp/ixm/IBM/xml4c-5_6

3. Set the PATH to include $XALANCROOT/bin

4. Set the LIBPATH to include $XALANCROOT/lib:$XERCESCROOT/lib

Then from the command line, type the following:

Xalan

or

Xalan -?

to show all the options. The following is an example of the Xalan command line:

Xalan -o foo.out

 $XALANCROOT/samples/SimpleTransform/foo.xml

 $XALANCROOT/samples/SimpleTransform/foo.xsl

Rule:: All three segments of the above example must be entered on the same

command line.
Here is a sample job for the Xalan command (IXMXAL20):

 //XALAN1 JOB REGION=0M,NOTIFY=&SYSUID

 //STEP1 EXEC PGM=IXMXAL20

 // PARM=’/-e ibm-1047-s390 -o DD:OUTFILE DD:INXML DD:INXSL’

 //STEPLIB DD DSN=hlq.SIXMLOD1,DISP=SHR,

 //INXML DD DSN=USER1.FOO.XML,DISP=SHR

 //INXSL DD DSN=USER1.FOO.XSL,DISP=SHR

 //OUTFILE DD DSN=USER1.FOO.OUT,DISP=SHR

 //*

The following table lists the flags and arguments the Xalan executable can take (the

flags are case insensitive) :

 Table 24. Flags and Arguments for the Xalan Executable

-a (Use stylesheet processing instruction, not the stylesheet argument)

-e encoding (Force the specified encoding for the output)

-i integer (Indent the specified amount)

-m (Omit the META tag in HTML output)

-o filename (Write transformation result to this file (rather than to the console))

-p name expr (Set a stylesheet parameter with this expression)

-u name expr (Disable escaping of URLs in HTML output)

-v (Validate the XML source document)

© Copyright IBM Corp. 2008 63

Table 24. Flags and Arguments for the Xalan Executable (continued)

- (A dash as the ’source’ argument reads from stdin. A dash as the ’stylesheet’ argument

reads from stdin. (’-’ cannot be used for both arguments.))

-?(Show all options)

There is another XSLT Processor, C++ Edition command line utility available called

testXSLT. Like Xalan, this command line utility can perform transformations.

However, unlike Xalan, it has additional options which can be used to help debug

stylesheets during development. The following describes how you can use testXSLT

to perform transformations:

1. Set XALANCROOT to be /usr/lpp/ixm/IBM/xslt4c-1_10

2. Set XERCESCROOT to be /usr/lpp/ixm/IBM/xml4c-5_6

3. Set the PATH to include $XALANCROOT/bin

4. Set the LIBPATH to include $XALANCROOT/lib:$XERCESCROOT/lib

You can now call the testXSLT executable with the appropriate flags and arguments

or enter

testXSLT -h

to show all the options. The following command line, for example, includes the -IN,

-XSL, and-OUT flags with their accompanying arguments; the XML source

document, the XSL stylesheet, and the output file:

testXSLT -IN $XALANCROOT/samples/SimpleTransform/foo.xml

 -XSL $XALANCROOT/samples/SimpleTransform/foo.xsl

 -OUT foo.out

Rule:: All three segments of the above example must be entered on the same

command line.
Also, here is a sample job for the testXSLT command (IXMTST20):

 //TSTXSLT1 JOB REGION=0M,NOTIFY=&SYSUID

 //STEP1 EXEC PGM=IXMTST20

 // PARM=’/-IN FILE:////FOO.XML -XSL FILE:////FOO.XSL -OUT FOO.OUT’

 //STEPLIB DD DSN=hlq.SIXMLOD1,DISP=SHR,

 //*

The following table lists the flags and arguments the testXSLT executable can take

(the flags are case sensitive) :

 Table 25. Flags and Arguments for the testXSLT Executable

-in inputxmlurl

-xsl xsltransformationurl

-out outputfilename

-h(Display list of command line options)

-? (Display list of command line options)

-v (Version info)

-qc (Quiet Pattern Conflicts Warnings)

-q (Quiet Mode)

-indent (Number of spaces to indent each level in output tree — default is 0)

-validate (Validate the XSL and XML input — default is not to validate)

64 XML Toolkit for z/OS User’s Guide

Table 25. Flags and Arguments for the testXSLT Executable (continued)

-tt (Trace the templates as they are being called)

-tg (Trace each result tree generation event)

-ts (Trace each selection event)

-ttc (Trace the template children as they are being processed)

-xml (Use XML formatter and add XML header)

-nh (Don’t write XML header) *The -XML flag must be set before use

-html (Use HTML formatter)

-noindent (turns off HTML indenting) *The -HTML flag must be set before use

-stripcdata (Strip CDATA sections of their brackets, but do not escape) *The -XML or

-HTML flag must be set before use

-escapecdata (Strip CDATA sections of their brackets, and escape) *The -XML or -HTML

flag must be set before use

-text (Use simple Text formatter)

-dom (Test for well-formed output — format to DOM then to XML for output)

-xst (Format to Xalan source tree, then to XML for output)

-xd (Use Xerces DOM instead of Xalan source tree)

-de (Disable built-in extension functions)

-en (Specify the namespace URI for Xalan extension functions; the default is

http://xml.apache.org/xslt)

-param name expression (Set a stylesheet parameter)

Chapter 8. How to use the XML Toolkit command line utilities 65

66 XML Toolkit for z/OS User’s Guide

Chapter 9. Where to go for more information

For more information on XML Toolkit for z/OS, visit the XML Toolkit Web site at:

http://www.ibm.com/servers/eserver/zseries/software/xml/

For additional information on the Apache XML project, visit the Apache Web site at:

http://xml.apache.org/

There are also two redbooks that you may find informative:

v Using XML on z/OS and OS/390 for Application Integration, which contains

information on how to integrate XML technology with business applications on

z/OS. This document can be accessed from the following link:

http://publib-b.boulder.ibm.com/Redbooks.nsf/RedbookAbstracts/
sg246285.html?Open

v XML on z/OS and OS/390: Introduction to a Service-Oriented Architecture, which

provides a general introduction to the XML Toolkit in the first half, followed by a

comprehensive introduction to services–oritented architecture (SOA) and Web

Services. This document can be accessed from the following link:

http://www.redbooks.ibm.com/redbooks/pdfs/sg246826.pdf

© Copyright IBM Corp. 2008 67

http://www.ibm.com/servers/eserver/zseries/software/xml/
http://xml.apache.org/
http://publib-b.boulder.ibm.com/Redbooks.nsf/RedbookAbstracts/sg246285.html?Open
http://publib-b.boulder.ibm.com/Redbooks.nsf/RedbookAbstracts/sg246285.html?Open
http://www.redbooks.ibm.com/redbooks/pdfs/sg246826.pdf

68 XML Toolkit for z/OS User’s Guide

Appendix A. Building samples for native MVS using JCL

Building XML Parser, C++ Edition samples for native MVS using JCL

The samples for the XML Parser, C++ Edition, which are included in the XML Toolkit

for z/OS (XML Toolkit), reside in the product HFS. They may be compiled and

linked into either an HFS or into a PDSE data set depending upon your preference.

However, the instructions provided only deal with building the samples from the

HFS using the gmake utility under z/OS UNIX System Services (z/OS UNIX).

Alternatively, it is possible to copy the sample C++ source code and header files to

PDSE data sets, and compile and link-edit them from TSO using JCL instead of

using gmake from z/OS UNIX. All of the header files needed from the XML Toolkit

will still have to be picked up out of the product HFS because of their long names

and hierarchical structure.

In order to illustrate an application whose source code resides in data sets, we will

use the source and header files for the SAXCount sample which reside in the

/usr/lpp/ixm/IBM/xml4c-5_6/samples/SAXCount directory and copy them to data

sets.

You first need to allocate the following PDSE data sets:

[userid].BATCH.CPP -- recfm=FB, lrecl=240, blksize=12960

[userid].BATCH.HPP -- recfm=FB, lrecl=240, blksize=12960

[userid].BATCH.JCL -- recfm=FB, lrecl=80, blksize=12960

[userid].BATCH.OBJ -- recfm=FB, lrecl=80, blksize=12960

[userid].BATCH.LOAD -- recfm=U, lrecl=0, blksize=32760

Then you need to copy the SAXCount.cpp and SAXCountHandlers.cpp files to

the[userid].BATCH.CPP PDSE. Since the member names in a PDSE may not

exceed 8 characters, you will need to rename the SAXCountHandlers.cpp part to

SAXCONTH. For SAXCount.cpp, you can use a member name of SAXCOUNT.

Since files in the HFS can have more than 80 byte records in them, a logical record

length of 240 is used here to avoid truncating any code.

The corresponding header files (SAXCount.hpp and SAXCountHandlers.hpp) also

need to be copied to the [userid].BATCH.HPP PDSE. Use SAXCONTH for the

member name for the SAXCountHandlers.hpp member here too.

Once you have copied all of these files, you need to edit the SAXCOUNT member

of the [userid].BATCH.HPP PDSE and change the following line:

#include "SAXCountHandlers.hpp"

to

#include "SAXConth.hpp"

This now refers to the 8 character name we copied the header file to in the PDSE.

The next step is to copy the following JCL to the [userid].BATCH.JCL PDSE. This

JCL will compile the SAXCOUNT and SAXCONTH members and store the object

files in [userid].BATCH.OBJ.

//SAXCOMP JOB MSGLEVEL=(1,1),REGION=0M,NOTIFY=&SYSUID.

//JOBLIB DD DSNAME=SYS1.CEE.SCEERUN,DISP=SHR

// DD DSNAME=SYS1.CEE.SCEERUN2,DISP=SHR

// DD DSNAME=SYS1.CBC.SCCNCMP,DISP=SHR

//STEP1 EXEC PGM=CCNDRVR,PARM=’/CXX OPTFILE(DD:OPTS),OBJ,LIST’

//OPTS DD *

 LANGLVL(EXTENDED)

© Copyright IBM Corp. 2008 69

NOSEARCH SEARCH(

 /usr/lpp/ixm/IBM/xml4c-5_6/include/,

 //’[userid].BATCH.+’,

 //’SYS1.CEE.SCEEH.+’,

 //’SYS1.CBC.SCLBH.+’)

 DEFINE(OS390=1)

 DEFINE(_OPEN_THREADS=1)

 DEFINE(_XOPEN_SOURCE_EXTENDED=1)

/*

//SYSLIN DD DSNAME=&SYSUID..BATCH.OBJ(SAXCOUNT),DISP=SHR

//SYSPRINT DD SYSOUT=A

//SYSIN DD DSNAME=&SYSUID..BATCH.CPP(SAXCOUNT),DISP=SHR

//SYSUT1 DD DUMMY

/*

//STEP2 EXEC PGM=CCNDRVR,PARM=’/CXX OPTFILE(DD:OPTS),OBJ,LIST’

//OPTS DD *

 LANGLVL(EXTENDED)

 NOSEARCH SEARCH(

 /usr/lpp/ixm/IBM/xml4c-5_6/include/,

 //’[userid].BATCH.+’,

 //’SYS1.CEE.SCEEH.+’,

 //’SYS1.CBC.SCLBH.+’)

 DEFINE(OS390=1)

 DEFINE(_OPEN_THREADS=1)

 DEFINE(_XOPEN_SOURCE_EXTENDED=1)

/*

//SYSLIN DD DSNAME=&SYSUID..BATCH.OBJ(SAXCONTH),DISP=SHR

//SYSPRINT DD SYSOUT=A

//SYSIN DD DSNAME=&SYSUID..BATCH.CPP(SAXCONTH),DISP=SHR

//SYSUT1 DD DUMMY

/*

In this JCL, if you allocated the data sets with your TSO userid and run from that

ID, you can leave ″&SYSUID″ as the high-level qualifier. In the compiler options

(under the OPTS DD statement), you need to change [userid] to the high-level

qualifier of the [userid].BATCH.HPP data set. If your system does not use the

“SYS1” prefix on the CEE.SCEEH and CBC.SCLBH data sets, you need to remove

that qualifier as well. What this SEARCH option does is instruct the compiler to first

look in /usr/lpp/ixm/IBM/xml4c-5_6/include/ for header files, then in the

[userid].BATCH.HPP data set, and so on and so forth.

The options could actually be stored in a data set and that data set name used on

the OPTS DD statement, but the options are shown here to make the example

complete. You can submit this job and it will create the SAXCOUNT and

SAXCONTH object files in the [userid].BATCH.OBJ PDSE.

The next step is to link-edit (bind) these object files into an executable file. You can

use the following JCL to accomplish this:

//SAXBIND JOB MSGLEVEL=(1,1),REGION=0M,NOTIFY=&SYSUID.

//BIND1 EXEC PGM=IEWL,PARM=’OPTIONS=OPTS’

//OPTS DD *

 AMODE=31,RMODE=ANY

 DYNAM=DLL,ALIASES=NO,UPCASE=NO,

 LIST=NO,MAP=NO,XREF=NO,MSGLEVEL=4,

 REUS=RENT,EDIT=YES,AC=0,CALL=YES,CASE=MIXED

/*

//SYSLIB DD DISP=SHR,DSN=SYS1.CEE.SCEELKEX

// DD DISP=SHR,DSN=SYS1.CEE.SCEELKED

// DD DISP=SHR,DSN=SYS1.CEE.SCEECPP

// DD DISP=SHR,DSN=SYS1.CBC.SCLBSID

//SYSLIB1 DD DISP=SHR,DSN=SYS1.SIXMEXP

//SYSLIB2 DD DISP=SHR,DSN=&SYSUID..BATCH.OBJ

//SYSLMOD DD DISP=SHR,DSN=&SYSUID..BATCH.LOAD

70 XML Toolkit for z/OS User’s Guide

//SYSDEFSD DD DUMMY

//SYSPRINT DD SYSOUT=A

//SYSLIN DD *

 INCLUDE SYSLIB(IOSTREAM)

 INCLUDE SYSLIB(COMPLEX)

 INCLUDE SYSLIB1(IXM4C56X)

 INCLUDE SYSLIB2(SAXCOUNT)

 INCLUDE SYSLIB2(SAXCONTH)

 ENTRY CEESTART

 NAME SAXCOUNT(R) RC=0

/*

In this JCL, you can also leave “&SYSUID” there as long as you are running this

from your TSO ID and it matches the high-level qualifier you allocated these data

sets under. On the SYSLIB DD statements, if “SYS1” is not the high-level qualifier

for these data sets, you will need to remove or replace that. The SYSLIB1 DD

statement assumes the side-decks for the XML Toolkit were installed as

recommended and they are in SYS1.SIXMEXP. You can submit this JCL, and it should

link-edit the SAXCOUNT and SAXCONTH object files into a single executable file

called SAXCOUNT in [userid].BATCH.LOAD.

If you want to execute the SAXCOUNT executable, you can use the following JCL:

//SAXCOUNT JOB MSGLEVEL=1,REGION=0M,NOTIFY=&SYSUID.

//JOBLIB DD DSN=SYS1.SIXMLOD1,DISP=SHR

// DD DSN=&SYSUID..BATCH.LOAD,DISP=SHR

//TEST1 EXEC PGM=SAXCOUNT,

// PARM=’//usr/lpp/ixm/IBM/xml4c-5_6/samples/data/personal.xml’

/*

This JCL assumes that the XML Toolkit DLLs were installed as recommended to the

SYS1.SIXMLOD1 data set.

Building XSLT Processor, C++ Edition samples for native MVS using

JCL

The samples for the XSLT Processor, C++ Edition, may also be built using JCL.

This is very similar to the process for building the XML Parser, C++ Edition

samples. You should review that section first. You will need to allocate the same

MVS data sets. For the XSLT Processor we will use the SimpleTransform sample

as an example. This resides in the /usr/lpp/ixm/IBM/xslt4c-1_10/samples/
SimpleTransform directory.

The first thing you need to do is copy the SimpleTransform.cpp file to the

[userid].BATCH.CPP PDSE. Since the member names in a PDSE may not exceed 8

characters, you will need to rename the SimpleTransform.cpp part to SMPLTRNS.

The corresponding header file (XalanMemoryManagerImpl.hpp) also needs to be

copied to the [userid].BATCH.HPP PDSE. Use XALANMMI for the 8 character

member name.

Once you have copied all of these files you need to edit the SMPLTRNS member of

the [userid].BATCH.CPP PDSE and change the following line:

#include "XalanMemoryManagerImpl.hpp"

to

#include "XalanMMI.hpp"

Appendix A. Building samples for native MVS using JCL 71

This is so that this refers to the 8 character name we copied this header file to in

the PDSE. The next step is to copy the following JCL to the [userid].BATCH.JCL

PDSE. This JCL will compile the SMPLTRNS member and store the object file in

[userid].BATCH.OBJ.

//SMPTCOMP JOB MSGLEVEL=(1,1),REGION=0M,NOTIFY=&SYSUID.

//JOBLIB DD DSNAME=SYS1.CEE.SCEERUN,DISP=SHR

// DD DSNAME=SYS1.CEE.SCEERUN2,DISP=SHR

// DD DSNAME=SYS1.CBC.SCCNCMP,DISP=SHR

//STEP1 EXEC PGM=CCNDRVR,PARM=’/CXX OPTFILE(DD:OPTS),OBJ,LIST’

//OPTS DD *

 LANGLVL(EXTENDED)

 NOSEARCH SEARCH(./,

 /usr/lpp/ixm/IBM/xml4c-5_6/include/,

 /usr/lpp/ixm/IBM/xslt4c-1_10/include/,

 /usr/lpp/ixm/IBM/xslt4c-1_10/include/xalanc/Include/,

 /usr/lpp/ixm/IBM/xslt4c-1_10/include/xalanc/XSLT,

 //’[userid].BATCH.+’,

 //’SYS1.CEE.SCEEH.+’,

 //’SYS1.CBC.SCLBH.+’)

 DEFINE(OS390=1)

 DEFINE(_OPEN_THREADS=1)

 DEFINE(_XOPEN_SOURCE_EXTENDED=1)

/*

//SYSLIN DD DSNAME=&SYSUID..BATCH.OBJ(SMPLTRNS),DISP=SHR

//SYSPRINT DD SYSOUT=A

//SYSIN DD DSNAME=&SYSUID..BATCH.CPP(SMPLTRNS),DISP=SHR

//SYSUT1 DD DUMMY

/*

The next step is to link-edit (bind) this object file into an executable file. You can

use the following JCL to accomplish this:

//SMPTBIND JOB MSGLEVEL=(1,1),REGION=0M,NOTIFY=&SYSUID.

//BIND1 EXEC PGM=IEWL,PARM=’OPTIONS=OPTS’

//OPTS DD *

 AMODE=31,RMODE=ANY

 DYNAM=DLL,ALIASES=NO,UPCASE=NO,

 LIST=NO,MAP=NO,XREF=NO,MSGLEVEL=4,

 REUS=RENT,EDIT=YES,AC=0,CALL=YES,CASE=MIXED

/*

//SYSLIB DD DISP=SHR,DSN=SYS1.CEE.SCEELKEX

// DD DISP=SHR,DSN=SYS1.CEE.SCEELKED

// DD DISP=SHR,DSN=SYS1.CEE.SCEECPP

// DD DISP=SHR,DSN=SYS1.CEE.SCEELIB

// DD DISP=SHR,DSN=SYS1.CBC.SCLBSID

//SYSLIB1 DD DISP=SHR,DSN=SYS1.SIXMEXP

//SYSLIB2 DD DISP=SHR,DSN=&SYSUID..BATCH.OBJ

//SYSLMOD DD DISP=SHR,DSN=&SYSUID..BATCH.LOAD

//SYSDEFSD DD DUMMY

//SYSPRINT DD SYSOUT=A

//SYSLIN DD *

 INCLUDE SYSLIB(IOSTREAM)

 INCLUDE SYSLIB(COMPLEX)

 INCLUDE SYSLIB(C128N)

 INCLUDE SYSLIB1(IXM4C56X)

 INCLUDE SYSLIB1(IXMLC20X)

 INCLUDE SYSLIB2(SMPLTRNS)

 ENTRY CEESTART

/*

In this JCL, you can also leave “&SYSUID.” there as long as you are running this

from your TSO ID and it matches the high-level qualifier you allocated these data

sets under. On the SYSLIB DD statements, if “SYS1” is not the high-level qualifier

for these data sets, you will need to remove or replace that. The SYSLIB1 DD

72 XML Toolkit for z/OS User’s Guide

statement assumes the side-decks for the XML Toolkit were installed as

recommended and they are in SYS1.SIXMEXP. You can submit this JCL, and it should

link-edit the SMPLTRNS object file into an executable file called SMPLTRNS in

[userid].BATCH.LOAD.

If you want to execute the SAXCOUNT executable, you can use the following JCL:

//SMPLTRNS JOB MSGLEVEL=(1,1),CLASS=5,REGION=0M,NOTIFY=&SYSUID.

//STEP1 EXEC PGM=SMPLTRNS

//STEPLIB DD DSN=&SYSUID..BATCH.LOAD,DISP=SHR

// DD DSN=SYS1.SIXMLOD1,DISP=SHR

//*

This JCL assumes that the XML Toolkit DLLs were installed as recommended to the

SYS1.SIXMLOD1 data set.

Appendix A. Building samples for native MVS using JCL 73

74 XML Toolkit for z/OS User’s Guide

Appendix B. Calling XML Parser, C++ Edition from COBOL

Source code samples

This appendix shows an example of invoking the XML Toolkit from a COBOL

application. Enterprise COBOL provides its own built-in XML processing capability,

but this support lacks certain functions that you may be interested in. For example,

Enterprise COBOL lacks ability to validate an XML document based on a Document

Type Definition (DTD) or an XML schema, and also does not provide XSLT

transformation support. However, by utilizing XML Toolkit components that do

provide such capability from your COBOL application, you may be able to achieve

your desired goals. The samples provided in the XML Toolkit only illustrate how to

invoke the XML Parser, C++ Edition, from a strictly C++ environment.

In the following example, the COBOL program “SAXParseFrontEnd” calls the

“parse_validate” method in the SAXParse C++ sample code provided here, which in

turn invokes the XML Parser, C++ Edition to do the actual validation of an XML file.

The COBOL code is illustrated in “SAXParseFrontEnd (SPFE) COBOL program”

on page 75.

SAXParseFrontEnd (SPFE) COBOL program

 Process pgmname(longmixed),dll,noexportall,outdd(sysprint)

 Identification division.

 Program-id ’SAXParseFrontEnd’.

 Data division.

 Working-storage section.

 * 1 fileName pic x(80) value z’/usr/lpp/ixm/IBM/xml4c-5_6/sample

 - ’s/data/personal-schema.xml’.

 1 invalidFile pic x(12) value z’DD:INVALID’.

 1 rc comp-5 pic s9(9).

 1 fnlen comp pic 99.

 Procedure division.

 * parse_validate does a single validating parse of the XML file

 *

 * First, try a valid file from the samples/data directory

 Call ’parse_validate’

 using by value address of fileName

 returning rc

 Move 0 to tally

 Inspect fileName

 tallying tally for characters before x’00’

 If rc = 0

 Display ’"’ fileName(1:tally) ’" is valid.’

 Else

 Display ’Error! ’

 ’"’ fileName(1:tally) ’" should have been valid.’

 Move rc to return-code

 End-if

 *

 * Next, try a well-formed but invalid file, accessed by DDNAME INVALID

 Call ’parse_validate’

 using by value address of invalidFile

 returning rc

 Move 0 to tally

 Inspect invalidFile

 tallying tally for characters before x’00’

 If rc = 0

 Display ’Error! The file in "’

© Copyright IBM Corp. 2008 75

invalidFile(1:tally) ’" should have been invalid.’

 Move 8 to return-code

 Else

 Display ’The file in "’

 invalidFile(1:tally) ’" is invalid.’

 End-if

 Goback.

 End program ’SAXParseFrontEnd’

The COBOL code in “SAXParseFrontEnd (SPFE) COBOL program” on page 75,

first passes in by value, a null terminated string containing the fully qualified file

path of an HFS file. “parse_validate” will return an integer indicating whether the

XML file was valid or not valid.

The COBOL code will make a second call to “parse_validate”, also by value, which

illustrates using a DDNAME instead of a file path in the HFS. In this case, the XML

file passed in contains errors so validation will fail.

SAXParse.cpp

/*

 * Copyright 1999-2006 The Apache Software Foundation.

 *

 * Licensed under the Apache License, Version 2.0 (the "License");

 * you may not use this file except in compliance with the License.

 * You may obtain a copy of the License at

 *

 * http://www.apache.org/licenses/LICENSE-2.0

 *

 * Unless required by applicable law or agreed to in writing, software

 * distributed under the License is distributed on an "AS IS" BASIS,

 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

 * See the License for the specific language governing permissions and

 * limitations under the License.

 */

// ---

// Includes

// ---

#include <xercesc/parsers/SAXParser.hpp>

#include xercesc/util/OutOfMemoryException.hpp>

#include "SAXParse.hpp"

#include "stdio.h"

// ---

// Function prototypes

// ---

extern "C"

{

int parse_validate(char * xmlFilePath);

}

// ---

// "parse_validate" will initialize the parser environment and do a single

// parse of the XML document specified in the parameter list. It terminates

// and cleans up the environment before exiting.

// ---

int parse_validate(char * xmlFilePath)

{

76 XML Toolkit for z/OS User’s Guide

bool error_occurred = false;

 bool warning_occurred = false;

 unsigned long duration;

 SAXParser * parser;

 SAXParseHandlers * handler;

 try

 {

 // Initialize the XML4C system

 XMLPlatformUtils::Initialize();

 }

 catch (const OutOfMemoryException&)

 {

 XERCES_STD_QUALIFIER cerr << "OutOfMemoryException during initialization!" << XERCES_STD_QUALIFIER endl;

 return 8;

 }

 catch (const XMLException& toCatch)

 {

 XERCES_STD_QUALIFIER cerr << "Error during initialization! Message:\n"

 << StrX(toCatch.getMessage()) << XERCES_STD_QUALIFIER endl;

 return 8;

 }

 catch (...)

 {

 XERCES_STD_QUALIFIER cerr << "Error during initialization!"

 << XERCES_STD_QUALIFIER endl;

 return 8;

 }

 // Create the parser instance and set the parser options

 parser = new SAXParser;

 parser->setDoNamespaces(true);

 parser->setDoSchema(true);

 parser->setValidationSchemaFullChecking(true);

 parser->setValidationScheme(SAXParser::Val_Auto);

 parser->cacheGrammarFromParse(false);

 handler = new SAXParseHandlers();

 parser->setErrorHandler(handler);

 //

 // Kick off the parse and catch any exceptions.

 //

 try

 {

 const unsigned long startMillis = XMLPlatformUtils::getCurrentMillis();

 parser->parse(xmlFilePath);

 const unsigned long endMillis = XMLPlatformUtils::getCurrentMillis();

 duration = endMillis - startMillis;

 }

 catch (const OutOfMemoryException&)

 {

 XERCES_STD_QUALIFIER cerr << "OutOfMemoryException during parsing!"

 << XERCES_STD_QUALIFIER endl;

 error_occurred = true;

 }

 catch (const XMLException& e)

 {

 XERCES_STD_QUALIFIER cerr << "\nError during parsing: \n"

 << StrX(e.getMessage())

 << XERCES_STD_QUALIFIER endl;

 error_occurred = true;

 }

Appendix B. Calling XML Parser, C++ Edition from COBOL 77

catch (...)

 {

 XERCES_STD_QUALIFIER cerr << "Error during parsing!"

 << XERCES_STD_QUALIFIER endl;

 error_occurred = true;

 }

 if (handler->getSawErrors()) {

 error_occurred = true;

 }

 if (handler->getSawWarning()) {

 warning_occurred = true;

 }

 // Print out the filename and time taken

 if (!error_occurred) {

 XERCES_STD_QUALIFIER cout << xmlFilePath << ": " << duration << " MS " << XERCES_STD_QUALIFIER endl;

 }

 delete handler;

 delete parser;

 XMLPlatformUtils::Terminate();

 if (error_occurred)

 {

 return 8;

 }

 else if (warning_occurred)

 {

 return 4;

 }

 else

 {

 return 0;

 }

 // return 0;

}

The C++ code that the COBOL code will invoke is illustrated in “SAXParse.cpp” on

page 76. The “parse_validate” method is declared as “extern C” even though it is

being invoked from COBOL. This is much easier than using “extern COBOL”. The

only parameter is the null terminated string which contains the file name. The

“parse_validate” routine will initialize the XML parser environment and then create a

parser instance and error handler. If this is successful it will then set some parser

features and then attempt to parse the file name passed in. If successful the caller

will receive a zero in the return code parameter. If an error occurs a non-zero return

code will be returned and an appropriate error message displayed.

The parser instance and error handler are deleted and the XML parser environment

is terminated before returning to the caller.

“SAXParse.hpp” on page 79 contains the header file that corresponds to the

SAXParse.cpp file.

SAXParse.hpp

78 XML Toolkit for z/OS User’s Guide

/*

 * Copyright 1999-2006 The Apache Software Foundation.

 *

 * Licensed under the Apache License, Version 2.0 (the "License");

 * you may not use this file except in compliance with the License.

 * You may obtain a copy of the License at

 *

 * http://www.apache.org/licenses/LICENSE-2.0

 *

 * Unless required by applicable law or agreed to in writing, software

 * distributed under the License is distributed on an "AS IS" BASIS,

 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

 * See the License for the specific language governing permissions and

 * limitations under the License.

 */

// ---

// Includes for all the program files to see

// ---

#include <string.h>

#include <stdlib.h>

#if defined(XERCES_NEW_IOSTREAMS)

#include <iostream>

#else

#include <iostream.h>

#endif

#include <xercesc>

#include <xercesc>

#include "SAXParHD.hpp"

// ---

// This is a simple class that lets us do easy (though not terribly efficient)

// transcoding of XMLCh data to local code page for display.

// ---

class StrX

{

public :

// ---

// Constructors and Destructor

// ---

StrX(const XMLCh* const toTranscode)

{

 // Call the private transcoding method

 fLocalForm = XMLString::transcode(toTranscode);

}

~StrX()

{

 XMLString::release(&fLocalForm;);

}

// ---

// Getter methods

// ---

const char* localForm() const

{

 return fLocalForm;

}

private :

// ---

// Private data members

//

// fLocalForm

// This is the local code page form of the string.

// ---

 char* fLocalForm;

Appendix B. Calling XML Parser, C++ Edition from COBOL 79

};

inline XERCES_STD_QUALIFIER ostream& operator<<(XERCES_STD_QUALIFIER ostream& target, const StrX& toDump)

{

 target << toDump.localForm();

 return target;

}

“SAXParseHandlers.cpp” contains the C++ code for the error handler

(SAXParseHandlers.cpp).

SAXParseHandlers.cpp

/*

 * Copyright 1999-2006 The Apache Software Foundation.

 *

 * Licensed under the Apache License, Version 2.0 (the "License");

 * you may not use this file except in compliance with the License.

 * You may obtain a copy of the License at

 *

 * http://www.apache.org/licenses/LICENSE-2.0

 *

 * Unless required by applicable law or agreed to in writing, software

 * distributed under the License is distributed on an "AS IS" BASIS,

 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

 * See the License for the specific language governing permissions and

 * limitations under the License.

 */

// ---

// Includes

// ---

#include <xercesc/sax/SAXParseException.hpp>

#include <xercesc/util/XMLString.hpp>

#include <xercesc/util/XMLUniDefs.hpp>

#include "SAXParse.hpp"

// ---

// SAXParseHandlers: Constructors and Destructor

// ---

SAXParseHandlers::SAXParseHandlers() :

 fSawErrors(false)

 ,fSawWarning(false)

{

}

SAXParseHandlers::~SAXParseHandlers()

{

}

// ---

// SAXParseHandlers: Overrides of the SAX ErrorHandler interface

// ---

void SAXParseHandlers::error(const SAXParseException& e)

{

 fSawErrors = true;

 XERCES_STD_QUALIFIER cerr << "\nError at (file " << StrX(e.getSystemId())

 << ", line " << e.getLineNumber()

 << ", char " << e.getColumnNumber()

 << "): " << StrX(e.getMessage()) << XERCES_STD_QUALIFIER endl;

}

80 XML Toolkit for z/OS User’s Guide

void SAXParseHandlers::fatalError(const SAXParseException& e)

{

 fSawErrors = true;

 XERCES_STD_QUALIFIER cerr << "\nFatal Error at (file " << StrX(e.getSystemId())

 << ", line " << e.getLineNumber()

 << ", char " << e.getColumnNumber()

 << "): " << StrX(e.getMessage()) << XERCES_STD_QUALIFIER endl;

}

void SAXParseHandlers::warning(const SAXParseException& e)

{

 fSawWarning = true;

 XERCES_STD_QUALIFIER cerr << "\nWarning at (file " << StrX(e.getSystemId())

 << ", line " << e.getLineNumber()

 << ", char " << e.getColumnNumber()

 << "): " << StrX(e.getMessage()) << XERCES_STD_QUALIFIER endl;

}

void SAXParseHandlers::resetDocument()

{

 fSawWarning = false;

 fSawErrors = false;

}

SAXParseHandlers.cpp is similar to the existing SAXCount and SAXPrint samples

in the Toolkit. In this example, only the error handler methods are implemented.

Since this only illustrates the validation of an XML file, the default document handler

callback methods are inherited, which will ignore the data returned.

“SAXParseHandlers.hpp” on page 81 contains the header file that corresponds to

the SAXParseHandlers.cpp file.

SAXParseHandlers.hpp

/*

 * Copyright 1999-2006 The Apache Software Foundation.

 *

 * Licensed under the Apache License, Version 2.0 (the "License");

 * you may not use this file except in compliance with the License.

 * You may obtain a copy of the License at

 *

 * http://www.apache.org/licenses/LICENSE-2.0

 *

 * Unless required by applicable law or agreed to in writing, software

 * distributed under the License is distributed on an "AS IS" BASIS,

 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

 * See the License for the specific language governing permissions and

 * limitations under the License.

 */

// ---

// Includes

// ---

#include <xercesc/sax/HandlerBase.hpp>

XERCES_CPP_NAMESPACE_USE

class SAXParseHandlers : public HandlerBase

{

public:

// ---

Appendix B. Calling XML Parser, C++ Edition from COBOL 81

// Constructors and Destructor

// ---

SAXParseHandlers();

~SAXParseHandlers();

// ---

// Handlers for the SAX ErrorHandler interface

// ---

void warning(const SAXParseException& exception);

void error(const SAXParseException& exception);

void fatalError(const SAXParseException& exception);

bool getSawErrors() const

{

 return fSawErrors;

}

bool getSawWarning() const

{

 return fSawWarning;

}

void resetDocument();

private:

bool fSawErrors;

bool fSawWarning;

};

 The XML in Figure 5 should be copied to an MVS dataset so that it can be

accessed by a DDNAME. The data set name, etc. are provided later in “Setup

instructions” on page 84.

<?xml version="1.0" encoding="ibm-1140"?>
<personnel xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation=
 '/usr/lpp/ixm/IBM/xml4c-5_6/samples/data/personal.xsd'>

 <person id="Big.Boss" >
 <name><family>Boss</family> <given>Big</given></name>
 <email>chief@foo.com</email>
 <link subordinates="one.worker two.worker"/>
 </person>

 <person id="one.worker">
 <name><family>Worker</family> <given>One</given></name>
 <link manager="Big.Boss"/>
 <email>one@foo.com</email>
 </person>

 <person id="two.worker">
 <name><family>Worker</family> <given>Two</given></name>
 <email>two@foo.com</email>
 <link manager="Big.Boss"/>
 <phone>+1.123.555.1234</phone>
 </person>

</personnel

Figure 5. Non-valid XML file to be processed via DDNAME

82 XML Toolkit for z/OS User’s Guide

Compilation instructions

The JCL in Figure 6 can be used to compile, bind, and execute the COBOL and

C++ code from the above section.

This JCL uses catalogued JCL procedures to invoke the C++ Compiler, the COBOL

compiler and the z/OS Binder.

The CBCC procedure will compile the SAXParse C++ code that contains

“parse_validate”.

//CBLXMLVL JOB MSGLEVEL=(1,1),REGION=0M,NOTIFY=&SYSUID,MSGCLASS=H
//ORDER JCLLIB ORDER=(SYS1.ADCOB.V3R3M0.SIGYPROC,SYS1.CBC.SCCNPRC)
//*STDORD JCLLIB ORDER=(CBC.SCCNPRC,IGY.V3R4M0.SIGYPROC) !!!
//*
//*-- Compile C++ program parse_validate -------------------------------
//CPPSP EXEC CBCC,INFILE=[userid].BATCH.CPP(SAXPARSE),
// PARM.COMPILE='/CXX OPTFILE(DD:OPTIONS)'
//COMPILE.OPTIONS DD *
 DEFINE(OS390=1) DEFINE(_OPEN_THREADS=1)
 DEFINE(_XOPEN_SOURCE_EXTENDED=1) EXPORTALL LANG(EXTENDED)
 SEARCH(
 /usr/lpp/ixm/IBM/xml4c-5_6/include/,
 //'[userid].BATCH.+',
 //'SYS1.CEE.SCEEH.+',
 //'SYS1.CBC.SCLBH.+')
/*
//*
//*-- Compile C++ class SAXParseHandlers and bind with parse_validate --
//CPPSPH EXEC CBCCB,INFILE=[userid].BATCH.CPP(SAXPARHD),
// PARM.COMPILE='/CXX OPTFILE(DD:OPTIONS)',
// BPARM='NOLIST,NOMAP,RMODE=ANY'
//COMPILE.OPTIONS DD *
 DEFINE(OS390=1) DEFINE(_OPEN_THREADS=1)
 DEFINE(_XOPEN_SOURCE_EXTENDED=1) LANG(EXTENDED)
 SEARCH(
 /usr/lpp/ixm/IBM/xml4c-5_6/include/,
 //'[userid].BATCH.+',
 //'SYS1.CEE.SCEEH.+',
 //'SYS1.CBC.SCLBH.+')
/*
//BIND.XML4C DD DISP=SHR,DSN=SYS1.SIXMEXP
//BIND.SYSIN DD *
 INCLUDE XML4C(IXM4C56X)
/*
//BIND.SYSLMOD DD DSN=&&GOSET(SAXPARSE)
//BIND.SYSDEFSD DD DSN=&&IMPXSET,UNIT=&TUNIT.,
// DISP=(MOD,PASS),SPACE=(TRK,(3,3)),
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=3200)
//*
//*-- Compile, link and execute COBOL program SAXParseFrontEnd ---------
//CBLFE EXEC IGYWCLG,
// PARM.LKED='CASE=MIXED,DYNAM=DLL,RENT,NOLIST',GOPGM=SPFE,
//* IGYWCLG not properly customized; we shouldn't need the following !!!
// LNGPRFX=SYS1.ADCOB.V3R3M0,LIBPRFX=SYS1.CEE
//COBOL.SYSIN DD DISP=SHR,DSN=[userid].BATCH.COBOL(SPFE)
//LKED.SYSLIN DD
// DD DSN=&&IMPXSET,DISP=(OLD,DELETE)
//LKED.SYSLMOD DD DSN=&&GOSET(&GOPGM)
//GO.STEPLIB DD
// DD DSN=&&GOSET,DISP=(OLD,DELETE)
// DD DISP=SHR,DSN=SYS1.SIXMLOD1
//GO.SYSOUT DD SYSOUT=*
//GO.INVALID DD DISP=SHR,DSN=[userid].BATCH.XML(INVALID)
//

Figure 6. JCL to compile, bind and run the sample code

Appendix B. Calling XML Parser, C++ Edition from COBOL 83

The CBCCB procedure will compile the SAXParseHandlers C++ code and then bind

it into a DLL. This DLL will be linked with the XML Parser, C++ Edition’s main DLL.

The IGYWCLG procedure will compile, link, and execute the COBOL

SAXParseFrontEnd code.

Setup instructions

Several data sets will need to be allocated to copy the sample code into. You

should substitute your actual USERID for [userid].

[userid].BATCH.COBOL -- recfm=FB, lrecl=240, blksize=12960 (contains COBOL code)

[userid].BATCH.CPP -- recfm=FB, lrecl=240, blksize=12960 (contains C++ code)

[userid].BATCH.HPP -- recfm=FB, lrecl=240, blksize=12960 (contains C++ header files)

[userid].BATCH.CNTL -- recfm=FB, lrecl=80, blksize=12960 (contains JCL)

[userid].BATCH.OBJ -- recfm=FB, lrecl=80, blksize=12960 (contains object code)

[userid].BATCH.LOAD -- recfm=U, lrecl=0, blksize=32760 (contains executable code)

[userid].BATCH.XML -- recfm=FB, lrecl=80, blksize=12960 (contains actual XML data)

In order to compile, link, and run this sample you will need to copy the code,

header files, JCL and XML file to the above MVS data sets.

v You will need to copy the SAXParseFrontEnd COBOL code to the SPFE

member in [userid].BATCH.COBOL.

v The SAXParse C++ code should be copied to the SAXPARSE member in

[userid].BATCH.CPP.

v The SAXParseHandlers C++ code should be copied to the SAXPARHD member

in [userid].BATCH.CPP.

v The SAXParse header file should be copied to the SAXPARSE member in

[userid].BATCH.HPP.

v The SAXParseHandlers header file should be copied to the SAXPARHD

member in [userid].BATCH.HPP.

v The invalid XML data from Figure 6 should be copied to the INVALID member in

[userid].BATCH.XML.

Once all of this is done, then the JCL in [userid].BATCH.CNTL(SPFE) can be

submitted to compile, link, and run this sample code.

Note: : This example is only intended to demonstrate the usage to the XML Toolkit

from COBOL. It is not intended to have high performance characteristics. For

more information on how to enhance the performance of this example, refer

to the Performance section of theXML Toolkit Web site or the Persistent

Parser example in Appendix C, “Parser environment and instance reuse,” on

page 85.

84 XML Toolkit for z/OS User’s Guide

http://www.ibm.com/servers/eserver/zseries/software/xml/

Appendix C. Parser environment and instance reuse

This appendix shows you how a parser environment can be initialized and a parser

instance created and saved for subsequent calls to parse documents. The overhead

of initializing the environment and the creation of a parser instance (as well as the

later termination overhead) can be spread across all subsequent parses instead of

doing an initialize/parse/terminate sequence for each individual XML document.

In this example, the grammar may also be cached to enhance performance.

The “PersistParseFrontEnd.cpp” on page 85 code contains the main routine for this

example. It accepts several command line parameters from the PersistParse

command that control the settings used to create the parser instance as well as the

file name to parse.

This code is referred to as a “Front End” because it differs from what the other

samples in the Toolkit do in their main routine. Other samples normally process the

command line arguments and then initialize the parser environment, create a parser

instance, process the document and then terminate all in a single routine.

The purpose of this “Front End” module is to separate the initialization, parse, and

terminate functions from the main routine and move them into separate methods in

the PersistParse.cpp module. This way, the “Front End” code can process the

command line arguments and then request the parser environment/instance be

created by another method. When control returns to it, a pointer now exists that can

be used subsequently to parse an indefinite number of documents using this

existing environment and parser instance. When this environment is no longer

needed, a single termination request can be performed.

The PersistParse command has a -i option that allows you to specify the number

of times the document is to be parsed. This is intended to illustrate how the parser

environment is initialized and terminated a single time and used across multiple

parses. In more practical situations, you would use this feature to parse many

different documents.

One thing to keep in mind when creating an application that needs to parse multiple

documents is that since the parser instance is only created once, the options

specified at the time of creation cannot be changed without terminating and

re-initializing. For example, you cannot create a parser instance that does grammar

caching and then process a few documents and then stop caching grammars.

“PersistParseFrontEnd.hpp” on page 89 contains the header file for the main routine

“PersistParseFrontEnd.cpp” on page 85. “PersistParse.cpp” on page 90 contains

the methods that initialize the environment and parser instance, parse the

document, and terminate. “PersistParse.hpp” on page 93 contains the header file

for the code in “PersistParse.cpp” on page 90. “PersistParseHandlers.cpp” on page

94 contains the error handler methods needed. “PersistParseHandlers.hpp” on page

95 contains the header file the code in “PersistParseHandlers.cpp” on page 94.

PersistParseFrontEnd.cpp

/*

 * Copyright 1999-2006 The Apache Software Foundation.

© Copyright IBM Corp. 2008 85

*

 * Licensed under the Apache License, Version 2.0 (the "License");

 * you may not use this file except in compliance with the License.

 * You may obtain a copy of the License at

 *

 * http://www.apache.org/licenses/LICENSE-2.0

 *

 * Unless required by applicable law or agreed to in writing, software

 * distributed under the License is distributed on an "AS IS" BASIS,

 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

 * See the License for the specific language governing permissions and

 * limitations under the License.

 */

// ---

// Includes

// ---

#if defined(XERCES_NEW_IOSTREAMS)

#include "fstream"

#else

#include "fstream.h"

#endif

#include "PersistParseFrontEnd.hpp"

#include "stdio.h"

// ---

// Function prototypes

// ---

int initialize_env(parmList *);

int validate_file(parmList *);

int terminate_env(parmList *);

// ---

// Local helper methods

// ---

void usage()

{

 XERCES_STD_QUALIFIER cout << "\nUsage:\n"

 " PersistParse [options] <XML file>\n\n"

 "This program demonstrates how to initialize the parser\n"

 "environment and parser instance a single time and then\n"

 "reuse the saved environment on later parse requests. In this\n"

 "sample the -i option allows the file specified to be parsed\n"

 "multiple times.\n"

 "Options:\n"

 " -v=xxx Validation scheme [always | never | auto*].\n"

 " -n Enable namespace processing. Defaults to off.\n"

 " -s Enable schema processing. Defaults to off.\n"

 " -f Enable full schema constraint checking.\n"

 " Defaults to off.\n"

 " -gc Cache Grammar from parse. Defaults to off.\n"

 " -i nnn Parse file in loop nnn times. Default is 1 time.\n"

 " -? Show this help.\n\n"

 " * = Default if not provided explicitly.\n"

 << XERCES_STD_QUALIFIER endl;

}

// ---

// Program entry point

// ---

int main(int argC, char* argV[])

{

 parmList SAXParms;

 int xercesc_rc = 0;

 // Initialize defaults in parameter block

86 XML Toolkit for z/OS User’s Guide

SAXParms.valScheme = SAXParser::Val_Auto;

 SAXParms.doNamespaces = false;

 SAXParms.doSchema = false;

 SAXParms.schemaFullChecking = false;

 SAXParms.doGrammarCaching = false;

 SAXParms.repeatParse = false;

 SAXParms.numParses = 1;

 SAXParms.errorOccurred = false;

 SAXParms.warningOccurred = false;

 SAXParms.xmlFile = 0;

 SAXParms.parser = 0;

 SAXParms.handler = 0;

 // If enough parameters not specified display help information

 if (argC < 2)

 {

 usage();

 return 4;

 }

 // Grab user parameter(s)

 int parmInd;

 for (parmInd = 1; parmInd < argC; parmInd++)

 {

 // Break out on first parameter not starting with a dash

 if (argV[parmInd][0] != ’-’)

 {

 break;

 }

 // Watch for special case help request

 if (!strcmp(argV[parmInd], "-?"))

 {

 usage();

 return 4;

 }

 else if (!strncmp(argV[parmInd], "-v=", 3)

 || !strncmp(argV[parmInd], "-V=", 3))

 {

 const char* const parm = &argV;[parmInd][3];

 if (!strcmp(parm, "never"))

 SAXParms.valScheme = SAXParser::Val_Never;

 else if (!strcmp(parm, "auto"))

 SAXParms.valScheme = SAXParser::Val_Auto;

 else if (!strcmp(parm, "always"))

 SAXParms.valScheme = SAXParser::Val_Always;

 else

 {

 XERCES_STD_QUALIFIER cerr << "Unknown -v= value: " << parm << XERCES_STD_QUALIFIER endl;

 return 8;

 }

 }

 else if (!strcmp(argV[parmInd], "-n")

 || !strcmp(argV[parmInd], "-N"))

 {

 SAXParms.doNamespaces = true;

 }

 else if (!strcmp(argV[parmInd], "-s")

 || !strcmp(argV[parmInd], "-S"))

 {

 SAXParms.doSchema = true;

 }

Appendix C. Parser environment and instance reuse 87

else if (!strcmp(argV[parmInd], "-f")

 || !strcmp(argV[parmInd], "-F"))

 {

 SAXParms.schemaFullChecking = true;

 }

 else if (!strcmp(argV[parmInd], "-gc")

 || !strcmp(argV[parmInd], "-GC"))

 {

 SAXParms.doGrammarCaching = true;

 }

 else if (!strcmp(argV[parmInd], "-i"))

 {

 ++parmInd;

 if (parmInd >= argC)

 {

 XERCES_STD_QUALIFIER cerr << "Invalid -i option (missing # of iterations)" << XERCES_STD_QUALIFIER endl;

 return 8;

 }

 SAXParms.repeatParse = true;

 SAXParms.numParses = atoi(argV[parmInd]);

 if (SAXParms.numParses < 0)

 {

 XERCES_STD_QUALIFIER cerr << "Invalid -i option (negative # of iterations" << XERCES_STD_QUALIFIER endl;

 return 8;

 }

 }

 else

 {

 XERCES_STD_QUALIFIER cerr << "Unknown option ’" << argV[parmInd]

 << "’, ignoring it\n" << XERCES_STD_QUALIFIER endl;

 }

 } // end - for ...

 //

 // There should at least one parameter left, and that

 // should be the file name.

 SAXParms.xmlFile = argV[parmInd];

 // "initialize_env" call will do the XMLPlatformUtils::Initialize() and

 // create a parser instance and error handler and store their addresses

 // in the parameter block for later use.

 xercesc_rc = initialize_env(&SAXParms;);

 if (xercesc_rc != 0)

 {

 return xercesc_rc;

 }

 // "validate_file" call will parse the input file either once or

 // a multiple number of times based on the "-i" parameter.

 int i = SAXParms.numParses;

 if (SAXParms.repeatParse)

 {

XERCES_STD_QUALIFIER cout << "-i parameter specified, doing parse " << SAXParms.numParses << " times" <<XERCES_STD_QUALIFIER endl;

 }

 for(; i > 0 ; i--)

 {

 xercesc_rc = validate_file(&SAXParms;);

 if (xercesc_rc != 0)

 {

 break;

 }

 }

88 XML Toolkit for z/OS User’s Guide

// "terminate_env" call will delete the error handler and parser

 // instance and call XMLPlatformUtils::Terminate().

 terminate_env(&SAXParms;);

 if (SAXParms.errorOccurred)

 return 8;

 else

 return xercesc_rc;

}

PersistParseFrontEnd.hpp

/*

 * Copyright 1999-2006 The Apache Software Foundation.

 *

 * Licensed under the Apache License, Version 2.0 (the "License");

 * you may not use this file except in compliance with the License.

 * You may obtain a copy of the License at

 *

 * http://www.apache.org/licenses/LICENSE-2.0

 *

 * Unless required by applicable law or agreed to in writing, software

 * distributed under the License is distributed on an "AS IS" BASIS,

 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

 * See the License for the specific language governing permissions and

 * limitations under the License.

 */

// ---

// Includes for all the program files to see

// ---

#include <string.h>

#include <stdlib.h>

#if defined(XERCES_NEW_IOSTREAMS)

#include <iostream>

#else

#include <iostream.h>

#endif

#include <xercesc/util/PlatformUtils.hpp>

#include <xercesc/parsers/SAXParser.hpp>

#include <xercesc/sax/HandlerBase.hpp>

#include "PersistParse.hpp"

// ---

// The parmList structure is used to pass parameters to the methods

// and to preserve the parser and handler pointers so that

// the parser instance can be preserved across calls to avoid the

// initialization costs.

// ---

struct parmList {

 SAXParser::ValSchemes valScheme;

 bool doNamespaces;

 bool doSchema;

 bool schemaFullChecking;

 bool doGrammarCaching;

 bool repeatParse;

 bool errorOccurred;

 bool warningOccurred;

 int numParses;

Appendix C. Parser environment and instance reuse 89

char * xmlFile;

 SAXParser * parser;

 PersistParseHandlers * handler;

};

PersistParse.cpp

/*

 * Copyright 1999-2006 The Apache Software Foundation.

 *

 * Licensed under the Apache License, Version 2.0 (the "License");

 * you may not use this file except in compliance with the License.

 * You may obtain a copy of the License at

 *

 * http://www.apache.org/licenses/LICENSE-2.0

 *

 * Unless required by applicable law or agreed to in writing, software

 * distributed under the License is distributed on an "AS IS" BASIS,

 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

 * See the License for the specific language governing permissions and

 * limitations under the License.

 */

// ---

// Includes

// ---

#include <xercesc/internal/XMLGrammarPoolImpl.hpp>

#include <xercesc/util/OutOfMemoryException.hpp>

#include "PersistParseFrontEnd.hpp"

#include "stdio.h"

// ---

// The "initialize_env" method initializes the XML environment and creates a

// parser instance and error handler and stores their addresses in the

// parameter block so that subsequent parse ("validate_file") calls can be made

// without the overhead of creating the XML environment, parser instance, etc.

// ---

int initialize_env(parmList * reqBlock)

{

 XERCES_STD_QUALIFIER cout << "Processing initialize_env request" << XERCES_STD_QUALIFIER endl;

 try

 {

 // Initialize the XML4C system

 XMLPlatformUtils::Initialize();

 // Create the parser instance that can be used later on

 // Use options from parameter block to customize the parser.

 reqBlock->parser = new SAXParser;

 if (reqBlock->doNamespaces)

 {

 (reqBlock->parser)->setDoNamespaces(reqBlock->doNamespaces);

 }

 if (reqBlock->doSchema)

 {

 (reqBlock->parser)->setDoSchema(reqBlock->doSchema);

 }

 if (reqBlock->schemaFullChecking)

90 XML Toolkit for z/OS User’s Guide

{

 (reqBlock->parser)->setValidationSchemaFullChecking(reqBlock->schemaFullChecking);

 }

 if (reqBlock->doGrammarCaching)

 {

 (reqBlock->parser)->cacheGrammarFromParse(reqBlock->doGrammarCaching);

 }

 reqBlock->handler = new PersistParseHandlers();

 (reqBlock->parser)->setErrorHandler(reqBlock->handler);

 }

 catch (const OutOfMemoryException&)

 {

 XERCES_STD_QUALIFIER cerr << "OutOfMemoryException during initialization!"

 << XERCES_STD_QUALIFIER endl;

 return 8;

 }

 catch (const XMLException& toCatch)

 {

 XERCES_STD_QUALIFIER cerr << "Error during initialization! Message:\n"

 << StrX(toCatch.getMessage()) << XERCES_STD_QUALIFIER endl;

 return 1;

 }

 catch (...)

 {

 XERCES_STD_QUALIFIER cerr << "Error during initialization!"

 << XERCES_STD_QUALIFIER endl;

 return 8;

 }

 return 0;

} // end -- "initialize_env"

// ---

// The "validate_file" routine uses the previously established XML environment,

// parser instance, and error handler to do the actual parse request.

// ---

int validate_file(parmList * reqBlock)

{

 int rc;

 XERCES_STD_QUALIFIER cout << "Processing validate_file request" << XERCES_STD_QUALIFIER endl;

 // Make sure we have valid values

 if (reqBlock->parser == 0 || reqBlock->handler == 0)

 {

 rc = initialize_env(reqBlock);

 if (rc != 0)

 {

 reqBlock->errorOccurred = true;

 return rc;

 }

 }

 unsigned long duration;

 reqBlock->errorOccurred = false;

 reqBlock->warningOccurred = false;

 (reqBlock->handler)->resetDocument();

 // Kick off the parse and catch any exceptions.

 try

 {

 const unsigned long startMillis = XMLPlatformUtils::getCurrentMillis();

 (reqBlock->parser)->parse(reqBlock->xmlFile);

Appendix C. Parser environment and instance reuse 91

const unsigned long endMillis = XMLPlatformUtils::getCurrentMillis();

 duration = endMillis - startMillis;

 }

 catch (const OutOfMemoryException&)

 {

 XERCES_STD_QUALIFIER cerr << "OutOfMemoryException during parsing!"

 << XERCES_STD_QUALIFIER endl;

 reqBlock->errorOccurred = true;

 return 8;

 }

 catch (const XMLException& e)

 {

 XERCES_STD_QUALIFIER cerr << "\nError during parsing: \n"

 << StrX(e.getMessage())

 << XERCES_STD_QUALIFIER endl;

 reqBlock->errorOccurred = true;

 return 8;

 }

 catch (...)

 {

 XERCES_STD_QUALIFIER cerr << "Error during parsing!"

 << XERCES_STD_QUALIFIER endl;

 reqBlock->errorOccurred = true;

 return 8;

 }

 if ((reqBlock->handler)->getSawErrors())

 {

 reqBlock->errorOccurred = true;

 return 8;

 }

 if ((reqBlock->handler)->getSawWarning())

 {

 reqBlock->warningOccurred = true;

 return 4;

 }

 // Print out the filename and time taken

 if (!reqBlock->errorOccurred)

 {

 XERCES_STD_QUALIFIER cout << reqBlock->xmlFile << ": " << duration << " ms " << XERCES_STD_QUALIFIER endl;

 }

 return 0;

} // end -- "validate_file"

// ---

// The "terminate_env" routine will delete the previously established error

// handler and parser instance and then terminate the XML environment.

// ---

int terminate_env(parmList * reqBlock)

{

 XERCES_STD_QUALIFIER cout << "Processing terminate_env request" << XERCES_STD_QUALIFIER endl;

 delete reqBlock->handler;

 delete reqBlock->parser;

 XMLPlatformUtils::Terminate();

 return 0;

} // end -- "terminate_env"

92 XML Toolkit for z/OS User’s Guide

PersistParseFrontEnd.hpp

/*

 * Copyright 1999-2006 The Apache Software Foundation.

 *

 * Licensed under the Apache License, Version 2.0 (the "License");

 * you may not use this file except in compliance with the License.

 * You may obtain a copy of the License at

 *

 * http://www.apache.org/licenses/LICENSE-2.0

 *

 * Unless required by applicable law or agreed to in writing, software

 * distributed under the License is distributed on an "AS IS" BASIS,

 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

 * See the License for the specific language governing permissions and

 * limitations under the License.

 */

// ---

// Includes for all the program files to see

// ---

#include <string.h>

#include <stdlib.h>

#if defined(XERCES_NEW_IOSTREAMS)

#include <iostream>

#else

#include <iostream.h>

#endif

#include <xercesc/util/PlatformUtils.hpp>

#include <xercesc/parsers/SAXParser.hpp>

#include "PersistParseHandlers.hpp"

// ---

// This is a simple class that lets us do easy (though not terribly efficient)

// trancoding of XMLCh data to local code page for display.

// ---

class StrX

{

public :

// ---

// Constructors and Destructor

// ---

StrX(const XMLCh* const toTranscode)

{

 // Call the private transcoding method

 fLocalForm = XMLString::transcode(toTranscode);

}

~StrX()

{

 XMLString::release(&fLocalForm;);

}

// ---

// Getter methods

// ---

const char* localForm() const

{

 return fLocalForm;

}

private :

// ---

// Private data members

//

// fLocalForm

// This is the local code page form of the string.

// ---

Appendix C. Parser environment and instance reuse 93

char * fLocalForm;

};

inline XERCES_STD_QUALIFIER ostream& operator<<(XERCES_STD_QUALIFIER ostream& target, const StrX& toDump)

{

 target << toDump.localForm();

 return target;

}

PersistParseHandlers.cpp

/*

 * Copyright 1999-2006 The Apache Software Foundation.

 *

 * Licensed under the Apache License, Version 2.0 (the "License");

 * you may not use this file except in compliance with the License.

 * You may obtain a copy of the License at

 *

 * http://www.apache.org/licenses/LICENSE-2.0

 *

 * Unless required by applicable law or agreed to in writing, software

 * distributed under the License is distributed on an "AS IS" BASIS,

 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

 * See the License for the specific language governing permissions and

 * limitations under the License.

 */

// ---

// Includes

// ---

#include <xercesc/sax/SAXParseException.hpp>

#include <xercesc/util/XMLString.hpp>

#include <xercesc/util/XMLUniDefs.hpp>

#include "PersistParse.hpp"

// ---

// PersistParseHandlers: Constructors and Destructor

// ---

PersistParseHandlers::PersistParseHandlers() :

 fSawErrors(false),fSawWarning(false)

{

}

PersistParseHandlers::~PersistParseHandlers()

{

}

// ---

// PersistParseHandlers: Overrides of the SAX ErrorHandler interface

// ---

void PersistParseHandlers::error(const SAXParseException& e)

{

 fSawErrors = true;

 XERCES_STD_QUALIFIER cerr << "\nError at (file " << StrX(e.getSystemId())

 << ", line " << e.getLineNumber()

 << ", char " << e.getColumnNumber()

 << "): " << StrX(e.getMessage()) << XERCES_STD_QUALIFIER endl;

}

void PersistParseHandlers::fatalError(const SAXParseException& e)

{

 fSawErrors = true;

 XERCES_STD_QUALIFIER cerr << "\nFatal Error at (file " << StrX(e.getSystemId())

94 XML Toolkit for z/OS User’s Guide

<< ", line " << e.getLineNumber()

 << ", char " << e.getColumnNumber()

 << "): " << StrX(e.getMessage()) << XERCES_STD_QUALIFIER endl;

}

void PersistParseHandlers::warning(const SAXParseException& e)

{

 fSawWarning = true;

 XERCES_STD_QUALIFIER cerr << "\nWarning at (file " << StrX(e.getSystemId())

 << ", line " << e.getLineNumber()

 << ", char " << e.getColumnNumber()

 << "): " << StrX(e.getMessage()) << XERCES_STD_QUALIFIER endl;

}

void PersistParseHandlers::resetDocument()

{

 fSawWarning = false;

 fSawErrors = false;

}

PersistParseHandlers.hpp

/*

 * Copyright 1999-2006 The Apache Software Foundation.

 *

 * Licensed under the Apache License, Version 2.0 (the "License");

 * you may not use this file except in compliance with the License.

 * You may obtain a copy of the License at

 *

 * http://www.apache.org/licenses/LICENSE-2.0

 *

 * Unless required by applicable law or agreed to in writing, software

 * distributed under the License is distributed on an "AS IS" BASIS,

 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

 * See the License for the specific language governing permissions and

 * limitations under the License.

 */

// ---

// Includes

// ---

#include <xercesc/sax/HandlerBase.hpp>

XERCES_CPP_NAMESPACE_USE

class PersistParseHandlers : public HandlerBase

{

public:

// ---

// Constructors and Destructor

// ---

PersistParseHandlers();

~PersistParseHandlers();

// ---

// Handlers for the SAX ErrorHandler interface

// ---

void warning(const SAXParseException& exception);

void error(const SAXParseException& exception);

void fatalError(const SAXParseException& exception);

bool getSawErrors() const

{

 return fSawErrors;

Appendix C. Parser environment and instance reuse 95

}

bool getSawWarning() const

{

 return fSawWarning;

}

void resetDocument();

private:

bool fSawErrors;

bool fSawWarning;

};

96 XML Toolkit for z/OS User’s Guide

Appendix D. Accessibility

Accessibility features help a user who has a physical disability, such as restricted

mobility or limited vision, to use software products successfully. The major

accessibility features in z/OS enable users to:

v Use assistive technologies such as screen readers and screen magnifier

software

v Operate specific or equivalent features using only the keyboard

v Customize display attributes such as color, contrast, and font size

Using assistive technologies

Assistive technology products, such as screen readers, function with the user

interfaces found in z/OS. Consult the assistive technology documentation for

specific information when using such products to access z/OS interfaces.

Keyboard navigation of the user interface

Users can access z/OS user interfaces using TSO/E or ISPF. Refer to z/OS TSO/E

Primer, z/OS TSO/E User’s Guide, and z/OS ISPF User’s Guide Vol I for

information about accessing TSO/E and ISPF interfaces. These guides describe

how to use TSO/E and ISPF, including the use of keyboard shortcuts or function

keys (PF keys). Each guide includes the default settings for the PF keys and

explains how to modify their functions.

z/OS information

z/OS information is accessible using screen readers with the BookServer/Library

Server versions of z/OS books in the Internet library at:

http://www.ibm.com/servers/eserver/zseries/zos/bkserv/

© Copyright IBM Corp. 2008 97

http://www.ibm.com/servers/eserver/zseries/zos/bkserv/

98 XML Toolkit for z/OS User’s Guide

Notices

This information was developed for products and services offered in the U.S.A.

IBM® may not offer the products, services, or features discussed in this document in

other countries. Consult your local IBM representative for information on the

products and services currently available in your area. Any reference to an IBM

product, program, or service is not intended to state or imply that only that IBM

product, program, or service may be used. Any functionally equivalent product,

program, or service that does not infringe any IBM intellectual property right may be

used instead. However, it is the user’s responsibility to evaluate and verify the

operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this document. The furnishing of this document does not give you any

license to these patents. You can send license inquiries, in writing, to:

 IBM Director of Licensing

 IBM Corporation

 North Castle Drive

 Armonk, New York 10504-1785

 USA

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country or send inquiries, in writing, to:

 IBM World Trade Asia Corporation

 Licensing

 2–31 Roppongi 3–chrome, Minato-ku

 Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other

country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION ″AS IS″ WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS

OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES

OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A

PARTICULAR PURPOSE. Some states do not allow disclaimer of express or

implied warranties in certain transactions, therefore, this statement may not apply to

you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the publication. IBM may make improvements and/or

changes in the product(s) and/or the program(s) described in this publication at any

time without notice.

Any references in this information to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those

Web sites. The materials at those Web sites are not part of the materials for this

IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes

appropriate without any obligation to you.

Licensees of this program who wish to have information about it for the purpose of

enabling: (i) the exchange of information between independently created programs

© Copyright IBM Corp. 2008 99

and other programs (including this one) and (ii) the mutual use of the information

which has been exchanged, should contact:

 IBM Corporation

 Mail Station P300

 2455 South Road

 Poughkeepsie, NY 12601-5400

 USA

 Attention: Information Request

Such information may be available, subject to appropriate terms and conditions,

including in some cases, payment of a fee.

The licensed program described in this information and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Program License Agreement, or any equivalent agreement

between us.

If you are viewing this information softcopy, the photographs and color illustrations

may not appear.

Trademarks

The following terms used in this book are trademarks of the IBM Corporation in the

United States or other countries or both:

v IBM

v Language Environment

v MVS

v OS/390

v zSeries

v z/OS

Adobe, Acrobat, and PostScript are either registered trademarks or trademarks of

Adobe Systems Incorporated in the United States, other countries, or both.

IBM, the IBM logo, ibm.com and DB2 are registered trademarks of International

Business Machines Corporation in the United States, other countries, or both.

UNIX® is a registered trademark of The Open Group in the United States and other

countries.

The following terms may be trademarks or service marks of others:

Java Java and all Java-based trademarks are trademarks

of Sun Microsystems, Inc. in the United States,

other countries, or both.

UNIX UNIX is a registered trademark of The Open Group

in the United States and other countries.

Xerces The Apache Software Foundation

Xalan The Apache Software Foundation

100 XML Toolkit for z/OS User’s Guide

Index

A
accessibility 97

accessing data sets
how to 13

accessing XML data
how to 13

Apache project, Xerces 7

Apache Software Foundation 7

ASCII, encoding 16

avoiding conversion
DRDA 17

FTP 17

MQSeries 17

B
B2B 1

business-to-business 1

C
characteristics of

DOM API 5

SAX API 5

conversion, avoiding
DRDA 17

MQSeries 17

D
deprecated DOM support 11

disability 97

Document Object Model 1

Document Type Definition 1

DOM 1

DTD 1, 14

DTD, accessing 14

E
EBCDIC, encoding 16

encoding, general 15

encoding, XML 15

event-based interface 3

F
FTP

DRDA 17

MQSeries 17

H
HTML 1

I
iconv() 16

interface, event-based 3

K
keyboard 97

M
MVS environment, Toolkit support 12

N
namespaces 1

native MVS
building samples using JCL

XML Parser, C++ Edition 69

XSLT Processor, C++ Edition 71

P
packaging strategy, Toolkit 11

parser, XML4C 7

parsing documents
using DOM 5

using SAX 5

processor, XSLT C++ 7

S
SAX 3

Schema, accessing 14

Schema, XML 1

schematic of the DOM parsing model 2

schematic of the SAX API 4

shortcut keys 97

Simple API for XML 3

specifying data sets using absolute URIs 14

specifying data sets using relative URIs 13

T
Toolkit 7

Toolkit packaging strategy 11

Toolkit parser, C++
multi-threading considerations 31

sample applications 21

using MVS multi-tasking 32

using UNIX pthreads 32

z/OS 21

building sample applications 28, 57

running sample applications 30, 60

z/OS UNIX 21

building sample applications 24, 53

Toolkit parser, interfaces and specifications chart 7

© Copyright IBM Corp. 2008 101

Toolkit processor, interfaces and specifications chart 7

Toolkit support
MVS 12

z/OS UNIX System Services 12

U
Unicode, encoding 16

using the DOM API 2

V
validating XML documents

results 6

validation results 6

W
W3C 1

World Wide Web Consortium 1

writing applications using the SAX specification 3

X
Xerces Apache project 7

XML 1, 7

XML data, accessing 13

XML documents, validation 6

XML encoding 15

XML Parser, C++ Edition 7

native MVS
building samples using JCL 69

XML Path Language 7

XML Schema 1

XML Toolkit for z/OS 7

XML4C parser 7

XPath 6, 7

XPLINK application, building 19

XPLINK application, running 20

XPLINK support 19

XPLINK support, using 19

XSL Transformations (XSLT) Version 1.0 7

XSLT Processor, C++ Edition 7

native MVS
building samples using JCL 71

XSLT ProcessorS, C++ Edition 7

Z
z/OS 7

z/OS parser classes
how to use 33, 51

sample applications 49, 51

using 49

z/OS 51

z/OS specific parser classes 8

z/OS UNIX System Services, Toolkit support 12

z/OS XML 8

z./OS XML System Services 8

102 XML Toolkit for z/OS User’s Guide

Readers’ Comments — We’d Like to Hear from You

XML Toolkit for z/OS

User’s Guide

 Publication No. SA22-7932-06

 We appreciate your comments about this publication. Please comment on specific errors or omissions, accuracy,

organization, subject matter, or completeness of this book. The comments you send should pertain to only the

information in this manual or product and the way in which the information is presented.

For technical questions and information about products and prices, please contact your IBM branch office, your IBM

business partner, or your authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any

way it believes appropriate without incurring any obligation to you. IBM or any other organizations will only use the

personal information that you supply to contact you about the issues that you state on this form.

Comments:

 Thank you for your support.

Submit your comments using one of these channels:

v Send your comments to the address on the reverse side of this form.

v Send your comments via e-mail to: mhvrcfs@us.ibm.com

If you would like a response from IBM, please fill in the following information:

Name

Address

Company or Organization

Phone No. E-mail address

Readers’ Comments — We’d Like to Hear from You
 SA22-7932-06

SA22-7932-06

����

Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
 FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

 POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation

Department 55JA, Mail Station P384

2455 South Road

Poughkeepsie, NY

 12601-5400

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

����

Program Number: 5655–J51

Printed in USA

SA22-7932-06

	Contents
	Figures
	Tables
	About this document
	Who should use this User's Guide?
	What is in the User's Guide?

	Summary of changes
	Chapter 1. Introduction
	Why XML?
	APIs
	DOM
	SAX
	DOM vs SAX
	XPath

	Validation
	XML Toolkit for z/OS
	z/OS specific parser classes
	Deprecated DOM support
	Toolkit packaging strategy
	Toolkit support for both z/OS UNIX System Services and MVS environments

	Chapter 2. How to access XML data
	How to access data sets
	Relative URIs
	Absolute URIs
	Considerations when using the Xalan C++ commands
	DTDs, Schema and other embedded files

	Chapter 3. Encoding issues
	Encoding and XML
	XML and z/OS
	Avoiding conversion

	Chapter 4. How to use Toolkit XPLINK support
	Using Toolkit XPLINK support
	Building an XPLINK application
	Running an XPLINK application

	Chapter 5. How to use the XML Parser, C++ Edition
	Using the sample applications
	Rule for running non-XPLINK samples
	Rule for running XPLINK samples

	z/OS UNIX Environment
	Building sample applications for the z/OS UNIX Environment
	Rules for invoking the XML Parser, C++ Edition in z/OS UNIX

	Using your sample applications on the z/OS UNIX Environment

	MVS Environment
	Building sample applications for the MVS Environment
	Rules for invoking the XML Parser, C++ Edition in native MVS
	Rules for building samples in native MVS

	Using your sample applications on the MVS Environment

	Multi-threading considerations
	Using UNIX pthreads
	Using MVS multi-tasking

	Chapter 6. How to use z/OS specific parser classes
	Using a SAX2XMLReader class
	Constructing a zXercesDOMParser
	Constructing a DOMBuilder
	Using samples for the z/OS specific parser classes

	Chapter 7. How to use the XSLT Processor, C++ Edition
	Using the sample applications
	Rule for running non-XPLINK samples
	Rule for running XPLINK samples

	z/OS UNIX Environment
	Building sample applications for the z/OS UNIX Environment
	Rules for invoking the XSLT Processor, C++ Edition in z/OS UNIX

	Using your sample applications on the z/OS UNIX Environment

	MVS Environment
	Building sample applications for the MVS Environment
	Using your sample applications on the MVS Environment

	Chapter 8. How to use the XML Toolkit command line utilities
	How to use the XSLT Processor, C++ Edition command line utility

	Chapter 9. Where to go for more information
	Appendix A. Building samples for native MVS using JCL
	Building XML Parser, C++ Edition samples for native MVS using JCL
	Building XSLT Processor, C++ Edition samples for native MVS using JCL

	Appendix B. Calling XML Parser, C++ Edition from COBOL
	Source code samples
	Compilation instructions
	Setup instructions

	Appendix C. Parser environment and instance reuse
	Appendix D. Accessibility
	Using assistive technologies
	Keyboard navigation of the user interface
	z/OS information

	Notices
	Trademarks

	Index
	Readers’ Comments — We'd Like to Hear from You

