
Copyright IBM Corp. 2001, 2007

Converting yourConverting your
Language EnvironmentLanguage Environment®®

C/C++ Applications to C/C++ Applications to XPLinkXPLink
for 64for 64--BitBit

Corey BryantCorey Bryant
IBM PoughkeepsieIBM Poughkeepsie

bryntcor@us.ibm.combryntcor@us.ibm.com

Copyright IBM Corp. 2001, 2007

2

The following are trademarks of the International Business Machines Corporation in the United States and/or other countries.

The following are trademarks or registered trademarks of other companies.
* Registered trademarks of IBM Corporation

* All other products may be trademarks or registered trademarks of their respective companies.

Java and all Java-related trademarks and logos are trademarks of Sun Microsystems, Inc., in the United States and other countries.
Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.
Microsoft, Windows and Windows NT are registered trademarks of Microsoft Corporation.
UNIX is a registered trademark of The Open Group in the United States and other countries.
SET and Secure Electronic Transaction are trademarks owned by SET Secure Electronic Transaction LLC.

Notes:
Performance is in Internal Throughput Rate (ITR) ratio based on measurements and projections using standard IBM benchmarks in a controlled environment. The actual throughput that any user will experience will vary depending
upon considerations such as the amount of multiprogramming in the user's job stream, the I/O configuration, the storage configuration, and the workload processed. Therefore, no assurance can be given that an individual user will
achieve throughput improvements equivalent to the performance ratios stated here.
IBM hardware products are manufactured from new parts, or new and serviceable used parts. Regardless, our warranty terms apply.
All customer examples cited or described in this presentation are presented as illustrations of the manner in which some customers have used IBM products and the results they may have achieved. Actual environmental costs and
performance characteristics will vary depending on individual customer configurations and conditions.
This publication was produced in the United States. IBM may not offer the products, services or features discussed in this document in other countries, and the information may be subject to change without notice. Consult your local
IBM business contact for information on the product or services available in your area.
All statements regarding IBM's future direction and intent are subject to change or withdrawal without notice, and represent goals and objectives only.
Information about non-IBM products is obtained from the manufacturers of those products or their published announcements. IBM has not tested those products and cannot confirm the performance, compatibility, or any other claims
related to non-IBM products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of those products.
Prices subject to change without notice. Contact your IBM representative or Business Partner for the most current pricing in your geography.

•IBM*
•z/OS*
•OS/390*
•Language Environment*
•CICS*
•DB2*
•MVS
•IMS
•Redbooks

TrademarksTrademarks

Copyright IBM Corp. 2001, 2007

3

ContentsContents

Background
XPLink Overview
XPLink Major Differences
XPLink Register Conventions
XPLink Function Call Example
Ideal XPLink Applications
Non-Ideal XPLink Applications
Cross-linkage Function Calls
Stack Switching Glue Code
Unsupported Environments
Building an XPLink Application
Running an XPLink Application
Compiler-writer Interfaces

Appendix A – Sample Generated
XPLink Code
Appendix B – Publications of Interest
Appendix C – Performance
Measurements
Appendix D – XPLink More Details
Appendix E – Debugging an XPLink
Application
Appendix F – Callback Function
Support

Copyright IBM Corp. 2001, 2007

4

BackgroundBackground

New workloads on OS/390® and z/OS® consist largely of
applications written on other platforms where function calls
were "free“.

Some applications measure ~25% of execution time spent
in function call overhead!

These are the most serious in Object-Oriented applications,
where functions tend to be smaller. That is, a higher ratio of
functions calls to lines of "application code“.

New, especially ported, workloads are primarily all C or
C++, with little or no COBOL or Assembler.

This is the real target audience for XPLink.

Copyright IBM Corp. 2001, 2007

5

The objective of XPLink is to provide, for a specific
type of application:

Improved call linkage performance (up to 50% reduction in linkage
instructions)

Reduced function footprint in memory

A common linkage for C/C++ (and DLLs)

Compatibility with existing (non-XPLink) code

No effect on existing applications

These are the characteristics expected to be exploited
by 64-bit applications. Thus 64-bit is strictly XPLink!

XPLink OverviewXPLink Overview

Copyright IBM Corp. 2001, 2007

6

What's Happening with Today's Linkage?
It will probably be with us "forever“.

At least in the existing environment

But perhaps not in future environments that are incompatible for
other reasons (64-bit, for example, is completely XPLink)

There is compatibility support between old and new linkages across
Program Object (DLL call) boundaries.

At some cost in performance

For 31-bit only (64-bit is completely XPLink)

XPLink OverviewXPLink Overview

Copyright IBM Corp. 2001, 2007

7

Did you say “improved call linkage performance”?
YES! (Well for specific applications.) Following is a function YES! (Well for specific applications.) Following is a function prolog prolog

linkage comparison (the instructions that set up a new stack fralinkage comparison (the instructions that set up a new stack frame):me):

000000 47F0 F022 B 34(,r15)
000004 01C3C5C5 CEE eyecatcher
000008 00000098 DSA size
00000C 000000C0 =A(PPA1-f1)
000010 ... stack extension path
000022 90E4 D00C STM r14,r4,12(r13)
000026 58E0 D04C L r14,76(,r13)
00002A 4100 E098 LA r0,152(,r14)
00002E 5500 C314 CL r0,788(,r12)
000032 4130 F03A LA r3,58(,r15)
000036 4720 F014 BH 20(,r15)
00003A 58F0 C280 L r15,640(,r12)
00003E 90F0 E048 STM r15,r0,72(r14)
000042 9210 E000 MVI 0(r14),16
000046 50D0 E004 ST r13,4(,r14)
00004A 18DE LR r13,r14

"Old" 31-bit f2() prolog
000000 9057 4784 STM r5,r7,1924(r4)
000004 A74A FF80 AHI r4,H'-128'

XPLink 31-bit f2() prolog
void f1(void) {

f2();
NOP flag

};

void f2(void) {
// ...

}; 000000 EB57 4708 0024 STMG r5,r7,1800(r4)
000006 A74B FF00 AGHI r4,H'-256'

XPLink 64-bit f2() prolog

XPLinkXPLink OverviewOverview

Copyright IBM Corp. 2001, 2007

8

New calling convention
Registers 13, 14, and 15 are just work registers

R6 and R7 are used for linkage (ie. BASR 7,6)

•formerly R14 and R15 were used for linkage (ie. BALR 14,15)

R5 contains called function's own portion of WSA (its environment)

•formerly R0 contained address of WSA, the called function had to
compute the address of its own piece of Writeable Static

No base register (R6) assumed on entry, call may have been made
via Relative Branch

Return register (R7) not preserved, caller cannot rely on it on return

XPLinkXPLink Major DifferencesMajor Differences

Copyright IBM Corp. 2001, 2007

9

Improved Parameter / Return Value Passing
Arguments passed via fixed location in caller's stack

Arguments are directly addressable by called function
Also addressable by caller using same base reg as its own auto storage

First 3 argument words passed in GPRs 1-3 (31-bit)

First 3 argument doublewords passed in GPRs 1-3 (64-bit)

Up to 4 floating point arguments passed in FPRs

Remaining arguments passed in storage

Return value is in GPR 3 (extended value in R2 and R1)

XPLinkXPLink Major DifferencesMajor Differences

Copyright IBM Corp. 2001, 2007

10

New Stack Layout
Grows towards lower addresses

•Called function knows how to adjust stack pointer; it
doesn't have to be passed from caller (LE's NAB)

•Beware of stack overruns with downward growing
stack!

For example, buffer overflow beyond array’s bounds
extends automatic storage and overwrites calling
function’s stack frame.

XPLinkXPLink Major DifferencesMajor Differences

Copyright IBM Corp. 2001, 2007

11

New Stack Overflow Detection
No explicit test (well.. usually) for stack overflow

•Based on guard page size

•Functions with large stack frames still need explicit test

•In 64-bit large is immense

Called function stores into new stack frame, storage
protection used to determine if stack needs extending

•Prolog consists of updating stack pointer and saving
registers there - registers are stored in called function's
stack frame, not caller's

XPLinkXPLink Major DifferencesMajor Differences

Copyright IBM Corp. 2001, 2007

12

0000 9057 4784 STM r5,r7,1924(r4)
0004 A74A FF80 AHI r4,H'-128'

0000 47F0 F022 B 34(,r15)
0004 01C3C5C5 CEE eyecatcher
0008 00000098 DSA size
000C 000000C0 =A(PPA1-f1)
0010 ... stack extension path

0022 90E4 D00C STM r14,r4,12(r13)

0026 58E0 D04C L r14,76(,r13)

002A 4100 E098 LA r0,152(,r14)
002E 5500 C314 CL r0,788(,r12)

0032 4130 F03A LA r3,58(,r15)

0036 4720 F014 BH 20(,r15)

003A 58F0 C280 L r15,640(,r12)

003E 90F0 E048 STM r15,r0,72(r14)

0042 9210 E000 MVI 0(r14),16

0046 50D0 E004 ST r13,4(,r14)

004A 18DE LR r13,r14

moving control
information out
of line

detecting
overflow with
guard page

better register
conventions
reduce
number of
registers
saved (7 vs 3
here)

downward-growing stack allows
these 3 instructions to be replaced
with a single AHI

static instead of dynamic stack information
(a compiler option can be used to force
the saving of the backchain by increasing
the range of the initial STM instruction)

other improvements:
no base register
no Library Work Area
no stack marking

biased stack pointer allows this instead of:
AHI r4,H'-128'

* wait for register 4 to be available
STM r6,r7,8(r4)

Where Have all the Instructions Gone?

XPLink 31-bit f2() prolog"Old" 31-bit f2() prolog

XPLinkXPLink Major DifferencesMajor Differences

void f1(void) {
f2();
NOP flag

};

void f2(void) {
// ...

};

Copyright IBM Corp. 2001, 2007

13

XPLink Register ConventionsXPLink Register Conventions

GPR 0 undefined not preserved
GPR 1 1st word of argument list or undefined not preserved or 1st word of a

returned aggregate

GPR 2 2nd word of argument list or undefined not preserved or 2nd word of
returned aggregate or high half of
64-bit integer return value

GPR 3 3rd word of argument list or undefined not preserved or 3rd word of
returned aggregate or 31-bit return
value

GPR 4 Address of Stack Frame minus 2048 bytes preserved
GPR 5 Address of called function's environment or, for internal

functions, containing scope's stack frame
not preserved

GPR 6 Entry point address or undefined not preserved
GPR 7 Return address not preserved
GPR 8-11 undefined preserved
GPR 12 Undefined; Or for 31-bit LE-conforming applications:

Pointer to (thread-specific) CAA -
must be set on entry to any function

preserved (in either case)

GPR 13-15 undefined preserved

Register XPLink Usage on Entry XPLink Usage on Return

Copyright IBM Corp. 2001, 2007

14

“Old” XPLink
Stack Ptr R13 R4 (biased)

Return Addr R14 R7

Entry pt on entry R15 R6 (unless called by branch
relative)

Environment R0 (WSA) R5
CAA Address R12 - R12 in 31-bit

- from LAA in 64-bit
Input Parm List Address in R1 In caller's DSA, first 3 ints in

R1, R2, R3, float pt values in
FPR0, 2, 4, 6

Return Code/value R15 R3 (extended value in R2 and
R1)

Start of callee's stack frame Caller's NAB value Caller's R4 minus callee's
stack frame size

XPLink Register ConventionsXPLink Register Conventions

Comparing “Old” vs. XPLink Register Conventions:

Register Usage

Copyright IBM Corp. 2001, 2007

15

1 Construct arguments in current
stack frame's argument area

some arguments are passed in
registers; more about this later

void f1(void) {
f2();
nop flag

};

void f2(void) {
// ...
//
// ...

};

XPLinkXPLink Function Call ExampleFunction Call Example

Following the XPLink stack during a function call.

Copyright IBM Corp. 2001, 2007

16

1 Construct arguments in current
stack frame's argument area

2 Pick up address of function's
"environment" and code from
the function descriptor

the environment is an area of
Writeable Static associated
with the called function

000050 9856 5000 LM r5,r6,=A(f2)(r5,0)
000054 0D76 BASR r7,r6
000056 4700 FFFD NOP 4093(,r15)

−> env for f2
−> code for f2

descriptor for f2

void f1(void) {
f2();
nop flag

};

void f2(void) {
// ...
//
// ...

};

XPLinkXPLink Function Call ExampleFunction Call Example

Environment for f2 in WSA

Copyright IBM Corp. 2001, 2007

17

1 Construct arguments in current
stack frame's argument area

2 Pick up addresses of function's
"environment" and code from the
function descriptor

3 Link (BASR or BRAS) to called
function

if the called function is in a
DLL, the LM will pick up a
handle for the called function
and the address of the DLL
loader, as initialized by the
Binder on detecting that the
called function is imported

000050 9856 5000 LM r5,r6,=A(f2)(r5,0)
000054 0D76 BASR r7,r6
000056 4700 FFFD NOP 4093(,r15)void f1(void) {

f2();
nop flag

};

void f2(void) {
// ...
//
// ...

};

XPLinkXPLink Function Call ExampleFunction Call Example

Copyright IBM Corp. 2001, 2007

18

1 Construct arguments in current
stack frame's argument area

2 Pick up addresses of function's
"environment" and code from the
function descriptor

3 Link (BASR or BRAS) to called
function

4 Store registers used by called
function

if the previous stack frame is
close to the guard page this
store (STM) may touch the
guard page, causing an
interrupt that will be handled by
the run time; who, in turn, will
extend the stack

000048 9067 4788 STM r6,r7,1928(r4)
00004C A74A FF80 AHI r4,H'-128'

void f1(void) {
f2();
nop flag

};

void f2(void) {
// ...
//
// ...

};

XPLinkXPLink Function Call ExampleFunction Call Example

Copyright IBM Corp. 2001, 2007

19

1 Construct arguments in current
stack frame's argument area

2 Pick up addresses of function's
"environment" and code from the
function descriptor

3 Link (BASR or BRAS) to called
function

4 Store registers used by called
function

5 Update Stack Register
the stack register may (or may
not) now point into the guard
page; this is of no concern for
this particular call

000048 9067 4788 STM r6,r7,1928(r4)
00004C A74A FF80 AHI r4,H'-128'

void f1(void) {
f2();
nop flag

};

void f2(void) {
// ...
//
// ...

};

XPLinkXPLink Function Call ExampleFunction Call Example

Copyright IBM Corp. 2001, 2007

20

Ideal Ideal XPLinkXPLink ApplicationsApplications

Highly-modular with many calls to small functions

Minimal number of calls between XPLINK and NOXPLINK-
compiled functions (which requires expensive stack switching
glue code) -- not applicable to 64-bit

XPLink cross-linkage support is provided in C/C++ Compiler
and for High Level Assembler (via macros)

In general, you cannot bind XPLINK-compiled and
NOXPLINK-compiled functions together in the same program
object -- not applicable to 64-bit

XPLink requires Binder, and the output executable must reside in
a PDSE or the UNIX file system.

Copyright IBM Corp. 2001, 2007

21

NonNon--Ideal Ideal XPLinkXPLink ApplicationsApplications
The following can degrade performance or
otherwise make using XPLink unattractive:

31-bit only issues
Large number of cross-linkage calls between XPLink and non-
XPLink functions (requires stack switching glue code)

In an XPLink environment the C RTL is compiled XPLINK so
non-XPLink callers of C functions go through stack switching
glue

The C RTL uses stack switching glue code internally

Hex Math Library requires stack switch to run on Upstack
(IEEE Floating Pt Library is ok, it's XPLink)

31-bit and 64-bit issue
Using unsupported environment or function (more on this later)

Copyright IBM Corp. 2001, 2007

22

CrossCross--linkage Function Callslinkage Function Calls

Since XPLINK and NOXPLINK-compiled parts cannot be
mixed in the same program object, the DLL calling
mechanism is the primary method for calling between
XPLink and non-XPLink

Also supported are fetch()/fetchep() and LE's CEEFETCH macro

The following do *not* support calls to XPLINK-compiled
functions:

COBOL Dynamic Call

PL/I Fetch

CEELOAD (i.e.. the traditional LOAD/BALR)

Copyright IBM Corp. 2001, 2007

23

Ok, so there is some support for calling non-XPLink functions
statically from XPLink:

#pragma linkage(..., OS_NOSTACK)
In 31-bit, this the identical to OS31_NOSTACK

Generates direct call using OS Linkage conventions (no glue, so fast)
but only 72-byte (31-bit)/144-byte (64-bit) savearea (e.g. C headers)

#pragma linkage(..., OS_UPSTACK) -- 31-bit only
Generates call to RunOnUpStack glue so called function gets control
with OS Linkage conventions and LE-conforming stack

•The intent is to be able to call Assembler "leaf" routines to
perform functions not easily done from C/C++.

CrossCross--linkage Function Callslinkage Function Calls

Copyright IBM Corp. 2001, 2007

24

Stack Switching Glue CodeStack Switching Glue Code

Calls between XPLink and non-XPLink functions
require LE to insert "glue code" that will:

switch between the upward and downward growing stacks

adjust parameter list formats

–non-XPLink uses R1 pointing to list of parameters (or parm
addresses)

–XPLink passes parameters in general and floating point
registers

Copyright IBM Corp. 2001, 2007

25

Services provided to allow non-XPLink and XPLink
routines to run on the correct upward- or downward-
growing stack:
ƒCEEVROND (RunOnDownstack) -- calls XPLINK-compiled

function from non-XPLink caller

ƒCEEVRONU (RunOnUpstack) -- calls NOXPLINK-compiled
function from XPLink caller

ƒCEEVH2OS (XPLink-to-OSLinkage) -- calls non-XPLink
function from XPLink callers using OS Linkage conventions

Refer to the z/OS Language Environment Vendor Interfaces book
for details on these CWIs (Compiler-Writer Interfaces).

Stack Switching Glue CodeStack Switching Glue Code

Copyright IBM Corp. 2001, 2007

26

Unsupported EnvironmentsUnsupported Environments

CICS® (added in TS 3.1)
DB2® stored procedures (EXEC
SQL is allowed)
IMSTM transactions (calls to
ctdli() allowed)
PIPI (added in z/OS v1r3)
PICI
LRR

AMODE-24 and non-LE
conforming applications
Child nested enclave must
match parent enclave's XPLINK
run-time option
CEEBXITA and CEEBINT User
Exits cannot be coded as
XPLINK functions

64-bit additional limitations
AMODE-31 and non-LE conforming applications
Nested enclaves

Copyright IBM Corp. 2001, 2007

27

Non-XPLINK... XPLINK...

SYSLIB static
libraries

SCEELKED
SCEELKEX
SCEEOBJ
SCEECPP

SCEEBND2
SCEEBIND

Dynamic Link
Library (DLL)

side decks

None for LE In SCEELIB:
31-bit:
ƒCELHS003 (C RTL)
ƒCELHS001 (LE AWIs)
ƒCELHSCPP (C++)

64-bit:
ƒCELQS003 (C/LE RTL)
ƒCELQSCPP (C++)

Building an Building an XPLinkXPLink ApplicationApplication

Copyright IBM Corp. 2001, 2007

28

SCEEBND2 is a new LE data set containing
XPLINK-compiled static routines ("stubs")

There are only a few

This data set can only be used with XPLINK applications
(SCEELKED, etc. are non-XPLINK only)

SCEELIB is a new LE data set containing LE DLL
side decks

For XPLINK applications, the C RTL is a DLL

Building an Building an XPLinkXPLink ApplicationApplication

Copyright IBM Corp. 2001, 2007

29

XPLINK Compile Option
NOXPLINK | XPLINK (optional suboptions)

XPLINK(BACKCHAIN | NOBACKCHAIN)

With BACKCHAIN, STM instruction in prolog begins with
register 4 to provide an explicit link between stack frames.
This is not necessary for tools like CEEDUMP and slows
down the prolog code.

XPLINK(STOREARGS | NOSTOREARGS)

With STOREARGS, compiler inserts extra code after prolog to
explicitly store parameter registers into argument area in
caller's DSA.

Building an Building an XPLinkXPLink ApplicationApplication

Copyright IBM Corp. 2001, 2007

30

XPLINK Compile Option
NOXPLINK | XPLINK (optional suboptions)

XPLINK(OSCALL(Downstack | Upstack | Nostack))
Alters default behavior of #pragma linkage(..., OS)

XPLINK(NOGUARD | GUARD)
NOGUARD will generate an explicit check of the stack floor in the
prolog code

XPLINK(NOCALLBACK | CALLBACK) z/OS R2
CALLBACK will allow non-XPLink function pointers or descriptors to
be correctly used in an XPLink program. __callback qualifier is
preferred.

Building an Building an XPLinkXPLink ApplicationApplication

Copyright IBM Corp. 2001, 2007

31

c89 changes
The XPLINK compile option can be specified as:

-Wc,xplink (-Wc,goff is forced)
-Wc,lp64 (-Wc,xplink,arch(5+) forced, -Wc,float(ieee) defaulted)
Object files are still Fixed 80, but now in GOFF format

A new XPLINK linkedit option is also required (this option is not
passed to the binder):

-Wl,xplink
-Wl,lp64
Tells c89 to use SCEEBND2 and SCEELIB data sets
Forces binder options DYNAM=DLL and CASE=MIXED (required for
calls to C RTL and other DLLs)

Building an Building an XPLinkXPLink ApplicationApplication

Copyright IBM Corp. 2001, 2007

32

c89 simple example

XPLink "Hello World" example:
c89 -o HelloWorld -Wc,xplink -Wl,xplink HelloWorld.c

64-bit "Hello World" example:
c89 -o HelloWorld -Wc,lp64 -Wl,lp64 HelloWorld.c

Building an Building an XPLinkXPLink ApplicationApplication

Copyright IBM Corp. 2001, 2007

33

Running an Running an XPLinkXPLink ApplicationApplication

XPLink Requires that both LE run-time libraries
are available at execution time:

SCEERUN

SCEERUN2

–It's a PDSE (required by XPLink)

–Contains XPLink versions of C RTL, locales and converters,
etc.

31-bit: CELHV003, CELHDCPP (C++)

64-bit: CELQLIB (combined C/LE RTL), CELQDCPP (C++)

Copyright IBM Corp. 2001, 2007

34

New LE Run-Time Option - 31-bit
XPLINK(ON|OFF)

XPLINK(OFF) is the default

If main() is compiled XPLINK, then the XPLINK run-time option is
forced ON

If main() is compiled NOXPLINK *but* calls an XPLINK-compiled
function, then XPLINK(ON) must be specifed, otherwise error
message CEE3555S will be generated and the application is
terminated

Cannot be specified in CEEDOPT as a system installation default, the
XPLINK run-time option must be specified on an application by
application basis (when needed)

Running an Running an XPLinkXPLink ApplicationApplication

Copyright IBM Corp. 2001, 2007

35

Changed LE Run-Time Options – 31-bit
STACK (usinit_size, usinc_size, ANY|BELOW, KEEP|FREE, dsinit_size, dsinc_size)

STACK suboptions:

–upstack initial size, upstack increment size

–upstack location (ANY | BELOW)

location ANY forced when XPLINK(ON) in effect

–duration (KEEP | FREE)

–downstack initial size <-- new

–downstack increment size <-- new

Downstack sizes do not include storage for guard page

Downstack not allocated in XPLINK(OFF) environment

Running an Running an XPLinkXPLink ApplicationApplication

Copyright IBM Corp. 2001, 2007

36

Changed LE Run-Time Options – 31-bit
THREADSTACK (usinit_size, usinc_size, ANY|BELOW, KEEP|FREE,
dsinit_size, dsinc_size)

THREADSTACK suboptions:

–upstack initial size, upstack increment size

–upstack location (ANY | BELOW)

location ANY forced when XPLINK(ON) in effect

–duration (KEEP | FREE)

–downstack initial size <-- new

–downstack increment size <-- new

Running an Running an XPLinkXPLink ApplicationApplication

Copyright IBM Corp. 2001, 2007

37

Changed LE Run-Time Options – 31-bit
THREADSTACK continued...

Downstack sizes do not include storage for guard page

Downstack not allocated in XPLINK(OFF) environment

THREADSTACK option replaces the NONIPTSTACK and
NONONIPTSTACK options (which are still accepted for
compatibility)

Running an Running an XPLinkXPLink ApplicationApplication

Copyright IBM Corp. 2001, 2007

38

Changed LE Run-Time Options – 31-bit
ALL31

When the XPLINK(ON) run-time option is in effect, the ALL31
run-time option will be forced to ON.

No AMODE 24 routines allowed in an XPLINK(ON)
environment

RPTSTG
Will report storage statistics for downward stack

Running an Running an XPLinkXPLink ApplicationApplication

Copyright IBM Corp. 2001, 2007

39

New LE Run-Time Options - 64-bit
Many unneeded options eliminated (XPLINK, ALL31)
Many old options have 64-bit counterparts: ...

HEAPPOOLS64(OFF|ON,up to 12 cellsize,cellcounts)
[OFF,8,4000,32,2000,128,700,256,350,1024,100,
2048,50,3072,50,4096,50,8192,25,16384,10,32768,5,65536,5]

In 31-bit, HEAPPOOLS takes cell percentages rather than cell counts.
HEAP64(init,incr,KEEP|FREE,

init31,incr31, KEEP|FREE,
init24,incr24,KEEP|FREE)

[1M,1M,KEEP,32K,32K,KEEP,4K,4K,FREE]
__malloc31() and __malloc24() available for storage Below-The-Bar and

Below-The-Line.

Running an Running an XPLinkXPLink ApplicationApplication

Copyright IBM Corp. 2001, 2007

40

New LE Run-Time Options - 64-bit
Many old options have 64-bit counterparts:

STACK64(init,incr,max)

[1M,1M,128M]

THREADSTACK64(OFF|ON,init,incr,max)

[OFF,1M,1M,128M]

Stack is always contiguous (not so in 31-bit).

Current stack size identified by guard page.

On stack overflow (exception) guard page is moved down.

Running an Running an XPLinkXPLink ApplicationApplication

Copyright IBM Corp. 2001, 2007

41

CompilerCompiler--writer Interfaceswriter Interfaces

The following CWIs are new for XPLink:

Documented in LE Vendor Interfaces

Declared in <edcwccwi.h> (in SCEESAMP data set)

__dsa_prev()
–Takes as input the address and format of "current" DSA

–Returns address of previous (logical or physical) DSA and its format

–Call it in a loop to unwind the stack

Copyright IBM Corp. 2001, 2007

42

__ep_find()
–Takes as input a DSA address and format

–Returns the address of the entry point of the function owning the input
DSA

__bldxfd() - 31-bit only
–XPLink environment only

–Takes a function pointer (entry point) of unknown linkage as input

–Returns a "function pointer" that can be called by all linkage types

CompilerCompiler--writer Interfaceswriter Interfaces

Copyright IBM Corp. 2001, 2007

43

Appendix AAppendix A
Sample Generated Sample Generated XPLinkXPLink CodeCode

00001 | * #include <stdio.h>
00002 | *
00003 | * main() {

000020 @1L0 DS 0D XPLink entrypoint marker
000020 00C300C5 =F'12779717' '.C.E.E.1' eyecatcher
000024 00C500F1 =F'12910833' (x'F1' == entry pt marker)
000028 FFFFFFE0 =F'-32' Offset to XPLINK-style PPA1
00002C 00000080 =F'128' DSA size
000000 00003 | main DS 0D Function entry point
000000 9057 4784 00003 | STM r5,r7,1924(r4)
000004 A74A FF80 00003 | AHI r4,H'-128'
000008 End of Prolog

00004 | * printf("Hello world\n");
000008 5810 4804 00004 | L r1,#Save_ADA_Ptr_1(,r4,2052)
00000C 9856 1010 00004 | LM r5,r6,=A(printf)(r1,16)
000010 0D76 00004 | BASR r7,r6
000012 4700 0003 00004 | NOP 3

00005 | * }
000016 4130 0000 00005 | LA r3,0
00001A 00005 | @1L1 DS 0H

00001A Start of Epilog
00001A 5870 480C 00005 | L r7,2060(,r4)
00001E 4140 4080 00005 | LA r4,128(,r4)
000022 07F7 00005 | BR r7

There are also new XPLink-style entry points and Program Prolog Areas (PPAs)

Copyright IBM Corp. 2001, 2007

44

Appendix BAppendix B
Main XPLink and 64Main XPLink and 64--bit Publications of Interestbit Publications of Interest

LE Programming Guide (SA22-7561) has a chapter on developing XPLink
applications.

LE Programming Guide for 64-bit (SA22-7569)

LE Vendor Interfaces (SA22-7568) has new detailed description, new CWIs, and
"all" 3 LE-conforming linkages:

Standard LE linkage (includes COBOL, PL/I, etc)

C++ Fastlink

XPLINK

LE Writing Interlanguage Communication Applications (SA22-7563)

LE Debugging Guide (GA22-7560)

XPLINK Redbooks™ (http://publib-b.boulder.ibm.com/abstracts/sg245991.html)

64-bit Redpaper (http://publib-b.boulder.ibm.com/abstracts/redp9110.html)

C/C++ for z/OS books updated too

Copyright IBM Corp. 2001, 2007

45

Appendix CAppendix C
Performance Performance

MeasurementsMeasurements
-- 3131--bitbit

Reference MaterialsReference Materials

Copyright IBM Corp. 2001, 2007

46

XPLink Performance Redbook XPLink Performance Redbook

Measurements made over summer 2000

SG24-5991
www.redbooks.ibm.com/redbooks/SG245991.html

Measurements were made on shared systems in
Toronto (a development system) and Poughkeepsie
(the ITSO system)

Results were generally repeatable within 1-2%

Highlights are reported here, details are in the
Redbook

Copyright IBM Corp. 2001, 2007

47

The Importance of Storage TuningThe Importance of Storage Tuning

Stack overflow detection is by program check

Improperly-tuned stack
allocation can cause
disastrous performance

use XPLINK(NOGUARD) in
portions of the application
where stack growth is
unpredictable

Baseline (1) is the XPLINK
test running with a "proper"
initial stack allocation

Note the
logarithmic
scale

Copyright IBM Corp. 2001, 2007

48

Effect of Stack Frame SizeEffect of Stack Frame Size

XPLink is optimized for
small stack frames
(that is, small amounts
of automatic storage)

Copyright IBM Corp. 2001, 2007

49

Effect of Number of Parameters Effect of Number of Parameters

XPLinkfunction prologs
change with the number
of function arguments

Fewer arguments gives
better code-generation
opportunities

The worst case (>32K
local storage, 1
parameter) is better
than non-XPLink

Copyright IBM Corp. 2001, 2007

50

Calling Within a Compilation UnitCalling Within a Compilation Unit

Calls are often faster
when made to a
function in the same
compilation unit
Environment pointer
(WSA pointer for
NOXPLINK) is often the
same
Can be called with relative
branch instructions in XPLink

ƒfunction is entered with no
base register

The XPLINK advantage from being
within the same compilation (12%) is
more pronounced than with NOXPLink
(2%)

Copyright IBM Corp. 2001, 2007

51

Mixing XPLink with a COBOL Mixing XPLink with a COBOL
ApplicationApplication

COBOL does not support XPLink
Separate the XPLink (C/C++) code
from the non-XPLink code
Put XPLink code into a DLL

Copyright IBM Corp. 2001, 2007

52

Overall application performance depends on the number
of calls inside the DLL for every call into the DLL

Mixing XPLink with a COBOL Mixing XPLink with a COBOL
ApplicationApplication

This is typical of the
performance
characteristics expected
from a C/C++ DLL
written for use with a
COBOL DLL.

The ratio depends on
application characteristics;
this application showed a
tradeoff at around 25 calls

This is the cost of converting
the non-XPLINK COBOL
code to DLL mode

Copyright IBM Corp. 2001, 2007

53

Industry BenchmarksIndustry Benchmarks

Copyright IBM Corp. 2001, 2007

54

CPU Intensive Benchmarks CPU Intensive Benchmarks

Copyright IBM Corp. 2001, 2007

55

Appendix DAppendix D

XPLinkXPLink
More DetailsMore Details

Reference MaterialsReference Materials

Copyright IBM Corp. 2001, 2007

56

Prolog ComparisonProlog Comparison
for Large Automatic Storagefor Large Automatic Storage

Functions with large automatic storage clearly do not
get the same performance advantage with XPLink

void f1(void) {
f2(1,2,3);
NOP flag

};

void f2(int i,int j, int k)
{

// huge local storage
// requirements
// ...
//
// ...

};

000060 47F0 F022 B 34(,r15)
000082 90E4 D00C STM r14,r4,12(r13)
000086 58E0 D04C L r14,76(,r13)
00008A 5800 F008 L r0,8(,r15)
00008E 1E0E ALR r0,r14
000090 5500 C314 CL r0,788(,r12)
000094 4130 F03C LA r3,60(,r15)
000098 4720 F014 BH stack extender
00009C 58F0 C280 L r15,640(,r12)
0000A0 90F0 E048 STM r15,r0,72(r14)
0000A4 9210 E000 MVI 0(r14),16
0000A8 50D0 E004 ST r13,4(,r14)
0000AC 18DE LR r13,r14

000048 9023 4844 STM r2,r3,2116(r4)
00004C 1804 LR r0,r4
00004E 0D20 BASR r2,0
000050 A72A 0034 AHI r2,H'52'
000054 5A40 2000 A r4,0(,r2)
000058 5940 C364 C r4,868(,r12)
00005C A744 0022 JL stack extender
000060 9058 4804 STM r5,r8,2052(r4)
000064 5000 4800 ST r0,2048(,r4)
000068 1882 LR r8,r2
00006A 1820 LR r2,r0
00006C 5820 2844 L r2,2116(,r2)

Copyright IBM Corp. 2001, 2007

57

Stack Layout Detail Stack Layout Detail -- 3131--bitbit

For future use

Current Register 4
ƒpossibly in guard page, possibly not

Registers on entry to active
function (48 bytes in 31-bit 96 in 64-
bit)

Argument area for calls in
active function, large enough to
accommodate biggest actual
argument list in function

Automatic storage for active
function

Stack frame for caller

Copyright IBM Corp. 2001, 2007

58

Stack Layout Detail Stack Layout Detail -- 6464--bitbit

For future use

Current Register 4
ƒpossibly in guard page, possibly not

Registers on entry to active
function

Argument area for calls in
active function, large enough to
accommodate biggest actual
argument list in function

Automatic storage for active
function

Stack frame for caller

Copyright IBM Corp. 2001, 2007

59

Argument AddressabilityArgument Addressability

Active Stack Frame
Actual Arguments to
Active function, built by
caller in caller's argument
area. Addressable at:

31-bit (R4+2112+active
stack frame size)

64-bit (R4+2176+active
stack frame size)

Copyright IBM Corp. 2001, 2007

60

Entry Point MarkerEntry Point Marker

Entry Point Marker
16 bytes before entry point,

doubleword aligned
Shows up in dump as
.C.E.E.1

Entry Point
doubleword aligned

PPA1 Locator

Copyright IBM Corp. 2001, 2007

61

New PPANew PPA1 format1 format

Fixed portion
Optional Fields,
presence
indicated by
flags in fixed
portion

"Locators" are 4-bit
register numbers
followed by 28-bit
offsets. Add the
contents of the specified
register and the
specified offset to get to
the target of the locator

Copyright IBM Corp. 2001, 2007

62

Stack WalkingStack Walking

The Stack: The Code:

Static Data:

Stopped here, in dump, debugger,
service routine &c

The steps described here assume
we are not in f2()'s prolog. We
can determine this by:

1scanning backwards up to 128
bytes looking for the
doubleword-aligned Entry Point
Marker.

2from the Entry Point Marker
locating the PPA1 (as described
in the following foils) and, in the
PPA1, the length of the prologue
and the offset of the instruction
updating the stack pointer

void f1(void) {
f2();

nop flag
};

void f2(void) {
// ...
//
// ...

};

Copyright IBM Corp. 2001, 2007

63

Stack Walking Stack Walking StepsSteps

The Stack:
1 Pick up f2()'s return address from current stack

frame
2 Look at call type
3 Pick up f2()'s entry point from current stack frame

(computed in case of a relative call)
extract offset from the relative branch instruction just prior
to the return point, add it to return address

4 Pick up f2()'s PPA1 offset

void f1(void) {
f2();

nop flag
};

void f2(void) {
// ...

};

5 Locate f2()'s PPA1, examine f2()'s GPR Save Mask in the PPA1
this tells us which registers were saved in f2()'s stack frame by f2()'s prologue
similar rules apply to floating point registers: there's a "Floating Point Register
Save Area Locator" in PPA1 which tells us where to find the FPR save area in
the current stack frame, and the FPR mask which tells us which floating point
registers were saved.

6 Store unsaved registers into f2()'s Save Area
the first time through (while processing the stack frame for the active function)
use the values actually in the registers at the time of interrupt; subsequently,
use the register values stored in the previous stack frame

7 Pick up f2()'s dsasize and flags
8 Add f2()'s dsa size to current stack frame address to get f1()'s stack

frame
if f2() uses alloca(), pick up the alloca register from the PPA1 and add the
dsasize to that register

9 Repeat as required

Copyright IBM Corp. 2001, 2007

64

Stack Walking Steps Stack Walking Steps (continued)(continued)

Stack structure is fully supported by
Debug Tool (31-bit)

dbx

IPCS LEDATA, described in z/OS MVS™ Interactive Problem
Control System (IPCS) Commands

Additional documentation can be found in
z/OS Language Environment Debugging Guide and Run-Time
Messages

z/OS Language Environment Vendor Interfaces

Copyright IBM Corp. 2001, 2007

65

Call Type Info andCall Type Info and
Call DescriptorsCall Descriptors

Call Type Info: NOP(R) at call site
31-bit uses NOP
64-bit uses NOPR -- there is no call descriptor!

Used to describe return type and parameters passed
in registers:

* f2();
L 5,f2..env pointer
BRAS 7,f2
NOP 0(call type) 470t oooo
ORG *-2
DC H'(offset of EP marker or descriptor)/8'
...

* call descriptor (shareable)
DS 0D
DC A(Signed offset to EP Marker)
DC AL1(return type)
DC AL3(parameter descriptor)

0000 Function is called with a BASR 7,6
instruction; register 6 will contain its
entry point address

000l Function is called via a BRAS 7,EP
instruction; the called function does not
have a base register on entry

0010 Reserved
0011 Reserved; the called function does not

have a base register on entry
0100 Reserved
0101 Reserved
0110 Non-XPLink call inside XPLink function

body
0111 Special linkage
1... Reserved

Copyright IBM Corp. 2001, 2007

66

Call Descriptor Call Descriptor -- 3131--bitbit

Describes parameters locations for floating point
parameters passed in registers

indicates where the "holes" in the stack-based parameter list
occur

Return adjust for return values in registers

Solely for compatibility with non-XPLINK code

Copyright IBM Corp. 2001, 2007

67

Floating Point Parameters,Floating Point Parameters,
ExampleExample

Descriptor:
Gap to first FP
parameter, in words

Gap to second FP
parameter, in words

Slot for first parm,
actually passed in
GPR1

Slot for second
parm, actually
passed in FPR0

Parameters stored in
argument area by caller

Slots reserved in argument area
by caller. Compatibility glue
routines will store parameters in
these slots

00000000: default return adjust

100001 : FPR0 is double, 1 word from start

100010 : FPR2 is double, 2 words from previous float

000000 : FPR4 not used

000000 : FPR6 not used

Slot for fifth parm,
actually passed in
FPR2

Doubles passed in FPR0 and FPR2
func(int,double,int,int,double,int)

Copyright IBM Corp. 2001, 2007

68

Examining Actual ArgumentsExamining Actual Arguments

Some arguments are passed in registers (GPRs 1-3,
FPRs 0, 2, 4 ,6)

Their values may have been lost if they are no longer
required

Compiler XPLINK(STOREARGS) option forces generated
code to save incoming parameters in their natural places
in the caller's argument area

Even then, they may be lost if the called function modifies
its arguments

Copyright IBM Corp. 2001, 2007

69

New Linkage SpecifierNew Linkage Specifier

New #pragma introduced to provide some low-level
compatibility support

OS_NOSTACK, to call assembler code

ƒR13 points to 18-word savearea

ƒR14, R15 linkage

ƒR1 points to parameters

ƒNo NAB, or other "Classic LE" stack artifacts

This is the default for linkage OS; it can be changed by a
compiler option

Copyright IBM Corp. 2001, 2007

70

Compatibility: New Calling Old Compatibility: New Calling Old --
3131--bitbit

* f2();
LM Rv,Re,f2..descriptor
...
BASR Rr,Re
NOP

cu1 cu1 environment

f2..descriptor

-> WSA f2

-> glue code

cu2
f2() {
// ...
}

"glue" code
Examine NOP at call site using
return register

–This points to a call descriptor
containing information about
arguments passed in registers

Reconstruct an old-style
parameter list
Switch to upwards-growing stack
call target function
Switch back to downwards-

growing stack
Reformat return values
Return

Copyright IBM Corp. 2001, 2007

71

Compatibility: Old Calling New Compatibility: Old Calling New --
3131--bitbit

* f2();
BALR R14,R15

cu1

cu2
f2() {
// ...
}

"glue" code
Examine PPA1 of Entry Point using
GPR15

–This contains "Interface Mapping
Flags" containing information
about parameters expected in
registers

Reconstruct a new-style parameter list
Switch to downwards-growing stack
call target function
Switch back to upwards-growing stack
Reformat return values
Return

Entry Point Marker

cu2's PPA1

Copyright IBM Corp. 2001, 2007

72

Reference MaterialsReference Materials

Debugging anDebugging an
XPLinkXPLink ApplicationApplication

Appendix EAppendix E

Copyright IBM Corp. 2001, 2007

73

CEEDUMP Support for CEEDUMP Support for XPLinkXPLink

Traceback support for Up and Down stacks - 31-bit
Traceback:

DSA Addr Program Unit PU Addr PU Offset Entry

23F91F50 CEEHDSPR 23BA0090 +000041B0 CEEHDSPR

23F914E8 23AB25E8 +0000005C dllfunc

23F91338 CEEVRONU 23CA3348 +00000706 CEEVRONU

240316A0 23AB13D0 +00000016 main

24031720 23CA1D10 +000009A4 CEEVROND

23F910E0 EDCZHINV 23F64118 +0000009A EDCZHINV

23F91018 CEEBBEXT 00053380 +000001A6 CEEBBEXT

Copyright IBM Corp. 2001, 2007

74

31-bit
After the Traceback, the DSAs on the stack are
formatted.

Individual DSAs labeled as:

"UPSTACK DSA" (Non-XPLink)

"DOWNSTACK DSA" (XPLink)

"TRANSITIONAL DSA" (LE "glue")

–CEEVRONU -- RunOnUpstack

–CEEVROND -- RunOnDownstack

CEEDUMP Support for CEEDUMP Support for XPLinkXPLink

Copyright IBM Corp. 2001, 2007

75

Traceback support for 64-bit stacks
Traceback:
DSA Entry E Offset Load Mod Program Unit Service Status
00000001 CEEHDSP +00000000 CELQLIB CEEHDSP HLE7709 Call
00000002 CEEOSIGJ +00000956 CELQLIB CEEOSIGJ HLE7709 Call
00000003 CELQHROD +00000256 CELQLIB CELQHROD HLE7709 Call
00000004 CEEOSIGG -17F50414 CELQLIB CEEOSIGG HLE7709 Call
00000005 CELQHROD +00000256 CELQLIB CELQHROD HLE7709 Call
00000006 main +000000CA *PATHNAM Exception
00000007 CELQINIT +00001146 CELQLIB CELQINIT HLE7709 Call

DSA DSA Addr E Addr PU Addr PU Offset Comp Date Attributes
00000001 00000001082FABC0 00000000201C8F08 00000000201C8F08 00000000 20040312 XPLINK EBCDIC POSIX Floating Point
00000002 00000001082FD4E0 0000000020251100 0000000020251100 00000956 20040312 XPLINK EBCDIC POSIX Floating Point
00000003 00000001082FDEE0 0000000020182570 0000000020182570 00000256 20040312 XPLINK EBCDIC POSIX Floating Point
00000004 00000001082FE120 000000002024A7D8 000000002024A7D8 17F50408 20040312 XPLINK EBCDIC POSIX Floating Point
00000005 00000001082FEF40 0000000020182570 0000000020182570 00000256 20040312 XPLINK EBCDIC POSIX Floating Point
00000006 00000001082FF180 00000000200770C0 0000000000000000 ******** 20040813 XPLINK EBCDIC POSIX IEEE
00000007 00000001082FF280 000000002013D010 000000002013D010 00001146 20040312 XPLINK EBCDIC POSIX Floating Point

Note that execution (RMODE) is still below-the-bar
Only downstack transitions are from operating system
Fewer control blocks than 31-bit; SYSMDUMP/IPCS VERBX LEDATA
essential.

CEEDUMP Support for CEEDUMP Support for XPLinkXPLink

Copyright IBM Corp. 2001, 2007

76

XPLinkXPLink Transitions TracingTransitions Tracing

New for z/OS V1R8

Trace level LE=20 for the TRACE run-time option specifies that
transitions between XPLink and non-XPLink be recorded (31-bit
only).

Trace entry type 7 occurs when an XPLINK function calls a non-
XPLINK function.

Trace entry type 8 occurs when a non-XPLINK function calls an
XPLINK function.

Format for trace table entries 7 and 8:

ModuleNameOfCallingFunction : NameOfCallingFunction

ModuleNameOfCalledFunction : NameOfCalledFunction

Copyright IBM Corp. 2001, 2007

77

Example:
TRACE=(ON,32K,DUMP,LE=20)

Displacement Trace Entry in Hexadecimal Trace Entry in EBCDIC
------- -- --------------------------------
+000000 Time 23.04.44.393727 Date 2005.04.29 Thread ID... 2050D5F000000000
+000010 Member ID.... 03 Flags..... 000000 Entry Type..... 00000008
+000018 C3C5D3C8 E5F0F0F3 40404040 40404040 7AC5C4C3 E9C8C9D5 E5404040 40404040 |CELHV003 :EDCZHINV |
+000038 40404040 40404040 40404040 40404040 4060606E 81F8F5F9 83F0F1A7 40404040 | -->a859c01x |
+000058 40404040 7A948189 95404040 40404040 40404040 40404040 40404040 40404040 | :main |
+000078 40404040 404040F1 | 1 |

+000080 Time 23.04.44.399327 Date 2005.04.29 Thread ID... 2050D5F000000000
+000090 Member ID.... 03 Flags..... 000000 Entry Type..... 00000007
+000098 C3C5C5D7 D3D7D2C1 40404040 40404040 7AC3C5C5 D7C8E3D3 C3404040 40404040 |CEEPLPKA :CEEPHTLC |
+0000B8 40404040 40404040 40404040 40404040 4060606E C3C5C5D7 D3D7D2C1 40404040 | -->CEEPLPKA |
+0000D8 40404040 7AC3C5C5 D7E3D3D6 D9404040 40404040 40404040 40404040 40404040 | :CEEPTLOR |
+0000F8 40404040 404040F1 | 1 |

+000100 Time 23.04.44.425623 Date 2005.04.29 Thread ID... 2050D5F000000000
+000110 Member ID.... 03 Flags..... 000000 Entry Type..... 00000007
+000118 81F8F5F9 83F0F1A7 40404040 40404040 7A948189 95404040 40404040 40404040 |a859c01x :main |
+000138 40404040 40404040 40404040 40404040 4060606E 81F8F5F9 83F0F240 40404040 | -->a859c02 |
+000158 40404040 7A86A495 83F16D84 F1404040 40404040 40404040 40404040 40404040 | :func1_d1 |
+000178 40404040 404040F1 | 1 |

+000180 Time 23.04.44.427092 Date 2005.04.29 Thread ID... 2050D5F000000000
+000190 Member ID.... 03 Flags..... 000000 Entry Type..... 00000008
+000198 81F8F5F9 83F0F240 40404040 40404040 7A86A495 83F16D84 F1404040 40404040 |a859c02 :func1_d1 |
+0001B8 40404040 40404040 40404040 40404040 4060606E C3C5D3C8 E5F0F0F3 40404040 | -->CELHV003 |
+0001D8 40404040 7A979989 95A38640 40404040 40404040 40404040 40404040 40404040 | :printf |
+0001F8 40404040 404040F1 | 1 |

XPLinkXPLink Transitions TracingTransitions Tracing

Copyright IBM Corp. 2001, 2007

78

Debugging an XPLink ApplicationDebugging an XPLink Application

Major points of difference between XPLink and non-
XPLink

The Stack

–upward-growing vs. downward-growing

–DSA format

–stack unwinding (backchain ptr vs. DSA size)

(BACKCHAIN suboption of XPLINK compile option)

–XPLink stack ptr (GPR4) is "biased" by 0x800 bytes

Copyright IBM Corp. 2001, 2007

79

Debugging an XPLink ApplicationDebugging an XPLink Application

Major points of difference between XPLink and non-
XPLink continued...

Register conventions

–Finding entry / return points, etc.

Parameter passing

–R1 points to parm list vs. parms in regs and caller's DSA
(STOREARGS suboption of XPLINK compile option)

Copyright IBM Corp. 2001, 2007

80

Debugging an XPLink ApplicationDebugging an XPLink Application

IPCS VERBX LEDATA
Similar support for tracebacks and DSAs as in CEEDUMP

LE Storage Reporting
via RPTSTG Run-Time option

includes XPLink stack and threadstack statistics

Full support for XPLINK-compiled functions provided by
Debug Tool (31-bit only) and dbx debuggers

Through new CWIs provided by LE to traverse stack frames,
locate entry points, etc.

Copyright IBM Corp. 2001, 2007

81

Reference MaterialsReference Materials

Callback Function Callback Function
SupportSupport

Appendix FAppendix F

Copyright IBM Corp. 2001, 2007

82

Why is __bldxfd() needed?
Taking the address of a function in NODLL-compiled code:

foo()

V(foo)L r15,=V(foo)

BALR r14,r15

"NODLL"
function pointer

Callback Function SupportCallback Function Support

Copyright IBM Corp. 2001, 2007

83

Callback Function Support...Callback Function Support...

Taking the address of a function in DLL-compiled code:

A NODLL function pointer cannot be called from DLL-compiled
code unless compiled DLL(CALLBACKANY)

foo()
LM r15,r0,fd+8
BALR r14,r15

DLL function
descriptor

NODLL glue

V(foo)
A(foo's WSA)

DLL load
info

+0

+8

+16

Copyright IBM Corp. 2001, 2007

84

Callback Function Support...Callback Function Support...

Taking the address of a function in XPLINK-compiled code:

A NODLL fp or DLL fd cannot normally be called from XPLINK-
compiled code

foo() (compiled XPLINK)

LM r5,r6,xd+16
BASR r7,r6
NOP ...

XPLink
"compatibility"
descriptor

NODLL glue

A(this xd)
A(RunOnUp)

A(XPL env)
V(foo)

+0

+8

+16

Copyright IBM Corp. 2001, 2007

85

Callback Function Support...Callback Function Support...

A NODLL function pointer or DLL function descriptor cannot normally be
called from XPLINK-compiled code

The __bldxfd() CWI will interrogate the input "function pointer" and convert
to an XPLink compatibility descriptor if necessary

The __bldxfd() CWI will be called implicitly by the compiler for each function
pointer parameter passed to an exported function

#pragma export(foo)

typedef int (*FP)(void);

void foo(FP fpParm1, int parm2, FP fpParm3) {

__bldxfd() is not called for:

ƒfunction pointers passed inside a structure, or global function pointers

You need to call __bldxfd() explicitly in these cases, or see "New Compiler
solutions to callback problem" in a couple of pages

Copyright IBM Corp. 2001, 2007

86

Callback Function Support...Callback Function Support...

What if we take the address of NOXPLINK-compiled code from an
XPLink function? Same rules apply, but different style XPLink
compatibility descriptor.

foo() (compiled NOXPLINK)

LM r5,r6,xd+16

BASR r7,r6

NOP ...

XPLINK
"compatibility"
descriptor
NODLL glue

V(foo)
A(foo's WSA)

A(this xd)
V(RunOnDown)

+0

+8

+16

Copyright IBM Corp. 2001, 2007

87

New Compiler Solutions toNew Compiler Solutions to
Callback ProblemCallback Problem

__callback type cast qualifier
In the following example, all calls to (*func_p)() first result in a call to
__bldxfd().

#if !__XPLINK_CALLBACK__
#define __callback
#endif

...
void (* __callback func_p) (void);
...

XPLINK(CALLBACK) compiler option
ALL calls through function pointers result in a call to __bldxfd().
Not recommended for performance reasons.

Copyright IBM Corp. 2001, 2007

88

6464--bit solution to callback bit solution to callback
problemproblem

Why again was __bldxfd() needed?
For taking the address of a function in NODLL-compiled code.

Why is __bldxfd() not needed in 64-bit?
Because there is no non-DLL non-XPLink code to interface with. All
64-bit function descriptors are RD-con/VD-con doubleword adcon
pairs (16 bytes, loaded using LMG from zero past the descriptor
location).

	Converting your�Language Environment®�C/C++ Applications to XPLink�for 64-Bit

