
Goal-Based Initiator Management
John Arwe
IBM Corporation
522 South Road
Poughkeepsie, NY 12601-5400

���������
	��
�

It was only a matter of time: MVS Workload Manager (WLM) and the Job Entry Subsystem
(JES2) in OS/390 Release 4 intend to remove another bastion of unfettered tinkering, your
initiation structure. How many initiators do you need? In which job classes? When? Is it better to
over-initiate or under-initiate? On which systems?
It's not as bad as it sounds of course. Separate the rumors from the facts and the fiction as we
explore the changes being made to WLM and JES2. Find out how WLM can now use goals to
manage the number and placement of initiators across a sysplex, what long-overdue measurement
data will now be reported, why your critical path batch work is safe, the migration issues, and the
operational implications of using this new capability. Abstract resource affinity support will be
mentioned in passing but will not be considered in detail.
Trademarks
MVS/ESA(TM), MVS(TM), OS/390(TM), RMF(TM), are trademarks of the International
Business Machines Corporation. DB2® and IBM® are registered trademarks of the International
Business Machines Corporation. The information contained in this paper has not been submitted
to any formal IBM test and is distributed on an "as is" basis without any warranty either expressed
or implied. The use of this information or the implementation of any of these techniques is a
customer responsibility and depends on the customer's ability to evaluate and integrate them into
the customer's operational environment.

��	��
�����������������������
� Introduction � Background � The (New) Secret Life of a Job � New/Changed Measurement Data � Pre-Execution Job Delays � SDSF � RMF � Operational Changes

� Migration Issues � WLM Migration � JES2 Migration

� Initiator Management � Making the Adjustments � Solving Affinity Problems � How Many Initiators?

� Initiator Placement � Short Term � Long Term � Balancing

� Conclusion � References � Acknowledgements

� �����
�
!�"��
��#����

MVS/ESA SP 5 introduced the notion of goal-oriented work management within the sysplex.
Initially CPU and storage were the only resources allocated directly based on the goals of the
work; OS/390 Release 3 added management of I/O delays. Queueing delay was also managed in
OS/390 Release 3, but only for enclave-based work. Of the traditional workloads, only batch
work commonly incurs significant queueing delay within the sysplex. Transactional workloads are
subject to network delays, but these are not within the control scope of MVS. Several
implementations for management of queueing delay have evolved within MVS: job scheduling
packages, the JESes, and APPC scheduler (ASCH) are some examples.
JES and ASCH manage pools of server address spaces that provide services to other work. The
size of each pool is determined by initialization parameters, which along with the arrival and
departure rates of requests from the served queue determine the actual queue time. Pool size is
the primary control over queue delay, and there is no required connection between the run-time
prioritization of the work and its relative access to the next idle initiator. This has led to the
practice of over-initiation, initiating as much work as possible in order to get work prioritized by
MVS and in particular by the System Resource Manager (SRM) component of MVS.
Job scheduling packages typically intend to solve a somewhat different problem, and use more
detailed information about jobs and inter-job dependencies to initiate at "the right time". Since
queue delay is replaced by job scheduling delay, jobs managed by job scheduling packages are not
expected to wait for initiation once they are released. The historical information used by job
scheduling packages implicitly accounts for the run-time prioritization of the work.

$�	
��%�&��'��"
��!

OS/390 Release 4 adds initiation delay to the list of resources managed by WLM and SRM. SRM
management of JES2 queue delay based on the goals assigned to work by WLM relaxes the need
to over-initiate by establishing a feedback loop between SRM and JES2 that can be used to
manage the number of initiators. The sysplex scope of WLM management adds the capability to
dynamically balance the number of JES2 initiators across the sysplex. This provides the crucial
link between initiation policy and performance management that was missing before. Additional
benefits include reduced operator involvement in initiator management and better reporting of
JES2 queue delay components. WLM's requirement for a basic sysplex consisting of one or more
systems is unchanged.

In order to enable WLM to manage JES2 queue delays, several fundamental changes are required.

1. WLM/SRM must be aware of queue delay as it occurs, rather than finding out about it when a
job is finally selected for execution. This implies that batch jobs resident on the input queue
must generate state samples.

2. Jobs on the input queue but ineligible for selection must be filtered out so that they do not
generate spurious queue delay samples.

3. WLM must know the service class accruing the queue delay in order to attribute the queue
delay samples correctly. Thus jobs on the queue must be classified prior to execution.

4. WLM must have control over the resource which controls queue delay, initiators.

5. WLM must recognize that the queue is multisystem in scope and that jobs may be eligible to
execute only on a subset of the systems due to affinities.

Along with the existing mechanisms for allocating resources to work based on goals, the feedback
loop is complete from queue delay samples and goals to the number of initiators.

��(��*)
+,��-/.101�
���
�
�32
#4�
������	/5����

As in prior releases, a job proceeds from a reader through conversion into initiation and finally
execution. The same MVS initiator code runs in the new world, SYS1.PROCLIB(INIT) running
IEFIIC , as ran in prior releases. Only occasional dual-pathing in the code distinguishes initiators
managed by the installation from those managed by WLM.

At the end of the conversion process, after exits that might modify the JCL have run, JES2 now
calls WLM to classify the job. Classification of the job occurs at this point for all jobs running
under JES2 R4 once JES2 R4 functions have been activated, regardless of whether the system is
running in compatibility mode or in goal mode. This contrasts with earlier releases, where jobs are
classified after job selection. The service class assigned by WLM is recorded in the Job Queue
Element (JQE) which is then added to the job queue. Once this process has completed the job can
be sampled by the WLM state sampler.
The service class of a job can be changed prior to execution by WLM policy activation, which
reclassifies all jobs, or by the JES2 reset command ($TJ). Once the job is executing, its service
class may be changed via the MVS RESET command, and the change is also noted by JES2 in
case the job is restarted. Changes to the service class prior to execution are communicated to
SRM when the job is selected for execution.

In order to allow for gradual migration, the decision to manage initiation based on existing
controls or based on WLM management is made on a job class basis. Those job classes managed
manually are known as JES-managed job classes, and correspond to the behavior in prior releases.
Those job classes whose initiation is managed by WLM, designated by specifying MODE(WLM)
in the JES2 initialization deck JOBCLASS statement or via the modify job class command
$TJOBCLASS(x),MODE=WLM, are known as WLM-managed job classes. Correspondingly,
initiators processing jobs in a JES-managed job class are called JES-managed and initiators
processing jobs in a WLM-managed job class are known as WLM-managed initiators.

Note that job priorities work differently for WLM-managed job classes. Management of queue
delay by WLM requires strict first in first out (FIFO) queueing order, which job priorities would
upset. Thus job priorities do not affect the job queueing order within WLM-managed job classes;
they do continue to work as before for JES-managed job classes. Since many production job
control language (JCL) systems use job priority to flag production batch work, job priority has

been added as a classification attribute to influence the choice of service class. Priority aging is
not performed for WLM-managed job classes since doing so would require reclassification of all
affected jobs, often to no benefit.

JES-managed initiators have only one operational change in behavior from prior releases: they
cannot select jobs from WLM-managed job classes. They are still started and stopped by operator
command, run and select work in both goal mode and compatibility mode, and each initiator
consumes a job number since it is started under the JES2 subsystem. The job number is for the
initiator itself, separate and distinct from the job number used by any job that the initiator may be
running.

WLM-managed initiators select jobs only from WLM-managed job classes, select work only in
goal mode, are started and stopped by WLM, and do not consume job numbers since they are
started under the MSTR subsystem. If a system is switched into compatibility mode while
WLM-managed initiators are running jobs, the initiators will drain and terminate. As a migration
aid, the job class selection lists for initiators need not be changed when referenced job classes are
changed between JES-managed and WLM-managed. If an initiator tries to select from a job class
running under a different management scheme no job will be returned and the initiator will
continue on down its job class selection list.

The installation should be careful not to mix JES-managed and WLM-managed job classes in the
same service class. WLM allows doing so rather than failing jobs, but its management of initiators
in such a case is unpredictable. When both initiation schemes are used for the same service class,
the correlation between queue delay and the number of initiators WLM recognizes as servicing
the service class is weakened. Bad data can theoretically lead to bad decisions, thus the
recommendation against doing so.

Scheduling packages that depend upon the use of JES2 exit 14 will need updates when using
WLM-managed job classes. JES2 exit 14 is not called by WLM-managed initiators. New JES2
exit 49 is called instead by both JES-managed initiators and WLM-managed initiators. Over the
long term this change should be beneficial, since the interface to exit 49 is much simpler and
should lead to far fewer dependencies upon JES2 internals than exit 14 typically requires.

+6��-879�:(�	���&
�
!<;=�
	
�>"��
��?@�����3A�	
��	

Much of the value to be derived from this new support even when job classes are not turned over
to WLM management comes from improved reporting of pre-execution job delays. Because
WLM must differentiate between jobs that are truly eligible for selection from those that are
ineligible but on the input queue, these times can now be more accurately reported. Reporting of
the new times requires some JES2 migration actions, see "JES2 Migration", in order to be
measured. Unless noted otherwise, the times are measured in both goal mode and compatibility
mode to provide data for migration purposes. The following section describes the new data and
how it is reported. Refer back to concepts introduced in "The (New) Secret Life of a Job" as
needed.

Pre-Execution Job Delays
Delays caused by end users, such as TYPRUN= delays, are in general completely uninteresting
from the system management point of view. Because the definition of response time used by SRM
for batch work begins at the end of conversion, TYPRUN=JCLHOLD was already excluded from
batch response times. Delays due to TYPRUN=HOLD however were included in batch response
times; this has now been fixed. Once the JES2 R4 functions have been activated,
TYPRUN=HOLD time will no longer be included in batch response times; indeed it will not be
reported at all. For cases where ad hoc batch work has been given execution velocity goals
because of the unpredictable response times caused by inclusion of TYPRUN=HOLD time in
response time, this is a good time to reevaluate the use of response time goals for batch work.
Other delays fall into several categories, described below.

Conversion time is the time after reader processing has completed and before the job is ready for
initiation. This time is now measured and reported, but is not included in the response time for
batch jobs. During conversion no state samples are reported to WLM sampling. The measured
time is reported in the SMF type 30 record and SMF type 72 record, that is at both the job level
and the service class/performance group level.

Queue delay is the time after conversion spent waiting only for an initiator to select the job. This
time is of immediate interest to WLM, since it is the feedback mechanism by which the need for
changes in the number of initiators is recognized. This is the time that WLM could eliminate if
sufficient capacity is available for enough initiators to service the job class. While a job is accruing
queue delay time, it also accrues queue delay samples. The measured time is reported in the SMF
type 30 record and SMF type 72 record, that is at both the job level and the service
class/performance group level.

Affinity delay is the time after conversion spent waiting for a required system and/or scheduling
environment to become available. Scheduling environments act much like system affinities by
restricting the systems on which a job can run. They are a new concept introduced with OS/390
Release 4 that allows the execution of jobs to be restricted to systems based on the availability of
installation-defined resource names that might represent such things as software licenses,
particular hardware, or a subsystem name. While a job is accruing affinity delay time, it also
accrues Other samples. Thus the time will be included in the response time of the job, but not in
the samples used to calculate execution velocity. The measured time is reported in the SMF type
30 record and SMF type 72 record, that is at both the job level and the service class/performance
group level.

Note that use of system affinity requires that the designated systems be available for conversion,
so in reality the only system affinity-related time accounted for in affinity delay time is the time
when a system was available to convert the job, but became unavailable before the job began
execution. Unlike the system affinity case, delays due to the unavailability of scheduling
environments are not sensitive to the system which performs conversion.

Operational and scheduling delay is the time after conversion spent waiting due to job hold, job
class hold, duplicate jobnames, and any other delays which fall into neither the queue delay nor

the operational and scheduling delay categories. While a job is accruing affinity delay time, it also
accrues Other samples. Thus the time will be included in the response time of the job, but not in
the samples used to calculate execution velocity. The measured time is reported in the SMF type
30 record and SMF type 72 record, that is at both the job level and the service class/performance
group level.

The inclusion of user-induced duplicate jobname delay with operational delays is intentional, since
JES2 introduced an option in OS/390 Release 3 to control duplicate jobname serialization. There
have been requests already to separately report this time to assist in service level agreement (SLA)
management by allowing jobs delayed because of duplicate jobnames to be excluded from the
SLA criteria. This time could be reported separately if the various organizations generating
requirements raise it as a formal requirement and give it a relatively high prioritization.

SMF 26: Job Purge
A new Workload Manager section is added, containing: the job class, the service class to which
the job was first classified, the service class under which it last executed (different from the
original if the job was reset for example), whether the job ran in a JES-managed or
WLM-managed initiator, and whether the job was initiated normally or as the result of a $SJ
command.

SMF 30: Job/Step Begin/End/Interval
The performance segment includes the scheduling environment for the job, conversion time,
queue delay time, affinity delay time, operational and scheduling delay time, and indicators to
determine if the job was reset, forced into execution via the $SJ command, or restarted. Jobs that
are restarted will have one set of records for each time it begins execution, i.e. one set for the
original execution and one set for each restart that reaches execution again. The new delay times
from each execution of a restarted job are not cumulative. In order to arrive at the total times, the
times in the records from each execution of the job must be added together. In practice it will
probably to easier to ignore restarted jobs when post-processing records, and the restart indicator
is provided with this in mind.

SMF 72: Service Class/Performance Group
The service class period and performance group period segments include conversion time, queue
delay time, affinity delay time, and operational and scheduling delay time for the service
class/performance group period.

SMF 99: SRM Goal Mode Decisions
Batch initiator queue statistics are included in a new section of the subtype 2 record, new trace
codes are defined for batch support, and a subtype 6 record was added to provide summary data
for modeling.

SDSF
SDSF support consists of two main items: addition of the management mode in effect for jobs on
the DA and STatus panels, and the addition of a new action character, I, to display information
about a particular job. Samples of the job status display and job information are shown below.

+---+
|Job status display sample |
| |
|JOBNAME SRVCLASS WPOS SCHEDULING-ENV DLY MODE |
|BAT1280 BATCH1 0 YES WLM |
|BAT1281 BATCH1 0 YES WLM |
|BAT2283 BATCH2 0 NO WLM |
|BAT1282 BATCH1 0 YES WLM |
+---+
+---+
| Job Information |
| |
|Job name BAT1155 Job class limit exceeded? NO |
|Job ID JOB01140 Duplicate job name wait? NO |
|Job schedulable? NO Time in queue N/A |
|Job class mode WLM Average time in queue N/A |
|Job class held? NO Position in queue N/A of N/A |
| Active jobs in queue N/A |
| |
|Scheduling environment: available on these systems |
+---+

RMF
The example below shows the new format of transaction times in the WLMGL and WKLD
reports of RMF monitor 1. Queue delay time, affinity delay time, conversion time, and operational
and scheduling delay time are listed below execution time.
+---+
| W O R K L O A D A C T I V I T Y |
REPORT BY: POLICY=POLICY1 WORKLOAD=BATCH
TRANSACTIONS TRANS.-TIME HHH.MM.SS.TTT
AVG 23.03 ACTUAL 3.883
MPL 23.03 EXECUTION 3.312
ENDED 6 QUEUED 571 <
END/SEC 0.00 R/S AFFINITY 0 <
#SWAPS 13 CONVERSION 310 <
EXECUTD 0 INELIGIBLE 0 <
STD DEV 6.617
+---+

Similar changes were made on the RMF monitor 3 reports which display response times, such as
SYSRTD. In monitor 3 reports which did not have room for the new data, the existing Wait
column was made cursor sensitive. Positioning the cursor on Wait and pressing the enter key
causes RMF monitor 3 to display a pop-up with the same categories of time as are shown above.
The following is an example from the SYSSUM report.
+---+
| RMF 2.4.0 Sysplex Summary |
| |
|Trans --Avg. Resp. Time- |
|Ended WAIT EXECUT ACTUAL |
|Rate Time Time Time |
| |
|0.140 48.06 52.03 1.67M |
|0.100 0.188 1.945 2.134 < |
|0.000 0.000 0.000 0.000 |
|0.040 2.80M 2.95M 5.75M |
| |
+---+

The corresponding pop-up:
+---+
| RMF Response Time Components Data |
| |
|The following details are available for NRPRIME/1 |
|Press Enter to return to the report panel. |
| |
| Response Time Components: |
| |
| Actual : 2.134 |
| Execution : 1.945 |
| Wait : 0.188 |
| - Queued : 0.188 |
| - R/S Affinity : 0.000 |
| - Conversion : 0.000 |
| - Ineligible : 0.000 |
| |
+---+

JES2 R4 functions were not yet activated on this system so new data is zero.

Syslog
The most obvious indications that WLM-managed initiators have started are the messages in
syslog and on the console. The following syslog excerpt shows what you can expect to see when
a WLM-managed initiator starts.
+---+
|IWM034I PROCEDURE INIT STARTED FOR SUBSYSTEM JES2 442 |
|APPLICATION ENVIRONMENT SYSBATCH |
|PARAMETERS SUB=MSTR |
| |
|IEF196I 3 XXIEFPROC EXEC PGM=IEFIIC |
| |
|IEF403I INIT - STARTED - TIME=10.01.51 |
|ICH70001I IBMUSER LAST ACCESS AT 10:01:50 ON FRIDAY, JUNE 6, 1997 |
|$HASP100 BAT2016 ON INTRDR FROM JOB00090 |
|JOBHOLD2 |
|$HASP373 BAT1002 STARTED - WLM INIT - SRVCLASS BATCH1 - SYS SY#A |
+---+

Ignore the SYSBATCH in message IWM034I; you do not define it and cannot display or modify
its definition. WLM defines SYSBATCH internally to provide a smooth migration path. The only
other place you are likely to see this name is in an IPCS WLMDATA report. Note also that
WLM-managed initiators are started using the same INIT proc as JES-managed initiators.

Operational Changes
While WLM-managed initiators reduce the need to actively manage job initiation, there are still
constraints within which WLM must operate. Since operators lose the ability to control the
maximum number of WLM-managed initiators or to force jobs into immediate execution by
starting more initiators, mechanisms to do so that apply to WLM-managed initiators are provided.
Likewise the need for orderly shutdown remains even when WLM-managed initiators are used.

Limiting the Number of Jobs
Most often the need to restrict the number of concurrently executing jobs derives from either a
physical limitation such as the number of tape drives or from a service level agreement that
specifically limits the number of jobs an organization can run concurrently. Typically this is
accomplished by limiting the number of initiators started with the restricted job class in their
selection list. This model is now implemented for WLM-managed and JES-managed initiators by
specification of JOBCLASS(x) XEQCOUNT=(MAXIMUM=5) in the JES2 initialization deck or
via the $TJOBCLASS(x) command. In the previous example no more than 5 jobs in the specified
job class are allowed to execute concurrently within the multi-access spool (MAS), regardless of
their service classes. See "Job Class Structure" for migration considerations when changing to use
this facility.

Forcing Immediate Initiation
Since the $SI command cannot be used to start an initiator for a WLM-managed job class, the $SJ
command is provided to enable the operator to force immediate initiation of a specific
WLM-managed job regardless of goals or the job's position on the job queue. WLM will start an
initiator on the system most likely to have enough CPU capacity to support additional work. This
initiator will select the specific job targeted by the $SJ command and initiate that job. When the
job completes, the initiator will terminate. Since the initiator will process only the targeted job, it
does not give the operator the capability to manually add long term initiator capacity to a

WLM-managed job class. Likewise this command should be used only on an exception basis;
additional overhead per job is incurred to start and stop the initiator, and only short term initiator
placement data is used. If many jobs are initiated at once using $SJ, it is entirely possible to cause
bottlenecks by not giving the capacity consumption feedback loop time to reflect recent
placements before more are made to the same system.

Orderly JES2 Shutdown
In order to prepare for hardware or software maintenance, a system may need to be quiesced.
Since WLM-managed initiators cannot be stopped via $PI a new command, $P XEQ, is provided
for this purpose. $P XEQ announces your intent to perform an orderly shutdown of JES2:
JES-managed initiators will cease selecting new work; WLM-managed initiators will drain and
then terminate. $S XEQ allows selection of new work, and if running in goal mode with
WLM-managed initiators it allows WLM to create initiators again. Both commands are
single-system in scope; when WLM-managed initiators are being used WLM will likely start
initiators elsewhere to compensate for the loss of capability on the system being quiesced.

Poly-JES
If multiple JES2 subsystems exist on a single image but belong to different MASes, WLM accepts
queue delay samples from each of them.

Boss-JES
If multiple JES2 subsystems exist on single image and within the same MAS, WLM accepts queue
delay samples from only one of them. If the primary JES2 is active, that member will contribute
queue delay samples to WLM; if the primary JES2 is not active, IEFSSNxx is searched and the
first JES member in IEFSSNxx and active in the MAS is allowed to contribute samples to WLM.
JES2 has coined the term "boss JES2" for the one that contributes WLM state samples for its
queued jobs. WLM-managed job classes belonging to other JES2 members will never have
initiators started to service their job queues. If jobs must be run under a secondary JES2, the job
classes should be JES-managed.

;8#�&��
	
��#B���<�C���D"��
�

There are a number of issues involved with exploiting the new WLM and JES2 functions, due
primarily to existing shared resources such as the checkpoint dataset and WLM couple dataset.
Management of sysplex-wide job queues by WLM and the possible parallel exploitation of
scheduling environments adds to the mix.

WLM Migration

Effects on Execution Velocity
Jobs running in WLM-managed initiators contribute queue delay samples that are included in
execution velocity calculations. Since these can contribute only delays, achieved velocities will be
reduced versus jobs running in JES-managed initiators. JES-managed jobs will report equivalent
queue delay samples in the SMF type 72 record that can be used to calculate the achieved velocity
(shown below) for the same work if it were run under WLM-managed initiator and if WLM chose
the same initiation scheme. Velocity goals for service classes running WLM-managed initiators
should be adjusted accordingly.
+---+
| |
|REPORT BY: POLICY=PRIMSHFT |
| |
|TRANSACTIONS HHH.MM.SS.TTT |
|AVG 0.03 3.475 |
|MPL 0.03 3.227 |
| |
|VELOCITY MIGRATION: INIT MGMT 92.3% |
+---+

Effects on Response Time Goals
TYPRUN=HOLD time is no longer part of a batch job's response time once JES2 R4 functions are
activated. This may necessitate adjustment of response time goals if they are currently used for
batch work, or more likely it may allow the use of response time goals for batch work where it
was not practical before. Since the user-caused delay is not included in the response time,
response times should be less variable.

As long as enough completions are available, for the long term response time goals or
discretionary goals should be used to manage batch service classes. If multi-period service classes
are used, at least first period should be amenable to a response time goal once JES2 R4 functions
are activated. Using response time goals in this way will minimize future migration actions by
removing the need to recalibrate velocity goals after each environmental change.

When to Continue Using JES-managed Job Classes
When the depth of the job class queue is unrelated to the number of initiators servicing the queue,
either a discretionary goal or JES-managed initiators should be used. If velocity goals or response
time goals are used in cases where a very large number of jobs are released simultaneously,
WLM's algorithms will project little incremental value in reallocating resources to help the work
and the work may be delayed as a result. In cases where the batch jobs are the only work running,
excess CPU and storage resource will still be used to support initiators. See "Critical Path Batch"
for other considerations.

Of course the next logical question is: how large is 'a large number'? There is no specific magic
number, no threshhold, no rule of thumb. Go back instead to the first sentence; the trouble is not
from 'large' numbers of jobs, but from divorcing queue delay from the number of initiators. If the
initiation approach for a workload amounts to dumping in a whole bunch of work and letting
MVS sort through it all using the available capacity, that is not something whose initiation is
managable via a response time goal or velocity goal; use a discretionary goal, possibly with a
resource group minimum, or use JES-managed initiators to initiate it.

WLM Couple Dataset and Service Definition
[Planning] contains the complete list of constructs that cause the service definition to be upgraded
to functionality level 004, along with migration checklists. From a toleration point of view, you
should reformat the WLM couple dataset (CDS) using the OS/390 Release 4 level of the format
utility as soon as the first OS/390 Release 4 image is running. Doing so allows all levels of WLM
to install service definitions to the WLM CDS; not doing so prevents OS/390 Release 4 from
installing a service definition or from executing a policy activation request initiated on the OS/390
Release 4 system.
Exploitation of scheduling environments or classification by job priority will cause the service
definition to be upgraded to functionality level 004. Once this occurs, earlier levels of WLM will
not be able to manipulate the service definition or execute a policy activation request initiated
locally.

JES2 Migration
This is a summary of the relevant issues; [J2Mig] should be read thoroughly as well. Do not
underestimate this migration. JES2 usermods must be changed significantly in many cases.

New Checkpoint and JQE Format
In order to support scheduling environments and maintain information about jobs such as the
service class returned by WLM at the end of job conversion, the JQE has increased in size which
in turn requires a reformat of the checkpoint dataset. When migrating to JES2 for OS/390 Release
4 using a warm or hot start, the reformatting must be manually triggered via the $ACTIVATE
JES2 command; if a cold start is performed, the new format is automatically applied.

Warning!
All JES2 members in the MAS must be at an OS/390 Release 4 level before the checkpoint
dataset is reformatted.

Backing out from the new format requires a cold start of a previous level of JES2. Running with
the new format checkpoint is, in JES2 terms, called "Release 4 mode"; the old format is called
"pre-release 4 mode".

New Services REQUIRED to Access JQEs and CATs
Due to internal changes, new services must be used to manipulate and/or access JQEs and CATs.
Serialization changes and structural changes will also affect existing JES2 modifications.

Critical Path Batch
WLM batch management is not intended to replace job scheduling packages. It does not provide
deadline management, critical path analysis, job dependency scheduling, et cetera. Jobs that must
be guaranteed immediate initiation once released should be run using JES-managed initiators.

JES2 Commands
Many of the JES2 commands have changed to support the dynamic change of parameters related
to WLM batch support and to generally enhance usability. There are also some new commands,
mentioned previously, that can or must be used only with WLM-managed job classes. [J2Cmd]
presents exhaustive details and [J2Mig] includes a table of the changed commands. For a basic
starter set:
$TJOBCLASS(x),MODE=

Change job classes between JES-managed and WLM-managed modes.
$DJOBCLASS

Display the mode (JES-managed or WLM-managed) of a job class.
$DJ

Display the service class and scheduling environment for a job.
$TJn,SRVCLASS=

Change the service class for a job prior to execution.
$SJ

Force a WLM-managed job to be initiated immediately.
$S XEQ/$P XEQ

Begin or drain job selection.

Job Class Structure
Because jobs now have both a service class and a job class, and both are now used to manage or
control them, the mapping between service classes and job classes needs to be re-examined. There
are several cases to be wary of: use of execution limits and consistent initiation controls across a
service class are the most likely sources of problems. On the positive side, it is likely that by
exploiting scheduling environments you can eliminate some job classes completely. See [Planning]
for details on scheduling environments.
While the execution limit (JOBCLASS XEQCOUNT MAXIMUM) has its place, the limit applies at
a job class level and within the MAS. If more than one MAS is within the sysplex, this
complicates matters. A more common problem will be having several different service classes
running work in a single WLM-managed job class with an execution limit specified. Here the
problem is that the limit is less granular than the WLM management. There will be times when
WLM adds an initiator to reduce queue delay, but JES does not allow the initiator to execute
another job because of the limit. The feedback to WLM is that the service class cannot take
advantage of the initiators it has started, which is noted in the service class history. If competition
for the limited slots from other service classes goes away, WLM still remembers that the service
class it attempted to help before had some other problem. When multiple service classes compete
for the slots in one job class with a maximum the historical data may have trouble differentiating
between this problem and a genuine affinity problem, where jobs in the service class have affinity
to other systems.
Inconsistent initiation controls refers to having a single service class run work in multiple job
classes, where the job classes are a mixture of WLM-managed and JES-managed. Here the
problem again is one of control scope, in that WLM has only partial control over the service
class's queue delay. The objective is to have all jobs in a single service class run either in
WLM-managed initiators or in JES-managed initiators, but never in both. Running with a mixture
of initiation controls is not recommended and may lead to inconsistent results.

� ��#���#�	
���E�:;=	���	
&
��?@�����

In order to achieve some comfort level with handing over control of initiation to WLM, this
section provides an overview of the conditions under which WLM might make changes to this
new control. Readers unfamiliar with the concepts of donors and receivers in the WLM policy
adjustment context should refer to [EffUse] and APAR OW25542 before continuing. What
follows is not intended to detail every possible "what if" scenario or every twist and turn of the
WLM implementation; there is far too little space for such a detailed treatment.

Making the Adjustments

Policy Adjustment
Every 10 elapsed seconds, WLM code examines the current state of the system, determines if any
beneficial adjustments are possible, and if so it implements them. At a very simplified level: find
out which work needs help (the receiver), figure out the receiver's resource problem, and see if
work less deserving (donor) can give up some of the same resource. In the case of initiator
management, the determination of the receiver service class period is unchanged from prior
releases: it is based on the goals specified and how work is performing with respect to those
goals. In order for initiators to be considered as a resource needed by the receiver, queue delay
samples must be present and must be a significant cause of delay which WLM can address.
Enough CPU and storage must be available, possibly by taking from donor service class period(s),
to support the initiators that WLM wishes to start. WLM starts by assessing the effect of adding
one initiator, and continues until it finds the minimum number of initiators projected to cause a
meaningful change in the receiver's ability to achieve its goal. If enough CPU and/or storage can
be found, the action is taken; if not, other resources are examined as in prior releases. There is no
upper limit on the number of initiators WLM may request at once, but there are several levels of
pacing to ensure that WLM does not flood the system with too many concurrent requests.

Resource Adjustment
Several times every 10 elapsed seconds (the exact interval varies according to hardware speed),
WLM looks for resource imbalances. If any resources are found to be over-utilized or
under-utilized, resources may be reallocated. In the case of WLM-managed initiators, if a service
class period is experiencing queue delay one option available is to start additional initiators. WLM
does ensure that enough CPU and storage are available to support the initiators that it starts.

Housekeeping
Every 10 elapsed seconds, WLM code examines the current state of the system, looking for
exclusively-allocated resources which are no longer needed by the service class periods to which
they are allocated. Initiators are drained if insufficient CPU exists to support them, if an excessive
number of them are swapped out over the long term, or if they are idle over the long term. Any
job executing in a draining initiator is unaware of the initiator's intention to terminate when it
finishes. After the initiator is drained, it is eligible for reassignment to other service classes or for
eventual termination if there is no demand for it over the long term (several minutes minimum).

Solving Affinity Problems
The JES2 and WLM sampling code cooperate to reflect the jobs eligible to execute on each
system in the sysplex. WLM shares the data from each system with its peers so that each system
has a view of where initiators for a given job class+service class need to be in order to address
queue delay. WLM does not distinguish between system affinities and affinities due to scheduling
environments.

It is possible to meet the goals of a service class while some queued jobs are unable to execute
due to affinities. For example, system A could have enough capacity to keep the service class
meeting its goals while jobs exist with affinity only to system B. If system B has no initiators for
the job class+service class combination on system B, those jobs can never execute. Special code
exists to understand cases like this and guarantee that some initiators get started on system B as
long as enough CPU and storage exists to do so.

How Many Initiators?
To WLM, this is much like asking "What dispatching priority will this work get?" The answer is:
it depends. The interaction between goals stated in the service policy, arrival/departure rates, and
available resources is not simple. The number will vary over time, based on workload and
resource availability. Better to be concerned with whether or not the goals are being met: � If the goals are being met, you are done. � If the goals are not being met, is initiation the bottleneck? � If the goals are not being met and initiation is the bottleneck, is there sufficient CPU and

storage available to support more initiators without impacting other goals adversely? If CPU
or storage is the problem, more initiators will not help.

� ��#���#�	
���E�:F1��	
�
��?@�����

Given that WLM can start initiators to address queue delay and given that the job queue is really
MAS-scoped (for simplicity assume one JES2 per image in the sysplex, all in the same MAS), the
natural question is where in the sysplex initiators will be started. The overall philosophy is:
1. Avoid constrained systems, for example those with a recent storage shortage.
2. Utilize excess CPU capacity where it exists. Displace work with less important goals only if

necessary.
3. When displacement is necessary, minimize the damage with respect to goals. In other words,

if some work can be displaced and still meet goals, do that rather than displacing something
else that would miss goals as a result.

Short Term
Short term placement covers two cases: initiators started in response to a $SJ command and those
started to solve affinity problems not impacting goal achievement (see "Solving Affinity
Problems"). Since the work to be started is limited in scope, placement is based on recent CPU
capacity amongst the eligible systems. This is very similar to the existing routing functions for
Sysplex Router and Generic Resource support, which all use the data returned by macro
IWMWSYSQ in their decision-making.

Long Term
Long term placement is used by policy adjustment when starting initiators. It considers recent
CPU capacity, and if work must be displaced local data from each system is gathered so that the
impact to displaced work with respect to the policy is minimized. Data on these decisions is
provided in the SMF type 99 records.

Balancing
Affinities and available CPU capacity are the primary influences on where work runs. In the
absence of affinities WLM will tend to start initiators in such a way that the available CPU
capacity will be equal across the sysplex. This does not imply that each service class will have its
initiators spread equally across the sysplex. The existence of other work affects available CPU
capacity, and therefore placement.

During testing of the placement algorithms, testcases were designed to spread initiators equally
across two systems: they were not, because the jobs in the workload were all submitted on one
system. The CPU required for conversion of the JCL stream made that system a less attractive
choice and more initiators were started on the other system. When enough of the jobs had started
to compensate for JES2's CPU, the placement was much more even. By far the best indicator of
the effectiveness of the placement algorithm came when we noticed that the unused CPU service
units differed by less than 3000 out of 165,000 per minute, or 1.8%. This is just a single example,
other intervals during the same run were closer by a factor of ten.

���������G"���#����

For the first time in the history of MVS, WLM provides a direct connection between initiation
policy and performance management. While it does not solve all batch management problems, it
provides a base upon which to build. WLM initiator management and resource affinity scheduling
together represent a significant step toward bringing the full power and sysplex-wide management
of WLM to bear on batch workloads.

H����
���
�I���
�
�

Further discussion of WLM batch management issues is available on the WLM web page at URL
http://www.ibm.com/servers/eserver/zseries/zos/wlm . A document written by Mike Cox of the
IBM Washington System Center treats some of the JES-related and operational issues in greater
depth. Information on other WLM functions can be found on the web page and in conference
proceedings from SHARE, MVS Expo, and CMG. Information on WLM functions provided in
OS/390 Release 4 was presented starting at the August 1997 SHARE. The handouts presented at
the session for this paper do contain additional information not covered here due to length
restrictions.
1. [Planning] " OS/390 MVS Planning: Workload Management ", GC28-1761
2. [J2Cmd] " OS/390 JES2 Commands ", GC28-1790
3. [J2Mig] " OS/390 JES2 Migration Notebook ", GC28-1797, see Chapter 9
4. [J2ITG] " OS/390 JES2 Initialization and Tuning Guide ", SC28-1791, see Chapter 2 topic "

Job Selection and Execution ",
5. [EffUse] " Effective Use of Workload Manager Controls ", Ed Berkel and Peter Enrico,

CMG94

�3��%
����-J���
!
&
��?@�������

The author wishes to thank the following people for their constructive review and suggestions for
this paper:
James Kilgore
Frank Soegeng
Peter Yocom
David Booz
Greg Dritschler
John Kinn
Chip Wood

