
IBM® Workplace Forms™

Using XForms

Version 2.6.1

���

Note

Before using this information and the product it supports, read the information in “Notices,” on page 95.

First Edition (September 2006)

This edition applies to version 2.6.1 of IBM Workplace Forms and to all subsequent releases and modifications until

otherwise indicated in new editions.

© Copyright International Business Machines Corporation 2003, 2006. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

Introduction 1

Who should read this document 1

Document conventions 1

About XForms 1

XForms and XFDL 2

When to use XForms 2

XForms and the XML data model 2

Overview 3

Form presentation 3

The XForms model 4

Using XPath 7

Constructing XPath expressions 8

XPath shortcuts 8

Creating relative location paths 9

Creating absolute location paths 10

Using namespaces in element references 11

Referencing attributes in the data instance . . . 11

Creating an XForms model 13

Creating the XForms wrapper 13

Defining the XForms namespace 13

Declaring the XForms data model 14

Creating data instances 15

Naming a data instance 16

Defining the default namespace 16

Setting the properties of a data instance 17

Naming binds 17

Referencing an attribute in the data instance . . . 21

Creating user interface links 21

Creating buttons 22

Creating fields 34

Creating labels 41

Creating lists 46

Creating date pickers 55

Creating conditional items 57

Creating groups 64

Creating tables 68

Adding help messages 71

Adding actions 74

Adding multiple actions to a form control . . . 81

About events 82

Creating submission rules for an instance 82

Naming the submission rules 82

Setting the type of submission 83

Setting the target URL for a submission 83

Setting the content type of the submission . . . 83

Setting what data is submitted 84

Filtering inherited namespaces 85

Displaying data returned by the submission . . 86

Creating a submission button 87

Adding schemas 89

Embedding a schema in a form 89

Referring to external schemas 89

Sample XForms 91

Core XForms data model 91

Data model with schema validation 92

Appendix. Notices 95

Trademarks 96

Index 97

© Copyright IBM Corp. 2003, 2006 iii

iv

Introduction

One of the goals of XML is to enable inter-operation of applications by

representing data in a standard, human-readable format that is also well suited for

processing by computer. XFDL has embraced this standard by incorporating

XForms.

XForms standardizes the core business processing model of a web application, but

it is designed to be incorporated into host languages that provide extensions as

necessary to satisfy diverse additional requirements of web applications.

For example, consider an application that processes purchase orders. A typical PO

system would receive a purchase order, then spend significant effort parsing the

PO and extracting the data before it began processing. In fact, extracting the data

from the PO is often a complicated process that requires a good deal of custom

programming.

However, with XForms the PO application can be designed to accept a set of XML

data that is defined by a schema. This makes the submission process easier, since

the PO system can quickly retrieve the block of XML from the form and begin

processing almost immediately. In fact, extracting the data from the form can be as

simple as a single line command, which greatly reduces the scope of work

necessary for integration.

This document explains what XForms does and provides practical instructions for

using it.

Who should read this document

This document is written for form developers who want to use XForms. This

document assumes that the reader has a working knowledge of XML and XFDL, as

well as some familiarity with XPath and XML Namespaces.

Document conventions

v This guide uses “xx” or “xxx” in place of the two or three digit version numbers.

In particular, these placeholders appear when referring to filenames, folders, and

directories that contain version numbers.

v This guide uses <name> to identify placeholders identifying nodes in an XPath

expression.

v This guide uses ellipses and italics to identify placeholders representing XFDL

and XForms elements. For example:

 ...xforms_label...

About XForms

XML is a common language for representing data processing models. One of the

goals of XML is to enable interoperation of applications by representing data in a

standard, human-readable format that is also well suited for processing by

computer.

© Copyright IBM Corp. 2003, 2006 1

XForms is an XML vocabulary that provides the ability to wrap, or skin, XML data

with a processing model, including:

v Dynamically recalculated computes that express relationships in data and their

properties.

v Static constraints expressed via XML schema constructs.

v Dynamic constraints that are automatically rechecked as data changes.

v Parameters for submitting XML data.

v Event-triggered action sequences that manipulate data in response to user

actions.

XForms and XFDL

XFDL is a host language, or skin, for XForms that provides:

v Precision control of layout and form appearance.

v Digital signatures that secure data, presentation, computes, and XForms.

v Offers unique layout and overlap testing that maintains security in sophisticated

workflows with multiple signers.

v A rich and extensible declarative compute system that extends to the

presentation layer, simplifying management of dynamic user interface behaviors.

v Offline processing via full document save, load, and submission features.

v Internationalization features, including understanding of currency values, and

rich accessibility functionality.

v Allows rich text, compressed attachments, and multiple attachments with one

user interface control.

When to use XForms

You can use XForms in any of the following scenarios:

v XML Applications — XForms is most useful when integrating eforms with

applications that already use XML, especially if those applications already offer

XML interfaces. In these cases, you can design forms that will submit the XML

data directly to the application, and will not need to program a custom module

that extracts the data from the form. Furthermore, you can format the data to

match any schema, and validate the data against the schema before submission.

v Non-XML Applications — Even if an application does not use XML, you can

still benefit from using XForms. The data model simplifies copying information

from one page to another, making wizard-style forms easier to create and

manage. Furthermore, although custom programming is still required for

back-end processing, the data model makes it far easier to extract data from the

form.

XForms and the XML data model

You can’t have both an XML Data model and an XForms model in the same form.

XForms and the XML Data Model feature are mutually exclusive.

2

Overview

In this overview, we will explore the presentation layer of the form and how items

are displayed. Then we will identify the parts of the XForms model and what they

are used for. For the purposes of this demonstration, we will be using the

following form:

Form presentation

XForms is not a stand alone language. It must be contained inside an XFDL form

which acts as a wrapper or skin that provides detailed presentation information for

the form. Furthermore, individual XForms User Interface (UI) elements must be

contained by individual XFDL items. For example, consider the Full Name field in

the example form:

To create this field, an XForms control called xforms:input must be wrapped inside

the XFDL field item. XForms:input determines the basic appearance of the item: a

single line field. XFDL code specifies the field’s position on the form and it’s

presentation, such as font and background colors, font type and style, and so on.

© Copyright IBM Corp. 2003, 2006 3

For example:
<field sid="cust_name">

<xforms:input ref="name">
<xforms:label>Full Name</xforms:label>

</xforms:input>

<itemlocation>
<x>5</x>
<y>40</y>

</itemlocation>

<size>
<width>30</width>

</size>

<value></value>

<labelfontinfo>
Helvetica
<size>8</size>
<style>bold</style>

</labelfontinfo>

</field>

The XFDL field item wraps
xforms:input.

The ref attribute associates the field
with a data node.

The itemlocation option positions
the field. There are over three
dozen itemlocation settings to

choose from.

The xforms:input control
ensures that the field will be

a single line high.

The size option sets the
width of the field.

The value option receives the user
input data before it is pushed to the

data instance.

There are three ways to add
a label to a field: the XFDL

label option, the xforms:label
control (shown here), and

the XFDL label item.

The labelfontinfo option allows you
to specify the appearance of the

label text.

 In the example above, the XForms UI provides an XForms control that ensures that

the Full Name field always looks like a single-line field regardless of what browser

or platform is displaying the form. The UI also performs a number of other tasks,

including:

v Automatically accepting instructions from the data model, such as the results of

calculations or other properties that effect the form control’s appearance.

v Allowing users to update the data instance through the control’s association

with a data node.

v Providing special grouping and repeating constructs such as tables, groups, and

panes.

The XForms model

The XForms model resides at the beginning of a form, inside the form global. It

defines the data structure of the form, including:

v XML data instances

v XML schemas

v Binds

v Dynamic constraints

v Submissions rules

The XForms model for our sample form is very simple. It contains one data

instance, one bind that determines whether the ″Mailing Address″ section is

4

relevant, and one submission:
<xformsmodels>

<xforms:model>

<xforms:instance xmlns="" id="customers">
<customer_data>

<name></name>
<address>

<street></street>
<city></city>
<prov></prov>
<pc></pc>

</address>
<mail_check></mail_check>
<mailing_address>

<street></street>
<city></city>
<prov></prov>
<pc></pc>

</mailing_address>
</customer_data>

</xforms:instance>

<xforms:bind nodeset="mailing_address"
relevant="boolean-from-string(../mail_check)"/>

<xforms:submission action="http://my_server/cgi-bin/submits"
id="submit1" includenamespaceprefixes=""
method="post"/>

</xforms:model>
</xformsmodels>

Data instance

Data node

Bind

Submission

XForms
Data Model

Constraint

 As you can see, the XForms model contains three core parts that work together to

create a complete model:

v Data Instances — Data instances are arbitrary blocks of XML. A data model

may contain any number of data instances, and each instance is normally

created to serve a particular purpose.

v Binds — Each data instance has associated bindings. Bindings are used to

perform special calculations or place limitations on user data. For example, you

might want to perform a calculation on a certain element, or specify that user

input is mandatory in a certain field.

v Submission Rules — Each data instance may have an associated set of

submission rules. These rules control how a data instance is transmitted when it is

submitted for processing. This is an optional feature, and is only necessary when

you want to submit the data instance by itself, without the rest of the form.

There are many cases in which you may want to submit the entire form, and

then retrieve the data instance from the form during processing. This is

particularly true when you are using signatures on your forms.

Overview 5

6

Using XPath

XForms uses XPath to address data nodes in binds, to express constraints, and to

specify calculations. Simple XPath expressions resemble file system and directory

paths in appearance. But instead of moving through files and folders, XPath

expressions move through data nodes. For example, consider the following data

instance:

 <purchaseOrder>

 <products>

 <gadget></gadget>

 ...other nodes...

 </products>

 </purchaseOrder>

If you wanted to refer to the <gadget> node, you would also need to reference its

parent nodes. For example:

 purchaseOrder/items/gadget

When you create your data model, its nodes represent all of the elements,

attributes, data, and processing instructions you want to have in the form. Like a

file system, these nodes can be represented by a tree. The root element of an

instance is the one immediately inside the <xforms:instance> tag. The other

elements and attributes form the branches of the tree, while attributes and text

values form the leaves.

XPath referencing allows you to associate these nodes or nodesets with items

displayed in the form, or with Model Item Properties (MIPs) that calculate values

or place limitations on the nodes.

Each node has the following properties:

v Name — The name of the node. For example:

 <gadget>

v Value — The data contained in the node. For example:

 <gadget>7</gadget>

Note: The value may also be empty.

v Parent — Every node except the root node has a parent. In the following

example, <products> is the parent of <gadget>:

 <products>

 <gadget></gadget>

 </products>

v Children — Nodes contained within another node. In the following example,

<gadget> is the child of <products>:

 <products>

 <gadget></gadget>

 </products>

v Position — The location of the node relative to all the other nodes. For example:

 purchaseOrder/items/gadget

Additionally, some nodes have the following properties:

v Attributes — Additional parameters added to the node that extends its

functionality. For example:

© Copyright IBM Corp. 2003, 2006 7

<price currency="USD"></price>

v Namespaces — Namespace parameters identify a node as being part of a

particular namespace. For example, to indicate that the <approvalNumber> node

is in the xmlns:finance=″http://example.org/finance″ namespace, you would write:

 <Finance:approvalNumber>

Constructing XPath expressions

Just as a relative directory path is relative to a current directory in a file system, an

XPath expression is evaluated relative to its current position and environment. This

is known as context. Factors that can affect the context of an expression include:

v Context Node — The current node.

v Context Position — An integer indicating the position of the context node in

the current node set. Note that the first position is 1, not 0.

v Context Size — An integer indicating the number of nodes in the current node

set.

v Variable Bindings — The mapping between variable names and variable

values.

v Functions — The library of functions available to an expression. XPath defines

a core set of functions that is expanded upon by XForms.

v Namespace Declarations — The mapping between namespace prefixes and

namespace URIs.

Note: The context position is always less than, or equal to the context size.

Simple XPath expressions (such as purchaseOrder/items/gadget) are most often used

to link a UI element to a node in the data instance. However, you can also

construct XPath expressions that yield other results. These include:

v Nodesets — A collection of unique nodes within a parent node.

v Booleans — True or false.

v Numbers — Any floating point number.

v Strings — Any sequence of characters.

XPath shortcuts

A large part of any XPath expression is the location path. Location paths determine

the node or nodeset over which the rest of the XPath expression operates. As

location paths, like directory paths, can be dauntingly long, XPath has provided a

number of ″shortcuts″ that allow you to create less complex-looking expressions.

The following table shows a number of characters that are used as shortcuts:

Shortcuts

Definition

. Selects the context node.

.. Selects the parent node of the context node.

* Wild card. Selects any child node.

node() Indicates any child node. This shortcut is a super-set of *.

next() Indicates any child text nodes. This shortcut is a sub-set of node().

/ Indicates that a path is absolute when placed at the beginning of a location

path. The beginning slash changes the context node to the root element.

8

<name>/<name>

When a slash follows the name of a node, the first nodes acts as the

context of the following node. By default, the following node name is a

reference to the children of the context node.

| Indicates a nodeset union.

@ Indicates an attribute node.

 Some examples of XPath expressions include:

XPath Expression

Definition

<name>

Selects any child nodes called <name>.

./<name>

Selects any child nodes called <name>.

<name1>/<name2>

Selects any grand child node called <name2> inside any child node called

<name1>.

.//<name>

Selects any nodes called <name> in the current sub-tree.

<name1>|<name2>

Selects any child node called <name1> or <name2>.

<name>[1]

Selects the first child node called <name>.

Creating relative location paths

Relative location paths are based on the node that currently has the context. This is

the default evaluation scheme used in XForms. For example, consider the following

instance:

 <xforms:model>

 <xforms:instance xmlns="">

 <root>

 <x>

 <y>5</y>

 </x>

 <submitText>Click to submit</submitText>

 </root>

 </xforms:instance>

 </xforms:model>

Within the body of your form, you may have an xforms:group that contains a field

with an xforms:input. Both of these elements are bound to the data model, as

shown:

 <xforms:group ref="x">

 <field sid="Number">

 <xforms:input ref="y">

 <xforms:label>Number:</xforms:label>

 </xforms:input>

 </field>

 </xforms:group>

In this case, the xforms:group is evaluated relative to the root node of the data

model, which in this case is <root>. This links the group to the <x> element. The

Using XPath 9

xforms:input, being a child of the xforms:group element, inherits its starting point

from the xforms:group and is evaluated relative to the <x> element. This links the

xforms:input to the <y> element.

Other XForms elements do not expressly declare which node they are bound to. In

these cases, the children of that element inherit the same starting point as the

element itself.

For example, consider the following xforms:group:

 <xforms:group ref="x">

 <button sid="Submit">

 <xforms:trigger>

 <xforms:label ref="submittext"/>

 </xforms:trigger>

 </button>

 </xforms:group>

In this case, the xforms:trigger element inherits a starting point of <x> from the

xforms:group. Since the xforms:trigger does not declare a single node binding itself,

the xforms:label also inherits a starting point of <x> from the xforms:group.

Creating absolute location paths

Absolute location paths are preceded with a slash, and begin with the root element

of the data instance. For example, consider the following instance:

 <xforms:model>

 <xforms:instance xmlns="">

 <root>

 <a>

 5

 <c>

 <d>10</d>

 </c>

 </root>

 </xforms:instance>

 </xforms:model>

To create an absolute locations that points to the <d> element, you would write:

 /root/c/d

Additionally, absolute location paths have no inheritances. For example, consider

the following xforms:group element:

 <xforms:group ref="a">

 <field sid="Number1">

 <xforms:input ref="b">

 <xforms:label>First Number:</xforms:label>

 </xforms:input>

 </field>

 <field sid="Number2">

 <xforms:input ref="/root/c/d">

 <xforms:label>Second Number:</xforms:label>

 </xforms:input>

 </field>

 </xforms:group>

In this case, the location path for the first xforms:input is evaluated from the <a>

element because it inherits this starting location from the xforms:group. However,

the location path for the second xforms:input overrides that inheritance and links to

the <d> element.

10

Using namespaces in element references

References assume that you are working in the empty namespace. To refer to an

element that is in a specific namespace, you must include the appropriate

namespace prefix in your reference, as shown:

prefix:element@prefix:attribute

An element might be in a non-default namespace for two reasons. First, the default

namespace of the data instance may not be XForms. Second, the element may have

a namespace prefix that places it in a non-XForms namespace.

For example, in the following data instance a namespace prefix is used to place

some of the elements in a Customer Data (CD) namespace:

 <xforms:instance xmlns:CD="http://example.org/customerData">

 <CustomerProfile>

 <CD:firstName></CD:firstName>

 <CD:lastName></CD:lastName>

 </CustomerProfile>

 </xforms:instance>

In this case, to refer to the firstName element, you would use the following

reference:

 ../customerProfile/CD:firstName

Referencing attributes in the data instance

You may need to reference an attribute in the data instance rather than an element.

To do this, use the following notation in your reference:

element/@attribute

For example, consider the following instance:

 <xforms:instance>

 <LoanRecord>

 <StartDate></StartDate>

 <Borrower></Borrower>

 <Principal currency="USD"></Principal>

 <Duration></Duration>

 <InterestRate></InterestRate>

 <MonthlyPayment></MonthlyPayment>

 <TotalPayout></TotalPayout>

 </LoanRecord>

 </xforms:instance>

In this case, the principal element stores the type of currency required by the loan.

To refer to the currency attribute, you would use the following reference:

 <xforms:select1 ref="Principal/@currency">

 ...other select1 options...>

 </xforms:select1>

Using XPath 11

12

Creating an XForms model

Every XForms form contains at least one data model, which in turn contains

multiple data instances. As you create an XForms model, it’s a good idea to create

your data instances one at a time, and to set up the bindings and submission rules

for that instance before moving on to the next data instance. This helps to avoid

confusion.

To create an XForms model, you must:

v Create the XForms model wrapper.

v Create a data instance.

v Bind the elements of the data instance.

v Create User Interface links.

v Add XForms actions (optional).

v Set up submission rules for the instance (optional).

v Create a submission button for the instance (optional).

v Include a schema (optional).

Creating the XForms wrapper

The XForms model is a block of XML data. It also describes a form’s logic,

submission rules, and actions. On its own, the XForms model has no graphic

component or any way to interact with users. This means that the XForms model

must always be contained in a host language or wrapper, that provides a

presentation layer for the XForms model. In this case, you will use XFDL to create

the form content that allows your users to interact with the XForms model. This

means you must place your XForms model inside an XFDL form.

To embed an XForms model inside an XFDL form, you must:

v Define the XForms namespaces.

v Declare the XForms model.

Defining the XForms namespace

Namespaces are used to identify different information in the same XML document.

Information is usually categorized by its purpose. For example, the XFDL

namespace contains information that describes electronic forms.

You can think of a namespace as being similar to the name of a language, with

each language intended for a different reader. For example, a book might contain

English for english readers and Russian for russian readers.

To define a namespace, you must use the xmlns attribute. This attribute assigns the

unique URI of the namespace to a prefix, as shown:

 xmlns:prefix="namespace URI"

This assignment allows a simple prefix to specify the element’s namespace URI.

Your prefixes should succinctly describe the namespace, so that it is easy to

remember and recognize. By convention, the XForms prefix is xforms.The

namespace URI can be any unique URL that describes the namespace. For

example, the XForms namespace is defined by the following URI:

© Copyright IBM Corp. 2003, 2006 13

http://www.w3.org/2002/xforms

Substituting these values, you get the following namespace declaration:

 xmlns:xforms="http://www.w3.org/2002/xforms"

This attribute should be defined on the document element node of the XFDL form.

For example:

 <XFDL xmlns:xforms="http://www.w3.org/2002/xforms">

Using namespaces

Because you are using XFDL as your XForms host language, your default

namespace should be XFDL. While most of your form elements will probably be in

the default namespace, there may be times when you want to create a namespace

that you use selectively. For example, you might have a data instance that should

be in your company’s default namespace, except for two elements that should be

in the Human Resources namespace. In this case, you would assign the Human

Resources namespace to a prefix, and then use that prefix to tag specific data

elements.

When defining other namespaces to use, it is best to declare them at the beginning

of the form. This ensures that they are available for use throughout the form. You

use the xmlns attribute to assign the unique URI for the namespace to a namespace

prefix, as shown:

 xmlns:prefix="namespace URI"

For example, the following tag creates an hr prefix for a Human Resources

namespace:

 xmlns:hr="http://www.acme.com/HR"

You can now add the prefix to any tag within a data instance to indicate that the

tag belongs to the Human Resources namespace, as shown:

 prefix:tag

For example, if you wanted the first name and last name in a data instance to

belong to the Human Resources namespace, you would write:

 <purchaseOrderData>

 <hr:firstName></hr:firstName>

 <hr:lastName></hr:lastName>

 <address></address>

 </purchaseOrderData>

In this case, both the first and last name are in the Human Resources namespace,

but the address is not since it has no prefix. Also, notice that each closing tag must

also include the prefix.

Declaring the XForms data model

The XForms model is declared as an option in the global item of the forms global

page. It begins with the <xformsmodels> tag, as shown:

 <globalpage sid="global">

 <global sid="global">

 <xformsmodels>

 ...

 </xformsmodels>

 </global>

 </globalpage>

14

Once you have created the XForms container, you can place your data models

inside. Each model is enclosed by an <xforms:model> tag. You can add as many

data models as necessary, although they must all be placed within the same

<xformsmodels> container. For example:

 <globalpage sid="global">

 <global sid="global">

 <xformsmodels>

 <xforms:model>

 ...data model 1...

 </xforms:model>

 <xforms:model>

 ...data model 2...

 </xforms:model>

 </xformsmodels>

 </global>

 </globalpage>

Naming a data model

While the first model in the form is the default model and doesn’t require a name,

any additional XForms models must have a specific name. You can give each data

model a unique name by using the id attribute. The id attribute is added to the

<xforms:model> tag of your data model, and follows this format:

 id="name"

For example, if you wanted to call the second model in your form “model_2”, you

would use the following tag to begin the model:

 <xforms:model id="model_2">

Creating data instances

Each data instance is created within the <xforms:model> tag, and begins with an

<xforms:instance> tag, as shown:

 <xforms:model>

 <xforms:instance>

 ...data instance 1...

 </xforms:instance>

 <xforms:instance>

 ...data instance 2...

 </xforms:instance>

 </xforms:model>

Each <xforms:instance> tag contains a data instance. This can be any XML data

you like, but must be well-formed XML, meaning that it must have a single root

element. You should give the root element a meaningful name that reflects the

content of the instance. For example, you might use a <LoanRecord> element to

begin an instance that contains data for a loan application, as shown:

 <xforms:instance>

 <LoanRecord>

 ...loan data...

 </LoanRecord>

 <xforms:instance>

Your data instance can contain any valid XML. For example, your loan data might

include the start and end date of the loan, the name of the borrower, the amount of

the loan, and so on. In this case, your data instance might look like this:

 <xforms:instance>

 <LoanRecord>

 <StartDate></StartDate>

 <Borrower></Borrower>

Creating an XForms model 15

<Principal></Principal>

 <Duration></Duration>

 <InterestRate></InterestRate>

 <MonthlyPayment></MonthlyPayment>

 <TotalPayout></TotalPayout>

 </LoanRecord>

 </xforms:instance>

Instance data is not processed by XFDL parsers, such as Workplace Forms Viewer

and Workplace Forms Designer, and can follow any format necessary. This gives

you the freedom to create XForms models that match defined schemas or other

formats.

Naming a data instance

If you have more than one data instance in your form, you must give a unique

name to each instance. You can do this by adding an id attribute to the

<xforms:instance> tag of your data instance. The id attribute follows this format:

 id="name"

For example, if you wanted give the name loan to the LoanRecord data instance,

you would use the following tag to begin the data instance:

 <xforms:instance id="loan">

Defining the default namespace

If you want your default namespace for the instance to differ from the default

instance for your form, you must add an xmlns attribute to the <xforms:instance>

tag. The xmlns attribute is assigned the URI that defines the namespace, as shown:

 xmlns="namespace URI"

For example, if you wanted to place an instance in your company’s Human

Resources namespace, the <xforms:instance> tag of our customer data might look

like this:

 <xforms:instance xmlns="http://www.mycompany.com/namespaces/HR">

When you set the default namespace for an <xforms:instance> tag, both the

opening node and all children of that node are placed in that namespace. However,

there may be times when some of that node’s children should belong to a different

namespace. If so, you must identify that namespace by adding the prefix of a

defined namespace to the node’s tag, as shown:

 prefix:tag

For example, the following instance is in the XForms namespace, but the

<LenderID> node is in the HR namespace:

 <xforms:instance>

 <LoanRecord>

 <HR:LenderID></HR:LenderID>

 <StartDate></StartDate>

 <Borrower> </Borrower>

 <Principal></Principal>

 <Duration></Duration>

 <InterestRate></InterestRate>

 <MonthlyPayment></MonthlyPayment>

 <TotalPayout></TotalPayout>

 </LoanRecord>

 </xforms:instance>

16

Setting the properties of a data instance

Once you have created a data instance, you need to set the properties of its nodes.

This is done using the <xforms:bind> tag. These binds are used to perform special

calculations or place limitations on user data. For example, you might want to

perform a calculation on a certain node or ensure that supplying certain data is

mandatory.

Binds are contained within the XForms data model. They are placed below the

data instances. For example:

 <xforms:model>

 <xforms:instance>

 ...data instance 1...

 </xforms:instance>

 <xforms:instance>

 ...data instance 2...

 </xforms:instance>

 <xforms:bind/>

 <xforms:bind/>

 </xforms:model>

You create a bind by adding properties to the <xforms:bind> start tag. For

example:

 <xforms:bind ...bind information.../>

These properties allow you to:

v Name the bind. (optional)

v Determine the node or nodeset that is affected by the bind. (mandatory)

v Describe the way the bind effects the element. (mandatory)

These attributes may be added to the <xforms:bind> start tag in any order.

However, the name and nodeset attributes are typically listed first, as each bind

will never have more than one name and nodeset, while it may have a number of

properties that effect the bind. For example:

 <xforms:bind ...name... ...nodeset... ...property_1... ...property_2.../>

Naming binds

The id attribute allows you to give a globally unique name to your bind. This

attribute is optional, but necessary if you want to refer to the bind elsewhere in

your form. The format of the id attribute is:

 id="bind name"

In the following code sample, the bind is named “TotalPayoutBind”:

 <xforms:bind id="TotalPayoutBind" ...nodeset... ...property_1...

 ...property_2.../>

Note: IDs are only allowed on parent binds. They are not supported on binds

nested that are inside another bind.

Determining the affected node

A nodeset identifies which element is affected by the bind and must refer to a node

in a data instance. Every bind is associated with a nodeset, either directly, or in the

case of nested binds, through inheritance from a parent bind. The format of the

nodeset attribute is:

 nodeset="path_to_node"

Creating an XForms model 17

You identify these nodesets using XPath expressions that provide the location path

of the node. For example, the following bind specifies the <LoanTotal> node in the

default instance:

 <xforms:bind ...id... nodeset="LoanTotal" ...property1...

 ...property_2.../>

If necessary, you can create multiple binds for a single nodeset.

Assigning properties

Every bind contains one or more model item property (MIPs). A MIP describes the

way the bind modifies its associated node. These modifications include

determining the value of nodes, their validity, or relevancy.

The format of a MIP is:

 property_name="property_details"

In a loan application, you may want to ensure that the field showing the total of

the loan is only visible if the <MonthlyPayment> node has a value greater than 0,

you would have to use the relevant MIP. The relevant MIP determines whether a

node is relevant and needs to be displayed. For example:

 <xforms:bind ...id... ...<LoanTotal nodeset>...

 relevant="../MonthlyPayment > 0"/>

There are six MIPs:

v Calculate

v Constraint

v Readonly

v Relevant

v Required

v Type

Calculate: The calculate property defines a calculation that determines the value of

the associated node. It allows you to add mathematical formulas and computed

logic to your data instance. Calculate follows this format:

 calculate="<calculation>"

The essential elements of the calculation are XPath expressions combined with

normal mathematical expressions. The following are simple examples of a calculate:

 calculate="<XPath_Expression> + <XPath_Expression>"

 calculate="<XPath_Expression> * <XPath_Expression> + 10"

 calculate="<XPath_Expression> * 10"

As discussed in ″Using XPath″ , an XPath expression provides the location of the

node being modified. Thus, if you wanted to multiply the value of an <amount>

node by .1, you would write:

 calculate="amount * 0.1"

Constraint: The constraint property determines whether an associated node is

valid. For example, the constraint property could ensure that a node was only valid

if its value was greater than zero. In other words, if that node had a value greater

than zero, its validity equals true. If the node had a value of zero or less, its

validity equals false. For instance, if you wanted to ensure that a field would

contain a number higher than 0 but less than 10, you could use constraint to

prevent the form from accepting a value that was outside of that range.

18

Constraint follows this format:

 constraint="<XPath_Expression> <operator> <XPath_Expression>"

You can use both relational and logical operators. Relational operators are character

sets that describe how one thing relates to another. For example, the greater than

and less than signs are relational operators. Logical operators allow you to create

more complex computes with logical or and logical and.

The following table lists all the operators you may use:

 Relational

Operator

Definition Logical

Operator

Definition

> greater than and logical AND

< less than or logical OR

<= less than or

equal to

Note: For logical NOT, use the

XForms not() function.

>= greater than or

equal to

= equal to

!= not equal to

Note: You should not use the less than character (<) in your binds. Since it is

used to signal the beginning of the bind tag, using it inside your bind will

cause your bind to fail. Instead, replace this symbol with a character

reference. As noted in the table above, the less than sign can be represented

with <.

The constraint property uses relational operators to impose limits on a data node.

For example, if you wanted to ensure that the value of a node was not equal to 0,

you would write:

 constraint=". != 0"

You can also relate the bound node to another node. For example, the following

constraint ensures that the value of the associated node must be greater than the

value of the <minimum> node:

 constraint=". > minimum"

You can use the logical operators to add additional constraints to the attribute. For

example, you could limit the value of the associated node so that it must be

greater than the <minimum> node, but less than the <maximum> node:

 constraint=". > minimum and . < maximum"

The result of a constraint parameter always either true() or false(). In other words,

the value of the node either conforms to the parameter’s limitations, or it does not.

The default value is true.

Readonly: The readonly property determines whether the data in the associated

node can be changed. It follows this format:

 readonly="<XPath_Expression with a result of either true or false>"

Readonly accepts any XPath expression as its setting, but the result is always

converted to either true() or false(). Note that if you want to directly declare the

Creating an XForms model 19

settings as true or false, you must express these states as though they were

functions, so that the parser doesn’t interpret ″true″ or ″false″ as a string rather

than a limitation on the node. For example, if you want to directly declare a node

to be readonly, you would write:

 readonly="true()"

The default value of readonly is false(), as most nodes will accept input from the

user. However, if the bind includes a calculate property, the node automatically has

a readonly of true(), as the value of the node will be based on a calculation, and not

directly on input from the user. Furthermore, if a node is set to readonly, then all of

its child nodes automatically inherit the readonly setting.

Relevant: The relevant property determines whether a node is displayed to the

user or included in XForms submissions. Relevant follows this format:

 relevant="<XPath_Expression with a result of either true or false>"

Relevant accepts any XPath expression as its setting, but the result is always

converted to either true() or false(). Note that if you want to directly declare the

settings as true or false, you must express these states as though they were

functions, so that the parser doesn’t interpret ″true″ or ″false″ as a string rather

than a limitation on the node. For example, if you want a node to be mandatory,

you would write:

 required="true()"

Relevant is very useful for computing visible and non-visible items on a form. For

example, the following expression ensures that the value of the associated form

items are displayed only if the credit option is selected from the payment group:

 relevant="../payment = ’credit’"

The default value of relevant is true. However, all children of the node inherit its

setting, so if a node is not relevant, then its children will not be relevant either, and

will not be displayed to the user.

Required: The required property determines whether a node requires mandatory

user input. It follows this format:

 required="<XPath_Expression with a result of either true or false>"

Required accepts any XPath expression as its setting, but the result is always

converted to either true() or false(). Note that if you want to directly declare the

settings as true or false, you must express these states as though they were

functions, so that the parser doesn’t interpret ″true″ or ″false″ as a string rather

than a limitation on the node. For example, if you want a node to be mandatory,

you would write:

 required="true()"

The default value of required is false. Note that if a parent node has a required of

false(), child nodes must also have a required of false(). However, if a parent node

has a required of true, its children may have a required of either true() or false().

Furthermore, if the node does not require user input, but a linked UI element does,

then input is still required.

Note: XForms submissions will not submit if a relevant data node is required but

contains no data.

20

Type: The type property sets the data node to be a particular data type. It is

written as:

 type="<namespace>:<qualified_name>"

If the data type set for the node conflicts with the data type set for a linked User

Interface element, then the validity of the data is determined by considering both

settings. If the data is invalid for either setting, then the data is considered invalid

overall.

The available data types are defined by the enclosed XML schema. For example,

the schema could define:

v xsd:boolean

v xsd:integer

v xsd:date

v xsd:double

Note: Any type defined by an XML schema associated with the xforms:model

can be used.

For example, if you wanted to define a node as a boolean data type, you would

write:

 type="xsd:boolean"

The default value is string.

Referencing an attribute in the data instance

As discussed in ″Using XPath″, you may need to reference an attribute in the data

instance rather than an element. To do this, use the following notation in your

reference:

 element@attribute

For example, consider the following instance:

 <xforms:instance>

 <LoanRecord>

 <StartDate></StartDate>

 <Borrower></Borrower>

 <Principal currency="USD"></Principal>

 <Duration></Duration>

 <InterestRate></InterestRate>

 <MonthlyPayment></MonthlyPayment>

 <TotalPayout></TotalPayout>

 </LoanRecord>

 </xforms:instance>

In this case, the principal element stores the type of currency required by the loan.

To refer to the currency attribute, you would use the following reference:

 <xforms:bind nodeset="Principal/@currency" ...MIP.../>

Creating user interface links

User Interface (UI) links connect elements in the user interface to elements in the

data instance, linking your data model to the items your users see on the screen.

This causes information entered by the user to be copied to your data model. For

example, you might link the lastName element in your data instance to the

lastName.value option in your form description.

Creating an XForms model 21

You place UI links inside the XFDL items that you want to link to the data model,

as shown:

 <field sid="LastName">

 ...UI Link...

 </field>

UI links are defined by form controls. Essentially, form controls are like a special

kind of option, except instead of being XFDL options, they are XForms options.

These form controls define the appearance of items and the types of content they

display. Their format is:

 <field sid="LastName">

 <...form control...></...form control...>

 </field>

Form controls are linked to specific data nodes in the XForms model using XPath

references. XPath references are attributes of form controls, as shown:

 <field sid="LastName">

 <...form control... ...XPath Ref...></...form control...>

 </field>

Most form controls may be modified by additional attributes. These attributes

usually describe the type of data accepted by the form control or data node, or

modify how that data is used. These attributes are added to the form control’s

opening tag. For example:

 <field sid="LastName">

 <...form control... ...XPath Ref... ...attributes...>

 </...form control...>

 </field>

The following sections describes how to create some of the most frequently used

XFDL items with XForms controls. Note that items that do not interact with the

data model (and thus do not require XForms controls) are not detailed here. For

detailed information about non-XForms XFDL, see the Workplace Forms XFDL

Specification document.

Creating buttons

Generally, you use buttons to allow users to trigger actions, such as sending

submissions, uploading attachments, saving forms, and so on. However, not all of

these button types need to be linked to the data node. For example, users can save

forms or go to the next page without needing to exchange information with the

data instance. Thus not all XFDL button types have XForms counterparts.

You can use XForms to create the following types of buttons:

v Submit buttons

v Attachment buttons

v Trigger buttons

v Insert buttons

v Delete buttons

Creating a submit button

Submit buttons submit instance data to a processing server. Clicking the button

triggers the submission action. Submission rules in the data model and filters in

the submission button determine what data is sent to the server.

22

You should not create a submit button until you have created submission rules that

determine what data should be sent. For detailed information on creating

submission rules and submit buttons, see “Creating submission rules for an

instance” on page 82 and “Creating a submission button” on page 87.

Creating an attachment button

Attachment buttons allow your users to add, view, or remove files from your

forms. However, only a few of these activities are performed using XForms. This

means that some attachment buttons can use XForms, while others must be created

using XFDL options. The following table shows which method you can use for the

type of attachment button you want:

 Attachment Button User Interface Link XFDL Options

Attach Single File Yes Yes

Attach Multiple Files No Yes

Display Single File No Yes

Display Image File Yes Yes

Display Multiple Files No Yes

Extract Single File No Yes

Extract Multiple Files No Yes

Remove Single File No Yes

Remove Multiple Files No Yes

Attachment buttons only need to include user interface links if you want to enclose

a file inside an instance node or to display a file that is already enclosed inside an

instance node. If the file does not need to be in the data instance, we recommend

that you use the appropriate XFDL options to manipulate attachments.

Creating an attach single file button

If you want users to be able to enclose a file inside an instance node, you must

create an Attach Single File button. This is done using the upload control. The

upload control allows users to select a file to be contained inside the instance node.

To create an Attach Single File button, you must:

v Create the instance that will contain the file information.

v Create the XFDL button.

v Add the upload control.

v Add its label control.

v Add the child elements of the upload control.

Create the instance

The data instance that will contain the attached file must include the following

nodes:

v Data node — The node that will contain the actual file you are attaching. This

node may have any name, but it should accurately describe its function. For

example, imagedata or attachedfile.

v filename — The node that will contain the actual name of the file. This node is

optional, but if you include it, it must always be called filename.

Creating an XForms model 23

v mediatype — The node that describes the file’s mediatype. This node must

always be called mediatype.

The following example shows an instance that is ready to attach an image file:

<xforms:instance xmlns="" id="attachedFile">

 <data>

 <imagedata></imagedata>

 <filename></filename>

 <mediatype></mediatype>

 </data>

</xforms:instance>

Create the XFDL button

The attachment button is written as a normal XFDL button item. Using XFDL

options, you can modify the button’s appearance and position in any way you

want. However, you should not give the button a type option, since it will be

overridden by the upload control.

For example, you might create the following button:

 <button sid="uploadButton">

 <itemlocation>

 <x>0</x>

 <y>23</y>

 <width>720</width>

 <height>500</height>

 </itemlocation>

 <size>

 <width>20</width>

 <height>10</height>

 </size>

 <value></value>

 </button>

Add the upload control

The upload control links the button to the XForms data model, so that the file is

copied to the specified data instance. It is placed inside the attachment button

wrapper.

The format of the upload control is:

 <xforms:upload XPath_Ref mediatype>

 ...label control...

 </xforms:upload>

Upload has four attributes:

1. ref — The path to the data node. This attribute links the upload control to the

node that will contain the file. The format of ref is:

 ref="path_to_node"

For example, if the upload control is associated with the <imagedata> node

inside the <enclosedFile> instance, then the XPath reference would be:

 ref="instance(’enclosedFile’)/imagedata"

2. mediatype — Allows you to set the type of file you want to attach. The format

of mediatype is:

 mediatype="general_filetype/specific_filetype"

For example, if you wanted your users to only upload JPEG images, you would

write:

24

mediatype="image/jpeg"

You may use an asterisk as a file type wildcard, which would allow users to

upload files of any type. For example:

 mediatype="*/*"

3. model — The id of the XForms model that contains the instance you want to

reference. This attribute is optional. If model is not included, it will default to

the first model. The format of model is:

 model="model_id"

For example, if the model id is ″model2″, then you would write:

 model="model2"

4. bind — The id of a bind whose nodeset is used to reference the data node you

want to associate with the button. Upload must have either a bind attribute or a

ref attribute. The format of bind is:

 bind="bind_id"

For example, if the bind id is ″setRelevant″, then you would write:

 bind="setRelevant"

The upload control is nested inside the button, as shown:

 <button sid="AttachImage">

 <xforms:upload>

 ...xforms:label...

 </xforms:upload>

 ...XFDL options...

 </button>

Add the label control

The label control is a mandatory element of the upload control. It provides text for

the button. However, if you prefer use to use the XFDL value option to label the

button, the content of label may be left blank. If the label control has a value, it

overrides the XFDL value option.

The format of the label control is:

 <xforms:label>button_text</xforms:label>

You can use label to set the text that the button displays, such as Attach Image. For

example:

 <xforms:label>Attach Image</xforms:label>

The label control is nested inside the upload control, as shown:

 <xforms:upload>

 <xforms:label>Attach Image</xforms:label>

 </xforms:upload>

Both are contained inside the XFDL button, as shown:

 <button sid="AttachImage">

 <xforms:upload>

 <xforms:label>Attach Image</xforms:label>

 </xforms:upload>

 ...XFDL options...

 </button>

If you want to modify the appearance of the label text, you can use the standard

XFDL font options. They are placed inside the button item, but outside the upload

form control. For example:

Creating an XForms model 25

<button sid="UploadButton">

 <xforms:upload

 ref="instance(’enclosedFile’)/imagedata"

 mediatype="image/jpeg">

 <xforms:label>Attach Image</xforms:label>

 </xforms:upload>

 <fontcolor>blue</fontcolor>

 <fontinfo>

 Helvetica

 <size>8</size>

 <effects>bold</effects>

 </fontinfo>

 </button>

Add the child elements of the upload control

The upload control has two child elements which must also link to elements in the

data model:

1. filename — Links the image file’s name to a specific data node. (optional)

2. mediatype — Links the file’s mediatype to a specific data node.

These elements are written as:

 <xforms:filename XPath_Ref></xforms:filename>

 <xforms:mediatype XPath_Ref></xforms:mediatype>

Earlier in our example, we called these nodes <filename> and <mediatype>, so we

would write:

 <xforms:filename ref="filename"></xforms:filename>

 <xforms:mediatype ref="mediatype"></xforms:mediatype>

Filename and mediatype are always nested inside the upload control, as shown:

 <button sid="UploadButton">

 <xforms:upload

 ref="instance(’attachedFile’)/imagedata"

 mediatype="image/jpeg">

 <xforms:label>Attach Image</xforms:label>

 <xforms:filename ref="filename">></xforms:filename>

 <xforms:mediatype ref="mediatype"></xforms:mediatype>

 </xforms:upload>

 ...XFDL options...

 </button>

Example of a completed attach single file button

The following code shows a sample of a button that uploads user files to the data

instance:

 <button sid="UploadButton">

 <xforms:upload

 ref="instance(’attachedFile’)/imagedata"

 mediatype="image/jpeg">

 <xforms:label>Attach Image</xforms:label>

 </xforms:upload>

 <xforms:filename ref="filename"></xforms:filename>

 <xforms:mediatype ref="mediatype"></xforms:mediatype>

 <fontcolor>white</fontcolor>

 <fontinfo>

 Helvetica

 <size>8</size>

 <effects>bold</effects>

 </fontinfo>

 <itemlocation>

26

<x>0</x>

 <y>23</y>

 </itemlocation>

 <size>

 <width>20</width>

 <height>10</height>

 </size>

 <value></value>

 </button>

Creating a trigger button

Trigger buttons activate actions. In fact, you could consider any button to be a

trigger, since the purpose of a button is to allow users to activate the action it

contains. However, in this case a Trigger button specifically refers to buttons that

contain the trigger control.

For the purposes of this example, this Trigger button will activate a toggle action.

However, Trigger buttons are not limited to activating toggle actions; they can

activate any XForms action, such as insert and delete. In this example, our Trigger

button will be used to activate conditional items inside switch and case controls.

Note: These instructions assume that the case and switch controls affected by the

Trigger button have already been created. For more information, see

“Creating conditional items” on page 57.

To create a trigger button, you must:

v Create an XFDL button.

v Add the trigger control.

v Add the label control.

v Add the toggle action.

Create the XFDL button

The Trigger button is written as a normal XFDL button item. Using XFDL options,

you can modify the button’s appearance and position any way you want. This

includes determining size of the button and the appearance of its text.

For example, you might create the following button:

 <button sid="SwitchToSpanish">

 <itemlocation>

 <x>0</x>

 <y>23</y>

 </itemlocation>

 <size>

 <width>20</width>

 <height>10</height>

 </size>

 <value></value>

 </button>

Add the trigger control

The trigger control allows the user to trigger actions in the form. In this case, trigger

is used to activate the toggle control. Toggle selects one possible case control from

the possible cases in a switch group.

The format of the trigger control is:

 <xforms:trigger></xforms:trigger>

Creating an XForms model 27

The trigger control is nested inside the Toggle button item:

 <button sid="SwitchToSpanish">

 <xforms:trigger>

 </xforms:trigger>

 ...XFDL options...

 </button>

Add the label control

The label control is a mandatory element of the trigger control. However, if you

prefer use to use the XFDL value option to label the button, the content of label

may be left blank. If the label control has a value, it overrides the XFDL value

option.

The format of the label control is:

 <xforms:label>button_text</xforms:label>

You can use label to set the text that the button displays, such as Spanish. For

example:

 <xforms:label>Switch to Spanish</xforms:label>

The label control is nested inside the trigger control. For example:

 <xforms:trigger>

 <xforms:label>Switch to Spanish</xforms:label>

 </xforms:trigger>

Both are contained inside the XFDL button, as shown:

 <button sid="SwitchToSpanish">

 <xforms:trigger>

 <xforms:label>Switch to Spanish</xforms:label>

 </xforms:trigger>

 ...XFDL options...

 </button>

Add the toggle action

The toggle action selects one possible case from all the possible cases contained in a

switch group. In other words, toggle ensures that the selected case is turned on,

while the other cases are turned off.

The format of toggle is:

 <xforms:toggle attributes></xforms:toggle>

Toggle has two attributes:

v event — Indicates the type of event that is triggered. This attribute is mandatory

and is written as:

 ev:event="event"

In the case of toggle, the event is usually DOMActivate.

v case — Indicates which case is activated when the user clicks the Toggle button.

This attribute is only mandatory if your Trigger button activates conditional

items. The format of case is:

 case="name"

This attribute must match the id of the case control you want to select. For

example, if you wanted a case with an id of ″Spanish″ to be selected, you would

write:

28

case="Spanish"

The toggle action is nested inside the trigger control. For example:

 <button sid="SwitchToSpanish">

 <xforms:trigger>

 <xforms:toggle

 ev:event="DOMActivate"

 case="Spanish">

 </xforms:toggle>

 <xforms:label>Switch to Spanish</xforms:label>

 </xforms:trigger>

 ...XFDL options...

 </button>

Example of a completed trigger button

The following code shows a sample of a button that switches the language

displayed by the form:

 <button sid="SwitchToSpanish">

 <xforms:trigger>

 <xforms:toggle

 ev:event="DOMActivate"

 case="Spanish">

 </xforms:toggle>

 <xforms:label>Switch to Spanish</xforms:label>

 </xforms:trigger>

 <fontcolor>white</fontcolor>

 <itemlocation>

 <x>0</x>

 <y>23</y>

 </itemlocation>

 <size>

 <width>20</width>

 <height>10</height>

 </size>

 <value></value>

 </button>

Creating an insert button

Insert buttons allow users to dynamically add new items to groups and panes and

rows to tables. This is done using a trigger control to activate an XForms insert

action. Insert determines which items are inserted, where the items are inserted,

and which event is activated.

For the purposes of our example, we will create an Insert Row button.

To create an insert row button, you must:

v Create an XFDL button.

v Add the trigger control.

v Add the label control.

v Add the insert action.

Create the XFDL button

The Insert Row button is written as a normal XFDL button item. Using XFDL

options, you can modify the button’s appearance and position any way you want.

This includes determining the size of the button and the appearance of its text.

For example, you might create the following button:

Creating an XForms model 29

<button sid="InsertRow">

 <itemlocation>

 <x>0</x>

 <y>23</y>

 </itemlocation>

 <size>

 <width>20</width>

 <height>10</height>

 </size>

 <value></value>

 </button>

Add the trigger control

The trigger control allows the user to trigger actions in the form. In this case, trigger

is used to activate the insert action.

The format of the trigger control is:

 <xforms:trigger> ...xforms_label... </xforms:trigger>

The trigger control is nested inside the InsertRow button item:

 <button sid="InsertRow">

 <xforms:trigger>

 ...xforms_label...

 </xforms:trigger>

 ...XFDL options...

 </button>

Add the label control

The label control is a mandatory element of the trigger control. It provides text for

the button. However, if you prefer use to use the XFDL value option to label the

button, the content of label may be left blank. If the label control has a value, it

overrides the XFDL value option.

The format of the label control is:

 <xforms:label>button_text</xforms:label>

You can use label to set the text that the button displays, such as Attach Image. For

example:

 <xforms:label>Insert Row</xforms:label>

The label control is nested inside the trigger control, as shown:

 <xforms:trigger>

 <xforms:label>Insert Row</xforms:label>

 </xforms:trigger>

Both are contained inside the XFDL button, as shown:

 <button sid="InsertRow">

 <xforms:trigger>

 <xforms:label>Insert Row</xforms:label>

 </xforms:trigger>

 ...XFDL options...

 </button>

Add the insert action

The insert action places the new row in the form. Its attributes determine which

items are inserted, where they are inserted, and which event is activated.

30

The format of the insert action is:

 <xforms:insert ...attributes... />

Insert is modified by four attributes:

1. at — Determines where the new items will be inserted. This attribute usually

refers to an XFDL group-type item, such as pane, table, or group. The format of

at is:

 at="index(’item_sid’)"

2. position — Indicates whether the inserted node is added before or after the

anchor (referenced) node. The format of position is:

 position="before_or_after"

3. nodeset — Indicates the node or nodeset to be inserted. The format of nodeset

is:

 nodeset="node"

4. event — Indicates the type of event that is triggered. In the case of insert, it is

always:

 ev:event="DOMActivate"

An example of an insert action with all its attributes is:

 <xforms:insert

 at="index(’customer_table’)"

 position="after"

 nodeset="customer"

 ev:event="DOMActivate"/>

Insert is placed inside of the trigger control that activates the action. For example:

 <xforms:trigger>

 <xforms:label>Insert Row</xforms:label>

 <xforms:insert

 at="index(’customer_table’)"

 position="after"

 nodeset="customer"

 ev:event="DOMActivate"/>

 </xforms:trigger>

Both are contained inside the XFDL button, as shown:

 <button sid="InsertRow">

 <xforms:trigger>

 <xforms:label>Insert Row</xforms:label>

 <xforms:insert

 at="index(’customer_table’)"

 position="after"

 nodeset="customer"

 ev:event="DOMActivate">

 </xforms:insert>

 </xforms:trigger>

 ...XFDL options...

 </button>

Example of a completed insert row button

The following code shows a sample of a button that adds an additional row to a

table:

 <button sid="InsertRow">

 <xforms:trigger>

 <xforms:label>Insert Row</xforms:label>

 <xforms:insert

 at="index(’customer_table’)"

Creating an XForms model 31

position="after"

 nodeset="customer"

 ev:event="DOMActivate"/>

 </xforms:trigger>

 <fontcolor>blue</fontcolor>

 <itemlocation>

 <x>0</x>

 <y>23</y>

 </itemlocation>

 <size>

 <width>20</width>

 <height>10</height>

 </size>

 <value></value>

 </button>

Creating a delete button

Delete buttons allow users to dynamically remove unnecessary items from groups

or panes and rows from tables. This is done using a trigger control to activate an

XForms delete action. Delete determines which items are deleted, where they items

are positioned in the table, and which event is activated.

For the purposes of our example, we will create a Delete Row button.

To create a Delete Row button, you must:

v Create an XFDL button

v Add the trigger control.

v Add the label control.

v Add the delete action.

Create the XFDL button

The Delete Row button is written as a normal XFDL button item. Using XFDL

options, you can modify the button’s appearance and position any way you want.

This includes determining size of the button and the appearance of its text.

For example, you might create the following button:

 <button sid="DeleteRow">

 <itemlocation>

 <x>0</x>

 <y>23</y>

 </itemlocation>

 <size>

 <width>20</width>

 <height>10</height>

 </size>

 <value></value>

 </button>

Add the trigger control

The trigger control allows the user to trigger actions in the form. In this case, trigger

is used to activate the delete action.

The format of the trigger control is:

 <xforms:trigger>...xforms_label...</xforms:trigger>

The trigger control is nested inside the DeleteRow button item:

32

<button sid="DeleteRow">

 <xforms:trigger>

 ...xforms_label...

 </xforms:trigger>

 ...XFDL options...

 </button>

Add the label control

The label control is a mandatory element of the trigger control. It provides text for

the button. However, if you prefer use to use the XFDL value option to label the

button, the content of label may be left blank. If the label control has a value, it

overrides the XFDL value option.

The format of the label control is:

 <xforms:label>button_text</xforms:label>

You can use label to set the text that the button displays, such as Delete Row. For

example:

 <xforms:label>Delete Row</xforms:label>

The label control is nested inside the trigger control. For example:

 <xforms:trigger>

 <xforms:label>Delete Row</xforms:label>

 </xforms:trigger>

Both are contained inside the XFDL button, as shown:

 <button sid="DeleteRow">

 <xforms:trigger>

 <xforms:label>Delete Row</xforms:label>

 </xforms:trigger>

 ...XFDL options...

 </button>

Add the delete action

The delete action deletes specified nodes from the instance data. If you delete a

parent node, its children are deleted as well.

The format of the delete action is:

 <xforms:delete ...attributes.../>

Delete has three attributes:

1. at — Determines the location of the items to be deleted. This attribute usually

refers to an XFDL group-type item, such as pane, table, or group. The format of

at is:

 at="index(’item_sid’)"

2. nodeset — Indicates the node or nodeset to be deleted. The format of nodeset is:

 nodeset="node"

3. event — Indicates the type of event that is triggered. In the case of insert, it is

always:

 ev:event="DOMActivate"

An example of a delete control with all of its attributes is:

Creating an XForms model 33

<xforms:delete

 at="index(’customer_table’)"

 nodeset="customer"

 ev:event="DOMActivate"/>

Delete is placed inside of the trigger control that activates the action. For example:

 <xforms:trigger>

 <xforms:label>Delete Row</xforms:label>

 <xforms:delete

 at="index(’customer_table’)"

 nodeset="customer"

 ev:event="DOMActivate"/>

 </xforms:trigger>

Both are contained inside the XFDL button, as shown:

 <button sid="DeleteRow">

 <xforms:trigger>

 <xforms:label>Delete Row</xforms:label>

 <xforms:delete

 at="index(’customer_table’)"

 nodeset="customer"

 ev:event="DOMActivate"/>

 </xforms:trigger>

 ...XFDL options...

 </button>

Example of a completed delete row button

The following code shows a sample of a button that removes a row from a table:

 <button sid="DeleteRow">

 <xforms:trigger>

 <xforms:label>Delete Row</xforms:label>

 <xforms:delete

 at="index(’customer_table’)"

 nodeset="customer"

 ev:event="DOMActivate"/>

 </xforms:trigger>

 <fontcolor>blue</fontcolor>

 <itemlocation>

 <x>0</x>

 <y>23</y>

 </itemlocation>

 <size>

 <width>20</width>

 <height>10</height>

 </size>

 <value></value>

 </button>

Creating fields

Generally, you use fields to collect information from the user, such as names, dates,

dollar amounts, and so on. You can set up fields to check and restrict users’

entries, to flag errors and omissions and provide help on how to correct them, to

format user input in a standard style, and to perform calculations and make logical

decisions.

You can use form controls to create four different kinds of fields:

v Single line fields

v Multi-line fields

v Password fields

34

v Rich Text Fields

Note: To create a readonly field, use the readonly model item property. For

detailed information about the readonly model item property, see

“Readonly” on page 19.

Creating single line fields

Single line fields allow users to enter only a single line of text. This is done using

an input control. Input limits a field’s text area to a single line and links it to a

node in the data instance.

To create a single line field, you must:

v Create the data node

v Create the XFDL field.

v Add the input control.

v Add the label control.

Create the data node

As fields simply collect user input, you need to create a node in the data instance

to contain the user’s data. You can name this node anything you want, although it

should describe the purpose of the node. In the example for this section, we will

create a field that requests the user’s name. Therefore, we will name the node

<name>. For example:

 <name></name>

Create the XFDL field

The single line field is written as a normal XFDL field item. Using XFDL options,

you can modify the field’s appearance and position any way you want. This

includes determining size of the field and the color of its text.

For example, you might create the following field:

 <field sid="Name">

 <itemlocation>

 <x>0</x>

 <y>23</y>

 </itemlocation>

 <size>

 <width>20</width>

 <height>10</height>

 </size>

 <value></value>

 </field>

Add the input control

The input control limits a field’s text area to a single line and links it to a node in

the data instance. The format of the input control is:

 <xforms:input attribute>...xforms_label...</xforms:input>

Input has three attributes:

1. ref — The path to the instance node. This attribute links the input control to the

form node. The format of ref is:

 ref="path_to_node"

Creating an XForms model 35

For example, if the input control was associated with the <name> node inside

the <personal_info> instance, then the XPath reference would be:

 ref="instance(’personal_info’)/name"

2. model — The id of the XForms model that contains the instance you want to

reference. This attribute is optional. If model is not included, it will default to

the first model. The format of model is:

 model="model_id"

For example, if the model id was ″model2″, then you would write:

 model="model2"

3. bind — The id of a bind whose nodeset is used to reference the data node you

want to associate with the field. Input must have either a bind attribute or a ref

attribute. The format of bind is:

 bind="bind_id"

For example, if the bind id was ″setRelevant″, then you would write:

 bind="setRelevant"

The input control is nested inside the XFDL field item, as shown:

 <field sid="Name">

 <xforms:input ref="instance(’personal_info’)/name">

 ...xforms_label...

 </xforms:input>

 ...XFDL options...

 </field>

Add the label control

The label control is a mandatory element of the input control. It is intended to

provide text for the field’s label. However, if you prefer use to use an XFDL label

item to label the field, the content of the label control may be left blank. If the label

control has a value, it overrides the XFDL label item.

The format of the label control is:

 <xforms:label>text</xforms:label>

The label control is nested inside the input control. For example:

 <xforms:input>

 <xforms:label>Name</xforms:label>

 </xforms:input>

Both are contained inside the XFDL field, as shown:

 <field sid="Name">

 <xforms:input ref="instance(’personal_info’)/name">

 <xforms:label>Name</xforms:label>

 </xforms:input>

 ...XFDL options...

 </field>

Example of a completed single line field

The following code shows a sample of a field that is limited to a single line:

 <field sid="Name">

 <xforms:input ref="instance(’personal_info’)/name">

 <xforms:label>Name</xforms:label>

 </xforms:input>

 <fontcolor>blue</fontcolor>

 <itemlocation>

36

<x>0</x>

 <y>23</y>

 </itemlocation>

 <size>

 <width>20</width>

 <height>10</height>

 </size>

 <value></value>

 </field>

Creating multi-line fields

Multi-line fields are not limited in the number of lines they display. This is done

using the textarea control. Textarea also links the field to a node in the data instance.

To create a multi line field, you must:

v Create the data node.

v Create the XFDL field.

v Add the textarea control.

v Add the label control.

Create the data node

As fields simply collect user input, you need to create a node in the data instance

to contain the user’s data. You can name this node anything you want, although it

should describe the purpose of the node. In the example for this section, we will

create a field that collects additional comments. Therefore, we will name the node

<comments>. For example:

 <comments></comments>

Create the XFDL field

The multi line field is written as a normal XFDL field item. Using XFDL options,

you can modify the field’s appearance and position any way you want. This

includes determining size of the field and the color of its text.

For example, you might create the following field:

 <field sid="Comments">

 <itemlocation>

 <x>0</x>

 <y>23</y>

 </itemlocation>

 <size>

 <width>20</width>

 <height>10</height>

 </size>

 <value></value>

 </field>

Add the textarea control

The textarea control links the field to a node in the data instance. Textarea does not

limit the size of the field.

The format of the textarea control is:

 <xforms:textarea attribute> ...xforms_label... </xforms:textarea>

Textarea has three attributes:

Creating an XForms model 37

1. ref — The path to the instance node. This attribute links the textarea control to

the form node. The format of ref is:

 ref="path_to_node"

For example, if the textarea control was associated with the <comments> node

inside the personal_info instance, then the XPath reference would be:

 ref="instance(’personal_info’)/comments"

2. model — The id of the XForms model that contains the instance you want to

reference. This attribute is optional. If model is not included, it will default to

the first model. The format of model is:

 model="model_id"

For example, if the model id was ″model2″, then you would write:

 model="model2"

3. bind — The id of a bind whose nodeset is used to reference the data node you

want to associate with the field. Textarea must have either a bind attribute or a

ref attribute. The format of bind is:

 bind="bind_id"

For example, if the bind id was ″setRelevant″, then you would write:

 bind="setRelevant"

The textarea control is nested inside the XFDL field item:

 <field sid="Comments">

 <xforms:textarea ref="instance(’personal_info’)/comments">

 ...xforms_label...

 </xforms:textarea>

 ...XFDL options...

 </field>

Add the label control

The label control is a mandatory element of the textarea control. It is intended to

provide text for the field’s label. However, if you prefer use to use an XFDL label

item to label the field, the content of the label control may be left blank. If the label

control has a value, it overrides the XFDL label item.

The format of the label control is:

 <xforms:label>text</xforms:label>

The label control is nested inside the textarea control. For example:

 <xforms:textarea>

 <xforms:label>Comments</xforms:label>

 </xforms:textarea>

Both are contained inside the XFDL field, as shown:

 <field sid="Comments">

 <xforms:textarea ref="instance(’personal_info’)/comments">

 <xforms:label></xforms:label>

 </xforms:textarea>

 ...XFDL options...

 </field>

Example of a completed multi-line field

The following code shows a sample of a multi line field:

38

<field sid="Comments">

 <xforms:textarea ref="instance(’personal_info’)/comments">

 <xforms:label>Comments</xforms:label>

 </xforms:textarea>

 <fontcolor>blue</fontcolor>

 <itemlocation>

 <x>0</x>

 <y>23</y>

 </itemlocation>

 <size>

 <width>20</width>

 <height>10</height>

 </size>

 <value></value>

 </field>

Creating password fields

Password fields allow users to enter write-only data. Any text typed by the users

appears in the field as a line of asterisks, which prevents others from seeing the

user’s password.

To create password field, you must use the secret control. The secret control ensures

that the user’s input is displayed as asterisks, limits the field’s text area to a single

line, and links the data to a node in the data instance.

To create a password field, you must:

v Create the data node.

v Create the XFDL field.

v Add the secret control.

v Add the label control.

Create the data node

As fields simply collect user input, you need to create a node in the data instance

to contain the user’s data. You can name this node anything you want, although it

should describe the purpose of the node. In the example for this section, we will

create a field that requests the user’s password. Therefore, we will name the node

<password>. For example:

 <password></password>

Create the XFDL field

The password field is written as a normal XFDL field item. Using XFDL options,

you can modify the field’s size and positioning any way you want.

For example, you might create the following field:

 <field sid="Password">

 <itemlocation>

 <x>0</x>

 <y>23</y>

 </itemlocation>

 <size>

 <width>20</width>

 <height>10</height>

 </size>

 <value></value>

 </field>

Creating an XForms model 39

Add the secret control

The secret control ensures that any data a user enters into the field is represented

by asterisks. The correct data is still passed to the data node, but protected from

view within the form. Secret also limits the field to a single line.

The format of the secret control is:

 <xforms:secret attribute>...xforms_label...</xforms:secret>

Secret has three attributes:

1. ref — The path to the instance node. This attribute links the secret control to the

form node. The format of ref is:

 ref="path_to_node"

For example, if the secret control was associated with the <password> node

inside the <personal_info> instance, then the XPath reference would be:

 ref="instance(’personal_info’)/password"

2. model — The id of the XForms model that contains the instance you want to

reference. This attribute is optional. If model is not included, it will default to

the first model. The format of model is:

 model="model_id"

For example, if the model id was ″model2″, then you would write:

 model="model2"

3. bind — The id of a bind whose nodeset is used to reference the data node you

want to associate with the field. Secret must have either a bind attribute or a ref

attribute. The format of bind is:

 bind="bind_id"

For example, if the bind id was ″setRelevant″, then you would write:

 bind="setRelevant"

The secret control is nested inside the XFDL field item:

 <field sid="Password">

 <xforms:secret ref="instance(’personal_info’)/password">

 ...xforms_label...

 </xforms:secret>

 ...XFDL options...

 </field>

Add the label control

The label control is a mandatory element of the secret control. However, if you

prefer use to use an XFDL label item to label the field, the content of the label

control may be left blank. If the label control has a value, it overrides the XFDL

label item.

The format of the label control is:

 <xforms:label>text</xforms:label>

The label control is nested inside the textarea control. For example:

 <xforms:secret>

 <xforms:label>Password</xforms:label>

 </xforms:secret>

Both are contained inside the XFDL field, as shown:

40

<field sid="Password">

 <xforms:secret ref="instance(’personal_info’)/password">

 <xforms:label>Password</xforms:label>

 </xforms:secret>

 ...XFDL options...

 </field>

Example of a completed password field

The following code shows a sample of a password field:

 <field sid="Password">

 <xforms:secret ref="instance(’personal_info’)/password">

 <xforms:label>Password</xforms:label>

 </xforms:secret>

 <itemlocation>

 <x>0</x>

 <y>23</y>

 </itemlocation>

 <size>

 <width>20</width>

 <height>10</height>

 </size>

 <value></value>

 </field>

Creating labels

A label is an XFDL item that displays text or images and does not accept user

input. Labels are normally used as titles or to identify or describe another item that

does require user input, such as fields or radio buttons.

There are two kinds of XForms labels:

v Stand-alone text and image labels.

v Text labels that describe another item.

There are also XFDL label items (that do not contain XForms controls), which offer

more flexibility for appearance and positioning than XForms label controls. You will

probably find that there are many situations where you prefer to use XFDL labels

instead of label controls. Best practices for use are discussed in the following

sections.

Creating stand-alone labels

Stand-alone labels are frequently used as titles, to display the results of

calculations, or to display images. They are not associated with any other item.

These labels may be strictly XFDL label items or they may contain an output

control. If a stand-alone label has static content, you may prefer to use only XFDL

options to create it. However, if the label gets its content from a data node, it must

contain an output control.

To create a stand-alone label with content from the data instance, you must:

v Create the data node.

v Create an XFDL label.

v Add the output control.

Create the data node

As labels simply display data, you only need to create a node in the data instance

to contain the information you want to display. You can name this node anything

Creating an XForms model 41

you want, although it should describe the purpose of the node. In the example for

this section, we will create a label that displays the Grand Total of a purchase

form. Therefore, we will name the node <grand_total>. For example:

 <grand_total></grand_total>

Create the XFDL label

The stand-alone label is written as a normal XFDL label item. Using XFDL options,

you can modify the label’s size, appearance, and positioning any way you want.

For example, you might create the following label:

 <label sid="GrandTotal">

 <itemlocation>

 <x>0</x>

 <y>23</y>

 </itemlocation>

 <size>

 <width>20</width>

 <height>10</height>

 </size>

 <value></value>

 </label>

Add the output control

The output control provides an image or text for an XFDL label item through its

link to a data node.

The format of the output control is:

 <xforms:output attribute></xforms:output>

Output has three attributes:

1. ref — The path to the instance node. This attribute links the output control to

the form node. The format of ref is:

 ref="path_to_node"

For example, if the output control was associated with the <grand_total> node,

then the XPath reference would be:

 ref="grand_total"

2. model — The id of the XForms model that contains the instance you want to

reference. This attribute is optional. If model is not included, it will default to

the first model. The format of model is:

 model="model_id"

For example, if the model id was ″model2″, then you would write:

 model="model2"

3. bind — The id of a bind whose nodeset is used to reference the data node you

want to associate with the label. Output must have either a bind attribute or a

ref attribute. The format of bind is:

 bind="bind_id"

For example, if the bind id was ″setRelevant″, then you would write:

 bind="setRelevant"

The output control is nested inside the XFDL label item :

42

<label sid="GrandTotal">

 <xforms:output ref="grand_total">

 </xforms:output>

 ...XFDL options...

 </label>

An example of a completed stand-alone label

The following code shows a sample of a stand-alone label:

 <label sid="GrandTotal">

 <xforms:output ref="grand_total">

 </xforms:output>

 <itemlocation>

 <x>0</x>

 <y>23</y>

 </itemlocation>

 <size>

 <width>20</width>

 <height>10</height>

 </size>

 <value></value>

 </label>

Creating labels describing specific items

The majority of labels specifically describe other items, such as fields, radio

buttons, and so on. In XForms, the need for such labeling is recognized by the label

control. Most XForms controls, such as input, secret, and textarea require a

mandatory label control as part of their code. However, the XForms label control

does not allow for special positioning or appearance options. For this reason, many

form designers prefer to leave the label control blank, and use an XFDL label item

to label the item. However, if your label gets its content from the data instance,

your must use an XForms control.

To create a label control that references a data node, you must:

v Create the data node (optional).

v Create the item you want to label.

v Add its corresponding form control.

v Add a label control.

Create the data node

As labels simply display data, you only need to create a node in the data instance

to contain the information you want to display. You can name this node anything

you want, although it should describe the purpose of the node. Note that if you

plan to leave the xforms label blank and replace it with an XFDL label, you do not

need to create a data node for the label.

In the example for this section, we want to create a label for the ″Last Name″ field.

Therefore, we will name the node <lname_label>. For example:

 <lname_label></lname_label>

Create the XFDL item you want to label

Every item that allows user input on a form needs to have a label. In this example,

we are using a field, but labels can be used with any item.

An example of a basic XFDL field is:

Creating an XForms model 43

<field sid="LastName">

 <itemlocation>

 <x>0</x>

 <y>23</y>

 </itemlocation>

 <size>

 <width>20</width>

 <height>10</height>

 </size>

 <value></value>

 </field>

Add the corresponding form control

Form controls link the XFDL item to the XForms data instance. Without the form

control, there is no link and the item cannot receive data from nor send data to the

instance. The type of form control you use depends on the type of item you want

to create. For example, if you wanted to create a multi-line field, you would use

textarea. If you wanted to create a list, you would use select1. For the purposes of

our example, we are creating a single line field, so we will use input.

The input control limits a field’s text area to a single line and links it to a node in

the data instance. The format of the input control is:

 <xforms:input attribute>...xforms_label...</xforms:input>

Input has three attributes:

1. ref — The path to the instance node. This attribute links the input control to the

form node. The format of ref is:

 ref="path_to_node"

For example, if the input control was associated with the <name> node inside

the personal_info instance, then the XPath reference would be:

 ref="instance(’personal_info’)/lname_label"

2. model — The id of the XForms model that contains the instance you want to

reference. This attribute is optional. If model is not included, it will default to

the first model. The format of model is:

 model="model_id"

For example, if the model id was ″model2″, then you would write:

 model="model2"

3. bind — The id of a bind whose nodeset is used to reference the data node you

want to associate with the field. Input must have either a bind attribute or a ref

attribute. The format of bind is:

 bind="bind_id"

For example, if the bind id was ″setRelevant″, then you would write:

 bind="setRelevant"

The input control is nested inside the XFDL field item:

 <field sid="LastName">

 <xforms:input ref="instance(’personal_info’)/lname_label">

 ...xforms_label...

 </xforms:input>

 ...XFDL options...

 </field>

44

Add the label control

The label provides a label for items. It is equivalent to an XFDL label option,

although form developers cannot specify a label controls appearance.

The format of the label control is:

 <xforms:label ...XPath Ref...>text</xforms:label>

The label control is a mandatory element inside many other form controls,

including input, secret, select, select1, submit, textarea, trigger, and upload.

Label has two attributes:

1. ref — The path to the instance node. This attribute links the input control to the

form node. The format of ref is:

 ref="path_to_node"

For example, if the input control was associated with the <lname_label> node

inside the personal_info instance, then the XPath reference would be:

 ref="instance(’personal_info’)/lname_label"

2. bind — The id of a bind whose nodeset is used to reference the data node you

want to associate with the label. If the label does not have a static value, then

xforms:label must have either a bind attribute or a ref attribute. The format of

bind is:

 bind="bind_id"

For example, if the bind id was ″setRelevant″, then you would write:

 bind="setRelevant"

Ref and bind are only used if you want the content of this label to be controlled by

the data node. For example, if the content of the data node is supplied by another

item, you would use the ref attribute to associate the label with that data. An

example of a label with a ref attribute is:

 <xforms:label ref="instance(’personal_info’)/lname_label"/>

If you want the label to have a static value, do not use a ref or bind attribute. For

example:

 <xforms:label>Last Name</xforms:label>

The label control is nested inside the form control it describes. In this case, input.

For example:

 <field sid="LastName">

 <xforms:input ref="instance(’personal_info’)/last_name">

 <xforms:label ref="instance(’personal_info’)/lname_label"/>

 </xforms:input>

 ...XFDL options...

 </field>

An example of a completed item with a label control

The following code shows a sample of a field with a label control:

 <field sid="LastName">

 <xforms:input ref="instance(’personal_info’)/last_name">

 <xforms:label ref="instance(’personal_info’)/lname_label">

 </xforms:label>

 </xforms:input>

 <itemlocation>

 <x>0</x>

Creating an XForms model 45

<y>23</y>

 </itemlocation>

 <size>

 <width>20</width>

 <height>10</height>

 </size>

 <value></value>

 </field

Creating lists

Lists provide you with various different ways to present multiple choices to users.

Each one serves a different purpose. Lists include:

v Check Boxes — Use check boxes with the select control if you want the user to be

able to select more than one of the choices you present.

v Exclusive Check Boxes — Use exclusive check boxes with the select1 control if

you want the appearance of a check list, but only allow the user to select one

option.

v Radio Buttons — Use radio buttons with the select1 control if you:

– Want the user to select only one choice.

– Want to show all of the possible choices at once.

– Want the user to have to click just once to select the choice.

– Have a limited number of choices.
v Lists — Use lists with the select1 control if you:

– Want the user to select only one choice.

– Want to save space on your form.

– Want to have your application dynamically generate lists of choices and insert

them into the form.

You can choose from three kinds of lists: popup lists, combo box lists, and box

lists.

v Popup List — A popup list appears as a single field on your form. It allows the

user to select a single choice.

v Combo box list — A combo box list appears as a single field on your form. It

allows the user to type in a choice or choose one from a popup list.

v Box list — A box list can be any size and displays choices in a scrolling list.

As well as providing multiple ways of displaying choices to users, XForms allows

you to choose how you create lists. You have two options:

v Auto-Generated List — The list is generated directly from a data instance. There

is an associated data node for each choice in the list.

v List Items Specified in the User Interface — In this type of list, you must create

individual cells and labels inside the list items. This type of list is associated to a

single data node that records the user’s selection.

Creating an auto-generated list

When you create an auto-generated list, the content of the list is determined by the

data model. To create an auto-generated list, you must create a new instance with

data nodes that represent each choice in the list. These choices are linked with the

XFDL list through the itemset control.

To create an auto-generated list:

v Create the instance that will contain the list selections.

46

v Create the XFDL list.

v Add the select or select1 control.

v Add its label control.

v Add the itemset control.

v Add its label control.

v Add its value control.

Create the instance

The data instance contains the list selections as a group of nodes. The names of

these nodes are arbitrary, but they must all be the same. Furthermore, the names

should be representative of the purpose of the nodes, such as ″choice″ or ″option″.

For the purposes of this example, we will use choice.

The format of our choice node is:

 <choice attribute>database entry</choice>

The attribute of the choice node is arbitrary. Typically, it is best to choose an

attribute name that describes the responsibility of the node. As the content of the

attribute will be what is displayed in the list, the attribute name is frequently

″show″ or ″display″. For example:

 <choice show="option">database entry</choice>

While you may use any attribute name you like, remember that this attribute must

be later referenced by form controls in the list.

The content of the attribute depends on what choice you want to display on the

screen. For example, if your form is collecting the user’s donation amount, the

choices would reflect possible contribution amounts, such as $15, $25, $50, and so

on. For example:

 <choice show="$25">database entry</choice>

 <<<<<<< i_xforms_g_creating_lists_auto-generated.dita

 =======

The text that goes between the two choice tags is the text that you want to have

appear in data instance or in your database. This text may be the same as the

option or an abbreviated code, such as `25’. For example:

 >>>>>>> 1.2

 <choice display="$25">25</choice>

The following example shows an instance that contains a list of donation options:

 <xforms:instance xmlns="" id="donation">

 <options>

 <choice display="$15">15</choice>

 <choice display="$25">25</choice>

 <choice display="$50">50</choice>

 <choice display="$75">75</choice>

 <choice display="$100">100</choice>

 </options>

 </xforms:instance>

Create the XFDL list

The XFDL wrapper for a list created from the data instance can be any XFDL list

type, such as checkgroups, comboboxes, or box lists.

Creating an XForms model 47

For example, you might create the following list:

 <combobox sid="Donations">

 <itemlocation>

 <x>0</x>

 <y>23</y>

 </itemlocation>

 <bgcolor>bisque</bgcolor>

 <fontcolor>119,106,91</fontcolor>

 </combobox>

Add the select or select1 control

To create a list from a data instance, you must use the appropriate select or select1

controls. The select control is used to create a group that allows users to select more

than one option, while the select1 control limits users to a single choice. For the

purposes of our example, we are using select1.

The format of the select1 control is:

 <xforms:select1 attributes>

 ...xforms_itemset...

 ...xforms_label...

 </xforms:select1>

Select1 has five attributes:

1. appearance — Determines how the list is displayed to the user. The format of

appearance is always:

 appearance="setting"

There are three possible settings for appearance:

v full — Expands the list so that the entire list is always visible. Use with

checkgroups and radiogroups.

v minimal — Limits the list to one row in height unless it is being accessed by

a user. Use with popups and comboboxes.

v compact — Displays the list as a framed box list. Use with box lists only.
2. ref — The path to the instance node . This attribute links the select1 control to

the form node that will accept user input. The format of ref is:

 ref="path_to_node"

For example, if the select1 control was associated with the <donation> node in

the <customer_info> instance, then the XPath reference would be

 ref="instance(’customer_info’)/donation"

3. model — The id of the XForms model that contains the instance you want to

reference. This attribute is optional. If model is not included, it will default to

the first model. The format of model is:

 model="model_id"

For example, if the model id was ″model2″, then you would write:

 model="model2"

4. bind — The id of a bind whose nodeset is used to reference the data node you

want to associate with the list. Select and select1 must have either a bind

attribute or a ref attribute. The format of bind is:

 bind="bind_id"

For example, if the bind id was ″setRelevant″, then you would write:

 bind="setRelevant"

5. selection — Determines whether the user can add their own entry to the list.

This attribute is used with comboboxes only. The format of selection is always:

48

selection="open"

An example of a completed select1 control for a combobox is:

 <xforms:select1 appearance="minimal"

 selection="open"

 ref="instance(’customer_info’)/donation">

 ...xforms_label...

 ...xforms_itemset...

 </xforms:select1>

The select1 control is nested inside the XFDL combobox item:

 <combobox sid="Donations>

 <xforms:select1 appearance="minimal"

 selection="open"

 ref="instance(’customer_info’)/donation">

 ...xforms_label...

 ...xforms_itemset...

 </xforms:select1>

 ...XFDL options...

 </combobox>

Add the label control

The label control is a mandatory element of the select and select1 controls. It is used

to provide a label for the entire list. As you cannot control the appearance or

placement of the label control, you may prefer to leave the label control blank and

replace it with a customizable XFDL label item.

The format of the label control is:

 <xforms:label>text</xforms:label>

The label control is nested inside the select and select1 controls. For example:

 <xforms:select1 appearance="minimal"

 selection="open"

 ref="instance(’customer_info’)/donation">

 <xforms:label> Donation Amount </xforms:label>

 ...xforms_itemset...

 </xforms:select1>

Add the itemset control

The itemset control is used with list-type items, such as checkgroups, radiogroups,

and comboboxes. In combination with other controls such as select and select1,

itemset allows you to create lists and groups that offer dynamic choices that are

determined while the form is in use.

The format of the itemset control is:

 <xforms:itemset attribute>

 ...xforms:label...

 ...xforms:value...

 </xforms:itemset>

Itemset has one attribute:

v Nodeset — The path to the group of nodes that provide the list options. The

format of nodeset is:

 nodeset="path to nodes"

For example, if the itemset control was associated with the <choice> nodes inside

the donation instance, then the nodeset would be:

Creating an XForms model 49

nodeset="instance(’donation’)/choice"

An example of a completed itemset control is:

 <xforms:itemset nodeset="instance(’donation’)/choice">

 </xforms:itemset>

Itemset is nested inside the select1 control. For example:

 <xforms:select1 appearance="minimal"

 selection="open"

 ref="instance(’customer_info’)/donation">

 <xforms:label></xforms:label>

 <xforms:itemset nodeset="instance(’donation’)/choice">

 </xforms:itemset>

 </xforms:select1>

Add the label control

The label control is a mandatory element of the itemset control. This label is used to

provide the choices for the list. Using a reference to the attributes of the <choice>

nodes, label creates and displays the list of choices that are displayed to the user.

The format of the label control is:

 <xforms:label attribute/>

This label control must always contain a ref attribute that references the attributes

of the data nodes that contain the list of choices. The format of ref is:

 ref="@attribute"

For example, if the label control was associated with the display attribute of the

<choice> nodes in the <donation> instance, then the XPath reference would be:

 ref="@display"

An example of a complete label control for itemset is:

 <xforms:label ref="@display"/>

The label control is nested inside the itemset control. For example:

 <xforms:itemset nodeset="instance(’donation’)/choice">

 <xforms:label ref="@display"/>

 ...xforms:value...

 </xforms:itemset>

Add the value control

The value control indicates which options are selected. It also collects user

selections and passes them to the XFDL value option. The select1 control collects

this data from the XFDL value option and passes it to the data node.

The format of value is:

 <xforms:value attribute></xforms:value>

Value has one attribute:

v ref — The path to the instance node . This attribute links the select1 control to

the form node that will accept user input. The ref attribute of a value control in a

list is always:

 ref="."

50

An example of a completed value control is:

 <xforms:value ref="."/>

Value is nested inside the itemset control. For example:

 <xforms:itemset nodeset="instance(’donation’)/choice">

 <xforms:label ref="@display"/>

 <xforms:value ref="."/>

 </xforms:itemset>

Example of a completed auto-generated list

The following example shows a completed combobox:

 <combobox sid="Donations">

 <xforms:select1 appearance="minimal"

 selection="open"

 ref="instance(’customer_info’)/donation">

 <xforms:label></xforms:label>

 <xforms:itemset nodeset="instance(’donation’)/choice">

 <xforms:label ref="@display"/>

 <xforms:value ref="."/>

 </xforms:itemset>

 </xforms:select1>

 <itemlocation>

 <x>0</x>

 <y>23</y>

 </itemlocation>

 <bgcolor>bisque</bgcolor>

 <fontcolor>119,106,91</fontcolor>

 </combobox>

Creating a list with choices specified in the user interface

Specifying your list choices inside the UI allows you to minimize the number of

nodes in your data instance. Instead of creating data nodes, you must add an item

control to the list for every choice you want to offer.

To create a list using the item control:

v Create the data node.

v Create an XFDL list.

v Add the select or select1 control.

v Add its label control.

v Add the first choice:

– Add the item control.

– Add its label control.

– Add its value control.
v Add remaining choices.

Create the data node

As you are specifying your list choices in the user interface, you only need to

create a node in the data instance to collect the user’s selection. You can name

these nodes anything you want, although it should describe the purpose of the

node. In the example for this section, we will create a popup that offers menu

selections. Therefore, we will name the node <menu_prefs>. For example:

 <menu_prefs></menu_prefs>

Creating an XForms model 51

Create the XFDL list item

The XFDL wrapper for a list with choices specified in the user interface can be any

XFDL list type, such as checkgroups, comboboxes, or box lists.

For example, you might create the following list:

 <popup sid="MenuPrefs>

 <itemlocation>

 <x>0</x>

 <y>23</y>

 </itemlocation>

 <bgcolor>bisque</bgcolor>

 <fontcolor>119,106,91</fontcolor>

 </popup>

Add the select or select1 control

To create a list-type item, you must use the appropriate select or select1 control. The

select control is used to create a group that allows users to select more than one

option, while the select1 control limits users to a single choice. For the purposes of

our example, we are using select1.

The format of the select1 control is:

 <xforms:select1 attributes>

 ...xforms_items...

 ...xforms_label...

 </xforms:select1>

Select1 has three attributes:

v ref — The path to the instance node . This attribute links the select control to the

form node that will accept user input. The format of ref is:

 ref="path_to_node"

For example, if the select control was associated with the <menu_prefs> node in

the customer_info instance, then the XPath reference would be

 ref="instance(’customer_info’)/menu_prefs"

v model — The id of the XForms model that contains the instance you want to

reference. This attribute is optional. If model is not included, it will default to the

first model. The format of model is:

 model="model_id"

For example, if the model id was “model2”, then you would write:

 model="model2"

v bind — The id of a bind whose nodeset is used to reference the data node you

want to associate with the list. Select and select1 must have either a bind attribute

or a ref attribute. The format of bind is:

 bind="bind_id"

For example, if the bind id was ″setRelevant″, then you would write:

 bind="setRelevant"

v appearance — Determines how the select1 control is displayed to the user. For

popup, the format of appearance is always:

 appearance="minimal"

However, there are three possible settings for appearance:

– full — Expands the list so that the entire list is always visible. Use with

checkgroups and radiogroups.

52

– minimal — Limits the list to one row in height unless it is being accessed by

a user. Use with popups and comboboxes.

– compact — Displays the list as a framed box list. Use with box lists only.
v selection — Determines whether the user can add their own entry to the list.

This attribute is used with comboboxes only. The format of selection is always:

 selection="open"

An example of a completed select1 control is:

 <xforms:select1 appearance="minimal"

 ref="instance(’customer_info’)/menu_prefs">

 ...xforms_label...

 ...xforms_itemset...

 </xforms:select1>

The select1 control is nested inside the XFDL popup item:

 <popup sid="MenuPrefs>

 <xforms:select1 appearance="full"

 ref="instance(’customer_info’)/menu_prefs">

 ...xforms_label...

 ...xforms_items...

 </xforms:select1>

 ...XFDL options...

 </popup>

Add the label control

The label control is a mandatory element of the select control. It is used to provide a

label for the entire checkgroup. As you cannot control the appearance or placement

of the label control, you may prefer to leave the label control blank and replace it

with a customizable XFDL label item.

The format of the label control is:

 <xforms:label></xforms:label>

The label control is nested inside the select1 control. For example:

 <xforms:select1 appearance="full" ref="menu_prefs">

 <xforms:label> </xforms:label>

 ...xforms_items...

 </xforms:select>

Add the item control for the first choice

The item control is used to create choices inside list-type items, such as

checkgroups, radiogroups, and comboboxes.

The format of the item control is:

 <xforms:item>

 ...xforms:label...

 ...xforms:value...

 </xforms:item>

Item is nested inside the select1 control. For example:

 <xforms:select1 appearance="minimal"

 ref="instance(’customer_info’)/menu_prefs">

 <xforms:label> </xforms:label>

 <xforms:item>

Creating an XForms model 53

...xforms:label...

 ...xforms:value...

 </xforms:item>

 </xforms:select1>

Add the label control for the first choice

The label control is used to provide the content of the popup. You place the name

of the popup choice between the label tags.

The format of the label control is:

 <xforms:label>choice</xforms:label>

For example, if you wanted your popup list to display a list of menu options, your

label might read:

 <xforms:label>Chicken</xforms:label>

The label control is nested inside the item control. For example:

 <xforms:item>

 <xforms:label>Chicken</xforms:label>

 ...xforms:value...

 </xforms:item>

Add the value control for the first choice

The value control indicates which data is passed to the instance if this choice is

selected.

The format of value is:

 <xforms:value>choice_data</xforms:value>

For example, if your menu database has three letter codes to represent each menu

choice, then the value might be:

 <xforms:value>chk</xforms:value>

Value is nested inside the item control. For example:

 <xforms:item>

 <xforms:label>Chicken</xforms:label>

 <xforms:>chk</xforms:value>

 </xforms:item>

Add remaining choices

You must create an item control, with nested label and value controls for each choice

you want to have in your list. For example, if you wanted your menu to offer roast

beef, chicken, salmon, or vegetarian options, your popup would contain the

following four item controls with their corresponding label and value controls:

 <xforms:item>

 <xforms:label>Roast Beef</xforms:label>

 <xforms:value>Beef</xforms:value>

 </xforms:item>

 <xforms:item>

 <xforms:label>Chicken</xforms:label>

 <xforms:value>chicken</xforms:value>

 </xforms:item>

 <xforms:item>

 <xforms:label>Salmon</xforms:label>

 <xforms:value>salmon</xforms:value>

54

</xforms:item>

 <xforms:item>

 <xforms:label>Vegetarian</xforms:label>

 <xforms:value>veggie</xforms:value>

 </xforms:item>

Example of a completed popup

The following example shows a completed popup:

 <popup sid="MenuPrefs">

 <xforms:select1 appearance="minimal" ref="menu_prefs">

 <xforms:label></xforms:label>

 <xforms:item>

 <xforms:label>Roast Beef</xforms:label>

 <xforms:value>Beef</xforms:value>

 </xforms:item>

 <xforms:item>

 <xforms:label>Chicken</xforms:label>

 <xforms:value>chicken</xforms:value>

 </xforms:item>

 <xforms:item>

 <xforms:label>Salmon</xforms:label>

 <xforms:value>salmon</xforms:value>

 </xforms:item>

 <xforms:item>

 <xforms:label>Vegetarian</xforms:label>

 <xforms:value>veggie</xforms:value>

 </xforms:item>

 </xforms:select1>

 <itemlocation>

 <x>0</x>

 <y>23</y>

 </itemlocation>

 <bgcolor>bisque</bgcolor>

 <fontcolor>119,106,91</fontcolor>

 </popup>

Creating date pickers

Date pickers are comboboxes that open to display a calendar rather than a list. The

user can type a date into the combo box, or use the calendar to select a date. In

either case, the date is displayed in the format of your choice.

To create a date picker:

v Create the data node.

v Create an XFDL combobox.

v Add an input control.

v Add its label control.

Create the data node

As date pickers simply collect user input, you need to create a node in the data

instance to contain the date. You can name this node anything you want, although

it should describe the purpose of the node. In the example for this section, we will

create a combobox that requests an employee’s hiring date. Therefore, we will

name the node <hire_date>. For example:

 <hire_date></hire_date>

Creating an XForms model 55

Create the XFDL combobox

Comboboxes display a list of choices and allow users to type in a choice if they

want. When selecting from the list, users may only select one option. You should

use comboboxes whenever you want to present a list of options, but also want to

allow users to be able to enter another value as well.

For example, you might create the following combobox:

 <combobox sid="HireDate">

 <format>

 <datatype>date</datatype>

 </format>

 <fontcolor>blue</fontcolor>

 <itemlocation>

 <x>0</x>

 <y>23</y>

 </itemlocation>

 <size>

 <width>20</width>

 <height>10</height>

 </size>

 <value></value>

 </combobox>

Add the input control

The input control causes the combobox to open into a calendar instead of a list. It

also limits the combobox’s text area to a single line and links it to a node in the

data instance.

The format of the input control is:

 <xforms:input attribute> ...xforms_label... </xforms:input>

Input has three attributes:

1. ref — The path to the instance node. This attribute links the input control to the

form node. The format of ref is:

 ref="path_to_node"

For example, if the input control was associated with the <hire_date> node

inside the personal_info instance, then the XPath reference would be:

 ref="instance(’personal_info’)/hire_date"

2. model — The id of the XForms model that contains the instance you want to

reference. This attribute is optional. If model is not included, it will default to

the first model. The format of model is:

 model="model_id"

For example, if the model id was ″model2″, then you would write:

 model="model2"

3. bind — The id of a bind whose nodeset is used to reference the data node you

want to associate with the combobox. Input must have either a bind attribute or

a ref attribute. The format of bind is:

 bind="bind_id"

For example, if the bind id was ″setRelevant″, then you would write:

 bind="setRelevant"

The input control is nested inside the XFDL field item:

56

<combobox sid="HireDate">

 <xforms:input ref="instance(’personal_info’)/hire_date"

 ...xforms_label...

 </xforms:input>

 ...XFDL options...

 </combobox>

Add the label control

The label control is a mandatory element of the input control. It is used to provide a

label for the field. However, if you prefer use to use an XFDL label item to label the

field, the content of the label control may be left blank. If the label control has a

value, it overrides the XFDL label item.

The format of the label control is:

 <xforms:label></xforms:label>

The label control is nested inside the input control. For example:

 <xforms:input>

 <xforms:label></xforms:label>

 </xforms:input>

Both are contained inside the combobox, as shown:

 <combobox sid="HireDate">

 <xforms:input ref="instance(’personal_info’)/hire_date"

 <xforms:label></xforms:label>

 </xforms:input>

 ...XFDL options...

 </combobox>

Example of a completed date picker

The following code shows a sample of a date picker:

 <combobox sid="HireDate">

 <xforms:input ref="instance(’personal_info’)/hire_date"

 <xforms:label></xforms:label>

 </xforms:input>

 <format>

 <datatype>date</datatype>

 </format>

 <fontcolor>blue</fontcolor>

 <itemlocation>

 <x>0</x>

 <y>23</y>

 </itemlocation>

 <size>

 <width>20</width>

 <height>10</height>

 </size>

 <value></value>

 </combobox>

Creating conditional items

Conditional items are items that are not displayed unless the proper conditions are

met. For example, consider a form that needs to be rendered in several languages.

You could have three labels (English, French, and Spanish) for each field, or you

could create the labels and fields as conditional items and allow the user to select

their language of preference.

Creating an XForms model 57

Conditional items are always inside an XFDL pane item. Furthermore, each group

of conditional items requires a Toggle Case button to activate them.

Steps to creating conditional items

The XFDL pane item provides a wrapper for two XForms form controls: switch and

case. The switch control specifies what information is conditional. It also groups a

set of case controls. The case controls contain the different data options. For

example, if you want to have your form display in different languages, you can

create a case for each language, allowing only the text for the selected language to

be displayed.

To create conditional items:

v Create the associated nodes.

v Create an XFDL pane.

v Add the switch control.

v Add the case controls.

v Add the XFDL items to display in each case.

v Create a Toggle Case button for each case.

Create the associated nodes

When you create a switch control that contains conditional items, you must

associate it with a master or parent data node. Essentially, associating a parent node

with a switch control indicates that its child nodes have conditional associations. In

other words, these nodes may be referenced by multiple conditional items in the

user interface, but only retain the data provided by the active condition. As usual,

the name of this node is entirely arbitrary, but it should be unique and reflect the

purpose to which it will be used. In this example, our conditional items provide

text in different languages for fields that collect the user’s name and address. The

switch control and its associated node group these nodes together. Therefore, we

will call this node <switch_language>.

The format of this node is:

 <switch_language>

 ...child_nodes...

 </switch_language>

You must also create the child nodes. You must make one item node for each item

that will appear in the pane. For example, if your conditional item pane will

contain name, street, city, state, and ZIP code information, the <switch_language>

node will need to have 5 children nodes; one for each piece of data:

 <switch_language>

 <Name></Name>

 <Street></Street>

 <City></City>

 <State></State>

 <ZIP></ZIP>

 </switch_language>

Create the XFDL pane

The pane provides a wrapper for the form controls that make items conditional.

An example of a typical XFDL pane is:

58

<pane sid="LanguageSwitch">

 <fontcolor>white</fontcolor>

 <bgcolor>cadet blue</bgcolor>

 <itemlocation>

 <x>0</x>

 <y>23</y>

 </itemlocation>

 <size>

 <width>200</width>

 <height>100</height>

 </size>

 </pane>

Add the switch control

The switch control is used to group one or more case controls. Switch also provides

the XPath reference to the parent node of the associated case controls.

The format of the switch control is:

 <xforms:switch attribute></xforms:switch>

The switch control always contains one or more case controls, as shown:

 <xforms:switch attribute>

 ...xforms:case...

 ...xforms:case...

 ...xforms:case...

 </xforms:switch>

The switch control has three attributes:

1. ref — Sets the new default starting node for every ref attribute contained in the

switch control. The format of ref is:

 ref="path_to_node"

For example, if the switch control was associated with the <switch_language>

node inside the first data instance, then the XPath reference would be:

 ref="switch_language"

2. model — The id of the XForms model that contains the instance you want to

reference. This attribute is optional. If model is not included, it will default to

the first model. The format of model is:

 model="model_id"

For example, if the model id was ″model2″, then you would write:

 model="model2"

3. bind — The id of a bind whose nodeset is used to reference the data node you

want to associate with the list. Select and select1 must have either a bind

attribute or a ref attribute. The format of bind is:

 bind="bind_id"

For example, if the bind id was ″setRelevant″, then you would write:

 bind="setRelevant"

The switch control is nested inside the XFDL pane, as shown:

 <pane sid="LanguageSwitch">

 <xforms:switch ref="switch_language">

 ...xforms:case...

 ...xforms:case...

 ...xforms:case...

 </xforms:switch>

 </pane>

Creating an XForms model 59

Add the case controls

The case control encloses conditional form items. Essentially, it ensures that its

contents are not displayed unless the proper conditions are met. For example,

consider a form that needs to be rendered in several languages. You could have

three labels (English, French, and Spanish) for each field, or you could create a case

control for each language to ensure that only the user’s preferred language is

displayed. You need to create a different case for each set of conditional items.

The format of the case control is:

 <xforms:case attribute>

 ...XFDL items...

 </xforms:case>

Case has two attributes:

1. id — The name of the case. This name should be unique within the form and

clearly indicate the purpose of the conditional items. The format of id is:

 ref="unique_name"

 <<<<<<< i_xforms_g_creating_conditional_items.dita

For example, if the items defined by a case provide the Spanish version of a

form, the control’s name would be ’Spanish’:

 =======

For example, if the items defined by a case provide the Spanish version of a

form, the control’s name would be `Spanish’:

 >>>>>>> 1.2

 id="Spanish">

2. selection — Determines the starting state of the case control. This attribute

allows form designers to set a default case for the form. The format of selection

is:

 selection="state"

Selection has two possible settings: true and false. This attribute allows the form

designer to set a default case for the form.

An example of a completed case control would be:

 <xforms:case id="Spanish" selection="true">

 ...XFDL items...

 </xforms:case>

Case controls are nested inside the switch controls. Note that you need a new case

for each set of conditional items. For example:

 <xforms:switch ref="switch_language">

 <xforms:case id="Spanish" selection="true">

 ...XFDL items...

 </xforms:case>

 <xforms:case id="English" selection="true">

 ...XFDL items...

 </xforms:case>

 <xforms:case id="French" selection="true">

 ...XFDL items...

 </xforms:case>

 </xforms:switch>

60

Add the XFDL items for each case

Each case control contains the XFDL items that will be displayed when the case is

selected. These can be any XFDL items, including fields, lists, and tables. The

following example shows two fields from a Spanish case:

 <field sid="Name_Spanish">

 <xforms:input ref="name">

 <xforms:label>Nombre del contribuidor</xforms:label>

 </xforms:input>

 ...XFDL options...

 </field>

 <field sid="Address_Spanish">

 <xforms:input ref="street">

 <xforms:label>Calle</xforms:label>

 </xforms:input>

 ...XFDL options...

 </field>

Note: For explicit instructions for creating single line fields, see ″Creating Single

Line Fields″ on page page Creating Single Line Fields.

Creating a toggle case button

The Toggle Case button allows users to alternate between conditional options,

called cases. Essentially, Toggle Case buttons allow your users to select which case

they want to use.

To create a Toggle Case button, you must:

v Create an XFDL button.

v Add the trigger control.

v Add the label control.

v Add the toggle action.

Create the XFDL button

The toggle case button’s XFDL wrapper is a basic button item. Using XFDL options,

you can modify the button’s appearance and position any way you want. This

includes determining size of the button and the appearance of its text.

An example of a basic XFDL button is:

 <button sid="SwitchToSpanish">

 <itemlocation>

 <x>0</x>

 <y>23</y>

 </itemlocation>

 <size>

 <width>20</width>

 <height>10</height>

 </size>

 <value></value>

 </button>

Add the trigger control

The trigger control allows the user to trigger actions in the form. In this case, trigger

is used to activate the toggle action. Toggle selects one possible case control from the

possible cases in a switch group.

Creating an XForms model 61

The format of the trigger control is:

 <xforms:trigger></xforms:trigger>

The trigger control is nested inside the Toggle button item:

 <button sid="SwitchToSpanish">

 <xforms:trigger>

 ...xforms:label...

 ...xforms:toggle...

 </xforms:trigger>

 ...XFDL options...

 </button>

Add the label control

The label control is a mandatory element of the trigger control. It is intended to

provide the text for the button.

The format of the label control is:

 <xforms:label>button_text</xforms:label>

You can use label to set the text that the button displays, such as Switch To

Spanish. For example:

 <xforms:label>Switch To Spanish</xforms:label>

The label control is nested inside the trigger control. For example:

 <xforms:trigger>

 <xforms:label>Switch To Spanish</xforms:label>

 </xforms:trigger>

Both are contained inside the XFDL button, as shown:

 <button sid="SwitchToSpanish">

 <xforms:trigger>

 <xforms:label>Switch To Spanish</xforms:label>

 ...xforms:toggle...

 </xforms:trigger>

 ...XFDL options...

 </button>

Add the toggle action

The toggle action selects one possible case from all the possible cases contained in a

switch group. In other words, toggle ensures that the selected case is turned on,

while the other cases are turned off.

The format of toggle is:

 <xforms:toggle attributes></xforms:toggle>

Toggle has two attributes:

1. event — Indicates the type of event that is triggered. This attribute is

mandatory and is written as:

 ev:event="event"

In the case of toggle, the event is usually DOMActivate.

2. case — Indicates which case is selected when the Toggle button is pushed. The

format of case is:

 case="name"

62

This attribute must match the id of the case control you want to select. For

example, if you wanted a case with an id of ″Spanish″ to be selected, you

would write:

 case="Spanish"

An example of a complete toggle action would be:

 <xforms:toggle ev:event="DOMActivate" case="Spanish"></xforms:toggle>

The toggle action is nested inside the trigger control. For example:

 <button sid="SwitchToSpanish">

 <xforms:trigger>

 <xforms:toggle ev:event="DOMActivate" case="Spanish"/>

 <xforms:label>Switch To Spanish</xforms:label>

 </xforms:trigger>

 ...XFDL options...

 </button>

Example of a completed pane

The following code shows a sample of a pane containing conditional items:

 <pane sid="LanguageSwitch">

 <xforms:switch ref="switch_language">

 <xforms:case id="English" selection="true">

 <field sid="Name_English">

 <xforms:input ref="name">

 <xforms:label>Name of contributor</xforms:label>

 </xforms:input>

 <itemlocation>

 <x>0</x>

 <y>23</y>

 </itemlocation>

 </field>

 <field sid="Address_English">

 <xforms:input ref="street">

 <xforms:label>Street Address</xforms:label>

 </xforms:input>

 <itemlocation>

 <after>Name_English</after>

 </itemlocation>

 </field>

 ...other address fields...

 </xforms:case>

 <xforms:case id="French" selection="false">

 <field sid="Name_French">

 <xforms:input ref="name">

 <xforms:label>Nom du contributeur</xforms:label>

 </xforms:input>

 <itemlocation>

 <x>0</x>

 <y>23</y>

 </itemlocation>

 </field>

 <field sid="Address_French">

 <xforms:input ref="street">

 <xforms:label>Rue</xforms:label>

 </xforms:input>

 <itemlocation>

 <after>Name_French</after>

 </itemlocation>

 </field>

 ...other address fields...

 </xforms:case>

 <xforms:case id="Spanish" selection="false">

Creating an XForms model 63

<field sid="Name_Spanish">

 <xforms:input ref="name">

 <xforms:label>Nombre del contribuidor</xforms:label>

 </xforms:input>

 <itemlocation>

 <x>0</x>

 <y>23</y>

 </itemlocation>

 </field>

 <field sid="Address_Spanish">

 <xforms:input ref="street">

 <xforms:label>Calle</xforms:label>

 </xforms:input>

 <itemlocation>

 <after>Name_Spanish</after>

 </itemlocation>

 </field>

 ...other address fields...

 </xforms:case>

 </xforms:switch>

 </pane>

Example of completed toggle case buttons

The following code shows samples of completed toggle case buttons, one for each

case in the pane above:

 <button sid="SwitchToFrench">

 <xforms:trigger>

 <xforms:label>Français</xforms:label>

 <xforms:toggle case="French" ev:event="DOMActivate"/>

 </xforms:trigger>

 <itemlocation>

 <x>0</x>

 <y>50</y>

 </itemlocation>

 </button>

 <button sid="SwitchtoEnglish">

 <xforms:trigger>

 <xforms:label>English</xforms:label>

 <xforms:toggle case="English" ev:event="DOMActivate"/>

 </xforms:trigger>

 <itemlocation>

 <after>SwitchToFrench</after>

 </itemlocation>

 </button>

 <button sid="SwitchtoSpanish">

 <xforms:trigger>

 <xforms:label>Español</xforms:label>

 <xforms:toggle case="Spanish" ev:event="DOMActivate"/>

 </xforms:trigger>

 <itemlocation>

 <after>SwitchToEnglish</after>

 </itemlocation>

 </button>

Creating groups

You can use the pane item to create groups of related items. Typically, you would

group items if you wanted them all to be affected by the same computes, binds,

properties, or other modifiers. For example, you may want to have a group of

items that are all mutually relevant or change the background color of a pane

depending upon whether any of its items have the focus.

The pane item is the XFDL wrapper for the XForms group control.

64

To create a group:

v Create the associated nodes.

v Create a pane.

v Add the group control.

v Add the XFDL items that you want in the group.

Create the associated nodes

When you create a group, you must associate it with a master or parent data node.

Essentially, associating a parent node with a group control indicates that its child

nodes are all part of the same group. As usual, the name of this node is entirely

arbitrary, but it should be unique and reflect the purpose to which it will be used.

In this example, our pane collects information that will only be relevant if the user

indicates that they have a spouse or children. Therefore, we will call the group

node <dependants>.

The format of this node is:

 <dependants>

 ...child_nodes...

 </dependants>

You must also create the child nodes. You must make one item node for each item

that you want in the group. For example, if your group will contain the name of

users’ spouse and children, the <dependants> node will need to have a node for a

spouse and each of their children; one for each piece of data. (Note that in this

case, you may also want to give your users the ability to add or remove

dependants.) For example:

 <dependants>

 <spouse></spouse>

 <child1></child1>

 <child2></child2>

 </dependants>

Create the XFDL pane

The pane provides an XFDL wrapper for the group control.

An example of a typical XFDL pane is:

 <pane sid="Dependants">

 <fontcolor>white</fontcolor>

 <bgcolor>cadet blue</bgcolor>

 <itemlocation>

 <x>0</x>

 <y>23</y>

 </itemlocation>

 <size>

 <width>200</width>

 <height>100</height>

 </size>

 </pane>

Add the group control

The group control groups XFDL items inside a pane item and links them with a

data node. Grouping items with this control ensures that they are all affected by

the computes, binds, properties, or other modifiers that you want to have affect the

group.

Creating an XForms model 65

The format of the group control is:

 <xforms:group attribute>XFDL items</xforms:group>

Group has three attributes:

1. ref — The path to the group node that groups the item nodes. Group must have

either a ref attribute or a bind attribute. The format of ref is:

 ref="path_to_node"

For example, if the group control was associated with the <dependants> node

inside the primary instance, then the reference would be:

 ref="dependants"

2. model — The id of the XForms model that contains the instance you want to

reference. This attribute is optional. If model is not included, it will default to

the first model. The format of model is:

 model="model_id"

For example, if the model id was ″model2″, then you would write:

 model="model2"

3. bind — The id of a bind whose nodeset is used to reference the data node you

want to associate with the group. Group must have either a bind attribute or a

ref attribute. The format of bind is:

 bind="bind_id"

For example, if the bind id was ″setRelevant″, then you would write:

 bind="setRelevant"

An example of a completed group control could be:

 <xforms:group ref="dependants">

 ...XFDL items...

 </xforms:group>

The group control is nested inside a pane, as shown:

 <pane sid="Dependants">

 <xforms:group ref="dependants">

 ...XFDL items...

 </xforms:group>

 </pane>

Add the XFDL items

Every group control contains a number of XFDL items. These items can be any

XFDL items, such as fields, comboboxes, or buttons. For the purposes of this

example, we will create fields for user’s to enter the names of their spouse and

children:

 <field sid="spouse_name">

 <xforms:input ref="spouse">

 <xforms:label>Spouse’s Name</xforms:label>

 </xforms:input>

 <itemlocation>

 <x>0</x>

 <y>23</y>

 </itemlocation>

 </field>

 <field sid="child1_name">

 <xforms:input ref="child1">

 <xforms:label>Child’s Name</xforms:label>

 </xforms:input>

 <itemlocation>

 <x>0</x>

66

<y>23</y>

 </itemlocation>

 </field>

 <field sid="child2_name">

 <xforms:input ref="child2">

 <xforms:label>Child’s Name</xforms:label>

 </xforms:input>

 <itemlocation>

 <x>0</x>

 <y>23</y>

 </itemlocation>

 </field>

The XFDL items are nested inside the group control, as shown:

 <xforms:group ref="dependants">

 <field sid="spouse_name">

 <xforms:input ref="spouse">

 <xforms:label>Spouse’s Name</xforms:label>

 </xforms:input>

 <itemlocation>

 <x>0</x>

 <y>23</y>

 </itemlocation>

 </field>

 ...other fields...

 </xforms:group>

Note: For detailed information about creating specific XFDL items, see the specific

sections that describes how to create them, such as ″Creating Single Line

Fields″ or″Creating an Auto-Generated List″ .

Example of completed group

The following code shows a sample of a completed group:

 <pane sid="Dependants">

 <xforms:group ref="dependants">

 <field sid="spouse_name">

 <xforms:input ref="spouse">

 <xforms:label>Spouse’s Name</xforms:label>

 </xforms:input>

 <itemlocation>

 <x>0</x>

 <y>23</y>

 </itemlocation>

 </field>

 <field sid="child1_name">

 <xforms:input ref="child1">

 <xforms:label>Child’s Name</xforms:label>

 </xforms:input>

 <itemlocation>

 <x>0</x>

 <y>33</y>

 </itemlocation>

 </field>

 <field sid="child2_name">

 <xforms:input ref="child2">

 <xforms:label>Child’s Name</xforms:label>

 </xforms:input>

 <itemlocation>

 <x>10</x>

 <y>33</y>

 </itemlocation>

 </field>

 </xforms:group>

Creating an XForms model 67

<fontcolor>white</fontcolor>

 <bgcolor>cadet blue</bgcolor>

 <itemlocation>

 <x>0</x>

 <y>23</y>

 </itemlocation>

 <size>

 <width>200</width>

 <height>100</height>

 </size>

 </pane>

Creating tables

Tables allow you to arrange data into rows of items. This is done by creating a

template row that includes all of the items that should appear in each row. You can

place any item, such as fields, popups, and images inside a table, including other

tables. Grouping items in a table can make data easier to interpret and forms easier

to complete.

To create a table:

v Create the associated nodes in the data model.

v Create an XFDL table.

v Add the repeat control.

v Add the XFDL items that you want in the table.

Create the associated nodes

When you create a table, it must have data nodes associated with every row and

item in the table. The names of these nodes are arbitrary, but the names of the row

nodes must all be the same. Furthermore, all of the names should be representative

of the purpose of the nodes to help you keep track of them. In this example, we

will make a table of names and addresses, with one row for each person’s

information. Thus, we will call the row node person.

The format of this node is:

 <person>

 ...item nodes...

 </person>

You must make one item node for each item in your table row. For example, if

your row will contain name, street, city, state, and ZIP code information, the person

node will need to have 5 children nodes; one for each piece of data:

 <person>

 <name></name>

 <street></street>

 <city></city>

 <state></state>

 <zip></zip>

 </person>

If you want your table to open with multiple rows, you must add more groups of

row nodes. The following example shows the nodes for a table with two rows:

 <person>

 <name></name>

 <street></street>

 <city></city>

 <state></state>

 <zip></zip>

68

</person>

 <person>

 <name></name>

 <street></street>

 <city></city>

 <state></state>

 <zip></zip>

 </person>

Note: You do not have to create row nodes for rows that you don’t exist when the

form is opened. Those will be automatically generated when the user clicks

the Insert Row button. For detailed information on creating an Insert Row

button, see“Creating an insert button” on page 29.

Create the XFDL table

The table item provides an XFDL wrapper for the repeat control. Its options

determine the appearance and location of the table, as well as allowing you to set

which item receives the focus when users first tab into the form.

An example of a typical table is:

 <table sid="Table1">

 <first>F2</first>

 <fontcolor>white</fontcolor>

 <bgcolor>cadet blue</bgcolor>

 <itemlocation>

 <x>0</x>

 <y>23</y>

 </itemlocation>

 <border>on</border>

 </table>

Add the repeat control

The repeat control associates elements inside a table with nodes in a data instance.

The format of the repeat control is:

 <xforms:repeat attribute></xforms:repeat>

Repeat has the following attributes:

v id — The name of the table. This optional attribute should be a unique name

that describes the function of the table. The format of id is:

 id="name"

v startindex — Sets which row of the table gets the focus when the form is

opened. This attribute is optional. If startindex is not used, the focus defaults to

the first row in the table. The format of startindex is:

 startindex="number"

v nodeset — Indicates the data nodes associated with the repeat control. Repeat

binds to these nodes and generates the table items from them when the form is

opened. The format of nodeset is:

 nodeset="nodes"

For example, if the repeat control was associated with the parent node <person>

(with child nodes of <name>, <street>, <city> and so on) inside the

personal_info instance, then the nodeset would be:

 nodeset="person"

Creating an XForms model 69

If the repeat control was associated with the <person> nodeset (with attributes of

name, street, city, and so on) inside the personal_info instance, then the XPath

reference would also be:

 nodeset="person"

An example of a completed repeat control would be:

 <xforms:repeat id="Address_Table"

 startindex="2"

 nodeset="person">

 ...XFDL items...

 </xforms:repeat>

The repeat control is nested inside the table item, as shown:

 <table sid="T1">

 <xforms:repeat id="Address_Table"

 nodeset="person">

 ...XFDL items...

 </xforms:repeat>

 ...XFDL options...

 </table>

Add the XFDL items

Every group control contains a number of XFDL items. These items can be any

XFDL items, such as fields, comboboxes, or buttons. For the purposes of this

example, the following sample shows several fields :

 <field sid="Name">

 <xforms:input ref="name">

 <xforms:label>Name</xforms:label>

 </field>

 <field sid="Street">

 <xforms:input ref="street">

 <xforms:label>Street</xforms:label>

 </field>

 <field sid="City">

 <xforms:input ref="city">

 <xforms:label>City</xforms:label>

 </field>

 <field sid="State">

 <xforms:input ref="state">

 <xforms:label>State</xforms:label>

 </field>

 <field sid="ZIP">

 <xforms:input ref="zip">

 <xforms:label>Zip Code</xforms:label>

 </field>

These XFDL items are nested inside the repeat control, as shown:

 <xforms:repeat ref="person">

 <field sid="Name">

 <xforms:input ref="Name">

 <xforms:label>Name</xforms:label>

 </field>

 <field sid="Street">

 <xforms:input ref="Street">

 <xforms:label>Street</xforms:label>

 </field>

 <field sid="City">

 <xforms:input ref="City">

 <xforms:label>City</xforms:label>

 </field>

 <field sid="State">

70

<xforms:input ref="State">

 <xforms:label>State</xforms:label>

 </field>

 <field sid="ZIP">

 <xforms:input ref="ZIP">

 <xforms:label>Zip Code</xforms:label>

 </field>

 </xforms:repeat>

Note: For detailed information about creating specific XFDL items, see the specific

sections that describes how to create them, such as “Creating single line

fields” on page 35 or “Creating lists” on page 46.

Example of completed table

The following code shows a sample of a completed table:

 <table sid="T1">

 <xforms:repeat ref="person">

 <field sid="Name">

 <xforms:input ref="name">

 <xforms:label>Name</xforms:label>

 </field>

 <field sid="Street">

 <xforms:input ref="street">

 <xforms:label>Street</xforms:label>

 </field>

 <field sid="City">

 <xforms:input ref="city">

 <xforms:label>City</xforms:label>

 </field>

 <field sid="State">

 <xforms:input ref="State">

 <xforms:label>State</xforms:label>

 </field>

 <field sid="ZIP">

 <xforms:input ref="zip">

 <xforms:label>Zip Code</xforms:label>

 </field>

 </xforms:repeat>

 <fontcolor>white</fontcolor>

 <bgcolor>cadet blue</bgcolor>

 <itemlocation>

 <x>0</x>

 <y>23</y>

 </itemlocation>

 <size>

 <width>200</width>

 <height>100</height>

 </size>

 </table>

Adding help messages

If you want to add help and accessibility messages to your forms, you have three

XForms options:

v Hint

v Help

v Alert

You can also choose to continue to use the following XFDL options to provide

assistance to your users:

v Help

Creating an XForms model 71

v Acclabel

v Message (element of the format option)

XForms help messages allow you to use dynamic data from your instance node to

create additional help or warning messages for your forms. You can also add static

help messages between the control’s tags. The hint, help, and alert controls must

always be contained inside other form controls, such as input, textarea, and select1.

Adding a help message

The help control is optional, and allows you to provide a help message that is

displayed to the user if they enter help mode. Help is intended to provide detailed

help to the user.

Although there is no direct equivalent in XFDL, the help control is treated as like

the help option, and is displayed as a tooltip when the user enters help mode.

If an item contains both a hint control and a help control, then help is appended to

hint. Furthermore, if an item contains both a help control and an XFDL help option,

then the help option overrides the help control.

The format of the help control is:

 <xforms:help attribute></xforms:help>

Help has only one optional attribute:

v ref — The path to the data node that contains the help message. The format of

ref is:

 ref="path_to_node"

For example, if the help control was associated with the <address> node inside

the help instance, then the XPath reference would be:

 ref="instance(’help’)/address"

The ref attribute is optional. If help does not have a ref attribute, then the help

control must contain a help message between its start and end tags. For

example:

 <xforms:help>This is a help message.</xforms:help>

Help is always used inside other form controls that accept user input. For example:

 <xforms:input ref="instance(’personal_info’)/address>

 <xforms:help>Type your address here.</xforms:help>

 </xforms:input>

Help can be used with the following form controls:

v input

v output

v secret

v select

v select1

v submit

v textarea

v trigger

v upload

72

Hint

The hint control is optional, and allows you to provide a help message that is

displayed to the user if they enter help mode. This message is generally a short

instruction, such as telling the user what format is valid for a specific field, and is

displayed as a tooltip.

This is equivalent to the XFDL help option. Furthermore, if an item contains both a

hint control and an XFDL help option, then the help option overrides the hint

control.

Note: If an item contains both a hint control and a help control, then help is

appended to hint.

The format of the hint control is:

 <xforms:hint attribute></xforms:hint>

Hint has only one optional attribute:

v ref — The path to the data node that contains the hint. The format of ref is:

 ref="path_to_node"

For example, if the hint control was associated with the <address> node inside

the help instance, then the XPath reference would be:

 ref="instance(’help’)/address"

The ref attribute is optional. If hint does not have a ref attribute, then the hint

control must contain a hint between its start and end tags. For example:

 <xforms:hint>This is a hint.</xforms:hint>

Hint is always used inside other form controls that accept user input. For example:

 <xforms:input ref="instance(’personal_info’)/address>

 <xforms:hint>Type your address here.</xforms:hint>

 </xforms:input>

Hint can be used with the following form controls:

v input

v output

v secret

v select

v select1

v submit

v textarea

v trigger

v upload

Alert

The alert control is optional, and allows you set an alert message that is displayed

to the user if they enter invalid information. This is equivalent to the message

setting in the format option. If both an xforms:alert and a message are provided for

an item, then the message overrides the xforms:alert.

The format of the alert control is:

 <xforms:alert attribute></xforms:alert>

Creating an XForms model 73

Alert has only one optional attribute:

v ref — The path to the data node that contains the alert. The format of ref is:

 ref="path_to_node"

For example, if the alert control was associated with the <alert> node inside the

help instance, then the XPath reference would be:

 ref="instance(’help’)/alert"

Ref is optional. If alert does not have a ref attribute, then the alert control must

contain a warning between its start and end tags. For example:

 <xforms:alert>Mandatory field. Please type your name.</xforms:hint>

Alert is always used inside other form controls that accept user input. For

example:

 <xforms:input ref="instance(’personal_info’)/address>

 <xforms:alert>Mandatory field. Please type your name.</xforms:hint>

 </xforms:input>

Alert can be used with the following form controls:

v input

v output

v secret

v select

v select1

v submit

v textarea

v trigger

v upload

Adding actions

XForms actions define specific actions in the form. For example, insert allows you

to add a new row to a table, while message allows you to add popup messages to

your form. Actions are triggered by events. Events may be user initiated, such as

DOMActivate or application initiated, like xforms-ready.

All XForms actions are in the XForms namespace, which means that every action

must be prefixed by xforms:, as shown:

 xforms:action

User initiated actions are placed inside the trigger control, as shown:

 <button sid="Button1">

 <xforms:trigger>

 ... action ...

 </xforms:trigger>

 </button>

If you want to have an action triggered by an automatic event inside the form, you

must place the action inside the XFDL item that the action will effect. For example:

 <field sid="FIELD1">

 <xforms:message

 level="modal"

 ev:event="xforms-ready">Format: (###) ###-####</xforms:message>

 ...xforms:input...

 ...XFDL options...

 </field>

74

All XForms actions are modified by attributes, such as XPath references or

nodesets and event details. This information is added to actions as attributes, as

shown:

 <...action... attributes></...action...>

There are 13 XForms actions:

v delete v insert

v message v rebuild

v recalculate v refresh

v reset v revalidate

v send v setfocus

v setindex v setvalue

v toggle

Delete

The delete action deletes specified nodes from the instance data. If you delete a

parent node, its children are deleted as well.

The format of the delete action is:

 <xforms:delete ...attributes.../>

Delete has three attributes:

v at — Indicates the location of the item (in the form display) that will be deleted.

v nodeset — Indicates the node or nodeset to be deleted.

v event — Indicates the type of event that is triggered. In the case of delete, it is

usually DOMActivate.

For example:

 <xforms:delete

 at="index(’item_sid’)"

 nodeset="node"

 ev:event="DOMActivate">

 </xforms:delete>

Delete is always connected with an event that activates the action. The event may

be activated by the user, such as a button triggering the DOMActivate event, or it

may be an application controlled event, such as xforms-ready, which would be

placed inside the XFDL item the action will effect. The following example shows

the delete action inside the trigger control:

 <xforms:trigger>

 <xforms:label>Delete a row</xforms:label>

 <xforms:delete

 at="index(’customer_table’)"

 nodeset="customer"

 ev:event="DOMActivate"/>

 </xforms:trigger>

Insert

The insert action adds new nodes to a set of nodes that all have the same names

and attributes, although their values differ. Insert adds the new node by cloning

the final node in a nodeset.

Creating an XForms model 75

The format of the insert action is:

 <xforms:insert ...attributes.../>

Insert has four attributes:

v at — Determines where the new items will be inserted. This attribute usually

refers to an XFDL group-type item, such as pane, table, or group.

v position — Indicates whether the inserted node is added before or after the

anchor (referenced) node.

v nodeset — Indicates the node or nodeset to be deleted.

v event — Indicates the type of event that is triggered. In the case of insert, it is

usually DOMActivate.

For example:

 <xforms:insert

 at="index(’item_sid’)"

 position="before_or_after"

 nodeset="node"

 ev:event="DOMActivate"/>

Insert is always connected with an event that activates the action. The event may

be activated by the user, such as a button triggering the DOMActivate event, or it

may be an application controlled event, such as xforms-ready, which would be

placed inside the XFDL item the action will effect. The following example shows

the insert action inside the trigger control:

 <xforms:trigger>

 <xforms:label>Add a row</xforms:label>

 <xforms:insert

 at="index(’customer_table’)"

 position="after"

 nodeset="customer"

 ev:event="DOMActivate"/>

 </xforms:trigger>

Message

The message action displays a message to the user.

The format of the message action is:

 <xforms:message ...attributes...>...message text...</xforms:message>

Message has two attributes:

v event — Indicates the type of event that is triggered. In the case of delete, it is

usually DOMActivate.

v level — Indicates the type of message display. The possible settings of this

attribute are:

– ephemeral — A popup message that lasts only as long as the related item has

the focus.

– modeless — A popup message that does not interfere with the user’s access

to the form. Users have the option of closing the message.

– modal — A popup message that users must close before they can proceed

with the form.

For example:

 <xforms:message

 level="level"

 ev:event="DOMActivate">...message text...</xforms:message>

76

Message is always connected with an event that activates the action. The event may

be activated by the user, such as a button triggering the DOMActivate event, or it

may be an application controlled event, such as xforms-ready, which would be

placed inside the XFDL item the action will effect. The following example shows

the message action inside an XFDL field:

 <field sid="FIELD1">

 <xforms:message

 level="modal"

 ev:event="xforms-ready">Format: (###) ###-####</xforms:message>

 ...xforms:input...

 ...XFDL options...

 </field>

Rebuilding actions

The rebuild, recalculate, refresh, and revalidate actions trigger rebuilds of the form,

including calculations and other computes. Rebuild rebuilds the entire form,

recalculate recalculates computes and other calculations, refresh refreshes the form,

and revalidate revalidates it against the XForms schema. Under normal operating

conditions, these actions take place automatically without the need for a manual

trigger and form authors do not need to take them into consideration. However, if

you are building forms in a limited environment where controlling these actions is

more desirable than allowing them to occur automatically, you may need to use

call them manually.

The format of the rebuilding actions is:

 <xforms:<action> ...attributes.../>

They have the following attributes:

v model — The id of the model you want to rebuild. This attribute is optional. If a

model is not specified, the default model is used.

v event — Indicates the type of event that is triggered. To trigger a manual

rebuild, it is usually DOMActivate.

For example:

 <xforms:rebuild

 model="id"

 ev:event="DOMActivate"/>

The rebuilding actions are always connected with an event that activates the

action. The event may be activated by the user, such as a button triggering the

DOMActivate event, or it may be an application controlled event, such as

xforms-ready, which would be placed inside the XFDL item the action will effect.

The following example shows the rebuild action inside the trigger control:

 <xforms:trigger>

 <xforms:rebuild

 model="loan"

 ev:event="DOMActivate"></xforms:rebuild>

 ...xforms:label...

 </xforms:trigger>

Reset

The reset action resets the form back to its original opening state.

The format of the reset action is:

 <xforms:reset ...attributes.../>

Reset has the following attributes:

Creating an XForms model 77

v model — The id of the model you want to reset. This attribute is optional. If a

model is not specified, the default model is used.

v event — Indicates the type of event that is triggered. To trigger a manual reset,

it is usually DOMActivate.

For example:

 <xforms:reset

 model="id"

 ev:event="DOMActivate"/>

Reset is always connected with an event that activates the action. The event may be

activated by the user, such as a button triggering the DOMActivate event, or it may

be an application controlled event, such as xforms-ready, which would be placed

inside the XFDL item the action will effect. The following example shows the reset

action inside the trigger control:

 <xforms:trigger>

 <xforms:reset

 model="loan"

 ev:event="DOMActivate"/>

 ...xforms:label...

 </xforms:trigger>

Send

The send action transmits data, following rules defined by the submission that

determine what data is submitted, how the data is submitted, and where the data

goes. The send and submit actions perform similar duties; however, send can also be

used as part of a trigger control that includes multiple actions.

The format of the send action is:

 <xforms:send ...attributes.../>

Send has two attributes:

v submission — The id of the submission you want to send.

v event — Indicates the type of event that is triggered. In the case of send, it is

always DOMActivate.

For example:

 <xforms:send

 submission="id"

 ev:event="DOMActivate"/>

Send is always connected with an event that activates the action. The event may be

activated by the user, such as a button triggering the DOMActivate event, or it may

be an application controlled event, such as xforms-ready, which would be placed

inside the XFDL item the action will effect. The following example shows the send

action inside the trigger control:

 <xforms:trigger>

 <xforms:send

 submission="SubmitLoanData"

 ev:event="DOMActivate"/>

 ...xforms:label...

 </xforms:trigger>

Setfocus

The setfocus action redirects the focus from the current form control to a different

form control. This action is used to improve accessibility for users with disabilities.

78

The format of the setfocus action is:

 <xforms:setfocus ...attributes.../>

Setfocus has the following attributes:

v control — Indicates which form control gets the focus.

v event — Indicates the type of event that is triggered. In the case of setfocus, it is

always DOMActivate.

For example:

 <xforms:setfocus

 contol="id"

 ev:event="DOMActivate"/>

Setfocus is always connected with an event that activates the action. The event may

be activated by the user, such as a button triggering the DOMActivate event, or it

may be an application controlled event, such as xforms-ready, which would be

placed inside the XFDL item the action will effect. The following example shows

the setfocus action inside the trigger control:

 <xforms:toggle>

 <xforms:setfocus

 control="./loan_request_help"

 ev:event="DOMActivate"/>

 </xforms:toggle>

Note: A known limitation of setfocus in XForms 1.0 is that it cannot identify

controls generated by a repeat table.

Setindex

The setindex action is similar to the setfocus action as it allows you to specify the

position of the focus. The difference is that setindex allows you to specify the

position of the focus in the index. The index is the method used by each repeat

control to keeps track of which item of the form’s repeat controls currently has the

focus. In other words, setindex allows you to specify the position of the focus in the

index, while setfocus allows you to specify the position of the focus for individual

form controls.

The format of the setindex action is:

 <xforms:setindex...attributes.../>

Setindex has the following attributes:

v repeat — The id of the repeat control.

v index — The number of the row that has the focus. For example, if the focus

was on the third row of the specified table, then this value would be 3.

v event — Indicates the type of event that is triggered. In the case of setfocus, it is

always DOMActivate.

For example:

 <xforms:setindex

 repeat="id"

 index="row_number"

 ev:event="DOMActivate"/>

Setindex is always connected with an event that activates the action. The event may

be activated by the user, such as a button triggering the DOMActivate event, or it

may be an application controlled event, such as xforms-ready, which would be

Creating an XForms model 79

placed inside the XFDL item the action will effect. The following example shows

the setindex action inside the trigger control:

 <xforms:trigger>

 <xforms:setindex

 repeat="loan_table"

 index="3"

 ev:event="DOMActivate"/>

 ...xforms:label...

 </xforms:trigger>

Note: A known limitation of setindex in XForms 1.0 is that it cannot identify

controls generated by a repeat table.

Setvalue

The setvalue action sets the value of the specified instance node.

The format of the setvalue action is:

 <xforms:setvalue ...attribute.../>

 </xforms:setvalue>

Setvalue has the following attributes:

v value — An XPath expression that evaluates to the desired value.

v event — Indicates the type of event that is triggered. In the case of setfocus, it is

usually xforms-ready. For example:

 <xforms:setindex

 value="XPath_Ref"

 ev:event="xforms-ready"/>

Setvalue also supports literal values. To set a literal value, you must remove the

value attribute, as literal values and XPath references are mutually exclusive in

setvalue. For example:

 <xforms:setindex ev:event="xforms-ready">Item Number</xforms:setindex>

Setvalue is always connected with an event that activates the action. The event may

be activated by the user, such as a button triggering the DOMActivate event, or it

may be an application controlled event, such as xforms-ready, which would be

placed inside the XFDL item the action will effect. The following example shows

the setvalue action inside the XFDL item the action will effect:

 <field sid="Field1>

 <xforms:setvalue ev:event="xforms-ready">Item Number</xforms:setvalue>

 ...xforms:input...

 ...XFDL options...

 </field>

Toggle

The toggle action selects one possible case from all the possible cases contained in a

switch group. In other words, toggle ensures that the selected case is turned on,

while the other cases are turned off.

The format of toggle is:

 <xforms:toggle ...attributes.../>

Toggle has two attributes:

v event — Indicates the type of event that is triggered. This attribute is mandatory

and is written as:

 ev:event="event"

80

In the case of toggle, the event is usually DOMActivate.

v case — Indicates which case is selected when the Toggle button is pushed. The

format of case is:

 case="name"

This attribute must match the id of the case control you want to select. For

example, if you wanted a case with an id of ″Spanish″ to be selected, you would

write:

 case="Spanish"

The toggle action is usually nested inside the trigger control. For example:

 <button sid="SwitchToSpanish">

 <xforms:trigger>

 <xforms:toggle

 ev:event="DOMActivate"

 case="Spanish"/>

 ...xforms:label...

 </xforms:trigger>

 ...XFDL options...

 </button>

Adding multiple actions to a form control

You can’t add multiple actions to a form control unless they are contained inside

the action action. Action groups actions to form a top-down sequence.

The format of action is:

 <xforms:action ...attributes...>

 ...action1...

 ...action2...

 ...action3...

 </xforms:action>

When action is used to group actions, it contains the ev:event attribute for the

group. Any ev:event attributes that are normally part of the component actions are

dropped.

For example:

 <xforms:action

 ev:event="DOMActivate">

 <xforms:insert

 at="index(’item_sid’)"

 position="before_or_after"

 nodeset="node"/>

 <xforms:message

 level="mode"> Enter the purchase order number.</xforms:message>

 </xforms:action>

Like other actions, the action group must be contained in a form control, such as

trigger, which activates the actions. For example:

 <xforms:trigger>

 <xforms:label>Add a row</xforms:label>

 <xforms:action

 ev:event="DOMActivate">

 <xforms:message level="modeless"

 >Enter the purchase order number and quantity.</xforms:message>

 <xforms:insert

 at="index(’customer_table’)"

Creating an XForms model 81

position="after"

 nodeset="customer/"

 </xforms:action>

 </xforms:trigger>

About events

When you create a button, you create an item that allows users to initiate an event.

The initiation of this event activates the associated action. However, sometimes you

may want to initiate an action because of something that has happened in the

form, without user intervention. This is called an application initiated event. When

these events occur, they trigger any action that lists that event as an attribute.

While there is only one user initiated event (DOMActivate), there are application

initiated events:

v xforms-ready — Indicates that all automatic events have occurred and the form

is ready for user input or additional processing.

v xforms-model-construct — Initiates the construction of the XForms model.

v xforms-model-construct-done — Indicates that the construction of the XForms

model is complete.

v xforms-model-destruct — Indicates that the form has been closed by the user.

For detailed information about events, see the Workplace Forms XFDL Specification

document.

Creating submission rules for an instance

When submitting a form that contains an XForms data model, you can submit

either the entire form or just a particular data instance. This makes it possible to

send your data instance directly to processing applications, rather than having to

parse the complete form and extract the data instance.

If you want to submit a data instance, you must create a set of submission rules.

These rules help determine what data is submitted, how the data is submitted, and

where the data goes. In addition to submission rules, you must also create a

submission button that is linked to the rules. For detailed information about

creating a submission button, see “Creating a submission button” on page 87.

Each set of submission rules is inserted within the <xforms:submission> tag in the

data model, as shown:

 <xforms:model>

 <xforms:submission ...attributes...>

 </xforms:submission>

 </xforms:model>

Each submission is further defined by adding attributes to the <submission> tag

and by including optional serialization rules. This is explained in more detail in the

following sections.

Naming the submission rules

Each submission tag must include an id attribute. This attribute names the

submission rules, allowing the submission to be identified and triggered by the

submit button. Each id should be unique. The id attribute follows this format:

 id="name"

82

For example, if you wanted to call the submission rules SubmitLoanData, you

would use the following tag:

 <xforms:submission id="SubmitLoanData">

Setting the type of submission

Each submission tag must include the method attribute. This attribute describes

how the submission is performed.

The method attribute can have either of two values:

v post — Serializes the data and sends it as XML.

v get — Serializes the data and sends it as URL encoded data.

v put — Serializes the data and saves it as a file instead of submitting it.

For example, if you wanted to submit the data in XML, you would use the

following tag:

 <xforms:submission id="SubmitLoanData"

 method="post"/>

Setting the target URL for a submission

Use the action attribute to define the target URL for the submission. The action

attribute is written in the following format:

 action="URL"

You can only list one URL in the action attribute. For example, if you wanted to

submit your data instance to a cgi script on your server, you might use the

following submission tag:

 <xforms:submission id="SubmitLoanData"

 action="http://www.myserver.com/cgi">

Note: The Viewer supports both HTTP: and HTTPS: protocols.

If you are using the put method and want to save your submission as a file, you

must use the file: scheme. This indicates that the directory and file in which the

submission should be saved. For example:

 <xforms:submission id="SubmitLoanData"

 action="file:\\\C:\Documents and Settings\curchen\xforms\PO\instance">

Note: There are some limitations to where you may save submission data. A put

submission will fail if you try to save it to the following locations:

v The Program Files directory.

v The system drive, the Windows directory, or the Windows System directory.

v Temporary directories.

v A directory outside the folder subtree containing the originating file.

Setting the content type of the submission

Your submission rules may also include an optional mediatype attribute that

declares the content type for posted data. This attribute does not change the actual

content type of the submission; it simply declares the document’s content type in

the submission header.

For example, if you wanted to set a MIME type of application/vnd.xfdl you would

use the following tag:

Creating an XForms model 83

<xforms:submission id="SubmitLoanData"

 mediatype="application/vnd.xfdl"/>

If you do not provide a media type, it defaults to application/xml.

Note: If you do set the submission’s mediatype attribute, you must ensure that the

submitted data conforms to the syntax of the specified mediatype. If the

submitted data does not match the mediatype, there may be submission

errors.

Setting what data is submitted

By default, the first data instance in a form is submitted. If you want to submit

something other than the entire first data instance, you must provide one of the

following:

v An XPath expression that specifies a node (and its children) for submission.

v The name of a bind that references the nodeset you want to submit.

Specifying nodes

You can choose to submit an entire data instance or only a portion of the instance.

When submitting only a portion of a data instance, you must identify the root

element of the submission. The root element determines which portion of the

instance is submitted, since only the root element and its children are sent.

This is done using the ref attribute:

 ref="root_node_of_the_submission"

For example, consider the following data instance:

 <xforms:instance xmlns="" id="loan">

 <LoanRecord>

 <StartDate></StartDate>

 <Borrower>

 <Name>John Q. Public</Name>

 <Addr>123 Main St. Tinyville</Addr>

 </Borrower>

 <Principal currency="USD"></Principal>

 <Duration xsi:type="xsd:positiveInteger"></Duration>

 <InterestRate xsi:type="xsd:integer"></InterestRate>

 <MonthlyPayment></MonthlyPayment>

 <TotalPayout></TotalPayout>

 </LoanRecord>

 </xforms:instance>

If you wanted to submit the entire instance, you would need to select the root node

of the instance. By default, the first tag in an instance is its root node. In the above

case, the root node would be <LoanRecord>:

 <xforms:submission id="SubmitPersonalData"

 ref="instance(’loan’)>

If you wanted to select only a portion of the instance, you would have to select the

root node of the data you wanted to submit. For example, if you only wanted to

submit the <Borrower> information, you would reference the <Borrower> node.

Specifying a parent node includes all of its child nodes in the submission. In the

following example, the ref attribute indicates that the submission data should

consist of the <Borrower> node and its child nodes, <Name> and <Address>:

 <xforms:submission id="SubmitPersonalData"

 ref="instance(’loan’)/Borrower">

84

Ref also lets you use an XPath expression that computes the node that will be

submitted. The default value of ref is / (forward slash).

Specifying a bind

Another way of stipulating which data you want to submit is by referencing a

bind. By referencing a bind, you specify the bind’s nodeset as the data you want to

submit. Furthermore, all of the limitations you placed on the bind are relevant to

the submission data. For example, if the bind indicates that certain of its nodes are

not valid, then those nodes would not be included in the submission, even though

they were part of the indicated nodeset.

This is done using the bind attribute:

 bind="bind_id"

You can specify a particular bind by referring to its id attribute. For example, if the

id attribute of a bind is ″loan_history″, then the submissions’s bind attribute should

contain ″loan_history″ as its setting, as shown:

 <xforms:submission

 id="SubmitPersonalData"

 bind="loan_history"/>

Note: Remember, the submission id is the name of the submission. The bind id is

the name of the bind that contains the nodeset you want to submit.

Filtering inherited namespaces

By default, when you submit a data instance, the instance includes all of the

namespaces that it inherits. For example, consider the following XForms model:

 <?xml version="1.0" encoding="ISO-8859-1"?>

 <XFDL xmlns="http://www.PureEdge.com/XFDL/7.0"

 XFDL xmlns:xforms="http://www.w3.org/2002/xforms"

 xmlns:custom="http://www.PureEdge.com/XFDL/Custom">

 ...

 <xformsmodels>

 <xforms:model xmlns:xforms="http://www.w3.org/2002/xforms">

 <xforms:instance xmlns="http://www.mycompany.com/loans"

 id="loan">

 <LoanRecord>

 <StartDate></StartDate>

 <Borrower>

 <Name>John Q. Public</Name>

 <Addr>123 Main St. Tinyville</Addr>

 </Borrower>

 <Principal currency="USD"></Principal>

 <MonthlyPayment></MonthlyPayment>

 <TotalPayout></TotalPayout>

 </LoanRecord>

 </xforms:instance>

 ...

 </xformsmodels>

 ...

 </XFDL>

When you submit the loan instance, the root element of the submission is modified

so that it declares all of the namespaces that it inherits. Assume that the root

element is LoanRecord. In this case, that tag declares a default namespace but also

inherits the XFDL, custom, and XForms namespaces from the XFDL tag. As a

result, the submission declares those namespaces on the LoanRecord element, as

shown:

Creating an XForms model 85

<LoanRecord xmlns="http://www.mycompany.com/loans"

 xmlns="http://www.PureEdge.com/XFDL/7.0"

 XFDL xmlns:xforms="http://www.w3.org/2002/xforms"

 xmlns:custom="http://www.PureEdge.com/XFDL/Custom">

In some cases, you may want to restrict the inherited namespaces that are included

with a data instance. For example, you may want to submit non-namespace-aware

XML for DTD validation.

To restrict the inherited namespaces that are included, use the

includenamespaceprefixes attribute. This attribute lists the prefixes for those

namespaces that you want to include in the submission, and follows this syntax:

 includenamespaceprefixes="prefix1 prefix2 prefix3"

Each prefix is separated by whitespace, such as a space. For example, to include

only the XFDL and the custom namespaces in a submission, you would use the

following submission tag:

 <xforms:submission id="SubmitLoanData"

 includenamespaceprefixes="XFDL custom">

If you want to submit only those namespaces that are used in your data instance,

you can do this automatically by using an empty string, as shown:

 <xforms: submission id="SubmitLoanData"

 includenamespaceprefixes="">

This automatically removes all namespaces that are not used in your data instance.

If you want to include only the default namespace, there is a special value you

must use: #default. For example:

 <xforms:submission id="SubmitLoanData"

 includenamespaceprefixes="#default">

This ensures that only the form’s default namespace is included in the submission.

Displaying data returned by the submission

By default, when data is returned by the submission, it replaces the submitted

form. For example, when a user submits a form, the server often returns a reply

that indicates that the submission was received. Generally, this notice entirely

replaces the submitted form.

However, XForms lets you handle returned data more flexibly. Instead of simply

replacing the entire form, you can choose to replace a single instance or to even

ignore the returned data. This is done using the replace attribute. This attribute

indicates whether the returned data should replace the entire form, a data instance,

or be ignored.

Replace has three possible options:

v all — The returned data replaces the entire form.

v instance — The returned data only replaces the submitted instance.

v none — The returned data is ignored.

The format of this attribute is:

 replace="return_option"

86

So, if you wanted to replace the submitted data instance instead of the whole form,

you would use the following submission tag:

 <xforms:submission id="SubmitLoanData"

 replace="instance">

Creating a submission button

Submission buttons are necessary to submit the instance data to a processing

server. The button triggers the submission, and the data submitted is determined

by combining the filters for the button with the submission rules in the data

model.

To create a submission button, create a button with a form control of submit or

trigger.

 <button sid="Submit">

 <xforms:submit ...attributes...>

 </xforms:submit>

 </button>

To link the submit button to the appropriate submission rules, you must refer to

the name of the submission. This name is defined by the id attribute of the

appropriate submission tag.

For example, if your submission rules had an id of ″SubmitLoanData″, you would

use the following button:

 <button sid="Submit">

 <xforms:submit submission="SubmitLoanData">

 </xforms:submit>

 </button>

A button with a form control of trigger performs essentially the same action.

However, it requires you to specify information that is assumed by the submit form

control. For example, if you choose to use trigger to create a submit button, trigger

must enclose the send action and its attributes, as shown:

 <button sid="Submit2">

 <xforms:trigger>

 <xforms:send

 ev:event="DOMActivate" submission="SubmitLoanData">

 </xforms:send>

 </xforms:trigger>

 </button>

Note: Both the submit and trigger form controls have mandatory nested form

controls, such as label. For detailed information on these controls, see

“Creating user interface links” on page 21.

Creating an XForms model 87

88

Adding schemas

When adding schemas to your form, you can choose to either embed one or more

schema files in the form itself, or refer to external schema files that are saved on

the user’s computer. Embedding schemas in the form will increase the overall size

of the form and may affect performance, especially when low bandwidth is

available. However, referring to external schema files requires you to distribute

those files to client computers. The architecture of your overall application will

probably dictate which solution you should use.

Normally, each instance in the data model is validated against all available

schemas. However, if a schema is defined for a particular namespace, only those

instances that belong to that namespace are validated against it. This allows you to

apply specific schemas to specific data instances.

Note: Unlike the XML Data Model, XForms automatically performs schema

validation. Therefore, you do not need to use XFDL functions to manually

validate the schema.

Finally, you must restrict all schemas to a single, self-contained file. The Workplace

Forms Viewer does not support the use of the import or include tags.

Embedding a schema in a form

You can embed any number of schemas in a form. Each schema is inserted in its

own <xsd:schema> tag in the XForms model, as shown:

 <xforms:model>

 <xsd:schema>

 ... schema ...

 </xsd:schema>

 </xforms:model>

Each schema is defined in a separate <xsd:schema> tag, as shown:

 <xforms:model>

 <xsd:schema>

 ... schema 1 ...

 </xsd:schema>

 <xsd:schema>

 ... schema 2 ...

 </xsd:schema>

 </xforms:model>

Each schema is placed between the opening and closing schema tags, and must

conform to the rules for XML schemas.

Referring to external schemas

External schemas must be placed in the Viewer’s schema folder or they will not be

available to the form. You can add sub-folders to the Viewer’s schema folder, but

cannot place any schemas outside of that folder. Only those external schemas listed

in the schema attribute on the <xforms:model> tag are used during validation. Any

other schemas in the Viewer’s schema folder are ignored.

The schema attribute is written as shown:

© Copyright IBM Corp. 2003, 2006 89

schema="list of schemas"

You must list each of the external schemas by path and filename, relative to the

Viewer’s schema folder. This list is space delimited, which means that your schema

filenames cannot contain spaces. Furthermore, you must add a prefix of xsf: to each

path. For example, if both the personalData.xsd and rateData.xsd schemas we in the

Viewer’s schema folder, you would use the following schema attribute to register

those schemas:

 schema="xsf:personalData.xsd xsf:rateData.xsd"

The schema attribute is added to the <xforms:model> tag. For example, a complete

data model, with external personalData and rateData schemas, would look like this:

 <xforms:model schema="xsf:personalData.xsd xsf:rateData.xsd">

 </xforms:model>

90

Sample XForms

The following pages show a complete sample of the core XForms data model,

complete with bindings and submissions. There is also a sample of a form with a

schema. For samples of UI links, such as form controls and actions, see Appendix

XXXX.

Core XForms data model

The following example shows a core XML Data Model with three data instances.

This data model includes submission rules that are linked to the Submit button in

the form. These submission rules send the entire form to the back-end for

processing.

 <xformsmodels>

 <xforms:model functions="power">

 <xforms:instance xmlns="" id="loan">

 <LoanRecord>

 <StartDate>2004-12-02</StartDate>

 <Borrower>

 <Name>John Q. Public</Name>

 <Addr>123 Main St. Tinyville</Addr>

 </Borrower>

 <Principal currency="USD"></Principal>

 <Duration xsi:type="xsd:positiveInteger"></Duration>

 <InterestRate xsi:type="xsd:integer"></InterestRate>

 <MonthlyPayment></MonthlyPayment>

 <TotalPayout></TotalPayout>

 </LoanRecord>

 </xforms:instance>

 <xforms:instance xmlns="" id="currencyChoices">

 <data>

 <choice show="US Dollars">USD</choice>

 <choice show="CDN Dollars">CDN</choice>

 <choice show="Euros">Euro</choice>

 </data>

 </xforms:instance>

 <xforms:instance xmlns="" id="rate">

 <rate>NaN</rate>

 </xforms:instance>

 <xforms:bind

 calculate="instance(’loan’)/InterestRate div 1200.0"

 nodeset="instance(’rate’)">

 </xforms:bind>

 <xforms:bind

 nodeset="Borrower/*"

 required="true()">

 </xforms:bind>

 <xforms:bind

 nodeset="Principal"

 required="true()">

 </xforms:bind>

 <xforms:bind

 nodeset="StartDate"

© Copyright IBM Corp. 2003, 2006 91

type="xsd:date">

 </xforms:bind>

 <xforms:bind

 calculate="../MonthlyPayment * ../Duration"

 nodeset="TotalPayout"

 relevant="../MonthlyPayment > 0 and ../Duration > 0">

 </xforms:bind>

 <xforms:submission id="SubmitLoanData"

 action="http://igor:5005/cgi-bin/doReturn-full"

 includenamespaceprefixes=""

 method="post">

 </xforms:submission>

 </xforms:model>

 </xformsmodels>

Data model with schema validation

The following data model contains all the core parts of a data model, as well as

both an external schema and an internal schema.

 <xformsmodels>

 <xforms:model schema="xsf:personalData.xsd">

 <xforms:instance xmlns="" id="loan">

 <LoanRecord>

 <StartDate>2004-12-02</StartDate>

 <Borrower>

 <Name>John Q. Public</Name>

 <Addr>123 Main St. Tinyville</Addr>

 </Borrower>

 <Principal currency="USD"></Principal>

 <Duration xsi:type="xsd:positiveInteger"></Duration>

 <InterestRate xsi:type="xsd:integer"></InterestRate>

 <MonthlyPayment></MonthlyPayment>

 <TotalPayout></TotalPayout>

 </LoanRecord>

 </xforms:instance>

 <xforms:instance xmlns="" id="currencyChoices">

 <data>

 <choice show="US Dollars">USD</choice>

 <choice show="CDN Dollars">CDN</choice>

 <choice show="Euros">Euro</choice>

 </data>

 </xforms:instance>

 <xforms:instance xmlns="" id="rate">

 <rate>NaN</rate>

 </xforms:instance>

 <xsd:schema>

 ... schema details ...

 </xsd:schema>

 <xforms:bind

 calculate="instance(’loan’)/InterestRate div 1200.0"

 nodeset="instance(’rate’)">

 </xforms:bind>

 <xforms:bind

 nodeset="Borrower/*"

 required="true()">

 </xforms:bind>

92

<xforms:bind

 nodeset="Principal"

 required="true()">

 </xforms:bind>

 <xforms:bind

 nodeset="StartDate"

 type="xsd:date">

 </xforms:bind>

 <xforms:bind

 calculate="../MonthlyPayment * ../Duration"

 nodeset="TotalPayout"

 relevant="../MonthlyPayment > 0 and ../Duration > 0">

 </xforms:bind>

 <xforms:submission id="SubmitLoanData"

 action="http://igor:5005/cgi-bin/doReturn-full"

 includenamespaceprefixes=""

 method="post">

 </xforms:submission>

 </xforms:model>

 </xformsmodels>

Sample XForms 93

94

Appendix. Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in

other countries. Consult your local IBM representative for information on the

products and services currently available in your area. Any reference to an IBM

product, program, or service is not intended to state or imply that only that IBM

product, program, or service may be used. Any functionally equivalent product,

program, or service that does not infringe any IBM intellectual property right may

be used instead. However, it is the user’s responsibility to evaluate and verify the

operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this document. The furnishing of this document does not grant you

any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other

country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER

EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS

FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or

implied warranties in certain transactions, therefore, this statement may not apply

to you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the publication. IBM may make improvements

and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those Web

sites. The materials at those Web sites are not part of the materials for this IBM

product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it

believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 2003, 2006 95

Licensees of this program who wish to have information about it for the purpose

of enabling: (i) the exchange of information between independently created

programs and other programs (including this one) and (ii) the mutual use of the

information which has been exchanged, should contact:

IBM Corporation

Office 4360

One Rogers Street

Cambridge, MA 02142

U.S.A.

Such information may be available, subject to appropriate terms and conditions,

including in some cases, payment of a fee.

The licensed program described in this information and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Program License Agreement, or any equivalent agreement

between us.

Trademarks

The following terms are trademarks of International Business Machines

Corporation in the United States, other countries, or both:

AIX

IBM

Workplace

Workplace Forms

Other company, product, or service names may be trademarks or service marks of

others.

96

Index

A
absolute

XPath location path 10

actions
adding multiple actions 81

delete 75

events 82

insert 75

insert, delete 27

reset 77

send 78

setfocus 78

setindex 79

setvalue 80

target URL submissions 83

toggle 80

XForms 74

adding
data models 14

files 23

alert
creating help messages 71

attaching
single file button 23

attachment buttons
create 23

attribute
defined 7

attributes
actions 81

adding <xforms:bind> 17

binds 85

delete action 75

insert action 75

message 76

rebuild actions 77

referencing 11

referencing in the data instance 21

replace 86

reset actions 77

send action 78

setfocus action 78

setindex action 79

setvalue action 80

toggle action 80

auto-generated list
creating 46

list type defined 46

B
binds

about 5

attributes, referencing 11, 21

do not use a greater than sign 18

element affected 17

grouping 64

naming 17

one nodeset 17

properties 18

binds (continued)
properties of data instance 17

specifying 85

XPath 7

box list
list type defined 46

buttons
attachment 23

create submissions 87

creating 22

delete 32

insert 29

submit 22

trigger 27

C
calculate

node 18

calendar
creating a date picker 55

case control
toggle action 80

trigger button 27

check boxes
lists 46

children
defined 7

combobox
lists type defined 46

computes
grouping 64

conditional items
creating 57

constraints
properties 18

rational and logical operators 18

conventions
document tips 1

copying
data to data model 21

core data model
example 91

D
data instance

about 5

calculate property 18

creating 15

naming 16

referencing attributes 11, 21

set properties 17

single root element required 15

data model
adding more data models 14

auto-generated lists 46

bindings 5

copy data from user 21

data instances 5

data model (continued)
define XForms 14

example 91

naming 15

requirements 2

submission rules 5, 22

upload control 23

when to use 2

data structure
XForms model 4

date picker
creating 55

default namespace
defining 16

definition
attributes 7

children 7

namespaces 7

node name 7

parent 7

type properties 21

value 7

delete
action 75

displaying
data by submission 86

relevant data to user 20

titles, results, images 41

document
conventions 1

E
elements

affected node 17

link to user interface 21

non-default namespace 11

single root required 15

embeding
schemas 89

events
actions 82

trigger action 77

examples
auto-generated list 46

core XForms data model 91

data model with schema

validation 92

date picker 55

delete row button 32

groups 64

insert row button 29

item with a label control 43

multi line field 37

panes 57

popup 51

single line field 35

stand-alone label 41

tables 68

exclusive check boxes
lists 46

© Copyright IBM Corp. 2003, 2006 97

expressions
constructing XPath 8

readonly 19

XPath location path 8

F
fields

creating 34

creating multi-line 37

creating password fields 39

creating single line fields 35

kinds 34

readonly 34

file
enclose inside an instance node 23

reference external schemas 89

filter
inherited namespaces 85

focus
setfocus action 78

setindex action 79

form
control 43

control actions 81

data model requirement 2

global model 4

G
get

submission types 83

global page
define XForms data model 14

groups
action sequence 81

add items 29

delete items 32

panes 64

toggle action 80

H
help

creating messages 71

hints
creating help messages 71

I
id

data model 15

naming binds 17

naming data instance 16

naming submissions rules 82

images
labels 41

input control
single line fields 35

insert
action 75

insert button
creating 29

instances
data nodes for auto-generated

lists 46

filter inherited namespaces 85

referencing attribute 11

specifying nodes 84

submission rules 82

itemset control
auto-generated lists 46

L
labels

creating 41, 43

describing specific items 43

links
user interface 21

lists
about 46

creating choice specified in UI 51

non-generated lists 46

types 46

location path
absolute, XPath 10

relative, XPath 9

logical operators
constraints 18

M
mandatory

required node properties 20

messages
creating help 71

displayed for the user 76

model item property (MIP)
types 18

N
name

data model id 15

defined 7

namespaces
data instances 16

define at beginning of form 14

defined 7

defining purpose 13

element references 11

examples 14

required for XFDL items 13

submissions
filtering inherited namespaces 85

using 14

XForms actions 74

xmlns attribute 13

naming
data instance 16

data models 15

nodes
absolute location path 10

calculate 18

constraint 18

constraint limits 18

create new instance, auto-generated

lists 46

nodes (continued)
defining namespaces 16

determine the affected 17

enclosed file 23

reference from label control 43

relative location path 9

relevant properties 20

required properties 20

set properties of data instance 17

specifying 84

submissions relevant data 20

type properties 21

XForms submission, relevant data 20

XPath 7

nodeset
defined 17

one per data instance 17

non-visible
relevant data 20

non-XML application
XForms uses 2

numbers
this guide uses 1

O
output control

stand-alone label 41

P
panes

add items 29

delete items 32

grouping 64

parent
defined 7

password
create fields 39

popup
list type defined 46

position 7

defined 7

processing server
submit button 22

properties
assigning 18

bind model item properties 18

calculate 18

constraints 18

readonly 19

relevant 20

required 20

type 21

put
submission types 83

R
radio buttons

lists 46

rational operator
constraints 18

readonly
fields 34

properties 19

98

rebuild
action 77

recalculate
rebuild action 77

references
external schema file 89

namespaces in element references 11

referencing an attribute 11, 21

refresh
rebuild actions 77

relative
XPath location path 9

relevant
children nodes inherit 20

grouping 64

properties 20

remove
attached file 23

delete button 32

repeat
creating tables 68

replace
attribute 86

requirements
data model 2

prerequisite knowledge 1

properties of nodes 20

XForms model 13

revalidate
rebuild actions 77

rows
creating tables 68

rules
submissions for instances 82

S
schemas

adding 89

data instances 15

data types 21

embedding a schema 89

example 92

referring to external schemas 89

xforms:model 21

secret control
password fields 39

send
action 78

setfocus
action 78

setindex
action 79

setvalue
action 80

shortcuts
XPath 8

skin
XFDL item 3

XForms requires 2

stand-alone
creating labels 41

text labels 41

submission rules
about 5

content type 83

naming 82

submission rules (continued)
setting what data is submitted 84

target URL 83

submissions
creating buttons 87

data rules 22

namespaces, filtering 85

relevant data 20

replace 86

rules for an instance 82

setting content type 83

setting target URL 83

specifying a bind 85

specifying nodes 84

types 83

submit
create button 87

XForms buttons 22

switch
toggle action 80

switch control
trigger button 27

T
tables

add row button 29

creating 68

delete row button 32

repeat limitation setfocus 78

text
labels 41

stand-alone 41

textarea
multi-line fields 37

toggle action
trigger button 27

toggles
actions 80

trigger
create submission button 87

creating button 27

U
UI

controls 3

upload control
link button to data model 23

URL
setting action 83

user interface
attachment buttons 23

links 21

lists with choices 51

V
validation

schemas 89

value
defined 7

setvalue action 80

view
attached file 23

visible
relevant data 20

W
web application

XForms 1

wrapper
XFDL items 3

write-only data
password fields 39

X
XFDL

default namespaces 14

presentation layer 3

requirements embed XForms 13

XFDL element
ellipse and italic 1

XFDL items
links 21

XForms
about 1

actions 74

button types 22

controls 3

creating model 13

defining data model 14

element in ellipse and italic 1

image of sample form 3

model example 4

Non-XML application 2

overview 3

provides 2

schemas 1

web application 1

when to use 2

XFDL wrapper 13

XML application 2

XForms model
creating 13

data structure 4

naming 15

requirement 2

requirements 13

XML schema 21

XForms submissions
relevant data node 20

XML
about 1

human readable format 1

XML application
XForms uses 2

XML Data model
model requirements 2

xmlns
namespace attribute 13

XPath
absolute location path 10

constraint 18

constructing expressions 8

data node bind 7

expression, relevant properties 20

readonly properties 19

relative location path 9

Index 99

XPath (continued)
required expressions 20

shortcuts 8

100

����

Program Number:

Printed in USA

	Contents
	Introduction
	Who should read this document
	Document conventions

	About XForms
	XForms and XFDL
	When to use XForms
	XForms and the XML data model

	Overview
	Form presentation
	The XForms model

	Using XPath
	Constructing XPath expressions
	XPath shortcuts
	Creating relative location paths
	Creating absolute location paths
	Using namespaces in element references
	Referencing attributes in the data instance

	Creating an XForms model
	Creating the XForms wrapper
	Defining the XForms namespace
	Using namespaces

	Declaring the XForms data model
	Naming a data model

	Creating data instances
	Naming a data instance
	Defining the default namespace

	Setting the properties of a data instance
	Naming binds
	Determining the affected node
	Assigning properties

	Referencing an attribute in the data instance
	Creating user interface links
	Creating buttons
	Creating a submit button
	Creating an attachment button
	Creating a trigger button
	Creating an insert button
	Creating a delete button

	Creating fields
	Creating single line fields
	Creating multi-line fields
	Creating password fields

	Creating labels
	Creating stand-alone labels
	Creating labels describing specific items

	Creating lists
	Creating an auto-generated list
	Creating a list with choices specified in the user interface

	Creating date pickers
	Creating conditional items
	Steps to creating conditional items

	Creating groups
	Creating tables
	Adding help messages
	Adding a help message

	Adding actions
	Delete
	Insert
	Message
	Rebuilding actions
	Reset
	Send
	Setfocus
	Setindex
	Setvalue
	Toggle

	Adding multiple actions to a form control
	About events

	Creating submission rules for an instance
	Naming the submission rules
	Setting the type of submission
	Setting the target URL for a submission
	Setting the content type of the submission
	Setting what data is submitted
	Specifying nodes
	Specifying a bind

	Filtering inherited namespaces
	Displaying data returned by the submission

	Creating a submission button

	Adding schemas
	Embedding a schema in a form
	Referring to external schemas

	Sample XForms
	Core XForms data model
	Data model with schema validation

	Appendix. Notices
	Trademarks

	Index

