
© 2011 IBM Corporation

Davyd Norris – IBM Rational
Tony Altamura – Odecee

© 2011 IBM Corporation

© 2011 IBM Corporation

Challenges in Today’s IT Environment

� Integration between Development and Operations teams is fractured due to:
– different reward systems: Business Functionality Improvements vs. Runtime Stability
– multiple management chains with inherent politics
– fragile or non-existent trust between groups: “You broke my app!” vs. “You brought down

my environment!”
– conflicting standards and unclear ownership: “You did it wrong” and “Its not my job”

� Complicated by:
– do more with less: organizational shrinkage, retirement, staff reductions, etc;
– brain drain or proprietary expertise: knowledge is captured in someone's head rather

than an accessible, repeatable format
– unclear delivery pipelines for new/enhanced technologies and functionality

� Contributes to:
– lack of representative environments for spin up and test
– manually intensive deployments due to lack of automation, informal coordination

amongst deployment specialists
– poor value realization from limited adoption of new tools, technologies and methods for

enhanced delivery and operations

© 2011 IBM Corporation

Example Scenario

3

Application Deployment
Requirements and

Implementation Artifacts

Application Deployment
Requirements and

Implementation Artifacts

Deployment Automation
for

Test Environments

Deployment Automation
for

Test Environments

Deployment Automation
for

Production Environments

Deployment Automation
for

Production Environments

Test EnvironmentsTest Environments

Staging EnvironmentStaging Environment

Production EnvironmentProduction EnvironmentPackage

"My Web Shop"

Solution Architect

Software Engineer

Deployment Engineer

Systems Manager

Package implementation

artifacts for distribution to

other location or

deployment

in the Cloud.

© 2011 IBM Corporation

Need to Integrate Software Delivery and Operations

Require-
ments

Design Develop Test Deploy Manage

Requirements Churn

Changing Requirements

Quality Churn

Persistent Defects

Deployment Churn

It works in Development!!!

Configuration Misses

Support Churn

Performance, Availability,
Reliability, Maintainability

Agile Principle

Test Driven Development

Agile Principle

Customer Representation

© 2011 IBM Corporation

Deployment is a Complex Problem

� Development and Operations teams collaboration challenges
– Hand-off from development teams is inconsistent and manual
– Application component requirements do not match IT

infrastructure

� Deployment requirements are difficult to validate
– Enterprise, Software & IT architects all use different formats
– No standardization or templates for reuse

� Complex series of steps
– Deployment engineers often execute manual steps
– Not repeatable, prone to error
– Automations are hard to build, maintain and reuse
– Hard to tell what if the right things were installed

Operations
Manager

Deployment
Architect

Operations

� 50% of applications put into production are later rolled back
(Gartner)

� 60% - 80% of an average company’s IT budget is spent on maintaining existing applications
(Intelligent Enterprise.com)

� Software related downtime cost industries almost $300 billion annually
(CENTS - Comparative Economic Normalization Technology Study)

© 2011 IBM Corporation

Delivery and Operations Use Separate Process Control Frameworks

� Accentuates Enterprise IT Integration Challenges!

CobiT

SDLC

CMMi
SEI

Agile

Agile Alliance

MOF
Microsoft

ITIL
OGC, UK

Six Sigma

Software Development Operations

Functional Operational

ISO 9000

ISO 20000

© 2011 IBM Corporation

The Result

� Software not designed for Operability and
Supportability

� Operations Processes not geared for Service
Management

© 2011 IBM Corporation
Slide 8 © 2008 Enterprise Management Associates, Inc.

NextGen ALM has Emerged in Response to Multiple Challenges at All
Levels of the Business

� People Challenges
– Multiple skills versus silo skills
– Automated information repository versus “human repository”
– Massive and ongoing change

� Technology Challenges
– “Next big thing” driving business innovation
– Industry innovating faster than it can absorb change
– “State of the art” is a sliding scale

� Organizational Management Challenges
– IT is driving revenue and business differentiation
– Impact of failure is massive
– Lines between IT and the business have blurred

� Viewed as a way to surmount People, Technology, and Organizational challenges

© 2011 IBM Corporation

Addressed by...Addressed by...

Agile
Dev

Customers

Desire for fast

and continuous

innovation

Line of Business

Requirements

Dev & Test
Teams

Code & Tests

Operations
Team

Business
Services

1st
Gap

2nd
Gap

Dev
Ops

Addressing Application Lifecycle Management gaps

© 2011 IBM Corporation

With only Agile Development improvements…

Agile
Dev

CI builds are piling up

Functional
Testing

Functional
Testing

Acceptance
Testing

Acceptance
Testing

ProductionProduction
Operator

Setup

(weeks)

Install

Test and Ops teams have

increased pressures to keep up

with increased loads but

continue to use waterfall

approaches and traditional

tools.

© 2011 IBM Corporation

Four key drivers are putting DevOps on ‘must do’ list!

DevOps

Business
Agility

Cloud

Computing

Agile
Development

Operational

Discipline

© 2011 IBM Corporation

DevOps Culture & Techniques

� What does "DevOps" actually mean to an Enterprise?
– “increased application velocity with managed risk”.
– not simply a statement of rapid provisioning, but more like

changing the mindset of Operations to artifacts, rather
than administration

� Challenges
– Agile development implies dedicated, autonomous,

empowered teams
– Operations teams organized as a shared resource
– how do you deliver rapidly while utilizing shared, non-

dedicated resources and maintain environmental integrity

� How do we get there?
– need to understand processes & standards
– tools do not “give” you DevOps, but promote, enable and

automate best practices

© 2011 IBM Corporation

What We Know vs. What We Don’t Know

� Companies have processes that work (and some that don’t)
– But are those existing processes providing the full set of functionality required to run

today’s business?
– Is there even an awareness that things can be done differently?

� Best practices from 1990 and 2000 likely have new, more efficient ways to do it today
– How can someone even learn about it?

� There are many moving parts!
– Before we even start to implement NextGen ALM in an organisation there are already a

vast array of platforms, products, technologies, integrations, methods and tools

� We propose the following
– “12 Steps to Better DevOps” to update existing processes. Kind of a “DevOps 12 step

recovery program”
– A NextGen ALM Reference Architecture, defining key elements in the solution
– A set of NextGen ALM best practices or patterns, which can be implemented separately

or layered on top of each other, providing greater value than the sum of the parts

© 2011 IBM Corporation

12 Steps to Better DevOps*

� Do you use source control for your build and configuration artifacts?

� Can you deploy a system in one step?

� Do you deploy your applications daily and verify them?

� Do you have an issue tracking system for operations, linked to a bug database used for development?

� Do you validate platform software against expected KPIs, before deploying your application?

� Do you have well defined delivery pipeline?

� Do you have agreed upon patterns for applications and platforms?

� Can your developers launch, use, and destroy representative environments on demand?

� Do you provide Infrastructure and Platform as a Service for your development teams?

� Do you have automated tests to validate your application function and security?

� Do your new operation engineers understand how to automate system administration?

� Do your operations and development teams collaborate regularly?

*Based on “The Joel Test: 12 Steps to Better Code”
http://www.joelonsoftware.com/articles/fog0000000043.html

© 2011 IBM Corporation

Traditional ALM

Definitive
Library

Definitive
Library

OSLC

Configuration

Management

and Discovery

Configuration

Management

and Discovery
OSLC

Continuous

Integration

Continuous

Integration

OSLC

Quality
Management

Quality
Management

OSLC

Provisioning
Automation

Provisioning
Automation

OSLC
Environment

Pull configurations

Track

work

Trigger

deployment

Deploy

solution

Track

quality

Track

work

Trigger

Delivery

Create topology

library

Pull

changes

NextGen ALM Reference Architecture

Adopt in any order,
at any time

Change
Management

Change
Management

OSLC

OSLC

Requirement
Management

Requirement
Management

Test
Automation

Test
Automation

OSLC

Trigger tests

Execute tests

Trigger tests

Deployment

Modelling

Deployment

Modelling

OSLC

Create topology

model

© 2011 IBM Corporation

Best Practice: Define a Solution Lifecycle

� A Solution Lifecycle should define how new Solutions are created, deployed, maintained,
and retired. A Solution should incorporate aspects of the platform, middleware, and
application. New Solutions should adhere to the established architectures.

� Implement it by:
– Impose a standard architectural pattern for applications to follow before they are

integrated into the shared environment.
– Define a consistent logical architecture for each application
– Define a physical architecture for each environment which supports the logical

architecture as part of an established pipeline
– Map application onto the infrastructure

� Avoid Anti-patterns:
– Lack of logical consistency among environments along the pipeline
– Lack of consistent conceptual framework for describing architecture between

Development & Operations
– Not considering the lifecycle of individual applications and how the change a single

application impacts others; may require compliance for all other apps before one app’s
dependencies may change.

© 2011 IBM Corporation

Example Solution Lifecycle

© 2011 IBM Corporation

Best Practice: Define a Delivery Pipeline

� Define a standard pipeline for delivery of the solution into each environment
– there are many ways to deliver development artifacts through the various testing stages

and into a production environment
– left alone, each team and organization will create delivery solutions for their own

particular purposes, none of which will allow for reuse and integration

� Establish streamlined governance that comes from using standard patterns rather than
manual governance that requires detailed knowledge to guarantee compliance

– delivery pipelines formalize an end-to-end process to provide common and consistent
mechanisms to manage asset migrations

� Implement by:
– well defined processes and hand-offs
– common, automated mechanisms to ensure consistent build, test and promotion.
– complete flow from Unit Test through Production
– well defined interfaces for interaction and integration
– standardized reporting mechanisms for pipeline activity health

� Avoid Anti-patterns:
– roll-your-own methods: Just because you can, doesn’t mean you should

© 2011 IBM Corporation

Example Deployment Pipeline

Development Stage:

Integration Stage:

© 2011 IBM Corporation

Pipeline Example – Development Stage

� Deploy/Debug/Test/ Validate Development stage

� Perhaps drive via Continuous Delivery for short
feedback loops

� Define automation for deployment and automation
for verification/acceptance tests

© 2011 IBM Corporation

Pipeline Example – Integration Stage

� Promote to next staging
area

� Verify deployment
automation prepared in
Development also works
in Staging

© 2011 IBM Corporation

Pipeline Example – Production Stage

� Promote to production

� Re-use same deployment automation from prior
environments

� Use same automatic validation leveraged in prior
milestones

© 2011 IBM Corporation

Best Practice: Establish a Definitive Library of Deployment Assets

� ITIL recommends establishing a ”Definitive Media Library” – a place where all the master or
‘gold’ versions of software assets are stored and maintained

– we take this further to include master configuration data, installation scripts, topology
patterns, release notes and other ‘non-build’ items essential in provisioning an
environment

� Many organisations take this to mean a basic file system
– some extend the concept and use a Version Control system
– this is a good start but it it means many important details about component

interdependencies, maturity levels, and existing deployments

� Using a formal Asset Management Repository gives you control over
– Releases consisting of a baseline through many components, libraries, provisioning

data, topology assets and development data (known defects, requirements and
changes)

– Formal asset lifecycles
– Approvals and review
– Policies for automated validation, review, retirement, compliance, provisioning

© 2011 IBM Corporation

Definitive Library

Best Practice: Establish a Definitive ‘Software’ Library

Gain control over the:

� Components to ensure only certified releases are deployed

� People who are stakeholders in the decision making

� Workflow to manage sharing

� Policies to enforce rules

� Access permissions to control access

� Traceability and auditing for plans and automations

Operations
Manager

Deployment
Architect

Operations

Definitive Library
template

Software
Package

configuration

doc

© 2011 IBM Corporation

Automate deployment
of governed outputs

DevOps using a Definitive Library

05/10/11

Manage source code
and project tasks

Catalog, Govern,
Share outputs

Source
code
Source
code

SCM1SCM1

SCM2SCM2

BuildBuild

Non-source
code
Non-source
code

Definitive
Library
Definitive
Library

DeployDeploy

Operations

© 2011 IBM Corporation

Bus Case

Reference Arch

Credit WSDL / XSD

Open Source Jar

Provisioning Scripts

Implementation

Library

Link existing definitive components to new development work

SCM

Developed Components

Links to approved library
artifacts.

Artifacts are not source
controlled in this project.

IDE

Project

Version controlled
development.

Referenced Components

Published Components

11

22

33

© 2011 IBM Corporation

Build using linked and vetted outputs from the library

Library
Uses

Ant based RTC/BF automations

Build/Automation

Machine

Update Information

Built
Component

Built
Component

Referenced
Component

Referenced
ComponentReferenced

Component

Referenced
Component

JobJob

Build Job publishes / links
deliverables

SCM

Built Components

Referenced Components

Library tracks/audits
component in BOM

BaselineBaseline

Artifacts are linked to the
Job/BOM

11

22

33

© 2011 IBM Corporation

Best Practice: Establish a DevOps Pattern Library

� Ensure that Development Architects & Operations Architects agree on standardized
platforms and what architectural patterns will be supported

– Setup pattern workgroup to develop, collaborate and refine patterns
– Establish a catalog of standard, support patterns in the DSL for consumption by both

Development and Operations

� DevOps is a collaborative effort to align and optimize solution delivery between development
and operations

– Standardization reduces cost with consistent administration, consistent problem
determination, consistent maintenance

– Establish and follow exception process for infrequent cases outside of mainstream
application development

� Communicate early in the process using unambiguous topology specifications
– Traditionally, very little intersection between development and operations terminology
– Need to find common ground where worlds meet

� Avoid Anti-patterns:
– Lack of consensus on architectural patterns
– One size fits all (likely doesn’t fit anyone well)
– Custom Everything (increased cost to management and maintain)

© 2011 IBM Corporation

Establishing the Pattern Library - Figure out what you have!

� Discovering existing systems as a basis for new patterns
– leverage your CMDB and Operational Discovery Agents to capture, quantify and refine

the patterns that currently exist
– Document the patterns in a form that can be used to build new systems, and create the

delivery pipeline automatically

� Pattern definition is key to DevOps
– You will not see the value if every solution is a one-off

� Companies have many patterns (and anti-patterns) that exist

© 2011 IBM Corporation

Layers

© 2011 IBM Corporation

Logical Pattern

� Describe a skeleton and assumptions to
build an application upon; two flavors:
abstract design pattern or conceptual
pattern of platform

� Created by: IT Architects or an
Architecture Board

� Consumed by: Starting point for
Application Architect

© 2011 IBM Corporation

Application Pattern

� Describes application
architecture within the bounds
of the logical pattern. Captures
required enterprise
dependencies independent of
each stage

� Created By Application
Architects

� Consumed By Deployment
Architects or Specialists

© 2011 IBM Corporation

Platform Pattern

� Defines standard, supported
configurations of middleware,
operating systems, and
infrastructure. By standardizing
and limiting configurations, provide
greater re-use, lower cost of
ownership.

� Created by Subject Matter Experts;
either individually defining their
own areas or coming together with
IT Architects to define supported
compositions

� Consumed by Deployment
Architects or Specialists

© 2011 IBM Corporation

Assembling the Patterns to Build a Solution

© 2011 IBM Corporation

Best Practice: Treat Infrastructure Artifacts as Code

� Source Control Management can’t be limited to business applications
– Automation routines and scripts are fundamental to Operations

� Managing Operations routines like source code offers several benefits:
– Central point of truth as routines and environments change
– Backup in case of loss
– Identify possible regressions by comparing with prior versions

� Example Managed Assets:
– Perl, Jython, WSADMIN, ANT scripts
– Service orchestration routines (opsware, buildforge, etc)
– Infrastructure Gold copies components

© 2011 IBM Corporation
36

Installation Today

© 2011 IBM Corporation

Infrastructure as Code

� As more routines are developed within the
infrastructure areas to perform automated
provisioning, resource management and
administrative activities, they become more
important as an enterprise asset.

� The loss of these routines can be catastrophic
to the operations of the business and need to
be managed like other code assets

� Well defined process for check-in/checkout,
testing and migration of assets is required

© 2011 IBM Corporation

SCM

38

Infrastructure As Code

© 2011 IBM Corporation

Best Practice: Automate the Delivery Pipeline

� Don’t fix problems through administrative consoles once per problem, per environment – Fix
once in the automation logic

– Automation becomes part of the system under test
– Results in automation logic undergoing testing O(100)s times prior to deployment into

production (as frequently as once per check-in)

� Developer access to representative Environments for their target application architectures.
– Without representative Environments, Developers can't validate their code early and

Operators have no validation of whether the Application will run in its planned production
environment

– Provide standard Environments for re-use with push button automation to stand-up
– Use virtual or Cloud-based representative Environments that provide progressively more

realistic configurations towards production

� Deployment and validation tests are automated against representative environments.
– use the same automated pipline to roll application out into representative environment
– Perform automatic verification at time of build and deployment

• automated tests against the deployed environment;
• pro-active validation to look for potential problems with future versions (e.g. using

migration toolkits)

© 2011 IBM Corporation

Continuous Delivery - A Logical Progression of Existing Approaches

� In the early 2000s, modern IDEs introduced the idea of continuous compilation
– the code is compiled when a file is saved

� This was soon followed by continuous integration
– the code is built, and a set of unit tests are run when it is checked into source control

� Just as continuous compilation improves individual productivity, and continuous integration
improves a development team's productivity, continuous deployment improves an
organization's productivity

© 2011 IBM Corporation

Source Artifacts

SCM Library

Deployable Artifacts

Environment

Running System

Build, Package,
and Unit Test Deploy

Test &

Promote

Continuous Delivery

© 2011 IBM Corporation

Link Automation Gates to Component Lifecycles in DSL

� Defining asset lifecycles in your Definitive Library provides a
perfect way to automate the deployment

– Tie automated deployment to the Release lifecycle state
– Store ‘gold’ versions of deployment scripts as an asset,

baselined with the release

� In early stages of the release maturity lifecycle, trigger
continuous deployment system to provision and deploy
development environments automatically on every change

� In later stages, trigger notification to testers that the system is
ready to be deployed to test environments, and let test team
decide when to kick off provisioning

� In final stages, lock the production deployment processes out
until all reviews and approvals are complete and signed off

© 2011 IBM Corporation

Automated Provisioning of Environments

� Developers request environment for a lease
period

– Work with a representative environment

� In concert with broader lifecycle – ensuring
its good and making it available to the next
stage in the lifecycle

Developer

Pattern
Catalog

Pattern
Catalog

© 2011 IBM Corporation

Compliance Validation

� Various checks throughout the lifecycle and pipelines to ensure compliance with enterprise
concerns

– Best practices
– Code coverage
– Licensing

� Automated validation hooks throughout to capture and report
– Unit test against the build code
– Integration tests against integration environment
– Functional tests against the running system
– Acceptance and Compliance tests

© 2011 IBM Corporation

Best Practice Summary

� Define a Solution Lifecycle

� Define a Delivery Pipeline

� Establish a Definitive Library of Deployment Assets

� Establish a DevOps Pattern Library

� Treat Infrastructure Artifacts as Code

� Automate the Delivery Pipeline

© 2011 IBM Corporation

Real Life Examples

© 2011 IBM Corporation

© 2011 IBM Corporation

Example – An Insurance Organisation

�Situation

�Solution

�Benefits

© 2011 IBM Corporation

Example – A Federal Government Department

�Situation

�Solution

�Benefits

© 2011 IBM Corporation

ANZ Bank Case Study

© 2011 IBM Corporation

© 2011 IBM Corporation

Agenda

� Situation at ANZ Bank

� Challenges at ANZ

� Solution

� Benefits

© 2011 IBM Corporation

About ANZ Bank

� Opened its first office in Sydney in 1835

� Global headquarters is located in Melbourne, Australia

� Top ten listed company in Australia, and the number one bank in New
Zealand

� Operates in more than 32 countries across Australasia, Europe, Pacific
and America (Regional Bank)

� Over 5.7 million customers worldwide

� Employs more than 48,000 people around the world

� Provides a range of banking and financial products and services to around
eight million customers

© 2011 IBM Corporation

About ANZ Technology

Technology Resources

mainframe

Assets

IT Initiatives & Projects

Environment Services

•1200 production applications
inc. Development and Test
•Multi-Platforms & skills
•50 projects in parallel and growing
•+200 resources in Asia Pacific

Environment Services

•1200 production applications
inc. Development and Test
•Multi-Platforms & skills
•50 projects in parallel and growing
•+200 resources in Asia Pacific

Environment Management
•50 projects in parallel and growing
•Asia Pacific support

Environment Management
•50 projects in parallel and growing
•Asia Pacific support

Asset Management
•Thousands of assets across the org
•Multi Region support

Asset Management
•Thousands of assets across the org
•Multi Region support

© 2011 IBM Corporation

Model x 1

© 2011 IBM Corporation

Model x n

© 2011 IBM Corporation

The situation at ANZ Bank

Risk

Complexity

Issues

Delays

Cost

No Control

Uncertainty

Fragile

© 2011 IBM Corporation

Source Control Artefact Management Deployment

No standard end to end process or tool integrations

The situation at ANZ Bank

© 2011 IBM Corporation

Automation Framework

Integrate Automate

Solution - Software Delivery lifecycle Integration

Source

Code

RTC

SVN

B
a
selin

e
s

Non -

Source

Code

RAM RBF

Managed Environments

Managed Environments

Deployment AutomationArtifact ManagementSource Code Management

Build Process

© 2011 IBM Corporation

What this means for ANZ Bank

Reduce Lead TimeReduce Lead Time • Standards in procedures & tools
• Reduced training and enablement

Manage Source
Code
Manage Source
Code

• Collaboration across projects
• Preservation of code

Deploy FasterDeploy Faster • Build and Deploy automation
• Traceability of assets

Reuse AssetsReuse Assets
• Single source of traceable assets
• Build and Deployment adaptors
• Versioned assets for consumption

Report AccuratelyReport Accurately
• Consistent logging & audits
• Common frameworks
• Deployment and configuration controls

© 2011 IBM Corporation

The ROI benefit to ANZ

� Improved scalability of solution delivery

� Ability to assume an increased workload of 30-35 percent without adding
resources

� Greater efficiency in responding to regulators’ audits of process

� Staff can now move easily between projects as environments have the
same set-ups and tools

� Test environment deployment reduced from three days to 15 minutes

� Deployment cycle improvements by at least 50%

� Test cycles reduced by at least 30%

� AU$12m expected to be saved in the first year – representing an ROI of
AU$4.27m – with increased savings in future years

© 2011 IBM Corporation

Improvements in ANZ

60

© 2011 IBM Corporation

Customer quotes & Questions

� “The project went incredibly smoothly, driven by good project management and
backed by Odecee’s expertise and strong track record in environment
management.”

—Frank Fabian, Head of Testing Environments, Delivery Services, ANZ
Technology, ANZ

� “We wanted a solution that was flexible enough to handle changes in the
environment and application space, and Odecee delivered.”

—Frank Fabian, Head of Testing Environments, Delivery Services, ANZ
Technology, ANZ

61

© 2011 IBM Corporation

Governed process, asset management, free-form

data, semantic data

Governed process, asset management, free-form

data, semantic data

Governed Planning

G
o
v
e
rn

e
d
 A

u
to

m
a
ti
o
n

Non-governed process, free-form dataNon-governed process, free-form data

Introduction of NextGen ALM is an Evolutionary Process

Implemented governed process, integrated data,

partly automated.

Implemented governed process, integrated data,

partly automated.

Service AutomationService Automation

TasksTasks

ProcessProcess

Governed automation by designGoverned automation by design

Service AutomationService Automation

TasksTasks

ProcessProcess

© 2011 IBM Corporation

© 2011 IBM Corporation

