
© 2012 IBM Corporation

The future of software delivery
Global insights

Diego Lo Giudice - Vice President & Principal Analyst at Forrester Research

Peter Klenk - Manager Software Technology and Member of the

Chief Technology Office (CTO) Council for IBM Rational software

November 2012

© 2012 IBM Corporation

Software Quality: A costly problem across all industries

� Software is blamed for more major
business problems than any other man-
made product.

� Poor software quality has become one of
the most expensive topics in human
history

– > $150 billion per year in U.S.
– > $500 billion per year worldwide.

� Projects cancelled due to poor quality are
>15% more costly than successful
projects of the same size and type.

Source: Capers Jones, 2011
Based on 675 companies, 35 government/military groups, 13,500 projects, 50-75 new

projects/month, 24 countries, 15 lawsuites

© 2012 IBM Corporation

Balancing
Quality and Speed

Increasing
Cost of Quality

Increasing
Development Complexity

Outsourcing labor is no longer
a de facto approach as global
wages are increasing

Product and application
complexity and size
are increasing

Productivity is inhibited as
test teams can no longer keep
up with agile development

Heterogeneous Environments

Public Cloud Private Cloud

Data Warehouse Mainframe Enterprise
Service Bus

Directory
Identity

File
systems

Collaboration
Web/
Internet

Routing
Service

Third-party
Services Portals

Content
Providers

EJB

Shared
Services

Archives

Business
Partners

Messaging
Services

Traditional
Testing

Other costs

Testing costs

Today’s testing paradigm is impractical

© 2012 IBM Corporation

Test environment availability is a key inhibitor

Labor, hardware,
and software costs to manage

test labs and environments

Cost

Days/weeks wasted waiting on
the availability of a test

environment

Cycle Time

Availability of test
environments hinders

developers ability to test
properly

Risk

� Lots of under-utilized and costly test lab resources

� Development and QA waste a lot of time on unproductive activities: installation, configuration, trial/error, etc.

� A significant portion of the testing effort is pushed late in the process resulting in defects costing 10-100x to fix

© 2012 IBM Corporation5

Test Lab costs

• Use of hardware-based virtualization or cloud based resources
provides partial savings (20-30%)

• Installation and configuration of software is still very labor intensive

• Certain systems cannot leverage hw virtualization, e.g. costly third
party services, mainframe applications, proprietary systems

Cycle Time

• Investment in UI test automation has proven to reduce cycle time for
regression testing

• Testing new functions still require to have an environment available to
develop test scripts

• The time wasted waiting for a test environment is severely reducing the
ability to do proper acceptance testing

Risk
• Addressed through better collaboration between development and

testing, better test planning, e.g. using Rational Quality Manager

• Too many “trivial” defects are still found late in the process by Quality
Assurance teams

The solution today…

© 2012 IBM Corporation

Barriers to complete test environments

� System dependencies are a key challenge in
setting up test environments

� Unavailable/inaccessible services: Testing is
constrained due to production schedules, security
restrictions, contention between teams, or
because they are still under development

� Costly 3rd party access fees: Developing or
testing against Cloud-based or other shared
services can result in costly usage fees

� Impractical hardware-based virtualization:
Systems are either too difficult (mainframes) or
remote (third-party services) to replicate via
traditional hardware-based virtualization
approaches

Heterogeneous Environments

Public Cloud Private Cloud

Data Warehouse Mainframe Enterprise
Service Bus

Directory
Identity

File
systems

Collaboration
App Under TestRouting

Service

Third-party
Services Portals

Content
Providers

EJB

Shared
Services

Archives

Business
Partners

Messaging
Services

© 2012 IBM Corporation

Introducing Service Virtualization

� Virtual components simulate the behavior of an
entire application or system during testing

� Virtual components run on commodity hardware,
private cloud, public cloud

� Each developer and tester can easily have their
own test environment

� Developers and testers continue to use current
testing procedures and tools (manual,
performance, UI test automation, etc.)

� Highly complementary to service-layer
(integration) test automation

Heterogeneous Environments

Public Cloud Private Cloud

Data Warehouse Mainframe Enterprise
Service Bus

Directory
Identity

File
systems

Collaboration
App Under TestRouting

Service

Third-party
Services Portals

Content
Providers

EJB

Shared
Services

Archives

Business
Partners

Messaging
Services

Databases Mainframe
applications

App Under Test

Third-party
Services

Packaged apps, messaging services, etc.

Virtual Services

© 2012 IBM Corporation

Service Virtualization how-to

� Virtual components can be created from
– Service specifications or,
– From recording actual traffic to existing

services/applications

� Virtual components can be further customized
– To simulate simple to complex behaviors
– To simulate latency, performance profiles, etc.

� Virtual components are published for consumption by
developers and testers

– Testing can start earlier: Testers can now create
their tests against virtual services

– Systems can be incrementally tested as sub-
systems become available

Virtual

Virtual

© 2012 IBM Corporation

Service Virtualization in context

© 2012 IBM Corporation

Incremental Integration TestingIncremental Integration Testing

Actual Component

Virtual Component

� Services, applications, systems are introduced into
the continuous integration cycle in a prioritized,
controlled fashion.

� Units not yet available are simulated and tested
against.

Service Virtualization enables continuous integration testing

© 2012 IBM Corporation

Continuous Integration Testing

Pass/FailTime

Real Virtual V V �Test my own piece

• Integration Testing requires components that may not be ready/available yet, or expensive to use –
Service Virtualization enables replacing them with a virtual component.

• Services, applications, systems are introduced into the continuous integration cycle in a prioritized,
controlled fashion.

C1 C2 C3 ERP WSDL 3rd party EJB

Example:
• Test C1 with three virtualized services.
• Can use simple or complex integration scenarios.
• Quick to setup and low-cost.

© 2012 IBM Corporation

Continuous Integration Testing

Pass/FailTime

Real Virtual V V

Real V V VR

�

�

Test my own piece

Integrate w/another

• Integration Testing requires components that may not be ready/available yet, or expensive to use –
Service Virtualization enables replacing them with a virtual component.

• Services, applications, systems are introduced into the continuous integration cycle in a prioritized,
controlled fashion.

• C2 introduced some defects – further testing is blocked!

C1 C2 C3 ERP WSDL 3rd party EJB

© 2012 IBM Corporation

Continuous Integration Testing

Pass/FailTime

Real Virtual V V

Real V V VR

Real V V VV

�

�

�

Test my own piece

Integrate w/another

Failures won’t
slow me down!

• Integration Testing requires components that may not be ready/available yet, or expensive to use –
Service Virtualization enables replacing them with a virtual component.

• Services, applications, systems are introduced into the continuous integration cycle in a prioritized,
controlled fashion.

C1 C2 C3 ERP WSDL 3rd party EJB

• C2 introduced some defects – replace it with a virtual service!
• A defect in C2 doesn’t stop testing of those who depend on it!
• Quick to setup and low-cost.

© 2012 IBM Corporation

Continuous Integration Testing

Pass/FailTime

Real Virtual V V

Real V V VR

Real V V VV

�

�

�

Test my own piece

Integrate w/another

Failures won’t
slow me down!

• Integration Testing requires components that may not be ready/available yet, or expensive to use –
Service Virtualization enables replacing them with a virtual component.

• Services, applications, systems are introduced into the continuous integration cycle in a prioritized,
controlled fashion.

C1 C2 C3 ERP WSDL 3rd party EJB

Negative tests Real V’ V VR �

• Virtual components can easily be modified to support negative
testing.

© 2012 IBM Corporation

IBM Rational Service Virtualization Solution

� Rational Test Workbench is a desktop solution that
enables testers/developers to:
– Capture and model virtual services
– Test services and applications long before their user interfaces

becomes available and do integration testing (SOA, BPM)
– Delivers Functional, Performance, and Integration Testing

� Rational Test Virtualization Server is a server solution that:
– Provides a central environment to virtualize heterogeneous hardware,

software and services to provide 24x7 testing capabilities
– Reduces infrastructure costs of traditional testing

environments
– Virtual Services can be built from the interface definition of the system

for a wide variety of protocols, including HTTP, web services, SOA,
JMS, TIBCO, IBM WebSphere MQ, Oracle, etc.

� Rational Performance Test Server enables Rational Test Workbench
users to reuse test scripts to drive performance testing
– Can be used in combination with Virtual Services
– Probe for identification of system bottlenecks

Databases Mainframe
applications

App Under Test

Third-party
Services

Packaged apps, messaging services, etc.

Rational Test Virtualization Server

Rational Test Workbench

Developers &
Testers

Rational Performance Test Server

© 2012 IBM Corporation

Supported Environments & Technologies

• ActiveMQ
• Email (SMTP, IMAP)
• Files
• TCP, FTP/S, HTTP/S
• JMS (JBOSS et al)
• IBM WebSphere MQ
• JBoss MQ
• SAP IDoc, BAPI, RFC & XI/PI
• Software AG’s IB & IS
• Solace
• Sonic MQ
• TIBCO Rendezvous, Smart

Sockets & EMS
• Custom

• CentraSite
• Oracle Fusion
• SCA Domain
• Software AG IS, BPMS
• Sonic ESB
• TIBCO ActiveMatrix
• UDDI
• Web Services
• WebSphere RR
• WSDL

• BPM
• Databases
• Log Files

• .Net Objects
• Bytes
• COBOL Copybook
• ebXML
• EDI
• Fixed Width
• HL7
• IATA
• Java Objects
• MIME
• OAG
• SOAP
• Software AG Broker Docs
• SWIFT
• TIBCO ActiveEnterprise
• XML (DTD, XSD, WSDL)
• Custom

Messaging Protocols SOA, ESB, Others Message Formats

© 2012 IBM Corporation

Customer Results

• After an acquisition, needed to
get off rented infrastructure

• Move to webMethods as fast as
possible

• Regression testing essential

• Stubbing of systems while they
move over critical systems

• GH Tester performed all required
functions quickly and easily

• Fully integrated in six months,
two months early

• Saved significant rental costs

• Bought next generation
payments system

• Impact = organizational heart
transplant

• Disparate, legacy formats

• Stubbed third party systems,
otherwise unavailable for testing

• Reduced 10 days of manual
testing to 10 minutes

• Saved >$7 million so far

• “Project would have been
impossible without the tool”

• Upgrade to webMethods 8

• “You need 30,000 hours to test
the new environment”

• GH Tester + GCS = 4,000 hours

• Focus on business & volume
critical components

• New testing strategy for all
developments

• Cut time and costs but NOT
quality

Leading global financial services
firm, assets of $2 trillion+

€30 billion international
supermarket operator

© 2012 IBM Corporation18

Test Lab costs

• Test lab infrastructure costs can be reduced by up to 90%

• Labor involved in setting up test environments can be reduced by
80%+

• Reduced or eliminated the cost of invoking 3rd party systems for non-
production use, fee-based web services

Cycle Time

• Test environments can be configured in minutes vs weeks

• More testers can be focused on testing, rather than configuring test
environments

• More regression testing can be done independently from the User
Interface, during development

Risk
• Developers have the means to test software earlier at the Service/API

level

• Large teams working on different parts of an application or system can
effectively do parallel development by virtualizing different parts of the
system

Green Hat technology is a game changer for Quality Management

© 2012 IBM Corporation

What is required to effectively drive Quality Management?

Cycle
Time

Quality

Cost

Risk

Multi-channel
Test automation

Continuous Integration
Testing & Delivery

Test Prioritization
& analysis

© 2012 IBM Corporation

Service
Virtualization

20

IBM Rational Quality Management
The leading Agile Quality Management Solution

Storage
Collaboration

Search & QueryDiscovery

Administration: Users,
projects, process

Presentation:
Mashups

Best Practice Processes

Manage

Test Lab

Create

Plan

Build

Tests

Report

Results

Execute

Tests

IBM Collaborative Application Lifecycle Management

Test Management

Rational Quality Manager
Quality Dashboard

Requirements
Management Defect

Management

Open Lifecycle Service Integrations

Performance
Testing

Performance
Testing

Functional
Testing

Unit
Testing Security and

ComplianceIntegration
Testing

