
WebSphere® IBM Branch Transformation Toolkit

for WebSphere Studio

Solution Architecture

Version 5.2

���

Note!

Before using this information and the product it supports, be sure to read the general information under “Notices” on page

27.

This edition applies to Version 5, Release 2, Modification 0, of IBM Branch Transformation Toolkit for WebSphere Studio

(5724-H82) and to all subsequent releases and modifications until otherwise indicated in new editions.

IBM welcomes your comments. You can send to the following address:

IBM China Software Development Lab

Branch Transformation Toolkit Product

Diamond Building, ZhongGuanCun Software Park, Dongbeiwang West Road No.8,

ShangDi, Haidian District, Beijing 100094 P. R. China

Include the title and order number of this book, and the page number or topic related to your comment.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any

way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1998,2007. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

Solution Architecture Overview 1

Introduction 1

Architectural objectives 1

Architectural principles 2

Support for multiple channels 4

Architecture 5

Client 7

Application presentation layer 7

Application logic layer 8

Runtime architecture examples 8

Java client environment 8

HTML client environment 10

EJB and Web services architectures 11

Architectural considerations 11

Components 12

Java client 12

Developing BTT server applications 14

Understanding data model 14

Developing presentation layer 15

Developing business logic 16

Handling exceptions 17

Understanding Initialization 17

Tools 18

Development 18

Development Model 19

Development process phases 20

Physical deployment 21

Cache mechanisms 23

Cache refresh policies 23

JAR files 24

Performance tips 24

Notices 27

Trademarks and service marks 29

© Copyright IBM Corp. 1998,2007 iii

iv IBM Branch Transformation Toolkit for WebSphere Studio: Solution Architecture

Solution Architecture Overview

This document is mainly for Solution Architects, who require an overall description

of what the IBM® Branch Transformation Toolkit for WebSphere® Studio (Branch

Transformation Toolkit) provides and how it may be used to build a solution. This

document is also useful for IT professionals and executives who require a broad

understanding of the architecture of this product and the strategy for its

implementation.

Readers of this document are assumed to be familiar with object-oriented software

and related development techniques, and to have a general knowledge of J2EE and

related technologies, network computing, and Internet technologies.

Introduction

The IBM Branch Transformation Toolkit for WebSphere Studio is a

component-based toolkit for developing enterprise e-business applications. The

Branch Transformation Toolkit enables the development of interfaces to the services

of a financial institution’s information system so that they become ubiquitous

through all delivery channels (such as the traditional branch, call center, banking

kiosk, Internet banking, and mobile access). This minimizes the need for

developing new code and reduces the time required to make new financial services

available to all delivery channels.

The architecture and technological approach of the Branch Transformation Toolkit

creates retail delivery solutions that preserve investment in existing enterprise

systems while accounting for the inherent instability of any infrastructure due to

innovations that appear frequently in the high-tech industry. While providing a

way to preserve existing systems, the Branch Transformation Toolkit is not tied to

one particular platform because it is built on Java™, the programming language of

choice for handling platform change. The toolkit also takes advantage of existing

platforms and technologies such as Eclipse, Web Services, J2EE, Struts, and so on.

The toolkit runtime architecture is based on the J2EE architecture with extensions,

and many development tools the toolkit provides are Eclipse plug-ins.

Architectural objectives

The architectural objectives of the IBM Branch Transformation Toolkit for

WebSphere Studio align with IT strategies that have a basis in controlling costs

over time. Following are the objectives:

v Reduce costs - A network computing architecture should exploit the network in

order to reduce costs. It allows reduction of the computing resources required on

the client and supports deployment on network computers, using the network as

a vehicle for on-demand distribution of software components. In addition, the

architecture supports deployment of reusable business components in a

managed server environment.

v Preserve investment - An important goal is to preserve the financial

institution’s investment in host systems and computing infrastructure, as well as

in the toolkit-based solutions themselves and other new technologies. This

makes it important to carefully consider technology selections in order to ensure

that they are strategic and will have enduring value.

© Copyright IBM Corp. 1998,2007 1

v Offer choices - Allow customers the flexibility to choose their hardware,

operating systems, networking systems, databases, communication protocols,

and third-party software products. The system must also support flexible

distribution of function and data based on the network environment and

physical topology.

v Evolve gracefully - The system must be flexible and resilient to both business

and technological changes. This helps to support rapid application development

and to increase competitiveness by improving time to market.

v Provide manageability - Once deployed and in production, the system must be

easy to manage and resilient to changes in the runtime environment.

v Allow incremental investment - The system must support the ability to

incrementally develop and deploy new business function and technology. In

addition, it must support the ability to include new toolkit-based solutions as

they become available.

v Maximize usability - The system as a whole must be well suited to the needs

of its users: not only end users but also developers and systems management

personnel.

v Maximize reusability - The system must be constructed in such a way as to

maximize reuse of components in all retail delivery solutions. In addition, it

must be able to meet the diverse needs of solutions and access channels in

financial institutions around the world.

Architectural principles

The architecture must be open, scalable, and easy to implement. These principles

are related to the architecture objectives, and are the basis for the platform

selections, programming model specifications, and overall non-functional

requirements of all the toolkit-based solutions. The major architectural principles of

open, scalable, and easy to implement, presented below, demonstrate how the IBM

approach for building robust, cost-effective enterprise systems support the

architectural objectives. Following are the principles supported by the Branch

Transformation Toolkit:

v Open

– Supports industry standards - The architecture is open because it uses open

industry and e-business standards such as TCP/IP, HTML, HTTP, J2EE (Java,

Java Server Pages, JCA, JDBC, EJB, and so on) and Web Services wherever

possible. These standards provide a solid foundation and make it easier to

use available proven components instead of building custom ones, and to

change vendors and implementations to satisfy changing business

requirements. Industry standards tend to be strategic and have longer life

spans because of the high levels of investment and commitment involved

with creating them.

– Is extendable and customizable - The toolkit is extendable and customizable

at many different layers within the architecture. This means it can be used in

a wide range of situations and can accommodate specialized requirements

that are specific to an individual customer, country, or region.

– Provides insulation - The toolkit isolates and abstracts interactions with

other systems to insulate toolkit-based applications from the specifics of other

systems. In a global solution, this is essential to provide the flexibility to

adapt to many diverse environments, particularly different host systems and

databases. The programming model of the toolkit insulates applications from

changes in the underlying technology.

– Preserves investment - The principles listed above ensure the preservation of

customer investments. The toolkit safely preserves the investments in current

2 IBM Branch Transformation Toolkit for WebSphere Studio: Solution Architecture

hardware, software, operating systems, network, communication

infrastructure and protocols, and back-end subsystems of the customer

environment.
v Scalable

– Supports three logical tiers - The benefits of a logical three-tier architecture

such as the network computing architecture are well known. The network

computing architecture is logical in that it specifies that the presentation layer

must be decoupled from the business logic, which must be decoupled from

the data access layer, but it does not specify how to physically deploy the

tiers. Although this approach is a form of isolation, it also provides scalability

by allowing each of these layers of the system to change independently of the

others. That is, the platform selections and design of each layer can change

without impacting the rest of the system. This architecture also requires that

the presentation layer be ″thin″ to realize the goals of network computing.

This means that workstations with a small amount of physical memory and

no virtual memory can download and execute the application. The main

objective of the solution architecture is to support the model of a multiple-tier

network computing application while also allowing engagement teams to

implement solutions based on other application models such as a two-tier ″fat

client″ application.

– Supports replaceable components - Components are packages of system

function with established interfaces and a predetermined execution

environment. As long as a component is within its required execution

environment and it interacts with other system components through its public

interfaces, it is replaceable with minimal effort. This construction enables high

levels of reuse and allows the system to evolve without causing large ripple

effects. It also allows the implementation of components and their execution

environments to vary to meet performance or scalability requirements.

– Provides enterprise topology independence - This notion extends the idea of

a logical three-tier architecture so that not only are the three tiers independent

of physical location, but system components are independent of any specific

physical topology. This makes toolkit-based solutions highly flexible for

deployment in different environments by allowing customers to configure the

system as needed to achieve the scalability desired for their environment.
v Easy to implement

– Uses visual programming - Where possible, toolkit-based solutions use

visual programming to assemble the application from parts. This technique is

particularly effective in developing application screens and rapid assembly of

graphical user interfaces.

– Separates analysis from design - Analysis should be a separate process from

design and have its own distinct work products. Solutions of this product

suite should use analysis to form an entirely logical representation of system

function that is independent of technology or implementation. This helps to

retain the value of earlier development effort even if the implementation must

change entirely.

– Provides a development methodology - This solution provides a

methodology for guiding the development process in an engagement project

to make solution implementation easier and the deployment faster.

– Is transaction-oriented - Most projects require a solution in which an

enterprise-centric back-end system executes most of the application business

logic and the front end of the solution, running in a delivery channel, must

behave as a transaction posting engine to run the transactions in the back-end

Solution architecture 3

system. The Branch Transformation Toolkit excels at this type of solution and

optimizes the processing of the transactions especially in high transaction

volume environments.

– Minimizes development effort - The toolkit highly promotes the

externalization of parameters so that business operations behave differently

depending on their specific set of parameters. This enables solutions to

delivery new functionality without requiring new code, simply by adding

new external parameters to the system. One example is the toolkit business

processes that are defined with BPEL. This enables toolkit application

developers to edit process logic using visual design and modeling tools.

Support for multiple channels

The IBM Branch Transformation Toolkit for WebSphere Studio provides an

architecture for building applications that are deliverable on multiple channels.

Enterprises within the banking and financial services industries have successfully

deployed the toolkit in various topologies as the infrastructure for enterprise

systems with high transaction volumes. While the following topologies are specific

to the banking and financial services industries, for which the toolkit was

originally conceived, the ability of the toolkit to handle multiple business

distribution channels is generic and can apply to other industries.

Bank teller

A bank teller application topology consists of a number of client

workstations with financial devices attached. The workstation downloads

the client applicationon on request from a Web server. The client

applications, which mainly deal with presentation and local financial

device handling, have access to the branch server (that is, the solution

application server) using the HTTP or SSL protocols.

 The solution application server provides common services such as

electronic journaling and parameter tables to the client workstations, as

well as access to the transactional logic of the back-end enterprise servers.

A toolkit server application can also be deployed on the physical server for

a regional or central data center without changes to the application.

Internet banking

In an Internet banking topology, users obtain access to financial services

through a Web browser (or other device) connected to the Internet. The

user interface is normally HTML with additional technologies such as

JavaScript™, DHTML, or XML. In such an environment, the solution

application server is able to process requests from Web browsers (or other

devices that issue HTTP requests), obtain the proper data from enterprise

servers, and generate the appropriate view for the client device to display

using HTML pages for Web browsers or XML messages for those devices

that support it. The application server is usually located at the central site,

and is protected by a firewall.

Kiosks

The toolkit can be used in kiosks or ATMs that run Internet technologies

such as a Web browser and Java. In this environment, the client usually is

a Java application (or applet). In addition to the presentation logic, the

client application manages the financial devices normally present in a kiosk

(such as MSR/E, chip card reader, receipt printer, passbook printer, bar

code readers, and touch screen displays) using the financial device services

that the toolkit provides. The kiosk connects to the application server using

the HTTP or SSL protocols. In some cases, kiosks are located in branches,

4 IBM Branch Transformation Toolkit for WebSphere Studio: Solution Architecture

which handle them as branch workstations. Kiosks can also be connected

directly to the server through public or private lines.

Mobile terminal

Users equipped with laptops running a Web browser can connect to

corporate toolkit servers using the SSL protocol. In this scenario, the toolkit

server is usually located at the central site and is protected by a firewall. It

is also feasible to have mobile users connected to the branches to which

they belong.

 The following diagram illustrates these business distribution channels:

Architecture

The architecture of the Branch Transformation Toolkit application solution is based

on a logical three-tier model: back-end enterprise tier, application server tier, and

client tier.

Within the application server tier, the toolkit has two separate layers. The

application presentation layer is responsible for receiving requests from the client

and passing that request on to the application logic layer. It also passes the

response back to the client. The application logic layer is responsible for

performing the request as a process and passing the response back to the

application presentation layer. The individual components within the layer are

discussed later in this document.

For the most part, the application presentation layer resides in a Web container in

WebSphere Application Server while the application logic layer resides in a EJB

container. The services are the exception because they can reside anywhere.

Solution architecture 5

Note: WSI stands for Web Service Invoker in the figure above.

The design and portability of the toolkit (resulting from being Java code) allow the

middle-tier servers to exist at either the branch level (one server per branch), the

6 IBM Branch Transformation Toolkit for WebSphere Studio: Solution Architecture

regional level (one server per group of branches), or even a centralized level (a

single server for the entire financial institution). The design provides flexibility to

achieve the right balance between the number of servers and the network

bandwidth without affecting any application logic. Besides the application server,

there may be a ″technical server″ responsible for providing common services (such

as disks or printers) to the client workstations. If the application presentation layer

and the application logic layer are on the same architectural level, they can

physically be on the same machine.

Client

A client in the three-tier architecture contains little logic. The logic it does have is

usually presentation logic or logic required locally to do such things as access

financial devices or validate entered data. The code to execute the client logic is

downloaded on an on-demand basis, and therefore does not reside on the client,

but on a Web server. The Branch Transformation Toolkit supports any kind of

physical client device that uses the following technologies:

v Java applets in a browser environment

v Java applications

v HTML clients

The toolkit provides implementations for current client technologies but these

concrete implementations anticipate that significant differences may be found when

realizing solutions. The toolkit is not limited to these technologies because its

design is generic and can be extended to support other technologies.

A clear separation exists between Java clients and HTML clients. For a Java client,

the application, which may also be executed inside a browser, can be built from

toolkit-provided visual components (implemented as Java beans) using visual

composition. The visual components of the toolkit and the interaction with toolkit

services facilitate implementing required application tasks such as interacting with

financial devices, database access, and other services. For an HTML client, the flow

of the navigation is delegated to the server.

Application presentation layer

The application presentation layer works in conjunction with a system application

server (such as IBM WebSphere Application Server) to provide a layered multiple

channel architecture. The application presentation layer works as a bridge that

connects the clients with the application logic layer, which performs business

transactions. Java clients and HTML clients uses different application presentation

components to connect to the application logic layer.

To get connected with the application logic layer, the presentation layer defines the

following entities:

v Java RequestHandler processes a Java client request for a particular type of

requester. The toolkit registers these handlers to determine which specific

handler it needs for a specific request. For example, there are different

RequestHandlers for requests coming from a Java client in a home banking

environment, from a Java client in a branch teller environment, and from a Java

client in a call center environment. The RequestHandler is responsible for

interacting with the client side operations that controls the dialog navigation for

a specific client type and for interacting with invokers that call application logic

layer transactions.

v Java PresentationHandler processes the reply for a particular type of requester.

Solution architecture 7

v Struts Extensions processes requests from HTML clients, calls application logic

layer components for business transactions, and renders presentation for HTML

clients based on the business transaction results.

v HTML RequestHandler is responsible for processing a particular request from

an HTML client. The handler may need to be aware of the device type. This is

managed by the channel context. The request handler performs the following

tasks to integrate with the application:

– Establishes the session between the client and the server for the specific

device

– Executes a generic application operation for the HTML channel

– Determines the appropriate presentation handler from the handler registry to

render the results back to the client.
v HTML PresentationHandler is responsible for processing the reply to the HTML

client. The main API provided by this class is void

processReply(ChannelContext, ServerOperation). This starts the process of

dynamically creating the HTML and rendering it to the client using the servlet

JSP engine.

To pass business process requests to the application logic layer, the application

presentation layer has the Bean Invoker Factory. The Bean Invoker Factory creates

invokers so that the requester can invoke the EJBs that perform the business

processes in the application logic layer. The requester can be a request handler

from the Java client or an EJB Action from the toolkit Struts Extensions component.

Application logic layer

The application logic layer provides the core business logic using Enterprise

JavaBeans™. It does this in a channel neutral manner. That is, it handles a transfer

funds request whether the request came from a Web client or kiosk.

The mechanism for performing the business logic is a business process running in

the Process Choreographer in WebSphere Process Server or a business process

running as a Single Action EJB. The business process can involve interacting with

Web services, host applications using the JCA Connectors, and enterprise

datasources to fulfill the request. The toolkit provides a set of services that support

the application logic layer by providing connectivity to enterprise datastores or to

legacy systems.

From WebSphere Application Server version 6, the work area feature is supported

too. So, the presentation layer can use a work area to pass the session IDs to the

application logic layer. Or the application presentation layer includes the session

ID with the data required to process the business request in the request message.

Runtime architecture examples

This section contains two examples that describe the flow of two transactions from

end to end: one with a Java client with the application presentation and

application logic layers running on WebSphere Process Server and the other an

HTML client with the application presentation and application logic layers running

on WebSphere Application Server. The transaction is a customer search in which

the user, a teller, enters the data for the customer search criteria on a view. The

view displays a list of customers who meet the search criteria.

Java client environment

In this example, the Java client is within a browser that has the Java plug-in and

starts the client application. This is one of many possible implementations for a

8 IBM Branch Transformation Toolkit for WebSphere Studio: Solution Architecture

Java client but it makes the example independent of the virtual machine provided

by the browser. The startup applet launches the XML Desktop. Once the desktop is

available, the navigation controller and the actions configured for the visual

components control the view navigation and which business processes the user

requests. The flow processor is an implementation of the Automaton (a state

machine) that controls what happens when user’s actions reach the server in the

application presentation layer.

The application presentation layer and application logic layer run on WebSphere

Process Server so that the example can show how the application logic layer uses

the work area and Process Choreographer features of that edition.

1. The user requests a customer search and provides the required input data:

a. The user clicks a desktop button to search for a particular customer’s data.

b. The search button has an associated operation panel. The panel contains a

set of entry fields for the search criteria and a list field.

c. The user enters the required data. The operation panel enables the OK

button only when the user has typed values in all mandatory fields.

d. When the user clicks OK, the client creates the customer search client

operation and creates a context for it. The client then chains it to an upper

level context. The client operation may identify the parent or the toolkit

may use the default context of the client/server session as the parent.

e. The client operation checks that the operation context contains the data

needed to process the operation. This validation is a cross-field validation. If

data is missing, the client operation may execute a local service or send a

request to a remote server. The client operation unformats the data resulting

from executing the service and places the unformatted data in the operation

context.

f. The client sends the client operation to the server using the multichannel

support component.
2. The application presentation layer sends the customer search request to the

application logic layer.

a. In the server, the servlet acting as the request handler receives the customer

search operation.

b. The request handler calls the Bean Invoker Factory to get the invoker for

the customer search operation.

c. The request handler uses a formatter to populate the request with data from

the context.
3. The request handler places the session ID in the work area.

4. The invoker makes an EJB call to the to Business Process Component on the

application logic layer to execute the customer search process.

5. The application logic layer executes the business process:

a. The Business Process Component receives the request and retrieves the

session ID from the work area. Note that a previous process (typically a

logon process) has created the session and the session CHA context.

b. The Business Process Component creates a CHA context to hold the process

data and chains the process context to the session context.

c. The Business Process Component performs the process using the Process

Choreographer.

d. The Process Choreographer performs the activities of the process such as

performing a search in the customer database and logging the search in an

electronic journal.

Solution architecture 9

e. The Business Process Component creates the response message and formats

the data resulting from the search into the response message.

f. The Business Process Component sends the response back the presentation

server.
6. The client view displays a list of customers matching the search criteria:

a. The flow processor unformats the response into the process context. The

flow processor broadcasts an event so that the navigation controller is aware

that the customer search process has completed and its data is available.

b. The navigation controller updates the Customer Search panel with the

response data (in this case, a list of customers that match the provided

search criteria).

HTML client environment

An HTML client is generally used for a home banking application built to use the

Branch Transformation Toolkit. An HTML client can also be used in any other kind

of application, such as a bank teller application or a CRMS. The client machine

requires only a Web browser to run the application.

When the user visits the start page of the application and logs in, the browser

displays a menu or HTML desktop with a list of available processes. In this

example, the toolkit Struts Extensions in the presentation server controls the

navigation. The application presentation layer and application logic layer run on

WebSphere Application Server so that the example can show how the application

logic layer works when Process Choreographer is not available and uses Single

Action EJBs to perform the logic.

1. The user requests a customer search and provides the required input data:

a. The user clicks a customer search link in the HTML desktop. This user

action sends a request to toolkit Struts Extensions.

b. The toolkit Struts Extensions component in the application presentation

layer starts the corresponding action (Struts action A) specified in the Struts

configuration file. That action then returns the JSP page name. The

presentation layer processes the JSP into an HTML page.

c. In the client side, the browser displays the HTML page.

d. The user enters the input data and clicks a Submit button. This sends the

form data as an HTTP post request to the Action servlet of the Struts

Extensions which in turn starts a Struts action (Struts action B) specified in

the Struts configuration file. The request data contains a process ID as

hidden fields along with the other input data.

e. Struts Action B requests an invoker from the Bean Invoker Factory.

f. The invoker formats the data into a process context.

g. The invoker calls a method in a Single Action EJB to perform a customer

search process in the application logic layer. Struts action B uses a formatter

to add data from the context as a parameter of the method call. The method

call also includes the session ID.
2. The application logic layer executes the business process:

a. The Single Action EJB performs the logic contained in the invoked method.

b. The Single Action EJB returns the response to the presentation server.

3. The client view displays a list of customers matching the search criteria:

a. The invoker unformats the response into the process context.

b. Struts action B points to a JSP that generates an HTML page with the

response to the customer search request. The page contains a list of

customers who match the search criteria.

10 IBM Branch Transformation Toolkit for WebSphere Studio: Solution Architecture

c. The client displays the HTML page.

EJB and Web services architectures

The Branch Transformation Toolkit provides both runtime and development

architectures for building front-end solutions that access back-end enterprise

applications and data. As part of the runtime architecture, the toolkit uses an

application presentation layer with a client and server and an application logic

layer. For the application logic layer, the business logic resides in a business

process running in the Process Choreographer of WebSphere Process Server or

within a Single Action EJB. The business process or EJB can invoke Web services to

perform business logic.

The Web services architecture defines a dynamic business-to-business

programming model, where services are published, discovered, and accessed

through standard definitions and interfaces. The toolkit integrates with this

architecture and complies with both schemas to provide the following benefits:

v The toolkit application code can access any EJB or Web service

v The toolkit can build transactional-access EJBs or Web services, which are

components that delegate transactional integrity to an external transaction

monitor such as IMS™

v The toolkit can be extended and customized to create black-box EJBs or Web

services

v The toolkit can make implementing a client front-end to an EJB or Web Service

easier while providing the overall application with the ″n tier″ network

computing architecture model based on the internal architecture of the toolkit’s

multichannel application presentation layer

However, the main benefit is that the integration preserves the flexibility of the

toolkit while providing the benefits of the EJB and Web services architectures and a

clean path to a components model for toolkit-based solutions. The application

presentation layer can access the EJB or Web service using the EJB interface or the

proxy classes which are generated by the development tool respectively. From the

point of view of the application presentation layer, they are black boxes.

Architectural considerations

This section contains the set of considerations to be taken into account when

wrapping the Branch Transformation Toolkit logic into an EJB or Web service.

These considerations provide the application architect or designer with an

understanding of the product’s facilities for wrapping toolkit logic. Keep the

following in mind when constructing a solution using EJBs or Web Services:

v Depending on the solution being implemented with the toolkit, encapsulating

the logic in EJBs or Web Services may not provide any benefit in terms of

transactional integrity. This is particularly true when the back-end system fully

provides integrity and the logic implemented in the middle tier is a pure

passthrough. That is, from the client’s point of view the middle tier is acting as

the front door of the server logic.

v Irrespective of your model choice, the toolkit provides its full set of features to

build your end-to-end solution. You are free to define the proper architecture for

the application and then use the toolkit to fulfill the requirements based on the

chosen architecture.

v Due to the internal implementation of the toolkit, having more than one EJB or

Web Service implemented by different uncoordinated teams (such as different

vendors) running in the same Java Virtual Machine and the same namespace

Solution architecture 11

may result in some coexistence problems. Since the use of different namespaces

by different solutions based on the Branch Transformation Toolkit cannot be

always ensured, it is better not to run EJBs or Web Services that have been

implemented using the toolkit in the same JVM with the same namespace. This

can be easily achieved during the deployment of the components, by assigning

the different EJBs or Web Services to different containers (perhaps under

different application server nodes).

Components

The Branch Transformation Toolkit splits into components in the application

presentation layer and components in the application logic layer.

Note that the Business Process component of Branch Transformation Toolkit

components can only run on WebSphere Process Server, while some toolkit

components can run on both WebSphere Process Server and WebSphere

Application Server. Since WebSphere Application Server v6.0 already supports the

features like Work Area, Startup Bean and Activity session, BTT v5.2 application

can adopt these features while running on WebSphere Application Server.

Java client

Branch Transformation Toolkit components that run on Java clients interact with

each other to provide the Java client navigation function, pass client requests to the

application presentation layer, and enable Java clients to present a response to the

request.

BTT 5.2 provides no explicit Java client components. Instead, similar to BTT 5.1, it

inherits the BTT 4.3 Java client using modified servlets and request handlers in the

server side that translate requests from a BTT Java client into a form that is

manageable within the BTT 5.2 server environment.

The main focus of this BTT Java client support is to provide a work-alike server

environment that existing Java clients can interact with or without client code

changes. This requires that the BTT server supports the following:

v A BTT 4.3-compatible Session subsystem (described under ‘Sessions’)

v A BTT 4.3-compatible Event subsystem (described under ‘Events’)

v Servlets for Session establishment, operation execution, Event registration, event

processing

For the Java client, no client code changes are necessary, but configuration changes

may be needed to change server operation names to process invoker names. All

changes are made to the client/server channels, request and response handlers as

well as any classes they interact with such as the BTT Context.

The following components run on Java clients:

Contexts

A context is the container for the data elements needed by a business

entity such as a user or branch. Contexts have a hierarchy to enable these

business entities to share common data. For example, in a branch each

teller would have a context that contains data about the teller but they

would all share the branch context, which would contain data about the

branch. The branch context is the parent and each teller context is a child

in the relationship.

12 IBM Branch Transformation Toolkit for WebSphere Studio: Solution Architecture

Formatters

A formatter transforms a string into data in a context or data in a context

to a String. This enables an application to move data into and out of the

context hierarchy and to create messages to send to a host, financial device,

or service in a format understood by the message’s destination. The toolkit

provides an extensive set of the most commonly needed formatters for

financial service applications including EBCDIC, date, numeric, packed,

binary, and other formatters.

Data elements

A data element is a field that contains a value or a collection of other data

elements. Certain data elements are type-aware. The typed data elements

represent business objects such as Date, ProductNumber, and Money. Each

typed data element has an associated property descriptor, which provides

information about the data such as its type, its validator, and its set of

converters.

Flows A flow is a particular route through a business process or presentation

sequence in the application presentation layer. A flow processor handles a

specific flow and it is typically with many branches and compound and

complex conditions on those branches. Within a flow, there is a sequence of

states. These states can have actions. An action is a task that the flow

processor performs such as display a view or invoke a business process in

the application logic layer.

Externalizers

An externalizer is an object factory that uses definitions in an external file

to instantiate a specific toolkit entity. The toolkit provides externalizers for

contexts, data elements, formatters, services, and flow processors. The

definition files are ASCII files using XML syntax. This makes configuring

and customizing these defined objects (or implementing new ones) possible

with something as simple as a basic text editor although the Development

Workbench provides an easier and more controlled environment for this

editing.

Events

An event is how components within the application presentation layer

communicate with each other. A notifier is the sender of an event. A

handler, as the receiver of that event, is responsible for consuming the

event or propagating it to other handlers. An Event Manager acts as the

event controller between notifiers and handlers to manage both local and

remote events.

Exceptions

A toolkit exception enhances the standard Java exception mechanism to

facilitate applications accessing information about the exception.

Visual beans

The visual beans facilitate the development of a GUI for Java clients by

adding features and properties to normal visual beans to support financial

applications such as date fields, numeric fields, or account data entry

fields. The navigation controller provides a way for the Java clients to have

a multiple view GUI.

Desktop

The Desktop is a fully configurable desktop for Java clients. It contains

most of the features commonly required of this type of user interface. It

includes many common UI features and can by dynamically personalized

to the current user.

Solution architecture 13

Operations

An operation is what Java clients use to launch business processes in the

application logic layer. An invoker maps the client operation to the

business process.

Generic Pool

The Generic Pool service enables multiple client operations to share certain

objects (classes and services), which makes the objects reusable. This reuse

reduces the average time to execute these operations and also reduces the

garbage collection work.

Trace Facility

The Trace Facility provides a way to see what is happening with an

application while it is running. The information it logs can be used to solve

problems during development and during runtime.

Financial device services

The Branch Transformation Toolkit provides services to access the most

commonly used financial devices in financial service applications,

including financial printers, check readers, magnetic stripe readers, chip

card devices, and passbook printers. Financial device services allow

applications to access devices that are compliant with WOSA/XFS

protocol. The toolkit also supplies 100% Java access to specific financial

devices following the current specifications of the J/XFS Forum.

JXFS Service

The JXFS Service enables applications to access devices that use

J/eXtensions for Financial Services (J/XFS). The JXFS Service uses

the typical interface between applications and J/XFS devices:

Device Control (DC) and Device Manager (DM).

WOSA Device

The WOSA Device service enables applications to use WOSA/XFS

to access financial devices. These devices include financial printers,

identification cards, and teller assist units

Developing BTT server applications

No. 003

To develop Branch Transformation Toolkit application on application servers, you

need to do the following:

Understanding data model

The following Branch Transformation Toolkit components are shared across the

Web container and EJB container of the application server:

Data elements

A data element is a field that contains a value or a collection of other data

elements. Certain data elements are type-aware. The typed data elements

represent business objects such as Date, ProductNumber, and Money. Each

typed data element has an associated property descriptor, which provides

information about the data such as its type, its validator, and its set of

converters.

Typed data

Typed data elements represent business objects such as Date,

ProductNumber, and Money.

CHA The Common Hierarchical Area holds data within a context hierarchy for

the Business Process Component when it performs a business process. This

14 IBM Branch Transformation Toolkit for WebSphere Studio: Solution Architecture

is a distributed component that allows the data to exist anywhere. It also

enables non-toolkit applications to store general global session data. The

application uses the CHA API to mover data into and out of the CHA.

Formatters

A formatter transforms a string into data in a context or data in a context

to a String. This enables an application to move data into and out of the

context hierarchy and to create messages to send to a host, financial device,

or service in a format understood by the message’s destination. The toolkit

provides an extensive set of the most commonly needed formatters for

financial service applications including EBCDIC, date, numeric, packed,

binary, and other formatters.

Developing presentation layer

The following Branch Transformation Toolkit components run in the presentation

layer of the application server:

Events

An event is how components within the application presentation layer

communicate with each other. A notifier is the sender of an event. A

handler, as the receiver of that event, is responsible for consuming the

event or propagating it to other handlers. An Event Manager acts as the

event controller between notifiers and handlers to manage both local and

remote events.

Note: This component works only for Java clients.

Sessions

A session is a conversation between a user (browser), client, or server that

contains one or more sets of requests and responses. Sessions enable these

entities to share data within the conversation yet distinguish the data from

data in other conversations.

Invoker

An invoker is the interface to an EJB in the application logic layer. A

request handler (part of the multichannel architecture) or the toolkit Struts

Extension uses a specific invoker to start the business process performed

by the EJB associated with the invoker.

Client/Server Messaging API

The Java Client/Server connectivity component enables the Java client and

application presentation layer to communicate through a specific

communication channel. The component contains a request handler, a Bean

Invoker Factory, and a presentation handler. The request handler passes the

request to the Bean Invoker Factory, which then instantiates an invoker to

call a Single Action EJB or a business process in the application logic layer.

The presentation handler handles the response from the application logic

layer to render the result appropriately for the Java client.

Note: This component works only for Java clients.

Struts Extensions

The Struts Extensions component provides a set of features and

mechanisms that support an HTML-based graphical user interface (GUI)

that is presented in a Web browser using an HTTP connection. The toolkit

Struts Extensions component is based on the Apache Struts Web

Application Framework.

Note: This component works only for HTML clients.

Solution architecture 15

HTML Channel

The Branch Transformation Toolkit’s multichannel support provides a

standardized way of handling messages between the server-side toolkit

application and the client-side user interface. HTML Channel uses and

extends this functionality to enable an HTML-based user interface to send

requests to and receive responses from a toolkit application using the

HTTP protocol. Different with Struts Extension, HTML Channel is based on

BTT RequestHandler multichannel mechanism and architecture, work with

Java Channel together to fulfill multichannel request.

JSPs and JSP tags

JSPs and JSP tags enable the application presentation layer to dynamically

generate HTML pages for HTML clients. They separate the generation of

dynamic content from its presentation.

 Note: This component works only for HTML clients.

Developing business logic

The following Branch Transformation Toolkit components run in the business logic

layer of the application server:

Business Process support

This component enables applications to perform business processes using

the Process Choreographer in WebSphere Process Server. Applications can

invoke the business process through the web service invocation. In BTT

v5.2, to reduce the impact on the change of Process Choreographer of

WebSphere Process Server, the support approach is changed to provide the

helper for the application to access the components of BTT instead of

making extension on top of Process Choreographer.

Single Action EJBs

This component enables applications to perform business process using

stateful or stateless session EJBs. The Invoker component in the

presentation layer is the interface to the single action EJBs.

Operations

An operation is what the Java™ clients use to launch business processes in

the application logic layer. An invoker (see Bean Invoker Factory) maps the

client operation to the business process.

Operation Steps:

An operation step is an entity that represents one or more actions

performed inside an operation. An operation can invoked one or more

operation steps during its operation flow to perform some or all of the

actions that the operation is to perform. The actions within an operation

step can include performing data validation, interacting with a service such

as inserting a row in the database, performing a set of interactions with a

group of services such as a set that adds a record in the journal, sends data

to the host, updates an entry in the journal, and prints a form in the

printer, or a combination of many actions. The action may also include

executing another operation if the business process requires the execution

of more than one operation. Since these actions can be common to several

operations with the only difference being the format of the data

interchanged with the system services, the operation step can be a highly

reusable part. Formatters handle the differences in data formatting.

 An operation step can, for example, handle the entire communication

process with the host including registering the corresponding handlers,

sending the data streams, handling the responses, deregistering the

16 IBM Branch Transformation Toolkit for WebSphere Studio: Solution Architecture

response handler, and letting the operation know whether any exceptions

occurred. A more generic operation step might access the journal before

and after establishing the host communication process. This type of

operation step represents a kind of atomic unit that the operation step

itself can roll back if a failure occurs. It also provides greater opportunity

for reuse.

Connectivity and Services

The following services enable the business process to connect to the

back-end enterprise tier.

Communication services

These are JCA-based services that applications can use to access

data and services in the back-end enterprise tier. The toolkit

provides the SNA JCA LU60 resource adapter and the SNA JCA

LU62 resource adapter. Both of the adapters conform to the J2EE

JCA architecture and implement the Common Client Interface

(CCI). This interface isolates the application from differences

between communication protocols.

Database services

These provide JDBC connectivity to databases. The database

services are similar to BTT v4.3 database services but removing

some of functions related to use the database driver manager

directly. The Database Table Mapping service enables any

application to access a database through a common application

interface. The service converts messages into SQL statements to

perform the requested database operation for the application. The

Electronic Journal service enables a financial institution to store

the services and processes used or performed by an entity such as

branch, user, or terminal in a set of database tables. The Electronic

Journal service uses the Java Database Connectivity (JDBC)

standard to store its data.

Handling exceptions

To handle exceptions, you need to understand Exceptions:

Exceptions

A toolkit exception enhances the standard Java™ exception mechanism to

facilitate applications accessing information about the exception.

Furthermore, from BTT v5.2, to make the exception more informative, the

exception message will contain more historical information for the

application debugging.

Understanding Initialization

To understand initialization, you need to know the following:

Startup beans

A startup bean is a session EJB that loads and runs before an application

starts. The Branch Transformation Toolkit uses the startup beans to do the

initialization for some of its components, such as the CHA, Formatter, and

services.

Externalizers

An externalizer is an object factory that uses definitions in an external file

to instantiate a specific toolkit entity. The toolkit provides externalizers for

contexts, data elements, formatters, services, and flow processors. The

definition files are ASCII files using XML syntax. This makes configuring

and customizing these defined objects (or implementing new ones) possible

Solution architecture 17

with something as simple as a basic text editor although the Development

Workbench provides an easier and more controlled environment for this

editing.

Tools

The Branch Transformation Toolkit provides a number of tools that support the

development of applications. All the tools are plug-ins of of Rational® Application

Developer (RAD) and WebSphere Integration Developer (WID). Note that some

functions of the Graphical Builder are only available when you are using

WebSphere Integration Developer.

The Graphical Builder provides a set of functions to define entities required by

applications, and distribute the runtime files. It also acts as a portal from where the

application developers can start other tools that the toolkit provides.

The CHA Editor and Formatter Editor provide user-friendly interfaces for creating

or maintaining the definitions needed by the CHA and the Formatter. Both of CHA

Editor and the Formatter Editor provide the features of the validation and the

synchronization when there is any change happening in either tool.

The Struts Tools BTT Extension provides a GUI to help you extend your Struts

configuration files for taking advantage of toolkit specific entities.

The BTT Business Process Editor makes extension on the top of Business process

editor of Websphere Integration Developer to help the developer to create the BTT

like business process by embedding the necessary field declaration, the

BTTSystemData initialization and the endup statements.

Apart from all the development tools listed above, the toolkit also provides a

toolkit migration tool to help you migrating the applications that developed with

version 4.3 of the toolkit to the new version 5.2 architecture.

Furthermore, to achieve the team development goal and reduce the dependency

from other developers, BTT v5.2 provides the self-define capability in the

development time to assure the parallel development and perform the unit testing

separately by individuals without full set BTT definition files ready.

Development

The Branch Transformation Toolkit was developed using Rational Application

Developer or WebSphere Integration Developer. The Branch Transformation Toolkit

consists of a set of tools that support end-to-end development and deployment of

e-business applications. It facilitates development tasks such as rapid application

development, creating industrial-strength Java programs, and maintaining multiple

editions of programs.

The toolkit provides a set of components built as Java classes and JavaBeans. The

method signatures and class definition of a bean follow a pattern that permits

visual development environments to determine the bean’s properties and behavior.

The following development tools may be used to build a solution using the Branch

Transformation Toolkit:

v Rational Application Developer or WebSphere Integration Developer to develop

the application runtime engine and views, exploiting the required components

provided by the toolkit using the following plug-ins:

18 IBM Branch Transformation Toolkit for WebSphere Studio: Solution Architecture

– The Graphical Builder to define the entities required by the applications in

runtime in the application presentation layer, and help the user to more

quickly deploy the set of resources needed by the runtime application when

new business functions are added, all focused to encourage reusability of

work, lower the costs of maintenance, distribution, and installation, and

reduce the overall time to market. The Graphical Builder also acts as a portal

from where you can start other toolkit provided tools.

Note that certain functions of the Graphical Builder are only available when

you are using the WebSphere Integration Developer.

– The CHA Editor to define the CHA contexts and the data elements they

contain.

– The Format Editor to define formatters for the CHA contexts.

– The Business Process BTT Wizard to extend your business processes for

taking advantage of toolkit specific entities through a Graphical User Interface

(GUI). Note that this tool is only available when you are using the WebSphere

Integration Developer.

– The Struts Tools BTT Extension toextend your Struts configuration files for

taking advantage of toolkit specific entities such as CHA contexts through a

GUI.
v An authoring tool such as IBM WebSphere Studio Site Developer to create

HTML pages.

Development Model

The Branch Transformation Toolkit proposes a repository-based development

model where all the relevant information about financial transactions (data,

formats, contexts, services, processors, and views) is externalized to a set of

definition and configuration files and separated from the Java code. The

development model allows developers to add new processes or transactions in a

toolkit-based application with minimum coding required, by adding some

definitions into the definition repository. The following diagram depicts the role

that the definition repository plays in the development and deployment of a

toolkit-based solution:

Solution architecture 19

This separation allows parallel resources to be focused in each of the areas, but it

requires a common understanding and definition of the model to get a final

consistent solution.

The Branch Transformation Toolkit provides development tools such as Graphical

Builder to help you create, modify, and the definition files.

Development process phases

During the overall development process four main phases are identified:

1. Analysis and design.

2. Coding reusable entities.

3. Code the runtime application and feed the repository.

4. Generate the runtime resources and test.

The phases are iterative and contain tasks that may be refined during the project

life cycle. For information on the tasks within Branch Transformation Toolkit

development and where you can find more information on these tasks, see

Creating an application with Branch Transformation Toolkit.

20 IBM Branch Transformation Toolkit for WebSphere Studio: Solution Architecture

Physical deployment

A toolkit-based application should use the standard mechanisms of the Internet or

network computing technology for the distribution of objects and should exploit

the cache mechanisms to get the best response times.

The physical location of the toolkit components depends on the particular project

environment and requirements. The classes and required resources for the toolkit

components, such as configuration files, definition files, and icons, may reside

either on the local workstation where the application is executed or on a remote

server being accessed through HTTP. Its resources are drawn from two main

sources:

v The classes with their corresponding resources, obtained from the Java resources

environment; that is, loaded by the existing class loader following the active

classpath. This will be done regardless of whether the code is executed as an

application (resources will be located locally) or as an applet running inside a

browser (resources will be located either locally or remotely).

v The required configuration and external definition files, as specified in the user

settings of the toolkit environment. These allow the resources to be located either

locally or on the server, regardless of whether the code executes as an

application or inside a browser.

The following diagrams depict sample deployments, with the application code

being executed inside a Web browser in the first diagram, and with the application

code being executed as an application in the second diagram. Note that the

application server and the Web server are different logical entities and can be

located in different physical locations, although in simpler configurations, they

would coexist in the same server.

Solution architecture 21

22 IBM Branch Transformation Toolkit for WebSphere Studio: Solution Architecture

Cache mechanisms

An Internet or network computing architecture has the required installation base

code and resources in a central location. Nothing is installed on the client

workstations and the central location distributes the required resources on demand

from the Web server through the communications network for execution on the

client. This topology requires high-speed communication lines, and is enhanced by

the use of cache mechanisms in the Web browser and in the proxy servers. The

cache mechanisms allow the reuse of objects previously distributed, thereby

reducing the requirements of the physical transport layer.

Cache refresh policies

The use of caching requires a refresh policy that prevents the executing application

from using out-of-date versions of objects in the caches. Proxy servers can be

scheduled to refresh their caches automatically at a prescribed interval or on

demand at a particular time. All refresh policies are based on actions started in the

proxy server, either because an object has expired or through scheduled processes

for checking the versions of server objects. There are no dynamic updates of

objects in the proxy when the objects are updated on the Web server. Therefore,

depending on the specific system environment and the detailed analysis of the

proxy server features, the issue of consistency between the proxy and the server

must be resolved, and its solution built as part of the application process.

Solution architecture 23

JAR files

Part of a physical deployment strategy is to set the policy for packaging the code

and the resources for an application, as well as to decide the locations for code and

resources and their distribution to the final destination workstations. A solution

based on the toolkit may use Java Archive (JAR) files, which provide a physical

packaging mechanism for a set of HTTP objects or resources (including classes and

files). The JAR files have the following advantages:

v Reduce the number of interactions with the server during the download process

of the resources

v Compress the objects, thus improving the performance in the transmission and

the memory optimization in the cache of the browser

The following packaging considerations regarding JAR files enter into finding a

satisfactory balance between the number of objects to handle and the desired

network performance:

v The number of JAR files

v Grouping objects that are used when a specific business function is executed

v Grouping objects on the basis of likelihood or frequency of change

v Size of the JARs

Application components and toolkit components may be packaged in JARs, since

JARs can be used to package not only the Java classes but all the configuration and

external definition files required by the solution.

Performance tips

The performance tips given in this section are intended to help Branch

Transformation Toolkit solutions achieve the best performance results. A solution

architect should decide, based on the solution design, which of the following

suggestions apply.

v Object cache:

– The caching of formatters and operations is enabled or disabled in the

configuration file (check enableFormatsCache inside the initialization section).

However, the application must exploit this feature by returning objects to the

cache.
v Configuration file:

– The toolkit expects some configuration settings to be available in the

configuration file. If these settings are not available, internal exceptions are

thrown and trace entries are generated, thus consuming CPU cycles even

though the default values are still used. When migrating existing applications

to an environment where a new product release is installed, consider

reviewing the provided configuration file and identifying the changes. An

example is the ″queueBufferSize″ settingn at the main settings level, which

defaults to 12. Also, consider removing any setting not required in your

solution from the configuration file.
v Shared typed data descriptors:

– With the addition of the parameters Hashtable into the base data element

class, any data element instance may have its own parameters and reuse the

same data descriptor instance associated with the unique data type, thus also

reusing the type converters and validators. Check the ″shareDataDescriptors″

setting inside the initialization section of dse.ini.
v Mapper formatters:

24 IBM Branch Transformation Toolkit for WebSphere Studio: Solution Architecture

– When defining mappers to map elements from/to a flow to/from an

operation or subflow, use DataMapperConverterFormat instead of

DataMapperFormat. Also, consider using byReference=″true″ for each of the

mapping elements (always keeping in mind the implications that this

behavior may have in the context hierarchy).
v Data access:

– Avoid using wildcards when using the getValueAt access method. Use

complete data element’s paths instead.
v Synchronized code:

– The application flow definitively needs to synchronize those critical code lines

when they are executed from concurrent threads (such as arranging the

context hierarchy). However, big chunks of synchronized code lines may

represent a bottleneck in the solution and reduce the overall throughput.
v Services access and pooling:

– Usually, a solution seeks to improve performance when launching business

operations after logging on. It is therefore good design to perform as much

process as possible during the initialization of the services, during the session

establishment or user logon, so that the actual business processes execute as

quickly as possible.

– To avoid bottlenecks while accessing services that cannot be re-entered from

concurrent users/threads, use services pools. The number of services in the

pool must be sized according to the expected load rate. Correct sizing will

have a definitive impact on the overall solution throughput.
v Formatter decorators:

– When a record formatter definition includes many formatter entries followed

by the same kind of decoration (such as a fixed ″#″ as a delimiter), consider

extending the formatter class to include the decoration inside the format

process. This mechanism will create only one object (usually a StringBuffer)

instead of several strings.
v Exceptions that are part of the normal flow:

– Avoid exceptions that are normal during the application execution flow (such

as DSEObjectNotFound).
v Extended classes to be customized:

– Classes available in extension packages (such as com.ibm.dse.automaton.ext

and com.ibm.dse.base.types.ext) are especially provided to be further

extended in a solution. Consider extending these classes both to add your

own logic and to remove non-required logic.
v Client/Server Mechanism:

– Consider using a compression decorator in the client/server request and

response formatters to minimize the amount of data sent through the

communications network.
v JSPs.

– Use JSPTags and do not use JSPBeans.

– Consider a solution based on an XML-formatted data set being returned to

the client and processed by a template processor in the client (XSLT). The

corresponding request handler may be extended to build a faster stream

based on formatters instead of JSPs. This approach requires less network

bandwidth and is faster than building the response on the server. However, it

has other implications that need to be considered such as the XSL support in

the Web browsers.
v Deployed JARs:

Solution architecture 25

– Choose only the JARs that belong to the components that are used in the

solution. Keep JAR files granular and as small as possible.
v High availability, load balancing, failover, and session persistence:

– 24x7 available solutions have a very high performance or monetary cost.

Consider using load balancing with session affinity, so that once the user

establishes a session with a server image or clone, all the requests will be

routed to that clone. If session persistence is enabled, tune the minimum

boundary size of the session data to be persisted in order to enable

compression (check setting minSizeForCompression inside the initialization

section of DSE.INI).
v Trace:

– Do not use the product trace mechanism as an application log. Instead, use

database access services for this purpose.

– Configure the trace settings according to the running environment. Settings

such as whether to trace to file, intermediate buffer size (linesOfBuffer), and

showOriginator have direct impact on the solution performance.

– Use the Trace.doTrace method as a Boolean condition for tracing (before using

the Trace.trace method) in the application flow, to check whether the system

will trace the entry based on the external configuration. The application will

only create the string if the returned Boolean for the doTrace method is true.
v Application sessions table management:

– The application is responsible for maintaining the sessions table through the

Context class protocol. It is crucial to clean session information from the table

when the user logs off or when a session expires, to avoid apparent memory

leaks and performance degradation. Both session entries and processor

instances maintained in a session need to be removed from the table.

Processor instances available in the cache also need to be removed in these

cases.
v JDBC Table access services:

– Consider using stored procedures when requiring access to several tables in

the application flow. Cross-logic against several tables using many JDBC Table

access calls is not recommended.
v Java Profiler:

– Identifying the objects that are created most often and the classes and

methods that use more CPU time during the request process is crucial to

optimizing the solution performance. Any Java profiler may be used to get

this information, and this is a task that should be done during the whole

development cycle, without waiting until the final implementation of the

solution.

26 IBM Branch Transformation Toolkit for WebSphere Studio: Solution Architecture

Notices

IBM may not offer the products, services, or features discussed in this document in

all countries. Consult your local IBM representative for information on the

products and services currently available in your area. Any reference to an IBM

product, program, or service is not intended to state or imply that only that IBM

product, program, or service may be used. Any functionally equivalent product,

program, or service that does not infringe any IBM intellectual property right may

be used instead. However, it is the user’s responsibility to evaluate and verify the

operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this document. The furnishing of this document does not give you

any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other

country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION ″AS IS″ WITHOUT WARRANTY OF ANY KIND, EITHER

EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS

FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or

implied warranties in certain transactions, therefore, this statement may not apply

to you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the publication. IBM may make improvements

and/or changes in the product(s) and/or program(s) described in this publication

at any time without notice.

Any references in this information to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those Web

sites. The materials at those Web sites are not part of the materials for this IBM

product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it

believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 1998,2007 27

Licensees of this program who wish to have information about it for the purpose

of enabling: (i) the exchange of information between independently created

programs and other programs (including this one) and (ii) the mutual use of the

information which has been exchanged, should contact:

Lab Director

IBM China Software Development Lab

Diamond Building, ZhongGuanCun Software Park, Dongbeiwang West Road No.8,

ShangDi, Haidian District, Beijing 100094 P. R. China

Such information may be available, subject to appropriate terms and conditions,

including in some cases, payment of a fee.

The licensed program described in this document and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Program License Agreement, or any equivalent agreement

between us.

Any performance data contained herein was determined in a controlled

environment. Therefore, the results obtained in other operating environments may

vary significantly. Some measurements may have been made on development-level

systems and there is no guarantee that these measurements will be the same on

generally available systems. Furthermore, some measurement may have been

estimated through extrapolation. Actual results may vary. Users of this document

should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of

those products, their published announcements or other publicly available sources.

IBM has not tested those products and cannot confirm the accuracy of

performance, compatibility or any other claims related to non-IBM products.

Questions on the capabilities of non-IBM products should be addressed to the

suppliers of those products.

This information contains examples of data and reports used in daily business

operations. To illustrate them as completely as possible, the examples may include

the names of individuals, companies, brands, and products. All of these names are

fictitious and any similarity to the names and addresses used by an actual business

enterprise is entirely coincidental.

All statements regarding IBM’s future direction or intent are subject to change or

withdrawal without notice, and represent goals and objectives only.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which

illustrates programming techniques on various operating platforms. You may copy,

modify, and distribute these sample programs in any form without payment to

IBM, for the purposes of developing, using, marketing or distributing application

programs conforming to the application programming interface for the operating

platform for which the sample programs are written. These examples have not

been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or

imply reliability, serviceability, or function of these programs. You may copy,

modify, and distribute these sample programs in any form without payment to

IBM for the purposes of developing, using, marketing, or distributing application

programs conforming to IBM’s application programming interfaces.

28 IBM Branch Transformation Toolkit for WebSphere Studio: Solution Architecture

Trademarks and service marks

The following terms are trademarks of International Business Machines

Corporation in the United States, or other countries, or both:

 IBM OS/390

AIX z/OS

CICS LANDP

WebSphere Tivoli

DB2 DB2 Universal Database

Informix IMS

MQSeries RS/6000

zSeries

Java and all Java-based trademarks and logos are trademarks or registered

trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of

Microsoft Corporation in the United States, other countries, or both.

MMX, Pentium, and ProShare are trademarks or registered trademarks of Intel

Corporation in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other

countries.

Linux is a trademark of Linus Torvalds in the United States, other countries, or

both.

Other company, product or service names may be trademarks or service marks of

others.

Notices 29

	Contents
	Solution Architecture Overview
	Introduction
	Architectural objectives
	Architectural principles
	Support for multiple channels

	Architecture
	Client
	Application presentation layer
	Application logic layer
	Runtime architecture examples
	Java client environment
	HTML client environment

	EJB and Web services architectures
	Architectural considerations

	Components
	Java client
	Developing BTT server applications
	Understanding data model
	Developing presentation layer
	Developing business logic
	Handling exceptions
	Understanding Initialization

	Tools
	Development
	Development Model
	Development process phases

	Physical deployment
	Cache mechanisms
	Cache refresh policies
	JAR files

	Performance tips

	Notices
	Trademarks and service marks

