
?MJ;XPMZM��8IZ\VMZ�)OZMMUMV\�5IVIOMZ

Script Developer’s Guide
Version 2 Release 1
BIAAAE00

Note: Before using this information and the product it supports, read the information in Notices on page 149.
Second Edition (April 2001)

This edition applies to version 2, release 1 of WebSphere Partner Agreement Manager (product number 5724-
A85) and to all subsequent releases and modifications until otherwise indicated in new editions.

IBM welcomes your comments. You can make comments on this information via e-mail at
idrcf@hursley.ibm.com.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information
in any way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 2000-2001. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

c o n t e n t s�
Table of Contents
Welcome to the Script Developer’s Guide ix
Who should use this information x

Related information x

Summary of changes xiii

Chapter 1 Introducing Process Scripting 1

How you can use scripts 2

Where you can use scripts 2

The Script Editor, Manager, and Tester 3

Terms used in this guide 5

Processes, steps, and actions 5

Business objects and elements 6

Paths 8

Context variables 8

Procedures 10

What you should know before using this guide 10

Chapter 2 Getting Started 11

Run Partner Agreement Manager 13

Define a business object type 13

Define a public process with two steps 15
Contents t iii

Define the private process for the first step 16

Create and view context variables, input, and output 17

Create a script for the first action 18

Define the private process for the second step 20

Distribute and test the public process 22

Modify a script, activate it, and run it 23

Exit Partner Agreement Manager 24

Chapter 3 Creating Scripts 25

Before you create a script 26

Adding a script to a private process bound to a public process 26

Adding a script to a private process in the Private Process Library 28

Using the Script Editor and Script Manager 28

Opening a Script Editor 30

Copying and pasting script code 32

Editing scripts in the Script Editor window 32

Inserting a script from the Script Manager 32

Viewing, adding, editing, and deleting scripts in the Script Manager 32

Checking VBScript and JavaScript syntax 33

Saving a script 33

Testing scripts 34

Using the Script Tester 34

Opening the Script Tester 35

Running a script 35

Editing and updating a script 36

Checking VBScript and JavaScript syntax 36

Adding data to an existing context variable 36

Creating an empty business object instance 37

Clearing test data 37

Resetting test data 37

Exporting test data 38

Importing test data 38

Closing the Script Tester 38
iv u Script Developer’s Guide

Chapter 4 Using script procedures 39

Creating the script entry point 40

Working with context variants 41

Viewing existing context variants 41

Creating a context variant 42

Getting a value from a context variant 42

Storing a value in a context variant 44

Using the ActiveInputSet context variant 45

Instantiating and accessing a business object in a script 46

Viewing and creating a business object type 47

Creating a context business object variable 47

Instantiating a business object 48

Determining if a business object has been instantiated 48

Accessing elements and element sequences in a business object 49

Getting a reference to an element or element sequence 50

Specifying tag paths to elements and sequences 52

Working with group and field elements 53

Getting data from a field 54

Adding data to a field 55

Copying data into an element 56

Clearing data from an element 57

Getting the name of an element 58

Checking if an element is a group or field 59

Checking if an element contains data 59

Checking if an element is valid 60

Getting descriptive information about an element 61

Working with element sequences 62

Checking if an element sequence contains data 63

Determining how many elements are in a sequence 63

Adding an element to a sequence 64

Deleting an element from a sequence 65

Setting the path in a private process 66

Printing a message to the console and log file 69

Handling run-time errors and exceptions 70
Contents t v

Chapter 5 Script Procedure Reference 73

What procedures are available 74

Procedures in the script extensions 74

Alphabetical reference 80

Parameters and variables used in the syntax specifications 80

The business object type used in the examples 81

clearAll procedure 82

clearData procedure 84

copyIn procedure 85

createBO procedure 87

getBinding procedure 89

getData procedure 90

getElement procedure 92

getElementAt procedure 94

getElementSequence procedure 96

getGroupRefs procedure 97

getInputs procedure 98

getLoopID procedure (private process) 100

getLoopID procedure (public process) 101

getNodeTypeID procedure (private process) 102

getNodeTypeID procedure (public process) 103

getPartnerGroupContext procedure 104

getPath procedure (private process) 105

getPathNames procedure (private process) 106

getPrivateProcessContext procedure 107

getProcessRef procedure (private process) 108

getProcessRef procedure (public process) 109

getProcessTypeRef procedure (private process) 110

getProcessTypeRef procedure (public process) 111

getPublicProcessContext procedure 112

getSenderNodeTypeID procedure 113

getSenderRef procedure 114

getTagName procedure 115

getVar procedure 117

getVariableName procedure 119

hasData procedure 121
vi u Script Developer’s Guide

isBONull procedure 123

isField procedure 124

isProductionProcess procedure 126

isValid procedure 127

length procedure 133

main procedure 134

newElement procedure 135

newElementAt procedure 136

println procedure 137

removeAll procedure 139

removeElementAt procedure 140

setData procedure 142

setPath procedure 144

setPath procedure (private process) 145

setVar procedure 146

toString procedure 147

Appendix a Notices 149

Trademarks 152

Glossary 153

Index 161
Contents t vii

viii u Script Developer’s Guide

�

Welcome to the Script

Developer’s Guide
This document describes WebSphere® Partner Agreement Manager and
explains how to create and use scripts (in VBScript and JavaScript) to
automate public and private business processes.

To create your own scripts, follow these general steps:

n Introducing Process Scripting on page 1 will help you gain a basic
understanding of Partner Agreement Manager scripts, the Script Editor,
Manager, and Tester.

n Getting Started on page 11 provides a tutorial to show you how to use the
tools to add scripts to a private process that is part of a public process.

n Creating Scripts on page 25 includes information on how you can create
and test scripts. It also includes how to use the Script Editor and Script
Manager.

n Using script procedures on page 39 explains how to use scripts and
procedures.

n Script Procedure Reference on page 73 documents all the procedures
available for your scripts.
Welcome to the Script Developer’s Guide t ix

Who should use this information

This information is for those who need to automate public and private
business processes using script language.

Related information

For additional information see the following:

n The readme.txt file. This file may contain information that became
available after this book was published. Before installation, the readme.txt
file is located in the root directory of the product CD-ROM. After
installation, the readme.txt file is located in the root directory of the
Partner Agreement Manager installation.

n The index.html file. This file contains links to the Partner Agreement
Manager readme.txt file and Installation Guide. Before installation, the
index.html file is located in the root directory of the product CD-ROM.
After installation, the index.html file is located in the root directory of the
Partner Agreement Manager installation.

n The Partner Agreement Manager Installation Guide, form number
GC34-5964-00, which describes how to install Partner Agreement
Manager.

n The Partner Agreement Manager Administrator’s Guide, form number
BIAAAB00, which describes how to set up, configure, and administer
Partner Agreement Manager after you install it.

n The Partner Agreement Manager User’s Guide, form number BIAAAC00,
which describes how to start a Partner Agreement Manager session, design
public and private processes, define element definition sets, create
business objects, and manage process distribution.

n The Partner Agreement Manager Adapter Developer’s Guide, form number
BIAAAD00, which describes how to develop and administer adapters
using the Partner Agreement Manager Adapter Development
Environment.

n The Partner Agreement Manager API Guide, form number BIAAAF00,
which describes principles behind the Partner Agreement Manager
External API. See also, the Javadocs for the External API, which you can
access from the Partner Agreement Manager API Guide.
x u Script Developer’s Guide

n The Partner Agreement Manager Adapters for MQSeries User’s Guide, form
number BIAAAG00, which describes how to install, configure, and run
the Partner Agreement Manager Adapters for MQSeries.

n The Partner Agreement View User’s Guide, form number GC34-5965-00,
which describes how to install, configure, and use Partner Agreement
View.
Welcome to the Script Developer’s Guide t xi

xii u Script Developer’s Guide

�

Summary of changes
This edition includes these changes since the previous, first, edition:

n External APIs. Partner Agreement Manager 2.1 provides added flexibility
to external applications through additional APIs. These APIs allow third-
party applications to take advantage of the Partner Agreement Manager
partner management and process engine through programmatic access.
The API is distributed as a set of Java classes that the external application
can import. Communication between the API classes and the Process
Server is through RMI, but in the future can be swapped out for HTTP or
SOAP. Specifically, APIs have been added to the following functional
areas:

n Session Service API

n Admin Service API

n Document Service API

n Partner Service API

n Adapter Service API

n Process Service API
Summary of changes t xiii

n LDAP Support. Partner Agreement Manager 2.1 provides centralized user
authentication and administration through an LDAP directory. Partner
Agreement Manager can retrieve user information—such as name, e-mail
address, phone, and fax—stored in an LDAP directory. Updating this
information is done in a single place, through the LDAP management
tool. Users are authenticated through the same directory, giving them
single-sign-on capabilities across enterprise applications.

n Double-byte character sets (DBCS) and National Language Support (NLS).
Double-byte character sets are now supported in Partner Agreement
Manager 2.1. Double-byte and multibyte data can be transferred and
operated on in business objects and adapters. NLS lets Partner Agreement
Manager display user interface text in other languages.

n Improved XML Support. The Partner Agreement Manager 2.1 engine
fundamentally changes the way it interacts with business objects by
replacing proprietary parsers with a third-party parser. This simplifies
support of DTD 1.0 and the support of XML Schemas when the standard
is finalized.

The Business Object and Script API have been extended with new classes
and methods. The new classes and methods let you work with business
objects as W3C Documents.

n Adapter Asynchronous Callback. An additional Adapter API allows
adapters to be more efficient with long-running adapter operations. The
Asynchronous Callback method tells the Adapter Server that an operation
will be long-running, that system resources should be freed while the
adapter waits for a response from the end system, and that another
method will be called when the response arrives. The Asynchronous
Callback method frees the adapter developer from using the request-retry
method that makes the Adapter Server responsible for polling the end
system for the response.

n Script API Changes. The script API now provides access to the
PartnerGroupContext and the Public and Private Process Contexts.
Through these contexts, you can get information such as partner group
binding, a reference to the process, inputs to the process (which contain a
reference to the sender, the ID of the sending node, and the variable
name), and unique node and loop IDs.
xiv u Script Developer’s Guide

n Certificate Support. Partner Agreement Manager 2.1 is able to request and
import certificates from certificate authorities like VeriSign. This lets
organizations use their existing certificate, or request a new one if their
partners do not accept self-signed certificates. Partner Agreement
Manager 1.1 supported only self-signed certificates.

n Outbound Proxy Support. Partner Agreement Manager 2.1 channels that
use HTTP communication can work with outbound proxies that use
authentication. Outbound proxy authentication is used within internal
networks to ensure that only people and applications that are
authenticated may communicate with an external network.
Authentication in the outbound proxy is done with a standard user name
and password combination. You can turn on the outbound proxy feature
after installation. Thereafter, all outbound HTTP communication will use
the same user name and password combination for the proxy.

Note: Note that this feature is only used by channels using HTTP
communication; it does not apply to channels that use the built-in Partner
Agreement Manager proxy.
Summary of changes t xv

xvi u Script Developer’s Guide

c h a p t e r�
1

Introducing Process

Scripting
Read this chapter as an introduction to creating and using scripts with
WebSphere Partner Agreement Manager (PAM) processes.

Sections in this chapter include:

n How you can use scripts on page 2.

n Where you can use scripts on page 2.

n The Script Editor, Manager, and Tester on page 3.

n Terms used in this guide on page 5.

n What you should know before using this guide on page 10.
Introducing Process Scripting t 1

How you can use scripts

To better automate business processes with Partner Agreement Manager,
you can create scripts in private processes. You can write your script code in
Microsoft Visual Basic Scripting Edition (VBScript) or JavaScript. Partner
Agreement Manager provides procedures through PAM script extensions.

In private processes, you can use scripts to:

n Create business object instances. (First, from a Process window, you
define a context business object variable of a particular business object
type; then, from within a script, you instantiate the business object.)

n Populate business object fields with data.

n Perform calculations.

n Manipulate context variables.

n Select a path in a branch or loop of a private process. For example, if a
Script action is followed by a branch, you could use a script to determine
which branch path to take.

n Print debugging messages during testing phases.

Where you can use scripts

To add a script to a private process, you can add a Script action, which has
the sole purpose of holding a script. You can also attach a script to other types
of actions. This is equivalent to adding a Script action immediately after the
action; the script runs after the action completes.

Tip: A Script action is the preferred method for adding scripts to a private
process (rather than attaching a script to another type of action). This
makes it easier to follow and debug your processes.

In addition to a Script action, you can also add a script to these action types:

n Notification action. The script runs after the notification is sent. For
example, a script could set a field in a business object that indicates that a
notification flag was sent.

n Approval action. The script runs after a response to the approval request is
received or the action times out. For example, you can use a script to
escalate the approval to a manager if the action times out.
2 u Script Developer’s Guide

n Mapping action. The script runs after the map is performed. For example,
a script could check the validity of an output business object.

n Timer action. The script runs after the time interval elapses. For example,
a script could set the system time in a business object field when the timer
expires.

n Extension action. The script runs after an adapter (extension) operation
completes or times out. For example, a script could check the output result
of the Extension action and set a path in a branch accordingly.

n Subprocess action. The script runs after the public subprocess completes or
times out. For example, a script could check the status returned by a
subprocess and set the path.

If there is a system error that prevents the action from completing, the script
does not run. If there is an error in the script, the script terminates at that
error, unless your script contains error handling logic. See Handling run-time
errors and exceptions on page 70 for more information.

You cannot add a script to these action types:

n Output Object action. Outputs a business object to a public process path.
It does not make sense to add a script after this action, because changes
made to the business object would not be output to the public process.

n Termination action. Forces a process to terminate in a controlled manner.
Because this action terminates the process, no further scripts or actions
can be executed after it.

The Script Editor, Manager, and Tester

Partner Agreement Manager provides easy access to a Script Editor from a
private process action. In addition, it lets you store and manage reusable
script code in the PAM database through the Script Manager. You can also
test run scripts in a Script Tester before you run them within a process.

To access a Script Editor, double-click an action, and create or edit the script
in the Script panel of the Properties dialog box. Alternatively, you can right-
click an action and choose Script Editor to create or edit a script in a Script
Editor window.

You can type the script in VBScript or JavaScript and, while in the Script
Editor, have Partner Agreement Manager check the syntax.
Introducing Process Scripting t 3

Note: The syntax of JavaScript on UNIX has some slight differences from
the syntax of JavaScript on Windows NT. All of the examples in this book
have been tested on Windows NT. See the JavaScript documentation for
your platform for more on JavaScript syntax.

In the Script panel, you can access the Script Manager. The Script Manager
lets you save scripts in the PAM database—independently of a process—so
you can reuse them as needed. You can view, create, edit, and delete scripts
in the Script Manager.

Here is an example of a simple script as it appears in the Script panel:

To test run a script, right-click an action containing a script in the Private
Process window, then choose Test Script. In the Script Tester window, you
can run the script, view existing context variables, add temporary context
variables, and add temporary data to context variables. This lets you try
different scenarios to test the effectiveness of a script. You can also export and
import context variable data for reuse in the Script Tester.

Checks VBScript or
JavaScript syntax.

Adds the script to the
Script Manager.

Choose VBScript or
JavaScript.

Type the script here.

Inserts a Script Manager
script at the cursor
position.

This is same script written
in JavaScript.

Opens the Script
Manager.
4 u Script Developer’s Guide

Terms used in this guide

Before learning about the Partner Agreement Manager script extensions you
need to understand Partner Agreement Manager terminology. Many of these
terms were introduced in the Partner Agreement Manager User’s Guide,
which you should consult for more complete information. Following is a
summary of the terms relevant to this guide.

In addition, the next chapter, Getting Started, is a tutorial that provides a
quick review of some of the Partner Agreement Manager workflow and how
scripts fit into this workflow.

Processes, steps, and actions

Partner Agreement Manager lets you define public and private processes that
support business-to-business integration:

n A public process defines the flow of information between business partners.
It has individual steps; each step is owned by one partner.

n A private process defines the detailed actions of a public process step for one
partner.

Both partners approve a public process before using it. However, a partner
can activate new versions of their own private processes at any time.

Here is the simple public process used in the tutorial. It has two steps.

A public process step
that outputs a business
object to the next step.
Introducing Process Scripting t 5

Next is a simple private process with two actions. It is bound to the first step
of the public process.

Business objects and elements

A business object is a container for data. For example, a business object might
contain the data in a purchase order. You can exchange a business object
between partners, or use it as temporary storage for one partner, within one
or more steps. An example of the second case is shown in the tutorial.

Business objects are made of one or more elements. An element can be a field
or a group. A field holds a single piece of data, such as a status. A group is a
collection of related groups, fields, or both. A group specifies whether the
elements within it are mandatory or optional; repeatable or single.
Mandatory fields are required, while optional fields can be left blank; a field
can occur multiple times or be allowed to occur a single time only. For
example, an address group could contain fields for street, city, state, and
country, with street and city being required and state and country being
optional.

A business object type specifies what elements are in a business object. A
business object is an instance of a particular business object type, and the
instance is stored in a context business object variable (more on context
variables follows). A message is a business object and its public process
transmission properties.

A private process action that
contains a script.

A private process action that
outputs a business object to the
public process.
6 u Script Developer’s Guide

To create a business object type, first you create a hierarchical element
definition set. Then you designate one of the elements as the top-level element
of the business object type. The business object type is referred to by the
name of this top-level element. You can currently have one business object
type per element set, and the business object type must have at least one field.

For example, the following Element Definition Set window shows an element
definition set called MyElementSet. The element MyBOElement could be
designated as the top-level element for a MyBOElement business object type.
This element contains one field, called MyField.

A public process step can receive and output one or more business objects.
The private process corresponding to a step can instantiate and populate
business objects through scripts, Mapping actions, and Java adapters. A
business object is considered valid when all mandatory fields (except those
within an unpopulated optional group) have non-null values.

The private process defines what business objects are output by the public
step; the output business objects must be of the type specified in the public
process. A business object must be valid before a private process can pass it
to a public process.

For example, for the public process shown in the previous section, Processes,
steps, and actions, the Output Object action must output a business object of
the type MyBOElement.

Note: An empty string ("") as a data value is equivalent to null. So setting a
mandatory field to an empty string does not make it valid. A string
containing one or more spaces (" ") is not null, and is considered to be
data.

The Element Tree shows the
relationship between elements
and fields.
Introducing Process Scripting t 7

Paths

After a step or action can be branches and loops with separate paths that are
identified by a path name. You can set paths in private processes by using
scripts. Different paths specify different potential outcomes.

Here is a private process with a branch containing two paths: Yes and No.

Context variables

Context variables store information shared by multiple steps or actions in a
public or private process, including the input and output of a process. The
context (the scope) of the variable is the process where it was declared. In
addition, a context variable is visible only to the partner that created it. If you
define a context variable in a public process, all private processes owned by
that partner in that public process can use it; if you define a context variable
in a private process, just that private process has access to it.

Path1 is the Yes result path;
Path2 is the No result path.
8 u Script Developer’s Guide

There are two types of context variables you can create:

n Context business object variables store instances of business objects. The
variable is defined to be of a particular business object type. When you
refer to a business object instance in a script, you refer to it by its context
variable name. Partner Agreement Manager automatically creates context
variables for business objects that are input to a private process; it names
them I1, I2, and so on. (I is short for “Input.”)

n Context variants hold data values, such as “approved” or “33.95”, as
strings. You can use them to store the input for actions, to set flags (such
as the time-out flag for an Approval action), to move information within
scripts, or to store the results of an Approval action. Partner Agreement
Manager always creates an ActiveInputSet context variant for each private
process; it is useful when you can have more than one set of input business
objects that activate a private process.

In the Process windows, you can use the Variables menu to add and delete
context variables.

The following private process has an ActiveInputSet context variant and a
context business object variable called MyBOVar, as shown at the bottom of
the window:

The variants and
business object
variables appear
here.
Introducing Process Scripting t 9

Procedures

In this guide, we refer to Partner Agreement Manager script extension
procedures. A procedure is a set of statements that performs a task, and may
or may not take arguments (constants, variables, or expressions). In
VBScript terms, the procedure may be a Sub procedure that does not return
a value, or a Function procedure that does return a value. In JavaScript terms,
a procedure that is part of the PAM script extension is a function, and a
procedure that is part of the API is a method; a method is a function defined
in a class (in other words, assigned to an object). For simplicity, all
procedures, functions, and methods are called procedures in this guide.

What you should know before using this guide

This guide assumes that you understand the basic concepts of scripting and
know at least one scripting language, either VBScript or JavaScript. It does
not teach you how to create scripts in VBScript or JavaScript; you need to
learn these languages on your own.

You should also be familiar with creating processes with Partner Agreement
Manager, as described in the Partner Agreement Manager User’s Guide. You
should understand the material in the user’s guide before attempting to
create scripts as described in this guide.
10 u Script Developer’s Guide

c h a p t e r�
2

Getting Started
This chapter provides a tutorial that will show you how to add scripts
to a private process, which is part of a public process. It will also help
you understand the use of scripts in relation to public process steps,
private process actions, and variables within processes.

In this tutorial, you perform these general steps:

n Run Partner Agreement Manager on page 13.

n Define a business object type on page 13.

n Define a public process with two steps on page 15.

n Define the private process for the first step on page 16.

n Create and view context variables, input, and output on page 17.

n Create a script for the first action on page 18.

n Define the private process for the second step on page 20.

n Distribute and test the public process on page 22.

n Modify a script, activate it, and run it on page 23.

n Exit Partner Agreement Manager on page 24.
Getting Started t 11

This chapter is a short tutorial that shows you how to add scripts to a private
process that is part of a public process. In your organization, you may be
responsible for creating public processes, private processes, scripts, or any
combination of these.

This tutorial is useful to give you a general overview of how scripts fit into the
overall Partner Agreement Manager workflow. In addition, when you are
ready to test a script, you may want to create simple processes like the
processes you will create here. This way you can test the script, including any
PAM procedures, before activating it in a real-life situation.

In this chapter, you create a public process that exchanges a business object
between two steps. In the first step, you create a private process that uses a
script to instantiate a business object and add data to it. You output the
business object to the public process. In the second step, you create a private
process, then use the input business object within a script. For simplicity,
your organization will own both public process steps.

This tutorial should take less than an hour to complete. For best results, work
through the entire tutorial in one session. Before you begin, make sure you
have installed Partner Agreement Manager on the computer you will be
using.

For more complete information on using Partner Agreement Manager to
create and run processes, see the Partner Agreement Manager User’s Guide.

The rest of the sections in this chapter correspond to tutorial steps. Now you
can start the tutorial.
12 u Script Developer’s Guide

Run Partner Agreement Manager

Start Partner Agreement Manager in the normal manner, so the window
appears:

Note: The windows shown in this chapter have Comtech as the partner
name. The partner name for your organization will be different. In the
steps that follow, replace MyOrg with your partner name.

Define a business object type

Business objects contain information used by processes. In this section, you
define an element definition set for a business object type that you want to
use in a simple public process. When you are finished defining them, the
Element Definition Set window will look like this:
Getting Started t 13

The element definition set is called MyElementSet. After creating the set, you
will define MyBOElement to be the top-level group element of a simple
business object type (which is also called MyBOElement). MyBOElement has
one subordinate field element, called MyField. You will reference the names
of these elements in the scripts you create.

To create the element definition set and business object type:

1 In the Process Manager window, click the New Element Definition Set
button in the toolbar.

2 In the Element Definition Set window, click the New Element button.

3 In the New Element dialog box, define the business object elements:

a. Type MyBOElement in the Element Name field.

b. In the Content panel, select Group.

c. Click Add.

d. In the Type field, type MyField.

e. Click OK.

4 In the Element Definition Set window, select MyBOElement in the Elements
list, then choose Create Business Object Type from the File menu.

5 In the Save Element Definition Set dialog box, type MyElementSet, then click
OK.

6 In the Create Business Object Type dialog box, select MyBOElement and
click OK.

7 In the Business Object Type dialog box, click Preview to view the business
object type. Click Close, then OK.

8 Choose Freeze Definition from the File menu.

9 Choose Exit from the File menu.
14 u Script Developer’s Guide

Define a public process with two steps

Now you will define a public process with two steps, which pass a business
object (of the type MyBOElement) from the first step to the second, so when
you are finished it looks like this:

To define the public process:

1 In the Process Manager window, click the New Public Process button in the
toolbar.

2 In the Public Process window, to place a simple step, click the Simple Step
tool, then click the turquoise circle.

3 Right-click the step, then choose Properties.

4 In the Step Properties dialog box, click the Partner tab, select Partner, and
choose your organization name. Click OK.

5 In the Public Process window, right-click the message and choose Properties.

A message is a business object and its public process properties.

6 In the Message Properties dialog box, click the Contents tab, then select
Business Object Type and choose MyBOElement. Click OK.

7 In the Public Process window, use the Simple Step tool to place another step
after the first.

8 Right-click the new step, then choose Properties.

9 In the Step Properties dialog box, click the Partner tab, select Partner, and
choose your organization name. Click OK.

10 Right-click the message and choose Properties.
Getting Started t 15

11 In the Message Properties dialog box, click the Contents tab, then select
None. Click OK.

The public process is terminated.

12 To make sure the process meets Partner Agreement Manager requirements,
choose Tools > Verify, then click Close.

If you get errors or warnings, you made a mistake.

13 Choose Save As from the Process menu, name the process MyPublicProcess,
then click OK.

Define the private process for the first step

Next you will define a private process, so that when you are finished it looks
like this:

In this private process, the Script action creates the business object instance.
The Output Object action outputs the business object to the public process,
so the next step can use it. The private process must output a business object
of the same type as you specified in the public process.

To create the private process:

1 In the Public Process window, right-click the first step and choose Private
Process.
16 u Script Developer’s Guide

2 In the Private Process window, to place a Script action, click the Script tool,
then click the turquoise circle that appears.

3 To place another action, click the Output Object tool, then click the
turquoise circle that appears after the first action.

The private process now contains a Script action and an Output Object
action.

Create and view context variables, input, and

output

You are now ready to create the context business object variable for the
business object. In addition, in this section you will view the business object
type in the catalog, and view the input and output of the private process and
the Output Object action. After you define the variable, called MyBOVar, the
variable list at the bottom of the window will look like this:

To create and view context variables:

1 To see the context variables in this process, choose Variables from the View
menu.

2 To add a context business object variable, choose New Business Object from
the Variables menu.

3 In the New Business Object Variables dialog box, type MyBOVar in the
Name field. In the Type field, choose MyBOElement. In the Description field,
type Business object variable. Then click OK.
Getting Started t 17

4 To view the structure of your business object, choose Business Object
Catalog from the View menu.

5 In the Business Object Catalog, expand the tree (click the +) for your
organization until you see the MyBOElement business object type and
MyField, which is contained by it. You can also view the element definition
set you created.

6 Double-click the first item in the private process to view the input to this
process, as defined in the public process. Then click OK.

7 Double-click the termination of the private process to view the expected
output of this process, as defined in the public process. Then click OK.

8 To set the output of this process, right-click the Output Object action, choose
Properties, click the Action tab, and choose MyBOVar in the Variable field.
Click OK.

Important: You must not skip this step. If you do, you will get output object
errors when you verify your process.

Create a script for the first action

Now you add a script to the Script action. Here is the script you will create:

This is a script written in
JavaScript.

This is same script written
in VBScript.
18 u Script Developer’s Guide

All scripts must have a main procedure, because this is the Partner Agreement
Manager entry point. In this script, the createBO procedure creates a
business object instance, and the setData procedure sets the value of MyField
to the string MyData. Then the println procedure prints a message. If you ran
Partner Agreement Manager as a service, println output goes into a log file.
The log file is called PAM.log and it is created in the Partners\Partnernnn
directory. If you ran Partner Agreement Manager from a shortcut, println
output is displayed in the server’s console and also goes to the log file.

To create the VBScript in the Script action:

1 Right-click the Script action and choose Properties.

Tip: Alternatively, you could choose Script Editor and enter the script from
there.

2 In the Script Properties dialog box, click the Script tab, and choose a Script
Type of VBScript.

3 Type this script in the Script field:

sub main

createBO("MyBOVar")

MyBOVar.setData "MyField", "MyData"

println("MyScript1 has run.")

end sub

4 Click Check Script to check VBScript syntax. Then click OK.

5 In the Script Properties dialog box, click OK.

6 Choose Verify from the Tools menu, then click Close.

If you get errors or warnings, you made a mistake. If you get output object
errors, you probably did not click OK after setting the properties of the
Output Object action.

7 Choose Save from the Process menu.

8 Choose Exit from the Process menu.
Getting Started t 19

Define the private process for the second step

When you are finished with this section, you will have created a private
process, including a script, as shown here:

The business object you created in the first step is input to this private
process, and is called I1 (“I” for “Input” followed by the number one). The
script prints information about the business object. Although this script is
not very useful in itself, it helps to illustrate how you can pass a business
object between steps and use it in scripts.

To create the private process for the second step:

1 In the Public Process window, right-click the second step and choose Private
Process.

2 In the Private Process window, to place a Script action, click the Script tool,
then click the turquoise circle that appears.

3 Double-click the first item in the private process to view the input to this
process.

InputSet1 is the value of the ActiveInputSet variable. Your business object,
which was created in the first private process, is input to this private process.

4 To see the context variables in this process, choose Variables from the View
menu.

I1 is a reference to the input business object you created in the first step.
20 u Script Developer’s Guide

5 Right-click the Script action, choose Properties, and add the following
VBScript script.

sub main

println("MyScript2 is running.")

println(I1.toString(True))

println("MyScript2 has run.")

end sub

The toString procedure provides descriptive information about the I1
business object, and the println procedure prints the information to the
server log file and perhaps the console window.

6 Click Check Script. Then click OK.

7 In the Script Properties dialog box, click OK.

8 Choose Verify from the Tools menu, then click Close.

If you get errors or warnings, you made a mistake.

9 Double-click the termination of the private process to view the expected
output of this process. Then click Cancel.

No business object output is defined in the public process.

10 Choose Save from the Process menu.

11 Choose Exit from the Process menu.

12 In the Public Process window, choose Exit from the Process menu.
Getting Started t 21

Distribute and test the public process

Next, run the public process:

To distribute and test the public process:

1 In the left panel of the Process Manager window, navigate to your new public
process in the following folder hierarchy: MyOrg > Processes > MyOrg >
MyPublicProcess > 1.0.

2 While the 1.0 folder is selected in the left pane, right-click MyPublicProcess
in the right pane and choose Process Distribution Manager.

3 In the Process Distribution Manager dialog box, select Distribution for the
Process State, and click Apply.

4 Select Test Installation and click Apply.

5 Click Close.

6 In the right pane of the Process Manager window, right-click
MyPublicProcess and choose Start.

7 In the Start Process dialog box, click OK.

8 Look at the messages in the server log file and perhaps the console window.
22 u Script Developer’s Guide

Modify a script, activate it, and run it

In this section, you make a slight modification to the first script, activate it in
the public process, then rerun it:

To modify the script and run it:

1 In the right pane of the Process Manager window, right-click Private1 and
choose Open.

2 Choose Process > Save As New Version so you can edit it.

3 Right-click the first action and choose Properties.

4 Under main, add this line:

println("MyScript1 is running.")

5 Check VBScript syntax, then close the Script Properties dialog box.

6 Choose Tools > Verify, then click Close.

If you get errors or warnings, you made a mistake.

7 Choose Exit from the Process menu and save changes.

8 In the Public Process window, right-click the first step, then choose Activate
Private Process.

9 In the Activate Private Process dialog box, select the most recent version
(version 2), then click OK.

10 Choose Exit from the Process menu and save changes.
Getting Started t 23

11 In the right pane of the Process Manager window, right-click
MyPublicProcess and choose Start.

12 In the Start Process dialog box, click OK.

13 Look at the messages in the server log files and perhaps the console window.

Exit Partner Agreement Manager

Optionally, you can delete the items you created for this tutorial.

To delete the processes:

1 While the 1.0 folder is selected, right-click MyPublicProcess and choose
Process Distribution Manager.

2 In the Process Distribution Manager dialog box, select Deactivation, select
Deactivate Immediately, click Apply, and click Close.

3 Right-click MyPublicProcess and choose Delete. Also delete all private
processes.

To exit Partner Agreement Manager:

u If you are finished using Partner Agreement Manager, choose Exit from the
Actions menu.
24 u Script Developer’s Guide

c h a p t e r�
3

Creating Scripts
This chapter gives you the information you need to create and test
your own scripts. It explains how to use the Script Editor, Script
Manager, and Script Tester.

Sections in this chapter include:

n Before you create a script on page 26.

n Using the Script Editor and Script Manager on page 28.

n Testing scripts on page 34.

n Using the Script Tester on page 34.
Creating Scripts t 25

Before you create a script

You create scripts from the Partner Agreement Manager Private Process
window. You can add a script to a private process that is bound to a public
process, or add a script to a private process stored in the Private Process
Library. To run a script, you can run a public process or test run the script in
the Script Tester, as described at the end of this chapter.

Before you create a script, you first must have a private process you can add
it to. In addition, you need to define or determine the names of business
object types and element names, context business object variables, context
variants, and private process paths you want to work with in scripts. The
following sections describe the general steps Partner Agreement Manager
users might follow before creating scripts.

Note that MyOrg refers to your organization name, while Partner refers to a
business partner.

Adding a script to a private process bound to a

public process

In general, Partner Agreement Manager users follow these steps before
adding scripts to a process.

1 Create the business object types that you want to use to exchange
information in the public and private processes.

You can create a new type, use an existing type, or receive a read-only type
from a partner. You need to freeze the element definition set where the type
is defined before you can run a public process that uses it.

To create a type, first you create an element definition set, then specify one
element to be the top-level element of a business object type. For example, in
the Process Manager window, click the New Element Definition Set button
in the toolbar, define the element definition set in the Element Definition Set
window, save the set, then choose Create Business Object Type from the File
menu.

To view a type, in the left pane of the Process Manager window, select the
folder in this hierarchy: MyOrg > Business Objects > MyOrg or Partner; in the
right pane, double-click the type to view information about it. Or, to view a
type from a Process window, choose Business Object Catalog from the View
menu, and expand the tree until you reach the type you want to look at.
26 u Script Developer’s Guide

If the element definition set has been frozen, you need to first create a new
copy or version of it before you can edit it, and define a new business object
type (remember to update references to the type in your process). You can
only edit types owned by your organization.

2 Create a public process, including steps, business objects, and public context
variables.

You can create a new public process, open an existing public process, or
receive a read-only public process from a partner. Before you can run a
public process, it must be distributed and installed.

To create a public process, in the Process Manager window, click the New
Public Process toolbar button. The Public Process window appears.

To view a public process, in the left pane of the Process Manager window,
select the folder in the following folder hierarchy: MyOrg > Processes >
MyOrg or Partner > Public-Process > Version; right-click the process in the
right pane and choose Open.

If the public process has been distributed and installed, you need to create a
new version of it before you can edit it, and define a new business object type,
then go through the distribution and installation process again before you
can run it.

3 Create private processes, including actions and private context variables, for
the steps owned by your organization.

You can create a new private process or open an existing private process that
is bound to a step owned by your organization. You cannot view or edit the
private processes owned by another organization.

To create or view a private process bound to a particular step in a public
process, in the Public Process window, right-click the step (owned by your
organization) and choose Private Process. The Private Process window
appears.

Or, in the left pane of the Process Manager window, select the folder in the
following folder hierarchy: MyOrg > Processes > MyOrg > Public-Process >
Version; right-click the process in the right pane and choose Open.

If the private process has been activated, you need to create a new version of
it before you can edit it, then activate the new version to run it.

4 Create scripts. See Adding a script to a private process in the Private Process
Library, next.
Creating Scripts t 27

Adding a script to a private process in the Private

Process Library

You can add scripts to private processes that are outside of a public process.
These private processes are stored in the Private Process Library. To run the
private process, you can insert it into a step in a public process or test run the
script in the Script Tester, as described at the end of this chapter.

In general, Process Manager users follow these steps to create a process for
the Private Process Library:

1 Create the business object types you want to use to exchange information in
the private process.

You can create a new type, use an existing type, or receive a read-only type
from a partner. See step 1 in the previous section for more information.

2 Create a private process, including actions and private context variables.

To create a process, in the Process Manager window, click the New Private
Process button.

To view an existing private process that is not bound to a public process, in
the left pane of the Process Manager window, navigate to the public process
in the following folder hierarchy: MyOrg > Processes > Private Process
Library > Private-Process > Version; right-click the process in the right pane
and choose Open.

The Private Process window appears.

3 Create scripts, as described in the following section.

Using the Script Editor and Script Manager

You can access a Script Editor and the Script Manager from a private process
action. Scripts in JavaScript and VBScript are treated the same way.
28 u Script Developer’s Guide

You can create, view, and edit scripts from a Script Editor in a Properties
dialog box:

Or from a Script Editor window:

Opens the
Script
Manager.

Checks VBScript or
JavaScript syntax.

Adds the script to the
Script Manager.

Choose VBScript or
JavaScript.

Type the script here.

Inserts a Script Manager
script at the cursor
position.

The same script in
JavaScript.

The same script in
JavaScript.

Choose VBScript or
JavaScript.

Type the script here.

Undoes or redoes the last
operation.
Creating Scripts t 29

In this guide, both are referred to as the “Script Editor.” The Script panel lets
you access the Script Manager. The Script Editor window lets you go to a
particular line number, update the script in the private process while keeping
the Script Editor open, undo and redo operations, select all, and disable
scripts so they don’t run.

When you write a script in a Script Editor and save it with a process, that
script becomes part of the process. When you write a script in a Script Editor
and save it in the Script Manager (by clicking the Save Script button), that
script is stored in the PAM database, independently of whether you save it in
a process or not. You can then insert the script into a Script Editor whenever
you need it.

You can add, edit, and view scripts in the Script Manager by clicking Script
Manager in the Script panel:

Opening a Script Editor

You can create, view, and edit scripts from a Properties dialog box or from a
Script Editor window, as described here.

To open the Script panel in a Properties dialog box:

1 In the Private Process window, double-click the action you want to add a
script to.

Alternatively, you can select the action then:

a. Right-click and choose Properties.

Lets you create a new script to
add to the Script Manager.

Removes the selected script from
the Script Manager.

Lets you edit the selected script
in the Script Manager.

Select a script from the
list of scripts in the
Script Manager.

Choose VBScript or
JavaScript.

JavaScript scripts.
30 u Script Developer’s Guide

b. Click the Properties button on the palette.

c. Choose Item Properties from the Edit menu.

Remember that you can add a script to a Script action, or to another type of
action that lets you add a script that runs after the action completes. For
example, you can add a script to a Notification action, which runs the script
after the Notification action completes.

2 In the dialog box, click the Script tab.

The Script panel appears.

3 In the Script Type field, choose VBScript or JavaScript.

Warning: If you switch from VBScript or JavaScript to None, your script
code is removed from the panel. To retrieve your code, you would need to
click Cancel or not save the private process. You can switch between
VBScript and JavaScript, however, and your script remains in the panel.

You are now ready to type your script. When you are finished, click OK to
add the script to the action, then save the process. You can click Save Script
to save the script outside of a process, in the Script Manager.

To open the Script Editor window:

1 In the Private Process window, select the action, then right-click and choose
Script Editor, or choose Script Editor from the Edit menu.

2 In the Script Type field, choose VBScript or JavaScript.

Choose None to disable the script (it will not run).

Note: Unlike the Script panel, you can switch from VBScript or JavaScript
to None without losing your script code. Remember, if you open the script
in the Script panel while the type is None, the script code disappears.

You are now ready to type your script. When you are finished, choose Update
Process from the Script menu to add the script to the action, then save the
process.
Creating Scripts t 31

Copying and pasting script code

The Script Editor and Manager support the standard copy and paste
operations, including Control-X, Control-C, and Control-V, Cut, Copy, and
Paste menu items in the Edit menu, and Cut, Copy, and Paste buttons in the
toolbar. Remember that you can only have one Script Editor open at a time,
so you may have to open a script, copy it, then open another script to paste
into.

Editing scripts in the Script Editor window

The Script Editor window lets you perform some edit operations not
available from the Script panel.

Inserting a script from the Script Manager

Follow these steps:

1 In the Script panel, place your cursor at the location where you want to insert
the script, then click Insert Script.

2 In the Insert Script dialog box, select a script and click OK.

The script appears at the insertion point.

Viewing, adding, editing, and deleting scripts in

the Script Manager

Follow these steps:

1 In the Script panel, click Script Manager.

To Do this

Undo an operation. Click the Undo toolbar button or choose Undo
from the Edit menu.

Redo an operation. Click the Redo toolbar button or choose Redo from
the Edit menu.

Select the entire script. Choose Select All from the Edit menu.

Go to a particular line. Choose Goto Line from the Edit menu, type the line
number, and click OK.

View a line or column
number.

Click a line and look at the status bar at the bottom
of the window.
32 u Script Developer’s Guide

2 In the Script Manager dialog box, choose a Script Type.

3 Perform the operation you want:

n To add a script, click Add.
In the dialog box, type the script, then click OK.

n To view or edit a script, select a script and click Edit.
In the dialog box, edit the script, then click OK.

n To delete a script, select a script and click Remove.

4 In the Script Manager dialog box, click OK to save the operations you
performed, or click Cancel to cancel them.

The operation is performed immediately, independent of whether you click
Cancel in the Script panel.

Checking VBScript and JavaScript syntax

Partner Agreement Manager can check that the syntax in your VBScript and
JavaScript code is correct. Note that this utility does not check that the PAM
procedure syntax is correct.

To check VBScript or JavaScript syntax:

n While the script is displayed in the Script panel, click Check Script.

n While the script is displayed in a Script Editor window, choose Verify from
the Tools menu or click the Verify Script toolbar button.

Saving a script

You can save a script in a process, in the Script Manager, or both.

To save a script in a private process:

1 In the Script panel, click OK. Or, in the Script Editor window, choose Update
Process from the Script menu, or click the Close box and click Yes to update.

2 Save the private process.

To save a script in the Script Manager, which stores it in the PAM database:

1 In the Script panel, click Save Script.

2 Type the script name, then click OK.

You can now view, edit, or delete the script in the Script Manager by clicking
Script Manager in the Script panel.
Creating Scripts t 33

Testing scripts

You can test your scripts in several ways to make sure they are correct before
deploying them.

During design time, you can check VBScript and JavaScript syntax. While the
script is displayed in a Script Editor, click Check Script or choose Verify from
the Tools menu.

Next, you can run the scripts to make sure they work as planned. To test run
scripts, use the Script Tester, described in the next section. To run scripts in
a process, you must run a public process that contains the private process
with the script.

Before testing a script in a public process used by other partners, you may
want to test the scripts in your own test public and private processes, similar
to the tutorial in Getting Started on page 11.

A fast way to create populated business objects for your test processes is to
use a Mapping action. The Mapping action lets you quickly instantiate and
populate a business object with default values that can be handled by
subsequent steps and actions.

When you are convinced that a private process works as planned, you can
activate the private process in an approved public process.

To create a new version of an activated process so you can edit it, display the
process in the Private Process window, then choose Save As New Version
from the Process menu. To activate a new version, right-click the public
process step, choose Activate Private Process, select the new version, and
click OK.

Using the Script Tester

The Script Tester lets you test run scripts associated with a private process.
You can edit and run a script without saving changes to it, you can try
different data sets to make sure your script handles data as planned, and you
can export and import test data to XML files so you don’t have to reenter it.
34 u Script Developer’s Guide

The Script Tester looks similar to the Script Editor window. In addition, at
the bottom of the window, it displays all public and private context variables
the script can use, and the path if set by the setPath procedure:

Opening the Script Tester

To display a script in the Script Tester, follow these steps:

1 In the Private Process window, display the private process containing the
script.

2 Right-click the action containing the script, then choose Test Script. Or select
the action and choose Test Script from the Tools menu.

The script appears in the Script Execution window.

Running a script

To run a script from the Script Execution window:

1 Add data that your script needs to execute and, if needed, edit the script.

2 Choose Execute from the Tools menu. Or click the Execute toolbar button.

If the script executes successfully, you receive an Execution Complete dialog
box.

If there is an error, an error dialog box appears. For some errors, after
clicking OK the line containing the error is highlighted.
Creating Scripts t 35

Editing and updating a script

You can edit a script as you would in the Script Editor window, and test run
it as many times as needed without saving the changes.

If you want to save the changes you made to a script while you were in the
Script Tester, do this:

1 In the Script Tester, choose Update Script from the Script menu.

The changes will now appear when you open a Script Editor.

2 Save the script in the private process, the Script Manager, or both, as
described in Saving a script on page 33.

Checking VBScript and JavaScript syntax

The Script Tester can check that the syntax in your VBScript and JavaScript
code is correct. Note that this utility does not check that the PAM procedure
syntax is correct.

To check VBScript or JavaScript syntax:

u While the script is displayed in a Script Execution window, choose Verify
from the Tools menu or click the Verify toolbar button.

Adding data to an existing context variable

You can add the data your script needs to run, so it mimics the activity of the
public and private processes.

Warning: When you close the Script Tester, you lose the values of all
context variables. You can export business object data to an XML file to
preserve the data, as described in a following section.

To add data to a context business object variable:

1 At the bottom of the Script Execution window, double-click the context
business object variable. Or select it and click the Edit toolbar button or
choose Edit from the Context menu.

2 In the BO Instance Editor, enter and edit data.

The display is similar to the Element Tree view in the Element Definition Set
Editor. You can add data as you would for a map; see the Partner Agreement
Manager User’s Guide for more information.
36 u Script Developer’s Guide

To add a value to a context variant:

1 At the bottom of the Script Execution window, double-click the context
variant. Or select it and click the Edit toolbar button or choose Edit from the
Context menu.

2 In the Edit Variant dialog box, type the value, then click OK.

Creating an empty business object instance

To create a business object instance, as if you called createBO in a previous
script (the data is null):

u Select the context business object variable, then choose Create from the
Context menu.

The menu item is only available if the Value field contains <null>.

Clearing test data

To remove all data in context variables:

u In the Script Execution window, choose Clear from the Context menu to
clear the selected item or Clear All from the Context menu to clear all test
data.

Warning: If you want to preserve business object data, you need to export
the data to an XML file before clearing it.

Resetting test data

You can reset test data back to the state it was before the script last ran. For
example, if you find an error in your script, you can fix the error then run
your script with the original test data (as it was before you ran the script with
the error).

To reset test data:

u In the Script Execution window, choose Reset from the Context menu to
reset the selected item or Reset All from the Context menu to reset all data.

Warning: If you want to preserve business object data, you need to export
the data to an XML file before clearing it.
Creating Scripts t 37

Exporting test data

You might want to export business object data after you entered it, so you can
reuse it after you close the Script Tester. In addition, if a script populated a
business object and you want to use this data with a following script, you can
export the data and then import it for the other script, or examine the test
data later.

To export business object data to an XML file:

1 In the Script Execution window, select the context business object variable,
then choose Export from the Context menu. Or click the Export toolbar
button.

2 In the Business Object Instance Editor, choose Export from the Instance
menu. Or click the Export toolbar button.

Importing test data

You can import business object data from an XML file created with the
Export command, as described in the previous section. You can only import
data of the same business object type.

To import business object data from an XML file:

1 In the Script Execution window, select the context business object variable,
then choose Import from the Context menu. Or click the Import toolbar
button. Or, in the Business Object Instance Editor, Import from the Instance
menu. Or click the Import toolbar button.

2 In the Load Business Object dialog box, select the XML file and click Open.

The XML file must be the same type as the context business object variable
you selected.

Closing the Script Tester

To close the Script Tester:

1 In the Script Execution window, choose Exit from the Script menu.

2 Click the Close button.
38 u Script Developer’s Guide

c h a p t e r�
4

Using script procedures
Read this chapter for information on how to use Partner Agreement
Manager procedures in your scripts.

Sections in this chapter include:

n Creating the script entry point on page 40.

n Working with context variants on page 41.

n Instantiating and accessing a business object in a script on page 46.

n Accessing elements and element sequences in a business object on
page 49.

n Working with group and field elements on page 53.

n Working with element sequences on page 62.

n Setting the path in a private process on page 66.

n Printing a message to the console and log file on page 69.

n Handling run-time errors and exceptions on page 70.

For a reference that describes each procedure in alphabetical order, see
Script Procedure Reference on page 73. This reference chapter also lists
the fields in the business object that is used in many of the examples in
this chapter.
Using script procedures t 39

While this chapter does briefly describe how to use some features of PAM
windows, you should consult the Partner Agreement Manager User’s Guide
for the most complete information.

Note: The syntax of JavaScript on UNIX has some slight differences from
the syntax of JavaScript on Windows NT. All of the examples here have
been tested on Windows NT. See the JavaScript documentation for your
platform for more on JavaScript syntax.

Creating the script entry point

The script entry point is, as the name suggests, the point at which the script
is entered and execution begins. The entry point for Partner Agreement
Manager in your script code is a procedure called main.

For example, in VBScript:

sub main

setVar "foo", "3"

end sub

In JavaScript:

function main () {

setVar ("foo", "3");

}

In a script, you can define procedures outside of the main procedure that are
called in main. For example, myFunction is such a procedure.

In VBScript:

sub main

dim x, y

y = -1

x = myFunction(y)

end sub

function myFunction(number)

myFunction = abs(number)

end function

In JavaScript:

function main () {
40 u Script Developer’s Guide

var x, y;

y = -1;

x = myFunction(y);

}

function myFunction(number) {

myFunction = abs(number);

}

See Handling run-time errors and exceptions on page 70 for another example.

Working with context variants

A context variant is a type of context variable that holds a data value, such as
“approved” or “33.95”. You can define it at the public process level or private
process level, which determines its scope. In scripts, you can get and set the
values of context variants.

Partner Agreement Manager automatically creates an ActiveInputSet context
variant for each private process. The ActiveInputSet is useful if there could be
more than one set of business objects received by the private process. When
you have very complex branch logic, you could have a variety of input sets.

For example, if a private process has two input context business object
variables called I1 and I2, and the public process input branch logic is XOR,
then either I1 or I2 will not be null. If I1 contains data, the ActiveInputSet
variant will have the value InputSet1; if I2 contains data, the value is
InputSet2. You can use the ActiveInputSet context variant to determine
which path provided the private process with a business object.
(Alternatively, instead of checking this variant, you could use the isBONull
procedure to determine whether I1 or I2 was null. See Determining if a
business object has been instantiated on page 48 for more information.)

Viewing existing context variants

Partner Agreement Manager lets you easily determine the names of context
variants you want to use in scripts.

To view the context variables defined in the private process:

u In the Private Process window, choose Variables from the View menu.
Using script procedures t 41

The context variables defined in that private process appear at the bottom
of the window.

To view the context variables defined in a public process (and owned by your
organization):

u In the Public Process window, choose Variables from the View menu.

The context variables appear at the bottom of the window.

To view the context variables input to the private process, including a
description of the input sets identified by the ActiveInputSet variable:

u In the Private Process window, double-click the input icon (green triangle)
at the beginning of the process.

The context variables input to that private process appear in a dialog box.

Creating a context variant

You can create a context variant in the Public or Private Process window,
which determines its scope. If the context of a variant is public, all public
process steps owned by your organization in that public process can use it; if
private, just actions in that private process have access to it.

To create a context variant:

u From within the Public or Private Process window, choose New Variant from
the Variables menu.

Getting a value from a context variant

Use the getVar procedure to get the value of a context variant. It returns a
string containing the value.

In VBScript and JavaScript:

getVar(context-variant)

In VBScript:

sub main

dim varX

varX = getVar("approval_response")

end sub
42 u Script Developer’s Guide

In JavaScript:

main () {

var varX;

varX = getVar("approval_response");

}

VBScript and JavaScript can implicitly convert strings to other data types.
However, sometimes you need to explicitly convert the getVar return value
from a string to another data type. For example, if you try to compare two
strings that contain numbers, a comparison of the string values is unreliable.

This VBScript example implicitly converts varX to a number because it’s
being compared to a number:

sub main

dim varX

varX = getVar("counter")

if varX > 5 then

...

end sub

If you want to compare numeric values in two strings, you need to do explicit
conversions to numeric values. The following example uses correct syntax,
but can provide the wrong result if you want to compare numbers.

In VBScript:

varX = getVar("qty-avail")

varY = getVar("qty-requested")

if varX < varY then ’ This is incorrect because it

 ’ performs an alphanumeric
’ comparison.

...

The comparison should have been written like this:

if cint(varX) < cint(varY) then

Or:

if varX - varY < 0 then

The same example in JavaScript, with correct syntax but incorrect result:

varX = getVar("qty_avail");

varY = getVar("qty_requested");
Using script procedures t 43

// Note this comparison is incorrect

if (varX && varY) {

println ("false");

VerifyResult ("pass", "pass", "getVar_alphanumericcompare");

} else {

println ("true");

VerifyResult ("pass", "fail", "getVar_alphanumericcompare");

}

The comparison should have been written like this:

if (parseInt(varX) && parseInt(varY)) {

...

Storing a value in a context variant

Use the setVar procedure to set the value of a context variant.

In VBScript:

setVar context-variant, value

In JavaScript:

setVar (context-variant, value);

value is a string or a variable referring to a string.

In VBScript:

sub main

setVar "approval_response", "yes"

end sub

Or:

sub main

dim varY

varY = "yes"

setVar "approval_response", varY

end sub

Note: In VBScript, if a process has more than one parameter and can return
a value, and you’re writing code that uses the return value, you must use
parentheses in the call.
44 u Script Developer’s Guide

In JavaScript:

setVar ("approval_response", "yes");

Using the ActiveInputSet context variant

The ActiveInputSet context variant is useful when you could have different
sets of business objects input to a private process, and you want to process
them uniquely. You can view a description of what objects are input for each
ActiveInputSet value by double-clicking the input icon (green triangle) at the
top of the private process in the Private Process window.

The following example sets the path depending on the input business object.

In VBScript:

sub main

set priv_context = getPrivateProcessContext ()

if getVar("ActiveInputSet") = "InputSet1" then

priv_context.setPath("Deal with I1")

else

setPath("Deal with I2")

end if

end sub

In JavaScript:

function main () {

priv_context = getPrivateProcessContext ();

if getVar(("ActiveInputSet") == "InputSet1") {

priv_context.setPath("Deal with I1");

} else {

priv_context.setPath("Deal with I2");

}

}

See Setting the path in a private process on page 66 for more information on
the setPath procedure.
Using script procedures t 45

Instantiating and accessing a business object in a

script

A business object is a container for the data that partners exchange, or a
temporary holder for complex information within one or more steps for a
single partner. For example, a business object might contain the information
for a purchase order.

A business object type specifies what elements are in a business object, and
their hierarchy. A business object instance is stored in a context business
object variable, which is defined to be of a particular business object type.
You use the context business object variable to reference the business object
in a script.

A context business object variable can be defined as part of a public or private
process. If the context of a variable is public, all private process actions owned
by your organization in that public process can use it; if private, just actions
in that private process have access to it. Normally, you declare context
business object variables at the private process level. However, the inputs and
outputs of subprocesses must be declared at the public level. Also, you can
use a public context variable to store data across multiple private processes
without making it visible to partners. (Remember that an Output Object
action sends data to a partner.)

Before you can manipulate a business object in a script, you must have a
context business object variable, either created by the PAM user or Partner
Agreement Manager:

n PAM users can create context business object variables in the Public or
Private Process window.

n Partner Agreement Manager automatically creates private-level context
variables for business objects that are input to a private process; it names
them I1, I2, and so on. (I is short for “Input.”) For example, if two paths
converge at a public step, the private process for that step automatically
has two context business object variables: I1 and I2.

Also, each business object needs to be instantiated:

n You can create a business object instance with the createBO procedure. It
stores the business object in a context business object variable.
46 u Script Developer’s Guide

n If the business object was input to the private process (for example, I1), it
has been instantiated.

n The business object could have already been instantiated in a previous
action. You can test if a context business object variable already refers to a
business object instance by using the isBONull procedure.

Warning: You should not call createBO on context business object
variables that already have data, or you could lose the data.

Viewing and creating a business object type

Context business object variables are defined to be of a particular business
object type. Remember that the business objects output by a private process
must be of the same type as the business objects output by the corresponding
public process step. When you declare a context business object variable in a
private process, you should make sure the type matches that expected by the
public process.

To create a business object type:

1 From the Process Manager window, click the New Element Definition Set
button in the toolbar, define the element definition set in the Element
Definition Set window.

2 Choose Create Business Object Type from the File menu.

To view a type:

1 In the left pane of the Process Manager window, select the folder in this
hierarchy: MyOrg > Business Objects > MyOrg or Partner; in the right pane,
double-click the type to view information about it.

2 From a Process window, choose Business Object Catalog from the View
menu, and expand the tree until you reach the type you want to look at.

Creating a context business object variable

To create a context business object variable for use in a script, you must do
the following:

1 Create a business object type, or determine the name of an existing type you
want to use.

See the previous section for more information.
Using script procedures t 47

2 Add a context business object variable of this business object type.

To create a new context business object variable, open the public or private
process in a Process window, then choose New Business Object from the
Variables menu.

If the context of a variable is public, all public process steps owned by your
organization in that public process can use it; if private, just actions in that
private process have access to it.

You can now use the variable in scripts. You can pass the context business
object variable to the createBO procedure to create a business object instance.

Instantiating a business object

Business objects must be instantiated before you can use them in scripts. To
instantiate a business object, call createBO, passing it a context business
object variable.

In both VBScript and JavaScript:

createBO(context-business-object-variable)

For example, in VBScript:

sub main

createBO("po")

po.setData "po_number", "24567"

end sub

Or, in JavaScript:

createBO ("po");

po.setData ("po_number), ’24567");

If you call this procedure on a context business object variable containing
data, the data may be cleared, so you should only call this procedure on
context business object variable that does not yet refer to a business object
instance.

Determining if a business object has been

instantiated

You can use the isBONull procedure to determine if a business object has
already been instantiated (so you don’t have to call the createBO procedure).
48 u Script Developer’s Guide

In both VBScript and JavaScript:

isBONull(context-business-object-variable)

The procedure returns boolean true if the context business object variable
hasn’t already been created, or false if it has; in the latter case, you do not
want to call the createBO procedure.

In VBScript:

if (isBONull("po")) then

createBO("po")

end if

In JavaScript:

if (isBONull("po")) {

createBO("po");

}

Accessing elements and element sequences in a

business object

A business object is made of fields and groups. Both fields and groups are
elements: fields are elements that contain data and groups are elements that
contain other subordinate elements. A context business object variable is a
reference to the top-level element of a business object type, and is usually a
group.

An element sequence is a collection of consecutive elements of the same
element type within a business object and at the same level in the hierarchy.

After a business object has been instantiated, you can access and manipulate
the elements and sequences it contains. When you want to use a procedure
to perform an operation, you can identify an element or element sequence in
any of these ways:

n To specify the top-level element of a business object, use a context
business object variable.
Using script procedures t 49

n To specify an element or sequence under the top-level element, you can
get an element reference by using the getElement, getElementSequence,
getElementAt, newElement, or NewElementAt procedure.

n To specify a subordinate element, use a context business object variable or
an element reference, and a tag path to the subordinate element, relative
to the context variable or element reference. A tag path string specifies the
hierarchy from a higher-level element to a lower-level element. The name
of an element, specified in the business object type, is called its tag name.

Getting a reference to an element or element

sequence

All of the procedures listed in this section return an element or element
sequence reference that you can use with other PAM procedures. You do not
have to get an element or sequence reference. Instead, you can specify a
context business object variable and tag path, as described in the following
section.

Note: The top-level element of a business object is referenced by the context
business object variable. So you would not need to get a reference to a top-
level element by using the following procedures.

Remember that for VBScript, whenever you get an element or element
sequence reference and store it in a variable, you need to use the Set
procedure. When you assign a value to a context variant, you do not use the
Set procedure.

Getting an element

Use the getElement procedure to get a reference to a group or field identified
by a tag path string (tag paths are described in the following section on
page 52). In both VBScript and JavaScript:

element.getElement(tag-path)

The tag path can specify an element that is not repeatable, or specify an
element in an element sequence by its index number.
50 u Script Developer’s Guide

For example, after the following lines run, the shipping_address variable
holds a reference to the ship_to group. po_line is a repeatable group in the
context business object variable called po; the reference would be to the
ship_to group in the first po_line element of the sequence. You could then
manipulate the ship_to group by using the shipping_address variable.

In VBScript:

dim shipping_address

set shipping_address = po.getElement("po_line[0]/ship_to")

In JavaScript:

var shipping_address;

shipping_address = po.getElement("po_line[0]/ship_to");

Getting an Element Sequence

Use the getElementSequence procedure to get a reference to an entire
element sequence, which is a collection of consecutive “sibling” elements
(repeatable) of the same element type. In both VBScript and JavaScript:

element.getElementSequence(tag-path)

This example creates a reference to the po_line element sequence, stored in
the lines variable.

In VBScript:

set lines = po.getElementSequence("po_line")

In JavaScript:

lines = po.getElementSequence("po_line");

Getting an element at a specific sequence position

The getElementAt procedure returns a reference to the group or field at the
specified position in an element sequence. In both VBScript and JavaScript:

element-sequence.getElementAt(index)

This example gets the element at the position i.

In VBScript:

set single_line =
po.getElementSequence("po_line").getElementAt(i)
Using script procedures t 51

Note that the previous statement is equivalent to the following getElement
statement ("&i&" adds the value of i to the tag path string).

set single_line = po.getElement("po_line["&i&"]")

In JavaScript:

single_line = po.getElementSequence("po_line").getElementAt(i);

Note that the previous statement is equivalent to the following getElement
statement ("+i+" adds the value of i to the tag path string).

single_line = po.getElement("po_line["+i+"]");

The newElement and newElementAt procedures, which add an element to an
element sequence, also return an element object reference. See Adding an
element to a sequence on page 64 for more information.

Specifying tag paths to elements and sequences

A tag path string specifies an element or element sequence. The tag path is
relative to the element you are calling the procedure on. Tag paths are made
of element names, as specified in the business object type; element names are
case-sensitive.

Specifying an element

If the tag path string is empty (""), represented by quotes with no spaces
between, it specifies the element itself. Otherwise, it specifies a subordinate
element, with each element identifier delimited by a slash (/). The path is
relative to the element you are calling the procedure on. For example, if you
are calling a procedure on the context business object variable po, and a
group under it is summary_info that has a field comments, the tag path to the
field comments would be summary_info/comments.

In this VBScript statement:

set elemComments = po.getElement("summary_info/comments")

Or, in JavaScript:

elemComments = po.getElement("summary_info/comments");
52 u Script Developer’s Guide

Specifying an element in an element sequence

For groups and fields that may repeat, you can refer to a particular element
in an element sequence by using an index number. Element sequences are
indexed starting at zero (0), so four occurrences of an element will be indexed
0, 1, 2, 3. For example, po_line[0] would be the first po_line element and
po_line[1] would be the second.

In this VBScript statement:

set elemShip_to = po.getElement("po_line[0]/ship_to")

Or, in JavaScript:

elemShip_to = po.getElement("po_line[0]/ship_to");

This statement gets a reference to the ship_to element contained by the first
po_line element in the context business object variable called po.

Specifying an entire element sequence

For repeatable groups and fields, you can specify an entire element sequence
by not specifying an index number.

In VBScript:

set eseqLines = po.getElementSequence("po_line")

In JavaScript:

eseqLines = po.getElementSequence("po_line");

Working with group and field elements

Partner Agreement Manager script procedures provide many procedures to
access, modify the data, and get information on the groups and fields of a
business object. You can use the procedures in this section to manipulate an
element, which could be:

n a nonrepeatable group or field.

n a group or field that is part of an element sequence.

n a business object (specified by the context business object variable name).

Note: An empty string ("") as a data value is equivalent to null. A string
containing one or more spaces (" ") is not null, and is considered to be
data.
Using script procedures t 53

Getting data from a field

Use the getData procedure to get data in a field; it returns a string
representation of the data contained in the field. You can optionally supply a
tag path string.

In both VBScript and JavaScript:

field.getData()
element.getData(tag-path)

tag-path specifies the path to the field, relative to element.

The following code returns the value of the item_code field in the first po_line
group of the po business object; po_line is an element sequence, and this
statement gets the item_code value in the first element in the sequence. The
item variant holds a string.

In VBScript:

dim item

item = po.getData("po_line[0]/item_code")

In JavaScript:

var item ;

item = po.getData("po_line[0]/item_code");

Or you could write the same example as:

In VBScript:

dim item

item = po.getElement("po_line[0]/item_code").getData()

In JavaScript:

var item;

item = po.getElement("po_line[0]/item_code").getData();
54 u Script Developer’s Guide

Adding data to a field

Use the setData procedure to set data in a field. Any existing data is
overwritten.

In VBScript:

field.setData value
element.setData tag-path, value

In JavaScript:

field.setData(value);
element.setData(tag-path, value);

value must be a string. tag-path specifies the path to the field, relative to
element.

The following example sets the po_number field in the po business object to
the string 24567.

In VBScript:

po_num = "24567"

po.setData "po_number", po_num

In JavaScript:

po_num = ’24567";

po.setData ("po_number", po_num);

Or you could write the same example as:

In VBScript:

po_num = "24567"

po.getElement("po_number").setData po_num

In JavaScript:

po_num = "24567";

po.getElement("po_number").setData (po_num);
Using script procedures t 55

Copying data into an element

Use the copyIn procedure to copy data from an element to another element,
either within the same business object or between business objects. The
elements copied from and to must be of the same element type:

n The elements must have the same name, as specified in the business object
type.

n You can copy a group into a group, a field into a field, from the same
element definition set.

Subordinate element sequences are also copied, such that their lengths will
match that of the sequences copied from. The sequence copied to is removed
and replaced by the copy.

In VBScript:

element2.copyIn element1
element.copyIn tag-path, element1

In JavaScript:

element2.copyIn(element1);
element.copyIn(tag-path, element1);

Where element1 is the element to copy from and element2 is the element to
copy to. tag-path is the path to the element to copy to, relative to element.

Note: The following generic statement does not copy a value but creates an
element reference. You should use the copyIn procedure to copy data.

In VBScript:

set elemGroup1 = bo.getElement("Group")

In JavaScript:

elemGroup1 = bo.getElement ("Group");

The following example copies the content of the first element in the po_line
element sequence into the second element of the po_line element sequence.

In VBScript:

set line1 = po.getElement("po_line[0]")

set line2 = po.getElement("po_line[1]")

line2.copyIn line1
56 u Script Developer’s Guide

Or you could write the code as:

po.copyIn "po_line[1]", po.getElement("po_line[0]")

In JavaScript:

line1 = po.getElement("po_line[0]");

line2 = po.getElement("po_line[1]");

line2.copyIn line1;

Or you could write the code as:

po.copyIn ("po_line[1]", po.getElement("po_line[0]"));

Clearing data from an element

Use the clearAll procedure to remove all data contained in an element. If the
element is a group, all subordinate fields are cleared. The length of any
element sequences within this element are set to zero (0). The clearData
procedure also removes all data, but does not change the length of element
sequences.

In VBScript:

element.clearAll
element.clearData

In JavaScript:

element.clearAll();
element.clearData();

When you call clearAll on a repeatable group, if there are subordinate
element sequences that have been populated, the length of the element
sequences become zero (0); however, the sequence length of the group you
called the procedure on stays the same.

The following statement clears the entire po business object.

In VBScript:

po.clearAll

In JavaScript:

po.clearAll();
Using script procedures t 57

The next statement does the same, but the length of the element sequences
do not change.

In VBScript:

po.clearData

In JavaScript:

po.clearData();

Both of the following statements clear the elements in the first po_line group
in the po business object, but one clears lengths and the other doesn’t.

In VBScript:

po.getElement("po_line[0]").clearAll

po.getElement("po_line[0]").clearData

In JavaScript:

po.getElement("po_line[0]").clearAll();

po.getElement("po_line[0]").clearData();

Getting the name of an element

Use the getTagName procedure to get the name of an element. This can also
be thought of as the element type name (as specified in the business object
type). In both VBScript and JavaScript:

element.getTagName()

You can use this procedure to write your own generic procedures. The
following subroutine takes a field and prints its name followed by its data
value.

In VBScript:

sub printDataValue(el)

println(el.getTagName()&" : "&el.getData())

end sub

In JavaScript:

function printDataValue(el) {

println(el.getTagName() +" : "+el.getData());

}

58 u Script Developer’s Guide

Checking if an element is a group or field

The isField procedure checks whether an element is a group or field. This
procedure is useful when you want to use code that can operate on different
business object types, for example. In both VBScript and JavaScript:

element.isField()

The following example supports the processing of two different business
object types: one type has ship_to as a group with an address field within it,
while the other type has ship_to as a field holding address data. The following
piece of code is reusable for both cases.

In VBScript:

function getShippingAddress(ship_to)

if (ship_to.isField()) then

getShippingAddress = ship_to.getData()

else

getShippingAddress = ship_to.getData("address")

end if

end function

In JavaScript:

function getShippingAddress(ship_to) {

if (ship_to.isField()) {

getShippingAddress = ship_to.getData();

} else {

getShippingAddress = ship_to.getData("address");

}

}

Checking if an element contains data

The hasData procedure checks whether a field contains data (is not null) or
if any field in a group contains data. If you supply an element sequence, all
elements in the sequence are checked for data. In both VBScript and
JavaScript:

element.hasData()
element-sequence.hasData()

It returns boolean true if it contains data.
Using script procedures t 59

The following example checks if there are any elements in the design_drawing
element sequence in the po business object.

In VBScript:

if (po.getElementSequence("design_drawing").hasData() = False) then

println("There are no design drawings associated with this PO"& _

po.getData("po_number"))

end if

Note: The underscore [_] means the statement was continued on the next
line.

In JavaScript:

if (po.getElementSequence("design_drawing").hasData() == False) {

println("There is no design drawing associated with this PO " +

po.getData("po_number"))

}

The hasData procedure is often used with the isValid procedure, as described
in the next section.

Checking if an element is valid

The isValid procedure determines the validity of an element based on how it
was defined in the business object type:

n If the element you’re checking is a group, isValid determines whether all
mandatory fields it contains have data; if a subordinate optional group
contains data, it also checks whether all mandatory fields in the optional
group have data. If a subordinate optional group does not have data in it,
it is ignored when determining the validity of the element.

n If the element is a field, isValid checks whether it contains data or not.

isValid does not consider whether the element you’re calling the procedure
on was defined as optional or mandatory when it determines validity.
(Remember that the parent element defines whether an element is optional
or mandatory.) For fields, it only checks whether the field has data or not; for
groups, isValid checks the elements it contains for validity based on whether
they are optional or mandatory.

Here is the syntax for both VBScript and JavaScript:

element.isValid()
60 u Script Developer’s Guide

isValid returns boolean true if the element is a field containing data or is a
group whose subordinate elements are valid (or are optional and contain no
data), or returns false if the element is a null field or is a group with a
subordinate element that requires data but is null.

In this example, if the summary_info group has data in it but it is not valid, it
prints an error message for the user.

In VBScript:

dim summary = po.getElement("summary_info")

if (summary.hasData()) then

if (summary.isValid() = False) then

println("All mandatory fields of summary must be filled
in")

end if

end if

In JavaScript:

if (po.getElement("summary_info").hasData()) {

if (po.getElement("summary_info").isValid() == False) {

println("All mandatory fields of summary " +

"must be filled in")

}

}

See isValid procedure on page 127 for more complex examples.

Getting descriptive information about an

element

The toString procedure returns a string describing the validity and content of
an element and any elements subordinate to it. All mandatory subordinate
elements appear in the description; optional subordinate elements without
any data do not appear. This helps you see which elements must have data for
this element to be valid. You can use the println procedure to display the
value returned by toString. Here is the syntax in both VBScript and
JavaScript:

element.toString(include-data)
Using script procedures t 61

If include-data is boolean true, toString includes any data values in the
description; if false, it does not include the data values, which makes the
description shorter.

This example prints the description string, including the data values, for the
po business object.

In VBScript:

println(po.toString(True))

In JavaScript:

println(po.toString(True));

The output might look like this (note that the top-level Purchase_Order
element is not valid because the mandatory field po_date has no value):

<Purchase_Order valid="false">

<po_number valid="true">123</po_number>

<po_date valid="false"></po_date>

<supplier_id valid="true">99999</supplier_id>

<po_line valid="true">

<item_code valid="true">2222</item_code>

<qty valid="true">55</qty>

<expected_ship_date valid="true">9.9.99</expected_ship_date>

<summary_info valid="true">

<comments valid="true">first line item</comments>

</summary_infor>

</po_line>

</Purchase_Order>

Working with element sequences

An element sequence is a collection of consecutive elements of the same
element type. The following procedures operate on an element sequence; in
the call, you use a reference to an element sequence that was returned by the
getElementSequence procedure. Remember that the procedures described in
the previous section operate on an element, which can be part of a sequence.
62 u Script Developer’s Guide

Checking if an element sequence contains data

When operating on an element sequence, the hasData procedure checks
whether any field in an element sequence contains data. In both VBScript
and JavaScript:

element-sequence.hasData()

It returns boolean true if it contains data.

The following example checks if there are any design_drawing elements in the
po business object.

In VBScript:

if (po.getElementSequence("design_drawing").hasData() = False) then

println("There are no design drawings associated with this PO"& _

po.getData("po_number"))

end if

In JavaScript:

if (po.getElementSequence("design_drawing").hasData() == False) {

println("There is no design drawing associated with this PO " +

po.getData("po_number"))

}

Determining how many elements are in a

sequence

The length procedure returns the number of elements in an element
sequence. This is useful for setting boundary values to loop through all the
elements in an element sequence. In both VBScript and JavaScript:

element-sequence.length()

The following example loops through all the po_line elements and prints the
data in each po_line in string form.

In VBScript:

dim lines, nLines

set lines = po.getElementSequence("po_line")

nLines = lines.length()

for i=0 to nLines - 1
Using script procedures t 63

println(lines.getElementAt(i).toString(true))

next

In JavaScript:

var lines, nLines;

lines = po.getElementSequence("po_line");

nLines = lines.length();

for (i=0; i==nLines - 1; i++) {

println(lines.getElementAt(i).toString(true));

}

Adding an element to a sequence

The newElement procedure adds a new element to the end of a sequence and
returns a reference to the newly created element. The index of the new
element will be length - 1 (where length refers to the value after the procedure
is called). In both VBScript and JavaScript:

element-sequence.newElement()

The newElementAt procedure inserts a new element at the specified position
in the sequence and returns a reference to the newly created element. It adds
1 to the index of the element currently in that position (if any) and any
following elements, so they are “shifted to the right.” Valid index values are
0 to length. So, as with the newElement procedure, you can use this procedure
to add to the end of the sequence. Here is the syntax in both VBScript and
JavaScript:

element-sequence.newElementAt(index)

The following example creates a new po_line element at the end of the
sequence and copies into it the values of the element before it in the sequence.

In VBScript:

set lines = po.getElementSequence("po_line")

nlines = lines.length()

last_line_index = nlines - 1

set new_line = lines.newElement()

if (last_line_index >= 0) then

new_line.copyIn(lines.getElementAt(last_line_index))

end if
64 u Script Developer’s Guide

In JavaScript:

lines = po.getElementSequence("po_line");

nlines = lines.length();

last_line_index = nlines - 1;

new_line = lines.newElement();

if (last_line_index >= 0) {

new_line.copyIn(lines.getElementAt(last_line_index));

}

The next example adds a new po_ line element at the beginning of the
sequence.

In VBScript:

set line = po.getElementSequence("po_line").newElementAt(0)

In JavaScript:

line = po.getElementSequence("po_line").newElementAt(0);

Deleting an element from a sequence

The removeAll procedure removes all elements in a sequence. Any data
contained in any of the elements is lost. The length of this element sequence
becomes 0.

The removeElementAt procedure removes the element (and its data) at the
specified position in a sequence. The indices of elements at greater index
values are reduced by 1 (they are “shifted to the left”). The length of the
sequence is reduced by 1.

In VBScript:

element-sequence.removeAll
element-sequence.removeElementAt index

In JavaScript:

element-sequence.removeAll();
element-sequence.removeElementAt(index);

The following example removes all the po_line elements from the po business
object.
Using script procedures t 65

In VBScript:

po.getElementSequence("po_line").removeAll

In JavaScript:

po.getElementSequence("po_line").removeAll();

The next example loops through all po_line elements and removes all of the
invalid ones. Note that removeElementAt will move the remaining elements
one index down in the sequence. So you should perform this operation
starting at the end of the sequence so your index value is always valid.

In VBScript:

dim line

dim lines

set lines = po.getElementSequence("po_line")

for i = lines.length() - 1 to 0 step -1

set line = lines.getElementAt(i)

if not line.isValid() then

lines.removeElementAt(i)

end if

next

In JavaScript:

var line;

var lines;

lines = po.getElementSequence("po_line");

for (i = lines.length() - 1; i >= 0; i--) {

line = lines.getElementAt(i);

if (!line.isValid()) {

lines.removeElementAt(i);

}

}

Setting the path in a private process

You can use the setPath procedure to set the path in a private process. You
must make a setPath call before each branch in the process flow. (The path
directly follows the action that contains the script.)
66 u Script Developer’s Guide

In VBScript:

PrivateProcessContext.setPath private-process-path-name

In JavaScript:

PrivateProcessContext.setPath(private-process-path-name);

You must type the context-sensitive path name exactly as it appears in the
Private Process window. If you do not provide a path name for a loop, the
default path is taken; this is the main, straight-line path. For branches, you
must always provide a path.

Remember that public process paths are determined by private-process
output business objects only.

Following is an example of using the setPath procedure to set the path based
on the customer name.

In VBScript:

sub main

dim customerName

dim priv_context

set priv_context = getPrivateProcessContext ()

customerName = getVar("customer_name")

if (customerName = "Acme") then

priv_context.setPath("Approved")

else

priv_context.setPath("NotApproved")

end if

end sub

Next is an example of using the setPath procedure in the loop block of a
private process to cycle through the loop five times.

In VBScript:

sub main

dim counter

dim priv_context

set priv_context = getPrivateProcessContext ()

counter = getVar("loop_counter")

if counter >= 5 then

priv_context.setPath("Main")
Using script procedures t 67

else

counter = counter + 1

setVar "loop_counter", counter

priv_context.setPath("Loop")

end if

end sub

In JavaScript:

var counter;

var priv_context;

priv_context = getPrivateProcessContext ();

counter = getVar("loop_counter");

if (counter >= 5) {

priv_context.setPath("Main");

} else {

priv_context.setPath("Loop");

}

The following script tests whether an Approval action timed out before the
user could respond. Assume that a context variant called TimerFlag is set by
the action.

In VBScript:

sub main

set priv_context = getPrivateProcessContext ()

timer_flag = getVar("TimerFlag")

if timer_flag = "TIMEOUT" then

priv_context.setPath("Escalate")

else

priv_context.setPath("Check Approval Response")

end if

end sub

In JavaScript:

var timer_flag;

priv_context = getPrivateProcessContext ();

timer_flag = getVar("TimerFlag");

if (timer_flag += "TIMEOUT") {

priv_context.setPath("Escalate");

} else {

priv_context.setPath("Check Approval Response");

}

68 u Script Developer’s Guide

The next script tests the response of the approval question for an Approval
action. Assume that a context variant ApprovalFlag is set by the action.

In VBScript:

sub main

set priv_context = getPrivateProcessContext ()

app_flag = getVar("ApprovalFlag")

if app_flag then

priv_context.setPath("Allocation Quantity OK")

else

priv_context.setPath("Request Order Refinement")

end if

end sub

In JavaScript:

priv_context = getPrivateProcessContext ();

app_flag = getVar("ApprovalFlag");

if (app_flag) {

priv_context.setPath("Allocation Quantity OK");

} else {

priv_context.setPath("Request Order Refinement");

}

Printing a message to the console and log file

You can use the println procedure to print a message to the server’s console
window and log file. This is useful for debugging, because you can track the
progress of your script and display values of context variables and business
object fields, for example. The syntax in both JavaScript and VBScript:

println(string)

Here is a simple example in VBScript:

sub main

println("A script")

end sub

The same example in JavaScript:

function main () {

println ("A script");

}

Using script procedures t 69

For additional examples, see Getting descriptive information about an element
on page 61 and Determining how many elements are in a sequence on page 63.

If you run Partner Agreement Manager as a service, println output goes into
a log file. The log file is called PAM.log and it is created in the
Partners\Partnernnn directory. If you run Partner Agreement Manager from
a shortcut, println output is displayed in the server’s console and also goes to
the log file.

Handling run-time errors and exceptions

If you get an error in a script, the script terminates, unless you handle the
error. Some of the procedures return error codes that you can handle in your
script code:

Procedure Run-time error/exception

copyIn ElementTypeException, InvalidQueryException,
IndexOutOfBoundsException

getData ElementTypeException, InvalidQueryException,
IndexOutOfBoundsException

getElement InvalidQueryException, IndexOutOfBoundsException

getElementAt IndexOutOfBoundsException

getElementSequen
ce

InvalidQueryException, IndexOutOfBoundsException

getElementAt IndexOutOfBoundsException

newElementAt IndexOutOfBoundsException

setData ElementTypeException, InvalidQueryException,
IndexOutOfBoundsException
70 u Script Developer’s Guide

Here are descriptions of these errors:

Following is an example of handling errors by using VBScript inline error
handling. The errCheck function, defined below, checks whether a run-time
error has occurred. It returns true if the error is encountered; false if it has
not. The errCheck function is called in the main procedure. See VBScript
documentation for more information on error handling.

rtErr = "NONE"

sub main()

dim value

dim priv_context

’ Get the private process context

set priv_context = getPrivateProcessContext ()

’ In the case of an error, continue execution.

On Error Resume Next

’ Get a field value.

value = po.getData("po_line[0]/ship_to")

’ Handle run-time errors generated by the previous statement.

if errCheck() then

Run-time error/exception Description

ElementTypeException The element types do not match. For the
getData and setData procedures, you called
the procedure on a group element instead of a
field element. For the copyIn procedure, you
tried to copy to an element with a different tag
name, for example, from po_data to
po_number.

IndexOutOfBoundsException When specifying an element in a sequence,
you provided an invalid index value, such as a
number greater than length - 1 for that
element sequence.

InvalidQueryException The tag path you supplied is invalid (if the
index value was invalid, you would get
IndexOutOfBoundsException instead). For
example, you can get this error if you typed a
wrong name, such as PO_Data instead of
po_data.
Using script procedures t 71

 if InStr(rtErr, "InvalidQueryException") <> 0 then

priv_context.setPath "LoopQuery"

elseif InStr(rtErr, "ElementTypeException") <> 0 then

priv_context.setPath "ExitBranch"

elseif InStr(rtErr, "IndexOutOfBoundsException") <> 0 then

priv_context.setPath "IndexBranch"

end if

else

println("getData call successful")

end if

end sub

’ ErrCheck checks whether a run-time error occurred.

’ It returns False if the no run-time error is encountered,

’ True otherwise.

function errCheck()

if Err.Number <> 0 then

’ an error has occurred

errCheck = True

println("===***===???? Error check-" & _

" Error number: " & Err.Number & ", " & _

Err.Description & " has occurred in " _

& Err.Source)

rtErr = Err.Description

else

errCheck = False

end if

Err.Clear

end function
72 u Script Developer’s Guide

c h a p t e r�
5

Script Procedure Reference
This chapter is a reference to the Partner Agreement Manager
procedures—available through the VBScript and JavaScript
extensions—that let you manipulate business objects and context
variants. Use the procedures to develop scripts that are tailored to
Partner Agreement Manager features.

Sections in this chapter include:

n What procedures are available on page 74.

n Alphabetical reference on page 80.
Script Procedure Reference t 73

What procedures are available

Partner Agreement Manager provides procedures through the script
extensions.

Procedures in the script extensions

The following table is a summary of the script extension procedures:

Use this procedure To do this

createBO Create a business object instance stored in a context
business object variable. After you call this
procedure, you can add data to the business object.
You should not call this procedure on a context
business object variable that already contains a
business object instance, because any data may be
cleared.

getVar Get a value from a context variant. It returns a string
containing the value.

isBONull Test if a context business object variable contains a
business object instance. The procedure returns
boolean false if it does; in this case, you do not want
to call the createBO procedure on the context
business object variable.

main Create the entry point for the Partner Agreement
Manager script. Each script must have a main
procedure.

println Print a message to the console. This is useful for
debugging.

setPath Deprecated. Use the setPath procedure that uses the
PrivateProcessContext instead.

setVar Store a value in a context variant.
74 u Script Developer’s Guide

Element procedures

The Element procedures let you access and manipulate the content of a
business object instance. Both fields and groups are elements: fields are
elements that can contain data and groups are elements that contain other
elements. Following is a summary of the Element procedures that are
currently available:

Use this procedure To do this

clearAll Remove all data contained in an element. If the
element is a group, all subordinate fields are
cleared. The length of any element sequences
within this element are set to zero (0).

clearData Remove all data contained in an element. If the
element is a group, all subordinate fields are
cleared. Any element sequences in this element
keep their current length.

copyIn Copy data from an element to another element of
the same business object type, either within the
same business object or between business objects.
The elements copied from and to must be of the
same element type: you can copy a group into a
group, a field into a field, and they must have the
same name (as specified in the business object
type) and have the same hierarchy of subordinate
elements. Subordinate element sequences are
copied; the element sequence length does not have
to be the same between elements.

getData Return a string representation of the data
contained in a field.

getElement Get a reference to the group or field identified by
a tag path string. The tag path can specify an
element in a sequence by its index number.

getElementSequence Get a reference to an element sequence. An
element sequence is a collection of consecutive
“sibling” elements of the same element type. The
group or field is specified as repeatable in the
group that contains it.

getTagName Get the name of this element. This can also be
thought of as the element type name.

hasData Check whether a group or field contains data (is
not null).
Script Procedure Reference t 75

ElementSequence procedures

The ElementSequence procedures let you manipulate an element sequence:
a collection of consecutive Element objects of the same element type.
Element sequences are indexed starting at zero (0), for example, four
occurrences of an element (the sequence length is 4) will be indexed 0, 1, 2,
3. Valid index values are zero to the length of the sequence minus one (0 to
length - 1). Following is a summary of the ElementSequence procedures that
are currently available:

isField Check whether an element is a field or group. This
procedure is useful when you want to use code
that can manipulate different business object
types, for example.

isValid Determine the validity of an element based on the
content of the business object type.

setData Set the data contained in a field element.

toString Return a string describing the validity and content
of an element and any elements subordinate to it
that contain data. Mandatory subordinate
elements appear in the description string; optional
subordinate elements without any data do not
appear. This helps you see which elements must
have data for this element to be valid. You can use
the println procedure to display the value
returned by toString.

Use this procedure To do this

getElementAt Get the group or field at the specified position in this
element sequence.

hasData Check whether any element in an element sequence
contains data.

length Return the number of elements in this element sequence.
This is useful for setting boundary values to loop through
all the elements in an element sequence.

newElement Add a new element to the end of this sequence and return
a reference to the newly created element.

Use this procedure To do this
76 u Script Developer’s Guide

PrivateProcessContext procedures

The PrivateProcessContext procedures let you get information about the
private process and set the private process path. Following is a summary of
the PrivateProcessContext procedures that are currently available:

newElementAt Insert a new element at the specified position in the
sequence and return a reference to the newly created
element. Adds 1 to the index of the element currently in
that position (if any) and any following elements, so they
are “shifted to the right.” As with the newElement
procedure, you can use this procedure to add to the end
of the sequence.

removeAll Remove all elements in a sequence. Any data contained
in any of the elements is deleted. The length of this
element sequence becomes 0.

removeElementAt Remove an element (and its data) at the specified
position in a sequence. The indexes of elements at greater
index values are reduced by 1 (they are “shifted to the
left”). The length of the sequence is reduced by 1.

Use this procedure To do this

getLoopID Get the private process loop ID. If the private
process is not in a loop, return a string length of 0.

getNodeTypeID Get the type ID of the private process node.

getPath Get the currently selected path. If no path has been
selected using the PrivateProcessContext.setPath
call, return null.

getPathNames Get the list of valid paths that can be taken.

getProcessRef Get the reference to the private process.

getProcessTypeRef Get the reference to the private process type.

setPath Set the path to be taken when this node completes.

Use this procedure To do this
Script Procedure Reference t 77

PublicProcessContext procedures

The PublicProcessContext procedures let you get information about the
public process. Following is a summary of the PublicProcessContext
procedures that are currently available:

PartnerGroupContext procedures

The PartnerGroupContext procedures let you get information about the
PartnerGroup. Following is a summary of the PartnerGroupContext
procedures that are currently available:

Use this procedure To do this

getInputs Get the inputs to this public process node.

getLoopID Get the public process loop ID. If the public process
is not in a loop, return a string length of 0.

getNodeTypeID Get the type ID of the public process node.

getPartnerGroupContext Retrieve the context object that can be used to
access partner group information in the context of
this public process.

getProcessRef Get the reference to the public process.

getProcessTypeRef Get the reference to the public process type.

isProductionProcess Determine if the public process is in Production
mode or Test mode.

Use this procedure
To do this

getBinding Get the binding for the specified partner group.

getGroupRefs Get the list of references to the groups that are included
in this public process.
78 u Script Developer’s Guide

PublicProcessNodeInput procedures

The PublicProcessNodeInput procedures let you get information on the
input to the node of the public process. Following is a summary of the
PublicProessNodeInput procedures that are currently available:

Use this procedure To do this

getSenderNodeTypeID Get the ID of the sending node.

getSenderRef Get the reference to the sending partner.

getVarName Get the name of the input variable containing this
input.
Script Procedure Reference t 79

Alphabetical reference

This section is an alphabetical reference to the procedures.

Parameters and variables used in the syntax

specifications

The following parameters and variables are used in the syntax specifications:

Note: An empty string ("") as a data value is equivalent to null. A string
containing one or more spaces (" ") is not null, and is considered data.

Parameter or
Variable Description

bo Name of a context business object variable (a type of context
variable) that Partner Agreement Manager created or the
PAM user defined from the Public or Private Process
window. It is case-sensitive and must be defined in a process
that the script executes in.

context-variant Name of a context variant (a type of context variable) that
Partner Agreement Manager created or the PAM user
defined from the Public or Private Process window. It is case-
sensitive and must be defined in a process that the script
executes in.

element An element reference returned by a getElement,
getElementAt, newElement, or newElementAt procedure
(element could be the name of the variable that stores the
reference). Or a bo that stores a business object instance. An
element can be a group or field.

element-
sequence

An element sequence reference returned by the
getElementSequence procedure. element-sequence can be the
name of the variable that stores the reference.

field element that stores a reference to a field only.

index Number zero (0) or greater, referring to a position in an
element sequence. Members of an element sequence are
numbered starting with zero (0).

string Variant containing character data.

tag-path Tag path string specifying the path to an element or element
sequence, relative to the element you are calling the
procedure on. See Specifying tag paths to elements and
sequences on page 52 for more information.
80 u Script Developer’s Guide

The business object type used in the examples

Many of the examples in the following reference pages act on a business
object of the Purchase_Order business object type with the following fields
and groups (groups are bold for readability). The context business object
variable, of type Purchase_Order, is po.

Group or field name Type

Purchase_Order The top-level element of the business object (here a
group)

po_number Mandatory Single Field

po_date Mandatory Single Field

supplier_id Mandatory Single Field

po_line Mandatory Repeatable Group

item_code Mandatory Single Field

qty Mandatory Single Field

supplier_item_code Optional Single Field

expected_ship_date Mandatory Single Field

rate Optional Single Field

ship_to Optional Single Group

address Mandatory Single Field

attention Optional Single Field

phone Optional Single Field

preferred_carrier Optional Single Field

summary_info Mandatory Single Group

comments Mandatory Single Field

comment_by Optional Single Field

design_drawing Optional Repeatable Group

location Optional Single Field

drawing Mandatory Single Field
Script Procedure Reference t 81

clearAll procedure

Removes all data contained in this element. If the element is a group, all
subordinate fields are cleared. The length of any element sequences within
this element are set to zero (0). (Note that the clearData procedure also
removes all data, but does not change the length of element sequences.)

When you call clearAll on a repeatable group, if there are subordinate
element sequences that have been populated, the length of the element
sequences become zero (0); however, the length of the group you called the
procedure on stays the same. If you call the procedure on a repeatable field,
the length of the field becomes zero (0).

VBScript syntax

element.clearAll

JavaScript syntax

element.clearAll();

Variable

element is a reference to a business object, or group or field contained by a
business object.

Return value

none

Example

This statement clears the entire po business object. If there are element
sequences that have been populated (for repeatable elements po_line or
design_drawing), the length of the element sequence becomes zero (0).

VBScript:

po.clearAll

JavaScript:

po.clearAll();

This statement clears the first po_line group in the po business object.
82 u Script Developer’s Guide

VBScript:

po.getElement("po_line[0]").clearAll

JavaScript:

po.getElement("po_line[0]").clearAll();

See also

createBO, clearData, getElement, removeAll, removeElementAt
Script Procedure Reference t 83

clearData procedure

Removes all data contained in this element. If the element is a group, all
subordinate fields are cleared. Any element sequences in this element keep
their current length. (Note that the clearAll procedure also removes all data,
but changes the length of element sequences to zero [0].)

VBScript syntax

element.clearData

JavaScript syntax

element.clearData();

Variable

element is a reference to a business object, or group or field contained by a
business object.

Return value

none

Examples

This statement clears the entire po business object. If there are element
sequences within this object (for repeatable elements po_line or
design_drawing), the length of the element sequence stays the same.

VBScript:

po.clearData

JavaScript:

po.clearData();

This statement clears the first po_line group in the po business object:

VBScript:

po.getElement("po_line[0]").clearData

JavaScript:

po.getElement("po_line[0]").clearData();

See also

createBO, clearAll, getElement, getElementAt, removeAll, removeElementAt
84 u Script Developer’s Guide

copyIn procedure

Copies an element to another element of the same business object type, either
within the same business object or between business objects. The elements
copied from and to must be of the same element type:

n You can copy a group into a group, a field into a field.

n The elements must have the same name (as specified in the business object
type).

n The elements within a group must be the same.

Subordinate element sequences are also copied; after the copy, the element
sequence length will be the same as the sequence copied from.

VBScript syntax

element2.copyIn element1
element.copyIn tag-path, element1

JavaScript syntax

element2.copyIn(element1);
element.copyIn(tag-path, element1);

Parameters and variables

element1 is a reference to an element to copy from.
element2 is a reference to an element to copy to.
tag-path specifies the element to copy to, relative to element, which is a
reference to a business object, group, or field.

Return value

none

Run-time errors/exceptions

ElementTypeException indicates that the element types do not match. You
tried to copy to an element with a different tag name, for example, from
po_data to po_number. Or you tried to copy an element from a different
business object type.

InvalidQueryException indicates that the tag path you supplied is invalid (if
the index value was invalid, you would get IndexOutOfBoundsException
instead). For example, you can get this error if you typed a wrong name.
Script Procedure Reference t 85

IndexOutOfBoundsException indicates that, when specifying an element in
a sequence, you provided an invalid index value, such as a number greater
than length - 1 for that element sequence.

Example

This example copies the ship_to group in the first element of the po_line
element sequence to the ship_to group of the second po_line element
sequence:

VBScript:

set line1_ship_to = po.getElement("po_line[0]/ship_to")

set line2_ship_to = po.getElement("po_line[1]/ship_to")

line2_ship_to.copyIn line1_ship_to

JavaScript:

line1_ship_to = po.getElement("po_line[0]/ship_to");

line2_ship_to = po.getElement("po_line[1]/ship_to");

line2_ship_to.copyIn (line1_ship_to);

Or it could be written as:

VBScript:

po.copyIn "po_line[1]/ship_to", po.getElement("po_line[0]/
ship_to")

JavaScript:

po.copyIn ("po_line[1]/ship_to", po.getElement("po_line[0]/
ship_to"));

See also

createBO, getData, getElement, getElementAt, setData
86 u Script Developer’s Guide

createBO procedure

Creates a business object instance. The instance is stored in a context
business object variable, which you define in the Public or Private Process
window of Partner Agreement Manager. The context business object variable
is defined to be of a particular business object type.

Warning: You should not call createBO on business objects that already
have data, or you could lose data. You can check if a business object has
been instantiated by using the isBONull procedure.

VBScript syntax

createBO(bo)

JavaScript syntax

createBO(bo);

Parameter

bo is a case-sensitive name of a context business object variable in a process
that the script executes in.

Return value

boolean; true if the operation completed successfully, false if it did not

Example

This example creates a business object instance and stores it in the context
business object variable called po. Then it sets the value of the po_number
field.

VBScript:

sub main

createBO("po")

po.setData "po_number", "24567"

end sub

JavaScript:

createBO("po");

po.setData ("po_number", "24567");
Script Procedure Reference t 87

The following example uses the return value as well:

VBScript:

sub main

if createBO("po") then

po.setData "po_number", "24567"

else

println("Could not create BO")

end if

end sub

JavaScript:

if (createBO("po")) {

po.setData ("po_number", "24567");

} else {

println("Could not create BO");

}

See also

main
88 u Script Developer’s Guide

getBinding procedure

Retrieve the binding for the specified partner group. If the group is not valid
or if the binding is not yet set, this procedure returns null.

VBScript Syntax

PartnerGroupContext.getBinding(group_ref)

JavaScript Syntax

PartnerGroupContext.getBinding(group_ref);

Parameter and variable

group_ref is the reference to the group. It is a string and is returned by
getGroupRefs.

Return value

The binding for the specified group

Examples

These examples print the binding for the group “gi”.

VBScript:

set pub_context = getPublicProcessContext()

set group_context = pub_context.getPartnerGroupContest()

println (group_context.getBinding(“gi”))

JavaScript:

pub_context = getPublicProcessContext();

group_context = pub_context.getPartnerGroupContest();

println (group_context.getBinding(“gi”));

See also

getPartnerGroupContext, getGroupRefs
Script Procedure Reference t 89

getData procedure

Returns a string representation of the data contained in the specified field.

VBScript syntax

field.getData()
element.getData(tag-path)

JavaScript syntax

field.getData();
element.getData(tag-path);

Parameter and variables

field is a reference to a field to get data from.
tag-path is the path to the field, relative to element, which is a reference to a
business object, group, or field.

Return value

string representation of data

Run-time errors/exceptions

ElementTypeException indicates that the element types do not match. You
called the procedure on a group element instead of a field element.

InvalidQueryException indicates that the tag path you supplied is invalid (if
the index value was invalid, you would get IndexOutOfBoundsException
instead). For example, you can get this error if you typed a wrong name.

IndexOutOfBoundsException indicates that, when specifying an element in
a sequence, you provided an invalid index value, such as a number greater
than length - 1 for that element sequence.

Example

This VBScript code returns the value of the item_code field in the first
po_line group. The item variant holds the returned string.

dim item

item = po.getData("po_line[0]/item_code")
90 u Script Developer’s Guide

Or the code could be written as:

var item;

item = po.getData("po_line[0]/item_code");

See also

createBO, copyIn, getElement, getElementAt, setData
Script Procedure Reference t 91

getElement procedure

Gets a reference to the group or field identified by the tag path string. Besides
a nonrepeatable element, the tag path can specify an element in an element
sequence by using an index number.

Although a business object is an element, a business object is referenced by
its context business object variable, defined in the Partner Agreement
Manager process that the script runs in. So you do not use this procedure on
a business object, but only on the elements and sequences it contains.

VBScript syntax

element.getElement(tag-path)

JavaScript syntax

element.getElement(tag-path);

Parameter and variable

tag-path is the path to the group or field, relative to element, which is a
reference to a business object, group, or field.

Return value

a reference to an element identified by tag-path

Run-time errors/exceptions

InvalidQueryException indicates that the tag path you supplied is invalid (if
the index value was invalid, you would get IndexOutOfBoundsException
instead). For example, you can get this error if you typed a wrong name.

IndexOutOfBoundsException indicates that, when specifying an element in
a sequence, you provided an invalid index value, such as a number greater
than length - 1 for that element sequence.

Example

In this example, the ship_to group is assigned to the shipping_address
variable:

VBScript:

dim shipping_address

set shipping_address = po.getElement("po_line[0]/ship_to")
92 u Script Developer’s Guide

JavaScript:

var shipping_address;

shipping_address = po.getElement("po_line[0]/ship_to");

See also

createBO, getElementAt, getElementSequence
Script Procedure Reference t 93

getElementAt procedure

Gets a reference to the group or field at the specified position in an element
sequence.

VBScript syntax

element-sequence.getElementAt(index)

JavaScript syntax

element-sequence.getElementAt(index);

Parameter and variable

element-sequence is a reference returned by the getElementSequence
procedure.
index is the index value of the element (remember indexes start at zero [0]).

Return value

a reference to an element at this index

Run-time errors/exceptions

IndexOutOfBoundsException indicates that, when specifying an element in
a sequence, you provided an invalid index value, such as a number greater
than length - 1 for that element sequence.

Example

This example gets the element at the position i.

VBScript:

set single_line =
po.getElementSequence("po_line").getElementAt(i)

This statement is equivalent to the previous statement ("&i&" adds the value i
to the tag path string):

set single_line = po.getElement("po_line["&i&"]")

JavaScript:

single_line = po.getElementSequence("po_line").getElementAt(i);
94 u Script Developer’s Guide

This statement is equivalent to the previous statement ("+i+" adds the value i
to the tag path string):

single_line = po.getElement("po_line["+i+"]");

See also

createBO, getElement, getElementSequence
Script Procedure Reference t 95

getElementSequence procedure

Gets a reference to an element sequence. An element sequence is a collection
of consecutive “sibling” elements of the same element type. The group or
field must be specified as repeatable by its parent group. You need a reference
to an element sequence before you can manipulate it with other procedures.

VBScript syntax

element.getElementSequence(tag-path)

JavaScript syntax

element.getElementSequence(tag-path);

Parameter and variable

tag-path is the path to the element sequence, relative to element, which is a
reference to a business object, group, or field.

Return value

a reference to an element sequence specified by tag-path

Run-time errors/exceptions

InvalidQueryException indicates that the tag path you supplied is invalid (if
the index value was invalid, you would get IndexOutOfBoundsException
instead). For example, you can get this error if you typed a wrong name.

IndexOutOfBoundsException indicates that, when specifying an element in
a sequence, you provided an invalid index value, such as a number greater
than length - 1 for that element sequence.

Example

This example assigns the po_line element sequence to the eseqLines variable
(Purchase_Order defines po_line as repeatable).

VBScript:

set eseqLines = po.getElementSequence("po_line")

JavaScript:

eseqLines = po.getElementSequence("po_line");

See also

createBO, getElement, getElementAt
96 u Script Developer’s Guide

getGroupRefs procedure

Retrieve a list of references to the groups that are included in the public
process. If there are no groups, an empty iterator is returned.

VBScript Syntax

PartnerGroupContext.getGroupRefs()

JavaScript Syntax

PartnerGroupContext.getGroupRefs();

Return value

Iterator of reference(s) to the partner group(s).

Examples

These examples print the list of references to the groups included in the
public process.

VBScript:

set partner_group_context = getPartnerGroupContext()

set iter = partner_group_context.getGroupRefs()

has_next = iter.hasNext()

while has_next

println (iter.next())

has_next = iter.hasNext()

wend

JavaScript:

partner_group_context = getPartnerGroupContext();

iter = partner_group_context.getGroupRefs();

has_next = iter.hasNext();

while (has_next) {

println (iter.next());

has_next = iter.hasNext();

}

See also

getPartnerGroupContext, getBinding
Script Procedure Reference t 97

getInputs procedure

Retrieve the inputs to this public process node. If there are no inputs (i.e., this
is the first node in the process) this procedure returns an empty Iterator.

VBScript syntax

PublicProcessContext.getInputs()

JavaScript syntax

PublicProcessContext.getInputs();

Return value

Iterator of PublicProcessNodeInput objects

Examples

These examples get and print the inputs to a public process node.

VBScript:

set iter = pub_context.getInputs()

has_next = iter.hasNext()

while has_next

set message = iter.next()

println (message.getSenderRef())

println (message.getSenderNodetypeID())

rem Name of private process context var that points to the
rem business object contained by this msg

println (message.getvariableName())

has_next = iter.hasNext()

wend

JavaScript:

iter = pub_context.getInputs();

has_next = iter.hasNext();

while (has_next) {

message = iter.next();

println (message.getSenderRef());

println (message.getSenderNodetypeID());

/* Name of private process context var that points to the
business object contained by this msg) */

println (message.getvariableName());

has_next = iter.hasNext();

}

98 u Script Developer’s Guide

See also

getPublicProcessContext
Script Procedure Reference t 99

getLoopID procedure (private process)

Retrieve the private process loop ID. If the current node is not inside a loop,
this procedure returns a string of length 0. This procedure can be used to
generate a unique ID.

VBScript syntax

PrivateProcessContext.getLoopID()

JavaScript Syntax

PrivateProcessContext.getLoopID();

Return value

The loop ID, or a string of length 0 if the current node isn’t inside a loop.

Examples

These examples get the Loop ID.

VBScript:

set priv_context = getPrivateProcessContext()

println (priv_context.getLoopID())

JavaScript:

priv_context = getPrivateProcessContext();

println (priv_context.getLoopID());

See also

getPrivateProcessContext, getNodeTypeID (private process)
100 u Script Developer’s Guide

getLoopID procedure (public process)

Retrieve the public process loop ID. If the current node is not inside a loop,
will return a string of length 0.

VBScript syntax

PublicProcessContext.getLoopID()

JavaScript syntax

PublicProcessContext.getLoopID();

Return value

The String form of the loop ID

Examples

These examples get the loop ID.

VBScript:

set pub_context = getPublicProcessContext()

println (pub_context.getLoopID())

JavaScript:

pub_context = getPublicProcessContext();

println (pub_context.getLoopID());

See also

getPublicProcessContext, getNodeTypeID (public process)
Script Procedure Reference t 101

getNodeTypeID procedure (private process)

Retrieve the type ID of the private process node.

VBScript syntax

PrivateProcessContext.getNodeTypeID()

JavaScript syntax

PrivateProcessContext.getNodeTypeID();

Return value

The ID of the private process type’s node.

Examples

These examples get the node type ID.

VBScript:

set priv_context = getPrivateProcessContext()

println (priv_context.getNodeTypeID())

JavaScript:

priv_context = getPrivateProcessContext();

println (priv_context.getNodeTypeID());

See also

getPrivateProcessContext, getLoopID
102 u Script Developer’s Guide

getNodeTypeID procedure (public process)

Retrieve the type ID of the public process node.

VBScript syntax

PublicProcessContext.getNodeTypeID()

JavaScript syntax

PublicProcessContext.getNodeTypeID();

Return value

The String form of the public process type node ID

Examples

These examples get the node type ID.

VBScript:

set pub_context = getPublicProcessContext()

println (pub_context.getNodeTypeID())

JavaScript:

pub_context = getPublicProcessContext();

println (pub_context.getNodeTypeID());

See also

getPublicProcessContext, getLoopID (public process)
Script Procedure Reference t 103

getPartnerGroupContext procedure

Retrieve the context object that can be used to access and manipulate partner
group information in the context of this public process.

VBScript syntax

PublicProcessContext.getPartnerGroupContext()

JavaScript syntax

PublicProcessContext.getPartnerGroupContext();

Return value:

The partner group context

Examples

These examples get the partner group context.

VBScript:

set group_context = pub_context.getPartnerGroupContext()

set iter = group_context.getGroupRefs

has_next = iter.has_next

while has_next

set group_ref = iter.next()

println (group_ref)

println (group_context.getBinding(group_ref))

has_next =iter.hasNext()

wend

JavaScript:

group_context = pub_context.getPartnerGroupContext();

set iter = group_context.getGroupRefs();

has_next = iter.has_next();

while (has_next) {

group_ref = iter.next();

println (group_ref);

println (group_context.getBinding(group_ref));

has_next = iter.hasNext();

}

See also

getPublicProcessContext
104 u Script Developer’s Guide

getPath procedure (private process)

Retrieve the currently selected path. If no path has been selected using the
setPath() call, this procedure returns null.

VBScript syntax

PrivateProcessContext.getPath()

JavaScript syntax

PrivateProcessContext.getPath();

Return value

The currently selected path.

Examples

These examples get the currently selected path.

VBScript:

set priv_context = getPrivateProcessContext()

println (priv_context.getPath())

JavaScript:

priv_context = getPrivateProcessContext();

println (priv_context.getPath());

See also

getPathNames, setPath (private process)
Script Procedure Reference t 105

getPathNames procedure (private process)

Retrieve the list of valid paths that can be taken. If this node is not an XOR-
SPLIT or a WHILE node (or step), this procedure returns an empty iterator.

VBScript syntax

PrivateProcessContext.getPathNames()

JavaScript syntax

PrivateProcessContext.getPathNames();

Return value

Iterator of String path names. If this node is not a branch, the iterator
returned is empty.

Examples

These examples print the valid paths.

VBScript:

set priv_context = getPrivateProcessContext()

set iter = priv_context.getPathNames()

has_next = iter.hasNext()

while has_next

println (iter.next())

has_next = iter.hasNext()

wend

JavaScript:

priv_context = getPrivateProcessContext();

iter = priv_context.getPathNames();

has_next = iter.hasNext();

while (has_next) {

println (iter.next());

has_next = iter.hasNext();

}

See also

getPrivateProcessContext, setPath (private process), getPath
106 u Script Developer’s Guide

getPrivateProcessContext procedure

This is the private process context object that is exposed to private process
actions. This object contains information about the private process in which
the action is executing.

VBScript Syntax

getPrivateProcessContext ()

JavaScript Syntax

getPrivateProcessContext ();

Return value

The private process context object.

Examples

These examples get the private process context.

VBScript:

set priv_context = getPrivateProcessContext()

JavaScript:

priv_context = getPrivateProcessContext();

See also

getPublicProcessContext
Script Procedure Reference t 107

getProcessRef procedure (private process)

Retrieve the reference to the private process. The reference is the string form
of the private process ID.

VBScript syntax

PrivateProcessContext.getProcessRef()

JavaScript syntax

PrivateProcessContext.getProcessRef();

Return value

The reference to the private process

Examples

These examples print the process ref for the private process context.

VBScript:

set priv_context = getPrivateProcessContext()

println (priv_context.getProcessRef)

JavaScript:

priv_context = getPrivateProcessContext();

println (priv_context.getProcessRef());

See also

getPrivateProcessContext, getProcessTypeRef
108 u Script Developer’s Guide

getProcessRef procedure (public process)

Retrieve reference to the public process. The reference is the string form of
the public process ID.

This can be used to create the PublicProcessRef object used in the External
API. See the Partner Agreement Manager API Guide for more information on
the External API.

VBScript syntax

PublicProcessContext.getProcessRef()

JavaScript syntax

PublicProcessContext.getProcessRef();

Return value

The reference to the public process

Examples

These examples print the public process ID.

VBScript:

set pub_context = getPublicProcessContext()

println(pub_context.getProcessRef())

JavaScript:

pub_context = getPublicProcessContext();

println(pub_context.getProcessRef());

See also

getPublicProcessContext, getProcessTypeRef (public process)
Script Procedure Reference t 109

getProcessTypeRef procedure (private process)

Retrieve the reference to the private process type. The reference is the string
form of the private process type ID.

VBScript syntax

PrivateProcessContext.getProcessTypeRef()

JavaScript syntax

PrivateProcessContext.getProcessTypeRef();

Return value

The reference to the private process type

Examples

These examples print the process type ref.

VBScript:

set priv_context = getPrivateProcessContext()

println (priv_context.getProcessTypeRef)

JavaScript:

priv_context = getPrivateProcessContext();

println (priv_context.getProcessTypeRef());

See also

getPrivateProcessContext, getProcessRef
110 u Script Developer’s Guide

getProcessTypeRef procedure (public process)

Retrieve the reference to the public process type. The reference is the string
form of the public process type ID.

VBScript syntax

PublicProcessContext.getProcessTypeRef()

JavaScript syntax

PublicProcessContext.getProcessTypeRef();

Return value

The reference to the public process type

Examples

These examples get the process type ref for a public process.

VBScript:

set pub_context = getPublicProcessContext()

println (pub_context.getProcessTypeRef())

JavaScript:

pub_context = getPublicProcessContext();

println (pub_context.getProcessTypeRef ());

See also

getPublicProcessContext, getProcessRef (public process)
Script Procedure Reference t 111

getPublicProcessContext procedure

Retrieves the public process context object that is exposed to private process
actions. This object contains information about the public process that
activated the private process in which the action is executing.

VBScript syntax

getPublicProcessContext()

JavaScript syntax

getPublicProcessContext();

Return value

The reference to the public process.

Examples

These examples get the public process context.

VBScript:

set pub_context = getPublicProcessContext()

JavaScript:

pub_context = getPublicProcessContext();

See also

getPrivateProcessContext
112 u Script Developer’s Guide

getSenderNodeTypeID procedure

Retrieve the ID of the sending node.

VBScript syntax

PublicProcessNodeInput.getSenderNodeTypeID()

JavaScript syntax

PublicProcessNodeInput.getSenderNodeTypeID();

Return value

The String form of the ID of the sending node

Examples

These examples retrieve the ID of the sending node.

VBScript:

set iter = pub_context.getInputs()

has_next = iter.hasNext()

while has_next

set message = iter.next()

println (message.getSenderRef())

println (message.getSenderNodetypeID())

rem Name of private process context var that points to

rem the business object contained by this msg

println (message.getvariableName())

has_next = iter.hasNext()

wend

JavaScript:

iter = pub_context.getInputs();

has_next = iter.hasNext();

while (has_next) {

message = iter.next();

println (message.getSenderRef());

println (message.getSenderNodetypeID());

/* Name of private process context var that points to BO
contained by this msg */

println (message.getvariableName());

has_next = iter.hasNext();

}

Script Procedure Reference t 113

getSenderRef procedure

Retrieve the reference to the sending partner. The reference is String form of
the Partner ID of the sending partner.

VBScript syntax

PublicProcessNodeInput.getSenderRef()

JavaScript syntax

PublicProcessNodeInput.getSenderRef();

Return value

The reference to the sending partner

Examples

These examples get the sender ref for each input.

VBScript:

set iter = pub_context.getInputs()

has_next = iter.hasNext()

while has_next

set message = iter.next()

println (message.getSenderRef())

println (message.getSenderNodetypeID())

rem Name of private process context var that points to

rem the business object contained by this msg

println (message.getvariableName())

has_next = iter.hasNext()

wend

JavaScript:

iter = pub_context.getInputs();

has_next = iter.hasNext();

while (has_next) {

message = iter.next();

println (message.getSenderRef());

println (message.getSenderNodetypeID());

/* Name of private process context var that points to BO
contained by this msg) */

println (message.getvariableName());

has_next = iter.hasNext();

}

114 u Script Developer’s Guide

getTagName procedure

Gets the name of this element. This can also be thought of as the element type
name.

VBScript syntax

element.getTagName()

JavaScript syntax

element.getTagName();

Variable

element is a reference to a business object, or group or field contained by a
business object.

Return value

string

Example

This example prints “Purchase_Order”.

VBScript:

println(po.getTagName())

JavaScript:

println(po.getTagName());

The following subroutine takes a field and prints its name followed by its data
value.

VBScript:

sub printDataValue(el)

println(el.getTagName()&" : "&el.getData())

end sub

JavaScript:

function printDataValue(el) {

println(el.getTagName() +" : "+el.getData());

}

Script Procedure Reference t 115

See also

createBO, getElement, getElementAt
116 u Script Developer’s Guide

getVar procedure

Gets the value of a context variant.

VBScript syntax

getVar(context-variant)

JavaScript syntax

getVar(context-variant);

Parameter

context-variant is a type of context variable defined in the Partner Agreement
Manager process that the script runs in.

Return value

string

Examples

This example uses a context variant to determine which path to follow. It
increments the value of the context variant until it is greater than or equal to
10, at which point the Main path is taken instead of the Loop path.

VBScript:

sub main

set priv_context = getPrivateProcessContext()

counter = getVar("loop_counter")

if counter >= 10 then

priv_context.setPath("Main")

else

counter = counter + 1

setVar "loop_counter", counter

priv_context.setPath("Loop")

end if

end sub

Note that the string counter is automatically converted to an integer, as
specified in the VBScript language. However, if you want to compare two
context variants, it is recommended that you use CInt or CDbl (for example,
"9" > "10" but cint ("9") < cint("10")).
Script Procedure Reference t 117

JavaScript:

var counter;

priv_context = getPrivateProcessContext();

counter = getVar("loop_counter");

if (counter >= 10) {

priv_context.setPath("Main");

} else {

priv_context.setPath("Loop");

}

See also

setVar, main
118 u Script Developer’s Guide

getVariableName procedure

Retrieve the name of the input variable containing this input. The actual
business object is contained in the variable whose name is returned by this
procedure.

VBScript syntax

PublicProcessNodeInput.getVariableName()

JavaScript syntax

PublicProcessNodeInput.getVariableName();

Return value

The input variable name

Examples

These examples get the variable name for each input to the public process.

VBScript:

set iter = pub_context.getInputs()

has_next = iter.hasNext()

while has_next

set message = iter.next()

println (message.getSenderRef())

println (message.getSenderNodetypeID())

rem Name of private process context var that points to

rem the business object contained by this msg

println (message.getvariableName())

has_next = iter.hasNext()

wend

JavaScript:

iter = pub_context.getInputs();

has_next = iter.hasNext();

while (has_next) {

message = iter.next();

println (message.getSenderRef());

println (message.getSenderNodetypeID());

/* Name of private process context var that points to BO
contained by this msg) */
Script Procedure Reference t 119

println (message.getvariableName());

has_next = iter.hasNext();

}

See also

getInputs
120 u Script Developer’s Guide

hasData procedure

Checks whether an element or element sequence contains data:

n If the element is a field, the procedure returns true if the field contains data
(is not null).

n If the element is a group, the procedure returns true if any subordinate
field contains data.

n For an element sequence, the procedure returns true if any element in the
sequence contains data.

Note: An empty string ("") as a data value is equivalent to null. A string
containing one or more spaces (" ") is not null, and is considered to be
data.

VBScript syntax

element.hasData()
element-sequence.hasData()

JavaScript syntax

element.hasData();
element-sequence.hasData();

Variable

element is a reference to a business object, or group or field contained by a
business object.
element-sequence is a reference returned by the getElementSequence
procedure.

Return value

boolean; true if this element or element-sequence contains data in any field,
false if it contains no data

Examples

The following example checks if there are any design_drawing elements in
the po business object. Note that the underscore (_) means the statement was
carried to the next line.

VBScript:

if (po.getElementSequence("design_drawing").hasData() = False) then

println("There is no design drawing associated with this PO " & _
Script Procedure Reference t 121

po.getData("po_number"))

end if

JavaScript:

if (po.getElementSequence("design_drawing").hasData() == False) {

println("There is no design drawing associated with this PO " +

po.getData("po_number"));

}

In this example, if the summary_info field has data in it but it is not valid, it
prints an error message for the user:

VBScript:

dim summary

summary = po.getElement("summary_info")

if (summary.hasData()) then

if (summary.isValid() = False) then

println("All mandatory fields of summary must be filled in")

end if

end if

JavaScript:

if (po.getElement("summary_info").hasData()) {

if (po.getElement("summary_info").isValid() == False) {

println("All mandatory fields of summary " +

"must be filled in");

}

}

See also

createBO, getElement, getElementAt, getElementSequence
122 u Script Developer’s Guide

isBONull procedure

Determines if a business object has already been instantiated (so you don’t
have to call the createBO procedure).

VBScript syntax

isBONull(bo)

JavaScript syntax

isBONull(bo);

Parameter

bo is a context business object variable defined in the Partner Agreement
Manager process that the script runs in.

Return value

boolean; true if this business object has not been created, false if it has

Example

This example ensures that you do not create the po object twice:

VBScript:

if (isBONull("po")) then

createBO("po")

end if

JavaScript:

if (isBONull("po")) {

createBO("po");

}

See also

createBO
Script Procedure Reference t 123

isField procedure

Checks whether this element is a field or group. This is useful when you want
to use code that can manipulate different business object types, for example.

VBScript syntax

element.isField()

JavaScript syntax

element.isField();

Variable

element is a reference to a business object, or group or field contained by a
business object.

Return value

boolean; true if the element is a field, false if the element is a group

Example

The following example supports two different business object types: one type
has ship_to as a group with an address field within it, while the other type has
ship_to as a field holding address data. This code is reusable for both cases.

VBScript:

function getShippingAddress(ship_to)

if (ship_to.isField()) then

getShippingAddress = ship_to.getData()

else

getShippingAddress = ship_to.getData("address")

end if

end function

JavaScript:

function getShippingAddress(ship_to) {

var result;

if (ship_to.isField()) {

result = ship_to.getData();

} else {

result = ship_to.getData("address");

}

return (result);

}

124 u Script Developer’s Guide

See also

createBO, getElement, getElementAt
Script Procedure Reference t 125

isProductionProcess procedure

Determines if the public process is in Production mode or Test mode.

VBScript syntax

PublicProcessContext.isProductionProcess

JavaScript syntax

PublicProcessContext.isProductionProcess();

Return value:

True if the process is executing in Production mode, false if it is not.

Examples

These examples print whether the process is in Production mode.

VBScript:

set pub_context = getPublicProcessContext()

println(pub_context.isProductionProcess())

JavaScript:

pub_context = getPublicProcessContext();

println(pub_context.isProductionProcess());

See also

getPublicProcessContext
126 u Script Developer’s Guide

isValid procedure

Determines the validity of an element based on the definition of the business
object type:

n If the element you’re checking is a group, isValid determines whether all
mandatory fields it contains have data; if a subordinate optional group
contains data, it also checks whether all mandatory fields in the optional
group have data. If a subordinate optional group does not have data in it,
it is ignored when determining the validity of the element. For
subordinate element sequences, each element is checked individually for
validity.

n If the element is a field, isValid checks whether it contains data or not.

isValid does not consider whether the element you called isValid on was
optional or mandatory when it determines validity. For fields, it only checks
whether the field has data or not; for groups, isValid checks the elements it
contains for validity based on whether it was optional or mandatory.

Note: An empty string ("") as a data value is equivalent to null. A string
containing one or more spaces (" ") is not null, and is considered to be
data.

VBScript syntax

element.isValid()

JavaScript syntax

element.isValid();

Variable

element is a reference to a business object, or group or field contained by a
business object.

Return value

boolean; true if element is a field containing data or is a group whose
subordinate elements are valid (or are optional and contain no data), false if
element is a null field or is a group with a subordinate element that requires
data but is null
Script Procedure Reference t 127

Examples

The following table shows the isValid return values when you supply a
Purchase_Order business object with these element values:

Field or group
supplied to isValid Type Value isValid

return

Purchase_Order A group element; the root of
the business object

false

po_number Mandatory Single Field 123 true

po_date Mandatory Single Field null false

supplier_id Mandatory Single Field null false

po_line Mandatory Repeatable
Group

true

item_code Mandatory Single Field 123 true

qty Mandatory Single Field 123 true

supplier_item_code Optional Single Field null false

expected_ship_date Mandatory Single Field 9.9.99 true

rate Optional Single Field 1.23 true

ship_to Optional Single Group false

address Mandatory Single Field null false

attention Optional Single Field null false

phone Optional Single Field null false

preferred_carrier Optional Single Field null false

summary_info Mandatory Single Group true

comments Mandatory Single Field abc true

comment_by Optional Single Field null false

design_drawing Optional Repeatable Group true

location Optional Single Field null false

drawing Mandatory Single Field 123 true
128 u Script Developer’s Guide

Following is an example of checking the validity of the top-level element,
Purchase_Order, referred to by the context business object variable called po.
It prints an error message if the po business object is not valid (_ is the line
continuation character).

VBScript:

if (po.isValid() = False) then

println("The Purchase_Order object has unfilled mandatory
elements " _

& po.toString(true))

end if

JavaScript:

if (po.isValid() == False) {

println("The Purchase_Order object has unfilled mandatory
elements " +

& po.toString(true));

}

The po business object is valid in these circumstances:

n The mandatory fields po_number, po_date, and supplier_id have data (a
string that is not null).

n There are one or more valid po_line group elements.

n The mandatory field in the mandatory group summary_info has data.

n If the optional repeatable group design_drawing has data, the mandatory
field called drawing must have data. If there are multiple elements in the
sequence, they must all be valid.

n All mandatory fields directly subordinate to the mandatory repeatable
group po_line must have data. If the optional single group ship_to has
data, then the mandatory field in ship_to must have data. If po_line is a
sequence with multiple elements, they must all be valid.

If a po_line element in a sequence has been created, but has null data values,
it makes the business object invalid. The following code removes an element
in a sequence that has null data values.

VBScript:

if (po.getElement("po_line["&i&"]").hasData() = False) then

po.getElementSequence("po_line").removeElementAt(i)

end if
Script Procedure Reference t 129

Note that i is the index value and "&i&" puts the value of i in a tag path string.

JavaScript:

if (po.getElement("po_line["+i+"]").hasData() == False) {

po.getElementSequence("po_line").removeElementAt(i);

}

Note that i is the index value and "+i+" puts the value of i in a tag path string.

The next example checks a single po_line element for validity.

VBScript:

set line1 = po.getElement("po_line[0]")

if (line1.isValid() = False) then

’ If line element is invalid, detemine what required fields

’ do not have data.

if (line1.getElement("item_code").hasData() = False) then

println("the item_code field requires data")

end if

if (line1.getElement("qty").hasData() = False) then

println("the qty field requires data")

end if

if (line1.getElement("expected_ship_date").hasData() = False)
then

println("the expected_ship_date field requires data")

end if

set shipto = line1.getElement("ship_to")

if (shipto.hasData()) then

’ If the optional group ship_to contains any data, then
the

’ mandatory field address must contain data.

if (shipto.isValid() = False) then

println("the address field of the ship_to element
requires data")

end if

end if

end if

JavaScript:

line1 = po.getElement("po_line[0]");

if (line1.isValid() == False) {

// if line element is invalid, determine what required
130 u Script Developer’s Guide

// fields do not have data.

if (line1.getElement("item_code").hasData() == False) {

println("the item_code field requires data");

}

if (line1.getElement("qty").hasData() == False) {

println("the qty field requires data");

}

if (line1.getElement("expected_ship_date").hasData() ==
False) {

println("the expected_ship_date field requires data");

}

ship_to = line1.getElement("ship_to");

if (ship_to.hasData()) {

// if the optional group ship_to contains any data,
then the

// mandatory field address must contain data.

if(ship_to.isValid() == False) {

println("the address field of the ship_to element
requires data")

}

The po_line element is valid in these circumstances:

n The mandatory fields item_code, qty, and expected_ship_date must have
data (a string that is not null).

n The optional fields supplier_item_code and rate may have data.

n If the optional, single group ship_to has data in any field, then the
mandatory field called address must have data.

It is useful to use the isValid procedure in conjunction with the hasData
procedure whenever operating on an optional element. In the example, the
ship_to field is checked for data before it is checked for validity.

Remember that whether an element is optional or mandatory is determined
by whether the parent group sets the element as optional or mandatory. This
means that if you call isValid on the ship_to group, the mandatory field it
contains must have data for it to be valid.

The following example checks the summary_info field for validity. The
comments field is required to have data, while the comments_by field can
optionally have data.
Script Procedure Reference t 131

VBScript:

set summary = po.getElement("summary_info")

if (summary.isValid() = False) then

println("The comments field is mandatory and needs to have
data.")

end if

JavaScript:

if (po.getElement("summary_info").hasData()) {

if (po.getElement("summary_info").isValid() == False) {

println("All mandatory fields of summary " +

"must be filled in");

}

}

The following example checks if the optional, repeatable design_drawing
element has data.

VBScript:

set des_drawing = po.getElement("design_drawing[0]");

if (des_drawing.isValid() = False) then

println("The drawing field is mandatory and needs to have
data.")

end if

JavaScript:

des_drawing = po.getElement("design_drawing[0]");

if (des_drawing.isValid() == False) {

println("The drawing field is mandatory and needs to have
data.");

}

Note that the first line will return an error if the length of the sequence is zero
(0). So you should check the length first.

See also

createBO, hasData
132 u Script Developer’s Guide

length procedure

Returns the number of elements in this element sequence. This is useful for
setting boundary values to loop through all the elements in an element
sequence.

VBScript syntax

element-sequence.length()

JavaScript syntax

element-sequence.length();

Variable

element-sequence is a reference returned by the getElementSequence
procedure.

Return value

integer specifying the number of elements in the sequence

Example

This example loops through all the po_line elements and prints the data in
each po_line in string form.

VBScript:

dim lines

set lines = po.getElementSequence("po_lines")

nLines = lines.length()

for i=0 to nLines - 1

println(lines.getElementAt(i).toString(true))

next

JavaScript:

var lines, nlines;

lines = po.getElementSequence("po_line");

nLines = lines.length();

for (i=0; i<= nLines - 1; i++) {

println(lines.getElementAt(i).toString(true));

}

See also

createBO, getElementSequence
Script Procedure Reference t 133

main procedure

The script entry point. Private process script execution starts in the main
procedure.

VBScript syntax

sub main
code
end sub

JavaScript syntax

function main () {
code
}

Example

VBScript:

sub main

setVar "foo", "3"

end sub

JavaScript:

function main () {

setVar ("foo", "3");

}

See also

createBO, setPath
134 u Script Developer’s Guide

newElement procedure

Adds a new element to the end of this sequence and returns a reference to the
newly created element. The index of the new element will be length - 1.

VBScript syntax

element-sequence.newElement()

JavaScript syntax

element-sequence.newElement();

Variable

element-sequence is a reference returned by getElementSequence.

Return value

the new, empty element

Example

This example creates a new po_line element at the end of the sequence and
copies into it the value of the element before it in the sequence.

VBScript:

set lines = po.getElementSequence("po_line")

nlines = lines.length()

last_line_index = nlines - 1

set new_line = lines.newElement()

if (last_line_index >= 0) then

new_line.copyIn(lines.getElementAt(last_line_index))

end if

JavaScript:

lines = po.getElementSequence("po_line");

nlines = lines.length();

last_line_index = nlines - 1;

new_line = lines.newElement();

if (last_line_index >= 0) {

new_line.copyIn(lines.getElementAt(last_line_index));

}

See also

createBO, getElementSequence
Script Procedure Reference t 135

newElementAt procedure

Inserts a new element at the specified position in the sequence and returns a
reference to the newly created element. Adds 1 to the index of the element
currently in that position (if any) and any following elements, so they are
“shifted to the right.” Valid index values are 0 to length. If the index is length,
an element is added to the end of the sequence.

VBScript syntax

element-sequence.newElementAt(index)

JavaScript syntax

element-sequence.newElementAt(index);

Variable

element-sequence is a reference returned by the getElementSequence
procedure.
index specifies the element in the sequence (remember indexes start at zero
[0]).

Return value

the new, empty element

Run-time errors/exceptions

IndexOutOfBoundsException indicates that, when specifying an element in
a sequence, you provided an invalid index value, such as a number greater
than length for that element sequence.

Example

This example adds a new po_line element at the beginning of the sequence.

VBScript:

set line = po.getElementSequence("po_line").newElementAt(0)

JavaScript:

line = po.getElementSequence("po_line").newElementAt(0);

See also

createBO, getElementSequence
136 u Script Developer’s Guide

println procedure

Prints a message to the server’s console, a log file, or both. This is useful for
debugging.

If you run Partner Agreement Manager as a service, println output goes into
a log file. The log file is called PAM.log and is created in the
Partners\Partnernnn directory. If you run Partner Agreement Manager from
a shortcut, println output is displayed on the console and in the log file.

VBScript syntax

println(string)

JavaScript syntax

println (string);

Variable

string is the string you want to print.

Return value

true

Examples

This example prints the description string, including the data values.

VBScript:

println(po.toString(True))

JavaScript:

println(po.toString(True));

This example prints “tag-name has x characters”.

VBScript:

sub printStringLength(e)

println(e.getTagName() & " has " & len(e.getData()) & "
characters")

end sub
Script Procedure Reference t 137

JavaScript:

function printStringLength(e) {

println(e.getTagName() + " has " + e.getData().length + "
characters");

}

See also

toString
138 u Script Developer’s Guide

removeAll procedure

Removes all elements in this sequence. Any data contained in any of the
elements is deleted. The length of this element sequence becomes 0.

VBScript syntax

element-sequence.removeAll

JavaScript syntax

element-sequence.removeAll();

Variable

element-sequence is a reference returned by the getElementSequence
procedure.

Return value

none

Example

The following example removes all the po_line elements from the po
business object

VBScript:

po.getElementSequence("po_line").removeAll

JavaScript:

po.getElementSequence("po_line").removeAll;

See also

createBO, clearAll, clearData, getElementSequence, removeElementAt
Script Procedure Reference t 139

removeElementAt procedure

Removes the element at the specified position in this sequence, and its data.
The indices of elements at greater index values are reduced by 1 (they are
“shifted to the left”). After the call successfully completes, the length of the
sequence is reduced by 1.

VBScript syntax

element-sequence.removeElementAt index

JavaScript syntax

element-sequence.removeElementAt(index);

Variable

element-sequence is a reference returned by the getElementSequence
procedure.
index specifies the element in the sequence (remember indexes start at zero
[0]).

Return value

none

Run-time errors/exceptions

IndexOutOfBoundsException indicates that, when specifying an element in
a sequence, you provided an invalid index value, such as a number greater
than length - 1 for that element sequence.

Example

The following example loops through all po_line elements and removes all of
the invalid ones. Note that removeElementAt will move the remaining
elements one index down in the sequence. So you should perform this
operation starting at the end of the sequence so your index value is always
valid.

VBScript:

dim line

dim lines

set lines = po.getElementSequence("po_line")

for i = lines.length() - 1 to 0 step -1
140 u Script Developer’s Guide

set line = lines.getElementAt(i)

if not line.isValid() then

lines.removeElementAt(i)

end if

next

JavaScript:

var line;

var lines;

lines = po.getElementSequence("po_line");

for (i = lines.length() - 1; i>= 0; i--) {

 line = lines.getElementAt(i);

if (!line.isValid()) {

lines.removeElementAt(i);

}

}

See also

createBO, clearAll, clearData, getElementSequence, removeAll
Script Procedure Reference t 141

setData procedure

Sets the data contained in this field element.

Note: An empty string ("") as a data value is equivalent to null. A string
containing one or more spaces (" ") is not null, and is considered to be
data.

VBScript syntax

field.setData value
element.setData tag-path, value

JavaScript syntax

field.setData(value);
element.setData(tag-path, value);

Parameters and variables

value is a string containing the data value that you want the field to have.
field is a reference to the field you want to set.
tag-path specifies the path to a field, relative to element, which is a reference
to a business object, group, or field.

Return value

none

Run-time errors/exceptions

ElementTypeException indicates that the element types do not match. You
called the procedure on a group element instead of a field element.

InvalidQueryException indicates that the tag path you supplied is invalid (if
the index value was invalid, you would get IndexOutOfBoundsException
instead). For example, you can get this error if you typed a wrong name.

IndexOutOfBoundsException indicates that, when specifying an element in
a sequence, you provided an invalid index value, such as a number greater
than length - 1 for that element sequence.

Example

This example sets the po_number field to the string 24567.
142 u Script Developer’s Guide

VBScript

po_num = "24567"

po.setData "po_number", po_num

This is equivalent to:

po_num = "24567"

po.getElement("po_number").setData po_num

JavaScript:

po_num = "24567";

po.setData ("po_number", po_num);

This is equivalent to:

po_num = "24567";

po.getElement("po_number").setData (po_num);

See also

createBO, getElement, getElementAt
Script Procedure Reference t 143

setPath procedure

Sets the private process path. Remember that public process paths are
determined by output business objects only.

Important: This procedure is being deprecated in favor of the setPath
method that uses the PrivateProcessContext, described on page 145.
144 u Script Developer’s Guide

setPath procedure (private process)

Set the path to be taken when this node completes. If the specified path is not
valid, this procedure returns false. Otherwise, this procedure returns true.
This call is ignored if the node is not an XOR-SPLIT or a WHILE node.

Important: Use this procedure rather then the setPath described on
page 144. That setPath is being deprecated.

VBScript syntax

PrivateProcessContext.setPath(path)

JavaScript syntax

PrivateProcessContext.setPath(path);

Parameter

path is the name of the path to set. This is a string.

Return value

True if the path is valid. This procedure will not work in the script tester.

Examples

These examples set the path.

VBScript:

set priv_context = getPrivateProcessContext()

priv_context.setPath(“Pathname”)

JavaScript:

priv_context = getPrivateProcessContext();

priv_context.setPath(“Pathname”);

See also

getPrivateProcessContext, getPath
Script Procedure Reference t 145

setVar procedure

Sets the value of a context variant.

VBScript syntax

setVar context-variant, value

Note: If a process has more than one parameter, can return a value, and your
code uses the return value, you must use parentheses in the call.

JavaScript syntax

setVar (context-variant, value);

Parameter

value can be a variant, constant, or literal string. context-variant is a type of
context variable defined in the Partner Agreement Manager Process window.

Return value

boolean; true if the variable exists, false if it does not

Example

This example sets the order_id to 29.

VBScript:

sub main

setVar "order_id", "29"
end sub

JavaScript:

setVar ("order_id", "29");

See also

getVar
146 u Script Developer’s Guide

toString procedure

Returns a string describing the validity and content of this element and any
elements subordinate to it that contain data. Mandatory subordinate
elements always appear in the description; optional subordinate elements
without any data do not appear. This helps you see which elements must have
data for this element to be valid. You can use the println procedure to display
the value returned by toString.

VBScript syntax

element.toString(include-data)

JavaScript syntax

element.toString(include-data);

Parameter and variable

If the boolean include-data is true, toString includes the data in the
description; if false, it does not include the data values, which makes the
description shorter.
element is a reference to a business object, or group or field contained by a
business object.

Return value

string describing the element

Example

This example prints the description string, including the data values.

VBScript:

println(po.toString(True))

JavaScript:

println(po.toString(True));

The output might look like this (note that the top-level Purchase_Order
element is not valid because the mandatory field po_date has no value):

<Purchase_Order valid="false">

<po_number valid="true">123</po_number>

<po_date valid="false"></po_date>

<supplier_id valid="true">99999</supplier_id>
Script Procedure Reference t 147

<po_line valid="true">

<item_code valid="true">2222</item_code>

<qty valid="true">55</qty>

<expected_ship_date valid="true">9.9.99</expected_ship_date>

<summary_info valid="true">

<comments valid="true">first line item</comments>

</summary_infor>

</po_line>

</Purchase_Order>

This example loops through all the po_line elements and prints the data in
each po_line in string form.

VBScript:

nLines = po.getElementSequence("po_line").length()

for i=0 to nLines - 1

println(po.getElement("po_line["&i&"]").toString(true))

next

JavaScript:

nLines = po.getElementSequence("po_line").length();

for (i=0; i== nLines - 1; i++) {

println(po.getElement("po_line["&i&"]").toString(true));

}

See also

println
148 u Script Developer’s Guide

appendix�
A

Notices
This information was developed for products and services offered in the
United States. IBM may not offer the products, services, or features discussed
in this information in other countries. Consult your local IBM representative
for information on the products and services currently available in your area.
Any reference to an IBM product, program, or service is not intended to state
or imply that only that IBM product, program, or service may be used. Any
functionally equivalent product, program, or service that does not infringe
any IBM intellectual property right may be used instead. However, it is the
user’s responsibility to evaluate and verify the operation of any non-IBM
product, program, or service.

IBM may have patents or pending patent applications covering subject
matter described in this information. The furnishing of this information
does not give you any license to these patents. You can send license inquiries,
in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.
Notices t 149

For license inquiries regarding double-byte (DBCS) information, contact the
IBM Intellectual Property Department in your country or send inquiries, in
writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any
other country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES
THIS PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND,
EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.
Some states do not allow disclaimer of express or implied warranties in
certain transactions, therefore this statement may not apply to you.

This information could include technical inaccuracies or typographical
errors. Changes are periodically made to the information herein; these
changes will be incorporated in new editions of the information. IBM may
make improvements and/or changes in the product(s) and/or the
program(s) described in this information at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those
Web sites. The materials at those Web sites are not part of the materials for
this IBM product and use of those Web sites is at your own risk.
150 u Script Developer’s Guide

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you. Licensees of
this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of
the information which has been exchanged, should contact:

IBM United Kingdom Laboratories,
Mail Point 151,
Hursley Park,
Winchester,
Hampshire,
England
SO21 2JN.

Such information may be available, subject to appropriate terms and
conditions, including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer
Agreement, IBM International Programming License Agreement, or any
equivalent agreement between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating
environments may vary significantly. Some measurements may have been
made on development-level systems and there is no guarantee that these
measurements will be the same on generally available systems. Furthermore,
some measurement may have been estimated through extrapolation. Actual
results may vary. Users of this document should verify the applicable data for
their specific environment.

Information concerning non-IBM products was obtained from the suppliers
of those products, their published announcements or other publicly available
sources. IBM has not tested those products and cannot confirm the accuracy
of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be
addressed to the suppliers of those products.
Notices t 151

Trademarks

The following terms are trademarks of International Business Machines
Corporation in the United States, or other countries, or both:

AIX
DB2
IBM
MQSeries
SupportPac
WebSphere

Pentium is a registered trademark of Intel Corporation in the United States
and/or other countries.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States and/or other
countries.

Microsoft Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and
other countries.

Other company, product, and service names may be trademarks or service
marks of others.
152 u Script Developer’s Guide

g l o s s a r y�
Glossary
action—a task performed as part of a private process. A private process action is the
equivalent of a step in a public process. See the following terms in this glossary for more
information about the action types you can include in a private process:

n approval action

n extension action

n mapping action

n notification action

n output object action

n script action

n subprocess action

n termination action

n timer action

See also private process.

adapter—the software bridge between Partner Agreement Manager processes and specific
end-system and business-application interfaces. Adapters manage interactions between
business applications and the Adapter Server. They allow private processes to interact with
external business applications while a process is running, and they allow PAM to start
public processes based on events that occur in external business applications. See also
adapter implementation, adapter instance, adapter type.
Glossary t 153

adapter implementation—the implementation declaration for an adapter type. It specifies
the name and location of the Java source file that defines the application logic used to
communicate with a specific end system through that end system’s interface. The
application logic is specified in the form of properties. See also adapter, adapter instance,
adapter type.

adapter instance—an instance of an adapter implementation. The adapter instance is used in
a private process extension action and provides the specific values to be used for the
properties declared in the adapter implementation. See also adapter, adapter
implementation, adapter type, extension action.

adapter type—a definition that is stored in XML format and specifies the adapter’s properties
as well as the operations and events it supports. A single adapter type can have multiple
implementations, and each implementation can have multiple instances. See also adapter,
adapter implementation, adapter instance.

approval action—a private process action that you use to ask for a response from a user before
letting the process continue to run. You can use an approval action, for example, to ask for
an OK when a purchase order exceeds a predetermined amount. See also private process.

business object—a message transmitted as part of a public process. Business objects take the
form of purchase orders, acknowledgments, requests for clarification, and so on. See also
business object type.

business object type—a definition that determines the types of information a message can
contain. It has three properties: the top-level element in its element definition set, its key
field, and whether instances of it return audit information for non-repudiation purposes.
The name of the business object type is the name of the element you select as its top-level
element. See also business object, element definition set, non-repudiation.

business object variable—one of the two types of variables used in Partner Agreement
Manager to store information within a process. Business object variables create an instance
of a business object type. They can be used to store, for example, the outputs from
extension actions, the inputs for map actions, or the inputs and outputs for subprocesses.
See also business object, business object type, extension action, variant variable.

CA—see certificate authority.
154 u Script Developer’s Guide

certificate—a security document that binds a public encryption key to an entity (an
individual or organization) known as the principal. The security document (a digital
certificate) is signed by another entity known as the issuer. A digital certificate for which
both the principal and issuer are the same entity is known as a self-signed certificate. A
certificate for which the principal and issuer are different entities is issued by a certificate
authority (CA) like VeriSign and is known as a CA-issued (or third-party-signed)
certificate. Partner Agreement Manager supports both self-signed and CA-issued
certificates. PAM also supports the binding of certificates to be used for signature
authentication, message encryption, and SSL authentication for channels other than
Partner Agreement Manager. See also certificate authority, SSL.

certificate authority—a trusted third-party organization or company that issues digital
certificates used to create digital signatures and public-private key pairs. The role of the
certificate authority, or CA, is to authenticate the entities (individuals or organizations)
involved in electronic transactions. CAs are a critical component in data security and
electronic commerce because they guarantee that the two parties exchanging information
are really who they claim to be. See also certificate.

channel—a communications mechanism that encapsulates all the processing information
needed to send messages to a partner’s system, as well as to translate data received from a
partner into Partner Agreement Manager messages. PAM provides channels for
RosettaNet, EDI, cXML, and other systems and protocols. See also message.

digital certificate—see certificate.

DTD—Document Type Definition. A type of file associated with SGML and XML documents
that defines how the formatting tags should be interpreted by the application presenting
the document. In Partner Agreement Manager, a DTD file contains the complete
description of a business object type’s element definition set. See also business object,
business object type, element definition set.

element definition set—a collection of data fields (or elements) or groups of data fields that
defines the structure and meaning of a business object type. See also business object, business
object type.

encryption certificate—see certificate.

event—a piece of information that comes into Partner Agreement Manager as a message from
another source (an enterprise system or business application, for example) and triggers a
public process. See also message.
Glossary t 155

event push—a method that uses the HTTP POST mechanism to push events into Partner
Agreement Manager as a way to trigger processes. A port on the Process Server is set to
listen for events in the form of HTTP POST messages. When a message is detected, PAM
uses the information in the message to generate an event. See also event.

extended enterprise—a business model under which companies that work together as
partners function as efficiently as a single organization through the implementation of
automated communication technologies.

extension action—a private process action that communicates via an adapter with an external
application that is registered with Partner Agreement Manager. You can use an extension
action, for example, to launch a spreadsheet application, perform calculations, and update
the enterprise system, or to get information from an enterprise system or listen for an event
in the enterprise system. See also adapter, private process.

LDAP—Lightweight Directory Access Protocol. LDAP provides a standard method for
accessing information from a central directory. After user authentication is set up in the
LDAP directory, applications that use the LDAP protocol can retrieve the information
from that directory. An authenticated user can log in to any application that supports the
LDAP protocol with the same user name and password.

linked certificate—see certificate.

map—a Java Script or VBScript that inserts data into fields in an output business object type
generated by a private process. The map specifies which fields in the output business object
type receive data, and it identifies the information source.

map method—a reusable logical block of code that inserts data into a particular type of
element or element sequence in a business object type. Within a map method, you can
write the expressions that map individual input and output fields in the sequence. Or you
can create a submap and drag input fields to output fields and have Partner Agreement
Manager create the appropriate mapping expressions. See also map, submap.

mapping action—a private process action that you use to call a map. The map specifies the
fields in a business object type that will receive data extracted from another source. You use
a mapping action when you want to extract data from one business object type and insert
it in a different business object type. For example, you use a mapping action to transform
a purchase order generated by your inventory system into a sales order in a format that
your partner expects. See also map, private process.
156 u Script Developer’s Guide

message—a structured communication used to pass information and control to another
partner in a public process. The action in the process passes to the partner who receives the
message. The content of a message is determined by its business object type. A message can
be transmitted via synchronous or asynchronous methods, as determined by its
communication service type. See business object type.

non-repudiation—a business object security feature that authenticates instances of a business
object type and maintains an audit record to verify that they were received by the intended
recipient. For business object instances that you receive, Partner Agreement Manager
authenticates each instance and maintains an audit record to verify that the instance
actually originated with the stated originator. If you disable auditing for a business object
type, non-repudiation support is disabled for all messages that contain instances of that
business object type.

notification action—a private process action that you use to send an e-mail, fax, or pager
message to addressees that you specify. You use a notification action to inform someone
inside or outside your organization that an event has occurred. For example, you can use a
notification action to alert the order entry department when a purchase order arrives from
a customer. See also private process.

output object action—a private process action that you use to bind a business object to the
expected output object and path in a public process. You use an output object action at the
point in a private process when you are ready to send a business object to the associated
public process. This is typically the last action in the private process. See also private process.

partner group—a group of partners that perform the same role in a process at different times.
Instead of duplicating a public process and substituting a different partner name, you can
set up a partner group for the public process and then designate a specific partner as the
participant when you start an instance of the process. For example, you might design a
generic purchasing process that works equally well with any of your suppliers and then
designate the appropriate partner when you start the process.

partner profile—information that identifies an organization, specifies a contact person in
that organization, lists the communication services the organization supports, and defines
the organization’s security profile. When partners agree to participate in a public process,
they must exchange profile information as a way to ensure authenticity before they can
proceed.
Glossary t 157

PIP—Partner Interface Process. RosettaNet PIPs are specialized system-to-system XML-
based dialogs that define business processes between supply-chain partners and provide
models and documents for the implementation of e-commerce standards. Each PIP
includes a technical specification based on the RosettaNet Implementation Framework
(RNIF), a message guideline document with a PIP-specific version of the business
dictionary, and an XML message guideline document. See also RosettaNet.

post method—the last block of code that is executed when a mapping action runs. Its only
parameter is the output business object. You use the post method when you need to
perform post-processing on the output business object. For example, you might use the
post method to set the value of a summary field based on the number of line items in the
output business object, or to examine a range of dates in a repeated group, extract the most
recent date, and post that date in a header field. See also mapping action, pre method.

pre method—the first block of code that is executed when a mapping action runs. The pre
method’s parameters are the map inputs. You use the pre method to access a map’s inputs
and set global variables based on their content. See also mapping action, post method.

private process—a task or set of tasks that business partners participating in a public process
perform at points where they need to take action internally. Partners participating in a
public process must implement a private process for each public process step that they
own. A private process begins with input from the public process and ends with output that
feeds back into the public process. The input can be the receipt of a business object from a
partner, or it can be a triggering event from an internal system. The output is the business
object that transfers control back to the public process. See also action, process, public
process.

private process action—see action.

process—the flow of actions and the exchange of business information between partners in
an extended enterprise. A process operates on two levels, public and private. See extended
enterprise, private process, public process.

public process—the step-by-step flow of messages, events, and actions between two or more
business partners. Public processes are set up by agreement between partners, and each step
in a public process has a private process associated with it. A public process is developed by
one partner, and all the partners who participate in it must review and approve it before it
can be implemented. The partner who designs a public process is its owner. See also private
process, process.

RosettaNet—a consortium of major information technology, electronic components, and
semiconductor manufacturing companies that is working to create and implement
industry-wide, open e-business process standards. See also PIP.
158 u Script Developer’s Guide

script action—a private process action that consists of a script written in VBScript or
JavaScript and is designed to manipulate information or set up conditional actions based
on input. You use a script to establish decision-making criteria for branches or loops, to set
variables, or to calculate values that are used elsewhere in the private process. See also
private process.

security certificate—see certificate.

self-signed certificate—see certificate.

signature certificate—see certificate.

SSL—Secure Sockets Layer. The SSL protocol is a security protocol that provides for
communications privacy and reliability over the Internet. The protocol allows client/server
applications to communicate in a way that is designed to prevent eavesdropping,
tampering, or message forgery.

submap—a secondary level map that is called by a map method to insert data into an output
element other than the top-level element. See map, map method.

subprocess action—a private process action you use to call an existing public process. You
can call any public process in which your organization owns the first partner action. For
example, you can use a subprocess to get a quote approved by a third-party supplier before
responding to a customer. See also private process.

termination action—a private process action that you use to stop a process at a
predetermined point for a reason that you specify. You can use a termination action to deal
with errors in data that might prevent a process from completing successfully. For example,
you might want to stop a process in cases where an enterprise system passes incomplete or
corrupted information to it. See also private process.

third-party-signed certificate—another name for a CA-issued certificate. See certificate.

timer action—a private process action that you use to insert a pause. You can use a timer
action to specify the period of time you want to elapse before the next action in the process
starts. See also private process.

variant variable—single field variables. Variant variables store text strings—the type of
information contained in a single field element. You can use variant variables to store the
input for actions, to set flags (such as the time-out flag for an approval action), to move
information within scripts, or to store the results of an approval action. See also business
object variable.
Glossary t 159

160 u Script Developer’s Guide

i n d e x�
Index
A

actions, definition 5
ActiveInputSet context variant 41

processing different input business objects 45
Approval action, using scripts with 2

B

business object types
creating 47
definition 6
viewing existing 47

business objects
accessing 46
creating context business object variables 47
definition 6
determining if a business object has been in-

stantiated 48
instantiating 46, 48

C

clearAll procedure 57, 75, 82
clearData procedure 75, 84
console, server 69
context business object variables

creating 47
definition 9

context variables, definition 8

context variants
creating 42
definition 9
getting a value 42
storing values in 44
viewing existing 41
working with 41

copyIn procedure 56, 75, 85
createBO procedure 48, 74, 87

E

element definition sets, definition 7
Element interface procedures 75
element sequences

accessing in a script 49
adding elements to 64
checking if they contain data 63
definition 49
deleting elements 65
determining how many elements are in se-

quences 63
getting references to 50
tag paths 52
working with 62
Index t 161

elements
accessing in a script 49
checking if they are a group or field 59
checking if they are valid 60
checking if they contain data 59
clearing data 57
copying data into 56
definition 6, 49
getting data from 54, 55
getting descriptive information 61
getting names of 58
getting references to 50
tag paths 52

ElementSequence procedures 76
ElementTypeException 71
entry point, script 40
errors 3
exceptions 70
Extension action, using scripts with 3

F

fields
definition 6
See elements.

G

getBinding procedure 89
getData procedure 54, 75, 90
getElement procedure 50, 75, 92
getElementAt procedure 51, 76, 94
getElementSequence procedure 51, 75, 96
getGroupRefs procedure 97
getInputs procedure 98
getLoopID procedure 100, 101
getNodeTypeID procedure 102, 103
getPartnerGroupContext procedure 104
getPath procedure 105
getPathNames procedure 106
getPrivateProcessContext procedure 107
getProcessRef procedure 108, 109
getProcessTypeRef procedure 110, 111
getPublicProcessContext procedure 112
getSenderNodeTypeID procedure 113
getSenderRef procedure 114
getTagName procedure 58, 75, 115

getVar procedure 42, 74, 117
getVariableName procedure 119
groups

definition 6
See elements

H

hasData procedure 59, 63, 75, 76, 121

I

IndexOutOfBoundsException 71
InvalidQueryException 71
isBONull procedure 49, 74, 123

determing whether input variables are null 41
isField procedure 59, 76, 124
isProductionProcess procedure 126
isValid procedure 60, 76, 127

J

JavaScript
checking syntax in Script Editor 33
checking syntax in Script Tester 34
knowledge required 10
syntax differences 4

L

length procedure 63, 76, 133
log file, server 69

M

main procedure 40, 74, 134
Mapping action, using scripts with 3
messages, printing to console or log file 69

N

newElement procedure 64, 76, 135
newElementAt procedure 77, 136
Notification action, using scripts with 2

O

Output Object action 3

P

paths
definition 8
setting in private processes 66

println procedure 69, 74, 137
162 u Script Developer’s Guide

private processes, definition 5
PrivateProcessContext procedures 77
procedures, definition 10
processes, definition 5
public processes, definition 5

R

removeAll procedure 65, 77, 139
removeElementAt procedure 77, 140
run-time errors 70

S

Script Editor
checking VBScript and JavaScript syntax 33
copying script code 32
cutting script code 32
editing scripts in Script Editor window 32
opening 30
pasting script code 32
saving scripts 33
two types 30
using 28

script extension, procedures in 74
Script Manager

adding scripts 32
deleting scripts 32
editing scripts 32
inserting scripts 32
using 28
viewing scripts 32

Script Tester
adding data to existing context variables 36
checking VBScript and JavaScript syntax 36
clearing test data 37
closing 38
creating empty business object instances 37
editing and updating scripts 36
exporting test data 38
importing test data 38
opening 35
resetting test data 37
running scripts 35
using 34

scripts
adding to a private process bound to a public

process 26
adding to a private process in the Private Pro-

cess Library 28
entry point 40
how you can use 2
prerequisites 26
termination 3
testing 34
testing with Script Tester 34
where you can use 2

server, printing messages to console or log file 69
setData procedure 55, 76
setPath procedure 66, 74, 145
setVar procedure 44, 74, 146
steps, definition 5
Subprocess action, using scripts with 3
system errors 3

T

tag paths, specifying 52
Termination action 3
termination of script 3
terminology, used in this guide 5
Timer action, using scripts with 3
toString procedure 61, 76, 147

V

VBScript
checking syntax in Script Editor 33
checking syntax in Script Tester 34
knowledge required 10
Index t 163

	Welcome to the Script Developer’s Guide
	Who should use this information
	Related information

	Summary of changes
	Introducing Process Scripting
	How you can use scripts
	Where you can use scripts
	The Script Editor, Manager, and Tester
	Terms used in this guide
	Processes, steps, and actions
	Business objects and elements
	Paths
	Context variables
	Procedures

	What you should know before using this guide

	Getting Started
	Run Partner Agreement Manager
	Define a business object type
	Define a public process with two steps
	Define the private process for the first step
	Create and view context variables, input, and output
	Create a script for the first action
	Define the private process for the second step
	Distribute and test the public process
	Modify a script, activate it, and run it
	Exit Partner Agreement Manager

	Creating Scripts
	Before you create a script
	Adding a script to a private process bound to a public process
	Adding a script to a private process in the Private Process Library

	Using the Script Editor and Script Manager
	Opening a Script Editor
	Copying and pasting script code
	Editing scripts in the Script Editor window
	Inserting a script from the Script Manager
	Viewing, adding, editing, and deleting scripts in the Script Manager
	Checking VBScript and JavaScript syntax
	Saving a script

	Testing scripts
	Using the Script Tester
	Opening the Script Tester
	Running a script
	Editing and updating a script
	Checking VBScript and JavaScript syntax
	Adding data to an existing context variable
	Creating an empty business object instance
	Clearing test data
	Resetting test data
	Exporting test data
	Importing test data
	Closing the Script Tester

	Using script procedures
	Creating the script entry point
	Working with context variants
	Viewing existing context variants
	Creating a context variant
	Getting a value from a context variant
	Storing a value in a context variant
	Using the ActiveInputSet context variant

	Instantiating and accessing a business object in a script
	Viewing and creating a business object type
	Creating a context business object variable
	Instantiating a business object
	Determining if a business object has been instantiated

	Accessing elements and element sequences in a business object
	Getting a reference to an element or element sequence
	Specifying tag paths to elements and sequences

	Working with group and field elements
	Getting data from a field
	Adding data to a field
	Copying data into an element
	Clearing data from an element
	Getting the name of an element
	Checking if an element is a group or field
	Checking if an element contains data
	Checking if an element is valid
	Getting descriptive information about an element

	Working with element sequences
	Checking if an element sequence contains data
	Determining how many elements are in a sequence
	Adding an element to a sequence
	Deleting an element from a sequence

	Setting the path in a private process
	Printing a message to the console and log file
	Handling run-time errors and exceptions

	Script Procedure Reference
	What procedures are available
	Procedures in the script extensions

	Alphabetical reference
	Parameters and variables used in the syntax specifications
	The business object type used in the examples
	clearAll procedure
	clearData procedure
	copyIn procedure
	createBO procedure
	getBinding procedure
	getData procedure
	getElement procedure
	getElementAt procedure
	getElementSequence procedure
	getGroupRefs procedure
	getInputs procedure
	getLoopID procedure (private process)
	getLoopID procedure (public process)
	getNodeTypeID procedure (private process)
	getNodeTypeID procedure (public process)
	getPartnerGroupContext procedure
	getPath procedure (private process)
	getPathNames procedure (private process)
	getPrivateProcessContext procedure
	getProcessRef procedure (private process)
	getProcessRef procedure (public process)
	getProcessTypeRef procedure (private process)
	getProcessTypeRef procedure (public process)
	getPublicProcessContext procedure
	getSenderNodeTypeID procedure
	getSenderRef procedure
	getTagName procedure
	getVar procedure
	getVariableName procedure
	hasData procedure
	isBONull procedure
	isField procedure
	isProductionProcess procedure
	isValid procedure
	length procedure
	main procedure
	newElement procedure
	newElementAt procedure
	println procedure
	removeAll procedure
	removeElementAt procedure
	setData procedure
	setPath procedure
	setPath procedure (private process)
	setVar procedure
	toString procedure

	Notices
	Trademarks

	Glossary
	Index

