
�����������	
������
����������
�
���

External API Guide
Version 2 Release 2
BIAAAF02

Note: Before using this information and the product it supports, read the information in Notices on page 53.
Third Edition (July 2001)

This edition applies to version 2, release 2 of WebSphere Partner Agreement Manager (product number 5724-
A85) and to all subsequent releases and modifications until otherwise indicated in new editions.

IBM welcomes your comments. You can make comments on this information via e-mail at
idrcf@hursley.ibm.com.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information
in any way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 2000-2001. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

c o n t e n t s�
Table of Contents
Welcome to the External API Guide vii
Who should use this information viii

Related information viii

Summary of changes xi

Chapter 1 Introducing the External API 1

About the External API 2

Session service package 3

Admin service package 3

Process service package 4

Partner service package 4

Document service package 5

Adapter service package 5

Using sessions 5

Using services 6

Getting the service from the service factory 6

Using queries 7

Using the examples 8

Before you run the examples 8

Importing Java classes in the examples 9

Classes that are common to the examples 11
Contents � iii

Chapter 2 Connecting to the B2B Engine 13

What this example does 14

About the source code for this example 14

Running this example 14

Troubleshooting 14

Connecting and logging in to the B2B Engine 15

Getting the connection properties 15

Logging in 16

Logging out 16

Getting property values 17

Extending this example 18

Chapter 3 Auditing processes 19

What this example does 20

About the source code for this example 20

Running this example 20

Before you run this example 20

Running this example 21

Troubleshooting 21

Getting the ProcessService 22

Getting information about all public processes 22

Using PublicProcessAgents 23

Getting information on particular public processes 23

Extending this example 25

Chapter 4 Starting processes 27

What this example does 28

About the source code for this example 28

Running this example 28

Before you run this example 28

Running this example 29

Troubleshooting 30

Getting process information 31

Getting the PublicProcessAgent 31

Setting the inputs 32

Setting the input variants 32
iv � External API Guide

Setting the input business object 33

Starting the process instance 33

Checking on the state of the process 33

Getting the outputs from the process 34

Chapter 5 Using events with processes 35

What this example does 36

About the source code for this example 36

Running this example 36

Before you run this example 36

Running this example 37

Troubleshooting 38

Setting up the connection and service 38

Getting the event type 38

Registering a process for this event type 40

Creating a new event 40

Setting the data for the event and post 41

Getting the execution summary 41

Chapter 6 Managing business objects 43

What this example does 44

About the source code for this example 44

Running this example 44

Setting up the connection and services 45

Importing the element definition set 45

Resolving external entities in a DTD 46

Creating a business object from the element definition set 46

Chapter 7 Managing adapters 47

What this example does 48

About the source code for this example 48

Running this example 48

Running this example 49

Troubleshooting 49

Setting up the connection and service 50

Importing the adapter type and implementation 50

Importing the adapter instance 50
Contents � v

Starting the adapter 51

Printing the adapter status 51

Extending this example 51

Appendix a Notices 53

Trademarks 56

Glossary 57

Index 65
vi � External API Guide

�

Welcome to the External API

Guide
This document describes the principles behind the WebSphere® Partner
Agreement Manager External API, and explains how to use the External API
to access the Process Manager functionality in your application. See also, the
Javadoc for the External API, which is installed in the Partner Agreement
Manager Docs folder.

To use the External API for your application:

� Read Introducing the External API on page 1 for an overview of how the
External API works.

� See Connecting to the B2B Engine on page 13 for an example of how to use
the External API in your application to connect and log in to the B2B
Engine.

� See Auditing processes on page 19 for an example of how to get
information about processes in the B2B Engine.

� See Starting processes on page 27 for an example of how to find process
instances, create new process instances, set input, and start processes with
the External API.

� See Using events with processes on page 35 for an example of how to use the
External API to start processes using events.
 � vii

� See Managing business objects on page 43 for an example of how to create
a new ElementDefinitionSet and BusinessObjectType from the
ExampleXML.dtd file.

� See Managing adapters on page 47 for an example of how to use the
External API to manage adapters.

Who should use this information

This information is for Java developers who need to use the functionality of
the Process Manager in their applications.

Related information

For additional information see the following:

� The readme.htm file. This file may contain information that became
available after this book was published. Before installation, the
readme.htm file is located in the root directory of the product CD-ROM.
After installation, the readme.htm file is located in the root directory of the
Partner Agreement Manager installation.

� The StartHere.htm file. This file contains links to the Partner Agreement
Manager readme.htm file and Partner Agreement Manager Installation
Guide. Before installation, the StartHere.htm file is located in the root
directory of the product CD-ROM. After installation, the StartHere.htm
file is located in the root directory of the Partner Agreement Manager
installation.

� The Partner Agreement Manager Installation Guide, form number
GC34-5964-02, which describes how to install Partner Agreement
Manager.

� The Partner Agreement Manager Administrator’s Guide, form number
BIAAAB02, which describes how to set up, configure, and administer
Partner Agreement Manager after you install it.

� The Partner Agreement Manager User’s Guide, form number BIAAAC02,
which describes how to start a Partner Agreement Manager session, design
public and private processes, define element definition sets, create
business objects, and manage process distribution.
viii � External API Guide

� The Partner Agreement Manager Adapter Developer’s Guide, form number
BIAAAD02, which describes how to develop and administer adapters
using the Partner Agreement Manager Adapter Development
Environment.

� The Partner Agreement Manager Script Developer’s Guide, form number
BIAAAE02, which describes how to write scripts used in Partner
Agreement Manager private processes and elsewhere.

� The Partner Agreement Manager Adapters for MQSeries User’s Guide, form
number BIAAAG02, which describes how to install, configure, and run
the Partner Agreement Manager Adapters for MQSeries.

� The Partner Agreement View User’s Guide, form number GC34-5965-02,
which describes how to install, configure, and use Partner Agreement
View.
 � ix

x � External API Guide

�

Summary of changes
This edition includes these changes since the previous, second, edition:

� External APIs. Partner Agreement Manager 2.2 provides added flexibility
to external applications through additional APIs. These APIs allow third-
party applications to take advantage of the Partner Agreement Manager
partner management and process engine through programmatic access.
The API is distributed as a set of Java classes that the external application
can import. Communication between the API classes and the Process
Server is through RMI, but in the future can be swapped out for HTTP or
SOAP. Specifically, APIs have been added to the following functional
areas:

� Session Service API

� Admin Service API

� Document Service API

� Partner Service API

� Adapter Service API

� Process Service API
 � xi

� LDAP Support. Partner Agreement Manager 2.2 provides centralized user
authentication and administration through an LDAP directory. Partner
Agreement Manager can retrieve user information—such as name, e-mail
address, phone, and fax—stored in an LDAP directory. Updating this
information is done in a single place, through the LDAP management
tool. Users are authenticated through the same directory, giving them
single-sign-on capabilities across enterprise applications.

� Double-byte character sets (DBCS) and National Language Support (NLS).
Double-byte character sets are now supported in Partner Agreement
Manager 2.2. Double-byte and multibyte data can be transferred and
operated on in business objects and adapters. NLS lets Partner Agreement
Manager display user interface text in other languages.

� Improved XML Support. The Partner Agreement Manager 2.2 engine
fundamentally changes the way it interacts with business objects by
replacing proprietary parsers with a third-party parser. This simplifies
support of DTD 1.0 and the support of XML Schemas when the standard
is finalized.

The Business Object and Script API have been extended with new classes
and methods. The new classes and methods let you work with business
objects as W3C Documents.

� Adapter Asynchronous Callback. An additional Adapter API allows
adapters to be more efficient with long-running adapter operations. The
Asynchronous Callback method tells the Adapter Server that an operation
will be long-running, that system resources should be freed while the
adapter waits for a response from the end system, and that another
method will be called when the response arrives. The Asynchronous
Callback method frees the adapter developer from using the request-retry
method that makes the Adapter Server responsible for polling the end
system for the response.

� Script API Changes. The script API now provides access to the
PartnerGroupContext and the Public and Private Process Contexts.
Through these contexts, you can get information such as partner group
binding, a reference to the process, inputs to the process (which contain a
reference to the sender, the ID of the sending node, and the variable
name), and unique node and loop IDs.
xii � External API Guide

� Certificate Support. Partner Agreement Manager 2.2 is able to request and
import certificates from certificate authorities like VeriSign. This lets
organizations use their existing certificate, or request a new one if their
partners do not accept self-signed certificates. Partner Agreement
Manager 1.1 supported only self-signed certificates.

� Outbound Proxy Support. Partner Agreement Manager 2.2 channels that
use HTTP communication can work with outbound proxies that use
authentication. Outbound proxy authentication is used within internal
networks to ensure that only people and applications that are
authenticated may communicate with an external network.
Authentication in the outbound proxy is done with a standard user name
and password combination. You can turn on the outbound proxy feature
after installation. Thereafter, all outbound HTTP communication will use
the same user name and password combination for the proxy.

Note: Note that this feature is only used by channels using HTTP
communication; it does not apply to channels that use the built-in Partner
Agreement Manager proxy.
 � xiii

xiv � External API Guide

c h a p t e r�
1

Introducing the

External API
The External API provides programmatic access to the administration
of WebSphere Partner Agreement Manager and its core components.
Using the API, you can write applications that access the key functions
of the run-time B2B Engine.

This chapter includes these sections:

� About the External API on page 2.

� Using sessions on page 5.

� Using services on page 6.

� Using queries on page 7.

� Using the examples on page 8.
Introducing the External API � 1

About the External API

The External API allows applications to programmatically control the B2B
Engine. Using the API, your applications can control:

� PAM users and certificates.

� the Process Manager.

� the Partner Manager.

� the Document Manager.

� the Adapter Manager.

The External API is a set of Java classes that allows the B2B Engine to be
programmatically controlled by an adapter or other third-party application.
For example, a client application can register a new partner, bind a partner
to a process, start the process, and get an audit trail from that process
instance.

Using the External API, a client application creates a session connected to a
B2B Engine and then logs in as a specific user. The permissions of the user
dictate what access level and operations are allowed. Once the client
application has logged in, it can obtain one or more services, which provide
the functionality to control various aspects of the B2B Engine.

B2B Engine

Server VM Client VM

Session

AdminService

ProcessService

PartnerService

DocumentService

AdapterService

Client

Application
Session

Interfaces
2 � External API Guide

The External API consists of several packages:

Session service package

The session service package allows a client application to connect to and
authenticate itself with the B2B Engine. The session communicates with the
B2B Engine through RMI over a port that is determined when the B2B
Engine is installed.

The session service package is used by an application only to connect to the
B2B Engine. The rest of the package supports other parts of the External API.

Admin service package

The admin service package enables the management of users and certificates.
The admin service allows a client application to:

� retrieve information (e-mail address, contact information, etc.) for one or
more users.

� create, modify, and delete users.

� retrieve certificates.

� create self-signed certificates.

This package Contains interfaces and classes that do this

com.extricity.api Manage contacts and contact lists, abstract and root
interfaces for sessions and queries. You will not use
these abstract interfaces directly.

com.extricity.api.rmi Provide connectivity to the B2B engine using remote
method invocation (RMI). See Session service
package on page 3.

com.extricity.admin.api Manage users and certificates. See Admin service
package on page 3.

com.extricity.process.api Manage processes. See Process service package on
page 4.

com.extricity.partner.api Manage partners and channels. See Partner service
package on page 4.

com.extricity.document.api Manage business objects and DTDs. See Document
service package on page 5.

com.extricity.adapter.api Manage adapters types, implementations, and
instances. See Adapter service package on page 5.
Introducing the External API � 3

� modify and delete certificates.

� create certificate requests for third-party signed certificates.

� import and export certificates.

Process service package

The process service package supports the management of processes and
events in the B2B Engine. This is a comprehensive service that allows a client
application to:

� retrieve one or more public process types.

� modify the partner groups for a public process type.

� create a new instance of a public process.

� create a new instance of a public process with a partner group binding.

� create a new instance of a public process with a unique ID.

� retrieve information about a public process instance.

� retrieve one or more event types.

� create, modify, and delete event types.

� retrieve an execution summary of a process instance.

� stop a process instance.

� create a new event instance of a particular event type to start a process.

� bind a process to an event type.

� import and export a public process.

Partner service package

The partner service package enables the management of partners, partner
groups, and channel profiles. It distinguishes between a local partner profile
(the local PAM installation) and a remote partner (a remote server).

To configure a channel profile, you import an XML file defining the
particular channel. Each channel ships with a DTD for this XML file.

The partner service package can:

� retrieve partner information.

� create a remote, non-PAM partner.

� retrieve, create, modify, and delete a remote channel profile.
4 � External API Guide

� bind certificates to a usage in a channel profile.

� retrieve and modify the local channel profile.

� add, get, and remove members of a partner group.

� bind a partner to a partner group.

Document service package

The document service package allows a client application to manage DTDs
and business object types within PAM. Using the document service package,
a client application can:

� retrieve one or more DTDs.

� import a DTD.

� retrieve a business object type.

� create a business object type from a DTD.

Adapter service package

The adapter service package allows client applications to manage adapter
types and instances in the B2B Engine. The adapter service package can:

� retrieve one or more adapter types.

� retrieve information about adapter instances.

� import adapter instances, types, and implementations.

For a complete description of all the External API Java classes, see the Javadoc
for the External API.

Using sessions

A session is a connection from the client application to the B2B Engine. Every
application that uses the External API will connect to the B2B Engine. A
session is a connection, complete with authentication.

You must establish a session before you use the External API to access the
B2B Engine in your application. The example Connecting to the B2B Engine
on page 13 explains how to establish a session with the B2B Engine.
Introducing the External API � 5

Using services

After you have set up a connection, you use External API services to access
and control the B2B Engine. There are services associated with each general
category of functionality provided by the External API.

For example, the ProcessService offers process management services such as
creating a new instance of a public process of a given PublicProcessType, or
creating, modifying and deleting EventTypes. Likewise PartnerService offers
partner management services and DocumentService offers business object
management services.

To use a service:

� Get the service from the service factory.

� Call methods on the service.

See the Javadoc for a complete listing and description of the available services
and their functions.

Getting the service from the service factory

Factories provide access to services. In order to use a service, you must first
get the service from the associated service factory. For example,
DocumentServiceFactory gives you a DocumentService.

The following pseudocode fragment shows how to use a factory to get a
service. Replace occurrences of xxx with the appropriate package name and
XXX with the appropriate service name for one of the supported services.
Packages are listed in About the External API on page 2. DocumentService,
ProcessService, and AdapterService are examples of supported services.

import com.extricity.api.*;

import com.extricity.api.rmi.*;

import com.extricity.xxx.api.*;

Session session;

XXXServiceFactory service_factory;

XXXService service;

// Get the service factory for the required service

service_factory = XXXServiceFactory.getServiceFactory();
6 � External API Guide

// Get the required service.

service = service_factory.getService(session);

//Call methods on the service.

service.someMethod();

Using queries

To search for one or more items matching particular criteria, use a query
object. Fill in the elements of this object to specify your criteria. Then use the
service to perform the query, using the query object to get a collection of
matching objects.

For example, suppose you want a list of partners that match a particular
name, for example, “Acme Engineering”. To get this list, create a
PartnerQuery object and fill in the name element. Once you have the
PartnerQuery filled in, you use the PartnerService method getPartners to
retrieve a collection of all partners that match your criteria.

//Create the Session & log in (code omitted)

//Get the PartnerService (code omitted)

// variable declarations

String partnername;

Collection partners;

// Create a new PartnerQuery object

PartnerQuery ();

//Set the name

partnername = “Acme Engineering”;

partnerQuery.setName (partnername);

// Use the query object and the partner service to get a

// collection of partners that match the criteria

try {

partners = myPartnerService.getPartners (PartnerQuery);

}

catch {

// catch the exceptions and handle the errors

}

Introducing the External API � 7

The External API offers many query objects. See the Javadoc for a description
of each query object.

Using the examples

The examples included with this External API are self-contained. However,
later examples make reference to earlier ones. If you are unfamiliar with the
B2B Engine, start at the first example and work your way through to the last.

Before you run the examples

Before you start, you must configure your environment and some property
values so the examples will run. In order for the examples to run, you must:

� have the B2B Engine running.

� have your CLASSPATH set properly.

� set your connection properties.

Important: These examples will fail if the B2B Engine is not running.

Setting your CLASSPATH

To configure your environment, you must include the External API jar file in
your CLASSPATH environment variable. For the examples, the easiest way
to do this is to run the example applications from the Diagnostic Shell. For
your applications, you should add the External API jar file to your
CLASSPATH. You can find the External API jar file here:

Setting your connection properties

The property file named Example.properties contains property information
that is used by all the example programs. You must change the information
in this file to match your installation. The properties file is a simple text file
which you can modify in any text editor.

On this platform The file is

Windows NT <install_directory>\WebSphere\externalapi.jar

UNIX <install_directory>/WebSphere/externalapi.jar
8 � External API Guide

Important: The examples will not run unless you change this property
information.

You can find the Example.properties file here:

In the Example.properties file, you must set your connection properties. You
specified all of these values when you installed the B2B Engine.

Importing Java classes in the examples

Each example imports Java classes from the Java libraries and the External
API for services it will use.

On this
platform The file is

Windows NT Partnernnn\com\extricity\api\example\Example.properties

UNIX Partnernnn/com/extricity/api/example/Example.properties

Set this value To

server.host The name of the computer running your B2B Engine.

server.port The port that your B2B Engine is listening on.

server.user The name of a user who is already set up in the B2B
Engine. This user must have permissions for the
operations the code will perform.

server.password The password for the user.

This class Does this

com.extricity.api.example
com.extricity.api.example.APILibrary

Includes code common to
all the examples.

com.extricity.api.example.ExampleProperties Gets property values.

com.extricity.api.rmi.RMIClientSession
com.extricity.api.Session

Creates a connection to
the B2B Engine.

com.extricity.process.api.* Manages processes.

com.extricity.document.api.BusinessObjectType
com.extricity.document.api.BusinessObjectTypeRef

Manages
BusinessObjectTypes and
type refs.
Introducing the External API � 9

* Indicates that all of the classes in the package are used.

com.extricity.document.api.DocumentService Manages business object
schemas and
BusinessObjectTypes.

com.extricity.document.api.DocumentServiceFactory Provides access to the
DocumentService.

com.extricity.document.api.ElementDefSet Represents a set of
element definitions that
can be used to define a
BusinessObjectType.

com.extricity.document.api.ElementDefSetRef Represents an
ElementDefSet.

com.extricity.adapter.api.* Manages adapters.

com.extricity.api.SessionException
com.extricity.api.SystemException,
com.extricity.api.SystemSecurityException
com.extricity.api.RefException
com.extricity.api.QueryException
com.extricity.api.ServiceException
com.extricity.api.SystemIOException

Contains External API
exception classes.

java.io.StringWriter
java.text.SimpleDateFormat
java.util.Collection
java.util.Iterator
java.util.Date
java.io.StringReader
java.io.BufferedInputStream java.io.FileInputStream
java.io.FileNotFoundException java.io.IOException,
java.io.InputStream

Contains Java library
classes.

This class Does this
10 � External API Guide

Classes that are common to the examples

There are some additional classes that are common to all the examples in the
main examples directory.

On this platform The files are

Windows NT Partnernnn\com\extricity\api\example\APILibrary.java
Partnernnn\com\extricity\api\example\
ExampleProperties.java

UNIX Partnernnn/com/extricity/api/example/APILibrary.java
Partnernnn/com/extricity/api/example/
ExampleProperties.java
Introducing the External API � 11

12 � External API Guide

c h a p t e r�
2

Connecting to the B2B

Engine
Every application that uses the External API will connect to the B2B
Engine. Read this chapter for a demonstration of how to use the
External API in your application to connect and log in to the B2B
Engine.

This chapter includes these sections:

� What this example does on page 14.

� About the source code for this example on page 14.

� Running this example on page 14.

� Connecting and logging in to the B2B Engine on page 15.

� Getting property values on page 17.

� Extending this example on page 18.
Connecting to the B2B Engine � 13

What this example does

This very simple example connects to the B2B Engine and logs in. It then logs
out, closing the connection gracefully.

About the source code for this example

The complete source code for this example can be found under your Partner
directory:

Note: This document focuses on the most important parts of each example.
Some lines of code are not covered. The source code also includes
explanatory comments.

Running this example

Running this example is a good way to check that your system is set up
correctly to use the External API.

To run this example:

1 Make sure that you’ve satisfied the requirements listed in Before you run the
examples on page 8.

2 From the Diagnostic Shell, type this at the command line:

java com.extricity.api.example.SessionExample

Troubleshooting

If you tried to run the example and it was not successful, there are a few
things to check:

� In Example.properties, are the property values for the host and port
correct?

On this platform The file is

Windows NT Partnernnn\com\extricity\api\example\
SessionExample.java

UNIX Partnernnn/com/extricity/api/example/
SessionExample.java
14 � External API Guide

� In Example.properties, are the property values for the user and password
correct? Does that user already exist in the B2B Engine?

� Are both the local and B2B Engine machines accessible on the network?

� Is the External API jar file correctly set in the CLASSPATH?

� Is the B2B Engine running?

Connecting and logging in to the B2B Engine

After importing Java packages, the example tries to connect to the B2B
Engine and log in.

Connecting to the B2B Engine consists of two steps:

Step 1 Get the connection properties information.

Step 2 Use that information to attempt to make a connection to the B2B Engine.

Getting the connection properties

The first step in connecting to the B2B Engine is to get the connection
information. The ExampleProperties class reads in the properties file and
gets the property values. The lookupValue method in that class does the
lookup work. The ExampleProperties class is in the
com.extricity.api.example.ExampleProperties package, which was imported
in the beginning of the example.

First, create a new instance of the ExampleProperties class:

ExampleProperties ep = new ExampleProperties();

Inside a try block, get the necessary property values and use them to create a
connection and log in to the B2B Engine. The values are server.host,
server.port, server.user, and server.password. For more information about
setting these values, see Before you run the examples on page 8. For more on
how the ExampleProperties class parses the properties file, see Getting
property values on page 17.

The example declares the variable session as an RMIClientSession and
attempts to look up the connection information and connect to the B2B
Engine.

RMIClientSession session = null;
Connecting to the B2B Engine � 15

session = new RMIClientSession(ep.lookupValue("server.host"),

Integer.parseInt(ep.lookupValue("server.port")));

Logging in

Once the host and port are known, look up the user name and password, and
attempt to log in:

session.login(ep.lookupValue("server.user"),

ep.lookupValue("server.password"));

If this is successful, you have connected and logged in to your B2B Engine.

Next, print out some notifications. The notifications use the isLoggedIn
method of the Session interface. isLoggedIn returns a boolean: true if the user
is logged in to the B2B Engine, false if not.

System.out.println(ep.lookupValue("server.user") +
"is logged into session: " +
session.isLoggedIn());

Logging out

When your application has finished with the B2B Engine, you should log out
and close the connection gracefully. The logout method of the
RMIClientSession class does this.

session.logout();

To check that this worked properly, the example then prints a debugging
message, again using the isLoggedIn method.

System.out.println("\nLogging out of session\n");

System.out.println(ep.lookupValue("server.user") +
"is logged into session: " +
session.isLoggedIn());

After the try block, catch the exceptions. This example just catches them and
prints a stack trace. In a real application, you would catch the exceptions and
handle the errors properly.

That’s it. You have now connected to the B2B Engine, logged in, and logged
out.
16 � External API Guide

Getting property values

For the purposes of this example, you can treat the property values as a black
box. However, property values are a good way to avoid hard-coding values
into your applications. The ExampleProperties class parses the properties file
and reads the specified property value. You can find the complete source for
this class in:

The class declares the variable bundle as a private variable:

private ResourceBundle bundle;

Next, the name of the property file is hard-coded. A less trivial application
would take the name of the property file as an argument instead.

public static final String example_properties =
"com.extricity.api.example.Example";

Next, load the property file:

bundle = ResourceBundle.getBundle(example_properties);

Then, get the key or return null if the property file is not loaded.

public String lookupValue(String key) {

if (bundle == null) {

return(null);

} else {

return(bundle.getString(key));

}

}

On this platform The file is

Windows NT Partnernnn\com\extricity\api\example\
ExampleProperties.java

UNIX Partnernnn/com/extricity/api/example/
ExampleProperties.java
Connecting to the B2B Engine � 17

Extending this example

You could easily extend this simple example to connect to two B2B Engines
at the same time. This would be useful, for example, in migrating a process
from a test system to a production system. To automate migrating the
process from test to production, you could write an application that connects
to the test system and exports the process. Your application could then
connect to the production system and import it.

To extend this example to connect to two B2B Engines:

1 In the Example.properties file, add a new set of properties and values for the
second B2B Engine, say servertest.port, servertest.host, servertest.user and
servertest.password.

2 In the ExampleSession.java file, create a new session variable, for example,
session_2.

RMIClientSession session_2 = null;

3 Look up the new B2B Engine information and connect to it:

session_2 = new
RMIClientSession(ep.lookupValue("servertest.host"),

Integer.parseInt(ep.lookupValue("servertest.port")));

session_2.login(ep.lookupValue("servertest.user"),

ep.lookupValue("servertest.password"));

You now have two concurrent connections, each to a different B2B Engine.

You could also extend this example to get the connection properties from a
command line, from another application or from user input.
18 � External API Guide

c h a p t e r�
3

Auditing processes
Applications using the External API can automate auditing of
processes. Read this chapter for a demonstration of how to get
information about processes in the B2B Engine.

This chapter includes these sections:

� What this example does on page 20.

� About the source code for this example on page 20.

� Running this example on page 20.

� Getting the ProcessService on page 22.

� Getting information about all public processes on page 22.

� Getting information on particular public processes on page 23.

� Extending this example on page 25.
Auditing processes � 19

What this example does

This example application displays information about processes and their
status. If you give it a process ID as an argument, it will retrieve more detailed
information about that process. If you give it no argument, it will display
information about all processes.

This example demonstrates:

� how to get a reference to a particular process.

� how to get a list of all processes that match specified criteria.

� how to access different pieces of process data.

About the source code for this example

The complete source code for this example can be found under your Partner
directory.

Note: This document focuses on the most important parts of each example.
Some lines of code are not covered. The source code also includes
explanatory comments.

Running this example

Running this example is a good way to see how the External API gets
information about processes.

Before you run this example

Step 1 Make sure that you’ve satisfied the requirements listed in Before you run the
examples on page 8.

On this platform The file is

Windows NT Partnernnn\com\extricity\api\example\process\
AuditApp.java

UNIX Partnernnn/com/extricity/api/example/process/
AuditApp.java
20 � External API Guide

Step 2 To see this most clearly, you must have some processes set up, preferably in
various different states before you run this example. If you have no processes
when you run this example, you won’t get any useful output.

Running this example

There are two ways to run this example, with or without a PublicProcessRef.

To run this example without a PublicProcessRef:

� From the Diagnostic Shell, type this at the command line:

java com.extricity.api.example.process.AuditApp

This gives you a short summary of all processes in the system. The short
summary will include a PublicProcessRef for each process. This
PublicProcessRef is a string that is a unique identifier for the public process.
To get more detailed information on a given process, run this example with
the PublicProcessRef for that process as an argument:

To run this example with a PublicProcessRef:

� java com.extricity.api.example.process.AuditApp PublicProcessRef

This gives you detailed information about the public process the
PublicProcessRef refers to.

Note: If your process name has spaces in it, make sure to add quotes around
the PublicProcessRef string.

Troubleshooting

If you tried to run the example and it was not successful, there are a few
things to check:

� Do you have any processes running? If you don’t, the example will
complete successfully, but you won’t get any useful information.

� Do you have the proper permissions for viewing the audit file?

� Are the property values for the host and port correct?

� Are the property values for the user and password correct? Does that user
already exist in the B2B Engine?

� Are both the local and B2B Engine machines accessible on the network?

� Is the External API jar file correctly set in the CLASSPATH?

� Is the B2B Engine running?
Auditing processes � 21

Getting the ProcessService

The application starts by doing some argument checking and then it
connects to the server and logs in.

Once you have a connection and are logged in, get the ProcessService. The
ProcessService allows you to manage processes and events in the B2B Engine.
Here, you use the ProcessService to get information about processes. Other
ProcessService functions are demonstrated in Starting processes on page 27
and Using events with processes on page 35.

The ProcessServiceFactory gives you the ProcessService for this session. Each
session has only one instance of any given service.

ProcessService process_service = null;

process_service = ProcessServiceFactory.getService(session);

Getting information about all public processes

If you didn’t give a PublicProcessRef as a command-line argument, the
example queries for information about all processes. To query for
information, you must first construct a Query object.

First, build a new query object and do some date arithmetic. The date
arithmetic sets the start_date to be 24 hours ago.

query = new PublicProcessQuery();

Date start_time = new Date(new Date().getTime() -1000*60*60*24);

Next, set the fields in the query. These are matched against the processes and
information on all matching processes is returned. In this case, it queries for
all processes that have begun in the last 24 hours. You could, of course, set
this time to any interval you like.

query.setStartTime(start_time);

query.setEndTime(new Date());

You can set other fields in the query as well.
22 � External API Guide

Using PublicProcessAgents

The result of the query is a Collection of PublicProcessAgents. A
PublicProcessAgent represents a public process. You use the
PublicProcessAgent to view and control the execution of its public process
instance. Each PublicProcessAgent is associated with one and only one public
process instance.

After printing out the label information, do the query and get any matching
PublicProcessAgents. These PublicProcessAgents contain the detailed
information about any processes that matched the query.

public_process_agents =
process_service.getPublicProcessAgents(query);

Print out the information in the PublicProcessAgents.

APILibrary.printProcessAgent(public_process_agents, sdf);

sdf refers to the SimpleDateFormat. Here it indicates that you want
PublicProcessAgents for all public processes that were run in the last 24
hours.

After the try block, catch the exceptions, and then close the connection
gracefully. This example just catches the exceptions and prints a stack trace.
In your applications, you’ll catch the exceptions and handle errors.

Getting information on particular public processes

After you have gotten information about all processes, you can use the
PublicProcessRefs returned there to get information about a particular
public process. If you gave a PublicProcessRef as an argument to this
AuditApp application, it parses that string into a PublicProcessRef object.

public_process_ref = PublicProcessRef.get(args[0]);

With that PublicProcessRef object, you can get the PublicProcessAgent for
the public process referred to by the PublicProcessRef.

public_process_agent =
process_service.getPublicProcessAgent(public_process_ref);
Auditing processes � 23

From this line of code, you can see that the ProcessService retrieves the
PublicProcessAgent. This PublicProcessAgent is a snapshot of the public
process instance at the time the PublicProcessAgent is retrieved from the
ProcessService. As the public process instance executes, the information
contained in the PublicProcessAgent will become out of sync with the
process instance. To update the information in the PublicProcessAgent, call
the refresh method. Once the public process instance has completed its
execution, the information will no longer change.

Tip: Refresh takes a parameter that is a constant. This constant indicates the
information to be refreshed. This method uses a lot of resources, so where
performance is a consideration, only refresh the information you need.

If a PublicProcessAgent was successfully retrieved for the PublicProcessRef,
print out the process agent.

if (public_process_agent != null) {

APILibrary.printProcessAgentFull(public_process_agent,
process_service,sdf);

In the APILibrary, printPublicProcessAgent simply iterates through the
PublicProcessAgent, printing the PublicProcessRef, the start time, the end
time, and the state. Then it calls printProcessAgentSummary to print out a
short summary of each public process instance:

public static void printProcessAgent(Collection agents,
SimpleDateFormat date_format) {

PublicProcessAgent agent;

Iterator agent_itr = agents.iterator();

System.out.println("Public Process Ref " + "\t\t\t\t\t\t" +

"Start Time (MM/DD/YY)" + "\t" +

"End Time (MM/DD/YY)" + "\t" +

"State");

while(agent_itr.hasNext()) {

agent = (PublicProcessAgent) agent_itr.next();

printProcessAgentSummary(agent, date_format);

}

}

If nothing was found matching that PublicProcessRef, the
PublicProcessAgent is null.
24 � External API Guide

After it’s done, catch the exceptions, and close the connection gracefully.
This example just catches the exceptions and prints a stack trace. In your
non-trivial applications, you’ll catch the exceptions and handle the errors.

Extending this example

You could extend this example application into a Web site that serves the
same information.

You could also extend this example to do something based on the results of
the query.
Auditing processes � 25

26 � External API Guide

c h a p t e r�
4

Starting processes
One of the most common uses for the External API is to start
processes. Read this chapter to see how to find process instances,
create new process instances, set input, and start processes with the
External API.

This chapter includes these sections:

� What this example does on page 28.

� About the source code for this example on page 28.

� Running this example on page 28.

� Getting process information on page 31.

� Getting the PublicProcessAgent on page 31.

� Setting the inputs on page 32.

� Starting the process instance on page 33.

� Checking on the state of the process on page 33.

� Getting the outputs from the process on page 34.
Starting processes � 27

What this example does

This example demonstrates:

� how to find a process type based on a process name.

� how to create a new instance of a process type.

� how to set variant and business object inputs to a process.

� how to start a process with an external process ID.

� how to get the results of that process.

About the source code for this example

The complete source code for this example can be found under your Partner
directory.

Note: This document focuses on the most important parts of each example.
Some lines of code are not covered. The source code also includes
explanatory comments.

Running this example

Running this example is a good way to see more details about how the
External API works with processes.

Before you run this example

Step 1 Make sure you have satisfied the requirements in Before you run the examples
on page 8.

Step 2 Set up a process for this application to start.

On this platform The file is

Windows NT Partnernnn\com\extricity\api\example\process\
ProcessStartApp.java

UNIX Partnernnn/com/extricity/api/example/process/
ProcessStartApp.java
28 � External API Guide

Setting up a process for this application to start

You must have a process that can be started by this example application. See
the Partner Agreement Manager User’s Guide for more information on
creating processes, business objects, and partner profiles.

To set up a process for this example to start:

1 Set up your local partner profile, add a listener, and add your certificates.

Note: If your process involves more than one partner, you must exchange
profiles with your partners.

2 Create a public process called “Example Process.”

3 Create an input variant called “Purchase_Order_Number.”

4 Create an input business object called “Input_File” of the type File.

5 Create an output variant called “Purchase_Ack_Number.”

6 Create an output business object called “Output_File” of type File.

7 Implement the private process so the output variant and business object are
populated.

The example application queries these context variables.

8 Print out the input variant and business object.

This is populated by the example application.

9 Install the process for testing.

Important: If you change the name of the public process or any of the input
or output variants, you must also change the corresponding values in the
Example.properties file.

Running this example

There are 2 ways to run this example, without an external ID or with one.

To run this example without an external ID:

� From the Diagnostic Shell, type this at the command line:

java com.extricity.api.example.process.ProcessStartApp
Starting processes � 29

This starts the process named by the property process.name with the inputs
named by process.input_variant and process.input_bo. These inputs have
the values process.input_variant_value and process.input_bo_value,
respectively.

To run this example with an external ID:

� From the Diagnostic Shell, type this at the command line:

java com.extricity.api.example.process.ProcessStartApp External_ID

This starts the process named by the property process.name with the inputs
named by process.input_variant and process.input_bo. These inputs have
the values process.input_variant_value and process.input_bo_value,
respectively. These are the values set in the Example.properties file.Any
argument you give on the command line will be used as a unique external ID
to the process. You can then use this external ID to query the process.

An external ID can be any unique identifier, such as a unique purchase order
number or a unique material number. You can use any unique number that
make sense in the context of the process and your organization.

Troubleshooting

If you tried to run the example and it was not successful, there are a few
things to check:

� Do you have the required process defined? If not, the example will fail.

� Does your process, along with its inputs and outputs, have the same name
as in the Example.properties file?

� Are the property values for the host and port correct?

� Are the property values for the user and password correct? Does that user
already exist in the B2B Engine?

� Are both the local and B2B Engine machines accessible on the network?

� Is the External API jar file correctly set in the CLASSPATH?

� Is the B2B Engine running?
30 � External API Guide

Getting process information

First connect to the B2B Engine and get the ProcessService. For more
information about connecting to the B2B Engine, see Connecting to the B2B
Engine on page 13. For more information about getting the ProcessService
and what it does, see Getting the ProcessService on page 22.

Next, get some basic information about the process. Look up the name of the
public process from the Example.properties file. From the name, get the
PublicProcessType. From the PublicProcessType, get the
PublicProcessTypeRef.

Important: To get the process name, the example looks up the value of the
process.name property in the Example.properties file. If this property
value and your process name do not exactly correspond, the example will
fail.

process_type = APILibrary.getPublicProcessType(process_service,

ep.lookupValue("process.name"));

process_type_ref = process_type.getPublicProcessTypeRef();

Note: The APILibrary method getPublicProcessType, sets a Query object
with the name of the public process and runs the query.

Getting the PublicProcessAgent

With the PublicProcessTypeRef you just got, you can get a
PublicProcessAgent, which allows you to control the process. For more
information about PublicProcessAgents, see Using PublicProcessAgents on
page 23. To get the public process agent, call the ProcessService method
newPublicProcess.

public_process_agent =

process_service.newPublicProcess(process_type_ref,

ExecutionMode.AUTO_SELECT, null);

If you provided an external ID in the argument list for this example
application, it will use that ID.

public_process_agent =

process_service.newPublicProcess(process_type_ref,

ExecutionMode.AUTO_SELECT, args[0]);
Starting processes � 31

If you didn’t provide an external ID as an argument, the PublicProcessRef
can be used as an ID for referencing the process later.

Note: By setting the execution mode of the public process to
AUTO_SELECT, the process is started in Production mode if you installed
it for production and Test mode if you installed it for testing.

Setting the inputs

Now that you have the PublicProcessAgent, set the inputs before starting the
process.

Setting the input variants

First, use the PublicProcessAgent to determine the inputs the process takes.
Look up the input_variant property in Example.properties and check that
name in the execution input. If it matches, set the input variant value with
setValue.

input = public_process_agent.getExecutionInput();

vcv =

input.getVariantContextVariable(ep.lookupValue("process."+
"input_variant"));

if (vcv != null) {

vcv.setValue(ep.lookupValue("process.input_variant_value"));

} else {

System.out.println("Input variant " +
ep.lookupValue("process.input_variant") +
" was not found in the process type. Not " +
"setting context variants");

}

If the name does not match the input variant required by the process, print
out an error message.
32 � External API Guide

Setting the input business object

Getting and setting the data input business objects works in exactly the same
way as setting the data of the input variants. To do this, look up the name of
the input business object from the PublicProcessAgent. You already have the
execution inputs from the getExecutionInput call in Setting the input
variants. If the name of the required input business object and property
match, set the value from the process.input_bo_value in Example.properties.
This value is an XML string that contains the DOCTYPE and the business
object instance data. If the name does not match the input variable or
business object required by the process, print out an error message.

bocv =
input.getBusinessObjectContextVariable(ep.lookupValue

("process."+ "input_bo"));

if (bocv != null) {

bocv.setValueFrom(new StringReader(ep.lookupValue("process."+
"input_bo_value")));

} else {

System.out.println("Input BO " +
ep.lookupValue("process.input_bo") +
" was not found in the process type. " +
"Not setting context variants");

}

Note: Note that the lookup value is retrieving the XML instance of the
business object from the property file, but you could also get it from a file
or some other InputStream.

Starting the process instance

Now that you have the process agent and have set the process inputs, start the
process.

public_process_agent.startProcess();

Checking on the state of the process

After you’ve started the process, the state of the process is IN_PROGRESS.
Once you’ve started the process, wait until the process has changed state to
get the results. This does not necessary mean that the process has finished, it
could also be aborted, committed, or suspended.
Starting processes � 33

Check the state of the process. This PublicProcessAgent contains a snapshot
of the current process state. If the process state is IN_PROGRESS, wait 5
seconds before checking again.

while (public_process_agent.getProcessExecutionState() ==

ProcessExecutionState.IN_PROGRESS) {

try {

Thread.sleep(5000); //wait 5 seconds before checking again

After waiting, refresh the information in the snapshot. Since you just need
the state refreshed, you can refresh just that state information. Using this
method to refresh just what you need is faster than refreshing everything in
the PublicProcessAgent.

If the process instance controlled by this public process agent has not been
started or does not exist, print out a stack trace and return. In an application
in a production environment, error handling and recovery would happen
gracefully here.

public_process_agent.refresh(PublicProcessAgent.REFRESH_STATE);

} catch (Exception e) {

System.out.println("Couldn't refresh public process " +

"agent's state.");

e.printStackTrace();

return;

}

}

Getting the outputs from the process

Now that the process is no longer in progress, get the full details on the
process and print them out. To get the full details, you need to refresh
everything to be able to print it all out.

public_process_output.refresh.REFRESH_ALL);

APILibrary.printProcessAgentFull(public_process_agent,
process_service,

sdf);

This gives you the details on the what the process did.
34 � External API Guide

c h a p t e r�
5

Using events with processes
Read this chapter for information on using the External API to start
processes using events.

This chapter includes these sections:

� What this example does on page 36.

� About the source code for this example on page 36.

� Running this example on page 36.

� Setting up the connection and service on page 38.

� Getting the event type on page 38.

� Registering a process for this event type on page 40.

� Creating a new event on page 40.

� Setting the data for the event and post on page 41.

� Getting the execution summary on page 41.
Using events with processes � 35

What this example does

This example application shows how to start processes by creating
EventTypes and Event instances. If your EventType has not been created, it
creates one and registers the process with the EventType.

This example demonstrates:

� how to find an EventType.

� how to create a new EventType with business object data.

� how to register a process to an EventType.

� how to create a new Event.

� how to find out what happened to an Event after it was posted.

About the source code for this example

The complete source code for this example can be found under your Partner
directory.

Note: This document focuses on the most important parts of each example.
Some lines of code are not covered. The source code also includes
explanatory comments.

Running this example

Running this example is a good way to see more details about how the
External API works with Events and processes.

Before you run this example

Step 1 Make sure you have satisfied the requirements in Before you run the examples
on page 8.

On this platform The file is

Windows NT Partnernnn\com\extricity\api\example\process\
ProcessEventApp.java

UNIX Partnernnn/com/extricity/api/example/process/
ProcessEventApp.java
36 � External API Guide

Step 2 Set up a process to be started by this application. For more information about
how to set up the process, see Setting up a process for this application to start
on page 29. If you already set up this example process to run the StartApp
example, you don’t need to do it again.

Set the values of the event properties in the Example.properties file.:

Running this example

There are 2 ways to run this example, without an external ID or with one.

To run this example without an external ID:

� From the Diagnostic Shell, type this at the command line:

java com.extricity.api.example.process.ProcessEventApp

This starts the process named by the property process.name with the inputs
named by process.input_variant and process.input_bo. These inputs have
the values process.input_variant_value and process.input_bo_value,
respectively. These are the values given in the Example.properties file.

To run this example with an external ID:

� From the Diagnostic shell, type this at the command line:

java com.extricity.api.example.process.ProcesEventApp External_ID

This starts the process named by the property process.name with the inputs
named by process.input_variant and process.input_bo. These inputs have
the values process.input_variant_value and process.input_bo_value,
respectively. Any argument you give on the command line is used as an
unique external ID to the process. The process can then be queried using this
external ID.

Set this value To

event.type The EventType to use to start the process.

event.partner_id The Partner ID of your partner in this process.

event.partner_name The name of your partner in this process.

event.bo_root_name The name of the root element of this business object.

event.bo_eds_name The name of the business object element definition set.
Using events with processes � 37

An external ID can be any unique identifier, such as a unique purchase order
number or a unique material number. You can use any unique number that
make sense in the context of the process and your organization.

Note: If you don’t provide an external ID, you must use the EventRef to
retrieve the EventExecutionSummary after the Event has been posted.

Troubleshooting

If you tried to run the example and it was not successful, there are a few
things to check:

� Do you have any processes defined? You must have already defined the
processes you will register with the EventType. If you don’t, the example
will fail.

� Does your process, along with its inputs and outputs, have the same name
as in the Example.properties file?

� Are the property values for the host and port correct?

� Are the property values for the user and password correct? Does that user
already exist in the B2B Engine?

� Are both the local and B2B Engine machines accessible on the network?

� Is the External API jar file correctly set in the CLASSPATH?

� Is the B2B Engine running?

Setting up the connection and service

First, connect to the B2B Engine and get the ProcessService. For more
information about connecting to the B2B Engine, see Connecting to the B2B
Engine on page 13. For more information about getting the ProcessService
and what it does, see Getting the ProcessService on page 22.

Getting the event type

Since you’ll be starting this process with an event, you need to get the
EventType. To do this, use an EventTypeQuery object. First, create a new
EventTypeQuery object.

query = new EventTypeQuery();
38 � External API Guide

Set the name in the EventTypeQuery. Get this name from the event.type
property in the Example.properties file. The default name is New Process
Event.

query.setName(ep.lookupValue("event.type"));

Do the query with the EventTypeQuery.

event_types = process_service.getEventTypes(query);

The query will return event_types, which is a Collection. However, for the
purposes of this brief example, assume that this is a unique event and do not
iterate past the first value returned.

itr = event_types.iterator();

if(itr.hasNext()) {

event_type = (EventType) itr.next();

} else {

If the EventType was not found, create the Event with business object data.
To do this, look up the event.bo* properties from the Example.properties
file. If they’re found, print out a diagnostic listing the root element name.

BusinessObjectType bo_type;

bo_type = APILibrary.getBOType(session,
ep.lookupValue("event.bo_partner_id"),
ep.lookupValue("event.bo_partner_name"),
ep.lookupValue("event.bo_root_name"),
ep.lookupValue("event.bo_eds_name"),
null, null);

if (bo_type != null) {

System.out.println("found bo_type: " +
bo_type.getRootElementName());

If you’ve found the business object, get the BusinessObjectTypeRef, and use
that, along with the EventType from the Example.properties file to generate
a new EventType.

event_type =

process_service.newEventType(ep.lookupValue

("event.type"),

EventType.NO_TIMEOUT,

bo_type.getBusinessObjectTypeRef());

} else {
Using events with processes � 39

If you couldn’t find a business object to create the event, print a message and
create the Event with variant data.

System.out.println("Couldn't find a BO to create the event " +

"with, creating an event with variant "+

"data");

event_type = process_service.newEventType(ep.lookupValue

("event.type"),

EventType.NO_TIMEOUT);

Registering a process for this event type

Once you have the EventType, the next step is to register a process for this
EventType. Look up the process name from the Example.properties file and
get the type of that process.

PublicProcessType process =

APILibrary.getPublicProcessType(process_service,

ep.lookupValue("process.name"));

If you created the EventType with business object data, register the process
to receive business object input when it is triggered by this EventType.
Otherwise, register it with a variant input. Then, save the EventType.

if (bo_type != null) {

event_type.registerProcess(process.getPublicProcessTypeRef(),

ep.lookupValue("process.input_bo"));

} else {

event_type.registerProcess(process.getPublicProcessTypeRef(),

ep.lookupValue("process."+

"input_variant"));

}

event_type.save();

Creating a new event

After you’ve registered the process with the event type, create a new Event. If
you specified an external event ID on the command line, use it. Otherwise,
create an Event with no ID.

if (args.length > 0) {

event = process_service.newEvent(event_type.getEventTypeRef(),

ExecutionMode.TEST,

args[0]);
40 � External API Guide

} else {

event = process_service.newEvent(event_type.getEventTypeRef(),

ExecutionMode.TEST,

null);

}

Setting the data for the event and post

The last step before posting the Event is to set the data in the event. This data
is passed as an input to each of the registered processes. If you are using a
business object input for the Event, use the values set in the input_bo_data
property in the Example.properties file. Print out a diagnostic with the event
data. Note that the data is gotten as a string and cast to
BusinessObjectEventData.

APILibrary.setEventData(event,
ep.lookupValue("process.input_bo_value"));

System.out.println("event data: " + ((BusinessObjectEventData)
event.getEventData()).getValueAsString());

If there is no business object input data, the setEventData method sets variant
data for the event instead.

Post the Event.

event.post();

Getting the execution summary

After the Event is posted, get the event execution summary. If you gave an
event ID in the command line, use that to get the summary information.

if (args.length > 0) {

event_summary = process_service.

getEventExecutionSummary(event_type.getEventTypeRef(),

args[0]);

} else {

event_summary = process_service.

getEventExecutionSummary(event.getEventRef());

}

Using events with processes � 41

Print out the event summary information.

System.out.println("Creation Time: " +

event_summary.getCreationTime());

System.out.println("Event Instance ID: " +

event_summary.getEventInstanceID());

System.out.println("Event Ref: " +

event_summary.getEventRef());

System.out.println("Event State: " +

event_summary.getEventState().toString());

System.out.println("Event State Details: " +

event_summary.getEventStateDetails());

System.out.println("Execution Mode: " +

event_summary.getExecutionMode().toString());

Print out a list of processes that were started.

System.out.println("Processes that were started:");

started_processes =

event_summary.getPublicProcessInitiationSummaries();

itr = started_processes.iterator();

while(itr.hasNext()){

System.out.println((PublicProcessInitiationSummary)
itr.next());

}

Catch the exceptions and handle the errors.
42 � External API Guide

c h a p t e r�
6

Managing business objects
Read this chapter for an illustration of how to create a new
ElementDefinitionSet and BusinessObjectType from the
ExampleXML.dtd file.

This chapter includes these sections:

� What this example does on page 44.

� About the source code for this example on page 44.

� Running this example on page 44.

� Setting up the connection and services on page 45.

� Importing the element definition set on page 45.

� Creating a business object from the element definition set on page 46.
Managing business objects � 43

What this example does

This example demonstrates:

� how to import and freeze an ElementDefinitionSet.

� how to create a business object from the ElementDefinitionSet.

About the source code for this example

The complete source code for this example can be found under your Partner
directory:

Note: This document focuses on the most important parts of each example.
Some lines of code are not covered. The source code also includes
explanatory comments.

Running this example

Running this example is a good way to see how to manipulate business
objects in your application.

To run this example:

Step 1 Make sure that you’ve satisfied the requirements listed in Before you run the
examples on page 8.

Step 2 From the Diagnostic Shell, type this at the command line:

java com.extricity.api.example.document.DocumentApp

On this platform The file is

Windows NT Partnernnn\com\extricity\api\example\document\
DocumentApp.java

UNIX Partnernnn/com/extricity/api/example/document/
DocumentApp.java
44 � External API Guide

Setting up the connection and services

First, connect to the B2B Engine, and get the document and partner services.
For more information about connecting to the B2B Engine, see Connecting to
the B2B Engine on page 13. For more information about services in general,
see Using services on page 6, for more information about getting a service, see
Getting the ProcessService on page 22.

Importing the element definition set

Look up the name of the file containing the business object schema in XML
format and open up a FileInputStream for that file. Get the local partner ref.
Then, using the document service method importPartnerElementDefSet
import the element definition set. Using the document service method
getElementDefSet get the imported element definition set. Mark it as frozen.
Since it is owned by the local partner, the ElementDefSet is marked as frozen
and will not be editable. You do not need to save it.

ElementDefSetRef eds_ref = null;

ElementDefSet eds = null;

FileInputStream fis;

fis = new FileInputStream(ep.lookupValue("bo.file_name"));

local_partner_ref =
partner_service.getLocalPartner().getPartnerRef();

eds_ref = document_service.importPartnerElementDefSet(fis,
ep.lookupValue(“bo.eds_name”),
ep.lookupValue(“bo.eds_external_id”)
local_partner_ref);

eds = document_service.getElementDefSet(eds_ref);

eds.markAsFrozen();

This is not the only way to import an ElementDefinitionSet. The ways to
import an ElementDefinitionSet are:

� Use the importPartnerElementDefSet method to import an XML DTD
into a particular partner. This partner can be either a local partner or
another partner. The DTD can be any DTD. If the local partner is used,
you don’t need to freeze the ElementDefinitionSet.

� Use the importStandardElementDefSet method to import a full DTD into
the Standards directory in Partner Agreement Manager. Standards refers
to a standard, such as RosettaNet.
Managing business objects � 45

� Use the importElementDefSet method to import a business object that
was exported from Partner Agreement Manager.

Important: Before importing a DTD using the External API, you must
resolve all external entities in that DTD.

Resolving external entities in a DTD

If you attempt to import a DTD that has external entities, the import will fail.

There is a utility provided with the B2B Engine that will do that for you. The
utility is com.extricity.document.apps.dtd.InlineExternalEntities.

To resolve external entities in a DTD:

1 On the same machine as B2B Engine, make a directory or directory tree
containing the DTD and its external entities.

2 In the Diagnostic Shell, got to the directory containing the main DTD file and
type this at the command line:

com.extricity.document.apps.dtd.InlineExternalEntities mainDTDfile newDTDfile

mainDTDfile is the name of the DTD file that contains the external entities.
newDTDfile is the name of the file that will contain the DTD file with all
external entities resolved. You can then import this new DTD file into the
B2B Engine.

Creating a business object from the element

definition set

To create a business object from the ElementDefinitionSet you just imported
and froze, use the newBusinessObjectType method of the DocumentService.

BusinessObjectType bo_type = null;

bo_type = document_service.newBusinessObjectType(eds_ref,
ep.lookupValue("bo.root_name"));

bo_type.save();

Catch the exceptions and handle any errors.
46 � External API Guide

c h a p t e r�
7

Managing adapters
Read this chapter for information on how to use the External API to
manage adapters.

This chapter includes these sections:

� What this example does on page 48.

� About the source code for this example on page 48.

� Running this example on page 48.

� Setting up the connection and service on page 50.

� Importing the adapter type and implementation on page 50.

� Importing the adapter instance on page 50.

� Starting the adapter on page 51.

� Printing the adapter status on page 51.

� Extending this example on page 51.
Managing adapters � 47

What this example does

This example demonstrates:

� how to import an adapter type.

� how to import an adapter implementation.

� how to import an adapter instance.

� how to start an adapter.

� how to print an adapter's status.

This type of application is useful for moving an adapter from a test system
into a production one.

About the source code for this example

The complete source code for this example can be found under your Partner
directory.

Note: This document focuses on the most important parts of each example.
Some lines of code are not covered. The source code also includes
explanatory comments.

Running this example

Running this example is a good way to see more details about how the
External API works with adapters.

Important: Make sure you have satisfied the requirements in Before you run
the examples on page 8.

On this platform: the file is:

Windows NT Partnernnn\com\extricity\api\example\adapter\
AdapterApp.java

UNIX Partnernnn/com/extricity/api/example/adapter/
AdapterApp.java
48 � External API Guide

Running this example

There are three XML files in the adapter examples directory, one each for the
adapter type, implementation, and instance. There is also
ExampleAdapter.java, which is the source code for the adapter imported by
this example. A look at that code will show you that this adapter doesn’t
actually do anything. This example shows how to import those files and start
the adapter.

To run this example:

� From the Diagnostic Shell type this at the command line:

java com.extricity.api.example.adapter.AdapterApp

This runs the Adapter Application, which imports the adapter type,
implementation, and instance specified in the Example.properties file. If any
of these objects already exist, this application throws an exception.

Troubleshooting

If you tried to run the example and it was not successful, there are a few
things to check:

� Do you have an adapter type named Example Adapter, an adapter
implementation named Example Adapter Java Implementation or an
adapter instance named Example Adapter Instance? If so, this example will
fail, as there is a conflict between your names and the ones in the example
adapter.

� Are the property values for the host and port correct?

� Are the property values for the user and password correct? Does that user
already exist in the B2B Engine?

� Are both the local and B2B Engine machines accessible on the network?

� Is the External API jar file correctly set in the CLASSPATH?

� Is the B2B Engine running?
Managing adapters � 49

Setting up the connection and service

First, connect to the B2B Engine and get the adapter service. For more
information about connecting to the B2B Engine, see Connecting to the B2B
Engine on page 13. For more information about getting services, see Getting
the ProcessService on page 22.

Note: The adapter type, implementation, and instance are all files in the file
system. They have been exported from the B2B engine. For this example,
the adapter has already been written and this export has already been done
for you.

Importing the adapter type and implementation

To import the adapter type, look up the adapter type file name from
Example.properties and open a FileInputStream to read the input file. Then
call the importAdapterType method of the AdapterService.

FileInputStream fis = null;

fis = new FileInputStream(ep.lookupValue("adapter.type_file"));

adapter_service.importAdapterType(fis);

You import the adapter implementation in exactly the same way.

fis = new FileInputStream(ep.lookupValue("adapter.impl_file"));

adapter_service.importAdapterImplementation(fis);

Importing the adapter instance

Importing the adapter instance is similar to importing an adapter
implementation, but with one difference. After the FileImputStream is
created, the instance is imported and the return value of importAdapter, the
AdapterRef, is kept.

AdapterRef adapter = null;

fis = new FileInputStream(ep.lookupValue("adapter.inst_file"));

adapter = adapter_service.importAdapter(fis);
50 � External API Guide

Starting the adapter

Using the AdapterRef, get the AdapterAgent. Analogous to the
PublicProcessAgent used in Starting processes on page 27 and Using events
with processes on page 35, the AdapterAgent is used to control the adapter.
Use the AdapterRef, adapter to get the AdapterAgent. Then, use the
AdapterAgent to start the adapter.

AdapterAgent adapter_agent = null;

adapter_agent = adapter_service.getAdapterAgent(adapter);

adapter_agent.startAdapter();

Note: The adapter will only start if the adapter class file, pointed to by the
adapter implementation, can be found. In the example, the class file is
called ExampleAdapter.class. This class file is included in the distribution.

Since this AdapterAgent is a snapshot of information about the adapter at a
particular point in time, get it again to refresh the information, since starting
the adapter probably caused some information to change.

adapter_agent = adapter_service.getAdapterAgent(adapter);

Printing the adapter status

With the refreshed information, print out the status of the adapter.

System.out.println(adapter_agent.getName() + " status: " +

adapter_agent.getStatus());

This status indicates whether the adapter is running.

As always, catch the exceptions and do proper error handling.

Extending this example

You could extend this example to detect a suspended adapter. You could
then use the application to do a preliminary diagnosis of the problem,
perhaps attempt to fix it, and re-start the adapter.
Managing adapters � 51

52 � External API Guide

appendix�
A

Notices
This information was developed for products and services offered in the
United States. IBM may not offer the products, services, or features discussed
in this information in other countries. Consult your local IBM representative
for information on the products and services currently available in your area.
Any reference to an IBM product, program, or service is not intended to state
or imply that only that IBM product, program, or service may be used. Any
functionally equivalent product, program, or service that does not infringe
any IBM intellectual property right may be used instead. However, it is the
user’s responsibility to evaluate and verify the operation of any non-IBM
product, program, or service.

IBM may have patents or pending patent applications covering subject
matter described in this information. The furnishing of this information
does not give you any license to these patents. You can send license inquiries,
in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.
 � 53

For license inquiries regarding double-byte (DBCS) information, contact the
IBM Intellectual Property Department in your country or send inquiries, in
writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any
other country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES
THIS PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND,
EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.
Some states do not allow disclaimer of express or implied warranties in
certain transactions, therefore this statement may not apply to you.

This information could include technical inaccuracies or typographical
errors. Changes are periodically made to the information herein; these
changes will be incorporated in new editions of the information. IBM may
make improvements and/or changes in the product(s) and/or the
program(s) described in this information at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those
Web sites. The materials at those Web sites are not part of the materials for
this IBM product and use of those Web sites is at your own risk.
54 � External API Guide

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you. Licensees of
this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of
the information which has been exchanged, should contact:

IBM United Kingdom Laboratories,
Mail Point 151,
Hursley Park,
Winchester,
Hampshire,
England
SO21 2JN.

Such information may be available, subject to appropriate terms and
conditions, including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer
Agreement, IBM International Programming License Agreement, or any
equivalent agreement between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating
environments may vary significantly. Some measurements may have been
made on development-level systems and there is no guarantee that these
measurements will be the same on generally available systems. Furthermore,
some measurement may have been estimated through extrapolation. Actual
results may vary. Users of this document should verify the applicable data for
their specific environment.

Information concerning non-IBM products was obtained from the suppliers
of those products, their published announcements or other publicly available
sources. IBM has not tested those products and cannot confirm the accuracy
of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be
addressed to the suppliers of those products.
 � 55

Trademarks

The following terms are trademarks of International Business Machines
Corporation in the United States, or other countries, or both:

AIX
DB2
IBM
MQSeries
SupportPac
WebSphere

Pentium is a registered trademark of Intel Corporation in the United States
and/or other countries.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States and/or other
countries.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks
of Microsoft Corporation in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and
other countries.

Other company, product, and service names may be trademarks or service
marks of others.
56 � External API Guide

g l o s s a r y�
Glossary
action—a task performed as part of a private process. A private process action is the
equivalent of a step in a public process. See the following terms in this glossary for more
information about the action types you can include in a private process:

� approval action

� extension action

� mapping action

� notification action

� output object action

� script action

� subprocess action

� termination action

� timer action

See also private process.

adapter—the software bridge between Partner Agreement Manager processes and specific
end-system and business-application interfaces. Adapters manage interactions between
business applications and the Adapter Server. They allow private processes to interact with
external business applications while a process is running, and they allow PAM to start
public processes based on events that occur in external business applications. See also
adapter implementation, adapter instance, adapter type.
Glossary � 57

adapter implementation—the implementation declaration for an adapter type. It specifies
the name and location of the Java source file that defines the application logic used to
communicate with a specific end system through that end system’s interface. The
application logic is specified in the form of properties. See also adapter, adapter instance,
adapter type.

adapter instance—an instance of an adapter implementation. The adapter instance is used in
a private process extension action and provides the specific values to be used for the
properties declared in the adapter implementation. See also adapter, adapter
implementation, adapter type, extension action.

adapter type—a definition that is stored in XML format and specifies the adapter’s properties
as well as the operations and events it supports. A single adapter type can have multiple
implementations, and each implementation can have multiple instances. See also adapter,
adapter implementation, adapter instance.

approval action—a private process action that you use to ask for a response from a user before
letting the process continue to run. You can use an approval action, for example, to ask for
an OK when a purchase order exceeds a predetermined amount. See also private process.

business object—a message transmitted as part of a public process. Business objects take the
form of purchase orders, acknowledgments, requests for clarification, and so on. See also
business object type.

business object type—a definition that determines the types of information a message can
contain. It has three properties: the top-level element in its element definition set, its key
field, and whether instances of it return audit information for non-repudiation purposes.
The name of the business object type is the name of the element you select as its top-level
element. See also business object, element definition set, non-repudiation.

business object variable—one of the two types of variables used in Partner Agreement
Manager to store information within a process. Business object variables create an instance
of a business object type. They can be used to store, for example, the outputs from
extension actions, the inputs for map actions, or the inputs and outputs for subprocesses.
See also business object, business object type, extension action, variant variable.

CA—see certificate authority.
58 � External API Guide

certificate—a security document that binds a public encryption key to an entity (an
individual or organization) known as the principal. The security document (a digital
certificate) is signed by another entity known as the issuer. A digital certificate for which
both the principal and issuer are the same entity is known as a self-signed certificate. A
certificate for which the principal and issuer are different entities is issued by a certificate
authority (CA) like VeriSign and is known as a CA-issued (or third-party-signed)
certificate. Partner Agreement Manager supports both self-signed and CA-issued
certificates. PAM also supports the binding of certificates to be used for signature
authentication, message encryption, and SSL authentication for channels other than
Partner Agreement Manager. See also certificate authority, SSL.

certificate authority—a trusted third-party organization or company that issues digital
certificates used to create digital signatures and public-private key pairs. The role of the
certificate authority, or CA, is to authenticate the entities (individuals or organizations)
involved in electronic transactions. CAs are a critical component in data security and
electronic commerce because they guarantee that the two parties exchanging information
are really who they claim to be. See also certificate.

channel—a communications mechanism that encapsulates all the processing information
needed to send messages to a partner’s system, as well as to translate data received from a
partner into Partner Agreement Manager messages. PAM provides channels for
RosettaNet, EDI, cXML, and other systems and protocols. See also message.

digital certificate—see certificate.

DTD—Document Type Definition. A type of file associated with SGML and XML documents
that defines how the formatting tags should be interpreted by the application presenting
the document. In Partner Agreement Manager, a DTD file contains the complete
description of a business object type’s element definition set. See also business object,
business object type, element definition set.

element definition set—a collection of data fields (or elements) or groups of data fields that
defines the structure and meaning of a business object type. See also business object, business
object type.

encryption certificate—see certificate.

event—a piece of information that comes into Partner Agreement Manager as a message from
another source (an enterprise system or business application, for example) and triggers a
public process. See also message.
Glossary � 59

event push—a method that uses the HTTP POST mechanism to push events into Partner
Agreement Manager as a way to trigger processes. A port on the Process Server is set to
listen for events in the form of HTTP POST messages. When a message is detected, PAM
uses the information in the message to generate an event. See also event.

extended enterprise—a business model under which companies that work together as
partners function as efficiently as a single organization through the implementation of
automated communication technologies.

extension action—a private process action that communicates via an adapter with an external
application that is registered with Partner Agreement Manager. You can use an extension
action, for example, to launch a spreadsheet application, perform calculations, and update
the enterprise system, or to get information from an enterprise system or listen for an event
in the enterprise system. See also adapter, private process.

LDAP—Lightweight Directory Access Protocol. LDAP provides a standard method for
accessing information from a central directory. After user authentication is set up in the
LDAP directory, applications that use the LDAP protocol can retrieve the information
from that directory. An authenticated user can log in to any application that supports the
LDAP protocol with the same user name and password.

linked certificate—see certificate.

map—a Java Script or VBScript that inserts data into fields in an output business object type
generated by a private process. The map specifies which fields in the output business object
type receive data, and it identifies the information source.

map method—a reusable logical block of code that inserts data into a particular type of
element or element sequence in a business object type. Within a map method, you can
write the expressions that map individual input and output fields in the sequence. Or you
can create a submap and drag input fields to output fields and have Partner Agreement
Manager create the appropriate mapping expressions. See also map, submap.

mapping action—a private process action that you use to call a map. The map specifies the
fields in a business object type that will receive data extracted from another source. You use
a mapping action when you want to extract data from one business object type and insert
it in a different business object type. For example, you use a mapping action to transform
a purchase order generated by your inventory system into a sales order in a format that
your partner expects. See also map, private process.
60 � External API Guide

message—a structured communication used to pass information and control to another
partner in a public process. The action in the process passes to the partner who receives the
message. The content of a message is determined by its business object type. A message can
be transmitted via synchronous or asynchronous methods, as determined by its
communication service type. See business object type.

non-repudiation—a business object security feature that authenticates instances of a business
object type and maintains an audit record to verify that they were received by the intended
recipient. For business object instances that you receive, Partner Agreement Manager
authenticates each instance and maintains an audit record to verify that the instance
actually originated with the stated originator. If you disable auditing for a business object
type, non-repudiation support is disabled for all messages that contain instances of that
business object type.

notification action—a private process action that you use to send an e-mail, fax, or pager
message to addressees that you specify. You use a notification action to inform someone
inside or outside your organization that an event has occurred. For example, you can use a
notification action to alert the order entry department when a purchase order arrives from
a customer. See also private process.

output object action—a private process action that you use to bind a business object to the
expected output object and path in a public process. You use an output object action at the
point in a private process when you are ready to send a business object to the associated
public process. This is typically the last action in the private process. See also private process.

partner group—a group of partners that perform the same role in a process at different times.
Instead of duplicating a public process and substituting a different partner name, you can
set up a partner group for the public process and then designate a specific partner as the
participant when you start an instance of the process. For example, you might design a
generic purchasing process that works equally well with any of your suppliers and then
designate the appropriate partner when you start the process.

partner profile—information that identifies an organization, specifies a contact person in
that organization, lists the communication services the organization supports, and defines
the organization’s security profile. When partners agree to participate in a public process,
they must exchange profile information as a way to ensure authenticity before they can
proceed.
Glossary � 61

PIP—Partner Interface Process. RosettaNet PIPs are specialized system-to-system XML-
based dialogs that define business processes between supply-chain partners and provide
models and documents for the implementation of e-commerce standards. Each PIP
includes a technical specification based on the RosettaNet Implementation Framework
(RNIF), a message guideline document with a PIP-specific version of the business
dictionary, and an XML message guideline document. See also RosettaNet.

post method—the last block of code that is executed when a mapping action runs. Its only
parameter is the output business object. You use the post method when you need to
perform post-processing on the output business object. For example, you might use the
post method to set the value of a summary field based on the number of line items in the
output business object, or to examine a range of dates in a repeated group, extract the most
recent date, and post that date in a header field. See also mapping action, pre method.

pre method—the first block of code that is executed when a mapping action runs. The pre
method’s parameters are the map inputs. You use the pre method to access a map’s inputs
and set global variables based on their content. See also mapping action, post method.

private process—a task or set of tasks that business partners participating in a public process
perform at points where they need to take action internally. Partners participating in a
public process must implement a private process for each public process step that they
own. A private process begins with input from the public process and ends with output that
feeds back into the public process. The input can be the receipt of a business object from a
partner, or it can be a triggering event from an internal system. The output is the business
object that transfers control back to the public process. See also action, process, public
process.

private process action—see action.

process—the flow of actions and the exchange of business information between partners in
an extended enterprise. A process operates on two levels, public and private. See extended
enterprise, private process, public process.

public process—the step-by-step flow of messages, events, and actions between two or more
business partners. Public processes are set up by agreement between partners, and each step
in a public process has a private process associated with it. A public process is developed by
one partner, and all the partners who participate in it must review and approve it before it
can be implemented. The partner who designs a public process is its owner. See also private
process, process.

RosettaNet—a consortium of major information technology, electronic components, and
semiconductor manufacturing companies that is working to create and implement
industry-wide, open e-business process standards. See also PIP.
62 � External API Guide

script action—a private process action that consists of a script written in VBScript or
JavaScript and is designed to manipulate information or set up conditional actions based
on input. You use a script to establish decision-making criteria for branches or loops, to set
variables, or to calculate values that are used elsewhere in the private process. See also
private process.

security certificate—see certificate.

self-signed certificate—see certificate.

signature certificate—see certificate.

SSL—Secure Sockets Layer. The SSL protocol is a security protocol that provides for
communications privacy and reliability over the Internet. The protocol allows client/server
applications to communicate in a way that is designed to prevent eavesdropping,
tampering, or message forgery.

submap—a secondary level map that is called by a map method to insert data into an output
element other than the top-level element. See map, map method.

subprocess action—a private process action you use to call an existing public process. You
can call any public process in which your organization owns the first partner action. For
example, you can use a subprocess to get a quote approved by a third-party supplier before
responding to a customer. See also private process.

termination action—a private process action that you use to stop a process at a
predetermined point for a reason that you specify. You can use a termination action to deal
with errors in data that might prevent a process from completing successfully. For example,
you might want to stop a process in cases where an enterprise system passes incomplete or
corrupted information to it. See also private process.

third-party-signed certificate—another name for a CA-issued certificate. See certificate.

timer action—a private process action that you use to insert a pause. You can use a timer
action to specify the period of time you want to elapse before the next action in the process
starts. See also private process.

variant variable—single field variables. Variant variables store text strings—the type of
information contained in a single field element. You can use variant variables to store the
input for actions, to set flags (such as the time-out flag for an approval action), to move
information within scripts, or to store the results of an approval action. See also business
object variable.
Glossary � 63

64 � External API Guide

i n d e x�
Index
A

adapter implementation, importing 50
adapter instance, importing 50
adapter service package

described 5
adapter type, importing 50
adapter, starting 51
AdapterApp.java file 48
admin service package

described 3
APILibrary.java file 11
AuditApp.java file 20

B

business objects
creating 46

C

CLASSPATH
setting 8

com.extricity.adapter.api package 3
com.extricity.admin.api package 3
com.extricity.api package 3
com.extricity.api.rmi package 3
com.extricity.document.api package 3
com.extricity.partner.api package 3
com.extricity.process.api package 3

connecting to the B2B engine 15
connection properties 15

setting 8
creating a business object 46

D

document service package
described 5

DTD
resolving external entities 46

E

ElementDefinitionSet, importing 45
event.bo_eds_name property 37
event.bo_root_name property 37
event.partner_id property 37
event.partner_name property 37
event.type property 37
EventExecutionSummary 38
EventRef 38
examples

using 8
execution mode 32
External API

overview 2
packages 3

external ID 37
Index � 65

external ID, for process 30

I

input business object, setting 33
input variants

setting 32

J

Java classes
common 11
importing 9

L

logging in to the B2B engine 16
logging out from the B2B engine 16

M

methods
printPublicProcessAgent 24
PublicProcessAgent.refresh 24
session.isLoggedIn 16
session.login 16
session.logout 16

P

packages
adapter service package 5
admin service package 3
com.extricity.adapter.api 3
com.extricity.admin.api 3
com.extricity.api 3
com.extricity.api.rmi 3
com.extricity.document.api 3
com.extricity.partner.api 3
com.extricity.process.api 3
document service package 5
in the External API 3
partner service package 4
process service package 4
session service package 3

partner service package
described 4

printPublicProcessAgent method 24
process service package

described 4
process, state 33
ProcessService 22, 24

ProcessServiceFactory 22
ProcessStartApp.java file 28
properties

event.bo_eds_name 37
event.bo_root_name 37
event.partner_id 37
event.partner_name 37
event.type 37

property values, getting 17
PublicProcessAgent 23, 24, 31, 34
PublicProcessAgent.refresh method 24, 34
PublicProcessRef 23, 32
PublicProcessRef, described 21
PublicProcessType 31
PublicProcessTypeRef 31

Q

queries
using 7

R

RMIClientSession 15

S

ServiceFactories
described 6

services
using 6

session service package
described 3

session.isLoggedIn method 16
session.login method 16
session.logout method 16
SessionExample.java file 14
sessions

using 5
StartProcess.java file 36, 44
state, of process 33
66 � External API Guide

	Welcome to the External API Guide
	Who should use this information
	Related information

	Summary of changes
	Introducing the External API
	About the External API
	Session service package
	Admin service package
	Process service package
	Partner service package
	Document service package
	Adapter service package

	Using sessions
	Using services
	Getting the service from the service factory

	Using queries
	Using the examples
	Before you run the examples
	Importing Java classes in the examples
	Classes that are common to the examples

	Connecting to the B2B Engine
	What this example does
	About the source code for this example
	Running this example
	Troubleshooting

	Connecting and logging in to the B2B Engine
	Getting the connection properties
	Logging in
	Logging out

	Getting property values
	Extending this example

	Auditing processes
	What this example does
	About the source code for this example
	Running this example
	Before you run this example
	Running this example
	Troubleshooting

	Getting the ProcessService
	Getting information about all public processes
	Using PublicProcessAgents

	Getting information on particular public processes
	Extending this example

	Starting processes
	What this example does
	About the source code for this example
	Running this example
	Before you run this example
	Running this example
	Troubleshooting

	Getting process information
	Getting the PublicProcessAgent
	Setting the inputs
	Setting the input variants
	Setting the input business object

	Starting the process instance
	Checking on the state of the process
	Getting the outputs from the process

	Using events with processes
	What this example does
	About the source code for this example
	Running this example
	Before you run this example
	Running this example
	Troubleshooting

	Setting up the connection and service
	Getting the event type
	Registering a process for this event type
	Creating a new event
	Setting the data for the event and post
	Getting the execution summary

	Managing business objects
	What this example does
	About the source code for this example
	Running this example
	Setting up the connection and services
	Importing the element definition set
	Resolving external entities in a DTD

	Creating a business object from the element definition set

	Managing adapters
	What this example does
	About the source code for this example
	Running this example
	Running this example
	Troubleshooting

	Setting up the connection and service
	Importing the adapter type and implementation
	Importing the adapter instance
	Starting the adapter
	Printing the adapter status
	Extending this example

	Notices
	Trademarks

	Glossary
	Index

