.||I

CICS® Transaction Server for OS/390®

CICS Diagnosis Reterence

Release 3

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

LY33-6088-02 © Copyright IBM Corp. 1980, 1999

.||I

CICS® Transaction Server for OS/390®

CICS Diagnosis Reterence

Release 3

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

LY33-6088-02 © Copyright IBM Corp. 1980, 1999

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

Note!

Before using this information and the product it supports, be sure to read the general information under “Notices” on page xxi.

Third edition (March 1999)

This edition applies to Release 3 of CICS Transaction Server for 0S/390, program number 5655-147, and to all subsequent versions, releases,
and modifications until otherwise indicated in new editions. Make sure you are using the correct edition for the level of the product.

This edition replaces and makes obsolete the previous edition, LY33-6088-00. The technical changes for this edition are summarized under
"Summary of changes" and are indicated by a vertical bar to the left of a change.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are not stocked at the address
given below.

At the back of this publication is a page entitled “Sending your comments to IBM”. If you want to make comments, but the methods described
are not available to you, please address them to:

IBM United Kingdom Laboratories, Information Development,
Mail Point 095, Hursley Park, Winchester, Hampshire, England, SO21 2JN.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any way it believes appropriate
without incurring any obligation to you.

© Copyright International Business Machines Corporation 1980, 1999. All rights reserved.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

Contents
Notices e XXi
Trademarks XXii
Preface e XXiii
What this book is about Xxiii
Who this book is for XXiii
What you need to know to use thisbook XXiii
Determining if a publication is current oL XXili
Notes on terminology XXV
Book structure XXV
CICS Transaction Server for OS/390 XXV
CICS books for CICS Transaction Server for OS/390 XXV
CICSPlex SM books for CICS Transaction Server for OS/390 XXVi
Other CICS books e XXVi
Summary of changes XXVii
Changes for this CICS Transaction Server for OS/390 Release 3 edition XXVii
Changes for the CICS Transaction Server for 0S/390 Release 2 edition XXVii
Changes for the CICS/ESA 4.1 edition XXVii
Changes for the CICS/ESA 3.3 edition XXViii
Part 1. Introduction 1
Chapter 1. CICS domains e 3
Domain gates e 4
Functions provided by gates 4
Specific gates, generic and call-back gates 0. 4
Domain call formats 4
Ownership of formats 4
TOKeNS . . . e 5
Responses 5
Chapter 2. Application domaino 7
Part 2. CICS components 9
Chapter 3. Application domain (AP) 11
Application domain’s specific gateso Lo 11
Application domain's generic gateso o 42
Application domain’s generic formats Lo Lo 42
Control blocks e 43
Modules e 44
EXits e 44
Trace . . . 44
Chapter 4. AP domain initialization program 45
Modules e 45
EXItS e 45
Trace 45
Chapter 5. AP domain KC subcomponent a7
Design overview e a7
Control blocks e 47
LY33-6088-02 © Copyright IBM Corp. 1980, 1999 ili

iv

CICS Diagnosis Reference

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

Modules e 47
EXits e a7
Trace . . . 47
Dumps . . . 48
External interfaces 48
Statistics e 48
Chapter 6. AP domain termination program 49
Design overview L 49
Modules e 49
EXits e 49
Trace . . . e e 49
Chapter 7. Autoinstall for terminals, consoles and APPC connections 51
Design overview e 51
Modules 56
Diagnosing autoinstall problems 56
Diagnosing console autoinstall problems L. 57
VTAM eXitsS e 58
Trace 58
Chapter 8. Autoinstall terminal model manager 59
Functions provided by the autoinstall terminal model manager 59
Modules e 61
EXItS . . . e 61
Trace e 61
Chapter 9. Basic mapping support 63
Design overview e 63
Control blocks e 64
Modules e 65
Copy books e 77
EXitso e 77
Trace . . . 77
Chapter 10. Builders 79
Design overview 79
Control blocks e 92
Modules e 93
Diagnosing problems with the builders o o000 96
EXits e 96
Trace . . . 96
Messages 97
Chapter 11. Built-in functions L 99
Design overview L e 99
Modules e 99
EXits e 99
Trace . . . 99
Chapter 12. Business Application Manager domain (BAM) 101
Business application manager domain’s specificgate 101
Business application manager domain’s generic gates 114
Modules e 114
EXItS . . . e 115
Trace 116
Chapter 13. CICS-AD/Cycle Language Environment/370 interface 117
Design overview e 117

LY33-6088-02 © Copyright IBM Corp. 1980, 1999

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

Control blocks
Modules
Exits
Trace
External interfaces

Chapter 14. CICS catalog domains (GC/LC)

CICS catalog domains’ specific gate
CICS catalog domains’ generic gate
Modules,
Exits

Chapter 15. CICS-C/370 interface
Design overview
Control blocks
Modules

Trace

Chapter 16. CICS-DB2 Attachment Facility

Design overview
Control blocks
Modules
Exits
Trace
Statistics

Chapter 17. Command interpreter
Design overview
Modules

Chapter 18. CSD utility program (DFHCSDUP)
Design overview
Modules L.

Trace
Statistics

Chapter 19. Database control (DBCTL) .
Design overview
Control blocks
Modules L.
Exits

Chapter 20. Data interchange program .
Design overview
Modules

Chapter 21. Directory manager domain (DD)

Directory manager domain’s specific gates .
Directory manager domain’s generic gates .
Exits

LY33-6088-02 © Copyright IBM Corp. 1980, 1999

Contents

\Y

Vi

CICS Diagnosis Reference

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

Chapter 22. Dispatcher domain (DS)o 157
Dispatcher domain’s specificgates Lo 157
Dispatcher domain’s genericgateso 166
Dispatcher domain’s generic formatso 167
Modules L 167
EXItS . . . e 168
Trace 168
Chapter 23. Distributed program link oL o 169
Modules e 169
EXItS . . . e 169
Trace . . .o 170
Chapter 24. Distributed transaction processing 171
Design overview e 171
Modules 172
EXItS . . . 176
Trace 176
Chapter 25. DL/l database support 177
Design overview e 177
Control blocks L 178
Modules 178
EXItS . . . e 179
Trace 179
Chapter 26. Document Handler domain (DH) 181
Document Handler domain’s specific gates 181
Document Handler domain’s generic gates 188
Modules e 189
EXits e 190
Trace . . . e 190
Chapter 27. Domain manager domain (DM) 191
Domain manager domain’s specific gateso 191
Domain manager domain’s generic gates Lo 195
Domain manager domain’s generic formats 195
Modules e 196
EXits e 196
Trace . . . 196
Chapter 28. Dump domain (DU) 197
Design overview L e 197
Dump domain’s specific gates 197
Dump domain’s generic gates 212
Control blocks e 214
Modules L 215
Copy boOKS 216
EXItS . . . e 216
Trace 216
Dumps . . e 216
Chapter 29. Dump utility program (DFHDU530) 217
Design overview L L 217
Modules 218
Copy books e 218
EXItS . . . 218
Trace 218

LY33-6088-02 © Copyright IBM Corp. 1980, 1999

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

Chapter 30. Dynamic allocation sample program (IBM 3270 only) 219
Design overview L e 219
Control blocks 220
Modules L 220
EXits e 220
Trace . . . 220
External interfaces 220
Chapter 31. Enqueue Domain (NQ) 221
Engqueue domain's specific gates Lo 221
Enqueue domain’s generic gateso 230
Modules e 231
EXits e 231
Trace . . . e 231
Chapter 32. Event manager domain (EM), 233
Event manager domain’s specificgates 233
Event manager domain’s genericgates L 238
Modules 238
EXItS . . . e 239
Trace e 239
Chapter 33. EXEC interfaceo 241
Design overview L e 241
Control blocks 241
Modules e 242
EXitS e 247
Trace . . . 247
Chapter 34. Execution diagnostic facility (EDF) 249
Design overview e 249
Modules e 249
EXits e 250
Trace . . . 250
Chapter 35. Extended recovery facility (XRF) 251
Design overview L 251
Control blocks 251
Modules e 251
EXits e 251
Trace . . . 251
Chapter 36. External CICS interface 253
Design overview L e 253
Modules e 255
EXits e 255
Trace . . . 255
Chapter 37. Field engineering programo 257
Design overview L L e 257
Modules e 257
EXItS e 257
Trace . . . e e 257
Chapter 38. Filecontrol 259
Design overview e 259
Control blocks e 266
Modules 273
Parameter lists L 295

LY33-6088-02 © Copyright IBM Corp. 1980, 1999 Contents Vil

viii

CICS Diagnosis Reference

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

File Control's call back gates 321
EXits e 321
Trace . . . 322
Chapter 39. Front end programming interface (FEPI) 323
Design overview L e 323
Control blocks e 325
Dump . . 325
FEPl and VTAM 330
Modules e 331
Chapter 40. Function shipping 333
Design overview L 333
EXits e 342
Trace 342
Chapter 41. “Good morning” message program 343
Design overview e 343
Modules 343
EXItS . . . 343
Trace 343
Chapter 42. Interregion communication (IRC) 345
Design overview L L e 345
Control blocks 345
Modules e 348
EXitS e 351
Trace . . . 351
Chapter 43. Intersystem communication (ISC) 353
Chapter 44. Interval control 355
Design overview 355
Control blocks L 355
Modules e 356
EXitsS e 356
Trace . . . e 356
Chapter 45. Kernel domain (KE) 357
Kernel domain’s specificgates oo 357
Kernel domain’s generic formats Lo 368
Control blocks 368
Modules e 370
EXits e 370
Trace . . . 370
Chapter 46. Loader domain (LD) 371
Loader domain’s specificgate 371
Loader domain's generic gateso 377
Modules e 377
EXits e 378
Trace . . . e 378
Chapter 47. Lock manager domain (LM) 379
Lock manager domain’s specificgate L. 379
Lock manager domain’s genericgates 380
Modules 380
EXItS . . . 380
Trace 381

LY33-6088-02 © Copyright IBM Corp. 1980, 1999

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

Chapter 48. Log manager domain (LG) e

Log manager domain’s specific gates
Log manager domain’s generic gates
Log manager domain’s call back gates

Log manager domain’s call back format
Modules
Exits

Chapter 49. Master terminal program
Design overview

Modules
Exits

Chapter 50. Message domain (ME)
Message domain’s specific gates
Message domain’s generic gate

Modules
Exits

Chapter 51. Message generation program
Design overview

Modules
Exits

Chapter 52. Message switching
Design overview
Control blocks

Trace

Chapter 53. Monitoring domain (MN)

Monitoring domain’s specific gates
Monitoring domain’s generic gates
Modules

Chapter 54. Multiregion operation (MRO) C

Chapter 55. Node abnormal condition program
Design overview
Control blocks

Modules
Exits
Trace

Statistics

Chapter 56. Node error program
Design overview

Modules
Exits

LY33-6088-02 © Copyright IBM Corp. 1980, 1999

Modules

Contents X

X

CICS Diagnosis Reference

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

Chapter 57. Parameter manager domain (PA) 427
Parameter manager domain’s specific gate oL 427
Parameter manager domain’s genericgate Lo 428
Modules e 428
EXits e 428
Trace . . . 428
Chapter 58. Partner resource manager e 429
Functions provided by the partner resource manager 429
Modules e 431
EXits e 431
Trace . . . e e 431
Chapter 59. Program control 433
Design overview e 433
Modules 433
EXItS . . . 434
Trace 434
Chapter 60. Program error program i e e e 435
Design overview e 435
Control blocks L 435
Modules 435
EXItS . . . e 435
Trace 435
Chapter 61. Program manager domain (PG) 437
Program manager domain’s specificgates 437
Program manager domain’s generic gates 453
Modules e 453
EXits e 454
Trace . . . e 454
Chapter 62. Program preparation utilites 0L 455
Design overview 455
Modules e 455
EXits e 455
Trace . . . 455
Chapter 63. Recovery Manager Domain (RM) 457
Recovery Manager Domain’s specific gates 457
Recovery Manager domain’s generic gates 473
Recovery Manager domain’s call back formats 474
Modules e 479
EXits e 480
Trace . . . 480
Chapter 64. RRMS domain (RX) 481
RRMS domain's specificgates 481
Modules e 482
EXits e 482
Trace . . . e 482
Chapter 65. Remote DL/l 483
Design overview e 483
Control blocks 483
Chapter 66. Resource definition online (RDO) 485
Design overview 485

LY33-6088-02 © Copyright IBM Corp. 1980, 1999

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

Modules e 485
EXits e 486
Trace . . . 486
Chapter 67. SAA Communications and Resource Recovery interfaces 487
Design overview L e 487
Functions provided by the CPl component 488
Modules e 489
EXits e 489
Trace . . . 489
Chapter 68. Scheduler Services domain(SH) 491
Scheduler services domain’s specificgate L. 491
Scheduler service domain’s generic gateso 493
Modules 494
EXItS . . . e 495
Trace 495
Chapter 69. Security manager domain 497
Security manager domain’s specificgateso L 497
Security manager domain’s genericgateso 510
Modules 510
EXItS . . . 510
Trace 511
External interfaces 511
Chapter 70. Sign-on component 513
Sign-on component’s subroutines Lo 513
Modules e 518
EXits e 518
Trace . . . 518
Chapter 71. Statistics domain (ST)o 519
Statistics domain’s specificgate 519
Statistics domain’s generic gateso 521
Statistics domain’s generic format Lo Lo 521
Modules e 522
EXits e 522
Trace . . .o 522
Chapter 72. Statistics utility program (DFHSTUP) 523
Design overview L e 523
Modules e 524
Chapter 73. Storage control macro-compatibility interface 525
Design overview L e 525
Modules e 525
EXits e 525
Trace . . . 525
Chapter 74. Storage manager domain (SM) 527
Storage manager domain’s specificgates L 527
SMSR gate, UPDATE_SUBSPACE_TCB_INFO function 535
Storage manager domain’s generic gateso 535
Storage manager domain’s generic formato L 536
Modules 536
EXItS . . . 537
Trace 537

LY33-6088-02 © Copyright IBM Corp. 1980, 1999 Contents Xi

Xii

CICS Diagnosis Reference

Chapter 75. Subsystem interface
Functional overview
Design overview
Control Blocks
Modules
Exits
Trace
External interfaces

Chapter 76. Subtask control
Design overview
Control blocks
Modules
Exits
Trace
External interfaces

Chapter 77. Syncpoint program
Design overview
Control blocks
Modules
Exits

Chapter 78. System dump formatting program
Design overview
Modules
Exits
Trace
External interfaces

Chapter 79. System recovery program ..
Design overview
Modules
Exits

Chapter 80. System spooler interface o
Design overview L.
Modules L.

Chapter 81. Table manager
Design overview
Control blocks
Modules
Exits
Trace
Statisticso

Chapter 82. Task-related user exit control

Functional overview
Design overview
Control blocks
Modules
Exits
Trace
External interfaces

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

LY33-6088-02 © Copyright IBM Corp. 1980, 1999

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

Chapter 83. Task-related user exit recovery 567
Design overview L e 567
Modules e 568
EXits e 568
Trace . . . 568
External interfaces L 569
Chapter 84. Temporary storage domain (TS) 571
Temporary storage domain’s specificgates 571
Temporary storage domain’s genericgates 581
Modules e 581
EXits e 582
Trace . . . s 582
Chapter 85. Terminal abnormal condition program 583
Design overview e 583
Modules 584
EXItS . . . e 584
Trace 584
Chapter 86. Terminal control 585
Design overview e 585
Control blocks 598
Modules 600
EXItS . . . e 601
Trace 601
Chapter 87. Terminal error program 603
Design overview 603
Modules e 603
EXits e 603
Trace . . . 603
Chapter 88. Timer domain (TI) 605
Timer domain’s specific gate Lo 605
Timer domain’s generic gate L 606
Timer domain’s generic formato Lo 606
Modules e 607
EXits e 607
Trace . . . 607
Chapter 89. Trace control macro-compatibility interface 609
Design overview L e 609
Modules e 609
EXits e 609
Trace . . . 609
Chapter 90. Trace domain (TR) 611
Design overview L L e 611
Trace domain’s specific gates 614
Trace domain’s generic gates 618
Control blocks e 618
Modules e 619
Copy booKs 619
EXItS . . . e 619
Trace 619
DUMpPS . . e e 619
Chapter 91. Trace formatting 621

LY33-6088-02 © Copyright IBM Corp. 1980, 1999 Contents Xili

Xiv

CICS Diagnosis Reference

Design overview
Control blocks
Modules L.
Exits

Chapter 92. Transaction Failure program
Design overview
Modules

Chapter 93. Transaction manager domain (XM)
Transaction manager domain’s specific gates
Transaction manager domain’s generic gates
Transaction manager domain’s generic format
Modules
Exits

Chapter 94. Transaction restart program .
Design overview
Control blocks
Modules

Trace

Chapter 95. Transaction routing
Design overview
Control blocks
Modules
Exits

Chapter 96. Transient data control Ce
Design overview
Modules L.
Exits

Chapter 97. User domain
User domain’s specific gates
User domain’s generic gates
Modules
Exits

Chapter 98. User exit control
Design overview
Control blocks
Modules

Chapter 99. VTAM generic resource C
Design Overview
Generic resource and LU6.1/LU6.2
Ending affinites
Generic resource and ATI

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

LY33-6088-02 © Copyright IBM Corp. 1980, 1999

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

Modules L 687
Problem solving for generic resourceo 687
Chapter 100. VTAM LU6.2 691
Design overview L e 691
Modules e 693
EXits e 697
Trace . . . 697
Chapter 101. VTAM persistent sessionso 699
Design overview L e 699
Modules e 702
Diagnosing Persistent Sessions Problems L. 703
Persistent Sessions status byte (TCTE_PRSS) 705
Bid status byte (TCTE_BID_STATUS) 706
Summary of persistent sessionwaits 707
VTAM eXitS e 707
Traceo 708
Statistics e 708
Chapter 102. WTO and WTOR e 709
Design overview e 709
Modules 709
EXItS . . . e 709
Trace 709
Chapter 103. CICS Web Interface and CICS business logic interface 711
Design overview e 711
Control blocks 711
Modules e 711
EXits e 712
Trace . . . 712
Part 3. CICS modules 713
Chapter 104. CICS directory 715
Classification of elements L 715
Optional listings 716
Contents of the distribution tapeso 717
Chapter 105. CICS link-edit information 807
CICSload modules 808
CICS object modules 820
Chapter 106. CICS executable modules 845
Index e 895
Sending your comments to IBMo Lo 897
LY33-6088-02 © Copyright IBM Corp. 1980, 1999 Contents XV

Figures

XVi

CICS Diagnosis Reference

©CoOoNOO~ODNE

10.

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

CICS organization—domains 3
AP domain—major COmponents 8
Main fields of the Common system area (CSA 43
Main fields of the CSA optional features list (CSAOPFL 43
AP domain termination program interfaces L. 49
Transaction-routing flow for non-APPC devices 56
Control blocks associated with basic mapping support (BMS) 65
Modules associated with basic mapping support (BMS) 67
Data stream build interfaces oL Lo 68
Non-3270 input mapping interfaces 68
Mapping control program interfaces 69
LU1 printer with extended attributes mapping program interfaces 70
3270 mapping program interfaces o 71
Page and text build program interfaces 72
Partition handling program interfaces 73
Route list resolution program interfaces 74
Terminal page processor interfaces 75
Undelivered messages cleanup program interfaces 75
Page retrieval program interfaces oL 76
Top-level view of the components participating in TCTTE creation 80
Major active components in the INSTALL process 81
Flow of control fora build 83
TCTTE structure 84
Pattern structureo 85
Patterns and subpatterns Lo 85
The builder stub 85
Major active components in the DELETE process 86
Flow of control for areinstall L. 87
Create/delete state diagramo 89
A general hierarchy 89
Simple example showing recursion L 90
The recovery record L 92
Action block and action elements (audit trail) L. 92
TCTTE layout o 93
Calling sequence of builders (determined by patterns) 94
CICS-AD/Cycle Language Environment/370 interface components 117
CICS-C/370 interface componentso 129
Overview of the CICS DB2 attachment facility 133
The major components of the CICS-DBCTL interface 143
Some control blocks used for DBCTL support 149
Data interchange program interfaces L. 151
Overview of program link 169
Distributed transaction processing for MRO and LU6.1 171
Distributed transaction processing for mapped conversations in LU6.2 171
Distributed transaction processing for unmapped conversations in LU6.2 172
Distributed transaction processing of LU6.2 receive requests 175
CICS-DL/l interfaces e 177
Control blocks for DL/l database support 178
DL/l parameter interface list (DLP) 178
Module flow of DL/l requests to the DL/I call processors 179
CICS dump domain structure 197
Format of the system and transaction dump tables and browse token table . . . 215
Dump utility program interfaces L L 217
EXEC interface block (EIB) 241
EXEC interface communication area (EIC) 242

LY33-6088-02 © Copyright IBM Corp. 1980, 1999

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

56. EXEC interface storage (EIS)o 242
57. Extended recovery facility supporto 251
58. External CICS interface, CALL-level APl 254
59. External CICS interface, EXEC-level APl 254
60. Control blocks associated with file control 267
61. Main file control modules and their interfaces 275
62. FEPI application programming command flows 323
63. FEPI system programming command flows 324
64. Logic flow within the FEPl adapter 324
65. Interaction of the FEPI adapter and Resource Manager 324
66. FEPI control block relationships L. 325
67. CICS function shipping 333
68. Task's view of CICS function shipping TCTTEs 335
69. Transformer storage area (XFRDS) fields 336
70. Overview of CICS function shipping 337
71. Overview of CICS function shipping of DL/l requests 340
72. CICS/MRO terminal control layer of control blocks 346
73. Cross-region block (CRB) 347
74. Interregion SVC layer of control blocks interfaced by the DFHIR macro 347
75. Control blocks accessed by CICS/MRO terminal-control layer of control blocks
and by interregion SVC layer of control blocks 348
76. Location of control blocks in MVS virtual storage 348
77. Interregion communication L 348
78. Interval control element (ICE) 355
79. MVS TCB structure used by CICS 369
80. Message-switching interfaces o 411
81. NACP error code processing 422
82. Some control blocks used for remote DL/l support 483
83. Remote scheduling block (RSB) L. 484
84. RDOiinterfaces 485
85. SAA Communications application request processing 487
86. SAA Resource Recovery application request processing 488
87. Control blocks associated with the subsystem interface 540
88. Example ofahashtable L. 558
89. Table manager control blockso 560
90. Task-related user exit control flowo 563
91. Control blocks associated with task-related user exits 564
92. Control blocks used during the lifetime of a task-related user exit 564
93. TACP message construction matrix 584
94. TACP default error handlingo o 584
95. Terminal control resource managerso 587
96. Terminal control interfaceso 587
97. Terminal control functions and modules 590
98. Terminal control ZCP and TCP common control routines 590
99. Terminal control TCP control routines (TCAM, BSAM) 591
100. Terminal control general flow through device-dependent modules (TCP only) . . 592
101. Terminal control table (TCT) 595
102. Control blocks associated with terminal control 599
103. Terminal control table line entry (TCTLE) 599
104. Terminal abnormal condition line entry (TACLE) 600
105. Control blocks associated with the trace domain 618
106. Trace formatting components Lo 622
107. DFHTFP abnormal condition program interfaces 625
108. DFHACP abnormal condition program interfaces 625
109. Transactionrouting 653
110. Transaction routing for APPC devices 654
111. Transaction routing for APPC devices 655
112. Transaction routing for APPC devices 659
113. DFHXTP transformer operations 662
LY33-6088-02 © Copyright IBM Corp. 1980, 1999 Figures XVil

Tables

XVviii

CICS Diagnosis Reference

114.
115.
116.
117.
118.
119.
120.
121.
122.
123.

©CoNoTORrwWNE

=
©

12.
13.

14.

15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

Transaction-routing data streams 662
Routed data format 663
Control blocks associated with the relay transaction 665
Control blocks for the user transaction (non-APPC device) 665
Transient data interfaces for intrapartition queues 669
Transient data interfaces for extrapartition queues 670
UEIl control blocks 681
Control blocks associated with the user exit interface 684
Flow of control for CNOS 692
Web Interface module list 711
Domain call formats 4
Application domain’s specific gates L 11
Application domain’s generic gateso 42
Generic formats owned by application domain 42
Autoinstall terminal model manager’s subroutine interfaces 59
Business application manager domain’s specificgate 101
Business application manager domain’s generic gates 114
CICS-AD/Cycle Language Environment/370 interface calls 117

CICS-Language Environment/370 PARTITION_INITIALIZATION parameter list . 120
CICS-Language Environment/370 ESTABLISH_OWNERSHIP_TYPE parameter

list . 120
CICS-Language Environment/370 THREAD_INITIALIZATION parameter list . . 120
CICS-Language Environment/370 RUNUNIT_INITIALIZATION parameter list . . 120
CICS-Language Environment/370 RUNUNIT_BEGIN_INVOCATION parameter

list . e 121
CICS-Language Environment/370 DETERMINE_WORKING_STORAGE

parameter list L 121
CICS-Language Environment/370 PERFORM_GOTO parameter list 121
CICS-Language Environment/370 RUNUNIT_END_INVOCATION parameter list 121
CICS-Language Environment/370 RUNUNIT_TERMINATION parameter list . . . 121
CICS-Language Environment/370 THREAD_TERMINATION parameter list . . . 122
CICS-Language Environment/370 PARTITION_TERMINATION parameter list . . 122
Transient data queues for use by Language Environment/370 (and C/370) . . . 122
CICS catalog domains’ specificgate 125
CICS catalog domains’ genericgate 128
CICS-C/370interface calls 129
CICS-C/370 PARTITION_INITIALIZATION parameter list 131
CICS-C/370 DETERMINE_PROGRAM_TYPE parameter list 131
CICS-C/370 THREAD_INITIALIZATION parameter list 131
CICS-C/370 RUNUNIT_INITIALIZATION parameter list 132
CICS-C/370 WORKING_STORAGE_LOCATE parameter list 132
CICS-C/370 RUNUNIT_TERMINATION parameter list 132
CICS-C/370 THREAD_TERMINATION parameter list 132
CICS-C/370 PARTITION_TERMINATION parameter list 132
CICS-adapter request summary 147
DRA-adapter request summary 147
Adapter exitsummary L L 148
Directory manager domain’s specificgates 153
Directory manager domain’s genericgates 155
Dispatcher domain’s specificgates 157
Dispatcher domain’s generic gates 166
Generic formats owned by dispatcher domain 167

LY33-6088-02 © Copyright IBM Corp. 1980, 1999

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

40.
41.
42.
43.
44.
45.
46.
47.
48.
49.
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
71.
72.
73.
74.
75.
76.
77.
78.
79.
80.
81.
82.
83.
84.
85.
86.
87.
88.
89.
90.
91.
92.
93.
94.
95.
96.
97.
98.

Document Handler domain’s specificgates
Document Handler domain’s generic gates
Domain manager domain’s specificgates L.
Domain manager domain’s generic gates
Generic formats owned by the domain manager domain
Dump domain’s specificgates oo
Dump domain’s genericgates
NQ domain’s specificgates L o
NQ domain’s generic gates
Event manager domain’s specificgates
Event manager domain’s genericgates
EXEC CICS commands ordered by command name
EXEC CICS commands ordered by group/functioncode
File control's call back gates
VTAM secondary support functions
Kernel domain’s specificgates,
Generic formats owned by the kernel domain
Loader domain’s specificgate
Loader domain’s genericgateso
Lock manager domain’s specificgate
Lock manager domain’s genericgates
Log manager domain’s specificgate
Log manager domain’'s genericgate
Log manager domain’s call back gate
Call back format owned by the log manager domain
Message domain’s specific gates oL
Languages and their codeso
Message domain’s genericgate Lo
Monitoring domain’s specific gates
Monitoring domain’s generic gates Lo
Parameter manager domain’s specificgate
Parameter manager domain’s genericgate
Partner resource manager’s subroutine interfaces
Program manager domain’s specific gates
Program manager domain’s generic gates L.
Recovery Manager domain’s specificgate
Recovery Manager domain’s generic gate L.
Call back format owned by the Recovery Manager domain
RX domain’s specificgate Lo
CPI component’s subroutine interfaces
Scheduler services domain’s specific gate oL
Scheduler services domain’s generic gates
Security manager domain’s specificgates oL
National language codes (three-characters)
Security manager domain’s genericgates
Sign-on component’s subroutines
Statistics domain’s specificgate Lo oL
Statistics domain’s genericgates L L
Generic format owned by statistics domain
Storage manager domain’s specificgates L
Storage manager domain’s genericgates
Generic format owned by the storage manager domain
Temporary storage domain’s specificgates
Temporary storage domain’s genericgates
TACP message routines i
Timer domain’s specificgate
Timer domain's genericgate
Generic format owned by the timerdomain
Trace domain’s specificgates

LY33-6088-02 © Copyright IBM Corp. 1980, 1999 Tables

XiX

XX

CICS Diagnosis Reference

99.

100.
101.
102.
103.
104.
105.
106.
107.
108.
109.

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

Trace domain’s generic gateso 618
CICS trace formatting summary 621
Transaction manager domain’s specificgates 627
Transaction manager domain’s genericgates 646
Generic format owned by the transaction manager domain 646
DFHZXRL's processing of DFHLUC requests 655
Transaction routing data stream 664
User domain’s specific gates oo 671
User domain’'s genericgates 678
CICS Transaction Server for OS/390 Release 3 distribution tapes 716
CICS modules directory 717

LY33-6088-02 © Copyright IBM Corp. 1980, 1999

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

Notices

This information was developed for products and services offered in the U.S.A. IBM may not
offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently
available in your area. Any reference to an IBM product, program, or service is not intended
to state or imply that only that IBM product, program, or service may be used. Any
functionally equivalent product, program, or service that does not infringe any IBM intellectual
property right may be used instead. However, it is the user's responsibility to evaluate and
verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in
this document. The furnishing of this document does not give you any license to these
patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation

North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual
Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing

2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply in the United Kingdom or any other country

where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. Some states do not allow disclaimer of express or implied warranties in certain
transactions, therefore this statement may not apply to you.

This publication could include technical inaccuracies or typographical errors. Changes are
periodically made to the information herein; these changes will be incorporated in new
editions of the publication. IBM may make improvements and/or changes in the product(s)
and/or the program(s) described in this publication at any time without notice.

Licensees of this program who wish to have information about it for the purpose of enabling:
(i) the exchange of information between independently created programs and other programs
(including this one) and (ii) the mutual use of the information which has been exchanged,
should contact IBM United Kingdom Laboratories, MP151, Hursley Park, Winchester,
Hampshire, England, SO21 2JN. Such information may be available, subject to appropriate
terms and conditions, including in some cases, payment of a fee.

The licensed program described in this document and all licensed material available for it are
provided by IBM under terms of the IBM Customer Agreement, IBM International
Programming License Agreement, or any equivalent agreement between us.

LY33-6088-02 © Copyright IBM Corp. 1980, 1999 XXi

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

Trademarks

The following terms are trademarks of International Business Machines Corporation in the
United States, or other countries, or both:

ACF/VTAM, AD/Cycle, AFP, BookManager, C/370, CICS, CICS 0S/2,
CICS/ESA, CICS/MVS, CICS/VM, CICSPlex, DATABASE 2, DB2,
DFSMS/MVS, DFSMSdfp, DFSMSdss, DFSMShsm, DFSMSrmm,
Enterprise Systems Architecture/370, ESA/370,
Hardware Configuration Definition, Hiperbatch, IBM, IBMLink,
IMS, IMS/ESA, Language Environment, MVS/DFP, MVS/ESA,
NetView, OS/2, 0S/390, RACF, System/370, System/390,
Systems Application Architecture, SAA, VTAM
Other company, product, and service names may be trademarks or service marks of others.

XXii CICS Diagnosis Reference LY33-6088-02 © Copyright IBM Corp. 1980, 1999

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

Preface

What this book is about

When the term "CICS” is used without any qualification in this book, it refers to the CICS
element of IBM CICS Transaction Server for 0S/390.

"MVS” is used for the operating system, which can be either an element of OS/390, or
MVS/Enterprise System Architecture System Product (MVS/ESA SP).

This book gives a detailed description of the various components that make up a CICS
system. It also provides reference tables of CICS source modules and executable modules.

This book is intended to help you in diagnosing problems with CICS.

Who this book is for

This book provides a basis for communication between the system programmer and the IBM
support representative whenever a problem with CICS code is suspected.

What you need to know to use this book

You should have system programming experience and a good working knowledge of CICS
and of the functions used in your system to support CICS applications.

Before using this book, you should have read the CICS Problem Determination Guide to
learn about the general approach to CICS problem-solving and the procedures to use when
diagnosing and reporting system problems. You should already be familiar with the general
layout of CICS traces and dumps.

In addition, you may need to refer to the following books in the CICS library while diagnosing
what appears to be a system problem:
e The CICS Data Areas manual for details of the layout and contents of CICS data areas

e The CICS Messages and Codes manual for information about the messages and abend
codes that can be issued by a running CICS system

Determining if a publication is current

IBM regularly updates its publications with new and changed information. When first
published, both hardcopy and BookManager softcopy versions of a publication are usually in
step. However, due to the time required to print and distribute hardcopy books, the
BookManager version is more likely to have had last-minute changes made to it before
publication.

Subsequent updates will probably be available in softcopy before they are available in
hardcopy. This means that at any time from the availability of a release, softcopy versions
should be regarded as the most up-to-date.

For CICS Transaction Server books, these softcopy updates appear regularly on the
Transaction Processing and Data Collection Kit CD-ROM, SK2T-0730-xx. Each reissue of
the collection kit is indicated by an updated order number suffix (the -xx part). For example,
collection kit SK2T-0730-06 is more up-to-date than SK2T-0730-05. The collection kit is also
clearly dated on the cover.

LY33-6088-02 © Copyright IBM Corp. 1980, 1999 XXili

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

Updates to the softcopy are clearly marked by revision codes (usually a “#” character) to the
left of the changes.

Notes on terminology

The following abbreviations are used throughout this book:

Term
CICs

ESA
MVS

VTAM

VTAM/NCP

TCAM

IMS
DL/I
FEPI

Meaning

When used without qualification in the book, refers to the CICS element of
IBM CICS Transaction Server for OS/390

IBM Enterprise Systems Architecture/370 (ESA/370)

The IBM operating system, which can be either an element of OS/390, or
MVS/Enterprise System Architecture System Product (MVS/ESA SP)

IBM Advanced Communications Function/Virtual Telecommunications
Access Method (ACF/VTAM)

IBM Virtual Telecommunications Access Method/Network Control Program
(VTAM/NCP)

The DCB interface of the IBM Advanced Communications
Function/Telecommunications Access Method (ACF/TCAM)

IMS/ESA
The DL/I facilities of IMS/ESA

Front End Programming Interface

Book structure

XXV

CICS Diagnosis Reference

The structure of this book is as follows:

Part 1, “Introduction” on page 1
gives an introduction to this book and to the structure of CICS.

Part 2, “CICS components” on page 9
describes the various CICS components (domains and functions).

Part 3, “CICS modules” on page 713
lists alphabetically the contents of the CICS distribution material, gives tables showing
the link-edit relationships between object modules and load modules in a CICS system,
and also describes briefly many of the CICS executable modules.

LY33-6088-02 © Copyright IBM Corp. 1980, 1999

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

CICS Transaction Server for OS/390

CICS Transaction Server for 0S/390: Planning for Installation GC33-1789
CICS Transaction Server for 0S/390 Release Guide GC34-5352
CICS Transaction Server for 0S/390 Migration Guide GC34-5353
CICS Transaction Server for 0S/390 Installation Guide GC33-1681
CICS Transaction Server for OS/390 Program Directory GI10-2506
CICS Transaction Server for 0S/390 Licensed Program Specification GC33-1707
CICS books for CICS Transaction Server for OS/390
General
CICS Master Index SC33-1704
CICS User's Handbook SX33-6104
CICS Transaction Server for 0S/390 Glossary (softcopy only) GC33-1705
Administration
CICS System Definition Guide SC33-1682
CICS Customization Guide SC33-1683
CICS Resource Definition Guide SC33-1684
CICS Operations and Utilities Guide SC33-1685
CICS Supplied Transactions SC33-1686
Programming
CICS Application Programming Guide SC33-1687
CICS Application Programming Reference SC33-1688
CICS System Programming Reference SC33-1689
CICS Front End Programming Interface User's Guide SC33-1692
CICS C++ OO Class Libraries SC34-5455
CICS Distributed Transaction Programming Guide SC33-1691
CICS Business Transaction Services SC34-5268
Diagnosis
CICS Problem Determination Guide GC33-1693
CICS Messages and Codes GC33-1694
CICS Diagnosis Reference LY33-6088
CICS Data Areas LY33-6089
CICS Trace Entries SC34-5446
CICS Supplementary Data Areas LY33-6090
Communication
CICS Intercommunication Guide SC33-1695
CICS Family: Interproduct Communication SC33-0824
CICS Family: Communicating from CICS on System/390 SC33-1697
CICS External Interfaces Guide SC33-1944
CICS Internet Guide SC34-5445
Special topics
CICS Recovery and Restart Guide SC33-1698
CICS Performance Guide SC33-1699
CICS IMS Database Control Guide SC33-1700
CICS RACF Security Guide SC33-1701
CICS Shared Data Tables Guide SC33-1702
CICS Transaction Affinities Utility Guide SC33-1777
CICS DB2 Guide SC33-1939
LY33-6088-02 © Copyright IBM Corp. 1980, 1999 XXV

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

CICSPlex SM books for CICS Transaction Server for OS/390

General

CICSPlex SM Master Index SC33-1812
CICSPlex SM Concepts and Planning GC33-0786
CICSPlex SM User Interface Guide SC33-0788
CICSPlex SM View Commands Reference Summary SX33-6099
Administration and Management
CICSPlex SM Administration SC34-5401
CICSPlex SM Operations Views Reference SC33-0789
CICSPlex SM Monitor Views Reference SC34-5402
CICSPlex SM Managing Workloads SC33-1807
CICSPlex SM Managing Resource Usage SC33-1808
CICSPlex SM Managing Business Applications SC33-1809
Programming
CICSPlex SM Application Programming Guide SC34-5457
CICSPlex SM Application Programming Reference SC34-5458
Diagnosis
CICSPlex SM Resource Tables Reference SC33-1220
CICSPlex SM Messages and Codes GC33-0790
CICSPlex SM Problem Determination GC33-0791
Other CICS books
CICS Application Programming Primer (VS COBOL II) SC33-0674
CICS Application Migration Aid Guide SC33-0768
CICS Family: API Structure SC33-1007
CICS Family: Client/Server Programming SC33-1435
CICS Family: General Information GC33-0155
CICS 4.1 Sample Applications Guide SC33-1173
CICS/ESA 3.3 XRF Guide SC33-0661

If you have any questions about the CICS Transaction Server for OS/390 library, see CICS
Transaction Server for 0S/390: Planning for Installation which discusses both hardcopy and
softcopy books and the ways that the books can be ordered.

XXVi CICS Diagnosis Reference LY33-6088-02 © Copyright IBM Corp. 1980, 1999

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

Summary of changes

This edition of the CICS Diagnosis Reference is based on the CICS Transaction Server for
0S/390 Release 2 edition. Changes from the CICS Transaction Server for 0OS/390 Release
2 edition are marked by a vertical line to the left of the change.

Changes for this CICS Transaction Server for OS/390 Release 3 edition
The main changes for this edition are as follows:
e Trace entries have been moved to the CICS Trace Entries by popular demand.
¢ New gates have been added to the following domains to support the 3270 bridge:

— Application domain, starting on page 11.
— Transaction Manager domain, starting on page 627.

Changes for the CICS Transaction Server for OS/390 Release 2 edition
The main changes for the previous edition are as follows:
¢ New chapters on the new domain components of CICS were added:

— Log manager domain, starting on page 383.
— VTAM generic resources, starting on page 685.
— Recovery manager domain, starting on page 457.

e The file control chapter has been amended to show new function within file control.
e The following chapters have been deleted:

— Asynchronous processing.

— Dynamic backout programming.

— Emergency restart.

— Journaling chapters and system log/journaling utilities - this is largely replaced by
the Log manager domain.

— Local DL/
— Shared databases.
— Time of day control.

— Volume control.

Changes for the CICS/ESA 4.1 edition
The book was enhanced to reflect the changes to the CICS product for CICS/ESA 4.1.
A new part that provides the CICS trace interpretation tables, was moved from the CICS
Trace Entries.
New chapters on the new domain components of CICS were added:
e Directory manager domain, starting on page 153.
e Program manager domain, starting on page 437.

e Security manager domain, starting on page 497. (The security manager chapter has
been removed.)

e Transaction manager domain, starting on page 627. (The transaction manager chapter
has been removed.)

e User domain, starting on page 671.

LY33-6088-02 © Copyright IBM Corp. 1980, 1999 XXVil

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

The functions of the terminal allocation program (DFHALP) were replaced by calls to the
TFAL gate. For information about the TFAL gate functions, see page 31.

A new chapter about the Kernel sub-component of the application domain, Chapter 5, “AP
domain KC subcomponent” on page 47, was added.

The following sections from Chapter 39, “Front end programming interface (FEPI)” on
page 323 were moved to the CICS Problem Determination Guide:

e Problem determination

e FEPI waits

e FEPI abends

e Reporting a FEPI problem to IBM

Changes for the CICS/ESA 3.3 edition

XXViii

CICS Diagnosis Reference

This book has been enhanced to reflect the changes to the CICS product for CICS/ESA 3.3.

There is a new section on the distributed program link component of CICS, starting on
page 169.

The section on the system recovery component of CICS have been extensively rewritten
while including details of the changes to this component in CICS Transaction Server for
0S/390 Release 3.

LY33-6088-02 © Copyright IBM Corp. 1980, 1999

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

This book describes the functional areas (or components)
into which CICS is divided. To understand more about a
particular functional area, use the contents list and the index
to find the appropriate information.

If you are using this book to diagnose a system problem, to
find out whether a function is working as designed , you
should also consult the special topic, administration, or
programming books in the CICS Transaction Server for
0S/390 5.1 library listed at the front of this book.

In this and other CICS books, the word “component” is used
in a general way to refer to any unit of code that performs an
identifiable set of functions and manages a certain type of
data.

Some CICS components are shipped as object code only
(OCO). If the component causing a problem is OCO, it is the
responsibility of IBM to diagnose the problem further. If the
component is not OCO, you can refer to the source code on
microfiche, and use the detailed information in this book to
identify more specifically the cause of the problem. The
Chapter 104, “CICS directory” on page 715 shows which
CICS object modules are regarded as OCO; no source code
is available for these modules.

LY33-6088-02 © Copyright IBM Corp. 1980, 1999

Part 1.

Introduction

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

2 cics Diagnosis Reference LY33-6088-02 © Copyright IBM Corp. 1980, 1999

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

Chapter 1. CICS domains

At the top level, CICS is organized into domains as shown
in Figure 1. With the exception of the application domain
(more about this later), each domain is a single major
component of CICS.

— Parameter manager
Application domain (PA)
domain (AP)

— Program manager
Business domain (PG)
application (BA)

Kernel — Recovery manager
CICS catalog domain (RM)
domains (GC/LC)
Tinkage — Resource recovery
Directory manager service (RX)
domain (DD)
routines —— Scheduler services
Document handler domain (SH)

domain (DH)

— Sockets domain

Dispatcher domain (S0)
(DS)

— Security manager

Domain manager domain (XS)
domain (DMm)

— Statistics domain

Dump domain (ST)
(DU)

— Storage manager
Event manager domain (SMm)
domain (EM)

—— Timer domain

Enqueue domain (T1)
(NQ)

— Temporary storage

Kernel domain domain (TS)
(KE)

— Trace domain

Loader domain
(LD)

— Transient data
Log manager domain (TR)
domain (LG)

— Transaction mgr
Lock manager domain (XM)
domain (LM)

— User domain
Message domain (Us)
ME

— Web domain
Monitoring (WB)
domain (MN)

Figure 1. CICS organization—domains. The domain identifiers are
shown in parentheses.

Domains never communicate directly with each other. Calls

between domains are routed through kernel linkage routines.

Calls can be made only to official interfaces to the domains,
and they must use the correct protocols.

LY33-6088-02 © Copyright IBM Corp. 1980, 1999

Each domain manages its own data. No domain accesses
another domain’s data directly. If a domain needs data
belonging to another domain, it must call that domain, and
that domain then passes the data back in the caller’s
parameter area.

The following table lists the CICS domains alphabetically by
domain identifier. For each domain, the table also shows
whether or not the domain is OCO, and gives a page
reference to the section describing the interfaces to the
domain.

Domain ID Domain 0OCO? See page
AP Application See note 11
BAM Business Application Yes 101
Manager
DD Directory manager Yes 153
DH Document handler Yes 181
DM Domain manager Yes 191
DS Dispatcher Yes 157
DU Dump No 197
EM Event mamager Yes 233
EX External CICS interface Yes 253
GC Global catalog Yes 125
KE Kernel Yes 357
LC Local catalog Yes 125
LD Loader Yes 371
LG Log manager Yes 383
LM Lock manager Yes 379
ME Message Yes 403
MN Monitoring Yes 413
NQ Enqueue Yes 221
PA Parameter manager Yes 427
PG Program manager Yes 437
RM Recovery manager Yes 457
RX Resource recovery Yes 481
service

SH Scheduler services Yes 491
SM Storage manager Yes 527
ST Statistics Yes 519
TD Transient data Yes 667
TI Timer Yes 605
TR Trace No 611
TS Temporary storage Yes 571
us User Yes 671
XM Transaction manager Yes 627
XS Security manager Yes 497

Note: The application domain is mainly non-OCO, but it
contains these OCO components:

¢ CICS data table services

e RDO for VSAM files and LSR pools

e Some EXEC CICS system programming
functions

¢ Autoinstall terminal model manager

e Partner resource manager

¢ SAA Communications and Resource Recovery

e Some of the file control functions

¢ Recovery manager connectors interfaces.

The offline statistics utility program (DFHSTUP) and the
system dump formatting routines are also treated as OCO.

Domain gates

A domain gate is an entry point or interface to a domain. It
can be called by any authorized caller who needs to use
some function provided by the domain.

A number of domain functions are available through the exit
programming interface (XPI). For details, see the CICS
Customization Guide.

In practice, every domain has several gates. Each gate has a
4-character identifier; the first two characters are the identifier
of the owning domain, and the second two characters
differentiate between the functions of the domain’s gates.
Here, for example, are two of the dispatcher (DS) domain’s
gates:

DSAT
DSSR

Functions provided by gates

An individual gate can provide many functions. The required
function is determined by the parameters included on the
call. The DSSR gate of the DS domain, for example,
provides all these functions:

e ADD_SUSPEND

e DELETE_SUSPEND

¢ INQUIRE_SUSPEND_TOKEN
¢ RESUME

e SUSPEND

e WAIT_MVS

e WAIT_OLDC

e WAIT_OLDW.

Specific gates, generic and call-back
gates

It is useful to distinguish between specific gates , generic
gates and callback gates :

¢ A specific gate gives access to a set of functions that
are provided by that domain alone. The functions are
likely to be requested by many different callers.

DS domain, for example, has a specific gate (DSAT) that
provides CHANGE_MODE and CHANGE_PRIORITY
functions (among other functions). Only the DS domain
provides those functions, but they can be requested by
many different callers.

¢ A generic gate gives access to a set of functions that
are provided by several domains.

Most domains provide a QUIESCE_DOMAIN function,
for example, so that they can be quiesced when CICS is
shutting down normally. They each have a generic gate
that provides this function. DM domain makes a generic
call to that gate in any domain that is to be quiesced.

4 cics Diagnosis Reference

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

¢ A call-back gate also gives access to a set of functions
that can be provided by several domains. Unlike a
generic gate where the call is broadcast to all domains
that have provided a gate a call-back is restricted to
specific domains but uses a format owned by the calling
domain.

For example the Recovery Manager calls the domains

that have registered an interest in syncpoint processing
using the PERFORM_PREPARE function format that it
owns.

Domain call formats

Any module calling a domain gate must use the correct
format for the call. The format represents the parameter list
structure. It describes the parameters that must be provided
on the call (the input parameters), and the parameters that
are returned to the caller when the request has been
processed (the output parameters).

For example, Table 1 lists the input and output parameters
for the ATTACH function of the DS domain’s DSAT gate.

Table 1. Domain call formats

Input parameters Output parameters

PRIORITY TASK_TOKEN
USER_TOKEN RESPONSE
[TIMEOUT] [REASON]
TYPE

[MODE]

[TASK_REPLY_GATE_INDEX]
[SPECIAL_TYPE]

Parameters not shown in brackets are mandatory, and are
always interpreted in trace entries. Parameters shown in
brackets are optional, and are in trace entries only if values
have been set. An exception to this rule is that, regardless of
whether REASON is mandatory or optional for a particular
function, its value is included in a trace entry only for a
non-‘OK’ response.

The domain call formats described are in the sections
dealing with the domains that own them, as discussed in
“Ownership of formats.”

Ownership of formats

Every format is ‘owned’ by a domain:

e The formats for specific calls are owned by the domain
being called. DS domain, for example, owns the format
for the CHANGE_MODE and CHANGE_PRIORITY calls.
This book uses the term specific format to refer to such
formats.

The formats for generic calls and call-back calls are
owned by the calling domain. DM domain, for example,
owns the format for calls to (generic) gates providing the
QUIESCE_DOMAIN function in other domains. This

LY33-6088-02 © Copyright IBM Corp. 1980, 1999

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

book uses the term generic format to refer to such
formats.

Tokens

Tokens are passed as parameters on many domain calls.
They identify uniquely objects that are operands of domain
functions.

Here are some examples:

TASK_TOKEN uniquely identifies a task to be used as the
operand of a function.

DOMAIN_TOKEN uniquely identifies a domain to be used as
the operand of a function.

SUSPEND_TOKEN uniquely identifies a task for the purpose
of a suspend or resume dialog.

Responses

On all domain calls, one of the output parameters is the
domain’s response to the call. It can have any one of these
values:

OK
When a domain call succeeds, a response of ‘OK’ is
given and the REASON code is not set. The requested
function has been completed successfully.

EXCEPTION
Processing of the function could not be completed for the
reason specified in the REASON field. The domain state
remains unchanged if such an error occurs.

DISASTER
The domain could not complete the request because of
some irrecoverable system problem. If there is a major
error in the domain, this is reported.

INVALID
The parameter list is not valid. If a call is used incorrectly,
this is reported.

KERNERROR
The kernel was unable to call the required function gate.

PURGED
A purge has been requested for the task making the
domain call.

LY33-6088-02 © Copyright IBM Corp. 1980, 1999

Chapter 1. CICS domains

5

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

6 cics Diagnosis Reference LY33-6088-02 © Copyright IBM Corp. 1980, 1999

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

Chapter 2. Application domain

Application programs are run in the application (AP) domain,
which contains several major components, as shown in
Figure 2 on page 8.

Most application domain CICS functions are either provided
by modules that are part of the CICS nucleus, that is to say
they are an integral part of the system and are loaded at
system initialization time, or they are system application
programs, which are loaded as needed in the same way as
user application programs.

LY33-6088-02 © Copyright IBM Corp. 1980, 1999

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

AP domain

Application
services

Basic mapping support
Built-in functions
Command interpreter
Data interchange program
Execution diagnostic
facility

Extended recovery
facility

Intercommunication
facilities

— Distributed transaction
processing

— Function shipping

— Interregion communication

— Transaction routing

— Recovery manager connectors

— VTAM LU6.1

— VTAM LU6.2

System control

System reliability

— Abnormal condition
program

— Dynamic backout

— Emergency restart

— Keypoint programs

— Node abnormal
condition program

— Node error program

— Program error program

— Retry program

— System recovery program

— Task-related user
exit recovery

— Terminal abnormal
condition program

— Terminal error program

— AP domain initialization
— AP domain termination

— DL/I and DBCTL support
— EXEC interface program
— File control

— Interval control

— Resource recovery manager
— Storage compatibility

— Syncpoint program

— Table manager

— Task-related user exit control
— Temporary-storage control
— Terminal control

— Trace compatibility

— Transient data control
—— User exit control

System services

— Dynamic allocation

— Field engineering
program

— “Good morning” message
program

— Master terminal program

— Message switching

— Operator terminal

— Resource definition

— Signon and sign-off

— Subsystem interface

— System spooling interface

— Time-of-day control

Figure 2. AP domain—major components

8 cics Diagnosis Reference

LY33-6088-02 © Copyright IBM Corp. 1980, 1999

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

Part 2. CICS components

This part describes the various components of a CICS
system—the domains into which CICS is organized, and the
functions within these domains. Offline utilities, such as the
statistics utility program, are also covered.

Apart from the application domain and the two catalog
domains, each domain has one section describing it. The
application domain consists of so many components that
each component is described in a separate section, except
for the two catalog domains that are described in the same
section.

Sections are ordered alphabetically by component name for
quick reference.

LY33-6088-02 © Copyright IBM Corp. 1980, 1999

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

10 cics Diagnosis Reference LY33-6088-02 © Copyright IBM Corp. 1980, 1999

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

Chapter 3. Application domain (AP)

The principal components of the application domain are
described under Chapter 2, “Application domain” on page 7.

Application domain’s specific gates

Table 2 summarizes the application domain’s specific gates.
It shows the level-1 trace point IDs of the modules providing
the functions for the gates, the functions provided by the
gates, and whether or not the functions are available through
the exit programming interface (XPI).

Table 2. Application domain’s specific gates

Gate Trace Function XPI1
ABAB AP 0741 CREATE_ABEND_RECORD NO
AP 0742 UPDATE_ABEND_RECORD NO
START_ABEND NO
INQUIRE_ABEND_RECORD NO
TAKE_TRANSACTION_DUMP
APAP AP 0910 TRANSFER_SIT NO
AP 0911
APEX AP 0510 INVOKE_USER_EXIT NO
AP 0515
APIQ AP 0920 INQ_APPLICATION_DATA YES
AP 0921
APJC AP F900 WRITE_JOURNAL_DATA YES
AP F901
APLI AP 1940 ESTABLISH_LANGUAGE NO
AP 1941 START_PROGRAM NO
APRM AP 05A0 TRANSACTION_INITIALIZATION NO
AP 05A1 TRANSACTION_TERMINATION NO
INQUIRE NO
APRT AP 1900 ROUTE_TRANSACTION NO
AP 1901
APTD AP F600 WRITE_TRANSIENT_DATA NO
AP F601 READ_TRANSIENT_DATA

DELETE_TRANSIENT_DATA
INITIALIZE_TRANSIENT_DATA
RESET_TRIGGER_LEVEL

APXM AP 0590 TRANSACTION_INITIALIZATION NO

AP 0591 RMI_START_OF_TASK NO
TRANSACTION_TERMINATION NO

BRAT AP 2800 ATTACH NO
AP 2801

BRFM AP 2140 Subroutine for bridge facility allocation/deletion. NO
AP 2141

BRIC AP 2166 Subroutine interfacing interval control EXEC NO
AP 2167 commands and the bridge exit.

BRIQ AP 2820 INQUIRE_CONTEXT NO

BRMS AP 2160 Subroutine interfacing BMS EXEC commands and NO
AP 2161 the bridge exit.

BRRM AP 2840 RMRO callback for PREPARE and COMMIT NO
AP 2841

BRSP AP 216C Subroutine interfacing syncpoint requests and NO
AP 216D the bridge exit.

BRTC AP 2163 Subroutine interfacing terminal control EXEC NO
AP 2164 commands and the bridge exit.

BRXM AP 2860 XMAC callback for INIT_XM_CLIENT and NO
AP 2861 BIND_XM_CLIENT

ICXM AP 05C0O BIND_FACILITY, NO
AP 05C1 RELEASE_FACILITY NO

INQUIRE_FACILITY NO

LY33-6088-02 © Copyright IBM Corp. 1980, 1999

Application domain (AP)

Table 2. Application domain’s specific gates

Gate Trace Function XPI
RTSU AP 1910 COMMIT_SURROGATE NO
AP 1911 FREE_SURROGATE NO
GET_RECOVERY_STATUS NO
PREPARE_SURROGATE NO
RESET_SURROGATE NO
TDOC AP F640 OPEN_TRANSIENT_DATA NO
AP F641 CLOSE_TRANSIENT_DATA NO
CLOSE_ALL_EXTRA_TD_QUEUES NO
TDTM AP F680 ADD_REPLACE_TDQDEF NO
AP F681 INQUIRE_TDQDEF NO
START_BROWSE_TDQDEF NO
GET_NEXT_TDQDEF NO
END_BROWSE_TDQDEF NO
SET_TDQDEF NO
DISCARD_TDQDEF NO
COMMIT_TDQDEFS NO
TDXM AP 05B0 BIND_FACILITY NO
AP 05B1 BIND_SECONDARY_FACILITY NO
RELEASE_FACILITY NO
INQUIRE_FACILITY NO
SAIQ AP E120 INQUIRE_SYSTEM YES
AP E122 SET_SYSTEM YES
TFAL AP D600 ALLOCATE NO
AP D601 CANCEL_AID NO
CHECK_TRANID_IN_USE NO
CANCEL_AIDS_FOR_CONNECTION NO
CANCEL_AIDS_FOR_TERMINAL NO
DISCARD_AIDS NO
FIND_TRANSACTION_OWNER NO
GET_MESSAGE NO
INITIALIZE_AID_POINTERS NO
INQUIRE_ALLOCATE_AID NO
LOCATE_AID NO
LOCATE_REMDEL_AID NO
LOCATE_SHIPPABLE_AID NO
MATCH_TASK_TO_AID NO
PURGE_ALLOCATE_AIDS NO
RECOVER_START_DATA NO
REMOTE_DELETE NO
REMOVE_EXPIRED_AID NO
REMOVE_EXPIRED_REMOTE_AID NO
REMOVE_MESSAGE NO
REMOVE_REMOTE_DELETES NO
REROUTE_SHIPPABLE_AIDS NO
RESCHEDULE_BMS NO
RESET_AID_QUEUE NO
RESTORE_FROM_KEYPOINT NO
RETRIEVE_START_DATA NO
SCHEDULE_BMS NO
SCHEDULE_START NO
SCHEDULE_TDP NO
SLOWDOWN_PURGE NO
TAKE_KEYPOINT NO
TERM_AVAILABLE_FOR_QUEUE NO
TERMINAL_NOW_UNAVAILABLE NO
UNCHAIN_AID NO
UPDATE_TRANNUM_FOR_RESTART
TFBF AP 1730 BIND_FACILITY NO
AP 1731
TFIQ AP 1700 INQUIRE_TERMINAL_FACILITY NO
AP 1701 INQUIRE_MONITOR_DATA NO
SET_TERMINAL_FACILITY NO
TFRF AP 1710 RELEASE_FACILITY NO
AP 1711
TFXM AP 1790 INIT_XM_CLIENT NO
AP 1791 BIND_XM_CLIENT NO
MRXM AP 17B0 INIT_XM_CLIENT NO
AP 17B1 BIND_XM_CLIENT NO
62XM AP 17CO INIT_XM_CLIENT NO
AP 17C1 BIND_XM_CLIENT NO
11

Application domain (AP)

ABAB gate, CREATE_ABEND_RECORD
function

The CREATE_ABEND_RECORD function of the ABAB gate
is used to create an abend record (TACB).

Input parameters

[ABEND_CODE] is the four-character transaction abend
code.

[FAILING_PROGRAM] is the name of the program in which
the abend occurred.

[REQUEST_ID] is the request ID from the TCTTE for a
terminal-oriented task.

[FAILING_RESOURCE] is the name of the system TCTTE
(the connection) if the abend was raised by DFHZAND.

[REMOTE_SYSTEM] is the name of the remote system if the
abend was raised in the client transaction to reflect an
abend occurring in the DPL server.

[SENSE_BYTES] is the SNA sense bytes if the abend was
raised by DFHZAND.

[ERROR_MESSAGE] is the error message sent from the
remote system if the abend was raised by DFHZAND.

[EXECUTION_KEY] is a code indicating the execution key at
the time the abend was issued, or at the time the
operating system abend or program check occurred.

[STORAGE_TYPE] is a code indicating the storage hit on an
OCA4.

[ERROR_OFFSET] is the offset of a program check or
operating system abend in the failing application program
or CICS AP domain program.

[GENERAL_REGISTERS] is the contents of the general
purpose registers at the time of a program check or
operating system abend.

[PSW] is the contents of the PSW at the time of a program
check or operating system abend.

[INTERRUPT_DATA] is the interrupt code and instruction
length code etc, at the time of a program check or
operating system abend.

[ALET] is the access list entry token (ALET) at the time of a
program check or operating system abend.

[STOKEN] is the subspace token (STOKEN) at the time of a
program check or operating system abend.

[SPACE] indicates whether the task was in SUBSPACE or
BASESPACE mode at the time of a program check or
operating system abend. It can have any of these values:
BASESPACE | SUBSPACE | NOSPACE

[GREG_ORDER] indicates the order of the registers passed
in GENERAL_REGISTERS. DFHSRP saves the registers
in the abend record in the order 0-15, and
INQUIRE_ABEND_RECORD will always return them in
this order. It can have either of these values:

12 cics Diagnosis Reference

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

R14TOR13|ROTOR15

[ACCESS_REGISTERS] is the contents of the access
registers at the time of a program check or operating
system abend.

[FLOATING_POINT_REGISTERS] is the contents of the
floating point registers at the time of a program check or
operating system abend.

[STATUS_FLAGS] is the status flags at the time of the
abend.

Output parameters

ABEND_TOKEN is the token allocated by ABAB for this
abend. The token must be passed on subsequent
UPDATE_ABEND_RECORD and START_ABEND
requests to ABAB. The token is no longer valid after a
START_ABEND request.

RESPONSE is the domain’s response to the call. It can have
any of these values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR | PURGED

[REASON] is returned when RESPONSE is DISASTER.
Possible values are:

RESPONSE
DISASTER

Possible REASON values
ABEND

ABAB gate, UPDATE_ABEND_RECORD
function

The UPDATE_ABEND_RECORD function of the ABAB gate
is used to update an abend record (TACB).

Input parameters

ABEND_TOKEN is the token allocated by ABAB for this
abend (on a preceding CREATE_ABEND_RECORD
request). The token must be passed on subsequent
UPDATE_ABEND_RECORD and START_ABEND
requests to ABAB. The token is no longer valid after a
START_ABEND request.

[ABEND_CODE] is the four-character transaction abend
code.

[FAILING_PROGRAM] is the name of the program in which
the abend occurred.

[REQUEST_ID] is the request ID from the TCTTE for a
terminal-oriented task.

[FAILING_RESOURCE] is the name of the system TCTTE
(the connection) if the abend was raised by DFHZAND.

[REMOTE_SYSTEM] is the name of the remote system if the
abend was raised in the client transaction to reflect an
abend occurring in the DPL server.

[SENSE_BYTES] is the SNA sense bytes if the abend was
raised by DFHZAND.

LY33-6088-02 © Copyright IBM Corp. 1980, 1999

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

[ERROR_MESSAGE] is the error message sent from the
remote system if the abend was raised by DFHZAND.

[EXECUTION_KEY] is a code indicating the execution key at
the time the abend was issued, or at the time the
operating system abend or program check occurred.

[STORAGE_TYPE] is a code indicating the storage hit on an
OC4.

[ERROR_OFFSET] is the offset of a program check or
operating system abend in the failing application program
or CICS AP domain program.

[GENERAL_REGISTERS] is the contents of the general
purpose registers at the time of a program check or
operating system abend.

[PSW] is the contents of the PSW at the time of a program
check or operating system abend.

[INTERRUPT_DATA] is the interrupt code and instruction
length code etc, at the time of a program check or
operating system abend.

[ALET] is the access list entry token (ALET) at the time of a
program check or operating system abend.

[STOKEN] is the subspace token (STOKEN) at the time of a
program check or operating system abend.

[SPACE] indicates whether the task was in SUBSPACE or
BASESPACE mode at the time of a program check or
operating system abend. It can have any of these values:

BASESPACE | SUBSPACE | NOSPACE

[GREG_ORDER] indicates the order of the registers passed
in GENERAL_REGISTERS. DFHSRP saves the registers
in the abend record in the order 0-15, and
INQUIRE_ABEND_RECORD will always return them in
this order. It can have either of these values:

R14TOR13|ROTOR15
[ACCESS_REGISTERS] is the contents of the access

registers at the time of a program check or operating
system abend.

[FLOATING_POINT_REGISTERS] is the contents of the
floating point registers at the time of a program check or
operating system abend.

[STATUS_FLAGS] is the status flags at the time of the
abend.

Output parameters

RESPONSE is the domain’s response to the call. It can have
any of these values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

[REASON] is returned when RESPONSE is DISASTER or
EXCEPTION. Possible values are:

RESPONSE Possible REASON values
DISASTER ABEND
EXCEPTION INVALID_TOKEN

LY33-6088-02 © Copyright IBM Corp. 1980, 1999

Application domain (AP)

ABAB gate, START_ABEND function

The START_ABEND function of the ABAB gate is used to
start transaction abend processing.

Input parameters

ABEND_TOKEN is the token allocated by ABAB for this
abend (on a preceding CREATE_ABEND_RECORD
request).

[DUMP] indicates whether a transaction dump should be
produced for this abend. It can have either of these
values:

YES|NO

[[IGNORE_HANDLES] indicates whether this abend should
be passed to any EXEC CICS HANDLE routines that are
active. IGNORE_HANDLES(YES) results in EXEC CICS
HANDLE being ignored at all levels of the program stack.
It can have either of these values:

YES|NO

Output parameters

RETRY_ADDRESS if an XPCTA exit requests retry, control
returns to the point of invocation of start_info, passing the
retry address. This address includes the AMODE
indicator in the first bit; it can be used as the target
address in a DFHAM TYPE=BRANCH by the caller of
START_ABEND GENERAL_REGISTERS is also set to
point to the list of registers to be used for the retry, and
SPACE to indicate the subspace.

[GENERAL_REGISTERS] is the contents of the general
purpose registers at the time of a program check or
operating system abend.

[SPACE] indicates whether the task was in SUBSPACE or

BASESPACE mode at the time of a program check or
operating system abend.

RESPONSE is the domain’s response to the call. It can have
any of these values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR | PURGED

[REASON] is returned when RESPONSE is DISASTER or
EXCEPTION. Possible values are:

RESPONSE Possible REASON values
DISASTER ABEND
EXCEPTION INVALID_TOKEN

ABAB gate, INQUIRE_ABEND_RECORD
function

The INQUIRE_ABEND_RECORD function of the ABAB gate
is used to inquire about an abend record (TACB).

Input parameters

Chapter 3. Application domain (AP) 13

Application domain (AP)

[ABEND_TYPE] indicates which abend record the
information is to be extracted from. It can have any of
these values:

LATEST|FIRST | LASTASRA

Output parameters

[ABEND_CODE] is the four-character transaction abend
code.

[DUMP] indicates whether a dump was requested for this
abend. It can have either of these values:

YES|NO

[REQUEST _ID] is the request ID from the TCTTE for a
terminal-oriented task.

[FAILING_RESOURCE] is the name of the system TCTTE
(the connection) if the abend was raised by DFHZAND.

[FAILING_PROGRAM] is the name of the program in which
the abend occurred.

[REMOTE_SYSTEM] is the name of the remote system if the
abend was raised in the client transaction to reflect an
abend occurring in the DPL server.

[SENSE_BYTES] is the SNA sense bytes if the abend was
raised by DFHZAND.

[ERROR_MESSAGE] is the error message sent from the
remote system if the abend was raised by DFHZAND.

[EXECUTION_KEY] is a code indicating the execution key at
the time the abend was issued, or at the time the
operating system abend or program check occurred.

[STORAGE_TYPE] is a code indicating the storage hit on an
OC4.

[ERROR_OFFSET] is the offset of a program check or
operating system abend in the failing application program
or CICS AP domain program.

[GENERAL_REGISTERS] is the contents of the general
purpose registers at the time of a program check or
operating system abend.

[PSW] is the contents of the PSW at the time of a program
check or operating system abend.

[INTERRUPT_DATA] is the interrupt code and instruction
length code etc, at the time of a program check or
operating system abend.

[ALET] is the access list entry token (ALET) at the time of a
program check or operating system abend.

[STOKEN] is the subspace token (STOKEN) at the time of a
program check or operating system abend.

[SPACE] indicates whether the task was in SUBSPACE or
BASESPACE mode at the time of a program check or
operating system abend. It can have any of these values:

BASESPACE | SUBSPACE | NOSPACE

[ACCESS_REGISTERS] is the contents of the access
registers at the time of a program check or operating
system abend.

14 cics Diagnosis Reference

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

[FLOATING_POINT_REGISTERS] is the contents of the
floating point registers at the time of a program check or
operating system abend.

[STATUS_FLAGS] is the status flags at the time of the
abend.

[IGNORE_HANDLES] indicates whether this abend should
be passed to any EXEC CICS HANDLE routines that are
active. IGNORE_HANDLES(YES) results in EXEC CICS
HANDLE being ignored at all levels of the program stack.
It can have either of these values:

YES|NO

RESPONSE is the domain’s response to the call. It can have
any of these values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR | PURGED

[REASON] is returned when RESPONSE is DISASTER or
EXCEPTION. Possible values are:

RESPONSE Possible REASON values
DISASTER ABEND
EXCEPTION NO_ABEND_RECORD

ABAB gate, TAKE_TRANSACTION_DUMP
function

The TAKE_TRANSACTION_DUMP function of the ABAB
gate is used to take a transaction dump.

Notes:

1. The TRANSACTION resource definition must specify
dump and DUMP(YES) must be specified or defaulted
on the associated START_ABEND call.

2. A transaction dump is not taken if any of the following is
true:

¢ The application is going to handle the abend; that is,
there is an active handle at this level and
IGNORE_HANDLES(NO) is specified or defaulted
on the associated START_ABEND call.

e The application is Language Environment/370
enabled, in which case the language interface deals
with the abend.

e A transaction dump is currently in progress.
Input parameters: None.

Output parameters: None.

APAP gate, TRANSFER_SIT function

The TRANSFER_SIT function of the APAP gate is used to
transfer the address of DFHSIT to the AP domain after a
GET_PARAMETERS call from this domain to the parameter
manager domain.

LY33-6088-02 © Copyright IBM Corp. 1980, 1999

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

Input parameters

SIT specifies the address and length of the system
initialization table (DFHSIT).

Output parameters

RESPONSE is the domain’s response to the call. It can have
any of these values:
OK|EXCEPTION|DISASTER| INVALID|KERNERROR | PURGED

[REASON] is returned when RESPONSE is EXCEPTION or
INVALID. Possible values are:

RESPONSE Possible REASON values

EXCEPTION INVALID_ADDRESS, INCONSISTENT_RELEASE

INVALID INVALID_SIT_LENGTH, INVALID_ADDRESS,
INVALID_FUNCTION

APEX gate, INVOKE_USER_EXIT function

The INVOKE_USER_EXIT function of the APEX gate is used
to invoke the user exit at a specified exit point.

Input parameters
EXIT_POINT is the name of the exit.

TRACE indicates whether or not user exits are to be traced.
It can have either of these values:
YES|NO

[EXIT_PARAMETER_n] is the parameter (number n)

required by the exit. The nature of the parameter varies
from one exit to another.

Output parameters

EXIT_RETURN_CODE is the return code, if any, issued by
the exit.

RESPONSE is the domain’s response to the call. It can have
any of these values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR | PURGED

[REASON] is returned when RESPONSE is EXCEPTION,
DISASTER, or INVALID. Possible values are:

RESPONSE Possible REASON values

EXCEPTION EXIT_PROGRAM_FAILURE

DISASTER ABEND, LOOP

INVALID INVALID_FUNCTION, INVALID_EXIT_POINT

APIQ gate, INQ_APPLICATION_DATA
function

The INQ_APPLICATION_DATA function of the APIQ gate is
used to inquire about application data owned by the
application domain.

LY33-6088-02 © Copyright IBM Corp. 1980, 1999

Application domain (AP)

Input parameters: None.

Output parameters

EIB is the address of the EXEC Interface Block.

SYSEIB is the address of the System EXEC Interface Block.
TCTUA is the address of the Task Control Table User Area.

TCTUASIZE is the length (in bytes) of the Task Control
Table User Area.

TWA is the address of the Task Work Area.
TWASIZE is the length (in bytes) of the Task Work Area.

RESPONSE is the domain’s response to the call. It can have
any of these values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR | PURGED

[REASON] is returned when RESPONSE is DISASTER,
EXCEPTION, or INVALID. Possible values are:

RESPONSE Possible REASON values

DISASTER ABEND, INQ_FAILED, LOOP

EXCEPTION DPL_PROGRAM,
NO_TRANSACTION_ENVIRONMENT,
TRANSACTION_DOMAIN_ERROR

INVALID INVALID_FUNCTION

APJC gate, WRITE_JOURNAL_DATA
function

The WRITE_JOURNAL_DATA function of the APJC gate is
used to write a single record into a named journal.

Input parameters

JOURNALNAME is the journal identifier name.
JOURNAL_RECORD_ID is the system type record identifier.
FROM is the address of the record.

[RECORD_PREFIX] is the journal record user prefix.

WAIT specifies whether or not CICS is to wait until the
record is written to auxiliary storage before returning
control to the exit program. It can have either of these
values:

YES|NO

Output parameters

RESPONSE is the domain’s response to the call. It can have
any of these values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR | PURGED

[REASON] is returned when RESPONSE is EXCEPTION or
INVALID. Possible values are:

RESPONSE Possible REASON values

EXCEPTION JOURNAL_NOT_FOUND, LENGTH_ERROR,
JOURNAL_NOT_OPEN, STATUS_ERROR,

I0_ERROR

Chapter 3. Application domain (AP) 15

Application domain (AP)

RESPONSE Possible REASON values

INVALID

INVALID_FORMAT, INVALID_FUNCTION

APLI gate, ESTABLISH _LANGUAGE
function

The ESTABLISH_LANGUAGE function of the APLI gate is
used to establish the language of a program.

Input parameters

LOAD_POINT is the load point address of the program.

ENTRY_POINT is the entry point address of the program.

[PROGRAM_LENGTH] is the length of the program.

[DEFINED_LANGUAGE] is the language defined for the
program. It can have any of these values:
ASSEMBLER|C370|COBOL|LE370|PLI|NOT_DEFINED

EXECUTION_KEY is the key in which CICS gives control to
the program, and determines whether the program can

modify CICS-key storage. It can have either of these
values:

CICS|USER
DATA_LOCATION defines whether the program can handle
only 24-bit addresses (data located below the 16MB line)

can handle 31-bit addresses (data located above or
below the 16MB line). It can have either of these values:

ANY | BELOW

LANGUAGE_BLOCK is a token identifying the current
language block for the program.

Output parameters

[NEW_BLOCK] is a new token identifying the new language
block for the program.

[LANGUAGE_ESTABLISHED] is the language established
for the program. It can have any of these values:

ASSEMBLER|C370|COBOL|COBOL2 | LE370|PLI|
NOT_DEFINED|NOT_APPLIC

RESPONSE is the domain’s response to the call. It can have
any of these values:
OK|EXCEPTION|DISASTER| INVALID|KERNERROR | PURGED

[REASON] is returned when RESPONSE is DISASTER,
EXCEPTION, or INVALID. Possible values are:

RESPONSE Possible REASON values
DISASTER ABEND, LOOP
EXCEPTION TRANSACTION_ABEND
INVALID INVALID_FUNCTION

APLI gate, START_PROGRAM function

The START_PROGRAM function of the APLI gate is used to
start a program.

16 cics Diagnosis Reference

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

Input parameters
PROGRAM is the eight-character name of the program.

LINK_LEVEL is the 16-bit value indicating the link-level of
the program.

[CEDF_STATUS] indicates whether or not the EDF
diagnostic screens are displayed when the program is
running under the control of the execution diagnostic
facility (EDF). It can have any of these values:

CEDF |NOCEDF
[EXECUTION_SET] indicates whether you want CICS to link
to and run the program as if it were running in a remote

CICS region (with or without the API restrictions of a DPL
program). It can have either of these values:

FULLAPI | DPLSUBSET|NOT_APPLIC

[PARMLIST_PTR] is an optional token identifying the
parameter list for the program.

COMMAREA is an optional token identifying the
communications area for the program.

[ENVIRONMENT_TYPE] is the environment type of the
program. It can have any of these values:
EXEC|GLUE|PLT|SYSTEM|TRUE | URM

[SYNCONRETURN] defines whether or not a syncpoint is to

be taken on return from the linked program. It can have
either of these values:

YES|NO

Output parameters
[NEW_BLOCK] is a new token identifying the new language
block for the program.

ASSEMBLER|C370|COBOL|COBOL2 | LE370|PLI|
NOT_DEFINED|NOT_APPLIC

RESPONSE is the domain’s response to the call. It can have
any of these values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR | PURGED

[REASON] is returned when RESPONSE is DISASTER,
EXCEPTION, or INVALID. Possible values are:

RESPONSE Possible REASON values

DISASTER ABEND, LOOP

EXCEPTION TRANSACTION_ABEND

INVALID INVALID_FUNCTION
APRM gate,

TRANSACTION_INITIALIZATION function

The TRANSACTION_INITIALIZATION function of the APRM
gate is called from the transaction manager domain to the
AP Domain during transaction initialization. The AP domain
allocates the recovery table, and initializes the RM
transaction token to be the address of the recovery table.

LY33-6088-02 © Copyright IBM Corp. 1980, 1999

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

Input parameters: None.

Output parameters

RESPONSE is the domain’s response to the call. It can have
any of these values:

OK|EXCEPTION|DISASTER|INVALID | KERNERROR | PURGED

[REASON] is returned when RESPONSE is DISASTER or
EXCEPTION. Possible values are:

RESPONSE Possible REASON values
DISASTER BAD_ENVIRONMENT
EXCEPTION GETMAIN_FAILURE

APRM gate, TRANSACTION_TERMINATION
function

The TRANSACTION_TERMINATION function of the APRM
gate is called from the transaction manager domain during
transaction termination. A DFHSP TYPE=KCP macro will be
issued for the transaction The AP domain then releases the
recovery table, and sets the RM transaction token to the
address of a fetch-protected area.

Input parameters

TERMINATION_TYPE is the type of transaction termination.
It can have either of these values:

NORMAL | ABNORMAL

[RESTART_REQUESTED] indicates whether or not the
transaction is to be restarted on termination. It can have
either of these values:

YES|NO

Output parameters

RESPONSE is the domain’s response to the call. It can have
any of these values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

[REASON] is returned when RESPONSE is DISASTER or
EXCEPTION. Possible values are:

RESPONSE Possible REASON values
DISASTER BAD_ENVIRONMENT, LINK_FAILURE
EXCEPTION BACKOUT_FAILED, TRANSACTION_ABEND

APRM gate, INQUIRE function

The INQUIRE function of the APRM gate is used to extract
the resource manager attributes of a transaction.

Input parameters

[UOW_TOKEN] is the optional extended token (ETOKEN) for
the transaction.

LY33-6088-02 © Copyright IBM Corp. 1980, 1999

Application domain (AP)

Output parameters

[PROHIBIT_RESTART] indicates whether or not the
transaction is to be prevented from restarting. It can have
either of these values:

YES|NO
[SYNCPOINT_TAKEN] indicates whether or not a syncpoint

is to be taken on transaction termination. It can have
either of these values:

YES|NO

[CICS_UOW_ID] is the optional ETOKEN identifying the
CICS unit-of-work for the transaction.

[EXTERNAL_UOW_ID] is the optional ETOKEN identifying
the non-CICS unit-of-work for the transaction.

RESPONSE is the domain’s response to the call. It can have
any of these values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR | PURGED

APRT gate, ROUTE_TRANSACTION
function

The ROUTE_TRANSACTION function of the APRT gate is
used to dynamically route transactions (which are defined to
be dynamic and not automatically initiated) based on
decisions made by the dynamic transaction routing program.
For transactions which are automatically initiated or are
defined to be remote and not dynamic, DFHAPRT will
statically route such transactions.

Input parameters

DYNAMIC indicates whether or not the transaction is defined
as dynamic. It can have either of these values:
YES|NO

REMOTE indicates whether or not the transaction is defined
as remote. It can have either of these values:
YES|NO

REMOTE_NAME is the four-character transaction identifier

by which this transaction is to be known on the remote
CICS region.

REMOTE_SYSTEM is the eight-character name of the
remote CICS region to which the transaction is to be
routed.

DTRTRAN indicates whether or not dynamic transaction
routing is available. It can have either of these values:

YES|NO

Output parameters

RAN_LOCALLY indicates whether or not the transaction ran
on the local CICS region (that is, was not routed to a
remote CICS region). It can have either of these values:

YES|NO

Chapter 3. Application domain (AP) 17

Application domain (AP)

ABEND_CODE is the four-character transaction abend code
issued if the transaction terminates abnormally.

RESPONSE is the domain’s response to the call. It can have
any of these values:
OK|EXCEPTION|DISASTER| INVALID|KERNERROR | PURGED

[REASON] is returned when RESPONSE is DISASTER or
EXCEPTION. Possible values are:

RESPONSE Possible REASON values
DISASTER ABEND, LOOP
EXCEPTION PROGRAM_NOT_FOUND, TRANSACTION_ABEND,

ISC_DISABLED, REMOTE_CONN_0OS,
REMOTE_CONN_OOS_SYS_CHGD,
ALL_SESSIONS_BUSY, ROUTE_FAILED,
DTRTRAN_REJECTED

APTD gate, WRITE_TRANSIENT_DATA
function

The WRITE_TRANSIENT_DATA function of the APTD gate
is used to write a single record (or multiple records) to a
named transient data queue.

Input parameters

QUEUE specifies the name of the queue to which the data is
to be written

FROM_LIST is a list specifying the address and the length of
each record that is to be written to the specified queue.

[RSL_CHECK] states whether resource-level checking is to
be carried out. It can take the values:

YES|NO

Output parameters

[TD_RECORD] indicates the number of records that were
successfully written to the transient data queue.

[TD_MIN_LENGTH] indicates the minimum allowable length
of a transient data record if a RESPONSE of
EXCEPTION, and a REASON of LENGTH_ERROR is
returned.

[TD_MAX_LENGTH] indicates the maximum allowable
length of a transient data record if a RESPONSE of
EXCEPTION, and a REASON of LENGTH_ERROR is
returned.

RESPONSE is Transient Data’s response to the call. It can
have any of the following values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

[REASON] is returned when RESPONSE is EXCEPTION,
DISASTER, or INVALID. Possible values are:

RESPONSE Possible REASON values

DISASTER ABEND, CSM_ERROR, DCT_ERROR,

DIRECTORY_MGR_ERROR, LOGIC_ERROR

18 ciICs Diagnosis Reference

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

RESPONSE
EXCEPTION

Possible REASON values

QUEUE_REMOTE, QUEUE_NOT_FOUND,
QUEUE_NOT_AUTH, QUEUE_DISABLED,
QUEUE_NOT_OPEN, QUEUE_NOT_OUTPUT,
QUEUE_FULL, NO_SPACE, I0_ERROR,
LENGTH_ERROR, LOCKED,
NO_RECOVERY_TABLE

INVALID_FROM_LIST_P, INVALID_FROM_LIST_N,
INVALID_FROM_P, INVALID_FROM_N,
INVALID_RSL_CHECK

INVALID

APTD gate, READ_TRANSIENT_DATA
function

The READ_TRANSIENT_DATA function of the APTD gate is
used to read a single record from a named transient data
queue.

Input parameters

QUEUE specifies the name of the queue to which a record is
to be read.

INTO specifies a piece of storage into which the record is
placed.

SUSPEND specifies whether the caller wishes to wait if the
record to be read has not been committed to the queue
yet. It can take the values:

YES|NO

[RSL_CHECK] states whether resource level checking is to
be carried out. It can take the values:
YES|NO

[DATA_LOC] if this is a READ TD SET rather than an INTO,
DATA_LOC specifies whether Transient Data should

obtain the required SET storage from above or below the
16MB line. It can take the values:

ANY | BELOW

[DATA_KEY] if this is a READ TD SET rather than an INTO,
DATA_KEY specifies whether Transient Data should
obtain the required SET storage from CICS key or user
key storage. It can take the values:

CICS|USER

Output parameters

RESPONSE is Transient Data’s response to the call. It can
have any of the following values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR | PURGED

[REASON] is returned when RESPONSE is EXCEPTION or
DISASTER. Possible values are:

RESPONSE
DISASTER

Possible REASON values

ABEND, CSM_ERROR, DCT_ERROR,
DIRECTORY_MGR_ERROR, LOGIC_ERROR

LY33-6088-02 © Copyright IBM Corp. 1980, 1999

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

RESPONSE Possible REASON values

EXCEPTION QUEUE_REMOTE, QUEUE_NOT_FOUND,
QUEUE_NOT_AUTH, QUEUE_DISABLED,
QUEUE_NOT_OPEN, QUEUE_NOT_INPUT,

QUEUE_BUSY, I0_ERROR, LENGTH_ERROR,

LOCKED

APTD gate, DELETE_TRANSIENT_DATA
function

The DELETE_TRANSIENT_DATA function of the APTD gate
is used to delete the specified transient data queue.

Input parameters

QUEUE specifies the name of the queue to which the data is
to be deleted.

[RSL_CHECK] states whether resource level checking is to
be carried out. It can take the values:
YES|NO

[DISCARDING_DEFINITION] states whether this DELETEQ

request is part of an attempt by Transient Data to discard
a transient data queue definition. It can take the values:

YES|NO

Output parameters

RESPONSE is Transient Data’s response to the call. It can
have any of the following values:
OK|EXCEPTION|DISASTER|INVALID | KERNERROR | PURGED

[REASON] is returned when RESPONSE is DISASTER or
EXCEPTION. Possible values are:

RESPONSE Possible REASON values

DISASTER ABEND, CSM_ERROR, DCT_ERROR,
DIRECTORY_MGR_ERROR, LOGIC_ERROR

EXCEPTION QUEUE_REMOTE, QUEUE_NOT_FOUND,

QUEUE_NOT_AUTH, QUEUE_DISABLED,
QUEUE_EXTRA, IO_ERROR, LOCKED,

NO_RECOVERY_TABLE

APTD gate, RESET_TRIGGER_LEVEL
function

The RESET_TRIGGER_LEVEL function of the APTD gate is
used to reset a transient data queue so that another trigger
transaction can be attached. Sometimes it is necessary to
include the RESET_TRIGGER_LEVEL function if a trigger
transaction abends.

Input parameters

QUEUE specifies the name of the queue for which the trigger
transaction is to be reset.

Output parameters

LY33-6088-02 © Copyright IBM Corp. 1980, 1999

Application domain (AP)

RESPONSE is Transient Data’s response to the call. It can
have any of the following values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR | PURGED
[REASON] is returned when RESPONSE is DISASTER.
Possible values are: ABEND, DCT_ERROR,

CSM_ERROR, DIRECTORY_MGR_ERROR, and
LOGIC_ERROR.

APTD gate, INITIALISE_ TRANSIENT_DATA
function

The INITIALISE_TRANSIENT_DATA function of the APTD
gate is invoked as part of the initialization process for the
transient data facility.

Input parameters: None.

Output parameters

RESPONSE is Transient Data’s response to the call. It can
have any of the following values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR | PURGED

[REASON] is returned when RESPONSE is DISASTER.
Possible values are:

RESPONSE Possible REASON values
DISASTER ABEND, CSM_ERROR, DCT_ERROR,
DIRECTORY_MGR_ERROR, LOGIC_ERROR
APXM gate,

TRANSACTION_INITIALIZATION function

The TRANSACTION_INITIALIZATION function of the APXM
gate is called from the transaction manager domain to the
AP Domain during transaction initialization. The AP domain
allocates the AP domain transaction lifetime control blocks,
and anchors them in the AP domains transaction token.

Input parameters: None.

Output parameters

RESPONSE is the domain’s response to the call. It can have
any of these values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR | PURGED

[REASON] is returned when RESPONSE is EXCEPTION.
Possible values are:

RESPONSE Possible REASON values

EXCEPTION GETMAIN_FAILURE

Chapter 3. Application domain (AP) 19

Application domain (AP)

APXM gate, RMI_START_OF TASK
function

The RMI_START_OF_TASK function of the APXM gate is
called from transaction manager domain to the AP Domain
during transaction initialization. The AP domain invokes any
task-related user exits enabled for start of task.

Input parameters: None.

Output parameters

RESPONSE is the domain’s response to the call. It can have
any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR | PURGED

APXM gate, TRANSACTION_TERMINATION
function

The TRANSACTION_TERMINATION function of the APXM
gate is called from the transaction manager domain during
transaction termination, and releases AP domain transaction
lifetime resources.

Input parameters

TERMINATION_TYPE is the type of transaction termination.
It can have either of these values:

NORMAL | ABNORMAL

Output parameters

RESPONSE is the domain’s response to the call. It can have
any of these values:
OK|EXCEPTION|DISASTER|INVALID | KERNERROR | PURGED

[REASON] is returned when RESPONSE is EXCEPTION.
Possible values are:

RESPONSE Possible REASON values

EXCEPTION FREEMAIN_FAILURE

BRAT gate, ATTACH function

The ATTACH function of the BRAT gate is called to attach a
transaction with a bridge primary client.

Input parameters

TRANSACTION_ID The 4 byte transaction id of the user
transaction to be attached.

[BREXIT] An optional program name to be used as the
bridge exit. If this is not specified, DFHBRAT will get the
default value from transaction manager. If there is no
default bridge exit, an error is returned.

[USERID] The USERID that should be signed-on to the

terminal. This is only set when no facility token is passed.

20 ciICs Diagnosis Reference

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

[BRDATA] The address and length of a block of storage
containing data to be passed to bridge exit. This is used
as part of the primary client data.

Output parameters

RESPONSE is the domain’s response to the call. It can have
any of these values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR | PURGED

[REASON] is returned when RESPONSE is EXCEPTION,
DISASTER or INVALID. Possible values are:

RESPONSE Possible REASON values

EXCEPTION NO_BREXIT, NO_STORAGE,
USERID_NOT_AUTH_BREXIT, NOT_FOUND,
DISABLED, NO_XM_STORAGE,
NOT_ENABLED_FOR_SHUTDOWN,
STATE_SYSTEM_ATTACH

DISASTER ABEND

INVALID INVALID_FORMAT, INVALID_FUNCTION

BRIQ gate, INQUIRE_CONTEXT function

The INQUIRE_CONTEXT of the BRIQ gate is called to
inquire on bridge state data.

Input parameters

[TRANSACTION_TOKEN] The XM transaction token for the
task to be inquired upon.

Output parameters

[CALL_EXIT_FOR_SYNC] Can have either of these two
values:

YES|NO

[BRIDGE_ENVIRONMENT] Can have either of these two
values:

YES|NO

[CONTEXT] The transaction context. It can have either of
these values:

NORMAL | BRIDGE | BREXIT

[START_CODE] The emulated startcode of the user
transaction

[BRIDGE_TRANSACTION_ID] The transaction identifier of
the bridge monitor (if CONTEXT is BRIDGE or BREXIT).

[BRIDGE_EXIT_PROGRAM] The name of the bridge exit
program (if CONTEXT is BRIDGE or BREXIT).

[BRIDGE_FACILITY_TOKEN] A token identifying the bridge
facility

[IDENTIFIER] Data created by the bridge exit for problem
determination purposes.

[BRDATA] Data passed to the bridge exit during attach.

RESPONSE is the domain’s response to the call. It can have
any of these values:

LY33-6088-02 © Copyright IBM Corp. 1980, 1999

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

OK|EXCEPTION|DISASTER| INVALID|KERNERROR | PURGED

[REASON] is returned when RESPONSE is EXCEPTION,
DISASTER or INVALID. Possible values are:

RESPONSE Possible REASON values

EXCEPTION BAD_TOKEN, NO_TRANSACTION_ENVIRONMENT
DISASTER ABEND

INVALID INVALID_FORMAT

ICXM gate, BIND_FACILITY function

The BIND_FACILITY function of the ICXM gate is used to
associate a transaction with the ICE that caused the
transaction to be started.

Input parameters: None.

Output parameters

RESPONSE is the domain’s response to the call. It can have
any of these values:
OK|EXCEPTION|DISASTER| INVALID|KERNERROR | PURGED

[REASON] is returned when RESPONSE is DISASTER.
Possible values are:

RESPONSE Possible REASON values

DISASTER ABEND

ICXM gate, RELEASE_FACILITY function

The RELEASE_FACILITY function of the ICXM gate is used
to disassociate a transaction from the ICE that caused the
transaction to be attached.

Input parameters

TERMINATION_TYPE is the type of termination of the
transaction to ICE association. It can have either of these
values:

NORMAL ABNORMAL

[RESTART_REQUESTED] indicates whether or not the
transaction is to be restarted. It can have either of these
values:

YES|NO

Output parameters

RESPONSE is the domain’s response to the call. It can have
any of these values:

OK|EXCEPTION|DISASTER| INVALID|KERNERROR | PURGED

[REASON] is returned when RESPONSE is EXCEPTION.
Possible values are:

RESPONSE Possible REASON values

EXCEPTION RESTART_FAILURE

LY33-6088-02 © Copyright IBM Corp. 1980, 1999

Application domain (AP)

ICXM gate, INQUIRE_FACILITY function

The INQUIRE_FACILITY function of the ICXM gate is used
to inquire about the interval control facilities that support
facility management calls from the transaction management
domain.

Input parameters

[FACILITY_TOKEN] is the token identifying the transaction
that has been trigger-level attached.

Output parameters

FACILITY_NAME is the four-character name of the
transaction that has been trigger-level attached.

RESPONSE is the domain’s response to the call. It can have
any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR | PURGED

TFXM gate, INIT_XM_CLIENT function

The INIT_XM_CLIENT function of the TFXM gate is the
initialization phase of the transaction initialization that has
been initiated from a terminal or an LU6.1 session.

Input parameters
[PRIMARY_CLIENT_BLOCK] is the address of the TCTTE
and its length.

Output parameters

RESPONSE is the domain’s response to the call. It can have
any of these values:
OK|DISASTER|KERNERROR

[REASON] is returned when RESPONSE is DISASTER.
Possible values are:

RESPONSE
DISASTER

Possible REASON values
ABEND

TFXM gate, BIND_XM_CLIENT function

The BIND_XM_CLIENT function of the TFXM gate is the
bind phase of the transaction initialization that has been
initiated from a terminal or an LU6.1 session.

Input parameters
[PRIMARY_CLIENT_BLOCK] is the address of the TCTTE
and its length.

Output parameters

RESPONSE is the domain’s response to the call. It can have
any of these values:

OK|DISASTER|KERNERROR

Chapter 3. Application domain (AP) 21

Application domain (AP)

[REASON] is returned when RESPONSE is DISASTER.
Possible values are:

RESPONSE Possible REASON values

DISASTER ABEND

MRXM gate, INIT_XM_CLIENT function

The INIT_XM_CLIENT function of the MRXM gate is the
initialization phase of the transaction initialization that has
been initiated from a terminal or an MRO session.

Input parameters
[PRIMARY_CLIENT_BLOCK] is the address of the TCTTE
and its length.

Output parameters

RESPONSE is the domain’s response to the call. It can have
any of these values:
OK|DISASTER|KERNERROR

[REASON] is returned when RESPONSE is DISASTER.
Possible values are:

RESPONSE Possible REASON values

DISASTER ABEND

MRXM gate, BIND_XM_CLIENT function

The BIND_XM_CLIENT function of the MRXM gate is the
bind phase of the transaction initialization that has been
initiated from a terminal or an MRO session.

Input parameters
[PRIMARY_CLIENT_BLOCK] is the address of the TCTTE
and its length.

Output parameters

RESPONSE is the domain’s response to the call. It can have
any of these values:
OK|DISASTER|KERNERROR

[REASON] is returned when RESPONSE is DISASTER.
Possible values are:

RESPONSE Possible REASON values

DISASTER ABEND

62XM gate, INIT_XM_CLIENT function

The INIT_XM_CLIENT function of the 62XM gate is the
initialization phase of the transaction initialization that has
been initiated from a terminal or an LU6.2 or APPC session.

Input parameters

22 CICS Diagnosis Reference

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

[PRIMARY_CLIENT_BLOCK] is the address of the TCTTE
and its length.

Output parameters

RESPONSE is the domain’s response to the call. It can have
any of these values:

OK|DISASTER|KERNERROR

[REASON] is returned when RESPONSE is DISASTER.
Possible values are:

Possible REASON values
ABEND

RESPONSE
DISASTER

62XM gate, BIND_XM_CLIENT function

The BIND_XM_CLIENT function of the 62XM gate is the bind
phase of the transaction initialization that has been initiated
from a terminal or an LU6.2 or APPC session.

Input parameters

[PRIMARY_CLIENT_BLOCK] is the address of the TCTTE
and its length.

Output parameters

RESPONSE is the domain’s response to the call. It can have
any of these values:

OK|DISASTER | KERNERROR

[REASON] is returned when RESPONSE is DISASTER.
Possible values are:

Possible REASON values
ABEND

RESPONSE
DISASTER

RTSU gate, COMMIT_SURROGATE
function

The COMMIT_SURROGATE function of the RTSU gate is
used to update the state of a surrogate TCTTE when a Unit
of Work is committed or backed out.

Input parameters
SURROGATE The address of the surrogate TCTTE

[UOW_STATUS] Indicates if the Unit of Work is being
committed or backed out. It can have either of these two
values:

FORWARD | BACKWARD

Output parameters

FREE_REQUIRED Indicates if the surrogate should now be
freed (because, for instance, the relay link has been
freed). It can have either of these two values:

YES|NO

LY33-6088-02 © Copyright IBM Corp. 1980, 1999

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

RESPONSE is the domain’s response to the call. It can have
any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR | PURGED

[REASON] is returned when RESPONSE is DISASTER or
INVALID. Possible values are:

RESPONSE Possible REASON values

DISASTER ABEND

INVALID INVALID_FORMAT, INVALID_FUNCTION,
INVALID_SURROGATE, INVALID_SAVED_STATE

RTSU gate, FREE_SURROGATE function

The FREE_SURROGATE function of the RTSU gate is used
to free a surrogate TCTTE from the currently executing task.
Input parameters

SURROGATE The address of the surrogate TCTTE

Output parameters

RESPONSE is the domain’s response to the call. It can have
any of these values:
OK|EXCEPTION|DISASTER| INVALID|KERNERROR | PURGED

[REASON] is returned when RESPONSE is DISASTER or
INVALID. Possible values are:

RESPONSE Possible REASON values

DISASTER ABEND

INVALID INVALID_FORMAT, INVALID_FUNCTION,
INVALID_SURROGATE

RTSU gate, GET_RECOVERY_STATUS
function

The GET_RECOVERY_STATUS function of the RTSU gate
is used to determine what actions are required of the relay
link at syncpoint.

Input parameters
SURROGATE The address of the surrogate TCTTE

Output parameters

RECOVERY_STATUS Indicates the syncpoint protocols
required on the relay link. It can have any of these
values:

NECESSARY | UNNECESSARY | SYNC_LEVEL 1

ABORT_ALLOWED Indicates whether, during the syncpoint
protocols, an ABORT FMH7 should be sent on the relay
link. It can have either of these values:

YES|NO

RESPONSE is the domain’s response to the call. It can have
any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR | PURGED

LY33-6088-02 © Copyright IBM Corp. 1980, 1999

Application domain (AP)

[REASON] is returned when RESPONSE is DISASTER or
INVALID. Possible values are:

RESPONSE Possible REASON values

DISASTER ABEND

INVALID INVALID_FORMAT, INVALID_FUNCTION,
INVALID_SURROGATE

RTSU gate, PREPARE_SURROGATE
function

The PREPARE_SURROGATE function of the RTSU gate is
used to update the state of a surrogate TCTTE at the start of
syncpoint.

Input parameters

SURROGATE The address of the surrogate TCTTE

INITIATOR Indicates if the associated relay link is the
initiator of the syncpoint request. It can have either of
these two values:

YES|NO

Output parameters

RESPONSE is the domain’s response to the call. It can have
any of these values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR | PURGED

[REASON] is returned when RESPONSE is EXCEPTION,
DISASTER or INVALID. Possible values are:

RESPONSE Possible REASON values

EXCEPTION INVALID_STATE

DISASTER ABEND

INVALID INVALID_FORMAT, INVALID_FUNCTION,
INVALID_SURROGATE

RTSU gate, RESET_SURROGATE function

The RESET_SURROGATE function of the RTSU gate is
used to restore the state of a surrogate TCTTE when
ISSUE_ABEND or ISSUE_ERORR was received on the relay
link in reply to an ISSUE PREPARE request.

Input parameters

SURROGATE The address of the surrogate TCTTE

REPLY_TO_PREPARE Indicates which reply was received
in response to ISSUE_PREPARE. It can have either of
these two values:

ISSUE_ERROR-ISSUE_ABEND

Output parameters

RESPONSE is the domain’s response to the call. It can have
any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR | PURGED

Chapter 3. Application domain (AP) 23

Application domain (AP)

[REASON] is returned when RESPONSE is DISASTER or
INVALID. Possible values are:

RESPONSE Possible REASON values

DISASTER ABEND

INVALID INVALID_FORMAT, INVALID_FUNCTION,
INVALID_SURROGATE

SAIQ gate, INQUIRE_SYSTEM function

The INQUIRE_SYSTEM function of the SAIQ gate is used to
inquire about system data owned by the application domain.

Input parameters

[GMMTEXT] is an optional token identifying the text of the
“good-morning” message.

Output parameters

[AKP] is a fullword binary field indicating the activity keypoint
frequency, in the range 200 through 65 535, of the local
CICS region.

[CICSREL] is a 4-character string indicating the level
(version and release numbers) of CICS code present.

[CICSSTATUS] is the current status of the local CICS
system. It can have any of these values:
ACTIVE|FIRSTQUIESCE|FINALQUIESCE| INITIALIZING

[CICSSYS] is the one-character identifier of the operating
system for which the running CICS system has been

built. A value of “X” represents MVS system with
extended addressing.

[CWA] is the address of the CWA.
[CWALENGTH] is the length (in bytes) of the CWA.

[DATE] is a four-character packed-decimal value indicating
the current date (00yydddc, where yy=years, ddd=days, c
is the sign).

[DCE_SUFFIX] is the two-character suffix of the DCE
initialization side file, as specified on the DCESUFFX
system initialization parameter.

[DTRPRGRM] is the 8-character name of the program
controlling the dynamic routing of transactions.

[GMMLENGTH] is a halfword binary field indicating the
length of the “good-morning” message text.

[GMMTRANID] is the four-character identifier of the
“good-morning” transaction.

[INITSTATUS] is the initialization status of the local CICS
region. It can have any of these values:

FIRSTINIT|SECONDINIT|THIRDINIT|INITCOMPLETE

[JOBNAME] is the eight-character MVS job name for the
local CICS region.

24 cCICS Diagnosis Reference

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

[OPREL] indicates the release number of the operating
system currently running. The values is ten times the
formal release number. For example, “21” represents
Release 2.1.

[OPSYS] is a one-character identifier indicating the type of
operating system currently running. A value of “X”
represents MVS.

[PLTPI] is the two-character suffix of the program list table,
which contains a list of programs to be run in the final
stages of system initialization.

[SECURITYMGR] indicates whether an external security
manager (such as RACF) is active in the CICS region, or
whether no security is being used. It can have either of
these values:

EXTSECURITY|NOSECURITY
[SHUTSTATUS] is the shutdown status of the local CICS
region. It can have any of these values:
CONTROLSHUT | SHUTDOWN | CANCELLED | NOTSHUTDOWN
[STARTUP] is the type of startup used for the local CICS
region. It can have any of these values:
COLDSTART | WARMSTART | EMERGENCY | LOGTERM | STANDBY | AUTOSTART
[STARTUPDATE] is a four-character packed-decimal value

indicating the date on which the local CICS region was
started.

[TERMURM] is the eight-character name of the terminal
autoinstall program.

[TIMEOFDAY] is a four-character packed-decimal value
indicating the time at which the local CICS region was
started (hhmmsstc, where hh=hours, mm=minutes,
ss=seconds, c is the sign).

[XRFSTATUS] indicates whether the local CICS region is a
PRIMARY (active) or TAKEOVER (alternate) XRF CICS
region, or has no XRF support. It can have any of these
values:

PRIMARY | TAKEOVER | NOXRF

RESPONSE is the domain’s response to the call. It can have
any of these values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR | PURGED

[REASON] is returned when RESPONSE is DISASTER or
EXCEPTION. Possible values are:

RESPONSE Possible REASON values
DISASTER ABEND, INQ_FAILED, LOOP
EXCEPTION LENGTH_ERROR, UNKNOWN_DATA

SAIQ gate, SET_SYSTEM function

The SET_SYSTEM function of the SAIQ gate is used to set
system data values owned by the application domain.

Input parameters

LY33-6088-02 © Copyright IBM Corp. 1980, 1999

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

[AKP] is a fullword binary field indicating the activity keypoint
frequency, in the range 200 through 65 535, of the local
CICS region.

[DCE_SUFFIX] is the two-character suffix of the DCE
initialization side file.

[DTRPRGRM] is the 8-character name of the program
controlling the dynamic routing of transactions.

[GMMTEXT] is an optional token identifying the text of the
“good-morning” message.

[GMMLENGTH] is a halfword binary field indicating the
length of the “good-morning” message text.

Output parameters

RESPONSE is the domain’s response to the call. It can have
any of these values:
OK|EXCEPTION|DISASTER| INVALID|KERNERROR | PURGED

[REASON] is returned when RESPONSE is DISASTER or
EXCEPTION. Possible values are:

RESPONSE Possible REASON values

DISASTER ABEND, SET_FAILED, LOOP

EXCEPTION AKP_SIZE_ERROR, LENGTH_ERROR,
NO_KEYPOINTING

TDOC gate, OPEN_TRANSIENT_DATA
function

The OPEN_TRANSIENT_DATA function of the TDOC gate is
used to open an extrapartition transient data queue.

Input parameters

QUEUE specifies the name of the extrapartition transient
data queue to be opened.

TD_QUEUE_TOKEN can be specified instead of QUEUE.
The token uniquely identifies the extrapartition queue to
be opened.

Output parameters

RESPONSE is Transient Data’s response to the call. It can
have any of these values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

[REASON] is returned when RESPONSE is DISASTER or
EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION QUEUE_INTRA, QUEUE_REMOTE, QUEUE_OPEN,
QUEUE_NOT_FOUND

DISASTER DCT_ERROR, DIRECTORY_MGR_ERROR,
LOGIC_ERROR

LY33-6088-02 © Copyright IBM Corp. 1980, 1999

Application domain (AP)

TDOC gate, CLOSE_TRANSIENT_DATA
function

The CLOSE_TRANSIENT_DATA function of the TDOC gate
is used to close an extrapartition transient data queue.

Input parameters

QUEUE specifies the name of the extrapartition transient
data queue to be closed.

TD_QUEUE_TOKEN can be specified instead of QUEUE.
The token uniquely identifies the extrapartition queue to
be closed.

Output parameters

RESPONSE is Transient Data’s response to the call. It can
have any of these values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR | PURGED

[REASON] is returned when RESPONSE is DISASTER or
EXCEPTION. Possible values are:

RESPONSE Possible REASON values
DISASTER ABEND, DCT_ERROR, DIRECTORY_MGR_ERROR,
LOGIC_ERROR
EXCEPTION QUEUE_INTRA, QUEUE_REMOTE,
QUEUE_CLOSED, QUEUE_NOT_FOUND,
QUEUE_NULL, QUEUE_NOT_CLOSED
TDOC gate,

CLOSE_ALL_EXTRA_TD_QUEUES
function

The CLOSE_ALL_EXTRA_TD_QUEUES function of the
TDOC gate closes all extrapartition transient data queues
which are currently open in the system. The

CLOSE_ALL_EXTRA_TD_QUEUES function is usually
invoked as part of a warm shutdown.

Input parameters: None.

Output parameters

RESPONSE is Transient Data’s response to the call. It can
have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

[REASON] is returned when RESPONSE is DISASTER.
Possible values are: ABEND, DCT_ERROR,
DIRECTORY_MGR_ERROR, and LOGIC_ERROR.

TDTM gate, ADD_REPLACE_TDQUEUE
function

The ADD_REPLACE_TDQUEUE function of the TDTM gate
is used to install a transient data queue definition.

Input parameters

Chapter 3. Application domain (AP) 25

Application domain (AP)

QUEUE_NAME specifies the name of the queue to be
installed.

TD_QUEUE_TOKEN can be specified instead of QUEUE.
The token uniquely identifies a DCT entry that has
already been built, but needs to be installed.

TD_TYPE specifies the queue type. Possible values are:
EXTRA| INTRA| INDIRECT |REMOTE

BLOCK_LENGTH specifies the block length of an
extrapartition queue.

BUFFER_NUMBER specifies the number of buffers to be
associated with an extrapartition queue.

DDNAME specifies the DDNAME to be associated with an
extrapartition queue.

DISPOSITION specifies the disposition of the data set to be
associated with an extrapartition queue. Possible values
are:

SHR|OLD|MOD

DSNAME specifies the DSNAME of the data set to be
associated with an extrapartition queue.

ERROR_OPTION specifies the action to be taken in the
event of an I/O error. This input parameter applies to
extrapartition queues only. Possible values are:

IGNORE | SKIP
FACILITY specifies the facility associated with this

intrapartition queue when a trigger transaction is
attached. Possible values are:

TERMINAL | FILE|SYSTEM
FACILITY_ID specified together with the FACILITY option,

FACILITY_ID identifies the facility that the trigger
transaction should be associated with.

INDIRECT_DEST specifies the destination queue if this
queue is an indirect queue.

WAIT_ACTION specifies the action to be taken if this
logically recoverable intrapartition queue suffers an
indoubt failure. Possible values are:

QUEUE | REJECT
WAIT specifies whether this logically recoverable

intrapartition queue can wait for the resolution of an
indoubt failure. Possible values are:

YES|NO

OPEN_TIME specifies whether this extrapartition queue
should be opened as part of installation processing.
Possible values are:

INITIAL|DEFERRED

RECORD_LENGTH specifies the record length of an
extrapartition queue in bytes.

RECORD_FORMAT specifies the format of records held in
an extrapartition queue. Possible values are:

26 CICS Diagnosis Reference

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

FIXUNB | FIXUNBA | FIXUNBM|FIXBLK|FIXBLKA|FIXBLKM|
VARBLK | VARBLKA | VARBLKM| VARUNB | VARUNBA |
VARUNBM | UNDEFINED

RECOVERY specifies the recovery type of an intrapartition
queue. Possible values are:

NO|PH|LG
REMOTE_NAME specifies the remote name of the queue if
this is a remote queue definition.

REMOTE_SYSTEM specifies the remote system identifier
(SYSID) if this is a remote queue definition.

REWIND specifies where the tape is positioned in relation to
the end of the data set. This input parameter applies to
extrapartition queues only. Possible values are:

REREAD | LEAVE

TRANSACTION_ID specifies the ATI transaction to be
invoked when the trigger level is reached.

TRIGGER_LEVEL specifies the trigger level of the
intrapartition queue.

TYPE_FILE indicates whether this queue is:

¢ An input queue
e An output queue
¢ Whether the queue is to be read backwards.

Possible values are:
INPUT|OUTPUT | RDBACK

USERID specifies the userid to be associated with a
trigger-level attached transaction.

SYSOUTCLASS specifies the SYSOUT class to be used for
the associated output extrapartition queue.

Output parameters

RESPONSE is Transient Data’s response to the call. It can
have any of these values:

OK|EXCEPTION|DISASTER | INVALID|KERNERROR|PURGED

[REASON] is returned when RESPONSE is DISASTER or
EXCEPTION. Possible values are:

RESPONSE Possible REASON values

DISASTER ABEND, CATALOG_WRITE_FAILED, DCT_ERROR,
DIRECTORY_MGR_ERROR, LOGIC_ERROR

EXCEPTION COLD_START_IN_PROGRESS,

DDNAME_NOT_FOUND,
DFHINTRA_NOT_OPENED, DISABLE_PENDING,
DUPLICATE, INSUFFICIENT_STORAGE,
NOT_CLOSED, NOT_DISABLED, NOT_EMPTY,
NOT_SAME_TYPE, QUEUE_NOT_OPENED,
SECURITY_FAILURE, USERID_NOTAUTHED

TDTM gate, INQUIRE_TDQUEUE function

The INQUIRE_TDQUEUE function of the TDTM gate is used
to inquire on a specified queue.

Input parameters

LY33-6088-02 © Copyright IBM Corp. 1980, 1999

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

QUEUE_NAME specifies the name of the queue to be
inquired upon.

Output parameters

[ATI_FACILITY] specifies the facility associated with this
intrapartition queue when a trigger transaction is
attached. Possible values are:

TERMINAL|FILE|SYSTEM
[ATI_TERMID] specified together with the FACILITY option,

FACILITY_ID identifies the facility that the trigger
transaction should be associated with.

[ATI_TRANID] specifies the ATI transaction to be invoked
when the trigger level is reached.

[BUFFER_NUMBER] specifies the number of buffers to be
associated with an extrapartition queue.

[DDNAME] specifies the DDNAME to be associated with an
extrapartition queue.

[DISPOSITION] specifies the disposition of the data set to be
associated with an extrapartition queue. Possible values
are:

SHR|OLD|MOD

[DSNAME] specifies the DSNAME of the data set to be
associated with the extrapartition queue.

[EMPTY_STATUS] indicates whether the queue contains
any records, and whether the queue is full. This option
applies to extrapartition queues only. Possible values are:

FULL|EMPTY [NOTEMPTY

[ENABLE_STATUS] indicates the status of the queue.
Possible values are:
ENABLED|DISABLING|DISABLED

[ERROR_OPTION] specifies what action is to be taken in the

event of an I/O error. This option applies to extrapartition
queues only. Possible values are:

IGNORE | SKIP

[INDIRECT_DEST] specifies the destination queue if this
gueue is an indirect queue.

[WAIT] specifies whether this logically recoverable
intrapartition queue can wait for the resolution of an
indoubt failure. Possible values are:

YES|NO

[WAIT_ACTION] specifies the action to be taken if this
logically recoverable intrapartition queue suffers an
indoubt failure. Possible values are:

QUEUE | REJECT

[NUM_ITEMS] states the number of committed items in the
queue.

[OPEN_STATUS] indicates whether the queue is open.
Possible values are:

OPEN|CLOSED

LY33-6088-02 © Copyright IBM Corp. 1980, 1999

Application domain (AP)

[RECORD_FORMAT] specifies the format of the records
held on the extrapartition queue. Possible values are:

FIXUNB | FIXUNBA | FIXUNBM| FIXBLK | FIXBLKA|FIXBLKM|
VARBLK | VARBLKA | VARBLKM| VARUNB | VARUNBA |
VARUNBM | UNDEFINED

[RECORD_LENGTH] specifies the record length of the
extrapartition queue.

[RECOVERY] specifies the recovery type of an intrapartition
queue. Possible values are:

NO|PH|LG
[REMOTE_NAME] specifies the remote name of the queue if
this is a remote queue definition.

[REWIND] specifies where the tape is positioned in relation
to the end of the data set. This input parameter applies to
extrapartition queues only. Possible values are:

REREAD | LEAVE

[TD_QUEUE_TOKEN] states which token is associated with
this queue.

[TD_TYPE] specifies the queue type. Possible values are:
EXTRA| INTRA| INDIRECT |REMOTE

[TRIGGER_LEVEL] specifies the trigger level of the
intrapartition queue.

[TYPE_FILE] specifies whether this queue is:
¢ An input queue

e An output queue
¢ Whether it is a queue that is to be read backwards.

Possible values are:
INPUT|OUTPUT | RDBACK

[USERID_TOKEN] indicates which token is associated with
the USERID that was specified for this intrapartition
queue.

[SYSOUTCLASS] specifies the SYSOUT class to be used
for the associated output extrapartition queue.

[BLOCK_LENGTH] specifies the block length of an
extrapartition queue.

RESPONSE is Transient Data’s response to the call. It can
have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR | PURGED

REASON is returned when RESPONSE is DISASTER or
EXCEPTION. Possible values are:

RESPONSE Possible REASON values

DISASTER ABEND, DCT_ERROR, DIRECTORY_MGR_ERROR,
LOGIC_ERROR

EXCEPTION QUEUE_NOT_FOUND

Chapter 3. Application domain (AP) 27

Application domain (AP)

TDTM gate, START_BROWSE_TDQDEF
function

The START_BROWSE_TDQDEF function of the TDTM gate
initiates a browse from a specified queue, or from the start of
the DCT.

Input parameters

START_AT specifies a queue from which the browse should
start.

Output parameters

BROWSE_TOKEN is returned and uniquely identifies this
browse session.

RESPONSE is Transient Data’s response to the call. It can
have any of these values:

OK|EXCEPTION|DISASTER| INVALID|KERNERROR | PURGED

[REASON] returned when RESPONSE is DISASTER.
Possible values are: ABEND, DCT_ERROR,
DIRECTORY_MGR_ERROR, and LOGIC_ERROR

TDTM gate, GET_NEXT_TDQDEF function

The GET_NEXT_TDQDEF function of the TDTM gate returns
information about a queue as part of a browse operation.

Input parameters
BROWSE_TOKEN identifies the browse session.

Output parameters
QUEUE_NAME is the name of the queue.

[ATI_FACILITY] specifies the facility associated with this
intrapartition queue when a trigger transaction is
attached. Possible values are:

TERMINAL|FILE|SYSTEM
[ATI_TERMID] specified together with the FACILITY option,

FACILITY_ID identifies the facility that the trigger
transaction should be associated with.

[ATI_TRANID] specifies the ATI transaction to be invoked
when the trigger level is reached.

[BUFFER_NUMBER] specifies the number of buffers to be
associated with an extrapartition queue.

[DDNAME] specifies the DDNAME to be associated with an
extrapartition queue.

[DISPOSITION] specifies the disposition of the data set to be
associated with an extrapartition queue. Possible values
are:

SHR|OLD|MOD

[DSNAME] specifies the DSNAME of the data set to be
associated with the extrapartition queue.

28 cICs Diagnosis Reference

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

[EMPTY_STATUS] indicates whether the queue contains
any records, and whether the queue is full. This option
applies to extrapartition queues only. Possible values are:

FULL|EMPTY |NOTEMPTY

[ENABLE_STATUS] indicates the status of the queue.
Possible values are:
ENABLED | DISABLING | DISABLED

[ERROR_OPTION] specifies what action is to be taken in the

event of an 1/O error. This option applies to extrapartition
queues only. Possible values are:

IGNORE | SKIP

[INDIRECT_DEST] specifies the destination queue if this
queue is an indirect queue.

[WAIT] specifies whether this logically recoverable
intrapartition queue can wait for the resolution of an
indoubt failure. Possible values are:

YES|NO
[WAIT_ACTION] specifies the action to be taken if this

logically recoverable intrapartition queue suffers an
indoubt failure. Possible values are:

QUEUE | REJECT

[NUM_ITEMS] states the number of committed items in the
gueue.

[OPEN_STATUS] indicates whether the queue is open.
Possible values are:
OPEN|CLOSED

[RECORD_FORMAT] specifies the format of the records
held on the extrapartition queue. Possible values are:

FIXUNB | FIXUNBA | FIXUNBM|FIXBLK | FIXBLKA|FIXBLKM|
VARBLK | VARBLKA | VARBLKM| VARUNB | VARUNBA |
VARUNBM | UNDEFINED

[RECORD_LENGTH] specifies the record length of the
extrapartition queue.

[RECOVERY] specifies the recovery type of an intrapartition
queue. Possible values are:

NO|PH|LG
[REMOTE_NAME] specifies the remote name of the queue if
this is a remote queue definition.

[REWIND] specifies where the tape is positioned in relation
to the end of the data set. This input parameter applies to
extrapartition queues only. Possible values are:

REREAD | LEAVE

[TD_QUEUE_TOKEN] states which token is associated with
this queue.

[TD_TYPE] specifies the queue type. Possible values are:
EXTRA|INTRA| INDIRECT |REMOTE

[TRIGGER_LEVEL] specifies the trigger level of the
intrapartition queue.

LY33-6088-02 © Copyright IBM Corp. 1980, 1999

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

[TYPE_FILE] specifies whether this queue is:
e An input queue
e An output queue
¢ Whether it is a queue that is to be read backwards.
Possible values are:
INPUT|OUTPUT | RDBACK
[USERID_TOKEN] indicates which token is associated with

the USERID that was specified for this intrapartition
queue.

[SYSOUTCLASS] specifies the SYSOUT class to be used
for the associated output extrapartition queue.

[BLOCK_LENGTH] specifies the block length of an
extrapartition queue.

RESPONSE is Transient Data’s response to the call. It can
have any of these values:
OK|EXCEPTION|DISASTER| INVALID|KERNERROR | PURGED

[REASON] returned when RESPONSE is DISASTER,
EXCEPTION, or INVALID. Possible values are:

RESPONSE Possible REASON values

DISASTER ABEND, DCT_ERROR, DIRECTORY_MGR_ERROR,
LOGIC_ERROR

EXCEPTION NO_MORE_DATA_AVAILABLE

INVALID INVALID_BROWSE_TOKEN

TDTM gate, END_BROWSE_TDQDEF
function

The END_BROWSE_TDQDEF function of the TDTM gate
terminates a browse session.

Input parameters

BROWSE_TOKEN identifies the browse session.

Output parameters

RESPONSE is Transient Data’s response to the call. It can
have any of these values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR | PURGED

[REASON] returned when RESPONSE is DISASTER, or
INVALID. Possible values are:

RESPONSE Possible REASON values

DISASTER ABEND, DCT_ERROR, DIRECTORY_MGR_ERROR,
LOGIC_ERROR

INVALID INVALID_BROWSE_TOKEN

TDTM gate, SET_TDQUEUE function

The SET_TDQUEUE function of the TDTM gate updates
attributes of an installed transient data queue.

LY33-6088-02 © Copyright IBM Corp. 1980, 1999

Application domain (AP)

Input parameters
QUEUE_NAME identifies the queue to be updated.

[ATI_FACILITY] specifies the type of facility associated with
this queue. Possible values are:

TERMINAL|FILE|SYSTEM

[ATI_TERMID] indicates whether the ATI facility is to be
updated.

[ATI_TRANID] indicates whether the ATI transaction is to be
updated.

[ATI_USERID] indicates whether the USERID associated
with the ATI transaction is to be updated.

[USERID_TOKEN] is the token that is supplied by the user
domain when the userid is added to the system.

Output parameters

OLD_USER_TOKEN identifies the token associated with a
previous USERID.

RESPONSE is Transient Data’s response to the call. It can
have any of these values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

[REASON] returned when RESPONSE is EXCEPTION or
DISASTER. Possible values are:

RESPONSE Possible REASON values

DISASTER ABEND, DCT_ERROR, DIRECTORY_MGR_ERROR,
LOGIC_ERROR, CATALOG_WRITE_ERROR ,

EXCEPTION IS_CXRF, NOT_CLOSED, DISABLE_PENDING,

NOT_DISABLED, QUEUE_IS_INDOUBT,
QUEUE_NOT_FOUND

TDTM gate, DISCARD_TDQDEF function

The DISCARD_TDQDEF function of the TDTM gate deletes
an installed transient data queue definition and removes it
from the catalog. A DELETEQ command is issued as part of
the discard process.

Input parameters

QUEUE_NAME identifies the queue to be discarded.

[TD_QUEUE_TOKEN] can be specified instead of
QUEUE_NAME. TD_QUEUE_TOKEN identifies the
queue to be discarded.

Output parameters

RESPONSE is Transient Data’s response to the call. It can
have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR | PURGED

[REASON] returned when RESPONSE is EXCEPTION or
DISASTER. Possible values are:

Chapter 3. Application domain (AP) 29

Application domain (AP)

RESPONSE Possible REASON values

DISASTER DCT_ERROR, DIRECTORY_MGR_ERROR,
LOGIC_ERROR, CATALOG_DELETE_FAILED,

EXCEPTION NAME_STARTS_WITH_C, NOT_CLOSED,
NOT_DISABLED, DISABLE_PENDING,
QUEUE_NOT_FOUND

TDTM gate, COMMIT_TDQDEFS function

The COMMIT_TDQDEFS function of the TDTM gate catalogs
all installed transient data queue definitions as part of cold
start processing.

Input parameters

TOKEN specifies the catalog to which the queue definitions
are to be written.

Output parameters

RESPONSE is Transient Data’s response to the call. It can
have any of these values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

[REASON] returned when RESPONSE is DISASTER.

Possible values are: DIRECTORY_MGR_ERROR,
CATALOG_WRITE_FAILED, and ABEND.

TDXM gate, BIND_FACILITY function

The BIND_FACILITY function of the TDXM gate is used to
associate a transaction with the definition for the transient
data queue that caused the transaction to be trigger-level
attached, where the principal facility is the queue itself (that
is there is no terminal associated with the queue).

Input parameters: None.

Output parameters

RESPONSE is Transient Data’s response to the call. It can
have any of these values:
OK|EXCEPTION|DISASTER| INVALID|KERNERROR | PURGED

REASON is returned when RESPONSE is DISASTER.
Possible values are:

RESPONSE Possible REASON values

DISASTER ABEND

TDXM gate, BIND_SECONDARY_FACILITY
function

The BIND_SECONDARY_FACILITY function of the TDXM
gate is used to associate a transaction with the definition for
a transient data queue that has caused the transaction to be
trigger-level attached (where the principal facility is a terminal
and the secondary facility is the transient data queue itself).

Input parameters: None.

30 cICs Diagnosis Reference

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

Output parameters

FACILITY_NAME is the name of the transient data queue.
The queue is the secondary facility and has been
associated with this transaction.

RESPONSE is Transient Data’s response to the call. It can
have any of the following values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR | PURGED

REASON is returned when RESPONSE is DISASTER.
Possible value is ABEND.

TDXM gate, RELEASE_FACILITY function

The RELEASE_FACILITY function of the TDXM gate is used
to disassociate a transaction from the TD queue. (The
principal facility type is either TERMINAL or TDQUEUE.)

Input parameters

TERMINATION_TYPE is the type of transaction termination.
It can have either of these values:

NORMAL ABNORMAL

[RESTART_REQUESTED] indicates whether or not the
transaction is to be restarted. It can have either of these
values:

YES|NO

Output parameters

RESPONSE is the domain’s response to the call. It can have
any of these values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

REASON is returned when RESPONSE is EXCEPTION.
Possible values are:

RESPONSE
EXCEPTION

Possible REASON values
RESTART_FAILURE

TDXM gate, INQUIRE_FACILITY function

The INQUIRE_FACILITY function of the TDXM gate is used
to inquire about the transient data facilities that support
facility manager calls from the transaction manager domain.

Input parameters
[FACILITY_TOKEN] is the token identifying the transaction
that has been trigger-level attached.

Output parameters

FACILITY_NAME is the four-character name of the
transaction that has been trigger-level attached.

RESPONSE is the domain’s response to the call. It can have
any of these values:

OK| EXCEPTION|DISASTER | INVALID|KERNERROR|PURGED

LY33-6088-02 © Copyright IBM Corp. 1980, 1999

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

TFAL gate, ALLOCATE function

The ALLOCATE function of the TFAL gate is used to allocate
a terminal for a transaction.

Input parameters

REQUEST_ID is the four-character transaction identifier
initiating the attach.

[MODE_NAME] is the eight-character mode-name of the
terminal to be attached.

SYSTEM_TOKEN is the token identifying the CICS region to
which the terminal is to be attached.

[PRIVILEGED] indicates whether or not the terminal is to be
attached as a privileged terminal. It can have either of
these values:

YES|NO

[NON_PURGEABLE] indicates whether or not the terminal is
to be purgeable. It can have either of these values:

YES|NO

Output parameters

TERMINAL_TOKEN is the token identifying the terminal that
has been attached.

RESPONSE is the domain’s response to the call. It can have
any of these values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

[REASON] is returned when RESPONSE is DISASTER,
EXCEPTION, or INVALID. Possible values are:

RESPONSE Possible REASON values

DISASTER GETMAIN_FAILED, LOGIC_ERROR
EXCEPTION ALLOCATE_FAILURE, ALLOCATE_PURGED
INVALID INVALID_FORMAT, INVALID_FUNCTION

TFAL gate, CANCEL_AID function

The CANCEL_AID function of the TFAL gate is used to
cancel a terminal-transaction AID.

Input parameters

TERMID is the four-character terminal identifier.
TRANID is the four-character transaction identifier.

TERM_OWNER_NETNAME is the APPLID of the CICS
region that “owns” the terminal.

Output parameters

RESPONSE is the domain’s response to the call. It can have
any of these values:

OK|EXCEPTION|DISASTER| INVALID|KERNERROR | PURGED

[REASON] is returned when RESPONSE is EXCEPTION or
INVALID. Possible values are:

LY33-6088-02 © Copyright IBM Corp. 1980, 1999

Application domain (AP)

RESPONSE Possible REASON values

EXCEPTION NOT_FOUND

INVALID INVALID_FORMAT, INVALID_FUNCTION
TFAL gate,

CANCEL_AIDS_FOR_CONNECTION
function

The CANCEL_AIDS_FOR_CONNECTION function of the
TFAL gate is used to cancel AIDs for the given CICS region.

Input parameters
SYSTEM_TOKEN is the token identifying the CICS region.

CALLER is the method used to call this function. It can have
either of these values:
BUILDER|API

FORCE indicates whether or not system AIDs are to be
canceled. It can have either of these values:
YES|NO

FACILITY indicates the facility type associated with the AIDs.
It can have either of these values:
CONNECTION| TERMINAL

Output parameters

[AIDS_CANCELLED] indicates whether or not AlIDs were
canceled as a result of this request. It can have either of
these values:

YES|NO

RESPONSE is the domain’s response to the call. It can have
any of these values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR | PURGED

[REASON] is returned when RESPONSE is EXCEPTION or
INVALID. Possible values are:

RESPONSE Possible REASON values

EXCEPTION NULL_SYSTEM_TOKEN

INVALID INVALID_FORMAT, INVALID_FUNCTION
TFAL gate,

CANCEL_AIDS_FOR_TERMINAL function

The CANCEL_AIDS_FOR_TERMINAL function of the TFAL
gate is used to cancel all AIDs for the given terminal.
Input parameters

Note: Specify either TERMID or TERMINAL_TOKEN, not
both.

TERMID is the four-character terminal identifier.

TERMINAL_TOKEN is the token identifying the
terminal.

Chapter 3. Application domain (AP) 31

Application domain (AP)

CALLER is the method used to call this function. It
can have one of these values:

BUILDER|API |BUILDER_REMDEL

FORCE indicates whether or not system AIDs are to
be canceled. It can have either of these values:
YES|NO

FACILITY indicates the facility type associated with
the AIDs. It can have either of these values:

CONNECTION|TERMINAL

Output parameters

[AIDS_CANCELLED] indicates whether or not AIDs were
canceled as a result of this request. It can have either of
these values:

YES|NO

RESPONSE is the domain’s response to the call. It can have
any of these values:

OK|EXCEPTION|DISASTER| INVALID|KERNERROR | PURGED

[REASON] is returned when RESPONSE is EXCEPTION or
INVALID. Possible values are:

RESPONSE Possible REASON values
EXCEPTION NULL_TERMINAL_TOKEN,
INVALID INVALID_FORMAT, INVALID_FUNCTION

TFAL gate, CHECK_TRANID_IN_USE
function

The CHECK_TRANID_IN_USE function of the TFAL gate is
used to check whether any of the AID chains contain
ferrences to the given TRANID

Input parameters
TRANID is the four-character transaction identifier.

Output parameters

IN_USE indicates whether or not the transaction identifier
(specified by the TRANID parameter) is in use. It can
have either of these values:

YES|NO

RESPONSE is the domain’s response to the call. It can have
any of these values:
OK|EXCEPTION|DISASTER| INVALID|KERNERROR | PURGED

[REASON] is returned when RESPONSE is INVALID.
Possible values are:

RESPONSE Possible REASON values

INVALID INVALID_FORMAT, INVALID_FUNCTION

32 CICS Diagnosis Reference

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

TFAL gate, DISCARD_AIDS function

The DISCARD_AIDS function of the TFAL gate is used to
attach a task which will release start data and free the AIDs
in the chain addressed by the AID_TOKEN

Input parameters
AID_TOKEN is the token identifying the chain of AIDs.

Output parameters

RESPONSE is the domain’s response to the call. It can have
any of these values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR | PURGED

[REASON] is returned when RESPONSE is INVALID.
Possible values are:

RESPONSE
INVALID

Possible REASON values
INVALID_FORMAT, INVALID_FUNCTION

TFAL gate, FIND_TRANSACTION_OWNER
function

The FIND_TRANSACTION_OWNER function of the TFAL
gate is used to determine the CICS region that owns the
given transaction (that is, at which the transaction instance
originated).

Input parameters

TERMINAL_TOKEN is the token identifying the terminal.

TRANID is the four-character transaction identifier.

Output parameters

TRAN_OWNER_SYSID is the four-character system
identifier for the CICS region that owns the transaction
instance.

RESPONSE is the domain’s response to the call. It can have
any of these values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

[REASON] is returned when RESPONSE is EXCEPTION or
INVALID. Possible values are:

RESPONSE Possible REASON values
EXCEPTION NOT_FOUND, TOR_LINK_NOT_ACTIVE,
INVALID INVALID_FORMAT, INVALID_FUNCTION

TFAL gate, GET_MESSAGE function

The GET_MESSAGE function of the TFAL gate is used to
get a message from a terminal.

Input parameters
TERMINAL_TOKEN is the token identifying the terminal.

LY33-6088-02 © Copyright IBM Corp. 1980, 1999

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

PREVIOUS_AID_TOKEN is the AID token identifying the
previous transaction that ran at this terminal.

Output parameters

AID_TOKEN is the AID token identifying the current
transaction for which the message was got.

TSQUEUE_NAME is the eight-character name of the
temporary storage queue name of the message whose
BMS AID was found.

BMS_TITLE_PRESENT indicates whether or not a BMS title
is present on the terminal. It can have either of these
values:

YES|NO

RESPONSE is the domain’s response to the call. It can have
any of these values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

[REASON] is returned when RESPONSE is EXCEPTION or
INVALID. Possible values are:

RESPONSE Possible REASON values
EXCEPTION NOT_FOUND
INVALID INVALID_FORMAT, INVALID_FUNCTION

TFAL gate, INITIALIZE_AID_POINTERS
function

The INITIALIZE_AID_POINTERS function of the TFAL gate
is used to initialize the AID pointers for the given CICS
region.

Input parameters

SYSTEM_TOKEN is the token identifying the CICS region.

Output parameters

RESPONSE is the domain’s response to the call. It can have
any of these values:
OK|EXCEPTION|DISASTER| INVALID | KERNERROR | PURGED

[REASON] is returned when RESPONSE is INVALID.
Possible values are:

RESPONSE Possible REASON values

INVALID INVALID_FORMAT, INVALID_FUNCTION

TFAL gate, INQUIRE_ALLOCATE_AID
function

The INQUIRE_ALLOCATE_AID function of the TFAL gate is
used to inquire about the AIDs allocated for the given CICS
region.

Input parameters
SYSTEM_TOKEN is the token identifying the CICS region.

LY33-6088-02 © Copyright IBM Corp. 1980, 1999

Application domain (AP)

[PRIVILEGED] indicates whether or not to inquire only about
privileged ISC type AIDs. It can have either of these
values:

YES|NO

Output parameters

EXISTS indicates whether or not the AID exists. It can have
either of these values:

YES|NO

RESPONSE is the domain’s response to the call. It can have
any of these values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR | PURGED

[REASON] is returned when RESPONSE is INVALID.
Possible values are:

RESPONSE
INVALID

Possible REASON values
INVALID_FORMAT, INVALID_FUNCTION

TFAL gate, LOCATE_AID

The LOCATE_AID function of the TFAL gate is used for
automatic transaction initiation to determine the AID for the
specified terminal, and if found, to use the transaction
identifier from the AID to attach the task.

Input parameters

TERMID is the four-character terminal-identifier.

[TYPE] denotes the type of AID to be located. It can have
one of these values:

BMS|PUT| INT|TDP|ISC|REMDEL

Output parameters

[TRANID] is the four-character transaction identifier
associated with the specified terminal.

RESPONSE is the domain’s response to the call. It can have
any of these values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR | PURGED

[REASON] is returned when RESPONSE is EXCEPTION or
INVALID. Possible values are:

RESPONSE Possible REASON values
EXCEPTION NOT_FOUND
INVALID INVALID_FORMAT, INVALID_FUNCTION

TFAL gate, LOCATE_REMDEL_AID

The LOCATE_REMDEL_AID function of the TFAL gate is
used to determine the AID (for a delete remote TERMINAL
definition request) for the specified system
(SYSTEM_TOKEN specified) or after the given
(PREVIOUS_AID_TOKEN specified).

Chapter 3. Application domain (AP) 33

Application domain (AP)

Input parameters
SYSTEM_TOKEN is the token identifying the CICS region.

PREVIOUS_AID_TOKEN is the AID token identifying the
previous transaction that ran at this terminal.

Output parameters

AID_TOKEN is the AID token identifying the transaction to
be deleted.

TARGET_SYSID is the four-character system identifier for
the target CICS system.

TERMID is the four-character terminal identifier from the
REMDEL AID.

TERM_OWNER_NETNAME is the eight-character nethame
from the REMDEL AID.

RESPONSE is the domain’s response to the call. It can have
any of these values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

[REASON] is returned when RESPONSE is EXCEPTION or
INVALID. Possible values are:

RESPONSE Possible REASON values
EXCEPTION NOT_FOUND
INVALID INVALID_FORMAT, INVALID_FUNCTION

TFAL gate, LOCATE_SHIPPABLE_AID

The LOCATE_SHIPPABLE_AID function of the TFAL gate is
used to determine an AID (for a delete remote TERMINAL
definition request or for a remote terminal request) to be
shipped to the specified system.

Input parameters

SYSTEM_TOKEN is the token identifying the CICS region.

Output parameters

AID_TOKEN is the AID token identifying the transaction to
be deleted.

LAST Indicates that either:

¢ there is a single qualifying AID or all qualifying AlDs
have the same AIDTRMID (YES), or

¢ in addition to the AID returned there are other
qualifying AIDs (NO)

It can have either of these values:
YES|NO

RESPONSE is the domain’s response to the call. It can have
any of these values:

OK|EXCEPTION|DISASTER| INVALID|KERNERROR | PURGED

[REASON] is returned when RESPONSE is EXCEPTION or
INVALID. Possible values are:

34 cICs Diagnosis Reference

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

RESPONSE Possible REASON values
EXCEPTION NOT_FOUND
INVALID INVALID_FORMAT, INVALID_FUNCTION

TFAL gate, MATCH_TASK TO_AID
function

The MATCH_TASK_TO_AID function of the TFAL gate is
used to inquire about AlDs for the given terminal and
transaction.

Input parameters

TERMINAL_TOKEN is the token identifying the terminal.

TRANID is the four-character transaction identifier.

Output parameters

TDQUEUE_NAME is the eight-character name of the
transient data queue for the AID.

RESPONSE is the domain’s response to the call. It can have
any of these values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

[REASON] is returned when RESPONSE is EXCEPTION or
INVALID. Possible values are:

RESPONSE Possible REASON values
EXCEPTION NOT_FOUND, MATCHED_TERMID_ONLY
INVALID INVALID_FORMAT, INVALID_FUNCTION

TFAL gate, PURGE_ALLOCATE_AIDS

The PURGE_ALLOCATE_AIDS function of the TFAL gate is
used to delete purgeable allocate AIDs for a given
connection after user exit XZIQUE in DFHZISP has issued
return code 8 (delete all) or return code 12 (delete all for
given modegroup).

Input parameters

SYSTEM_TOKEN is the token identifying the CICS region.

[MODE_NAME] The name of the modegroup. If this
parameter is omitted, the default is all modegroups.

Output parameters

RESPONSE is the domain’s response to the call. It can have
any of these values:

OK| EXCEPTION|DISASTER | INVALID|KERNERROR|PURGED

[REASON] is returned when RESPONSE is INVALID.
Possible values are:

RESPONSE Possible REASON values

INVALID

INVALID_FORMAT, INVALID_FUNCTION

LY33-6088-02 © Copyright IBM Corp. 1980, 1999

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

TFAL gate, RECOVER_START_DATA

The RECOVER_START_DATA function of the TFAL gate is
used to retrieve a PUT-type AID stored in a DWE and
rechain it onto the TCTSE in front of the first AID for the
terminal.

Input parameters

AID_TOKEN is the AID token identifying the transaction to
be deleted.

Output parameters

RESPONSE is the domain’s response to the call. It can have
any of these values:
OK|EXCEPTION|DISASTER| INVALID|KERNERROR | PURGED

[REASON] is returned when RESPONSE is DISASTER or
INVALID. Possible values are:

RESPONSE Possible REASON values
DISASTER NULL_SYSTEM_TOKEN, GETMAIN_FAILED
INVALID INVALID_FORMAT, INVALID_FUNCTION

TFAL gate, REMOTE_DELETE

The REMOTE_DELETE function of the TFAL gate is used to
chain a REMOTE DELETE (REMDEL) AID onto the system
entry of the specified target CICS region. The REMDEL AID
tells the target region to delete its shipped definition of the
specified terminal.

Input parameters

TARGET_SYSID is the four-character system identifier for
the target CICS region.

TERMINAL_TOKEN is the token identifying the terminal.

TERMID is the four-character terminal identifier for the
terminal associated with the transaction.

TERM_OWNER_NETNAME Is the VTAM APPLID of the
CICS region that “owns” the terminal.

Note: The terminal identifier can either be specified as
TERMID and TERM_OWNER_NETNAME (where
TERMID is the name known in the terminal
owning system), or it can be specified by
TERMINAL_TOKEN if the TCTTE address is
known.

Output parameters

RESPONSE is the domain’s response to the call. It can have
any of these values:

OK|EXCEPTION|DISASTER| INVALID | KERNERROR | PURGED

[REASON] is returned when RESPONSE is DISASTER,
EXCEPTION, or INVALID. Possible values are:

LY33-6088-02 © Copyright IBM Corp. 1980, 1999

Application domain (AP)

RESPONSE Possible REASON values

DISASTER GETMAIN_FAILED,

EXCEPTION TOR_LINK_NOT_ACTIVE

INVALID INVALID_FORMAT, INVALID_FUNCTION

TFAL gate, REMOVE_EXPIRED_AID

The REMOVE_EXPIRED_AID function of the TFAL gate is
used to search all AID chains for a BMS AID that has yet to
be initiated and which matches the eligibility parameters.
Unchain the first such AID found, copy details from the AID
into the caller’s parameter list, and freemain the AID.

Input parameters

[NORMAL_EXPIRY_TIME] is the normal threshold time.
[ADJUSTED_EXPIRY_TIME] is the adjusted threshold time.
[MSGID] is the BMS message identifier

[LDC] is the logical device code

Note: If MSGID and LDC are specified, the expiry time is

not checked.

Output parameters

TSQUEUE_NAME is the eight-character name of the
temporary storage queue name of the message whose
BMS AID was found.

TRANID is the four-character transaction identifier associated
with the specified terminal.

TERMID is the four-character terminal identifier for the
terminal associated with the transaction.

RESPONSE is the domain’s response to the call. It can have
any of these values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR | PURGED

[REASON] is returned when RESPONSE is EXCEPTION or
INVALID. Possible values are:

RESPONSE Possible REASON values

EXCEPTION NOT_FOUND

INVALID INVALID_FORMAT, INVALID_FUNCTION
TFAL gate,

REMOVE_EXPIRED_REMOTE_AID

The REMOVE_EXPIRED_REMOTE_AID function of the
TFAL gate is used to search for an uninitiated remote AID
which is older than the expiry time specified by the caller,
unchain the AID, and cleanup any associated resources.
Input parameters

NORMAL_EXPIRY_TIME is the normal threshold time.

ADJUSTED_EXPIRY_TIME is the adjusted threshold time.

Chapter 3. Application domain (AP) 35

Application domain (AP)

Output parameters

TRANID is the four-character transaction identifier associated
with the specified terminal.

TERMID is the four-character terminal identifier for the
terminal associated with the transaction.

TERM_OWNER_SYSID is the system identifier of the CICS
region that “owns” the terminal.

SHIPPED identifies whether the AID has been shipped. It
can have either of these values:
YES|NO

RESPONSE is the domain’s response to the call. It can have
any of these values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR | PURGED

[REASON] is returned when RESPONSE is EXCEPTION or
INVALID. Possible values are:

RESPONSE Possible REASON values
EXCEPTION NOT_FOUND
INVALID INVALID_FORMAT, INVALID_FUNCTION

TFAL gate, REMOVE_MESSAGE

The REMOVE_MESSAGE function of the TFAL gate is used
to:

1. Find an uninitiated BMS AID for the specified terminal

2. Unchain and freemain the AID, provided that the AID
security fields match those of the currently signed-on
operator

3. Return the TS queue name from the AID.

Input parameters
TERMINAL_TOKEN is the token identifying the terminal.
[MSGID] is the BMS message identifier

Output parameters

TSQUEUE_NAME is the eight-character name of the
temporary storage queue name for the message whose
BMS AID was found.

RESPONSE is the domain’s response to the call. It can have
any of these values:
OK|EXCEPTION|DISASTER| INVALID|KERNERROR | PURGED

[REASON] is returned when RESPONSE is EXCEPTION or
INVALID. Possible values are:

RESPONSE Possible REASON values
EXCEPTION NOT_FOUND, SECURITY_MISMATCH
INVALID INVALID_FORMAT, INVALID_FUNCTION

36 CICS Diagnosis Reference

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

TFAL gate, REMOVE_REMOTE_DELETES

The REMOVE_REMOTE_DELETES function of the TFAL
gate is used to unchain and freemain all REMDEL AIDs from
the AID chain of the specified system entry. Optional
parameters TERMID and TERM_OWNER_NETNAME may
be specified; in which case only those REMDEL AIDs which
match the specified values are removed.

Input parameters

TARGET_SYSID is the four-character system identifier for
the target CICS region.

SYSTEM_TOKEN is the token identifying the CICS region.

Specify either the TARGET_SYSID parameter or
the SYSTEM_TOKEN parameter, not both.

[TERMID] is the four-character terminal identifier for the
terminal associated with the transaction.

[TERM_OWNER_NETNAME] is the netname of the region
that “owns” the terminal.

Note:

Output parameters

RESPONSE is the domain’s response to the call. It can have
any of these values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR | PURGED

[REASON] is returned when RESPONSE is EXCEPTION or
INVALID. Possible values are:

RESPONSE Possible REASON values
EXCEPTION NOT_FOUND
INVALID INVALID_FORMAT, INVALID_FUNCTION

TFAL gate, REROUTE_SHIPPABLE_AIDS

The REROUTE_SHIPPABLE_AIDS function of the TFAL
gate is used to redirect AlDs for remote terminals from one
remote system to another.

Input parameters

ORIGINAL_SYSTEM_TOKEN is the token identifying the
remote system which was the AIDs' original target.

TARGET_SYSTEM_TOKEN is the token identifying the
remote system which is the AIDs' new target.

TERMINAL_NETNAME is the eight-character NETNAME
which identifies the terminal whose AlDs are to be
rerouted.

Output parameters

RESPONSE is the domain’s response to the call. It can have
any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR | PURGED

[REASON] is returned when RESPONSE is DISASTER or
INVALID. Possible values are:

LY33-6088-02 © Copyright IBM Corp. 1980, 1999

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

RESPONSE Possible REASON values
DISASTER LOGIC_ERROR
INVALID INVALID_FORMAT, INVALID_FUNCTION

TFAL gate, RESCHEDULE_BMS

The RESCHEDULE_BMS function of the TFAL gate is used
to build a BMS AID and chain it to the front of the AID
queue.

Input parameters
TERMINAL_TOKEN is the token identifying the terminal.

TRANID is the four-character transaction identifier associated
with the specified terminal.

TSQUEUE_NAME is the eight-character name of the
temporary storage queue name of the message whose
BMS AID was found.

BMS_TIMESTAMP Timestamp for BMS AID. Used to test if
AID is older than specified EXPIRY_TIME.

[OPIDENT] Identifies the operator

Note: You can specify either the OPIDENT parameter

or the OPCLASS parameter, not both.
[OPCLASS] Identifies the operator class.

Note: You can specify either the OPIDENT parameter

or the OPCLASS parameter, not both.

[BMS_TITLE_PRESENT] Indicates if title in message control
record. You can specify either of these values:

YES|NO

Output parameters

RESPONSE is the domain’s response to the call. It can have
any of these values:

OK|EXCEPTION|DISASTER| INVALID|KERNERROR | PURGED

[REASON] is returned when RESPONSE is DISASTER or
INVALID. Possible values are:

RESPONSE Possible REASON values
DISASTER GETMAIN_FAILED
INVALID INVALID_FORMAT, INVALID_FUNCTION

TFAL gate, RESET_AID_QUEUE
The RESET_AID_QUEUE function of the TFAL gate is used
to:

1. Give ALP a chance to reset the AID queue when a
transaction ends

2. Give ALP a chance to bid for the use of the terminal if
ATI tasks are waiting.

Input parameters
TERMINAL_TOKEN is the token identifying the terminal.

LY33-6088-02 © Copyright IBM Corp. 1980, 1999

Application domain (AP)

Output parameters

RESPONSE is the domain’s response to the call. It can have
any of these values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

[REASON] is returned when RESPONSE is INVALID.
Possible values are:

RESPONSE
INVALID

Possible REASON values
INVALID_FORMAT, INVALID_FUNCTION

TFAL gate, RESTORE_FROM_KEYPOINT

The RESTORE_FROM_KEYPOINT function of the TFAL
gate is used to: reschedule a chain of AIDs that we restored
from the catalog during CICS system initialization.

Input parameters
AID_TOKEN A token denoting the chain of AIDs which are
to be rescheduled.

Output parameters

RESPONSE is the domain’s response to the call. It can have
any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR | PURGED

[REASON] is returned when RESPONSE is INVALID.
Possible values are:

RESPONSE
INVALID

Possible REASON values
INVALID_FORMAT, INVALID_FUNCTION

TFAL gate, RETRIEVE_START_DATA

The RETRIEVE_START_DATA function of the TFAL gate is
used to return the AID address and temporary storage queue
name associated with the start data for the specified
transaction and terminal.

Input parameters

TERMINAL_TOKEN is the token identifying the terminal.

TRANID is the four-character transaction identifier associated
with the specified terminal.

Output parameters

TSQUEUE_NAME is the eight-character name of the
temporary storage queue name of the message whose
BMS AID was found.

RESPONSE is the domain’s response to the call. It can have
any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR | PURGED

[REASON] is returned when RESPONSE is EXCEPTION or
INVALID. Possible values are:

Chapter 3. Application domain (AP) 37

Application domain (AP)

RESPONSE Possible REASON values
EXCEPTION NOT_FOUND
INVALID INVALID_FORMAT, INVALID_FUNCTION

TFAL gate, SCHEDULE_BMS

The SCHEDULE_BMS function of the TFAL gate is used to:
schedule a BMS AID.

Input parameters

TERMID is the four-character terminal identifier for the
terminal associated with the transaction.

TRANID is the four-character transaction identifier associated
with the specified terminal.

TSQUEUE_NAME is the eight-character name of the
temporary storage queue name of the message whose
BMS AID was found.

BMS_TIMESTAMP is the timestamp for the BMS AID. This
is used to test if the AID is older than its EXPIRY_TIME.

[OPIDENT] Identifies the operator.

Note: You can specify either the OPIDENT parameter

or the OPCLASS parameter, not both.
[OPCLASS] Identifies the operator class.

Note: You can specify either the OPIDENT parameter

or the OPCLASS parameter, not both.

[BMS_TITLE_PRESENT] Indicates if the title is in the
message control record. You can specify either of these
values:

YES|NO

[TERMINAL_NETNAME] is the eight-character NETNAME
which identifies the terminal whose AlDs are to be
rerouted.

Output parameters

RESPONSE is the domain’s response to the call. It can have
any of these values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR | PURGED

[REASON] is returned when RESPONSE is DISASTER or
INVALID. Possible values are:

RESPONSE Possible REASON values
DISASTER GETMAIN_FAILED
INVALID INVALID_FORMAT, INVALID_FUNCTION

TFAL gate, SCHEDULE_START

The SCHEDULE_START function of the TFAL gate is used
to schedule a PUT or INT type AID

Input parameters

38 ciIcs Diagnosis Reference

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

TRANID is the four-character transaction identifier associated
with the specified terminal.

TERMID is the four-character terminal identifier for the
terminal associated with the transaction.

[TRAN_OWNER_SYSID] is the system identifier of the CICS
region that “owns” the transaction.

[TERM_OWNER_SYSID] is the system identifier of the CICS
region to which the request should be shipped.

Note: You can specify either the

TERM_OWNER_SYSID parameter or
TERM_OWNER_NETNAME parameter, not both.

[TERM_OWNER_NETNAME] is the system identifier of the
CICS region to which the request should be shipped.

Note: You can specify either the

TERM_OWNER_SYSID parameter or
TERM_OWNER_NETNAME parameter, not both.

[ROUTED_FROM_TERMID] is the four-character terminal
identifier for the terminal from which a task was
transaction-routed to issue this START request.

[SHIPPED_VIA_SESSID] is the identifier of the session via
which this START request was function shipped.

[MODE_NAME] is the mode name to be used

[TSQUEUE_NAME] is the name of the temporary storage
gueue which contains the data associated with the
START request.

[FEPI] indicates that this is a FEPI START request. It can
have either of these values:
YES|NO

[RECOVERABLE_DATA] indicates that the request is

associated with recoverable data It can have either of
these values:

YES|NO

[IN_DOUBT] indicates that the Unit of Work making the
request is in doubt, and the request should not be
scheduled until the Unit of Work is committed. It can
have either of these values:

YES|NO

[TERMINAL_NETNAME] is the eight-character NETNAME of
the terminal associated with the transaction.

[SHIPPED_VIA_SYSID] identifies the connection via which
this request was function shipped or transaction routed.

[TOR_NETNAME] is the netname of the CICS region that
owns the terminal.
Output parameters

RESPONSE is the domain’s response to the call. It can have
any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR | PURGED

[REASON] is returned when RESPONSE is DISASTER or
INVALID. Possible values are:

LY33-6088-02 © Copyright IBM Corp. 1980, 1999

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

RESPONSE Possible REASON values
DISASTER GETMAIN_FAILED
INVALID INVALID_FORMAT, INVALID_FUNCTION

TFAL gate, SCHEDULE_TDP

The SCHEDULE_TDP function of the TFAL gate is used to
schedule a TDP type AID.

Input parameters

TRANID is the four-character transaction identifier associated
with the specified terminal.

TERMID is the four-character terminal identifier for the
terminal associated with the transaction.

TDQUEUE_NAME is the destination identifier for the TD
queue.

[TERMINAL_NETNAME] is the eight-character NETNAME of
the terminal associated with the transaction.

Output parameters

AID_TOKEN is the AID token identifying the transaction to
be deleted.

RESPONSE is the domain’s response to the call. It can have
any of these values:
OK|EXCEPTION|DISASTER|INVALID | KERNERROR | PURGED

[REASON] is returned when RESPONSE is DISASTER,
EXCEPTION, or INVALID. Possible values are:

RESPONSE Possible REASON values

DISASTER GETMAIN_FAILED

EXCEPTION UNKNOWN_TRANID

INVALID INVALID_FORMAT, INVALID_FUNCTION

TFAL gate, SLOWDOWN_PURGE
The SLOWDOWN_PURGE function of the TFAL gate is used
to:

1. Search the specified system entry’s AID chain for the
first allocate-type AID associated with a stall-purgeable
task

2. Cancel the identified transaction.

Input parameters

SYSTEM_TOKEN is the four-character terminal identifier for
the terminal associated with the transaction.

Output parameters

RESPONSE is the domain’s response to the call. It can have
any of these values:

OK|EXCEPTION|DISASTER| INVALID|KERNERROR | PURGED

LY33-6088-02 © Copyright IBM Corp. 1980, 1999

Application domain (AP)

[REASON] is returned when RESPONSE is EXCEPTION, or
INVALID. Possible values are:

RESPONSE Possible REASON values
EXCEPTION NOT_FOUND
INVALID INVALID_FORMAT, INVALID_FUNCTION

TFAL gate, TAKE_KEYPOINT

The TAKE_KEYPOINT function of the TFAL gate is used to
return a chain of AIDs which are to be written to the global
catalog.

Input parameters: None.

Output parameters
AID_TOKEN is the token identifying the chain of AIDs.

RESPONSE is the domain’s response to the call. It can have
any of these values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR | PURGED

[REASON] is returned when RESPONSE is INVALID.
Possible values are:

RESPONSE Possible REASON values
INVALID INVALID_FORMAT, INVALID_FUNCTION
TFAL gate,

TERM_AVAILABLE_FOR_QUEUE

The TERM_AVAILABLE_FOR_QUEUE function of the TFAL
gate is used, when a terminal becomes available for
allocation, to give DFHALP the chance to attach or resume a
task which requires this terminal.

Input parameters
TERMINAL_TOKEN is the token identifying the terminal.

Output parameters

RESPONSE is the domain’s response to the call. It can have
any of these values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

[REASON] is returned when RESPONSE is DISASTER,
EXCEPTION, or INVALID. Possible values are:

RESPONSE Possible REASON values

DISASTER GETMAIN_FAILED ATTACH_ERROR
EXCEPTION NOT_FOUND

INVALID INVALID_FORMAT, INVALID_FUNCTION

Chapter 3. Application domain (AP) 39

Application domain (AP)

TFAL gate,
TERMINAL_NOW_UNAVAILABLE

The TERMINAL_NOW_UNAVAILABLE function of the TFAL
gate is used to perform required actions when a terminal or
connection becomes unavailable.

Input parameters
TERMINAL_TOKEN is the token identifying the terminal.

Output parameters

RESPONSE is the domain’s response to the call. It can have
any of these values:
OK|EXCEPTION|DISASTER| INVALID|KERNERROR | PURGED

[REASON] is returned when RESPONSE is INVALID.
Possible values are:

RESPONSE Possible REASON values

INVALID

INVALID_FORMAT, INVALID_FUNCTION

TFAL gate, UNCHAIN_AID

The UNCHAIN_AID function of the TFAL gate is used to
unchain and optionally freemain the specified AID.

Input parameters

AID_TOKEN is the AID token identifying the transaction to
be deleted.

FREEMAIN indicates whether freemain is wanted. It can
have either of these values:

YES|NO

Output parameters

RESPONSE is the domain’s response to the call. It can have
any of these values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR | PURGED

[REASON] is returned when RESPONSE is INVALID.
Possible values are:

RESPONSE Possible REASON values
INVALID INVALID_FORMAT, INVALID_FUNCTION
TFAL gate,

UPDATE_TRANNUM_FOR_RESTART

The UPDATE_TRANNUM_FOR_RESTART function of the
TFAL gate is used to update the AID’s TRANNUM to that of
the restarted task.

Input parameters
TERMINAL_TOKEN is the token identifying the terminal.

40 cICS Diagnosis Reference

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

ORIGINAL_TRANNUM is the TRANNUM set in the AID
when original task was attached.

NEW_TRANNUM is the new TRANNUM to be set in the AID.

Output parameters

RESPONSE is the domain’s response to the call. It can have
any of these values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

[REASON] is returned when RESPONSE is EXCEPTION or
INVALID. Possible values are:

RESPONSE Possible REASON values
EXCEPTION NULL_TERMINAL_TOKEN
INVALID INVALID_FORMAT, INVALID_FUNCTION

TFBF gate, BIND_FACILITY function

The BIND_FACILITY function of the TFBF gate is used to
associate a transaction with the terminal.

Input parameters

[PROFILE] is the eight-character name of the profile to be
used to associate the transaction and terminal.

[PARTITIONSET_NAME] is the eight-character name of a
partition set. This parameter is used only of the value of
PARTITIONSET is NAME.

[PARTITIONSET] indicates if a partition set is to be used for
the terminal facility. It can have any of these values:

NONE | NAME | OWN | KEEP

Output parameters

RESPONSE is the domain’s response to the call. It can have
any of these values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR | PURGED

[REASON] is returned when RESPONSE is DISASTER,
EXCEPTION, or INVALID. Possible values are:

RESPONSE Possible REASON values

DISASTER ABEND, REMOTE_SCHEDULE_FAILURE,
SECURITY_FAILURE, TABLE_MANAGER_FAILURE

EXCEPTION NO_TERMINAL, TRANSACTION_ABEND

INVALID INVALID_FORMAT, INVALID_FUNCTION

TFIQ gate, INQUIRE_TERMINAL_FACILITY
function

The INQUIRE_TERMINAL_FACILITY function of the TFIQ
gate is used to inquire about attributes of a named terminal
facility.

LY33-6088-02 © Copyright IBM Corp. 1980, 1999

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

Input parameters

Note: Specify a value for either the

TRANSACTION_TOKEN or TERMINAL_TOKEN
parameter, not both.

[TRANSACTION_TOKEN] is a token identifying a
transaction for which you want to inquire about
the associated terminal.

[TERMINAL_TOKEN] is a token identifying a
terminal.

Output parameters

[FACILITY_NAME] is the four-character name of the terminal
facility.

[NETNAME] is the eight-character netname of the terminal
facility.

[PSEUDO_CONV_COMMAREA] is a block into which the
communications area for a pseudo-conversational
transaction is copied.

[TERMINAL_TRAFFIC_READ] indicates whether or not
reading is supported. It can have either of these values:
YES|NO

[TERMINAL_TRAFFIC_WRITE] indicates whether or not
writing is supported. It can have either of these values:
YES|NO

[TERMINAL_USER_AREA] is a block into which the terminal
user area is copied.

[NATIONAL_LANGUAGE_IN_USE] is the three-character
code indicating the national language in use for the
terminal facility. (See Table 83 on page 500.)

[INSPECT_DATA] is a token indicating the LE/370 runtime
options for the terminal facility.

[STORAGE_FREEZE] indicates whether or not storage
normally freed during the processing of a transaction for
the terminal facility is to be frozen. (The frozen storage is
not freed until the end of the transaction.) It can have
either of these values:

YES|NO

RESPONSE is the domain’s response to the call. It can have
any of these values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

[REASON] is returned when RESPONSE is EXCEPTION or
INVALID. Possible values are:

RESPONSE Possible REASON values
EXCEPTION NO_TERMINAL
INVALID INVALID_TERMINAL_TYPE

LY33-6088-02 © Copyright IBM Corp. 1980, 1999

Application domain (AP)

TFIQ gate, SET_TERMINAL_FACILITY
function

The SET_TERMINAL_FACILITY function of the TFIQ gate is
used to set attributes of a named terminal facility.

Input parameters

Note: Specify a value for either the
TRANSACTION_TOKEN or TERMINAL_TOKEN

parameter, not both.

[TRANSACTION_TOKEN] is a token identifying a
transaction for which you want to inquire about
the associated terminal.

[TERMINAL_TOKEN] is a token identifying a
terminal.

[COUNT_STORAGE_VIOLATION] indicates whether
or not storage violations are to be counted for this
terminal facility. It can have either of these values:

YES|NO

[INPUTMSG] is a block into which the input message
for a pseudo-conversational transaction is copied.

[PSEUDO_CONV_NEXT_TRANSID] is the
four-character identifier of the transaction to which
control is passed on a normal return from a
pseudo-conversational transaction (to which the
pseudo_conversational data is passed).

[PSEUDO_CONV_COMMAREA] is a block into
which the communications area for a
pseudo-conversational transaction is copied.

[PSEUDO_CONV_IMMEDIATE] is the four-character
identifier of the transaction to which control is
passed on an immediate return from a
pseudo-conversational transaction (to which the
pseudo_conversational data is passed).

[NATIONAL_LANGUAGE_IN_USE] is the
three-character code indicating the national
language in use for the terminal facility. (See
Table 83 on page 500.)

[INSPECT_DATA] is a token indicating the LE/370
runtime options for the terminal facility.

[STORAGE_FREEZE] indicates whether or not
storage normally freed during the processing of a
transaction for the terminal facility is to be frozen.
(The frozen storage is not freed until the end of
the transaction.) It can have either of these
values:

YES|NO

Output parameters

RESPONSE is the domain’s response to the call. It can have
any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR | PURGED

Chapter 3. Application domain (AP) 41

Application domain (AP)

[REASON] is returned when RESPONSE is EXCEPTION or
INVALID. Possible values are:

RESPONSE Possible REASON values
EXCEPTION NO_TERMINAL, PERMANENT_TRANSID
INVALID INVALID_TERMINAL_TYPE

TFIQ gate, INQUIRE_MONITOR_DATA
function

The INQUIRE_MONITOR_DATA function of the TFIQ gate is
used to inquire about monitoring data of the terminal facility.

Input parameters: None.

Output parameters

[FACILITY_TYPE] indicates the type of terminal facility. It
can have any of these values:
LU61|LU62| IRC|IRC_XCF|OTHER

[FACILITY_NAME] is the four-character name of the terminal
facility.

[NETNAME] is the eight-character netname of the terminal
facility.

[INPUT_MSG_LENGTH] is the length (in bytes) of the input
message for the terminal facility.

[SERVICE_REPORTING_CLASS] is a token indicating the
service reporting class for the terminal facility (for MVS
workload manager purposes).

RESPONSE is the domain’s response to the call. It can have
any of these values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

[REASON] is returned when RESPONSE is EXCEPTION.
Possible values are:

RESPONSE Possible REASON values

EXCEPTION NO_TERMINAL

Application domain’s generic gates

Table 3 summarizes the application domain’s generic gates.
It shows the level-1 trace point IDs of the modules providing
the functions for the gates, the functions provided by the
gates, and the generic formats for calls to the gates.

Table 3. Application domain’s generic gates

Gate Trace Function Format

APDM AP 0900 INITIALISE_DOMAIN DMDM
AP 0901 QUIESCE_DOMAIN

TERMINATE_DOMAIN

APDS AP 0500 TASK_REPLY DSAT
AP 0501 PURGE_INHIBIT_QUERY

APST AP D400 COLLECT_STATISTICS STST
AP D401 COLLECT_RESOURCE_STATS

42 CICS Diagnosis Reference

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

Table 3. Application domain’s generic gates

Gate Trace Function Format

APSM AP F110 STORAGE_NOTIFY SMNT
AP F111

APTI AP F300 NOTIFY TISR
AP F301

For descriptions of these functions and their input and output
parameters, refer to the sections dealing with the
corresponding generic formats, as follows:

— Functions and parameters
Format DMDM—"Domain manager domain’s generic
formats” on page 195

Format DSAT—"Dispatcher domain’s generic
formats” on page 167

Format STST—"Statistics domain’s generic format”
on page 521

Format SMNT—"Storage manager domain’s generic
format” on page 536

Format TISR—“Timer domain’s generic format” on
page 606

Application domain’s generic formats

Table 4 describes the generic formats owned by the
application domain and shows the functions performed on
the calls.

Table 4. Generic formats owned by application domain

Format Calling Function
module
APUE DFHUEM SET_EXIT_STATUS

In the descriptions of the formats that follow, the “input”
parameters are input not to the application domain, but to the
domain being called by the application domain. Similarly, the
“output” parameters are output by the domain that was called
by the application domain, in response to the call.

APUE format, SET_EXIT_STATUS function

The SET_EXIT_STATUS function of the APUE format is
used to set the exit status at a specified exit point.
Input parameters

EXIT_POINT is the name of the exit to be enabled or
disabled.

EXIT_STATUS (ACTIVE|INACTIVE indicates whether the
exit is to be made active or inactive.
Output parameters

RESPONSE is the domain’s response to the call. It can have
any of these values:

LY33-6088-02 © Copyright IBM Corp. 1980, 1999

“Restricted Materials of IBM” Application domain (AP)
Licensed Materials — Property of IBM

OK|EXCEPTION|DISASTER| INVALID|KERNERROR | PURGED

[REASON] is returned when RESPONSE is DISASTER or

INVALID. Possible values are: X'24"| CSASRTBA
Address of system recovery table

CSAOPFL

RESPONSE Possible REASON values
X'3C'| CSATSTBA
DISASTER ABEND, LOOP Address of temporary storage table
INVALID INVALID_FUNCTION, INVALID_EXIT_POINT
X'5C'| CSASRAA
Address of SRB control area
Control blocks X'7¢" | CSACSAAD

Address of CSA

The main CICS control block in the AP domain is the

common system area (CSA), which exists from CICS system Figure 4. Main fields of the CSA optional features list (CSAOPFL
initialization time until CICS is closed down. The CSA
contains: See the CICS Data Areas manual for a detailed description

of these control blocks.

» Register save area

* Pointers to the CICS control modules There is also a user-defined work area, called the common

* Control information work area (CWA). The user can govern the length and

* System constants storage key of the CWA by using the WRKAREA and

* Time-control storage CWAKEY system initialization parameters.

¢ Work area for statistics

e Task abnormal termination interface The CWA is available to any task while it has control of the

* Pointers to CICS system tables. system (that is, for operations performed between requests
to CICS).

Figure 3 shows the main fields in the CSA.

DFHCSADS

X'4C'| CSACDTA
Address of currently dispatched task

X'54"| CSAICEBA
Address of interval control element chain

X'8C'| CSASITBA
Address of system initialization table (SIT)

X'C8'| CSAOPFLA
Address of CSA optional features list

X'128'| CSATCTBA
Address of terminal control table

X'130'| CSADCTBA
Address of destination control table

X'13C'| CSAQCAA
Address of queue control area

Figure 3. Main fields of the Common system area (CSA

The CSA has an extension area known as the CSA optional
features list. The address of the optional features list is held
in CSAOPFLA in the CSA, and also in TCACSOAD in the
TCA.

Figure 4 shows the main fields in the optional features list.

LY33-6088-02 © Copyright IBM Corp. 1980, 1999 Chapter 3. Application domain (AP) 43

Application domain (AP)

Modules

Module

Function

DFHAPDM

AP domain/domain manager gate service module. Handles
the following calls made by the domain manager to the AP
domain:

INITIALISE_DOMAIN
QUIESCE_DOMAIN
TERMINATE_DOMAIN

DFHAPEX

AP domain user exit service module. This module handles
INVOKE_USER_EXIT made by several domains to the AP
domain.

DFHAPIQ

AP domain task data inquire and set gate service module.
Handles the following call to the AP domain:

INQ_APPLICATION_DATA

DFHAPJC

AP domain/journal gate service module. This module
handles WRITE_JOURNAL_DATA calls made by the user
exits’ XPI.

DFHAPSM

AP domain storage notify gate service module.

DFHAPST

AP domain functional gate for statistics. This module

accepts a request for and then supervises the copying and
resetting of statistics counters in the AP domain by calling
the appropriate DFHSTxx modules to access the counters.

DFHAPTI

AP domain timer domain gate service module. This module
handles NOTIFY calls made by the timer domain to the AP
domain.

DFHAPTIM

CICS interval control midnight task. This module deals with
NOTIFY requests from the timer domain.

DFHAPTIX

CICS expiry analysis task. This module deals with NOTIFY
requests from the timer domain.

DFHAPXM

AP domain/transaction manager gate service module.
Handles the following calls made by the transaction
manager to the AP domain:

TRANSACTION_INITIALIZATION

RMI_START_OF_TASK
TRANSACTION_TERMINATION

DFHICXM

AP domain/interval control principal facility management
gate service module. Handles the following calls made by
the transaction manager to the AP domain:

BIND_FACILITY,

RELEASE_FACILITY
INQUIRE_FACILITY

DFHSAIQ

AP domain system data inquire and set gate service
module. Handles the following calls to the AP domain:

INQUIRE_SYSTEM
SET_SYSTEM

DFHSRP

Default system recovery program for the AP domain. It
includes the ABAB functions. For more information about
DFHSRP, see Chapter 79, “System recovery program” on
page 551.

DFHTDXM

AP domain/transient data principal facility management gate

service module. Handles the following calls made by the
transaction manager to the AP domain:

BIND_FACILITY,
BIND_SECONDARY_FACILITY,
RELEASE_FACILITY
INQUIRE_FACILITY

44 cICs Diagnosis Reference

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

Module Function

DFHTFBF AP domain/terminal facility manager bind facility gate
service module. Handles the following call made by the

terminal facility manager to the AP domain:
BIND_FACILITY

DFHTFIQ AP domain/terminal facility manager inquire and set gate
service module. Handles the following calls made by the

terminal facility manager to the AP domain:
INQUIRE_TERMINAL_FACILITY

INQUIRE_MONITOR_DATA
SET_TERMINAL_FACILITY

DFHTFRF AP domain/terminal facility manager release facility gate
service module. Handles the following calls made by the

terminal facility manager to the AP domain:
RELEASE_FACILITY

Exits

Various global user exit points are provided for this domain,
and these are described under the appropriate functions in
the rest of this book.

Trace

Various trace point IDs are provided for this domain, and
these are described under the appropriate functions in the
rest of this book.

For more information about the trace points, see the CICS
Trace Entries. For more information about using traces in

problem determination, see the CICS Problem Determination
Guide.

LY33-6088-02 © Copyright IBM Corp. 1980, 1999

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

Chapter 4. AP domain initialization program

The AP domain initialization program is resident only long
enough to start up the AP domain.

Modules

The main initialization program is DFHAPSIP. DFHAPSIP
calls a series of modules DFHSIA1, DFHSIB1, ..., DFHSIJ1,
which complete initialization. DFHAPSIP receives control
from DFHAPDM. For further information about DFHAPDM,
see page “Modules” on page 44.

Exits

No global user exit points are provided for this function.

Trace

The following point ID is provided for this function:

e AP 0700 (DFHSII1 add gate), for which the trace level is
Exc.

For more information about the trace points, see the CICS
Trace Entries. For more information about using traces in
problem determination, see the CICS Problem Determination
Guide.

LY33-6088-02 © Copyright IBM Corp. 1980, 1999

AP domain initialization program

45

AP domain initialization program “Restricted Materials of IBM”
Licensed Materials — Property of IBM

46 cics Diagnosis Reference LY33-6088-02 © Copyright IBM Corp. 1980, 1999

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

AP domain KC subcomponent

Chapter 5. AP domain KC subcomponent

The AP domain KC subcomponent does the following:
¢ Provides an enqueue facility

¢ Manages profile definitions (making use of table
manager program (see “The FEPI Resource Manager
work queues” on page 324)).

¢ Converts some DFHKC macro calls into dispatcher
domain calls and transaction manager domain calls.

Design overview

This section describes the macro calls supported by the AP
domain KC subcomponent.

DFHKC macro calls

ATTACH. This call is converted into a transaction manager
domain XMAT ATTACH call to create an instance of the
requested transaction. This request is only used to create
CICS system transactions and may not be used to attach
a user transaction.

DEQ. DEQ is used to reduce the use count of a resource
previously enqueued on by this transaction. If the use
count reaches zero, the resource is freed for use by
another transaction. The NQED DEQUEUE service of the
NQ domain is used for this function.

ENQ. The caller passes a resource name or address. The
AP domain KC subcomponent issues an NQED
ENQUEUE request to the NQ domain.

INITIALIZE. INITIALIZE is used during CICS initialization to
tell the AP domain KC subcomponent to build profile
table entries in storage.

PROFBROWSE. This is used to browse profile table (PFT)
entries.

PROFLOC. This finds the profile table (PFT) entry for the
profile ID passed.

REPLACE. This replaces an existing profile table entry by a
new version.

RESUME. This call is converted into a dispatcher domain
DSSR RESUME call to resume the suspended task.

WAIT. Wait calls are converted into the appropriate
dispatcher domain call.

WAITINIT. This is used once during initialization to wait for
the completion of an earlier INITIALIZE call.

Control blocks

Static storage area (SSA). The AP domain KC
subcomponent uses an SSA as a permanent work area.
Field SSAKCP in the static storage area address list (as

LY33-6088-02 © Copyright IBM Corp. 1980, 1999

defined by the DSECT DFHSSADS) points to the AP
domain KC subcomponents static storage area. The
address of the static storage area address list is held in
field CSASSA in the CSA optional features list.

See the CICS Data Areas manual for a detailed description
of these control blocks.

Modules

The following are link-edited together to form the DFHKCP
module:

Module
DFHKCP

Function

This is a startup routine that passes control to either
DFHXCP or DFHXCPC.

Processes DFHKC ATTACH, RESUME, and WAIT macro
calls to the transaction manager and dispatcher and handles
the DFHKC PROFLOC AND PROFBROWSE (profile locate
and profile browse) services.

DFHXCP

DFHXCPC Processes DFHKC DEQ and ENQ macro calls to the AP

domain KC subcomponent

Receives DFHKC INITIALIZE, REPLACE, WAITINIT, and
DISCARD macro calls to the transaction manager and
passes them on to DFHKCQ.

Processes DFHKC INITIALIZE, REPLACE, WAITINIT, and
DISCARD macro calls to the AP domain KC subcomponent.

DFHKCQ

DFHKCSC Provides chain scanning facilities for the DISCARD

TRANSACTION command.

Exits

There are two globasl| user exit points in DFHEKC:
XNQEREQ and XNQEREQC. See the CICS Customization
Guide for further information.

Trace

The following point ID is provided for the AP domain KC
subcomponent

e AP FOxx, for which the trace levels are AP 1, AP 2, and
Exc.

For more information about the trace points, see the CICS
Trace Entries. For more information about using traces in
problem determination, see the CICS Problem Determination
Guide.

47

AP domain KC subcomponent

Dumps

FO07 DFHXCP was called to process a AP domain KC
subcomponent request but did not recognize the function
code in the TCA.

External interfaces

The AP domain KC subcomponent calls the following
domains: DS, GC, KE, ME, MN, NQ, SM, TR and XM.

The AP domain KC subcomponent calls the following CICS
AP domain function:

e Table manager

Statistics

No statistics are created by the AP domain KC
subcomponent

48 cics Diagnosis Reference

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

LY33-6088-02 © Copyright IBM Corp. 1980, 1999

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

AP domain termination program

Chapter 6. AP domain termination program

The AP domain (system) termination program (DFHSTP)
provides for an orderly shutdown of CICS. When an
PERFORM SHUTDOWN or PERFORM TAKEOVER
command is used, either on the CEMT transaction or by an
EXEC CICS command, the DFHEIPSH program invokes
DFHSTP to handle it.

Design overview

Figure 5 shows the relationships between the components of
AP domain termination.

DFHEIPSH

1y

AP domain
2 (system) 1,2
CSA <«—— termination <«——— DFHXLT
program DFHPLT
(DFHSTP)

3,4
4 DFHPLT
TCA]

5 DFHFCSD
<«— DFHTSP
DFHWKP

6 v

Operating
system

Figure 5. AP domain termination program interfaces

Notes:

1. When a PERFORM SHUTDOWN or PERFORM
TAKEOVER command is used, either on the CEMT
transaction or by an EXEC CICS command, the
DFHEIPSH program:

¢ Loads the transaction list table (XLT) and program
list table (PLT) from the DFHRPL DD concatenation

e Transfers control to DFHSTP by means of a
DFHPGXE PREPARE_XCTL_EXEC domain call.

For an immediate shutdown, statistics are collected at the
step described by 1. Following this, the resource managers
and the subsystem interface are terminated; no load of
tables, terminal quiescing, or execution of programs specified
in the PLT occurs, that is to say the steps described in notes
1, 2, 3, and 4 are not performed on an immediate shutdown.
Also, CICS files are not closed during step 5 on an
immediate shutdown.

2. Terminal activity is quiesced via an indicator in the CSA.
This tells terminal control not to attach any transactions
other than those specified in the XLT and those

LY33-6088-02 © Copyright IBM Corp. 1980, 1999

specifying SHUTDOWN(ENABLED) in their associated
TRANSACTION resource definitions. The termination
task logically disconnects itself from the physical terminal
to allow other activity on that terminal.

3. The termination task allows all other tasks (except any
journal tasks) to complete before linking to the first
program specified in the first portion of the PLT.

4. When all programs in the first portion of the PLT have
executed, terminal activity is quiesced completely, using
bit CSATQIM in CSASSI2 in the CSA. If monitoring is
running, it is stopped. The ICE and AID chains are
broken (addresses saved in the TWA), the IRC session
is quiesced, and the programs specified in the second
portion of the PLT are executed.

5. All open files managed by CICS file control are closed
by the file control shutdown program, DFHFCSD;
temporary-storage control, DFHTSP is requested to
output its buffer; and a keypoint is taken by the warm
keypoint program, DFHWKP.

6. Control is returned to the operating system, with or
without a dump (depending upon the parameters
specified in the shutdown request causing termination).

For the high-performance option (HPO), the service
request block (SRB) in the system queue area (SQA) is
freed by using a CICS SVC (DFHCSVC).

Modules

DFHSTP

Exits

There is one global user exit point in DFHSTP: XSTERM.
See the CICS Customization Guide for further information.

Trace

No trace points are provided for this function.

49

AP domain termination program “Restricted Materials of IBM”
Licensed Materials — Property of IBM

50 cics Diagnosis Reference LY33-6088-02 © Copyright IBM Corp. 1980, 1999

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

Autoinstall for terminals and APPC connections

Chapter 7. Autoinstall for terminals, consoles and APPC connections

Autoinstall for terminals provides the ability to log on to CICS
from a logical unit (LU), known to VTAM but not previously
defined to CICS, and to make a connection to a running
CICS system.

A new connection is created and installed automatically if
autoinstall for connections is enabled, and either of the
following occurs:

¢ An APPC BIND request or CINIT request is received for
an APPC service manager (SNASVCMG) session that
does not have a matching CICS CONNECTION
definition

e A BIND is received for a single session that does not
have a matching CICS CONNECTION definition.

A new console is created and installed automatically if
autoinstall for consoles is enabled and a CIB (Command
Input Buffer sent from MVS) is received by CICS
(DFHZCNA) and the console TCTTE does not already exist.

For an introduction to autoinstall, and information about how
to implement it, see the CICS Resource Definition Guide.

The CICS Customization Guide gives information about
implementing the autoinstall user program. The
CICS-supplied programs are:

e DFHZATDX, which provides autoinstall for terminals only
e DFHZATDY, which provides autoinstall for terminals and
APPC connections.

These programs are user-replaceable, because you may
need to tailor the basic function to suit your CICS
environment.

Design overview

Before a VTAM device can communicate with CICS, a VTAM
session must be established between the device and CICS.
The sequence of operations is LOGON, Open Destination
(OPNDST), and Start Data Traffic (SDT). CICS can also
initiate the LOGON by using a SIMLOGON.

The session can be requested by:

e Specifying AUTOCONNECT when the terminal is
defined to CICS

e A VTAM master terminal command requesting a LOGON
to CICS for a given terminal; for example,
V NET,LOGON=CICSA,ID=L3277C1

¢ An individual terminal operator issuing a LOGON request
(LOGON APPLID(CICSA))

¢ A CICS master terminal command requesting LOGON
for a given terminal (CEMT SET TERMINAL(XXxX)
INSERVICE ACQUIRED)

LY33-6088-02 © Copyright IBM Corp. 1980, 1999

¢ CICS internally requesting a LOGON; for example, to
process an ATI request

e LOGAPPL=CICS in the LU statement.

Consoles are not VTAM resource but they usse a similar
mechanism to autoinstall the TCTTE.

Autoinstall of a terminal logon flow

This section describes the flow of control for a terminal that
is to be logged on by autoinstall.

1. When a terminal or single session APPC device
attempts to log on, VTAM drives the logon exit . The
CICS logon exit is DFHZLGX (load module DFHZCY).

In the following circumstances, an LU is a candidate for
autoinstall:

e If it is not already defined to CICS (using RDO)
e |f neither CICS nor VTAM is quiescing

e |f the autoinstall user program (specified by the
AIEXIT system initialization parameter) exists

e If the VTAM RPL is present

e |Ifitis not an LUG6.1 session or an LUG6.2 parallel
session

e Ifitis an LU6.2 single session terminal and the
ISC=YES system initialization parameter is specified

e If the maximum number of concurrent logon
requests (specified by the AIQMAX system
initialization parameter) has not been exceeded.

DFHZLGX searches for the terminal in the terminal
control table (TCT) by comparing the NETNAME passed
by VTAM with the NETNAME found in the NIB descriptor
for each installed terminal.

If a match is not found and AUTOINSTALL is enabled
(TCTVADEN is set), CICS verifies that the terminal is
eligible for autoinstall. Processing then consists of:

e Building an autoinstall work element (AWE) by
issuing an MVS GETMAIN for subpool 1

e Copying the CINIT RU into the AWE

¢ Adding the AWE to the end of the AWE chain,
which is chained from the TCT prefix.

If a match is found showing that this autoinstall terminal
already exists, a postponed work element (PWE) is
created and the terminal is reinstalled after deletion of
the TCTTE (TCTEDZIP is ON) or if AILDELAY=0. If,
however, AILDELAY-=0 but TCTEDZIP is not ON (that
is, the TCTTE deletion is pending), the TCTTE is reused
after cleanup.

51

Autoinstall for terminals and APPC connections

2. Later, the work element (AWE) is actioned by DFHZACT

attaching transaction CATA. For every AWE on the AWE
chain, the DFHZATA autoinstall program is dispatched,
passing to DFHZATA the AWE'’s address.

3. The DFHZATA program:

a. Validates the BIND image in the CINIT RU. If the
image is not valid, issue message DFHZC6901.

b. If VTAM Model Terminal Support (MTS) is being
used (ACF/VTAM 3.3 or later), and the name of a
CICS model has been supplied in a X'2F' MTS
control vector, DFHZATA checks that the model
exists by using the AllQ subroutine interface of the
AITM manager (see Chapter 8, “Autoinstall terminal
model manager” on page 59). If the model does not
exist, issue message DFHZC6936.

DFHZATA compares the BIND image contained in
the MTS model with the BIND image passed in the
CINIT RU. If there is a mismatch, issue message
DFHZC6937.

This validated MTS model is the only model passed
to the autoinstall control program.

c. In the absence of an MTS model name, DFHZATA
browses the autoinstall terminal model (AITM) table
using the AlIQ subroutine interface of the AITM
manager. These models must have been installed,
with appropriate TYPETERM definitions, either at
system initialization or by a CEDA INSTALL
command.

Compare the BIND image contained in each model
with the BIND image passed in the CINIT RU, and
build a list of suitable models to be passed to the
autoinstall control program.

For autoinstall of an LU to be successful, the
following must match :

¢ CINIT BIND image, taken from the VTAM
LOGMODE entry specified for the LU in the
VTAMLST

¢ Autoinstall terminal model BIND image, built
according to the specifications in the
TYPETERM and TERMINAL definitions.

(Both versions of the BIND image should accurately
define the characteristics of the device.) If the model
BIND matches the CINIT BIND, the model is added
to the list of candidate entries.

If the list is empty (no matching models are found),
the request is rejected and message DFHZC6987 is
written to the CADL log.

d. On completion of the model search, if any,
DFHZATA links to the autoinstall control program
(the CICS-supplied default is DFHZATDX).

e. Issue DFHZCP_INSTALL to create the TCTTE.
DFHZATA uses information from the model selected

52 ciIcs Diagnosis Reference

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

by the exit program and the associated TYPETERM
entry to build the TCTTE.

f. If the install was successful, commit the TCTTE and
queue it for LOGON processing. The new TCTTE is
queued for OPNDST processing, then later the
“good morning” message is written.

g. Free the AWE.

Autoinstall of APPC device logon flow

This section describes the flow of control for an APPC
parallel session device (or single session via a BIND) that is
to be logged on by autoinstall.

1. When an APPC device attempts to logon, VTAM drives
the logon exit DFHZLGX if a CINIT is received, or the
SCIP exit DFHZBLX if a BIND is received.

Note that DFHZBLX is a new VTAM exit module that is
called by DFHZSCX if an LU62 BIND has been
received.

In the following circumstances, an APPC LU is a
candidate for autoinstall.

¢ If the connection is not already defined to CICS.
¢ |f the connection is not already installed.

e |f the autoinstall user program (specified by the
AIEXIT system initialization parameter) exists and
caters for functions 2-4 as well as functions 0-1.

e If the VTAM ACB is open.
e If it is an APPC parallel session connection.

e If it is an APPC single session connection with an
incoming BIND (as opposed to CINIT - which uses
terminal autoinstall).

e |If ISC=YES is specified in the SIT.

¢ |f the maximum number of concurrent logon
requests (specified by AIQMAX) has not been
exceeded.

e |f the customer has installed the correct 'template’
connection that is to be ‘cloned' (or copied) to create
the new connection.

DFHZLGX or DFHZBLX searches for the connection in
the terminal control table (TCT) by comparing the
NETNAME passed by VTAM with the NETNAME found
in the NIB descriptor for each installed session.

If a match is found and AUTOINSTALL is enabled
(TCTVADEN is set), CICS verifies that the terminal is
eligible for autoinstall. Processing then consists of:

¢ Building an autoinstall work element (AWE) by
issuing an MVS GETMAIN for subpool 1.

e Copying the CINIT RU (DFHZLGX) or BIND
(DFHZBLX) into the AWE.

¢ Adding the AWE to the end of the AWE chain,
which is chained from the TCT prefix.

LY33-6088-02 © Copyright IBM Corp. 1980, 1999

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

If a match is found showing that this connection already
exists then the logon proceeds as for a defined
connection.

2. Later, the AWE is actioned by DFHZACT attaching
transaction CATA. For every AWE on the AWE chain,
the DFHZATA autoinstall program is dispatched, passing
to DFHZATA the AWE's address.

3. The DFHZATA program:

a. Validates the BIND image passed in the AWE. If the
image is not valid, issue message DFHZC6901.

b. Calls DFHZGAI Function(CREATE_CLONE_BPS) to
create a Builder Parameter Set from which to create
the new connection (‘clone'). This is done by calling
the customer supplied autoinstall user exit program
(which can be based on DFHZATDY) in which the
customer chooses which 'template’ connection the
new connection should be copied from.

If at any point DFHZGAI finds a problem it issues
message DFHZC6920 or DFHZC6921 or
DFHZC6922 with an exception trace entry which will
explain the reason for failure.

c. Issue DFHZCP function(INSTALL) to create the
CONNECTION, MODEGROUP and SESSIONS,
based on the attributes of the template connection.

d. For parallel sessions with an incoming BIND, chose
the SNASVCMG secondary session and call
DFHZGAI (SET_TCTTE_FOR_OPNDST). This
mimics code in DFHZBLX to check the session
against the incoming BIND.

If at any point DFHZGAI finds a problem it issues
message DFHZC6923 with an exception trace entry
which explains the reason for failure.

e. For parallel session with an incoming CINIT, chose
the SNASVCMG primary session.

f. If the install was successful, commit the
CONNECTION and queue it for logon processing.
The new CONNECTION is queued for OPNDST
processing.

g. Free the AWE.

Autoinstall of an APPC Generic Resource

connection: If this system is registered as a generic
resource and a bind is received from another generic
resource then VTAM exit DFHZBLX will initiate an autoinstall
if there is no generic or member name connection available
for use.

An AWE is created with extra parameters such as the
generic resource name and member name of the partner and
possibly a suggested template.

Autoinstall then continues as for normal APPC and the extra
parameters are reflected into the TCSE and TCTTE via the
BPS.

LY33-6088-02 © Copyright IBM Corp. 1980, 1999

Chapter 7. Autoinstall for terminals, consoles and APPC connections

Autoinstall for terminals and APPC connections

Autoinstall of consoles install flow

1. The modify command comes into DFHZCNA via a CIB
(Command Input Buffer) from MVS when a user types a
console command for CICS.

2. DFHZCNA scans the Console Control Elements for a
matching console name. If no CCE is found and
autoinstall for consoles is enabled then an Autoinstall
Work Element is created and added to the AWE queue.

3. DFHZACT scans the AWE queue and attached the
CATA transaction.

4. The CATA transaction calls DFHZATA which sees the
AWE is fir a console (sometimes called a Console Work
Element) and calls DFHZATA2.

5. DFHZATAZ2 does the following:

a. Finds the console models (AICONS is supplied in
group DFHTERMC).

b. If SIT AICONS(YES) is specified the models are
passed to the autoinstall URM which returns the
termid. The default Al URM returns the last
4-characters of the consolename.

c. If SIT AICONS(AUTO) is specified DFHZGBM is
called to get a name in the console bitmap in the
form AAA. The Al URM is not called.

d. Calls DFHZCP FUNCTION(INSTALL).
e. Issues EXEC CICS SYNCPOINT.

f. Signs on if using preset security of
USERID=*EVERY|*FIRST specified in the Al model
TYPETERM.

g. Geta a TIOA to hold the data specified in the
command, e.g. if /f jobname,CEMT | TE was typed
at the console then CEMT | TE is put into the TIOA.

h. Call DFHZATT to attach the transaction specified in
the MODIFY command (e.g. CEMT).

Sign-on to consoles flow

If a CIB is received with the same console name but with a
different USERID then the autoinstall program DFHZATAZ2 is
called to sign off the original USERID and sign on to the new
USERID as follows:

1. DFHZCNA receives the modify and
a. Finds the CCE

b. Finds that the USERID is different and is already
signed on

c. Creates an AWE for signoff/on
d. Chains the AWE for DFHZACT.
2. DFHZACT attaches CATA

53

Autoinstall for terminals and APPC connections

3. CATA calls DFHZATA which calls DFHZATA2 for
signoff/on

4. DFHZATAZ2 issues preset security sign off for the original
USERID followed by sign on for the new USERID

5. DFHZATAZ2 then gets a TIOA for the modify command
data and calls DFHZATT to attach the transaction as for
normal autoinstall for consoles.

Disconnection flow for terminals
(LU-initiated)

This section describes the flow of control when a request is
made to disconnect an autoinstalled terminal (for example,
by entering a CESF LOGOFF command), ultimately causing
an EXEC CICS ISSUE LOGOFF command to be issued.

1. First the following functions are performed:
e Set on the CLSDST flag in the TCTTE.

e Put the TCTTE on the activate chain for DFHZACT
to dispatch.

2. Control is then passed to the Close destination
program , DFHZCLS, which performs the following
functions:

e Set on the SHUTDOWN_IN_PROGRESS flag in the
TCTTE.

e Set on the REQUEST_SHUTDOWN flag in the
TCTTE.

3. The Send asynchronous commands program
DFHZDSA is then called to send a VTAM SHUTD
command to the LU (autoinstalled terminal) to be
disconnected. The DFHZDSA program removes the
TCTTE from the activate chain, pending completion of
the SHUTD command.

4. When the VTAM SHUTD command has completed,
VTAM calls the asynchronous send exit , DFHZSAX,
which performs the following functions:

e Set off the REQUEST_SHUTDOWN flag in the
TCTTE.

e Set on the SHUTDOWN_SEND flag in the TCTTE.

e Put the TCTTE back on the activate chain for
DFHZACT to dispatch.

5. VTAM then drives the asynchronous receive exit
DFHZASX, with the SHUTC (“shutdown complete”)
command sent by the LU to be disconnected. DFHZASX
performs the following functions:

e Ensures that the NODE_QUIESCED_BY_CICS,
SHUTDOWN_IN_PROGRESS, and CLSDST flags
are still on.

e Puts the TCTTE back on the activate chain for
DFHZACT to dispatch.

54 cics Diagnosis Reference

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

6. Control is then passed to the Close_Destination
program , DFHZCLS. The DFHZCLS program performs
the following functions:

e Set on the PENDING_DELETE flag in the TCTTE to
prevent VTAM exits scheduling requests for the
device.

¢ Issue UNBIND (CLSDST POST=RESP) for the
device.

7. The Close destination exit , DFHZCLX, is driven. If the
CLSDST request is successful (that is, there is a positive
response from UNBIND), the following functions are
performed:

¢ Set on the SESSION_CLOSED flag in the TCTTE.
¢ Flag the TCTTE for deletion.
e Enqueue the TCTTE to DFHZNAC.

8. Control is passed to the DFHZNAC program, which
performs the following functions:

e Set on the DELETE_REQUIRED flag in the TCTTE.

e Put the TCTTE on the activate chain for DFHZACT
to dispatch.

e Issue message DFHZC3462 (session terminated).

9. On the delete request, the DFHZNCA copybook of
DFHZNAC checks the value of the system initialization
parameter AILDELAY.

e |f AILDELAY is zero, the TCTTE is queued via
DFHZACT with the address of the TCTTE as input.
Its function is to perform cleanup operations, the
principal operation being to ask DFHZCQ to delete
the TCTTE.

e |f AILDELAY is not zero, DFHZNCA initiates CATD
using the delay specified and passes the address of
the TCTTE.

Up to three attempts are made to delete the TCTTE.
This is because the reason for the failure may be the
existence of a transient condition, such as the TCTTE
being on the DFHZNAC queue to output a message to
CSMT. If the initial delete attempt fails, it is attempted
again after one second; if this fails, another attempt is
made after a further 5 seconds. If the third attempt fails,
it is assumed that the failure is a hard failure, which will
not disappear until the device is reconnected; in this
case, message DFHZC6943 is issued, a syncpoint is
taken, and the TCTTE delete status is reset to make the
TCTTE reusable.

If the deletion is successful, the delete is committed, the
autoinstall control program is invoked to permit any
specific cleanup operations to take place, and message
DFHZC6966 is issued.

If a PWE exists for this TCTTE, the PWE is requeued
onto the AWE chain.

LY33-6088-02 © Copyright IBM Corp. 1980, 1999

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

Disconnection of an autoinstalled terminal can also be
requested by CICS shutdown, terminal time-out, and terminal
errors. In these cases the flow is slightly different.

Deletion of autoinstalled APPC devices.

This section describes the flow of control when an APPC
sync level 1 device has its last session released. This can
occur as a result of unbind flows from the partner or a
RELEASE command being issued against the connection in
this system.

Only synclevel 1 autoinstalled connections are deleted in this
way. They will have had TCSE_IMPLICIT_DELETE set by
the builders from zx_delete_x in the BPS (set by DFHZGAI).

TCSE_CATLG_NO indicates that the connection is not to be
written to the catalogue (SIT Parameter AIRDELAY=0).

1. After DFHZCLS, the CLSDST program, issues
DFHTCPLR TIDYUP TCSEDDP and
TCSE_DELETE_SCHEDULE are set and CATD is
initiated with a delay of AILDELAY.

2. CATD runs DFHZATD which sets
TCSE_DELETE_STARTED and calls DFHZCP
FUNCTION=DELETE to delete the sessions, modegroup
and connection.

If a SIMLOGON or BIND occur before the delete actually
starts (TCSE_DELETE_SCHEDULED) then the connection
delete is aborted and the connection reused.

If a SIMLOGON occurs during the actual delete
(TCSE_DELETE_STARTED) then the delete is vetoed and
the connection is reacquired.

If a BIND occurs during the actual delete
(TCSE_DELETE_STARTED) then the delete goes ahead
and the PWE that was created is turned into an AWE and
the logon will create a new connection.

If TCSE_DELETE_AT_RESTART is set then DFHZATR will
delete the connection if it has not been used after restart with
a delay specified in the SIT AIRDELAY parameter.

Disconnection flow (APPC devices): These
connections are not deleted at LOGOFF time, so the
disconnection flow is the same as for a defined connection.

Deletion of autoinstalled consoles

Consoles are deleted after a certain period of inactivity. The
default is 60 minutes but this can be overridden in the
autoinstall URM.

1. The delete time is saved in the CCE during install in
TCTCE_TIMEOUT_TIME.

2. DFHCESC runs at certain intervals

3. DFHCESC checks the CCEs for any console whose
delete time has expired

LY33-6088-02 © Copyright IBM Corp. 1980, 1999

Autoinstall for terminals and APPC connections

4. For each expired CCE DFHCESC does the following
a. Attaches CATD to do the delete
b. CATD calls DFHZATD as for a terminal

Shipping a TCTTE for transaction routing

For transaction routing, a terminal can be defined by an entry
in the terminal-owning region (TOR) with the
SHIPPABLE=YES attribute. In this case, the terminal
definition is shipped to any application-owning region (AOR)
when the terminal user invokes a transaction owned by (and
defined to) that region. Definitions for advanced
program-to-program communication (APPC) devices always
have the SHIPPABLE=YES attribute set.

(The entry in the TOR could have been installed using CEDA
INSTALL, the GRPLIST at system initialization, or
autoinstall.)

The first time a transaction is invoked: For
non-APPC devices (see Figure 6 on page 56), the following
processing is performed:

¢ In the AOR, look for an existing skeleton TCTTE
(TCTSK) whose REMOTENAME is the same as the
local name in the TOR. If found, skip the following steps;

otherwise:
¢ |ssue ZC_INQUIRE to the TOR.
¢ Inthe TOR:

— Send a builder parameter set (BPS) representing
the TCTTE to the AOR.

— Set on the SHIPPED flag (TCTEMROP) in the
TCTTE.

— Set on the SHIPPED flag (TCSEMROP) in the
TCTSE for the AOR system.

— Rewrite each entry to the catalog.
¢ In the AOR:
— Use the existing name from the TOR.

— INSTALL the terminal (DFHZATS does the remote
install).

— Set on the SHIPPED flag (TCTSKSHI) in the
TCTSK.

— Set on the SHIPPED flag (TCSEMROG) in the
TCTSE for the TOR system.

— Rewrite each entry to the catalog.

Chapter 7. Autoinstall for terminals, consoles and APPC connections 55

Autoinstall for terminals and APPC connections

TERM TOR AOR

TCTTE TCTSE TCTSE

<«— [TCTEMROP TCSEMROP TCSEMROG

ZC_INQUIRE
-—

| | TCTSK
ZC_INSTALL
=
B ——

DFHAPRT

—

TCTSKSHI

-
EURROGATE

Lo _

Figure 6. Transaction-routing flow for non-APPC devices

For APPC devices:

¢ In the AOR, look for an existing skeleton TCTTE
(TCTSK) whose REMOTENAME is the same as the
local name in the TOR. If found, skip the following steps;
otherwise:

e [INSTALL the terminal (DFHZATS does the remote
install).

« Set on the SHIPPED flag (TCTSKSHI) in the TCTSK.

e Set on the SHIPPED flag (TCSEMROG) in the TCTSE
for the TOR system.

¢ Rewrite each entry to the catalog.

When an autoinstalled TCTTE in a TOR is deleted:
If this CICS is linked to a Pre CICS/ESA 4.1 system then the
following occurs.

¢ |If the deleted entry is flagged (TCTEMROP or
TCSERDLR for APPC devices) as having been shipped,
notify all remote systems that have received shipped
definitions (TCSEMROP) that this terminal is being
deleted.

¢ Determine from the TCTSK in the AOR whether a
definition for this terminal has been shipped
(TCTSKSHI). If so, call ZC_DELETE in the AOR.

If this CICS is linked to CICS/ESA 4.1 or above then relevant
shipped terminals are deleted using a separate timing
mechanism.

Modules

ZC (terminal control) together with the following:

Module Function

DFHZATA Autoinstall program

DFHZATA2 Console autoinstall program linkedits with DFHZATA
DFHZATD Autoinstall delete program

DFHZATDX Autoinstall control program

DFHZATDY Sample autoinstall user exit

DFHZATR Autoinstall restart program

DFHZATS Remote autoinstall|delete program

56 cIcs Diagnosis Reference

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

Module Function
DFHZCTRI Trace interpretation for DFHZGAI
DFHZGAI APPC-specific autoinstall functions

The DFHZATDX module provides user input to autoinstall
processing. This module is a component of ZCP, and is the
default autoinstall user program (that is, it is used if you
choose not to provide your own). For further information
about the DFHZATDX sample program, see the CICS
Customization Guide.

DFHZATDX is also called when creating and deleting
shipped terminals (skeletons).

DFHZATDY

DFHZATDY is a sample autoinstall user-replaceable module,
which you must modify before you can use it. Its main
function is to choose a template connection which is to be
used in creating the new autoinstall connection clone. It also
has to chose a name for the new connection. For further
information about the DFHZATDY sample program see the
CICS Customization Guide.

DFHZATDY is also called when creating and deleting
shipped terminals (skeletons).

Diagnosing autoinstall problems

When diagnosing problems with autoinstall, consult the
following list. If you have a problem with autoinstall of APPC
devices, and the following list does not resolve the problem,
see “Diagnosing APPC autoinstall problems” on page 57.

¢ The autoinstall model table (AMT) in an SDUMP

e CEMT INQUIRE AUTINSTMODEL—showing which
models are installed

e TC level-1 trace, point ID AP FC8A—showing the CINIT
RU contained in the AWE on entry to DFHZATA

e CADL, CSMT, and CSNE logs:

— Autoinstall messages (DFHZC69xx)

— Builder messages (DFHZC59xx, DFHZC62xx, and
DFHZC63xx)

— Terminal error messages

— Information produced by DFHZNAC

e Dump taken in the user install program (the
CICS-supplied default is DFHZATDX).
Most autoinstall problems can be grouped into three
categories:

1. CICS rejects the LOGON request (message
DFHZC2411 on the CSNE log).

LY33-6088-02 © Copyright IBM Corp. 1980, 1999

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

2. The device rejects the actual BIND parameters
(message DFHZC2403 on the CSNE log).

3. DFHZATA diagnoses a problem (message DFHZC69xx
on the CADL log).

The first category of problem is caused by CICS being in the
wrong state to accept an autoinstall, for example, CICS is
shutting down or AUTOINSTALL is disabled (message
DFHZC2433).

The second category of problem arises when the two BIND
images match, but the BIND is rejected by the actual device
(message DFHZC2403). For information about valid BIND
parameters, consult the 3274 Control Unit Description and
Programmer’s Guide, GA23-0061.

The BIND image is contained in the CINIT RU passed to the
LOGON exit. This is shown in trace point ID AP FC8A.

The reason for the third category of problem should be
shown in the contents of the associated DFHZC69xx
message on the CADL log. For example, message
DFHZC6987 shows a BIND image mismatch between the
incoming CINIT and the best available model (unlikely).

The length of each BIND image is found in the halfword
preceding the image. A comparison is made for the smaller
of the two length values, but not exceeding X'19' (decimal
25) bytes. The comparison is accomplished by an XC
(exclusive OR) of the two BIND images into a work area. The
result is ANDed with a mask that defines the required
settings.

Additional bits are reset if the LU type, found in byte 14 of
the BIND image, is 1, 2, 3, or 4. The final result in the work
area must be 256 bytes of X'00'; any other value causes
DFHZATA to reject the LOGON and write message
DFHZC6987 to the CADL log.

For autoinstall to function correctly, three items must match:

1. The CINIT BIND image taken from the LOGMODE entry
specified for the LU in the VTAMLST

2. The CICS MODEL BIND image built according to the
specifications in the TYPETERM and TERMINAL entries

3. Device characteristics.

Diagnosing APPC autoinstall problems

When diagnosing APPC autoinstall problems, first refer to
“Diagnosing autoinstall problems” on page 56. Most of points
in that section apply to APPC autoinstall problems except for
points that refer to autoinstall models.

Any APPC autoinstall problem should be accompanied by
message DFHZC6920 to 23. These messages each have
exception trace entries which should trace enough
information to allow you to diagnose the problem.

There are three autoinstall instances of DFHZC2411.:

LY33-6088-02 © Copyright IBM Corp. 1980, 1999

Autoinstall for terminals and APPC connections

e 4 System termination - CSASTIM tested.
e 5 VTAM termination - TCTVVTQS tested.
¢ 6 ISC=NO specified in the SIT.

There are two additional instances of DFHZC2433:
¢ 3 Autoinstall disabled - TCTVADEN tested in DFHZBLX.
e 4 Autoinstall temporarily disabled - TCTVADIN tested in
DFHZBLX.
There are two additional instances of DFHZC3482:

¢ 3 No MVS storage for DFHZBLX to obtain MVS AWE
storage.

¢ 4 No MVS storage for reporting a failure in a dummy
work element.

Chapter 7. Autoinstall for terminals, consoles and APPC connections

Diagnosing console autoinstall problems

Much of the autoinstall for terminal advice is relevant.
However, the following points should also be helpful.

1. Information about autoinstalled consoles is contained in:
e The AWE (CWE)
e The TCT prefix in the console BITMAP
e The CCE
e The SNEX
e The Al URM interface

2. When DFHZCNA is called with a modify command trace
point AP FCFO is issued and traces the CIB and CIB
extension.

3. Trace point AP FCA7 shows the AWE/CWE created by
DFHZCNA and passed to DFHZATA2.

4. DISCARD (used via CEMT or EXEC CICS) is useful
whilst testing autoinstall for consoles.

5. CEMT INQUIRE TERMINAL is useful for seeing what
consoles are installed and what their console names are.

6. The console names can vary depending on how the
modify command was issued:

¢ /f jobname,CEMT | TE from a TSO SDSF panel
gives a console name of the USERID or the console
name if changed using option 8 of SDSF.

¢ fjobname,CEMT | TE from a TSO console gives a
console name of the TSO USERID.

¢ M/F jobname, CEMT | TE from the TSO SDSF
panel gives a console name of MASTnn where nn is
the names of the system. If SEC=YES is specified
in the SIT then the user must first sign on with m/f
jobname,CESN.

e // MODIFY jobname,CEMT | TE freom a jobstream
gives a console names of INTERNAL. If SEC=YES

57

Autoinstall for terminals and APPC connections

is specified in the SIT then the user must first sign
on with m/f jobname,CESN.

7. The console name BITMAP is dumped in the TCP
section of system dumps.

8. The extended control blocks are dumped if present when
a system dump is taken.

VTAM exits

A VTAM exit is a special-purpose user-written routine that is
scheduled by VTAM when the requested operation is
complete. VTAM creates a trace record when the exit is
given control.

RE entries represent RPL exits except SEND, RECEIVE,
OPNDST, and CLSDST. UE entries represent non-RPL and
asynchronous exits SCIP, LOGON, and LOSTERM.

See the 0S/390 eNetwork Communications Server: SNA
Programming manual, SC31-8573, for general VTAM exit
information.

Trace

The following point IDs are provided for the autoinstall
programs (DFHZATA, DFHZATD, DFHZATR, and
DFHZATS), as part of terminal control:

¢ AP FCB80 through AP FC8C, for which the trace levels
are TC 1 and TC 2.
The following point IDs are provided for APPC autoinstall:
e AP FAOQO to FA21, for which the trace levels are TC1
and TC2.
The following point IDs are provided for console autoinstall:
e AP FCFO
e AP FCA3 to FCA7
RE and UE trace points are recorded when the VTAM trace
API option is requested by:
F NET,TRACE,TYPE=VTAM,OPTION=API,MODE=EXT
GTF must have been started with the USR option.

Each VTAM exit routine in CICS sets an ID byte in the
TCTTE exit trace field (TCTEEIDA).

For more information about the trace points, see the CICS
Trace Entries. For more information about using traces in
problem determination, see the CICS Problem Determination
Guide.

58 ciIcs Diagnosis Reference

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

LY33-6088-02 © Copyright IBM Corp. 1980, 1999

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

Autoinstall terminal model manager

Chapter 8. Autoinstall terminal model manager

The autoinstall terminal model manager (an OCO component
of the AP domain) is responsible for managing all operations
involving the autoinstall terminal model table. Autoinstall
terminal models are used during the autoinstall logon
process (see step 3 on page 52). They are installed either at
system initialization or using CEDA INSTALL (see

Chapter 66, “Resource definition online (RDO)” on

page 485), and can be discarded using either the CEMT
transaction or EXEC CICS commands.

The acronym AITM is often used for “autoinstall terminal
model” in the contexts of both the manager and the
associated table; it is also the name of one of the subroutine
call formats.

The AITM manager is implemented as a set of subroutine
interfaces.

Functions provided by the autoinstall
terminal model manager

Table 5 summarizes the external subroutine interfaces
provided by the autoinstall terminal model manager. It shows
the subroutine call formats, the level-1 trace point IDs of the
modules providing the functions for these formats, and the
functions provided.

Table 5. Autoinstall terminal model manager’s subroutine interfaces

Format Trace Function

AlIN AP OF10
AP OF11

START_INIT
COMPLETE_INIT

AllQ AP 0OF18
AP OF19

LOCATE_TERM_MODEL
UNLOCK_TERM_MODEL
INQUIRE_TERM_MODEL
START_BROWSE
GET_NEXT
END_BROWSE

AITM AP OF08
AP OF09

ADD_REPL_TERM_MODEL
DELETE_TERM_MODEL

AlIN format, START_INIT function

The START_INIT function of the AlIN format is used to
attach a CICS task to perform initialization of the AITM
manager.

Input parameters: None.

Output parameters

RESPONSE is the subroutine’s response to the call. It can
have any of these values:

OK|DISASTER|KERNERROR

LY33-6088-02 © Copyright IBM Corp. 1980, 1999

AIlIN format, COMPLETE_INIT function

The COMPLETE_INIT function of the AIIN format is used to
wait for the initialization task attached by the START_INIT
function to complete processing.

Input parameters: None.

Output parameters

RESPONSE is the subroutine’s response to the call. It can
have any of these values:

OK|DISASTER|KERNERROR

AllQ format, LOCATE_TERM_MODEL
function

The LOCATE_TERM_MODEL function of the AlIQ format is
used to obtain the attributes of a named autoinstall terminal
model, and obtain a read lock on that entry in the AITM table
in virtual storage.

Input parameters

TERM_MODEL_NAME specifies the name of the autoinstall
terminal model to be located.

BPS identifies a buffer into which the attributes of the
autoinstall terminal model are to be placed.

Output parameters

RESPONSE is the subroutine’s response to the call. It can
have any of these values:

OK|EXCEPTION|DISASTER|KERNERROR

[REASON] is returned when RESPONSE is DISASTER or
EXCEPTION. Possible values are:

RESPONSE Possible REASON values
DISASTER TM_LOCATE_FAILED
EXCEPTION TERM_MODEL_NOT_FOUND

AllQ format, UNLOCK_TERM_MODEL
function

The UNLOCK_TERM_MODEL function of the AlIQ format is
used to release a read lock on a previously located entry
from the AITM table in virtual storage.

Input parameters

TERM_MODEL_NAME specifies the name of the autoinstall
terminal model to be unlocked.

59

Autoinstall terminal model manager

Output parameters

RESPONSE is the subroutine’s response to the call. It can
have any of these values:
OK|EXCEPTION|DISASTER|KERNERROR

[REASON] is returned when RESPONSE is DISASTER or
EXCEPTION. Possible values are:

RESPONSE Possible REASON values
DISASTER TM_UNLOCK_FAILED
EXCEPTION TERM_MODEL_NOT_FOUND

AllQ format, INQUIRE_TERM_MODEL
function

The INQUIRE_TERM_MODEL function of the AlIQ format is
used to obtain the attributes of a named autoinstall terminal
model. (No read lock is retained.)

Input parameters

TERM_MODEL_NAME specifies the name of the autoinstall
terminal model to be located.

BPS identifies a buffer into which the attributes of the
autoinstall terminal model are to be placed.

Output parameters

RESPONSE is the subroutine’s response to the call. It can
have any of these values:

OK|EXCEPTION|DISASTER | KERNERROR

[REASON] is returned when RESPONSE is DISASTER or
EXCEPTION. Possible values are:

RESPONSE Possible REASON values
DISASTER TM_LOCATE_FAILED|TM_UNLOCK_FAILED
EXCEPTION TERM_MODEL_NOT_FOUND

AllQ format, START_BROWSE function

The START_BROWSE function of the AllQ format is used to
initiate a browse of the AITM table. The browse starts at the
beginning of the table.

Input parameters: None.

Output parameters

BROWSE_TOKEN is a token used to refer to this browse
session on subsequent browse requests.

RESPONSE is the subroutine’s response to the call. It can
have any of these values:

OK|DISASTER | KERNERROR | PURGED

[REASON] is returned when RESPONSE is DISASTER. It
has this value:

START_BROWSE_FAILED

60 cICs Diagnosis Reference

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

AllQ format, GET_NEXT function

The GET_NEXT function of the AlIQ format is used to obtain
the name and attributes of the next autoinstall terminal model
in the AITM table for the specified browse session.

Input parameters

BROWSE_TOKEN is the token identifying this browse
session.

BPS identifies a buffer to receive the attributes of the next
entry in the AITM table.

Output parameters

TERM_MODEL_NAME is the name of the next entry in the
AITM table.

RESPONSE is the subroutine’s response to the call. It can
have any of these values:
OK|EXCEPTION|DISASTER|KERNERROR

[REASON] is returned when RESPONSE is DISASTER or
EXCEPTION. Possible values are:

RESPONSE Possible REASON values
DISASTER TM_GET_NEXT_FAILED, TM_UNLOCK_FAILED
EXCEPTION END_OF_MODELS

AllQ format, END_BROWSE function

The END_BROWSE function of the AlIQ format is used to
terminate a browse of the AITM table.

Input parameters

BROWSE_TOKEN is the token identifying this browse
session.

Output parameters

RESPONSE is the subroutine’s response to the call. It can
have either of these values:

OK| KERNERROR

AITM format, ADD REPL TERM_MODEL
function

The ADD_REPL_TERM_MODEL function of the AITM format
is used to add or update an entry in the AITM table in virtual
storage, and record the entry on the CICS catalog.

Input parameters

TERM_MODEL_NAME specifies the name of the autoinstall
terminal model to be added or updated.

BPS specifies the attributes of the named autoinstall terminal
model.

LY33-6088-02 © Copyright IBM Corp. 1980, 1999

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

SYSTEM_STATUS specifies the status of the CICS system
at the time of the call. It can have any one of these
values:

COLD_START|WARM_START |ONLINE

where ONLINE means during execution.

Output parameters

RESPONSE is the subroutine’s response to the call. It can
have any of these values:
OK|EXCEPTION|DISASTER|KERNERROR

[REASON] is returned when RESPONSE is DISASTER or
EXCEPTION. Possible values are:

Autoinstall terminal model manager

RESPONSE Possible REASON values
DISASTER NOT_INITIALISED, ADD_REPL_FAILED
EXCEPTION TERM_MODEL_IN_USE

AITM format, DELETE_TERM_MODEL
function

The DELETE_TERM_MODEL function of the AITM format is
used to remove an entry from the AITM table in virtual
storage and the CICS catalog.

Input parameters

TERM_MODEL_NAME specifies the name of the autoinstall
terminal model to be added or updated.

SYSTEM_STATUS specifies the status of the CICS system
at the time of the call. It can have any one of these
values:

COLD_START|WARM_START |ONLINE

where ONLINE means during execution.

Output parameters

RESPONSE is the subroutine’s response to the call. It can
have any of these values:
OK|EXCEPTION|DISASTER|KERNERROR

[REASON] is returned when RESPONSE is DISASTER or
EXCEPTION. Possible values are:

RESPONSE Possible REASON values

DISASTER NOT_INITIALISED, DELETE_FAILED

EXCEPTION TERM_MODEL_IN_USE,
TERM_MODEL_NOT_FOUND

LY33-6088-02 © Copyright IBM Corp. 1980, 1999

Modules

Module Function

DFHAIDUF Formats the AITM manager control blocks in a CICS system

dump

DFHAIIN1 Handles the following requests:
START_INIT
COMPLETE_INIT

DFHAIIN2 Runs as a CICS task to perform initialization of the AITM

manager

DFHAIIQ Handles the following requests:
LOCATE_TERM_MODEL
UNLOCK_TERM_MODEL
INQUIRE_TERM_MODEL
START_BROWSE
GET_NEXT
END_BROWSE

DFHAIRP Initializes the AITM table at CICS startup

DFHAITM Handles the following requests:
ADD_REPL_TERM_MODEL
DELETE_TERM_MODEL

DFHAPTRN Interprets AITM manager trace entries

Exits

No global user exit points are provided for this component.

Trace

The following point IDs are provided for the AITM manager:

e AP OFO00 through AP OF1F, for which the trace levels are
AP 1 and Exc.

For more information about the trace points, see the CICS
Trace Entries. For more information about using traces in
problem determination, see the CICS Problem Determination
Guide.

Chapter 8. Autoinstall terminal model manager 61

Autoinstall terminal model manager “Restricted Materials of IBM”
Licensed Materials — Property of IBM

62 cics Diagnosis Reference LY33-6088-02 © Copyright IBM Corp. 1980, 1999

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

Chapter 9. Basic mapping support

Basic mapping support (BMS) allows the CICS application
programmer to have access to input and output data streams
without including device-dependent code in the CICS
application program.

BMS provides the following services:

Message routing
This allows application programs to send output
messages to one or more terminals not in direct
control of the transaction.

Terminal paging
This allows the user to prepare a multipage
output message without regard to the physical
size of the output terminal; the output can then
be retrieved by page number in any order.

Device independence
This allows the user to prepare output without
regard to the control characters required for a
terminal; CICS automatically inserts the control
characters and eliminates trailing blanks from
each line.

Most of the BMS programs are resident in the CICS nucleus.

Design overview

BMS is an interface between CICS and its application
programs. BMS formats input and output display data in
response to BMS commands in programs. To do this, it
uses device information from CICS system tables, and
formatting information from maps that you have prepared for
the program.

BMS enables an application program to read in
device-dependent data and convert it to a
device-independent standard form, or to generate
device-dependent output data from this device-independent
standard form. In both cases, the structure of the
device-independent standard form, and the layout of the data
on the display terminal, are determined by a user-defined
map. Related maps—for example, maps used in the same
application program—are grouped together into a map set.
See the CICS Application Programming Guide for further
information about the definition and use of maps and map
sets.

On some terminals (such as the IBM 8775 display terminal
and the IBM 3290 information panel), the available display
area may be divided into a set of related “logical” screens
called partitions . The layout and properties of the set of
partitions that can be simultaneously displayed on a terminal
are defined by the BMS user in a partition set . See the
CICS Application Programming Guide for further details
about the definition and use of partition sets.

LY33-6088-02 © Copyright IBM Corp. 1980, 1999

Basic mapping support

Maps, map sets, and partition sets are assembled offline
using CICS macros. The user defines and names fields and
groups of fields that can be written to and read from the
devices supported by BMS. The assembled maps contain all
the device-dependent control characters necessary for the
proper manipulation of the data stream.

Associated with each map is a table of field names which is
copied into each application program that uses the map.
Data is passed to and from the application program under
these field names. The application program is written to
manipulate the data under the various field names so that
alteration of a map format does not necessarily lead to
changes in program logic. New fields can be added to a map
format without making it necessary to reprogram existing
applications.

Output data can be supplied from the application program by
placing the data in the table under the appropriate field
name. As an alternative, output maps can contain field
default data that is sent when data is not supplied by an
application program. This facility permits the specification of
titles, headers, and so on, for output maps.

Optionally, the display of all the default data can be
suppressed by the application program for any output map.
Each time a map is used, the application program can
temporarily modify the attributes of any named field in the
output map. The extended attributes can also be modified if
maps are defined with the DSATTS operand.

Output map fields with no field names can contain default
data, but the application program cannot replace the default
data or modify the attributes of unnamed fields.

For input, the user assembles a map defining the fields that
can be written to and received from a particular device. Any
data received for a particular field is moved across using the
field name in the symbolic storage definition for the map.
Light-pen-detectable fields defined in an input map are
flagged as detected if present in an IBM 3270 Information
Display System input stream. An input map for a particular
case can specify a subset of the fields potentially receivable;
any fields received and not represented in that map are
discarded. This permits the number of fields from a map that
can be typed or selected to be changed, without making it
necessary to reprogram applications that currently receive
data from the map.

Maps are stored in the CICS program load library. When a
map is required by BMS, a copy is automatically retrieved by
CICS from the program load library without application
program action. Multiple users of a map contained in the
program load library share a single copy in main storage.

63

Basic mapping support

BMS permits any valid combination of field attributes to be
specified by the user when generating maps. Inclusion of
BMS in CICS is a system generation option and does not
prevent the application program from accessing a particular
device in native mode (without using BMS). Intermixing BMS
and native mode support for a terminal from the same
application program may yield unpredictable results. When
using mixed mode support, it is the user’s responsibility to
ensure the correct construction and interpretation of native
mode data streams.

BMS permits the application program to pass a native mode
data stream that has already been read in, and (if, for a
terminal of the IBM 3270 Information Display System, the
screen has been formatted) to interpret this data stream
according to a given input map. This facility allows data
entered with the initial reading of a transaction to be
successfully mapped using BMS.

BMS provides the following services:

¢ Message routing
e Terminal paging
¢ Device independence.

Message routing

Message routing permits the application program to send an
output message to one or more terminals not in direct control
of the transaction. The message is automatically sent to a
terminal if the terminal status allows reception of the
message. If a terminal is not immediately eligible to receive
the message, the message is preserved for that terminal until
a change in terminal status allows it to be sent. The
message routing function is used by the CICS
message-switching transaction.

A BMS map that specifies extended attributes can be used
for terminals that do not support extended attributes. When
sending data to a variety of terminals, some of the terminals
may support extended attributes and others may not. When a
BMS ROUTE request is processed, BMS looks at the
TCTTESs for all specified terminals and constructs a set of all
the supported attributes.

A data stream is produced by BMS using this set of
attributes, and the data stream and set of attributes for each
page are written to a temporary-storage record. When the
page is later read from temporary storage, the data stream
for each terminal is modified, if necessary, to delete
attributes not supported by that terminal.

Terminal paging

Terminal paging allows the user to prepare more output than
can be conveniently or physically displayed at the receiving
terminal. The output can then be retrieved by pages in any
order; that is, in the order in which they were prepared or by
skipping forward or backward in the output pages.

64 cICs Diagnosis Reference

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

Terminal paging also provides the ability to combine several
small areas into one area, which is then sent to the terminal.
This enables the user to prepare output without regard for
the record size imposed by the output terminal.

CICS provides the terminal operator with a generalized page
retrieval facility that can be used to retrieve and dispose of
pages.

Device independence

Device independence allows the user to prepare output
without regard for the control characters required for
message heading, line separation, and so on. Input to device
independence consists of a data string with optional new-line
characters.

Device independence divides the data string into lines no
longer than those defined for the particular terminal. If
new-line characters appear occasionally in the data string to
further define line lengths, they are not ignored. CICS inserts
the appropriate leading characters, carriage returns, and idle
characters, and eliminates trailing blanks from each line. If
the device does not support extended attributes, the
extended attributes are ignored.

CICS allows the user to set horizontal and vertical tabs on
those devices that support the facility (for example, the IBM
3767 Communication Terminal, and the IBM 3770 Data
Communication System). For such devices, CICS supports
data compression inbound and data compression outbound,
based on the tab characteristics in the data stream under the
control of the appropriate maps.

Control blocks

BMS makes use of the following control blocks (see Figure 7
on page 65):

DSECT Function

DFHMAPDS

Defines a physical map. It contains overlays for map set
data, map data, and field data. The physical map set is
stored in the CICS program library and requires a resource
definition when loaded into main storage by BMS.

DFHMCAD Defines a mapping control area (MCA). MCAs are used in
DFHM32 and DFHML1 to merge (both) and sort (DFHML1
only) fields in different maps in the chain of map copies. The
MCA contains field position, flags, and pointers to map and

application data structure relating to this field.

DFHMCBDS Defines the message control block (MCB). MCBs are built
and referenced by DFHTPR. There is one MCB per level of
page chaining. The MCBs are chained together, with the
head of the chain anchored off the TCTTE BMS extension.
The MCB contains a copy of the MCR, with additional

working data.

LY33-6088-02 © Copyright IBM Corp. 1980, 1999

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

DSECT

Function

DFHMCRDS

Defines the message control record (MCR). MCRs are held
in CICS temporary storage. There is one MCR per BMS
message in temporary storage. The MCR contains data
such as the number of pages in this message, the list of
target terminals for this message, data on which pages are
for which LDCs or partitions, and so on. The MCR is written
to temporary storage by DFHMCP. It is read and purged by
DFHTPR, DFHTPS, and DFHTPQ.

DFHOSPWA

Defines the output services processor work area (OSPWA).
This is the main BMS control block. For standard and
full-function BMS, there is an OSPWA that is chained off the
TCA and is built by DFHMCP on the first BMS command in
a transaction. It contains a copy of the BMS TCA request
bytes, together with the BMS status and working area.
DFHTPR has its own private OSPWA. This overlays the
TWA for DFHTPR unless SEND PAGE RETAIN is used. If
SEND PAGE RETAIN is used, DFHTPR obtains an
additional OSPWA, and chains the base OSPWA off the
new OSPWA. This avoids DFHTPR damaging the base
OSPWA. The OSPWA is deleted during task termination.

A shorter version of the OSPWA is used by DFHMCPE (part
of both the minimum-function BMS mapping control program
DFHMCPES$ and also the BMS fast-path module DFHMCX).
It is built in DFHMCPE's LIFO storage, and includes space
for the request information from the TCA. The DFHMCPE
OSPWA is defined within DFHMCPE.

DFHPGADS

Defines a page control area (PGA). DFHTPP builds a PGA
at the end of the device data stream in the terminal
input/output area (TIOA) (addressed as ADDR(TIOADBA) +
TIOATDL) for the SET and PAGING disposition. The PGA
contains the 3270 write control character (WCC), flags about
the type of TC write required, and the extended features
used in this page of data stream.

DFHPSDDS

Defines a physical partition set. The partition set is stored in
the CICS program library and requires a resource definition
when loaded into main storage by BMS.

DFHTTPDS

Defines the terminal type parameter (TTP). This contains
information for a terminal type. Note that BMS builds pages
on a TTP basis. For standard and full-function BMS,
DFHRLR builds TTPs as follows:

1. A “direct TTP” is built for the transaction terminal. If this
supports partitions or LDCs, a further direct TTP is built
for each referenced LDC or partition. This contains data
for that LDC or partition. These direct TTPs are chained
together, and the head of the chain is contained in the
OSPWA. Direct TTPs are deleted by DFHMCP on a
SEND PAGE, PURGE MESSAGE, or SEND
PARTNSET command.

2. If routing is in effect, there is a chain of routed TTPs,
with one TTP per terminal type in the route list. Routed
TTPs are deleted by DFHMCP on a SEND PAGE or
PURGE MESSAGE command.

Most of BMS uses the TTP rather than the TCTTE to
determine terminal-related information.

Basic mapping support

TCA TCTTE
X'08'| TCAFCAAA X'78'| TCTTETEA
Address of facility Address of TCTTE
extension
X'158'| TCAOSPWA
Address of BMS work area TCTTE extension
X'20'| TCTTEPGM
Address of first MCB
0SPWA
MCB
X'A8'| OSPCTTP
Address of current TTP X'04'| MCBNEXT
Address of next MCB or 0
X'AC'| OSPDTTP
Address of direct TTP
Direct TTP
X'BO'| OSPTTP
Address of first
routing TTP X'24'| TTPPGBUF
Address of page buffer
X'CO'| OSPTIOA
Address of original TIOA X'2C'| TTPMLA
Address of loaded map set
X'DO'| OSPDWE X'30'| TTPMAPA
Address of DWE Address of map
(within map set)
Routing TTP (see note 2) X'34'| TTPMMFCP
— Address of modified map
X'20'| TTPCHAIN
Address of next Route list area (RLA)
routing TTP or zero (see note 1)
Route list area Map set
e
Routing TTP (see note 2) MAP
—
X'20'| TTPCHAIN Page buffer
0
[
Route list area MAP (copy)
X'08'| TTPRLCHA
Address of next RLA X'04'| BMSMDA
or zero Address of data (TIOA)
X'2A"| BMSMCA
RLA extension Address of next map or 0
User TIOA

Notes:

1. The route Tist area (RLA)
is not used in the direct

TTP.

TTP.

Each routing TTP has the
same format as the direct

X'04'

X'2A"

MAP and TIOA (copy)

BMSMDA
Address of data (TIOA)

BMSMCA 0

TIOA (copy)

TCTTETTE

The TCTTETTE DSECT in the DFHTCTZE macro defines
the TCTTE BMS extension. It is chained off the TCTTE
(TCTTETEA field).

DFHTPE

Defines the BMS partition extension. This is chained off the
TCTTE BMS extension if the terminal supports partitions.

See the CICS Data Areas manual for a detailed description
of these control blocks.

LY33-6088-02 © Copyright IBM Corp. 1980, 1999

Figure 7. Control blocks associated with basic mapping support

(BMS)

Modules

BMS makes use of the following modules (see Figure 8 on

page 67):

Module Function

DFHDSB Addresses the page buffer, which was composed by the
page and text build program (DFHPBP).

DFHEMS The EXEC interface processor for BMS commands.

Chapter 9. Basic mapping support

Basic mapping support

Module Function

DFHIIP Called in response to requests for BMS services involving

terminals other than IBM 3270 Information Display Systems.

DFHMCP The interface between application programs and the
modules that perform mapping, message switching, page
and text building, device-dependent output preparation, and
message disposition to terminals, temporary-storage areas,

or the application program.

DFHMCX The BMS fast path module for standard and full-function
BMS, and the program for minimum BMS support. It is
called by DFHMCP if the request satisfies one of the

following conditions:

¢ Itis a non-cumulative direct terminal send map or
receive map issued by a command-level program.

e |Itis for a 3270 display or an LU3 printer which does not
support outboard formatting. If the terminal supports
partitions, it is in the base state.

¢ The CSPQ transaction has been started.

¢ The message disposition has not changed.

DFHM32 Called in response to requests for BMS services involving

terminals of the 3270 Information Display System.

DFHPBP Processes all BMS output requests (SEND MAP, SEND
PAGE, and SEND TEXT). It performs the following

functions:

¢ Positions the data in the page, either by actually placing
it in a buffer, or by copying it and adjusting the map for
an IBM 3270 Information Display System (SEND MAP
ACCUM)

¢ Places the data into the page buffer (SEND TEXT
ACCUM)

* Inserts device-dependent control characters for other
than 3270 Information Display System devices,
removing extended attributes.

DFHPHP Processes terminal operations that involve partitions.

DFHRLR Builds terminal type parameters (TTPs), which are the main

blocks for building and writing out data in BMS.

DFHTPP Directs completed pages to a destination specified in the
BMS output request: SEND TEXT sends to the originating
terminal; SEND MAP PAGING or SEND TEXT PAGING
directs to temporary storage; and SEND MAP SET or SEND
TEXT SET directs to a list of completed pages that are

returned to the application program).

DFHTPQ Checks the chain of automatic initiate descriptors (AIDs) to
detect and delete AIDs that have been on the chain for an
interval exceeding the purge delay time interval specified by
the PRGDLAY system initialization parameter, if this has a

nonzero value.

DFHTPR Processes messages built by BMS and placed in temporary

storage.

DFHTPS Invoked for each terminal type to which a BMS logical

message built with SEND MAP PAGING or SEND TEXT
PAGING is to be sent. For each terminal designated by the
originating application program, DFHTPR is scheduled to
display the first page of the logical message if the terminal
is in paging status, or the complete message fif it is in
autopage status.

Basic mapping support (BMS) is provided by means of a
number of modules, each of which interfaces with other BMS
modules, CICS control components, and application
programs. The maps that are handled by BMS may be new
maps, created to utilize BMS mapping capabilities. The
interrelationships of CICS programs requesting mapping
services are summarized in Figure 8 on page 67. Further
details for specific programs within BMS are given on pages
that follow.

66 CICS Diagnosis Reference

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

One of three versions (MINIMUM, STANDARD, or FULL) of
basic mapping support can be selected by the system
initialization parameter BMS (see the CICS System Definition
Guide). Where the generated versions of a BMS module
differ according to the level of function provided, a suffix
identifies the version as follows:

e E$ for minimum function
e AS$ for standard function
e 13 for full function.

In the module lists that follow, an asterisk (*) after a module
name shows that the module is suffixed in this way.
Elsewhere in this book, however, the BMS modules are
usually referenced by their unsuffixed names with no
distinction made between the minimum, standard, and
full-function versions.

The module used by all three versions of BMS (minimum,
standard, and full-function) is:

e DFHMCP* (mapping control program).

Additional modules used by both standard and full-function
versions of BMS are:

e DFHDSB* (data stream build)

e DFHIIP* (non-3270 input mapping)

¢ DFHMCX (fast path module)

e DFHML1 (LU printer mapping)

e DFHM32* (3270 mapping)

e DFHPBP* (page build program)

e DFHPHP (partition handling program)
¢ DFHRLR* (route list resolution)

e DFHTPP* (terminal page processor).

Additional modules used only by full-function BMS are:

+ DFHTPQ (terminal page cleanup)
e DFHTPR (terminal page retrieval)
e DFHTPS (terminal page scheduling).

A detailed description of each of these modules follows in
alphabetic order of module name.

LY33-6088-02 © Copyright IBM Corp. 1980, 1999

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

Basic mapping support

DFHMCX

v

CICS BMS
DFHRLR DFHMCP
Route Tist > Mapping <
resolution control program
program
A A ?
Non-3270 input T T T
! ||
DFHIIP | |

Non-3270 input
mapping program

Fast-path module

DFHTPS
Terminal page
scheduling

program
| |Retain/release (LINK) :
3270 Input IEeither (SCHEDULE)
Schedule
- |
v | vy
3270 Output DFHPBP | DFHTPR

Page build program Terminal page

| retrieval program
|
Qutput
Non-3270 for LUL |[First Time
Output Printer (IC INITIATE)
with L — — — |
Extended
v v Attributes CSPQ i
DFHM32 DFHDSB DFHML1 {_> DFHTPQ
3270 mapping Data stream LUL printer with Terminal page
program build program extended attributes | cleanup program
mapping program
|
through through L — J
DFHPBP DFHPBP Program delay
(IC INITIATE)
through DFHPBP DFHTPP
»|Terminal page
processor
program

Figure 8. Modules associated with basic mapping support (BMS)

LY33-6088-02 © Copyright IBM Corp. 1980, 1999 Chapter 9. Basic mapping support 67

Basic mapping support

DFHDSB (data stream build)

The data stream build program addresses the page buffer,
composed by the page and text build program (DFHPBP).
The page buffer contains lines of output data that are to be
written to a terminal other than an IBM 3270 Information
Display System. The number of lines is contained in the
TTPLINES field. The data stream build program performs the
following functions on the data in the page buffer:

e Truncates trailing blanks within data lines

e Substitutes strings of physical device control characters
for logical new-line characters that terminate each line of
data

¢ Provides a format management header (FMH) for some
VTAM-supported devices

¢ Allows horizontal and vertical tab processing.

Figure 9 shows the relationships between the components of
data stream build.

TCA

— TCAOSPWA 1 Page and text
«— Data stream «—> build
build (DFHPBP)
(DFHDSB)
OSPWA 2 I 5
Ly
OSPTRT
Terminal
page processor
— OSPCTTP (DFHTPP)
TP
— 3 Device
—1 TTPPGBUFF ——| control
TTPDS characters
TTPLINES
TTPCOL6
TTPLDCTT
TTPDCCAD
Page buffer
Ly
Data to be
output 4

Figure 9. Data stream build interfaces

Notes:

1. DFHDSB is entered from the page build program to
process the page buffer.

2. For SEND TEXT commands with the NOEDIT option
specified, page buffer compression is skipped and
control returns to DFHPBP, which calls the terminal
page processor (DFHTPP).

3. For SEND TEXT commands without the NOEDIT option,
the appropriate device control characters for the target
device are selected for substitution.

4. The page buffer containing the data to be compressed is
located through the address stored at TTPPGBUF.

5. After compression of the page buffer data, control
returns to DFHPBP, which calls DFHTPP to provide
disposition of the page.

68 ciICs Diagnosis Reference

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

DFHIIP (non-3270 input mapping)

The non-3270 input mapping program (DFHIIP) is called in
response to requests for BMS services involving terminals
other than IBM 3270 Information Display Systems.

Figure 10 shows the relationships between the components
of non-3270 input mapping.

Application
program
EXEC CICS....
1 I
Mapping
control
program
(DFHMCP)
1
DFHOSPWA
2 Non-3270 input
> mapping
(DFHIIP)
DFHTTPDS
2 3 Storage
«— <«—»| manager
DFHMAPDS
2
+——>

Figure 10. Non-3270 input mapping interfaces

Notes:

1. A RECEIVE MAP request by an application program,
communicating with other than an IBM 3270 Information
Display System, passes information through the TCA
through the mapping control program (DFHMCP) to
DFHIIP.

2. The map required for an operation is either passed by
the application program or loaded by DFHMCP.

3. DFHIIP communicates with storage control to obtain and
release buffers for mapping operations.

DFHMCP (mapping control program)

The mapping control program (DFHMCP) is the interface
between application programs and the modules that perform
mapping, message switching, page and text building,
device-dependent output preparation, and message
disposition to terminals, temporary-storage areas, or the
application program.

Figure 11 on page 69 shows the relationships between the
components of mapping control.

LY33-6088-02 © Copyright IBM Corp. 1980, 1999

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

Application Task
program control
EXEC CICS... program
2
3 1
TCAMSRC1 DWE
TCAMSOC
2
TCAMSRC1-3 >
TCAMSRI1 4
TCAMSPGN -
TCAMSOCN
TCAMSRLA “——| Mapping
control
— TCAFCAAA program 5 Terminal
TCAOSPWA (DFHMCP) |«———|control
program
BMS work area (OSPWA)
6 Temporary
OSPTTP > <+—— > |storage
control
program
TCTTE
TCTTETI 7 Storage
| TCTTEDA > <+—— > |manager
CSA
8 Interval
CSAUNQID <+—————|control
CSAOPFLA > program
Optional features 1ist (CSAOPFL)
9 Transient
+—— > |data
CSABMS > control
program
10 Route
3270 13 | list
mapping — resolution
(DFHM32) (DFHRLR)
11 Non-3270
Page and 14 <+——»|input
text build — mapping
(DFHPBP) (DFHIIP)
12 Fast
Partition 15 <+—————>|path
hand1ing — (DFHMCX)
program
(DFHPHP)

Figure 11. Mapping control program interfaces

Notes:

1. This program is entered when an application program
issues a request for basic mapping support services.

2. It may also be called by task control to process a
deferred work element (DWE) if an application program
terminates and there are partial pages in storage, or the
message control record (MCR) created during execution
of the task has not been placed in temporary storage.

3. The following information is returned to the requester:
error codes, page overflow information, and (for a SEND
MAP SET or SEND TEXT SET command) a list of
completed pages.

LY33-6088-02 © Copyright IBM Corp. 1980, 1999

Basic mapping support

4. DFHMCP communicates with temporary storage control
to put the MCR for routed or stored messages, if a
ROUTE command, or SEND MAP PAGING or SEND
TEXT PAGING command is issued. A DELETEQ TS
command is issued to request that a message be
purged from temporary storage if a PURGE MESSAGE
command is issued.

5. DFHMCP communicates with storage control to:

e Acquire and free storage in which the MCR is built
(a SEND MAP command after a SEND MAP
PAGING, SEND TEXT PAGING, or ROUTE
command)

¢ Acquire and free storage in which to copy the
message title (a ROUTE command with the TITLE
option specified)

e Acquire storage to build automatic initiate
descriptors (AIDs) for non-routed messages, or

routed messages to be delivered immediately (a
SEND PAGE command)

e Acquire a BMS work area (OSPWA) at the time of
the initial BMS request

e Acquire and free an area used for user request data
if a SEND PAGE command must be simulated
before processing the user’s request

e Free the returned page list (a DELETEQ TS
command)

¢ Free map copies if SEND PAGE command was
issued and pages were being built in response to
SEND PAGE commands

¢ Free terminal type parameters (TTPs) (SEND PAGE
command).

6. DFHMCP communicates with program manager to:
¢ Load and delete map sets

¢ Link to the terminal page retrieval program
(DFHTPR) to process one or more pages of a
message if a SEND PAGE command is issued with
the RETAIN or RELEASE option specified

e Abnormally terminate tasks that incur errors that
cannot be corrected.

7. DFHMCP communicates with interval control to:
¢ |Initiate transaction CSPQ

¢ Obtain the current time of day, which is then used to
time stamp AIDs for routed messages

¢ Initiate transaction CSPS for messages to be
delivered later.

8. DFHMCP communicates with task control to schedule
transaction CSPQ for every terminal that is to receive a
routed message to be delivered immediately.

9. Transient data control is used to send error and
information messages to the master terminal.

Chapter 9. Basic mapping support 69

Basic mapping support

10. Route list resolution (DFHRLR) is used to collect
terminals from a user-supplied route list or from the
entire TCT by terminal type, and build a terminal type
parameter (TTP), which controls message building, for
each terminal type. It is also used to build a
single-element TTP for the originating terminal.

11. Non-3270 input mapping (DFHIIP) is used to process
RECEIVE MAP requests for a terminal other than an
IBM 3270 Information Display System.

12. The mapping control program calls DFHMCX if the
request is eligible for the BMS fast-path module.

13. 3270 mapping (DFHM32) is used to process RECEIVE
MAP requests for an IBM 3270 Information Display

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

Application
program
EXEC CICS...

Mapping
control
program
(DFHMCP)

]

14.

System.
Page and text build (DFHPBP) processes the following

Page and text
build program
(DFHPBP)

Terminal
page processor
(DFHTPP)

output requests:

15. Page and text build program (DFHPBP) processes all
BMS output requests

SEND MAP

SEND MAP PAGING
SEND MAP SET
SEND PAGE

SEND TEXT

SEND TEXT PAGING
SEND TEXT SET.

For 3270 output, DFHM32 is called; for other output,
DFHML1 is called.

16. The partition handling program (DFHPHP) is called when
the data is in an inbound structured field. DFHPHP
extracts the partition ID, device AID, and cursor address.

DFHML1 (LUl printer with extended
attributes mapping)

The LU1 printer with extended attributes mapping program,
DFHML1, is called in response to requests for BMS services
involving terminals of the 3270 Information Display System.
Figure 12 shows how the DFHML1 program responds to
these requests.

70 cICS Diagnosis Reference

1
DFHOSPWA

User data area
2 LU1 printer 3
<«—>| with extended
attributes
mapping program
(DFHML1)

DFHTTPDS

DFHMAPDS

Storage
<«<——| manager

Figure 12. LU1 printer with extended attributes mapping program
interfaces

Notes:

1. The following types of requests, by application programs
communicating with LU1 printer mapping, pass
information through the mapping control program
(DFHMCP), and the page and text build program
(DFHPBP), to DFHML1:

SEND MAP ACCUM
SEND MAP SET
SEND TEXT

SEND TEXT ACCUM
SEND TEXT SET

For one page of output, DFHML1 acquires an area and
formats it into a chain of control blocks known as map
control areas (MCAs). Each MCA corresponds to one
map on the page and contains information about
chaining down the maps and processing the fields in
each map. DFHMLL1 then builds the data stream directly
from the maps and the TIOAs.

2. Maps are either passed by the application program or
loaded by DFHMCP.

LY33-6088-02 © Copyright IBM Corp. 1980, 1999

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

3. The address of a terminal input/output area (TIOA) is
supplied by the application program for all requests.

4. DFHML1 communicates with storage control to obtain

Basic mapping support

control areas (MCAs). Each MCA corresponds to one
map on the page and contains information for chaining
down the maps and processing the fields in each map.

DFHM32 then builds the data stream directly from the
maps and the TIOAs.

2. A RECEIVE MAP or RECEIVE MAP FROM request by
an application program communicating with an IBM 3270
Information Display System passes information through
the TCA through the message control program
(DFHMCP) to DFHM32.

The 3270 mapping program (DFHM32) is called in response 3. Maps are either passed by the application program or
to requests for BMS services involving terminals of the 3270 loaded by DFHMCP.

Information Display System. Figure 13 shows how the 3270 4. DFHM32 communicates with storage control to obtain
mapping program responds to these requests. and release storage for MCAs and for the mapped data.

and release storage for MCAs and for the mapped data.

5. All requests (see note 1 on page 70) are sent to a
designated destination by the terminal page processor
(DFHTPP), after the return of control to DFHPBP.

DFHM32 (3270 mapping)

5. All output requests (see note 1) are sent to a designated
destination by the terminal page processor (DFHTPP)
after control is returned to DFHPBP.

Application
program
EXEC CICS...

] DFHPBP (page and text build)

The page and text build program (DFHPBP) processes all
BMS output requests

SEND MAP
2 SEND MAP PAGING
SEND MAP SET
SEND PAGE
| 1 SEND TEXT
brogran SEND TEXT PAGING
(DFHI32) 5 SEND TEXT SET.

It performs the following functions:

Mapping 1
control

program
(DFHMCP)

DFHOSPWA Page and text
build program

(DFHPBP)

DFHTTPDS

e Positions the data in the page, either by actually placing

«— Terminal
TomToRy o it in a buffer, or by copying it and adjusting the map for
DFRMAPDS an IBM 3270 Information Display System (SEND MAP
ACCUM)
3 4 Storage
‘ ’ * >| manager * Places the data into the page buffer (SEND TEXT
ACCUM)

¢ Inserts device-dependent control characters for other
than 3270 Information Display System devices, removing
extended attributes.

Figure 13. 3270 mapping program interfaces

Notes:
Figure 14 on page 72 shows the relationships between the

1. The following types of requests by an application
wing typ au y ppicatl components of page and text build.

program communicating with an IBM 3270 Information
Display System passes information through the TCA by
way of the mapping control program (DFHMCP) and the
page and text build program (DFHPBP) to DFHM32:

SEND MAP ACCUM
SEND MAP PAGING
SEND MAP SET
SEND TEXT

SEND TEXT ACCUM
SEND TEXT PAGING
SEND TEXT SET

For one page of output, DFHM32 acquires an area and
formats it into a chain of control blocks known as map

LY33-6088-02 © Copyright IBM Corp. 1980, 1999 Chapter 9. Basic mapping support 71

Basic mapping support

TCA

TCAOSPWA

Mapping control
program

(DFHMCP)

BMS work area (OSPWA)

]

OSPRC1
OSPRC3

OSPWCC
0SPCTTP

1 | OSPCP

OSPTR2 to OSPTR7

—

«—3—

Terminal type parameter (TTP)

TTPMMFCP
—1 TTPPGBUF

Page buffer

| Copied map

— BMSMDA

“—>| Dummy map for
3270 or LUL
printer with
extended
attributes
mapping

Page and text
build program
(DFHPBP)

DFHMSD, DFHMDI,
and DFHMDF macros
for dummy map for
SEND TEXT ACCUM
for 3270 or LU1
printer with
extended mapping
attributes
mapping

4,7,8

Storage manager

Program manager

Terminal page
processor

(DFHTPP)

3270 mapping
(DFHM32) or LU1
printer with
extended
attributes
mapping (DFHML1)

| BMSMDA

TIOA

L

Figure 14. Page and text build program interfaces

Notes:

1. DFHPBP is entered from the mapping control program,
DFHMCP, to process all BMS output requests. It is
called once for each terminal type parameter (TTP) on
the TTP chain pointed to by OSPTTP. The current TTP
in the chain is pointed to by OSPCTTP.

2. DFHPBP returns control to DFHMCP when request
processing is complete, or when the page must be
written out before a SEND MAP ACCUM request can be
processed and an OFLOW=symbolic address operand
was specified.

3. OSPTR2, OSPTRS, ..., OSPTR7 contain request data
from the DFHBMS macro expansion. OSPRC1 and
OSPRC3 contain return codes to be examined by

DFHMCP.

72 CICS Diagnosis Reference

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

. For a SEND MAP ACCUM request for an IBM 3270

Information Display System, the map is copied and
chained to the TTP. For a SEND TEXT ACCUM request
for an IBM 3270 Information Display System, a dummy
map is created and chained to the TTP. When a page is
complete, control is given to 3270 mapping (DFHM32),
which combines the map copies chained to the TTP and
maps the data.

For a SEND MAP ACCUM request for an LU1 printer
with extended attributes, the map is copied and chained
to the TTP. For a SEND TEXT ACCUM request, a
dummy map is created and chained to the TTP. When a
page is complete, control is given to the LU printer
mapping program (DFHML1), which combines the map
copies chained to the TTP and maps the data.

. DFHPBP communicates with storage control to:

e Acquire and free buffers in which pages are built

¢ Acquire storage for copies of maps for SEND MAP
ACCUM or SEND TEXT ACCUM

e Acquire storage for a copy of the user’s data for
SEND MAP ACCUM or SEND TEXT ACCUM.

. DFHPBP requests program manager to terminate a

transaction abnormally (ABEND) if certain errors occur
that cannot be corrected.

. A SEND TEXT ACCUM request for an IBM 3270

Information Display System causes a map set consisting
of one dummy map to be passed to 3270 mapping
(DFHM32). The map has one field with attributes
FREEKB and FRSET.

SEND TEXT ACCUM requests for an LU1 printer cause
a map set consisting of one dummy map to be passed
to the LU1 printer mapping program (DFHML1). The
map has one field with attributes FREEKB and FRSET.

. If the page is being constructed for an IBM 3270

Information Display System, control is given to DFHM32
to map the data and then to DFHTPP to output the
page.

If the page is being constructed for an LU1 printer,
control is given to DFHML1 to map the data, and then to
DFHTPP to output the page. Otherwise, control is given
to DFHDSB to add device dependencies to the page,
and then to the terminal page processor (DFHTPP) to
output the page.

LY33-6088-02 © Copyright IBM Corp. 1980, 1999

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

DFHPHP (partition handling program)

The partition handling program (DFHPHP) processes
terminal operations that involve partitions. DFHPHP has one
entry point, and starts with a branch table that passes control
to the required routine according to the request. It consists of
routines that perform the following functions:

PHPPSI tests whether there is a partition set in storage.
If there is and it is not the required partition set, that
partition set is deleted. When no partition set is in
storage, an attempt is made to load the appropriate
partition set.

PHPPSC builds a data stream to destroy any partitions
that may already be loaded on the terminal, creates the
partition set designated by the application partition set,
and sets the name of the partition set in the TCTTE to
be the name of the application partition set.

PHPPIN extracts the AID, cursor address, and partition
ID. The AID and cursor address are put in the TCTTE,
and the partition ID is converted to a partition hame and
returned to the caller. A check is made that the partition
ID is a member of the application partition set.

PHPPXE sends a data stream to a terminal to activate
the appropriate partition and sends an error message to
any error message partition if input arrived from an
unexpected partition.

Figure 15 shows the relationships between the components
of partition handling.

LY33-6088-02 © Copyright IBM Corp. 1980, 1999

Basic mapping support

Terminal output
macro
(DFHTOM)

Mapping control
program
(DFHMCP)

DFHOSPWA

2 Partition handling 3
program (DFHPHP) «—

Program manager
domain

DFHTPE

Storage manager

DFHTIOA

5,8

DFHTCTTE

DFHPSDDS

Figure 15. Partition handling program interfaces

Notes:

1.

DFHPHP is called by the mapping control program
(DFHMCP) and by the terminal output macro
(DFHTOM).

PHPPSI refers to OSPWA to check whether a partition
set is loaded.

PHPPSI communicates with program manager to load
the partition set.

PHPPSI puts the name of the partition set in TPE
(terminal partition extension) as the application partition
set.

PHPPSC calls storage control to acquire a TIOA in
which to build and free the original TIOA.

PHPPSC sets a slot in the TCTTE to be the partition set
data stream concatenated with the terminal partition set
name if the terminal is not in the base state.

PHPPIN places the AID and the cursor address in the
TCTTE.

PHPPXE calls storage control to get a TIOA, retrieves
the error message text by calling the message domain,
fills the TIOA with data, transmits the data, and frees the
TIOA.

Chapter 9. Basic mapping support 73

Basic mapping support

9. PHPPSC references the partition set object to build the

partition creation data stream.

DFHRLR (route list resolution program)

The route list resolution program (DFHRLR) builds terminal
type parameters (TTPs), which are the main blocks for
building and writing out data in BMS.

Figure 16 shows the route list resolution program interfaces.

Mapping

TCA control program

TCAOSPWA
—1 TCAMSRLA
TCAFCAAA
TCASCSA
1

TCTTE
TCTTETI
TCTTETT Route list 4 Storage
TCTTEOI resolution <«——>| manager
TCTTEOCL program
TCTTEPGL (DFHRLR)
TCTTEPGC
TCTTEDDS
TCTTEMSS —
TCTEAPGL
TCTEAPGC
TCTE32SF
TCTEDSCC 5 Program
TCTEDSCL <«——>| control program
TCTEASCC
TCTEASCL

User's route Tist

L—»

URLTRMID >
URLOPID EE—
URLTSF -

BMS work area (OSPWA)

0SPTTP

OSPDTTP 2,3
0SPOCN

Terminal type parameter (TTP)

TTPCHAIN

TTP Data

Next TTP

Figure 16. Route list resolution program interfaces

Notes:

1. DFHRLR is called by the mapping control program
(DFHMCP) to determine the grouping of terminal
destinations.

2. If data is to be routed, DFHRLR groups the terminals in
the user’s route list by terminal type and builds a routing

TTP for each type. For each TTP, the supported
attributes of the corresponding terminals are

74 CICS Diagnosis Reference

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

accumulated. The address of the first routing TTP in the
chain of TTPs is placed in OSPTTP.

. If data is not to be routed, a direct TTP is built for the

originating terminal and its address is placed in
OSPDTTP.

DFHRLR communicates with storage control to acquire
storage for the TTP.

. Program manager services are requested by means of

an ABEND command if errors occur that cannot be
corrected.

DFHTPP (terminal page processor)

The terminal page processor (DFHTPP) directs completed
pages to a destination specified in the BMS output request:

SEND MAP or SEND TEXT sends to the originating
terminal

SEND MAP PAGING or SEND TEXT PAGING directs to
temporary storage

SEND MAP SET or SEND TEXT SET directs to a list of
completed pages that are returned to the application
program.

Figure 17 on page 75 shows the relationships between the
terminal page processor and other components in response
to BMS output requests.

LY33-6088-02 © Copyright IBM Corp. 1980, 1999

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

LUL printer

with extended
attributes mapping
(DFHML1)

| | |

| DFHPBP |

1
TCA

Data stream build
(DFHDSB)

3270 mapping
(DFHM32)

TCAOSPWA 2 Storage
TCATSDI «— Terminal page <«—>| manager
TCATSRN processor
(DFHTPP)
OSPWA
OSPTR4
0SPTR5 3 Temporary
OSPDWE <+—| storage
OSPINDO1 control program
OSPRETPG «—
OSPRC1
OSPRC2
OSPCTTP
5 Terminal output
TTP <+—>| macro (DFHTOM)
TTPPGBUF
TTPMSUFX 4
Data to be output
Page control area |+——
List of
returned pages

Figure 17. Terminal page processor interfaces

Notes:
1. DFHTPP is entered from DFHPBP after processing by

3270 mapping (DFHM32) for 3270s, by LU1 printer with
extended attributes mapping (DFHML1) for those LU1
printers, and by data stream build (DFHDSB) for other
devices.

. DFHTPP communicates with storage control to obtain:

¢ The return list (to store the address of completed
pages to be returned to the program)

¢ Deferred work elements (DWESs), which ensure that
message control information is written to disk, even
if the program neglects to issue a SEND PAGE
request

e Storage for a list that correlates pages on temporary
storage with the logical device codes for which they
are destined.

. Temporary-storage control is used to store pages and
the message control record (MCR) for messages stored
on temporary storage.

. The terminal type parameter (TTP) controls the
formatting of a message for a particular terminal type

LY33-6088-02 © Copyright IBM Corp. 1980, 1999

Basic mapping support

(for example, an IBM 2741 Communication Terminal).
TTPPGBUF contains the address of a completed page.

5. The terminal output macro (DFHTOM) is issued to
provide an open subroutine assembled within DFHTPP
that puts a completed page out to the terminal. If the
data stream contains extended attributes, and the
terminal does not support extended attributes, the
extended attributes are deleted.

DFHTPQ (undelivered messages cleanup
program)

The undelivered messages cleanup program (DFHTPQ)
checks the chain of automatic initiate descriptors (AIDs) to
detect and delete AlIDs that have been on the chain for an
interval exceeding the purge delay time interval specified by
the PRGDLAY system initialization parameter, if this has a
nonzero value.

Figure 18 shows the undelivered messages cleanup program
interfaces.

Program
control program

CSA

Undelivered 2 Terminal
messages <«—| allocation
cleanup program program (DFHALP)
(DFHTPQ)

CSAAIDBA

3 Storage
<«—| manager

4 Transient data
<«—| control program

5 Interval
<«—| control program

6 Temporary
<«—| storage
control program

TCA

TCAICRT

Figure 18. Undelivered messages cleanup program interfaces

Notes:

1. DFHTPQ is initiated the first time by the mapping control
program (DFHMCP), by interval control, or by the
transaction CSPQ. Thereafter, it reinitiates itself (see
note 5).

2. DFHTPQ communicates with the allocation program
(DFHALP) to locate and unchain AlDs.

Chapter 9. Basic mapping support 75

Basic mapping support

3. DFHTPQ communicates with storage control to free
AIDs that have been purged and to acquire storage for
notification messages.

4. Transient data control is used to send notification
messages.

5. Interval control is used to obtain the current time and to
reinitiate this task (DFHTPQ).

6. DFHTPQ communicates with temporary-storage control
to retrieve and replace message control records (MCRS)
and to purge messages.

DFHTPR (terminal page retrieval program)

The terminal page retrieval program (DFHTPR) processes
messages built by BMS and placed in temporary storage.

Figure 19 shows the relationships between the components
of page retrieval.

76 CICS Diagnosis Reference

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

Program Mapping
control program control program
1 2
System initialization
table (SIT)
Terminal 3 Storage
Paging commands ——| page retrieval <«—>| manager
program
(DFHTPR)
CSA
4 Temporary
CSATCNDT -~ <«——| storage
CSATODB control program
CSAAIDBA —
TCA
5 Basic mapping
<«—>| support
TCATSDI —
TCAOSPWA
—1 TCAFCAAA
BMS work area (OSPWA) 6 Task
<«——| control program
O0SPTR4 —
OSPTR7
[—
7 Interval
TCTTE <«—>| control program
—> >
TCTTETI
TCTTEPGB 8 Terminal
TCTTEPGM - <«——| control program
TCTTEPGL —
TCTTEPGC
TCTEAPGL
TCTEAPGC
TCTE32SF
9 Transient data
<«—>| control program
AID
10 Terminal output
— <«—>| macro (DFHTOM)

Figure 19. Page retrieval program interfaces

Notes:

1. DFHTPR can be initiated as a stand-alone transaction

(CSPG), or by a user-defined paging command (for
example, P/, or 3270 PA/PF keys), or linked to from a
BMS conversational operation (SEND PAGE request
with CTRL=RETAIN or RELEASE).

DFHTPR performs the following functions:
¢ Displays the first page of a routed message

¢ Displays subsequent pages of a message at a
terminal for which a SEND PAGE request with
CTRL=AUTOPAGE was specified

¢ Processes paging commands from a terminal

* Processes the CSPG transaction when it is entered
at the terminal

LY33-6088-02 © Copyright IBM Corp. 1980, 1999

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

¢ Purges a message displayed at the terminal if the
terminal is in display status and other than a paging
command is entered at the terminal.

2. DFHTPR is entered from the BMS mapping control
program (DFHMCP) to display the first page of a
message originated at the terminal if CTRL=RETAIN
was specified in the BMS request. DFHTPR reads from
the terminal and processes paging commands until other
than a paging command is entered.

3. DFHTPR uses storage control to:
¢ Acquire and free message control blocks (MCBSs)
¢ Free message control record (MCR) storage

e Acquire storage for information and error messages
to be sent to the destination terminal and the master
terminal

¢ Free an automatic initiate descriptor (AID) taken off
the AID chain

¢ Acquire and free storage for a route list constructed
in response to a COPY command entered at a
terminal

e Acquire a TIOA into which to place a
device-independent page when performing the
COPY function.

4. Temporary-storage control is used to retrieve and
replace MCRs and to retrieve and purge pages.

5. Basic mapping support is used to display error and
information messages at a requesting terminal, and to
send a page to the destination terminal in the COPY
function.

6. Task control is used to retain exclusive control of an
MCR while it is being updated.

7. DFHTPR communicates with interval control during error
processing when a temporary-storage identification error
is returned while attempting to retrieve an MCR. Up to
four retries (each consisting of a one-second wait
followed by another attempt to read the MCR) are
performed. (The error may be due to the fact that an
MCR has been temporarily released because another
task is updating it. If so, the situation may correct itself,
and a retry is successful.)

8. Terminal control is used to read in the next portion of
terminal input after a page or information message is
sent to the terminal when a SEND PAGE request with
CTRL=RETAIN was specified.

9. Transient data control is used to send error or
information messages to the master terminal.

10. The terminal output macro (DFHTOM) is issued to
provide an open subroutine that puts a completed page
out to the terminal.

LY33-6088-02 © Copyright IBM Corp. 1980, 1999

Basic mapping support

DFHTPS (terminal page scheduling
program)

The terminal page scheduling program (DFHTPS) is invoked
for each terminal type to which a BMS logical message built
with SEND MAP PAGING or SEND TEXT PAGING is to be
sent. For each terminal designated by the originating
application program, DFHTPR is scheduled to display the
first page of the logical message if the terminal is in paging
status, or the complete message if it is in autopage status.

Copy books
Copy book Function
DFHBMSCA Defines constants for field attribute values, flags returned by

BMS, and character attribute types and values for SEND
TEXT. It is usually copied into BMS application programs.

DFHMCPE Included in the minimum-function BMS mapping control
program DFHMCPES$, and also forms the BMS fast-path
module DFHMCX used by both standard and full-function
BMS. It is a small, fast, self-contained, limited-function BMS

for 3270 displays and printers.

DFHMCPIN Included in the standard and full-function versions of the
BMS mapping control program, DFHMCPA$ and
DFHMCP1$ respectively. It contains the code for input
mapping.

Included in the DFHM32 and DFHMCPE programs. It
contains input mapping code for 3270 terminals.

DFHMIN

DFHMSRCA Defines constants for MSR control. This is usually copied

into BMS application programs.

Exits

No global user exit points are provided for this function.

Trace

The following point IDs are provided for basic mapping
support, all with a trace level of BM 1:

e AP 00CD, for temporary-storage errors
e AP OOCF, for exit trace
e AP OO0FA, for entry trace.

For more information about the trace points, see the CICS
Trace Entries. For more information about using traces in
problem determination, see the CICS Problem Determination
Guide.

Chapter 9. Basic mapping support 77

Basic mapping support “Restricted Materials of IBM”
Licensed Materials — Property of IBM

78 cics Diagnosis Reference LY33-6088-02 © Copyright IBM Corp. 1980, 1999

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

Chapter 10. Builders

The builder modules:

¢ Make the autoinstall process possible (that is, build a
terminal control table terminal entry (TCTTE)
dynamically).

¢ Allows new TCT entries to be added on a running CICS
system.

¢ Allow the TCT to be dynamically updated on a running
CICS system.

e Allow TCT entries to be deleted on a running CICS
system.

¢ Reduce emergency restart times for those systems that
use the autoinstall function. These systems have to take
the time to restore and recover only those terminals that
were autoinstalled at the time of termination.

¢ Reduce warm start times for those systems that use
auto-install. No auto-installed terminals (except LU6.2
parallel systems are recovered at warm start).

¢ Reduce shutdown times for those systems using
auto-install. Auto-install catalog entries are deleted but
the entry in storage is not destroyed during shutdown.

In this section, the term TCTTE is used in a general way to
refer to the terminal control table entries for connections
(TCT system entries, TCTSESs), mode groups (TCT
modegroup entries, TCTMES), sessions (session TCT
terminal entries, TCTTES), skeletons (TCTSKs), and models.

To build or delete a control block for a particular device, a
set of builders is called. The set of builders is specified by a
tree structure of patterns, each pattern specifying one
builder.

The builder modules (DFHBS*) are link-edited together into
the DFHZCQ load module.

On microfiche, the individual DFHBS* modules are listed
separately.

LY33-6088-02 © Copyright IBM Corp. 1980, 1999

Builders

Design overview

What is a builder (DFHBS*)?

A builder is responsible for all the actions that can occur on a
particular subcomponent of the TCTTE. The term
subcomponent means a separately obtained area of storage
which is referenced from the TCTTE or a collection of fields
in the TCTTE that are logically associated with one another.
General terms sometimes used instead of subcomponent are
object or node. For example, the NIB descriptor, LUC
extension, and BMS extension are all considered to be
subcomponents.

Builder parameter set (BPS)

Each time a calling module invokes DFHZCQ for INSTALL, it
supplies a builder parameter set (BPS). The BPS describes
the device to be defined. The device-type is determined by
matching attributes in the BPS with a table of definitions,
DFHTRZYT, in module DFHTRZYP.

A BPS consists of a fixed-length prefix, a bit map preceded
by its own length, an area for fixed-length parameters
preceded by its own length, and three variable-length
parameters, BIND, USERID, and PASSWORD. Each
variable-length parameter has a 1-byte length field.

TCTTE creation and deletion

This section starts by describing the structure of the main
components involved in the process of creating and deleting
TCTTESs. Figure 20 on page 80 is in two halves: the top half
shows those components that can initiate the process of
collecting all the necessary data or parameters that go
toward fully defining a TCTTE, and the bottom half is
concerned with how to go about creating the TCTTE after it
has the full set of parameters. Thus, all the processes are
aiming for the same common interface. This section deals
first with the top-level processes that are activated to create
or delete TCTTEs; for the time being, assume that after
returning from the DFHZCQ interface a TCTTE has been
created. (For a more detailed description, see “DFHZCQ and
TCTTE generation” on page 80.)

79

Builders

Warm & emer Cold CEDA AUTOINSTALL Transaction
start start INSTALL logon exit routing

! R ! !

DFHTCRP

DFHAMTP DFHZATA DFHZTSP

| | [\

i

DFHZCQ

|

DFHTBS —

DFHBS*

(syncpointlprocessing)

DFHZGTA |«——— DFHAPRDR —>| DFHTONR

v

DFHTBSS

Figure 20. Top-level view of the components participating in TCTTE
creation

Component overview

DFHTCRP: The DFHTCRP program is responsible for
reestablishing the TCTTESs that were in existence in the
previous run. There are conceptually three stages of
processing in this module:

1. Initialize DFHZCQ. Initialize DFHAPRD. If
START=COLD, terminate.

2. Reestablish TCTTEs that were saved on the CICS
catalog. If START=WARM, terminate.

3. Call DFHAPRDR to forward-recover in-flight TCTTEs
from the system log, if an emergency restart is being
performed.

DFHAMTP: The DFHAMTP program is used as part of
INSTALL processing. It calls DFHTOR, then DFHZCQ.

DFHZATA and the CATA transaction: CATAis a
transaction that is initiated by the logon exit and causes
DFHZATA to run. It is passed the CINIT which is used to
deduce the parameters which must be passed to DFHZCQ in
order to create a TCTTE.

DFHZTSP: The terminal sharing program, DFHZTSP, is

used by transaction routing for devices of all types,
exclusively so for non-APPC devices.

80 cICs Diagnosis Reference

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

DFHZCQ: The DFHZCQ program supports the INSTALL
and DELETE interface that results in the TCTTE being
created or deleted. It relies on its callers to supply the
complete set of parameters that are to be used to create the
TCTTE,; that is, it is not responsible for determining
parameters for the TCTTE.

DFHBS* builder programs: The builders are
responsible for creating the TCTTE. The parameters given to
DFHZCQ are passed on to the builders. They extract the
parameters and set the relevant fields in the TCTTE.

DFHTBS: The DFHTBS program is an interpreter that
uses a pattern given to it by DFHZCQ to drive the whole
TCTTE creation or deletion process according to certain
rules.

DFHAPRDR: The DFHAPRDR program is the orchestrator
of the commitment of TCTTE creation or deletion. It is
responsible for driving DFHTBSS and DFHTONR for
syncpoints, during cold start and also for recovering in-flight
creates or deletes from the system log during emergency
restart. It is called by the Recovery Manager, DFHTCRP and
DFHAMTP during start-up and directly from DFHTBS (to
roll-back an atom).

DFHTBSS: The DFHTBSS program is responsible for
logging forward recovery records and for updating the
catalog as a result of the request initiated by DFHZCQ and
actioned by DFHTBS. It is driven by DFHAPRDR.

DFHTONR: The DFHTONR program is responsible for
logging forward recovery records and for updating the
catalog for install or delete requests for TYPETERMS. It is
driven by DFHAPRDR.

DFHZGTA: DFHZGTA is the module called by DFHBS*
and DFHZTSP (for remote system entry sessions) to add or
delete index entries for TCTTE entries. It maintains locks on
terminal namespaces, and handles calls to TMP to add,
quiesce, delete, unlock and unquiesce entries. It is driven at
syncpoint or rollback for an atom by DFHAPRDR.

DFHZCQ and TCTTE generation

This section describes how a TCTTE gets built and deleted.
You need to understand at least one method by which a
builder parameter set (BPS) is created; for example, CEDA
INSTALL or AUTOINSTALL. A BPS contains all the values
necessary for the creation of a TCTTE.

Figure 21 on page 81 gives a more detailed view of the
main components involved in the INSTALL process.

LY33-6088-02 © Copyright IBM Corp. 1980, 1999

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

fozcas] |]

!
e Jo————

DFHTBSB DFHBS*
‘ Syncpoint processing ‘
| DFHAPRDR

v

DFHTBSS

DFHZCQRT

RRAB

Figure 21. Major active components in the INSTALL process

—— The four-stage process

In summary, the process consists of four stages:

1. Collecting the parameters together.

2. Creating the storage for the TCTTE and copying
the parameters. Note however, that at the end of
this stage, a TCTTE has effectively been built. It is
still unknown to the rest of the CICS system, that is,
the TCTTE name has not been exposed. The
modules involved here are DFHTBSB and DFHBS*.

3. Producing a recovery record . This is done at
syncpoint processing time in the DFHTBSS module.
This stage is usually called Phase 1 syncpoint.

4. Writing or updating the catalog . Again, this is
done in DFHTBSS and is called Phase 2 syncpoint.
It is at about this stage that the TCTTE name
becomes exposed and known to the rest of CICS.

What is DFHZCQRT?: DFHZCQRT is an array of
“patterns” where each pattern defines a list of builders that
need to be called in order to create this particular type of
TCTTE, that is, a pattern is equivalent to a type of terminal.
The array entry consists of two parts: information that is
private to DFHZCQ, and the pattern that is interpreted by
DFHTBS.

What does DFHTBSBP do?: The pattern entry is
passed to DFHTBSBP (via DFHTBSB) after it has been
found by DFHZCQIS. DFHTBSBP calls each builder
identified by the pattern in sequence to create the object for
which the builder is responsible. Note that DFHTBSBP
knows nothing about the TCTTE; DFHTBSBP merely follows
a set of simple rules. It keeps an audit trail of each builder
that is called.

LY33-6088-02 © Copyright IBM Corp. 1980, 1999

Builders

What is the RRAB used for?: The audit trail kept by
DFHTBSBP is implemented by obtaining a Resource
definition Recovery Anchor Block (RRAB) that has some user
storage attached to it. As DFHTBSBP calls each builder to
perform an action, it adds an “action element” to the RRAB.
(See “What is syncpointing?” on page 82) The address of
the RRAB for a UOW is held in the ‘APRD’ recovery
manager slot, which ensures that DFHAPRDR will be called
at syncpoint. The RRAB stores the action blocks in two types
of chains, one for actions that are not part of a named
resource definition ‘atom' and one for actions that are part of
a named atom. This later type are chained off a Resource
definition Action Name block (RABN). Also held in the RRAB
is an indicator set by DFHTOR if DFHTONR should be called
at syncpoint (if a typeterm has been installed), and a chain of
Resource Definition Update Blocks (RDUB).

What is a resource definition 'atom'?: Certain
resource definitions must be installed or deleted as a single
set. These definitions are called a resource definition 'atom'.
CICS installs the members of a RDO group as individual
resource definitions, which can fail without causing the other
resources to fail except for these atoms, which bear the
name of the logical set of definitions. For example:

A connection and its associated sessions is named for

the connection

A pool of terminals is named for the pool of terminals

What is a Resource definition Atom Name block
(RABN)?: The RABN is only created for those atoms of
resource recovery that are named. It holds the name of the
atom, a chain of action elements for the atom, and the
recovery outcome of the atom (whether it failed and was
backed out, or succeeded and should be committed).
DFHTBSB uses the RABN to decide if a session definition
should not be installed because the install of the parent
connection has already failed, for example. In our auto-install
example, if the definition being installed is a parallel
connection, there will be a RABN for it from which the action
elements are chained.

What is a Resource Definition Update Block

(RDUB)?: The RDUB is a record of locks held by a UOW
against names in three namespaces:

1. Termids and Sysids

2. Netnames

3. Unique ids (Composed of the Netname of a Terminal
Owning Region followed by a period ‘.’ followed by the
Termid or Sysid in that TOR)

During the installation, deletion, or replacement of a TCTTE
definition the builders DFHBS* obtain locks by calling
DFHZGTA. These locks guarantee exclusive or shared
access to names in these namespaces. Exclusive access is
used to prevent another task from installing another definition
with the same name, nethame or unique-id while this UOW is
trying to install or delete (an action which may have to be
reversed). Shared access is used to block another task from

Chapter 10. Builders 81

Builders

deleting an entry that a definition that this task is updating
(for example, a system definition name may be locked by a
remote terminal definition that refers to it).

RDUBs also exist on a global chain so that other UOWSs can
easily find out if a particular lock is held.

What is syncpointing?: When DFHTBSBP has
exhausted the list of builders, it returns to its caller.
Similarly, DFHZCQIS returns to its caller, which could have
been autoinstall. However, there is still an audit trail that is
attached to the RRAB. It is only when the calling task
terminates or issues DFHSP USER or EXEC CICS
SYNCPOINT that the next two stages occur.

Syncpoint processing consists of two phases. The first phase
(prepare phase) requires the resource manager to write a
forward-recovery record to the log. Thus, if the second phase
(commit phase) fails to write to the catalog, this recovery
record can be used to forward-recover the action on an
emergency restart.

DFHTBS: The DFHTBS program is an interpreter that
uses a pattern given to it by DFHZCQ to drive the whole
TCTTE installation or deletion process according to certain
rules.

DFHAPRDR: DFHAPRDR is invoked by recovery
manager if the ‘APRD’ RM slot is non-zero. This slot contains
the address of the RRAB for this UOW if any resource
definition has taken place. It is also called by DFHTBS
directly if an atom needs to be rolled-back or to commit an
atom during Cold Start. DFHAPRDR examines the RRAB
and chooses whether to call DFHTBSS, DFHTONR and
DFHZGTA for each phase of syncpoint or individual atom
commitment.

If either DFHTBSS or DFHTONR have records to log/catalog,
DFHAPRDR calls the recovery manager to request that a
record is written to the catalog noting that a forget record will
be written once syncpoint completes. The purpose of this call
is that if CICS should fail between the start of syncpoint
phase 2 and the end, on an emergency restart recovery
manager will call DFHAPRDR with the log records for this
UOW so that they can be re-applied to the catalog, and the
TCTTE entry or entries can be re-built.

DFHTBSS: The DFHTBSS program is responsible for
performing the correct recovery actions for each atom and
UOW at syncpoint (or during the rollback of an individual
atom). It writes forward recovery records to the system log
and updates the catalog during phase 1 and phase 2 of
syncpoint respectively. It is directly driven by DFHAPRDR.

The purpose of the builder (DFHBS*) modules is to build a
TCTTE, TCTSE, and TCTME and its associated control
blocks. A TCTTE is built for terminals only; a TCTSE and
TCTME are built for both LU6.1 with MRO and LU6.2 single
sessions; all three are built for LU6.2 parallel sessions.
DFHTBSS is invoked by DFHAPRDR with a parameter list

82 cICs Diagnosis Reference

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

that indicates whether this call is for an individual atom or for
syncpoint and which phase is in force. For phase 1, it uses
the action blocks audit-trail to recall each builder. It asks
each builder to supply the address and length of the
subcomponent so that it can create a single record
containing a copy of each component as a list; that is, the
first part of the record contains a copy of the object created
by the first builder in the sequence, the second part contains
a copy of the object created by the second builder, and so
on until the audit trail list is finished. This record is then
written to the system log as a forward recovery record.

When DFHTBSS is reentered for the second phase (again a
parameter on the call by DFHAPRDR), it uses the record
created in the first phase as the record that is written to the
catalog. During this stage, each builder is called to tidy up
after the object for which it is responsible; for example, for
the TCTTE itself, it puts the TCTTE in service.

Again note, DFHTBSS only implements a set of rules.

DFHTONR: DFHTONR is responsible for writing catalog
records for TYPETERMs. It is called by DFHAPRDR.

DFHZGTA: DFHZGTA is the module that is called by
DFHBS* modules to add index entries for TCTTE entries so
that they can be located quickly either by DFHZLOC,
DFHZGTI or in VTAM exit code. It calls DFHTMP services. It
obtains and releases locks using the RDUB blocks, and at
syncpoint is responsible for releasing all TMP locks and
unquiescing any TMP entries that were quiesced by DFHBS*
modules.

Summary

¢ In overview, the process consists of four stages:
parameter collection, obtaining and initializing, phase 1
recovery record and logging, and phase 2 catalog
record.

e A builder contains TCTTE specific code.

e DFHTBS* modules implement the abstract rules for
creating generic “objects”.

e DFHZCQRT contains patterns that define what builders
are to be used to build the TCTTE.

e Syncpoint processing consists of two stages (prepare
and commit).

¢ DFHAPRDR is responsible for orchestrating the
syncpoint process for all of resource definition recovery.

e DFHTBSS is driven by DFHAPRDR using the audit trail
produced by DFHTBSB.

e DFHTONR is driven by DFHAPRDR if any TYPETERMs
were installed.

e DFHZGTA is driven by DFHAPRDR if any locks need to
be released.

LY33-6088-02 © Copyright IBM Corp. 1980, 1999

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

Example of an autoinstall:

Consider the following: a

terminal operator has logged on to the system and is being
autoinstalled. The CATA transaction is responsible for
collecting together the parameters required for the DFHZCQ
INSTALL.

The process continues from the point where the DFHZCQ
INSTALL is issued from CATA.

Builders

Step

DFHZCQ |DFHZCQIS|DFHTBS

DFHTBSB |DFHBS* |DFHTBSS

1.

10.

11.

12.

13.
14.

15.

16.

A call has been made to cause an install to occur.

that other related modules are already loaded.

Calls the install-specific module (given in the parameter block

passed to DFHZCQ).

Performs various checks on the parameters passed by the

caller of DFHZCQ.

Finds a pattern in DFHZCQRT that matches with
information given in the parameters.

Calls DFHTBS with the pattern and parameters.

DFHTBS only routes the request to DFHTBSB, so
is omitted from further discussions.

Returns.

Checks that a valid pattern has been
passed.

Creates the RRAB which gets attached
to the 'APRD' Recovery Manager slot.

Calls the next builder as defined by
the pattern.

Each builder creates its
section of the TCTTE.

Adds an action element to the RRAB
giving information about this
particular builder.

Repeats steps 9, 10, and 11 until the
pattern is finished.

Tidies up the RRAB and returns.

If the return code was ‘0K’, returns the address of the

hidden TCTTE.

Returns.

DFHZCQ ensures

Figure 22 (Part 1 of 2). Flow of control for a build

LY33-6088-02 © Copyright IBM Corp. 1980, 1999

Chapter 10. Builders

83

Builders

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

Step

DFHZCQ |DFHZCQIS|DFHTBS |DFHTBSB |DFHBS+

DFHTBSS

17.
18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

(Caller continues until DFHSP USER is issued or task terminates.)

(DFHAPRDR invokes DFHTBSS with the RRAB indicating phase 1.)

Examines the RRAB
to determine phase.

Using the action
elements created in
step 11, recalls

each builder asking
for information to be
saved on the recovery
log.

Returns the address of the
object built in step 10.

Using these addresses,
builds the recovery
record.

Writes this out to
the system Tog.

Saves stored version
for the next phase.

Returns.

(Recovery Manager calls all other resource managers who have
a part to play in the process; it knows this because there are

addresses in the RM slots for this UOW).

Discovers that this is
phase 2, and reuses the
in-storage version of
the recovery record to
write to the catalog.

Returns.

Figure 22 (Part 2 of 2). Flow of control for a build

Patterns, hierarchies, nodes, and builders

Patterns were introduced in the previous section. This
section examines in detail what they look like. To achieve
this, several terms have to be explained.

What is a hierarchy?: In this context, “hierarchy” is
another word for tree. The structure of the TCTTE can be
thought of as a tree: at the top node is the TCTTE itself,
containing pointers to lower-level nodes .

Figure 23 shows the master node as the TCTTE, with
subnodes connected to it (BMS extension, special features
extension, and so on).

84 ciICs Diagnosis Reference

TCTTE

NIB descriptor
extension

BMS extension Special features

extension

LUC systems
extension

Figure 23. TCTTE structure

As a result of this structure, it can be seen that the creation
process must follow several rules. For example, the storage
for the master node has to be obtained before pointers to
subnodes are saved in it.

LY33-6088-02 © Copyright IBM Corp. 1980, 1999

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

What is a pattern?: The objective of a pattern is to
reflect or represent the hierarchy as described above.
Figure 24 outlines the shape of a pattern. For each of the
nodes in Figure 23, there is a pattern. Starting with the
TCTTE (the master node), there is a master pattern .
Bloffset references the subpattern for the BIND image
node; B2offset references the subpattern for the BMS
extension node; B3offset and B4offset reference the
subpatterns for user area and SNTTE subnodes
respectively. In total, there are five patterns: the master
pattern and four subpatterns—so what is meant by pattern
above was really a collection of patterns.

Pattern name

Builder address

Bloffset ——

B2offset ——>

Bnoffset ——

Figure 24. Pattern structure

Note that each pattern contains the address of a builder, so
we could represent the TCTTE structure as:

Master pattern

DFHBStz

Master builder

| Subpatterns

|DFHBStzb

|DFHBStb | |DFHBSto | |DFHBStc | |DFHBStS |

Sub-builders

Figure 25. Patterns and subpatterns

LY33-6088-02 © Copyright IBM Corp. 1980, 1999

Builders

The purpose of the builders: The purpose of the
builders is to centralize the major functional code for creation
and deletion of the nodes associated with the TCTTE.
Figure 24 and Figure 25 show how the patterns refer to the
builders; the pattern is exploited by the DFHTBS* code to
activate the relevant builder function. For example,
DFHTBSBP, when given a pattern, extracts the address of
the builder and invokes the BUILD function belonging to the
builder.

How does DFHTBSBP do its work?: First, you must
examine more closely the structure of a builder in Figure 26.

Pattern

DFHBS*

save registers;
call;
return

BSH_EP_TABLE
*jj

—build |destroy

ready |unready

connect |flatten

unflatt|findlst

findnxt [makekey

Build specific code
(GETMAIN)

Destroy specific code «
(FREEMAIN)

Figure 26. The builder stub

Remember that the pattern references a builder. In fact, it
references a stub, the first word of which points to a table
(BSH_EP_TABLE), and is followed by code that is
responsible for enacting the entry as required by the caller.
For example, if the caller wanted to call BUILD, a call would
be made to the stub with value 1. The stub would extract the
offset to the build code from the BSH_EP_TABLE, and
perform the call.

Chapter 10. Builders 85

Builders

Thus, making a call from DFHTBS* to DFHBS* is relatively
simple: all that is needed is the function number (1 for
BUILD, 2 for DESTROY, ...), a call to the stub, and the
pattern.

—— Summary

e The TCTTE is structured as a hierarchy with a
master node (the TCTTE itself) and subnodes
(BIND image, BMS extension, and so on).

e Patterns mimic this hierarchy and consist of a
master pattern which refers to subpatterns .

e In turn, each pattern points to a builder: the master
pattern refers to the master builder and the
subpatterns refer to the sub-builders .

¢ Builders centralize the major creation and deletion
functions associated with the node for which they
are responsible.

e The invocation (or activation) of the builder functions
is performed under the strict control of the DFHTBS*
modules.

e The order of invocation is totally determined by the
structuring of the patterns.

The DELETE process

By examining the hierarchy (see Figure 23 on page 84), you
can see that there are certain rules that have to be
established. Firstly, you should check that the TCTTE and
its subcomponents are quiesced, that is, there is no activity
in progress. And secondly, and perhaps more obviously, the
top node must not be the first object to be freed. From this,
you can derive two basic rules, or “functions”, that must be
supplied by any DFHBS*:

UNREADY For all nodes associated with the master node.
Ensures that no activity is occurring; for
example, that a CLSDST is not in progress. It
must also achieve exclusive ownership of the
object; for example, ZGTA QUIESCE ensures no
locates on the given TCTTE succeed and that
no other UOWSs can install another similarly
named object until syncpoint. Further, it initiates
the ZGTA DELETE which does a TMP DELETE
to remove the entry.

DESTROY Lower objects first. (See “What about the “lower
objects first” rule?”:) Frees the storage belonging
to the node.

86 cICs Diagnosis Reference

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

What about the “lower objects first” rule?:

Figure 27 tries to add meaning to the descriptions of the
UNREADY and DESTROQY functions. As each builder is
called (as determined by the master pattern), DFHTBSD
records an audit trail of called builders. However, the audit
trail is managed slightly differently for the delete process, to
guarantee order of processing by DFHTBSS at phase 2 time.
For further information, see “Completing the process
description” on page 88.

DFHZCQ TCTTE

(TCTTERTK)

DFHZICQRT

\

‘DFHZCQDL‘ ‘ ‘ ‘ |
DFHTBS l
DFHBS*
RRAB

Unready

DFHTBSD

|Syncp01nt DFHAPRDR ‘

[———| DFHTBSS

Destroy

HEE

Figure 27. Major active components in the DELETE process

LY33-6088-02 © Copyright IBM Corp. 1980, 1999

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

Example of a reinstall

Builders

Step

CEDA ‘ZCQIS 'TBSB IBS* ‘ZCQDL 'TBSD IBS*

1.

10.

11.

12.

13.

14.

15.
16.
17.

Reads the CSD and converts the definition into a builder
parameter set (BPS).

Issues a DFHZCP INSTALL passing the BPS.

Using the resource type code in the BPS, searches the
DFHZCQRT table for the associated pattern.

Calls DFHTBSB passing the BPS and the pattern.

Checks the pattern and creates a resource definition.

recovery action block (RRAB) for the audit trail.

Using the pattern, calls the CHECKSET entry point
of the associated builder.

The master builder does a ZGTI LOCATE to
check whether the TCTTE already exists.

A TCTTE is found to exist, so the builder
issues DFHZCP DELETE passing the address
of the old TCTTE.

When a TCTTE is created, its
position within the DFHZCQRT table
is saved in the TCTTE. This value
is now used to find the pattern
associated with this TCTTE.

Calls DFHTBSD passing the object
to be deleted and the pattern.

Extends the audit trail
so that information about
this delete can be
recorded.

Calls the UNREADY entry of
each builder.

Each builder
checks whether its
part of the TCTTE
is being used.

(A builder vetoes
if it is.)

Calls ZGTA QUIESCE
and ZGTA DELETE to
lock and remove
the index entries.

Updates the audit trail
for each called builder.

Returns.
Returns.

Checks return code (that is, no builder
vetoed the UNREADY).

Figure 28 (Part 1 of 2). Flow of control for a reinstall

LY33-6088-02 © Copyright IBM Corp. 1980, 1999

Chapter 10. Builders

87

Builders

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

Step |CEDA ‘ZCQIS 'TBSB IBS* ‘ZCQDL 'TBSD IBS*

18. Returns.

19. Checks return code and recalls the builder at the

BUILD entry point passing the BPS.
20. Obtains some storage and copies the
parameters from the BPS.
Uses ZGTA ADD calls to Tock and add index
entries

21. Repeats for each builder in the set of patterns.

22. Tidies up the RRAB and returns.

23. Records the position within DFHZCQRT that enabled you

to get the pattern.

24. Returns.

25. |Checks the return code and issues DFHSP USER.

Note: At this stage there are two TCTTEs: the old one that
was UNREADY and the new one.

26. |DFHTBSS is entered for the first time (phase 1). The audit trail
consists of two parts (A and B). Part A contains the list of
builders involved with the UNREADY; part B contains the Tist of
builders that created the new TCTTE.

27. |Writes a recovery record for Part A indicating that a delete is
about to take place in phase 2 to the system log.

Creates a recovery record from Part B which represents the new
TCTTE to be built.

29. [Calls each builder asking for its subcomponent (FLATTEN).

30. Returns an address and length.

31. |[Concatenates each subcomponent into the recovery record.

32. |Writes the recovery record to the system log.

33. |Returns (end of phase 1).

34. |Reenter for phase-2 processing.

35. |Processes Part A, calling the DESTROY entry for each builder.

36. Each builder frees its part of the old TCTTE.

37. |Processes Part B of the audit trail.

38. |Writes the recovery record to the catalog.

39. |[Calls the READY entry point for each builder on the audit trail.

40. Each builder does any tidying up that needs to be done.

41. |Returns.

Figure 28 (Part 2 of 2). Flow of control for a reinstall

Completing the process description
To complete the description of the creation and deletion

process, two further functions must be described: CONNECT
and READY.

88 ciICs Diagnosis Reference

CONNECT: Figure 23 on page 84 shows the TCTTE
hierarchy. All that has happened at build time is that the
separate parts of the TCTTE have been obtained. Access to
these subcomponents is achieved by referencing pointers
that are held in the TCTTE. So the CONNECT builder entry
point is used to join the subcomponent to the TCTTE.

LY33-6088-02 © Copyright IBM Corp. 1980, 1999

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

READY: The READY builder entry point is provided to
enable any final tidying up that may be required at the end of
the build process. For example, if the TCTTE has the
AUTOCONNECT option, a SIMLOGON is initiated from this
entry point. In general, this entry point is rarely used.

The creation/deletion state machine: Figure 29
shows the symmetry between the various builder functions.

UNREADY

State 2 -
TCTTE hidden and
vetoed

READY

UNREADY
f—————

DESTROY
—

State 3 -
TCTTEs hidden

State 5 -
NOTHING

State 1 -
TCTTE visible

«— «—]
READY BUILD

+ CONNECT
DESTROY
State 4 -

(Partial) TCTTEs
and vetoed

BUILD

Figure 29. Create/delete state diagram

The starting point can be either state 5 (installing a TCTTE)
or state 1 (deleting a TCTTE). Thus, if several TCTTEs had
been successfully built, but the last one resulted in an error,
we would end up in state 4. If it were not for the last one, we
would have ended up in state 3. So the caller is returned an
error response, and issues a DFHSP ROLLBACK. This
causes DFHTBSS to call the DESTROY function of the
builders for all elements on the audit trail—even for those
that were “successfully” built in this atom, or UOW. Thus, an
install of a atom can be perceived as one complete unit.
During the DESTROY process, if the atom is being
rolled-back, the builders call ZGTA QUIESCE and ZGTA
DELETE to remove index entries for the new TCTTE.
Likewise during the READY process, if a delete is being
rolled back, the builders call ZGTA ADD to re-instate index
entries for the TCTTE.

LY33-6088-02 © Copyright IBM Corp. 1980, 1999

Builders

The hierarchy and its effect upon the
creation process

—— Summary so far

¢ Object creation is a four-stage process.
¢ |tis controlled by a pattern.
e Each pattern refers to a builder.

e Each builder is responsible for a subcomponent of
the TCTTE.

e Builders have a number of procedural entry points:

— BUILD

— CONNECT
— DESTROY
— READY

— UNREADY.

e These entry points are called under the control of
the DFHTBS components.

This section now looks in greater detail at how the control of
the builder calling process is implemented. To do that, you
need to understand in greater detail the structure of the
hierarchy, and the way the DFHTBS components interpret
that structure.

Figure 30. A general hierarchy

Figure 30 shows a more general hierarchy. Node 1 can be
considered as a master node: it is at the top of the tree and
has two subnodes (2 and 3). However, you could say that
node 2 and its subnodes are also a tree: node 2 is the
master node, and nodes 4, 5, and 6 are the subnodes.
Similarly, with node 3: it has subnodes 7, 8, 9, and 10.

The DFHTBS components exploit the idea that a tree
consists of a node with trees below it. In fact, DFHTBSBP
uses recursion to access the tree of patterns.

Recursion: This section demonstrates how recursion is
used to process a much simpler structure than that given in
Figure 30. The example shown in Figure 31 on page 90 is
for the DFHTBSP program, which has the following
parameters:

PATTERN, HIGHERNODE, and BUILDER
AUDITTRAIL

Input:
Inout:

Chapter 10. Builders 89

Builders

Output: NODE and RESPONSE.

The following list outlines the flow in DFHTBSBP. The step
references refer to steps in this list.

1. Add and initialize an action to the AUDITTRAIL (this is
used later in steps 5 and 11).

2. Using parameter PATTERN, find the address of the
associated builder.

3. Call the builder stub with function number 1 (for BUILD)
with the following parameters:

HIGHERNODE and BUILDER
NODE.

The builder uses the BUILDER parameters to create its
specific object. Storage is obtained and the parameters are
copied into it.

Input:
Output:

4. Check that the response from the build is ‘OK’.

5. Copy the address of the output parameter NODE into
the AUDITTRAIL action.

6. Process all the subpatterns that may be attached to your
pattern

7. Get the next subpattern Pn.
8. Call DFHTBSBP with the following parameters:

Input: Pn, NODE, and BUILDER

Inout: AUDITTRAIL

Output: SUBNODE and SUBRESPONSE
Note: In this step, you call yourself again, passing

NODE. At the next level of recursion, this
appears as HIGHERNODE.

9. Stop when the last pattern is processed.

10. Call the builder stub with function number 5 (for
CONNECT) with the following parameters:

NODE
HIGHERNODE

The builder's CONNECT entry point now places the address
as given by NODE into an offset of HHGHERNODE.

Input parameters:
Inout parameters:

11. Finally, place the address of the pattern into the
AUDITTRAIL action.

90 cICs Diagnosis Reference

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

Simple recursion example

TBSB

Create audit
trail

Call TBSBP

!

(B2) (83)
TBSBP Simple hierarchy
Builder Bl

Connect
r |TBSBP
(Step 8) Builder B3
(Step 10) | — TBSBP

—>|Builder B2

>
==l

(Step 10)

Figure 31. Simple example showing recursion

Consider the following simplified version of the hierarchy as
given in Figure 31. The step references refer to steps in the
list in the section “Recursion” on page 89.

1. Start with pattern P1. Call its associated builder (step 3).
This creates node N1.

2. All the patterns below P1 are processed, the first of
which is P2.

3. Call DFHTBSBP passing P2, N1, BUILDER parameters,
and others:

a. Using the passed pattern (now P2), call the builder.
This creates node N2.

b. Process all patterns below P2; there are no
subpatterns, so steps 6 through 9 on page 90 are
not performed.

c. Call the CONNECT entry of the builder, passing
higher node N1 and the node just created, N2. This
makes N1 point to N2.

d. Return to caller.
4. Get the next pattern, P3.

5. Call DFHTBSBP passing P3, N1, BUILDER parameters,
and others:

a. Using the passed pattern (now P3), call the builder.
This creates node N3.

b. Process all patterns below P3; there are no
subpatterns, so steps 6 through 9 on page 90 are
not performed.

LY33-6088-02 © Copyright IBM Corp. 1980, 1999

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

c. Call the CONNECT entry of the builder passing in
higher node N1 and the node just created N3. This
makes N1 point to N3.

d. Return to caller.
6. Last pattern processed (step 10 on page 90).

7. Call the builder associated with P1 to connect node N1
to HIGHERNODE. (This is zero because there is no
higher node. Usually, a master builder's CONNECT
function either does nothing or adds the TCTTE name
and address into the table management tables.)

ROLLBACK

What happens when an error occurs during the install
process? An example of this would be when one TCTTE
within a group is still in service when a CEDA COPY
command is being processed for the group with the
REPLACE option specified. “Example of a reinstall” on

page 87 shows such a replace operation. The builders for
the existing TCTTE are called (UNREADY) in order to check
that the DELETE (FREEMAIN) can proceed. Thus, the audit
trail refers to all called builders.

If the “total vote” from all the UNREADY builder calls
indicates OK, the build proceeds for the new TCTTE that is
to replace the existing one. Thus, at the end of the process,
the audit trail consists of a list of references to builders
associated with the old TCTTE, and a list of references to
builders for the new TCTTE (lists A and B).

Consider the case when the group contains definitions for
three TCTTESs, and a VETO occurs for the last one. This
means that there is an audit trail for A1, B1, A2, B2 for which
there was success, and list A3 for the unsuccessful
UNREADY for the third TCTTE.

The failure condition is returned to the caller (CEDA), which
then issues a DFHSP ROLLBACK.

Recovery Manager invokes DFHAPRDR which in turn
invokes the DFHTBSS module, with a parameter that
indicates a rollback is required. Thus, the “A” lists are
processed, and all the READY entry points of the builders
are called. Then the “B” lists are processed, and the
DESTROY builder entry is called to free the storage obtained
for the supposedly new TCTTEs.

To summarize, the rollback operation for UNREADY is
READY, and the one for BUILD is DESTROY.

LY33-6088-02 © Copyright IBM Corp. 1980, 1999

Builders

Catalog records and the CICS global
catalog data set

Overview: The fourth stage of the process is to produce a
catalog record that is written to the CICS global catalog data
set. This record is used on a subsequent restart to recreate
the TCTTE, but in a different way from the “Build” process
described above. A CEDA INSTALL means that the TCTTE
lives across CICS restarts, avoiding the necessity of
rerunning the install.

A RESTORE from the CICS catalog is a faster operation
than a CEDA INSTALL because there is no conversion of the
CSD definition to a builder parameter set, and less 1/0
involved.

In summary, a catalog record is produced by recalling each
of the builders asking for the address of the data that they
want to be recorded on the catalog. Each subcomponent of
the TCTTE is then copied and concatenated into one record,
which is then written to the catalog. This process is known as
FLATTEN.

A CATALOG call is made when significant events change the
state of a TCT entry which would be needed on a
subsequent emergency restart. An example is the recording
of the membername of a generic VTAM resource connection
when a bind has occurred for the first time.

On the restart, the record is read from the catalog, and
presented back to each of the original builders. Each builder
performs a GETMAIN, and copies its section of the recovery
record into the acquired storage. This process is known as
UNFLATTEN.

At shutdown, auto-installed entries are removed from the
catalog with an UNCATALOG call (if they were cataloged
because AIRDELAY-=0). This drives DFHTBS and the
builders to produce similar records to those for a DELETE
call, but only to take action to delete the catalog record. This
is significantly more efficient than calling the builders to
DELETE each entry, as the copy in storage is left untouched.

The key and the recovery record: When the build
process in DFHTBSBP has finally finished, this module
makes a call to the master builder at the MAKEKEY entry
point. The builder produces a key that is used to index the
associated recovery record. (See Figure 32 on page 92.)

This information is placed on the audit trail so that it can be
picked up by DFHTBSS. It consists of two parts:

1. Information that allows access to the catalog
2. The recovery record header.

Chapter 10. Builders 91

Builders

12 34| Overall length

Token Tength

token

Total Tength of recovery record

length of pattern name

Pattern

Length of key

Key

Figure 32. The recovery record

More about the audit trail: Figure 33 shows the layout
of an audit trail. Internally it is known as an action block ,
which consists of action elements . As each builder is
invoked by DFHTBSBP or DFHTBSDP, an action element is
appended to the action block. Each element has a reference
to a pattern (PATT). This is to allow DFHTBSS to enter the
associated builder at the READY or DESTROY entry points.

CCRECP contains the address of the recovery record
header. Only one of these is produced as a direct result of
the MAKEKEY call to the master builder . All other action
elements have their CCRECP set to zero.

BS_ACTION_
PLM
NEXT
PREV
REQSTG
BS_ACTION_ELEMENT
ARRAY (1) PATT
NODE
CCRECP
}_____———————————> ADD
CCWR
ARRAY (2) CCDEL
CCONLY

Figure 33. Action block and action elements (audit trail)

92 cICS Diagnosis Reference

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

DFHTBSS and the FLATTEN process: During
phase-1 syncpoint processing, DFHTBSS searches the
action elements for a nonzero CCRECP. On detection, it
calls DFHTBSLP, passing the reference to the pattern as
given in the action element.

The storage “segments” are returned to DFHTBSSP which
extracts the address and length from each segment and
copies them into the recovery record.

The RESTORE process: The recovery record header
contains the pattern name which is used to find the master
pattern in DFHZCQRT. This is then passed to DFHTBSR to
drive the recovery process by calling each builder's
UNFLATTEN entry.

Each segment is extracted from the recovery record and is
passed to the associated builder's UNFLATTEN entry point.
These routines usually obtain some storage and copy the
segment into it.

Control blocks

Builder modules all use both LIFO and a builder parameter
set (BPS), which are passed between the CSECTs (DFHBS*
modules). See “Builder parameter set (BPS)” on page 79 for
further information about the BPS.

Terminal storage acquired by the builders

The following terminal storage is acquired by the builders:

Control block Description Storage manager subpool

field
TCTSE Terminal control table ZCTCSE
system entry
TCTME Terminal control table ZCTCME
mode entry
TCTTE Terminal control table ZCTCTTEL (large TCTTEs)
terminal entry ZCTCTTEM (medium TCTTEs)
ZCTCTTES (small TCTTEs)
TCTENIBA NIB descriptor ZCNIBD
TCTEBIMG BIND image ZCBIMG
TCTTECIA User area ZCTCTUA
TCTTESNT Signon extension ZCSNEX
TCTELUCX LUC extension ZCLUCEXT
TCTTETEA BMS extension ZCBMSEXT
TCTTETPA Partition extension ZCTPEXT
TCTTECCE Console control element ZCCCE

LY33-6088-02 © Copyright IBM Corp. 1980, 1999

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

TCTTE layout

TCTTE

| | l |

| |
NIBD BIND BMS User LuC SNTTE
extn area extn

Partition
support

Figure 34. TCTTE layout

Formatted dumps give the TCTTE first, followed by its
supporting control blocks.

Terminal definition

CEDA DEFINE puts a definition on the CSD. The definition is
in the form of a CEDA command.

CEDA INSTALL reads the definition from the CSD, calls the
builders and builds the definition in CICS DSA, and updates
the CICS global catalog data set for future recovery.

EXEC CICS CREATE builds the same record that would be
obtained from the CSD and then calls the builders just like
CEDA INSTALL.

EXEC CICS DISCARD calls the builders with a pointer to the
TCTTE entry that is to be deleted. The builders then
freemain the TCTTE, remove index entries and the catalog
record.

Modules

DFHZCQ handles all requests for the dynamic add and
delete of terminal control resources. It contains the following
CSECTs:

DFHBSIB3 DFHBSSZM DFHBSTP3 DFHBSTZ1
DFHBSIZ1 DFHBSSZP DFHBSTS DFHBSTZ2
DFHBSIZ3 DFHBSSZR DFHBSTT DFHBSTZ3
DFHBSMIR DFHBSSZS DFHBSTZ DFHBSXGS
DFHBSMPP DFHBSSZ6 DFHBSTZA DFHBSZZ

DFHBSM61 DFHBST DFHBSTZB DFHBSZZS
DFHBSM62 DFHBSTB DFHBSTZC DFHBSZZV
DFHBSS DFHBSTBL DFHBSTZE DFHZCQCH
DFHBSSA DFHBSTB3 DFHBSTZH DFHZCQDL
DFHBSSF DFHBSTC DFHBSTZL DFHZCQIN
DFHBSSS DFHBSTD DFHBSTZO DFHZCQIQ
DFHBSSZ DFHBSTE DFHBSTZP DFHZCQIS
DFHBSSZB DFHBSTH DFHBSTZR DFHZCQIT
DFHBSSZG DFHBSTI DFHBSTZS DFHZCQRS
DFHBSSZI DFHBSTM DFHBSTZV DFHZCQRT
DFHBSSZL DFHBSTO DFHBSTZZ DFHZCQO0

The term “node” refers either to a TCTTE or to one of
its subsidiary parts, such as the NIB descriptor.

Note:

LY33-6088-02 © Copyright IBM Corp. 1980, 1999

Builders

Subroutines that are found in the builders:

BSEBUILD
BUILD: Create the node. For example, obtain the
shared storage for the node.

BSECON
CONNECT: Connect the higher node to the lower. For
example, make the TCTTE point to the NIB descriptor.

BSEDESTR
DESTROQY: Abolish a deleted node. For example, free
the storage removed from TMP’s chains.

BSEFINDF
FINDFIRST: Find the first subsidiary node of a higher
node. For example, BSFINDF(TCTTE) returns the NIBD
being built.

BSEFINDN
FINDNEXT: Find the next subsidiary node of the one
just found. For example, return the address of the next
model TCTTE.

BSEFLAT
FLATTEN: Build the catalog or log record segment for
each part of the TCTTE. This is passed back to the
caller to create a complete “flattened” TCTTE.

BSEMAKEY
MAKEKEY: Create a key that is used to write out the
new node to the global catalog.

BSENQIRE
ENQUIRE: The converse of BUILD, it creates a BPS
from a TCTTE. The BPS can then be shipped to
another system.

BSEREADY
READY: Make a node ready to use. For example, add
to TMP’s chains.

BSERESET
RESET: Build the TCTTE from the CICS global catalog.
(RESET is a cut-down version of UNFLATTEN.)

BSEUNFLA
UNFLATTEN: Build the TCTTE from the CICS global
catalog.

BSEUNRDY
UNREADY: Check that a node can be deleted. For
example, ensure that no AIDs are queued on a TCTTE
before deleting.

Not all subroutines are found in all builders. Certain
subroutines are required, but do nothing other than return to
the caller. The subroutine names are the same in each
builder.

Chapter 10. Builders 93

Builders

Module entry

Consider a module entry to be a router that does some
housekeeping and then branches to the appropriate
subroutine:

¢ Enter the builder at offset X'18".

e The first X'17"' bytes are taken up by the standard
DFHVM macro expansion.

¢ Save DFHTBS's registers (DFHTBS calls each builder).
e Save the first two entries in the parameter list:

1. The address of LIFO storage
2. The index number of the subroutine to call.

¢ Increase the value of register 1 by 8 to get past the first
two entries.

e Branch to the appropriate subroutine of the builder using
the index number passed.

¢ Return from the builder subroutine.
¢ Restore registers.
e Return to DFHTBS.

Subroutine entry
e Register 1 points to the parameter list.

e Store Register 14 (return address) at Register 2 + X'nn'
(varies by entry point).

e Store the parameter list into Register 2 + X'nn' (varies
by entry point).

¢ The length of the parameter list varies.

Subroutine exit (return to module entry)

¢ Exit from the subroutine only through an “official” exit
point.

e The exit point is usually the end of the subroutine.

e The end of the subroutine is indicated with “*end;
[*BUILD */".

* |n some cases, the end of the subroutine branches back
to the exit point somewhere within the subroutine.

¢ Return (BR R14) from within the subroutine.

¢ Reload Register 14 from Register 2 + X'nn' and return
to caller.

Patterns

In DFHZCQRT, a series of patterns define the flow through
the builder modules. (See Figure 35.) For each kind of
terminal, there is a different pattern.

If installing, DFHZCQIS selects the pattern and calls
DFHTBS (table builder service). If deleting, DFHZCQDL does
the selection.

94 ciIcs Diagnosis Reference

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

DFHTBS interprets the pattern and calls each builder that the
pattern calls out. DFHTBS knows nothing about the terminal
or whether you are installing or deleting. It simply does what
the pattern tells it to do.

DFHTBS passes a BPS as it calls each builder. The BPS
allows one builder to be used for many different kinds of
terminals. For example, DFHBSTC obtains the user area for
all terminal types. The BPS contains the length to be
obtained.

DFHZCQIS

|
DFHTBS

DFHZCQRT

|
BSTZ —{BSTZ1

BSZZV ——BSTZ3

Figure 35. Calling sequence of builders (determined by patterns)

Calling sequence of builders for a 3277
remote terminal

1. DFHZCQRT contains a series of comments followed by
the patterns. The comment appears as:

[* % % % % % % % * %k * *x %/

/* 3277 REMOTE */

/*************/

2. Shortly afterwards is a Declare (DCL) followed by a
level-1 name:

DCL 1 P145002 STATIC

This is the name of the pattern that drives the build
process for a 3277 remote terminal.

e DFHBSTZ is indicated to be the first builder called.
¢ One pattern is used to drive the building process.
e 18 subpatterns are to be used.

e Three of these 18 subpatterns each call one
additional pattern.

e The terms “pattern” and “builder” mean the same
thing. Therefore:

DFHBSTZ + DFHBSxx + DFHBSxx = 22
(1) + (18) + (3) = 22
pattern + sub- + sub-sub- = 22

patterns patterns

Thus we have to go through 22 builder modules to
build a 3277 remote terminal.

3. Go to the cross-reference at the back of the dump and
find where P145002 is defined in assembler language.
Go to that address.

4. This states that the first builder to be called is
DFHBSTZ. This is the main one.

LY33-6088-02 © Copyright IBM Corp. 1980, 1999

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

5. Drop down to the 2-byte fields that follow: these state

10.

the names of the builders that are to be called, in
sequence (18 should be listed).

The first one is IAATZ1 which does not sound familiar:

¢ Go to the cross-reference at the back of the dump,
look up IAATZ1, and go to where it is defined.

* You see that this is DFHBSTZ1.

* You can also see a close resemblance between
IAATZ1 and DFHBSTZ1, but do not count on this to
be always true.

Now you know that the second builder to be called is
DFHBSTZ1.

The next two builders to be called are IAATCV
(DFHBSTV) and IAATCB (DFHBSTB).

The fifth builder to be called according to the pattern
needs to be looked at:

¢ The pattern says that IACTZ3 should be called.

¢ When you go to where IACTZ3 is defined, you find
that this is DFHBSIZ3.

¢ You also see that DFHBSIZ3 calls IAATM.
e Look up IAATM and you see that it is DFHBSTM.

e This is a sub to a subpattern, and this is how
nesting of builder calls occurs.

e Thus, DFHBSIZ3 calls DFHBSTM when building a
local 3277.

¢ DFHBSTM accounts for one of the “other” three
mentioned in step 2.

If you continue through this pattern, you can identify the
names of the 22 builders that would be called to build a
3270 local TCTTE.

Here is the complete list, in order, of the builders that
are called:

1 DFHBSTZ 12 DFHBSTH
2 DFHBSTZ1 13 DFHBSTI
3 DFHBSTZV 14 DFHBSTS
4 DFHBSTZB 15 DFHBSTT
5 DFHBSIZ3 16 DFHBSTZA
6 DFHBSTM 17 DFHBSTP3
7 DFHBSTB 18 DFHBSZZ
8 DFHBSIB3 19 DFHBSTB3
9 DFHBSTO 20 DFHBSTZE
10 DFHBSTC 21 DFHBSZZV
11 DFHBSTE 22 DFHBSTZ3

A look at “Pattern Trace” supports this flow. Note that
the first ZCP TBSB(P) BUILD and its matching return
(the return has no builder suffix) should be ignored.

LY33-6088-02 © Copyright IBM Corp. 1980, 1999

Builders

Builder parameter list

As each builder is called by DFHTBS, a parameter list is
passed. Unique data is passed to enable one builder module
to be called for a variety of terminal types. The length of the
builder parameter list is fixed for each kind of subroutine; for
example, the parameter list passed to BSEBUILD is always
X'23"' bytes long, regardless of the builder involved.

Subroutine

Length of parameter list
(hexadecimal)

BSEBUILD 23
BSECON 13
BSEDESTR 7
BSEMAKEY B
BSEREADY 3
BSEUNRDY 17
BSEFINDF F
BSEFINDN B
BSEFLAT B
BSEUNFLA 27
BSENQIRE 7

When the builders are called

Builders are called during:

Cold start

Warm start

Emergency restart

After emergency restart
Autoinstall logon and logoff
APPC autoinstall

CEDA INSTALL

EXEC CICS CREATE
EXEC CICS DISCARD
Transaction routing
Non-immediate shutdown.

Cold start

Read information from the CSD and call builders to build
RDO-defined terminals.

Load in DFHTCT for non-VTAM terminals. Builders are
not called.

Warm start

Note:

A warm start is identical to an emergency restart from
the builders perspective. The only difference is that
Recovery Manager has no forward-recovery records
to pass to DFHAPRDR.

Read information from the global catalog and call
builders to restore RDO-defined terminals.

Load in DFHTCT for non-VTAM terminals. Builders are
not called.

Chapter 10. Builders 95

Builders

Emergency restart

¢ Read information from the global catalog and call
builders to restore RDO-defined terminals.

Note: Auto-installed terminals will not have a catalog

entry if AIRDELAY=0

¢ Recovery Manager calls DFHAPRDR which calls the
builders to restore in-flight terminals installs from the
system log.

e Load in DFHTCT for non-VTAM resources. Builders are
not called.

After emergency restart: Delete autoinstalled terminals
after the time period has expired as specified in the
AIRDELAY parameter (if the user has not logged back on
before then).

APPC autoinstall

¢ Inquire on the model supplied by the autoinstall user
program

¢ Install an APPC connection created from the above
inquire.

Autoinstall logon and logoff

¢ Logon: Install terminal entry using model entry in the
AMT.

¢ Logoff: Delete terminal entry.

CEDA INSTALL: Install VTAM terminal resources. (There
is no builder process for CEDA DEFINE or ALTER.)

EXEC CICS CREATE: Install VTAM terminal resources.

EXEC CICS DISCARD: Delete VTAM terminal
resources.

Transaction routing: If a TCTTE is defined as
shippable, its definition is shipped to the remote system and
installed there. The definition is obtained by an INQUIRE call
to the builders in the Terminal Owning Region and built with
an INSTALL call in the Application Owning Region.

Shutdown: Delete autoinstalled terminals from the catalog
(if they had entries, and are not LU6.2 parallel connections).
On a warm start, therefore, autoinstalled terminals are not
recovered.

Diagnosing problems with the builders

When working on a problem associated with a builder (for
example, abend or loop), it may be helpful to ask yourself the
following questions:

¢ Why am | in a DFHBS* module? Am | doing CEDA
GRPLIST install, CEDA GROUP install, autoinstall,
logon, logoff, catalog, uncatalog, create or discard?

96 cICS Diagnosis Reference

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

e What is the termid/sysid of the terminal | am working
with (the one | am installing, deleting, cataloging or
uncataloging)?

¢ |s this resource part of an resource definition atom?
e How is this terminal defined?

¢ Are there any messages associated with this terminal?

Exits

No global user exit points are provided for this function.

Trace
The following point IDs are provided for the DFHZCQxx
modules:

e AP FCBO - FCBF, for which the trace level is 1.
The following point IDs are provided for the DFHTBSx
modules:

e AP FCCO - FCC9, for which the trace level is 1.
The following point IDs are provided for the DFHTBSxP
modules:

e AP 0630 - 0644, exception trace.

e AP FCDO - FCD9, for which the trace level is 1.

e AP FCDA - FCDB, for which the trace level is 2.
The following point IDs are provided for the DFHTBSS
module:

e AP 0620 - 0621, for which the trace level is 1.

e AP 0622 - 062E, and 0645 exception trace.

The following point IDs are provided for the DFHTONR
module:

e AP 0648 - 0649, for which the trace level is 1.

e AP 064A - 064C, exception trace.

The following point IDs are provided for the DFHAPRDR
module:

e AP 0601 - 0602, for which the trace level is 1.

e AP 0603 - 061E, exception trace.

The following point IDs are provided for the DFHZGTA
module:

e AP FA8O0 - FA81, for which the trace level is 1.

e AP FA82 - FA9A, exception trace.

The following point ID is provided for message set
production:

e AP FCDD, exception trace.

LY33-6088-02 © Copyright IBM Corp. 1980, 1999

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

The following point ID is provided for DFHBSTZA:
e AP FCDE, exception trace.

See the CICS Trace Entries for further information.

Messages

Builder modules issue messages in the DFHZC59xx,
DFHZC62xx, and DFHZC63xx series.

Message sets

If a builder finds an error, it adds a message to a message
set. This set is then printed by the caller; for example:

DFHTCRP Cold start (local system entry

and error console only)
DFHAMTP CEDA, EXEC CICS CREATE
DFHEIQSC EXEC CICS DISCARD CONNECTION
DFHEIQST EXEC CICS DISCARD TERMINAL
DFHZATA Autoinstall
DFHZATD Autoinstall delete

DFHZATS Install and delete transaction routed terminals

How messages show up in a trace

If a message is issued from a builder module (that is, those
with a prefix of DFHZC59xx, DFHZC62xx, or DFHZC63xx), it
appears in the trace as a TBSM trace entry with the following
point ID:

¢ AP FCDD, exception trace.

This trace entry is produced when a message is added to the
message set and indicates there was a problem in building
or deleting a terminal or connection.

For more information about the trace points, see the CICS
Trace Entries. For more information about using traces in
problem determination, see the CICS Problem Determination
Guide.

LY33-6088-02 © Copyright IBM Corp. 1980, 1999

Builders

Chapter 10. Builders

97

Builders “Restricted Materials of IBM”
Licensed Materials — Property of IBM

98 cics Diagnosis Reference LY33-6088-02 © Copyright IBM Corp. 1980, 1999

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

Chapter 11. Built-in functions

CICS provides the application programmer with two
commonly used functions: field edit and phonetic conversion.

These are functions that generally used to be coded as
separate subroutines by the programmer. They are referred
to as built-in functions.

The field edit function is provided by the BIF DEEDIT
command of the CICS application programming interface.

The phonetic conversion function is provided as a subroutine
that can be called by CICS application programs, and also by
any offline programs.

Design overview

The built-in functions component includes field edit and
phonetic conversion, both of which are available to a CICS
application program. Also, the phonetic conversion
subroutine can be used offline.

Field edit (DEEDIT)

The field edit function allows the application program to pass
a field containing EBCDIC digits (0 through 9) intermixed with
other values, and receive a result with all non-numeric
characters removed.

For further details of this function, see the CICS Application
Programming Reference.

Phonetic conversion

This facility allows the user to organize a file according to
name (or similar alphabetic key), and access the file using
search arguments that may be misspelled.

The phonetic conversion subroutine (DFHPHN) converts a
name into a partial key, which can then be used to access a
database file. The generated key is based upon the sound of
the name. This means that names sounding similar, but
spelled differently, generally produce identical keys. For
example, the names SMITH, SMYTH, and SMYTHE all
produce a phonetic key of S530. Likewise, the names
ANDERSON, ANDRESEN, and ANDRESENN produce a
phonetic key of A536. The encoding routine ignores
embedded blanks in a name, so you can write names
prefixed by ‘Mc’ with or without a blank between the prefix
and the rest of the name, for example, ‘McEWEN’ or

‘Mc EWEN'.

For details of how to code a CALL statement for the
DFHPHN subroutine according to the language of the
application program, see the CICS Application Programming
Guide.

LY33-6088-02 © Copyright IBM Corp. 1980, 1999

Built-in functions

Modules

Module Description

DFHEBF EXEC interface processor for BIF DEEDIT command
DFHPHN Phonetic conversion subroutine

Exits

No global user exit points are provided for these functions.

Trace

No tracing is performed for the phonetic conversion
subroutine.
The following point ID is provided for DFHEBF:

e AP OOFB, for which the trace level is BF 1.
For more information about the trace points, see the CICS
Trace Entries. For more information about using traces in

problem determination, see the CICS Problem Determination
Guide.

99

Built-in functions “Restricted Materials of IBM”
Licensed Materials — Property of IBM

100 ciIcs Diagnosis Reference LY33-6088-02 © Copyright IBM Corp. 1980, 1999

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

Business application manager domain (BAM)

Chapter 12. Business Application Manager domain (BAM)

The business application manager domain (also sometimes
known simply as “buisness application manager”) is
responsible for managing CICS business transaction
services' (BTS) processes, process types and activities. It
deals with the hardening of the associated data to BTS
repository files. Along with scheduler services domain and
event manager domain it forms the CICS BTS function.

Business application manager domain’s
specific gate

Table 6 summarizes the business application manager
domain’s specific gate. It shows the level-1 trace point IDs of
the modules providing the functions for the gate, the
functions provided by the gate, and whether or not the
functions are available through the exit programming
interface (XPI).

Table 6. Business application manager domain’s specific gate

Gate Trace Function XPI1
BATT BA 0160 ADD_REPLACE_PROCSSTYPE NO
BA 0161 INQUIRE_PROCESSTYPE NO
START_BROWSE_PROCESSTYPE NO
GET_NEXT_PROCESSTYPE NO
END_BROWSE_PROCESSTYPE NO
SET_PROCESSTYPE NO
DISCARD_PROCESSTYPE NO
COMMIT_PROCESSTYPE_TABLE NO
BAXM BA 0170 INIT_ACTIVITY_REQUEST NO
BA 0171 BIND_ACTIVITY_REQUEST NO
BAPR BA 0110 ADD_PROCESS NO
BA 0111 RUN_PROCESS NO
LINK_PROCESS NO
ACQUIRE_PROCESS NO
CANCEL_PROCESS NO
SUSPEND_PROCESS NO
RESUME_PROCESS NO
CHECK_PROCESS NO
RESET_PROCESS NO
BAAC BA 0120 ADD_ACTIVITY NO
BA 0121 RUN_ACTIVITY NO
CHECK_ACTIVITY NO
RETURN_END_ACTIVITY NO
DELETE_ACTIVITY NO
SUSPEND_ACTIVITY NO
RESUME_ACTIVITY NO
CANCEL_ACTIVITY NO
LINK_ACTIVITY NO
ACQUIRE_ACTIVITY NO
RESET_ACTIVITY NO
ADD_TIMER_REQUEST NO
ADD_REATTACH_ACQUIRED NO
BABR BA 0150 STARTBR_ACTIVITY NO
BA 0151 GETNEXT_ACTIVITY NO
ENDBR_ACTIVITY NO
INQUIRE_ACTIVITY NO
STARTBR_CONTAINER NO
GETNEXT_CONTAINER NO
ENDBR_CONTAINER NO
INQUIRE_CONTAINER NO
STARTBR_PROCESS NO
GETNEXT_PROCESS NO
ENDBR_PROCESS NO
INQUIRE_PROCESS NO
INQUIRE_ACTIVATION NO
COMMIT_BROWSE NO

LY33-6088-02 © Copyright IBM Corp. 1980, 1999

Table 6. Business application manager domain’s specific gate

Gate Trace Function XPI
BACR BA 0130 DELETE_CONTAINER NO
BA 0131 GET_CONTAINER_INTO NO
GET_CONTAINER_SET NO
PUT_CONTAINER NO
BAGD BA 0401 INQUIRE_DATA_LENGTH NO
BA 0402 GET_DATA NO
DESTROY_TOKEN NO
ADDRESS_DATA NO
RELEASE_DATA
BATT gate,

ADD_REPLACE_PROCESSTYPE function

The ADD_REPLACE_PROCESSTYPE function of the BATT
gate is used to add a new process type definition or replace
an existing process type definition. Process types are
defined using RDO.

Input parameters
PROCESSTYPE_NAME is an 8-character name.

FILE_NAME is an 8-character name of the repository file to
be associated with this process type. The file is defined
using RDO.

AUDITLOG_NAME is an 8-character name of the audit log
to be associated with this process type. The log is
defined using RDO.

AUDITLEVEL determines the level of auditing to be
undertaken for this process type. It can take the values:

OFF|PROCESS|ACTIVITY|FULL

USERRECORDS indicates whether user audit records are to
be written to the log. It can take the values:

YES|NO

CATALOG_PTDEF indicates whether the definition should
be written to the global catalog. It can take the values:
YES|NO

STATUS indicates whether the process type definition should
be installed in a disabled or enabled state. It can take the
values:

DISABLED|ENABLED

Output parameters

RESPONSE is the domain’s response to the call. It can have
any of these values:
OK|EXCEPTION| INVALID|DISASTER|KERNERROR | PURGED

[REASON] is returned when RESPONSE is DISASTER.
Possible values are:

RESPONSE Possible REASON values

EXCEPTION NOT_DISABLED, INSUFFICIENT_STORAGE

101

Business application manager domain (BAM)

BATT gate, INQUIRE_PROCESSTYPE
function

The INQUIRE_PROCESSTYPE function of the BATT gate is
used to return information on the named process type.

Input parameters

PROCESSTYPE_NAME is the 8-character name of the
process type to be inquired upon.

Output parameters

FILE_NAME is the 8-character name of the repository file
associated with this process type.

AUDITLOG_NAME is an 8-character name of the audit log
associated with this process type.

AUDITLEVEL identifies the level of auditing for this process
type. It can take the values:
OFF | PROCESS |ACTIVITY|FULL

USERRECORDS indicates whether user audit records are to
being written to the log. It can take the values:

YES|NO

STATUS indicates the status of the process type. It can take
the values:
DISABLED| ENABLED

RESPONSE is the domain’s response to the call. It can have
any of these values:
OK|EXCEPTION|PURGED | INVALID |DISASTER|KERNERROR

[REASON] is returned when RESPONSE is EXCEPTION.
Possible values are:

RESPONSE Possible REASON values
EXCEPTION ENTRY_NOT_FOUND
BATT gate,

START_BROWSE_PROCESSTYPE function

The START_BROWSE_PROCESSTYPE function of the
BATT gate is used to initiate a browse of the process types
known to this region.

Input parameters: None

Output parameters
BROWSE_TOKEN is the token used to identify this browse.

RESPONSE is the domain’s response to the call. It can have
any of these values:

OK|EXCEPTION| INVALID|DISASTER|KERNERROR | PURGED

102 cics Diagnosis Reference

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

BATT gate, GET_NEXT_PROCESSTYPE
function

The GET_NEXT_PROCESSTYPE function of the BATT gate
is used to return the name of the next process type in the
browse, identified by the browse token.

Input parameters

BROWSE_TOKEN is the token returned to the caller on the
START_BROWSE_PROCESSTYPE call.

Output parameters
PROCESSTYPE_NAME the 8-character process type name.

RESPONSE is the domain’s response to the call. It can have
any of these values:
OK|EXCEPTION|INVALID|DISASTER|KERNERROR | PURGED

[REASON] is returned when RESPONSE is EXCEPTION.
Possible values are:

RESPONSE Possible REASON values
EXCEPTION NO_MORE_DATA_AVAILABLE
BATT gate,

END_BROWSE_PROCESSTYPE function

The END_BROWSE_PROCESSTYPE function of the BATT
gate is used to end the browse identified by the browse
token.

Input parameters

BROWSE_TOKEN is the token returned to the caller on the
START_BROWSE_PROCESSTYPE call.

Output parameters

RESPONSE is the domain’s response to the call. It can have
any of these values:

OK|EXCEPTION|INVALID|DISASTER|KERNERROR|PURGED

BATT gate, SET_PROCESSTYPE function

The SET_PROCESSTYPE function of the BATT gate is used
to alter the named processtype definition.

Input parameters

PROCESSTYPE_NAME is the 8-character process type
name.

FILE_NAME is an 8-character name of the repository file to
be associated with this process type.

AUDITLEVEL determines the level of auditing to be
undertaken for this process type. It can take the values:

OFF | PROCESS | ACTIVITY|FULL

LY33-6088-02 © Copyright IBM Corp. 1980, 1999

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

USERRECORDS indicates whether user audit records are to
be written to the log. It can take the values:

YES|NO

STATUS indicates whether the status of the process type. It
can take the values:

DISABLED | ENABLED

Output parameters

RESPONSE is the domain’s response to the call. It can have
any of these values:

OK|EXCEPTION| INVALID|DISASTER|KERNERROR | PURGED

[REASON] is returned when RESPONSE is EXCEPTION.
Possible values are:

RESPONSE Possible REASON values

EXCEPTION ENTRY_NOT_FOUND, NOT_DISABLED

BATT gate, DISCARD PROCESSTYPE
function

The DISCARD_PROCESSTYPE function of the BATT gate is
used to discard the named processtype definition.

Input parameters
PROCESSTYPE_NAME is the 8-character process type
name.

Output parameters

RESPONSE is the domain’s response to the call. It can have
any of these values:
OK|EXCEPTION| INVALID|DISASTER|KERNERROR | PURGED

[REASON] is returned when RESPONSE is EXCEPTION.
Possible values are:

RESPONSE Possible REASON values
EXCEPTION ENTRY_NOT_FOUND, NOT_DISABLED
BATT gate,

COMMIT_PROCESSTYPE_TABLE function

The COMMIT_PROCESSTYPE_TABLE function of the BATT

gate is used to commit the process type definitions to the

global catalog.

Input parameters

TOKEN is the token identifying the table of process type
definitions.

Output parameters

RESPONSE is the domain’s response to the call. It can have
any of these values:

OK|EXCEPTION| INVALID|DISASTER|KERNERROR | PURGED

LY33-6088-02 © Copyright IBM Corp. 1980, 1999

Business application manager domain (BAM)

BAXM gate, INIT_ACTIVITY_REQUEST
function

The INIT_ACTIVITY_REQUEST function of the BAXM gate is
used when the transaction requires a 3270 bridge facility, in
which case the named bridge exit program is invoked.

Input parameters
REQUEST_BLOCK a block used to hold the request data.

BRIDGE_EXIT the 8-character name of the bridge exit
program.

Output parameters

RESPONSE is the domain’s response to the call. It can have
any of these values:

OK|EXCEPTION|INVALID|DISASTER|KERNERROR | PURGED

BAXM gate, BIND_ACTIVITY_REQUEST
function

The BIND_ACTIVITY_REQUEST function of the BAXM gate
is used to make the current UOW an activation of the activity
specified in the activity request. This activation could be
used to mark the activity complete abended because the
previous activation failed, hence the abend information.

Input parameters

ABEND_CODE the 4-character abend code.
ABEND_PROG the 8-character abend program name.
ABEND_MSG the 6-character abend message number.

REQUEST_BLOCK a block used to hold the activity request
data.

Output parameters
PROGRAM is the 8-character program name.

RUN_PROGRAM is used to indicate if a program is to be
invoked on the program manager INITIAL_LINK. It can
take the values:

YES|NO

RESPONSE is the domain’s response to the call. It can have
any of these values:

OK|EXCEPTION| INVALID|DISASTER|KERNERROR|PURGED

[REASON] is returned when RESPONSE is EXCEPTION.
Possible values are:

RESPONSE Possible REASON values

EXCEPTION ACTIVITY_NOT_FOUND, TIMEOUT,

READ_FAILURE

Chapter 12. Business Application Manager domain (BAM) 103

Business application manager domain (BAM)

BAPR gate, ADD_PROCESS function

The ADD_PROCESS function of the BAPR gate is used to
define a new process in reponse to an EXEC CICS DEFINE
PROCESS call.

Input parameters

PROCESS_NAME the 36-character process name.
PROCESSTYPE the 8-character process type.
TRANID the 4-character transaction id.

PROGRAM the 8-character program name associated with
the root activity.

USERID the 8-character userid.

Output parameters

PROCESS_TOKEN a token representing this process
internally.

RESPONSE is the domain’s response to the call. It can have
any of these values:
OK|EXCEPTION| INVALID|DISASTER|KERNERROR | PURGED

[REASON] is returned when RESPONSE is EXCEPTION.
Possible values are:

RESPONSE Possible REASON values

EXCEPTION DUPLICATE_PROCESS_NAME, FILE_NOT_AUTH,
PROCESS_ALREADY_ACQUIRED,
PROCESSTYPE_NOT_ENABLED,

PROCESSTYPE_NOT_FOUND, WRITE_FAILED

BAPR gate, RUN_PROCESS function

The RUN_PROCESS function of the BAPR gate is used to
execute the acquired process (invoke the root activity), either
asynchronously or synchronously i.e. with a context switch.
Input parameters
MODE can take the values:

SYNC|ASYNC
INPUT_EVENT the 16-character name of the input event.
FACILITY_TOKEN the 8-character facility token.

Output parameters

RESPONSE is the domain’s response to the call. It can have
any of these values:

OK|EXCEPTION| INVALID|DISASTER|KERNERROR| PURGED

[REASON] is returned when RESPONSE is EXCEPTION.
Possible values are:

104 cics Diagnosis Reference

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

RESPONSE
EXCEPTION

Possible REASON values

PROCESS_NOT_FOUND,
PROCESSTYPE_NOT_FOUND,
PROCESS_SUSPENDED,
OTHER_PROCESS_CURRENT, INVALID_EVENT,
INVALID_MODE, AUTOINSTALL_FAILED,
AUTOINSTALL_INVALID_DATA,
AUTOINSTALL_MODEL_NOT_DEF,
AUTOINSTALL_URM_FAILED,
PROGRAM_NOT_AUTHORISED,
PROGRAM_NOT_DEFINED,
PROGRAM_NOT_ENABLED,
PROGRAM_NOT_LOADABLE,
REMOTE_PROGRAM, SECOND_JVM_PROGRAM,
RUN_SYNC_ABENDED, RECORD_BUSY,
REMOTE_TRAN, TRAN_NOT_AUTH

BAPR gate, LINK_PROCESS function

The LINK_PROCESS function of the BAPR gate is used to
invoke the acquired process synchronously, without a context
switch.

Input parameters
INPUT_EVENT the 16-character name of the input event.

Output parameters

RESPONSE is the domain’s response to the call. It can have
any of these values:
OK|EXCEPTION|INVALID|DISASTER|KERNERROR | PURGED

[REASON] is returned when RESPONSE is EXCEPTION.
Possible values are:

RESPONSE
EXCEPTION

Possible REASON values

PROCESS_NOT_FOUND,
PROCESSTYPE_NOT_FOUND,
PROCESS_SUSPENDED,
OTHER_PROCESS_CURRENT, INVALID_EVENT,
INVALID_MODE, AUTOINSTALL_FAILED,
AUTOINSTALL_INVALID_DATA,
AUTOINSTALL_MODEL_NOT_DEF,
AUTOINSTALL_URM_FAILED,
PROGRAM_NOT_AUTHORISED,
PROGRAM_NOT_DEFINED,
PROGRAM_NOT_ENABLED,
PROGRAM_NOT_LOADABLE,
REMOTE_PROGRAM, SECOND_JVM_PROGRAM,
NO_EVENTS_PROCESSED,
PENDING_ACTIVITY_EVENTS

BAPR gate, ACQUIRE_PROCESS function

The ACQUIRE_PROCESS function of the BAPR gate is
used to acquire the named process.

Input parameters
PROCESS_NAME the 36-character process name.
PROCESSTYPE the 8-character process type.

Output parameters

LY33-6088-02 © Copyright IBM Corp. 1980, 1999

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

RESPONSE is the domain’s response to the call. It can have
any of these values:

OK|EXCEPTION| INVALID|DISASTER|KERNERROR | PURGED

[REASON] is returned when RESPONSE is EXCEPTION.
Possible values are:

RESPONSE Possible REASON values

EXCEPTION PROCESS_NOT_FOUND,
PROCESSTYPE_NOT_FOUND, FILE_NOT_AUTH,

OTHER_PROCESS_CURRENT, RECORD_BUSY

Business application manager domain (BAM)

Output parameters

RESPONSE is the domain’s response to the call. It can have
any of these values:
OK|EXCEPTION|INVALID|DISASTER|KERNERROR|PURGED

[REASON] is returned when RESPONSE is EXCEPTION.
Possible values are:

RESPONSE
EXCEPTION

Possible REASON values
PROCESS_NOT_FOUND, RECORD_BUSY

BAPR gate, CANCEL_PROCESS function

The CANCEL_PROCESS function of the BAPR gate is used
to synchronously cancel the acquired process.

Input parameters: None

Output parameters

RESPONSE is the domain’s response to the call. It can have
any of these values:

OK|EXCEPTION| INVALID|DISASTER|KERNERROR | PURGED

[REASON] is returned when RESPONSE is EXCEPTION.
Possible values are:

RESPONSE Possible REASON values

EXCEPTION PROCESS_NOT_FOUND,
PROCESSTYPE_NOT_FOUND, FILE_NOT_AUTH,

RECORD_BUSY

BAPR gate, SUSPEND_PROCESS function

The SUSPEND_PROCESS function of the BAPR gate is
used to suspend the acquired process.

Input parameters: None

Output parameters

RESPONSE is the domain’s response to the call. It can have
any of these values:

OK|EXCEPTION| INVALID|DISASTER|KERNERROR|PURGED

[REASON] is returned when RESPONSE is EXCEPTION.
Possible values are:

RESPONSE Possible REASON values

EXCEPTION

PROCESS_NOT_FOUND, RECORD_BUSY

BAPR gate, RESUME_PROCESS function

The RESUME_PROCESS function of the BAPR gate is used
to resume a previously suspended process.

Input parameters: None

LY33-6088-02 © Copyright IBM Corp. 1980, 1999

BAPR gate, CHECK_PROCESS function

The CHECK_PROCESS function of the BAPR gate is used
to establish how the acquired process completed.

Input parameters: None

Output parameters

COMPLETION_STATUS is the completion status of the
process. It can have any of these values:

NORMAL | ABENDED | FORCEDCOMPLETE | INCOMPLETE
ABEND_CODE the 4-character abend code.

ABEND_PROGRAM the 8-character name of the program
which abended.

SUSPENDED indicates whether the process is suspended. It
can take the value:
YES|NO

ACTMODE the active mode of the process. It can take the
value:

INITIAL|ACTIVE|DORMANT |CANCELLING|COMPLETE

RESPONSE is the domain’s response to the call. It can have
any of these values:
OK|EXCEPTION| INVALID|DISASTER|KERNERROR | PURGED

[REASON] is returned when RESPONSE is EXCEPTION.
Possible values are:

RESPONSE
EXCEPTION

Possible REASON values
PROCESS_NOT_FOUND, RECORD_BUSY

BAPR gate, REST_PROCESS function

The RESET_PROCESS function of the BAPR gate is used to
reset the state of the acquired root activity to initial, so it may
be run again.

Input parameters: None

Output parameters

RESPONSE is the domain’s response to the call. It can have
any of these values:

OK|EXCEPTION| INVALID|DISASTER|KERNERROR | PURGED

Chapter 12. Business Application Manager domain (BAM) 105

Business application manager domain (BAM)

[REASON] is returned when RESPONSE is EXCEPTION.
Possible values are:

RESPONSE Possible REASON values

EXCEPTION PROCESS_NOT_FOUND, FILE_NOT_AUTH,
PROCESSTYPE_NOT_FOUND, INVALID_MODE,

RECORD_BUSY

BAAC gate, ADD_ACTIVITY function

The ADD_ACTIVITY function of the BAAC gate is used to
define a new activity in response to an EXEC CICS DEFINE
ACTIVITY call.

Input parameters

ACTIVITY_NAME the 16-character activity name.
COMPLETION_EVENT the 16-character completion event.
TRANID the 4-character transaction id.

PROGRAM the 8-character program name associated with
the root activity.

USERID the 8-character userid.
ACTIVITYID the buffer containing the activity identifier.

Output parameters

RESPONSE is the domain’s response to the call. It can have
any of these values:
OK|EXCEPTION| INVALID|DISASTER|KERNERROR|PURGED

[REASON] is returned when RESPONSE is EXCEPTION.
Possible values are:

RESPONSE Possible REASON values

EXCEPTION DUPLICATE_ACTIVITY_NAME,
NO_CURRENT_ACTIVITY,

UNKNOWN_TRANSACTION_ID, INVALID_NAME

BAAC gate, RUN_ACTIVITY function

The RUN_ACTIVITY function of the BAAC gate is used to
execute the named child activity or the acquired activity
either asynchronously or synchronously i.e. with a context
switch.
Input parameters
ACTIVITY_NAME the 16-character activity name.
MODE can take the values:

SYNC|ASYNC
INPUT_EVENT the 16-character name of the input event.
FACILITY_TOKEN the 8-character facility token.

Output parameters

RESPONSE is the domain’s response to the call. It can have
any of these values:

106 cics Diagnosis Reference

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

OK|EXCEPTION|INVALID|DISASTER|KERNERROR | PURGED

[REASON] is returned when RESPONSE is EXCEPTION.
Possible values are:

RESPONSE
EXCEPTION

Possible REASON values

ACTIVITY_NOT_FOUND, INVALID_EVENT,
INVALID_MODE, NO_CURRENT_ACTIVITY,
NO_COMPLETION_EVENT, REMOTE_PROGRAM,
ACTIVITY_SUSPENDED, RUN_SYNC_ABENDED,
READ_FAILURE, RECORD_BUSY,
REMOTE_TRAN, TRAN_NOT_AUTH

BAAC gate, LINK_ACTIVITY function

The LINK_PROCESS function of the BAAC gate is used to
invoke the named child activity or acquired activity
synchronously, without a context switch.

Input parameters

ACTIVITY_NAME the 16-character name of the activity.
INPUT_EVENT the 16-character name of the input event.

Output parameters

RESPONSE is the domain’s response to the call. It can have
any of these values:

OK|EXCEPTION| INVALID|DISASTER|KERNERROR | PURGED

[REASON] is returned when RESPONSE is EXCEPTION.
Possible values are:

RESPONSE
EXCEPTION

Possible REASON values

ACTIVITY_NOT_FOUND, NO_CURRENT_ACTIVITY,
NO_COMPLETION_EVENT, INVALID_EVENT,
INVALID_MODE, AUTOINSTALL_FAILED,
AUTOINSTALL_INVALID_DATA,
AUTOINSTALL_MODEL_NOT_DEF,
AUTOINSTALL_URM_FAILED,
PROGRAM_NOT_AUTHORISED,
PROGRAM_NOT_DEFINED,
PROGRAM_NOT_ENABLED,
PROGRAM_NOT_LOADABLE,
REMOTE_PROGRAM, SECOND_JVM_PROGRAM,
NO_EVENTS_PROCESSED,
PENDING_ACTIVITY_EVENTS

BAAC gate, CANCEL_ACTIVITY function

The CANCEL_ACTIVITY function of the BAAC gate is used
to synchronously cancel the named child activity or the
acquired activity.

Input parameters

ACTIVITY_NAME the 16-character activity name.

Output parameters

RESPONSE is the domain’s response to the call. It can have
any of these values:

OK|EXCEPTION| INVALID|DISASTER|KERNERROR | PURGED

LY33-6088-02 © Copyright IBM Corp. 1980, 1999

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

[REASON] is returned when RESPONSE is EXCEPTION.
Possible values are:

RESPONSE Possible REASON values

EXCEPTION ACTIVITY_NOT_FOUND, NO_CURRENT_ACTIVITY,
INVALID_MODE, INVALID_ACTIVITYID,

FILE_NOT_AUTH, RECORD_BUSY

BAAC gate, SUSPEND_ACTIVITY function

The SUSPEND_ACTIVITY function of the BAAC gate is used
to suspend the named child activity or the acquired activity.
Input parameters

ACTIVITY_NAME the 16-character activity name.

Output parameters

RESPONSE is the domain’s response to the call. It can have
any of these values:

OK|EXCEPTION| INVALID|DISASTER|KERNERROR | PURGED

[REASON] is returned when RESPONSE is EXCEPTION.
Possible values are:

RESPONSE Possible REASON values

EXCEPTION ACTIVITY_NOT_FOUND,
NO_ACQUIRED_ACTIVITY, INVALID_MODE,

READ_FAILURE, RECORD_BUSY

BAAC gate, RESUME_ACTIVITY function

The RESUME_ACTIVITY function of the BAAC gate is used
to resume a previously suspended activity.

Input parameters

ACTIVITY_NAME the 16-character activity name.

Output parameters

RESPONSE is the domain’s response to the call. It can have
any of these values:
OK|EXCEPTION| INVALID|DISASTER|KERNERROR | PURGED

[REASON] is returned when RESPONSE is EXCEPTION.
Possible values are:

RESPONSE Possible REASON values

EXCEPTION ACTIVITY_NOT_FOUND,
NO_ACQUIRED_ACTIVITY, INVALID_MODE,

READ_FAILURE, RECORD_BUSY

BAAC gate, CHECK_ACTIVITY function

The CHECK_ACTIVITY function of the BAAC gate is used to
establish how the named child activity or acquired activity
completed.

Input parameters

LY33-6088-02 © Copyright IBM Corp. 1980, 1999

Business application manager domain (BAM)

ACTIVITY_NAME the 16-character activity name.

Output parameters

COMPLETION_STATUS is the completion status of the
activity. It can have any of these values:

NORMAL | ABENDED | FORCEDCOMPLETE | INCOMPLETE
ABEND_CODE the 4-character abend code.

ABEND_PROGRAM the 8-character name of the program
which abended.

SUSPENDED indicates whether the process is suspended. It
can take the value:
YES|NO

ACTMODE the active mode of the process. It can take the
value:
INITIAL|ACTIVE|DORMANT |CANCELLING|COMPLETE

RESPONSE is the domain’s response to the call. It can have
any of these values:
OK|EXCEPTION|INVALID|DISASTER|KERNERROR | PURGED

[REASON] is returned when RESPONSE is EXCEPTION.
Possible values are:

RESPONSE
EXCEPTION

Possible REASON values

ACTIVITY_NOT_FOUND, NO_CURRENT_ACTIVITY,
READ_FAILURE, RECORD_BUSY

BAAC gate, RESET_ACTIVITY function

The RESET_ACTIVITY function of the BAAC gate is used to
reset the state of the named child activity to initial, so it may
be run again.

Input parameters
ACTIVITY_NAME the 16-character activity name.

Output parameters

RESPONSE is the domain’s response to the call. It can have
any of these values:

OK|EXCEPTION| INVALID|DISASTER|KERNERROR | PURGED

[REASON] is returned when RESPONSE is EXCEPTION.
Possible values are:

RESPONSE
EXCEPTION

Possible REASON values

ACTIVITY_NOT_FOUND, NO_CURRENT_ACTIVITY,
FILE_NOT_AUTH, INVALID_MODE,
READ_FAILURE, RECORD_BUSY

BAAC gate, RETURN_END_ACTIVITY
function

The RETURN_END_ACTIVITY function of the BAAC gate is
used to indicate the completion of the current activity and so
raise the completion event.

Chapter 12. Business Application Manager domain (BAM) 107

Business application manager domain (BAM)

Input parameters: None

Output parameters

RESPONSE is the domain’s response to the call. It can have
any of these values:

OK|EXCEPTION| INVALID|DISASTER|KERNERROR | PURGED

[REASON] is returned when RESPONSE is EXCEPTION.
Possible values are:

RESPONSE Possible REASON values

EXCEPTION

NO_CURRENT_ACTIVITY

BAAC gate, DELETE_ACTIVITY function

The DELETE_ACTIVITY function of the BAAC gate is used
to delete the named child activity from the repository.

Input parameters
ACTIVITY_NAME the 16-character activity name.

Output parameters

ACTMODE the active mode of the process. It can take the
value:
INITIAL|ACTIVE|DORMANT |CANCELLING|COMPLETE
RESPONSE is the domain’s response to the call. It can have
any of these values:
OK|EXCEPTION| INVALID|DISASTER|KERNERROR|PURGED

[REASON] is returned when RESPONSE is EXCEPTION.
Possible values are:

RESPONSE Possible REASON values

EXCEPTION ACTIVITY_NOT_FOUND, NO_CURRENT_ACTIVITY,

INVALID_MODE, READ_FAILURE, RECORD_BUSY

BAAC gate, ACQUIRE_ACTIVITY function

The ACQUIRE_ACTIVITY function of the BAAC gate is used
to acquire the specified activity.

Input parameters

ACTIVITYID the buffer for the activity identifier.

Output parameters

RESPONSE is the domain’s response to the call. It can have
any of these values:

OK|EXCEPTION| INVALID|DISASTER|KERNERROR| PURGED

[REASON] is returned when RESPONSE is EXCEPTION.
Possible values are:

RESPONSE Possible REASON values

EXCEPTION ACTIVITY_NOT_FOUND,
ACTIVITY_ALREADY_ACQUIRED, READ_FAILURE,

RECORD_BUSY

108 cics Diagnosis Reference

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

BAAC gate, ADD_TIMER_REQUEST
function

The ADD_TIMER_REQUEST function of the BAAC gate is
used to add a delayed request to BAM domain in response
to an EXEC CICS DEfINE TIMER call.

Input parameters

REQUEST_TOKEN the token representing the request.
TIMER_EVENT the timer event name.

EVENT_VERSION the version of the event.

DATETIME the time at which the timer expires.

Output parameters

RESPONSE is the domain’s response to the call. It can have
any of these values:
OK|EXCEPTION| INVALID|DISASTER|KERNERROR | PURGED

[REASON] is returned when RESPONSE is EXCEPTION.
Possible values are:

RESPONSE
EXCEPTION

Possible REASON values
NO_CURRENT_ACTIVITY

BAAC gate, ADD_REATTACH_ACQUIRED
function

The ADD_REATTACH_ACQUIRED function of the BAAC
gate is used to reattach an activity.

Input parameters: None

Output parameters

RESPONSE is the domain’s response to the call. It can have
any of these values:
OK|EXCEPTION| INVALID|DISASTER|KERNERROR | PURGED

[REASON] is returned when RESPONSE is EXCEPTION.
Possible values are:

RESPONSE
EXCEPTION

Possible REASON values
NO_ACQUIRED_ACTIVITY

BABR gate, STARTBR_ACTIVITY function

The STARTBR_ACTIVITY function of the BABR gate is used
to initiate a browse of activities from the specified activity
identifier or from the root activity of the specified process.
Input parameters

ACTIVITYID is a buffer containing the activity identifier.
PROCESS_NAME is a buffer containing the process name.
PROCESS_TYPE is the 8-character process type.

LY33-6088-02 © Copyright IBM Corp. 1980, 1999

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

Output parameters
BROWSE_TOKEN is the token identifying the browse.

RESPONSE is the domain’s response to the call. It can have
any of these values:

OK|EXCEPTION| INVALID|DISASTER|KERNERROR | PURGED

[REASON] is returned when RESPONSE is EXCEPTION or
INVALID. Possible values are:

RESPONSE Possible REASON values

EXCEPTION ACTIVITY_NOT_FOUND, FILE_NOT_AUTH,
NO_CURRENT_ACTIVITY,
PROCESS_NOT_FOUND,

PROCESSTYPE_NOT_FOUND, RECORD_BUSY

INVALID INVALID_ACTIVITYID_LEN,

INVALID_PROCESSNAME_LEN

BABR gate, GETNEXT_ACTIVITY function

The GETNEXT_ACTIVITY function of the BABR gate is used
to return the next activity in the specified browse.
Input parameters

RETURNED_ACTIVITYID is a buffer containing the activity
identifier.

BROWSE_TOKEN is the browse token.

Output parameters
ACTIVITY_NAME is the 16-character activity name.
LEVEL is the level into the activity tree.

RESPONSE is the domain’s response to the call. It can have
any of these values:
OK|EXCEPTION| INVALID|DISASTER|KERNERROR | PURGED

[REASON] is returned when RESPONSE is EXCEPTION or
INVALID. Possible values are:

RESPONSE Possible REASON values

EXCEPTION BROWSE_END, INVALID_BROWSE_TOKEN,
INVALID_BROWSE_TYPE, RECORD_BUSY

INVALID INVALID_BUFFER_LENGTH

BABR gate, ENDBR_ACTIVITY function

The ENDBR_ACTIVITY function of the BABR gate is used to
end the specified activity browse.

Input parameters

BROWSE_TOKEN is the browse token.

Output parameters

RESPONSE is the domain’s response to the call. It can have
any of these values:

OK|EXCEPTION| INVALID|DISASTER|KERNERROR|PURGED

LY33-6088-02 © Copyright IBM Corp. 1980, 1999

Business application manager domain (BAM)

[REASON] is returned when RESPONSE is EXCEPTION.
Possible values are:

RESPONSE
EXCEPTION

Possible REASON values

INVALID_BROWSE_TOKEN,
INVALID_BROWSE_TYPE

BABR gate, INQUIRE_ACTIVITY function

The INQUIRE_ACTIVITY function of the BABR gate is used
to obtain information about the specified activity.

Input parameters

ACTIVITYID is a buffer containing the identifier of the activity
which is to be inquired upon.

RETURNED_ACTIVITYID is a buffer containing the returned
activity identifier.

RETURNED_PROCESS_NAME is a buffer containing the
returned process name.

Output parameters
ABEND_CODE is the 4-character abend code.

ABEND_PROGRAM is the 8-character name of the program
which abended.

ACTIVITY_NAME is the 16-character activity name.

COMPLETION_STATUS is the completion status. It can take
the values:

ABENDED | FORCED | INCOMPLETE | NORMAL
EVENT_NAME is the 16-character event name.
MODE is the mode of the activity. It can take the values:
INITIAL|ACTIVE|DORMANT |CANCELLING|COMPLETE
PROCESS_TYPE is the 8-character process type.
PROGRAM is the 8-character name of the activity program.
TRANSID is the 4-character transaction identifier.

INIT_TRANSID is the 4-character transaction identifier of the
transaction under which the activity was initiated.

USERID is the 8-character userid.

SUSPENDED indicates whether the activity is currently
suspended. It can take the values:
YES|NO

RESPONSE is the domain’s response to the call. It can have
any of these values:
OK|EXCEPTION|INVALID|DISASTER|KERNERROR | PURGED

[REASON] is returned when RESPONSE is EXCEPTION or
INVALID. Possible values are:

RESPONSE Possible REASON values

EXCEPTION ACTIVITY_NOT_FOUND, FILE_NOT_AUTH,
NO_CURRENT_ACTIVITY, RECORD_BUSY

INVALID INVALID_ACTIVITYID_LEN, INVALID_BUFFER_LEN

Chapter 12. Business Application Manager domain (BAM) 109

Business application manager domain (BAM)

BABR gate, STARTBR_CONTAINER
function

The STARTBR_CONTAINER function of the BABR gate is
used to initiate a browse of containers associated with a
specified activity or process.

Input parameters

ACTIVITYID is a buffer containing the activity identifier.
PROCESS_NAME is a buffer containing the process name.
PROCESS_TYPE is the 8-character process type.

Output parameters
BROWSE_TOKEN is the token identifying the browse.

RESPONSE is the domain’s response to the call. It can have
any of these values:
OK|EXCEPTION| INVALID|DISASTER|KERNERROR | PURGED

[REASON] is returned when RESPONSE is EXCEPTION or
INVALID. Possible values are:

RESPONSE Possible REASON values

EXCEPTION ACTIVITY_NOT_FOUND, FILE_NOT_AUTH,
NO_CURRENT_ACTIVITY,
PROCESS_NOT_FOUND,

PROCESSTYPE_NOT_FOUND, RECORD_BUSY

INVALID INVALID_ACTIVITYID_LEN,

INVALID_PROCESSNAME_LEN

BABR gate, GETNEXT_CONTAINER
function

The GETNEXT_CONTAINER function of the BABR gate is
used to return the next container in the specified browse.
Input parameters

BROWSE_TOKEN is the browse token.

Output parameters
CONTAINER_NAME is the 16-character container name.

RESPONSE is the domain’s response to the call. It can have
any of these values:
OK|EXCEPTION| INVALID|DISASTER|KERNERROR | PURGED

[REASON] is returned when RESPONSE is EXCEPTION.
Possible values are:

RESPONSE Possible REASON values

EXCEPTION BROWSE_END, INVALID_BROWSE_TOKEN,

INVALID_BROWSE_TYPE, RECORD_BUSY

BABR gate, ENDBR_CONTAINER function

The ENDBR_CONTAINER function of the BABR gate is used
to end the specified container browse.

110 ciIcs Diagnosis Reference

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

Input parameters
BROWSE_TOKEN is the browse token.

Output parameters

RESPONSE is the domain’s response to the call. It can have
any of these values:

OK|EXCEPTION|INVALID|DISASTER|KERNERROR | PURGED

[REASON] is returned when RESPONSE is EXCEPTION.
Possible values are:

RESPONSE
EXCEPTION

Possible REASON values

INVALID_BROWSE_TOKEN,
INVALID_BROWSE_TYPE

BABR gate, INQUIRE_CONTAINER
function

The INQUIRE_CONTAINER function of the BABR gate is
used to obtain information about the specified container.
Input parameters

CONTAINER_NAME the 16-character container name.
ACTIVITYID is a buffer containing the activity identifier.
PROCESS_NAME is a buffer containing the process name.
PROCESS_TYPE is the 8-character process type.

Output parameters
DATA_LENGTH is the length of the container data.
DATA ADDRESS is the address of the container data.

RESPONSE is the domain’s response to the call. It can have
any of these values:
OK|EXCEPTION|INVALID|DISASTER|KERNERROR | PURGED

[REASON] is returned when RESPONSE is EXCEPTION or
INVALID. Possible values are:

RESPONSE
EXCEPTION

Possible REASON values

ACTIVITY_NOT_FOUND,
CONTAINER_NOT_FOUND,
PROCESS_NOT_FOUND,
PROCESSTYPE_NOT_FOUND, FILE_NOT_AUTH,
NO_CURRENT_ACTIVITY, RECORD_BUSY

INVALID_ACTIVITYID_LEN,
INVALID_PROCESSNAME_LEN

INVALID

BABR gate, STARTBR_PROCESS function

The STARTBR_PROCESS function of the BABR gate is
used to initiate a browse of the processes of a certain type.

Input parameters
PROCESS_TYPE is the 8-character process type.

LY33-6088-02 © Copyright IBM Corp. 1980, 1999

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

Output parameters
BROWSE_TOKEN is the token identifying the browse.

RESPONSE is the domain’s response to the call. It can have
any of these values:

OK|EXCEPTION| INVALID|DISASTER|KERNERROR | PURGED

[REASON] is returned when RESPONSE is EXCEPTION.
Possible values are:

RESPONSE Possible REASON values

EXCEPTION FILE_NOT_AUTH, FILE_UNAVAILABLE,
NO_CURRENT_ACTIVITY,

PROCESSTYPE_NOT_FOUND, RECORD_BUSY

BABR gate, GETNEXT_PROCESS function

The GETNEXT_PROCESS function of the BABR gate is
used to return the next process in the specified browse.

Input parameters

BROWSE_TOKEN is the browse token.

RETURNED_ACTIVITYID is a buffer containing the activity
identifier.

RETURNED_PROCESS_NAME is a buffer containing the
process name.

Output parameters

RESPONSE is the domain’s response to the call. It can have
any of these values:

OK|EXCEPTION| INVALID|DISASTER|KERNERROR | PURGED

[REASON] is returned when RESPONSE is EXCEPTION or
INVALID. Possible values are:

RESPONSE Possible REASON values

EXCEPTION BROWSE_END, INVALID_BROWSE_TOKEN,
INVALID_BROWSE_TYPE, RECORD_BUSY

INVALID INVALID_BUFFER_LENGTH

BABR gate, ENDBR_PROCESS function

The ENDBR_PROCESS function of the BABR gate is used
to end the specified process browse.

Input parameters

BROWSE_TOKEN is the browse token.

Output parameters

RESPONSE is the domain’s response to the call. It can have
any of these values:

OK|EXCEPTION| INVALID|DISASTER|KERNERROR | PURGED

[REASON] is returned when RESPONSE is EXCEPTION.
Possible values are:

LY33-6088-02 © Copyright IBM Corp. 1980, 1999

Business application manager domain (BAM)

RESPONSE
EXCEPTION

Possible REASON values

INVALID_BROWSE_TOKEN,
INVALID_BROWSE_TYPE

BABR gate, INQUIRE_PROCESS function

The INQUIRE_PROCESS function of the BABR gate is used
to obtain information about the specified process.

Input parameters

RETURNED_ACTIVITYID is a buffer containing the activity
identifier.

PROCESS_NAME is a buffer containing the process name.
PROCESS_TYPE is the 8-character process type.

Output parameters

RESPONSE is the domain’s response to the call. It can have
any of these values:

OK|EXCEPTION|INVALID|DISASTER|KERNERROR | PURGED

[REASON] is returned when RESPONSE is EXCEPTION or
INVALID. Possible values are:

RESPONSE Possible REASON values

EXCEPTION PROCESS_NOT_FOUND,
PROCESSTYPE_NOT_FOUND, FILE_NOT_AUTH,
RECORD_BUSY

INVALID INVALID_BUFFER_LENGTH

BABR gate, INQUIRE_ACTIVATION
function

The INQUIRE_ACTIVATION function of the BABR gate is
used to obtain information about the activation associated
with a running transaction, if there is one.

Input parameters

TRANSACTION_TOKEN is a token representing an instance
of a transaction.

RETURNED_ACTIVITYID is a buffer containing the activity
identifier.

RETURNED_PROCESS_NAME is a buffer containing the
process name.

Output parameters

ACTIVITY_NAME is the 16-character activity name.

PROCESS_TYPE is the 8-character process type.

RESPONSE is the domain’s response to the call. It can have
any of these values:

OK|EXCEPTION|INVALID|DISASTER|KERNERROR|PURGED

[REASON] is returned when RESPONSE is EXCEPTION or
INVALID. Possible values are:

Chapter 12. Business Application Manager domain (BAM) 111

Business application manager domain (BAM)

RESPONSE Possible REASON values
EXCEPTION ACTIVITY_NOT_FOUND,
INVALID INVALID_BUFFER_LENGTH

BABR gate, COMMIT_BROWSE function

The COMMIT_BROWSE function of the BABR gate is used

to release any CICS BTS browses associated with this UOW.

Input parameters
CHAIN_HEAD pointer to the head of the browse chain.

Output parameters

RESPONSE is the domain’s response to the call. It can have
any of these values:

OK|EXCEPTION| INVALID|DISASTER|KERNERROR | PURGED

BACR gate, DELETE_CONTAINER function

The DELETE_CONTAINER function of the BACR gate is
used to delete a named container and its associated data.

Input parameters
CONTAINER_NAME is the 16-character container name.

ACTIVITY_NAME is the 16-character activity name.

CONTAINER_SCOPE identifies the scope of this container.
It can the values:

CHILD_ACTIVITY|ACTIVITY|PROCESS|
ACQUIRED_ACTIVITY|ACQUIRED_PROCESS

Output parameters

RESPONSE is the domain’s response to the call. It can have
any of these values:
OK|EXCEPTION|INVALID|DISASTER|KERNERROR|PURGED

[REASON] is returned when RESPONSE is EXCEPTION.
Possible values are:

RESPONSE Possible REASON values

EXCEPTION ACTIVITY_NOT_FOUND,
CONTAINER_NOT_FOUND,
NO_ACQUIRED_PROCESS,
NO_ACQUIRED_ACTIVITY,
NO_CURRENT_PROCESS,
NO_CURRENT_ACTIVITY, RECORD_BUSY,

CONTAINER_READONLY

BACR gate, GET_CONTAINER_INTO
function

The GET_CONTAINER_INTO function of the BACR gate is
used to place the data in a named container into an area
provided by the caller.

Input parameters

112 cics Diagnosis Reference

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

CONTAINER_NAME is the 16-character container name.
ACTIVITY_NAME is the 16-character activity name.

CONTAINER_SCOPE identifies the scope of this container.
It can the values:

CHILD_ACTIVITY|ACTIVITY|PROCESS]|
ACQUIRED_ACTIVITY|ACQUIRED_PROCESS

ITEM_BUFFER is the buffer into which the container data is
placed.

Output parameters

RESPONSE is the domain’s response to the call. It can have
any of these values:

OK|EXCEPTION|INVALID|DISASTER|KERNERROR | PURGED

[REASON] is returned when RESPONSE is EXCEPTION.
Possible values are:

RESPONSE
EXCEPTION

Possible REASON values

ACTIVITY_NOT_FOUND,
CONTAINER_NOT_FOUND, LENGTH_ERROR,
NO_ACQUIRED_PROCESS,
NO_ACQUIRED_ACTIVITY,
NO_CURRENT_ACTIVITY,
NO_CURRENT_PROCESS, RECORD_BUSY

BACR gate, GET_CONTAINER_SET
function

The GET_CONTAINER_SET function of the BACR gate is
used to place the data in a named container into an area
provided by BAM domain and return this area to the caller.

Input parameters
CONTAINER_NAME is the 16-character container name.
ACTIVITY_NAME is the 16-character activity name.

CONTAINER_SCOPE identifies the scope of this container.
It can the values:

CHILD_ACTIVITY|ACTIVITY|PROCESS|
ACQUIRED_ACTIVITY|ACQUIRED_PROCESS

Output parameters

ITEM_DATA a block holding the named container's data.

RESPONSE is the domain’s response to the call. It can have
any of these values:
OK|EXCEPTION| INVALID|DISASTER|KERNERROR | PURGED

[REASON] is returned when RESPONSE is EXCEPTION.
Possible values are:

RESPONSE
EXCEPTION

Possible REASON values

ACTIVITY_NOT_FOUND,
CONTAINER_NOT_FOUND,
NO_ACQUIRED_PROCESS,
NO_ACQUIRED_ACTIVITY,
NO_CURRENT_ACTIVITY,
NO_CURRENT_PROCESS, RECORD_BUSY

LY33-6088-02 © Copyright IBM Corp. 1980, 1999

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

BACR gate, PUT_CONTAINER function

The PUT_CONTAINER function of the BACR gate is used to
place data into a named container.

Input parameters
CONTAINER_NAME is the 16-character container name.

ACTIVITY_NAME is the 16-character activity name.

CONTAINER_SCOPE identifies the scope of this container.
It can the values:

CHILD_ACTIVITY|ACTIVITY|PROCESS|
ACQUIRED_ACTIVITY|ACQUIRED PROCESS

ITEM_DATA a block holding the data to be placed in the
named container.

Output parameters

RESPONSE is the domain’s response to the call. It can have
any of these values:

OK|EXCEPTION| INVALID|DISASTER|KERNERROR | PURGED

[REASON] is returned when RESPONSE is EXCEPTION.
Possible values are:

RESPONSE Possible REASON values

EXCEPTION ACTIVITY_NOT_FOUND,
CONTAINER_NOT_FOUND, LENGTH_ERROR,
NO_ACQUIRED_PROCESS,
NO_ACQUIRED_ACTIVITY,
NO_CURRENT_ACTIVITY,
NO_CURRENT_PROCESS,
INVALID_CONTAINER_NAME,
CONTAINER_READONLY, RECORD_BUSY

BAGD format, INQUIRE_DATA LENGTH
function

The INQUIRE_DATA_LENGTH function of the BAGD format
is used by BAM domain to query the called domain as to the
size of the flattened data which is to be included in the
activity record.

Input parameters
DATA_TOKEN a token representing the data.

Output parameters
DATA_LENGTH the length of the flattened data.

RESPONSE is the domain’s response to the call. It can have
any of these values:
OK|EXCEPTION| INVALID|PURGED | KERNERROR | DISASTER

[REASON] is returned when RESPONSE is EXCEPTION.
Possible values are:

RESPONSE Possible REASON values

EXCEPTION

INVALID_TOKEN

LY33-6088-02 © Copyright IBM Corp. 1980, 1999

Business application manager domain (BAM)

BAGD format, DESTROY_TOKEN function

The DESTROY_TOKEN function of the BAGD format is used
by BAM domain to tell interested parties (EM domain) to
destroy their data token.

Input parameters
DATA_TOKEN a token representing the data.

Output parameters

RESPONSE is the domain’s response to the call. It can have
any of these values:
OK|EXCEPTION| INVALID|PURGED|KERNERROR|DISASTER

[REASON] is returned when RESPONSE is EXCEPTION.
Possible values are:

RESPONSE
EXCEPTION

Possible REASON values
INVALID_TOKEN

BAGD format, ADDRESS DATA function

The ADDRESS_DATA function of the BAGD format is a call
made to BAM domain which returns the length of the calling
domain's data in the activity record.

Input parameters

ACTIVITYID a block to hold the activity identifier.

ACQUIRED_ACTIVITY indicates if this is an acquired
activity. It can take the values:

YES|NO

Output parameters
DATA_BLOCK a block containing the flattened data.
ACTIVITY_TOKEN a token representing the activity.

RESPONSE is the domain’s response to the call. It can have
any of these values:
OK|EXCEPTION|INVALID|PURGED|KERNERROR|DISASTER

[REASON] is returned when RESPONSE is EXCEPTION.
Possible values are:

RESPONSE
EXCEPTION

Possible REASON values

ACTIVITY_NOT_FOUND, NO_CURRENT_ACTIVITY,
FILE_NOT_AUTH

BAGD format, RELEASE_DATA function

The RELEASE_DATA function of the BAGD format is a call
made to BAM domain which releases the calling domain's
storage associated with the identified activity.

Input parameters
ACTIVITY_TOKEN a token representing the activity.

Chapter 12. Business Application Manager domain (BAM) 113

Business application manager domain (BAM)

Output parameters

RESPONSE is the domain’s response to the call. It can have
any of these values:
OK|EXCEPTION| INVALID|PURGED|KERNERROR|DISASTER

[REASON] is returned when RESPONSE is EXCEPTION.
Possible values are:

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

Modules

Module Function

RESPONSE Possible REASON values

DFHBADM DFHBADM is the gate module for the following requests:

PRE_INITIALISE
INITIALISE_DOMAIN
QUIESCE_DOMAIN
TERMINATE_DOMAIN

EXCEPTION INVALID_TOKEN

Business application manager domain’s
generic gates

Table 7 summarizes the business application manager
domain’s generic gates. It shows the level-1 trace point IDs
of the modules providing the functions for the gates, the
functions provided by the gates, and the generic formats for
calls to the gates.

Table 7. Business application manager domain’s generic gates

DFHBATT DFHBATT is the gate module for the following requests:

ADD_REPLACE_PROCESSTYPE
INQUIRE_PROCESSTYPE
START_BROWSE_PROCESSTYPE
GET_NEXT_PROCESSTYPE
END_BROWSE_PROCESSTYPE
DISCARD_PROCESSTYPE
COMMIT_PROCESSTYPE_TABLE

DFHBAAC DFHBAAC is the gate module for the following requests:

ADD_ACTIVITY
RUN_ACTIVITY
CHECK_ACTIVITY
RETURN_END_ACTIVITY
DELETE_ACTIVITY
SUSPEND_ACTIVITY
RESUME_ACTIVITY
CANCEL_ACTIVITY
LINK_ACTIVITY
ACQUIRE_ACTIVITY
RESET_ACTIVITY
ADD_TIMER_REQUEST
ADD_REATTACH_ACQUIRED

Gate Trace Function Format
DMDM BA 0101 PRE_INITIALISE DMDM
BA 0102 INITIALISE_DOMAIN
QUIESCE_DOMAIN
TERMINATE_DOMAIN
RMRO BA 0140 PERFORM_PREPARE RMRO
BA 0141 PERFORM_COMMIT
START_BACKOUT
DELIVER_BACKOUT_DATA
END_BACKOUT
PERFORM_SHUNT
PERFRM_UNSHUNT
RMKP BA 0140 TAKE_KEYPOINT RMKP
BA 0141
RMDE BA 0140 START_DELIVERY RMDE
BA 0141 DELIVER_RECOVERY
END_DELIVERY
APUE BA 0180 SET_EXIT_STATUS APUE
BA 0181

For descriptions of these functions and their input and output
parameters, refer to the 8s dealing with the corresponding
generic formats:

DFHBAPR DFHBAPR is the gate module for the following requests:

ADD_PROCESS
RUN_PROCESS
CHECK_PROCESS
SUSPEND_PROCESS
RESUME_PROCESS
CANCEL_PROCESS
LINK_PROCESS
ACQUIRE_PROCESS
RESET_PROCESS

—— Functions and parameters
Format DMDM—"Domain manager domain’s generic
formats” on page 195

Format RMRO—"Recovery Manager domain’s call
back formats” on page 474

Format RMKP—"Recovery Manager domain’s call
back formats” on page 474

Format RMDE—“Recovery Manager domain’s call
back formats” on page 474

Format APUE—"Application domain’s generic
formats” on page 42

DFHBACR DFHBACR is the gate module for the following requests:

DELETE_CONTAINER
GET_CONTAINER_INTO
GET_CONTAINER_SET
PUT_CONTAINER

114 cics Diagnosis Reference

DFHBAXM DFHBAXM is the gate module for the following requests:

INIT_ACTIVITY_REQUEST
BIND_ACTIVITY_REQUEST

DFHBAGD DFHBAGD is the gate module for the following requests:

INQUIRE_DATA_LENGTH
GET_DATA
DESTROY_TOKEN
ADDRESS_DATA
RELEASE_DATA

LY33-6088-02 © Copyright IBM Corp. 1980, 1999

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

Business application manager domain (BAM)

Module Function Module Function
DFHBABR DFHBABR is the gate module for the following requests: DFHBALR4 Implements the read_key method of the logical record class.
DFHBALR5 Implements the read_record method of the logical record
STARTBR_ACTIVITY class.
GETNEXT_ACTIVITY X
ENDBR_ACTIVITY DFHBALRG6 Irlnplements the delete_record method of the logical record
INQUIRE_ACTIVITY class.
STARTBR_CONTAINER DFHBALR7 Implements the get_browse_token method of the logical
GETNEXT_CONTAINER record class.
ENDBR_CONTAINER :
INQUIRE_CONTAINER DFHBALRS Irr:(g)lfén;r;ithe read_next_record method of the logical
STARTBR_PROCESS ’
GETNEXT_PROCESS DFHBALR9 Implements the release_browse_token method of the logical
ENDBR_PROCESS record class.
INQUIRE_PROCESS : -
— DFHBARUP The BTS t tilit .
INQUIRE_ACTIVATION € B> repository utiity program
COMMIT_BROWSE DFHBARUC The BTS repository utility program.
DFHBARUD The BTS repository utility program.
DFHBASP DFHBASP is the gate module for the following requests: DFHBADUF Formats the BAM domain control blocks
PERFORM_PREPARE DFHBADU1 Formats the BAM domain control blocks
PERFORM_COMMIT DFHBATRI Interprets BAM domain trace entries
PERFORM_SHUNT
PERFORM_UNSHUNT
START_BACKOUT
DELIVER_BACKOUT_DATA H
END_BACKOUT EXItS
START_RECOVERY
DELIVER_RECOVERY There are two user exit points in BAM domain, XRSINDI and
END_RECOVERY XBADEACT. See the CICS Customization Guide for further
TAKE_KEYPOINT details
DFHBAUE DFHBAUE is the gate module for the following requests:
SET_EXIT_STATUS
DFHBAACO Implements general activity class methods.
DFHBAAC1 Initialises the activity class.
DFHBAAC2 Implements the prepare method of the activity class.
DFHBAAC3 Implements the commit method of the activity class.
DFHBAAC4 Implements the delete method of the activity class.
DFHBAACS5 Implements the set_complete method of the activity class.
DFHBAAC6 Implements the invoke_exit method of the activity class.
DFHBAA10 Implements the read_activity method of the activity class.
DFHBAA11l Implements the get_activity_instance method of the activity
class.
DFHBAA12 Implements the run_sync method of the activity class.
DFHBAAR1 Intialises the audit class.
DFHBAAR2 Implements the write method of the audit class.
DFHBAPRO Implements general process class methods.
DFHBAVP1 Initialises the variable length subpool class.
DFHBAOFI Initialises the object factory class.
DFHBABU1 Initialises the buffer class.
DFHBAPT1 Initialises the processtype class.
DFHBAPT2 Implements the rebuild_table method of the processtype
class.
DFHBAPT3 Implements the purge_catalog method of the processtype
class.
DFHBALR2 Implements the create_key method of the logical record
class.
DFHBALR3 Implements the write_buffer method of the logical record

LY33-6088-02 © Copyright IBM Corp. 1980, 1999

class.

Chapter 12. Business Application Manager domain (BAM)

115

Business application manager domain (BAM) “Restricted Materials of IBM”
Licensed Materials — Property of IBM

Trace

The point IDs for the business application manager domain
are of the form BA xxxx; the corresponding trace levels are
BA 1, BA 2, and Exc.

For more information about the trace points, see the CICS
User's Handbook. For more information about using traces in
problem determination, see the CICS Problem Determination
Guide.

116 ciIcs Diagnosis Reference LY33-6088-02 © Copyright IBM Corp. 1980, 1999

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

CICS-AD/Cycle Language Environment/370 interface

Chapter 13. CICS-AD/Cycle Language Environment/370 interface

This section describes the run-time interface between CICS
and IBM Systems Application Architecture (SAA) AD/Cycle
Language Environment/370 that supports the execution of
CICS application programs written to use AD/Cycle
Language Environment/370, hereafter usually abbreviated to
“Language Environment/370".

Design overview

Communication between CICS and Language
Environment/370 is made by calling a special Language
Environment/370 interface module (CEECCICS) and passing
to it a parameter list (addressed by register 1), which
consists of an indication of the function to be performed and
a set of address pointers to data values or areas.

Module CEECCICS is distributed in the Language
Environment/370 library, but must be copied to an authorized
library defined in the STEPLIB concatenation of the CICS
startup job stream (see the CICS System Definition Guide).

All calls to Language Environment/370 are made directly
from the CICS language interface module DFHAPLI. This
module is called by several components of CICS to perform
specific functions. Table 8 lists those functions, and shows
the name of the CICS module initiating each function call and
the Language Environment/370 call made by DFHAPLI to
support the function. The format of each call parameter list is
given in “External interfaces” on page 119.

Table 8. CICS-AD/Cycle Language Environment/370 interface calls

Function Module LE/370 call
Terminate Languages DFHSTP Partition Termination
Establish Language DFHPGLK, Establish Ownership
DFHPGLU, Type
DFHPGPG
Start Program DFHPGLK, Thread Initialization
DFHPGLU Run Unit Initialization
Run Unit Begin
Invocation
Run Unit End Invocation
Run Unit Termination
Thread Termination
Goto DFHEIP Perform Goto
Find Program Attributes DFHEDFX Determine Working
Storage
Initialize Languages DFHSIJ1 Partition Initialization

The logical relationship between the different calls is shown
in Figure 36.

LY33-6088-02 © Copyright IBM Corp. 1980, 1999

Partition
initialization

Establish
ownership type

Once only
per program

VO HO

Thread
initialization

~wn o —

D 3 — kD —h = —

Run-unit
initialization

D T — D —h = —

Run-unit begin
invocation

Determine
working
storage

xS =

Perform GOTO

—® < ® —

Run-unit end
invocation

Run-unit
termination

Thread
termination

Partition
termination

Figure 36. CICS-AD/Cycle Language Environment/370 interface
components

Note: The actual passing of control to CEECCICS is made
from the CICS language interface program
(DFHAPLI), which provides a single point of contact
between CICS and Language Environment/370.
Other modules call DFHAPLI to initiate the desired

function.

117

CICS-AD/Cycle Language Environment/370 interface

All calls to DFHAPLI use either the DFHAPLIM macro (for
calls from outside the CICS application domain), or the
DFHLILIM macro (for calls made from within the application
domain).

Establishing the connection

The procedure for establishing the initial connection with
Language Environment/370 is as follows:

1. Load CEECCICS. At CICS startup, DFHSIJ1 invokes
DFHAPLI to “initialize languages”. DFHAPLI issues a
BLDL for CEECCICS, followed by an MVS LOAD macro.

2. Initialize contact with Language Environment/370.
Contact is first made with Language Environment/370 by
having CICS drive the partition initialization function.
DFHAPLI attempts partition initialization only if the earlier
load of CEECCICS was successful; otherwise, the logic
is bypassed.

If the Language Environment/370 partition initialization is
successful, and Language Environment/370 indicates
that it can support the running of programs in languages
supported by CICS, a flag is set and no further
processing takes place.

If the partition initialization function fails, CICS issues
error message DFHAP1200. CICS then attempts
initialization of the VS COBOL Il and C/370
environments separately.

Application program contact with Language
Environment/370. Whenever a program written in a
supported language is run, the application’s attempt to make
contact with Language Environment/370 fails if the
“Language Environment/370 initialization bits” flag is not set.
CICS then tries to run the program itself using the basic
support for the language. If this fails, CICS then abends the
transaction and sets the associated installed resource
definition as disabled.

The following sections describe application programs that
can use the Language Environment/370 support as being
“Language Environment/370 enabled”. This term means that
the program has been defined in the CSD as
LANGUAGE(LE370) or the program has been compiled by a
Language Environment/370-enabled compiler. For further
information about enabling application programs to use
Language Environment/370 support, see the CICS System
Definition Guide.

Storage for the transaction

A set of work areas is required during the lifetime of any task
that includes one or more programs supported by Language
Environment/370. This set is known as the “language
interface work area”. It is shared by any additional VS
COBOL Il or C/370 programs that form part of the task.

118 ciIcs Diagnosis Reference

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

The language interface work area contains storage for the
following:

¢ The largest possible CICS-Language Environment/370
interface parameter list (currently 15 parameter
elements, but with space allowed for a further three
elements)

¢ A general-purpose register save area for use by
DFHAPLI

e A general-purpose register save area for use by
Language Environment/370

e A 240-byte special work area for use by Language
Environment/370 as the equivalent of DFHEISTG for
CICs

e A 4-byte Language Environment/370 reason code field
e The IOINFO area (see page 122)
e The PGMINFOL1 area (see page 122)

e The program termination block (see page 123).

Also, a thread work area is required if Language
Environment/370 is involved in the running of the task. The
length of a thread work area is a constant value that is
notified to CICS by Language Environment/370 during the
partition initialization processing. This additional work area is
built contiguous with the language interface work area if the
transaction is known to contain one or more programs that
are Language Environment/370 enabled. When such a
program is first encountered, DFHAPLI:

1. Gets from the transaction manager the address of the
transaction-related instance data.

2. Flags the data to tell the transaction manager that the
transaction runs Language Environment/370 application
programs.

3. Adds the length of the language interface work area to
the total user storage length for that transaction.

This forces the transaction manager to acquire extra storage,
during task initialization, as an extension to the language
interface work area. For the first occurrence only, DFHAPLI
acquires the thread work area.

Further areas known as run-unit work areas (RUWAS) are
required at run time if the transaction includes one or more
programs that are Language Environment/370 enabled. The
length of an RUWA varies for each program. The lengths
required for work areas above and below the 16MB line by
Language Environment/370 are notified to CICS during the
processing to establish ownership type for that program;
thereafter they can be found in the program’s installed
resource definition. CICS adds to the length for the RUWA
above the 16MB line a fixed amount for its own purposes
before acquiring the storage.

LY33-6088-02 © Copyright IBM Corp. 1980, 1999

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

Storage acquisition

During task initialization, the transaction manager acquires
an area of storage, the language interface work area, which
is large enough to hold all required data for calls to
Language Environment/370. This area is contiguous with the
EXEC interface storage (EIS), and its address is saved in
TCACEEPT in the TCA.

The thread work area is usually contiguous with the language
interface work area. Its address is always held in CEE_TWA
in the language interface work area.

For every link level entered during the execution of the
application, a run-unit work area must be acquired by CICS
and its address passed to Language Environment/370 during
run-unit initialization. Its address is placed in EIORUSTG in
the EXEC interface storage (EIS).

Control blocks

The main control block is the language interface work area.
This area is shared by any additional VS COBOL Il or C/370
programs that form part of the task. It is addressed by
TCACEEPT in the TCA. For programs supported by
Language Environment/370, the work area is mapped by the
Language_Interface_Workarea DSECT.

Modules

The CICS-AD/Cycle Language Environment/370 interface is
accessed in the language interface program (DFHAPLI) in
response to calls from the following modules:

DFHSIJ1, DFHEIP, DFHEDFX, and DFHSTP.

Exits

No global user exit points are provided for this interface.

Trace
Trace entries are made on entry to and exit from DFHAPLI.

Point IDs AP 1940 to AP 1945, with a trace level of PC 1,
correspond to these trace entries.

The function information is always interpreted.

LY33-6088-02 © Copyright IBM Corp. 1980, 1999

CICS-AD/Cycle Language Environment/370 interface

For entry trace records, the program name and link level are
also interpreted where applicable.

For exit trace records, the returned reason code is
interpreted.

Also, all calls into and out of the language environments are
traced at level 1. The point IDs are: AP1948 to AP 1952.

For more information about the trace points, see the CICS
Trace Entries. For more information about using traces in
problem determination, see the CICS Problem Determination
Guide.

(The CICS Trace Entries includes tables that show, for entry
and exit trace records, the ERTLI function together with any
other data items traced.)

The ERTLI function named in the DFHAPLI entry trace is the
function requested on the call, while that named in the
DFHAPLI exit trace is the ERTLI function most recently
processed. There are some situations in which a trace record
made on entry to DFHAPLI is not matched by a
corresponding exit trace for the same ERTLI function. In
particular, after making a call to Language Environment/370
for thread initialization, DFHAPLI does not return to the
caller, but proceeds with “run-unit initialization” and “run-unit
begin invocation” before finally returning. Another example is
the successful execution of a “perform GOTO” function,
which results in DFHAPLI not returning to the caller.

Note: ERTLI refers to the Extended Run-Time Language
Interface. This is an extension of the Run-Time
Language Interface (RTLI) protocols that were
defined to assist communication between CICS and
both VS COBOL Il and C/370. ERTLI includes
communication between CICS and Language

Environment/370.

External interfaces

This section describes the parameter lists and work areas
used for the functions provided by the CICS-AD/Cycle
Language Environment/370 interface.

CICS-AD/Cycle Language Environment/370
interface parameter lists

The following tables show the layout and contents of the
parameter lists for the functions provided by the Language
Environment/370 interface module CEECCICS.

Chapter 13. CICS-AD/Cycle Language Environment/370 interface 119

CICS-AD/Cycle Language Environment/370 interface

Table 9. CICS-Language Environment/370
PARTITION_INITIALIZATION parameter list

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

Table 11. CICS-Language Environment/370
THREAD _INITIALIZATION parameter list

No. Parameter Description Receiver Data No. Parameter Description Receiver Data
name field length name field length
1 FUNCTION F'10' (= Partition initialization) F'word 1 FUNCTION F'20' (= Thread initialization) F'word
2 RSNCODE Reason code Yes F'word 2 RSNCODE Reason code Yes F'word
3 SYSEIB Address of system EIB 4 3 SYSEIB Address of system EIB 4
4 PREASA Preallocated save area 240 4 PREASA Preallocated save area 240
5 PTOKEN Language Environment/370 Yes 8 5 PTOKEN Language Environment/370 8
partition token partition token
6 EIBLEN Length of CICS EIB F'word 6 TTOKEN Thread token Yes
7 TWALEN Thread work area length Yes F'word 7 PREATWA Address of preallocated thread 4
8 CELLEVEL Language Yes F'word work area
Environment/370-CICS interface 8 PGMINFO1 CICS-Language 44
level Environment/370 program
9 GETCAA Get-CAA routine address information
_ - 9 PGMINFO2 Language 20
10 SETCAA Set-CAA routine address Environment/370-CICS program
11 LANGDEF Language modules defined 32 information
12 LANGBITS Language availability bits Yes F'word
Table 12. CICS-Language Environment/370
Table 10. CICS-Language Environment/370 RUNUNIT_INITIALIZATION parameter list
ESTABLISH_OWNERSHIP_TYPE parameter list No. Parameter Description Receiver Data
No. Parameter Description Receiver Data name field length
name field length 1 FUNCTION F'30' (= Run-unit initialization) F'word
1 FUNCTION F'50' (= Establish ownership F'word 2 RSNCODE Reason code Yes F'word
type) 3 SYSEIB Address of system EIB 4
2 RSNCODE _Reason code Yes Fword 4 PREASA Preallocated save area 240
3 SYSEB Address of system EIB 4 5 PTOKEN Language Environment/370 8
4 PREASA Preallocated save area 240 partition token
5 PTOKEN Language Environment/370 8 6 TTOKEN Thread token 8
partition token 7 RTOKEN Run-unit token Yes 8
6 reserved 8 PGMINFOL CICS-Language 44
7 reserved Environment/370 program
8 PGMINFOL CICS-Language 44 information
Environment/370 program 9 PGMINFO2 Language 20
information Environment/370-CICS program
9 PGMINFO2 Language Yes 20 information

Environment/370-CICS program
information

120 cics Diagnosis Reference

LY33-6088-02 © Copyright [BM Corp. 1980, 1999

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

Table 13. CICS-Language Environment/370

RUNUNIT_BEGIN_INVOCATION parameter list

CICS-AD/Cycle Language Environment/370 interface

Table 15. CICS-Language Environment/370 PERFORM_GOTO
parameter list

No. Parameter Description Receiver Data No. Parameter Description Receiver Data
name field length name field length
1 FUNCTION F'32' (= Run-unit begin F'word 1 FUNCTION F'70' (= Perform GOTO) F'word
invocation) 2 RSNCODE Reason code Yes F'word
2 RSNCODE Reason code Yes F'word 3 SYSEIB Address of system EIB 4
8 SYSEIB Address of system EIB 4 4 PREASA Preallocated save area 240
4 PREASA Preallocated save area 240 5 PTOKEN Language Environment/370 3
5 PTOKEN Language Environment/370 8 partition token
partition token 6 TTOKEN Thread token 8
6 TTOKEN Thread token 8 7 RTOKEN Run-unit token 8
RTOKEN Run-unit token 8 LANG Program language bits F'word
8 PGMINFOL CIC_S-Language 44 9 LABEL Label argument at Handle F'word
Environment/370 program
information 10 RSA RSA at last EXEC CICS F'word
9 PGMINFO2 Language 20 command
Environment/370-CICS program 11 CALLERR Cross call error flag Yes F'word
information 12 ABCODE Address of TACB abend code Fword
10 I0INFO Inputioutput queue details 18 13 R13 Register 13 value at abend F'word
11 RSA RSA at last EXEC CICS F'word
d]
comman Table 16. CICS-Language Environment/370
guag
) RUNUNIT_END_INVOCATION parameter list
Table 14. CICS-Language Environment/370 No. P " Descriot Recei Dat
DETERMINE_WORKING_STORAGE parameter list 0. rarameter Description ccelver ata
= ot name field length
No. Parameter Description Receiver Data 1 FUNCTION F'33' (= Run-unit end Eword
name field length invocation)
1 FUNCTION F'60' (= Determine working F'word 2 RSNCODE Reason code Yes Fword
storage)
3 SYSEIB Add f t EIB 4
2 RSNCODE Reason code Yes F'word ress of system
4 PREASA Preallocated save area 240
3 SYSEIB Address of system EIB 4
5 PTOKEN Language Environment/370 8
4 PREASA Preallocated save area 240 partigti ongtoken
5 PTOKEN Language Environment/370 8 6 TTOKEN Thread token P
partition token
7 RTOKEN Run-unit tok
6 TTOKEN Thread token 8 °© un-unit foken 8
7 RTOKEN R it tok s 8 PGMINFO1 CICS-Language 44
un-unit token Environment/370 program
8 LANG Program language bits F'word information
9 PGMRSA Register save area address 4 9 PGMINFO2 Language 20
10 WSA Working storage address Yes 4 ili?c\:rl:g;tirz intlB?O—CICS program
11 WSL Working storage length Yes F'word 10 pTB Program termination block 64
12 SSA Static storage address Yes 4 1 RSA RSA at last EXEC CICS Fword
(reserved) command
13 SSL Static storage length (reserved) Yes F'word
14 EP Program entry point Yes 4 Table 17. CICS-Language Environment/370
RUNUNIT_TERMINATION parameter list
No. Parameter Description Receiver Data
name field length
1 FUNCTION F'31' (= Run-unit termination) F'word
2 RSNCODE Reason code Yes F'word
3 SYSEIB Address of system EIB 4
4 PREASA Preallocated save area 240
5 PTOKEN Language Environment/370 8
partition token
6 TTOKEN Thread token 8
RTOKEN Run-unit token Yes 8
LY33-6088-02 © Copyright IBM Corp. 1980, 1999 Chapter 13. CICS-AD/Cycle Language Environment/370 interface 121

CICS-AD/Cycle Language Environment/370 interface

Table 18. CICS-Language Environment/370
THREAD_TERMINATION parameter list

No. Parameter Description Receiver Data
name field length

1 FUNCTION F'21' (= Thread termination) F'word

2 RSNCODE Reason code Yes F'word

3 SYSEIB Address of system EIB 4

4 PREASA Preallocated save area 240

5 PTOKEN Language Environment/370 8

partition token

6 TTOKEN Thread token Yes 8

Table 19. CICS-Language Environment/370

PARTITION_TERMINATION parameter list

No. Parameter Description Receiver Data
name field length

1 FUNCTION F'11' (= Partition termination) F'word

2 RSNCODE Reason code Yes F'word

3 SYSEIB Address of system EIB 4

4 PREASA Preallocated save area 240

5 PTOKEN Language Environment/370 8

partition token
Work areas

The following sections describe the work areas required
during the lifetime of any task that includes one or more
programs that use the CICS-Language Environment/370
interface.

IOINFO: The IOINFO area, which is built by DFHAPLI in
the CICS-Language Environment/370 work area, is passed to
Language Environment/370 on a
RUNUNIT_BEGIN_INVOCATION call.

CICS applications cannot use the SYSIN and SYSPRINT
data streams because such usage would conflict with the
way CICS handles I/O. However, an application may require
a general input or output data stream in some situations, for
example, where it is necessary to output a message to a
program and the program has not been written to expect
such output under normal operation.

Three such data streams are architected for this purpose:
input, output (normal), and error output. The destinations
must be either spools or queues. CICS uses queues, so the
file type is always setto 'Q'. Table 20 shows the transient
data queue names that are passed to Language
Environment/370 (abbreviated here to LE/370). For
completeness, the table also shows the equivalent transient

122 cics Diagnosis Reference

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

data queue names that are passed to C/370 when CICS
interfaces directly with C/370.

Table 20. Transient data queues for use by Language
Environment/370 (and C/370)

File type LE/370 queue name C/370 queue name
Input CESI CcCsl

Output CESO CCSO

Error output CESE CCSE

Each data stream is identified by a 6-byte control block, and
the three control blocks are concatenated to form the IOINFO
area, which CICS passes to Language Environment/370.

IOINFO has this format (in assembler-language code):

IOINFO DS 0CL18 Input/output queue details
Standard input file

..file type - 'Q' = transient data
..queue name

..spool class - not used

STD_IN DS OCL6
QORS_IN DS CLI
TDQ_IN DS CL4
SPO_IN DS CLI

STD OUT DS OCL6
QORS OUT DS CL1
TDQ OUT DS CL4
SPO_OUT DS CL1

Standard output file

..file type - 'Q' = transient data
..queue name

..spool class - not used

STD_ERR DS 0CL6
QORS_ERR DS CL1
TDQ_ERR DS CL4
SPO_ERR DS CL1

Standard error output file

..file type - 'Q' = transient data
..queue name

..spool class - not used

PGMINFOL1: The PGMINFOL1 area, which is built by
DFHAPLI in the CICS-Language Environment/370 work area,
is passed to Language Environment/370 during these
interface calls:

ESTABLISH_OWNERSHIP_TYPE
THREAD_INITIALIZATION
RUNUNIT_INITIALIZATION
RUNUNIT_BEGIN_INVOCATION
RUNUNIT_END_INVOCATION

When both CICS and LE are capable of supporting it, the
separate calls to LE for Rununit Initialisation and Rununit
Begin Invocation are combined into a single call. This single
call is a Rununit Initialisation call with additional parameters
indicating

1. make the combined call

2. whether CICS believes the RUWA being passed has
already been passed to LE, and so need not be
completely initialised by LE/370

PGMINFO1 has this format (in assembler-language code):

LY33-6088-02 © Copyright IBM Corp. 1980, 1999

“Restricted Materials of IBM”

Licensed Materials — Property of IBM

PGMINFO1 DS
P1_LENGTH DS
RULANG DS
ASSEMBLER EQU
C EQU
COoBOL EQU
PLI EQU
LE370 EQU
RULOADMOD DS
RULOADA DS
RULOADL DS

ENTRY_STATIC DS

RUENTRY DS
RUSTATIC DS
RWA_31 DS
RWA_24 DS
APAL DS
RTOPTS DS
RTOPTSL DS

PGMINFO1L EQU

PGMINFO2

The PGMINFO2 area, which forms part of the PPT entry for

OF

XL4

X'80'
X'40'
X'20'
X'1e'
X'04'

- >

> > > O

A

A
F

*-PGMINFO1

Length of PGMINFO1

Language as defined by user
..Assembler

..C

..COBOL

..PL/I

..Language Environment/370

Run-unit Toad module address
Run-unit Toad module Tength

Run-unit entry point address

Modified entry address

Address of run-unit storage
above 16MB

Address of run-unit storage
below 16MB

Application argument list
address

Run-time options

Length of run-time options

the running program, is filled in by Language
Environment/370 on successful completion of an

ESTABLISH_OWNERSHIP_TYPE call; and is subsequently
passed by CICS to Language Environment/370 during these

interface calls:

THREAD_INITIALIZATION
RUNUNIT INITIALIZATION
RUNUNIT_BEGIN_INVOCATION
RUNUNIT_END_INVOCATION

PGMINFO2 has this format (in assembler-language code):

LY33-6088-02 © Copyright IBM Corp. 1980, 1999

CICS-AD/Cycle Language Environment/370 interface

PGMINFO2
PRGINLEN
PLBRWA31
PLBRWAA
PLBRWAL
PLBRWA24

PLBLANG
PLBLANG1
PLBCEEEN

PLBCEELA

PLBMIXED
PLBCOMPT
PLBEXECU

PLBASSEM
PLBC370
PLBCOBL2
PLBLANG2
PLBOSCOB
PLBPLI
PLBTYPE3
PLBTYPE4
PLBMEMID
PLBED

DS
DS
DS
EQU
DS
DS

DS
DS
EQU

EQU

EQU
EQU
EQU

EQU
EQU
EQU
DS
EQU
EQU
DS
DS
DS
EQU

OF

FL4 Length of PGMINFO2 extension

F Length of 31-bit RUWA

X'80" ..31-bit storage required (C/370)

FL3 ..Length of 31-bit RUWA

F Length of 24-bit RUWA

ocL4 Language availability byte

X

X'80' ..Language Environment/370
enabled

X'40' ..Language Environment/370
language known

X'20' ..Mixed/single language

X'10' ..Compatibility

X'08' ..Language Environment/370
executable

X'04' ..Assembler-Tanguage program

X'02' ..C/370 program

x'ol' ..VS COBOL II program

X

X'80" ..0S/VS COBOL program

X'40' ..0S PLI program

X Reserved

X Reserved

FL4 Language member ID

*-PGMINF02

Program termination block

The program termination block (PTB), which is built by
DFHAPLI in the CICS-Language Environment/370 work area,
is passed to Language Environment/370 on a
RUNUNIT_END_INVOCATION call.

It has this format (in Assembler-language code):

CELINFO
PCHK

PCHK_PSW
PCHKINTS
PCHK_LEN
PCHK_INT
PCHK_ADR
PCHK_GR
PCHK_FR
PCHK_AR
PCHK_EX

CNTCODE
CONT1
CONT2

RTRY
RTRY_AD
RTRY_PM
RTRY_GR
RTRY_FR
RTRY_AR

DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS

DS
EQU
EQU
DS

OF
0CL32
CL8
CL8
0CL8
XL2
XL2
FL4
AL4
AL4
AL4
AL4

0CL4
X'40'
X'20'
BL3
0CL20
FL4
AL4
AL4
AL4
AL4

Abend information

..PSW

..Interrupt data
....Instruction length
....Interrupt code

..Exception address

..A(GP registers at abend)
..A(FP registers at abend)
..A(AX registers at abend)
..A(Registers at the last time

a CICS command was issued)

Continuation code

..retry using registers

..retry using PSW

Reserved

..Retry address
..A(Program mask)
..A(GP registers)
..A(FP registers)
A(AX registers)

Chapter 13. CICS-AD/Cycle Language Environment/370 interface

123

CICS-AD/Cycle Language Environment/370 interface “Restricted Materials of IBM”
Licensed Materials — Property of IBM

124 cics Diagnosis Reference LY33-6088-02 © Copyright IBM Corp. 1980, 1999

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

CICS catalog domains (GC/LC)

Chapter 14. CICS catalog domains (GC/LC)

The two CICS catalog domains, namely the local catalog
(LC) domain and the global catalog (GC) domain, are
repositories used by other domains to hold information to
allow an orderly restart. They enable CICS code to read,
write, and purge records on the local and global catalog data
sets so that a record of the CICS state can be maintained
when CICS is not running.

These domains use a common set of programs to provide a
domain interface to VSAM KSDS data sets for the local
catalog (DFHLCD) and for the global catalog (DFHGCD).
They also conceal, from the user domain, the underlying
VSAM operations.

The local catalog is initialized with the DFHCCUTL utility to
contain information that is relevant to a particular CICS
system, including a list of domains.

The global catalog is used to hold information that is
applicable to a whole CICS system. Thus, in an XRF system
consisting of one active and one alternate CICS system,
there are two local catalogs and one global catalog.
Conversely, in a non-XRF system, there is one local catalog
and one global catalog.

The descriptions that follow relate to the common set of
programs for both the local and the global catalog domains.

CICS catalog domains’ specific gate

Table 21 summarizes the CICS catalog domains’ specific
gate. It shows the level-1 trace point IDs of the modules
providing the functions for the gate, the functions provided by
the gate, and whether or not the functions are available
through the exit programming interface (XPI).

Table 21. CICS catalog domains’ specific gate

Gate Trace 1 Function XPI
Cccc CC 2010 ADD NO
CC 2050 DELETE NO

GET NO

WRITE NO

GET_UPDATE NO

PUT_REPLACE NO

START_BROWSE NO

GET_NEXT NO

END_BROWSE NO

TYPE_PURGE NO

START_WRITE NO

WRITE_NEXT NO

END_WRITE NO

1 The domain identifier part of the point ID, shown in the
table as CC, appears in a trace as either LC (local catalog
domain) or GC (global catalog domain).

LY33-6088-02 © Copyright IBM Corp. 1980, 1999

In many of the functions to be described, an input parameter
NAME is listed. This name is used in the construction of a
VSAM key which is then used to identify a specific record in
the catalog. The record may, or may not, already exist. The
key is a string concatenation of the calling domain, the type,
and the name. The type is a block of records for a domain.
The choice of type and name for a specific domain is at the
discretion of the calling domain.

CCCC gate, ADD function
The ADD function of the CCCC gate is used to add a record.

Input parameters

DATA_IN is the data to be added to the record.

TYPE identifies a block of data.

NAME is used to construct a record key, together with the
domain and the type.

Output parameters

RESPONSE is the domain’s response to the call. It can have
any of these values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR | PURGED

[REASON] is returned when RESPONSE is EXCEPTION.
Possible values are:

RESPONSE
EXCEPTION

Possible REASON values

DUPLICATE, INVALID_DATA_LENGTH, IO_ERROR,
CATALOG_FULL

CCCC gate, DELETE function

The DELETE function of the CCCC gate is used to delete a
record.

Input parameters

TYPE identifies a block of data.

NAME is used to construct a record key, together with the
domain and the type.

[WRITE_TOKEN] is an optional token corresponding to a
START_WRITE. This avoids the need for additional
connects or disconnects.

Output parameters

RESPONSE is the domain’s response to the call. It can have
any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR | PURGED

125

CICS catalog domains (GC/LC)

[REASON] is returned when RESPONSE is EXCEPTION.
Possible values are:

RESPONSE Possible REASON values

EXCEPTION RECORD_NOT_FOUND, I0_ERROR, BAD_TOKEN

CCCC gate, GET function

The GET function of the CCCC gate is used to get a record.

Input parameters

DATA_OUT If the response is OK, this contains a copy of
the specified record.

TYPE identifies a block of data.

NAME is used to construct a record key, together with the
domain and the type.

Output parameters

RESPONSE is the domain’s response to the call. It can have
any of these values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

[REASON] is returned when RESPONSE is EXCEPTION.
Possible values are:

RESPONSE Possible REASON values

EXCEPTION RECORD_NOT_FOUND, INVALID_DATA_LENGTH,

10_ERROR

CCCC gate, WRITE function

The WRITE function of the CCCC gate is used to write a

record.

Input parameters

DATA_OUT is the data to be written to the specified record.

TYPE identifies a block of data.

NAME is used to construct a record key, together with the
domain and the type.

Output parameters

RESPONSE is the domain’s response to the call. It can have
any of these values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

[REASON] is returned when RESPONSE is EXCEPTION.
Possible values are:

RESPONSE Possible REASON values

EXCEPTION INVALID_DATA_LENGTH, IO_ERROR,

CATALOG_FULL

126 ciIcs Diagnosis Reference

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

CCCC gate, GET_UPDATE function

The GET_UPDATE function of the CCCC gate is used to get
a record and to establish a thread. This thread, identified by
a token, is used in a corresponding PUT_REPLACE.

Input parameters

DATA_OUT If response is OK, this contains a copy of the
record.

TYPE identifies a block of data.

NAME is used to construct a record key, together with the
domain and the type.

Output parameters

UPDATE_TOKEN Token to be used by the corresponding
PUT_REPLACE.

RESPONSE is the domain’s response to the call. It can have
any of these values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

[REASON] is returned when RESPONSE is EXCEPTION.
Possible values are:

RESPONSE
EXCEPTION

Possible REASON values

RECORD_NOT_FOUND, INVALID_DATA_LENGTH,
I0_ERROR

CCCC gate, PUT_REPLACE function

The PUT_REPLACE function of the CCCC gate is used to
replace a record.

Input parameters

DATA_IN is the data to be copied to the record.

UPDATE_TOKEN is the token obtained from a previous
GET_UPDATE, used to identify an existing record in the
catalog.

Output parameters

RESPONSE is the domain’s response to the call. It can have
any of these values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR | PURGED

[REASON] is returned when RESPONSE is EXCEPTION.
Possible values are:

RESPONSE
EXCEPTION

Possible REASON values

BAD_TOKEN, INVALID_DATA_LENGTH,
I0_ERROR, CATALOG_FULL

CCCC gate, START_BROWSE function

The START_BROWSE function of the CCCC gate is used to
start a browse session.

LY33-6088-02 © Copyright IBM Corp. 1980, 1999

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

Input parameters

TYPE identifies a block of data. The browse positions itself
before the first record for that type.

Output parameters

BROWSE_TOKEN is the token identifying this browse
session.

RESPONSE is the domain’s response to the call. It can have
any of these values:

OK|EXCEPTION|DISASTER| INVALID|KERNERROR | PURGED

[REASON] is returned when RESPONSE is EXCEPTION. It
has this value:

I0_ERROR

CCCC gate, GET_NEXT function

The GET_NEXT function of the CCCC gate is used to get
the next record.

Input parameters

BROWSE_TOKEN is the token identifying this browse
session.

DATA_OUT is a copy of the next record within the browsed
type.
Output parameters

RESPONSE is the domain’s response to the call. It can have
any of these values:

OK|EXCEPTION|DISASTER| INVALID|KERNERROR | PURGED

[REASON] is returned when RESPONSE is EXCEPTION.
Possible values are:

RESPONSE Possible REASON values

EXCEPTION INVALID_DATA_LENGTH, BAD_TOKEN,

BROWSE_END, IO_ERROR

CCCC gate, END_BROWSE function

The END_BROWSE function of the CCCC gate is used to

end a browse session.

Input parameters

BROWSE_TOKEN is the token identifying this browse
session.

Output parameters

RESPONSE is the domain’s response to the call. It can have
any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR | PURGED

[REASON] is returned when RESPONSE is EXCEPTION.
Possible values are:

LY33-6088-02 © Copyright IBM Corp. 1980, 1999

CICS catalog domains (GC/LC)

RESPONSE
EXCEPTION

Possible REASON values
BAD_TOKEN, I0_ERROR

CCCC gate, TYPE_PURGE function

The TYPE_PURGE function of the CCCC gate is used to
purge records. This deletes all records within the specified
TYPE block for that domain.

Input parameters
TYPE identifies a block of data.

Output parameters

RESPONSE is the domain’s response to the call. It can have
any of these values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR | PURGED

[REASON] is returned when RESPONSE is EXCEPTION.
Possible values are:

RESPONSE
EXCEPTION

Possible REASON values
TYPE_NOT_FOUND, I0_ERROR

CCCC gate, START_WRITE function

The START_WRITE function of the CCCC gate is used to
start a write session.

Input parameters: None.

Output parameters

WRITE_TOKEN is the token identifying a unique file string
(thread).

RESPONSE is the domain’s response to the call. It can have
any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR | PURGED

[REASON] is returned when RESPONSE is EXCEPTION. It
has this value:

10_ERROR

CCCC gate, WRITE_NEXT function

The WRITE_NEXT function of the CCCC gate is used to
write the next record.
Input parameters

WRITE_TOKEN is the token corresponding to the token from
START_WRITE.

DATA_IN is the data to be copied to the record.
TYPE identifies a block of data.

NAME is used to construct a record key, together with the
domain and the type.

Chapter 14. CICS catalog domains (GC/LC) 127

CICS catalog domains (GC/LC)

Output parameters

RESPONSE is the domain’s response to the call. It can have
any of these values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

[REASON] is returned when RESPONSE is EXCEPTION.
Possible values are:

RESPONSE Possible REASON values

EXCEPTION INVALID_DATA_LENGTH, IO_ERROR,

CATALOG_FULL, BAD_TOKEN

CCCC gate, END_WRITE function

The END_WRITE function of the CCCC gate is used to end
a write session.

Input parameters

WRITE_TOKEN Token corresponding to a START_WRITE.

Output parameters

RESPONSE is the domain’s response to the call. It can have
any of these values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR | PURGED

[REASON] is returned when RESPONSE is EXCEPTION.
Possible values are:

RESPONSE Possible REASON values

EXCEPTION I0_ERROR, BAD_TOKEN

CICS catalog domains’ generic gate

Table 22 summarizes the CICS catalog domains’ generic
gate. It shows the level-1 trace point IDs of the modules
providing the functions for the gate, the functions provided by
the gate, and the generic formats for calls to the gates.

Table 22. CICS catalog domains’ generic gate

Gate Trace 1 Function Format
DMDM CC 1010 PRE_INITIALISE DMDM
CC 1040 INITIALISE_DOMAIN

QUIESCE_DOMAIN
TERMINATE_DOMAIN

1 The domain identifier part of the point ID, shown in the
table as CC, appears in a trace as either LC (local catalog
domain) or GC (global catalog domain).

Descriptions of these functions and their input and output
parameters are given in the section dealing with the
corresponding generic formats. This is in format DMDM—see
“Domain manager domain’s generic formats” on page 195.

128 cics Diagnosis Reference

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

In preinitialization processing, the local catalog domain opens
the CICS local catalog, DFHLCD. (There is no
preinitialization processing for the global catalog domain.)

In initialization processing, the global catalog domain opens
the CICS global catalog, DFHGCD.

In quiesce processing, the local and global catalog domains
close their respective catalog data sets.

In termination processing, the CICS catalog domains perform
no termination processing. They do not close either the local
catalog or the global catalog; the operating system closes
these data sets.

Modules

Module
DFHCCCC

Function

Handles the following functions:

ADD

DELETE

GET

WRITE
GET_UPDATE
PUT_REPLACE
START_BROWSE
GET_NEXT
END_BROWSE
TYPE_PURGE
START_WRITE
WRITE_NEXT
END_WRITE

DFHCCDM Handles the initialization and termination of the CICS

catalog domains.

DFHCCDUF
DFHCCTRI
DFHCCUTL

Catalog dump formatting routine.

Trace interpreter routine for the catalog domains.

Offline utility to initialize the local catalog.

Exits

No global user exit points are provided in these domains.

Trace

The point IDs for the local catalog domain are of the form LC
xxxx; the corresponding trace levels are LC 1 and Exc.

The point IDs for the global catalog domain are of the form
GC xxxx; the corresponding trace levels are GC 1 and Exc.

For more information about the trace points, see the CICS
Trace Entries. For more information about using traces in
problem determination, see the CICS Problem Determination
Guide.

LY33-6088-02 © Copyright IBM Corp. 1980, 1999

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

Chapter 15. CICS-C/370 interface

This section describes the run-time interface between CICS
and C/370 that supports the execution of CICS application
programs written in the C language. The design has much in
common with CICS support for VS COBOL II.

Design overview

If IBM SAA AD/Cycle Language Environment/370 is installed
and is able to support the running of C/370 application
programs, CICS interfaces with AD/Cycle Language
Environment/370 and not directly with C/370.

Otherwise, communication between CICS and C/370 is made
by calling a special C/370 interface module (EDCCICS) and
passing to it a parameter list (addressed by register 1), which
consists of an indication of the function to be performed and
a set of address pointers to data values or areas.

Module EDCCICS is distributed in the C/370 library, but must
be copied to an authorized library defined in the STEPLIB
concatenation of the CICS startup job stream (see the CICS
System Definition Guide).

Table 23 lists the functions that are driven via this interface
and shows the name of the CICS module initiating each
function call. The format of each distinct call parameter list is
given in “External interfaces” on page 131.

Table 23. CICS-C/370 interface calls

Function Module C/370 call
Initialize Languages DFHSIJ1 Partition Initialization
Terminate Languages DFHSTP Partition Termination
Establish Language DFHPGLK, Determine Program Type
DFHPGLU
DFHPGPG
Start Program DFHPGLK, Thread Initialization
DFHPGLU Run Unit Initialization
Run Unit Termination
Thread Termination
Find Program Attributes DFHEDFX Working Storage Locate

The logical relationship between the different calls is shown
in Figure 37.

LY33-6088-02 © Copyright IBM Corp. 1980, 1999

CICS-C/370 interface

Partition
initialization

<+« PPT
C Determine Once only
I program type per program
C
S
1
i
f
e T Thread
t a initialization
i S
m k
e
1
-i —
f
e Run-unit
t initialization
i
m
e L
i
n >
k
Working
1 storage locate
e
v
e
1
Run-unit
termination
Thread
termination
Partition
termination

Figure 37. CICS-C/370 interface components

Note: The actual passing of control to EDCCICS is made
from the CICS language interface program
(DFHAPLI), which provides a single point of contact
between CICS and C/370. Other modules call

DFHAPLI to perform the desired function.

All calls to DFHAPLI use either the DFHAPLIM or DFHLILIM
domain calls.

129

CICS-C/370 interface

Establishing the connection

The procedure for establishing the initial connection with
C/370 is as follows:

1. Try to establish connection to Language
Environment/370. At CICS startup, DFHSIJ1 invokes
DFHAPLI for “partition initialization”. DFHAPLI attempts
to perform Language Environment/370 partition
initialization. If this is successful, and Language
Environment/370 indicates that it can support the
running of C/370 programs, no further processing takes
place for this call to DFHAPLI. Otherwise, processing
continues as follows.

2. Load EDCCICS. DFHAPLI issues an MVS LOAD macro.

3. Initialize contact with C/370. Contact is made with
C/370 by having CICS drive the partition initialization
function. DFHAPLI attempts C/370 partition initialization
only if the earlier load of EDCCICS was successful;
otherwise, the logic is bypassed.

If the C/370 partition initialization function completes, a
flag is set; if it fails, CICS issues error message
DFHAP1202.

Application program contact with C/370. Whenever a C
program runs directly under CICS, the application’s attempt
to make contact with C/370 fails if the “C is initialized” flag is
not set. CICS then abends the transaction with abend code
APCK and sets the transaction disabled.

Storage for the transaction

During the process of interfacing between CICS and C/370,
storage is required for the following:

e Parameter list for CICS-C/370 calls

¢ Register save area for use by DFHAPLI
¢ Register save area for use by C/370

e (/370 special work area

e C/370 reason code

e C/370 input/output queue details

e Thread storage

¢ Run-unit storage.

The lengths of the last two areas are initially unknown to
CICS. The length of a thread work area is a constant value
that is notified to CICS by C/370 during the partition
initialization processing. The length of a run-unit work area
varies for each program. It is notified to CICS by C/370
during the “determine program type” processing for that
program,; thereafter it can be found in the program language
block (PLB) entry.

The determine program type call is made by the program
manager domain which calls DFHAPLI when program fetch
completes successfully. The information returned by C/370 is
valid while the program is not refreshed with the NEWCOPY

130 ciIcs Diagnosis Reference

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

option; in that event, a new determine program type call must
be made.

Storage acquisition

For partition initialization and partition termination, the
necessary storage for the calls is taken from the functional
module’s own storage areas.

All other calls are application program related. Sufficient
storage for these calls is acquired by CICS before the first
task-related call to C/370, and is retained throughout the
lifetime of the task. The storage area caters for all the
required storage detailed above except for run-unit storage,
which is acquired separately. The storage area is contiguous
with the EXEC interface storage (EIS).

The address of this storage area for calls is held in
TCACEEPT in the TCA.

During the current CICS lifetime, on the first occasion only
that a unique C program is executed, a special “determine
program type” call is made to C/370. The purpose of this call
is to verify that the program is in fact written in C, and to tell
CICS the length of the run-unit work area that has to be
provided before control is actually passed to the program.

Thus, for every link level entered during the execution of the
application, a run-unit storage area must be acquired by
CICS and its address passed to C/370 during the run-unit
initialization process. The length of this area will have been
saved into the PLB entry by C/370 as part of the determine
program type function. CICS places the address of the
run-unit area into EIORUSTG from where it is freed during
the processing of run-unit termination.

Control blocks

The main control block is the combined CICS-C/370 work
area and call parameter list, also known as the “language
interface work area”. This area is shared by any additional
programs that are supported by Language Environment/370,
and form part of the same task. It is addressed by
TCACEEPT in the TCA. For C programs running directly
under CICS, the work area is mapped by the
LANGUAGE_INTERFACE_WORKAREA dsect.

Modules

The CICS-C/370 interface is accessed in the language
interface program (DFHAPLI) in response to calls from the
following modules:

DFHSIJ1, DFHEDFX, DFHPGLK, DFHPGLU, DFHPGPG, and
DFHSTP.

LY33-6088-02 © Copyright IBM Corp. 1980, 1999

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

Exits

No global user exit points are provided for this interface.

CICS-C/370 interface

Table 24. CICS-C/370 PARTITION_INITIALIZATION parameter list

Trace

Trace entries are made on entry to and exit from DFHAPLI
for C/370. Also, calls to and returns from the interface
module EDCCICS are traced.

Point IDs AP 1940 to AP 1945, with a trace level of PC 1,
correspond to these trace entries (as for the CICS-Language
Environment/370 interface).

For more information about the trace points, see the CICS
Trace Entries. For more information about using traces in
problem determination, see the CICS Problem Determination
Guide.

Offset Data addressed by the CICS field name Data
pointer length

00 F'10' (= Partition F'word
initialization)

04 Reason code C_REASON_CODE F'word

08 Address of system EIB 4

oc 240-byte work area C_WORKAREA 240

10 C/370 partition token CSACELPT 8
storage area (receiver)

14 Reserved

18 F'85' (Length of EIB) F'word

1C Length of preallocated CSACELTL F'word
thread storage (receiver)

20 C/370 interface level CSACELIL F'word

storage area (receiver)

Table 25. CICS-C/370 DETERMINE_PROGRAM_TYPE parameter
list

External interfaces

The DFHAPLI module builds the parameter lists that are
required for invoking unique C/370 functions, and passes
control to the C/370 interface module, EDCCICS.

The DFHAPLI module supports the following C/370 interface
functions:

PARTITION_INITIALIZATION
DETERMINE_PROGRAM_TYPE
THREAD_INITIALIZATION
RUNUNIT_INITIALIZATION
WORKING_STORAGE_LOCATE
RUNUNIT_TERMINATION
THREAD_TERMINATION
PARTITION_TERMINATION

CICS-C/370 interface parameter lists
The following tables show the layout and contents of the

parameter lists for the functions provided by the C/370
interface module EDCCICS.

LY33-6088-02 © Copyright IBM Corp. 1980, 1999

Offset Data addressed by the CICS field name Data
pointer length

00 F'50' (= Determine F'word
program type)

04 Reason code C_REASON_CODE F'word

08 Address of system EIB 4

oc 240-byte work area C_WORKAREA 240

10 C/370 partition token CSACELPT 8
storage area

14 C/370 thread token EIOCTHRT 8
storage area

18 Program load point TCAPCLA 4

1C Program entry point TCAPCRS 4

20 Program type (receiver) F'word

24 Run-unit work area PPTCISA F'word

length (receiver)

Table 26. CICS-C/370 THREAD_INITIALIZATION parameter list

Offset Data addressed by the CICS field name Data
pointer length

00 F'20' (= Thread F'word
initialization)

04 Reason code C_REASON_CODE F'word

08 Address of system EIB 4

oC 240-byte work area C_WORKAREA 240

10 C/370 partition token CSACELPT 8
storage area

14 C/370 thread token EIOCTHRT 8
storage area (receiver)

18 Preallocated thread work F'word

area

Chapter 15. CICS-C/370 interface 131

CICS-C/370 interface

Table 27. CICS-C/370 RUNUNIT_INITIALIZATION parameter list

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

Table 29. CICS-C/370 RUNUNIT_TERMINATION parameter list

Offset Data addressed by the CICS field name Data Offset Data addressed by the CICS field name Data
pointer length pointer length
00 F'32' (= Run-unit F'word 00 F'31' (= Run-unit F'word
initialization) termination)
04 Reason code C_REASON_CODE F'word 04 Reason code C_REASON_CODE F'word
08 Address of system EIB 4 08 Address of system EIB 4
ocC 240-byte work area C_WORKAREA 240 oc 240-byte work area C_WORKAREA 240
10 C/370 partition token CSACELPT 8 10 C/370 partition token CSACELPT 8
storage area storage area
14 C/370 thread token EIOCTHRT 8 14 C/370 thread token EIOCTHRT 8
storage area storage area
18 C/370 run-unit token EIORUNTK 8 18 C/370 run-unit token EIORUNTK 8
storage area (receiver) storage area
ic Preallocated run-unit EIORUSTG F'word 1c Termination data CELINFO 64
work area (see page 123)
20 Run-unit entry address EIOARG4 4
2u Application program EISARG1 Fword Table 30. CICS-C/370 THREAD_TERMINATION parameter list
argument list Offset Data addressed by the CICS field name Data
28 Input/output queue C_IOINFO (see 18 pointer length
details page 122) 00 F'21' (= Thread F'word
termination)
Table 28. CICS-C/370 WORKING_STORAGE_LOCATE parameter 04 Reason code C_REASON_CODE Fword
list 08 Address of system EIB 4
Offset Da’Fa addressed by the CICS field name Data oc 240-byte work area C_WORKAREA 240
pointer length
o - - 10 C/370 partition token CSACELPT 8
00 F'60' (= Working F'word storage area
storage locate)
- 14 C/370 thread token EIOCTHRT 8
04 Reason code C_REASON_CODE F'word storage area
08 Address of system EIB 4
ocC 240-byte work area C_WORKAREA 240 Table 31. CICS-C/370 PARTITION_TERMINATION parameter list
10 C/370 partition token CSACELPT 8 Offset Data addressed by the CICS field name Data
storage area pointer length
14 C/370 thread token EIOCTHRT 8 00 F'11' (= Partition F'word
storage area termination)
18 Application RSA address EISARSA 04 Reason code C_REASON_CODE F'word
1C Working storage address EDFUASTG 08 Address of system EIB 4
(receiver) oc 240-byte work area C_WORKAREA 240
20 Working storage length EDFWSLN Fword 10 C/370 partition token CSACELPT 8
(receiver)
storage area
14 Reserved

132 cics Diagnosis Reference

LY33-6088-02 © Copyright [BM Corp. 1980, 1999

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

CICS-DB2 Attachment Facility

Chapter 16. CICS-DB2 Attachment Facility

The CICS-DB2 Attachment facility allows applications
programs to access and update data held in DB2 tables
managed by the DB2 for OS/390 product. It also allows
applications to send operator commands to a DB2
subsystem.

Design overview

The CICS-DB2 Attachment facility allows connection to a
DB2 subsystem using the CICS resource manager interface
(RMI) also known as the task related user exit interface. The
Attachment facility interfaces to DB2 through a series of
requests to three components of DB2, each of which
processes specific types of requests:

e Subsystem Support Subcomponent (SSSC) for thread
and system control requests

e Advanced Database Management Facility (ADMF) for
SQL requests

¢ |Instumentation Facility Component (IFC) for IFI requests

There no are DB2 release dependencies within the
attachment facility, it can connect to a DB2 subsystem
running any supported level of DB2.

The architecture of the CICS-DB2 interface is shown in
Figure 38:

CICS ADDRESS SPACE

DB2 ADDRESS
CICS ATTACHMENT SPACES
CONTROL FACILITY CONTROL

CICS CICS THREAD
MAIN SUBTASK SUBTASK
TCB TCBs TCBs

DB2 SYSTEM
SERVICES

Thread
'DSNC' |L|—7—>| RESOURCE — 1 COMMAND
TRANS |1 MANAGER PROCESSOR
INTERFACE TCB1
(RMI)

DB2 DATABASE
SERVICES

CICS DB2
TASK Thread
APPL |L|— RELATED 2 APPLICATION
TRANS |1 USER EXIT PLAN
(DFHD2EX1) TCB2

Thread

APPL |L|— — 3 APPLICATION
TRANS |1 PLAN
TCB3

Figure 38. Overview of the CICS DBZ2 attachment facility

LY33-6088-02 © Copyright IBM Corp. 1980, 1999

CICS Initialization
During CICS Initialization the following modules are invoked:

CICS-DB2 initialization gate DFHD2IN1: DFHD2IN1
first receives control from DFHSII1 duiring CICS initialization
by means of a DFHROINM INITIALISE call. When invoked
with this function DFHD2IN1 attaches a system task CSSY to
run program DFHD2IN2.

DFHD2IN1 is invoked a second time later by DFHSII1 by
means of a DFHROINM WAIT_FOR_INITIALIZATION call for
which DFHD2IN1 issues a CICS wait to wait for DFHD2IN2
processing to complete.

CICS-DB2 recovery task DFHD2IN2: DFHD2IN2 runs
under CICS system task CSSY attached by DFHD2IN1.
DFHD2IN2 links to program DFHD2RP, the CICS-DB2
restart program. On return from DFHD2RP, DFHD2IN2 posts
the ecb waited on by DFHD2IN1 so that CICS Initialization
can continue.

CICS-DB2 restart program DFHD2RP: DFHD2RP
runs under system task CSSY during CICS initialization.
DFHD2RP performs the following functions:

e Adds storage manager subpools for the DFHD2ENT,
DFHD2TRN and DFHD2CSB control blocks.

¢ Issues lock manager domain ADD_LOCK requests to
add the necessary locks required by the CICS-DB2
Attachment facility to manage the dynamic chains of
DFHD2LOT and DFHD2CSB control blocks, plus locks
to manipulate the DFHD2GLB, DFHD2ENT and
DFHD2TRN control blocks.

¢ Loads CICS-DB2 modules DFHD2CC, DFHD2STR,
DFHD2STP and DFHD2TM

¢ Activates the DFHD2TM gate with the kernel.
e For cold and Initial CICS starts:

— Purges the Global catalog of DFHD2GLB,
DFHD2ENT and DFHD2TRN control blocks

e For warm and emergency CICS starts:

— Installs DFHD2GLB, DFHD2ENT and DFHD2TRN
blocks found on the global catalog

CICS-DB2 Attachment startup
The CICS-DB2 Attachment facility can be started using one
of the following methods:

¢ specifying program DFHD2CMO in PLTPI

¢ gspecifying SIT parameter DB2CONN=YES

¢ Issuing the DSNC STRT command

133

CICS-DB2 Attachment Facility

e |ssuing the CEMT or EXEC CICS SET DB2CONN
CONNECTED command

All of the above ways result in an EXEC CICS SET
DB2CONN CONNECTED command being issued and the
CICS-DB2 startup program DFHD2STR getting control.

CICS-DB2 startup program DFHD2STR: The startup
program starts by reading a temporary storage queue to
obtain any parameters passed if a DSNC STRT command
has been issued. It also retrieves any parameters specified
via the INITPARM SIT parameter by linking to program
DFHD2INI.

Next DFHD2STR must ensure the necessary DFHD2GLB
block is installed. If a DFHD2GLB is already installed,
representing an installed DB2CONN, then it is checked to
make sure interface is currently shut before startup can
proceed. If no DFHD2GLB block exists, then program
DFHD2CNYV is called to locate and load a macro RCT, and
then convert it to RDO form, installing the necessary control
blocks.
The remainder of DFHD2STR processing is as follows:
¢ Initialise the DFHD2GLB and set the state to ‘connecting’
e MVS load the DB2 program request handler

¢ Attach a CICS system task to run the CICS DB2 service
task CEX2

¢ Issue an MVS Attach for the CICS-DB2 master subtask
program DFHD2MSB

¢ Wait for DFHD2MSB initialization processing to complete
e Enable the CICS-DB2 TRUE DFHD2EX1

¢ Set the status of the connection to ‘connected'

¢ Process any indoubts passed from DB2

¢ Update state in the temporary storage queue to pass
back to a DSNC STRT command

CICS-DB2 Attachment shutdown
The CICS-DB2 Attachment facility can be stopped using one
of the following methods:

¢ |ssuing the DSNC STOP command

e Issuing the CEMT or EXEC CICS SET DB2CONN NOT
CONNECTED command

e Running the CDBQ or CDBF transactions
e Shutting down CICS
All of the above ways result in an EXEC CICS SET

DB2CONN NOTCONNECTED command being issued and
the CICS-DB2 shutdown program DFHD2STP getting control.

134 cics Diagnosis Reference

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

CICS-DB2 Shutdown program DFHD2STP:
Processing in DFHD2STP is as follows:

e |f CDB2SHUT is set in the dump table, take a system
dump (serviceability aid)

¢ post CICS-DB2 service task CEX2 to terminate all
subtasks then terminate itself. Wait for service task to
complete.

e Post master subtask DFHD2MSB to terminate. Wait for it
to terminate

¢ Detach master subtask TCB.
e Call DFHD2CC to write out shutdown statistics
¢ |If the CICS-DB2 attachment is to go into 'standbymode":

Re-initialise the DFHD2GLB, set the state to
‘connecting'

— Post any tasks who are waiting for shutdown to
complete

— Issues 'Waiting for DB2 attach' message

e |f the CICS-DB2 attachment is not to go into
'standbymode":

— Disable the CICS-DB2 TRUE DFHD2EX1
— MVS delete the program request handler
— Re-initialise the DFHD2GLB, set the state to 'shut'

— Discard the control blocks if they originated from a
macro RCT conversion

— Issue the shutdown complete message and post
any tasks who are waiting for shutdown to complete

CICS-DB2 mainline processing

CICS-DB2 Task Related User Exit (TRUE)
DFHD2EX1: Control is passed to the TRUE via the CICS
RMI. The TRUE manages the relationship between a CICS
task represented by a LOT control block, and a CICS-DB2
subtask represented by a CSB control block. DFHD2EX1
uses parameters set in the DB2CONN and DB2ENTRY
definitions to manage use of the CICS DB2 threads, each
thread running under a subtask. It is the subtask running
program DFHD2EX3 which issues requests to DB2 on behalf
of a CICS task. A wait/post protocol is executed between the
CICS task running in the CICS-DB2 TRUE, and the subtask
in program DFHD2EX3.

The CICS-DB2 TRUE DFHD2EX1 gets invoked by the RMI
for the following events:

e EXEC SQL commands and DB2 IFI commands from
application programs

e syncpoint

¢ end of task

LY33-6088-02 © Copyright IBM Corp. 1980, 1999

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

¢ INQUIRE EXITPROGRAM commands for the DB2
TRUE with the CONNECTST or QUALIFIER keywords
(RMI SPI calls)

¢ EDF - when EDFing EXEC SQL commands
¢ CICS shutdown

CICS-DB2 Master subtask program DFHD2MSB:
The DFHD2MSB TCB is attached by DFHD2STR during
startup of the Attachment facility. It runs as a 'daughter' of
the main CICS TCB. It is 'mother’ to all the subtask TCBs
which process the DB2 work. The DFHD2MSB TCB is
detached by DFHD2STP during CICS-DB2 Attachment
shutdown.

The main functions of DFHD2MSB are:

e To issue the initial IDENTIFY to DB2 to connect CICS to
DB2

e To find out from DB2 what indoubts it has
¢ To service resynchronisation requests from CICS to DB2

e To provide a shutdown listening exit to DB2 to listen out
for DB2 shutdown

e To attach thread subtasks as required
¢ To detach thread subtasks as required

e To provide a recovery routine to cleanup if a thread
subtask fails

CICS-DB2 subtask program DFHD2EX3: A
CICS-DB2 subtask TCB is attached by DFHD2MSB when
required by DFHD2EXX. It runs as a daughter of the
DFHD2MSB TCB and a granddaughter of the main CICS
TCB. A CICS-DB2 subtask TCB normally remains active for
the lifetime of the CICS Attachment facility and terminates as
part of CICS-DB2 Attachment facility shutdown. Exception
conditions that cause a subtask TCB to be detached are:

e if the DB2CONN TCBLIMIT parameter is lowered

e if a CICS task is forcepurged whilst its associated
subtask is active in DB2

¢ |f a failure occurs during syncpoint processing during the
indoubt window requiring the thread to be released.

The DFHD2EXS program issues requests to DB2 using the
DB2 SSSC, ADMF and IFC interfaces communicating via the
DB2 program request handler DSNAPRH. In order to
process DB2 requests a TCB first has to IDENTIFY to DB2,
secondly it has to SIGNON to DB2 to establish authorization
ids to DB2. Thirdly a thread has to be created. Once a
thread has been created API and syncpoint requests can
flow to DB2. Subsequent SIGNON requests can occur for a
thread to change authorization ids to DB2 or for the purposes
of DB2 cutting accounting records (partial SIGNON) When a
thread is nolonger required it is terminated. The TCB remains
identified and signed on to DB2 and awaits another request
requiring it to create a thread again.

LY33-6088-02 © Copyright IBM Corp. 1980, 1999

CICS-DB2 Attachment Facility

Each DB2 subtask runs an instance of program DFHD2EX3
and each is represented by a DFHD2CSB control block. A
CSB control block is anchored to one of three CSB chains
depending on its state (an active thread within a UOW, a
thread waiting for work, or an identified, signed on TCB with
no thread). The CICS-DB2 TRUE DFHD2EX1 manages the
CSB chains.

CICS-DB2 service task program DFHD2EX2: The
CICS-DB2 service task program DFHD2EX2 runs as a CICS
system task under transaction CEX2. Its mains functions are:

e To wait for DB2 to startup if DB2 is down when
connection is attempted if
STANDBYMODE=RECONNECT or CONNECT is
specified in the DB2CONN.

¢ To initiate shutdown of the CICS-DB2 Attachment facility
if posted to do so by DFHD2MSB.

¢ To perform the protected thread purge cycle.

e To terminate all subtasks during CICS-DB2 Attachment
facility shutdown.

CICS-DB2 PLTPI program DFHD2CMO: Used in
PLTPI or as a result of DB2CONN=YES being set in the SIT.
It issues an EXEC CICS SET DB2CONN CONNECTED
command to start up the CICS DB2 Attachment facility.

CICS-DB2 Comand processor DFHD2CM1.:
DFHD2CML1 processes commands issues via the DSNC
command. The following commands are processed:

e DSNC STRT - EXEC CICS SET DB2CONN
CONNECTED command issued

e DSNC STOP - EXEC CICS SET DB2CONN
NOTCONNECTED command issued

e DSNC MODIFY DEST - EXEC CICS SET DB2CONN
MSGQUEUEN command issued

e DSNC MODIFY TRAN - EXEC CICS SET DB2CONN
THREADLIMIT or EXEC CICS SET DB2ENTRY
THREADLIMIT command issued.

¢ DSNC DISC - call passed to DFHD2CC to disconnect
threads

e DSNC DISP PLAN - call passed to DFHD2CC to display
information on threads for a particular DB2 plan

e DSNC DISP TRAN - call passed to DFHD2CC to display
information on threads for a transaction.

e DSNC DISP STAT - call passed to DFHD2CC to write
out statistics

e DSNC -db2command - DB2 IFI ccommand issued to
send operator command to the connected DB2
subsystem.

CICS-DB2 shutdown quiesce program DFHD2CM2:
Runs under transaction CDBQ. Issues an EXEC CICS SET
DB2CONN NOTCONNECTED WAIT command to shutdown
the CICS-DB2 Attachment facility.

Chapter 16. CICS-DB2 Attachment Facility 135

CICS-DB2 Attachment Facility

CICS-DB2 shutdown force program DFHD2CM3:
Runs under transaction CDBF. Issues an EXEC CICS SET
DB2CONN NOTCONNECTED FORCE command to
shutdown the CICS-DB2 Attachment facility.

CICS-DB2 Table manager DFHD2TM: Handles
installs, discards, inquire and set requests for the
DFHD2GLB, DFHD2ENT and DFHD2TRN control blocks
representing the DB2CONN, DB2ENTRY and DB2TRAN
resources. Callers of DFHD2TM are:

¢ DFHAMD?2 - for CEDA install and EXEC CICS CREATE

e DFHD2CNV - to install DB2 objects as a result of
dynamic conversion from a macro RCT.

e DFHD2EX1 - to complete disablement of a DB2ZENTRY
or to complete Attachment facility shutdown

e DFHD2RP - to install objects from the Global Catalog
during CICS restart

e DFHD2STP - to discard DB2 objects during Attachment
shutdown if they originated from a macro RCT.

e DFHEIQD?2 - for EXEC CICS INQUIRE,SET and
DISCARD of DB2 objects

e DFHESE - for inquiry during EXEC CICS QUERY
SECURITY processing.

CICS DB2 statistics program DFHD2ST: Called by
AP domain statistics program DFHAPST to process
CICS-DB2 statistics for EXEC CICS COLLECT STATISTICS
and EXEC CICS PERFORM STATISTICS commands.

CICS DB2 connection control program DFHD2CC:
DFHD2CC proceses the following requests:

e Start_db2_attachment - request routed on to DFHD2STR
e Stop_db2_attachment - request routed on to DFHD2STP

e Write_db2_statistics - statistics collected from control
blocks and are written out to the terminal, to transient
data or to SMF.

e disconnect_threads - CSB control blocks searched and
marked so that threads are terminated when they are
next released.

e display_plan and display_tran - thread information
collected from control blocks and output to the terminal.

CICS DB2 EDF processor DFHD2EDF: Receives
control from CICS-DB2 TRUE DFHD2EX1 when the TRUE is
invoked for an EDF request. DFHD2EDF uses the RMI
provided parameters to format the screen to be output by
EDF before and after an EXEC SQL request is issued.

136 ciIcs Diagnosis Reference

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

Control blocks

DFHD2SS (CICS-DB2 static storage)

CICS-DB2 static storage (D2SS) is acquired by DFHSIB1
and anchored off field SSZDB2 in the static storage address
list DFHSSADS. The static storage is initialized by the
CICS-DB2 restart program DFHD2RP. lts lifetime is that of
the CICS region. CICS-DB2 static storage holds information
such as storage manager, lock manager and directory
manager tokens acquired during restart processing before
any other CICS-DB2 control blocks are installed.

DFHD2GLB (CICS-DB2 Global block)

The DFHD2GLB block represents an installed DB2CONN
definition. It is getmained by DFHD2TM when a DB2CONN is
installed and freemained by DFHD2TM when a DB2CONN is
discarded. It holds CICS-DB2 state data global to the
connection and also the state data for pool threads and
commands threads. The pool and command sections of the
DFHD2GLB are mapped by a common type definition
DFHD2RCT which is also used to map the DFHD2ENT
control block.

The DFHD2GLB block is anchored off CICS-DB2 static
storage in field D2S_DFHD2GLB.

DFHD2ENT (CICS-DB2 DB2ENTRY block)

The DFHD2ENT block represents an installed DB2ENTRY
definition. It is getmained by DFHD2TM when a DB2ENTRY
is installed and freemained by DFHD2TM when a
DB2ENTRY is discarded. It uses a type definition
DFHD2RCT in common with the pool and command sections
of the DFHD2GLB block to achieve a common layout for all
three areas. A DFHD2ENT block is located using a directory
manager index that is keyed off the RDO name of the
DB2ENTRY.

DFHD2TRN (CICS-DB2 DB2TRAN block)

The DFHD2TRN block represents an installed DB2TRAN
definition. It is getmained by DFHD2TM when a DB2TRAN is
installed and freemained by DFHD2TM when a DB2TRAN is
discarded. A DB2TRAN can be located in two ways. Firstly
by a directory manager index keyed off the RDO name of the
DB2TRAN. Secondly by a directory manager index keyed off
the transaction id associated with the DB2TRAN.

LY33-6088-02 © Copyright IBM Corp. 1980, 1999

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

DFHD2CSB (CICS-DB2 subtask block)

The DFHD2CSB block represents a CICS-DB2 subtask
running program DFHDEX3. A DFHD2CSB is getmained by
DFHD2EX1 prior to the subtask being attached. It is passed
to the subtask DFHD2EX3 as an attach parm. A DFHD2CSB
is freemained by DFHD2EX1 after the DFHD2EX3 program
has returned to MVS. A DFHD2EX3 block is anchored off
one of several CSB chains from a DB2ENTRY or the
DFHD2GLB depending on the state of the TCB and the DB2
thread.

DFHD2GWA (CICS-DB2 global work area)

The DFHD2GWA block is the global work area of the
CICS-DB2 task related user exit (TRUE) DFHD2EXL1. It is
getmained when the TRUE is enabled, and freemained when
the TRUE is disabled. The D2GWA holds a chain of LOT
control blocks representing the tasks currently using the
CICS-DB2 interface.

DFHD2LOT (CICS-DB2 life of task block)

The DFHD2LOT block is the task local work area of the
CICS-DB2 task related user exit (TRUE) DFHD2EXL1. It is
getmained by DFHERM when a task first calls the CICS-DB2
TRUE. It is freemained by DFHERM at end of task. Its
address is passed to DFHD2EX1 by DFHERM in parameter
UEPTAA in the DFHUEPAR RMI parameter list.

The DFHD2LOT holds CICS-DB2 state information for a
CICS task using the CICS-DB2 interface.

Modules

Module Description

DFHD2CC CICS-DB2 connection control program
DFHD2CMO CICS-DB2 PLTPI startup program
DFHD2CM1 CICS-DB2 command processor
DFHD2CM2 CICS-DB2 quiesce shutdown program
DFHD2CM3 CICS-DB2 force shutdown program
DFHD2EDF CICS-DB2 EDF processor
DFHD2EX1 CICS-DB2 task related user exit (TRUE)
DFHD2EX2 CICS-DB2 service task program
DFHD2EX3 CICS-DB2 subtask program
DFHD2INI CICS-DB2 Initparm processor
DFHD2IN1 CICS-DB2 initialization gate
DFHD2IN2 CICS-DB2 recovery task

DFHD2MSB CICS-DB2 master subtask program
DFHD2RP CICS-DB2 restart program
DFHD2STP CICS-DB2 shutdown program
DFHD2STR CICS-DB2 startup program

DFHD2ST CICS-DB2 statistics program
DFHD2TM CICS-DB2 table manager
DSNCUEXT CICS-DB2 sample dynamic plan exit

LY33-6088-02 © Copyright IBM Corp. 1980, 1999

CICS-DB2 Attachment Facility

Exits

There are no Global user exits provided by the CICS DB2
Interface.

The CICS DB2 interface does however provide a dynamic
plan 'exit' in the form of a user replaceable module. A sample
default exit is provided called DSNCUEXT. A dynamic plan
exit allows the name of the plan to chosen dynamically at
execution time. For further information about dynamic plan
exits see the CICS DB2 Guide.

Trace

The CICS-DB2 Attachment facility outputs trace entries in the
range AP 3100 to AP 33FF. Trace output from the CICS-DB2
TRUE DFHD2EX1 and GTF trace from the CICS-DB2
subtask is controlled by the RI (RMI) trace flag. Trace from
the rest of the attachment and other CICS-DB2 modules is
controlled by the FC (File Control) trace flag.

Statistics

A limited set of CICS-DB2 statistics can be obtained by
issuing the DSNC DISP STAT command, which will output
the statistics to a CICS terminal. The same format of
statistics is output to a nominated transient data queue when
the CICS-DB2 Attachment facility is shut down For more
information see the CICS DBZ2 Guide.

A more comprehensive set of CICS-DB2 statistics can be
obtained by issuing an EXEC CICS PERFORM STATISTICS
RECORD command with the DB2 keyword, or by issuing the
EXEC CICS COLLECT STATISTICS command with the
DB2CONN or DB2ENTRY keywords. CICS-DB2 Global
statistics are mapped by DSECT DFHD2GDS. CICS-DB2
resource statistics are mapped by DSECT DFHD2RDS. For
more information see the CICS Performance Guide.

Chapter 16. CICS-DB2 Attachment Facility 137

CICS-DB2 Attachment Facility “Restricted Materials of IBM”
Licensed Materials — Property of IBM

138 cics Diagnosis Reference LY33-6088-02 © Copyright IBM Corp. 1980, 1999

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

Chapter 17. Command interpreter

The command interpreter demonstrates to the application
programmer the syntax of CICS commands and the effects
of their execution. It can also be used to perform simple
one-off tasks whose nature does not justify the writing of a
permanent application.

Command interpreter

Design overview

The command interpreter is invoked by the CECI transaction
and is an interactive, display-oriented tool that checks the
syntax of CICS commands and executes them. Another
transaction, CECS, performs only syntax checking.

The user enters a command that is analyzed in the same
way as it would be by the command translator, which
processes it as if it were part of an application program. The
results of this analysis, including any messages, an indication
of defaults assumed, and the entire syntax of the command,
are then displayed.

When the command is syntactically valid, the user can
request its execution. The interpreter calls DFHEIP, passing
a parameter list precisely as would be passed during the
execution of a program that contained the command.

The interpreter does all this using the same
command-language tables as are used by the command
translator. These tables contain data that define the syntax of
CICS commands and the contents of the parameter lists
required by DFHEIP to execute them.

LY33-6088-02 © Copyright IBM Corp. 1980, 1999

Modules

Module Function

DFHECIP Invoked by CECI. Checks that the terminal is suitable.
Obtains and initializes working storage. Loads the language
tables. Links to DFHECID

DFHECSP Same as DFHECIP, but invoked by CECS

DFHECID Receives data from the terminal and sends back a display.
Analyzes commands. Constructs parameter lists for
DFHEIP, which it calls. Deals with PF keys

DFHEITAB Command-language table (application programmer
commands)

DFHEITBS Command-language table (system programmer commands).

Exits

No global user exit points are provided for this function.

Trace

No trace points are provided for this function.

139

Command interpreter “Restricted Materials of IBM”
Licensed Materials — Property of IBM

140 cics Diagnosis Reference LY33-6088-02 © Copyright IBM Corp. 1980, 1999

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

CSD utility program (DFHCSDUP)

Chapter 18. CSD uitility program (DFHCSDUP)

The CSD utility program, DFHCSDUP, provides offline
services for you to list and modify the resource definitions in
the CICS system definition (CSD) file. DFHCSDUP can be
invoked as a batch program, or from a user-written program
running either in batch mode or under TSO. The second
method provides a more flexible interface to the utility,
allowing for the specification of up to five user exit routines to
be called at various points during DFHCSDUP processing.

Further information about using DFHCSDUP is given in the
CICS Resource Definition Guide, the CICS Operations and
Utilities Guide, and the CICS Customization Guide.

The following commands can be used with DFHCSDUP:

ADD
ALTER
APPEND
COoPY
DEFINE
DELETE
EXTRACT
INITIALIZE
LIST
MIGRATE
REMOVE
SERVICE
UPGRADE
VERIFY

These commands are described in the CICS Resource
Definition Guide and the CICS Operations and Ultilities
Guide.

Design overview

When DFHCSDUP is invoked, control passes to the utility
command processor (DFHCUCP), which validates
commands and invokes the appropriate routine to execute
the requested function. Unless DFHCSDUP has been
invoked from a user program specifying a get-command exit,
DFHCUCP takes a command from the input data set, using
DFHCUCB to obtain the command and DFHCUCAB to
analyze and parameterize it. When supplied, the
get-command exit is invoked from the point during
DFHCUCB's processing where commands would otherwise
be read from SYSIN (or an alternatively named input data set
when DFHCSDUP is invoked from a user program).

Some syntax errors are diagnosed and reported by
DFHCUCARB, and further contextual validation takes place in
DFHCUCV. Valid commands are then passed to the relevant
service routine for execution; for example, a MIGRATE
command is handled by DFHCUMIG. If command execution
is successful, the next command is processed.

LY33-6088-02 © Copyright IBM Corp. 1980, 1999

All commands are validated, but the execution of commands
from the input data set stops when an incorrect command is
encountered, and execution of subsequent commands is also
suppressed if an error of severity 8 or higher occurs when
the command is executed. When commands are supplied by
a get-command exit, however, DFHCSDUP attempts to
execute all commands, even if an error is detected in the
command syntax or during processing (unless the error is
serious enough to warrant an ABEND).

If errors occur while processing commands, error messages
in the DFH51xx, DFH52xx, DFH55xx, and DFH56xx series
are written to SYSPRINT (or an alternatively named output
data set when DFHCSDUP is invoked from a user program).

An ESTAE environment is established by DFHCUCP shortly
after the start of DFHCSDUP processing. If an operating
system abend subsequently occurs, control passes to the
ESTAE exit routine, which then returns to MVS requesting a
dump and scheduling a retry routine to get control. This retry
routine attempts cleanup processing before returning to the
caller of DFHCSDUP with a return code of ‘16’.

To protect the integrity of the CSD, DFHCUCP issues a
STAX macro to defer the handling of any attention interrupts
that may occur in a TSO environment until all processing
associated with the current command has been completed.

DFHCSDUP uses batch versions of RDO routines from the
parameter utility program (DFHPUP) and the CSD
management program (DFHDMP) to read, write, and update
resource definitions on the CSD file. All CSD control
functions use the batch environment adapter (DFHDMPBA),
which performs environment-dependent VSAM operations on
the CSD file. DFHDMPBA also processes all interactions with
operating system services.

Modules

DFHCSDUP is link-edited from a number of object modules,
including batch versions of routines from DFHPUP and
DFHDMP.

Exits

When invoked as a conventional batch program, DFHCSDUP
supports only one user exit: the EXTRACT exit, which is
invoked at various stages during the processing of an
EXTRACT command. The name of the user-written program
to get control must be specified by the USERPROGRAM
keyword of the EXTRACT command. Details of selected
CSD objects are passed to the user exit program so that
users can analyze the contents of their CSD in any way they
may choose.

141

CSD utility program (DFHCSDUP)

When invoked from a user program, DFHCSDUP supports
the following five user exits, the addresses of which can be
specified in the EXITS parameter of DFHCSDUP's entry
linkage:

1. Initialization exit—invoked by DFHCUCP
2. Termination exit—invoked by DFHCUCP
3. EXTRACT exit—invoked by DFHCULIS

4. Get-command exit—invoked by DFHCUCB
5. Put-message exit—invoked by DFHBEP.

Note: A user exit routine specified by the USERPROGRAM
keyword of an EXTRACT command is used in
preference to any EXTRACT exit routine specified on
the entry linkage.

For further information about these user exits, see the CICS
Customization Guide.

Trace

Trace points are not applicable to offline utilities.

Statistics

The following statistics are maintained by DFHCSDUP, and
are written, when appropriate, to SYSPRINT (or alternatively
named output data set):

CMDSEXOK Commands executed 0K

CMDSINER Commands in error

CMDSNOTX Commands not executed

CMDSWARN Commands with warning messages.

142 cics Diagnosis Reference

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

All the above statistics are kept in DFHCUCP’s static storage
and are always output at the end of processing.

All the following statistics are kept in DFHCUMIG's static
storage and the appropriate statistics are also output to
SYSPRINT (or its replacement). For example, if a user
migrates an FCT, only TOTFILE and TOTLSRP are output.

TOTCONS Total connections migrated
TOTFILE Total files migrated
TOTLSRP Total LSR pools migrated
TOTMAPS Total map sets migrated
TOTPGMS Total programs migrated
TOTPRFG Total profiles generated
TOTPRFM Total profiles migrated
TOTPSTS Total partition sets migrated
TOTSESS Total sessions migrated
TOTTRAS Total transactions migrated
TOTTRMS Total terminals migrated
TOTTYPS Total typeterms migrated

LY33-6088-02 © Copyright IBM Corp. 1980, 1999

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

Chapter 19. Database control (DBCTL)

An overall description of DL/l database support is given in
Chapter 25, “DL/I database support” on page 177. This
section gives information that is specific to database control
(DBCTL).

Design overview

The CICS support that enables connection to DBCTL, via the
database resource adapter (DRA), is based on the CICS
resource manager interface (RMI), also known as the
task-related user exit interface. However, because it is
necessary to provide compatibility with the existing CICS-DL/I
implementation (in terms of link-edit stubs, API return codes,
and so on), a limited amount of support within CICS itself is
provided, but there are no DBCTL release dependencies
within the CICS modules.

The main components of the CICS-DBCTL interface are
shown in Figure 39:

CICS address space IMS/ESA address space

MENU, CONN,DISC,
INQ,CONTROL TRANS| R

—-=

USER DL/I RMI
TRANSACTIONS [STUB

—_~r o
oxwo
= o—

>
o wo

cIcs

oM —o>»0>

| EXITS | (A/T)

LOG LOG

Figure 39. The major components of the CICS-DBCTL interface

LY33-6088-02 © Copyright IBM Corp. 1980, 1999

Database control (DBCTL)

The connection process (CICS-DBCTL)

CICS-DBCTL connection and disconnection
programs
These programs are used for establishing and
terminating the connection with the DRA.

CICS-DBCTL control program
This program is responsible for resolving in-doubt
units of work after a CICS or DBCTL failure. It also
outputs messages when DBCTL notifies CICS of a
change in the status of the CICS-DBCTL interface.

When the CICS disconnects from DBCTL, the
control program is responsible for invoking the
disable program which performs cleanup.

DRA control exit
This exit is invoked by the DRA, when connection
has been established with the DBCTL address
space, to initiate the resynchronization process, that
is, to initiate the resolution of in-doubt units of work.
It is also invoked to handle cases where connection
to DBCTL cannot be achieved or when the
connection has failed.

DBCTL user-replaceable program
This program is invoked whenever CICS
successfully connects to DBCTL and whenever
CICS disconnects from DBCTL.

Disable program
This program is invoked when CICS disconnects
from DBCTL.

The DBCTL call processor program

The function of this program is to issue an RMI call to
DBCTL and to maintain compatibility with the existing
CICS-DL/I interface in areas such as application
program return codes, and so on.

The interface layer

The adapter
The adapter’s primary responsibility is interfacing
the RMI and DRA parameter lists. Other
responsibilities include the issuing of DRA
initialization and termination calls, when invoked by
the CICS connection and disconnection programs,
and the management of CICS tasks, in order to
effect an orderly shutdown of the CICS-DBCTL
interface.

DRA suspend and resume exits
These exits are invoked by the DRA in order to
suspend and resume a CICS task while a DL/I call
is processed by DBCTL.

Adapter exits
There are four exits for use by the adapter:

— The statistics exit

143

Database control (DBCTL)

— The token exit
— The monitoring exit
— The status exit.

Details of these components are described in the following
sections.

Note: CICS documentation uses the term “connecting and
disconnecting from DBCTL". The DRA documentation
refers to “initializing and terminating the CICS-DBCTL
interface”. In general, these two terms are

synonymous.

The connection process

Connection and disconnection programs: In order
to initialize, terminate, and inquire on the status of the
interface, a set of four programs is available:

1. Menu program

2. Connection program
3. Disconnection program
4. Inquiry program.

Menu program (DFHDBME): This permits a terminal user
to display a menu, which offers the option of connecting and
disconnecting from DBCTL.

The menu program passes control to either the connection or
the disconnection program, as appropriate, using the
COMMAREA to pass any overrides and parameters.

In the case of connection, it offers the ability to supply the
suffix of the DRA startup parameter table and the name of
the DBCTL region. The DRA startup parameter table
contains various parameters, mostly relating to the
initialization of the CICS-DBCTL interface, including the
name of the DBCTL region and the minimum and maximum
number of CICS-DBCTL threads. It also contains the length
of time in seconds that the DRA waits after an unsuccessful
attempt to connect to DBCTL, before attempting to connect
again.

For disconnection, it offers the ability to specify whether an
orderly or immediate disconnection from DBCTL is required.

The menu program is intended for use by CICS operators or
network controllers, that is, users with special privileges.

BMS maps are used for both the menu and the inquiry
programs. It should be noted that the bottom half of the
menu screen includes all the items which appear on the
inquiry screen, and the values are displayed on entry to the
menu program, if they are known. The DRA startup table
suffix is not included on the inquiry screen because the DRA
startup table contains the application group name which is
used for security checking.

After a connection request has been issued, it is possible to
issue a disconnection request (orderly or immediate) from the

144 cics Diagnosis Reference

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

menu program while the connection process is still in
progress. After an orderly disconnection request has been
issued, it is also possible to issue an immediate
disconnection request while the orderly disconnection
process is in progress. This has the effect of upgrading the
orderly disconnection to an immediate disconnection.

Connection program (DFHDBCON): This program invokes
the adapter requesting connection to DBCTL.

This program can be invoked either from the menu program
or from the CICS PLT. It issues an ATTACH request of the
CICS control program that later carries out resynchronization
of in-doubt units of work with DBCTL. The control program
then issues a WAIT request.

The connection program continues by loading, activating
(using the EXEC CICS ENABLE command), and then calling
the adapter (using a DFHRMCAL request). A set of
parameters is passed to the adapter which includes:

e The CICS applid

e The DRA startup parameter table suffix (optional)
e The DBCTL ID (optional)

e A set of exit addresses.

As a result of the DFHRMCAL request issued from the
connection program, the adapter loads the DRA
startup/router module from the CICS STEPLIB library and
passes control to it, supplying it with various parameters
including the CICS applid, DRA startup parameter table
suffix, and DBCTL ID. The DRA startup/router module loads
the DRA startup table. It then initiates the processes required
to establish the DRA and then returns control to the adapter
which, in turn, returns control to the connection program
which then terminates. Until this point is reached, any
DBCTL requests issued from CICS tasks are rejected by the
CICS RMI stub (the DBCTL call processor).

The DRA startup/router module is responsible for
establishing the DRA environment, using the parameters
specified in the DRA startup table in the CICS STEPLIB
library, overridden by any parameters passed to it.

The DRA establishes contact with the DBCTL address space
and then invokes the control exit to initiate the
resynchronization process.

Disconnection program (DFHDBDSC): This program
invokes the adapter requesting disconnection from DBCTL.

The disconnection program is used to terminate the DRA
environment. Two types of disconnection are available:

Orderly disconnection
All existing CICS tasks using DBCTL are allowed to run
to completion.

Immediate disconnection
Existing DL/l requests are allowed to complete but no
further DL/I requests are accepted.

LY33-6088-02 © Copyright IBM Corp. 1980, 1999

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

In both cases a DBCTL U113 abend is avoided. (DBCTL can
issue a U113 abend if CICS terminates while there is an
active DL/I thread running on its behalf in DBCTL. The
thread remains active for the duration of the PSB schedule,
but DBCTL would issue a U113 abend if the thread is doing
something for the CICS task.)

The disconnection program calls the adapter, using
DFHRMCAL, supplying a parameter to indicate the type of
termination required.

In the case of immediate disconnection, the adapter issues a
DRA TERM call and returns to the disconnection program
only when all existing DL/I threads have completed. In the
case of orderly disconnection, the adapter assumes
responsibility for managing CICS tasks, that is, it continues to
accept requests for current tasks using DBCTL until they
terminate, but does not allow new CICS tasks to use DBCTL.
When the adapter detects that the count of permitted tasks
has reached zero, it issues a DRA TERM call.

The disconnection program finally posts the control program
to notify it of the fact that the CICS-DBCTL interface has

been terminated. The control program then terminates after
starting the disable program. The disable program issues a
DISABLE command for the adapter, and performs cleanup.

It should be noted that the terminal used to invoke the
disconnection program is released after the input to the
menu screen has been validated, enabling the terminal
operator to use other programs. Any further messages from
the disconnection process are generated centrally.

Inquiry program (DFHDBIQ): This program enables the
user to inquire on the status of the interface. It is intended for
a wider audience than the menu program; for example,
application programmers.

Control program (DFHDBCT): The control program is
invoked in the following circumstances:

¢ When the control exit is invoked by the adapter on
behalf of the DRA

¢ When a CEMT FORCEPURGE command is issued for a
CICS task executing in DBCTL

¢ When the disconnection program has received a
response from the adapter as a result of a CICS-DBCTL
interface termination request.

Its function in all cases is to issue messages. It then issues a
WAIT after every invocation. Also, it has some special
functions in three cases:

1. When contact has been made with DBCTL and
resynchronization of in-doubts is required.

In this case, the control program issues the command:

EXEC CICS RESYNC ENTRYNAME (adapter)
IDLIST(DBCTL’s in-doubts) ...

LY33-6088-02 © Copyright IBM Corp. 1980, 1999

Database control (DBCTL)

This causes CICS to create tasks for each in-doubt unit
of work. Each task performs resynchronization and then
informs the adapter via the CICS syncpoint manager as
to whether the task has committed or backed out. The
adapter then notifies the DRA on a task basis.

The following is a list of the possible calls to the adapter
from the CICS syncpoint manager:

e Prepare to commit

e Commit unconditionallyl

e Backoutl

¢ Unit of recovery is lost to CICS cold start2

e DBCTL should not be in-doubt about this unit of
recovery2.

Notes:

1 These items can be issued as a result of a RESYNC
request.

2 These items can be issued as a result of a RESYNC
request only.

2. When /CHECKPOINT FREEZE has been requested.

In this case, the control program invokes the
disconnection program requesting an orderly
disconnection from DBCTL. Generally, an orderly
disconnection from DBCTL allows CICS tasks already
using DBCTL to continue until task termination.
However, when a /CHECKPOINT FREEZE has been
requested, DBCTL prevents any PSB schedules from
taking place. Thus, in this case, some tasks might be
terminated before end of task is reached with a ‘DBCTL
not available’ return code, if they issue a subsequent
PSB schedule request.

3. When the disconnection program invokes the control
program.

In this case, the control program starts the disable
program.

DRA control exit (DFHDBCTX): The control exit is
invoked in the DRA environment in the following
circumstances:

¢ When contact has been established with the DBCTL
address space, in order to initiate resynchronization.

The control exit is invoked in the DRA environment
whenever contact has been established with DBCTL,
whether invoked by the user or due to the DRA
automatically reestablishing contact after a DBCTL
failure. The control exit receives an input parameter list
that includes the DBCTL ID, DBCTL's list of in-doubt
units of work, and the DBCTL RSE name. The control
exit posts the control program, which actually performs
the resynchronization.

¢ When the MVS subsystem interface (SSI) rejects the
IDENTIFY request to DBCTL, thereby causing the
IDENTIFY to fail.

This could occur if the DRA was trying to issue an
IDENTIFY request to a DBCTL subsystem that was not

Chapter 19. Database control (DBCTL) 145

Database control (DBCTL)

running. In this case the control exit sets a response
code of ‘0’. The first time in a connection attempt that
the DRA receives a ‘0’ response after an MVS SSI
failure, the DRA outputs message DFS690A inviting the
operator to reply WAIT or CANCEL. On subsequent
failures when a response code of ‘0’ is returned, the
DRA waits for the length of time specified in the DRA
startup table before attempting the IDENTIFY request
again.

¢ When DBCTL rejects the IDENTIFY request to DBCTL;

for example, incorrect application group hame (AGN)
supplied.

In this case, the control exit asks the DRA to terminate.

¢ When the operator replies CANCEL to the DFS690A
message during DRA initialization, because contact
cannot be established with DBCTL.

In this case, the control exit notifies the DRA to
terminate immediately.

e When DBCTL abnormally terminates.

In this case, the control exit invokes the control program
and then it asks the DRA to issue an IDENTIFY request
to DBCTL.

¢ When the DRA abnormally terminates.

In this case, it is not possible to access DBCTL from the
same CICS session without initializing the CICS-DBCTL
interface using the menu program.

¢ When a /CHECKPOINT FREEZE request has been
issued to DBCTL.

Note that /CHECKPOINT FREEZE is the command used
to close down a DBCTL subsystem. In this case the
control exit invokes the control program which, in turn,
invokes the disconnection program requesting an orderly
disconnection from DBCTL. The control exit notifies the
DRA to wait for a termination request.

DBCTL user-replaceable program (DFHDBUEX):

The DBCTL user-replaceable program, DFHDBUEX, is
invoked whenever CICS successfully connects or
disconnects from DBCTL. It provides the opportunity for the
customer to supply code to enable and disable CICS-DBCTL
transactions at these times.

The program runs as a CICS application and can thus issue
EXEC CICS requests. The program is invoked with a CICS
COMMAREA containing the following parameters:

¢ Request type: CONNECT | DISCONNECT

e Reason for disconnection: MENU DISCONNECTION |
/CHECKPOINT FREEZE | DRA FAILURE | DBCTL
FAILURE

¢ DRA startup table suffix
e DBCTL ID.

See the CICS Customization Guide for information about the
DFHDBUEX program.

146 cics Diagnosis Reference

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

Disable program (DFHDBDI): The disable program,
DFHDBDI, is invoked when CICS disconnects from DBCTL.
It performs cleanup, which includes disabling the adapter.

The DBCTL call processor program (DFHDLIDP):
Among the functions of the DBCTL call processor program,
DFHDLIDP, are:

Issuing DFHRMCAL requests to the adapter: DL/
requests issued from application programs that have been
routed to this module are passed on to the adapter. The
DBCTL call processor constructs a register 1 parameter list
that includes the DL/I parameter list and a thread token. It
then issues a DFHRMCAL request.

It is the responsibility of this module to generate the thread
token required by the DRA.

Maintaining return code compatibility: If any calls are
made to the RMI before the first part of the connection
process has completed, that is, before the DFHDBCON
program has received a “successful” response code from the
DRA via the adapter, error return codes are set in the task
control area (TCA) to indicate that DBCTL is unavailable.
These codes are put in the user interface block (UIB) by the
DL/I call router program, DFHDLI.

Similarly, the DBCTL call processor informs application
programs when DBCTL is no longer available; for example,
after a DBCTL abend.

Another function of the call processor is to set up the TCA
fields, TCADLRC and TCADLTR, with response and reason
codes respectively for the call. This ensures that the
application program continues to receive responses
indicating normal response, NOTOPEN, and INVREQ
conditions, with the appropriate response and reason codes
in the corresponding UIB fields, UIBFCTR and UIBDLTR,
after NOTOPEN and INVREQ conditions have been raised.

Initiating PC abends: If an ‘unsuccessful’ return code is
passed back to CICS as a result of a DBCTL request,
indicating that the CICS thread must be abended, the DBCTL
call processor issues a PC ABEND, which invokes syncpoint
processing to back out changes made to recoverable
resources. Various abend codes can be issued. Note that, in
the case of a deadlock abend (abend code ADCD) it may be
possible to restart the program.

Exception trace entries are output in the case of transaction
abends.

Writing CICS messages: For any thread abend in DBCTL,
a CICS message is written indicating the abend code passed
back to CICS in the field PAPLRETC. Similarly, for any
scheduling failures, where the application program receives
the UIBRCODE field (UIBFCTR and UIBDLTR fields
combined) set to X'0805', the scheduling failure subcode is
contained in a CICS message.

LY33-6088-02 © Copyright IBM Corp. 1980, 1999

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

The interface layer

Adapter (DFHDBAT): Control is passed to the adapter
via the CICS RMIL. It is the responsibility of the adapter to
construct the DRA INIT, DRA TERM, and DRA THREAD
parameter lists from the RMI parameter list passed to it. It
must also transform the DRA parameter list passed back
after a DL/I call to the format expected by CICS.

Part of the DRA parameter list requires two tokens to be
generated by CICS:

1. A thread token
2. A recovery token.

The thread token is generated by the DBCTL call processor,
and enables a CICS unit of work to be related to a DBCTL
unit of work. It is used by the asynchronous RESUME exit to
identify the CICS thread to be resumed after a DL/I call.

The 16-byte recovery token is constructed by concatenating
an 8-byte unique CICS subsystem name (the CICS applid)
with the 8-byte CICS RMI recovery token (also known as the
unit of work ID).

A further responsibility of the adapter is to manage CICS
tasks when an orderly termination of the CICS-DRA interface
has been requested by means of the CICS termination
program. In this case, it continues to accept DL/I requests
from CICS tasks currently using DBCTL, but does not allow
new CICS tasks to use DBCTL. When the adapter detects
that the count of current tasks has reached zero, it issues a
DRA TERM call to shut down the interface.

Table 32 summarizes the types of invocations of the adapter
code from CICS, and how the adapter reacts to the individual
invocation.

Table 33 summarizes the types of invocations of the adapter
code from the DRA, and how the adapter reacts to each
individual invocation.

Table 34 on page 148 summarizes the cases when the
adapter invokes the adapter exits.

LY33-6088-02 © Copyright IBM Corp. 1980, 1999

Database control (DBCTL)

Table 32. CICS-adapter request summary

Invocation

Invoker

Adapter action

Initialize

Connection program

Issues DRA INIT

Terminate-Orderly

Disconnection
program

Issues DRA TERM
after waiting for
CICS-DBCTL tasks to
quiesce

Terminate-Fast

Disconnection

Issues DRA TERM

program

PSB Schedule DBCTL call Issues THREAD
processor SCHED

DL/I request DBCTL call Issues THREAD DLI
processor

Prepare CICS syncpoint Issues THREAD PREP
manager

Commit CICS syncpoint Issues THREAD
manager COMTERM

Abort CICS syncpoint Issues THREAD
manager ABTTERM

Lost To CICS cold start

CICS syncpoint
manager

Issues COLD request

DBCTL should not be
in doubt

CICS syncpoint
manager

Issues UNKNOWN
request

Task is terminating

CICS task manager

Issues TERMTHRD

Force Purge Task

Control program

Issues PURGE
THREAD

Orderly CICS Term

CICS termination

Issues DRA TERM
after waiting for
CICS-DBCTL tasks to
quiesce

Immediate CICS Term

CICS termination

Issues DRA TERM

CICS is abending

CICS termination

Issues DRA TERM

CICS has been
canceled

CICS termination

Returns to CICS

Table 33. DRA-adapter request summary

Invocation from the DRA

Adapter action

CICS-DBCTL connection is complete

Invoke the control exit

MVS SSI has rejected the IDENTIFY
request to DBCTL

Invoke the control exit

DBCTL has rejected the IDENTIFY
request

Invoke the control exit

Operator has replied CANCEL to
message DFS690A

Invoke the control exit

DBCTL has terminated abnormally

Invoke the control exit

DRA has terminated abnormally

Invoke the control exit

/CHECKPOINT FREEZE has been
issued

Invoke the control exit

PSB schedule, DL/I, syncpoint,
thread termination, thread purge, or
interface termination request is to be
suspended

Invoke the suspend exit

PSB schedule, DL/I, syncpoint,
thread termination, thread purge, or
interface termination request is to be
resumed

Chapter 19.

Invoke the resume exit

Database control (DBCTL) 147

Database control (DBCTL)

Table 34. Adapter exit summary

Circumstances Adapter action

Successful completion of THREAD
SCHED request

Invoke the monitoring exit

Completion of THREAD COMTERM
or THREAD ABTTERM request

Invoke the monitoring exit

DRA thread failure Invoke the status exit

Resynchronization request issued Invoke the token exit

from CICS recovery manager

CICS orderly or immediate term Invoke the token exit

CICS ABEND Invoke the token exit

Completion of DRA TERM issued as
a result of a termination request
from disconnection program

Invoke the statistics exit

Completion of DRA TERM issued as Invoke the statistics exit

a result of a CICS orderly
termination request

Suspend exit (DFHDBSPX): The suspend exit is
invoked by the adapter on behalf of the DRA so that a CICS
thread can be suspended during the processing of a DL/I
call. The suspend exit outputs a trace entry immediately
before issuing a WAIT, and a trace entry immediately after it
is posted by the resume exit.

The suspend exit is also invoked by the adapter when a
disconnection request from the menu is being processed.

Resume exit (DFHDBREX): The resume exit is invoked
asynchronously by the adapter on behalf of the DRA, and it

is executed in the DRA environment. It handles both normal

resume and abnormal resume after an abend of the thread.

The resume exit issues an MVS POST.

When a thread fails, the resume exit is invoked and an
‘unsuccessful’ return code is passed back to the DBCTL call
processor, indicating that CICS must issue an abend for that
thread (task).

Adapter exits:
adapter exits.

The following sections describe the

The adapter statistics exit (DFHDBSTX): The statistics
exit is invoked by the adapter when the CICS-DBCTL
interface has been terminated by the CICS operator using
the menu program to request disconnection from DBCTL.
The exit is also invoked by the adapter when CICS is
terminated in an orderly way.

The function of the exit is to invoke the CICS statistics
domain supplying the data that has been returned from the
DRA relating to the individual CICS-DBCTL session.

For a /CHECKPOINT FREEZE command, the exit is not
invoked, but the statistics domain is called by DFHCDBCT.

The adapter token exit (DFHDBTOX): The token exit is
invoked by the adapter when a task is encountered which
has not been allocated a thread token, that is, it has not
been through the DBCTL call processor module. This occurs

148 cics Diagnosis Reference

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

for resynchronization tasks and for the CICS termination
invocation.

The adapter monitoring exit (DFHDBMOX): The
monitoring exit is invoked by the adapter when monitoring
data has been returned by DBCTL as a result of a PSB
schedule request, and a CICS SYNCPOINT or DLI TERM
request. The exit passes the data on to the CICS monitoring
domain to update the tasks monitoring information.

The adapter status exit (DFHDBSSX): The status exit is
invoked by the adapter in the event of a DRA thread failure,
so that resources owned by the failing thread can be
transferred to CICS, which then releases the transferred
resources during syncpoint processing.

DBCTL system definition

DBCTL system definition is described in the IMS System
Definition Reference.

DBCTL PSB scheduling

When a CICS task requests the scheduling of a DL/I PSB by
means of an EXEC DLI SCHEDULE request or DL/I PCB
call, and the request is for a DBCTL PSB, control is passed
to DFHDLIDP.

Database calls

For DBCTL, DFHDLIDP invokes the CICS RMI to pass
control to DBCTL.

DBCTL PSB termination

DBCTL PSB termination is performed during the syncpoint
when the resource manager interface (RMI) communicates
with DBCTL.

System termination

Support is provided to close down the CICS-DBCTL interface
during CICS termination. This should avoid the possibility of
causing DBCTL to terminate with a U113 abend because of
CICS terminating while DL/I threads are running on its behalf
in DBCTL.

To provide the support, there is an extension to the RMI to
invoke active adapters at CICS termination.

If CICS termination hangs because the CICS-DBCTL
interface does not close down, the operator should type in a
IDISPLAY ACTIVE command on the DBCTL console and
identify the threads corresponding to the CICS system being
terminated. This is possible because the threads’ recovery
tokens, which are displayed, start with the CICS applid. The
operator should then issue /STOP THREAD requests for
each thread.

LY33-6088-02 © Copyright IBM Corp. 1980, 1999

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

Database control (DBCTL)

Control blocks

The following diagram shows the major control blocks used
to support the CICS-DBCTL interface:

CSADLI >
DLP
DLPDLI —— Entry point for DFHDLI
DLPEDPEP—— Entry point for DFHEDP
DLPDPEP —— Entry point for DFHDLIDP
DLPDGB >
DGB
TCADSBA >
DSB

Figure 40. Some control blocks used for DBCTL support

The DL/I interface parameter list (DLP) is described in “DL/I
interface parameter list (DLP)” on page 178.

The DBCTL global block (DGB) is acquired, from storage
above the 16MB line, when the CICS-DBCTL interface is first
initialized. It lasts for the remainder of the CICS execution.

The DBCTL scheduling block (DSB) is acquired, from
storage above the 16MB line, when a task issues a PSB
schedule request to DBCTL; that is, the PSB used does not
appear in the remote PDIR. The DSB is freed at task
termination.

See the CICS Data Areas manual for a detailed description
of these control blocks.

LY33-6088-02 © Copyright IBM Corp. 1980, 1999

Modules

Module Description
DFHDBAT Adapter
DFHDBCON Initialization program
DFHDBCT Control program
DFHDBCTX Control exit
DFHDBDI Disable program
DFHDBDSC Termination program
DFHDBIE Inquiry screens
DFHDBIQ Inquiry program
DFHDBME Menu program
DFHDBMOX Monitoring exit
DFHDBNE Menu screens
DFHDBREX Resume exit
DFHDBSPX Suspend exit
DFHDBSSX Status exit
DFHDBSTX Statistics exit
DFHDBTOX Token exit
DFHDBUEX DBCTL user exit
DFHDLI DL/I router program
DFHDLIDP DBCTL call processor
Exits

The following global user exit points are provided for DBCTL:

¢ In DFHDBCR: XXDFB and XXDTO
e In DFHDBCT: XXDFA.

For further information about these exit points, see the CICS
Customization Guide and the CICS IMS Database Control
Guide.

Chapter 19. Database control (DBCTL) 149

Database control (DBCTL) “Restricted Materials of IBM”
Licensed Materials — Property of IBM

150 ciIcs Diagnosis Reference LY33-6088-02 © Copyright IBM Corp. 1980, 1999

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

Chapter 20. Data interchange program

The data interchange program (DFHDIP) supports the batch
controller functions of the IBM 3790 Communication System
and the IBM 3770 Data Communication System. Support is
provided for the transmit, print, message, user, and dump
data sets of the 3790 system.

Data interchange program

Design overview

The data interchange program is designed as a function
manager for Systems Network Architecture (SNA) devices. It
is invoked via DFHEDI for command-level requests, or
internally by the basic mapping support (BMS) routines using
the DFHDI macro. DFHDIP performs the following actions:

1. Determines whether a new output destination has been
specified (it retains information about the previous
destinations in the data interchange control block) and, if
so, builds appropriate FMHSs to select the new
destination, and outputs these FMHSs to the SNA device
via terminal control.

2. Invokes the appropriate subroutine to perform the
desired function:

ADD Builds ADD FMH, transmits it and the user
data

REPLACE Builds REPLACE FMH, transmits it and the
user data

ERASE Builds ERASE FMH and RECID FMH and

transmits them

NOTE Builds NOTE FMH, transmits it, and returns
the reply to the user

QUERY Builds QUERY FMH, transmits it, and
outputs END FMH

SEND Outputs user data

WAIT Waits for completion of the 1/0

END Builds END FMH and transmits it

ABORT Builds ABORT FMH and transmits it
ATTACH Removes FMH from initial input
DETACH Frees the storage used by DFHDIP
RECEIVE Reads a complete record from the logical

device.

3. Sets the appropriate return code.

Figure 41 shows the data interchange program interfaces.

LY33-6088-02 © Copyright IBM Corp. 1980, 1999

Application 2 Data interchange 3 Storage
program —| program <«— | control
EXEC CICS (DFHDIP)

4 Trace
<«—| control

5 Temporary
<+«— | storage
control

Terminal
<«—| control

Figure 41. Data interchange program interfaces

Notes:

1. The application program invokes DFHEDI (via DFHEIP)
which then communicates with DFHDIP by setting fields
in the TCA.

2. DFHDIP receives control.

3. If no storage has been obtained for the data interchange
block (DIB), storage control is invoked. The storage is
chained to the TCTTE. Significant status information,
such as the currently selected destination, is
remembered in the data interchange block, which is
freed at the end of task processing.

4. A trace entry is made.

5. If logging is present (protected task and message
integrity) and if a destination change or function change
occurs on output, temporary-storage control is invoked to
write the DIB to recoverable temporary storage.

6. Terminal control is invoked to output any built FMH and
also to output the user data. (DFHTC TYPE=WRITE is
issued.) For input requests, DFHTC TYPE=READ
requests are issued to obtain a non-null input record.

7. Any errors obtained from the device are decoded and
placed in the TCA return code slot. If no errors were
detected, a return code of ‘0’ (zero) is returned.

Modules

DFHEDI, DFHDIP

Exits

No global user exit points are provided for this function.

151

Data interchange program

The following point ID is provided for the data interchange
program:

e AP 00D7, for which the trace level is DI 1.

For more information about the trace points, see the CICS
Trace Entries. For more information about using traces in

152 ciIcs Diagnosis Reference

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

problem determination, see the CICS Problem Determination
Trace Guide.

LY33-6088-02 © Copyright IBM Corp. 1980, 1999

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

Directory manager domain (DD)

Chapter 21. Directory manager domain (DD)

The directory manager domain (also sometimes known
simply as “directory manager”) manages directories of nhamed
tokens.

Directory manager domain’s specific gates

Table 35 summarizes the directory manager domain’s
specific gates. It shows the level-1 trace point IDs of the
modules providing the functions for the gates, and the
functions provided by the gates.

Table 35. Directory manager domain’s specific gates

Gate Trace Funct