<|lli

CICS® Transaction Server for OS/390®

C++ OO Class Libraries

SC34-5455-00

<|lli

CICS® Transaction Server for OS/390®

C++ OO Class Libraries

SC34-5455-00

Note!
Before using this information and the product it supports, be sure to read the general information under ENaticas™ od

First edition (March 1999)

This edition applies to Release 3 of CICS Transaction Server for OS/390, program number 5655-147, and to all
subsequent versions, releases, and modifications until otherwise indicated in new editions. Consult the latest edition
of the applicable IBM system bibliography for current information on this product.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are
not stocked at the address given below.

At the back of this publication is a page entitled “Sending your comments to IBM”. If you want to make comments,
but the methods described are not available to you, please address them to:

IBM United Kingdom Laboratories, Information Development,
Mail Point 095, Hursley Park, Winchester, Hampshire, England, SO21 2JN.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1989, 1999. All rights reserved.
US Government Users Restricted Rights — Use duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Notices

This information was developed for products and services offered in the U.S.A.
IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user’s responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation

North Castle Drive
Armonk, NY 10504-1785
US.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing

2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply in the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore this statement may not apply
to you.

This publication could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact IBM United Kingdom
Laboratories, MP151, Hursley Park, Winchester, Hampshire, England, SO21 2JN.
Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

© Copyright IBM Corp. 1989, 1999 i

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Programming License Agreement, or any equivalent agreement
between us.

Trademarks

The following terms are trademarks of International Business Machines
Corporation in the United States, or other countries, or both:

AIX AT C Set++
Common User Access CICS CICS OS/2
CICS Transaction Server DB/2 IBM
Language Environment 0S/390 0s/2
VisualAge VTAM

Other company, product, and service names may be trademarks or service marks
of others.

iV CICS TS for 0S/390: C++ OO Class Libraries

Preface

The CICS® family provides robust transaction processing capabilities across the
major hardware platforms that IBM® offers, and also across key non-1BM
platforms. It offers a wide range of features for supporting client/server
applications, and allows the use of modern graphical interfaces for presenting
information to the end-user. The CICS family now supports the emerging
technology for object oriented programming and offers CICS users a way of
capitalizing on many of the benefits of object technology while making use of their
investment in CICS skills, data and applications.

Object oriented programming allows more realistic models to be built in flexible
programming languages that allow you to define new types or classes of objects, as
well as employing a variety of structures to represent these objects.

Object oriented programming also allows you to create methods (member
functions) that define the behavior associated with objects of a certain type,
capturing more of the meaning of the underlying data.

The CICS foundation classes software is a set of facilities that IBM has added to
CICS to make it easier for application programmers to develop object oriented
programs. It is not intended to be a product in its own right.

The CICS C++ foundation classes, as described here, allow an application
programmer to access many of the CICS services that are available via the EXEC
CICS procedural application programming interface (API). They also provide an
object model, making OO application development simpler and more intuitive.

Who this book is for

This book is for CICS application programmers who want to know how to use the
CICS foundation classes.

What this book is about

This book is divided into three parts and three appendixes:
 [‘Part 1. Installation and setup” on page 1 describes how to install the product

and check that the installation is complete.

» EPart2_Using the CICS foundation classes” on page 13 describes the classes and

how to use them.

e FPart3 Foundation Classes—reference” on page 67 contains the reference
material: the class descriptions and their methods.

+ For those of you familiar with the EXEC CICS calls, EAppendix A_Mapping
EXEC_CICS calls to Eoundation Class methods” on page 20d maps EXEC CICS
calls to the foundation class methods detailed in this book...

e ..andL i i i ’
maps them the other way — foundation class methods to EXEC
CICS calls.

© Copyright IBM Corp. 1989, 1999 \'

 Appendix C. OQutput from sample programs” on page 311 contains the output

from the sample programs.

What you need to know before reading this book

LChapIELL_GetLLng_cead;LfaLab;ecLaLw:led_Clcs_an_page_d describes what you

need to know to understand this book.

Notes on terminology

“CICS” is used throughout this book to mean the CICS element of the IBM CICS
Transaction Server for OS/390 Release 3.

“RACF®” is used throughout this book to mean the MVVS™ Resource Access
Control Facility (RACF) or any other external security manager that provides
equivalent function.

In the programming examples in this book, the dollar symbol ($) is used as a
national currency symbol. In countries where the dollar is not the national
currency, the local currency symbol should be used.

Softcopy links

Determining if a publication is current

IBM regularly updates its publications with new and changed information. When
first published, both hardcopy and BookManager softcopy versions of a publication
are usually in step. However, due to the time required to print and distribute
hardcopy books, the BookManager version is more likely to have had last-minute
changes made to it before publication.

Subsequent updates will probably be available in softcopy before they are available
in hardcopy. This means that at any time from the availability of a release, softcopy
versions should be regarded as the most up-to-date.

For CICS Transaction Server books, these softcopy updates appear regularly on the
Transaction Processing and Data Collection Kit CD-ROM, SK2T-0730-xx. Each reissue
of the collection kit is indicated by an updated order number suffix (the -xx part).
For example, collection kit SK2T-0730-06 is more up-to-date than SK2T-0730-05. The
collection kit is also clearly dated on the cover.

Updates to the softcopy are clearly marked by revision codes (usually a “#”
character) to the left of the changes.

VI CICS TS for 0S/390: C++ OO Class Libraries

Contents

Notices il
Trademarks. iv
Preface . \%
Who this book is for . Y,
What this book is about. Y,
What you need to know before readlng thls book vi
Notes on terminology Vi
Softcopy links . . Vi
Determining if a publlcatlon is current . vi
Bibliography .o . XVii
CICS Transaction Server for OS/390 XVii
CICS books for CICS Transaction Server for
0S/390 . . Xvii
CICSPlex SM books for CICS Transactlon
Server for 0S/390 . Xviii
Other CICS books . Xviii
More books. . Xviii
C++ Programming . Xviii
CICS client manuals . XiX
Part 1. Installation and setup 1
Chapter 1. Getting ready for object
oriented CICS 3
Chapter 2. Installed contents 5
Header files. 5
Location . 6
Dynamic link I|brary 6
Location . 6
Sample source code 6
Location . 6
Running the sample appllcatlons . 6
Other datasets for CICS Transaction Server for
0S/390 . 7
Chapter 3. Hello World 9
Compile and link "Hello World" .o 10
Running "Hello World" on your CICS server . 10
Expected Output from "Hello World" 11
Part 2. Using the CICS foundation
classes 13
Chapter 4. C++ Objects 15
Creating an object 15
Using an object 16
Deleting an object 16

© Copyright IBM Corp. 1989, 1999

Chapter 5. Overview of the foundation

classes

Base classes

Resource identification classes

Resource classes.

Support Classes .

Using CICS resources .
Creating a resource object. .
Calling methods on a resource object .

Chapter 6. Buffer objects
IccBuf class.
Data area ownersh|p
Data area extensibility .
IccBuf constructors
IccBuf methods .
Working with IccResource subclasses .

Chapter 7. Usmg CICS Services
File control .
Reading records .
Writing records
Updating records .
Deleting records .
Browsing records .
Example of file control .
Program control
Starting transactions asynchronously
Starting transactions .
Accessing start data .
Cancelling unexpired start requests
Example of starting transactions .
Transient Data.
Reading data .
Writing data.
Deleting queues
Example of managing tranS|ent data
Temporary storage
Reading items .
Writing items
Updating items.
Deleting items .
Example of Temporary Storage
Terminal control .
Sending data to a termmal
Receiving data from a terminal
Finding out information about a terminal
Example of terminal control
Time and date services . . .
Example of time and date services .

Chapter 8. Compiling, executing, and
debugging

Compiling Programs .

17
17
18
19
20
21
21
22

25
25
25
25
25
26
27

29
29
30
30
31
32
32
32
34
36
36
36
37
37
40
40
40
40
40
41
42
42
42
42
42
44
44
44
44
45
46
46

49
49

Vil

Executing Programs .

49

Debugging Programs 50
Symbolic Debuggers. 50
Tracing a Foundation Class Program 50
Execution Diagnostic Facility . 50

Chapter 9. Conditions, errors, and

exceptions . . 53

Foundation Class Abend codes . 53

C++ Exceptions and the Foundation Classes 53

CICS conditions 55
Manual condition handlrng (noActlon) . 56
Automatic condition handling (caIIHandIeEvent) 56
Exception handling (throwException) 57
Severe error handling (abendTask) . 58

Platform differences . 58
Object level. 58
Method level 59
Parameter level 59

Chapter 10. Miscellaneous 61

Polymorphic Behavior 61
Example of polymorphic behavror 62

Storage management 63

Parameter passing conventions . . 64

Scope of data in IccBuf reference returned from

'read' methods . 65

Part 3. Foundation

Classes—reference 67

Chapter 11. Icc structure 77

Functions 77
boolText . 77
catchException 77
conditionText 77
initializeEnvironment . 78
isClassMemoryMgmtOn. 78
iSEDFOn. 78
|sFam|IySubsetEnforcementOn 78
returnToCICS . 79
setEDF . 79
unknownException 79

Enumerations . 79
Bool . 79
BoolSet . . 80
ClassMemoryMgmt . 80
FamilySubset . 80
GetOpt 80
Platforms 81

Chapter 12. IccAbendData class 83

IccAbendData constructor (protected) . 83
Constructor . 83

Public methods 83
abendCode . 83
ASRAInterrupt . 83
ASRAKeyType. 84
ASRAPSW . 84

Vill CICS TS for 0S/390: C++ OO Class Libraries

ASRARegisters
ASRASpaceType .
ASRAStorageType
instance . .
isDumpAvailable .
originalAbendCode
programName .

Inherited public methods

Inherited protected methods

Chapter 13. IccAbsTime class
IccAbsTime constructor .
Constructor (1).
Constructor (2).
Public methods
date
dayOfMonth
dayOfWeek .
daysSince1900
hours .
milliSeconds
minutes .
monthOfYear
operator=
packedDecimal
seconds .
time
timelnHours.
timelnMinutes .
timelnSeconds.
year .
Inherited public methods
Inherited protected methods

Chapter 14. IccAlarmRequestld class

IccAlarmRequestld constructors .
Constructor (1).
Constructor (2).
Constructor (3).

Public methods
isExpired .
operator= (1)
operator= (2)
operator= (3)
setTimerECA
timerECA

Inherited public methods

Inherited protected methods

Chapter 15. IccBase class
IccBase constructor (protected) .
Constructor .
Public methods
classType
className .
customClassNum .
operator delete
operator new
Protected methods
setClassName .

84
85
85
86
86
86
86
86
87

89
89
89
89
89
89
90
90
90
90
90
90
90
91
91
91
91
91
91
92
92
92
92

93

93
93
93
93
93
93
94
94
94
94
94
94
94

95
95
95
95
95
95
96
96
96
96
96

setCustomClassNum.

Enumerations .
ClassType .
NameOpt

Chapter 16. IccBuf class
IccBuf constructors
Constructor (1).
Constructor (2).
Constructor (3).
Constructor (4).
Public methods
append (1) .
append (2) .
assign (1)
assign (2)
cut.
dataArea
dataArealength
dataAreaOwner
dataAreaType .
dataLength .
insert . .
isSFMHContained .
operator const char* .
operator= (1)
operator= (2)
operator+= (1) .
operator+= (2) .
operator== .
operator!=
operator<< (1) .
operator<< (2) .
operator<< (3) .
operator<< (4) .
operator<< (5) .
operator<< (6) .
operator<< (7).
operator<< (8) .
operator<< (9) .
operator<< (10)
operator<< (11)
operator<< (12)
operator<< (13)
operator<< (14)
operator<< (15)
overlay
replace
setDatalength .
setFMHContained
Inherited public methods
Inherited protected methods
Enumerations .
DataAreaOwner
DataAreaType .

Chapter 17. IccClock class

IccClock constructor .
Constructor .

Public methods
absTime .

96
97
97
97

99
99
99
99

. 100
. 100
. 100
. 100
. 100
. 101
. 101
. 101
. 101
. 101
. 102
. 102
. 102
. 102
. 102
. 102
. 103
. 103
. 103
. 103
. 103
. 104
. 104
. 104
. 104
. 104
. 104
. 104
. 105
. 105
. 105
. 105
. 105
. 105
. 105
. 105
. 105
. 106
. 106
. 106
. 106
. 107
. 107
. 107
. 107
. 107

.109
. 109
. 109
. 109
. 109

cancelAlarm

date

dayOfMonth

dayOfWeek .

daysSince1900

milliSeconds

monthOfYear

setAlarm.

time

update

year
Inherited public methods
Inherited protected methods
Enumerations .

DateFormat.

DayOfWeek.

MonthOfYear

UpdateMode

Chapter 18. IccCondition structure
Enumerations .

Codes

Range

Chapter 19. IccConsole class
IccConsole constructor (protected) .
Constructor .
Public methods
instance .
put .
replyTimeout
resetRouteCodes .
setAllIRouteCodes.
setReplyTimeout (1) .
setReplyTimeout (2) .
setRouteCodes
write . .o
writeAndGetReply
Inherited public methods
Inherited protected methods
Enumerations .
SeverityOpt.

Chapter 20. IccControl class
IccControl constructor (protected)
Constructor .
Public methods
callingProgramid .
cancelAbendHandler.
commArea .
console .
initData .
instance .
isCreated
programlid
resetAbendHandler .
returnProgramld
run . .
session . .o
setAbendHandler (1).

. 109

110
110
110
110
110
111
111
111
111
111
112
112
112
112
113
113
113

. 115

115
115
115

117

117
117
117
117
117
117
118
118
118
118
118
118
119
119

. 120
. 120
. 120

.121
. 121
. 121
. 121
. 121
. 121
. 121
. 122
. 122
. 122
. 122
. 122
. 123
. 123
. 123
. 123
. 123

Contents

ix

setAbendHandler (2).

startRequestQ .

system

task

terminal . .o
Inherited public methods
Inherited protected methods

Chapter 21. IccConvld class
IccConvld constructors .
Constructor (1).
Constructor (2).
Public methods
operator= (1)
operator= (2)
Inherited public methods
Inherited protected methods

Chapter 22. IccDataQueue class
IccDataQueue constructors
Constructor (1).
Constructor (2).
Public methods
clear .
empty.
get
put
readltem.
writeltem (1)
writeltem (2)
Inherited public methods
Inherited protected methods

Chapter 23. IccDataQueueld class .
IccDataQueueld constructors .
Constructor (1).
Constructor (2).
Public methods
operator= (1)
operator= (2)
Inherited public methods
Inherited protected methods

Chapter 24. IccEvent class
IccEvent constructor .
Constructor .
Public methods
className .
classType
condition.
conditionText
methodName .
summary
Inherited public methods
Inherited protected methods

Chapter 25. IccException class
IccException constructor

Constructor .
Public methods

X CICS TS for OS/390: C++ OO Class Libraries

. 123
. 124
. 124
. 124
. 124
. 124
. 125

127
. 127
. 127
. 127
. 127
. 127
. 127
. 127
. 128

.129

. 129
. 129
. 129
. 129
. 129
. 129
. 130
. 130
. 130
. 130
. 130
. 130
. 131

.133

. 133
. 133
. 133
. 133
. 133
. 133
. 133
. 134

. 135
. 135
. 135
. 135
. 135
. 135
. 135
. 136
. 136
. 136
. 136
. 136

. 137
. 137
. 137
. 138

className .

classType

message

methodName .

number .

summary

type .o

typeText.
Inherited public methods
Inherited protected methods
Enumerations .

Type .

Chapter 26. IccFile class
IccFile constructors .
Constructor (1).
Constructor (2).
Public methods
access .
accessMethod . .
begininsert(VSAM only).
deleteLockedRecord .
deleteRecord
enableStatus
endinsert(VSAM only)
isAddable
isBrowsable.
isDeletable .
iISEmptyOnOpen .
isReadable .
isRecoverable .
isUpdatable.
keyLength
keyPosition .
openStatus .
readRecord.
recordFormat .
recordindex.
recordLength
registerRecordIindex .
rewriteRecord .
setAccess .
setEmptyOnOpen.
setStatus
type .
unlockRecord .
writeRecord. .
Inherited public methods
Inherited protected methods
Enumerations .
Access
ReadMode .
SearchCriterion
Status

Chapter 27. IccFileld class
IccFileld constructors
Constructor (1).
Constructor (2).
Public methods
operator= (1)

. 138
. 138
. 138
. 138
. 138
. 138
. 139
. 139
. 139
. 139
. 139
. 139

.141
. 141
. 141
. 141
. 142
. 142
. 142
. 142
. 142
. 143
. 143
. 143
. 143
. 144
. 144
. 144
. 144
. 145
. 145
. 145
. 145
. 145
. 146
. 146
. 147
. 147
. 147
. 147
. 148
. 148
. 148
. 148
. 149
. 149
. 149
. 150
. 150
. 150
. 150
. 151
. 151

.153
. 153
. 153
. 153
. 153
. 153

operator= (2)
Inherited public methods
Inherited protected methods

Chapter 28. IccFilelterator class

IccFilelterator constructor .
Constructor .

Public methods
readNextRecord
readPreviousRecord .
reset . ..

Inherited public methods

Inherited protected methods

Chapter 29. IccGroupld class
IccGroupld constructors.
Constructor (1).
Constructor (2).
Public methods
operator= (1)
operator= (2)
Inherited public methods
Inherited protected methods

Chapter 30. IccJournal class
IccJournal constructors .
Constructor (1).
Constructor (2).
Public methods
clearPrefix .
journalTypeld .
put)
registerPrefix
setJournalTypeld (1) .
setJournalTypeld (2) .
setPrefix (1)
setPrefix (2)
wait .
writeRecord (1)
writeRecord (2)
Inherited public methods
Inherited protected methods
Enumerations .
Options .

Chapter 31. IccJournalld class
IccJournalld constructors
Constructor (1).
Constructor (2).
Public methods
number .
operator= (1)
operator= (2)
Inherited public methods
Inherited protected methods

Chapter 32. IccJournalTypeld class

IccJournalTypeld constructors.
Constructor (1).
Constructor (2).

. 153
. 153
. 154

. 155
. 155
. 155
. 155
. 155
. 156
. 156
. 156
. 157

. 159
. 159
. 159
. 159
. 159
. 159
. 159
. 159
. 160

.161
. 161
. 161
. 161
. 161
. 161
. 162
. 162
. 162
. 162
. 162
. 162
. 162
. 162
. 163
. 163
. 163
. le4
. 164
. 164

. 165
. 165
. 165
. 165
. 165
. 165
. 165
. 165
. 166
. 166

167
. 167
. 167
. 167

Public methods

operator= (1)

operator= (2)
Inherited public methods
Inherited protected methods

Chapter 33. IccKey class
IccKey constructors .
Constructor (1).
Constructor (2).
Constructor (3).
Public methods
assign .
completeLength
kind
operator= (1)
operator= (2)
operator= (3)
operator== (1) .
operator== (2) .
operator== (3) .
operator!= (1) .
operator!= (2) .
operator!= (3) .
setKind .
value . S
Inherited public methods
Inherited protected methods
Enumerations .
Kind .

Chapter 34. IccLockld class
IccLockld constructors .
Constructor (1).
Constructor (2).
Public methods
operator= (1)
operator= (2)
Inherited public methods
Inherited protected methods

Chapter 35. IccMessage class
IccMessage constructor.
Constructor .
Public methods
className .
methodName .
number .
summary
text S
Inherited public methods
Inherited protected methods

Chapter 36. IccPartnerld class
IccPartnerld constructors
Constructor (1).
Constructor (2).
Public methods
operator= (1)
operator= (2)

. 167
. 167
. 167
. 167
. 168

. 169
. 169
. 169
. 169
. 169
. 169
. 169
. 169
. 170
. 170
. 170
. 170
. 170
. 170
. 170
. 170
. 170
. 170
. 170
. 171
. 171
. 171
. 171
. 171

.173
. 173
. 173
. 173
. 173
. 173
. 173
. 173
. 174

. 175
. 175
. 175
. 175
. 175
. 175
. 176
. 176
. 176
. 176
. 176

177
. 177
. 177
. 177
. 177
. 177
. 177

Contents

Xi

Inherited public methods
Inherited protected methods

Chapter 37. IccProgram class
IccProgram constructors
Constructor (1).
Constructor (2).
Public methods
address . .
clearlnputMessage
entryPoint
length
link
load A
registerinputMessage
setinputMessage .
unload .o
Inherited public methods
Inherited protected methods
Enumerations .
CommitOpt .
LoadOpt.

Chapter 38. IccProgramld class
IccProgramld constructors .
Constructor (1).
Constructor (2).
Public methods
operator= (1)
operator= (2)
Inherited public methods
Inherited protected methods

Chapter 39. IccRBA class
IccRBA constructor
Constructor .
Public methods
operator= (1)
operator= (2)
operator== (1) .
operator== (2) .
operator!= (1) .
operator!= (2) .
number . .o
Inherited public methods
Inherited protected methods

Chapter 40. IccRecordIndex class .

IccRecordIndex constructor (protected).
Constructor .
Public methods
length
type
Inherited public methods
Inherited protected methods
Enumerations .

Type .

Chapter 41. IccRequestld class
IccRequestld constructors .

Xil CICS TS for 0S/390: C++ OO Class Libraries

. 177
. 178

. 179
. 179
. 179
. 179
. 179
. 179
. 179
. 180
. 180
. 180
. 181
. 181
. 181
. 181
. 181
. 182
. 182
. 182
. 182

. 183
. 183
. 183
. 183
. 183
. 183
. 183
. 183
. 184

. 185
. 185
. 185
. 185
. 185
. 185
. 185
. 185
. 185
. 186
. 186
. 186
. 186

. 187
. 187
. 187
. 187
. 187
. 187
. 187
. 188
. 188
. 188

. 189
. 189

Constructor (1). 189
Constructor (2). 189
Constructor (3). 189
Public methods 189
operator=(1)189
operator=(2)189
Inherited public methods 190
Inherited protected methods 190
Chapter 42. IccResource class191
IccResource constructor (protected). 191
Constructor. 191
Public methods 191
actionOnConditon 191
actionOnConditionAsChar 191
actionsOnConditionsText 192
clear19
condition.192
conditionText 193
get193
handleEvent 193
d.193
isEDFOn. 193
isRouteOptionOn 193
name.19
put19
routeOption. 194
setActionOnAnyCondition 194
setActionOnConditon 194
setActionsOnConditions. 195
settDF19
setRouteOption (1) 195
setRouteOption (2) 195
Inherited public methods 196
Inherited protected methods 196
Enumerations 196
ActionOnConditon 196
HandleEventReturnOpt 196
ConditionType 197
Chapter 43. IccResourceld class . . .199
IccResourceld constructors (protected). 199
Constructor (1). 199
Constructor (2). 199
Public methods 199
name.19
nameLength 199
Protected methods 200
operator= 200
Inherited public methods 200
Inherited protected methods 200
Chapter 44. IccRRNclass201
IccRRN constructors. 201
Constructor. 201
Public methods 201
operator=(1) 201
operator=(2)20
operator==(1). 201
operator==(2). 201

operator!= (1) .

operator!= (2) .

number . .o
Inherited public methods
Inherited protected methods

Chapter 45. IccSemaphore class
IccSemaphore constructor .

Constructor (1).

Constructor (2).
Public methods

lifeTime .

lock

tryLock

type

unlock .o
Inherited public methods
Inherited protected methods
Enumerations .

LockType

LifeTime .

Chapter 46. IccSession class
IccSession constructors (public) .
Constructor (1).
Constructor (2). .
Constructor (3).
IccSession constructor (protected) .
Constructor .
Public methods
allocate . .
connectProcess (1) .
connectProcess (2) .
connectProcess (3) .
converse
convld
errorCode
extractProcess.
flush .
free
get
isErrorSet
isNoDataSet
isSignalSet .
issueAbend .
issueConfirmation.
issueError
issuePrepare
issueSignal .
PIPList
process .
put
receive
send (1) .
send (2) . .
sendinvite (1) .
sendinvite (2) .
sendLast (1)
sendLast (2)
state .
stateText.

. 201
. 202
. 202
. 202
. 202

. 203

. 203
. 203
. 203
. 203
. 203
. 204
. 204
. 204
. 204
. 204
. 205
. 205
. 205
. 205

. 207
. 207
. 207
. 207
. 207
. 207
. 207
. 208
. 208
. 208
. 208
. 208
. 209
. 209
. 209
. 209
. 210
. 210
. 210
. 210
. 210
. 210
. 211
.21
. 211
211
. 211
. 212
. 212
. 212
. 212
. 212
. 213
. 213
. 213
. 213
. 213
. 214
. 214

syncLevel .
Inherited public methods
Inherited protected methods
Enumerations .

AllocateOpt .

SendOpt.

StateOpt.

SyncLevel

Chapter 47. IccStartRequestQ class
IccStartRequestQ constructor (protected) .
Constructor .
Public methods
cancel
clearData
data .
instance .
queueName
registerData
reset .
retrieveData
returnTermid
returnTransld
setData .
setQueueName
setReturnTermld (1) .
setReturnTermld (2) .
setReturnTransld (1).
setReturnTransld (2).
setStartOpts
start . S
Inherited public methods
Inherited protected methods
Enumerations .
RetrieveOpt.
ProtectOpt .
CheckOpt

Chapter 48. lccSysld class
IccSysld constructors
Constructor (1).
Constructor (2).
Public methods
operator= (1)
operator= (2)
Inherited public methods
Inherited protected methods

Chapter 49. lccSystem class
IccSystem constructor (protected)
Constructor .
Public methods
applName
beginBrowse (1) .
beginBrowse (2) .
dateFormat .
endBrowse .
freeStorage .
getFile (1)
getFile (2)

Contents

. 215
. 215
. 215
. 215
. 215
. 216
. 216
. 216

217

. 217
. 217
. 217
. 217
. 217
. 218
. 218
. 218
. 218
. 218
. 219
. 219
. 219
. 219
. 219
. 220
. 220
. 220
. 220
. 220
. 221
. 221
. 222
. 222
. 222
. 222
. 222

. 223
. 223
. 223
. 223
. 223
. 223
. 223
. 223
. 224

. 225
. 225
. 225
. 225
. 225
. 225
. 225
. 226
. 226
. 226
. 226
. 226

Xiii

getNextFile .

getStorage .

instance . .

operatingSystem .

operatingSystemLevel

release

releaseText .

sysld .

workArea .
Inherited public methods
Inherited protected methods
Enumerations .

ResourceType .

Chapter 50. IccTask class
IccTask Constructor (protected) .
Constructor .
Public methods
abend
abendData .
commitUoOw
delay .
dump.
enterTrace .
facilityType .
freeStorage .
getStorage .
instance . S
isCommandSecurityOn .
isCommitSupported .
isResourceSecurityOn
isRestarted . .
isStartDataAvailable .
number .
principalSysld .
priority .
rollBackUOW .
setDumpOpts .
setPriority
setWaitText .
startType
suspend .
transld S
triggerDataQueueld .
userld
waitExternal
waitOnAlarm
workArea .
Inherited public methods
Inherited protected methods
Enumerations .
AbendHandlerOpt.
AbendDumpOpt
DumpOpts .
FacilityType.
StartType
StorageOpts
TraceOpt
WaitPostType .
WaitPurgeability

XIV CICS TS for 0S/390: C++ OO Class Libraries

. 227
. 227
. 227
. 227
. 228
. 228
. 228
. 228
. 229
. 229
. 229
. 229
. 229

.231
. 231
. 231
. 231
. 231
. 231
. 232
. 232
. 232
. 233
. 233
. 233
. 234
. 234
. 234
. 234
. 235
. 235
. 235
. 235
. 235
. 236
. 236
. 236
. 236
. 236
. 237
. 237
. 237
. 237
. 237
. 238
. 238
. 238
. 239
. 239
. 239
. 239
. 239
. 239
. 240
. 240
. 240
. 241
. 241
. 241

Chapter 51. IccTempStore class
IccTempStore constructors.
Constructor (1).
Constructor (2).
Public methods
clear .
empty.
get
numberOfltems
put
readltem.
readNextltem .
rewriteltem .
writeltem (1)
writeltem (2)
Inherited public methods
Inherited protected methods
Enumerations .
Location .
NoSpaceOpt

Chapter 52. lccTempStoreld class .

IccTempStoreld constructors .
Constructor (1).
Constructor (2).

Public methods
operator= (1)
operator= (2)

Inherited public methods

Inherited protected methods

Chapter 53. IccTermld class
IccTermld constructors .
Constructor (1).
Constructor (2).
Public methods
operator= (1)
operator= (2)
Inherited public methods
Inherited protected methods

Chapter 54. IccTerminal class
IccTerminal constructor (protected) .
Constructor .
Public methods
AID
clear .
cursor
data .
erase . .
freeKeyboard .
get
height
inputCursor .
instance .
line
netName
operator<< (1) .
operator<< (2) .
operator<< (3) .

. 243
. 243
. 243
. 243
. 243
. 243
. 244
. 244
. 244
. 244
. 244
. 245
. 245
. 245
. 245
. 246
. 246
. 246
. 246
. 247

. 249
. 249
. 249
. 249
. 249
. 249
. 249
. 249
. 250

.251
. 251
. 251
. 251
. 251
. 251
. 251
. 251
. 252

. 253
. 253
. 253
. 253
. 253
. 253
. 253
. 254
. 254
. 254
. 254
. 254
. 254
. 255
. 255
. 255
. 255
. 255
. 255

operator<< (4) .
operator<< (5) .
operator<< (6) .
operator<< (7).
operator<< (8) .
operator<< (9) .
operator<< (10)
operator<< (11)
operator<< (12)
operator<< (13)
operator<< (14)
operator<< (15)
operator<< (16)
operator<< (17)
operator<< (18)
put
receive .
receive3270Data .
send (1) .
send (2) .
send (3) .
send (4) .
send3270 (1)
send3270 (2)
send3270 (3)
send3270 (4)
sendLine (1)
sendLine (2)
sendLine (3)
sendLine (4)
setColor .
setCursor (1)
setCursor (2)
setHighlight.
setLine
setNewLine.
setNextCommArea
setNextinputMessage
setNextTransld
signoff
signon (1)
signon (2)
waitForAID (1) .
waitForAID (2) .
width .
workArea
Inherited public methods
Inherited protected methods
Enumerations .
AlDVal
Case .
Color .
Highlight.
NextTransldOpt

Chapter 55. IccTerminalData class.

IccTerminalData constructor (protected)
Constructor .

Public methods
alternateHeight
alternateWidth .

. 255
. 255
. 256
. 256
. 256
. 256
. 256
. 256
. 256
. 256
. 256
. 257
. 257
. 257
. 257
. 257
. 257
. 257
. 258
. 258
. 258
. 258
. 259
. 259
. 259
. 259
. 260
. 260
. 260
. 260
. 260
. 261
. 261
. 261
. 261
. 261
. 262
. 262
. 262
. 262
. 263
. 263
. 263
. 263
. 264
. 264
. 264
. 264
. 264
. 264
. 265
. 265
. 265
. 265

. 267

. 267
. 267
. 267
. 267
. 267

defaultHeight
defaultwidth
graphicCharCodeSet.
graphicCharSetid .
isAPLKeyboard
iSAPLText
isBTrans.
isColor
iISEWA
isExtended3270
isFieldOutline .
isGoodMorning
isHighlight .
isKatakana .
isMSRControl .
isPS .
isSOSI
isTextKeyboard
isTextPrint .
isValidation .
Inherited public methods
Inherited protected methods

Chapter 56. IccTime class
IccTime constructor (protected)
Constructor .
Public methods
hours..
minutes .
seconds .
timelnHours.
timelnMinutes .
timelnSeconds.
type .
Inherited public methods
Inherited protected methods
Enumerations .

Type .

Chapter 57. IccTimelnterval class .

IccTimelnterval constructors
Constructor (1).
Constructor (2).

Public methods
operator=
set.

Inherited publlc methods

Inherited protected methods

Chapter 58. IccTimeOfDay class
IccTimeOfDay constructors
Constructor (1).
Constructor (2).
Public methods
operator=
set. .
Inherited public methods
Inherited protected methods

Chapter 59. IccTPNameld class

. 268
. 268
. 268
. 268
. 268
. 269
. 269
. 269
. 269
. 269
. 270
. 270
. 270
. 270
. 270
. 271
. 271
. 271
. 271
. 271
. 271
. 272

. 273
. 273
. 273
. 273
. 273
. 273
. 273
. 274
. 274
. 274
. 274
. 274
. 274
. 275
. 275

277
. 277
. 277
. 277
. 277
. 277
. 277
. 278
. 278

. 279
. 279
. 279
. 279
. 279
. 279
. 279
. 280
. 280

.281

Contents XV

IccTPNameld constructors. 281
Constructor (1). 281
Constructor (2). 281

Public methods 281
operator=(1) 281
operator=(2) 281

Inherited public methods 281

Inherited protected methods 282

Chapter 60. IccTransld class283

IccTransld constructors 283
Constructor (1). 283
Constructor (2). 283

Public methods 283
operator=(1) 283
operator=(2) 283

Inherited public methods 283

Inherited protected methods 284

Chapter 61. IccUserclass285

IccUser constructors. 285
Constructor (1). 285
Constructor (2). 285

Public methods 285
changePassword 285
daysUntilPasswordExpires. 286
ESMReason 286
ESMResponse. 286
groupid 286
invalidPasswordAttempts 286
language 286
lastPasswordChange 286
lastUseTime 287
passwordExpiration 287
setLanguage 287
verifyfPassword 287

Inherited public methods 287

Inherited protected methods 288

Chapter 62. IccUserld class289

IccUserld constructors 289
Constructor (1). 289
Constructor (2). 289

Public methods 289
operator=(1) 289
operator=(2) 289

Inherited public methods 289

Inherited protected methods 290

XVI CICS TS for 0S/390: C++ OO Class Libraries

Chapter 63. IccValue structure .291
Enumeration . 291
CVDA . 291
Chapter 64. main function . 295
Part 4. Appendixes 297
Appendix A. Mapping EXEC CICS calls
to Foundation Class methods . 299
Appendix B. Mapping Foundation
Class methods to EXEC CICS calls 305
Appendix C. Output from sample
programs . 311
ICC$BUF (IBUF) . . 311
ICC$CLK (ICLK) . . 311
ICC$DAT (IDAT) . . 311
ICC$EXC1 (IEX1). . 312
ICC$EXC2 (IEX2). . 312
ICC$EXC3 (IEX3). . 312
ICCS$FIL (IFIL) . . 312
ICC$HEL (IHEL) . . 313
ICC$JRN (IJRN) . . 313
ICC$PRG1 (IPR1) . 313
First Screen . 313
Second Screen . 313
ICC$RES1 (IRE1) . 314
ICC$RES? (IRE2) . 314
ICC$SEM (ISEM). . 314
ICC$SES1 (ISE1). . 314
ICC$SES?2 (ISE2). . 315
ICC$SRQ1 (ISR1) . 315
ICC$SRQ2 (ISR2) . 315
ICC$SYS (ISYS) . . 316
ICC$TMP (ITMP) . . 316
ICC$TRM (ITRM). . 316
ICC$TSK (ITSK) . . 317
Glossary . . 319
Index .321
Sending your comments to IBM . 347

Bibliography

CICS Transaction Server for OS/390

CICS Transaction Server for O0S/390 Release Guidd GCc34-5357
EICS Transaction Server for OS/390 Program Directoryl Gl10-2504
CICS books for CICS Transaction Server for OS/390

General

C1Cs Master Inded Ec33-1704

C1cs User’s Handbood Ex33-6104

CICS Transaction Server for QS/390 Glossaryl (softcopy only) Gcsz-170d
Administration

CICS Supplied Transactiond Ec33-1684
Programming

E1Ccs Ssystem Programming Referencd Bcaz-16ad

CICS C++ OO Class | ibraried m

CICS Rusiness Transaction Serviced m
Diagnosis

E1CS Messages and Coded Gcaz-1604

E1CS Diagnosis Referencd Ly33-6084

E1CS Data Aread Ly33-608d

E1CS Trace Fntried BC34-5444

E1CS Supplementary Data Aread Ly233-600d
Communication

E1CS External Interfaces Guidd BCa3-1944

CICS Internet Guidd BCa4-5444
Special topics

E1CS Recovery and Restart Guidd BC33-160d

CICS Performance Guidd EC33-160d

C1CS1MS Database Control Guidd BC33-170d

Ci1CS RACE Security Guidd Bc3z-1701

C1CS Shared Data Tables Guidd Eca3-170d

Cics D2 Guidd Ec33-103d

© Copyright IBM Corp. 1989, 1999 Xvil

CICSPlex SM books for CICS Transaction Server for OS/390

General
EICSPlex SM Master Index Ecaz-1814
E1CSPlex SM Concepts and Planning Gcaz-o7ad
EICSPlex SM User Interface Guidd Eca3-078d
CICSPlex SM View Commands Reference Summaryl Ex33-600d
Administration and Management
E1CSPIex SM Operations Views Referencd Ec33-07ad9
EICSPlex SM Monitor Views Referencd BCaa-5404
EICSPlex SM Managing Workloadd EC33-1807
CICSPlex SM Managing Resource Usagd EC33-180d8
Programming
Diagnosis
CICSPlex SM Resaurce Tahles Referencd Bcaz122d
CICSPlex SM Messages and Caded Gcaz-azad
CiCSPlex SM Prohlem Determinatiod Gcazo701
Other CICS books
Eics Family: AP1 Structurd Ec33-1007
Eics/ESA 33 XRE Guidd ECa3-0861

If you have any questions about the CICS Transaction Server for OS/390 library,

see CICS Transaction Server for QS/390: Planning for Installatiod which discusses both

hardcopy and softcopy books and the ways that the books can be ordered.

More books
Here are some more books that you may find useful.
C++ Programming

You should read the books supplied with your C++ compiler.

The following are some non-IBM publications that are generally available. This is
not an exhaustive list. IBM does not specifically recommend these books, and other
publications may be available in your local library or bookstore.

 Ellis, Margaret A. and Bjarne Stroustrup, The Annotated C++Reference Manual,
Addison-Wesley Publishing Company.

* Lippman, Stanley B., C++ Primer, Addison-Wesley Publishing Company.

» Stroustrup, Bjarne, The C++ Programming Language, Addison-Wesley Publishing
Company.

XViil CICS TS for 0S/390; C++ OO Class Libraries

CICS client manuals

CICS Clients: Administration SC33-1792
CICS Clients: Messages SC33-1793
CICS Clients: Gateways SC33-1821
CICS Family: OO Programming in C++ for CICS Clients SC33-1923
CICS Family: OO Programming in BASIC for CICS Clients SC33-1924

Bibliography ~ XiX

XX CICS TS for OS/390: C++ OO Class Libraries

Part 1. Installation and setup

Chapter 1. Gettlng ready for obJect oriented
CICS. Coe

Chapter 2. Installed contents
Header files.
Location .
Dynamic link I|brary
Location .
Sample source code

o oo 01O, w

]

Location . e 6
Running the sample appllcatlons o . 6
Other datasets for CICS Transaction Server for
0s/390 T
Chapter 3. Hello World e 9
Compile and link "Hello World* 10
Running "Hello World" on your CICS server . . . 10
Expected Output from "Hello World" 11

This part of the book describes the CICS foundation classes installed on your CICS

Server.

© Copyright IBM Corp. 1989, 1999

2 CICS TS for 0S/390; C++ OO Class Libraries

Chapter 1. Getting ready for object oriented CICS

This book makes several assumptions about you, the reader. It assumes you are
familiar with:

* Object oriented concepts and technology
* C++ language
« CICS.

This book is not intended to be an introduction to any of these subjects. If the
terms in the EGlossary” on page 319 are not familiar to you, then please consult
other sources before going any further. A selection of appropriate books may be

found in the bibliography on page t‘Bibliography” on page xvil, but you may find

other books useful too.

© Copyright IBM Corp. 1989, 1999

4 CICS TS for 0S/390: C++ OO Class Libraries

Chapter 2. Installed contents

The CICS foundation classes package consists of several files or datasets. These
contain the:

header files

executables (DLL’s)

samples

other CICS Transaction Server for OS/390 files

This section describes the files that comprise the CICS C++ Foundation Classes and
explains where you can find them on your CICS server.

Header files

The header files are the C++ class definitions needed to compile CICS C++

Foundation Class programs.

C++ Header File

Classes Defined in this Header

ICCABDEH
ICCBASEH
ICCBUFEH
ICCCLKEH
ICCCNDEH
ICCCONEH
ICCCTLEH
ICCDATEH
ICCEH
ICCEVTEH
ICCEXCEH
ICCFILEH
ICCFLIEH
ICCGLBEH
ICCJRNEH
ICCMSGEH
ICCPRGEH
ICCRECEH
ICCRESEH
ICCRIDEH
ICCSEMEH
ICCSESEH
ICCSRQEH
ICCSYSEH
ICCTIMEH
ICCTMDEH
ICCTMPEH
ICCTRMEH
ICCTSKEH
ICCUSREH
ICCVALEH

© Copyright IBM Corp. 1989, 1999

IccAbendData

IccBase

IccBuf

IccClock

IccCondition (struct)
IccConsole

IccControl

IccDataQueue

see [Con page §

IccEvent

IccException

IccFile

IccFilelterator

Icc (struct) (global functions)
IccJournal

IccMessage

IccProgram

IccRecordIndex, IccKey, IccRBA and IccRRN
IccResource

IccResourceld + subclasses (such as IccConvlid)
IccSemaphore

IccSession

IccStartRequestQ

IccSystem

IccTime, IccAbsTime, lccTimelnterval, lccTimeOfDay
IccTerminalData
IccTempStore

IccTerminal

IccTask

IccUser

IccValue (struct)

Installed contents
Notes:

1. Asingle header that #includes all the above header files is supplied as ICCEH

2. The file ICCMAIN is also supplied with the C++ header files. This contains the
main function stub that should be used when you build a Foundation Class
program.

Location

PDS: CICSTS13.CICS.SDFHC370

Dynamic link library

The Dynamic Link Library is the runtime that is needed to support a CICS C++
Foundation Class program.

Location

ICCFCDLL module in PDS: CICSTS13.CICS.SDFHLOAD

Sample source code

The samples are provided to help you understand how to use the classes to build
object oriented applications.

Location

PDS: CICSTS13.CICS.SDFHSAMP

Running the sample applications.

If you have installed the resources defined in the member DFHCURDS, you should be
ready to run some of the sample applications.

The sample programs are supplied as source code in library
CICSTS13.CICS.SDFHSAMP and before you can run the sample programs, you need to
compile, pre-link and link them. To do this, use the procedure ICCUCPL in dataset
CICSTS13.CICS.PROCLIB.

ICCUCPL contains the Job Control Language needed to compile, pre-link and link a
CICS user application. Before using ICCUCPL you may find it necessary to perform
some customization to conform to your installation standards. See also m

Sample programs such as ICCBUF, ICCCLK and ICC$HEL require no additional CICS
resource definitions, and should now execute successfully.

Other sample programs, in particular the DTP samples named ICC$SES1 and
ICC$SES2, require additional CICS resource definitions. Refer to the prologues in
the source of the sample programs for information about these additional
requirements.

6 CICS TS for 0S/390: C++ OO Class Libraries

Installed contents

Other datasets for CICS Transaction Server for OS/390

CICSTS13.CICS.SDFHSDCK contains the member
ICCFCIMP - 'sidedeck’ containing import control statements

CICSTS13.CICS.SDFHPROC contains the members
ICCFCC - JCL to compile a CFC user program
ICCFCCL - JCL to compile, prelink and link a CFC user program
ICCFCL - JCL to prelink and link a CFC user program

CICSTS13.CICS.SDFHLOAD contains the members
DFHCURDS - program definitions required for CICS system definition.
DFHCURDI - program definitions required for CICS system definition.

Chapter 2. Installed contents 7

Installed contents

8 CICS TS for 0S/390: C++ OO Class Libraries

Chapter 3. Hello World

When you start programming in an unaccustomed environment the hardest task is
usually getting something—anything—to work and to be seen to be working. The
initial difficulty is not in the internals of the program, but in bringing everything
together—the CICS server, the programming environment, program inputs and
program outputs.

The example shown in this chapter shows how to get started in CICS OO

programming. It is intended as an appetizer; EChapter 5_Querview of thd
foundation classes” on page 17 is a more formal introduction and you should read

it before you attempt serious OO programming.

This example could not be much simpler but when it works it is a visible
demonstration that you have got everything together and can go on to greater
things. The program writes a simple message to the CICS terminal.

There follows a series of program fragments interspersed with commentary. The

source for this program can be found in sample ICC$HEL (see I‘Sample source code’]

for the location).

#include "icceh.hpp"
#include "iccmain.hpp"

The first line includes the header file, ICCEH, which includes the header files for all
the CICS Foundation Class definitions. Note that it is coded as "icceh.hpp" to
preserve cross-platform, C++ language conventions.

The second line includes the supplied program stub. This stub contains the main
function, which is the point of entry for any program that uses the supplied classes
and is responsible for initializing them correctly. (See EChapter 64 main function’l
m for more details). You are strongly advised to use the stub provided
but you may in certain cases tailor this stub to your own requirements. The stub
initializes the class environment, creates the program control object, then invokes
the run method, which is where the application program should 'live'.

void IccUserControl::run()

{

The code that controls the program flow resides not in the main function but in

the run method of a class derived from lccControl (see I‘Chapter 20_IccContral
tlass” an page 121). The user can define their own subclass of lccControl or, as

here, use the default one — IccUserControl, which is defined in ICCMAIN - and
just provide a definition for the run method.

IccTerminal* pTerm = terminal();

The terminal method of IccControl class is used to obtain a pointer to the terminal
object for the application to use.

pTerm->erase();

The erase method clears the current contents of the terminal.

© Copyright IBM Corp. 1989, 1999 9

Hello World
pTerm->send (10, 35, "Hello World");

The send method is called on the terminal object. This causes "Hello World" to be
written to the terminal screen, starting at row 10, column 35.

pTerm->waitForAID();
This waits until the terminal user hits an AID (Action Identifier) key.

return;

}

Returning from the run method causes program control to return to CICS.

Compile and link "Hello World"

The "Hello World" sample is provided as sample ICC$HEL (see W
). Find this sample and copy it to your own work area.
To compile and link any CICS C++ Foundation program you need access to:

1. The source of the program, here ICC$HEL.

2. The Foundation Classes header files (see EHeader files” on page 5).
3. The Foundation Classes dynamic link library (see Dynamic link library” on
@).

See EChapter 8 Compiling executing and debugging” on page 49 for the JCL

required to compile the sample program.

Running "Hello World" on your CICS server

To run the program you have just compiled on your CICS server, you need to
make the executable program available to CICS (that is, make sure it is in a
suitable directory or load library). Then, depending on your server, you may need
to create a CICS program definition for your executable. Finally, you may logon to
a CICS terminal and run the program.

To do this,
1. Logon to a CICS terminal and enter either:
THEL

or
CECI LINK PROGRAM(ICC$HEL)

2. If you are not using program autoinstall on your CICS region, define the
program ICC$HEL to CICS using the supplied transaction CEDA.

3. Log on to a CICS terminal.

4. On CICS terminal run:
CECI LINK PROGRAM(ICC$HEL)

10 cICS TS for 0S/390: C++ OO Class Libraries

Hello World
Expected Output from "Hello World"

This is what you should see on the CICS terminal if program ICC$HEL has been
successfuly built and executed.

(Hello World)

Hit an Action Identifier, such as the ENTER key, to return.

Chapter 3. Hello World 11

12 cIcsS TS for 0S/390: C++ OO Class Libraries

Part 2. Using the CICS foundation classes

Chapter 4. C++ Objects
Creating an object
Using an object
Deleting an object

Chapter 5. Overview of the foundation classes
Base classes
Resource identification classes
Resource classes.
Support Classes .
Using CICS resources .
Creating a resource object.
Singleton classes . . .
Calling methods on a resource object .

Chapter 6. Buffer objects

IccBuf class.
Data area ownershlp .

Internal/External ownershlp of buffers .

Data area extensibility .
IccBuf constructors
IccBuf methods .
Working with IccResource subclasses .

Chapter 7. Using CICS Services
File control . .

Reading records . .o
Reading KSDS records .
Reading ESDS records .
Reading RRDS records.

Writing records .

Writing KSDS records
Writing ESDS records
Writing RRDS records

Updating records .

Deleting records . .
Deleting normal records.
Deleting locked records.

Browsing records .

Example of file control .

Program control
Starting transactions asynchronously

Starting transactions .

Accessing start data .

Cancelling unexpired start requests

Example of starting transactions .

Transient Data.

Reading data .

15
15
16
16

17
17
18
19
20
21
21
22
22

25
25
25
25
25
25
26
27

29
29
30
30
30
30
30
31
31
31
31
32
32
32
32
32
34
36
36
36
37
37
40
40

Writing data.

Deleting queues

Example of managing tranS|ent data
Temporary storage

Reading items .

Writing items

Updating items.

Deleting items .

Example of Temporary Storage
Terminal control .

Sending data to a termlnal

Receiving data from a terminal

Finding out information about a terminal

Example of terminal control
Time and date services . .

Example of time and date services .

Chapter 8. Compiling, executing, and
debugging .
Compiling Programs
Executing Programs .
Debugging Programs
Symbolic Debuggers.
Tracing a Foundation Class Program
Activating the trace output .
Execution Diagnostic Facility .
Enabling EDF .

Chapter 9. Conditions, errors, and exceptions
Foundation Class Abend codes .
C++ Exceptions and the Foundation Classes
CICS conditions

Manual condition handllng (noActlon)

Automatic condition handling (callHandleEvent)

Exception handling (throwException)

Severe error handling (abendTask) .
Platform differences .

Object level.

Method level

Parameter level

Chapter 10. Miscellaneous
Polymorphic Behavior
Example of polymorphic behaV|or
Storage management .
Parameter passing conventions .
Scope of data in IccBuf reference returned from
'read' methods.

40
40
40
41
42
42
42
42
42
44
44
44
44
45
46
46

49
49
49
50
50
50
50
50
50

53
53
53
55
56
56
57
58
58
58
59
59

61
61
62
63
64

65

This part of the book describes the CICS foundation classes and how to use them.
There is a formal listing of the user interface in I'Part 3 Foundatior

Classes—reference” on page 64

© Copyright IBM Corp. 1989, 1999

13

14 cics TS for 0S/390: C++ OO Class Libraries

Chapter 4. C++ Objects

This chapter describes how to create, use, and delete objects. In our context an
object is an instance of a class. An object cannot be an instance of a base or abstract
base class. It is possible to create objects of all the concrete (non-base) classes
described in the reference part of this book.

Creating an object

If a class has a constructor it is executed when an object of that class is created.
This constructor typically initializes the state of the object. Foundation Classes’
constructors often have mandatory positional parameters that the programmer
must provide at object creation time.

C++ objects can be created in one of two ways:
1. Automatically, where the object is created on the C++ stack. For example:

{

ClassX objX

ClassY objY(parameterl);
} //objects deleted here

Here, objX and objY are automatically created on the stack. Their lifetime is
limited by the context in which they were created; when they go out of scope
they are automatically deleted (that is, their destructors run and their storage is
released).

2. Dynamically, where the object is created on the C++ heap. For example:

ClassXx pObjX = new ClassX;
ClassY* pObjY = new ClassY(parameterl);
} //objects NOT deleted here

Here we deal with pointers to objects instead of the objects themselves. The
lifetime of the object outlives the scope in which it was created. In the above
sample the pointers (pObjX and pObjY) are 'lost' as they go out of scope but
the objects they pointed to still exist! The objects exist until they are explicitly
deleted as shown here:

ClassXx pObjX
ClassYx pObjY

new ClassX;
new ClassY(parameterl);

pObjX->methodl () ;
pObjY->method2();

delete pObjX;
delete pObjY;
1

Most of the samples in this book use automatic storage. You are advised to use
automatic storage, because you do not have remember to explicitly delete objects,

© Copyright IBM Corp. 1989, 1999 15

C++ Obijects

but you are free to use either style for CICS C++ Foundation Class programs. For
more information on Foundation Classes and storage management see

Using an object

Any of the class public methods can be called on an object of that class. The
following example creates object obj and then calls method doSomething on it:

ClassY obj ("TEMP1234");
obj.doSomething();

Alternatively, you can do this using dynamic object creation:

ClassY* pObj = new ClassY("parameterl");
pObj->doSomething() ;

Deleting an object

When an object is destroyed its destructor function, which has the same name as
the class preceded with “(tilde), is automically called. (You cannot call the
destructor explicitly).

If the object was created automatically it is automatically destroyed when it goes
out of scope.

If the object was created dynamically it exists until an explicit delete operator is
used.

16 cCICS TS for 0S/390: C++ OO Class Libraries

Chapter 5. Overview of the foundation classes

This chapter is a formal introduction to what the Foundation Classes can do for

you. See IChapter 3_Hello Warld” on page d for a simple example to get you
started. The chapter takes a brief look at the CICS C++ Foundation Class library by
considering the following categories in turn:

- EBase classes’]

o [FResource classes” on page 1d

See I‘Part 3_Foundation Classes—reference” on page 64 for more detailed
information on the Foundation Classes.

Every class that belongs to the CICS Foundation Classes is prefixed by Icc.

Base classes

IccBase
IccRecordIndex
IccResource

IccControl
lccTime
IccResourceld

Figure 1. Base classes

All classes inherit, directly or indirectly, from IccBase.

All resource identification classes, such as IccTermld, and IccTransld, inherit from
IccResourceld class. These are typically CICS table entries.

All CICS resources—in fact any class that needs access to CICS services—inherit
from IccResource class.

Base classes enable common interfaces to be defined for categories of class. They
are used to create the foundation classes, as provided by IBM, and they can be
used by application programmers to create their own derived classes.

IccBase
The base for every other foundation class. It enables memory management
and allows objects to be interrogated to discover which type they are.

IccControl
The abstract base class that the application program has to subclass and
provide with an implementation of the run method.

IccResource
The base class for all classes that access CICS resources or services. See

© Copyright IBM Corp. 1989, 1999 17

Base classes

IccResourceld
The base class for all table entry (resource name) classes, such as lIccFileld
and lccTempStoreld.

lccTime
The base class for the classes that store time information: lccAbsTime,
IccTimelnterval and lccTimeOfDay.

Resource identification classes

IccBase

IccResourceld
lccConvid
lccDataQueueld
IccFileld
lccGroupld
IccJournalld
IccJournal Typeld
lccLockld
IccPartnerld
IccProgramid
IccRequestld

IccAlarmRequestld

lccSysld
IccTempStoreld
lccTermld
lccTPNameld
lccTransld
lccUserld

Figure 2. Resource identification classes

CICS resource identification classes define CICS resource identifiers — typically
entries in one of the CICS tables. For example an IccFileld object represents a CICS
file name — an FCT (file control table) entry. All concrete resource identification
classes have the following properties:

e The name of the class ends in Id.
e The class is a subclass of the IccResourceld class.

» The constructors check that any supplied table entry meets CICS standards. For
example, an IccFileld object must contain a 1 to 8 byte character field; providing
a 9-byte field is not tolerated.

The resource identification classes improve type checking; methods that expect an
IccFileld object as a parameter do not accept an IccProgramld object instead. If
character strings representing the resource names are used instead, the compiler
cannot check for validity — it cannot check whether the string is a file name or a
program name.

Many of the resource classes, described in FResaurce classes” an page 19, contain
resource identification classes. For example, an IccFile object contains an IccFileld
object. You must use the resource object, not the resource identification object to
operate on a CICS resource. For example, you must use IccFile, rather than
IccFileld to read a record from a file.

18 cICs TS for 0S/390: C++ OO Class Libraries

Resource identification classes

Class CICS resource CICS table
IccAlarmRequestld alarm request
IccConvid conversation
IccDataQueueld data queue DCT
IccFileld file FCT
lccGroupld group
Icclournalld journal CT
Icclournal Typeld journal type
IccLockld (Not applicable)
IccPartnerld APPC partner definition files
IccProgramlid program PPT
IccRequestld request
lccSysld remote system
lccTempStoreld temporary storage TST
lccTermid terminal TCT
lccTPNameld remote APPC TP name
lccTransld transaction PCT
lccUserld user SNT
Resource classes
IccBase
IccResource

IccAbendData

IccClock

IccConsole

IccControl

IccDataQueue

IccFile

IccFilelterator

IccJournal

IccProgram

IccSemaphore

lccSession

lccStartRequestQ

lccSystem

lccTask

lccTempStore

IccTerminal

IccTerminalData

lccUser

Figure 3. Resource classes

These classes model the behaviour of the major CICS resources, for example:
* Terminals are modelled by IccTerminal.
* Programs are modelled by IccProgram.
» Temporary Storage queues are modelled by IccTempStore.
* Transient Data queues are modelled by IccDataQueue.

All CICS resource classes inherit from the IccResource base class. For example, any
operation on a CICS resource may raise a CICS condition; the condition method of

IccResource (see page

@) can interrogate it.

Chapter 5. Overview of the foundation classes 19

Resource classes

(Any class that accesses CICS services must be derived from IccResource).

Class CICS resource

IccAbendData task abend data

IccClock CICS time and date services

IccConsole CICS console

IccControl control of executing program

IccDataQueue transient data queue

IccFile file

IccFilelterator file iterator (browsing files)

Icclournal user or system journal

IccProgram program (outside executing program)

IccSemaphore semaphore (locking services)

IccSession session

IccStartRequestQ start request queue; asynchronous transaction
starts

IccSystem CICS system

IccTask current task

IccTempStore temporary storage queue

IccTerminal terminal belonging to current task

IccTerminalData attributes of lccTerminal

lccTime time specification

lccUser user (security attributes)

Support Classes

20 cICS TS for 0S/390: C++ OO Class Libraries

IccBase
IccBuf
IccEvent
IccException
IccMessage

IccRecordIndex

lccKey
IccCRBA
IccRRN
IccResource
lccTime

IccAbsTime
lccTimelnterval
lccTimeOfDay

Figure 4. Support classes

These classes are tools that complement the resource classes: they make life easier
for the application programmer and thus add value to the object model.

Resource class

Description

IccAbsTime
IccBuf
IccEvent
IccException

IccTimelnterval
IccTimeOfDay

Absolute time (milliseconds since January 1 1900)

Data buffer (makes manipulating data areas easier)

Event (the outcome of a CICS command)

Foundation Class exception (supports the C++ exception handling
model)

Time interval (for example, five minutes)

Time of day (for example, five minutes past six)

support classes

IccAbsTime, IccTimelnterval and lccTimeOfDay classes make it simpler for the
application programmer to specify time measurements as objects within an
application program. IccTime is a base class: IccAbsTime, IccTimelnterval, and
lccTimeOfDay are derived from IccTime.

Consider method delay in class IccTask, whose signature is as follows:
void delay(const IccTime& time, const IccRequestIdx reqld = 0);

To request a delay of 1 minute and 7 seconds (that is, a time interval) the
application programmer can do this:

IccTimelInterval time(0, 1, 7);
task()->delay(time);

Note: The task method is provided in class IccControl and returns a pointer to the
application’s task object.

Alternatively, to request a delay until 10 minutes past twelve (lunchtime?) the
application programmer can do this:

IccTimeOfDay lunchtime(12, 10);
task()->delay(lunchtime);

The IccBuf class allows easy manipulation of buffers, such as file record buffers,
transient data record buffers, and COMMAREAs (for more information on lccBuf

class see tChapter 6_Buffer ahjects” an page 285).

IccMessage class is used primarily by IccException class to encapsulate a
description of why an exception was thrown. The application programmer can also
use lccMessage to create their own message objects.

IccException objects are thrown from many of the methods in the Foundation
Classes when an error is encountered.

The IccEvent class allows a programmer to gain access to information relating to a
particular CICS event (command).

Using CICS resources

To use a CICS resource, such as a file or program, you must first create an
appropriate object and then call methods on the object.

Creating a resource object

When you create a resource object you create a representation of the actual CICS
resource (such as a file or program). You do not create the CICS resource; the
object is simply the application’s view of the resource. The same is true of
destroying objects.

You are recommended to use an accompanying resource identification object when
creating a resource object. For example:

IccFileld id("XYZ123");
IccFile file(id);

Chapter 5. Overview of the foundation classes 21

Using CICS resources

This allows the C++ compiler to protect you against doing something wrong such
as:

IccDataQueueld id("WXYZ");
IccFile file(id); //gives error at compile time

The alternative of using the text name of the resource when creating the object is
also permitted:

IccFile file("XYZ123");
Singleton classes

Many resource classes, such as IccFile, can be used to create multiple resource
objects within a single program:

IccFileld idl1("Filel");
IccFileld id2("File2");
IccFile filel(idl);
IccFile file2(id2);

However, some resource classes are designed to allow the programmer to create
only one instance of the class; these are called singleton classes. The following
Foundation Classes are singleton:

* lccAbendData provides information about task abends.

* lccConsole, or a derived class, represents the system console for operator
messages.

* lccControl, or a derived class, such as IccUserControl, controls the executing
program.

» lccStartRequestQ, or a derived class, allows the application program to start
CICS transactions (tasks) asynchronously.

* lccSystem, or a derived class, is the application view of the CICS system in
which it is running.

» lccTask, or a derived class, represents the CICS task under which the executing
program is running.

* lccTerminal, or a derived class, represents your task's terminal, provided that
your principal facility is a 3270 terminal.

Any attempt to create more than one object of a singleton class results in an error —
a C++ exception is thrown.

A class method, instance, is provided for each of these singleton classes, which
returns a pointer to the requested object and creates one if it does not already exist.
For example:

IccControl* pControl = IccControl::instance();
Calling methods on a resource object

Any of the public methods can be called on an object of that class. For example:

IccTempStoreld id("TEMP1234");
IccTempStore temp(id);
temp.writeltem("Hello TEMP1234");

22 CICS TS for 0S/390: C++ OO Class Libraries

Using CICS resources

Method writeltem writes the contents of the string it is passed ("Hello TEMP1234")
to the CICS Temporary Storage queue "TEMP1234".

Chapter 5. Overview of the foundation classes 23

24 CICS TS for 0S/390: C++ OO Class Libraries

Chapter 6. Buffer objects

The Foundation Classes make extensive use of IccBuf objects — buffer objects that
simplify the task of handling pieces of data or records. Understanding the use of
these objects is a necessary precondition for much of the rest of this book.

Each of the CICS Resource classes that involve passing data to CICS (for example
by writing data records) and getting data from CICS (for example by reading data
records) make use of the IccBuf class. Examples of such classes are IccConsole,
IccDataQueue, IccFile, IccFilelterator, IccJournal, IccProgram, IccSession,
IccStartRequestQ, IccTempStore, and IccTerminal.

IccBuf class

IccBuf, which is described in detail in the reference part of this book, provides
generalized manipulation of data areas. Because it can be used in a number of
ways, there are several IccBuf constructors that affect the behavior of the object.
Two important attributes of an IccBuf object are now described.

Data area ownership

IccBuf has an attribute indicating whether the data area has been allocated inside
or outside of the object. The possible values of this attribute are 'internal’ and
‘external’. It can be interrogated by using the dataAreaOwner method.

Internal/External ownership of buffers

When DataAreaOwner = external, it is the application programmer’s responsibility
to ensure the validity of the storage on which the lccBuf object is based. If the
storage is invalid or inappropriate for a particular method applied to the object,
unpredictable results will occur.

Data area extensibility

This attribute defines whether the length of the data area within the IccBuf object,
once created, can be increased. The possible values of this attribute are 'fixed' and
‘extensible’. It can be interrogated by using the dataAreaType method.

As an object that is 'fixed' cannot have its data area size increased, the length of
the data (for example, a file record) assigned to the IccBuf object must not exceed
the data area length, otherwise a C++ exception is thrown.

Note: By definition, an 'extensible' buffer must also be 'internal'.

IccBuf constructors

There are several forms of the lccBuf constructor, used when creating IccBuf
objects. Some examples are shown here.

IccBuf buffer;

© Copyright IBM Corp. 1989, 1999 25

Buffer objects

This creates an 'internal' and 'extensible' data area that has an initial length of zero.
When data is assigned to the object the data area length is automatically extended
to accommodate the data being assigned.

IccBuf buffer(50);

This creates an 'internal' and 'extensible' data area that has an initial length of 50
bytes. The data length is zero until data is assigned to the object. If 50 bytes of
data are assigned to the object, both the data length and the data area length
return a value of 50. When more than 50 bytes of data are assigned into the object,
the data area length is automatically (that is, without further intervention)
extended to accommodate the data.

IccBuf buffer(50, IccBuf::fixed);

This creates an 'internal’ and 'fixed' data area that has a length of 50 bytes. If an
attempt is made to assign more than 50 bytes of data into the object, the data is
truncated and an exception is thrown to notify the application of the error
situation.

struct MyRecordStruct
{

short id;
short code;
char datai30};
char rating;
1
MyRecordStruct myRecord;
IccBuf buffer(sizeof(MyRecordStruct), &myRecord);

This creates an IccBuf object that uses an 'external’ data area called myRecord. By
definition, an 'external’ data area is also 'fixed'. Data can be assigned using the
methods on the IccBuf object or using the myRecord structure directly.

IccBuf buffer("Hello World");

This creates an 'internal’ and 'extensible' data area that has a length equal to the
length of the string "Hello World". The string is copied into the object's data area.
This initial data assignment can then be changed using one of the manipulation
methods (such as insert, cut, or replace) provided.

IccBuf buffer("Hello World");
buffer << " out there";
IccBuf buffer2(buffer);

Here the copy constructor creates the second buffer with almost the same attributes
as the first; the exception is the data area ownership attribute — the second object
always contains an 'internal’ data area that is a copy of the data area in the first. In
the above example buffer2 contains "Hello World out there" and has both data area
length and data length of 21.

IccBuf methods

An lccBuf object can be manipulated using a number of supplied methods; for
example you can append data to the buffer, change the data in the buffer, cut data
out of the buffer, or insert data into the middle of the buffer. The operators const

26 CICS TS for 0S/390: C++ OO Class Libraries

Buffer objects

char*, =, +=, ==, I=, and << have been overloaded in class IccBuf. There are also
methods that allow the IccBuf attributes to be queried. For more details see the
reference section.

Working with IccResource subclasses

To illustrate this, consider writing a queue item to CICS temporary storage using
IccTempstore class.

IccTempStore store("TEMP1234");
IccBuf buffer(50);

The IccTempStore object created is the application’s view of the CICS temporary
storage queue named "TEMP1234". The lccBuf object created holds a 50-byte data
area (it also happens to be 'extensible’).

buffer = "Hello Temporary Storage Queue";
store.writeltem(buffer);

The character string "Hello Temporary Storage Queue" is copied into the buffer.
This is possible because the operator= method has been overloaded in the IccBuf
class.

The IccTempStore object calls its writeltem method, passing a reference to the
IccBuf object as the first parameter. The contents of the IccBuf object are written
out to the CICS temporary storage queue.

Now consider the inverse operation, reading a record from the CICS resource into
the application program's IccBuf object:

buffer = store.readItem(5);

The readltem method reads the contents of the fifth item in the CICS Temporary
Storage queue and returns the data as an IccBuf reference.

The C++ compiler actually resolves the above line of code into two method calls,
readltem defined in class lccTempStore and operator= which has been overloaded
in class IccBuf. This second method takes the contents of the returned IccBuf
reference and copies its data into the buffer.

The above style of reading and writing records using the foundation classes is
typical. The final example shows how to write code — using a similar style to the
above example — but this time accessing a CICS transient data queue.

IccDataQueue queue("DATQ");
IccBuf buffer(50);
buffer = queue.readItem();
buffer << "Some extra data";
queue.writeltem(buffer);

The readltem method of the IccDataQueue object is called, returning a reference to
an lccBuf which it then assigns (via operator= method, overloaded in class IccBuf)
to the buffer object. The character string — "Some extra data" — is appended to the

buffer (via operator<< method, overloaded in class IccBuf). The writeltem method
then writes back this modified buffer to the CICS transient data queue.

Chapter 6. Buffer objects 27

Buffer objects

You can find further examples of this syntax in the samples presented in the
following chapters, which describe how to use the foundation classes to access
CICS services.

Please refer to the reference section for further information on the IccBuf class. You
might also find the supplied sample — ICC$BUF — helpful.

28 cCICS TS for 0S/390: C++ OO Class Libraries

Chapter 7. Using CICS Services

This chapter describes how to use CICS services. The following services are
considered in turn:

File control

The file control classes — lIccFile, IccFileld, IccKey, IccRBA, and IccRRN - allow
you to read, write, update and delete records in files. In addition, IccFilelterator
class allows you to browse through all the records in a file.

An IccFile object is used to represent a file. It is convenient, but not necessary, to
use an lccFileld object to identify a file by name.

An application program reads and writes its data in the form of individual records.
Each read or write request is made by a method call. To access a record, the
program must identify both the file and the particular record.

VSAM (or VSAM-like) files are of the following types:

KSDS
Key-sequenced: each record is identified by a key — a field in a predefined
position in the record. Each key must be unique in the file.

The logical order of records within a file is determined by the key. The
physical location is held in an index which is maintained by VSAM.

When browsing, records are found in their logical order.
ESDS Entry-sequenced: each record is identified by its relative byte address
(RBA).

Records are held in an ESDS in the order in which they were first loaded
into the file. New records are always added at the end and records may
not be deleted or have their lengths altered.

When browsing, records are found in the order in which they were
originally written.

RRDS file
Relative record: records are written in fixed-length slots. A record is
identified by the relative record number (RRN) of the slot which holds it.

© Copyright IBM Corp. 1989, 1999 29

File control

Reading records

A read operation uses two classes — IccFile to perform the operation and one of
IccKey, IccRBA, and IccRRN to identify the particular record, depending on
whether the file access type is KSDS, ESDS, or RRDS.

The readRecord method of IccFile class actually reads the record.
Reading KSDS records

Before reading a record you must use the registerRecordindex method of IccFile
to associate an object of class IccKey with the file.

You must use a key, held in the IccKey object, to access records. A ‘complete’ key is
a character string of the same length as the physical file’s key. Every record can be
separately identified by its complete key.

A key can also be 'generic'. A generic key is shorter than a complete key and is
used for searching for a set of records. The IccKey class has methods that allow
you to set and change the key.

IccFile class has methods isReadable, keyLength, keyPosition, recordIindex, and
recordLength, which help you when reading KSDS records.

Reading ESDS records

You must use a relative byte address (RBA) held in an IccRBA object to access the
beginning of a record.

Before reading a record you must use the registerRecordindex method of IccFile
to associate an object of class IccRBA with the file.

IccFile class has methods isReadable, recordFormat, recordindex, and
recordLength that help you when reading ESDS records.

Reading RRDS records

You must use a relative record number (RRN) held in an IccRRN object to access a
record.

Before reading a record you must use registerRecordlndex method of IccFile to
associate an object of class IccRRN with the file.

IccFile class has methods isReadable, recordFormat, recordindex, and
recordLength which help you when reading RRDS records.

Writing records

Writing records is also known as "adding records". This section describes writing
records that have not previously been written. Writing records that already exist is
not permitted unless they have been previously been put into ‘update’ mode. See

Elpdating recards” an page 31| for more information.

Before writing a record you must use registerRecordindex method of IccFile to
associate an object of class IccKey, IccRBA, or IccRRN with the file. The
writeRecord method of IccFile class actually writes the record.

30 cICS TS for 0S/390: C++ OO Class Libraries

File control

A write operation uses two classes — IccFile to perform the operation and one of
IccKey, IccRBA, and IccRRN to identify the particular record, depending on
whether the file access type is KSDS, ESDS, or RRDS.

If you have more than one record to write, you can improve the speed of writing
by using mass insertion of data. You begin and end this mass insertion by calling
the beginlnsert and endInsert methods of IccFile.

Writing KSDS records

You must use a key, held in an IccKey object to access records. A ‘complete’ key is
a character string that uniquely identifies a record. Every record can be separately
identified by its complete key.

The writeRecord method of IccFile class actually writes the record.

IccFile class has methods isAddable, keyLength, keyPosition, recordindex,
recordLength, and registerRecordIndex which help you when writing KSDS
records.

Writing ESDS records

You must use a relative byte address (RBA) held in an IccRBA object to access the
beginning of a record.

IccFile class has methods isAddable, recordFormat, recordindex, recordLength,
and registerRecordIndex that help you when writing ESDS records.

Writing RRDS records

Use the writeRecord method to add a new ESDS record. After writing the record
you can use the number method on the IccRBA object to discover the assigned
relative byte address for the record you have just written.

IccFile class has methods isAddable, recordFormat, recordindex, recordLength,
and registerRecordIndex that help you when writing RRDS records.

Updating records

Updating a record is also known as "rewriting a record". Before updating a record
you must first read it, using readRecord method in ‘'update’ mode. This locks the
record so that nobody else can change it.

Use rewriteRecord method to actually update the record. Note that the IccFile
object remembers which record is being processed and this information is not
passed in again.

For an example, see B4

The base key in a KSDS file must not be altered when the record is modified. If the
file definition allows variable-length records, the length of the record can be
changed.

The length of records in an ESDS, RRDS, or fixed-length KSDS file must not be
changed on update.

Chapter 7. Using CICS Services 31

File control

For a file defined to CICS as containing fixed-length records, the length of record
being updated must be the same as the original length. The length of an updated
record must not be greater than the maximum defined to VSAM.

Deleting records

Records can never be deleted from an ESDS file.
Deleting normal records

The deleteRecord method of IccFile class deletes one or more records, provided
they are not locked by virtue of being in 'update’ mode. The records to be deleted
are defined by the IccKey or IccRRN object.

Deleting locked records

The deleteLockedRecord method of IccFile class deletes a record which has been
previously locked by virtue of being put in 'update’ mode by the readRecord
method.

Browsing records

Browsing, or sequential reading of files uses another class — IccFilelterator. An
object of this class must be associated with an IccFile object and an IccKey,
IccRBA, or IccRRN object. After this association has been made the IccFilelterator
object can be used without further reference to the other objects.

Browsing can be done either forwards, using readNextRecord method or
backwards, using readPreviousRecord method. The reset method resets the
IccFilelterator object to point to the record specified by the IccKey or IccRBA
object.

Examples of browsing files are shown in page Rd

Example of file control

This sample program demonstrates how to use the IccFile and IccFilelterator
classes. The source for this sample can be found in the samples directory (see

t'Sample source code” on page f) in file ICC$FIL. Here the code is presented

without any of the terminal input and output that can be found in the source file.

#include "icceh.hpp"
#include "iccmain.hpp"

The first two lines include the header files for the Foundation Classes and the
standard main function which sets up the operating environment for the
application program.

32 CICS TS for 0S/390: C++ OO Class Libraries

File control

const char* fileRecords[] =

{

/ /NAME KEY PHONE USERID

"BACH, J S 003 00-1234 BACH ",
"BEETHOVEN, L 007 00-2244 BEET ",
"CHOPIN, F 004 00-3355 CHOPIN ",

"HANDEL, G F 005 00-4466 HANDEL "
"MOZART, W A 008 00-5577 WOLFGANG "
}s

This defines several lines of data that are used by the sample program.

void IccUserControl::run()

{

The run method of IccUserControl class contains the user code for this example.
As a terminal is to be used, the example starts by creating a terminal object and
clearing the associated screen.

short recordsDeleted = 0;
IccFileld id("ICCKFILE");

IccKey key(3,IccKey::generic);
IccFile file(id);
file.registerRecordIndex(&key);
key = "00";

recordsDeleted = file.deleteRecord();

The key and file objects are first created and then used to delete all the records
whose key starts with "00" in the KSDS file "ICCKFILE". key is defined as a generic
key having 3 bytes, only the first two of which are used in this instance.

IccBuf buffer(40);

key.setKind(IccKey::complete);

for (short j = 0; j < 5; j++)

{
buffer = fileRecords[j];
key.assign(3, fileRecords[j]+15);
file.writeRecord(buffer);

}

This next fragment writes all the data provided into records in the file. The data is
passed by means of an IccBuf object that is created for this purpose. setKind
method is used to change key from 'generic' to ‘complete’.

The for loop between these calls loops round all the data, passing the data into the
buffer, using the operator= method of lIccBuf, and thence into a record in the file,
by means of writeRecord. On the way the key for each record is set, using assign,
to be a character string that occurs in the data (3 characters, starting 15 characters
in).

IccFilelterator flterator(&file, &key);

key = "000";

buffer = flterator.readNextRecord();

while (fIterator.condition() == IccCondition::NORMAL)

{
term->sendLine("- record read: [%s]",(const char*) buffer);
buffer = flterator.readNextRecord();

}

The loop shown here lists to the terminal, using sendLine, all the records in
ascending order of key. It uses an IccFilelterator object to browse the records. It

Chapter 7. Using CICS Services 33

File control

starts by setting the minimum value for the key which, as it happens, does not
actually exist in this example, and relying on CICS to find the first record in key
sequence.

The loop continues until any condition other than NORMAL is returned.

key = "\xFF\xFF\xFF";

flterator.reset(&key);

buffer = flterator.readPreviousRecord();

while (fIterator.condition() == IccCondition::NORMAL)

buffer = flterator.readPreviousRecord();

}

The next loop is nearly identical to the last, but lists the records in reverse order of
key.

key = "008";

buffer = file.readRecord(IccFile::update);
buffer.replace(4, "5678", 23);
file.rewriteRecord(buffer);

This fragment reads a record for update, locking it so that others cannot change it.
It then modifies the record in the buffer and writes the updated record back to the
file.

buffer = file.readRecord();

The same record is read again and sent to the terminal, to show that it has indeed
been updated.

return;

}

The end of run, which returns control to CICS.

See I‘Appendix C. Qutput from sample programs” on page 311 for the expected

output from this sample.

Program control

This section describes how to access and use a program other than the one that is
currently executing. Program control uses IccProgram class, one of the resource
classes.

Programs may be loaded, unloaded and linked to, using an IccProgram object. An
IccProgram object can be interrogated to obtain information about the program.

See EChapter 37 lccProgram class” an page 179 for more details.

The example shown here shows one program calling another two programs in
turn, with data passing between them via a COMMAREA. One program is
assumed to be local, the second is on a remote CICS system. The programs are in
two files, ICC$PRG1 and ICC$PRG2, in the samples directory (see Eﬁm

).

34 cICS TS for 0S/390: C++ OO Class Libraries

Program control

Most of the terminal 10 in these samples has been omitted from the code that
follows.

#include "icceh.hpp"
#include "iccmain.hpp"
void IccUserControl::run()

{

The code for both programs starts by including the header files for the Foundation
Classes and the stub for main method. The user code is located in the run method
of the IccUserControl class for each program.

IccSysId sysId("I1CC2");

IccProgram icc$prg2("ICC$PRG2");
IccProgram remoteProg("ICC$PRG3");
IccBuf commArea(100, IccBuf::fixed);

The first program (ICC$PRG1) creates an IccSysld object representing the remote
region, and two IccProgram objects representing the local and remote programs
that will be called from this program. A 100 byte, fixed length buffer object is also
created to be used as a communication area between programs.

icc$prg2.load();
if (icc$prg2.condition() == IccCondition::NORMAL)
{

term->sendLine("Loaded program: %s <%s> Length=%1d Address=%x",
icc$prg2.name(),
icc$prg2.conditionText(),
icc$prg2.length(),
icc$prg2.address());
icc$prg2.unload();
1

The program then attempts to load and interrogate the properties of program
ICC$PRG2.

commArea = "DATA SET BY ICC$PRG1";
icc$prg2.link(&commArea);

The communication area buffer is set to contain some data to be passed to the first
program that ICC$PRGL1 links to (ICC$PRG2). ICC$PRGL1 is suspended while
ICC$PRG?2 is run.

The called program, ICC$PRG?2, is a simple program, the gist of which is as
follows:

IccBuf& commArea = IccControl::commArea();
commArea = "DATA RETURNED BY ICC$PRG2";
return;

ICC$PRG2 gains access to the communication area that was passed to it. It then
modifies the data in this communication area and passes control back to the
program that called it.

The first program (ICC$PRG1) now calls another program, this time on another
system, as follows:

Chapter 7. Using CICS Services 35

Program control

remoteProg.setRouteOption(sysId);
commArea = "DATA SET BY ICC$PRG1";
remoteProg.Tink(&commArea);

The setRouteOption requests that calls on this object are routed to the remote
system. The communication area is set again (because it will have been changed by
ICC$PRG2) and it then links to the remote program (ICC$PRG3 on system ICC2).

The called program uses CICS temporary storage but the three lines we consider
are:

IccBuf& commArea = IccControl::commArea();
commArea = "DATA RETURNED BY ICC$PRG3";
return;

Again, the remote program (ICC$PRG3) gains access to the communication area
that was passed to it. It modifies the data in this communication area and passes
control back to the program that called it.

return;

}s
Finally, the calling program itself ends and returns control to CICS.

See EAppendix C_Qutput from sample programs” on page 311 for the expected

output from these sample programs.

Starting transactions asynchronously

The lccStartRequestQ class enables a program to start another CICS transaction
instance asynchronously (and optionally pass data to the started transaction). The
same class is used by a started transaction to gain access to the data that the task
that issued the start request passed to it. Finally start requests (for some time in
the future) can be cancelled.

Starting transactions

You can use any of the following methods to establish what data will be sent to
the started transaction:

* registerData or setData
* setQueueName

* setReturnTermld

* setReturnTransld

The actual start is requested using the start method.

Accessing start data

A started transaction can access its start data by invoking the retrieveData method.
This method stores all the start data attributes in the IccStartRequestQ object such
that the individual attributes can be accessed using the following methods:

* data
* queueName

36 CICS TS for 0S/390: C++ OO Class Libraries

Starting transactions asynchronously

e returnTermld
e returnTransld

Cancelling unexpired start requests

Unexpired start requests (that is, start requests for some future time that has not
yet been reached) can be cancelled using the cancel method.

Example of starting transactions

CICS system ICC1 ICC2
Transaction ISRL/ITMP ISR2
Program ICC$SRQ1/ICC$TMP ICC$SRQ2
Terminal PEO1 PEO2

The scenario is as follows. We start transaction ISR1 on terminal PEO1 on system
ICCL. This issues two start requests; the first is cancelled before it has expired. The
second starts transaction ISR2 on terminal PEO2 on system ICC2. This transaction
accesses its start data and finishes by starting transaction ITMP on the original
terminal (PEO1 on system ICCL1).

The programs can be found in the samples directory (see ‘Sample source cade” onl

) as files ICC$SRQ1 and ICC$SRQ2. Here the code is presented without the
terminal 10 requests.

Transaction ISR1 runs program ICC$SRQ1 on system ICC1. Let us consider this
program first:

#include "icceh.hpp"
#include "iccmain.hpp"
void IccUserControl::run()

{

These lines include the header files for the Foundation Classes, and the main
function needed to set up the class library for the application program. The run
method of lIccUserControl class contains the user code for this example.

IccRequestId reql;

IccRequestId req2 ("REQUEST1");
IccTimeInterval ti(0,0,5);

IccTermId remoteTermId("PEO2");
IccTransld ISR2("ISR2");
IccTransld ITMP("ITMP");

IccBuf buffer;

IccStartRequestQ* startQ = startRequestQ();

Here we are creating a number of objects:
reql An empty IccRequestld object ready to identify a particular start request.

req2 An lccRequestld object containing the user-supplied identifier
"REQUEST1".

ti An lccTimelnterval object representing 0 hours, 0 minutes, and 5 seconds.

remoteTermld
An lccTermld object; the terminal on the remote system where we start a
transaction.

Chapter 7. Using CICS Services 37

Starting transactions asynchronously
ISR2 An lccTransld object; the transaction we start on the remote system.

ITMP An lccTransld object; the transaction that the started transaction starts on
this program’s terminal.

buffer
An lccBuf object that holds start data.

Finally, the startRequestQ method of IccControl class returns a pointer to the
single instance (singleton) class IccStartRequestQ.

startQ->setRouteOption("ICC2");
startQ->registerData(&buffer);
startQ->setReturnTermId(terminal()->name());
startQ->setReturnTransId(ITMP);
startQ->setQueueName("startgnm");

This code fragment prepares the start data that is passed when we issue a start
request. The setRouteOption says we will issue the start request on the remote
system, ICC2. The registerData method associates an IccBuf object that will
contain the start data (the contents of the IccBuf object are not extracted until we
actually issue the start request). The setReturnTermld and setReturnTransld
methods allow the start requester to pass a transaction and terminal name to the
started transaction. These fields are typically used to allow the started transaction
to start another transaction (as specified) on another terminal, in this case ours.

The setQueueName is another piece of information that can be passed to the
started transaction.

buffer = "This is a greeting from program 'icc$srql'!!";
reql = startQ->start(ISR2, &remoteTermId, &ti);
startQ->cancel(reql);

Here we set the data that we pass on the start requests. We start transaction ISR2
after an interval ti (5 seconds). The request identifier is stored in reql. Before the
five seconds has expired (that is, immediately) we cancel the start request.

reql = startQ->start(ISR2, &remoteTermID, &ti, &req2);
return;

}

Again we start transaction ISR2 after an interval ti (5 seconds). This time the
request is allowed to expire so transaction ISR2 is started on the remote system.
Meanwhile, we end by returning control to CICS.

Let us now consider the started program, ICC$SRQ2.

IccBuf buffer;
IccRequestId req("REQUESTX");
IccTimeInterval ti(0,0,5);

IccStartRequestQx startQ = startRequestQ();

Here, as in ICC$SRQ1L, we create a number of objects:

buffer
An lccBuf object to hold the start data we were passed by our caller
(ICC$SRQ1).

req An IccRequestld object to identify the start we will issue on our caller’s
terminal.

38 cCICS TS for 0S/390: C++ OO Class Libraries

Starting transactions asynchronously

ti An lccTimelnterval object representing 0 hours, 0 minutes, and 5 seconds.

The startRequestQ method of IccControl class returns a pointer to the singleton
class IccStartRequestQ.

if (task()->startType() != IccTask::startRequest)
{

term->sendLine(
"This program should only be started via the StartRequestQ");
task()->abend("00PS");

Here we use the startType method of IccTask class to check that ICC$SRQ2 was
started by the start method, and not in any other way (such as typing the
transaction name on a terminal). If it was not started as intended, we abend with
an "OOPS" abend code.

startQ->retrieveData();

We retrieve the start data that we were passed by ICC$SRQ1 and store within the
IccStartRequestQ object for subsequent access.

buffer = startQ->data();

term->sendLine("Start buffer contents = [%s]", buffer.dataArea());
term->sendLine("Start queue= [%s]", startQ->queueName());
term->sendLine("Start rtrn = [%s]", startQ->returnTransId().name());
term->sendLine("Start rtrm = [%s]", startQ->returnTermId().name());

The start data buffer is copied into our IccBuf object. The other start data items
(queue, returnTransld, and returnTermld) are displayed on the terminal.

task()->delay(ti);

We delay for five seconds (that is, we sleep and do nothing).
startQ->setRouteOption("ICC1");

The setRouteOption signals that we will start on our caller’s system (ICC1).

startQ->start(startQ->returnTransId(),startQ->returnTermId());
return;

We start a transaction called ITMP (the name of which was passed by ICC$SRQ1 in
the returnTransld start information) on the originating terminal (where ICC$SRQ1
completed as it started this transaction). Having issued the start request, ICC§SRQ1
ends, by returning control to CICS.

Finally, transaction ITMP runs on the first terminal. This is the end of this
demonstration of starting transactions asynchronously.

See Appendix C_ Qutput from sample programs” an page 311 for the expected

output from these sample programs.

Chapter 7. Using CICS Services 39

Transient Data

Transient Data

The transient data classes, IccDataQueue and IccDataQueueld, allow you to store
data in transient data queues for subsequent processing.

You can:

* Read data from a transient data queue (readltem method)
» Write data to a transient data queue (writeltem method)

» Delete a transient data queue (empty method)

An lccDataQueue object is used to represent a temporary storage queue. An
IccDataQueueld object is used to identify a queue by name. Once the
IccDataQueueld obiject is initialized it can be used to identify the queue as an
alternative to using its name, with the advantage of additional error detection by
the C++ compiler.

The methods available in lccDataQueue class are similar to those in the

IccTemr)Store class. For more information on these see ETemparary storage” on

Reading data

The readltem method is used to read items from the queue. It returns a reference
to the lccBuf object that contains the information.

Writing data

The writeltem method of IccDataQueue adds a new item of data to the queue,
taking the data from the buffer specified.

Deleting queues

The empty method deletes all items on the queue.
Example of managing transient data

This sample program demonstrates how to use the IccDataQueue and
IccDataQueueld classes. It can be found in the samples directory (see

ource code” an page 8) as file ICC$DAT. Here the code is presented without the

terminal 10 requests.

#include "icceh.hpp"
#include "iccmain.hpp"

The first two lines include the header files for the foundation classes and the
standard main function that sets up the operating environment for the application
program.

40 cICs TS for 0S/390; C++ OO Class Libraries

Transient Data

const charx queueltems[] =

{

"Hello World - item 1",
"Hello World - item 2",
"Hello World - item 3"

}s
This defines some buffer for the sample program.

void IccUserControl::run()

{
The run method of IccUserControl class contains the user code for this example.

short itemNum =1;

IccBuf buffer(50);
IccDataQueueld id("I1CCQ");
IccDataQueue queue(id);

queue.empty();

This fragment first creates an identification object, of type IccDataQueueld
containing "ICCQ". It then creates an IccDataQueue object representing the
transient data queue "ICCQ", which it empties of data.

for (short i=0 ; i<3 ; i++)

buffer = queueltems[i];
queue.writeltem(buffer);

}

This loop writes the three data items to the transient data object. The data is
passed by means of an IccBuf object that was created for this purpose.

buffer = queue.readItem();
while (queue.condition() == IccCondition::NORMAL)

buffer = queue.readItem();

}

Having written out three records we now read them back in to show they were
successfully written.

return;

}

The end of run, which returns control to CICS.

See tAppendix C_Qutput from sample programs” an page 311 for the expected

output from this sample program.

Temporary storage

The temporary storage classes, IccTempStore and IccTempStoreld, allow you to
store data in temporary storage queues.

You can:
* Read an item from the temporary storage queue (readltem method)
» Write a new item to the end of the temporary storage queue (writeltem method)

Chapter 7. Using CICS Services 41

Temporary storage

* Update an item in the temporary storage queue (rewriteltem method)
* Read the next item in the temporary storage queue (readNextltem method)
* Delete all the temporary data (empty method)

An lccTempStore object is used to represent a temporary storage queue. An
IccTempStoreld object is used to identify a queue by name. Once the
IccTempStoreld object is initialized it can be used to identify the queue as an

alternative to using its name, with the advantage of additional error detection by
the C++ compiler.

The methods available in IccTempStore class are similar to those in the
IccDataQueue class. For more information on these see ETransient Data” od

Reading items

The readltem method of IccTempStore reads the specified item from the

temporary storage queue. It returns a reference to the IccBuf object that contains
the information.

Writing items

Writing items is also known as "adding" items. This section describes writing items
that have not previously been written. Writing items that already exist can be done
using the rewriteltem method. See EUpdating items’] for more information.

The writeltem method of IccTempStore adds a new item at the end of the queue,
taking the data from the buffer specified. If this is done successfully, the item
number of the record added is returned.

Updating items

Updating an item is also known as "rewriting" an item. The rewriteltem method of
IccTempStore class is used to update the specified item in the temporary storage
queue.

Deleting items

You cannot delete individual items in a temporary storage queue. To delete all the

temporary data associated with an IccTempsStore object use the empty method of
IccTempStore class.

Example of Temporary Storage

This sample program demonstrates how to use the IccTempStore and
IccTempsStoreld classes. This program can be found in the samples directory (see

‘ 2) as file ICC$TMP. The sample is presented here
without the terminal 10 requests.

#include "icceh.hpp"
#include "iccmain.hpp"
#include <stdlib.h>

42 CICS TS for 0S/390: C++ OO Class Libraries

Temporary storage

The first three lines include the header files for the foundation classes, the standard
main function that sets up the operating environment for the application program,
and the standard library.

const charx bufferItems[] =

"Hello World - item 1",
"Hello World - item 2",
"Hello World - item 3"
1

This defines some buffer for the sample program.

void IccUserControl::run()

{

The run method of IccUserControl class contains the user code for this example.

short itemNum = 1;
IccTempStoreld id("ICCSTORE");
IccTempStore store(id);
IccBuf buffer(50);
store.empty();

This fragment first creates an identification object, lccTempStoreld containing the
field "ICCSTORE". It then creates an IccTempStore object representing the
temporary storage queue "ICCSTORE", which it empties of records.

for (short j=1 ; j <= 3 ; j++)

buffer = bufferltems[j-1];
store.writeItem(buffer);

}

This loop writes the three data items to the Temporary Storage object. The data is
passed by means of an IccBuf object that was created for this purpose.

buffer = store.readItem(itemNum);
while (store.condition() == IccCondition::NORMAL)
{
buffer.insert(9, "Modified ");
store.rewriteltem(itemNum, buffer);
itemNum++;
buffer = store.readItem(itemNum);

}

This next fragment reads the items back in, modifies the item, and rewrites it to
the temporary storage queue. First, the readltem method is used to read the buffer
from the temporary storage object. The data in the buffer object is changed using
the insert method of lccBuf class and then the rewriteltem method overwrites the
buffer. The loop continues with the next buffer item being read.

itemNum = 1;
buffer = store.readItem(itemNum);
while (store.condition() == IccCondition::NORMAL)
{
term->sendLine(" - record #%d = [%s]", itemNum,
(const charx)buffer);
buffer = store.readNextItem();

}

Chapter 7. Using CICS Services 43

Temporary storage

This loop reads the temporary storage queue items again to show they have been
updated.

return;

}

The end of run, which returns control to CICS.

See I‘Appendix C_Qutput from sample programs” an page 311 for the expected

output from this sample program.

Terminal control

The terminal control classes, IccTerminal, IccTermld, and lccTerminalData, allow
you to send data to, receive data from, and find out information about the terminal
belonging to the CICS task.

An lccTerminal object is used to represent the terminal that belongs to the CICS
task. It can only be created if the transaction has a 3270 terminal as its principal
facility. The lccTermld class is used to identify the terminal. IccTerminalData,
which is owned by IccTerminal, contains information about the terminal
characteristics.

Sending data to a terminal

The send and sendLine methods of IccTerminal class are used to write data to the
screen. Alternatively, you can use the "<<" operators to send data to the terminal.

Before sending data to a terminal, you may want to set, for example, the position
of the cursor on the screen or the color of the text. The set... methods allow you to
do this. You may also want to erase the data currently displayed at the terminal,
using the erase method, and free the keyboard so that it is ready to receive input,
using the freeKeyboard method.

Receiving data from a terminal

The receive and receive3270data methods of IccTerminal class are used to receive
data from the terminal.

Finding out information about a terminal

You can find out information about both the characteristics of the terminal and its
current state.

The data object points to the IccTerminalData object that contains information
about the characteristics of the terminal. The methods described in
IccTerminalData on page bed allow you to discover, for example, the height of the
screen or whether the terminal supports Erase Write Alternative. Some of the
methods in IccTerminal also give you information about characteristics, such as
how many lines a screen holds.

Other methods give you information about the current state of the terminal. These
include line, which returns the current line number, and cursor, which returns the
current cursor position.

44 CICS TS for 0S/390: C++ OO Class Libraries

Terminal control

Example of terminal control

This sample program demonstrates how to use the IccTerminal, lccTermld, and
IccTerminalData classes. This program can be found in the samples directory (see

t'Sample source code” on page) as file ICC$TRM.

#include "icceh.hpp"
#include "iccmain.hpp"

The first two lines include the header files for the Foundation Classes and the
standard main function that sets up the operating environment for the application
program.

void IccUserControl::run()

{
IccTerminal& term = *terminal();
term.erase();

The run method of IccUserControl class contains the user code for this example.
As a terminal is to be used, the example starts by creating a terminal object and
clearing the associated screen.

term.sendLine("First part of the Tine...");

term.send("... a continuation of the Tine.");

term.sendLine("Start this on the next Tine");

term.sendLine(40, "Send this to column 40 of current line");
term.send(5, 10, "Send this to row 5, column 10");
term.send(6, 40, "Send this to row 6, column 40");

This fragment shows how the send and sendLine methods are used to send data
to the terminal. All of these methods can take IccBuf references (const IccBuf&)
instead of string literals (const char*).

term.setNewLine();
This sends a blank line to the screen.

term.setColor(IccTerminal::red);

term.sendLine("A Red line of text.");

term.setColor(IccTerminal::blue);

term.setHighlight(IccTerminal::reverse);
term.sendLine("A Blue, Reverse video line of text.");

The setColor method is used to set the colour of the text on the screen and the
setHighlight method to set the highlighting.

term << "A cout sytle interface... " << endl;

term << "you can " << "chain input together;
<< "use different types, eg numbers: " << (short)123 << " "
<< (1ong)4567890 << " " << (double)123456.7891234 << endl;

term << "... and everything is buffered till you issue a flush."
<< flush;

This fragment shows how to use the iostream-like interface endl to start data on
the next line. To improve performance, you can buffer data in the terminal until
flush is issued, which sends the data to the screen.

Chapter 7. Using CICS Services 45

Terminal control

term.send(24,1, "Program 'icc$trm' complete: Hit PF12 to End");
term.waitForAID(IccTerminal::PF12);
term.erase();

The waitForAID method causes the terminal to wait until the specified key is hit,
before calling the erase method to clear the display.

return;

}

The end of run, which returns control to CICS.

See Appendix C_Qutput from sample programs” on page 311 for the expected

output from this sample program.

Time and date services

The IccClock class controls access to the CICS time and date services. IccAbsTime
holds information about absolute time (the time in milliseconds that have elapsed
since the beginning of 1900), and this can be converted to other forms of date and
time. The methods available on IccClock objects and on IccAbsTime objects are
very similar.

Example of time and date services

This sample program demonstrates how to use IccClock class. The source for this

program can be found in the samples directory (see ['Sample source code” od

hage 6) as file ICC$CLK. The sample is presented here without the terminal 10
requests.

#include "icceh.hpp"
#include "iccmain.hpp"
void IccUserControl::run()

{

The first two lines include the header files for the Foundation Classes and the
standard main function that sets up the operating environment for the application
program.

The run method of IccUserControl class contains the user code for this example.
IccClock clock;
This creates a clock object.

term->sendLine("date() = [%s]",
clock.date());
term->sendLine("date(DDMMYY) = [%s]",
clock.date(IccClock: :DDMMYY));
term->sendLine("date(DDMMYY,':') = [%s]",
clock.date(IccClock: :DDMMYY,"':"));
term->sendLine("date(MMDDYY) = [%s]",
clock.date(IccClock: :MMDDYY));
term->sendLine("date(YYDDD) = [%s]",
clock.date(IccClock::YYDDD));

46 cCICS TS for 0S/390; C++ OO Class Libraries

Time and date services

Here the date method is used to return the date in the format specified by the
format enumeration. In order the formats are system, DDMMYY, DD:MM:YY,
MMDDYY and YYDDD. The character used to separate the fields is specified by
the dateSeparator character (that defaults to nothing if not specified).

term->sendLine("daysSincel900() = %1d",
clock.daysSincel900());
term->sendLine("dayOfWeek() = %d",
clock.dayOfWeek());
if (clock.dayOfWeek() == IccClock::Friday)
term->sendLine(40, "Today IS Friday");
else
term->sendLine(40, "Today is NOT Friday");

This fragment demonstrates the use of the daysSincel1900 and dayOfWeek
methods. dayOfWeek returns an enumeration that indicates the day of the week. If
it is Friday, a message is sent to the screen, 'Today IS Friday'; otherwise the
message 'Today is NOT Friday' is sent.

term->sendLine("dayOfMonth() = %d",
clock.dayOfMonth());

term->sendLine("monthOfYear() = %d",
clock.monthOfYear());

This demonstrates the dayOfMonth and monthOfYear methods of IccClock class.

term->sendLine("time() = [%
clock.time()
term->sendLine("time('-') =
clock.time('-
term->sendLine("year() = [%]
clock.year());

S II’
)s
[%s

d

a/D]II’
))s
1",

The current time is sent to the terminal, first without a separator (that is HHMMSS
format), then with '-' separating the digits (that is, HH-MM-SS format). The year is
sent, for example 1996.

return;

}s
The end of run, which returns control to CICS.

See I‘Appendix C. Output from sample programs” on page 311 for the expected

output from this sample program.

Chapter 7. Using CICS Services 47

48 cICs TS for 0S/390; C++ OO Class Libraries

Chapter 8. Compiling, executing, and debugging

This chapter describes how to compile, execute, and debug a CICS Foundation
Class program. The following are considered in turn;

Compiling Programs

To compile and link a CICS Foundation Class program you need access to the
following:

* The source of the program you are compiling

Your C++ program source code needs #include statements for the Foundation
Class headers and the Foundation Class main() program stub:

#include "icceh.hpp"
#include "iccmain.hpp"

e The IBM C++ compiler

+ The Foundation Classes header files (see FHeader files” on page §)

+ The Foundation Classes dynamic link library (DLL) (see Dynamic link library’]
bn page 6)

Note that, when using the Foundation Classes, you do not need to translate the
"EXEC CICS" API so the translator program should not be used.

The following sample job statements show how to compile, prelink and link a
program called ICC$HEL:

//ICC$HEL JOB 1,user_name,MSGCLASS=A,CLASS=A,NOTIFY=userid

//PROCLIB JCLLIB ORDER=(CICSTS13.CICS.SDFHPROC)

//ICC$HEL EXEC ICC$FCCL,INFILE=indatasetname (ICC$HEL),OUTFILE=outdatasetname (ICC$HEL)
//

Executing Programs

To run a compiled and linked (that is, executable) Foundation Classes program you
need to do the following:

1. Make the executable program available to CICS. This involves making sure the
program is in a suitable directory or load library. Depending on your server,
you may also need to create a CICS program definition (using CICS resource
definition facilities) before you can execute the program.

2. Logon to a CICS terminal.
3. Run the program.

© Copyright IBM Corp. 1989, 1999 49

Compiling, executing, and debugging

Debugging Programs

Having successfully compiled, linked and attempted to execute your Foundation
Classes program you may need to debug it.

There are three options available to help debug a CICS Foundation Classes
program:

1. Use a symbolic debugger
2. Run the Foundation Class Program with tracing active
3. Run the Foundation Class Program with the CICS Execution Diagnostic Facility

Symbolic Debuggers

A symbolic debugger allows you to step through the source of your CICS
Foundation Classes program. Debug Tool, a component of CODE/370, is shipped
as a feature with IBM C/C++ for OS/390.

To debug a CICS Foundation Classes program with a symbolic debugger, you need
to compile the program with a flag that adds debugging information to your
executable. For CICS Transaction Server for OS/390, this is TEST(ALL).

For more information see hphug Tool User’s Guide and Reference SCN9-21317

Tracing a Foundation Class Program

The CICS Foundation Classes can be configured to write a trace file for
debugging/service purposes.

Activating the trace output
In CICS Transaction Server for OS/390, exception trace is always active.

The CETR transaction controls the auxilliary and internal traces for all CICS
programs including those developed using the C++ classes.

Execution Diagnostic Facility

For the EXEC CICS API, there is a CICS facility called the Execution Diagnostic
Facility (EDF) that allows you to step through your CICS program stopping at each
EXEC CICS call. This does not make much sense from the CICS Foundation
Classes because the display screen shows the procedural EXEC CICS call interface
rather than the CICS Foundation Class type interface. However, this may be of use
to programmers familiar with the EXEC CICS interface.

Enabling EDF

To enable EDF, use the pre-processor macro ICC_EDF — this can be done in your
source code before including the file ICCMAIN as follows:

#define ICC_EDF //switch EDF on
#include "iccmain.hpp"

Alternatively use the appropriate flag on your compiler CPARM to declare
ICC_EDF.

50 cICs TS for 0S/390: C++ OO Class Libraries

Compiling, executing, and debugging

For more information about using EDF see "Execution diagnostic facility (EDF)” in

CICS Application Programming Guidd.

Chapter 8. Compiling, executing, and debugging 51

52 CICS TS for 0S/390: C++ OO Class Libraries

Chapter 9. Conditions, errors, and exceptions

This chapter describes how the Foundation Classes have been designed to respond
to various error situations they might encounter. These will be discussed under the
following headings:

o FCt+ Fyr‘ppfinne and the Foundation Classes’

Foundation Class Abend codes

For serious errors (such as insufficient storage to create an object) the Foundation
Classes immediately terminate the CICS task.

All CICS Foundation Class abend codes are of the form ACLX. If your application
is terminated with an abend code starting 'ACL' then please refer to E%m
dnd Codes GC33-1694.

C++ Exceptions and the Foundation Classes

C++ exceptions are managed using the reserved words try, throw, and catch.
Please refer to your compiler’s documentation or one of the C++ books in the
bibliography for more information.

Here is sample ICC$EXC1 (see 'Sample source code” on page f):

#include "icceh.hpp"
#include "iccmain.hpp"
class Test {
public:
void tryNumber(short num) {
IccTerminal* term = IccTerminal::instance();
*term << "Number passed = " << num << endl << flush;
if (num> 10) {
*term << ">>Qut of Range - throwing exception" << endl << flush;
throw "!!Number is out of range!!";
}
}

}s

The first two lines include the header files for the Foundation Classes and the
standard main function that sets up the operating environment for the application
program.

We then declare class Test, which has one public method, tryNumber. This method

is implemented inline so that if an integer greater than ten is passed an exception
is thrown. We also write out some information to the CICS terminal.

© Copyright IBM Corp. 1989, 1999 53

Conditions, errors, exceptions

void IccUserControl::run()
{

IccTerminal* term = IccTerminal::instance();

term->erase();

xterm << "This is program 'icc$excl' ..." << endl;

try |
Test test;
test.tryNumber(1
test.tryNumber(7
test.tryNumber(11
test.tryNumber(6)

}

catch(const char* exception) {
term->setlLine(22);
*term << "Exception caught: " << exception << endl << flush;

}

term->send(24,1,"Program 'icc$excl' complete: Hit PF12 to End");

term->waitForAID(IccTerminal::PF12);

term->erase();

return;

}

)s

The run method of IccUserControl class contains the user code for this example.

After erasing the terminal display and writing some text, we begin our try block. A
try block can scope any number of lines of C++ code.

Here we create a Test object and invoke our only method, tryNumber, with
various parameters. The first two invocations (1, 7) succeed, but the third (11)
causes tryNumber to throw an exception. The fourth tryNumber invocation (6) is
not executed because an exception causes the program execution flow to leave the
current try block.

We then leave the try block and look for a suitable catch block. A suitable catch
block is one with arguments that are compatible with the type of exception being
thrown (here a char*). The catch block writes a message to the CICS terminal and
then execution resumes at the line after the catch block.

The output from this CICS program is as follows:

This is program 'icc$excl' ...

Number passed = 1

Number passed = 7

Number passed = 11

>>Qut of Range - throwing exception
Exception caught: !!Number is out of range!!
Program 'icc$excl' complete: Hit PF12 to End

The CICS C++ Foundation Classes do not throw char* exceptions as in the above
sample but they do throw IccException objects instead.

There are several types of IccException. The type method returns an enumeration
that indicates the type. Here is a description of each type in turn.

objectCreationError
An attempt to create an object was invalid. This happens, for example, if
an attempt is made to create a second instance of a singleton class, such as
lccTask.

invalidArgument
A method was called with an invalid argument. This happens, for example,

54 cIcs TS for 05/390: C++ OO Class Libraries

Conditions, errors, exceptions
if an IccBuf object with too much data is passed to the writeltem method
of the IccTempsStore class by the application program.

It also happens when attempting to create a subclass of IccResourceld,
such as IccTermld, with a string that is too long.

The following sample can be found in the samples directory (see m

saurce cade” an page @) as file ICC$EXC2. The sample is presented here

without many of the terminal 10 requests.

#include "icceh.hpp"
#include "iccmain.hpp"
void IccUserControl::run()

{
try

{
IccTermId idl("1234");

IccTermId id2("12345");
catch(IccException& exception)

terminal()->send(21, 1, exception.summary());

}

return;

}

In the above example the first lccTermld object is successfully created, but
the second caused an IccException to be thrown, because the string "12345"

is 5 bytes where only 4 are allowed. See F‘Appendix C_Qutput from sampld
hrograms” on page 311 for the expected output from this sample program.

invalidMethodCall
A method cannot be called. A typical reason is that the object cannot honor
the call in its current state. For example, a readRecord call on an IccFile
object is only honored if an IccRecordIndex object, to specify which record
is to be read, has already been associated with the file.

CICSCondition
A CICS condition, listed in the lccCondition structure, has occurred in the

object and the object was configured to throw an exception.

familyConformanceError
Family subset enforcement is on for this program and an operation that is
not valid on all supported platforms has been attempted.

internalError
The CICS foundation classes have detected an internal error. Please call

service.

CICS conditions

The CICS foundation classes provide a powerful framework for handling
conditions that happen when executing an application. Accessing a CICS resource
can raise a number of CICS conditions as documented in FRart 3 Faundation

Classes—reference” on page 64

A condition might represent an error or simply information being returned to the
calling application; the deciding factor is often the context in which the condition

is raised.

Chapter 9. Conditions, errors, and exceptions 55

Conditions, errors, exceptions

The application program can handle the CICS conditions in a number of ways.
Each CICS resource object, such as a program, file, or data queue, can handle CICS
conditions differently, if required.

A resource object can be configured to take one of the following actions for each
condition it can encounter:

noAction
Manual condition handling

callHandleEvent
Automatic condition handling

throwException
Exception handling

abendTask
Severe error handling.

Manual condition handling (noAction)

This is the default action for all CICS conditions (for any resource object). It can be
explicitly activated as follows:

IccTempStore temp("TEMP1234");
temp.setActionOnCondition(IccResource::noAction,
IccCondition::QIDERR);

This setting means that when CICS raises the QIDERR condition as a result of
action on the 'temp' object, no action is taken. This means that the condition must
be handled manually, using the condition method. For example:

IccTempStore temp("TEMP1234");

IccBuf buf(40);

temp.setActionOnCondition(IccResource::noAction,
IccCondition: :QIDERR);

buf = temp.readNextItem();

switch (temp.condition())

case IccCondition::QIDERR:
//do whatever here

deféu]t:
//do something else here
1

Automatic condition handling (callHandleEvent)

Activate this for any CICS condition, such as QIDERR, as follows:

IccTempStore temp("TEMP1234");
temp.setActionOnCondition(IccResource::callHandleEvent,
IccCondition::QIDERR);

When a call to any method on object 'temp' causes CICS to raise the QIDERR
condition, handleEvent method is automatically called. As the handleEvent
method is only a virtual method, this call is only useful if the object belongs to a
subclass of lccTempStore and the handleEvent method has been overridden.

56 cICS TS for 0S/390: C++ OO Class Libraries

Automatic condition handling

Make a subclass of IccTempStore, declare a constructor, and override the
handleEvent method.

class MyTempStore : public IccTempStore

public:
MyTempStore(const char* storeName) : IccTempStore(storeName) {}
HandleEventReturnOpt handleEvent(IccEvent& event);

1

Now implement the handleEvent method.

IccResource: :HandleEventReturnOpt MyTempStore::handleEvent(IccEvent& event)

{

switch (event.condition())

{

case ...

case IccCondition::QIDERR:
//Handle QIDERR condition here.

/!
default:

return rAbendTask;
1

}

This code is called for any MyTempStore object which is configured to
‘callHandleEvent' for a particular CICS condition.

Exception handling (throwException)

Activate this for any CICS condition, such as QIDERR, as follows:

IccTempStore temp("TEMP1234");
temp.setActionOnCondition(IccResource::throwException,
IccCondition::QIDERR);

Exception handling is by means of the C++ exception handling model using try,
throw, and catch. For example:

try

{
buf = temp.readNextItem();

}

catch (IccException& exception)

{
//Exception handling code

}

An exception is thrown if any of the methods inside the try block raise the
QIDERR condition for object ‘temp’. When an exception is thrown, C++ unwinds
the stack and resumes execution at an appropriate catch block — it is not possible
to resume within the try block. For a fuller example of the above, see sample
ICCSEXC3.

Chapter 9. Conditions, errors, and exceptions 57

Exception handling

Note: Exceptions can be thrown from the Foundation Classes for many reasons

other than this example - see I‘C++ Exceptions and the Foundation Classes]

for more details.

Severe error handling (abendTask)

This option allows CICS to terminate the task when certain conditions are raised.
Activate this for any CICS condition, such as QIDERR, as follows:

IccTempStore temp("TEMP1234");
temp.setActionOnCondition(IccResource::abendTask,
IccCondition::QIDERR);

If CICS raises the QIDERR condition for object 'temp' the CICS task terminates
with an ACL3 abend.

Platform differences

Note: References in this section to other CICS platforms—CICS OS/2 and CICS for
AlX—are included for completeness. There have been Technology Releases
of the CICS Foundation Classes on those platforms.

The CICS Foundation Classes, as described here, are designed to be independent of
the particular CICS platform on which they are running. There are however some
differences between platforms; these, and ways of coping with them, are described
here.

Applications can be run in one of two modes:

fsAllowPlatformVariance
Applications written using the CICS Foundation Classes are able to access
all the functions available on the target CICS server.

fsEnforce
Applications are restricted to the CICS functions that are available across
all CICS Servers (MVS, UNIX, and OS/2).

The default is to allow platform variance and the alternative is to force the
application to only use features which are common to all CICS platforms.

The class headers are the same for all platforms and they "support" (that is, define)
all the CICS functions that are available through the Foundation Classes %of
the CICS platforms. The restrictions on each platform are documented in

Eoundation Classes—reference” on page 67, Platform variations exist at:
» object level

* method level

* parameter level

Object level

Some objects are not supported on certain platforms. For example IccJournal
objects cannot be created on CICS OS/2 as CICS OS/2 does not support
journalling services. lccConsole objects cannot be created on CICS for AlX as CICS
for AIX does not support console services.

58 cICs TS for 0S/390: C++ OO Class Libraries

Platform differences

Any attempt to create IccJournal on CICS OS/2, or an lccConsole object on CICS
for AIX causes an IccException object of type 'platformError' to be thrown, but
would be acceptable on the other platforms

For example:
Iccdournal journal7(7); //No good on CICS 0S/2

or
IccConsole* cons = console(); //No good on CICS for AIX

If you initialize your application with 'fsEnforce' selected (see

LinitializeEnvironment” an page 78) the previous examples both cause an

IccException object, of type ‘familyConformanceError' to be thrown on all
platforms.

Unlike objects of the IccConsole and IccJournal classes, most objects can be created
on any CICS server platform. However the use of the methods can be restricted.
I'Part 3. Foundation Classes—refarence’ aon page 67 fully documents all platform
restrictions.

Method level

Consider, for example method programld in the IccControl class:

void IccUserControl::run()

if (strcmp(programld.name(), "PROG1234") == 0)
//do something
}

Here method programld executes correctly on CICS OS/2 and CICS/ESA but
throws an IccException object of type 'platformError' on CICS for AlX.

Alternatively, if you initialize your application with family subset enforcement on
(see initializeEnvironment function of Icc structure) then method programid
throws an IccException object of type ‘familyConformanceError' on any CICS
server platform.

Parameter level

At this level a method is supported on all platforms, but a particular positional
parameter has some platform restrictions. Consider method abend in IccTask class.

task()->abend(); I]
task()->abend ("WXYZ"); 2]
task()->abend ("WXYZ", IccTask::respectAbendHandler);
task()->abend ("WXYZ", IccTask::ignoreAbendHandler); 4]
task()->abend ("WXYZ", IccTask::ignoreAbendHandler, B

IccTask: :suppressDump) ;

Abends to [run successfully on all CICS server platforms.

Chapter 9. Conditions, errors, and exceptions 59

Platform differences

If family subset enforcement is off, abend [throws an IccException object of
type 'platformError' on a CICS for AlIX platform, but not on a CICS OS/2 or

CICS/ESA platform.

If family subset enforcement is on, abend [throws an IccException object of
type ‘familyConformanceError’, irrespective of the target CICS platform.

60 cICS TS for 0S/390: C++ OO Class Libraries

Chapter 10. Miscellaneous

This chapter describes the following:

Polymorphic Behavior

Polymorphism (poly = many, morphe = form) is the ability to treat many different
forms of an object as if they were the same.

Polymorphism is achieved in C++ by using inheritance and virtual functions.
Consider the scenario where we have three forms (ExpenseForm, LoanForm,
PurchaseForm) that are specializations of a general Form:

Form

ExpenseForm LoanForm PurchaseForm

Each form needs printing at some time. In procedural programming, we would
either code a print function to handle the three different forms or we would write
three different functions (printExpenseForm, printLoanForm, printPurchaseForm).

In C++ this can be achieved far more elegantly as follows:

class Form {
public:

virtual void print();
1

class ExpenseForm : public Form {
public:

virtual void print();
}s

class LoanForm : public Form {
public:

virtual void print();
}s

class PurchaseForm : public Form {
public:

virtual void print();
1

Each of these overridden functions is implemented so that each form prints
correctly. Now an application using form objects can do this:

Form* pForm[10]

//create Expense/Loan/Purchase Forms...

for (short i=0 ; i < 9 ; i++)
pForm->print();

© Copyright IBM Corp. 1989, 1999 61

Miscellaneous

Here we create ten objects that might be any combination of Expense, Loan, and
Purchase Forms. However, because we are dealing with pointers to the base class,
Form, we do not need to know which sort of form object we have; the correct
print method is called automatically.

Limited polymorphic behavior is available in the Foundation Classes. Three virtual
functions are defined in the base class IccResource:

virtual void clear();
virtual const IccBuf& get();
virtual void put(const IccBuf& buffer);

These methods have been implemented in the subclasses of IccResource wherever
possible:

Class clear get put
IccConsole x X I
IccDataQueue I 1/ ”
Icclournal X X I
IccSession x - I
IccTempStore 4 4 4
IccTerminal I I -

These virtual methods are not supported by any subclasses of IccResource except
those in the table above.

Note: The default implementations of clear, get, and put in the base class
IccResource throw an exception to prevent the user from calling an
unsupported method.

Example of polymorphic behavior

The foIIowin)gE sample can be found in the samples directory (see m

) as file ICC$RES2. It is presented here without the terminal 10
requests.

#include "icceh.hpp"
#include "iccmain.hpp"
char* dataltems[] =

"Hello World - item 1",

"Hello World - item 2",

"Hello World - item 3"
}s

void IccUserControl::run()

{

Here we include Foundation Class headers and the main function. dataltems
contains some sample data items. We write our application code in the run method
of IccUserControl class.

IccBuf buffer(50);
IccResource* pObj[2];

We create an IccBuf object (50 bytes initially) to hold our data items. An array of
two pointers to IccResource objects is declared.

62 CICS TS for 0S/390: C++ OO Class Libraries

Miscellaneous

pObj[0]
pObj[1]

new IccDataQueue("ICCQ");
new IccTempStore("ICCTEMPS");

We create two objects whose classes are derived from IccResource — IccDataQueue
and lccTempsStore.

for (short index=0; index <= 1 ; index++)
{
pObj [index] ->clear();

For both objects we invoke the clear method. This is handled differently by each
object in a way that is transparent to the application program,; this is polymorphic
behavior.

for (index=0; index <= 1 ; index++)

for (short j=1 ; j <= 3 ; j++)
{
buffer = dataltems[j-1];
pObj[index] ->put(buffer);
1
}

Now we put three data items in each of our resource objects. Again the put
method responds to the request in a way that is appropriate to the object type.

for (index=0; index <= 1 ; index++)

buffer = pObj[index]->get();
while (pObj[index]->condition() == IccCondition::NORMAL)
{
buffer = pObj[index]->get();
1
delete pObj[index];

return;

}

The data items are read back in from each of our resource objects using the get
method. We delete the resource objects and return control to CICS.

Storage management

C++ objects are usually stored on the stack or heap- see t‘Creating an object” on
. Objects on the stack are automatically destroyed when they go out of

scope, but objects on the heap are not.

Many of the objects that the CICS Foundation Classes create internally are created
on the heap rather than the stack. This can cause a problem in some CICS server
environments.

On CICS Transaction Server for OS/390, CICS and Language Environment®
manage all task storage so that it is released at task termination (normal or
abnormal).

In a CICS for OS/2® or CICS for AIX environment, as in the earlier Technology
Releases for those platforms, storage allocated on the heap is not automatically

Chapter 10. Miscellaneous 63

Miscellaneous

released at task termination. This can lead to "memory leaks" if the application
programmer forgets to explicitly delete an object on the heap, or, more seriously, if
the task abends.

This problem has been overcome in the CICS Foundation Classes by providing
operators new and delete in the base Foundation Class, IccBase. These can be
configured to map dynamic storage allocation requests to CICS task storage, so
that all storage is automatically released at task termination. The disadvantage of
this approach is a performance hit as the Foundation Classes typically issue a large
number of small storage allocation requests rather than a single, larger allocation
request.

This facility is affected by the Icc::initializeEnvironment call that must be issued
before using the Foundation Classes. (This function is called from the default main

function—see EChapter 64 _main function” on page 294.)

The first parameter passed to the initializeEnvironment function is an
enumeration that takes one of these three values:

cmmbDefault
The default action is platform dependent:

MVS/ESA™
same as 'cmmNonCICS' - see below.

UNIX same as 'cmmCICS' - see below.
0OS/2 same as 'cmmCICS' - see below.

cmmNonCICS
The new and delete operators in class IccBase do not map dynamic
storage allocation requests to CICS task storage; instead the C++ default
new and delete operators are invoked.

cmmCICS
The new and delete operators in class IccBase map dynamic storage
allocation requests to CICS task storage (which is automatically released at
normal or abnormal task termination).

The default main function supplied with the Foundation Classes calls
initializeEnvironment with an enum of ‘cmmDefault’. You can change this in your
program without changing the supplied "header file" ICCMAIN as follows:

#define ICC_CLASS_MEMORY_MGMT Icc::cmmNonCICS
#include "iccmain.hpp"

Alternatively, set the option DEV(ICC_CLASS MEMORY_MGMT) when
compiling.

Parameter passing conventions

The convention used for passing objects on Foundation Classes method calls is as
follows:

If the object is mandatory, pass by reference; if it is optional pass by pointer.

64 cCICS TS for 0S/390: C++ OO Class Libraries

Miscellaneous

For example, consider method start of class IccStartRequestQ, which has the
following signature:

const IccRequestId& start(const IccTransId& transld,
const IccTimex time=0,
const IccRequestIdx reqld=0);

Using the above convention, we see that an IccTransld object is mandatory, while
an lccTime and an IccRequestld object are both optional. This enables an
application to use this method in any of the following ways:

IccTransld trn("ABCD");
IccTimeInterval int(0,0,5);

IccRequestId req("MYREQ");
IccStartRequestQx startQ = startRequestQ();
startQ->start(trn);

startQ->start(trn, &int);

startQ->start(trn, &int, &req);
startQ->start(trn, 0, &req);

Scope of data in IccBuf reference returned from 'read’ methods

Many of the subclasses of IccResource have ‘read’ methods that return const
IccBuf references; for example, IccFile::readRecord, lccTempStore::readltem and
IccTerminal::receive.

Care should be taken if you choose to maintain a reference to the lIccBuf object,
rather than copy the data from the IccBuf reference into your own IccBuf object.
For example, consider the following

IccBuf buf(50);
IccTempStore store("TEMPSTOR");
buf = store.readNextItem();

Here, the data in the IccBuf reference returned from IccTempStore::readNextltem
is immediately copied into the application’s own lccBuf object, so it does not
matter if the data is later invalidated. However, the application might look like this

IccTempStore store("TEMPSTOR");
const IccBuf& buf = store.readNextItem();

Here, the IccBuf reference returned from IccTempsStore::readNextltem is not
copied into the application’s own storage and care must therefore be taken.

Note: You are recommended not to use this style of programming to avoid using a
reference to an IccBuf object that does not contain valid data.

The returned lccBuf reference typically contains valid data until one of the
following conditions is met:

* Another 'read' method is invoked on the IccResource object (for example,
another readNextltem or readltem method in the above example).

* The resource updates are committed (see method IccTask::commitUOW).
* The task ends (normally or abnormally).

Chapter 10. Miscellaneous 65

Miscellaneous

66 cCICS TS for 0S/390: C++ OO Class Libraries

Part 3. Foundation Classes—reference

Chapter 11. Icc structure 77 timelnMinutes 9
Functons77 timelnSeconds. 92
boolText. 77 yearo..09
catchException 717 Inherited public methods 92
conditionText 717 Inherited protected methods 92
initializeEnvironment. 78
isClassMemoryMgmtOn. 78 Chapter 14. IccAlarmRequestld class 93
isSEDFOn. 78 IccAlarmRequestld constructors 93
isFamilySubsetEnforcementOn 78 Constructor (1). 93
returnToCICS 719 Constructor 2). 93
settDF 719 Constructor (3). 93
unknownException 79 Public methods 93
Enumerations 79 isExpired 93
Bool 719 operator=(1) 9%
BoolSet. 80 operator=(2) 9%
ClassMemoryMgmt 80 operator=(3) 94
FamilySubset 80 setTimerECA 9%
GetOpt 80 timerECA 9%
Platforms 81 Inherited public methods 94
Inherited protected methods 94
Chapter 12. IccAbendDataclass 83
IccAbendData constructor (protected) 83 Chapter 15. IccBaseclass 95
Constructor. 83 IccBase constructor (protected) 95
Public methods 83 Constructor. 95
abendCode. 83 Public methods 95
ASRAInterrupt. 83 classType 95
ASRAKeyType. 84 className 95
ASRAPSW. 84 customClassNum. 96
ASRARegisters 84 operator delete 96
ASRASpaceType 85 operatornew 96
ASRAStorageType 85 Protected methods 96
instance. 86 setClassName. 96
isDumpAvailable 86 setCustomClassNum. 96
originalAbendCode 86 Enumerations 97
programName 86 ClassType 97
Inherited public methods 86 NameOpt 97
Inherited protected methods 87
Chapter 16. lccBufclass 99
Chapter 13. IccAbsTimeclass 89 lccBuf constructors 99
IccAbsTime constructor. 89 Constructor (1). 99
Constructor (). 89 Constructor (2). 99
Constructor (2). 89 Constructor (3). 100
Public methods 89 Constructor (4). 100
date 89 Public methods 100
dayOfMonth 90 append (1) 100
dayOfweek. 90 append 2) 100
daysSincel900 90 assign(1)101
hours. 9 assign(2)101
milliSeconds 90 cut.10
minutes 9 dataArea10
monthOfyear 90 dataArealength 101
operator= 91 dataAreaOwner 102
packedDecimal 91 dataAreaType 102
seconds. 9 dataLength102
tme 9 insert.102
timelnHours. 9

© Copyright IBM Corp. 1989, 1999 67

isSFMHContained .
operator const char* .
operator= (1)
operator= (2)
operator+= (1) .
operator+= (2) .
operator== .
operator!=
operator<< (1) .
operator<< (2) .
operator<< (3) .
operator<< (4) .
operator<< (5) .
operator<< (6) .
operator<< (7).
operator<< (8) .
operator<< (9) .
operator<< (10)
operator<< (11)
operator<< (12)
operator<< (13)
operator<< (14)
operator<< (15)
overlay
replace
setDatalength .
setFMHContained
Inherited public methods
Inherited protected methods
Enumerations .
DataAreaOwner
DataAreaType .

Chapter 17. lccClock class

IccClock constructor .
Constructor .

Public methods
absTime .
cancelAlarm
date
dayOfMonth .
dayOfWeek. .
daysSince1900
milliSeconds
monthOfYear
setAlarm.
time
update
year

Inherited public methods

Inherited protected methods

Enumerations .
DateFormat.
DayOfWeek.
MonthOfYear
UpdateMode

Chapter 18. IccCondition structure
Enumerations .

Codes

Range

68 cCICS TS for 0S/390: C++ OO Class Libraries

. 102
. 102
. 103
. 103
. 103
. 103
. 103
. 104
. 104
. 104
. 104
. 104
. 104
. 104
. 105
. 105
. 105
. 105
. 105
. 105
. 105
. 105
. 105
. 106
. 106
. 106
. 106
. 107
. 107
. 107
. 107
. 107

. 109
. 109
. 109
. 109
. 109
. 109

110
110
110
110
110
111
111
111
111
111
112
112
112
112
113
113
113

. 115

115
115
115

Chapter 19. IccConsole class

IccConsole constructor (protected) .

Constructor .
Public methods
instance .
put .
replyTimeout
resetRouteCodes .
setAllRouteCodes.
setReplyTimeout (1) .
setReplyTimeout (2) .
setRouteCodes
write . .
writeAndGetReply
Inherited public methods
Inherited protected methods
Enumerations .
SeverityOpt.

Chapter 20. IccControl class

IccControl constructor (protected)
Constructor .

Public methods
callingProgramid .
cancelAbendHandler.
commArea .
console .
initData .
instance .
isCreated
programlid .
resetAbendHandler .
returnProgramid
run . .
session . S
setAbendHandler (1).
setAbendHandler (2).
startRequestQ .
system
task
terminal . .o

Inherited public methods

Inherited protected methods

Chapter 21. lccConvld class
IccConvld constructors .
Constructor (1).
Constructor (2).
Public methods
operator= (1)
operator= (2)
Inherited public methods
Inherited protected methods

Chapter 22. IccDataQueue class
IccDataQueue constructors
Constructor (1).
Constructor (2).
Public methods
clear .

empty.

. 117
. 117
. 117
. 117
. 117
. 117
. 117
. 118
. 118
. 118
. 118
. 118
. 118
. 119
. 119
. 120
. 120
. 120

. 121
. 121
. 121
. 121
. 121
. 121
. 121
. 122
. 122
. 122
. 122
. 122
. 123
. 123
. 123
. 123
. 123
. 123
. 124
. 124
. 124
. 124
. 124
. 125

. 127
. 127
. 127
. 127
. 127
. 127
. 127
. 127
. 128

. 129
. 129
. 129
. 129
. 129
. 129
. 129

get

put

readltem.

writeltem (1)

writeltem (2)
Inherited public methods
Inherited protected methods

Chapter 23. IccDataQueueld class
IccDataQueueld constructors .
Constructor (1).
Constructor (2).
Public methods
operator= (1)
operator= (2)
Inherited public methods
Inherited protected methods

Chapter 24. IccEvent class
IccEvent constructor .
Constructor .
Public methods
className .
classType
condition.
conditionText
methodName .
summary
Inherited public methods
Inherited protected methods

Chapter 25. IccException class
IccException constructor

Constructor .
Public methods

className .

classType

message

methodName .

number .

summary

type .o

typeText.
Inherited public methods
Inherited protected methods
Enumerations .

Type .

Chapter 26. IccFile class

IccFile constructors .
Constructor (1).
Constructor (2).

Public methods
access
accessMethod . .
begininsert(VSAM only).
deleteLockedRecord .
deleteRecord
enableStatus
endinsert(VSAM only)
isAddable

. 130
. 130
. 130
. 130
. 130
. 130
. 131

. 133
. 133
. 133
. 133
. 133
. 133
. 133
. 133
. 134

. 135
. 135
. 135
. 135
. 135
. 135
. 135
. 136
. 136
. 136
. 136
. 136

. 137
. 137
. 137
. 138
. 138
. 138
. 138
. 138
. 138
. 138
. 139
. 139
. 139
. 139
. 139
. 139

.14
. 141
. 141
.14
. 142
. 142
. 142
. 142
. 142
. 143
. 143
. 143
. 143

isBrowsable.
isDeletable .
iISEmptyOnOpen .
isReadable .
isRecoverable .
isUpdatable.
keyLength
keyPosition .
openStatus .
readRecord .
recordFormat .
recordindex.
recordLength
registerRecordindex .
rewriteRecord .
setAccess .
setEmptyOnOpen.
setStatus
type .
unlockRecord .
writeRecord. .
Inherited public methods
Inherited protected methods
Enumerations .
Access
ReadMode .
SearchCriterion
Status

Chapter 27. IccFileld class
IccFileld constructors
Constructor (1).
Constructor (2).
Public methods
operator= (1)
operator= (2)
Inherited public methods
Inherited protected methods

Chapter 28. IccFilelterator class

IccFilelterator constructor .
Constructor .

Public methods
readNextRecord
readPreviousRecord .
reset . .o

Inherited public methods

Inherited protected methods

Chapter 29. lccGroupld class
IccGroupld constructors.
Constructor (1).
Constructor (2).
Public methods
operator= (1)
operator= (2)
Inherited public methods
Inherited protected methods

Chapter 30. IccJournal class
IccJournal constructors .

Part 3. Foundation Classes—reference

. 144
. 144
. 144
. 144
. 145
. 145
. 145
. 145
. 145
. 146
. 146
. 147
. 147
. 147
. 147
. 148
. 148
. 148
. 148
. 149
. 149
. 149
. 150
. 150
. 150
. 150
. 151
. 151

. 153
. 153
. 153
. 153
. 153
. 153
. 153
. 153
. 154

. 155
. 155
. 155
. 155
. 155
. 156
. 156
. 156
. 157

. 159
. 159
. 159
. 159
. 159
. 159
. 159
. 159
. 160

. 161
. 161

69

Constructor (1).
Constructor (2).
Public methods
clearPrefix .
journalTypeld .
put . . .
registerPrefix
setJournalTypeld (1) .
setJournalTypeld (2) .
setPrefix (1)
setPrefix (2)
wait .
writeRecord (1)
writeRecord (2)
Inherited public methods
Inherited protected methods
Enumerations .
Options .

Chapter 31. IccJournalld class
IccJournalld constructors
Constructor (1).
Constructor (2).
Public methods
number .
operator= (1)
operator= (2)
Inherited public methods
Inherited protected methods

Chapter 32. IccJournalTypeld class
IccJournalTypeld constructors.
Constructor (1).
Constructor (2).
Public methods
operator= (1)
operator= (2)
Inherited public methods
Inherited protected methods

Chapter 33. lccKey class
IccKey constructors .
Constructor (1).
Constructor (2).
Constructor (3).
Public methods
assign . . .
completeLength
kind
operator= (1)
operator= (2)
operator= (3)
operator== (1) .
operator== (2) .
operator== (3) .
operator!= (1) .
operator!= (2) .
operator!= (3) .
setKind .
value . o
Inherited public methods

70 cICS TS for 0S/390: C++ OO Class Libraries

. 161
. 161
. 161
. 161
. 162
. 162
. 162
. 162
. 162
. 162
. 162
. 162
. 163
. 163
. 163
. 164
. le4
. le4

. 165
. 165
. 165
. 165
. 165
. 165
. 165
. 165
. 166
. 166

. 167
. 167
. 167
. 167
. 167
. 167
. 167
. 167
. 168

. 169
. 169
. 169
. 169
. 169
. 169
. 169
. 169
. 170
. 170
. 170
. 170
. 170
. 170
. 170
. 170
. 170
. 170
. 170
.17l
.17

Inherited protected methods
Enumerations .
Kind .

Chapter 34. IccLockld class
IccLockld constructors .
Constructor (1).
Constructor (2).
Public methods
operator= (1)
operator= (2)
Inherited public methods
Inherited protected methods

Chapter 35. lccMessage class
IccMessage constructor.
Constructor .
Public methods
className .
methodName .
number .
summary
text o
Inherited public methods
Inherited protected methods

Chapter 36. IccPartnerld class
IccPartnerld constructors
Constructor (1).
Constructor (2).
Public methods
operator= (1)
operator= (2)
Inherited public methods
Inherited protected methods

Chapter 37. IccProgram class
IccProgram constructors
Constructor (1).
Constructor (2).
Public methods
address . .
clearlnputMessage
entryPoint
length
link
load S
registerinputMessage
setinputMessage .
unload .o
Inherited public methods
Inherited protected methods
Enumerations .
CommitOpt .
LoadOpt.

Chapter 38. lccProgramld class
IccProgramld constructors .
Constructor (1).
Constructor (2).
Public methods

. 171
. 171
. 171

. 173
. 173
. 173
. 173
. 173
. 173
. 173
. 173
. 174

. 175
. 175
. 175
. 175
. 175
. 175
. 176
. 176
. 176
. 176
. 176

. 177
. 177
. 177
. 177
. 177
. 177
. 177
. 177
. 178

. 179
. 179
. 179
. 179
. 179
. 179
. 179
. 180
. 180
. 180
. 181
. 181
. 181
. 181
. 181
. 182
. 182
. 182
. 182

. 183
. 183
. 183
. 183
. 183

operator= (1)

operator= (2)
Inherited public methods
Inherited protected methods

Chapter 39. IccRBA class

IccRBA constructor
Constructor .

Public methods
operator= (1)
operator= (2)
operator== (1) .
operator== (2) .
operator!= (1) .
operator!= (2) .
number .

Inherited public methods

Inherited protected methods

Chapter 40. IccRecordindex class

IccRecordIndex constructor (protected).

Constructor .
Public methods

length

type
Inherited public methods
Inherited protected methods
Enumerations .

Type .

Chapter 41. IccRequestld class
IccRequestld constructors .
Constructor (1).
Constructor (2).
Constructor (3).
Public methods
operator= (1)
operator= (2)
Inherited public methods
Inherited protected methods

Chapter 42. IccResource class

IccResource constructor (protected).

Constructor .

Public methods
actionOnCondition .
actionOnConditionAsChar .
actionsOnConditionsText
clear .
condition.
conditionText
get
handleEvent
id . . .
iISEDFOnN.
isRouteOptionOn .
name .
put
routeOption . .
setActlonOnAnyCondltlon .
setActionOnCondition

. 183
. 183
. 183
. 184

. 185
. 185
. 185
. 185
. 185
. 185
. 185
. 185
. 185
. 186
. 186
. 186
. 186

. 187
. 187
. 187
. 187
. 187
. 187
. 187
. 188
. 188
. 188

. 189
. 189
. 189
. 189
. 189
. 189
. 189
. 189
. 190
. 190

. 191
. 191
. 191
. 191
. 191
. 191
. 192
. 192
. 192
. 193
. 193
. 193
. 193
. 193
. 193
. 194
. 194
. 194
. 194
. 194

setActionsOnConditions.
setEDF . .
setRouteOption (1)
setRouteOption (2)
Inherited public methods
Inherited protected methods
Enumerations .
ActionOnCondition
HandleEventReturnOpt .
ConditionType .

Chapter 43. IccResourceld class

IccResourceld constructors (protected).

Constructor (1).
Constructor (2).
Public methods
name .
namelLength
Protected methods
operator= .
Inherited public methods
Inherited protected methods

Chapter 44. IccRRN class

IccRRN constructors.
Constructor .

Public methods
operator= (1)
operator= (2)
operator== (1) .
operator== (2) .
operator!= (1) .
operator!= (2) .
number .

Inherited public methods

Inherited protected methods

Chapter 45. lccSemaphore class
IccSemaphore constructor .
Constructor (1).
Constructor (2).
Public methods
lifeTime .
lock
tryLock
type
unlock
Inherited public methods
Inherited protected methods
Enumerations .
LockType
LifeTime .

Chapter 46. IccSession class
IccSession constructors (public) .
Constructor (1).
Constructor (2).
Constructor (3).
IccSession constructor (protected)
Constructor .
Public methods

Part 3. Foundation Classes—reference

. 195
. 195
. 195
. 195
. 196
. 196
. 196
. 196
. 196
. 197

. 199
. 199
. 199
. 199
. 199
. 199
. 199
. 200
. 200
. 200
. 200

. 201
. 201
. 201
. 201
. 201
. 201
. 201
. 201
. 201
. 202
. 202
. 202
. 202

. 203
. 203
. 203
. 203
. 203
. 203
. 204
. 204
. 204
. 204
. 204
. 205
. 205
. 205
. 205

. 207
. 207
. 207
. 207
. 207
. 207
. 207
. 208

71

allocate . .o

connectProcess (1) .

connectProcess (2) .

connectProcess (3) .

converse

convid

errorCode

extractProcess.

flush .

free

get

isErrorSet

isNoDataSet

isSignalSet .

issueAbend .

issueConfirmation.

issueError

issuePrepare

issueSignal .

PIPList

process .

put

receive

send (1) .

send (2) .

sendinvite (1) .

sendinvite (2) .

sendLast (1)

sendLast (2)

state .

stateText. .

syncLevel
Inherited public methods
Inherited protected methods
Enumerations .

AllocateOpt .

SendOpt.

StateOpt.

SyncLevel

Chapter 47. IccStartRequestQ class
IccStartRequestQ constructor (protected) .

Constructor .

Public methods
cancel
clearData
data .
instance .
gueueName
registerData
reset .
retrieveData
returnTermid
returnTransld
setData .
setQueueName
setReturnTermlid (1) .
setReturnTermlid (2) .
setReturnTransld (1).
setReturnTransld (2).
setStartOpts

72 CICS TS for 0S/390: C++ OO Class Libraries

. 208
. 208
. 208
. 208
. 209
. 209
. 209
. 209
. 210
. 210
. 210
. 210
. 210
. 210
211
.21
. 211
. 211
. 211
. 212
. 212
. 212
. 212
. 212
. 213
. 213
. 213
. 213
. 213
. 214
. 214
. 215
. 215
. 215
. 215
. 215
. 216
. 216
. 216

. 217
. 217
. 217
. 217
. 217
. 217
. 218
. 218
. 218
. 218
. 218
. 219
. 219
. 219
. 219
. 219
. 220
. 220
. 220
. 220
. 220

start . S
Inherited public methods
Inherited protected methods
Enumerations .

RetrieveOpt.

ProtectOpt .

CheckOpt

Chapter 48. IccSysld class
IccSysld constructors
Constructor (1).
Constructor (2).
Public methods
operator= (1)
operator= (2)
Inherited public methods
Inherited protected methods

Chapter 49. lccSystem class
IccSystem constructor (protected)
Constructor .
Public methods
appIName
beginBrowse (1) .
beginBrowse (2) .
dateFormat .
endBrowse .
freeStorage .
getFile (1)
getFile (2)
getNextFile .
getStorage .
instance . .
operatingSystem .
operatingSystemLevel
release
releaseText .
sysld .
workArea .
Inherited public methods
Inherited protected methods
Enumerations .
ResourceType .

Chapter 50. lccTask class .
IccTask Constructor (protected) .
Constructor .
Public methods
abend
abendData .
commitUoOW
delay .
dump .
enterTrace .
facility Type .
freeStorage .
getStorage .
instance . S
isCommandSecurityOn .
isCommitSupported .
isResourceSecurityOn

. 221
. 221
. 222
. 222
. 222
. 222
. 222

. 223
. 223
. 223
. 223
. 223
. 223
. 223
. 223
. 224

. 225
. 225
. 225
. 225
. 225
. 225
. 225
. 226
. 226
. 226
. 226
. 226
. 227
. 227
. 227
. 227
. 228
. 228
. 228
. 228
. 229
. 229
. 229
. 229
. 229

. 231
. 231
. 231
. 231
. 231
. 231
. 232
. 232
. 232
. 233
. 233
. 233
. 234
. 234
. 234
. 234
. 235

isRestarted . .
isStartDataAvailable .
number .
principalSyslid .
priority .
rollBackUOW .
setDumpOpts .
setPriority
setWaitText .
startType
suspend .
transld .
triggerDataQueueld .
userld
waitExternal
waitOnAlarm
workArea .
Inherited public methods
Inherited protected methods
Enumerations .
AbendHandlerOpt.
AbendDumpOpt
DumpOpts .
FacilityType.
StartType
StorageOpts
TraceOpt
WaitPostType .
WaitPurgeability

Chapter 51. IccTempStore class
IccTempStore constructors.
Constructor (1).
Constructor (2).
Public methods
clear .
empty.
get
numberOfltems
put
readltem.
readNextltem .
rewriteltem .
writeltem (1)
writeltem (2)
Inherited public methods
Inherited protected methods
Enumerations .
Location .
NoSpaceOpt

Chapter 52. lccTempStoreld class

IccTempStoreld constructors .
Constructor (1).
Constructor (2).

Public methods
operator= (1)
operator= (2) .

Inherited public methods

Inherited protected methods

. 235
. 235
. 235
. 235
. 236
. 236
. 236
. 236
. 236
. 237
. 237
. 237
. 237
. 237
. 238
. 238
. 238
. 239
. 239
. 239
. 239
. 239
. 239
. 240
. 240
. 240
. 241
. 241
. 241

. 243
. 243
. 243
. 243
. 243
. 243
. 244
. 244
. 244
. 244
. 244
. 245
. 245
. 245
. 245
. 246
. 246
. 246
. 246
. 247

. 249
. 249
. 249
. 249
. 249
. 249
. 249
. 249
. 250

Chapter 53. IccTermld class
IccTermld constructors .
Constructor (1).
Constructor (2).
Public methods
operator= (1)
operator= (2)
Inherited public methods
Inherited protected methods

Chapter 54. IccTerminal class

IccTerminal constructor (protected) .

Constructor .
Public methods

AID

clear .

cursor

data .

erase. .

freeKeyboard .

get .
height
inputCursor .
instance .
line
netName
operator<< (1) .
operator<< (2) .
operator<< (3) .
operator<< (4) .
operator<< (5) .
operator<< (6) .
operator<< (7).
operator<< (8) .
operator<< (9) .
operator<< (10)
operator<< (11)
operator<< (12)
operator<< (13)
operator<< (14)
operator<< (15)
operator<< (16)
operator<< (17)
operator<< (18)
put
receive .
receive3270Data .
send (1) .
send (2) .
send (3) .
send (4) .
send3270 (1)
send3270 (2)
send3270 (3)
send3270 (4)
sendLine (1)
sendLine (2)
sendLine (3)
sendLine (4)
setColor .
setCursor (1)

Part 3. Foundation Classes—reference

. 251
. 251
. 251
. 251
. 251
. 251
. 251
. 251
. 252

. 253
. 253
. 253
. 253
. 253
. 253
. 253
. 254
. 254
. 254
. 254
. 254
. 254
. 255
. 255
. 255
. 255
. 255
. 255
. 255
. 255
. 256
. 256
. 256
. 256
. 256
. 256
. 256
. 256
. 256
. 257
. 257
. 257
. 257
. 257
. 257
. 257
. 258
. 258
. 258
. 258
. 259
. 259
. 259
. 259
. 260
. 260
. 260
. 260
. 260
. 261

73

setCursor (2)

setHighlight .

setLine

setNewLine.

setNextCommArea

setNextinputMessage

setNextTransld

signoff

signon (1)

signon (2)

waitForAID (1) .

waitForAID (2) .

width .

workArea .
Inherited public methods
Inherited protected methods
Enumerations .

AlDVal

Case .

Color .

Highlight.

NextTransldOpt

Chapter 55. IccTerminalData class

IccTerminalData constructor (protected)
Constructor .

Public methods
alternateHeight
alternateWidth .
defaultHeight
defaultWidth
graphicCharCodeSet.
graphicCharSetld .
isAPLKeyboard
iSAPLText
isBTrans.
isColor
iISEWA
isExtended3270
isFieldOutline .
isGoodMorning
isHighlight .
isKatakana .
iSMSRControl .
isPS .
isSOSI
isTextKeyboard
isTextPrint .
isValidation . .

Inherited public methods

Inherited protected methods

Chapter 56. IccTime class
IccTime constructor (protected)
Constructor .
Public methods
hours .
minutes .
seconds .
timelnHours. .
timelnMinutes .

74 CICS TS for 0S/390: C++ OO Class Libraries

. 261
. 261
. 261
. 261
. 262
. 262
. 262
. 262
. 263
. 263
. 263
. 263
. 264
. 264
. 264
. 264
. 264
. 264
. 265
. 265
. 265
. 265

. 267
. 267
. 267
. 267
. 267
. 267
. 268
. 268
. 268
. 268
. 268
. 269
. 269
. 269
. 269
. 269
. 270
. 270
. 270
. 270
. 270
. 271
. 271
. 271
. 271
. 271
. 271
. 272

. 273
. 273
. 273
. 273
. 273
. 273
. 273
. 274
. 274

timelnSeconds.

type
Inherited public methods
Inherited protected methods
Enumerations .

Type .

Chapter 57. IccTimelnterval class
IccTimelnterval constructors

Constructor (1).

Constructor (2).
Public methods

operator=

set. e
Inherited public methods
Inherited protected methods

Chapter 58. lccTimeOfDay class
IccTimeOfDay constructors

Constructor (1).

Constructor (2).
Public methods

operator=

set. S
Inherited public methods
Inherited protected methods

Chapter 59. IccTPNameld class
IccTPNameld constructors .
Constructor (1).
Constructor (2).
Public methods
operator= (1)
operator= (2)
Inherited public methods
Inherited protected methods

Chapter 60. lccTransld class
IccTransld constructors .
Constructor (1).
Constructor (2).
Public methods
operator= (1)
operator= (2)
Inherited public methods
Inherited protected methods

Chapter 61. IccUser class

IccUser constructors .
Constructor (1).
Constructor (2).

Public methods
changePassword . .
daysUntilPasswordExpires .
ESMReason
ESMResponse.
groupld
invalidPasswordAttempts
language
lastPasswordChange
lastUseTime

. 274
. 274
. 274
. 274
. 275
. 275

. 277
. 277
. 277
. 277
. 277
. 277
. 277
. 278
. 278

. 279
. 279
. 279
. 279
. 279
. 279
. 279
. 280
. 280

. 281
. 281
. 281
. 281
. 281
. 281
. 281
. 281
. 282

. 283
. 283
. 283
. 283
. 283
. 283
. 283
. 283
. 284

. 285
. 285
. 285
. 285
. 285
. 285
. 286
. 286
. 286
. 286
. 286
. 286
. 286
. 287

passwordExpiration .
setLanguage
verifyPassword
Inherited public methods
Inherited protected methods

Chapter 62. IccUserld class

IccUserld constructors .
Constructor (1).
Constructor (2).

Public methods

. 287
. 287
. 287
. 287
. 288

. 289
. 289
. 289
. 289
. 289

operator= (1)

operator= (2)
Inherited public methods
Inherited protected methods

Chapter 63. lccValue structure
Enumeration
CVDA

Chapter 64. main function

Part 3. Foundation Classes—reference

. 289
. 289
. 289
. 290

. 291
. 291
. 291

. 295

75

This part contains the reference information on the Foundation Classes and
structures that are provided as part of CICS. The classes and structures are
arranged in alphabetic order. All the functionality you require to create
object-oriented CICS programs is included within these classes and structures.

All of the classes and structures begin with the unique prefix Icc. You are advised
not to create your own classes with this prefix.

Icc structure contains some functions and enumerations that are widely applicable.
IccValue structure consists of a large enumeration of all the CVDA values used in
traditional CICS programs.

The description of each class starts with a simple diagram that shows how it is
derived from lccBase class, the basis of all the other classes. This is followed by a
short description and an indication of the name of the header file that includes it
and, where appropriate, a sample source file that uses it.

Within each class or structure description are, where appropriate, the following
sections:

1. Inheritance diagram

2. Brief description of class

3. Header file where class is defined. For the location of the C++ header files on

your system see ‘Header files” on page §.

4. Sample program demonstrating class. For the location of the supplied C++
sample programs on your system see [!Sample source code” an page @.
Icc... constructors

Public methods (in alphabetic order)

Protected methods (in alphabetic order)

Inherited public methods (in tabular form)

Inherited protected methods (in tabular form)

10. Enumerations

© 0N oG

Methods, including constructors, start with a formal function prototype that shows
what a call returns and what the parameters are. There follows a description, in
order, of the parameters. To avoid duplication, inherited methods just have an
indication of the class from which they are derived (and where they are described).

The convention for names is:

1. Variable names are shown as variable.

Names of classes, structures, enumerations and methods are shown as method
Members of enumerations are shown as ‘enumMember".

The names of all the supplied classes and structures begin with lcc.

Compound names have no separators, but have capital letters to demark the
beginning of second and subsequent words, as in lccJournalTypeld.

6. Class and structure names and enumeration types begin with capital letters.
Other names begin with lower case letters.

a s~ DN

For further information on how to use these classes, see ‘Part 2 Using the clcy

76 CICS TS for 0S/390: C++ OO Class Libraries

Chapter 11. Icc structure

This structure holds global enumerations and functions for the CICS Foundation
Classes. These globals are defined within this structure to avoid name conflicts.

Header file: ICCGLBEH

Functions

boolText

static const char* boolText (Bool test,
BoolSet set = trueFalse)

test
A boolean value, defined in this structure, that has one of two values, chosen
from a set of values given by set.

set
An enumeration, defined in this structure, that indicates from which pair of
values test is selected. The default is to use true and false.

Returns the text that represents the boolean value described by the parameters,
such as "yes" or "on".

catchException

static void catchException(lccException& exception)

exception
A reference to an IccException object that holds information about a particular
type of exception.

This is the function of last resort, used to intercept IccException objects that the
application fails to catch. It can be called from the main function in the stub
program, listed in ICCMAIN header file, and described in {*Chapter 64 main

function” on page 295. All OO CICS programs should use this stub or a close
equivalent.

conditionText

static const char* conditionText(IccCondition::Codes condition)

condition
An enumeration, defined in the IccCondition structure, that indicates the
condition returned by a call to CICS.

© Copyright IBM Corp. 1989, 1999 77

lcc

Returns the symbolic name associated with a condition value. For example, if
conditionText is called with condition of IccCondition::NORMAL, it returns
"NORMAL", if it is called with condition of IccCondition::IOERR, it returns
"IOERR", and so on.

initializeEnvironment

static void initializeEnvironment (ClassMemoryMgmt mem = cmmbDefault,
FamilySubset fam = fsDefault,
Icc::Bool EDF)

mem
An enumeration, defined in this structure, that indicates the memory
management policy for the foundation classes.

fam
An enumeration, defined in this structure, that indicates whether the use of
CICS features that are not available on all platforms is permitted.

EDF
A boolean that indicates whether EDF tracing is initially on.

Initializes the CICS Foundation Classes. The rest of the class library can only be
called after this function has been called. It is called from the main function in the
stub program, listed in ICCMAIN header file, and described in I‘Chapter 64 main

function” on page 295. All OO CICS programs should use this stub or a close
equivalent.

IsClassMemoryMgmtOn

static Bool isClassMemoryMgmtOn()

Returns a boolean value, defined in this structure, that indicates whether class
memory management is on.

ISEDFOn

static Bool isEDFON()

Returns a Boolean value, defined in this structure, that indicates whether EDF
tracing is on at the global level. (See setEDF in this structure, iSEDFOnN and

setEDF in IccResource class on page [191 and FExecution Diagnastic Eacility”™ od

iIsFamilySubsetEnforcementOn

static Bool isFamilySubsetEnforcementOn()

Returns a boolean value, defined in this structure, that indicates whether it is
permitted to use CICS features that are not available on all platforms.

78 cCICS TS for 0S/390: C++ OO Class Libraries

lcc

returnToCICS

static void returnToCICS()

This call returns the program flow to CICS. It is called by the maln function |n the
stub program, listed in ICCMAIN header file, and described in

function” on page 295, All OO CICS programs should use this stub or a close

equivalent.

setEDF

static void setEDF(Icc::Bool onOff = off)

onOff
A boolean, defined in this structure, that indicates whether EDF tracing is
enabled. As EDF is more suitable for tracing programs that use EXEC CICS
calls than object oriented programs, the default is off.

Sets EDF tracing on or off at the global level.

unknownException

static void unknownException()

This function is called by the main function in ICCMAIN header file (see

‘Chapter 64 _main function” on page 295) and is used to intercept unknown

exceptions. (See also catchException in this structure).

Enumerations

Bool

Note: References in this section to other CICS platforms—CICS OS/2 and CICS for
AlX—are included for completeness. There have been Technology Releases
of the CICS Foundation Classes on those platforms.

Three equivalent pairs of boolean values:
true, yes, on
false, no, off

true, yes, and on evaluate to 1, while false, no, and off evaluate to zero. Thus you
can code test functions as follows:

if (task()->isStartDataAvailable())

//do something

Chapter 11. Icc structure 79

lcc
BoolSet

trueFalse
yesNo
onOff

ClassMemoryMgmt

cmmDefault
The defaults for the different platforms are:

MVS/ESA
cmmNonCICS

0OS/2 cmmCICS
UNIX cmmCICS

cmmNonCICS
The C++ environment performs the memory management required by the

program.

In MVS/ESA LE (Language Environment) ensures that the storage for
CICS tasks is released at the end of the task, or if the task terminates
abnormally.

On CICS for AIX or CICS for OS/2 dynamic storage release does not occur
at normal or abnormal task termination. This means that programs are
susceptible to memory leaks.

cmmCICS
The new and delete operators defined in IccBase class map storage
allocations to CICS; storage is automatically released at task termination.

FamilySubset

fsDefault
The defaults for the different platforms are all the same:
fsAllowPlatformVariance

fsEnforce
Enforces Family Subset conformance; that is, it disallows use of any CICS
features that are not available on all CICS servers (0OS/2, AlX, and
MVS/ESA).

fsAllowPlatformVariance
Allows each platform to access all the CICS features available on that

platform.

GetOpt

This enumeration is used on a number of methods throughout the classes.

It indicates whether the value held internally by the object is to be returned to the
caller, or whether it has to be refreshed from CICS first.

object
If the value has been previously retrieved from CICS and stored within the
object, return this stored value. Otherwise, get a copy of the value from
CICS and store within the object.

80 cICS TS for 0S/390: C++ OO Class Libraries

lcc

CICS Force the object to retrieve a fresh value from CICS (and store it within the
object) even if there is already a value stored within the object from a
previous invocation.

Platforms

Indicates on which operating system the program is being run. Possible values are:
0S2
UNIX
MVS

Chapter 11. Icc structure 81

lcc

82 CICS TS for 0S/390: C++ OO Class Libraries

Chapter 12. IccAbendData class
IccBase
IccResource
IccAbendData

This is a singleton class used to retrieve diagnostic information from CICS about a
program abend.

Header file: ICCABDEH

IccAbendData constructor (protected)

Constructor

IccAbendData()

Public methods

The opt parameter
Many methods have the same parameter, opt, which is described under the
abendCode method.

abendCode

const char* abendCode(lcc::GetOpt opt = Icc::object)

opt
An enumeration, defined in the lcc structure, that indicates whether a value
should be refreshed from CICS or whether the existing value should be

retained. The possible values are described under the GetOpt enumeration in
the Icc structure on page

Returns the current 4-character abend code.
Conditions

INVREQ

ASRAInterrupt

const char* ASRAInterrupt(lcc::GetOpt opt = Icc::object)

Returns 8 characters of status word (PSW) interrupt information at the point when
the latest abend with a code of ASRA, ASRB, ASRD, or AICA occurred.

The field contains binary zeroes if no ASRA or ASRB abend occurred during the

execution of the issuing transaction, or if the abend originally occurred in a remote
DPL server program.

© Copyright IBM Corp. 1989, 1999 83

IccAbendData

Conditions

INVREQ

ASRAKeyType

IccValue::CVDA ASRAKeyType(lcc::GetOpt opt = lcc::object)

Returns an enumeration, defined in IccValue, that indicates the execution key at
the time of the last ASRA, ASRB, AICA, or AEYD abend, if any. The possible
values are:

CICSEXECKEY
The task was executing in CICS-key at the time of the last ASRA, ASRB,
AICA, or AEYD abend. Note that all programs execute in CICS key if CICS
subsystem storage protection is not active.

USEREXECKEY
The task was executing in user-key at the time of the last ASRA, ASRB,
AICA, or AEYD abend. Note that all programs execute in CICS key if CICS
subsystem storage protection is not active.

NONCICS
The execution key at the time of the last abend was not one of the CICS
keys; that is, not key 8 or key 9.

NOTAPPLIC
There has not been an ASRA, ASRB, AICA, or AEYD abend.

Conditions

INVREQ

ASRAPSW

const char* ASRAPSW(Icc::GetOpt opt = lcc::object)

Returns an 8-character status word (PSW) at the point when the latest abend with
a code of ASRA, ASRB, ASRD, or AICA occurred.

The field contains nulls if no ASRA, ASRB, ASRD, or AICA abend occurred during
the execution of the issuing transaction, or if the abend originally occurred in a
remote DPL server.

Conditions

INVREQ

ASRARegisters

const char* ASRARegisters(lcc::GetOpt opt = Icc::object)

Returns the contents of general registers 0-15, as a 64-byte data area, at the point
when the latest ASRA, ASRB, ASRD, or AICA abend occurred. The contents of the
registers are returned in the order 0, 1, ..., 15.

84 cICs TS for 0S/390: C++ OO Class Libraries

IccAbendData

Note that nulls are returned if no ASRA, ASRB, ASRD, or AICA abend occurred
during the execution of the issuing transaction, or if the abend originally occurred
in a remote DPL server program.

Conditions

INVREQ

ASRASpaceType

IccValue::CVDA ASRASpaceType(lcc::GetOpt opt = lcc::object)

Returns an enumeration, defined in IccValue structure, that indicates what type of
space, if any, was in control at the time of the last ASRA, ASRB, AICA, or AEYD
abend. Possible values are:

SUBSPACE
The task was executing in either its own subspace or the common subspace
at the time of the last ASRA, ASRB, AICA, or AEYD abend.

BASESPACE
The task was executing in the base space at the time of the last ASRA,
ASRB, AICA, or AEYD abend. Note that all tasks execute in the base space
if transaction isolation is not active.

NOTAPPLIC
There has not been an ASRA, ASRB, AICA, or AEYD abend.

Conditions

INVREQ

ASRAStorageType

IccValue::CVDA ASRAStorageType(lcc::GetOpt opt = lIcc::object)

Returns an enumeration, defined in IccValue structure, that indicates what type of
storage, if any, was being addressed at the time of the last ASRA, ASRB, AICA, or
AEYD abend. Possible values are:

CICS CICS-key storage is being addressed. This can be in one of the CICS
dynamic storage areas (CDSA or ECDSA), or in one of the read-only
dynamic storage areas (RDSA or ERDSA) if either of the following apply:

* CICS is running with the NOPROTECT option on the RENTPGM system
initialization parameter

» storage protection is not active
USER

User-key storage in one of the user dynamic storage areas (RDSA or
ERDSA) is being addressed.

READONLY
Read-only storage in one of the read-only dynamic storage areas (RDSA or
ERDSA) when CICS is running with the PROTECT option on the
RENTPGM system initialization parameter.

NOTAPPLIC
One of:

* No ASRA or AEYD abend has been found for this task.

Chapter 12. IccAbendData class 85

IccAbendData

* The storage affected by an abend is not managed by CICS.
* The ASRA abend is not caused by a 0C4 abend.

* An ASRB or AICA abend has occurred since the last ASRA or AEYD
abend.

Conditions

INVREQ

instance
static lccAbendData* instance()

Returns a pointer to the single lccAbendData object. If the object does not already
exist, it is created by this method.

iIsDumpAvailable

Icc::Bool isDumpAuvailable(lcc::GetOpt opt = lcc::object)

Returns a boolean, defined in Icc structure, that indicates whether a dump has
been produced. If it has, use programName method to find the name of the failing
program of the latest abend.

Conditions

INVREQ

originalAbendCode
const char* originalAbendCode(lcc::GetOpt opt = lcc::object)
Returns the original abend code for this task in case of repeated abends.
Conditions

INVREQ

programName
const char* programName(lcc::GetOpt opt = lcc::oldValue)
Returns the name of the program that caused the abend.
Conditions

INVREQ

Inherited public methods

Method Class

actionOnCondition IccResource
actionOnConditionAsChar IccResource
actionsOnConditionsText IccResource

86 CICS TS for 0S/390: C++ OO Class Libraries

IccAbendData

Method Class
classType IccBase
className IccBase
condition IccResource
conditionText IccResource
customClassNum IccBase
handleEvent IccResource
id IccResource
iSEDFON IccResource
name IccResource
operator delete IccBase
operator new IccBase
setActionOnAnyCondition IccResource
setActionOnCondition IccResource
setActionsOnConditions IccResource
setEDF IccResource

Inherited protected methods

Method Class
setClassName IccBase
setCustomClassNum IccBase

Chapter 12. IccAbendData class 87

IccAbendData

88 cICS TS for 0S/390: C++ OO Class Libraries

Chapter 13. IccAbsTime class

IccBase
IccResource
lccTime
IccAbsTime

This class holds information about absolute time, the time in milliseconds that has
elapsed since the beginning of the year 1900.

Header file: ICCTIMEH

IccAbsTime constructor

Constructor (1)

IccAbsTime(const char* absTime)

absTime
The 8-byte value of time, in packed decimal format.

Constructor (2)

IccAbsTime(const IccAbsTime& time)

The copy constructor.

Public methods

date

const char* date (lccClock::DateFormat format = lccClock::defaultFormat,
char dateSeparator = "\0’)

format
An enumeration, defined in lccClock class, that indicates the format of the
date. The default is to use the installation default, the value set when the CICS
region is initialized.

dateSeparator
The character that separates the different fields of the date The default is no
separation character.

Returns the date, as a character string.
Conditions

INVREQ

© Copyright IBM Corp. 1989, 1999 89

IccAbsTime
dayOfMonth

unsigned long dayOfMonth()
Returns the day of the month in the range 1 to 31.
Conditions

INVREQ

dayOfWeek

IccClock::DayOfWeek dayOfWeek()

Returns an enumeration, defined in lccClock class, that indicates the day of the
week.

Conditions

INVREQ

daysSince1900

unsigned long daysSincel900()
Returns the number of days that have elapsed since the first day of 1900.
Conditions

INVREQ

hours

virtual unsigned long hours() const

Returns the hours component of the time.

milliSeconds

long double milliSeconds()

Returns the number of milliseconds that have elapsed since the first day of 1900.

minutes

virtual unsigned long minutes() const

Returns the minutes component of the time.

monthOfYear

IccClock::MonthOfYear monthOfYear()

90 cICs TS for 0S/390: C++ OO Class Libraries

IccAbsTime

Returns an enumeration, defined in IccClock class, that indicates the month of the
year.

Conditions
INVREQ
operator=
IccAbsTime& operator=(const IccAbsTime& absTime)

Assigns one lccAbsTime object to another.

packedDecimal

const char* packedDecimal() const

Returns the time as an 8-byte packed decimal string that expresses the number of
milliseconds that have elapsed since the beginning of the year 1900.

seconds

virtual unsigned long seconds() const

Returns the seconds component of the time.

time

const char* time(char timeSeparator = "\0’)

timeSeparator
The character that delimits the time fields. The default is no time separation
character.

Returns the time as a text string.

Conditions

INVREQ

timelnHours
unsigned long timelnHours()

Returns the number of hours that have elapsed since the day began.

timelnMinutes

unsigned long timelnMinutes()

Returns the number of minutes that have elapsed since the day began.

Chapter 13. IccAbsTime class 91

IccAbsTime
timelnSeconds

unsigned long timelnSeconds()

Returns the number of seconds that have elapsed since the day began.

year

unsigned long year()
Returns the year as a 4-digit integer, e.g. 1996.
Conditions

INVREQ

Inherited public methods

Method Class
actionOnCondition IccResource
actionOnConditionAsChar IccResource
actionsOnConditionsText IccResource
classType IccBase
className IccBase
condition IccResource
conditionText IccResource
customClassNum IccBase
handleEvent IccResource
hours IccTime
iISEDFON IccResource
minutes IccTime
operator delete IccBase
operator new IccBase
setActionOnAnyCondition IccResource
setActionOnCondition IccResource
setActionsOnConditions IccResource
setEDF IccResource
timelnHours IccTime
timelnMinutes IccTime
timelnSeconds IccTime
type IccTime

Inherited protected methods

Method Class
setClassName IccBase
setCustomClassNum IccBase

92 cCICS TS for 0S/390: C++ OO Class Libraries

Chapter 14. IccAlarmRequestld class

IccBase
IccResourceld
IccRequestld
IccAlarmRequestid

An IccAlarmRequestld object represents a unique alarm request. It contains the
8-character name of the request identifier and a pointer to a 4-byte timer event

control area. IccAlarmRequestld is used by the setAlarm method of IccClock class
when setting an alarm, and the waitOnAlarm method of IccTask when waiting for

an alarm.

Header file: ICCRIDEH

IccAlarmRequestld constructors

Constructor (1)

IccAlarmRequestld()

Creates a new object with no information present.

Constructor (2)

IccAlarmRequestld (const char* nam,
const void* timerECA)

name
The 8-character name of the request.

timerECA

A pointer to a 4-byte timer event control area.

Creates an object with information already set.

Constructor (3)

IccAlarmRequestld(const IccAlarmRequestld& id)
id A reference to an IccAlarmRequestld object.

The copy constructor.

Public methods

ISExpired

Icc::Bool isExpired()

Returns a boolean, defined in lIcc structure, that indicates whether the alarm has

expired.

© Copyright IBM Corp. 1989, 1999

93

IccAlarmRequestid

operator= (1)

IccAlarmRequestld& operator=(const IccRequestld& id)

id A reference to an IccRequestld object.

operator= (2)

IccAlarmRequestld& operator=(const IccAlarmRequestld& id)

id A reference to an IccAlarmRequestld object.

operator= (3)

IccAlarmRequestld& operator=(const char* requestName)

requestName

The 8-character name of the alarm request.

These methods are used to copy information into an IccAlarmRequestld object.

setTimerECA

void setTimerECA(const void* timerECA)

timerECA

A pointer to a 4-byte timer event control area.

timerECA

const void* timerECA() const

Returns a pointer to the 4-byte timer event control area.

Inherited public methods

Method Class
classType IccBase
className IccBase
customClassNum IccBase
name IccResourceld
nameLength IccResourceld
operator delete IccBase
operator new IccBase
Inherited protected methods

Method Class
operator= IccResourceld
setClassName IccBase
setCustomClassNum IccBase

94 cICs TS for 0S/390: C++ OO Class Libraries

Chapter 15. IccBase class

IccBase

IccBase class is the base class from which all CICS Foundation Classes are derived.
(The methods associated with IccBase are described here although, in practice,
they can only be called on objects of the derived classes).

Header file: ICCBASEH

IccBase constructor (protected)

Constructor

IccBase(ClassType type)

type
An enumeration that indicates what the subclass type is. For example, for an

IccTempsStore object, the class type is 'cTempStore'.

Public methods

The opt parameter
Many methods have the same parameter, opt, which is described under the

abendCode method inf‘abendCode” on page 83.

classType

ClassType classType() const

Returns an enumeration that indicates what the subclass type is. For example, for
an IccTempStore object, the class type is '‘cTempStore'. The possible values are
listed under ClassType on page Q4.

className

const char* className(NameOpt opt=customName)

opt
An enumerator, defined in this class, that indicates whether to return the base
name of the class or the name as customized by a derived class.

Returns the name of the class. For example, an IccTempStore object returns
"lccTempStore".

Suppose a class MyDataQueue inherits from IccDataQueue. If MyDataQueue calls

setClassName("MyDataQueue”),
MyDataQueue::.className(lccBase::customName) returns "MyDataQueue” and

© Copyright IBM Corp. 1989, 1999 95

IccBase

MyDataQueue:.className(lccBase::baseName) returns "lccDataQueue”. An
IccDataQueue object returns "IccDataQueue” for both opt values.

customClassNum

unsigned short customClassNum() const

Returns the number that an application designer has associated with a subclass
that he or she has designed.

operator delete

void operator delete(void* object)

object
A pointer to an object that is to be destroyed.

Destroys an object in an orderly manner.

operator new

void* operator new(size_t size)

size
The size of the object that is to be created, in bytes.

Creates a new object of given size. This operator enables the Foundation Classes to

use CICS storage allocation (see EinitializeEnvironment” on page 78).

Protected methods

setClassName

void setClassName(const char* className)

className
The name of the class. For example, if you create a class MyTempStore that is
a specialization of IccTempStore, you might call
setClassName("MyTempStore").

Sets the name of the class. It is useful for diagnostic purposes to be able to get a
string representation of the name of the class to which an object belongs.

setCustomClassNum

void setCustomClassNum(unsigned short number)

number
The number that an application designer associates with a subclass for
identification purposes.

96 cICS TS for 0S/390: C++ OO Class Libraries

IccBase

Assigns an identification number to a subclass that is not an original part of the
classes, as supplied.

Enumerations

ClassType

The names are derived by deleting the first two characters from the name of the
class. The possible values are:

cAbendData cGroupld cSystem
cAlarmRequestld clournal cTask

cBuf clournalld cTempStore
cClock cJournalTypeld cTempStoreld
cConsole cLockld cTermld
cControl cMessage cTerminal
cConvld cPartnerld cTerminalData
cCUSTOM cProgram cTime
cDataQueue cProgramid cTPNameld
cDataQueueld cRecordIndex cTransld
cEvent cRequestld cUser
cException cSemaphore cUserld

cFile cSession

cFileld cStartRequestQ

cFilelterator cSysld

Note: cCUSTOM allows the class library to be extended by non-IBM developers.
NameOpt
Seet‘className” on page 94,

baseName
Returns the default name assigned to the class as provided by IBM.

customName
Returns the name assigned using setClassName method from a subclass or, if
setClassName has not been invoked, the same as baseName.

Chapter 15. IccBase class 97

IccBase

98 cICS TS for 0S/390: C++ OO Class Libraries

Chapter 16. lccBuf class

IccBase
lccBuf

IccBuf class is supplied for the general manipulation of buffers. This class is used
by other classes that make calls to CICS, but does not itself call CICS services. See

Header file: ICCBUFEH

Sample: ICC$BUF

IccBuf constructors

Constructor (1)

IccBuf (unsigned long length = 0,
DataAreaType type = extensible)

length
The initial length of the data area, in bytes. The default length is 0.

type
An enumeration that indicates whether the data area can be dynamically

extended. Possible values are extensible or fixed. The default is extensible.

Creates an lccBuf object, allocating its own data area with the given length and
with all the bytes within it set to NULL.

Constructor (2)

IccBuf (unsigned long length,
void* dataArea)

length
The length of the supplied data area, in bytes

dataArea
The address of the first byte of the supplied data area.

Creates an IccBuf object that cannot be extended, adopting the given data area as
its own.

See warning about Elnternal/External ownership of buffers” on page 24

© Copyright IBM Corp. 1989, 1999 99

IccBuf
Constructor (3)

IccBuf (const char* text,
DataAreaType type = extensible)

text
A null-terminated string to be copied into the new lccBuf object.

type
An enumeration that indicates whether the data area can be extended. Possible
values are extensible or fixed. The default is extensible.

Creates an lccBuf object, allocating its own data area with the same length as the
text string, and copies the string into its data area.

Constructor (4)

IccBuf(const IccBuf& buffer)

buffer
A reference to an IccBuf object that is to be copied into the new object.

The copy constructor—creates a new lccBuf object that is a copy of the given
object. The created IccBuf object always has an internal data area.

Public methods

append (1)

lccBuf& append (unsigned long length,
const void* dataArea)

length
The length of the source data area, in bytes

dataArea
The address of the source data area.

Appends data from the given data area to the data area in the object.
append (2)

lccBuf& append (const char* format,

)

format
The null-terminated format string

The optional parameters.
Append data, in the form of format string and variable argument, to the data area

in the object. This is the same as the form used by printf in the standard C library.

Note that it is the responsibility of the application programmer to ensure that the
optional parameters are consistent with the format string.

100 cIcs TS for 0S/390: C++ OO Class Libraries

assign

assign

lccBuf
(1)

lccBuf& assign (unsigned long length,
const void* dataArea)

length
The length of the source data area, in bytes

dataArea
The address of the source data area.

Assigns data from the given data area to the data area in the object.

(2)

lccBuf& assign (const char* format,

)

format
The format string

The optional parameters.

Assigns data, in the form of format string and variable argument, to the data area
in the object. This is the same as the form used by printf in the standard C library.

cut
lccBuf& cut (unsigned long length,
unsigned long offset = 0)
length
The number of bytes to be cut from the data area.
offset
The offset into the data area. The default is no offset.
Makes the specified cut to the data in the data area and returns a reference to the
IccBuf object.
dataArea
const void* dataArea(unsigned long offset = 0) const
offset
The offset into the data area. The default is no offset.
Returns the address of data at the given offset into the data area.
dataArealLength

unsigned long dataArealength() const

Returns the length of the data area in bytes.

Chapter 16. IccBuf class 101

lccBuf

dataAreaOwner

DataAreaOwner dataAreaOwner() const

Returns an enumeration that indicates whether the data area has been allocated by
the IccBuf constructor or has been supplied from elsewhere. The possible values

are listed under EDataAreaQwner” on page 107,

dataAreaType

DataAreaType dataAreaType() const

Returns an enumeration that indicates whether the data area can be extended. The

possible values are listed under t'DataAreaType” on page 107.

datalength

insert

unsigned long datalLength() const

Returns the length of data in the data area. This cannot be greater than the value
returned by dataArealLength.

lccBuf& insert (unsigned long length,
const void* dataArea,
unsigned long offset = 0)

length
The length of the data, in bytes, to be inserted into the IccBuf object

dataArea
The start of the source data to be inserted into the IccBuf object

offset
The offset in the data area where the data is to be inserted. The default is no
offset.

Inserts the given data into the data area at the given offset and returns a reference
to the lccBuf object.

iIsFMHContained

Icc::Bool isFMHContained() const

Returns a boolean, defined in lcc structure, that indicates whether the data area
contains FMHs (function management headers).

operator const char*

102 cIcs TS for 0S/390: C++ OO Class Libraries

lccBuf

operator const char*() const
Casts an IccBuf object to a null terminated string.

IccBuf data("Hello World");
cout << (const charx) data;

operator= (1)
lccBuf& operator=(const IccBuf& buffer)

buffer
A reference to an IccBuf object.

Assigns data from another buffer object and returns a reference to the lccBuf
object.

operator= (2)
lccBuf& operator=(const char* text)

text
The null-terminated string to be assigned to the IccBuf object.

Assigns data from a null-terminated string and returns a reference to the lccBuf
object.

See also the assign method.
operator+= (1)

lccBuf& operator+=(const lccBuf& buffer)

buffer
A reference to an IccBuf object.

Appends data from another buffer object and returns a reference to the lIccBuf
object.

operator+= (2)

lccBuf& operator+=(const char* text)

text
The null-terminated string to be appended to the IccBuf object.

Appends data from a null-terminated string and returns a reference to the IccBuf
object.

See also the append method.

operator==
Icc::Bool operator==(const lccBuf& buffer) const

Chapter 16. IccBuf class 103

lccBuf

buffer
A reference to an IccBuf object.

Returns a boolean, defined in Icc structure, that indicates whether the data

contained in the buffers of the two IccBuf objects is the same. It is true if the
current lengths of the two data areas are the same and the contents are the same.

operator!=

Icc::Bool operator!=(const IccBuf& buffer) const

buffer
A reference to an IccBuf object.

Returns a boolean, defined in lcc structure, that indicates whether the data

contained in the buffers of the two IccBuf objects is different. It is true if the
current lengths of the two data areas are different or if the contents are different.

operator<< (1)

operator<<(const lccBuf& buffer)

Appends another buffer.
operator<< (2)

operator<<(const char* text)

Appends a string.
operator<< (3)

operator<<(char ch)

Appends a character.
operator<< (4)

operator<<(signed char ch)

Appends a character.
operator<< (5)

operator<<(unsigned char ch)

Appends a character.
operator<< (6)

operator<<(const signed char* text)

Appends a string.

104 cIcs TS for 0S/390: C++ OO Class Libraries

IccBuf
operator<< (7)

operator<<(const unsigned char* text)

Appends a string.
operator<< (8)

operator<<(short num)

Appends a short.
operator<< (9)

operator<<(unsigned short num)

Appends an unsigned short.
operator<< (10)

operator<<(long num)

Appends a long.
operator<< (11)

operator<<(unsigned long num)

Appends an unsigned long.
operator<< (12)

operator<<(int num)

Appends an integer.
operator<< (13)

operator<<(float num)

Appends a float.
operator<< (14)

operator<<(double num)

Appends a double.
operator<< (15)

operator<<(long double num)

Appends a long double.

Chapter 16. IccBuf class 105

IccBuf
Appends data of various types to the IccBuf object. The types are converted to a
‘readable’ format, for example from a long to a string representation.

overlay

lccBuf& overlay (unsigned long length,
void* dataArea)

length

The length of the existing data area.
dataArea

The address of the existing data area.

Makes the data area external and fixed. Any existing internal data area is
destroyed.

See warning about Flnternal/Fxternal ownership of buffers” on page 25,

replace

lccBuf& replace (unsigned long length,
const void* dataArea,
unsigned long offset = 0)

length
The length of the source data area, in bytes.

dataArea
The address of the start of the source data area.

offset
The position where the new data is to be written, relative to the start of the
IccBuf data area. The default is no offset.

Replaces the current contents of the data area at the given offset with the data
provided and returns a reference to the IccBuf object.

setDatal ength

unsigned long setDatalength(unsigned long length)

length
The new length of the data area, in bytes

Changes the current length of the data area and returns the new length. If the
IccBuf object is not extensible, the data area length is set to either the original
length of the data area or length , whichever is less.

setFMHContained

void setFMHContained(lcc::Bool yesNo = Icc:yes)

106 cICS TS for 0S/390: C++ OO Class Libraries

lccBuf

yesNo
A boolean, defined in lIcc structure, that indicates whether the data area
contains FMHSs. The default value is yes.

Allows an application program to indicate that a data area contains function
management headers.

Inherited public methods

Method Class

className IccBase
classType IccBase
customClassNum IccBase
operator delete IccBase
operator new IccBase

Inherited protected methods

Method Class
setClassName IccBase
setCustomClassNum IccBase
Enumerations
DataAreaOwner

Indicates whether the data area of a IccBuf object has been allocated outside the
object. Possible values are:

internal
The data area has been allocated by the IccBuf constructor.

external
The data area has been allocated externally.

DataAreaType

Indicates whether the data area of a IccBuf object can be made longer than its
original length. Possible values are:

extensible
The data area can be automatically extended to accommodate more data.

fixed The data area cannot grow in size. If you attempt to assign too much data,
the data is truncated, and an exception is thrown.

Chapter 16. IccBuf class 107

lccBuf

108 cIcs TS for 0S/390: C++ OO Class Libraries

Chapter 17. lccClock class
IccBase
IccResource
lccClock
The lIccClock class controls access to the CICS time and date services.

Header file: ICCCLKEH

Sample: ICC$CLK

IccClock constructor

Constructor

IccClock(UpdateMode update = manual)

update
An enumeration, defined in this class, that indicates whether the clock is to
update its time automatically whenever a time or date service is used, or
whether it is to wait until an explicit update method call is made. If the time is
updated manually, the initial clock time is the time when the IccClock object
object is created.

Public methods

absTime
IccAbsTime& absTime()

Returns a reference to an IccAbsTime object that contains the absolute time as
provided by CICS.

cancelAlarm

void cancelAlarm(const lccRequestld* reqld = 0)
reqld

An optional pointer to the IccRequestld object that holds information on an
alarm request.

Cancels a previous setAlarm request if the alarm time has not yet been reached,
that is, the request has not expired.

Conditions

ISCINVREQ, NOTAUTH, NOTFND, SYSIDERR

© Copyright IBM Corp. 1989, 1999 109

lccClock

date
const char* date (DateFormat format = defaultFormat,
char dateSeparator = '\0’)
format
An enumeration, defined in this class, that indicates in which format you want
the date to be returned.
dateSeparator
The character that is used to separate different fields in the date. The default is
no separation character.
Returns the date as a string.
Conditions
INVREQ
dayOfMonth
unsigned long dayOfMonth()
Returns the day component of the date, in the range 1 to 31.
Conditions
INVREQ
dayOfWeek
DayOfWeek dayOfWeek()
Returns an enumeration, defined in this class, that indicates the day of the week.
Conditions
INVREQ
daysSince1900
unsigned long daysSincel1900()
Returns the number of days that have elapsed since 1st January, 1900.
Conditions
INVREQ
milliSeconds

long double milliSeconds()

Returns the number of milliseconds, rounded to the nearest hundredth of a second,
that have elapsed since 00:00 on 1st January, 1900.

110 cICs TS for 0S/390; C++ OO Class Libraries

lccClock

monthOfYear

MonthOfYear monthOfYear()
Returns an enumeration, defined in this class, that indicates the month of the year.
Conditions

INVREQ

setAlarm

time

update

year

const lccAlarmRequestld& setAlarm (const lccTime& time,
const IccRequestld* reqld = 0)

time
A reference to an IccTime object that contains time information. As IccTime is

an abstract class time is, in practise, an object of class IccAbsTime,
lccTimeOfDay, or IccTimelnterval.

reqld
An optional pointer to an IccRequestld object that is used to identify this
particular alarm request.

Sets an alarm at the time specified in time. It returns a reference to an

IccAlarmRequestld object that can be used to cancel the alarm—see cancelAlarm
method. See also the waitOnAlarm method on page Rad of class lccTask.

Conditions

EXPIRED, INVREQ

const char* time(char timeSeparator = "\0’)
timeSeparator

The character that delimits the time fields. The default is no separation
character.

Returns the time as a text string.
Conditions

INVREQ

void update()

Updates the clock time and date from CICS. See the IccClock constructor.

Chapter 17. lccClock class 111

lccClock

unsigned long year()

Returns the 4-figure year number, such as 1996.

Conditions

INVREQ

Inherited public methods

Method Class
actionOnCondition IccResource
actionOnConditionAsChar IccResource
actionsOnConditionsText IccResource
classType IccBase
className IccBase
condition IccResource
conditionText IccResource
customClassNum IccBase
handleEvent IccResource
id IccResource
iISEDFON IccResource
name IccResource
operator delete IccBase
operator new IccBase
setActionOnAnyCondition IccResource
setActionOnCondition IccResource
setActionsOnConditions IccResource
setEDF IccResource
Inherited protected methods

Method Class
setClassName IccBase
setCustomClassNum IccBase

Enumerations

DateFormat

defaultFormat
DDMMYY
MMDDYY
YYDDD
YYDDMM
YYMMDD
DDMMYYYY
MMDDYYYY
YYYYDDD
YYYYDDMM
YYYYMMDD

112 CICS TS for 0S/390; C++ OO Class Libraries

lccClock
DayOfWeek

Indicates the day of the week.
Sunday
Monday
Tuesday
Wednesday
Thursday
Friday
Saturday

MonthOfYear

Indicates the month of the year.
January
February
March
April
May
June
July
August
September
October
November
December

UpdateMode

Indicates whether the clock is automatically updated.

manual
The clock initially holds the time at which it was created. It is subsequently
updated only when an update method call is made.

automatic
The clock is updated to the current CICS time and date whenever any time
or date method is called (for example, daysSince1900).

Chapter 17. lccClock class 113

lccClock

114 cics TS for 0S/390: C++ OO Class Libraries

Chapter 18. IccCondition structure

This structure contains an enumeration of all the CICS condition codes.

Header file: ICCCNDEH

Enumerations

Codes

Range

The possible values are:
Value

0 NORMAL

1 ERROR

2 RDATT

3 WRBRK

4 ICCEOF

5 EODS

6 EOC

7 INBFMH

8 ENDINPT

9 NONVAL

10 NOSTART

11 TERMIDERR

12 FILENOTFOUND

13 NOTFND

14 DUPREC

15 DUPKEY

16 INVREQ

17 I0ERR

18 NOSPACE

19 NOTOPEN

20 ENDFILE

21 ILLOGIC

22 LENGERR

23 QZERO

24 SIGNAL

25 QBUSY

26 ITEMERR

27 PGMIDERR

28 TRANSIDERR

29 ENDDATA

30 INVTSREQ

31 EXPIRED

32 RETPAGE

33 RTEFAIL

34 RTESOME

maxValue

The highest CICS condition, currently 103.

© Copyright IBM Corp. 1989, 1999

35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

Value
TSIOERR
MAPFAIL
INVERRTERM
INVMPSZ
IGREQID
OVERFLOW
INVLDC
NOSTG
JIDERR
QIDERR
NOJBUFSP
DSSTAT
SELNERR
FUNCERR
UNEXPIN
NOPASSBKRD
NOPASSBKWR

SYSIDERR
ISCINVREQ
ENQBUSY
ENVDEFERR
IGREQCD
SESSIONERR
SYSBUSY
SESSBUSY
NOTALLOC
CBIDERR
INVEXITREQ
INVPARTNSET
INVPARTN
PARTNFAIL

USERIDERR

100
101
102
103

Value
NOTAUTH

SUPPRESSED

RESIDERR

NOSPOOL
TERMERR
ROLLEDBACK
END

DISABLED
ALLOCERR
STRELERR
OPENERR
SPOLBUSY
SPOLERR
NODEIDERR
TASKIDERR
TCIDERR
DSNNOTFOUND
LOADING
MODELIDERR
OUTDESCERR
PARTNERIDERR
PROFILEIDERR
NETNAMEIDERR
LOCKED
RECORDBUSY
UOWNOTFOUND
UOWLNOTFOUND

115

IccCondition

116 cICs TS for 0S/390; C++ OO Class Libraries

Chapter 19. IccConsole class
IccBase
IccResource
IccConsole
This is a singleton class that represents the CICS console.

Header file: ICCCONEH

Sample: I1CC$CON

IccConsole constructor (protected)

Constructor

IccConsole()

No more than one of these objects is permitted in a task. An attempt to create
more objects causes an exception to be thrown.

Public methods

The opt parameter
Many methods have the same parameter, opt, which is described under the

abendCode method inf‘abendCode” on page 83.

instance
static lccConsole* instance()

Returns a pointer to the single IccConsole object that represents the CICS console.
If the object does not already exist, it is created by this method.

put

virtual void put(const lccBuf& send)

send
A reference to an IccBuf object that contains the data that is to be written to
the console.

Writes the data in send to the CICS console. put is a synonym for write. See

replyTimeout

© Copyright IBM Corp. 1989, 1999 117

IccConsole

unsigned long replyTimeout() const

Returns the length of the reply timeout in milliseconds.

resetRouteCodes

void resetRouteCodes()

Removes all route codes held in the IccConsole object.

setAllIRouteCodes

void setAllRouteCodes()

Sets all possible route codes in the IccConsole object, that is, 1 through 28.

setReplyTimeout (1)
void setReplyTimeout(lccTimelnterval& interval)

interval
A reference to a IccTimelnterval object that describes the length of the time
interval required.

setReplyTimeout (2)
void setReplyTimeout(unsigned long seconds)

seconds
The length of the time interval required, in seconds.

The two different forms of this method are used to set the length of the reply
timeout.

setRouteCodes

void setRouteCodes (unsigned short numRoutes,

)

numRoutes
The number of route codes provided in this call—the number of arguments
that follow this one.

One or more arguments, the number of which is given by numRoutes. Each
argument is a route code, of type unsigned short, in the range 1 to 28.

Saves route codes in the object for use on subsequent write and
writeAndGetReply calls. Up to 28 codes can be held in this way.

write

118 cICs TS for 0S/390; C++ OO Class Libraries

IccConsole

void write (const IccBuf& send,
SeverityOpt opt = none)

send
A reference to an IccBuf object that contains the data that is to be written to
the console.

opt
An enumeration, defined below, that indicates the severity of the console
message.

Writes the data in send to the CICS console.
Conditions

INVREQ, LENGERR, EXPIRED

writeAndGetReply

const lccBuf& writeAndGetReply (const lccBuf& send,
SeverityOpt opt= none)

send
A reference to an IccBuf object that contains the data that is to be written to
the console.

opt
An enumeration, defined below, that indicates the severity of the console
message.

Writes the data in send to the CICS console and returns a reference to an lccBuf
object that contains the reply from the CICS operator.

Conditions

INVREQ, LENGERR, EXPIRED

Inherited public methods

Method Class
actionOnCondition IccResource
actionOnConditionAsChar IccResource
actionsOnConditionsText IccResource
classType IccBase
className IccBase
condition IccResource
conditionText IccResource
customClassNum IccBase
handleEvent IccResource
id IccResource
iSEDFON IccResource
name IccResource
operator delete IccBase
operator new IccBase
setActionOnAnyCondition IccResource
setActionOnCondition IccResource
setActionsOnConditions IccResource

Chapter 19. IccConsole class 119

IccConsole

Method Class

setEDF IccResource
Inherited protected methods

Method Class

setClassName IccBase

setCustomClassNum IccBase

Enumerations

SeverityOpt

Possible values are:

none
warning
error
severe

120 cICS TS for 0S/390: C++ OO Class Libraries

Chapter 20. IccControl class

IccBase
IccResource
IccControl

IccControl class controls an application program that uses the supplied Foundation
Classes. This class is a singleton class in the application program; each program
running under a CICS task has a single IccControl object.

IccControl has a pure virtual run method, where application code is written, and
is therefore an abstract base class. The application programmer must subclass
IccControl, and implement the run method.

Header file: ICCCTLEH

IccControl constructor (protected)

Constructor

IccControl()

Public methods

callingProgramid

const lccProgramld& callingProgramld()

Returns a reference to an IccProgramld object that represents the program that
called this program. The returned IccProgramld reference contains a null name if
the executing program was not called by another program.

Conditions

INVREQ

cancelAbendHandler

void cancelAbendHandler()

Cancels a previously established exit at this logical program level.
Conditions

NOTAUTH, PGMIDERR

commArea

lccBuf& commArea()

© Copyright IBM Corp. 1989, 1999 121

IccControl

122

Returns a reference to an IccBuf object that encapsulates the COMMAREA—the
communications area of CICS memory that is used for passing data between CICS
programs and transactions.

Conditions

INVREQ

console

IccConsole* console()

Returns a pointer to the single lccConsole object. If this object has not yet been
created, this method creates the object before returning a pointer to it.

initData

const lccBuf& initData()

Returns a reference to an lccBuf object that contains the initialization parameters
specified for the program in the INITPARM system initialization parameter.

Conditions

INVREQ

instance

static lccControl* instance()

Returns a pointer to the single IccControl object. The object is created if it does not
already exist.

isCreated

static lcc::Bool isCreated()

Returns a boolean value that indicates whether the IccControl object already exists.
Possible values are true or false.

programlid

const lccProgramld& programld()
Returns a reference to an IccProgramld object that refers to this executing program.
Conditions

INVREQ

CICS TS for OS/390: C++ OO Class Libraries

IccControl

resetAbendHandler

void resetAbendHandler()

Reactivates a previously cancelled abend handler for this logical program level.
(See cancelAbendHandler on page @).

Conditions

NOTAUTH, PGMIDERR

returnProgramld

const lccProgramld& returnProgramld()

Returns a reference to an IccProgramld object that refers to the program that
resumes control when this logical program level issues a return.

run
virtual void run() = 0
This method should be implemented in a subclass of IccControl by the application
programmer.

session

lccSession* session()

Returns a pointer to the lccSession object that represents the principal facility for
this program. An exception is thrown if this program does not have a session as its
principal facility.

setAbendHandler (1)

void setAbendHandler(const IccProgramld& programid)

programld
A reference to the IccProgramld object that indicates which program is
affected.

setAbendHandler (2)

void setAbendHandler(const char* programName)

programName
The name of the program affected.

These methods set the abend handler to the named program for this logical
program level.

Chapter 20. IccControl class 123

IccControl

Conditions

NOTAUTH, PGMIDERR

startRequestQ

system

IccStartRequestQ* startRequestQ()

Returns a pointer to the lccStartRequestQ object. If this object has not yet been
created, this method creates the object before returning a pointer to it.

lccSystem* system()

Returns a pointer to the IccSystem object. If this object has not yet been created,
this method creates the object before returning a pointer to it.

task
lccTask* task()
Returns a pointer to the IccTask object. If this object has not yet been created, this
method creates the object before returning a pointer to it.

terminal

IccTerminal* terminal()

Returns a pointer to the IccTerminal object. If this object has not yet been created,
this method creates the object before returning a pointer to it.

This method has a condition, that the transaction must have a terminal as its
principle facility. That is, there must be a physical terminal involved.

Inherited public methods

Method Class
actionOnCondition IccResource
actionOnConditionAsChar IccResource
actionsOnConditionsText IccResource
classType IccBase
className IccBase
condition IccResource
conditionText IccResource
customClassNum IccBase
handleEvent IccResource
id IccResource
iSEDFON IccResource
name IccResource
operator delete IccBase
operator new IccBase

124 cIcS TS for 0S/390: C++ OO Class Libraries

IccControl

Method Class
setActionOnAnyCondition IccResource
setActionOnCondition IccResource
setActionsOnConditions IccResource
setEDF IccResource
Inherited protected methods

Method Class
setClassName IccBase
setCustomClassNum IccBase

Chapter 20. IccControl class

125

IccControl

126 cICS TS for 0S/390: C++ OO Class Libraries

Chapter 21. lccConvld class

IccBase
IccResourceld
lccConvid

IccConvld class is used to identify an APPC conversation.

Header file: ICCRIDEH

IccConvld constructors

Constructor (1)

IccConvld(const char* convName)

convName
The 4-character name of the conversation.

Constructor (2)

IccConvld(const lccConvid& convid)

convld
A reference to an IccConvid object.

The copy constructor.

Public methods

operator= (1)

lccConvid& operator=(const char* convName)
operator= (2)

IccConvid& operator=(const lIccConvld id)

Assigns new value.

Inherited public methods

Method Class
classType IccBase
className IccBase
customClassNum IccBase

name IccResourceld
nameLength IccResourceld
operator delete IccBase
operator new IccBase

© Copyright IBM Corp. 1989, 1999

127

IccConvlid

Inherited protected methods

Method

operator=
setClassName
setCustomClassNum

128 cICS TS for 0S/390: C++ OO Class Libraries

Class
IccResourceld
IccBase
IccBase

Chapter 22. IccDataQueue class
IccBase
IccResource
lccDataQueue
This class represents a CICS transient data queue.

Header file: ICCDATEH

Sample: ICC$DAT

IccDataQueue constructors

Constructor (1)
IccDataQueue(const IccDataQueueld& id)

id A reference to an IccDataQueueld object that contains the name of the CICS
transient data queue.

Constructor (2)

IccDataQueue(const char* queueName)

queueName
The 4-byte name of the queue that is to be created. An exception is thrown if
queueName is not valid.

Public methods

clear

virtual void clear()

A synonym for empty. See FPalymarphic Behavior” on page 61.

empty

void empty()
Empties the queue, that is, deletes all items on the queue.
Conditions

ISCINVREQ, NOTAUTH, QIDERR, SYSIDERR, DISABLED, INVREQ

© Copyright IBM Corp. 1989, 1999 129

IccDataQueue

get

virtual const lccBuf& get()

A synonym for readltem. See EPalymarphic Behavior” an page 61,
put

virtual void put(const lccBuf& buffer)

buffer

A reference to an IccBuf object that contains data to be put into the queue.

A synonym for writeltem. See [‘Palymarphic Behavior” on page 61l

readltem

const lccBuf& readltem()

Returns a reference to an IccBuf object that contains one item read from the data
queue.

Conditions

IOERR, ISCINVREQ, LENGERR, NOTAUTH, NOTOPEN, QBUSY, QIDERR,
QZERO, SYSIDERR, DISABLED, INVREQ

writeltem (1)

void writeltem(const IccBuf& item)

item
A reference to an IccBuf object that contains data to be written to the queue.

writeltem (2)

void writeltem(const char* text)

text
Text that is to be written to the queue.

Writes an item of data to the queue.
Conditions

IOERR, ISCINVREQ, LENGERR, NOSPACE, NOTAUTH, NOTOPEN, QIDERR,
SYSIDERR, DISABLED, INVREQ

Inherited public methods

Method Class
actionOnCondition IccResource

130 cICS TS for 0S/390: C++ OO Class Libraries

IccDataQueue

Method Class
actionOnConditionAsChar IccResource
actionsOnConditionsText IccResource
className IccBase
classType IccBase
condition IccResource
conditionText IccResource
customClassNum IccBase
handleEvent IccResource
id IccResource
iSEDFON IccResource
isRouteOptionOn IccResource
name IccResource
operator delete IccBase
operator new IccBase
routeOption IccResource
setActionOnAnyCondition IccResource
setActionOnCondition IccResource
setActionsOnConditions IccResource
setEDF IccResource
setRouteOption IccResource

Inherited protected methods

Method Class
setClassName IccBase
setCustomClassNum IccBase

Chapter 22. IccDataQueue class 131

IccDataQueue

132 cICS TS for 0S/390: C++ OO Class Libraries

Chapter 23. IccDataQueueld class
IccBase
IccResourceld
IccDataQueueld

IccDataQueueld is used to identify a CICS Transient Data Queue name.

Header file: ICCRIDEH

IccDataQueueld constructors

Constructor (1)

IccDataQueueld(const char* queueName)

queueName
The 4-character name of the queue

Constructor (2)

IccDataQueueld(const IccDataQueueld& id)

id A reference to an IccDataQueueld object.

Public methods

operator= (1)
IccDataQueueld& operator=(const char* queueName)

queueName
The 4-character name of the queue

operator= (2)
IccDataQueueld& operator=(const lccDataQueueld& id)
id A reference to an IccDataQueueld object.

Assigns new value.

Inherited public methods

Method Class
classType IccBase
className IccBase
customClassNum IccBase

name IccResourceld
nameLength IccResourceld

© Copyright IBM Corp. 1989, 1999 133

IccDataQueueld

Method Class
operator delete IccBase
operator new IccBase
Inherited protected methods

Method Class
operator= IccResourceld
setClassName IccBase
setCustomClassNum IccBase

134 cICS TS for 0S/390: C++ OO Class Libraries

Chapter 24. IccEvent class

IccBase
IccEvent

The IccEvent class contains information on a particular CICS call, which we call a
CICS event.

Header file: ICCEVTEH

Sample: ICC$RES1

IccEvent constructor

Constructor

IccEvent (const IccResource* object,
const char* methodName)

object

A pointer to the IccResource object that is responsible for this event.
methodName

The name of the method that caused the event to be created.

Public methods

className

const char* className() const
Returns the name of the class responsible for this event.

classType

IccBase::ClassType classType() const

Returns an enumeration, described under classType on page B in IccBase class,
that indicates the type of class that is responsible for this event.

condition

IccCondition::Codes condition(lccResource::ConditionType type =
IccResource::majorCode) const

type
An enumeration that indicates whether a major code or minor code is being

requested. Possible values are 'majorCode’ or 'minorCode'. 'majorCode' is the
default value.

© Copyright IBM Corp. 1989, 1999 135

IccEvent

Returns an enumerated type that indicates the condition returned from this CICS
event. The possible values are described under the Codes type in the IccCondition
structure.

conditionText

const char* conditionText() const

Returns the text of the CICS condition code, such as "NORMAL" or "LENGERR".

methodName

const char* methodName() const

Returns the name of the method responsible for this event.

summary

const char* summary()

Returns a summary of the CICS event in the form:

(CICS event summary: IccDataQueue::readItem condition=23 (QZERO) minor=0)

Inherited public methods

Method Class

className IccBase
classType IccBase
customClassNum IccBase
operator delete IccBase
operator new IccBase

Inherited protected methods

Method Class
setClassName IccBase
setCustomClassNum IccBase

136 cICS TS for 0S/390: C++ OO Class Libraries

Chapter 25. IccException class

IccBase
IccException

IccException class contains information about CICS Foundation Class exceptions. It
is used to create objects that are 'thrown’ to application programs. They are
generally used for error conditions such as invalid method calls, but the
application programmer can also request an exception is thrown when CICS raises
a particular condition.

Header file: ICCEXCEH

Samples: ICC$EXC1, ICC$EXC2, ICCSEXC3

IccException constructor

Constructor

IccException (Type exceptionType,
IccBase::ClassType classType,
const char* className,
const char* methodName,
IccMessage* message,

IccBase* object = 0,
unsigned short exceptionNum = 0)

exceptionType
An enumeration, defined in this class, that indicates the type of the exception

classType
An enumeration, defined in this class, that indicates from which type of class
the exception was thrown

className
The name of the class from which the exception was thrown

methodName
The name of the method from which the exception was thrown

message
A pointer to the IccMessage object that contains information about why the
exception was created.

object
A pointer to the object that threw the exception

exceptionNum
The unique exception number.

Note: When the IccException object is created it takes ownership of the
IccMessage given on the constructor. When the IccException is deleted, the
IccMessage object is deleted automatically by the IccException destructor.
Therefore, do not delete the IccMessage object before deleting the
IccException object.

© Copyright IBM Corp. 1989, 1999 137

IccException

Public methods

className

const char* className() const

Returns the name of the class responsible for throwing this exception.

classType

IccBase::ClassType classType() const

Returns an enumeration, described under ClassType in IccBase class, that indicates
the type of class which threw this exception.

message

IccMessage* message() const

Returns a pointer to an lccMessage object that contains information on any
message associated with this exception.

methodName

const char* methodName() const

Returns the name of the method responsible for throwing this exception.

number

unsigned short number() const
Returns the unique exception number.

This is a useful diagnostic for IBM service. The number uniquely identifies from
where in the source code the exception was thrown.

summary

const char* summary()

Returns a string containing a summary of the exception. This combines the
className, methodName, number, Type, and IccMessage::summary methods into
the following form:

138 cICS TS for 0S/390: C++ OO Class Libraries

IccException

[CICS exception summary: 094 IccTempStore::readNextItem type=CICSCondition]
type

Type type() const

Returns an enumeration, defined in this class, that indicates the type of exception.
typeText

const char* typeText() const

Returns a string representation of the exception type, for example,

"objectCreationError”, "invalidArgument".

Inherited public methods

Method Class

className IccBase
classType IccBase
customClassNum IccBase
operator delete IccBase
operator new IccBase

Inherited protected methods

Method Class
setClassName lccBase
setCustomClassNum lccBase

Enumerations

Type

objectCreationError
An attempt to create an object was invalid. This happens, for example, if
an attempt is made to create a second instance of a singleton class, such as
IccTask.

invalidArgument
A method was called with an invalid argument. This happens, for example,
if an IccBuf object with too much data is passed to the writeltem method
of the lccTempStore class by the application program. An attempt to create
an IccFileld object with a 9-character filename also generates an exception
of this type.

invalidMethodCall
A method call cannot proceed. A typical reason is that the object cannot
honor the call in its current state. For example, a readRecord call on an
IccFile object is only honored if an IccRecordIndex object, to specify which
record is to be read, has already been associated with the file.

Chapter 25. IccException class 139

IccException

CICSCondition
A CICS condition, listed in the lccCondition structure, has occurred in the
object and the object was configured to throw an exception.

platformError
An operation is invalid because of limitations of this particular platform.
For example, an attempt to create an IccJournal object would fail under
CICS for OS/2 bhecause there are no CICS journal services on this server.
A platformError exception can occur at 3 levels:
1. An object is not supported on this platform.
2. An object is supported on this platform, but a particular method is not.

3. A method is supported on this platform, but a particular positional
parameter is not.

See L'Platform differences” on page 54 for more details.

familyConformanceError
Family subset enforcement is on for this program and an operation that is
not valid on all supported platforms has been attempted.

internalError

The CICS Foundation Classes have detected an internal error. Please call
your support organization.

140 cICS TS for 0S/390: C++ OO Class Libraries

Chapter 26. IccFile class
IccBase
IccResource
IccFile
IccFile class enables the application program to access CICS files.

Header file: ICCFILEH

Sample: ICC$FIL

IccFile constructors

Constructor (1)

IccFile (const lccFileld& id,
IccRecordIndex* index = 0)

id A reference to the IccFileld object that identifies which file is being operated
on

index
An optional pointer to the IccRecordIndex object that identifies which record
in the file is being operated on.

Constructor (2)

IccFile (const char* fileName,
IccRecordIndex* index = 0)

fileName
The 8-character name of the file

index
An optional pointer to the IccRecordIndex object that identifies which record
in the file is being operated on.

To access files using an IccFile object, it must have an IccRecordindex object

associated with it. If this association is hot made when the object is created, use the
registerRecordIndex method.

© Copyright IBM Corp. 1989, 1999 141

IccFile

Public methods

The opt parameter
Many methods have the same parameter, opt, which is described under the
abendCode method int 2

access
unsigned long access(lcc::GetOpt opt =lcc::object)
opt
An enumeration, defined in Icc structure, that indicates whether you can use a

value previously retrieved from CICS (object), or whether the object should
retrieve a fresh value from CICS.

Returns a composite number indicating the access properties of the file. See also
isReadable, isBrowsable, isAddable, isDeletable, and isUpdatable methods.

accessMethod

IccValue::CVDA accessMethod(lcc::GetOpt opt = lcc::object)

opt
See access method.

Returns an enumeration, defined in lccValue, that represents the access method for
this file. Possible values are:

VSAM
BDAM
SFS

Conditions

END, FILENOTFOUND, ILLOGIC, NOTAUTH

begininsert(VSAM only)

void beginlnsert()

Signals the start of a mass insertion of data into the file.

deleteLockedRecord

void deleteLockedRecord(unsigned long updateToken = 0)

updateToken
A token that indicates which previously read record is to be deleted. This is the
token that is returned from readRecord method when in update mode.

Deletes a record that has been previously locked by readRecord method in update
mode. (See also readRecord method.)

142 cICS TS for 0S/390: C++ OO Class Libraries

IccFile

Conditions

DISABLED, DUPKEY, FILENOTFOUND, ILLOGIC, INVREQ, IOERR, ISCINVREQ,
NOTAUTH, NOTFIND, NOTOPEN, SYSIDERR, LOADING

deleteRecord

unsigned short deleteRecord()

Deletes one or more records, as specified by the associated IccRecordIndex object,
and returns the number of deleted records.

Conditions

DISABLED, DUPKEY, FILENOTFOUND, ILLOGIC, INVREQ, IOERR, ISCINVREQ,
NOTAUTH, NOTFIND, NOTOPEN, SYSIDERR, LOADING

enableStatus
IccValue::CVDA enableStatus(lcc::GetOpt opt = Icc::object)

opt
See access method.

Returns an enumeration, defined in lccValue, that indicates whether the file is
enabled to be used by programs. Possible values are:

DISABLED
DISABLING
ENABLED
UNENABLED

Conditions

END, FILENOTFOUND, ILLOGIC, NOTAUTH

endinsert(VSAM only)

void endlnsert()

Marks the end of a mass insertion operation. See begininsert.

isAddable

Icc::Bool isAddable(lcc::GetOpt opt = lcc::object)

opt
See access method.

Indicates whether more records can be added to the file.
Conditions

END, FILENOTFOUND, ILLOGIC, NOTAUTH

Chapter 26. IccFile class 143

IccFile

isBrowsable

Icc::Bool isBrowsable(lcc::GetOpt opt = lcc::object)

opt
See access method.

Indicates whether the file can be browsed.
Conditions

END, FILENOTFOUND, ILLOGIC, NOTAUTH

isDeletable

Icc::Bool isDeletable(lcc::GetOpt opt = lcc::object)

opt
See access method.

Indicates whether the records in the file can be deleted.
Conditions

END, FILENOTFOUND, ILLOGIC, NOTAUTH

ISEmptyOnOpen

Icc::Bool isEmptyOnOpen(lcc::GetOpt opt = lcc::object)

opt
See access method.

Returns a Boolean that indicates whether the EMPTYREQ option is specified.
EMPTYREQ causes the object associated with this file to be set to empty when
opened, if it is a VSAM data set defined as reusable.

Conditions

END, FILENOTFOUND, ILLOGIC, NOTAUTH

isReadable

Icc::Bool isReadable(lcc::GetOpt opt = Icc::object)

opt
See access method.

Indicates whether the file records can be read.
Conditions

END, FILENOTFOUND, ILLOGIC, NOTAUTH

144 cics TS for 0S/390; C++ OO Class Libraries

IccFile
iIsRecoverable
Icc::Bool isRecoverable(lcc::GetOpt opt = Icc::object)

opt
See access method.

Conditions: END, FILENOTFOUND, ILLOGIC, NOTAUTH

iIsUpdatable
Icc::Bool isUpdatable(lcc::GetOpt opt = Icc::object)

opt
See access method.

Indicates whether the file can be updated.
Conditions

END, FILENOTFOUND, ILLOGIC, NOTAUTH
keyLength

unsigned long keylLength(lcc::GetOpt opt = lcc::object)

opt
See access method.

Returns the length of the search key.
Conditions

END, FILENOTFOUND, ILLOGIC, NOTAUTH
keyPosition

long keyPosition(lcc::GetOpt opt = Icc::object)

opt
See access method.

Returns the position of the key field in each record relative to the beginning of the
record. If there is no key, zero is returned.

Conditions

END, FILENOTFOUND, ILLOGIC, NOTAUTH

opensStatus

lIccValue::CVDA openStatus(lcc::GetOpt opt = Icc::object)

opt
See access method.

Chapter 26. IccFile class 145

IccFile

Returns a CVDA that indicates the open status of the file. Possible values are:

CLOSED
The file is closed.

CLOSING
The file is in the process of being closed. Closing a file may require dynamic
deallocation of data sets and deletion of shared resources, so the process may
last a significant length of time.

CLOSEREQUEST
The file is open and one or more application tasks are using it. A request has
been received to close it.

OPEN
The file is open.

OPENING
The file is in the process of being opened.

Conditions: END, FILENOTFOUND, ILLOGIC, NOTAUTH

readRecord

const lccBuf& readRecord (ReadMode mode = normal,
unsigned long* updateToken = 0)

mode
An enumeration, defined in this class, that indicates in which mode the record
is to be read.

updateToken
A pointer to an unsigned long token that will be updated by the method when
mode is update and you wish to make multiple read updates. The token
uniquely identifies the update request and is passed to the
deleteLockedRecord, rewriteRecord, or unlockRecord methods

Reads a record and returns a reference to an IccBuf object that contains the data
from the record.

Conditions

DISABLED, DUPKEY, FILENOTFOUND, ILLOGIC, INVREQ, IOERR, ISCINVREQ,
LENGERR, NOTAUTH, NOTFND, NOTOPEN, SYSIDERR, LOADING

recordFormat

IccValue::CVDA recordFormat(lcc::GetOpt opt = lcc::object)

opt
See access method.
Returns a CVDA that indicates the format of the data. Possible values are:

FIXED
The records are of fixed length.

UNDEFINED (BDAM data sets only)
The format of records on the file is undefined.

146 cICS TS for 0S/390: C++ OO Class Libraries

IccFile

VARIABLE
The records are of variable length. If the file is associated with a data table, the
record format is always variable length, even if the source data set contains
fixed-length records.

Conditions: END, FILENOTFOUND, ILLOGIC, NOTAUTH

recordindex

IccRecordIndex* recordIndex() const

Returns a pointer to an IccRecordIndex object that indicates which records are to
be accessed when using methods such as readRecord, writeRecord, and
deleteRecord.

recordLength

unsigned long recordLength(lcc::GetOpt opt = Icc::object)

opt
See access method.

Returns the length of the current record.
Conditions

END, FILENOTFOUND, ILLOGIC, NOTAUTH

registerRecordindex

void registerRecordIndex(lccRecordIndex* index)

index
A pointer to an lccKey, IccRBA, or IccRRN object that will be used by
methods such as readRecord, writeRecord, etc..

rewriteRecord

void rewriteRecord (const IccBuf& buffer,
unsigned long updateToken = 0)

buffer
A reference to the IccBuf object that holds the new record data to be written to
the file.

updateToken
The token that identifies which previously read record is to be rewritten. See
readRecord.

Updates a record with the contents of buffer.
Conditions

DISABLED, FILENOTFOUND, ILLOGIC, INVREQ, IOERR, ISCINVREQ),
NOTAUTH, NOTFND, NOTOPEN, SYSIDERR, LOADING

Chapter 26. IccFile class 147

IccFile
setAccess

void setAccess(unsigned long access)

access
A positive integer value created by ORing (or adding) one or more of the
values of the Access enumeration, defined in this class.

Sets the permitted access to the file. For example:

file.setAccess(IccFile::readable + IccFile::notUpdatable);

Conditions

FILENOTFOUND, INVREQ, IOERR, NOTAUTH

setEmptyOnOpen

void setEmptyOnOpen(icc::Bool trueFalse)
Specifies whether or not to make the file empty when it is next opened.
Conditions

FILENOTFOUND, INVREQ, IOERR, NOTAUTH

setStatus

void setStatus(Status status)

status
An enumeration, defined in this class, that indicates the required status of the
file after this method is called.

Sets the status of the file.
Conditions

FILENOTFOUND, INVREQ, IOERR, NOTAUTH
type
IccValue::CVDA type(lcc::GetOpt opt = lcc::object)

opt
See access method.

Returns a CVDA that identifies the type of data set that corresponds to this file.
Possible values are:

ESDS The data set is an entry-sequenced data set.
KEYED The data set is addressed by physical keys.
KSDS The data set is a key-sequenced data-set.

NOTKEYED The data set is not addressed by physical keys.

148 cICS TS for 0S/390: C++ OO Class Libraries

IccFile
RRDS The data set is a relative record data set.

VRRDS The data set is a variable relative record data set.

Conditions: END, FILENOTFOUND, ILLOGIC, NOTAUTH

unlockRecord

void unlockRecord(unsigned long updateToken = 0)

updateToken
A token that indicates which previous readRecord update request is to be
unlocked.

Unlock a record, previously locked by reading it in update mode. See readRecord.
Conditions

DISABLED, FILENOTFOUND, ILLOGIC, IOERR, ISCINVREQ, NOTAUTH,
NOTOPEN, SYSIDERR, INVREQ

writeRecord

void writeRecord(const lccBuf& buffer)

buffer
A reference to the IccBuf object that holds the data that is to be written into
the record.

Write either a single record or a sequence of records, if used with the beginlinsert
and endlInsert methods.

Conditions

DISABLED, DUPREC, FILENOTFOUND, ILLOGIC, INVREEQ, IOERR,
ISCINVREQ, LENGERR, NOSPACE, NOTAUTH, NOTOPEN, SYSIDERR,
LOADING, SUPPRESSED

Inherited public methods

Method Class
actionOnCondition IccResource
actionOnConditionAsChar IccResource
actionsOnConditionsText IccResource
className IccBase
classType IccBase
condition IccResource
conditionText IccResource
customClassNum IccBase
handleEvent IccResource
id IccResource
iISEDFON IccResource
isRouteOptionOn IccResource
name IccResource
operator delete IccBase
operator new IccBase

Chapter 26. IccFile class 149

IccFile

Method Class
routeOption IccResource
setActionOnAnyCondition IccResource
setActionOnCondition IccResource
setActionsOnConditions IccResource
setEDF IccResource
setRouteOption IccResource
Inherited protected methods

Method Class
setClassName IccBase
setCustomClassNum IccBase

Enumerations

Access

readable
notReadable
browsable
notBrowsable
addable
notAddable
updatable
notUpdatable

deletable
notDeletable

full Access

NnoAccess

ReadMode

File records can be read by CICS tasks.

File records cannot be read by CICS tasks.

File records can be browsed by CICS tasks.

File records cannot be browsed by CICS tasks.
Records can be added to the file by CICS tasks.
Records cannot be added to the file by CICS tasks.
Records in the file can be updated by CICS tasks.

Records in the file cannot be updated by CICS
tasks.

Records in the file can be deleted by CICS tasks.
Records in the file cannot be deleted by CICS tasks.

Equivalent to readable AND browsable AND
addable AND updatable AND deletable.

Equivalent to notReadable AND notBrowsable
AND notAddable AND notUpdatable AND
notDeletable.

The mode in which a file is read.

normal

update

150 cIcs TS for 0S/390: C++ OO Class Libraries

No update is to be performed (that is, read-only
mode)

The record is to be updated. The record is locked
by CICS until:

* it is rewritten using the rewriteRecord method
or

* it is deleted using the deleteLockedRecord
method or

it is unlocked using the unlockRecord method or

SearchCriterion

Status

equalToKey
gteqToKey

open

closed

enabled
disabled

IccFile

* the task commits or rolls back its resource
updates or

* the task is abended.

The search only finds an exact match.

The search finds either an exact match or the next
record in search order.

File is open, ready for read/write requests by CICS
tasks.

File is closed, and is therefore not currently being
used by CICS tasks.

File is enabled for access by CICS tasks.
File is disabled from access by CICS tasks.

Chapter 26. IccFile class 151

IccFile

152 cICS TS for 0S/390: C++ OO Class Libraries

Chapter 27. IccFileld class

IccBase
IccResourceld
IccFileld

IccFileld is used to identify a file name in the CICS system. On MVS/ESA this is

an entry in the FCT (file control table).

Header file: ICCRIDEH

IccFileld constructors

Constructor (1)
IccFileld(const char* fileName)

fileName
The name of the file.

Constructor (2)
IccFileld(const IccFileld& id)

id A reference to an IccFileld object.

Public methods

operator= (1)
IccFileld& operator=(const char* fileName)

fileName
The 8-byte name of the file.

operator= (2)
IccFileld& operator=(const lIccFileld& id)
id A reference to an IccFileld object.

Assigns new value.

Inherited public methods

Method Class
classType IccBase
className IccBase
customClassNum IccBase

name IccResourceld

© Copyright IBM Corp. 1989, 1999

153

IccFileld

Method Class
nameLength IccResourceld
operator delete IccBase
operator new IccBase
Inherited protected methods

Method Class
operator= IccResourceld
setClassName IccBase
setCustomClassNum IccBase

154 cIcs TS for 0S/390: C++ OO Class Libraries

Chapter 28. IccFilelterator class

IccBase
IccResource
IccFilelterator

This class is used to create IccFilelterator objects that can be used to browse
through the records of a CICS file, represented by an IccFile object.

Header file: ICCFLIEH

Sample: ICC$FIL

IccFilelterator constructor

Constructor

IccFilelterator (IccFile* file,
IccRecordIndex* index,
IccFile::SearchCriterion search = IccFile::gteqToKey)

file
A pointer to the IccFile object that is to be browsed

index

A pointer to the IccRecordIndex object that is being used to select a record in
the file

search
An enumeration, defined in IccFile, that indicates the criterion being used to
find a search match. The default is gteqToKey.

The IccFile and IccRecordIndex object must exist before the IccFilelterator is
created.

Conditions

DISABLED, FILENOTFOUND, ILLOGIC, INVREQ, IOERR, ISCINVREQ,
NOTAUTH, NOTFND, NOTOPEN, SYSIDERR, LOADING

Public methods

readNextRecord

const lccBuf& readNextRecord (IccFile:ReadMode mode = IccFile::normal,
unsigned long* updateToken = 0)

mode
An enumeration, defined in IccFile class, that indicates the type of read request

© Copyright IBM Corp. 1989, 1999 155

IccFilelterator

updateToken
A returned token that is used to identify this unique update request on a
subsequent rewriteRecord, deleteLockedRecord, or unlockRecord method on
the file object.

Read the record that follows the current record.
Conditions

DUPKEY, ENDFILE, FILENOTFOUND, ILLOGIC, INVREQ, IOERR, ISCINVREQ,
LENGERR, NOTAUTH, NOTFIND, SYSIDERR

readPreviousRecord

reset

const lccBuf& readPreviousRecord (lccFile:ReadMode mode = lccFile::normal,
unsigned long* updateToken = 0)

mode
An enumeration, defined in lIccFile class, that indicates the type of read
request.

updateToken
See readNextRecord.

Read the record that precedes the current record.
Conditions

DUPKEY, ENDFILE, FILENOTFOUND, ILLOGIC, INVREQ, IOERR, ISCINVREQ),
LENGERR, NOTAUTH, NOTFIND, SYSIDERR

void reset (IccRecordIndex* index,
IccFile::SearchCriterion search = IccFile::gteqToKey)

index
A pointer to the IccRecordIndex object that is being used to select a record in
the file.

search
An enumeration, defined in IccFile, that indicates the criterion being used to
find a search match. The default is gteqToKey.

Resets the IccFilelterator object to point to the record identified by the
IccRecordIndex object and the specified search criterion.

Conditions

FILENOTFOUND, ILLOGIC, INVREQ, IOERR, ISCINVREQ, NOTAUTH,
NOTFND, SYSIDERR

Inherited public methods

Method Class
actionOnCondition IccResource
actionOnConditionAsChar IccResource

156 cICS TS for 0S/390: C++ OO Class Libraries

IccFilelterator

Method Class
actionsOnConditionsText IccResource
className IccBase
classType IccBase
condition IccResource
conditionText IccResource
customClassNum IccBase
handleEvent IccResource
id IccResource
iISEDFON IccResource
isRouteOptionOn IccResource
name IccResource
operator delete IccBase
operator new IccBase
routeOption IccResource
setActionOnAnyCondition IccResource
setActionOnCondition IccResource
setActionsOnConditions IccResource
setEDF IccResource
setRouteOption IccResource

Inherited protected methods

Method Class
setClassName IccBase
setCustomClassNum IccBase

Chapter 28. IccFilelterator class 157

IccFilelterator

158 cICS TS for 0S/390: C++ OO Class Libraries

Chapter 29. lccGroupld class
IccBase
IccResourceld
lccGroupld
IccGroupld class is used to identify a CICS group.

Header file: ICCRIDEH

IccGroupld constructors

Constructor (1)
lccGroupld(const char* groupName)

groupName
The 8-character name of the group.

Constructor (2)

lccGroupld(const IccGroupld& id)

id A reference to an lccGroupld object.

The copy constructor.

Public methods

operator= (1)
lccGroupld& operator=(const char* groupName)

groupName
The 8-character name of the group.

operator= (2)
lccGroupld& operator=(const lccGroupld& id)
id A reference to an lccGroupld object.

Assigns new value.

Inherited public methods

Method Class

classType IccBase
className IccBase
customClassNum IccBase

© Copyright IBM Corp. 1989, 1999

159

lccGroupld

Method

name
nameLength
operator delete

Class
IccResourceld
IccResourceld
IccBase

operator new IccBase
Inherited protected methods

Method Class

operator= IccResourceld

setClassName
setCustomClassNum

160 cICS TS for 0S/390: C++ OO Class Libraries

IccBase
IccBase

Chapter 30. IccJournal class
IccBase
IccResource
IccJournal
IccJournal class represents a user or system CICS journal.

Header file: ICCJRNEH

Sample: ICC$JRN

IccJournal constructors

Constructor (1)

IccJournal (const Icclournalld& id,
unsigned long options = 0)

id A reference to an IccJournalld object that identifies which journal is being
used.

options
An integer, constructed from the Options enumeration defined in this class,

that affects the behavior of writeRecord calls on the IccJournal object. The
values may be combined by addition or bitwise ORing, for example:

IccJournal::startI0 | IccJournal::synchronous

The default is to use the system default.

Constructor (2)

IccJournal (unsigned short journalNum,
unsigned long options = 0)

journalNum
The journal number (in the range 1-99)

options
See above.

Public methods

clearPrefix

void clearPrefix()
Clears the current prefix as set by registerPrefix or setPrefix.

If the current prefix was set using registerPrefix, then the IccJournal class only
removes its own reference to the prefix. The buffer itself is left unchanged.

© Copyright IBM Corp. 1989, 1999 161

IccJournal

If the current prefix was set by setPrefix, then the IccJournal’s copy of the buffer is
deleted.

journalTypeld

const IcclournalTypeld& journalTypeld() const

Returns a reference to an IccJournalTypeld object that contains a 2-byte field used
to identify the origin of journal records.

put

virtual void put(const lccBuf& buffer)

buffer
A reference to an IccBuf object that holds data to be put into the journal.

A synonym for writeRecord—puts data into the journal. See m
Behavior” on page 61 for information on polymorphism.

registerPrefix

void registerPrefix(const IccBuf* prefix)

Stores pointer to prefix object for use when the writeRecord method is called on
this IccJournal object.

setJournalTypeld (1)
void setJournalTypeld(const lcclournalTypeld& id)
setJournalTypeld (2)

void setJournalTypeld(const char* jtypeid)

Sets the journal type—a 2 byte identifier—included in the journal record created
when using the writeRecord method.

setPrefix (1)
void setPrefix(const lccBuf& prefix)
setPrefix (2)

void setPrefix(const char* prefix)

Stores the current contents of prefix for inclusion in the journal record created when
the writeRecord method is called.

wait

162 cICS TS for 0S/390: C++ OO Class Libraries

IccJournal
void wait (unsigned long requestNum=0,
unsigned long option = 0)
requestNum
The write request. Zero indicates the last write on this journal.

option
An integer that affects the behaviour of writeRecord calls on the IccJournal
object. Values other than 0 should be made from the Options enumeration,
defined in this class. The values may be combined by addition or bitwise
ORing, for example Iccdournal::startIO + Iccdournal::synchronous. The
default is to use the system default.

Waits until a previous journal write has completed.

Condition: I0ERR, JIDERR, NOTOPEN

writeRecord (1)

unsigned long writeRecord (const IccBuf& record,
unsigned long option = 0)

record
A reference to an IccBuf object that holds the record

option
See above.

writeRecord (2)

unsigned long writeRecord (const char* record,
unsigned long option = 0)

record
The name of the record

option
See above.

Writes the data in the record to the journal.

The returned number represents the particular write request and can be passed to
the wait method in this class.

Conditions

IOERR, JIDERR, LENGERR, NOJBUFSP, NOTAUTH, NOTOPEN

Inherited public methods

Method Class
actionOnCondition IccResource
actionOnConditionAsChar IccResource
actionsOnConditionsText IccResource
classType IccBase
className IccBase
condition IccResource

Chapter 30. Icclournal class 163

IccJournal

Method Class
conditionText IccResource
customClassNum IccBase
handleEvent IccResource
id IccResource
iSEDFON IccResource
name IccResource
operator delete IccBase
operator new IccBase
setActionOnAnyCondition IccResource
setActionOnCondition IccResource
setActionsOnConditions IccResource
setEDF IccResource
Inherited protected methods

Method Class
setClassName IccBase
setCustomClassNum IccBase

Enumerations

Options

The behaviour of writeRecord calls on the IccJournal object. The values can be

combined in an integer by addition or bitwise ORing.

startlO

Specifies that the output of the journal record is to be initiated

immediately. If 'synchronous' is specified for a journal that is not frequently
used, you should also specify 'startlO' to prevent the requesting task
waiting for the journal buffer to be filled. If the journal is used frequently,
startlO is unnecessary.

noSuspend

Specifies that the NOJBUFSP condition does not suspend an application

program.

synchronous

Specifies that synchronous journal output is required. The requesting task

waits until the record has been written.

164 cICS TS for 0S/390: C++ OO Class Libraries

Chapter 31. IccJournalld class

IccBase
IccResourceld
IccJournalld

IccJournalld is used to identify a journal number in the CICS sytem. On MVS/ESA
this is an entry in the JCT (Journal Control Table).

Header file: ICCRIDEH

IccJournalld constructors

Constructor (1)

IccJournalld(unsigned short journalNum)

journalNum
The number of the journal, in the range 1 to 99

Constructor (2)
IccJournalld(const Icclournalld& id)
id A reference to an IccJournalld object.

The copy constructor.

Public methods

number

unsigned short number() const

Returns the journal number, in the range 1 to 99.
operator= (1)

IccJournalld& operator=(unsigned short journalNum)

journalNum
The number of the journal, in the range 1 to 99

operator= (2)
IccJournalld& operator=(const Icclournalld& id)
id A reference to an IccJournalld object.

Assigns new value.

© Copyright IBM Corp. 1989, 1999 165

IccJournalld

Inherited public methods

Method
classType
className
customClassNum
name
nameLength

Class

IccBase
IccBase
IccBase
IccResourceld
IccResourceld

operator delete IccBase

operator new IccBase
Inherited protected methods

Method Class

operator= IccResourceld

166 cICS TS for 0S/390: C++ OO Class Libraries

setClassName
setCustomClassNum

IccBase
IccBase

Chapter 32. IccJournalTypeld class

IccBase
IccResourceld
IccJournal Typeld

An IccJournalTypeld class object is used to help identify the origin of a journal
record—it contains a 2-byte field that is included in the journal record.

Header file: ICCRIDEH

IccJournalTypeld constructors

Constructor (1)

IccJournalTypeld(const char* journalTypeName)

journalTypeName
A 2-byte identifier used in journal records.

Constructor (2)

IccJournal Typeld(const Icclournalld& id)

id A reference to an IccJournalTypeld object.

Public methods

operator= (1)

void operator=(const IccJournalTypeld& id)

id A reference to an IccJournalTypeld object.
operator= (2)

void operator=(const char* journalTypeName)

journalTypeName
A 2-byte identifier used in journal records.

Sets the 2-byte field that is included in the journal record.

Inherited public methods

Method Class
classType IccBase
className IccBase
customClassNum IccBase

name IccResourceld

© Copyright IBM Corp. 1989, 1999 167

IccJournal Typeld

Method Class
nameLength IccResourceld
operator delete IccBase
operator new IccBase
Inherited protected methods

Method Class
operator= IccResourceld
setClassName IccBase
setCustomClassNum IccBase

168 cICS TS for 0S/390: C++ OO Class Libraries

Chapter 33. IccKey class
IccBase
IccRecordIndex
lccKey
IccKey class is used to hold a search key for an indexed (KSDS) file.

Header file: ICCRECEH

Sample: ICC$FIL

IccKey constructors

Constructor (1)

IccKey (const char* initValue,
Kind kind = complete)

Constructor (2)

lccKey (unsigned short completeLength,
Kind kind= complete)

Constructor (3)

lccKey(const lccKey& key)

Public methods

assign

void assign (unsigned short length,
const void* dataArea)

length
The length of the data area

dataArea
A pointer to the start of the data area that holds the search key.

Copies the search key into the IccKey object.

completeLength

unsigned short completeLength() const

Returns the length of the key when it is complete.

© Copyright IBM Corp. 1989, 1999

169

IccKey
kind

Kind kind() const

Returns an enumeration, defined in this class, that indicates whether the key is
generic or complete.

operator= (1)

lccKey& operator=(const IccKey& key)
operator= (2)

lccKey& operator=(const IccBuf& buffer)
operator= (3)

lccKey& operator=(const char* value)

Assigns new value to key.
operator== (1)

Icc::Bool operator==(const lccKey& key) const
operator== (2)

Icc::Bool operator==(const lccBuf& text) const
operator== (3)

Icc::Bool operator==(const char* text) const

Tests equality.
operator!= (1)

Icc::Bool operator !=(const lccKey& key) const
operator!= (2)

Icc::Bool operator!=(const IccBuf& text) const
operator!= (3)

Icc::Bool operator!=(const char* text) const

Tests inequality.

setKind

170 cICS TS for 0S/390: C++ OO Class Libraries

lccKey

void setKind(Kind kind)

kind
An enumeration, defined in this class, that indicates whether the key is generic
or complete.

Changes the type of key from generic to complete or vice versa.

value

const char* value()

Returns the start of the data area containing the search key.

Inherited public methods

Method Class
className IccBase
classType IccBase
customClassNum IccBase

length IccRecordIndex
operator delete IccBase
operator new IccBase

type IccRecordIndex
value IccRecordIndex

Inherited protected methods

Method Class
setClassName IccBase
setCustomClassNum IccBase
Enumerations
Kind
complete

Specifies that the supplied key is not generic.

generic
Specifies that the search key is generic. A search is satisfied when a record
is found with a key whose prefix matches the supplied key.

Chapter 33. lccKey class 171

IccKey

172 cICS TS for 0S/390: C++ OO Class Libraries

Chapter 34. IccLockld class
IccBase
IccResourceld
lccLockld

IccLockld class is used to identify a lock request.

Header file: ICCRIDEH

IccLockld constructors

Constructor (1)
IccLockld(const char* name)

name
The 8-character name of the lock request.

Constructor (2)

IccLockld(const IccLockld& id)

id A reference to an IccLockld object.

The copy constructor.

Public methods

operator= (1)
lIccLockld& operator=(const char* name)

name
The 8-character name of the lock request.

operator= (2)
IccLockld& operator=(const IccLockld& id)
id A reference to an IccLockld object.

Assigns new value.

Inherited public methods

Method Class

classType IccBase
className IccBase
customClassNum IccBase

© Copyright IBM Corp. 1989, 1999

173

lccLockld

Method

name
nameLength
operator delete

Class
IccResourceld
IccResourceld
IccBase

operator new IccBase
Inherited protected methods

Method Class

operator= IccResourceld

setClassName
setCustomClassNum

174 ciCS TS for 0S/390; C++ OO Class Libraries

IccBase
IccBase

Chapter 35. IccMessage class

IccBase
IccMessage

IccMessage can be used to hold a message description. It is used primarily by the
IccException class to describe why the IccException object was created.

Header file: ICCMSGEH

IccMessage constructor

Constructor

IccMessage (unsigned short number,
const char* text,
const char* className = 0,
const char* methodName = 0)

number
The number associated with the message

text
The text associated with the message

className
The optional name of the class associated with the message

methodName
The optional name of the method associated with the message.

Public methods

className

const char* className() const

Returns the name of the class with which the message is associated, if any. If there
is no name to return, a null pointer is returned.

methodName

const char* methodName() const

Returns the name of the method with which the message is associated, if any. If
there is no name to return, a null pointer is returned.

© Copyright IBM Corp. 1989, 1999 175

IccMessage

number

unsigned short number() const

Returns the number of the message.
summary

Returns a summary of the message in the form:
const char* summary()

IccMessage: 008 IccTempStore::readNextItem <CICS returned the
'QIDERR'
condition.>

text

const char* text() const

Returns the text of the message.

Inherited public methods

Method Class

className IccBase
classType IccBase
customClassNum IccBase
operator delete IccBase
operator new IccBase

Inherited protected methods

Method Class
setClassName IccBase
setCustomClassNum IccBase

176 cICS TS for 0S/390: C++ OO Class Libraries

Chapter 36. IccPartnerld class

IccBase
IccResourceld
IccPartnerld

IccPartnerld class represents CICS remote (APPC) partner transaction definitions.

Header file: ICCRIDEH

IccPartnerld constructors

Constructor (1)

IccPartnerld(const char* partnerName)

partnerName
The 8-character name of an APPC partner.

Constructor (2)

IccPartnerld(const lccPartnerld& id)

id A reference to an IccPartnerld object.

The copy constructor.

Public methods

operator= (1)
IccPartnerld& operator=(const char* partnerName)

partnerName
The 8-character name of an APPC partner.

operator= (2)
IccPartnerld& operator=(const IccPartnerld& id)

id A reference to an IccPartnerld object.

Assigns new value.

Inherited public methods

Method Class

classType IccBase
className IccBase
customClassNum IccBase

© Copyright IBM Corp. 1989, 1999 177

IccPartnerld

Method

name
nameLength
operator delete

Class
IccResourceld
IccResourceld
IccBase

operator new IccBase
Inherited protected methods

Method Class

operator= IccResourceld

setClassName
setCustomClassNum

178 cICS TS for 0S/390: C++ OO Class Libraries

IccBase
IccBase

Chapter 37. IccProgram class

IccBase
IccResource
IccProgram

The IccProgram class represents any CICS program outside of your currently
executing one, which the IccControl object represents.

Header file: ICCPRGEH

Sample: ICC$PRG1, ICC$PRG2, ICC$PRG3

lccProgram constructors

Constructor (1)

IccProgram(const IccProgramld& id)

id A reference to an IccProgramld object.
Constructor (2)

IccProgram(const char* progName)

progName
The 8-character name of the program.

Public methods

The opt parameter

Many methods have the same parameter, opt, which is described under the
abendCode method int i

address
const void* address() const

Returns the address of a program module in memory. This is only valid after a
successful load call.

clearlnputMessage

void clearlnputMessage()

Clears the current input message which was set by setinputMessage or
registerlnputMessage.

© Copyright IBM Corp. 1989, 1999 179

IccProgram

If the current input message was set using registerlnputMessage then only the
pointer is deleted: the buffer is left unchanged.

If the current input message was set using setinputMessage then
clearlnputMessage releases the memory used by that buffer.

entryPoint

const void* entryPoint() const

Returns a pointer to the entry point of a loaded program module. This is only
valid after a successful load call.

length
unsigned long length() const
Returns the length of a program module. This is only valid after a successful load
call.

link

void link (const IccBuf* commArea = 0,
const lccTransld* transld = 0,
CommitOpt opt = noCommitOnReturn)

commArea
An optional pointer to the IccBuf object that contains the COMMAREA—the
buffer used to pass information between the calling program and the program
that is being called

transld
An optional pointer to the IccTransld object that indicates the name of the
mirror transaction under which the program is to run if it is a remote (DPL)
program link

opt
An enumeration, defined in this class, that affects the behavior of the link
when the program is remote (DPL). The default (hoCommitOnReturn) is not to
commit resource changes on the remote CICS region until the current task
commits its resources. The alternative (commitOnReturn) means that the
resources of the remote program are committed whether or not this task
subsequently abends or encounters a problem.

Conditions: INVREQ, NOTAUTH, PGMIDERR, SYSIDERR, LENGERR,
ROLLEDBACK, TERMERR

Restrictions

Links may be nested, that is, a linked program may link to another program.
However, due to implementation restrictions, you may only nest such programs 15
times. If this is exceeded, an exception is thrown.

180 cIcCsS TS for 0S/390: C++ OO Class Libraries

IccProgram
load
void load(LoadOpt opt = releaseAtTaskEnd)
opt
An enumeration, defined in this class, that indicates whether CICS should
automatically allow the program to be unloaded at task termination

(releaseAtTaskEnd), or not (hold).

Conditions: NOTAUTH, PGMIDERR, INVREQ, LENGERR

registerinputMessage

void registerlnputMessage(const lIccBuf& msg)

Store pointer to InputMessage for when the link method is called.

setlnputMessage

void setlnputMessage(const IccBuf& msg)

Specifies data to be made available, by the IccSession::receive() method, to the
called program, when using the link method in this class.

unload

void unload()
Allow a program to be unloaded. It can be reloaded by a call to load.
Conditions

NOTAUTH, PGMIDERR, INVREQ

Inherited public methods

Method Class
actionOnCondition IccResource
actionOnConditionAsChar IccResource
actionsOnConditionsText IccResource
className IccBase
classType IccBase
condition IccResource
conditionText IccResource
customClassNum IccBase
handleEvent IccResource
id IccResource
iSEDFON IccResource
isRouteOptionOn IccResource
name IccResource
operator delete IccBase
operator new IccBase
routeOption IccResource
setActionOnAnyCondition IccResource

Chapter 37. IccProgram class 181

IccProgram

Method Class
setActionOnCondition IccResource
setActionsOnConditions IccResource
setEDF IccResource
setRouteOption IccResource
Inherited protected methods

Method Class
setClassName IccBase
setCustomClassNum IccBase

Enumerations

CommitOpt

noCommitOnReturn

Changes to resources on the remote CICS region are not committed until
the current task commits its resources. This is the default setting.

commitOnReturn

Changes to resources on the remote CICS region are committed whether or
not the current task subsequently abends or encounters a problem.

LoadOpt
releaseAtTaskEnd

Indicates that CICS should automatically allow the program to be
unloaded at task termination.

hold Indicates that CICS should not automatically allow the program to be
unloaded at task termination. (In this case, this or another task must

explicitly use the unload method).

182 cICS TS for 0S/390: C++ OO Class Libraries

Chapter 38. IccProgramlid class

IccBase
IccResourceld
IccProgramid

IccProgramld objects represent program names in the CICS system. On MVS/ESA

this is an entry in the PPT (program processing table).

Header file: ICCRIDEH

IccProgramld constructors

Constructor (1)

IccProgramld(const char* progName)

progName
The 8-character name of the program.

Constructor (2)
The copy constructor.
IccProgramld(const IccProgramld& id)

id A reference to an IccProgramld object.

Public methods

operator= (1)
IccProgramld& operator=(const char* progName)

progName
The 8-character name of the program.

operator= (2)
IccProgramld& operator=(const lccProgramld& id)
id A reference to an IccProgramld object.

Assigns new value.

Inherited public methods

Method Class
classType IccBase
className IccBase

© Copyright IBM Corp. 1989, 1999

183

IccProgramld

Method Class
customClassNum IccBase
name IccResourceld
namelLength IccResourceld
operator delete IccBase
operator new IccBase
Inherited protected methods

Method Class
operator= IccResourceld
setClassName IccBase
setCustomClassNum IccBase

184 cIcs TS for 0S/390: C++ OO Class Libraries

Chapter 39. IccRBA class

IccBase
IccRecordIndex
IccRBA

An IccRBA object holds a relative byte address which is used for accessing VSAM
ESDS files.

Header file: ICCRECEH

IccRBA constructor

Constructor

IccRBA(unsigned long initRBA = 0)

initRBA
An initial value for the relative byte address.

Public methods
operator= (1)
IccRBA& operator=(const IccRBA& rha)
operator= (2)
IccRBA& operator=(unsigned long num)

num
A valid relative byte address.

Assigns a new value for the relative byte address.
operator== (1)

Icc::Bool operator== (const IccCRBA& rba) const
operator== (2)

Icc::Bool operator== (unsigned long num) const

Tests equality

operator!= (1)

Iccl:Bool operator== (const IccRBA& rba) const

© Copyright IBM Corp. 1989, 1999 185

IccRBA
operator!= (2)

Icc::Bool operator!=(unsigned long num) const

Tests inequality

number

unsigned long number() const

Returns the relative byte address.

Inherited public methods

Method Class
className IccBase
classType IccBase
customClassNum IccBase

length IccRecordIndex
operator delete IccBase
operator new IccBase

type IccRecordIndex
value IccRecordIndex

Inherited protected methods

Method Class
setClassName IccBase
setCustomClassNum IccBase

186 cICS TS for 0S/390: C++ OO Class Libraries

Chapter 40. IccRecordIndex class

IccBase
IccRecordIndex
lccKey
IccRBA
IccRRN

CICS File Control Record Identifier. Used to tell CICS which particular record the
program wants to retrieve, delete, or update. IccRecordindex is a base class from
which IccKey, IccRBA, and IccRRN are derived.

Header file: ICCRECEH

IccRecordIndex constructor (protected)

Constructor
IccRecordIndex(Type type)
type
An enumeration, defined in this class, that indicates whether the index type is

key, RBA, or RRN.

Note: This is protected because you should not create IccRecordindex objects; see
subclasses lccKey, IccRBA, and IccRRN.

Public methods

length

unsigned short length() const

Returns the length of the record identifier.

type

Type type() const

Returns an enumeration, defined in this class, that indicates whether the index
type is key, RBA, or RRN.

Inherited public methods

Method Class

className IccBase
classType IccBase
customClassNum IccBase
operator delete IccBase
operator new IccBase

© Copyright IBM Corp. 1989, 1999 187

IccRecordIndex

Inherited protected methods

Method Class
setClassName IccBase
setCustomClassNum IccBase

Enumerations

Type

Indicates the access method. Possible values are:
key
RBA
RRN

188 cIcs TS for 0S/390: C++ OO Class Libraries

Chapter 41. IccRequestld class

IccBase
IccResourceld
IccRequestld

An IccRequestld is used to hold the name of a request. This request identifier can

subsequently be used to cancel a request—see, for example, start and cancel
methods in IccStartRequestQ class.

Header file: ICCRIDEH

IccRequestld constructors

Constructor (1)

IccRequestld()

An empty IccRequestld object.
Constructor (2)

IccRequestld(const char* requestName)

requestName
The 8-character name of the request.

Constructor (3)
The copy constructor.

IccRequestld(const IccRequestld& id)

id A reference to an IccRequestld.

Public methods

operator= (1)
IccRequestld& operator=(const IccRequestld& id)

id A reference to an IccRequestld object whose properties are copied into this
object.

operator= (2)

IccRequestld& operator=(const char* regestName)

requestName
An 8-character string which is copied into this object.

© Copyright IBM Corp. 1989, 1999 189

IccRequestld

Assigns new value.

Inherited public methods

Method
classType
className
customClassNum
name
nameLength

Class

IccBase
IccBase
IccBase
IccResourceld
IccResourceld

operator delete IccBase

operator new IccBase
Inherited protected methods

Method Class

operator= IccResourceld

setClassName IccBase

setCustomClassNum IccBase

190 cIcs TS for 0S/390: C++ OO Class Libraries

Chapter 42. IccResource class

IccBase
IccResource

IccResource class is a base class that is used to derive other classes. The methods
associated with lccResource are described here although, in practise, they are only
called on objects of derived classes.

IccResource is the parent class for all CICS resources—tasks, files, programs, etc.
Every class inherits from IccBase, but only those that use CICS services inherit
from IccResource.

Header file: ICCRESEH

Sample: ICC$RES1, ICC$RES2

IccResource constructor (protected)

Constructor
IccResource(lccBase::ClassType classType)

classType
An enumeration that indicates what the subclass type is. For example, for an
IccTempStore object, the class type is cTempStore. The possible values are
listed under ClassType in the description of the IccBase class.

Public methods

actionOnCondition
ActionOnCondition actionOnCondition(lccCondition::Codes condition)
condition
The name of the condition as an enumeration. See IccCondition structure for a

list of the possible values.

Returns an enumeration that indicates what action the class will take in response
to the specified condition being raised by CICS. The possible values are described
in this class.

actionOnConditionAsChar

char actionOnConditionAsChar(lccCondition::Codes condition)

This method is the same as actionOnCondition but returns a character, rather than
an enumeration, as follows:
0 (zero)

No action is taken for this CICS condition.

© Copyright IBM Corp. 1989, 1999 191

lccResource

H The virtual method handleEvent is called for this CICS condition.
X An exception is generated for this CICS condition.
A This program is abended for this CICS condition.

actionsOnConditionsText

const char* actionsOnConditionsText()

Returns a string of characters, one character for each possible condition. Each
character indicates the actions to be performed for that corresponding condition.
The characters used in the string are described above in

LactionOnConditionAsChar” on page 191. For example, the string: 0X00HOA .

shows the actions for the first seven conditions are as follows:

condition 0 (NORMAL)
action=0 (noAction)

condition 1 (ERROR)
action=X (throwException)

condition 2 (RDATT)
action=0 (noAction)

condition 3 (WRBRK)
action=0 (noAction)

condition 4 (ICCEOF)
action=H (callHandleEvent)

condition 5 (EODS)
action=0 (noAction)

condition 6 (EOC)
action=A (abendTask)

clear
virtual void clear()
Clears the contents of the object. This method is virtual and is implemented,
wherever appropriate, in the derived classes. See ERalymaorphic Rehavior” on
m for a description of polymorphism. The default implementation in this
class throws an exception to indicate that it has not been overridden in a subclass.
condition

unsigned long condition(ConditionType type = majorCode) const

type
An enumeration, defined in this class, that indicates the type of condition
requested. Possible values are majorCode (the default) and minorCode.

Returns a number that indicates the condition code for the most recent CICS call
made by this object.

192 cICS TS for 0S/390: C++ OO Class Libraries

IccResource

conditionText

get

const char* conditionText() const

Returns the symbolic name of the last CICS condition for this object.

virtual const lccBuf& get()

Gets data from the IccResource object and returns it as an IccBuf reference. This
method is virtual and is implemented, wherever appropriate, in the derived
classes. See [‘Palymarphic Behavior” on page 61 for a description of polymorphism.
The default implementation in this class throws an exception to indicate that it has
not been overridden in a subclass.

handleEvent

virtual HandleEventReturnOpt handleEvent(IccEvent& event)

event
A reference to an IccEvent object that describes the reason why this method is
being called.

This virtual function may be re-implemented in a subclass (by the application
programmer) to handle CICS events (see IccEvent class on page

id
const IccResourceld* id() const
Returns a pointer to the IccResourceld object associated with this IccResource
object.

ISEDFOnN
Icc::Bool isEDFON() const
Returns a boolean value that indicates whether EDF trace is active. Possible values
are yes or no.

iISRouteOptionOn

Icc::Bool isRouteOptionOnN() const

Returns a boolean value that indicates whether the route option is active. Possible
values are yes or no.

Chapter 42. IccResource class 193

lccResource

name
const char* name() const
Returns a character string that gives the name of the resource that is being used.
For an IccTempStore object, the 8-character name of the temporary storage queue
is returned. For an lccTerminal object, the 4-character terminal name is returned.
This is equivalent to calling id()»name.
put
virtual void put(const lccBuf& buffer)
buffer
A reference to an IccBuf object that contains data that is to be put into the
object.
Puts information from the buffer into the IccResource object. This method is
virtual and is implemented, wherever appropriate, in the derived classes. See
I‘Polymorphic Behavior” on page 61l for more information on polymorphism. The
default implementation in this class throws an exception to indicate that it has not
been overridden in a subclass.
routeOption
const lccSysld& routeOption() const
Returns a reference to an IccSysld object that represents the system to which all
CICS requests are routed—explicit function shipping.
setActionOnAnyCondition

void setActionOnAnyCondition(ActionOnCondition action)

action
The name of the action as an enumeration. The possible values are listed under
the description of this class.

Specifies the default action to be taken by the CICS foundation classes when a
CICS condition occurs.

setActionOnCondition

void setActionOnCondition (ActionOnCondition action,
IccCondition::Codes condition)

action
The name of the action as an enumeration. The possible values are listed under
the description of this class.

194 cIcs TS for 0S/390: C++ OO Class Libraries

IccResource

condition
See lccCondition structure.

Specifies what action is automatically taken by the CICS foundation classes when a
given CICS condition occurs.

setActionsOnConditions

void setActionsOnConditions(const char* actions = 0)

actions
A string that indicates what action is to be taken for each condition. The
default is not to indicate any actions, in which case each condition is given a
default ActionOnCondition of noAction. The string should have the same
format as the one returned by the actionsOnConditionsText method.

setEDF

void setEDF(Icc::Bool onOff)

onOff
A boolean value that selects whether EDF trace is switched on or off.

Switches EDF on or off for this resource object. See FExecution Diagnostic Facility’]

These methods force the object to route CICS requests to the named remote system.
This is called explicit function shipping.

setRouteOption (1)

void setRouteOption(const IccSysld& sysld)

The parameters are:

sysld
The lIccSysld object that represents the remote system to which commands are
routed.

setRouteOption (2)

void setRouteOption(const char* sysName = 0)

sysName
The 4-character name of the system to which commands are routed.

This option is only valid for the following classes:
* lccDataQueue

* lccFile

* lccFilelterator

e lccProgram

* lccStartRequestQ

* lccTempStore

Chapter 42. IccResource class 195

lccResource

Attempting to use this method on other subclasses of IccResource causes an
exception to be thrown.

To turn off the route option specify no parameter, for example:

obj.setRouteOption()

Inherited public methods

Method Class

className IccBase
classType IccBase
customClassNum IccBase
operator delete IccBase
operator new IccBase

Inherited protected methods

Method Class
setClassName IccBase
setCustomClassNum IccBase

Enumerations

196

ActionOnCondition

Possible values are:

noAction
Carry on as normal; it is the application program's responsibility to test
CICS conditions using the condition method, after executing a method that
calls CICS services.

callHandleEvent
Call the virtual handleEvent method.

throwException
An IccException object is created and thrown. This is typically used for
more serious conditions or errors.

abendTask
Abend the CICS task.

HandleEventReturnOpt

Possible values are:

rContinue
The CICS event proceeded satisfactorily and normal processing is to
resume.

rThrowException
The application program could not handle the CICS event and an
exception is to be thrown.

rAbendTask
The application program could not handle the CICS event and the CICS
task is to be abended.

CICS TS for OS/390: C++ OO Class Libraries

IccResource

ConditionType

Possible values are:

majorCode
The returned value is the CICS RESP value. This is one of the values in
IccCondition::codes.

minorCode
The returned value is the CICS RESP2 value.

Chapter 42. IccResource class 197

lccResource

198 cIcs TS for 0S/390: C++ OO Class Libraries

Chapter 43. IccResourceld class

IccBase
IccResourceld

This is a base class from which IccTransld and other classes, whose names all end
in "Id", are derived. Many of these derived classes represent CICS resource names,
such as a file control table (FCT) entry.

Header file: ICCRIDEH

IccResourceld constructors (protected)

Constructor (1)

IccResourceld (lccBase::ClassType typ,
const IccResourceld& id)

type
An enumeration, defined in IccBase class, that indicates the type of class.

id A reference to an IccResourceld object that is used to create this object.
Constructor (2)

IccResourceld (lccBase::ClassType type,
const char* resName)

type
An enumeration, defined in IccBase class, that indicates the type of class.

resName
The name of a resource that is used to create this object.

Public methods

name
const char* name() const

Returns the name of the resource identifier as a string. Most ...Id objects have 4- or
8-character names.

namelLength

unsigned short nameLength() const

Returns the length of the name returned by the name method.

© Copyright IBM Corp. 1989, 1999 199

IccResourceld

Protected methods

operator=

IccResourceld& operator=(const IccResourceld& id)

id A reference to an IccResourceld object.

Set an IccResourceld object to be identical to id.

Inherited public methods

Method Class

className IccBase
classType IccBase
customClassNum IccBase
operator delete IccBase
operator new IccBase

Inherited protected methods

Method Class

setClassName IccBase
setCustomClassNum IccBase

200 cIcs TS for 0S/390: C++ OO Class Libraries

Chapter 44. IccRRN class

IccBase
IccRecordIndex
IccRRN

An IccRRN object holds a relative record number and is used to identify records in
VSAM RRDS files.

Header file: ICCRECEH

IccRRN constructors

Constructor

IccRRN(unsigned long initRRN = 1)

initRRN
The initial relative record number—an integer greater than 0. The default is 1.

Public methods
operator= (1)
IccRRN& operator=(const IccRRN& rrn)
operator= (2)
IccRRN& operator=(unsigned long num)

num
A relative record number—an integer greater than 0.

Assigns a new value for the relative record number.
operator== (1)

Icc::Bool operator== (const IccCRRN& rrn) const
operator== (2)

Icc::Bool operator== (unsigned long num) const

Tests equality

operator!= (1)

Icc::Bool operator!= (const IccRRN& rrn) const

© Copyright IBM Corp. 1989, 1999 201

IccRRN
operator!= (2)

Icc::Bool operator!=(unsigned long num) const

Tests inequality

number

unsigned long number() const

Returns the relative record number.

Inherited public methods

Method Class
className IccBase
classType IccBase
customClassNum IccBase

length IccRecordIndex
operator delete IccBase
operator new IccBase

type IccRecordIndex
value IccRecordIndex

Inherited protected methods

Method Class
setClassName IccBase
setCustomClassNum IccBase

202 cICS TS for 0S/390: C++ OO Class Libraries

Chapter 45. lccSemaphore class

IccBase
IccResource
IccSemaphore
This class enables synchronization of resource updates.

Header file: ICCSEMEH

Sample: ICC$SEM

IccSemaphore constructor

Constructor (1)

IccSemaphore (const char* resource,
LockType type = byValue,
LifeTime life = UOW)

resource
A text string, if type is byValue, otherwise an address in storage.

type
An enumeration, defined in this class, that indicates whether locking is by
value or by address. The default is by value.
life
An enumeration, defined in this class, that indicates how long the semaphore
lasts. The default is to last for the length of the UOW.

Constructor (2)

lccSemaphore (const lccLockld& id,
LifeTime life = UOW)

id A reference to an IccLockld object

life
An enumeration, defined in this class, that indicates how long the semaphore
lasts. The default is to last for the length of the UOW.

Public methods

lifeTime

LifeTime lifeTime() const

Returns an enumeration, defined in this class, that indicates whether the lock lasts
for the length of the current unit-of-work (UOW") or until the task
terminates(‘task’).

© Copyright IBM Corp. 1989, 1999 203

IccSemaphore

lock
void lock()
Attempts to get a lock. This method blocks if another task already owns the lock.
Conditions
ENQBUSY, LENGERR, INVREQ
tryLock
Icc::Bool tryLock()
Attempts to get a lock. This method does not block if another task already owns
the lock. It returns a boolean that indicates whether it succeeded.
Conditions
ENQBUSY, LENGERR, INVREQ
type
LockType type() const
Returns an enumeration, defined in this class, that indicates what type of
semaphore this is.
unlock

void unlock()
Release a lock.
Conditions

LENGERR, INVREQ

Inherited public methods

Method Class
actionOnCondition IccResource
actionOnConditionAsChar IccResource
actionsOnConditionsText IccResource
classType IccBase
className IccBase
condition IccResource
conditionText IccResource
customClassNum IccBase
handleEvent IccResource
id IccResource
iSEDFON IccResource
name IccResource

204 cIcs TS for 0S/390: C++ OO Class Libraries

IccSemaphore

Method Class
operator delete IccBase
operator new IccBase
setActionOnAnyCondition IccResource
setActionOnCondition IccResource
setActionsOnConditions IccResource
setEDF IccResource
Inherited protected methods

Method Class
setClassName IccBase
setCustomClassNum IccBase

Enumerations

LockType
byValue

The lock is on the contents (for example, name).

byAddress

The lock is on the memory address.

LifeTime

UOW The semaphore lasts for the length of the current unit of work.

task The semaphore lasts for the length of the task.

Chapter 45. IccSemaphore class

205

IccSemaphore

206 cICS TS for 0S/390: C++ OO Class Libraries

Chapter 46. lccSession class

IccBase
IccResource
lccSession
This class enables APPC and DTP programming.
Header file: ICCSESEH

Sample: ICC$SES1, ICC$SES2

IccSession constructors (public)

Constructor (1)

IccSession(const IccPartnerld& id)

id A reference to an IccPartnerld object

Constructor (2)

IccSession (const lccSysld& sysld,
const char* profile = 0)

sysld
A reference to an IccSysld object that represents a remote CICS system

profile
The 8-character name of the profile.

Constructor (3)

IccSession (const char* sysName,
const char* profile = 0)

sysName
The 4-character name of the remote CICS system with which this session is

associated

profile
The 8-character name of the profile.

IccSession constructor (protected)

Constructor

IccSession()

This constructor is for back end DTP CICS tasks that have a session as their
principal facility. In this case the application program uses the session method on
the IccControl object to gain access to their lccSession object.

© Copyright IBM Corp. 1989, 1999 207

IccSession

Public methods

allocate

void allocate(AllocateOpt option = queue)

option
An enumeration, defined in this class, that indicates what action CICS is to
take if a communication channel is unavailable when this method is called.

Establishes a session (communication channel) to the remote system.

Conditions
INVREQ, SYSIDERR, CBIDERR, NETNAMEIDERR, PARTNERIDERR, SYSBUSY
connectProcess (1)

void connectProcess (SyncLevel level,
const lccBuf* PIP = 0)

level
An enumeration, defined in this class, that indicates what sync level is to be
used for this conversation

PIP

An optional pointer to an IccBuf object that contains the PIP data to be sent to
the remote system

This method can only be used if an IccPartnerld object was used to construct this
session object.

connectProcess (2)

void connectProcess (SyncLevel level,
const lccTransld& transld,
const lccBuf* PIP = 0)

level
An enumeration, defined in this class, that indicates what sync level is to be
used for this conversation

transld
A reference to an IccTransld object that holds the name of the transaction to be
started on the remote system

PIP

An optional pointer to an lccBuf object that contains the PIP data to be sent to
the remote system

connectProcess (3)

void connectProcess (SyncLevel level,
const lccTPNameld& TPName,
const lccBuf* PIP = 0)

208 cIcs TS for 0S/390: C++ OO Class Libraries

lccSession

level
An enumeration, defined in this class, that indicates what sync level is to be
used for this conversation

TPName
A reference to an IccTPNameld object that contains the 1-64 character TP
name.

PIP
An optional pointer to an lccBuf object that contains the PIP data to be sent to
the remote system

Starts a partner process on the remote system in preparation for sending and
receiving information.

Conditions

INVREQ, LENGERR, NOTALLOC, PARTNERIDERR, NOTAUTH, TERMERR,
SYSBUSY

converse

const lccBuf& converse(const IccBuf& send)

send
A reference to an IccBuf object that contains the data that is to be sent.

converse sends the contents of send and returns a reference to an lccBuf object that
holds the reply from the remote APPC partner.

Conditions

EOC, INVREQ, LENGERR, NOTALLOC, SIGNAL, TERMERR
convid

const lccConvld& convid()

Returns a reference to an lccConvld object that contains the 4-byte conversation
identifier.

errorCode

const char* errorCode() const

Returns the 4-byte error code received when isErrorSet returns true. See the
relevant DTP Guide for more information.

extractProcess

void extractProcess()

Retrieves information from an APPC conversation attach header and holds it inside
the object. See PIPList, process, and syncLevel methods to retrieve the information

Chapter 46. IccSession class 209

IccSession

from the object. This method should be used by the back end task if it wants
access to the PIP data, the process name, or the synclevel under which it is
running.

Conditions

INVREQ, NOTALLOC, LENGERR

flush

void flush()

Ensure that accumulated data and control information are transmitted on an APPC
mapped conversation.

Conditions
INVREQ, NOTALLOC
free
void free()
Return the APPC session to CICS so that it may be used by other tasks.
Conditions
INVREQ, NOTALLOC
get
virtual const IccBuf& get()

A synonym for receive. See I‘Palymarphic Behavior” an page 61 for information on

polymorphism.

iISErrorSet

Icc::Bool isErrorSet() const

Returns a boolean variable, defined in Icc structure, that indicates whether an error
has been set.

isNoDataSet

Icc::Bool isNoDataSet() const

Returns a boolean variable, defined in lcc structure, that indicates if no data was
returned on a send—ijust control information.

IsSignalSet

210 cIcs TS for 0S/390: C++ OO Class Libraries

lIccSession
Icc::Bool isSignalSet() const

Returns a boolean variable, defined in Icc structure, that indicates whether a signal
has been received from the remote process.

issueAbend

void issueAbend()

Abnormally ends the conversation. The partner transaction sees the TERMERR
condition.

Conditions

INVREQ, NOTALLOC, TERMERR

issueConfirmation
void issueConfirmation()

Sends positive response to a partner’s send request that specified the confirmation
option.

Conditions

INVREQ, NOTALLOC, TERMERR, SIGNAL
issueError

void issueError()

Signals an error to the partner process.

Conditions

INVREQ, NOTALLOC, TERMERR, SIGNAL
iIssuePrepare
void issuePrepare()
This only applies to DTP over APPC links. It enables a syncpoint initiator to

prepare a syncpoint slave for syncpointing by sending only the first flow (‘prepare
to commit') of the syncpoint exchange.

Conditions

INVREQ, NOTALLOC, TERMERR
IssueSignal

void issueSignal()

Signals that a mode change is needed.

Chapter 46. lccSession class 211

IccSession

Conditions

INVREQ, NOTALLOC, TERMERR

PIPList

lccBuf& PIPList()

Returns a reference to an IccBuf object that contains the PIP data sent from the
front end process. A call to this method should be preceded by a call to
extractProcess on back end DTP processes.

process

const lccBuf& process() const

Returns a reference to an lccBuf object that contains the process data sent from the
front end process. A call to this method should be preceded by a call to
extractProcess on back end DTP processes.

put
virtual void put(const IccBuf& data)
data
A reference to an IccBuf object that holds the data to be sent to the remote
process.
A synonym for send. See ERalymarphic Behaviar” on page &1 for information on
polymorphism.
receive
const lccBuf& receive()
Returns a reference to an IccBuf object that contains the data received from the
remote system.
Conditions
EOC, INVREQ, LENGERR, NOTALLOC, SIGNAL, TERMERR
send (1)

void send (const lccBuf& send,
SendOpt option = normal)

send
A reference to an IccBuf object that contains the data that is to be sent.
option
An enumeration, defined in this class, that affects the behavior of the send
method. The default is normal.

212 cICS TS for 0S/390: C++ OO Class Libraries

IccSession
send (2)
void send(SendOpt option = normal)
option

An enumeration, defined in this class, that affects the behavior of the send
method. The default is normal.

Sends data to the remote partner.
Conditions

INVREQ, LENGERR, NOTALLOC, SIGNAL, TERMERR

sendlInvite (1)

void sendlnvite (const lccBuf& send,
SendOpt option = normal)

send
A reference to an IccBuf object that contains the data that is to be sent.

option
An enumeration, defined in this class, that affects the behavior of the
sendInvite method. The default is normal.

sendlInvite (2)

void sendInvite(SendOpt option = normal)
option

An enumeration, defined in this class, that afffects the behavior of the
sendInvite method. The default is normal.

Sends data to the remote partner and indicates a change of direction, that is, the
next method on this object will be receive.

Conditions

INVREQ, LENGERR, NOTALLOC, SIGNAL, TERMERR

sendLast (1)

void sendLast (const lccBuf& send,
SendOpt option = normal)

send
A reference to an IccBuf object that contains the data that is to be sent.

option
An enumeration, defined in this class, that affects the behavior of the sendLast
method. The default is normal.

sendLast (2)

void sendLast(SendOpt option = normal)

Chapter 46. IccSession class 213

IccSession

option
An enumeration, defined in this class, that affects the behavior of the sendLast
method. The default is normal.

Sends data to the remote partner and indicates that this is the final transmission.
The free method must be invoked next, unless the sync level is 2, when you must
commit resource updates before the free. (See commitUOW on page in
IccTaskClass).

Conditions

INVREQ, LENGERR, NOTALLOC, SIGNAL, TERMERR

State

IccValue::CVDA state(StateOpt option = lastCommand)

option
An enumeration, defined in this class, that indicates how to report the state of
the conversation

Returns a CVDA, defined in IccValue structure, that indicates the current state of
the APPC conversation. Possible values are:

ALLOCATED
CONFFREE
CONFSEND
FREE
PENDFREE
PENDRECEIVE
RECEIVE
ROLLBACK
SEND
SYNCFREE
SYNCRECEIVE
SYNCSEND
NOTAPPLIC

lccValue::NOTAPPLIC is returned if there is no APPC conversation state.
Conditions

INVREQ, NOTALLOC

stateText

const char* stateText(StateOpt option = lastCommand)
option

An enumeration, defined in this class, that indicates how to report the state of
the conversation

214 cICS TS for 0S/390: C++ OO Class Libraries

lccSession

Returns the symbolic name of the state that state method would return. For
example, if state returns IccValue::ALLOCATED, stateText would return
"ALLOCATED".

syncLevel

SyncLevel syncLevel() const

Returns an enumeration, defined in this class, that indicates the synchronization
level that is being used in this session. A call to this method should be preceded by
a call to extractProcess on back end DTP processes.

Inherited public methods

Method Class
actionOnCondition IccResource
actionOnConditionAsChar IccResource
actionsOnConditionsText IccResource
classType IccBase
className IccBase
condition IccResource
conditionText IccResource
customClassNum IccBase
handleEvent IccResource
id IccResource
iSEDFON IccResource
name IccResource
operator delete IccBase
operator new IccBase
setActionOnAnyCondition IccResource
setActionOnCondition IccResource
setActionsOnConditions IccResource
setEDF IccResource

Inherited protected methods

Method Class
setClassName IccBase
setCustomClassNum IccBase
Enumerations
AllocateOpt
queue

If all available sessions are in use, CICS is to queue this request (and block
the method) until it can allocate a session.

noQueue
Control is returned to the application if it cannot allocate a session. CICS
raises the SYSBUSY condition.

Indicates whether queuing is required on an allocate method.

Chapter 46. IccSession class 215

IccSession

SendOpt

normal
The default.

confirmation
Indicates that a program using SyncLevel levell or level2 requires a
response from the remote partner program. The remote partner can
respond positively, using the issueConfirmation method, or negatively,
using the issueError method. The sending program does not receive
control back from CICS until the response is received.

wait Requests that the data is sent and not buffered internally. CICS is free to
buffer requests to improve performance if this option is not specified.

StateOpt

Used to indicate how the state of a conversation is to be reported.

lastCommand
Return the state at the time of the completion of the last operation on the
session.

extractState
Return the explicitly extracted current state.

SyncLevel

levelO
Sync level 0

levell
Sync level 1

level2
Sync level 2

216 cCICS TS for 0S/390: C++ OO Class Libraries

Chapter 47. lccStartRequestQ class
IccBase
IccResource
IccStartRequestQ

This is a singleton class that enables the application programmer to request an
asynchronous start of another CICS transaction (see the start method on page EJ).

An asynchronously started transaction uses the IccStartRequestQ class method
retrieveData to gain the information passed to it by the transaction that issued the
start request.

An unexpired start request can be cancelled by using the cancel method.

Header file: ICCSRQEH

Sample: ICC$SRQL, ICC$SRQ2

IccStartRequestQ constructor (protected)

Constructor

IccStartRequestQ()

Public methods

cancel
void cancel (const lccRequestld& reqgld,
const lccTransld* transld = 0)
reqld
A reference to an IccRequestld object that represents the request to be
cancelled
transld
An optional pointer to an lccTransld object that represents the transaction that
is to be cancelled.
Cancels a previously issued start request that has not yet expired.
Conditions
ISCINVREQ, NOTAUTH, NOTFND, SYSIDERR
clearData

void clearData()

© Copyright IBM Corp. 1989, 1999 217

IccStartRequestQ

clearData clears the current data that is to be passed to the started transaction. The
data was set using setData or registerData.

If the data was set using registerData, only the pointer to the data is removed, the
data in the buffer is left unchanged.

If the data was set using setData, then clearData releases the memory used by the
buffer.

data
const lccBuf& data() const

Returns a reference to an IccBuf object that contains data passed on a start request.
A call to this method should be preceded by a call to retrieveData method.

instance

static lccStartRequestQ* instance()

Returns a pointer to the single IccStartRequestQ object. If the object does not exist
it is created. See also startRequestQ method on page 24 of IccControl.

queueName

const char* queueName() const

Returns the name of the queue that was passed by the start requester. A call to this
method should be preceded by a call to retrieveData method.

registerData

void registerData(const lccBuf* buffer)

buffer
A pointer to the IccBuf object that holds data to be passed on a start request.

Registers an IccBuf object to be interrogated for start data on each subsequent start
method invocation.

This just stores the address of the IccBuf object within the IccStartRequestQ so
that the IccBuf object can be found when using the start method. This differs from

the setData method, which takes a copy of the data held in the lccBuf object
during the time that it is invoked.

reset

void reset()

Clears any associations previously made by set... methods in this class.

218 cICs TS for 0S/390: C++ OO Class Libraries

IccStartRequestQ
retrieveData

void retrieveData(RetrieveOpt option = noWait)
option

An enumeration, defined in this class, that indicates what happens if there is
no start data available.

Used by a task that was started, via an async start request, to gain access to the

information passed by the start requester. The information is returned by the data,

queueName, returnTermld, and returnTransld methods.

Conditions

ENDDATA, ENVDEFERR, IOERR, LENGERR, NOTFND, INVREQ

Note: The ENVDEFERR condition will be raised if all the possible options
(setData, setQueueName, setReturnTermld, and setReturnTransld) are not
used before issuing the start method. This condition is therefore not

necessarily an error condition and your program should handle it
accordingly.

returnTermld

const lccTermld& returnTermld() const
Returns a reference to an lccTermld object that identifies which terminal is

involved in the session. A call to this method should be preceded by a call to
retrieveData method.

returnTransld

const lccTransld& returnTransld() const

Returns a reference to an IccTransld object passed on a start request. A call to this
method should be preceded by a call to retrieveData method.

setData

void setData(const IccBuf& buf)
Copies the data in buf into the IccStartRequestQ, which passes it to the started

transaction when the start method is called. See also registerData on page Rad for
an alternative way to pass data to started transactions.

setQueueName

void setQueueName(const char* queueName)

queueName
An 8-character queue name.

Chapter 47. lccStartRequestQ class 219

IccStartRequestQ

Requests that this queue name be passed to the started transaction when the start
method is called.

setReturnTermld (1)

void setReturnTermld(const lccTermld& termld)

termld

A reference to an IccTermld object that identifies which terminal is involved in
the session.

setReturnTermld (2)

void setReturnTermld(const char* termName)

termName
The 4-character name of the terminal that is involved in the session.

Requests that this return terminal ID be passed to the started transaction when the
start method is called.

setReturnTransld (1)

void setReturnTransld(const lccTransld& transld)

transld
A reference to an IccTransld object.

setReturnTransld (2)

void setReturnTransld(const char* transName)

transName
The 4-character name of the return transaction.

Requests that this return transaction ID be passed to the started transaction when
the start method is called.

setStartOpts

void setStartOpts (ProtectOpt popt
CheckOpt copt

none,
check)

popt

An enumeration, defined in this class, that indicates whether start requests are
to be protected

copt
An enumeration, defined in this class, that indicates whether start requests are
to be checked.

Sets whether the started transaction is to have protection and whether it is to be
checked.

220 cCICS TS for 0S/390: C++ OO Class Libraries

IccStartRequestQ
start

const IccRequestld& start (const IccTransld& transld,
const lccTermld* termid,
const lccTime* time = 0,
const lccRequestld* regld = 0)

or

const lccRequestld& start (const lccTransld& transld,
const lccUserld* userld,
const lccTime* time = O,
const IccRequestld* regld = 0)

or

const IccRequestld& start (const lccTransld& transld,
const lccTime* time = 0,
const lccRequestld* regld = 0)

transld
A reference to an IccTransld object that represents the transaction to be started

termld
A reference to an IccTermld object that identifies which terminal is involved in
the session.

userld
A reference to an IccUserld object that represents the user ID.

time
An (optional) pointer to an IccTime object that specifies when the task is to be
started. The default is for the task to be started immediately.

reqld
An (optional) pointer to an IccRequestld object that is used to identify this
start request so that the cancel can cancel the request.

Asynchronously starts the named CICS transaction. The returned reference to an
IccRequestld object identifies the start request and can be used subsequently to
cancel the start request.

Conditions

INVREQ, IOERR, ISCINVREQ, LENGERR, NOTAUTH, SYSIDERR, TERMIDERR,
TRANSIDERR, USERIDERR

Inherited public methods

Method Class
actionOnCondition IccResource
actionOnConditionAsChar IccResource
actionsOnConditionsText IccResource
className IccBase
classType IccBase
condition IccResource
conditionText IccResource

Chapter 47. lccStartRequestQ class 221

IccStartRequestQ

Method Class
customClassNum IccBase
handleEvent IccResource
id IccResource
iSEDFON IccResource
isRouteOptionOn IccResource
name IccResource
operator delete IccBase
operator new IccBase
routeOption IccResource
setActionOnAnyCondition IccResource
setActionOnCondition IccResource
setActionsOnConditions IccResource
setEDF IccResource
setRouteOption IccResource
Inherited protected methods

Method Class
setClassName IccBase
setCustomClassNum IccBase

Enumerations

RetrieveOpt
noWait
wait

ProtectOpt

none
protect

CheckOpt
check
noCheck

222 CICS TS for 0S/390: C++ OO Class Libraries

Chapter 48. lccSysld class

IccBase
IccResourceld
lccSysld

IccSysld class is used to identify a remote CICS system.

Header file: ICCRIDEH

lccSysld constructors

Constructor (1)

lccSysld(const char* name)

name
The 4-character name of the CICS system.

Constructor (2)

lIccSysld(const lccSysld& id)

id A reference to an IccSysld object.

The copy constructor.

Public methods

operator= (1)

lccSysld& operator=(const lccSysld& id)

id A reference to an existing lccSysld object.
operator= (2)

lccSysld& operator=(const char* name)

name
The 4-character name of the CICS system.

Sets the name of the CICS system held in the object.

Inherited public methods

Method Class

classType IccBase
className IccBase
customClassNum IccBase

© Copyright IBM Corp. 1989, 1999

223

lccSysld

Method

name
nameLength
operator delete

Class
IccResourceld
IccResourceld
IccBase

operator new IccBase
Inherited protected methods

Method Class

operator= IccResourceld

setClassName
setCustomClassNum

224 CICS TS for 0S/390: C++ OO Class Libraries

IccBase
IccBase

Chapter 49. lccSystem class

IccBase
IccResource
lccSystem

This is a singleton class that represents the CICS system. It is used by an

application program to discover information about the CICS system on which it is
running.

Header file: ICCSYSEH

Sample: 1CC$SYS

lccSystem constructor (protected)

Constructor

lccSystem()

Public methods

appIlName

const char* applName()

Returns the 8-character name of the CICS region.
Conditions

INVREQ
beginBrowse (1)

void beginBrowse (ResourceType resource,
const lccResourceld* resld = 0)

resource

An enumeration, defined in this class, that indicates the type of resource to be
browsed within the CICS system.

resld
An optional pointer to an lIccResourceld object that indicates the starting point
for browsing through the resources.

beginBrowse (2)

void beginBrowse (ResourceType resource,
const char* resName)

© Copyright IBM Corp. 1989, 1999 225

lccSystem

resource
An enumeration, defined in this class, that indicates the type of resource to be
browsed within the CICS system.

resName
The name of the resource that is to be the starting point for browsing the
resources.

Signals the start of a browse through a set of CICS resources.

Conditions

END, FILENOTFOUND, ILLOGIC, NOTAUTH

dateFormat
const char* dateFormat()
Returns the default dateFormat for the CICS region.
Conditions

INVREQ

endBrowse
void endBrowse(ResourceType resource)
Signals the end of a browse through a set of CICS resources.
Conditions

END, FILENOTFOUND, ILLOGIC, NOTAUTH
freeStorage
void freeStorage(void* pStorage)
Releases the storage obtained by the lccSystem getStorage method.
Conditions
INVREQ
getFile (1)
IccFile* getFile(const lIccFileld& id)

id A reference to an IccFileld object that identifies a CICS file.
getFile (2)
IccFile* getFile(const char* fileName)

fileName
The name of a CICS file.

226 CICS TS for 0S/390: C++ OO Class Libraries

IccSystem

Returns a pointer to the lccFile object identified by the argument.
Conditions

END, FILENOTFOUND, ILLOGIC, NOTAUTH

getNextFile
IccFile* getNextFile()

This method is only valid after a successful beginBrowse(lccSystem::file) call. It
returns the next file object in the browse sequence in the CICS system.

Conditions

END, FILENOTFOUND, ILLOGIC, NOTAUTH

getStorage

void* getStorage (unsigned long size,
char initByte = -1,
unsigned long storageOpts = 0)

size
The amount of storage being requested, in bytes

initByte
The initial setting of all bytes in the allocated storage

storageOpts
An enumeration, defined in IccTask class, that affects the way that CICS
allocates storage.

Obtains a block of storage of the requested size and returns a pointer to it. The
storage is not released automatically at the end of task; it is only released when a
freeStorage operation is performed.

Conditions

LENGERR, NOSTG
instance

static lccSystem* instance()

Returns a pointer to the singleton IccSystem object. The object is created if it does
not already exist.

operatingSystem

char operatingSystem()

Returns a 1-character value that identifies the operating system under which CICS
is running:

A AIX

Chapter 49. IccSystem class 227

lccSystem

N Windows NT
p 0S/2
X MVS/ESA

Conditions

NOTAUTH

operatingSystemLevel

unsigned short operatingSystemLevel()

Returns a halfword binary field giving the release number of the operating system
under which CICS is running. The value returned is ten times the formal release
number (the version number is not represented). For example, MVS/ESA Version 3
Release 2.1 would produce a value of 21.

Conditions

NOTAUTH

release

unsigned long release()

Returns the level of the CICS system as an integer set to 100 multiplied by the
version number plus 10 multiplied by the release level. For example, CICS
Transaction Server for OS/390 [Version 1] Release 3 would return 130.

Conditions

NOTAUTH

releaseText

sysld

const char* releaseText()

Returns the same as release, except as a 4-character string. For example, CICS
Transaction Server for OS/390 [Version 1] Release 3 would return "0130".

Conditions

NOTAUTH

lIccSysld& sysld()
Returns a reference to the lccSysld object that identifies this CICS system.
Conditions

INVREQ

228 CICS TS for 0S/390: C++ OO Class Libraries

IccSystem
workArea
const lccBuf& workArea()

Returns a reference to the IccBuf object that holds the work area for the CICS
system.

Conditions

INVREQ

Inherited public methods

Method Class
actionOnCondition IccResource
actionOnConditionAsChar IccResource
actionsOnConditionsText IccResource
classType IccBase
className IccBase
condition IccResource
conditionText IccResource
customClassNum IccBase
handleEvent IccResource
id IccResource
iSEDFON IccResource
name IccResource
operator delete IccBase
operator new IccBase
setActionOnAnyCondition IccResource
setActionOnCondition IccResource
setActionsOnConditions IccResource
setEDF IccResource

Inherited protected methods

Method Class
setClassName IccBase
setCustomClassNum IccBase

Enumerations

ResourceType
autolnstallModel
connection
dataQueue
exitProgram
externalDataSet
file
journal
modename
partner
profile

Chapter 49. IccSystem class 229

lccSystem

program
requestid
systemDumpCode
tempStore

terminal
transactionDumpCode
transaction
transactionClass

230 cICS TS for 0S/390: C++ OO Class Libraries

Chapter 50. IccTask class
IccBase
IccResource
IccTask
IccTask is a singleton class used to invoke task related CICS services.

Header file: ICCTSKEH

Sample: ICC$TSK

IccTask Constructor (protected)

Constructor

lccTask()

Public methods

The opt parameter
Many methods have the same parameter, opt, which is described under the

abendCode method int‘abendCade” on page 83.

abend

void abend (const char* abendCode = 0,
AbendHandlerOpt optl = respectAbendHandler,
AbendDumpOpt opt2 = createDump)

abendCode
The 4-character abend code

optl
An enumeration, defined in this class, that indicates whether to respect or
ignore any abend handling program specified by setAbendHandler method in
IccControl class

opt2
An enumeration, defined in this class, that indicates whether a dump is to be
created.

Requests CICS to abend this task.

abendData

IccAbendData* abendData()

Returns a pointer to an IccAbendData object that contains information about the
program abends, if any, that relate to this task.

© Copyright IBM Corp. 1989, 1999 231

lccTask
commituoOw

void commitUOW()

Commit the resource updates within the current UOW for this task. This also
causes a new UOW to start for subsequent resource update activity.

Conditions

INVREQ, ROLLEDBACK

delay
void delay (const IccTime& time,
const lccRequestld* regld = 0)
time
A reference to an object that contains information about the delay time. The
object can be one of these types:
IccAbsTime
Expresses time as the number of milliseconds since the beginning of
the year 1900.
IccTimelnterval
Expresses an interval of time, such as 3 hours, 2 minutes, and 1
second.
lccTimeOfDay
Expresses a time of day, such as 13 hours, 30 minutes (1-30 pm).
reqld
An optional pointer to an IccRequestld object that can be used to cancel an
unexpired delay request.
Requests that this task be delayed for an interval of time, or until a specific time.
Conditions
EXPIRED, INVREQ
dump

const char* dump (const char* dumpCode,
const lccBuf* buf = 0)

dumpCode
A 4-character label that identifies this dump

buf
A pointer to the IccBuf object that contains additional data to be included in
the dump.

Requests CICS to take a dump for this task. (See also setDumpOpts.) Returns the
character identifier of the dump.

232 CICS TS for 0S/390: C++ OO Class Libraries

lccTask
Conditions

INVREQ, IOERR, NOSPACE, NOSTG, NOTOPEN, OPENERR, SUPPRESSED

enterTrace

void enterTrace (unsigned short traceNum,
const char* resource = 0,
lccBuf* data = 0,
TraceOpt opt = normal)

traceNum
The trace identifier for a user trace table entry; a value in the range 0 through
199.

resource
An 8-character name to be entered in the resource field of the trace table entry.

data
A pointer to the IccBuf object containing data to be included in the trace
record.

opt
An enumeration, defined in this class, that indicates whether tracing should be
normal or whether only exceptions should be traced.

Writes a user trace entry in the CICS trace table.

Conditions

INVREQ, LENGERR

facilityType
FacilityType facilityType()
Returns an enumeration, defined in this class, that indicates what type of principal
facility this task has. This is usually a terminal, such as when the task was started
by someone keying a transaction name on a CICS terminal. It is a session if the
task is the back end of a mapped APPC conversation.

Conditions

INVREQ

freeStorage

void freeStorage(void* pStorage)
Releases the storage obtained by the IccTask getStorage method.
Conditions

INVREQ

Chapter 50. lccTask class 233

IccTask
getStorage

void* getStorage (unsigned long size,
char initByte = -1,
unsigned short storageOpts = 0)

size
The amount of storage being requested, in bytes

initByte
The initial setting of all bytes in the allocated storage

storageOpts
An enumeration, defined in this class, that affects the way that CICS allocates
storage.

Obtains a block of storage of the requested size. The storage is released

automatically at the end of task, or when the freeStorage operation is performed.
See also getStorage on page b21 in lccSystemclass.

Conditions

LENGERR, NOSTG

instance
static lccTask* instance();

Returns a pointer to the singleton lccTask object. The object is created if it does not
already exist.

iIsCommandSecurityOn

Icc::Bool isCommandSecurityOn()

Returns a boolean, defined in lcc structure, that indicates whether this task is
subject to command security checking.

Conditions

INVREQ
iIsCommitSupported

Icc::Bool isCommitSupported()

Returns a boolean, defined in Icc structure that indicates whether this task can
support the commit method. This method returns true in most environments; the
exception to this is in a DPL environment (see link on page fad in IccProgram).

Conditions

INVREQ

234 cCICS TS for 0S/390: C++ OO Class Libraries

IccTask
ISResourceSecurityOn
Icc::Bool isResourceSecurityOn()

Returns a boolean, defined in lcc structure, that indicates whether this task is
subject to resource security checking.

Conditions

INVREQ

isRestarted

Icc::Bool isRestarted()

Returns a boolean, defined in lIcc structure, that indicates whether this task has
been automatically restarted by CICS.

Conditions

INVREQ

isStartDataAvailable

Icc::Bool isStartDataAvailable()

Returns a boolean, defined in Icc structure, that indicates whether start data is
available for this task. See the retrieveData method in lccStartRequestQ class if
start data is available.

Conditions

INVREQ
number
unsigned long number() const

Returns the number of this task, unique within the CICS system.

principalSyslid

lccSysld& principalSysld(lcc::GetOpt opt = lcc::object)

Returns a reference to an lccSysld object that identifies the principal system
identifier for this task.

Conditions

INVREQ

Chapter 50. lccTask class 235

IccTask
priority
unsigned short priority(lcc::GetOpt opt = Icc::object)
Returns the priority for this task.
Conditions

INVREQ

rollIBackUOW

void rollIBackUOW()

Roll back (backout) the resource updates associated with the current UOW within
this task.

Conditions

INVREQ, ROLLEDBACK

setDumpOpts

void setDumpOpts(unsigned long opts = dDefault)
opts

An integer, made by adding or logically ORing values from the DumpOpts
enumeration, defined in this class.

Set the dump options for this task. This method affects the behavior of the dump
method defined in this class.

setPriority

void setPriority(unsigned short pri)

pri
The new priority.

Changes the dispatch priority of this task.
Conditions

INVREQ

setWaitText

void setWaitText(const char* name)

name
The 8-character string label that indicates why this task is waiting.

Sets the text that will appear when someone inquires on this task while it is
suspended as a result of a waitExternal or waitOnAlarm method call.

236 CICS TS for 0S/390: C++ OO Class Libraries

lccTask

startType

StartType startType()

Returns an enumeration, defined in this class, that indicates how this task was
started.

Conditions

INVREQ

suspend

transid

void suspend()

Suspend this task, allowing other tasks to be dispatched.

const lccTransld& transld()

Returns the IccTransld object representing the transaction name of this CICS task.

triggerDataQueueld

userld

const IccDataQueueld& triggerDataQueueld()

Returns a reference to the IccDataQueueld representing the trigger queue, if this
task was started as a result of data arriving on an IccDataQueue. See startType
method.

Conditions

INVREQ

const lccUserld& userld(lcc::GetOpt opt = Icc::object)
opt
An enumeration, defined in lcc structure, that indicates whether the

information already existing in the object is to be used or whether it is to be
refreshed from CICS.

Returns the ID of the user associated with this task.
Conditions

INVREQ

Chapter 50. lccTask class 237

IccTask
waitExternal

void waitExternal (long** ECBList,
unsigned long numEvents,
WaitPurgeability opt = purgeable,
WaitPostType type = MVSPost)

ECBList
A pointer to a list of ECBs that represent events.

numEvents
The number of events in ECBList.

opt
An enumeration, defined in this class, that indicates whether the wait is
purgeable.

type
An enumeration, defined in this class, that indicates whether the post type is a
standard MVS POST.

Waits for events that post ECBs - Event Control Blocks. The call causes the issuing
task to be suspended until one of the ECBs has been posted—that is, one of the
events has occurred. The task can wait on more than one ECB and can be
dispatched as soon as any of them are posted.

See waitExternal in the CICS Application Programming Reference for more
information about ECBs.

Conditions

INVREQ

waitOnAlarm

void waitOnAlarm(const IccAlarmRequestld& id)

id A reference to the IccAlarmRequestld object that identifies a particular alarm
request.

Suspends the task until the alarm goes off (expires). See also setAlarm on page 111
in IccClock.

Conditions
INVREQ
workArea

lccBuf& workArea()
Returns a reference to the lccBuf object that holds the work area for this task.
Conditions

INVREQ

238 CICS TS for 0S/390: C++ OO Class Libraries

lccTask

Inherited public methods

Method Class
actionOnCondition IccResource
actionOnConditionAsChar IccResource
actionsOnConditionsText IccResource
classType IccBase
className IccBase
condition IccResource
conditionText IccResource
customClassNum IccBase
handleEvent IccResource
id IccResource
iSEDFON IccResource
name IccResource
operator delete IccBase
operator new IccBase
setActionOnAnyCondition IccResource
setActionOnCondition IccResource
setActionsOnConditions IccResource
setEDF IccResource

Inherited protected methods

Method Class
setClassName IccBase
setCustomClassNum IccBase
Enumerations
AbendHandlerOpt
respectAbendHandler
Allows control to be passed to an abend handling program if one is in
effect.
ignoreAbendHandler
Does not allow control to be passed to any abend handling program that
may be in effect.
AbendDumpOpt
createDump
Take a transaction dump when servicing an abend request.
suppressDump
Do not take a transaction dump when servicing an abend request.
DumpOpts

The values may be added, or bitwise ORed, together to get the desired
combination. For example IccTask::dProgram + IccTask::dDCT + IccTask::dSIT.

dDefault
dComplete

Chapter 50. lccTask class 239

IccTask
dTask
dStorage
dProgram
dTerminal
dTables
dDCT
dFCT
dPCT
dPPT
dsIT
dTCT
dTRT

FacilityType
none The task has no principal facility, that is, it is a background task.

terminal
This task has a terminal as its principal facility.

session
This task has a session as its principal facility, that is, it was probably
started as a backend DTP program.

dataqueue
This task has a transient data queue as its principal facility.

StartType
DPL Distributed program link request

dataQueueTrigger
Trigger by data arriving on a data queue

startRequest
Started as a result of an asynchronous start request. See IccStartRequestQ
class.

FEPIRequest
Front end programming interface. See CICS/ESA: Front End Programming
Interface User’s Guide, SC33-1175.

terminallnput
Started via a terminal input

CICSlInternal Task
Started by CICS.
StorageOpts

ifSOSReturnCondition
If insufficient space is available, return NOSTG condition instead of
blocking the task.

240 cICS TS for 0S/390: C++ OO Class Libraries

lccTask

below
Allocate storage below the 16Mb line.

userDataKey
Allocate storage in the USER data key.

CICSDataKey
Allocate storage in the CICS data key.

TraceOpt

normal
The trace entry is a standard entry.

exception
The trace entry is an exception entry.

WaitPostType

MV SPost
ECB is posted using the MVS POST service.

handPost
ECB is hand posted (that is, using some method other than the MVS POST
service).

WaitPurgeability

purgeable
Task can be purged via a system call.

notPurgeable
Task cannot be purged via a system call.

Chapter 50. lccTask class 241

lccTask

242 CICS TS for 0S/390: C++ OO Class Libraries

Chapter 51. lccTempStore class
IccBase
IccResource
IccTempStore

IccTempStore objects are used to manage the temporary storage of data.
(lccTempStore data can exist between transaction calls.)

Header file: ICCTMPEH

Sample: 1CC$TMP

IccTempStore constructors

Constructor (1)

IccTempStore (const lccTempStoreld& id,
Location loc = auxStorage)

id Reference to an IccTempStoreld object

loc
An enumeration, defined in this class, that indicates where the storage is to be
located when it is first created. The default is to use auxiliary storage (disk).

Constructor (2)

IccTempStore (const char* storeName,
Location loc = auxStorage)

storeName
Specifies the 8-character name of the queue to be used. The name must be
unique within the CICS system.

loc
An enumeration, defined in this class, that indicates where the storage is to be
located when it is first created. The default is to use auxiliary storage (disk).

Public methods

The opt parameter
Many methods have the same parameter, opt, which is described under the

abendCode method int‘ahendCaode” an page 83.

clear

virtual void clear()

A synonym for empty. See [‘Palymarphic Behavior” on page 61 for information on

polymorphism.

© Copyright IBM Corp. 1989, 1999 243

IccTempStore

empty

void empty()

Deletes all the temporary data associated with the lccTempStore object and deletes
the associated TD queue.

Conditions

INVREQ, ISCINVREQ, NOTAUTH, QIDERR, SYSIDERR
get

virtual const lccBuf& get()

A synonym for readNextltem. See t‘Palymarphic Behavior” on page 61 for

information on polymorphism.

numberOfltems

unsigned short numberOfltems() const

Returns the number of items in temporary storage. This is only valid after a
successful writeltem call.

put

virtual void put(const lccBuf& buffer)

buffer
A reference to an IccBuf object that contains the data that is to be added to the
end of the temporary storage queue.

A synonym for writeltem. See ‘Polymorphic Behavior” on page 61| for information

on polymorphism.

readltem

const lccBuf& readltem(unsigned short itemNum)

itemNum
Specifies the item number of the logical record to be retrieved from the queue.

Reads the specified item from the temporary storage queue and returns a reference
to the lccBuf object that contains the information.

Conditions

INVREQ, IOERR, ISCINVREQ, ITEMERR, LENGERR, NOTAUTH, QIDERR,
SYSIDERR

244 cICS TS for 0S/390: C++ OO Class Libraries

IccTempStore

readNextltem

const lccBuf& readNextltem()

Reads the next item from a temporary storage queue and returns a reference to the

IccBuf object that contains the information.
Conditions

INVREQ, IOERR, ISCINVREQ, ITEMERR, LENGERR, NOTAUTH, QIDERR,
SYSIDERR

rewriteltem

void rewriteltem (unsigned short itemNum,
const lccBuf& item,
NoSpaceOpt opt = suspend)

The parameters are:

itemNum
Specifies the item number of the logical record that is to be modified
item
The name of the IccBuf object that contains the update data.
opt
An enumeration, defined in this class, that indicates whether the application

program is to be suspended if a shortage of space in the queue prevents the
record being added. suspend is the default.

This method updates the specified item in the temporary storage queue.

Conditions

INVREQ, IOERR, ISCINVREQ, ITEMERR, LENGERR, NOSPACE, NOTAUTH,
QIDERR, SYSIDERR

writeltem (1)

unsigned short writeltem (const lccBuf& item,
NoSpaceOpt opt = suspend)

item
The name of the lccBuf object that contains the data that is to added to the
end of the temporary storage queue.

opt
An enumeration, defined in this class, that indicates whether the application

program is to be suspended if a shortage of space in the queue prevents the
record being added. suspend is the default.

writeltem (2)

unsigned short writeltem (const char* text,
NoSpaceOpt opt = suspend)

Chapter 51. lccTempStore class 245

IccTempStore

text
The text string that is to added to the end of the temporary storage queue.

opt
An enumeration, defined in this class, that indicates whether the application
program is to be suspended if a shortage of space in the queue prevents the
record being added. suspend is the default.

This method adds a new record at the end of the temporary storage queue. The
returned value is the item number that was created (if this was done successfully).

Conditions

INVREQ, IOERR, ISCINVREQ, ITEMERR, LENGERR, NOSPACE, NOTAUTH,
QIDERR, SYSIDERR

Inherited public methods

Method Class
actionOnCondition IccResource
actionOnConditionAsChar IccResource
actionsOnConditionsText IccResource
className IccBase
classType IccBase
condition IccResource
conditionText IccResource
customClassNum IccBase
handleEvent IccResource
id IccResource
iSEDFON IccResource
isRouteOptionOn IccResource
name IccResource
operator delete IccBase
operator new IccBase
routeOption IccResource
setActionOnAnyCondition IccResource
setActionOnCondition IccResource
setActionsOnConditions IccResource
setEDF IccResource
setRouteOption IccResource

Inherited protected methods

Method Class
setClassName IccBase
setCustomClassNum IccBase
Enumerations
Location
auxStorage

Temporary store data is to reside in auxiliary storage (disk).

memory
Temporary store data is to reside in memory.

246 CICS TS for 0S/390: C++ OO Class Libraries

IccTempStore

NoSpaceOpt

What action to take if a shortage of space in the queue prevents the record being
added immediately.

suspend
Suspend the application program.
returnCondition

Do not suspend the application program, but raise the NOSPACE
condition instead.

Chapter 51. lccTempStore class 247

IccTempStore

248 cCICS TS for 0S/390: C++ OO Class Libraries

Chapter 52. lccTempStoreld class

IccBase
IccResourceld
IccTempStoreld

IccTempStoreld class is used to identify a temporary storage name in the CICS
system. This is an entry in the TST (temporary storage table).

Header file: ICCRIDEH

IccTempStoreld constructors

Constructor (1)

IccTempStoreld(const char* name)

name
The 8-character name of the temporary storage entry.

Constructor (2)
IccTempStoreld(const lccTempStoreld& id)

id A reference to an IccTempStoreld object.

The copy constructor.

Public methods

operator= (1)
lccTempStoreld& operator=(const char* name)

name
The 8-character name of the temporary storage entry.

operator= (2)
lccTempStoreld& operator=(const IccTempStoreld& id)

id A reference to an IccTempStoreld object.

Assigns a new value.

Inherited public methods

Method Class
classType IccBase
className IccBase

© Copyright IBM Corp. 1989, 1999 249

IccTempStoreld

Method Class
customClassNum IccBase
name IccResourceld
namelLength IccResourceld
operator delete IccBase
operator new IccBase
Inherited protected methods

Method Class
operator= IccResourceld
setClassName IccBase
setCustomClassNum IccBase

250 cIcs TS for 0S/390: C++ OO Class Libraries

Chapter 53. lccTermld class

IccBase
IccResourceld
lccTermid

IccTermld class is used to identify a terminal name in the CICS system. This is an

entry in the TCT (terminal control table).

Header file: ICCRIDEH

IccTermld constructors

Constructor (1)

IccTermld(const char* name)

name
The 4-character name of the terminal

Constructor (2)

IccTermlid(const lccTermld& id)

id A reference to an IccTermld object.

The copy constructor.

Public methods

operator= (1)
lccTermld& operator=(const char* name)

name
The 4-character name of the terminal

operator= (2)
lccTermld& operator=(const lccTermld& id)

id A reference to an IccTermld object.

Assigns a new value.

Inherited public methods

Method Class
classType IccBase
className IccBase

© Copyright IBM Corp. 1989, 1999

251

lccTermld

Method Class
customClassNum IccBase
name IccResourceld
namelLength IccResourceld
operator delete IccBase
operator new IccBase
Inherited protected methods

Method Class
operator= IccResourceld
setClassName IccBase
setCustomClassNum IccBase

252 CICS TS for 0S/390: C++ OO Class Libraries

Chapter 54. IccTerminal class

IccBase
IccResource
lccTerminal

This is a singleton class that represents the terminal that belongs to the CICS task.
It can only be created if the transaction has a 3270 terminal as its principal facility,
otherwise an exception is thrown.

Header file: ICCTRMEH

Sample: ICC$TRM

IccTerminal constructor (protected)

Constructor

IccTerminal()

Public methods

The opt parameter
Many methods have the same parameter, opt, which is described under the

abendCode method inf‘abendCode” on page 83.

AlID
AIDVal AID()
Returns an enumeration, defined in this class, that indicates which AID (action
identifier) key was last pressed at this terminal.

clear
virtual void clear()
A synonym for erase. See I‘Palymarphic Behavior” an page 61 for information on
polymorphism.

cursor

unsigned short cursor()

Returns the current cursor position as an offset from the top left corner of the
screen.

© Copyright IBM Corp. 1989, 1999 253

IccTerminal

data

IccTerminalData* data()

Returns a pointer to an IccTerminalData object that contains information about the
characteristics of the terminal. The object is created if it does not already exist.

erase

void erase()
Erase all the data displayed at the terminal.
Conditions

INVREQ, INVPARTN

freeKeyboard

void freeKeyboard()
Frees the keyboard so that the terminal can accept input.
Conditions

INVREQ, INVPARTN
get

virtual const lccBuf& get()

A synonym for receive. See [‘Palymarphic Behavior” on page 61 for information on

polymorphism.

height

unsigned short height(lcc::getopt opt = Icc::object)
Returns how many lines the screen holds.
Conditions

INVREQ

inputCursor
unsigned short inputCursor()

Returns the position of the cursor on the screen.

254 cICS TS for 0S/390: C++ OO Class Libraries

IccTerminal

instance

static IccTerminal* instance()

Returns a pointer to the single IccTerminal object. The object is created if it does
not already exist.

line

unsigned short line()

Returns the current line number of the cursor from the top of the screen.
netName

const char* netName()

Returns the 8-byte string representing the network logical unit name of the
principal facility.

operator<< (1)

IccTerminal& operator << (Color color)

Sets the foreground color for data subsequently sent to the terminal.
operator<< (2)

IccTerminal& operator << (Highlight highlight)

Sets the highlighting used for data subsequently sent to the terminal.
operator<< (3)

IccTerminal& operator << (const lccBuf& buffer)

Writes another buffer.
operator<< (4)

IccTerminal& operator << (char ch)

Writes a character.
operator<< (5)

IccTerminal& operator << (signed char ch)

Writes a character.

Chapter 54. IccTerminal class 255

IccTerminal

256

operator<< (6)
IccTerminal& operator
Writes a character.
operator<< (7)
IccTerminal& operator
Writes a string.
operator<< (8)
IccTerminal& operator
Writes a string.
operator<< (9)
IccTerminal& operator
Writes a string.
operator<< (10)
IccTerminal& operator
Writes a short.
operator<< (11)

IccTerminal& operator

<< (unsigned char ch)

<< (const char* text)

<< (const signed char* text)

<< (const unsigned char* text)

<< (short num)

<< (unsigned short num)

Writes an unsigned short.

operator<< (12)

IccTerminal& operator

Writes a long.

operator<< (13)

IccTerminal& operator

<< (long num)

<< (unsigned long num)

Writes an unsigned long.

operator<< (14)

IccTerminal& operator

Writes an integer.

CICS TS for OS/390: C++ OO Class Libraries

<< (int num)

IccTerminal
operator<< (15)
IccTerminal& operator << (float num)

Writes a float.

operator<< (16)
IccTerminal& operator << (double num)

Writes a double.

operator<< (17)

IccTerminal& operator << (long double num)

Writes a long double.

operator<< (18)
IccTerminal& operator << (lccTerminal& (*f)(lccTerminal&))
Enables the following syntax:

Term << "Hello World" << endl;
Term << "Hello again" << flush;

put
virtual void put(const IccBuf& buf)
A synonym for sendLine. See EPalymarphic Behaviar” on page 81 for information
on polymorphism.
receive
const lccBuf& receive(Case caseOpt = upper)
caseOpt
An enumeration, defined in this class, that indicates whether text is to be
converted to upper case or left as it is.
Receives data from the terminal
Conditions
EOC, INVREQ, LENGERR, NOTALLOC, SIGNAL, TERMERR
receive3270Data

const lccBuf& receive3270Data(Case caseOpt = upper)

Chapter 54. IccTerminal class 257

IccTerminal

258

caseOpt

An enumeration, defined in this class, that indicates whether text is to be

converted to upper case or left as it is.

Receives the 3270 data buffer from the terminal

Conditions

INVREQ, LENGERR, TERMERR
send (1)

void send(const lccBuf& buffer)

buffer
A reference to an IccBuf object that holds the data that is to be sent.

send (2)

void send (const char* format,

)
format
A format string, as in the printf standard library function.

The optional arguments that accompany format.
send (3)

void send (unsigned short row,
unsigned short col,
const lccBuf& buffer)

row
The row where the writing of the data is started.

col
The column where the writing of the data is started.

buffer
A reference to an IccBuf object that holds the data that is to be sent.

send (4)

void send (unsigned short row,
unsigned short col,
const char* format,

)

row
The row where the writing of the data is started.

col
The column where the writing of the data is started.

format
A format string, as in the printf standard library function.

The optional arguments that accompany format.

CICS TS for OS/390: C++ OO Class Libraries

IccTerminal

Writes the specified data to either the current cursor position or to the cursor
position specified by the arguments.

Conditions

INVREQ, LENGERR, TERMERR

send3270 (1)

void send3270(const lccBuf& buffer)

buffer
A reference to an IccBuf object that holds the data that is to be sent.

send3270 (2)

void send3270 (const char* format,

)

format
A format string, as in the printf standard library function

The optional arguments that accompany format.
send3270 (3)

void send3270 (unsigned short col,
const lccBuf& buf)

col
The column where the writing of the data is started

buffer
A reference to an IccBuf object that holds the data that is to be sent.

send3270 (4)

void send3270 (unsigned short col,
const char* format,

)

col
The column where the writing of the data is started

format
A format string, as in the printf standard library function

The optional arguments that accompany format.

Writes the specified data to either the next line of the terminal or to the specified
column of the current line.

Conditions

INVREQ, LENGERR, TERMERR

Chapter 54. IccTerminal class 259

IccTerminal

sendLine (1)

void sendLine(const IccBuf& huffer)

buffer
A reference to an IccBuf object that holds the data that is to be sent.

sendLine (2)

void sendLine (const char* format,

)

format
A format string, as in the printf standard library function

The optional arguments that accompany format.

sendLine (3)

void sendLine (unsigned short col,
const lccBuf& buf)

col
The column where the writing of the data is started

buffer
A reference to an IccBuf object that holds the data that is to be sent.

sendLine (4)

void sendLine (unsigned short col,
const char* format,

)

col
The column where the writing of the data is started

format
A format string, as in the printf standard library function

The optional arguments that accompany format.

Writes the specified data to either the next line of the terminal or to the specified
column of the current line.

Conditions

INVREQ, LENGERR, TERMERR

setColor

void setColor(Color color=defaultColor)
color

An enumeration, defined in this class, that indicates the color of the text that is
written to the screen.

Changes the color of the text subsequently sent to the terminal.

260 cICS TS for 0S/390: C++ OO Class Libraries

IccTerminal
setCursor (1)
void setCursor(unsigned short offset)

offset
The position of the cursor where the top left corner is 0.

setCursor (2)

void setCursor (unsigned short row,
unsigned short col)

row
The row number of the cursor where the top row is 1

col
The column number of the cursor where the left column is 1

Two different ways of setting the position of the cursor on the screen.
Conditions

INVREQ, INVPARTN

setHighlight
void setHighlight(Highlight highlight = normal)
highlight

An enumeration, defined in this class, that indicates the highlighting of the text
that is written to the screen.

Changes the higlighting of the data subsequently sent to the terminal.

setLine

void setLine(unsigned short lineNum = 1)

lineNum
The line number, counting from the top.

Moves the cursor to the start of line lineNum, where 1 is the top line of the
terminal. The default is to move the cursor to the start of line 1.

Conditions

INVREQ, INVPARTN

setNewLine

void setNewLine(unsigned short numLines = 1)

numLines
The number of blank lines.

Chapter 54. IccTerminal class 261

IccTerminal
Requests that numLines blank lines be sent to the terminal.

Conditions

INVREQ, INVPARTN
setNextCommArea

void setNextCommArea(const lccBuf& commArea)

commArea
A reference to the buffer that is to be used as a COMMAREA.

Specifies the COMMAREA that is to be passed to the next transaction started on
this terminal.

setNextinputMessage

void setNextlnputMessage(const lccBuf& message)

message
A reference to the buffer that holds the input message.

Specifies data that is to be made available, by the receive method, to the next
transaction started at this terminal.

setNextTransld

void setNextTransld (const lccTransld& transid,
NextTransldOpt opt = queue)

transid
A reference to the IccTransld object that holds the name of a transaction

opt
An enumeration, defined in this class, that indicates whether transld should be

queued or started immediately (that is, it should be the very next transaction)
at this terminal.

Specifies the next transaction that is to be started on this terminal.

signoff

void signoff()

Signs off the user who is currently signed on. Authority reverts to the default user.

Conditions

INVREQ

262 CICS TS for 0S/390: C++ OO Class Libraries

IccTerminal

signon (1)

void signon (const lccUserld& id,
const char* password = 0,
const char* newPassword = 0)

id A reference to an lccUserld object

password
The 8-character existing password.

newPassword
An optional 8-character new password.

signon (2)

void signon (lccUser& user,
const char* password = 0,
const char* newPassword = 0)

user
A reference to an lccUser object

password
The 8-character existing password.

newPassword
An optional 8-character new password. This method differs from the first
signon method in that the IccUser object is interrogated to discover
lccGroupld and language information. The object is also updated with
language and ESM return and response codes.

Signs the user on to the terminal.

Conditions

INVREQ, NOTAUTH, USERIDERR

waitForAID (1)
AlIDVal waitForAlID()

Waits for any input and returns an enumeration, defined in this class, that
indicates which AID key is expected.

waitForAID (2)

void waitForAID(AIDVal aid)

aid
An enumeration, defined in this class, that indicates which AID key was last
pressed.

Waits for the specified AID key to be pressed, before returning control. This

method loops, receiving input from the terminal, until the correct AID key is
pressed by the operator.

Chapter 54. IccTerminal class 263

IccTerminal

Conditions

EOC, INVREQ, LENGERR, NOTALLOC, SIGNAL, TERMERR

width
unsigned short width(lcc::getopt opt = Icc::object)
Returns the width of the screen in characters.
Conditions
INVREQ

workArea

lccBuf& workArea()

Returns a reference to the IccBuf object that holds the terminal work area.

Inherited public methods

Method Class
actionOnCondition IccResource
actionOnConditionAsChar IccResource
actionsOnConditionsText IccResource
classType IccBase
className IccBase
condition IccResource
conditionText IccResource
customClassNum IccBase
handleEvent IccResource
id IccResource
iSEDFON IccResource
name IccResource
operator delete IccBase
operator new IccBase
setActionOnAnyCondition IccResource
setActionOnCondition IccResource
setActionsOnConditions IccResource
setEDF IccResource

Inherited protected methods

Method Class
setClassName IccBase
setCustomClassNum IccBase
Enumerations
AlDVal
ENTER
CLEAR

264 cCICS TS for 0S/390: C++ OO Class Libraries

Case

Color

PAL to PA3
PF1 to PF24

upper
mixed

defaultColor
blue

red

pink

green

cyan

yellow

neutral

Highlight

defaultHighlight

blink
reverse

underscore

NextTransldOpt

gueue

IccTerminal

Queue the transaction with any other outstanding starts queued on the

terminal.

immediate

Start the transaction immediately, that is, before any other outstanding

starts queued on the terminal.

Chapter 54. IccTerminal class 265

IccTerminal

266 CICS TS for 0S/390: C++ OO Class Libraries

Chapter 55. IccTerminalData class

IccBase
IccResource
IccTerminalData

IccTerminalData is a singleton class owned by IccTerminal (see data on page ksd
in lccTerminal class). lccTerminalData contains information about the terminal
characteristics.

Header file: ICCTMDEH

Sample: ICC$TRM

IccTerminalData constructor (protected)

Constructor

IccTerminalData()

Public methods

The opt parameter
Many methods have the same parameter, opt, which is described under the

abendCode method inf‘abendCode” on page 83.

alternateHeight
unsigned short alternateHeight(lcc::GetOpt opt = Icc::object)
opt
An enumeration that indicates whether the information in the object should be
refreshed from CICS before being extracted. The default is not to refresh.
Returns the alternate height of the screen, in lines.

Conditions

INVREQ

alternateWidth

unsigned short alternateWidth(lcc::GetOpt opt = Icc::0object)
Returns the alternate width of the screen, in characters.
Conditions

INVREQ

© Copyright IBM Corp. 1989, 1999 267

IccTerminalData
defaultHeight
unsigned short defaultHeight(lcc::GetOpt opt = lcc::object)
Returns the default height of the screen, in lines.
Conditions

INVREQ

defaultWidth

unsigned short defaultWidth(lcc::GetOpt opt = Icc::object)
Returns the default width of the screen, in characters.
Conditions

INVREQ

graphicCharCodeSet

unsigned short graphicCharCodeSet(lcc::GetOpt opt = lcc::object)

Returns the binary code page global identifier as a value in the range 1 to 65534, or
0 for a non-graphics terminal.

Conditions

INVREQ

graphicCharSetld

unsigned short graphicCharSetld(lcc::GetOpt opt = Icc::object)

Returns the graphic character set global identifier as a number in the range 1 to
65534, or 0 for a non-graphics terminal.

Conditions

INVREQ

ISAPLKeyboard

Icc::Bool isAPLKeyboard(lcc::GetOpt opt = lIcc::object)

Returns a boolean that indicates whether the terminal has the APL keyboard
feature.

Conditions

INVREQ

268 cCICS TS for 0S/390: C++ OO Class Libraries

IccTerminalData
ISAPLText
Icc::Bool isAPLText(lcc::GetOpt opt = Icc::object)
Returns a boolean that indicates whether the terminal has the APL text feature.
Conditions

INVREQ

iIsBTrans
Icc::Bool isBTrans(lcc::GetOpt opt = Icc::object)

Returns a boolean that indicates whether the terminal has the background
transparency capability.

Conditions

INVREQ

isColor
Icc::Bool isColor(lcc::GetOpt opt = Icc::object)

Returns a boolean that indicates whether the terminal has the extended color
capability.

Conditions

INVREQ

ISEWA
Icc::Bool isEWA(Icc::GetOpt opt = lIcc::object)

Returns a Boolean that indicates whether the terminal supports Erase Write
Alternative.

Conditions

INVREQ

iIsExtended3270

Icc::Bool isExtended3270(lcc::GetOpt opt = Icc::object)

Returns a Boolean that indicates whether the terminal supports the 3270 extended
data stream.

Conditions

INVREQ

Chapter 55. IccTerminalData class 269

IccTerminalData

isFieldOutline

Icc::Bool isFieldOutline(lcc::GetOpt opt = Icc::object)
Returns a boolean that indicates whether the terminal supports field outlining.
Conditions

INVREQ

iIsGoodMorning

Icc::Bool isGoodMorning(lcc::GetOpt opt = Icc::object)

Returns a boolean that indicates whether the terminal has a ‘good morning'
message.

Conditions

INVREQ

IsHighlight

Icc::Bool isHighlight(lcc::GetOpt opt = Icc::object)

Returns a boolean that indicates whether the terminal has extended highlight
capability.

Conditions

INVREQ

isKatakana

Icc::Bool isKatakana(lcc::GetOpt opt = lcc::object)
Returns a boolean that indicates whether the terminal supports Katakana.
Conditions

INVREQ

iISMSRControl

Icc::Bool isMSRControl(lcc::GetOpt opt = Icc::object)

Returns a boolean that indicates whether the terminal supports magnetic slot
reader control.

Conditions

INVREQ

270 cCICS TS for 0S/390: C++ OO Class Libraries

IccTerminalData
ISPS
Icc::Bool isPS(lcc::GetOpt opt = Icc::object)

Returns a boolean that indicates whether the terminal supports programmed
symbols.

Conditions

INVREQ

IsSOSI
Icc::Bool isSOSI(Icc::GetOpt opt = Icc::object)

Returns a boolean that indicates whether the terminal supports mixed
EBCDIC/DBCS fields.

Conditions

INVREQ

iIsTextKeyboard
Icc::Bool isTextKeyboard(lcc::GetOpt opt = Icc::object)
Returns a boolean that indicates whether the terminal supports TEXTKYBD.
Conditions

INVREQ

iIsTextPrint
Icc::Bool isTextPrint(lcc::GetOpt opt = lcc::object)
Returns a boolean that indicates whether the terminal supports TEXTPRINT.
Conditions

INVREQ

IsValidation
Icc::Bool isValidation(lcc::GetOpt opt = lIcc::object)
Returns a boolean that indicates whether the terminal supports validation.
Conditions

INVREQ

Inherited public methods

Method Class
actionOnCondition IccResource

Chapter 55. IccTerminalData class 271

IccTerminalData

Method Class
actionOnConditionAsChar IccResource
actionsOnConditionsText IccResource
classType IccBase
className IccBase
condition IccResource
conditionText IccResource
customClassNum IccBase
handleEvent IccResource
id IccResource
isEDFON IccResource
name IccResource
operator delete IccBase
operator new IccBase
setActionOnAnyCondition IccResource
setActionOnCondition IccResource
setActionsOnConditions IccResource
setEDF IccResource

Inherited protected methods

Method Class
setClassName IccBase
setCustomClassNum IccBase

272 CICS TS for 0S/390: C++ OO Class Libraries

Chapter 56. IccTime class

IccBase
IccResource
lccTime

IccTime is used to contain time information and is the base class from which
IccAbsTime, IccTimelnterval, and lccTimeOfDay classes are derived.

Header file: ICCTIMEH

IccTime constructor (protected)

Constructor

lccTime (unsigned long hours = 0,
unsigned long minutes = 0,
unsigned long seconds = 0)

hours
The number of hours

minutes
The number of minutes

seconds
The number of seconds

Public methods

hours

virtual unsigned long hours() const

Returns the hours component of time—the value specified in the constructor.

minutes

virtual unsigned long minutes() const

Returns the minutes component of time—the value specified in the constructor.

seconds

virtual unsigned long seconds() const

Returns the seconds component of time—the value specified in the constructor.

© Copyright IBM Corp. 1989, 1999 273

lccTime

timelnHours

virtual unsigned long timelnHours()

Returns the time in hours.

timelnMinutes

virtual unsigned long timelnMinutes()

Returns the time in minutes.

timelnSeconds

virtual unsigned long timelnSeconds()

Returns the time in seconds.

type

Type type() const

Returns an enumeration, defined in this class, that indicates what type of subclass
of IccTime this is.

Inherited public methods

Method Class
actionOnCondition IccResource
actionOnConditionAsChar IccResource
actionsOnConditionsText IccResource
className IccBase
classType IccBase
condition IccResource
conditionText IccResource
customClassNum IccBase
handleEvent IccResource
iSEDFON IccResource
operator delete IccBase
operator new IccBase
setActionOnAnyCondition IccResource
setActionOnCondition IccResource
setActionsOnConditions IccResource
setEDF IccResource

Inherited protected methods

Method Class
setClassName IccBase
setCustomClassNum IccBase

274 CICS TS for 0S/390: C++ OO Class Libraries

lccTime

Enumerations

Type

absTime
The object is of IccAbsTime class. It is used to represent a current date and
time as the number of milliseconds that have elapsed since the beginning
of the year 1900.

timelnterval
The object is of IccTimelnterval class. It is used to represent a length of
time, such as 5 minutes.

timeOfDay
The object is of IccTimeOfDay class. It is used to represent a particular
time of day, such as midnight.

Chapter 56. lccTime class 275

lccTime

276 CICS TS for 0S/390: C++ OO Class Libraries

Chapter 57. lccTimelnterval class

IccBase
IccResource
lccTime
IccTimelnterval

This class holds information about a time interval.

Header file: ICCTIMEH

IccTimelnterval constructors

Constructor (1)

lccTimelnterval (unsigned long hours = 0,
unsigned long minutes = 0,
unsigned long seconds = 0)

hours
The initial hours setting. The default is 0.

minutes
The initial minutes setting. The default is 0.

seconds
The initial seconds setting. The default is 0.

Constructor (2)
IccTimelnterval(const IccTimelnterval& time)

The copy constructor.

Public methods

operator=

IccTimelnterval& operator=(const IccTimelnterval& timelnterval)

Assigns one lccTimelnterval object to another.

set

void set (unsigned long hours,
unsigned long minutes,
unsigned long seconds)

hours
The new hours setting

© Copyright IBM Corp. 1989, 1999 277

IccTimelnterval

minutes

The new minutes setting

seconds

The new seconds setting

Changes the time held in the IccTimelnterval object.

Inherited public methods

Method Class
actionOnCondition IccResource
actionOnConditionAsChar IccResource
actionsOnConditionsText IccResource
classType IccBase
className IccBase
condition IccResource
conditionText IccResource
customClassNum IccBase
handleEvent IccResource
hours IccTime
iSEDFON IccResource
minutes IccTime
operator delete IccBase
operator new IccBase
setActionOnAnyCondition IccResource
setActionOnCondition IccResource
setActionsOnConditions IccResource
setEDF IccResource
timelnHours IccTime
timelnMinutes IccTime
timelnSeconds IccTime
type IccTime
Inherited protected methods

Method Class
setClassName IccBase
setCustomClassNum IccBase

278 cCICS TS for 0S/390: C++ OO Class Libraries

Chapter 58. lccTimeOfDay class
IccBase
IccResource
lccTime
lccTimeOfDay

This class holds information about the time of day.

Header file: ICCTIMEH

IccTimeOfDay constructors

Constructor (1)

lccTimeOfDay (unsigned long hours = 0,
unsigned long minutes = 0,
unsigned long seconds = 0)

hours
The initial hours setting. The default is 0.

minutes
The initial minutes setting. The default is 0.

seconds
The initial seconds setting. The default is 0.

Constructor (2)
lccTimeOfDay(const lccTimeOfDay& time)

The copy constructor

Public methods

operator=
lccTimeOfDay& operator=(const lccTimeOfDay& timeOfDay)

Assigns one lccTimeOfDay object to another.

set

void set (unsigned long hours,
unsigned long minutes,
unsigned long seconds)

hours
The new hours setting

© Copyright IBM Corp. 1989, 1999 279

lccTimeOfDay

minutes

The new minutes setting

seconds

The new seconds setting

Changes the time held in the IccTimeOfDay object.

Inherited public methods

Method Class
actionOnCondition IccResource
actionOnConditionAsChar IccResource
actionsOnConditionsText IccResource
classType IccBase
className IccBase
condition IccResource
conditionText IccResource
customClassNum IccBase
handleEvent IccResource
hours IccTime
iSEDFON IccResource
minutes IccTime
operator delete IccBase
operator new IccBase
setActionOnAnyCondition IccResource
setActionOnCondition IccResource
setActionsOnConditions IccResource
setEDF IccResource
timelnHours IccTime
timelnMinutes IccTime
timelnSeconds IccTime
type IccTime
Inherited protected methods

Method Class
setClassName IccBase
setCustomClassNum IccBase

280 cICS TS for 0S/390: C++ OO Class Libraries

Chapter 59. lccTPNameld class

IccBase
IccResourceld
IlccTPNameld

IccTPNameld class holds a 1-64 byte TP partner name.

Header file: ICCRIDEH

IccTPNameld constructors

Constructor (1)
IccTPNameld(const char* name)

name
The 1- to 64-character TP name.

Constructor (2)

IccTPNameld(const IccTPNameld& id)

id A reference to an lccTPNameld object.

The copy constructor.

Public methods

operator= (1)
IccTPNameld& operator=(const char* name)

name
The 1- to 64-character TP name.

operator= (2)

IccTPNameld& operator=(const IccTPNameld& id)

id A reference to an lccTPNameld object.

Assigns a new value.

Inherited public methods

Method
classType
className
customClassNum

© Copyright IBM Corp. 1989, 1999

Class

IccBase
IccBase
IccBase

281

IlccTPNameld

Method

name
nameLength
operator delete

Class
IccResourceld
IccResourceld
IccBase

operator new IccBase
Inherited protected methods

Method Class

operator= IccResourceld

setClassName
setCustomClassNum

282 CICS TS for 0S/390: C++ OO Class Libraries

IccBase
IccBase

Chapter 60. IccTransld class

IccBase
IccResourceld
lccTransld

IccTransld class identifies a transaction name in the CICS system. This is an entry

in the PCT (Program Control Table).

Header file: ICCRIDEH

IccTransld constructors

Constructor (1)

IccTransld(const char* name)

name
The 4-character transaction name.

Constructor (2)

IccTransld(const lccTransld& id)

id A reference to an IccTransld object.

The copy constructor.

Public methods

operator= (1)
IccTransld& operator=(const char* name)

name
The 4-character transaction name.

operator= (2)
IccTransld& operator=(const IccTransld& id)

id A reference to an IccTransld object.

Assigns a new value.

Inherited public methods

Method Class
classType IccBase
className IccBase

© Copyright IBM Corp. 1989, 1999

283

lccTransld

Method Class
customClassNum IccBase
name IccResourceld
namelLength IccResourceld
operator delete IccBase
operator new IccBase
Inherited protected methods

Method Class
operator= IccResourceld
setClassName IccBase
setCustomClassNum IccBase

284 cCICS TS for 0S/390: C++ OO Class Libraries

Chapter 61. IccUser class
IccBase
IccResource
lccUser
This class represents a CICS user.

Header file: ICCUSREH

Sample: ICC$USR

IccUser constructors

Constructor (1)

lIccUser (const lccUserld& id,
const lccGroupld* gid = 0)

id A reference to an IccUserld object that contains the user ID name

gid
An optional pointer to an IccGroupld object that contains information about
the user's group ID.

Constructor (2)

IccUser (const char* userName,
const char* groupName = 0)

userName
The 8-character user ID
gid
The optional 8-character group ID.

Public methods

changePassword

void changePassword (const char* password,
const char* newPassword)

password
The user's existing password—a string of up to 8 characters

newPassword
The user's new password—a string of up to 8 characters.

Attempts to change the user’s password.

© Copyright IBM Corp. 1989, 1999 285

lccUser

Conditions
INVREQ, NOTAUTH, USERIDERR
daysUntilPasswordExpires

unsigned short daysUntilPasswordExpires() const

Returns the number of days before the password expires. This method is valid
after a successful verifyPassword method call in this class.

ESMReason

unsigned long ESMReason() const

Returns the external security reason code of interest if a changePassword or
verifyPassword method call is unsuccessful.

ESMResponse

unsigned long ESMResponse() const

Returns the external security response code of interest if a changePassword or
verifyPassword method call is unsuccessful.

groupld

const lccGroupld& groupld() const

Returns a reference to the lccGroupld object that holds information on the user's
group ID.

invalidPasswordAttempts

unsigned long invalidPasswordAttempts() const

Returns the number of times the wrong password has been entered for this user
since the last successful signon. This method should only be used after a successful
verifyPassword method.

language

const char* language() const

Returns the user’s language after a successful call to signon in IccTerminal.

lastPasswordChange

286 CICS TS for 0S/390: C++ OO Class Libraries

lccUser

const lccAbsTime& lastPasswordChange() const

Returns a reference to an IccAbsTime object that holds the time when the
password was last changed. This method should only be used after a successful
verifyPassword method.

lastUseTime

const IccAbsTime& lastUseTime() const
Returns a reference to an IccAbsTime object that holds the time when the user 1D

was last used. This method should only be used after a successful verifyPassword
method.

passwordExpiration

const lccAbsTime& passwordExpiration() const
Returns a reference to an IccAbsTime object that holds the time when the

password will expire. This method should only be used after a successful
verifyPassword method.

setLanguage

void setLanguage(const char* language)

Sets the IBM-defined national language code that is to be associated with this user.
This should be a three character value.

verifyPassword

void verifyPassword(const char* password)

Checks that the supplied password matches the password recorded by the external
security manager for this IccUser.

Conditions

INVREQ, NOTAUTH, USERIDERR

Inherited public methods

Method Class
actionOnCondition IccResource
actionOnConditionAsChar IccResource
actionsOnConditionsText IccResource
classType IccBase
className IccBase
condition IccResource
conditionText IccResource
customClassNum IccBase

Chapter 61. lccUser class 287

lccUser

Method Class
handleEvent IccResource
id IccResource
iSEDFON IccResource
name IccResource
operator delete IccBase
operator new IccBase
setActionOnAnyCondition IccResource
setActionOnCondition IccResource
setActionsOnConditions IccResource
setEDF IccResource
Inherited protected methods

Method Class
setClassName IccBase
setCustomClassNum IccBase

288 cCICS TS for 0S/390: C++ OO Class Libraries

Chapter 62. IccUserld class

IccBase
IccResourceld
lccUserld

IccUserld class represents an 8-character user name.

Header file: ICCRIDEH

IccUserld constructors

Constructor (1)
IccUserld(const char* name)

name
The 8-character name of the user ID.

Constructor (2)

lIccUserld(const IccUserld& id)

id A reference to an IccUserld object.

The copy constructor.

Public methods

operator= (1)
lccUserld& operator=(const char* name)

name
The 8-character name of the user ID.

operator= (2)
lccUserld& operator=(const IccUserld& id)
id A reference to an IccUserld object.

Assigns a new value.

Inherited public methods

Method Class

classType IccBase
className IccBase
customClassNum IccBase

© Copyright IBM Corp. 1989, 1999

289

IccUserld

Method

name
nameLength
operator delete

Class
IccResourceld
IccResourceld
IccBase

operator new IccBase
Inherited protected methods

Method Class

operator= IccResourceld

setClassName
setCustomClassNum

290 cICcs TS for 0S/390: C++ OO Class Libraries

IccBase
IccBase

Chapter 63. IccValue structure

This structure contains CICS-value data areas (CVDAS) as an enumeration.

Header file: ICCVALEH

Enumeration

CVDA

Valid CVDASs are:

ACQFAIL

ADD

ALARM
ALTERABLE
APLKYBD
APPCSINGLE
ASCII8
AUDALARM
AUTOINACTIVE
AUXPAUSE
BACKOUT
BASESPACE
BELOW

BLK

BTAM
CANCEL

CEDF
CICSSECURITY
CLOSEFAILED
CMDPROT
COBOL
COLDSTART
CONFFREE
CONNECTION
CONTROLSHUT
COPY
CTLGMODIFY
DAE
DATASTREAM
DEFAULT
DEFRESP3
DELEXITERROR
DISABLED
DISK1
DPLSUBSET
DYNAMIC
EMPTYREQ
EVENT

EXCI
EXITTRACE

© Copyright IBM Corp. 1989, 1999

ACQUIRED
ADDABLE
ALLCONN
ALTERNATE
APLTEXT
APPLICATION
ASSEMBLER
AUTOACTIVE
AUTOPAGEABLE
AUXSTART
BACKTRANS
BATCHLU
BGAM
BLOCKED
BUSY
CANCELLED
CICS
CICSTABLE
CLOSELEAVE
CMDSECEXT
COBOLII
COLOR
CONFRECEIVE
CONSISTENT
CONVERSE
CREATE
CTLGNONE
DATA

DB2®
DEFRESP1
DELAY
DEREGERROR
DISABLING
DISK2

DS3270

EB

ENABLED
EVENTUAL
EXCTL
EXTENDEDDS

ACQUIRING
ADDFAIL
ALLOCATED
ALTPRTCOPY
APPC
ASACTL

ATI
AUTOARCH
AUTOSTART
AUXSTOP

BACKUPNONBWO

BDAM

BIPROG
BROWSABLE
C

cD
CICSDATAKEY
CLEAR
CLOSEREQUEST
CMDSECNO
COLDACQ
COMMIT
CONFSEND
CONSOLE
CONVIDLE
CRITICAL
CTRLABLE
DATASET
DEADLOCK
DEFRESP10R2
DELETABLE
DEREGISTERED
DISCARDFAIL
DISK2PAUSE
DUALCASE
EMERGENCY
ENDAFFINITY
EXCEPT
EXECENQ
EXTRA

ACTIVE
ADVANCE
ALLQUERY
ANY
APPCPARALLEL
ASCII7
ATTENTION
AUTOCONN
AUXILIARY
AVAILABLE
BASE
BEGINSESSION
BISYNCH
BSAM

CACHE
CDRDLPRT
CICSEXECKEY
CLOSED
CLOSING
CMDSECYES
COLDQUERY
COMMITFAIL
CONNECTED
CONTNLU
COORDINATOR
CTLGALL
CURRENT
DATASETFULL
DEC

DEFRESP2
DELETEFAIL
DEST

DISCREQ
DISPATCHABLE
DUMMY
EMPTY

ESDS
EXCEPTRESP
EXECENQADDR
EXTSECURITY

291

lccValue

292 cCICS TS for 0S/390: C++ OO Class Libraries

FAILED

FILE
FIRSTQUIESCE
FMHPARM
FORCECLOSE
FORMATEDF
FREE
FWDRECOVABLE
GTFSTART
HEURCOMMIT
HOLD
IMMCLOSING
INBOUND
INFLIGHT
INSERVICE
INTRA
IOERROR
KATAKANA
LEAVE

LOG

LPA

LUP

LUW

MAPSET
MODE24

MORE

NEW
NOALTPRTCOPY
NOAUDALARM
NOCEDF
NOCONV
NOCTL
NOEMPTYREQ
NOEXITTRACE
NOFORMATEDF
NOHOLD
NOLOG
NOMSRCONTROL
NOOBFORMAT
NOPERF
NOPRTCOPY
NORELREQ
NOSECURITY
NOSTSN
NOSYSLOG
NOTASKSTART
NOTCONNECTED
NOTEMPTY
NOTFWDRCVBLE
NOTKEYED
NOTRANDUMP
NOTREQUIRED
NOTTABLE
NOVALIDATION
NOZCPTRACE

FAILEDBKOUT
FINALQUIESCE
FIXED

FOPEN
FORCECLOSING
FORMATTED
FREEING
GENERIC
GTFSTOP

HEX

IGNORE
IMMEDIATE
INDEXRECFULL
INITCOMPLETE
INSTALLED
INTSTART

IRC

KEYED

LIC

LOGICAL

LU61

LUSTAT
MAGTAPE
MCHCTL
MODE31
MSRCONTROL
NEWCOPY
NOAPLKYBD
NOAUTOARCH
NOCLEAR
NOCONVERSE
NODAE
NOEVENT
NOEXTENDEDDS
NOFORMFEED
NOISOLATE
NOLOSTLOCKS
NONAUTOCONN
NOOBOPERID
NOPRESETSEC
NOQUERY
NORETAINED
NOSHUTDOWN
NOSWITCH
NOTADDABLE
NOTBROWSABLE
NOTCTRLABLE
NOTERMINAL
NOTINBOUND
NOTLPA
NOTREADABLE
NOTRLS

NOTTI
NOVFORM
OBFORMAT

FAILINGBKOUT
FINPUT

FLUSH

FORCE
FORCEPURGE
FORMFEED
FULL

GMT
HARDCOPY
HFORM
IGNORERR
IMMQUIESCED
INDIRECT
INOUT
INSTALLFAIL
INTSTOP
ISCMMCONV
KSDS
LIGHTPEN
LOGTERM
LUCMODGRP
LUTYPE4

MAIN

MDT
MODEANY

MVS
NEWSESSION
NOAPLTEXT
NOBACKOUT
NOCMDPROT
NOCOPY
NODISCREQ
NOEXCEPT
NOFMH
NOHFORM
NOKATAKANA
NOMDT
NONCICS
NOOUTLINE
NOPRINTADAPT
NORECOVDATA
NORMALBKOUT
NOSOSI
NOSYNCPOINT
NOTALTERABLE
NOTBUSY
NOTDEFINED
NOTEXTKYBD
NOTINIT
NOTPENDING
NOTREADY
NOTSOS
NOTUPDATABLE
NOWAIT
OBOPERID

FCLOSE
FIRSTINIT

FMH
FORCECANCEL
FORCEUOW
FOUTPUT
FULLAPI
GOINGOUT
HEURBACKOUT
HILIGHT
IMMCLOSE
INACTIVE
INDOUBT
INPUT
INTACTLU
INVALID
ISOLATE

LE370

LOCAL

LOSE

LUCSESS
LUTYPEG

MAP

MOD

MODEL
NEGATIVE
NOALARM
NOATI
NOBACKTRANS
NOCOLOR
NOCREATE
NODUALCASE
NOEXCTL
NOFMHPARM
NOHILIGHT
NOLIGHTPEN
NOMSGJRNL
NONE
NOPARTITIONS
NOPROGSYMBOL
NOREENTPROT
NORMALRESP
NOSPI
NOSYSDUMP
NOTAPPLIC
NOTCDEB
NOTDELETABLE
NOTEXTPRINT
NOTINSTALLED
NOTPURGEABLE
NOTRECOVABLE
NOTSUPPORTED
NOUCTRAN
NOWRITE
OBTAINING

OFF
OLDSESSION
OPENING
OUTPUT
PARTITIONS
PENDDATA
PENDRECEIVE
PENDUNSOL
PL1
PRESETSEC
PROFILE
PRTCOPY
QUIESCED
READONLY
RECOVERABLE
REGERROR
RELEASE
REMLOSTLOCKS
REPEATABLE
RESETLOCKS
RESSYS
REVERTED
RLSINACTIVE
ROUTE

RU
SECONDINIT
SESSIONFAIL
SHARE
SHUTDOWN
SINGLEOFF
SNA

SOSI
SPRSTRACE
STARTED
STOPPED
SUBORDINATE
SWITCH
SYNCFREE
SYS370
SYSTEM3
SYSTEMON
T2260R
T2741COR
T3275R
T3278M3
T3279M3
T3284R

T3601
T3650USER
T3780

T7770

TASK
TCEXITALL
TCLASS
TERM

oK
ON
OPENINPUT
OUTSERVICE
PARTITIONSET
PENDFREE
PENDRELEASE
PERF

PLI

PRIMARY
PROGRAM
PURGE
QUIESCING
READY
RECOVERED
REGISTERED
RELEASED
REMOTE
REQUIRED
RESSECEXT
RESYNC

RLS
RLSSERVER
RPG
RUNNING
SEND
SESSIONLOST
SHARED
SHUTENABLED
SINGLEON
SOS

SPECIFIC
STANDBY
STARTING
STSN
SUBSPACE
SWITCHALL
SYNCPOINT
SYS7BSCA
SYSTEM
T1050

T2265

T2770

T3277L
T3278M4
T3279M4
T3286L

T3614
T3653HOST
T3790
TAKEOVER
TASKSTART
TCEXITALLOFF
TCONSOLE
TERMINAL

OLD
OPEN
OPENOUTPUT
OWNER
PATH
PENDING
PENDSTART
PHASEIN
POSITIVE
PRINTADAPT
PROGSYMBOL
PURGEABLE
READABLE
RECEIVE
RECOVERLOCKS
REJECT
RELEASING
REMOVE
REREAD
RESSECNO
RETAINED
RLSACTIVE
RMI

RRDS

scs

SEQDISK
SETFAIL
SHUNTED
SIGNEDOFF
SKIP
SOSABOVE
SPECTRACE
STANTRACE
STARTUP
STSNSET
SURROGATE
SWITCHING
SYNCRECEIVE
SYSDUMP
SYSTEM7
T1053

T2740

T2780

T3277R
T3278M5
T3279M5
T3286R
T3650ATT
T3735
T3790SCSP
TAPE1

TCAM
TCEXITNONE
TDQ
TEXTKYBD

IccValue

OLDCOPY
OPENERROR
OUTLINE
PAGEABLE
PENDBEGIN
PENDPASS
PENDSTSN
PHYSICAL
POST
PRIVATE
PROTECTED
QUEUE
READBACK
RECOVDATA
REENTPROT
RELATED
RELREQ
REMSESSION
RESET
RESSECYES
RETRY
RLSGONE
ROLLBACK
RTR

sDLC
SESSION

SFS
SHUTDISABLED
SIGNEDON
SMF
SOSBELOW
SPI

START
STATIC
STSNTEST
SUSPENDED
SWITCHNEXT
SYNCSEND
SYSLOG
SYSTEMOFF
T2260L
T2741BCD
T2980
T3278M2
T3279M2
T3284L
T3600BI
T3650PIPE
T3740
T3790UP
TAPE2
TCAMSNA
TCEXITSYSTEM
TELETYPE
TEXTPRINT

Chapter 63. IccValue structure 293

lccValue

294 cICcs TS for 0S/390: C++ OO Class Libraries

THIRDINIT
TPS55M3
TRANIDONLY
TWX3335
UNCOMMITTED
UNENABLED
UNQUIESCED
UPDATABLE
USEROFF
VALIDATION
VRRDS
WAITCOMMIT
WAITRMI

XM

TIME

TPS55M4

TSQ

UCTRAN
UNCONNECTED
UNENABLING
UNREGISTERED
USER

USERON
VARIABLE
VSAM

WAITER
WARMSTART
XNOTDONE

TIMEOUT
TPS55M5
TTCAM
UNAVAILABLE
UNDEFINED
UNKNOWN
UNSOLDATA
USERDATAKEY
USERTABLE
VFORM
VTAM®
WAITFORGET
WIN

XOK

TPS55M2
TRANDUMP
TTI
UNBLOCKED
UNDETERMINED
UNPROTECTED
uow
USEREXECKEY
VALID
VIDEOTERM
WAIT

WAITING

XCF

ZCPTRACE

Chapter 64. main function

You are recommended to include this code in your application. It initializes the
CICS Foundation Classes correctly, provides default exception handling, and
releases allocated memory after it is finished. You may substitute your own

variation of this main function, provided you know what you are doing, but this
should rarely be necessary.

Source file: ICCMAIN

The stub has three functions:

1. It initializes the Foundation Classes environment. You can customize the way it
does this by using #defines that control:

+ memory management (see page B3)

» Family Subset enforcement (see page)

* EDF enablement (see page E)

2. It provides a default definition of a class IccUserControl, derived from
IccControl, that includes a default constructor and run method.

3. It invokes the run method of the user’s control object using a try-catch

construct.

The functional part of the main code is shown below.

void main(void)

{

Icc::initializeEnvironment (ICC_CLASS_MEMORY_MGMT,

ICC_FAMILY SUBSET,
ICC_EDF_BOOL);

try

}

ICC_USER_CONTROL control;

control.run();

catch(IccException& exc)

{

}

Icc::catchException(exc);

catch(...)

{

}

Icc::unknownException();

Icc::returnToCICS();

)

© Copyright IBM Corp. 1989, 1999

This is the main C++ entry point.

B O oo O D

-
5]

295

main function

This call initializes the environment and is essential. The three parameters
have previously been defined to the defaults for the platform.

Run the user's application code, using try and catch, in case the application
code does not catch exceptions.

Create control object.

Invoke run method of control object (defined as pure virtual in IccControl.
Catch any IccException objects not caught by the application.

Call this function to abend task.

Catch any other exceptions not caught by application.

Call this function to abend task.

RSO0 B D

Return control to CICS.

296 cCICS TS for 0S/390: C++ OO Class Libraries

Part 4. Appendixes

© Copyright IBM Corp. 1989, 1999 297

298 cCICS TS for 0S/390: C++ OO Class Libraries

Appendix A. Mapping EXEC CICS calls to Foundation Class
methods

The following table shows the correspondence between CICS calls made using the
EXEC CICS API and the equivalent calls from the Foundation Classes.

EXEC CICS Class Method
ABEND IccTask abend
ADDRESS COMMAREA IccControl commArea
ADDRESS CWA lccSystem workArea

ADDRESS EIB No direct access to EIB: please use appropriate method on
appropriate class.

ADDRESS TCTUA IccTerminal workArea

ADDRESS TWA lccTask workArea

ALLOCATE IccSession allocate

ASKTIME IccClock update

ASSIGN ABCODE IccAbendData abendCode

ASSIGN ABDUMP IccAbendData isDumpAvaliable

ASSIGN ABPROGRAM IccAbendData programName

ASSIGN ALTSCRNHT

lccTerminalData

alternateHeight

ASSIGN ALTSCRNWD IccTerminalData alternateWidth
ASSIGN APLKYBD IccTerminalData iSAPLKeyboard
ASSIGN APLTEXT IccTerminalData iISAPLText
ASSIGN ASRAINTRPT IccAbendData ASRAlInterrupt
ASSIGN ASRAKEY IccAbendData ASRAKeyType
ASSIGN ASRAPSW IccAbendData ASRAPSW
ASSIGN ASRAREGS IccAbendData ASRARegisters
ASSIGN ASRASPC IccAbendData ASRASpaceType
ASSIGN ASRASTG IccAbendData ASRAStorageType
ASSIGN APPLID lccSystem applName
ASSIGN BTRANS IccTerminalData isBTrans

ASSIGN CMDSEC lccTask isCommandSecurityOn
ASSIGN COLOR IccTerminalData isColor
ASSIGN CWALENG lccSystem workArea

ASSIGN DEFSCRNHT

lccTerminalData

defaultHeight

ASSIGN DEFSCRNWD

IccTerminalData

defaultWidth

ASSIGN EWASUPP IccTerminalData iISEWA
ASSIGN EXTDS IccTerminalData isExtended3270
ASSIGN FACILITY IccTerminal name

ASSIGN FCI lccTask facility Type

ASSIGN GCHARS

lccTerminalData

graphicCharSetld

© Copyright IBM Corp. 1989, 1999

299

EXEC CICS to Foundation Class methods

EXEC CICS Class Method

ASSIGN GCODES IccTerminalData graphicCharCodeSet
ASSIGN GMMI IccTerminalData isGoodMorning
ASSIGN HILIGHT IccTerminalData isHighlight

ASSIGN INITPARM IccControl initData

ASSIGN INITPARMLEN IccControl initData

ASSIGN INVOKINGPROG IccControl callingProgramid
ASSIGN KATAKANA IccTerminalData isKatakana

ASSIGN NETNAME IccTerminal netName

ASSIGN OUTLINE IccTerminalData isFieldOutline

ASSIGN ORGABCODE IccAbendData originalAbendCode
ASSIGN PRINSYSID IccTask principalSysid
ASSIGN PROGRAM IccControl programid
ASSIGN PS IccTerminalData isPS

ASSIGN QNAME IccTask triggerDataQueueld

ASSIGN RESSEC IccTask isResourceSecurityOn

ASSIGN RESTART lccTask isRestarted

ASSIGN SCRNHT IccTerminal height

ASSIGN SCRNWD IccTerminal width

ASSIGN SOSI IccTerminalData isSOSI

ASSIGN STARTCODE IccTask startType,
isCommitSupported,
isStartDataAvailable

ASSIGN SYSID IccSystem sysld

ASSIGN TASKPRIORITY IccTask priority

ASSIGN TCTUALENG IccTerminal workArea

ASSIGN TEXTKYBD IccTerminalData isTextKeyboard

ASSIGN TEXTPRINT IccTerminalData isTextPrint

ASSIGN TWALENG IccTask workArea

ASSIGN USERID lccTask userld

ASSIGN VALIDATION IccTerminalData isValidation

CANCEL IccClock cancelAlarm

CANCEL IccStartRequestQ cancel

CHANGE PASSWORD lccUser changePassword

CHANGE TASK IccTask setPriority

CONNECT PROCESS IccSession connectProcess

CONVERSE IccSession converse

DELAY IccTask delay

DELETE IccFile deleteRecord

DELETE IccFile deleteLockedRecord

DELETEQ TD IccDataQueue empty

DELETEQ TS IccTempStore empty

300 ciIcs TS for 0S/390: C++ OO Class Libraries

EXEC CICS to Foundation Class methods

EXEC CICS Class Method

DEQ IccSemaphore unlock
DUMP TRANSACTION lccTask dump

DUMP TRANSACTION lccTask setDumpOpts

ENDBR

IccFilelterator

IccFilelterator (destructor)

ENQ IccSemaphore lock

ENQ IccSemaphore tryLock

ENTER TRACENUM lccTask enterTrace

EXTRACT ATTRIBUTES lccSession state, stateText

EXTRACT PROCESS IccSession extractProcess

FORMATTIME YYDDD, IccClock date

YYMMDD, etc

FORMATTIME DATE IccClock date

FORMATTIME DATEFORM | lccSystem dateFormat

FORMATTIME DAYCOUNT | lccClock daysSince1900

FORMATTIME DAYOFWEEK | IccClock dayOfWeek

FORMATTIME IccClock dayOfMonth

DAYOFMONTH

FORMATTIME IccClock monthOfYear

MONTHOFYEAR

FORMATTIME TIME IccClock time

FORMATTIME YEAR IccClock year

FREE IccSession free

FREEMAIN lccTask freeStorage

GETMAIN lccTask getStorage

HANDLE ABEND IccControl setAbendHandler,
cancelAbendHandler,
resetAbendHandler

INQUIRE FILE IccFile accessMethod

ACCESSMETHOD

INQUIRE FILE ADD IccFile isAddable

INQUIRE FILE BROWSE IccFile isBrowsable

INQUIRE FILE DELETE IccFileControl isDeletable

INQUIRE FILE IccFile iSEmptyOn

EMPTYSTATUS

INQUIRE FILE IccFile enableStatus

ENABLESTATUS

INQUIRE FILE IccFile keyPosition

KEYPOSITION

INQUIRE FILE IccFile openStatus

OPENSTATUS

INQUIRE FILE READ IccFile isReadable

INQUIRE FILE IccFile recordFormat

RECORDFORMAT

INQUIRE FILE RECORDSIZE | IccFile recordLength

Appendix A. Mapping EXEC CICS calls to Foundation Class methods

301

EXEC CICS to Foundation Class methods

EXEC CICS Class Method
INQUIRE FILE IccFile isRecoverable
RECOVSTATUS

INQUIRE FILE TYPE IccFile type

INQUIRE FILE UPDATE IccFile isUpdatable
ISSUE ABEND IccSession issueAbend
ISSUE CONFIRMATION IccSession issueConfirmation
ISSUE ERROR IccSession issueError

ISSUE PREPARE IccSession issuePrepare
ISSUE SIGNAL IccSession issueSignal

LINK IccProgram link

LINK INPUTMSG IccProgram setinputMessage
INPUTMSGLEN

LOAD IccProgram load

POST IccClock setAlarm

READ IccFile readRecord
READNEXT IccFilelterator readNextRecord
READPREV IccFilelterator readPreviousRecord
READQ TD IccDataQueue readltem

READQ TS IccTempStore readltem
RECEIVE (APPC) IccSession receive

RECEIVE (3270) IccTerminal receive, receive3270Data
RELEASE IccProgram unload

RESETBR IccFilelterator reset

RETRIEVE IccStartRequestQ retrieveData *

Note: The retrieveData method gets the start information from CICS and stores it in the
IccStartRequestQ object: the information can then be accessed using data, queueName,
returnTermld and returnTransld methods.

RETRIEVE INTO, LENGTH IccStartRequestQ data
RETRIEVE QUEUE IccStartRequestQ queueName
RETRIEVE RTRANSID IccStartRequestQ returnTransld
RETRIEVE RTERMID IccStartRequestQ returnTermld
RETURN IccControl main 2

Note: Returning (using C++ reserved word return) from method run in class IccControl
results in an EXEC CICS RETURN.

RETURN TRANSID IccTerminal setNextTransld *
RETURN IMMEDIATE IccTerminal setNextTransld 3
RETURN COMMAREA IccTerminal setNextCommArea °
LENGTH

RETURN INPUTMSG, IccTerminal setNextInputMessage 3
INPUTMSGLEN

Note: Issue this call before returning from IccControl::run.

REWRITE IccFile rewriteRecord

SEND (APPC) IccSession send, sendInvite, sendLast

302 cICS TS for 0S/390: C++ OO Class Libraries

EXEC CICS to Foundation Class methods

EXEC CICS Class Method

SEND (3270) IccTerminal send, sendLine

SEND CONTROL CURSOR lccTerminal setCursor setLine,
setNewLine

SEND CONTROL ERASE IccTerminal erase

SEND CONTROL FREEKB IccTerminal freeKeyboard

SET FILE IccFile setAccess

ADD |BROWSE | DELETE]...

SET FILE EMPTYSTATUS IccFile setEmptyOnOpen

SET FILE OPEN IccFile setStatus

STATUS|ENABLESTATUS

SIGNOFF IccTerminal signoff

SIGNON IccTerminal signon

START TRANSID AT/AFTER | IccStartRequestQ start 4

START TRANSID FROM IccStartRequestQ setData, registerDataBuffer *

LENGTH

START TRANSID NOCHECK | IccStartRequestQ setStartOpts *

START TRANSID PROTECT | IccStartRequestQ setStartOpts *

START TRANSID QUEUE IccStartRequestQ setQueueName *

START TRANSID REQID IccStartRequestQ start

START TRANSID TERMID IccStartRequestQ start

START TRANSID USERID IccStartRequestQ start

START TRANSID RTERMID | IccStartRequestQ setReturnTermld #

START TRANSID RTRANSID | IccStartRequestQ setReturnTransid *

Note: Use methods setData, setQueueName, setReturnTermld, setReturnTransld,
setStartOpts to set the state of the lccStartRequestQ object before issuing start requests with

the start method.

STARTBR IccFilelterator IccFilelterator (constructor)
SUSPEND lccTask suspend

SYNCPOINT lccTask commituow
SYNCPOINT ROLLBACK lccTask rollIBackUOW

UNLOCK IccFile unlockRecord

VERIFY PASSWORD lccUser verifyPassword

WAIT CONVID IccSession flush

WAIT EVENT IccTask waitOnAlarm

WAIT EXTERNAL lccTask waitExternal

WAIT JOURNALNUM Icclournal wait

WRITE IccFile writeRecord

WRITE OPERATOR IccConsole write, writeAndGetReply
WRITEQ TD IccDataQueue writeltem

WRITEQ TS IccTempStore writeltem, rewriteltem

Appendix A. Mapping EXEC CICS calls to Foundation Class methods 303

EXEC CICS to Foundation Class methods

304 cIcs TS for 0S/390: C++ OO Class Libraries

Appendix B. Mapping Foundation Class methods to EXEC

CICS calls

The following table shows the correspondence between CICS calls made using the
Foundation Classes and the equivalent EXEC CICS API calls.

IccAbendData Class

Method EXEC CICS
abendCode ASSIGN ABCODE
ASRAInterrupt ASSIGN ASRAINTRPT
ASRAKeyType ASSIGN ASRAKEY
ASRAPSW ASSIGN ASRAPSW
ASRARegisters ASSIGN ASRAREGS
ASRASpaceType ASSIGN ASRASPC
ASRAStorageType ASSIGN ASRASTG

isDumpAvailable

ASSIGN ABDUMP

originalAbendCode

ASSIGN ORGABCODE

programName

ASSIGN ABPROGRAM

IccAbsTime Class

Method EXEC CICS
date FORMATTIME YYDDD/YYMMDD/etc.
dayOfMonth FORMATTIME DAYOFMONTH
dayOfWeek FORMATTIME DAYOFWEEK
daysSince1900 FORMATTIME DAYCOUNT
monthOfYear FORMATTIME MONTHOFYEAR
time FORMATTIME TIME
year FORMATTIME YEAR

IccClock Class

Method EXEC CICS
cancelAlarm CANCEL
date FORMATTIME YYDDD/YYMMDD/etc.
dayOfMonth FORMATTIME DAYOFMONTH
dayOfWeek FORMATTIME DAYOFWEEK
daysSince1900 FORMATTIME DAYCOUNT
monthOfYear FORMATTIME MONTHOFYEAR
setAlarm POST
time FORMATTIME TIME
update ASKTIME
year FORMATTIME YEAR

IccConsole Class

Method

EXEC CICS

© Copyright IBM Corp. 1989, 1999

305

Foundation Class methods to EXEC CICS

write

WRITE OPERATOR

writeAndGetReply

WRITE OPERATOR

IccControl Class

Method

EXEC CICS

callingProgramid

ASSIGN INVOKINGPROG

cancelAbendHandler

HANDLE ABEND CANCEL

commArea ADDRESS COMMAREA
initData ASSIGN INITPARM & INITPARMLEN
programld ASSIGN PROGRAM

resetAbendHandler

HANDLE ABEND RESET

setAbendHandler

HANDLE ABEND PROGRAM

IccDataQueue Class

Method EXEC CICS
empty DELETEQ TD
readltem READQ TD
writeltem WRITEQ TD

IccFile Class

Method EXEC CICS

access INQUIRE FILE
ADD | BROWSE | DELETE | READ | UPDATE

accessMethod INQUIRE FILE ACCESSMETHOD

deleteRecord

DELETE FILE RIDFLD

deleteLockedRecord

DELETE FILE

enableStatus

INQUIRE FILE ENABLESTATUS

isAddable INQUIRE FILE ADD
isBrowsable INQUIRE FILE BROWSE
isDeletable INQUIRE FILE DELETE
iISEmptyOnOpen INQUIRE FILE EMPTYSTATUS
isReadable INQUIRE FILE READ

isRecoverable

INQUIRE FILE RECOVSTATUS

isUpdatable INQUIRE FILE UPDATE
keyPosition INQUIRE FILE KEYPOSITION
openStatus INQUIRE FILE OPENSTATUS
readRecord READ FILE

recordFormat INQUIRE FILE RECORDFORMAT
recordLength INQUIRE FILE RECORDSIZE

rewriteRecord

REWRITE FILE

setAccess SET FILE ADD BROWSE DELETE etc.
setEmptyOnOpen SET FILE EMPTYSTATUS

setStatus SET FILE OPENSTATUS ENABLESTATUS
type INQUIRE FILE TYPE

unlockRecord

UNLOCK FILE

306 cICs TS for 0S/390: C++ OO Class Libraries

Foundation Class methods to EXEC CICS

writeRecord

WRITE FILE

IccFilelterator Class

Method EXEC CICS
IccFilelterator (constructor) STARTBR FILE
“lccFilelterator (destructor) ENDBR FILE
readNextRecord READNEXT FILE
readPreviousRecord READPREV FILE
reset RESETBR FILE

Icclournal Class

Method EXEC CICS

wait WAIT JOURNALNUM

writeRecord

WRITE JOURNALNUM

IccProgram Class

Method EXEC CICS
link LINK PROGRAM
load LOAD PROGRAM
unload RELEASE PROGRAM

IccResource Class

Method EXEC CICS
condition (RESP & RESP2)
setRouteOption (SYSID)

IccSemaphore Class

Method EXEC CICS
lock ENQ RESOURCE
tryLock ENQ RESOURCE NOSUSPEND
unlock DEQ RESOURCE

IccSession Class

Method EXEC CICS
allocate ALLOCATE
connectProcess CONNECT PROCESS CONVID
converse CONVERSE CONVID
extractProcess EXTRACT PROCESS CONVID
flush WAIT CONVID
free FREE CONVID
issueAbend ISSUE ABEND CONVID

issueConfirmation

ISSUE CONFIRMATION CONVID

issueError ISSUE ERROR CONVID
issuePrepare ISSUE PREPARE CONVID
issueSignal ISSUE SIGNAL CONVID
receive RECEIVE CONVID

send SEND CONVID
sendlinvite SEND CONVID INVITE

Appendix B. Mapping Foundation Class methods to EXEC CICS calls

307

Foundation Class methods to EXEC CICS

sendLast SEND CONVID LAST

state EXTRACT ATTRIBUTES

IccStartRequestQ Class

Method EXEC CICS
cancel CANCEL
retrieveData RETRIEVE
start START TRANSID

IccSystem Class

Method EXEC CICS
applName ASSIGN APPLID
beginBrowse INQUIRE (FILE, TDQUEUE, etc) START
dateFormat FORMATTIME DATEFORM
endBrowse INQUIRE (FILE, TDQUEUE, etc) END
freeStorage FREEMAIN
getFile INQUIRE FILE
getNextFile INQUIRE FILE NEXT
getStorage GETMAIN SHARED
operatingSystem INQUIRE SYSTEM OPSYS
operatingSystemLevel INQUIRE SYSTEM OPREL
release INQUIRE SYSTEM RELEASE
releaseText INQUIRE SYSTEM RELEASE
sysld ASSIGN SYSID
workArea ADDRESS CWA

lccTask Class

Method EXEC CICS
abend ABEND
commituow SYNCPOINT
delay DELAY
dump DUMP TRANSACTION
enterTrace ENTER TRACENUM
facility Type ASSIGN STARTCODE, TERMCODE, PRINSYSID, FCI
freeStorage FREEMAIN
isCommandSecurityOn ASSIGN CMDSEC
isCommitSupported ASSIGN STARTCODE
isResourceSecurityOn ASSIGN RESSEC
isRestarted ASSIGN RESTART
isStartDataAvailable ASSIGN STARTCODE
principalSysid ASSIGN PRINSYSID
priority ASSIGN TASKPRIORITY
rolIBackUOW SYNCPOINT ROLLBACK
setPrioity CHANGE TASK PRIORITY
startType ASSIGN STARTCODE

308 cICcs TS for 0S/390: C++ OO Class Libraries

Foundation Class methods to EXEC CICS

suspend

SUSPEND

triggerDataQueueld

ASSIGN QNAME

userld

ASSIGN USERID

waitExternal

WAIT EXTERNAL /7 WAITCICS

waitOnAlarm

WAIT EVENT

workArea

ADDRESS TWA

IccTempStore Class

Method

EXEC CICS

empty

DELETEQ TS

readltem

READQ TS ITEM

readNextltem

READQ TS NEXT

rewriteltem

WRITEQ TS ITEM REWRITE

writeltem

WRITEQ TS ITEM

IccTerminal Class

Method EXEC CICS
erase SEND CONTROL ERASE
freeKeyboard SEND CONTROL FREEKB
height ASSIGN SCRNHT
netName ASSIGN NETNAME
receive RECEIVE
receive3270Data RECEIVE BUFFER
send SEND
sendLine SEND
setCursor SEND CONTROL CURSOR
setLine SEND CONTROL CURSOR
setNewLine SEND CONTROL CURSOR
signoff SIGNOFF
signon SIGNON
waitForAlID RECEIVE
width ASSIGN SCRNWD
workArea ADDRESS TCTUA

IccTerminalData Class

Method

EXEC CICS

alternateHeight

ASSIGN ALTSCRNHT

alternateWidth

ASSIGN ALTSCRNWD

defaultHeight

ASSIGN DEFSCRNHT

defaultWidth

ASSIGN DEFSCRNWD

graphicCharSetld

ASSIGN GCHARS

graphicCharCodeSet

ASSIGN GCODES

iSAPLKeyboard ASSIGN APLKYBD
iSAPLText ASSIGN APLTEXT
isBTrans ASSIGN BTRANS

Appendix B. Mapping Foundation Class methods to EXEC CICS calls

309

Foundation Class methods to EXEC CICS

isColor ASSIGN COLOR
iISEWA ASSIGN ESASUPP
isExtended3270 ASSIGN EXTDS

isGoodMorning

ASSIGN GMMI

isHighlight ASSIGN HILIGHT
isKatakana ASSIGN KATAKANA
isSMSRControl ASSIGN MSRCONTROL
isFieldOutline ASSIGN OUTLINE

isPS ASSIGN PS

isSOSI ASSIGN SOSI
isTextKeyboard ASSIGN TEXTKYBD
isTextPrint ASSIGN TEXTPRINT
isValidation ASSIGN VALIDATION

IccUser Class

Method

EXEC CICS

changePassword

CHANGE PASSWORD

verifyPassword

VERIFY PASSWORD

310 cIcs TS for 0S/390: C++ OO Class Libraries

Appendix C. Output from sample programs

This section shows the typical screen output from the supplied sample programs

(see ESample source cade” on page 6).

ICC$BUF (IBUF)

This is program 'icc$buf'...)
IccBuf bufl dal= 0 d1= 0 E+I []
IccBuf buf2(50) dal=50 di= 0 E+I []
IccBuf buf3(30,fixed) dal=30 di= 0 F+I []
IccBuf buf4(sizeof(AStruct),&aStruc) dal=24 d1=24 F+E [!Some text for aStruc]
IccBuf buf5("A String Literal") dal=19 d1=19 E+I [Some data somewhere]
IccBuf bufé(bufs) dal=19 d1=19 E+I [Some data somewhere]
bufl = "Some XXX data for bufl" dal=22 d1=22 E+I [Some XXX data for bufl]
buf2.assign(strlen(data),data) dal=50 d1=19 E+I [Some data somewhere]
bufl.cut(4,5) dal=22 d1=18 E+I [Some data for bufl]
buf5.insert(5,more,5) dal=24 d1=24 E+I [Some more data somewhere]
buf5.replace(4,xtra,5) dal=24 d1=24 E+I [Some xtra data somewhere]
buf2 << ".ext" dal=50 d1=23 E+I [Some data somewhere.ext]
buf3 = bufé dal=30 d1=24 F+I [!Some text for aStruc]
(buf3 == buf4) returns true (OK).
buf3 = "garbage" dal=30 d1= 7 F+I [garbage]
(buf3 != buf4) returns true (OK).
Program 'icc$buf' complete: Hit PF12 to End
- J
ICC$CLK (ICLK)
This is program 'icc$clk' ...)
date() = [220296]
date (DDMMYY) = [220296]
date(DDMMYY,':') = [22:02:96]
date(MMDDYY) = [022296]
date(YYDDD) = [96053]
daysSincel900() = 35116
dayOfleek() = 4 Today is NOT Friday
dayOfMonth() = 22
monthOfYear() = 2
time() = [143832]
time('-') = [14-38-32]
year() = [1996]
Program 'icc$clk' complete: Hit PF12 to End
- J
ICC$DAT (IDAT)
/}his is program 'icc$dat'... h
Writing records to 'ICCQ'...
- writing record #1: 'Hello World - item 1' <NORMAL>
- writing record #2: 'Hello World - item 2' <NORMAL>
- writing record #3: 'Hello World - item 3' <NORMAL>
Reading records back in...
- reading record #1: 'Hello World - item 1' <NORMAL>
- reading record #2: 'Hello World - item 2' <NORMAL>
- reading record #3: 'Hello World - item 3' <NORMAL>
Program 'icc$dat' complete: Hit PF12 to End
- J

© Copyright IBM Corp. 1989, 1999 311

Output from sample programs

ICC$EXC1 (IEX1)

This is program 'icc$excl' ...

Number passed = 1

Number passed = 7

Number passed = 11

>>Qut of Range - throwing exception
Exception caught: !!Number is out of range!!
Program 'icc$excl' complete: Hit PF12 to End

ICC$EXC2 (IEX2)

This is program 'icc$exc2'...

Creating IccTermId idl...

Creating IccTermld id2...

IccException: 112 IccTermId::IccTermId type=invalidArgument (IccMessage: 030 Ic
cTermId::IccTermld <Invalid string length passed to 'IccTermId' constructor.
Spec ified: 5, Maximum allowed: 4>)

Program 'icc$exc2' complete: Hit PF12 to End

ICC$EXC3 (IEX3)

This is program 'icc$exc3'...

About to read Temporary Storage 'UNKNOWN!'...

IccException: 094 IccTempStore::readNextItem type=CICSCondition (IccMessage: 008
IccTempStore: :readNextItem <CICS returned the 'QIDERR' condition.>)

Program 'icc$exc3' complete: Hit PF12 to End

ICCS$FIL (IFIL)

This is program 'icc$fil'...

Deleting records in file 'ICCKFILE...
5 records were deleted.

Writing records to file 'ICCKFILE'...
- writing record number 1. <NORMAL>
- writing record number 2. <NORMAL>
- writing record number 3. <NORMAL>
- writing record number 4 <NORMAL>
- writing record number 5 <NORMAL>
Browsing records.

- record read: [BACH, J S 003 00-1234 BACH]
- record read: [CHOPIN, F 004 00-3355 CHOPIN 1
- record read: [HANDEL, G F 005 00-4466 HANDEL]
- record read: [BEETHOVEN, L 007 00-2244 BEET]
- record read: [MOZART, W A 008 00-5577 WOLFGANG]
- record read: [MOZART, W A 008 00-5577 WOLFGANG]
- record read: [BEETHOVEN, L 007 00-2244 BEET]
- record read: [HANDEL, G F 005 00-4466 HANDEL]
- record read: [CHOPIN, F 004 00-3355 CHOPIN 1

record read: [BACH, J S 003 00-1234 BACH]

Updating record 1...

readRecord (update)<NORMAL> rewriteRecord()<NORMAL>
- record read: [MOZART, W A 008 00-5678 WOLFGANG]
Program 'icc$fil' complete: Hit PF12 to End

312 cICS TS for 0S/390: C++ OO Class Libraries

Output from sample programs

ICC$HEL (IHEL)
(: Hello World :)

ICC$JIRN (IJRN)

This is program 'icc$jrn'...
Writing 3 records to journal number 77...

- writing record 1: [Hello World - item 1] <NORMAL>
- writing record 2: [Hello World - item 2] <NORMAL>
- writing record 3: [Hello World - item 3] <NORMAL>

Program 'icc$jrn' complete: Hit PF12 to End

ICC$PRG1 (IPR1)

First Screen

This is program 'icc$prgl'...

Loaded program: ICC$PRG2 <NORMAL> Length=0 Address=ff000000
Unloading program: ICC$PRG2 <NORMAL>

- Hit ENTER to continue...

Second Screen

/About to Tink to program 'ICC$PRG2 '
- commArea before link is [DATA SET BY ICC$PRG1]
- Hit ENTER to continue...
This is program 'icc$prg2'...
commArea received from caller =[DATA SET BY ICC$PRG1]
Changed commArea to [DATA RETURNED BY ICC$PRG2]
- Hit ENTER to return to caller...
- link call returned <NORMAL>
- commArea after 1ink is [DATA RETURNED BY ICC$PRG2]
About to Tink to program 'ICC$PRG3 ' on system 'ICC2'
- commArea before link is [DATA SET BY ICC$PRG1]
- Hit ENTER to continue...
- link call returned <NORMAL>
- commArea after link is [DATA RETURNED BY ICC$PRG3]
\?rogram "icc$prgl' complete: Hit PF12 to End

Appendix C. Output from sample programs 313

Output from sample programs

ICC$RES1 (IRE1)

This is program 'icc$resl'...
Writing items to CustomDataQueue 'ICCQ' ...
- writing item #1: 'Hello World - item 1' <NORMAL>
- writing item #2: 'Hello World - item 2' <NORMAL>
- writing item #3: 'Hello World - item 3' <NORMAL>
Reading items from CustomDataQueue 'ICCQ' ...
- item = 'Hello World - item 1'
- item = 'Hello World - item 2'
- item = 'Hello World - item 3'
Reading Toop complete.
> In handleEvent().
Summary=IccEvent: CustomDataQueue::readItem condition=23 (QZ ERO) minor=0
\?rogram "iccresl' complete: Hit PF12 to End

ICC$RES?2 (IRE2)

This is program 'icc$res2'...

invoking clear() method for IccDataQueue object <NORMAL>

invoking clear() method for IccTempStore object <NORMAL>

put() item #1 in IccDataQueue object

put() item #2 in IccDataQueue object

put() item #3 in IccDataQueue object

put() item #1 in IccTempStore object

put() item #2 in IccTempStore object

put() item #3 in IccTempStore object

Now get items from IccDataQueue object

get() from IccDataQueue object returned 'Hello World - item 1'

get() from IccDataQueue object returned 'Hello World - item 2'

get() from IccDataQueue object returned 'Hello World - item 3'

Now get items from IccTempStore object

get() from IccTempStore object returned 'Hello World - item 1'

get() from IccTempStore object returned 'Hello World - item 2'

get() from IccTempStore object returned 'Hello World - item 3'
\?rogram "iccres2' complete: Hit PF12 to End

ICC$SEM (ISEM)

/}his is program 'icc$sem'...
Constructing IccSemaphore object (lock by value)...
Issuing lock request... <NORMAL>
Issuing unlock request... <NORMAL>
Constructing Semaphore object (lock by address)...
Issuing tryLock request... <NORMAL>
Issuing unlock request... <NORMAL>

Program 'icc$sem' complete: Hit PF12 to End

ICC$SES1 (ISE1)

This is program 'icc$sesl'...

allocate session... <NORMAL>
STATE=81 ALLOCATED ERR=0 connectProcess...<NORMAL>
STATE=90 SEND ERR=0 sendInvite ... <NORMAL>
STATE=87 PENDRECEIVE ERR=0 receive ... <NORMAL>

STATE=85 FREE ERR=0 - data from back end=[Hi there this is from backEnd
TIME=14:49:18 on 22/02/96]

free... <NORMAL>

STATE=1 NOTAPPLIC ERR=0

\frogram 'icc$sesl' complete: Hit PF12 to End

314 cIcs TS for 0S/390: C++ OO Class Libraries

Output from sample programs

ICC$SES?2 (ISE2)

This screen is typical output after running "CEBR DTPBKEND” on the back-end

CICS system:

4 N
CEBR TSQ DTPBKEND SYSID ABCD REC 1 OF 11 coL 1 OF 78
ENTER COMMAND ===>

KkFk IR ERFR IR R ARRxARRxx TOP OF QUEUE #%x * * *kk
00001 Transaction 'ISE2' starting.
00002 extractProcess...
00003 <NORMAL> STATE=88 RECEIVE ERR=0
00004 process=[ISE2] syncLevel=1 PIP=[Hello World]
00005 receive...
00006 <NORMAL> STATE=90 SEND ERR=0 NoData=0
00007 data from front end=[Hi there this is from frontEnd TIME=16:03:18 on 04/0
00008 sendLast ...
00009 <NORMAL> STATE=86 PENDFREE ERR=0
00010 free...
00011 <NORMAL> STATE=1 NOTAPPLIC ERR=0
KkkkkkFx kxR x Rk kxxkkkxxk BOTTOM OF QUEUE wkwsksdnsk * *kk
PF1 : HELP PF2 : SWITCH HEX/CHAR PF3 : TERMINATE BROWSE
PF4 : VIEW TOP PF5 : VIEW BOTTOM PF6 : REPEAT LAST FIND
PF7 : SCROLL BACK HALF PF8 : SCROLL FORWARD HALF PF9 : VIEW RIGHT
PF10: SCROLL BACK FULL PF11: SCROLL FORWARD FULL PF12: UNDEFINED
- J
ICC$SRQ1 (ISR1)
This is program 'icc$srql'...
Starting Tran 'ISR2' on terminal 'PE12' after 5 seconds... - <NORMAL>
request="'DF!U0000"
Issuing cancel for start request='DF!U0000'... - <NORMAL>
request="'DF!U0000"
Starting Tran 'ISR2' on terminal 'PE12' after 5 seconds... - <NORMAL>
request="REQUEST1"'
Program 'icc$srql' complete.
ICC$SRQ2 (ISR2)
/}his is program 'icc$srq2'... h
retrieveData()... <NORMAL>
Start buffer contents = [This is a greeting from program 'icc$srql'!!]
Start queue= [startgnm]
Start rtrn = [ITMP]
Start rtrm = [PE11]
Sleeping for 5 seconds...
Starting tran 'ITMP' on terminal 'PE11' on system ICCl...<NORMAL>
Program 'icc$srq2' complete: Hit PF12 to end
- J

Appendix C. Output from sample programs 315

Output from sample programs

ICC$SYS (ISYS)

This is program 'icc$sys'...

app1Name=ICC$REGO1 operatingSystem=A operatingSystemLevel=41
releaseText=[0210] sysidnt=ICC1

getStorage(5678, 'Y')... <NORMAL>
freeStorage(p)... <NORMAL>
Checking attributes of a named file (ICCKFILE)...

>ICCKFILE< Add=true Brw=true Del=true Read=true Upd=true op=18 en=23
accessMethod=3 isRecoverable=true keylLength=3 keyPosition=16

setStatus(closed) ... <NORMAL>
setStatus(disabled) ... <NORMAL>
setAccess(notUpdatable) ... <NORMAL>

>ICCKFILE< Add=true Brw=true Del=true Read=true Upd=false op=19 en=24
setAccess(updateable) & setStatus(enabled, open) ...
>ICCKFILE< Add=true Brw=true Del=true Read=true Upd=true op=18 en=23

Beginning browse of all file objects in CICS system... <NORMAL>
- >ICCEFILE< type=1 <NORMAL>
- >ICCKFILE< type=6 <NORMAL>
- >ICCRFILE< type=1 <NORMAL>

Program 'icc$sys' complete: Hit PF12 to End

ICC$TMP (ITMP)

This is program 'icc$tmp'...
Writing 3 records to IccTempStore object 'ICCSTORE'...

- writing record #1: 'Hello World - item 1' <NORMAL>
- writing record #2: 'Hello World - item 2' <NORMAL>
- writing record #3: 'Hello World - item 3' <NORMAL>

Reading records back in & rewriting new buffer contents...
- record #1 = [Hello World - item 1] - rewriteltem #1 <NORMAL>
- record #2 = [Hello World - item 2] - rewriteltem #2 <NORMAL>
- record #3 = [Hello World - item 3] - rewriteltem #3 <NORMAL>

Reading records back in one last time...

- record #1 = [Modified Hello World - item 1]

- record #1 = [Modified Hello World - item 2]

- record #1 = [Modified Hello World - item 3]
\?rogram "icc$tmp' complete: Hit PF12 to end

ICC$TRM (ITRM)

This is program 'icc$trm'...
First part of the line...... a continuation of the Tine.
Start this on the next line Send this to col 40 of current line

Send this to row 5, column 10
Send this to row 6, column 40

A Red line!
A Blue, reverse video Tine!

A cout style interface...
you can chain input together; use different types, eg numbers: 123 4567890 12345
6.789123

. and everything is buffered till you issue a flush.

\?rogram "icc$trm' complete: Hit PF12 to End

316 cICS TS for 0S/390: C++ OO Class Libraries

Output from sample programs

ICC$TSK (ITSK)

This is program 'icc$tsk'...)
startType() = terminallInput
number() = 0598
isStartDataSupplied() = true
isCommitSupported() = true
userId() = [rabcics]
enterTrace(77, "ICCENTRY", buffer) <NORMAL>
suspend()... <NORMAL>
delay(ti) (for 2 seconds)... <NORMAL>
getStorage(1234, 'X')... <NORMAL>
freeStorage(p)... <NORMAL>
commi tUOW(). .. <NORMAL>
rol1BackUOW()... <NORMAL>
\Frogram "icc$tsk' complete: Hit PF12 to End OR PF24 to ABEND)

Appendix C. Output from sample programs 317

Output from sample programs

318 cIcs TS for 0S/390: C++ OO Class Libraries

Glossary

abstract class. A class that is used as a base class for
other classes and has at least one pure virtual function.
It is not possible to create an instance of this class.

base class. A class from which other classes are
derived.

CICS program. A program that runs in the CICS
environment as part of a transaction.

class. A group of objects that share a common
definition and common properties, operations and
behavior.

class definition. How a class is defined in C++,

class implementation. How a class is implemented in
C++.

const. In C++, the const attribute explicitly declares a
data object as a data item that cannot be changed. Its
value is set at initialization.

constructor. In C++, a special class member function
(method) that has the same name as the class and is
used to initialize class objects.

default argument. In C++, a default is used when an
argument in a method call is not explicitly provided.

delete. A C++ operator that deallocates dynamic
storage to destroy an object.

destructor. In C++, a special class member function
(method) that has the same name as the class, preceded
by (tilde), and is executed when an object is destroyed.

distributed program link. A technique where a
program running on one CICS system links to a
program running on another system.

encapsulation. The means whereby the inner
workings of an object are hidden. An application
programmer only has direct access to the external
features.

function shipping. A technique whereby a transaction
running on one CICS system accesses resources held on
another system.

inheritance. The passing of class resources or
attributes from a base class to a subclass.

method. An operator or function that is declared as a
member of a class.

new. A C++ operator that allocates dynamic storage to
create an object.

© Copyright IBM Corp. 1989, 1999

object. An abstraction consisting of data and the
operations associated with that data.

overloading. The redefinition of functions and most
standard C++ operators. This typically extends the
operations that the function or operator performs to
different data types.

polymorphism. The application of a method or
function to objects of more than one data type.

subclass. A class that is derived from another class.
The subclass inherits the data and methods of the base
class and can define new methods or over-ride existing
methods to define new behavior not inherited from the
parent class.

task. One instance of the execution of a particular
CICS transaction.

transaction. One or more programs on a CICS server
that can be initiated on request by a CICS user.

transaction routing. A technique whereby a
transaction initiated on one CICS system is actually run
on another system.

UOW. A CICS unit of work is a set of resource
updates.

virtual function. In C++, a class member function that
is defined with the keyword virtual. The code that is
executed when you make a call to a virtual function
depends on the type of object for which it is called.

319

320 cIcs TS for 0S/390: C++ OO Class Libraries

Index

Special Characters

... (parameter)
in sendLine 260

Numerics
0 (zero)

in actionOnConditionAsChar 191
A
A

in actionOnConditionAsChar 192

in operatingSystem 227
abend

in lccTask class 231

in Parameter level 59
abend codes 53
abendCode

in IccAbendData class 83
abendCode (parameter)

in abend 231
abendData

in IccTask class 231
AbendDumpOpt

in Enumerations 239

in lccTask class 239
AbendHandlerOpt

in Enumerations 239

in lccTask class 239
abendTask

in ActionOnCondition 196
in CICS conditions 56

absTime
in IccClock class 109
in Type 275

absTime (parameter)
in Constructor 89
in operator= 91

Access

in Enumerations 150
access

in IccFile class 142
Access

in IccFile class 150
access (parameter)

in setAccess 148
Accessing start data

in Starting transactions

asynchronously 36

in Using CICS Services 36
accessMethod

in IccFile class 142
action (parameter)

in setActionOnAnyCondition 194

in setActionOnCondition 194
ActionOnCondition

in Enumerations 196
actionOnCondition

in IccResource class 191

© Copyright IBM Corp. 1989, 1999

ActionOnCondition

in IccResource class 196
actionOnConditionAsChar

in IccResource class 191
actions (parameter)

in setActionsOnConditions 195
actionsOnConditionsText

in IccResource class 192
Activating the trace output

in Debugging Programs 50

in Tracing a Foundation Class

Program 50
addable

in Access 150
address

in IccProgram class 179
AID

in lccTerminal class 253
aid (parameter)

in waitForAID 263
AlDVal

in Enumerations 264

in IccTerminal class 264
AlX, CICS for

in Platform differences 58
allocate

in IccSession class 208
AllocateOpt

in Enumerations 215

in lccSession class 215
alternateHeight

in IccTerminalData class 267

in Public methods 267
alternateWidth

in IccTerminalData class 267

in Public methods 267
append

in IccBuf class 100
applName

in lccSystem class 225
ASRAInterrupt

in IccAbendData class 83

in Public methods 83
ASRAKeyType

in lccAbendData class 84

in Public methods 84
ASRAPSW

in lccAbendData class 84
ASRARegisters

in IccAbendData class 84

in Public methods 84
ASRASpaceType

in IccAbendData class 85

in Public methods 85
ASRAStorageType

in IccAbendData class 85

in Public methods 85
assign

in Example of file control 33

in IccBuf class 101

in lccKey class 169

automatic
in UpdateMode 113
Automatic condition handling
(callHandleEvent)
in CICS conditions 56
in Conditions, errors, and
exceptions 56
automatic creation 15
automatic deletion 15
auxStorage
in Location 246

B

base class

overview 17
Base classes

in Overview of the foundation

classes 17

baseName (parameter)

in NameOpt 97
BASESPACE

in ASRASpaceType 85
BDAM 29
beginBrowse

in lccSystem class 225
begininsert

in Writing records 31
begininsert(VSAM only)

in IccFile class 142

in Public methods 142
below

in StorageOpts 241

blink

in Highlight 265
blue

in Color 265
Bool

in Enumerations 79

in Icc structure 79
BoolSet

in Enumerations 80

in lcc structure 80
boolText

in Functions 77

in Icc structure 77
browsable

in Access 150
browsing records 32
Browsing records

in File control 32

in Using CICS Services 32
buf (parameter)

in dump 232

in put 257

in send3270 259

in sendLine 260

in setData 219
buffer

in Example of starting

transactions 38

buffer (parameter)

in Constructor 100

n operator= 103

n operator!= 104

n operator+= 103

n operator== 104

n operator<< 104, 255

n Polymorphic Behavior 62
in put 130, 162, 194, 244
in registerData 218
in rewriteRecord 147
insend 258
in send3270 259
in sendLine 260
in writeRecord 149

Buffer objects
Data area extensibility 25
Data area ownership 25
IccBuf constructors 25
lccBuf methods 26
Working with IccResource

subclasses 27

buffers 25, 28

byAddress
in LockType 205

byValue
in LockType 205

C

C++ exceptions 53
C++ Exceptions and the Foundation
Classes
in Conditions, errors, and
exceptions 53
callHandleEvent
in ActionOnCondition 196
in CICS conditions 56
calling conventions 64
Calling methods on a resource object
in Overview of the foundation
classes 22
in Using CICS resources 22
callingProgramld
in IccControl class 121
in Public methods 121
cancel
in Cancelling unexpired start
requests 37
in IccRequestld class 189
in IccStartRequestQ class 217
cancelAbendHandler
in IccControl class 121
cancelAlarm
in lccClock class 109
Cancelling unexpired start requests
in Starting transactions
asynchronously 37
in Using CICS Services 37
Case
in Enumerations 265
in IccTerminal class 265
caseOpt (parameter)
in receive 257
in receive3270Data 258

catch

in C++ Exceptions and the Foundation

Classes 53, 54
in Exception handling
(throwException) 57
in main function 296
catchException
in Functions 77
in lcc structure 77
CEDF (CICS Execution Diagnostic
Facility) 50
ch (parameter)
in operator<< 104, 255, 256
changePassword
in lccUser class 285
in Public methods 285
char*

in C++ Exceptions and the Foundation

Classes 54
CheckOpt
in Enumerations 222
in lccStartRequestQ class 222
CICS
in ASRAStorageType 85
in GetOpt 81
CICS conditions
abendTask 58
automatic condition handling 56
Automatic condition handling
(callHandleEvent) 56
callHandleEvent 56
exception handling 57
Exception handling
(throwException) 57
in Conditions, errors, and
exceptions 55
manual condition handling 56
Manual condition handling
(noAction) 56
noAction 56
severe error handling 58

Severe error handling (abendTask) 58

throwException 57

CICS Execution Diagnostic Facility
(CEDF) 50

CICS for AIX

in Platform differences 58
CICS 0S/2

in Platform differences 58
CICS resources 21
CICSCondition

in C++ Exceptions and the Foundation

Classes 55

in Type 140
CICSDataKey

in StorageOpts 241
CICSEXECKEY

in ASRAKeyType 84
CICSInternalTask

in StartType 240
CICSTS13.CICS.PROCLIB 6
CICSTS13.CICS.SDFHC370 6
CICSTS13.CICS.SDFHLOAD
CICSTS13.CICS.SDFHPROC
CICSTS13.CICS.SDFHSAMP
CICSTS13.CICS.SDFHSDCK

~N o N

322 CICS TS for 0S/390: C++ OO Class Libraries

class

base 17

resource 19

resource identification 18

singleton 22

support 20
ClassMemoryMgmt

in Enumerations 80

in Icc structure 80
className

in IccBase class 95

in IccEvent class 135

in IccException class 138

in lccMessage class 175
className (parameter)

in Constructor 137, 175

in setClassName 96
ClassType

in Enumerations 97
classType

in IccBase class 95
ClassType

in IccBase class 97
classType

in IccEvent class 135

in IccException class 138
classType (parameter)

in Constructor 137, 191

CLEAR
in AIDVal 264
clear
in Example of polymorphic
behavior 63

in IccDataQueue class 129

in IccResource class 192

in lccTempStore class 243

in IccTerminal class 253

in Polymorphic Behavior 62
clearData

in lccStartRequestQ class 217
clearinputMessage

in lccProgram class 179
clearPrefix

in Icclournal class 161
closed

in Status 151
cmmCICS

in ClassMemoryMgmt 80

in Storage management 64
cmmDefault

in ClassMemoryMgmt 80

in Storage management 64
cmmNonCICS

in ClassMemoryMgmt 80

in Storage management 64
CODE/370 50
Codes

in Enumerations 115

in IccCondition structure 115
col (parameter)

in send 258

in send3270 259

in sendLine 260

in setCursor 261
Color

in Enumerations 265

in IccTerminal class 265

color (parameter)
in operator<< 255
in setColor 260
commArea
in lccControl class 121
commArea (parameter)
in link 180
in setNextCommArea 262
commitOnReturn
in CommitOpt 182
CommitOpt
in Enumerations 182
in IccProgram class 182
commitUOW
in lccTask class 232
Compile and link "Hello World"
in Hello World 10
Compiling, executing, and debugging
Execution Diagnostic Facility 50
Symbolic Debuggers 50
Tracing a Foundation Class
Program 50
compiling programs 49
Compiling Programs
in Compiling, executing, and
debugging 49
complete
in Kind 171
complete key 30
completeLength
in lccKey class 169
in Public methods 169
completeLength (parameter)
in Constructor 169
condition
in IccEvent class 135
in IccResource class 192
in Manual condition handling
(noAction) 56
in Resource classes 19
condition (parameter)
in actionOnCondition 191
in actionOnConditionAsChar 191
in conditionText 77, 78
in setActionOnCondition 194, 195
condition 0 (NORMAL)
in actionsOnConditionsText 192
condition 1 (ERROR)
in actionsOnConditionsText 192
condition 2 (RDATT)
in actionsOnConditionsText 192
condition 3 (WRBRK)
in actionsOnConditionsText 192
condition 4 (ICCEOF)
in actionsOnConditionsText 192
condition 5 (EODS)
in actionsOnConditionsText 192
condition 6 (EOC)
in actionsOnConditionsText 192
Conditions, errors, and exceptions
Automatic condition handling
(callHandleEvent) 56
Exception handling
(throwException) 57
Manual condition handling
(noAction) 56
Method level 59

Conditions, errors, and exceptions
(continued)

Object level 56
Parameter level 59
Severe error handling (abendTask) 58

conditionText

in Functions 77

in lcc structure 77

in IccEvent class 136

in IccResource class 193

ConditionType

in Enumerations 197
in IccResource class 197

confirmation

in SendOpt 216

connectProcess

in IccSession class 208
in Public methods 208

console

in IccControl class 122

const

in Glossary 319

Constructor

in IccAbendData class 83

in IccAbendData constructor
(protected) 83

in IccAbsTime class 89

in IccAbsTime constructor 89

in IccAlarmRequestld class 93

in IccAlarmRequestld
constructors 93

in IccBase class 95

in IccBase constructor (protected) 95

in IccBuf class 99, 100

in IccBuf constructors 99, 100

in IccClock class 109

in IccClock constructor 109

in IccConsole class 117

in IccConsole constructor
(protected) 117

in IccControl class 121

in IccControl constructor
(protected) 121

in IccConvld class 127

in IccConvld constructors 127

in IccDataQueue class 129

in IccDataQueue constructors 129

in IccDataQueueld class 133

in IccDataQueueld constructors 133

in IccEvent class 135

in IccEvent constructor 135

in IccException class 137

in IccException constructor 137

in IccFile class 141

in IccFile constructors 141

in IccFileld class 153

in IccFileld constructors 153

in IccFilelterator class 155

in IccFilelterator constructor 155

in lccGroupld class 159

in lccGroupld constructors 159

in Icclournal class 161

in Icclournal constructors 161

in IcclJournalld class 165

in Icclournalld constructors 165

in IcclournalTypeld class 167

in IcclournalTypeld constructors 167

Constructor (continued)

in lccKey class 83

in lccKey constructors 169

in IccLockld class 173

in IccLockld constructors 173

in lccMessage class 175

in lccMessage constructor 175

in lccPartnerld class 177

in IccPartnerld constructors 177

in lccProgram class 179

in lccProgram constructors 179

in IccProgramld class 183

in IccProgramld constructors 183

in IccRBA class 185

in IccRBA constructor 185

in IccRecordIndex class 187

in IccRecordIndex constructor
(protected) 187

in IccRequestld class 189

in IccRequestld constructors 189

in IccResource class 191

in IccResource constructor
(protected) 191

in IccResourceld class 199

in IccResourceld constructors
(protected) 199

in IccRRN class 201

in IccRRN constructors 201

in IccSemaphore class 203

in lccSemaphore constructor 203

in IccSession class 207

in IccSession constructor
(protected) 207

in IccSession constructors
(public) 207

in lccStartRequestQ class 217

in lccStartRequestQ constructor
(protected) 217

in lccSysld class 223

in lccSysld constructors 223

in lccSystem class 225

in lccSystem constructor
(protected) 225

in IccTask class 231

in lccTask Constructor
(protected) 231

in lccTempStore class 243

in lccTempStore constructors 243

in lccTempStoreld class 249

in lccTempStoreld constructors 249

in IccTermld class 251

in lccTermld constructors 251

in IccTerminal class 253

in IccTerminal constructor
(protected) 253

in IccTerminalData class 267

in IccTerminalData constructor
(protected) 267

in lccTime class 273

in IccTime constructor
(protected) 273

in IccTimelnterval class 277

in IccTimelnterval constructors 277

in lccTimeOfDay class 279

in lccTimeOfDay constructors 279

in lccTPNameld class 281

in lccTPNameld constructors 281

Index 323

Constructor (continued)

in lccTransld class 83

in IccTransld constructors 283

in lccUser class 285

in IccUser constructors 285

in lccUserld class 289

in IccUserld constructors 289
converse

in IccSession class 209
convid

in IccSession class 209
convld (parameter)

in Constructor 127
convName (parameter)

in Constructor 127

in operator= 127
copt (parameter)

in setStartOpts 220
createDump

in AbendDumpOpt 239
creating a resource object 21
Creating a resource object

in Overview of the foundation

classes 21

in Using CICS resources 21

Singleton classes 22
Creating an object

in C++ Objects 15
creating object 15
current (parameter)

in setPrefix 162
cursor

in Finding out information about a

terminal 44

in IccTerminal class 253
customClassNum

in IccBase class 96

in Public methods 96
cut

in IccBuf class 101

in lccBuf constructors 26
CVDA

in Enumeration 291

in IccValue structure 291
cyan

in Color 265

D

data
in Accessing start data 36
in Finding out information about a
terminal 44
in IccStartRequestQ class 218
in IccTerminal class 254
in lccTerminalData class 267
data (parameter)
in enterTrace 233
in put 212
data area extensibility 25
Data area extensibility
in Buffer objects 25
in lccBuf class 25
data area ownership 25
Data area ownership
in Buffer objects 25
in lccBuf class 25

dataArea
in IccBuf class 101
dataArea (parameter)
in append 100
in assign 101, 169
in Constructor 99
ininsert 102
in overlay 106
in replace 106
dataArealLength
in lccBuf class 101
in Public methods 101
dataAreaOwner
in Data area ownership 25
DataAreaOwner
in Enumerations 107
dataAreaOwner
in lccBuf class 102
DataAreaOwner
in lccBuf class 107
dataAreaType
in Data area extensibility 25
DataAreaType
in Enumerations 107
dataAreaType
in IccBuf class 102
DataAreaType
in IccBuf class 107
dataltems
in Example of polymorphic
behavior 62
datalLength
in IccBuf class 102
dataqueue
in FacilityType 240
dataQueueTrigger
in StartType 240
date
in IccAbsTime class 89
in IccClock class 110
date services 46
DateFormat
in Enumerations 112
in IccClock class 112
dateFormat
in lccSystem class 226
dateSeparator (parameter)
in date 89, 110
in Example of time and date
services 47
dayOfMonth
in Example of time and date
services 47
in IccAbsTime class 90
in IccClock class 110
DayOfWeek
in Enumerations 113
dayOfWeek
in Example of time and date
services 47
in IccAbsTime class 90
in IccClock class 110
DayOfWeek
in IccClock class 113
daysSince1900
in Example of time and date
services 47

324 cICS TS for 0S/390: C++ OO Class Libraries

daysSincel1900 (continued)
in IccAbsTime class 47
in lccClock class 110
daysUntilPasswordExpires
in lccUser class 286
dComplete
in DumpOpts 239
dDCT
in DumpOpts 240
dDefault
in DumpOpts 239
debuggers 50
debugging programs 50
Debugging Programs
Activating the trace output 50
Enabling EDF 50
Execution Diagnostic Facility 50
in Compiling, executing, and
debugging 50
Symbolic Debuggers 50
Tracing a Foundation Class

Program 50
defaultColor
in Color 265

defaultHeight

in lccTerminalData class 268

in Public methods 268
defaultHighlight

in Highlight 265
defaultWidth

in lccTerminalData class 268

in Public methods 268
delay

in lccTask class 232

in Support Classes 21
deletable

in Access 150
delete

in Deleting an object 16

in Storage management 64
delete operator 15
deleteLockedRecord 32

in Deleting locked records 32

in IccFile class 142
deleteRecord

in Deleting normal records 32

in IccFile class 143
deleteRecord method 32
Deleting an object

in C++ Objects 16
deleting items 42
Deleting items

in Temporary storage 42

in Using CICS Services 42
Deleting locked records

in Deleting records 32

in File control 32
Deleting normal records

in Deleting records 32

in File control 32
deleting queues 40
Deleting queues

in Transient Data 40

in Using CICS Services 40
deleting records 32
Deleting records

Deleting locked records 32

Deleting records (continued) Enabling EDF
Deleting normal records 32 in Debugging Programs 50
in File control 32 in Execution Diagnostic Facility 50

Enumerations (continued)
in IccTerminal class 239
in IccTime class 275

in Using CICS Services 32 endBrowse Kind 171
dFCT in lccSystem class 226 LifeTime 205

in DumpOpts 240 endlnsert LoadOpt 182
DFHCURDI 7 in Writing records 31 Location 246
DFHCURDS 6, 7 endInsert(VSAM only) LockType 205
disabled in IccFile class 143 MonthOfYear 113

in Status 151 in Public methods 143 NameOpt 97
doSomething endl NextTransldOpt 265

in Using an object 16 in Example of terminal control 45 NoSpaceOpt 247
dPCT ENTER Options 164

in DumpOpts 240 in AIDVal 264 Platforms 81
DPL enterTrace ProtectOpt 222

in StartType 240 in lccTask class 233 Range 115
dPET entryPoint ReadMode 150

in DumpOpts 240 in IccProgram class 180 ResqurceType 229
dProgram Enumeration RetrieveOpt 222

in DumpOpts 240 SearchCriterion 151
dsIT CVDA 291 SendOpt 216

: p

in DumpOpts 240 n Icc\{alue structure - 291 SeverityOpt 120
dStorage Enumerations StartType 240

in DumpOpts 240 AbendDumpOpt 239 StateOpt 216
dTables AbendHandlerOpt 239 Status 151

in DumpOpts 240 Acc.ess 150 . StorageOpts 240
dTask ActionOnCondition 196 SyncLevel 216

in DumpOpts 240 AlDVal 264 TraceOpt 241
dTCcT AllocateOpt - 215 Type 139, 188, 275

in DumpOpts 240 Bool 79 UpdateMode 113
dTerminal BoolSet 80 WaitPostType 241

in DumpOpts 240 Case 265 WaitPurgeability 241
dTRT CheckOpt 222 equalToKey

in DumpOpts 240 g:ass_l:_/lemorg;vlgmt 80 in SearchCriterion 151
dump asstype erase

in lccTask class 232 Codes ~ 115 in Example of terminal control 46

Color 265

dumpCode (parameter)
in dump 232
DumpOpts
in Enumerations 239
in IccTask class 239

CommitOpt 182

ConditionType 197
DataAreaOwner 107
DataAreaType 107

DateFormat 112

in Hello World 9

in IccTerminal class 254

in Sending data to a terminal 44
errorCode

in IccSession class 209

dynamic creation 15 DayOfWeek 113 ESDS
dynamic deletion 15 DumpOpts 239 in File control 29
dynamic link library 6 FacilityType 240 ESDS file 29
Dynamic link library FamilySubset 80 ESMReason
in Installed contents 6 GetOpt 80 in lccUser class 286
Location 6 HandleEventReturnOpt 196 ESMResponse
Highlight 265 in lccUser class 286
in lcc structure 79 event (parameter)
E in lccBase class 97 in handleEvent 193

in lccBuf class 107 Example of file control

in lccClock class 112 in Eile control 32

in lccCondition structure 115 in Using CICS Services 32

in IccConsole class 120 ; ;

EDF (parameter) in lccException class 139 Exa'mple of.managlng transient data
in initiali ; . : in Transient Data 40
in initializeEnvironment 78 in IccFile class 150 ! :)
t . in Using CICS Services 40

empty in Icclournal class 164 £ e of bol hic behavi
in Deleting items 42 in |CcKey class 171 Xa'mp e Of polymorphic behavior
in Deleting queues 40 in lccProgram class 182 in Miscellaneous 62
in lccDataQueue class 129 in IccRecordindex class 188 in Polymorphic Behavior 62
in IccTempStore class 244 in lccResource class 196 Example of starting transactions

in Starting transactions

in Temporary storage 42 in lccSemaphore class 205
in Transient Data 40 in lccSession class 215 asynchronously 37

ECBList (parameter)
in waitExternal 238
EDF (Execution Diagnostic Facility) 50

enabled in lccStartRequestQ class 222 in Using CICS Services 37
in Status 151 in lccSystem class 229 Example of Temporary Storage
enableStatus in IccTask class 239 in Temporary storage 42

in IccFile class 143 in lccTempStore class 246 in Using CICS Services 42

Index 325

Example of terminal control
in Terminal control 45
in Using CICS Services 45
Example of time and date services
in Time and date services 46
in Using CICS Services 46
exception
in TraceOpt 241
exception (parameter)
in catchException 77
Exception handling (throwException)
in CICS conditions 57
in Conditions, errors, and
exceptions 57
exceptionNum (parameter)
in Constructor 137
exceptions 53
exceptionType (parameter)
in Constructor 137
Executing Programs
in Compiling, executing, and
debugging 49
Execution Diagnostic Facility
Enabling EDF 50
in Compiling, executing, and
debugging 50
in Debugging Programs 50
Execution Diagnostic Facility (EDF) 50
Expected Output from "Hello World"
in Hello World 11
in Running "Hello World" on your
CICS server 11
extensible
in DataAreaType 107
external
in DataAreaOwner
extractProcess
in lccSession class 209
extractState
in StateOpt 216

107

F

Facility Type

in Enumerations 240
facilityType

in lccTask class 233
Facility Type

in lccTask class 240
fam (parameter)

in initializeEnvironment 78
familyConformanceError

in C++ Exceptions and the Foundation

Classes 55

in Type 140
FamilySubset

in Enumerations 80

in lcc structure 80
FEPIRequest

in StartType 240
file (parameter)

in Constructor 155

in Example of file control 33
File control

Browsing records 32
file control

browsing records 32

File control
Deleting locked records 32
Deleting normal records 32
Deleting records 32

file control
deleting records 32
example 32

File control

Example of file control 32
in Using CICS Services 29
Reading ESDS records 30
Reading KSDS records 30
Reading records 30
Reading RRDS records 30
file control
rewriting records 31
File control
Updating records 31
file control
updating records 31
File control
Writing ESDS records 31
Writing KSDS records 31
Writing records 30
Writing RRDS records 31
fileName (parameter)

in Constructor 141, 153
in getFile 226
in operator= 153

Finding out information about a terminal
in Terminal control 44
in Using CICS Services 44
First Screen
in ICC$PRGL1 (IPR1) 313
in Output from sample
programs 313
fixed
in DataAreaType 107
flush
in Example of terminal control 45
in lccSession class 210
for
in Example of file control 33
Form
in Polymorphic Behavior 62
format (parameter)
in append 100
in assign 101
in date 89, 110
in Example of time and date
services 47
in send 258
in send3270 259
in sendLine 260
Foundation Class Abend codes
in Conditions, errors, and
exceptions 53
free
in IccSession class 210
freeKeyboard
in lccTerminal class 254
in Sending data to a terminal 44
freeStorage
in IccSystem class 226
in lccTask class 233
fsAllowPlatformVariance
in FamilySubset 80

326 cCICS TS for 0S/390: C++ OO Class Libraries

fsAllowPlatformVariance (continued)

fsD

in Platform differences 80
efault
in FamilySubset 80

fsEnforce

in FamilySubset 80
in Platform differences 58

full Access
in Access 150
Functions
boolText 77

G

catchException 77
conditionText 77

in Icc structure 77
initializeEnvironment 78
isClassMemoryMgmtOn 78
iSEDFOn 78

isFamilySubsetEnforcementOn 78

returnToCICS 79
setEDF 79
unknownException 79

generic

in Kind 171

generic key 30

get

in Example of polymorphic
behavior 63

in IccDataQueue class 130

in IccResource class 193

in lccSession class 210

in lccTempStore class 244

in lccTerminal class 254

in Polymorphic Behavior 62

getFile

in lccSystem class 226

getNextFile

in lccSystem class 227

GetOpt

in Enumerations 80
in Icc structure 80

getStorage

gid
gra

gra

in lccSystem class 227

in lccTask class 234
(parameter)

in Constructor 285
phicCharCodeSet

in IccTerminalData class 268
phicCharSetld

in IccTerminalData class 268

green

gro

gro

in Color 265

upld

in lccUser class 286
upName (parameter)

in Constructor 159, 285

in operator= 159

gteqToKey

H

H

in SearchCriterion 151

in actionOnConditionAsChar

handleEvent

in Automatic condition handling

(callHandleEvent) 56, 57

in IccResource class 193
HandleEventReturnOpt

in Enumerations 196

in IccResource class 196
handPost

in WaitPostType 241
Header files

in Installed contents 5

Location 6
height

in IccTerminal class 254
Hello World

commentary 9

Compile and link 10

Expected Output from "Hello

World" 11
running 10
Highlight

in Enumerations 265

in IccTerminal class 265
highlight (parameter)

in operator<< 255

in setHighlight 261
hold

in LoadOpt 182
hours

in IccAbsTime class 90

in IccTime class 273
hours (parameter)

in Constructor

inset 277,279

273, 277, 279

Icc
in Foundation Classes—reference 76
in Method level 59
in Overview of the foundation
classes 17
Icc::initializeEnvironment
in Storage management 64
ICC$BUF 6
ICC$BUF (IBUF)
in Output from sample programs 311
ICC$CLK 6
ICC$CLK (ICLK)
in Output from sample programs 311
ICC$DAT (IDAT)
in Output from sample programs 311
ICC$EXC1 (IEX1)
in Output from sample
programs 312
ICC$EXC2 (IEX2)
in Output from sample
programs 312
ICC$EXC3 (IEX3)
in Output from sample
programs 312
ICCS$FIL (IFIL)
in Output from sample
programs 312
ICC$HEL 6

ICC$HEL (IHEL)
in Output from sample
programs 313
ICC$JRN (IJRN)
in Output from sample
programs 313
ICC$PRGL1 (IPR1)
First Screen 313
in Output from sample
programs 313
Second Screen 313
ICC$RES1 (IRE1)
in Output from sample
programs 314
ICC$RES2 (IRE2)
in Output from sample
programs 314
ICC$SEM (ISEM)
in Output from sample
programs 314
ICC$SES1 6
ICC$SES1 (ISE1)
in Output from sample
programs 314
ICC$SES2 6
in Output from sample
programs 315
ICC$SRQ1 (ISR1)
in Output from sample
programs 315
ICC$SRQ2 (ISR2)
in Output from sample
programs 315
Icc structure
Bool 79
BoolSet 80
boolText 77
catchException 77
ClassMemoryMgmt 80
conditionText 77
FamilySubset 80
GetOpt 80
initializeEnvironment 78
isClassMemoryMgmtOn 78
isEDFOn 78
isFamilySubsetEnforcementOn 78
Platforms 81
returnToCICS 79
setEDF 79
unknownException 79
ICC$SYS (ISYS)
in Output from sample
programs 316
ICC$TMP (ITMP)
in Output from sample
programs 316
ICC$TRM (ITRM)
in Output from sample
programs 316
ICC$TSK (ITSK)
in Output from sample
programs 317
IccAbendData
in Singleton classes 22
IccAbendData class
abendCode 83
ASRAInterrupt 83

IccAbendData class (continued)
ASRAKeyType 83
ASRAPSW 84
ASRARegisters 84
ASRASpaceType 85
ASRAStorageType 85
Constructor 83
instance 86
isDumpAvailable 86
originalAbendCode 86
programName 86

IccAbendData constructor (protected)
Constructor 83
in IccAbendData class 83

IccAbsTime
in Base classes 18
in delay 232
in IccTime class 273
in Support Classes 21
in Time and date services 46

IccAbsTime,
in Support Classes 21

IccAbsTime class
Constructor 89
date 89
dayOfMonth 90
dayOfWeek 90
daysSince1900 90
hours 90
milliSeconds 90
minutes 90
monthOfYear 90
operator= 91
packedDecimal 91
seconds 91
time 91
timelnHours 91
timelnMinutes 91
timelnSeconds 92
year 92

IccAbsTime constructor
Constructor 89
in IccAbsTime class 89

IccAlarmRequestid
in lccAlarmRequestld class 93

IccAlarmRequestld class
Constructor 93
isExpired 93
operator= 94
setTimerECA 94
timerECA 94

IccAlarmRequestld constructors
Constructor 93
in IccAlarmRequestld class 93

IccBase
in Base classes 17
in Foundation Classes—reference
in IccAbendData class 83
in IccAbsTime class 89
in IccAlarmRequestld class 93
in IccBase class 95
in lccBuf class 99
in IccClock class 109
in IccConsole class 117
in IccControl class 121
in IccConvld class 127
in IccDataQueue class 129

Index

76

327

IccBase (continued)
in IccDataQueueld class 17
in IccEvent class 135
in IccException class 137
in IccFile class 141
in IccFileld class 153
in IccFilelterator class 155
in IccGroupld class 159
in Icclournal class 161
in Icclournalld class 165
in IcclournalTypeld class 167
in IccKey class 169
in lccLockld class 173
in lccMessage class 175
in IccPartnerld class 177
in lccProgram class 179
in lccProgramld class 183
in IccRBA class 185
in IccRecordIndex class 187
in IccRequestld class 189
in IccResource class 191
in IccResourceld class 199
in IccRRN class 201
in IccSemaphore class 203
in IccSession class 207
in IccStartRequestQ class 217
in lccSysld class 223
in lccSystem class 225
in lccTask class 231
in lccTempsStore class 243
in IccTempStoreld class 249
in lccTermld class 251
in IccTerminal class 253
in lccTerminalData class 267
in IccTime class 273
in IccTimelnterval class 277
in lccTimeOfDay class 279
in IccTPNameld class 281
in lccTransld class 283
in IccUser class 285
in lccUserld class 289
in Resource classes 19

in Resource identification classes 18

in Storage management 64

in Support Classes 20
IccBase class

className 95

classType 95

ClassType 97

Constructor 95

customClassNum 96

NameOpt 97

operator delete 96

operator new 96

overview 17

setClassName 96

setCustomClassNum 96
IccBase constructor (protected)

Constructor 95

in IccBase class 95
lccBuf

lccBuf (continued)

in Example of managing transient
data 25

in Example of polymorphic
behavior 62

in Example of starting
transactions 38, 39

in Example of Temporary Storage 43

in Example of terminal control 45

in lccBuf class 25, 99

in lccBuf constructors 25, 26

in lccBuf methods 27

in Reading data 40

in Reading items 42

in Scope of data in IccBuf reference
returned from 'read’ methods 65

in Support Classes 21

in Working with IccResource
subclasses 27, 28

IccBuf class

append 100

assign 101
Constructor 99, 100
constructors 25

cut 101

Data area extensibility 25
data area extensibility 25
Data area ownership 25
data area ownership 25
dataArea 101
dataArealLength 101
dataAreaOwner 102
DataAreaOwner 107
dataAreaType 102
DataAreaType 107
datalLength 102

IccBuf constructors 25
lccBuf methods 26

in Buffer objects 25
insert 102
isFMHContained 102
methods 26

operator= 103
operator!= 104
operator+= 103
operator== 103
operator const char* 102
operator<< 104, 105
overlay 106

replace 106
setDataLength 106
setFMHContained 106
Working with IccResource
subclasses 27

IccBuf constructors 25

Constructor 99, 100
in Buffer objects 25
in lccBuf class 25, 99

IccBuf methods 26

in Buffer objects 26
in IccBuf class 26

IccClock (continued)
in Time and date services 46
IccClock class
absTime 109
cancelAlarm 109
Constructor 109
date 110
DateFormat 112
dayOfMonth 110
dayOfWeek 110
DayOfWeek 113
daysSince1900 110
milliSeconds 110
monthOfYear 111
MonthOfYear 113
setAlarm 111
time 111
update 111
UpdateMode 113
year 111
IccClock constructor
Constructor 109
in IccClock class 109
IccCondition

in C++ Exceptions and the Foundation

Classes 55
IccCondition structure
Codes 115
Range 115
IccConsole
in Buffer objects 25
in Object level 58, 59
in Singleton classes 22
IccConsole class
Constructor 117
instance 117
overview 22
put 117
replyTimeout 117
resetRouteCodes 118
setAllRouteCodes 118
setReplyTimeout 118
setRouteCodes 118
SeverityOpt 120
write 118
writeAndGetReply 119
IccConsole constructor (protected)
Constructor 117
in IccConsole class 117
IccControl
in Base classes 17
in Example of starting
transactions 38, 39
in Hello World 9
in IccControl class 121
in lccProgram class 179
in main function 295, 296
in Mapping EXEC CICS calls to
Foundation Class methods 305
in Method level 59
in Singleton classes 22

in Support Classes 21
IccControl::run
in Mapping EXEC CICS calls to
Foundation Class methods 305
IccControl class
callingProgramld 121

in Buffer objects 25 IccBuf reference 65
in C++ Exceptions and the Foundation lccClock
Classes 55 in Example of time and date
in Data area extensibility 25 services 46, 47
in Data area ownership 25 in lccAlarmRequestld class 93
in Example of file control 33 in lccClock class 109

328 cCICS TS for 0S/390: C++ OO Class Libraries

IccControl class (continued)

cancelAbendHandler 121
commArea 121
console 122
Constructor 121
initData 122

instance 122

isCreated 122
overview 17, 22
programld 122
resetAbendHandler 123
returnProgramlid 123
run 123

session 123
setAbendHandler 123
startRequestQ 124
system 124

task 124

terminal 124

IccControl constructor (protected)

Constructor 121
in IccControl class 121

IccConvid

in lccConvld class 127

IccConvld class

Constructor 127
operator= 127

IccConvld constructors

Constructor 127
in IccConvld class 127

IccDataQueue

in Buffer objects 25

in Example of managing transient
data 40, 41

in Example of polymorphic
behavior 63

in Resource classes 19

in Temporary storage 42

in Transient Data 40

in Working with IccResource
subclasses 27

in Writing data 40

IccDataQueue class

clear 129
Constructor 129
empty 129

get 130

put 130
readltem 130
writeltem 130

IccEvent class
className 135
classType 135
condition 135
conditionText 136
Constructor 135
methodName 136
summary 136
IccEvent constructor
Constructor 135
in IccEvent class 135
IccException
in C++ Exceptions and the Foundation
Classes 54, 55
in IccException class 137
in lccMessage class 175
in main function 296
in Method level 59
in Object level 59
in Parameter level 60
in Support Classes 21
IccException class
CICSCondition type 55
className 138
classType 138
Constructor 137
familyConformanceError type 55
internalError type 55
invalidArgument type 54
invalidMethodCall type 55
message 138
methodName 138
number 138
objectCreationError type 54
summary 138
type 139
Type 139
typeText 139
IccException constructor
Constructor 137
in IccException class 137
ICCFCC 7
ICCFCCL 7
ICCFCDLL 6
ICCFCIMP 7
ICCFCL 7
IccFile
in Browsing records 32
in Buffer objects 25
in C++ Exceptions and the Foundation

IccFile (continued)

in Writing RRDS records 32

IccFile::readRecord

in Scope of data in IccBuf reference
returned from ‘read' methods 65

IccFile class

access 142

Access 150
accessMethod 142
begininsert(VSAM only) 142
Constructor 141
deleteLockedRecord 32, 142
deleteRecord 143
deleteRecord method 32
enableStatus 143
endinsert(VSAM only) 143
isAddable 143
isBrowsable 144
isDeletable 144
iISEmptyOnOpen 144
isReadable 144
isReadable method 30
isRecoverable 145
isUpdatable 145
keyLength 145
keyLength method 30
keyPosition 145
keyPosition method 30
openStatus 145
ReadMode 150
readRecord 146
readRecord method 30
recordFormat 146
recordFormat method 30
recordindex 147
recordIndex method 30
recordLength 147
recordLength method 30
registerRecordindex 30, 147
registerRecordindex method 30
rewriteRecord 147
rewriteRecord method 31
SearchCriterion 151
setAccess 148
setEmptyOnOpen 148
setStatus 148

Status 151

type 148

unlockRecord 149
writeRecord 149

IccDataQueue constructors
Constructor 129
in IccDataQueue class 129
IccDataQueueld

in Example of managing transient

data 40

in IccDataQueueld class 133

in Transient Data 40
IccDataQueueld class

Constructor 133

operator= 133
IccDataQueueld constructors

Constructor 133

in lccDataQueueld class 133
IccEvent

in IccEvent class 135

in Support Classes 21

Classes 55
in Deleting locked records 32
in Deleting normal records 32
in Example of file control 32
in File control 29
in IccFile class 141
in IccFilelterator class 155
in Reading ESDS records 30
in Reading KSDS records 30
in Reading records 30
in Reading RRDS records 30

in Resource identification classes 18

in Singleton classes 22

in Updating records 31

in Writing ESDS records 31
in Writing KSDS records 31
in Writing records 30, 31

writeRecord method 30
IccFile constructors

Constructor 141

in IccFile class 141
IccFileld

in Base classes 18

in File control 29

in IccFileld class 153

in Resource identification classes
IccFileld class

Constructor 153

operator= 153

overview 18, 29

reading records 29
IccFileld constructors

Constructor 153

in IccFileld class 153

Index

18

329

IccFilelterator
in Browsing records 32
in Buffer objects 25
in Example of file control 32, 34
in File control 29
in IccFilelterator class 155
IccFilelterator class
Constructor 155
overview 29
readNextRecord 155
readNextRecord method 32
readPreviousRecord 32, 156
reset 156
IccFilelterator constructor
Constructor 155
in IccFilelterator class 155
lccGroupld
in lccGroupld class 159
lccGroupld class
Constructor 159
operator= 159
lccGroupld constructors
Constructor 159
in IccGroupld class 159
IccJournal
in Buffer objects 25
in IccJournal class 161
in Object level 58, 59
IccJournal class
clearPrefix 161
Constructor 161
journalTypeld 162
Options 164
put 162
registerPrefix 162
setJournalTypeld 162
setPrefix 162
wait 162
writeRecord 163
IccJournal constructors
Constructor 161
in Icclournal class 161
IccJournalld
in IccJournalld class 165
IccJournalld class
Constructor 165
number 165
operator= 165
IccJournalld constructors
Constructor 165
in IcclJournalld class 165
Icclournal Typeld
in Foundation Classes—reference 76
in IcclJournalTypeld class 167
IcclournalTypeld class
Constructor 167
operator= 167
Icclournal Typeld constructors
Constructor 167
in IcclJournalTypeld class 167
lccKey
in Browsing records 32
in Deleting normal records 32
in File control 29
in lccKey class 169
in IccRecordIndex class 187
in Reading KSDS records 30

IccKey (continued)
in Reading records 32

in Writing KSDS records 31

in Writing records 30, 31
IccKey class 30

assign 169

completeLength 169

Constructor 169

kind 170

Kind 171

operator= 170

operator!= 170

operator== 170

reading records 29

setkind 170

value 171
IccKey constructors

Constructor 169

in lccKey class 169
IccLockld

in IccLockld class 173
IccLockld class

Constructor 173

operator= 173
IccLockld constructors

Constructor 173

in lccLockld class 173
IccMessage

in IccMessage class 175

in Support Classes 21
IccMessage class

className 175

Constructor 175

methodName 175

number 176

summary 176

text 176
IccMessage constructor

Constructor 175

in lccMessage class 175
IccPartnerld

in IccPartnerld class 177
IccPartnerld class

Constructor 177

operator= 177
IccPartnerld constructors

Constructor 177

in IccPartnerld class 177
IccProgram

in Buffer objects 25

in IccProgram class 179

in Program control 34, 35

in Resource classes 19
IccProgram class

address 179

clearInputMessage 179

CommitOpt 182

Constructor 179

entryPoint 180

length 180
link 180
load 181

LoadOpt 182
program control 34
setinputMessage 181
unload 181

330 cIcs TS for 0S/390: C++ OO Class Libraries

IccProgram constructors
Constructor 179
in lccProgram class 179
IccProgramid
in IccProgramld class 183
in Resource identification classes 18
IccProgramlid class
Constructor 183
operator= 183
IccProgramld constructors
Constructor 183
in IccProgramld class 183
IccRBA
in Browsing records 32
in File control 29
in IccRBA class 185
in IccRecordIndex class 187
in Reading ESDS records 30
in Reading records 30
in Writing ESDS records 31
in Writing records 30, 31
in Writing RRDS records 31
IccRBA class
Constructor 185
number 186
operator= 185
operator!= 185, 186
operator== 185
reading records 29
IccRBA constructor
Constructor 185
in IccRBA class 185
IccRecordIndex
in C++ Exceptions and the Foundation
Classes 55
in lccRecordIndex class 187
IccRecordIndex class
Constructor 187
length 187
type 187
Type 188
IccRecordIndex constructor (protected)
Constructor 187
in IccRecordIndex class 187
IccRequestld
in Example of starting
transactions 37, 38
in IccRequestld class 189
in Parameter passing conventions 65
IccRequestld class
Constructor 189
operator= 189
IccRequestld constructors
Constructor 189
in IccRequestld class 189
IccResource
in Base classes 17
in Example of polymorphic
behavior 62, 63
in IccResource class 191
in Polymorphic Behavior 62
in Resource classes 19, 20
in Scope of data in lccBuf reference
returned from 'read' methods 65
IccResource class
actionOnCondition 191
ActionOnCondition 196

IccResource class (continued)
actionOnConditionAsChar 191
actionsOnConditionsText 192
clear 192
condition 192
conditionText 193
ConditionType 197
Constructor 191
get 193
handleEvent 193
HandleEventReturnOpt 196
id 193
isEDFOn 193
isRouteOptionOn 193
name 194
overview 17
put 194
routeOption 194
setActionOnAnyCondition 194
setActionOnCondition 194
setActionsOnConditions 195
setEDF 195
setRouteOption 195
working with subclasses 27

IccResource constructor (protected)
Constructor 191
in IccResource class 191

IccResourceld
in Base classes 17, 18

in C++ Exceptions and the Foundation

Classes 55

in Resource identification classes 18

IccResourceld class
Constructor 199
name 199
namelLength 199
operator= 200
overview 17, 18

IccResourceld constructors (protected)

Constructor 199

in IccResourceld class 199
IccRRN

in Browsing records 32

in Deleting normal records 32

in File control 29

in IccRecordIndex class 187

in IccRRN class 201

in Reading records 30

in Reading RRDS records 30

in Writing records 30, 31
IccRRN class

Constructor 201

number 202

operator= 201

operator!= 201, 202

operator== 201

reading records 29
IccRRN constructors

Constructor 201

in IccRRN class 201
IccSemaphore class

Constructor 203

lifeTime 203

LifeTime 205

lock 204

LockType 205

tryLock 204

IccSemaphore class (continued)

type 203

unlock 204
IccSemaphore constructor

Constructor 203

in IccSemaphore class 203
IccSession

in Buffer objects 25
IccSession class

allocate 208

AllocateOpt 215

connectProcess 208

Constructor 207

converse 209

convid 209

errorCode 209

extractProcess 209

flush 210

free 210

get 210

isErrorSet 210

isNoDataSet 210

isSignalSet 210

issueAbend 211

issueConfirmation 211

issueError 211

issuePrepare 211

issueSignal 211

PIPList 212

process 212

put 212

receive 212

send 212, 213

sendlnvite 213

sendLast 213

SendOpt 216

state 214

StateOpt 216

stateText 214

syncLevel 215

SyncLevel 216
IccSession constructor (protected)

Constructor 207

in IccSession class 207
IccSession constructors (public)

Constructor 207

in IccSession class 207
IccStartRequestQ

in Accessing start data 36

in Buffer objects 25

in Example of starting

transactions 38, 39

in IccRequestld class 189

in IccStartRequestQ class 217

in Mapping EXEC CICS calls to

Foundation Class methods 305

in Parameter passing conventions 65

in Singleton classes 22
in Starting transactions
asynchronously 36
IccStartRequestQ class
cancel 217
CheckOpt 222
clearData 217
Constructor 217
data 218
instance 218

IccStartRequestQ class (continued)
overview 217
ProtectOpt 222
queueName 218
registerData 218
reset 218
retrieveData 219
RetrieveOpt 222
returnTermld 219
returnTransld 219
setData 219
setQueueName 219
setReturnTermld 220
setReturnTransld 220
setStartOpts 220
start 221

IccStartRequestQ constructor (protected)

Constructor 217

in lccStartRequestQ class 217
IccSysld

in lccSysld class 223

in Program control 35
IccSysld class

Constructor 223

operator= 223
IccSysld constructors

Constructor 223

in lccSysld class 223
IccSystem

in Singleton classes 22
IccSystem class

applName 225

beginBrowse 225

Constructor 225

dateFormat 226

endBrowse 226

freeStorage 226

getFile 226

getNextFile 227

getStorage 227

instance 227

operatingSystem 227

operatingSystemLevel 228

overview 22

release 228

releaseText 228

ResourceType 229

sysld 228

workArea 229
IccSystem constructor (protected)

Constructor 225

in lccSystem class 225
IccTask

in C++ Exceptions and the Foundation

Classes 54
in Example of starting
transactions 39

in IccAlarmRequestld class 93

in IccTask class 231

in Parameter level 59

in Singleton classes 22

in Support Classes 21
IccTask::commitUOW

in Scope of data in IccBuf reference
returned from ‘read’ methods 65

IccTask class
abend 231

Index

331

IccTask class (continued)
abendData 231
AbendDumpOpt 239
AbendHandlerOpt 239
commitUoOwW 232
Constructor 231
delay 232
dump 232
DumpOpts 239
enterTrace 233
facilityType 233
FacilityType 240
freeStorage 233
getStorage 234
instance 234
isCommandSecurityOn 234
isCommitSupported 234
isResourceSecurityOn 235
isRestarted 235
isStartDataAvailable 235
number 235
overview 22
principalSysld 235
priority 236
rolIBackUOW 236
setDumpOpts 236
setPriority 236
setWaitText 236
startType 237
StartType 240
StorageOpts 240
suspend 237
TraceOpt 241
transld 237
triggerDataQueueld 237
userld 237
waitExternal 238
waitOnAlarm 238
WaitPostType 241
WaitPurgeability 241
workArea 238

IccTask Constructor (protected)
Constructor 231
in lccTask class 231

IccTempStore
in Automatic condition handling
(callHandleEvent) 56, 57
in Buffer objects 25

in C++ Exceptions and the Foundation

Classes 55

in Deleting items 42

in Example of polymorphic
behavior 63

in Example of Temporary Storage 42,

43
in IccTempsStore class 243
in Reading items 42
in Resource classes 19
in Temporary storage 41, 42
in Transient Data 40
in Updating items 42
IccTempstore
in Working with IccResource
subclasses 27
IccTempStore
in Working with IccResource
subclasses 27

IccTempStore (continued)

in Writing items 27
IccTempStore::readltem

in Scope of data in IccBuf reference

returned from ‘read’ methods 65

IccTempStore::readNextltem

in Scope of data in IccBuf reference

returned from ‘read’ methods 65

lccTempStore class

clear 243

Constructor 243

empty 244

get 244

Location 246

NoSpaceOpt 247

numberOfltems 244

put 244

readltem 244

readNextltem 245

rewriteltem 245

writeltem 245
IccTempStore constructors

Constructor 243

in lccTempStore class 243
lccTempStoreld

in Base classes 18

in Example of Temporary Storage 42,

43

in lccTempStoreld class 249

in Temporary storage 41, 42
IccTempStoreld class

Constructor 249

operator= 249
IccTempStoreld constructors

Constructor 249

in IccTempStoreld class 249
lccTermld

in Base classes 17

in C++ Exceptions and the Foundation

Classes 55
in Example of starting
transactions 37
in Example of terminal control 45
in lccTermld class 251
in Terminal control 44
IccTermld class
Constructor 251
operator= 251
overview 17
IccTermld constructors
Constructor 251
in IccTermld class 251
IccTerminal
in Buffer objects 25
in Example of terminal control 45
in Finding out information about a
terminal 44
in IccTerminalData class 267
in Receiving data from a terminal
in Resource classes 19, 20
in Sending data to a terminal 44
in Singleton classes 22
in Terminal control 44
IccTerminal::receive
in Scope of data in IccBuf reference
returned from 'read' methods 65

332 cCICS TS for 0S/390: C++ OO Class Libraries

IccTerminal class
AID 253
AlDVal 264
Case 265
clear 253
Color 265
Constructor 253
cursor 253
data 254
erase 254
freeKeyboard 254
get 254
height 254
Highlight 265
inputCursor 254
instance 255
line 255
netName 255
NextTransldOpt 265
operator<< 255, 256, 257
put 257
receive 257
receive3270Data 257
registerinputMessage 181
send 258
send3270 259
sendLine 260
setColor 260
setCursor 261
setHighlight 261
setLine 261
setNewLine 261
setNextCommArea 262
setNextInputMessage 262
setNextTransld 262
signoff 262
signon 263
waitForAID 263
width 264
workArea 264
IccTerminal constructor (protected)
Constructor 253
in IccTerminal class 253
IccTerminalData
in Example of terminal control 45
in Finding out information about a
terminal 44
in IccTerminalData class 267
in Terminal control 44
IccTerminalData class
alternateHeight 267
alternateWidth 267
Constructor 267
defaultHeight 268
defaultWidth 268
graphicCharCodeSet 268
graphicCharSetld 268
iSAPLKeyboard 268
iSAPLText 269
isBTrans 269
isColor 269
iISEWA 269
isExtended3270 269
isFieldOutline 270
isGoodMorning 270
isHighlight 270
isKatakana 270

IccTerminalData class (continued)

isSsMSRControl 267

isPS 271

isSOSI 271

isTextKeyboard 271

isTextPrint 271

isValidation 271
IccTerminalData constructor (protected)

Constructor 267

in IccTerminalData class 267
lccTime

in Base classes 18

in lccTime class 273

in Parameter passing conventions 65

in Support Classes 21
IccTime class

Constructor 273

hours 273

minutes 273

overview 18

seconds 273

timelnHours 274

timelnMinutes 274

timelnSeconds 274

type 274

Type 275
IccTime constructor (protected)

Constructor 273

in IccTime class 273
IccTimelnterval

in Base classes 18

in delay 232

in Example of starting

transactions 37, 39

in IccTime class 273

in Support Classes 21
IccTimelnterval class

Constructor 277

operator= 277

set 277
IccTimelnterval constructors

Constructor 277

in IccTimelnterval class 277
lccTimeOfDay

in Base classes 18

in delay 232

in IccTime class 273

in Support Classes 21
lccTimeOfDay class

Constructor 279

operator= 279

set 279
lccTimeOfDay constructors

Constructor 279

in IccTimeOfDay class 279
IccTPNameld

in lccTPNameld class 281
IccTPNameld class

Constructor 281

operator= 281
IccTPNameld constructors

Constructor 281

in IccTPNameld class 281
IccTransld

in Base classes 17

in Example of starting

transactions 38

IccTransld (continued)
in IccResourceld class 17
in lccTransld class 283
in Parameter passing conventions 65
IccTransld class
Constructor 283
operator= 283
overview 17
IccTransld constructors
Constructor 283
in IccTransld class 283
ICCUCPL 6
IccUser class
changePassword 285
Constructor 285
daysUntilPasswordExpires 286
ESMReason 286
ESMResponse 286
groupld 286
invalidPasswordAttempts 286
language 286
lastPasswordChange 286
lastUseTime 287
passwordExpiration 287
setLanguage 287
verifyPassword 287
IccUser constructors
Constructor 285
in lccUser class 285
IccUserControl
in C++ Exceptions and the Foundation
Classes 54
in Example of file control 33
in Example of managing transient
data 41
in Example of polymorphic
behavior 62
in Example of starting
transactions 37
in Example of Temporary Storage 43
in Example of terminal control 45
in Example of time and date
services 46
in Hello World 9
in main function 295
in Program control 35
in Singleton classes 22
IccUserControl class 9
IccUserld
in lccUserld class 289
IccUserld class
Constructor 289
operator= 289
IccUserld constructors
Constructor 289
in IccUserld class 289
IccValue
in Foundation Classes—reference 76
IccValue structure
CVDA 291
id
in IccResource class 193
Id
in Resource identification classes 18

id (parameter)
in Constructor 93, 129, 133, 141, 153,
159, 161, 165, 167, 173, 177, 179, 183,
189, 199, 203, 207, 223, 243, 249, 251,
281, 283, 285, 289
in getFile 226
in operator= 94, 127, 133, 153, 159,
165, 167, 173, 177, 183, 189, 200, 223,
249, 251, 281, 283, 289
in setlournalTypeld 162
in signon 263
in waitOnAlarm 238
ifSOSReturnCondition
in StorageOpts 240
ignoreAbendHandler
in AbendHandlerOpt 239
immediate
in NextTransldOpt 265
index (parameter)
in Constructor 141, 155
in registerRecordIindex 147
in reset 156
Inherited protected methods
in IccAbendData class 87
in IccAbsTime class 92
in IccAlarmRequestld class 94
in IccBuf class 107
in IccClock class 112
in IccConsole class 120
in IccControl class 125
in lccConvld class 128
in IccDataQueue class 131
in IccDataQueueld class 134
in IccEvent class 136
in IccException class 139
in IccFile class 150
in IccFileld class 154
in IccFilelterator class 157
in lccGroupld class 160
in Icclournal class 164
in Icclournalld class 166
in lcclJournalTypeld class 168
in lccKey class 171
in IccLockld class 174
in lccMessage class 176
in IccPartnerld class 178
in IccProgram class 182
in IccProgramlid class 184
in IccRBA class 186
in IccRecordIndex class 188
in IccRequestld class 190
in IccResource class 196
in IccResourceld class 200
in IccRRN class 202
in lccSemaphore class 205
in IccSession class 215
in lccStartRequestQ class 222
in lccSysld class 224
in lccSystem class 229
in lccTask class 239
in lccTempStore class 246
in lccTempStoreld class 250
in IccTermld class 252
in lccTerminal class 264
in IccTerminalData class 272
in lccTime class 274
in IccTimelnterval class 278

333

Index

Inherited protected methods (continued)
in lccTimeOfDay class 87
in IccTPNameld class 282
in lccTransld class 284
in IccUser class 288
in lccUserld class 290

Inherited public methods

in IccAbendData class 86

in IccAbsTime class 92

in IccAlarmRequestld class 94
in IccBuf class 107

in lccClock class 112

in IccConsole class 119

in IccControl class 124

in lccConvld class 127

in IccDataQueue class 130
in lccDataQueueld class 133
in IccEvent class 136

in IccException class 139

in IccFile class 149

in IccFileld class 153

in IccFilelterator class 156
in IccGroupld class 159

in IccJournal class 163

in Icclournalld class 166

in IcclJournalTypeld class 167
in lccKey class 171

in IccLockld class 173

in lccMessage class 176

in IccPartnerld class 177

in IccProgram class 181

in lccProgramld class 183
in IccRBA class 186

in IccRecordIndex class 187
in IccRequestld class 190

in IccResource class 196

in IccResourceld class 200
in IccRRN class 202

in lccSemaphore class 204
in IccSession class 215

in lccStartRequestQ class 221
in IccSysld class 223

in lccSystem class 229

in IccTask class 239

in IccTempsStore class 246

in lccTempStoreld class 249
in IccTermld class 251

in IccTerminal class 264

in IccTerminalData class 271
in IccTime class 274

in IccTimelnterval class 278
in lccTimeOfDay class 280
in IccTPNameld class 281
in IccTransld class 283

in lccUser class 287

in IccUserld class 289

initByte (parameter)
in getStorage 227, 234
initData

in IccControl class 122

in Public methods 122
initializeEnvironment

in Functions 78

in Icc structure 78

in Method level 59

in Storage management 64

initRBA (parameter)
in Constructor 185
initRRN (parameter)
in Constructor 201
initValue (parameter)
in Constructor 169
inputCursor
in IccTerminal class 254
insert
in Example of Temporary Storage 43
in IccBuf class 102
in IccBuf constructors 26
Installed contents
Location 6
instance
in lccAbendData class 86
in IccConsole class 117
in IccControl class 122
in lccStartRequestQ class 218
in lccSystem class 227
in lccTask class 234
in IccTerminal class 255
in Singleton classes 22
internal
in DataAreaOwner 107
internalError
in C++ Exceptions and the Foundation
Classes 55
in Type 140
interval (parameter)
in setReplyTimeout 118
invalidArgument
in C++ Exceptions and the Foundation
Classes 54
in Type 139
invalidMethodCall
in C++ Exceptions and the Foundation
Classes 55
in Type 139
invalidPasswordAttempts
in IccUser class 286
IPMD 50
isAddable
in IccFile class 143
in Writing ESDS records 31
in Writing KSDS records 31
in Writing RRDS records 31
isAPLKeyboard
in IccTerminalData class 268
in Public methods 268
iSAPLText
in IccTerminalData class 269
in Public methods 269
isBrowsable
in IccFile class 144
isBTrans
in IccTerminalData class 269
isClassMemoryMgmtOn
in Functions 78
in Icc structure 78
isColor
in IccTerminalData class 269
isCommandSecurityOn
in lccTask class 234
isCommitSupported
in lccTask class 234

334 cIcs TS for 0S/390: C++ OO Class Libraries

isCreated

in IccControl class 122
isDeletable

in IccFile class 144
isDumpAvailable

in IccAbendData class 86
isSEDFOn

in Functions 78

in Icc structure 78

in IccResource class 193
iISEmptyOnOpen

in IccFile class 144
isErrorSet

in IccSession class 210
iSEWA

in IccTerminalData class 269
isExpired

in IccAlarmRequestld class 93
isExtended3270

in IccTerminalData class 269

in Public methods 269
isFamilySubsetEnforcementOn

in Functions 78

in lcc structure 78
isFieldOutline

in IccTerminalData class 270

in Public methods 270
isFMHContained

in lccBuf class 102

in Public methods 102
isGoodMorning

in IccTerminalData class 270

in Public methods 270

isHighlight

in IccTerminalData class 270
isKatakana

in IccTerminalData class 270
isSMSRControl

in IccTerminalData class 270
isNoDataSet

in IccSession class 210
isPS

in IccTerminalData class 271
ISR2

in Example of starting

transactions 38

isReadable

in IccFile class 144

in Reading ESDS records 30

in Reading KSDS records 30

in Reading RRDS records 30
isReadable method 30
isRecoverable

in IccFile class 145
isResourceSecurityOn

in lccTask class 235
isRestarted

in lccTask class 235
isRouteOptionOn

in IccResource class 193

in Public methods 193
isSignalSet

in IccSession class 210
isSOSI

in IccTerminalData class 271
isStartDataAvailable

in lccTask class 235

issueAbend

in IccSession class 211
issueConfirmation

in IccSession class 211
issueError

in IccSession class 211
issuePrepare

in IccSession class 211
issueSignal

in IccSession class 211
isTextKeyboard

in IccTerminalData class 271

in Public methods 271
isTextPrint

in IccTerminalData class 271

in Public methods 271
isUpdatable

in IccFile class 145
isValidation

in lccTerminalData class 271
item (parameter)

in rewriteltem 245

in writeltem 130, 245
itemNum (parameter)

in readltem 244

in rewriteltem 245
ITMP

in Example of starting

transactions 38

J

journalNum (parameter)
in Constructor 161, 165
in operator= 165
journalTypeld
in Icclournal class 162
journalTypeName (parameter)
in Constructor 167
in operator= 167
jtypeid (parameter)
in setlournalTypeld 162

K

key
complete 30
generic 30

key (parameter)

in Constructor 169

in Example of file control 33

in operator= 170

in operator!'= 170

in operator== 170
keyLength

in IccFile class 145

in Reading KSDS records 30

in Writing KSDS records 31
keyLength method 30
keyPosition

in IccFile class 145

in Reading KSDS records 30

in writing KSDS records 31
keyPosition method 30
Kind

in Enumerations 171

kind

in lccKey class 170
Kind

in lccKey class 171
kind (parameter)

in Constructor 169

in setkind 171
KSDS

in File control 29
KSDS file 29

L

language

in lccUser class 286
language (parameter)

in setLanguage 287
lastCommand

in StateOpt 216
lastPasswordChange

in lccUser class 286
lastUseTime

in lccUser class 287
length

in IccProgram class 180

in IccRecordIndex class 187
length (parameter)

in append 100

in assign 101, 169

in Constructor 99

incut 101

in insert 102

in overlay 106

in replace 106

in setDataLength 106
level (parameter)

in connectProcess 208, 209
levelO

in SyncLevel 216
levell

in SyncLevel 216
level2

in SyncLevel 216
life (parameter)

in Constructor 203
LifeTime

in Enumerations 205
lifeTime

in IccSemaphore class 203
LifeTime

in IccSemaphore class 205
line

in Finding out information about a

terminal 44

in lccTerminal class 255
lineNum (parameter)

in setLine 261
link

in lccProgram class 180
load

in IccProgram class 181
LoadOpt

in Enumerations 182

in lccProgram class 182
loc (parameter)

in Constructor 243
Location

in Dynamic link library 6

Location (continued)

in Enumerations 6

in Header files 6

in lccTempStore class 246

in Installed contents 6

in Sample source code 6
lock

in IccSemaphore class 204
LockType

in Enumerations 205

in IccSemaphore class 205

M

main
in C++ Exceptions and the Foundation
Classes 53
in Example of file control 32
in Example of managing transient
data 40
in Example of polymorphic
behavior 62
in Example of starting
transactions 37
in Example of Temporary Storage 43
in Example of terminal control 45
in Example of time and date
services 46
in Header files 6
in main function 295
in Program control 35
in Storage management 64
main function
in Hello World 9
majorCode
in ConditionType 197
manual
in UpdateMode 113
Manual condition handling (noAction)
in CICS conditions 56
in Conditions, errors, and
exceptions 56
maxValue
in Range 115
mem (parameter)
in initializeEnvironment 78
memory
in Location 246
message
in IccException class 138
message (parameter)
in Constructor 137
in setNextlnputMessage 262
method
in Foundation Classes—reference 76
Method level
in Conditions, errors, and
exceptions 59
in Platform differences 59
methodName
in IccEvent class 136
in IccException class 138
in IccMessage class 175
methodName (parameter)
in Constructor 135, 137, 175
milliSeconds
in IccAbsTime class 90

Index 335

milliSeconds (continued)

in lccClock class 90
minorCode

in ConditionType 197
minutes

in lIccAbsTime class 90

in IccTime class 273
minutes (parameter)

in Constructor 273, 277, 279

inset 277, 278, 279, 280
Miscellaneous

Example of polymorphic behavior 62
mixed

in Case 265
mode (parameter)

in readNextRecord 155

in readPreviousRecord 156

in readRecord 146
MonthOfYear

in Enumerations 113
monthOfYear

in Example of time and date

services 47

in IccAbsTime class 90

in IccClock class 111
MonthOfYear

in lccClock class 113
msg (parameter)

in clearlnputMessage 179

in registerinputMessage 181

in setinputMessage 181
MVS/ESA

in ClassMemoryMgmt 80

in Storage management 64
MV SPost

in WaitPostType 241
MyTempStore

in Automatic condition handling

(callHandleEvent) 57

N

N
in operatingSystem 228
name
in IccResource class 194
in IccResourceld class 199
name (parameter)
in Constructor 93, 173, 223, 249, 251,
281, 283, 289
in operator= 173, 223, 249, 251, 281,
283, 289
in setWaitText 236
namelength
in IccResourceld class 199
NameOpt
in Enumerations 97
in IccBase class 97

netName

in lccTerminal class 255
neutral

in Color 265
new

in Storage management 64
new operator 15
newPassword (parameter)

in changePassword 285

newPassword (parameter) (continued)

in signon 285
NextTransldOpt

in Enumerations 265

in IccTerminal class 265
noAccess

in Access 150
noAction

in ActionOnCondition 196

in CICS conditions 56
noCommitOnReturn

in CommitOpt 182
NONCICS

in ASRAKeyType 84
none

in FacilityType 240
noQueue

in AllocateOpt 215
normal

in ReadMode 150

in SendOpt 216

in TraceOpt 241
NoSpaceOpt

in Enumerations 247

in IccTempsStore class 247

noSuspend

in Options 164
notAddable

in Access 150
NOTAPPLIC

in ASRAKeyType 84

in ASRASpaceType 85

in ASRAStorageType 85
notBrowsable

in Access 150
notDeletable

in Access 150
notPurgeable

in WaitPurgeability 241
notReadable

in Access 150
notUpdatable

in Access 150
num (parameter)

in operator= 185, 201

in operator!= 186

in operator== 185

in operator<< 105, 256, 257
number

in IccException class 138

in Icclournalld class 165

in lccMessage class 176

in IccRBA class 186

in IccRRN class 202

in lccTask class 235

in Writing RRDS records 31
number (parameter)

in Constructor 175

in setCustomClassNum 96
numberOfltems

in IccTempStore class 244
numEvents (parameter)

in waitExternal 238
numLines (parameter)

in setNewLine 261, 262
numRoutes (parameter)

in setRouteCodes 118

336 cCICS TS for 0S/390: C++ OO Class Libraries

O

obj (parameter)
in Using an object 16
object
creating 15
deleting 16
in GetOpt 80
using 16
object (parameter)
in Constructor 135, 137
in operator delete 96
Object level
in Conditions, errors, and
exceptions 58
in Platform differences 58
objectCreationError
in C++ Exceptions and the Foundation
Classes 54
in Type 139
offset (parameter)
incut 101
in dataArea 101
in insert 102
in replace 106
in setCursor 261
onOff (parameter)
in setEDF 79, 195
open
in Status 151
opensStatus
in IccFile class 145
operatingSystem
in lccSystem class 227
in Public methods 227
operatingSystemLevel
in lccSystem class 228
operator=
in Example of file control 33
in IccAbsTime class 91
in lccAlarmRequestld class 94
in lccBuf class 103
in lccConvld class 127
in IccDataQueueld class 133
in IccFileld class 153
in lccGroupld class 159
in Icclournalld class 165
in IcclournalTypeld class 167
in lccKey class 170
in lccLockld class 173
in IccPartnerld class 177
in IccProgramld class 183
in IccRBA class 185
in IccRequestld class 189
in IccResourceld class 200
in IccRRN class 201
in lccSysld class 223
in IccTempStoreld class 249
in lccTermld class 251
in lccTimelnterval class 277
in lccTimeOfDay class 279
in lccTPNameld class 281
in lccTransld class 283
in lccUserld class 289
in Protected methods 200
in Public methods 91, 277
in Working with IccResource
subclasses 27

operator!=

in IccBuf class 104

in lccKey class 170

in IccRBA class 185, 186

in IccRRN class 201, 202

in Public methods 104
operator+=

in IccBuf class 103
operator==

in IccBuf class 103

in lccKey class 170

in IccRBA class 185

in IccRRN class 201
operator const char*

in IccBuf class 102
operator delete

in IccBase class 96

in Public methods 96
operator<<

in lccBuf class 104, 105

in lccTerminal class 255, 256, 257
in Working with IccResource

subclasses 27

operator new

in IccBase class 96
opt (parameter)

in abendCode 83

in access 142

in accessMethod 142

in alternateHeight 267

in alternateWidth 267

in ASRAInterrupt 83

in ASRAKeyType 84

in ASRAPSW 84

in ASRARegisters 84

in ASRASpaceType 85

in ASRAStorageType 85

in className 95, 96

in defaultHeight 268

in defaultwidth 268

in enableStatus 143

in enterTrace 233

in graphicCharCodeSet 268

in graphicCharSetld 268
in height 254

in isAddable 143

in isAPLKeyboard 268
in isAPLText 269

in isBrowsable 144

in isBTrans 269

in isColor 269

in isDeletable 144

in isDumpAvailable 86
in isEmptyOnOpen 144
in iSEWA 269

in isExtended3270 269
in isFieldOutline 270
in isGoodMorning 270
in isHighlight 270

in isKatakana 270

opt (parameter) (continued)

in isUpdatable 83

in isValidation 271

in keyLength 145

in keyPosition 145

in link 180

in load 181

in openStatus 145

in originalAbendCode 86

in principalSysld 235

in priority 236

in programName 86

in recordFormat 146

in recordLength 147

in rewriteltem 245

in setNextTransld 262

in type 148

in userld 237

in waitExternal 238

in width 264

in write 119

in writeAndGetReply 119

in writeltem 245, 246
optl (parameter)

in abend 231
opt2 (parameter)

in abend 231
option (parameter)

in allocate 208

in retrieveData 219

insend 212, 213

in sendInvite 213

in sendLast 213, 214

in state 214

in stateText 214

in wait 163

in writeRecord 163
Options

in Enumerations 164

in Icclournal class 164
options (parameter)

in Constructor 161
opts (parameter)

in setDumpOpts 236
originalAbendCode

in IccAbendData class 86
0S/2

in ClassMemoryMgmt 80

in Storage management 64

0S/2, CICS
in Platform differences 58
Other datasets for CICS/ESA
in Installed contents 7
Output from sample programs

First Screen 313
Second Screen 313

P

P

in operatingSystem 228
PAl to PA3

in AIDVal 265
packedDecimal

in lccAbsTime class 91
Parameter level

in Conditions, errors, and

exceptions 59

in Platform differences 59
parameter passing 64
Parameter passing conventions

in Miscellaneous 64
partnerName (parameter)

in Constructor 177

in operator= 177
password (parameter)

in changePassword 285

in signon 263

in verifyPassword 287
passwordExpiration

in lccUser class 287

PF1 to PF24

in AIDVal 265
pink

in Color 265

PIP (parameter)

in connectProcess 208, 209
PIPList

in IccSession class 212
Platform differences

in Conditions, errors, and

exceptions 58

Method level 59
platform differences

method level 59
Platform differences

Object level 58
platform differences

object level 58
Platform differences

Parameter level 59
platform differences

parameter level 59
platformError

in Type 140
Platforms

in Enumerations 81

in Icc structure 81
polymorphic behavior 61
Polymorphic Behavior

Example of polymorphic behavior

in Miscellaneous 61
popt (parameter)

in setStartOpts 220
prefix (parameter)

in registerPrefix 162

in setPrefix 162

overlay pri (parameter)
in isMSRControl 270 -
inisPS 271 in lccBuf class 106 in setPriority 236
in isReadable 144 overview of Foundation Classes 17 principalSysid

in isRecoverable 145 Overview of the foundation classes in lccTask class 235

in isSOSI 271 Calling methods on a resource in Public methods 235
in isTextKeyboard 271 object 22 print
in isTextPrint 271 Creating a resource object 21 in Polymorphic Behavior 62

Index 337

priority

in lccTask class 236

in Public methods 236
process

in IccSession class 212
profile (parameter)

in Constructor 207
progName (parameter)

in Constructor 179, 183

in operator= 183
program control

example 34
Program control

in Using CICS Services 34
program control

introduction 34
programlid

in IccControl class 122

in Method level 59

in Public methods 122
programld (parameter)

in setAbendHandler 123
programName

in IccAbendData class 86

in Public methods 86
programName (parameter)

in setAbendHandler 123
Protected methods

in IccBase class 96

in IccResourceld class 200

operator= 200

setClassName 96

setCustomClassNum 96
ProtectOpt

in Enumerations 222

in lccStartRequestQ class 222
pStorage (parameter)

in freeStorage 226
Public methods

abend 231

abendCode 83

abendData 231

absTime 109

access 142

accessMethod 142

actionOnCondition 191

actionOnConditionAsChar 191

actionsOnConditionsText 192

address 179

AID 253

allocate 208

alternateHeight 267

alternateWidth 267

append 100

applName 225

ASRAInterrupt 83

ASRAKeyType 84

ASRAPSW 84

ASRARegisters 84

ASRASpaceType 85

ASRAStorageType 85

assign 101, 169

beginBrowse 225

begininsert(VSAM only) 142

callingProgramld 121

cancel 217

cancelAbendHandler 121

Public methods (continued)
cancelAlarm 231
changePassword 285
className 95, 135, 138, 175
classType 95, 135, 138
clear 129, 192, 243, 253
clearData 217
clearInputMessage 179
clearPrefix 161
commArea 121
commitUoOw 232
completeLength 169
condition 135, 192
conditionText 136, 193
connectProcess 208
console 122
converse 209
convid 209
cursor 253
customClassNum 96
cut 101
data 218, 254
dataArea 101
dataArealLength 101
dataAreaOwner 102
dataAreaType 102
dataLength 102
date 89, 110
dateFormat 226
dayOfMonth 90, 110
dayOfWeek 90, 110
daysSince1900 90, 110
daysUntilPasswordExpires 286
defaultHeight 268
defaultwidth 268
delay 232
deleteLockedRecord 142
deleteRecord 143
dump 232
empty 129, 244
enableStatus 143
endBrowse 226
endInsert(VSAM only) 143
enterTrace 233
entryPoint 180
erase 254
errorCode 209
ESMReason 286
ESMResponse 286
extractProcess 209
facilityType 233
flush 210
free 210
freeKeyboard 254
freeStorage 226, 233
get 130, 193, 210, 244, 254
getFile 226
getNextFile 227
getStorage 227, 234
graphicCharCodeSet 268
graphicCharSetld 268
groupld 286
handleEvent 193
height 254
hours 90, 273
id 193
in lccAbendData class 83

338 cICS TS for 0S/390: C++ OO Class Libraries

Public methods (continued)

in IccAbsTime class 231

in IccAlarmRequestld class 93

in IccBase class 95

in IccBuf class 100

in IccClock class 109

in IccConsole class 117

in IccControl class 121

in IccConvld class 127

in IccDataQueue class 129

in IccDataQueueld class 133

in IccEvent class 135

in IccException class 138

in IccFile class 142

in IccFileld class 153

in IccFilelterator class 155

in lccGroupld class 159

in Icclournal class 161

in IcclJournalld class 165

in IcclJournalTypeld class 167

in lccKey class 169

in lccLockld class 173

in lccMessage class 175

in IccPartnerld class 177

in IccProgram class 179

in IccProgramld class 183

in IccRBA class 185

in IccRecordIndex class 187

in IccRequestld class 189

in IccResource class 191

in IccResourceld class 199

in IccRRN class 201

in IccSemaphore class 203

in IccSession class 208

in lccStartRequestQ class 217

in lccSysld class 223

in lccSystem class 225

in lccTask class 231

in lccTempStore class 243

in IccTempStoreld class 249

in lccTermld class 251

in IccTerminal class 253

in lccTerminalData class 267

in IccTime class 273

in IccTimelnterval class 277

in lccTimeOfDay class 279

in lccTPNameld class 281

in IccTransld class 283

in IccUser class 285

in lccUserld class 289

initData 122

inputCursor 254

insert 102

instance 86, 117, 122, 218, 227, 234,
255

invalidPasswordAttempts 286

isAddable 143

iSAPLKeyboard 268

iSAPLText 269

isBrowsable 144

isBTrans 269

isColor 269

isCommandSecurityOn 234

isCommitSupported 234

isCreated 122

isDeletable 144

isDumpAvailable 86

Public methods (continued)

iSEDFOn 231
iSEmptyOnOpen 144
isErrorSet 210

iISEWA 269

isExpired 93
isExtended3270 269
isFieldOutline 270
isFMHContained 102
isGoodMorning 270
isHighlight 270
isKatakana 270
isSsMSRControl 270
isNoDataSet 210

isPS 271

isReadable 144
isRecoverable 145
isResourceSecurityOn 235
isRestarted 235
isRouteOptionOn 193
isSignalSet 210

isSOSI 271
isStartDataAvailable 235
issueAbend 211
issueConfirmation 211
issueError 211
issuePrepare 211
issueSignal 211
isTextKeyboard 271
isTextPrint 271
isUpdatable 145
isValidation 271
journalTypeld 162
keyLength 145
keyPosition 145

kind 170

language 286
lastPasswordChange 286
lastUseTime 287

length 180, 187

lifeTime 203

line 255

link 180

load 181

lock 204

message 138
methodName 136, 138, 175
milliSeconds 90, 110
minutes 90, 273
monthOfYear 90, 111
name 194, 199
namelLength 199
netName 255

number 138, 165, 176, 186, 202, 235
numberOfltems 244
openStatus 145
operatingSystem 227
operatingSystemLevel 228
operator= 91, 94, 103, 127, 133, 153,
159, 165, 167, 170, 173, 177, 183, 185,
189, 201, 223, 249, 251, 277, 279, 281,
283, 289

operator!= 104, 170, 185, 186, 201,
202

operator+= 103

operator== 103, 170, 185, 201

operator const char* 102

Public methods (continued)
operator delete 231
operator<< 104, 105, 255, 256, 257
operator new 96
originalAbendCode 86
overlay 106
packedDecimal 91
passwordExpiration 287
PIPList 212
principalSysld 235
priority 236
process 212
programld 122
programName 86
put 117, 130, 162, 194, 212, 244, 257
queueName 218
readltem 130, 244
readNextltem 245
readNextRecord 155
readPreviousRecord 156
readRecord 146
receive 212, 257
receive3270Data 257
recordFormat 146
recordindex 147
recordLength 147
registerData 218
registerinputMessage 181
registerPrefix 162
registerRecordindex 147
release 228
releaseText 228
replace 106
replyTimeout 117
reset 156, 218
resetAbendHandler 123
resetRouteCodes 118
retrieveData 219
returnProgramid 123
returnTermid 219
returnTransld 219
rewriteltem 245
rewriteRecord 147
roliIBackUOW 236
routeOption 194
run 123
seconds 91, 273
send 212, 213, 258
send3270 259
sendlnvite 213
sendLast 213
sendLine 260
session 123
set 277,279
setAbendHandler 123
setAccess 148
setActionOnAnyCondition 194
setActionOnCondition 194
setActionsOnConditions 195
setAlarm 111
setAllRouteCodes 118
setColor 260
setCursor 261
setData 219
setDataLength 106
setDumpOpts 236
setEDF 195

Public methods (continued)
setEmptyOnOpen 231
setFMHContained 106
setHighlight 261
setinputMessage 181
setJournalTypeld 162
setkind 170
setLanguage 287
setLine 261
setNewLine 261
setNextCommArea 262
setNextlnputMessage 262
setNextTransld 262
setPrefix 162
setPriority 236
setQueueName 219
setReplyTimeout 118
setReturnTermld 220
setReturnTransld 220
setRouteCodes 118
setRouteOption 195
setStartOpts 220
setStatus 148
setTimerECA 94
setWaitText 236
signoff 262
signon 263
start 221
startRequestQ 124
startType 237
state 214
stateText 214
summary 136, 138, 176
suspend 237
syncLevel 215
sysld 228
system 124
task 124
terminal 124
text 176
time 091, 111
timelnHours 91, 274
timelnMinutes 91, 274
timelnSeconds 92, 274
timerECA 94
transld 237
triggerDataQueueld 237
tryLock 204
type 139, 148, 187, 204, 274
typeText 139
unload 181
unlock 204
unlockRecord 149
update 111
userld 237
value 171
verifyPassword 287
wait 162
waitExternal 238
waitForAID 263
waitOnAlarm 238
width 264
workArea 229, 238, 264
write 118
writeAndGetReply 119
writeltem 130, 245
writeRecord 149, 163

Index

339

Public methods (continued)
year 231, 111

purgeable
in WaitPurgeability 241
put
in Example of polymorphic
behavior 63

in IccConsole class 117

in lccDataQueue class 130
in Icclournal class 162

in IccResource class 194

in IccSession class 212

in IccTempStore class 244
in lccTerminal class 257

in Polymorphic Behavior 62

Q

queue

in AllocateOpt 215

in NextTransldOpt 265
queueName

in Accessing start data 36

in lccStartRequestQ class 218
queueName (parameter)

in Constructor 129, 133

in operator= 133

in setQueueName 219

R

rAbendTask

in HandleEventReturnOpt 196
Range

in Enumerations 115

in IccCondition structure 115
RBA 29
rba (parameter)

in operator= 185

in operator!= 186

in operator== 185
rContinue

in HandleEventReturnOpt 196
readable

in Access 150
reading data 40
Reading data

in Transient Data 40

in Using CICS Services 40
Reading ESDS records

in File control 30

in Reading records 30
reading items 42
Reading items

in Temporary storage 42

in Using CICS Services 42
Reading KSDS records

in File control 30

in Reading records 30
Reading records

in File control 30

in Using CICS Services 30

Reading ESDS records 30

Reading KSDS records 30

Reading RRDS records 30

Reading RRDS records
in File control 30
in Reading records 30
readltem
in Example of Temporary Storage 43
in IccDataQueue class 130
in lccTempsStore class 244
in Reading data 40
in Reading items 42
in Scope of data in lccBuf reference
returned from 'read’ methods 65
in Temporary storage 41
in Transient Data 40
in Working with IccResource
subclasses 27
ReadMode
in Enumerations 150
in IccFile class 150
readNextltem
in IccTempStore class 245
in Scope of data in IccBuf reference
returned from 'read' methods 65
in Temporary storage 42
readNextRecord
in Browsing records 32
in IccFilelterator class 155
in Public methods 155
readNextRecord method 32
READONLY
in ASRAStorageType 85
readPreviousRecord 32
in Browsing records 32
in IccFilelterator class 156
readRecord
in C++ Exceptions and the Foundation
Classes 55
in Deleting locked records 32
in IccFile class 146
in Reading records 30
in Updating records 31
readRecord method 30
receive
in lccSession class 212
in lccTerminal class 257
in Receiving data from a terminal 44
receive3270Data
in lccTerminal class 257
in Public methods 257
receive3270data
in Receiving data from a terminal 44
receiving data from a terminal 44
Receiving data from a terminal
in Terminal control 44
in Using CICS Services 44
record (parameter)
in writeRecord 163
recordFormat
in IccFile class 146
in Reading ESDS records 30
in Reading RRDS records 30
in Writing ESDS records 31
in Writing RRDS records 31
recordFormat method 30
recordIndex
in IccFile class 147
in Reading ESDS records 30
in Reading KSDS records 30

340 cIcs TS for 0S/390: C++ OO Class Libraries

recordIindex (continued)
in Reading RRDS records 147
in Writing ESDS records 31
in Writing KSDS records 31
in Writing RRDS records 31
recordindex method 30
recordLength
in IccFile class 147
in Reading ESDS records 30
in Reading KSDS records 30
in Reading RRDS records 30
in Writing ESDS records 31
in Writing KSDS records 31
in Writing RRDS records 31
recordLength method 30
red
in Color 265
registerData 218
in Example of starting
transactions 38
in lccStartRequestQ class 218
in Starting transactions 36
registerInputMessage 179
in lccTerminal class 181
registerPrefix
in lccournal class 162
in Public methods 162
registerRecordIindex 30
in IccFile class 147
in Reading ESDS records 30
in Reading KSDS records 30
in Reading RRDS records 30
in Writing ESDS records 31
in Writing KSDS records 31
in Writing records 30
in Writing RRDS records 31
registerRecordIndex method 30
relative byte address 29
relative record number 29
release
in lccSystem class 228
releaseAtTaskEnd
in LoadOpt 182
releaseText
in lccSystem class 228
remoteTermld
in Example of starting
transactions 37
replace
in lccBuf class 106
in lccBuf constructors 26
replyTimeout
in IccConsole class 117
req
in Example of starting
transactions 38
reql
in Example of starting
transactions 37
req2
in Example of starting
transactions 37
reqestName (parameter)
in operator= 189
reqld (parameter)
in cancel 217
in cancelAlarm 109

reqld (parameter) (continued)
in delay 217
in setAlarm 111
in start 221
requestName (parameter)
in Constructor 189
in operator= 94, 189
requestNum (parameter)
in wait 163
reset
in Browsing records 32
in IccFilelterator class 156
in lccStartRequestQ class 218
resetAbendHandler
in IccControl class 123
resetRouteCodes
in IccConsole class 118
in Public methods 118
resld (parameter)
in beginBrowse 225
resName (parameter)
in beginBrowse 226
in Constructor 199
resource (parameter)
in beginBrowse 225, 226
in Constructor 203
in endBrowse 226
in enterTrace 233
resource class 19
Resource classes
in Overview of the foundation
classes 19
resource identification class 18
Resource identification classes
in Overview of the foundation
classes 18
resource object
creating 21
ResourceType
in Enumerations 229
in lccSystem class 229
respectAbendHandler
in AbendHandlerOpt 239
retrieveData
in Accessing start data 36
in lccStartRequestQ class 217, 219
in Mapping EXEC CICS calls to
Foundation Class methods 305
RetrieveOpt
in Enumerations 222
in lccStartRequestQ class 222
return
in Mapping EXEC CICS calls to
Foundation Class methods 305
returnCondition
in NoSpaceOpt 247
returnProgramld
in IccControl class 123
in Public methods 123
returnTermid
in Accessing start data 37
in lccStartRequestQ class 219
returnToCICS
in Functions 79
in Icc structure 79
returnTransld
in Accessing start data 37

returnTransld (continued)

in lccStartRequestQ class 37
reverse

in Highlight 265
rewriteltem

in Example of Temporary Storage 43

in lccTempStore class 245

in Temporary storage 42

in Updating items 42

in Writing items 42
rewriteRecord

in IccFile class 147

in Updating records 31
rewriteRecord method 31
rewriting records 31
rolIBackUOW

in lccTask class 236
routeOption

in IccResource class 194
row (parameter)

in send 258

in setCursor 261
RRDS file

in File control 29
RRN 29

rrn (parameter)
in operator= 201
in operator!= 202
in operator== 201
rThrowException
in HandleEventReturnOpt 196
run
in Base classes 17
in C++ Exceptions and the Foundation
Classes 54
in Example of file control 33, 34
in Example of managing transient
data 41
in Example of polymorphic
behavior 62
in Example of starting
transactions 37
in Example of Temporary Storage 43,
44
in Example of terminal control 45, 46
in Example of time and date
services 46, 47
in Hello World 10
in lccControl class 121, 123
in main function 295, 296
in Mapping EXEC CICS calls to
Foundation Class methods 305
in Program control 35
run method
in Hello World 9
Running "Hello World" on your CICS
server
Expected Output from "Hello
World" 11
in Hello World 10
Running the sample applications. 6

S

sample source 6

Sample source code
in Installed contents 6
Location 6

scope of data 65
Scope of data in IccBuf reference returned
from 'read’ methods

in Miscellaneous 65
scope of references 65
search (parameter)

in Constructor 155

in reset 156
SearchCriterion

in Enumerations 151

in IccFile class 151
Second Screen

in ICC$PRG1 (IPR1) 313

in Output from sample

programs 313

seconds

in IccAbsTime class 91

in IccTime class 273
seconds (parameter)

in Constructor 273, 277, 279

in set 277, 278, 279, 280

in setReplyTimeout 118
send

in Example of terminal control 45

in Hello World 10

in lccSession class 212, 213

in lccTerminal class 258

in Sending data to a terminal 44
send (parameter)

in converse 209

in put 117

insend 212

in sendinvite 213

in sendLast 213

in write 119

in writeAndGetReply 119
send3270

in IccTerminal class 259
sending data to a terminal 44
Sending data to a terminal

in Terminal control 44

in Using CICS Services 44
sendlnvite

in IccSession class 213
sendLast

in IccSession class 213
sendLine

in Example of file control 34

in Example of terminal control 45

in lccTerminal class 260

in Sending data to a terminal 44
SendOpt

in Enumerations 216

in IccSession class 216
sequential reading of files 32
session

in FacilityType 240

in IccControl class 123
set

in IccTimelnterval class 277

in lccTimeOfDay class 279
set...

in Sending data to a terminal 44
set (parameter)

in boolText 77
setAbendHandler

in IccControl class 123

Index 341

setAccess

in IccFile class 148
setActionOnAnyCondition

in IccResource class 194
setActionOnCondition

in IccResource class 194
setActionsOnConditions

in IccResource class 195
setAlarm

in IccAlarmRequestld class 93

in IccClock class 111
setAllIRouteCodes

in IccConsole class 118
setClassName

in IccBase class 96

in Protected methods 96
setColor

in Example of terminal control 45

in IccTerminal class 260
setCursor

in IccTerminal class 261
setCustomClassNum

in IccBase class 96

in Protected methods 96
setData 218

in IccStartRequestQ class 219

in Starting transactions 36

setDataLength

in lccBuf class 106
setDumpOpts

in lccTask class 236
setEDF

in Functions 79

in Icc structure 79

in IccResource class 195
setEmptyOnOpen

in IccFile class 148

in Public methods 148
setFMHContained

in IccBuf class 106

in Public methods 106
setHighlight

in Example of terminal control 45

in lccTerminal class 261
setinputMessage 179

in IccProgram class 181

in Public methods 181
setJournalTypeld

in Icclournal class 162
setKind

in Example of file control 33

in lccKey class 170
setLanguage

in IccUser class 287
setLine

in lccTerminal class 261
setNewLine

in IccTerminal class 261
setNextCommArea

in IccTerminal class 262

in Public methods 262
setNextInputMessage

in IccTerminal class 262
setNextTransld

in IccTerminal class 262
setPrefix

in IccJournal class 162

setPriority
in lccTask class 236
in Public methods 236
setQueueName
in Example of starting
transactions 38
in lccStartRequestQ class 219
in Starting transactions 36
setReplyTimeout
in IccConsole class 118
setReturnTermid
in Example of starting
transactions 38
in lccStartRequestQ class 220
in Starting transactions 36
setReturnTransld
in Example of starting
transactions 38
in IccStartRequestQ class 220
in Starting transactions 36
setRouteCodes
in IccConsole class 118
setRouteOption
in Example of starting
transactions 38, 39
in IccResource class 195
in Program control 36
in Public methods 195
setStartOpts
in lccStartRequestQ class 220
setStatus
in IccFile class 148
setTimerECA
in IccAlarmRequestld class 94
setWaitText
in lccTask class 236
Severe error handling (abendTask)
in CICS conditions 58
in Conditions, errors, and
exceptions 58
SeverityOpt
in Enumerations 120
in IccConsole class 120
signoff
in lccTerminal class 262
signon
in lccTerminal class 263
in Public methods 263
singleton class 22
Singleton classes
in Creating a resource object 22
in Using CICS resources 22
size (parameter)
in getStorage 227, 234
in operator new 96
start
in Example of starting
transactions 39
in IccRequestld class 189
in lccStartRequestQ class 217, 221
in Mapping EXEC CICS calls to
Foundation Class methods 305
in Parameter passing conventions 65
in Starting transactions 36
Starting transactions
in Starting transactions
asynchronously 36

342 cICS TS for 0S/390: C++ OO Class Libraries

Starting transactions (continued)
in Using CICS Services 36
starting transactions asynchronously 36
Starting transactions asynchronously
Accessing start data 36
Cancelling unexpired start
requests 37
Example of starting transactions 37
in Using CICS Services 36
Starting transactions 36

startlO

in Options 164
startRequest

in StartType 240
startRequestQ

in Example of starting
transactions 38, 39
in lccControl class 124
StartType
in Enumerations 240
startType
in Example of starting
transactions 39
in lccTask class 237
StartType
in lccTask class 240
state
in lccSession class 214
StateOpt
in Enumerations 216
in lccSession class 216
stateText
in lccSession class 214
Status
in Enumerations 151
in IccFile class 151
status (parameter)
in setStatus 148
Storage management
in Miscellaneous 63
StorageOpts
in Enumerations 240
in lccTask class 240
storageOpts (parameter)
in getStorage 227, 234
storeName (parameter)
in Constructor 243
SUBSPACE
in ASRASpaceType 85
summary
in IccEvent class 136
in IccException class 138
in IccMessage class 176
support classes 20
Support Classes
in Overview of the foundation
classes 20
suppressDump
in AbendDumpOpt 239
suspend
in lccTask class 237
in NoSpaceOpt 247
symbolic debuggers 50
Symbolic Debuggers
in Compiling, executing, and
debugging 50
in Debugging Programs 50

synchronous

in Options 164
SyncLevel

in Enumerations 216
syncLevel

in IccSession class 215
SyncLevel

in lccSession class 216
sysld

in lccSystem class 228
sysld (parameter)

in Constructor 207

in setRouteOption 195
sysName (parameter)

in Constructor 207

in setRouteOption 195
system

in IccControl class 124

T

task

in IccControl class 124

in LifeTime 205
Temporary storage

Deleting items 42
temporary storage

deleting items 42

example 42
Temporary storage

Example of Temporary Storage 42

in Using CICS Services 41
temporary storage

introduction 41
Temporary storage

Reading items 42
temporary storage

reading items 42
Temporary storage

Updating items 42
temporary storage

updating items 42
Temporary storage

Writing items 42
temporary storage

Writing items 42
termld (parameter)

in setReturnTermid 220

in start 221
terminal

finding out about 44

in FacilityType 240

in Hello World 9

in lccControl class 124

receiving data from 44

sending data to 44
terminal control

example 45
Terminal control

Example of terminal control 45
terminal control

finding out information 44
Terminal control

Finding out information about a

terminal 44
in Using CICS Services 44

terminal control
introduction 44
receiving data 44
Terminal control
Receiving data from a terminal 44
terminal control
sending data 44
Terminal control
Sending data to a terminal 44
terminallnput
in StartType 240
termName (parameter)
in setReturnTermid 220
Test
in C++ Exceptions and the Foundation
Classes 53, 54
test (parameter)
in boolText 77
text
in IccMessage class 176
text (parameter)
in Constructor 100, 175
in operator= 103
in operator!= 170
in operator+= 103
in operator==170
in operator<< 104, 105, 256
in writeltem 130, 246
throw
in C++ Exceptions and the Foundation
Classes 53
in Exception handling
(throwException) 57
throwException
in ActionOnCondition 196
in CICS conditions 56
ti
in Example of starting
transactions 37, 39
time
in IccAbsTime class 91
in IccClock class 111
time (parameter)
in Constructor 89, 277, 279
in delay 232
in setAlarm 111
in start 221
Time and date services
Example of time and date
services 46
in Using CICS Services 46
time services 46
timelnHours
in IccAbsTime class 91
in lccTime class 274
timelnMinutes
in IccAbsTime class 91
in lccTime class 274
timelnSeconds
in IccAbsTime class 92
in lccTime class 274
timelnterval
in Type 275
timelnterval (parameter)
in operator= 277
timeOfDay
in Type 275

timeOfDay (parameter)
in operator= 279
timerECA
in lccAlarmRequestld class 94
timerECA (parameter)
in Constructor 93
in setTimerECA 94
timeSeparator (parameter)
in time 91, 111
TPName (parameter)
in connectProcess 209
traceNum (parameter)
in enterTrace 233
TraceOpt
in Enumerations 241
in lccTask class 241
tracing
activating trace output 50
Tracing a Foundation Class Program
Activating the trace output 50
in Compiling, executing, and
debugging 50
in Debugging Programs 50
transld
in lccTask class 237
transld (parameter)
in cancel 217
in connectProcess 208
in link 180
transid (parameter)
in setNextTransld 262
transld (parameter)
in setNextTransld 262
in setReturnTransld 220
in start 221
Transient Data
Deleting queues 40
transient data
deleting queues 40
example 40
Transient Data
Example of managing transient
data 40
in Using CICS Services 40
transient data
introduction 40
Transient Data
Reading data 40
transient data
reading data 40
Transient Data
Writing data 40
transient data
Writing data 40
transName (parameter)
in setReturnTransld 220
triggerDataQueueld
in lccTask class 237
trueFalse (parameter)
in setEmptyOnOpen 148
try
in C++ Exceptions and the Foundation
Classes 53, 54
in Exception handling
(throwException) 57
in main function 296

Index 343

tryLock
in IccSemaphore class 204
tryNumber
in C++ Exceptions and the Foundation
Classes 53, 54

type
in C++ Exceptions and the Foundation
Classes 54
Type
in Enumerations 139, 188, 275
type
in IccException class 139
Type
in IccException class 139
type

in IccFile class 148

in IccRecordIndex class 187
Type

in IccRecordIndex class 188
type

in lccSemaphore class 204

in IccTime class 274
Type

in IccTime class 275
type (parameter)

in condition 135, 192

in Constructor 95, 99, 100, 187, 199,

203

in waitExternal 238
typeText

in lccException class 139

U

underscore

in Highlight 265
UNIX

in ClassMemoryMgmt 80

in Storage management 64
unknownException

in Functions 79

in lcc structure 79
unload

in lccProgram class 181
unlock

in IccSemaphore class 204
unlockRecord

in IccFile class 149

uow

in LifeTime 205
updatable

in Access 150
update

in IccClock class 111

in ReadMode 150
update (parameter)

in Constructor 109
UpdateMode

in Enumerations 113

in lccClock class 113
updateToken (parameter)

in deleteLockedRecord 142

in readNextRecord 155, 156

in readPreviousRecord 156

in readRecord 146

in rewriteRecord 147

in unlockRecord 149

updating items 42
Updating items
in Temporary storage 42
in Using CICS Services 42
updating records 31
Updating records
in File control 31
in Using CICS Services 31
upper
in Case 265
USER
in ASRAStorageType 85
user (parameter)
in signon 263
userDataKey
in StorageOpts 241
USEREXECKEY
in ASRAKeyType 84
userld
in lccTask class 237
userld (parameter)
in start 221
userName (parameter)
in Constructor 285
Using an object
in C++ Objects 16
using CICS resources 21
Using CICS resources
Calling methods on a resource
object 22
Creating a resource object 21
in Overview of the foundation
classes 21
Singleton classes 22
Using CICS Services
Accessing start data 36
Browsing records 32
Cancelling unexpired start
requests 37
Deleting items 42
Deleting queues 40
Deleting records 32
Example of file control 32
Example of managing transient
data 40
Example of starting transactions 37
Example of Temporary Storage 42
Example of terminal control 45
Example of time and date

services 46
Finding out information about a
terminal 44

Reading data 40

Reading items 42

Reading records 30

Receiving data from a terminal 44
Sending data to a terminal 44
Starting transactions 36
Updating items 42

Updating records 31

Writing data 40

Writing items 42

Writing records 30

344 cIcs TS for 0S/390: C++ OO Class Libraries

Vv

value

in lccKey class 171
value (parameter)

in operator= 170
variable (parameter)

in Foundation Classes—reference 76
verifyPassword

in lccUser class 287

in Public methods 287
virtual

in Glossary 319
VSAM 29

W

wait

in Icclournal class 162

in SendOpt 216
waitExternal

in lccTask class 238
waitForAID

in Example of terminal control 46

in IccTerminal class 263
waitOnAlarm

in IccAlarmRequestld class 93

in IccTask class 238
WaitPostType

in Enumerations 241

in lccTask class 241
WaitPurgeability

in Enumerations 241

in lccTask class 241
width

in lccTerminal class 264
workArea

in lccSystem class 229

in lccTask class 238

in IccTerminal class 264
Working with IccResource subclasses

in Buffer objects 27

in lccBuf class 27

write
in lccConsole class 118
writeAndGetReply
in lccConsole class 119
writeltem
in C++ Exceptions and the Foundation
Classes 55
in Calling methods on a resource
object 23

in IccDataQueue class 130

in IccTempStore class 245

in Temporary storage 41

in Transient Data 40

in Working with IccResource

subclasses 27

in Writing data 40

in Writing items 42
writeRecord

in Example of file control 33

in IccFile class 149

in lcclournal class 163

in Writing KSDS records 31

in Writing records 30

in Writing RRDS records 31
writeRecord method

IccFile class 30

Writing data 40

in Transient Data 40
in Using CICS Services 40

Writing ESDS records

in File control 31
in Writing records 31

Writing items 42

in Temporary storage 42
in Using CICS Services 42

Writing KSDS records

in File control 31

in Writing records 31
Writing records

in File control 30

in Using CICS Services 30
Writing ESDS records 31
Writing KSDS records 31
Writing RRDS records 31

Writing RRDS records

in File control 31
in Writing records 31

X

X
in actionOnConditionAsChar 192
in operatingSystem 228

xldb 50

Y

year

in IccAbsTime class 92
in lccClock class 111

yellow
in Color 265
yesNo (parameter)
in setFMHContained 107

Index 345

346 cICS TS for 0S/390: C++ OO Class Libraries

Sending your comments to IBM

If you especially like or dislike anything about this book, please use one of the
methods listed below to send your comments to IBM.

Feel free to comment on what you regard as specific errors or omissions, and on
the accuracy, organization, subject matter, or completeness of this book.

Please limit your comments to the information in this book and the way in which
the information is presented.

To request additional publications, or to ask questions or make comments about
the functions of IBM products or systems, you should talk to your IBM
representative or to your IBM authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or
distribute your comments in any way it believes appropriate, without incurring
any obligation to you.

You can send your comments to IBM in any of the following ways:

* By mail, to this address:
Information Development Department (MP095)
IBM United Kingdom Laboratories
Hursley Park
WINCHESTER,

Hampshire
United Kingdom

* By fax:
— From outside the U.K., after your international access code use
44-1962-870229

— From within the U.K., use 01962-870229

» Electronically, use the appropriate network ID:
— IBM Mail Exchange: GBIBM2Q9 at IBMMAIL
- IBMLink™: HURSLEY(IDRCF)
— Internet: idrcf@hursley.ibm.com

Whichever you use, ensure that you include:

* The publication number and title

* The topic to which your comment applies

* Your name and address/telephone number/fax number/network ID.

© Copyright IBM Corp. 1989, 1999 347

on recycled paper containing 10%

@ Printed in the United States of America
recovered post-consumer fiber.

SC34-5455-00

Spine information:

CICS TS for 0S/390 C++ OO Class Libraries

