
PN 00766
Connect:Direct®

HP NonStop

Management Programming Guide

Version 3.4

CDHPNSMPG409

Connect:Direct HP NonStop Management Programming Guide
Version 3.4
First Edition
This documentation was prepared to assist licensed users of the Connect:Direct HP NonStop system (“Sterling
Commerce Software”). The Sterling Commerce Software, the related documentation and the information and know-
how it contains, is proprietary and confidential and constitutes valuable trade secrets of Sterling Commerce, Inc., its
affiliated companies or its or their licensors (collectively “Sterling Commerce”), and may not be used for any
unauthorized purpose or disclosed to others without the prior written permission of Sterling Commerce. The Sterling
Commerce Software and the information and know-how it contains have been provided pursuant to a license agreement
which contains prohibitions against and/or restrictions on its copying, modification and use. Duplication, in whole or in
part, if and when permitted, shall bear this notice and the Sterling Commerce, Inc. copyright legend.
Portions of the Sterling Commerce Software may include products or may be distributed on the same storage media
with products ("Third Party Software") offered by third parties ("Third Party Licensors"). Sterling Commerce Software
may include Third Party Software covered by the following copyrights: Copyright © 1997-2004 Certicom Corp. All
rights reserved by all listed parties.
Where any of the Sterling Commerce Software is used, duplicated or disclosed by or to the United States government or
a government contractor or subcontractor subject to the FARs, it is provided with RESTRICTED RIGHTS as defined in
Title 48 CFR 52.227-19. Further, as and when provided to any governmental entity, governmental contractor or
subcontractor subject to DFARs, the Sterling Commerce Software is provided pursuant to the customary Sterling
Commerce license, as described in Title 48 CFR 227-7202 with respect to commercial software and commercial
software documentation.
The Sterling Commerce Software and the related documentation are licensed either “AS IS” or with a limited warranty,
as described in the Sterling Commerce license agreement. Other than any limited warranties provided, NO OTHER
WARRANTY IS EXPRESSED AND NONE SHALL BE IMPLIED, INCLUDING THE WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR USE OR FOR A PARTICULAR PURPOSE. The applicable Sterling
Commerce entity reserves the right to revise this publication from time to time and to make changes in the content
hereof without the obligation to notify any person or entity of such revisions or changes.
References in this manual to Sterling Commerce products, programs, or services do not imply that Sterling Commerce
intends to make these available in all countries in which Sterling Commerce operates.
Printed in the United States of America.
Copyright © 1991, 2004. Sterling Commerce, Inc. All rights reserved.
Connect:Direct is a registered trademark of Sterling Commerce. Connect:Enterprise is a registered trademark of
Sterling Commerce, U.S. Patent Number 5,734,820. All Third Party Software names are trademarks or registered
trademarks of their respective companies. All other brand or product names are trademarks or registered trademarks of
their respective companies.

Contents

Preface

Chapter Overview ... 7

Connect:Direct HP NonStop Documentation ... 8
Related Documentation.. 8

Getting Support for Sterling Commerce Products .. 8

Chapter 1 About Connect:Direct HP NonStop

Connect:Direct HP NonStop Components.. 9

Automated Installation and Management System .. 11

 Connect:Direct HP NonStop Concepts .. 12
Processes .. 12
Transmission Control Queue ... 12
Network Map ... 12

Defining Domain Nodes to Manage Inbound TCP/IP Connections....................... 13
Using Session Redirection for Outbound TCP/IP Connections 13

Connect:Direct Secure+ Option... 15
External Applications .. 15
Commands ... 15

User and Administrator Commands ... 16
Environment Commands .. 17
Message Commands ... 18

Flow of Connect:Direct HP NonStop Operations... 18

Chapter 2 Using Application Programming Interfaces

API Overview ... 21

Elements of C-String Control Structures .. 22

Error Control Structure ... 23

4 Connect:Direct HP NonStop Management Programming Guide
Chapter 3 Programming the API

API Basics ... 25
Setting Parameters.. 26
Running the API... 26
Understanding the API ... 27
Using the FILE Parameter.. 27

Command Control Structure Keywords .. 28
About the DISPLAY STATINFO Control Structure... 28
About the ENVIRONMENT Control Structure... 29
About the NETMAP Control Structure.. 30
About the PROCESS Control Structure... 31
About the SECURITY Control Structure .. 32
About the STATISTICS Control Structure.. 32
About the TIME Control Structure .. 34
About the TYPE Control Structure .. 35
About the USER Control Structure.. 36
About the VERSION Control Structure... 38

ERRCS Optional Keywords.. 38

CB Function Prototypes .. 40

Message File Structure .. 43
Example.. 44

Chapter 4 Interface for User-Written Programs

Determining the Type of Exit to Define.. 45

Specifying a Standard I/O Exit.. 45
Invoking an I/O Exit on an OS/390 Node.. 46
Implementing an I/O Exit... 47

Sending Request Sequence ... 47
Receiving Request Sequence .. 47

I/O Exit Requests ... 48
Defining the Exit Control Block .. 51
Sample Standard I/O Exit... 53

Specifying Generic IPC Processing .. 53
Types of Blocking .. 53
Specifying an IPC I/O Exit .. 54
Implementing an IPC I/O Exit ... 54
Required Parameter .. 54
Optional Parameters ... 54
Integrating Dataloader/MP... 55

How Dataloader/MP Works.. 55
Specifying a Dataloader/MP Exit ... 55
Dataloader/MP Parameters ... 56
Example Process Stream... 56

Chapter 5 Sample Code

Example... 59

Contents 5
Chapter 6 Using DSM/EMS Event Reporting

EMS-Specific Initialization Parameters.. 67

Logging Commands.. 67

Distribution Files... 67

Integrating Connect:Direct HP NonStop in a DSM Environment.. 68
Connect:Direct HP NonStop Tokens ... 69

Glossary

Index

6 Connect:Direct HP NonStop Management Programming Guide

Preface

The Connect:Direct HP NonStop Management Programming Guide is for programmers writing applications to
interface with Connect:Direct HP NonStop.

Read the first four chapters to learn how to write and run an API to use with Connect:Direct HP NonStop.
These chapters introduce Connect:Direct HP NonStop and the components of the API environment. Chapter 5,
Sample Code, provides a sample API written in C. If you plan to retrieve event messages, refer to Chapter 6,
Using DSM/EMS Event Reporting, to integrate Connect:Direct HP NonStop in a Distributed Systems
Management (DSM) environment.

This guide assumes knowledge of the Connect:Direct HP NonStop operating system, its applications, network,
and environment. If you are not familiar with the Connect:Direct HP NonStop operating system, refer to the HP
NonStop library of manuals.

Chapter Overview
The organization of the Connect:Direct HP NonStop Management Programming Guide follows:

Chapter 1, About Connect:Direct HP NonStop, provides general information about the product and
describes how Connect:Direct HP NonStop works.
Chapter 2, Using Application Programming Interfaces, provides an overview of an Application
Programming Interface (API) and describes the internal data structures used by Connect:Direct HP
NonStop
Chapter 3, Programming the API, provides the following information you need to program and run an
API:
Chapter 4, Interface for User-Written Programs, describes the two types of I/O exits and provides
information about determining which I/O exit to define.
Chapter 5, Sample Code, provides an example to illustrate concepts and considerations that are useful
when you write an API.
Chapter 6, Using DSM/EMS Event Reporting, describes how to use Event Management Service (EMS) in
the HP NonStop Distributed Systems Management (DSM) environment.
Glossary, defines Connect:Direct HP NonStop terms used in this manual.

8 Connect:Direct HP NonStop Management Programming Guide
Connect:Direct HP NonStop Documentation
The following manuals make up the Connect:Direct HP NonStop library:

Connect:Direct HP NonStop Release Notes is a document shipped with Connect:Direct HP NonStop that
lists system requirements, ESD instructions, and last-minute product updates. This document is provided
in hardcopy only.
The Connect:Direct HP NonStop Installation Guide provides instructions for planning the installation and
installing Connect:Direct HP NonStop.
The Connect:Direct HP NonStop Administration Guide provides instructions for maintaining
Connect:Direct.
The Connect:Direct HP NonStop User Guide and Reference includes general information on using
Connect:Direct and serves as a reference of user and environment commands.
The Connect:Direct HP NonStop Management Programming Guide describes the requirements for APIs
(user-written applications) to work with Connect:Direct. DSM/EMS event reporting is also covered.

Related Documentation
The following manuals supplement the Connect:Direct HP NonStop library:

Connect:Direct Process documentation provides you with the information needed to write a
Connect:Direct Process. This documentation consists of two books:

Connect:Direct Process Concepts and Examples Guide provides an overview of Connect:Direct HP
NonStop, describes the general structure and syntax rules for the Process language, and includes
numerous examples.

Connect:Direct Process Statements Guide describes the Process statements for various platforms
including Connect:Direct HP NonStop.

Connect:Direct Compatibility and Connectivity Chart provides definitions for several supported
Connect:Direct platforms and the mapping of the definitions that must match between two communicating
platforms.

If you have a license for Connect:Direct Secure+ Option, refer to the following documentation:

Connect:Direct Secure+ Option HP NonStop Implementation Guide describes planning, installing,
configuring, and using Connect:Direct Secure+ Option HP NonStop to implement security into a
Connect:Direct operation.
Connect:Direct Secure+ Option HP NonStop Release Notes describes hardware and software
requirements, known restrictions, and last-minute product information.

Getting Support for Sterling Commerce Products
Sterling Commerce provides intuitive technical products and superior Help and documentation to enable you to
work independently. However, if you have a technical question regarding a Sterling Commerce product, use the
Sterling Commerce Customer Support Web site.

The Sterling Commerce Customer Support Web site at www.sterlingcommerce.com is the doorway to Web
support, information, and tools. This Web site contains several informative links, including a solutions
database, an issue tracking system, fix information, documentation, workshop information, contact
information, sunset and retirement schedules, and ordering information. Refer to the Customer Support
Reference Guide available on the Sterling Commerce Web site.

http://www.sterlingcommerce.com

Chapter 1

About Connect:Direct HP NonStop

Connect:Direct HP NonStop links technologies and moves all types of information between networked systems
and computers. It manages high-performance transfers by providing features such as automation, reliability,
efficient use of resources, application integration, and ease of use. Connect:Direct HP NonStop software offers
choices in communications protocols, hardware platforms, and operating systems. It provides the flexibility to
move information among mainframes, midrange systems, desktop systems, and LAN-based workstations.

Connect:Direct HP NonStop Components
Connect:Direct HP NonStop runs as an application on the HP NonStop operating system. The product
components interact to execute the Process statements and commands submitted through the user interface.

The following figure illustrates the basic components of Connect:Direct HP NonStop: Monitor (NDMMON),
Server (NDMSRVR), User Interface (NDMCOM), Session Manager (NDMSMGR), I/O Exits (I/O EXIT),
Statistics Deletion Program (NDMSTDL), Statistics Utility Program (STUTIL), Application Programming
Interface (API), and Connect:Direct HP NonStop Spooler Option (NDMSPL). Brief descriptions of each
component follow the sample network configuration.

10 Connect:Direct HP NonStop Management Programming Guide

Component Description

Monitor The monitor (NDMMON) is a nonstop process that creates and monitors the Connect:Direct HP
NonStop server (NDMSRVR) process. For NDMMON startup instructions, refer to the
Connect:Direct HP NonStop Installation Guide.

Server The Connect:Direct HP NonStop server (NDMSRVR) process manages:
- Command requests
- Communication with the session manager
- Session establishment requests for TCP/IP
Note: If the NDMSRVR process ends abnormally or the CPU executing the NDMSRVR process
fails, NDMMON creates a new NDMSRVR process, retaining the original NDMSRVR process
name and parameters.

User Interface NDMCOM is the user interface with NDMSRVR. Use NDMCOM, the command-line interface, to
issue Connect:Direct HP NonStop commands and to change and configure the Connect:Direct
HP NonStop environment.

NDMSMGR

NDMSMGR

NDMSMGR

SNODE

NDMMON

(PNODE=SNODE)

 ADJACENT
 NODE

\SYSTEM1

\SYSTEM2

EXPAND LINK

I/O EXIT

NDMSMGR

NDMSMGR

NDMSMGR

STUTIL

NDMSTDL

API

 NDMSPL

NDMCOM

NDMCOM

NDMCOM

NDMCOM

NDMSRVR

SNAX

TCP/ IP

ICE

HP NonStop Node

PNODE

Chapter 1 / About Connect:Direct HP NonStop 11
Automated Installation and Management System
The Automated Installation and Management System (AIMS) is a full-screen, block-mode interface for
installing, configuring, and starting Connect:Direct HP NonStop.

AIMS is a menu-driven system that collects information about your node and the nodes you are
communicating with and guides you through the installation. Performing the menu options in the displayed
numerical order expedites installation. Each user-input screen has a Help feature, which describes the entry
fields for the screen. Throughout the AIMS procedure, messages displayed on the bottom line of the screen
inform you of the status of the procedure and indicate errors. For more information on AIMS, refer to
Connect:Direct HP NonStop Installation Guide.

Session Manager The Connect:Direct HP NonStop session manager (NDMSMGR) module establishes sessions
and transfers data between the local and adjacent nodes. The application can be configured to
start session managers at initialization, or you can start them manually using the MODIFY
command. If you define dynamic LUs for TCP/IP connectivity, NDMSRVR starts session
managers as needed. You cannot issue the MODIFY command to start dynamic session
managers.
The figure on the previous page shows six session managers, two of which are communicating
across SNAX sessions, two across TCP/IP, and one across ICE. One session manager is using
the PNODE=SNODE facility.

I/O Exits I/O exit support enables the user-written programs to serve as application interfaces for
Connect:Direct HP NonStop data transfers. I/O exits permit manipulation of data formats and
database architectures not currently supported by Connect:Direct HP NonStop. For transfers
(COPY), Connect:Direct HP NonStop supports direct access only to Enscribe and Spool files.
I/O exit support enables user-written programs to access non-supported databases, such as
SQL, and manipulate data during a COPY step.

Statistics Deletion
Program

The statistics deletion program (NDMSTDL) ensures that sufficient space is available to write
statistics records in the statistics files. NDMSTDL deletes records from the Connect:Direct HP
NonStop statistics file based on user-specified deletion criteria and maximum percentage of file
capacity. For instructions on using NDMSTDL, refer to Chapter 7, Optimizing Performance, in
Connect:Direct HP NonStop Administration Guide.

Statistics Utility
Program

The statistics utility program (STUTIL) analyzes the statistics files to determine how much space
is available. Connect:Direct HP NonStop returns this information to the server for determination
on when to run NDMSTDL.

Application Program
Interface

An Application Program Interface (API) is a user-written application that communicates with
NDMCOM. Refer to the Connect:Direct HP NonStop Management Programming Guide for
details on creating and using an API.

Connect:Direct HP
NonStop Spooler
Option

The Connect:Direct HP NonStop Spooler option permits an installation to transfer spooler jobs
automatically from an HP NonStop node to a file on an adjacent node.
For the information you need to install, configure, and run the Connect:Direct HP NonStop
Spooler option, refer to Chapter 11, Connect:Direct HP NonStop Spooler Option, in
Connect:Direct HP NonStop Administration Guide.

Component Description

12 Connect:Direct HP NonStop Management Programming Guide
 Connect:Direct HP NonStop Concepts
This section introduces certain concepts and definitions important to understanding user operations.

Processes
The Process language provides instructions for transferring files, running programs, submitting jobs on the
adjacent node, and altering the sequence of Process step execution. You can include one or more steps in a
Process.

A Process consists of a Process definition statement (PROCESS statement) and one or more additional
statements. Parameters further qualify Process instructions. For additional information on PROCESS
statements, refer to the Connect:Direct Process documentation.

Transmission Control Queue
The Transmission Control Queue (TCQ) controls Process execution as Connect:Direct HP NonStop operates.
Connect:Direct HP NonStop stores submitted Processes in the TCQ which is divided into logical queues.

Connect:Direct HP NonStop places the Process in the appropriate queue based on Process statement
parameters that affect scheduling. Examples of such parameters are the HOLD, RETAIN, and STARTT
parameters.

Connect:Direct HP NonStop selects Processes in a first-in first-out manner for execution in Process class and
priority as sessions are available. You can access the queues and manipulate the Processes through
Connect:Direct HP NonStop commands.

Refer to Chapter 3, Queuing Processes, in Connect:Direct HP NonStop User Guide and Reference for a
discussion of the following topics:

Understanding the Transmission Control Queue
Managing Processes in the TCQ
Scheduling Connect:Direct HP NonStop Activity

Network Map
The network map file defines the nodes with which Connect:Direct HP NonStop can communicate. The
network map includes a local node record and one or more adjacent nodes, logical units (LUs), API managers
(AMGRs), and logmode records.

The local node is the logical name for the node on which you installed Connect:Direct HP NonStop. An
adjacent node is the node definition for a remote site. LUs provide communication between the HP NonStop
system (local node) and adjacent nodes. Logmode records define the session protocol for an SNA HP NonStop
LU, and are only used when the local LU is configured as the primary LU (PLU).

In addition to creating explicit adjacent node records for the individual nodes with which you communicate,
you can also define domain node adjacent node records for communications with large networks of
Connect:Direct nodes, including Connect:Direct/Plex systems, in a TCP domain. These special-purpose
adjacent node records simplify your network map and increase efficiency.

Chapter 1 / About Connect:Direct HP NonStop 13
Defining Domain Nodes to Manage Inbound TCP/IP Connections
The domain node feature enables you to manage inbound connection requests to the Connect:Direct HP
NonStop node from IP addresses that are not explicitly configured in the network map, for example from
multiple Connect:Direct/Server processes under the direction of the Connect:Direct/Plex Manager. Using the
domain node feature, you can create an adjacent node entry of the type NDM.DOMAIN for any TCP/IP
domain containing one or more Connect:Direct nodes and define a range of IP addresses instead of defining an
adjacent node record for each remote connection. When the Connect:Direct HP NonStop server receives a
connection request, it first attempts to match the originating IP address with a specific adjacent node entry in
the network map. If this search fails, the server searches for adjacent nodes of the type NDM.DOMAIN and
then uses the IPMASK parameter as a template to identify a node that best fits the mask’s pattern. Without a
domain node record, each Connect:Direct/Plex Server or remote node must have an adjacent node record in the
Connect:Direct HP NonStop network map to initiate connections.

The DOMAINSERVER and the NETMAPCHECK initialization parameters are associated with this
feature.You must set the DOMAINSERVER global initialization parameter to Yes before you can define a
domain node.

You can use the NETMAPCHECK initialization parameter and Connect:Direct Secure+ Option to secure the
TCP/IP sessions. See Connect:Direct Secure+ Option in this chapter for more information about
Connect:Direct Secure+ Option and Chapter 2, Planning the Installation, in Connect:Direct HP NonStop
Installation Guide for a discussion of how the security options function in your environment.

Using Session Redirection for Outbound TCP/IP Connections
Connect:Direct HP NonStop supports session redirection for outbound connections to a Connect:Direct/Plex
system. As illustrated in the following figure, a Connect:Direct/Plex system is a Connect:Direct OS/390 (zOS)
system consisting of a Connect:Direct/Plex Manager and one or more Connect:Direct/Servers in a TCP/IP
environment. Connection requests from the Connect:Direct HP NonStop node to the Connect:Direct/Plex
system are routed to the Connect:Direct/Plex Manager, which redirects the connection request to the
appropriate, available Connect:Direct/Plex Server process. Redirecting communications sessions across
multiple Connect:Direct Server processes simplifies the network map, facilitates load-balancing, and ensures
continuous, efficient use of resources.

14 Connect:Direct HP NonStop Management Programming Guide
You can create adjacent node records either through AIMS or with individual network map commands. Use the
following table as a guide to the tools and the parameters used to create adjacent node records.

Task Reference

Planning your network map to use domain nodes and
session redirection

Defining Adjacent Node Records for TCP/IP Connections in
Chapter 2, Planning the Installation, in Connect:Direct HP
NonStop Installation Guide

Setting the DOMAINSERVER and NETMAPCHECK
initialization parameters

Setting Initialization Parameters in Chapter 3, Installing and
Configuring Connect:Direct HP NonStop in Connect:Direct
HP NonStop Installation Guide

Assessing your security options Defining Adjacent Node Records for TCP/IP Connections in
Chapter 2, Planning the Installation, in Connect:Direct HP
NonStop Installation Guide

Creating the worksheets for your adjacent node records in
the network map

Preparing to Define the Network Map through AIMS in
Chapter 2, Planning the Installation, in Connect:Direct HP
NonStop Installation Guide

Defining the network map through AIMS Configuring the Network Map in Chapter 3, Installing and
Configuring Connect:Direct HP NonStop, in Connect:Direct
HP NonStop Installation Guide

Using individual commands, syntax, and parameters to
define and maintain the network map

Chapter 3, Defining and Maintaining the Network Map, in
Connect:Direct HP NonStop Administration Guide

Connect:Direct/Plex
CD.PROD1

Connect:Direct/Manager
Connect:Direct/Server 1

Connect:Direct/Server 2

Remote node

Remote node

Remote node
Remote node

Remote node

Connect:Direct HP NonStop

TCP/IP

(NDMSRVR)

Chapter 1 / About Connect:Direct HP NonStop 15
Connect:Direct Secure+ Option
The client authentication certificates and multiple cipher suites offered by Connect:Direct Secure+ Option
provide the confidence that your organization can use public networks knowing that data is being reliably
transferred from a known source and can only be read by the intended recipient. To use Connect:Direct
Secure+ Option for communications with remote nodes, you must have node records in the Connect:Direct
Secure+ Option parameters file (SPNODES) that duplicate the adjacent node records in the Connect:Direct HP
NonStop network map.You can populate the Connect:Direct Secure+ Option parameters file from entries
defined in an existing network map using the Sync with NetMap function. For more information about
populating the Connect:Direct Secure+ Option parameters file (SPNODES) and configuring nodes for
Connect:Direct Secure+ Option, refer to the Connect:Direct Secure+ Option HP NonStop Implementation
Guide. For information about using Connect:Direct Secure+ Option with domain nodes, see Chapter 2,
Planning the Installation, in Connect:Direct HP NonStop Installation Guide.

External Applications
Connect:Direct HP NonStop can interface with external applications. The TCP/IP API enables users of other
applications to configure, control, and operate Connect:Direct HP NonStop from any host on a TCP/IP
network. To set up a connection between Connect:Direct HP NonStop and another application, you need to
define two entities in the network map:

An adjacent node with the TYPE parameter defined as NDM.API and the IPADDR parameter defined as
the address of the external application client from which connection requests may be received.
An API manager (AMGR) to handle communications sessions with the external application. The AMGR
record is used to define the local TCP process and port number on which a LISTEN is to be posted to
accept incoming connection requests.

After you have defined these components, you must identify the AMGRs you want to use to communicate with
an adjacent node by using the RELATE NETMAP command. For more information on both the INSERT and
RELATE NETMAP commands, refer to Chapter 3, Defining and Maintaining the Network Map, in
Connect:Direct HP NonStop Administration Guide. You can also perform these functions using the Automated
Installation & Management System (AIMS) to set up the network map. For more information, refer to
Chapter 3, Installing and Configuring Connect:Direct HP NonStop, in Connect:Direct HP NonStop
Installation Guide.

Commands
You use commands to submit Connect:Direct HP NonStop Processes to the TCQ and to manipulate Processes
in the queue by flushing, deleting, or suspending them.

The following command submits the Process called ONESTEP to the TCQ with a HOLD status of Yes:

Other commands allow you to select and display statistics or perform administrative functions, such as
maintain network maps, user authorities, and default types.

The command language consists of the following types of commands:

User
Administrator
Environment
Message

SUBMIT FILE ONESTEP HOLD=YES

16 Connect:Direct HP NonStop Management Programming Guide
User and Administrator Commands
Issue user and administrator commands to perform the following tasks:

Submit Connect:Direct HP NonStop Processes
Monitor and control Process execution
Perform administrative functions
Examine Connect:Direct HP NonStop node definitions
Stop Connect:Direct HP NonStop

Refer to the Connect:Direct HP NonStop User Guide and Reference for command syntax and parameter
descriptions for user commands. Command syntax and parameter descriptions for administrator commands are
in this manual.

The following table lists the user and administrator commands and their functions:

Command Function

CHANGE PROCESS Modifies a Process in the TCQ.

DELETE PROCESS Removes a nonexecuting Process from the TCQ.

DELETE NETMAP Removes a node, LOGMODE, or LU from the network map.

DELETE SECURITY† Removes a user record from the security file.

DELETE TYPE† Removes a type record from the type file.

DELETE USER† Removes a user record from the authorization file.

DISPLAY LICENSE Displays current license key.

DISPLAY LOGGING Displays or prints the settings for EMS and STATS, and the name of the collector process.

DISPLAY SESSIONS Displays active and licensed session counts.

FLUSH PROCESS Removes an executing Process from the TCQ.

INSERT NETMAP† Adds a node, LOGMODE, or LU to the network map.

INSERT SECURITY† Adds a security record to the security file.

INSERT TYPE† Adds a type record to the type file.

INSERT USER† Adds a user record to the authorization file.

LASTPNUMBER Determines the number of the last Process submitted in the current NDMCOM session.

MODIFY† Runs Connect:Direct HP NonStop traces or modifies certain operational functions.

RELATE NETMAP† Assigns specific LUs or AMGRs to an adjacent node record.

SELECT NETMAP Displays or prints definitions of node, LOGMODE, and LU entries in the network map file.

SELECT PROCESS Displays or prints information about a Process in the TCQ.

SELECT SECURITY Displays or prints records in the security file.

SELECT STATISTICS Displays or prints statistics in the statistics log.

SELECT TYPE Displays or prints type records.

SELECT USER Displays or prints user records in the authorization file.

† Administrative commands

Chapter 1 / About Connect:Direct HP NonStop 17
Environment Commands
Use environment commands to change and define the Connect:Direct HP NonStop environment or to facilitate
the use of NDMCOM. The following table lists the environment commands and their functions:

STOP ALL† Stops Connect:Direct HP NonStop operation.

SUBMIT Submits a Process for execution.

SUSPEND PROCESS Suspends an executing Process.

UPDATE LICENSE Validates the license key in the LICENSE file and updates the active license.

UPDATE LOGGING† Modifies settings for EMS, STATS, and COLLECTOR.

UPDATE NETMAP† Alters a node, LOGMODE, or LU record in the network map.

UPDATE SECURITY† Changes a security record in the security file.

UPDATE STATISTICS† Dynamically changes the percentage setting, deletion criteria, and midnight housekeeping
flag in the statistics facility (NDMSTDL).

UPDATE TYPE† Changes a type record in the type file.

UPDATE USER† Changes a user record in the authorization file.

Command† Function

! Reexecutes a previous command line, without modifications.

DISPLAY STATINFO Displays percentage setting, deletion criteria, midnight flag setting, last execution of
NDMSTDL, and file information for the statistics files (STATFILE, STATSRCH, STATSRC0).

EDIT Invokes the HP NonStop TEDIT editor.

ENVIRONMENT Displays the current Connect:Direct HP NonStop environment, including defaults.

EXIT Exits NDMCOM.

FC Changes and/or reissues previously typed commands.

HELP Accesses the interactive Connect:Direct HP NonStop Help facility.

HISTORY Displays up to the last 100 commands issued.

LIST Displays the contents of an edit file.

LOGON Logs on to NDMCOM.

OBEY Executes a series of HP NonStop and Connect:Direct HP NonStop commands, except FC,
contained in an edit file.

OBEYVOLUME Defines the default volume used for expansion of the obey file name.

OPEN Opens the NDMSRVR process.

OUT Changes the default output file.

PRINTER Defines the print file name.

† Refer to the Controlling the Environment chapter in the Connect:Direct HP NonStop User Guide and Reference for command syntax and parameter descriptions for
environment commands.

Command Function

† Administrative commands

18 Connect:Direct HP NonStop Management Programming Guide
Message Commands
Use Connect:Direct HP NonStop message commands to insert, delete, display, modify, and print messages.
Refer to Using Connect:Direct HP NonStop in the Connect:Direct HP NonStop User Guide and Reference for
syntax and parameter descriptions for displaying and printing messages. Refer to Chapter 10, Modifying the
Message File, in Connect:Direct HP NonStop Administration Guide for syntax and parameter descriptions for
modifying messages.

Flow of Connect:Direct HP NonStop Operations
The following shows the processing flow for a SUBMIT command.

The SUBMIT command is issued through NDMCOM.

The command submits the file, $VOL.SEND.FILE. The file contains Process statements.

The Process is sent to the server. The server then places the Process on the TCQ, responds to NDMCOM
with the Process number (PNUMBER), and routes the Process to an available session manager. In the
following figure, the server returns a PNUMBER of 5 to NDMCOM.

PROCVOLUME Defines the default volume used for expansion of the Process file name.

RUN Executes any user-written or system programs without exiting NDMCOM.

SYMBOL Builds, deletes, and displays symbolic substitution values for use in Connect:Direct HP
NonStop.

TIME Retrieves the current day, date, and time.

VERSION Displays or prints the version, release, and maintenance level for the NDMCOM currently
running.

VOLUME Defines the current default volume.

CD.49.>SUBMIT FILE $VOL.SEND.FILE

SEND PROCESS SNODE=MVS.NODE
STEP01 COPY FROM (DSN=$SYS.TAN.TXT)-

TO (DSN=MVS.FILE SNODE)

Command† Function

† Refer to the Controlling the Environment chapter in the Connect:Direct HP NonStop User Guide and Reference for command syntax and parameter descriptions for
environment commands.

NDMSRVRNDMCOM

Process

Response is
Process
number 5

TCQ

Chapter 1 / About Connect:Direct HP NonStop 19
The session manager reads the Process from the TCQ and executes it.

While the Process is queued, or during execution, you can display Process status by issuing the SELECT
PROCESS command.

Refer to Chapter 6, Managing Processes, in Connect:Direct HP NonStop User Guide and Reference for
sample output from the SELECT PROCESS command.

After Process execution, you can display the results of the operation by issuing the SELECT STATISTICS
command. Refer to Chapter 7, Viewing System Files, in Connect:Direct HP NonStop User Guide and
Reference for sample output from the SELECT STATISTICS command.

CD.50.>SELECT PROCESS PNUMBER=5

CD.51.>SELECT STATISTICS PNUMBER=5

NDMSRVR

NDMSMGR ADJACENT
NODE

TCQ

20 Connect:Direct HP NonStop Management Programming Guide

Chapter 2

Using Application Programming Interfaces

This chapter provides an overview of an Application Programming Interface (API) and describes the internal
data structures used by Connect:Direct HP NonStop.

API Overview
An API is a user-written application that interfaces with Connect:Direct HP NonStop interface, NDMCOM.

Initially, you start the API as a process. The API is then responsible for the following tasks:

Building the parameters and startup messages for NDMCOM
Creating and opening NDMCOM
Passing the parameters and startup messages to NDMCOM

NDMCOM then opens the API, sends the version, issues the OPEN command to the server (NDMSRVR), and
validates the user ID. If NDMSRVR opens and you are a valid user and logged on to NDMCOM, then you can
issue commands through the API.

The following steps occur when you issue Connect:Direct HP NonStop commands through an API:

1. The API writes to the NDMCOM process and gets responses by reading $RECEIVE. Connect:Direct HP
NonStop uses this method of communication because NDMCOM can respond to a single API request with
multiple messages, rather than a one-to-one correlation in the traditional requester/server relationship.

2. NDMCOM parses the command. If the command is valid, NDMCOM sends the command to NDMSRVR.

3. NDMSRVR processes the request and formats the results into a C-string control structure for return to
NDMCOM. Refer to Elements of C-String Control Structures on page 22 for a description of C-string
format.

4. NDMCOM then sends the output to one of the following locations:

If the command includes the FILE parameter, such as SEL PROC FILE, the response is sent to the
API as a C-string control block.

If the command includes either the PRINT or OUT option, such as SEL PROC PRINT or SEL PROC
OUT, the response is sent to the specified output location.

If you do not specify FILE, PRINT, or OUT as a command parameter, the response is displayed to the
standard output file (stdout) specified in the startup of the NDMCOM process.

22 Connect:Direct HP NonStop Management Programming Guide
The following figure shows the flow of a request through Connect:Direct HP NonStop.

Elements of C-String Control Structures
A C-string control structure is a group of one or more related C-string control blocks. A C-string control block
(CB) contains two or more fields. Each field has two strings, with a null (binary zero) character marking the
end of each string. Throughout this document, the null character is represented by ! (exclamation point).

The first string in a field is the key (token); the second string in a field is the associated value (data) of the key.
A key is always unique in a C-string control block. Two fields present in every control block have the keys CB
and CBEND. CB is the field that begins the control block. CBEND is the field that ends the control block. The
values for CB and CBEND indicate the name of the control block. The actual command output is positioned
between these two fields in the control block.

For example, the following control block displays the output from successful Connect:Direct HP NonStop
VERSION command. The fields in bold mark the required fields of every control block. The name of the
control block is NDMVER, as shown by the values for the CB and CBEND keys. The output of the VERSION
command consists of the version number (VERSION key and value), release number (RELEASE key and
value), modification level (MODIFICATION key and value), and the maintenance level (LOCALPUFLEVEL
key and value).

Refer to Chapter 3, Programming the API, for the description of the CB ! NDMVER ! control structure.

NDMCOM NDMSRVR

Connect::
Direct
Files

API

Connect:Direct HP NonStop

CB ! NDMVER ! VERSION! 1 ! RELEASE! 3! MODIFICATION! 0! LOCALPUFLEVEL! 0! CBEND ! ND MVER !

data
string

 key
string

 field field

data
string

 field field field field

 key
string

data
string

 key
string

data
string

 key
string

data
string

 key
string

data
string

 key
string

Chapter 2 / Using Application Programming Interfaces 23
Error Control Structure
An error control structure (ERRCS) is a type of C-string control structure designed to store the messages that
are generated from the execution of Connect:Direct HP NonStop Processes and commands. Each error control
structure provides information detailing the number of messages captured for a particular command, message
IDs, return codes, feedback codes, and optional data.

An ERRCS has one or more contiguous C-string control blocks. The first control block (an ERR control block)
in an ERRCS is always present, with the beginning and ending fields as CB ! ERR ! and CBEND ! ERR !. The
other two fields in the ERR control block are as follows:

The remaining control blocks in an ERRCS are message control blocks, which are sequenced as they occur.
The fields in a message control block are as follows:

The following figure shows an example of an ERRCS generated by the successful execution of the SUBMIT
command. An optional keyword, NEWPNUM, is returned for this command. Refer to Chapter 3, Programming
the API, for additional commands that return optional keywords.

In the previous example, the ERRCS output is divided into control blocks and not shown in a continuous
stream of data.

Field Description

N (number) Specifies the number of messages in the ERRCS.

T (top message) Specifies the number of the most important message.

Field Description

CB ! En ! Numbers the messages in an ERRCS. For example, E2 indicates that it is the second error
message control block in an ERRCS.

FDBK ! fb ! Specifies the feedback code.

RC ! rc ! Specifies a completion code (RC) returned by Connect:Direct HP NonStop. A zero (0) value
indicates successful operation.

MSGID ! msgid ! Specifies the message ID.

OK ! od !
(optional keywords !
optional data !)

Enables runtime information generated by Connect:Direct HP NonStop to return to the end
user.

CB ! ERR ! N ! 1 ! T ! 0 ! CBEND ! ERR !
CB ! E1 ! NEWPNUM ! 36 ! FDBK ! 0 ! RC ! 0 !
MSGID ! SSRV101I ! CBEND ! E1 !

24 Connect:Direct HP NonStop Management Programming Guide
Every Connect:Direct HP NonStop command that is executed returns a CB ! ERR ! control block. If no errors
occur during command execution, the CB ! ERR ! control block returns with zero (0) messages in the N field.
For example:

The end of command execution is indicated by a CB ! ERR ! control block followed by a null-terminated
NDMREADY.

CB ! ERR ! N ! 0 ! T ! 0 ! CBEND ! ERR !

Chapter 3

Programming the API

This chapter provides the following information you need to program and run an API:

API basics
Command control structure keywords
ERRCS optional keywords
CB function prototypes
Message file structure

API Basics
The following API files are in the NDMAPI subvolume on the distribution tape:

File Description

NDMAPI The object file contains all C control block functions. You must bind the API written in C with this file.

NDMAPIB This sample file contains binder commands to rebind NDMAPIC after it is compiled.

NDMAPIC Contains the source code for all the CB functions written in C. Compile this module to produce NDMAPI
in order to change or add CB functions.

NDMAPIH Specifies a header file for use with NDMAPIC, USERAPIC, or other user-written programs.

NDMAPICH Contains the #define statements for all control block keywords and the function declarations for C.

NDMAPITH Contains the DEFINE statements for all control block keywords and the function declarations for TAL.

USERAPIC Contains the source code for the sample C API. To compile an API written in C, code #INCLUDE
NDMAPICH. You must also bind the API with NDMAPI.

26 Connect:Direct HP NonStop Management Programming Guide
Setting Parameters
Before running an API, set parameters for NDMCOM and the API, either through TACL as PARAM
commands or by including the parameters in the API. Following are the NDMCOM parameters:

Following are the API parameters:

Running the API
After setting parameters, start the API as a process to allow communication between the API and NDMCOM.
You can start the API as a named process using the optional parameter, name. The syntax for running an API is:

Following is a description of the NDMCOM parameters:

Parameter Description

NDMAPI YES Sets the API flag. This parameter is sent to NDMCOM at process creation and notifies
NDMCOM that it is running in API mode. This parameter is hardcoded in the
USERAPIC sample module.

NDMSRVR $<process name>
(optionally used by the TAL API
only)

Specifies the NDMSRVR process name, which is sent to NDMCOM at process
creation time. The parameter notifies NDMCOM to issue an OPEN command on the
specified process name in order for NDMCOM to communicate with NDMSRVR. The
default is $NDMS.

Note: The NDMSRVR process must be running before you start NDMCOM.

Parameter Description

NDMCOM $<volume>.<subvolume>.<program name> Specifies the location of the NDMCOM object file. The default
is the current volume and subvolume.

NDMCOMNAME $<process name>
(used by the C API only)

Specifies the name to be used for NDMCOM. The default
value is $NCOM.

MSGFILE $<volume>.<subvolume>.<msgfile>
(used by the TAL API only)

Specifies the location of the MSGFILE on your system.

NDMINFILE $<volume>.<subvolume>.<file>
(optionally used by the TAL API only)

Specifies the location of a Process to submit through
NDMCOM.

TACL>RUN <program name>/name/

Parameter or
Command

Description

RUN Executes an API.

program name Name of the API.

name Starts the API as a named process.

Chapter 3 / Programming the API 27
Understanding the API
The API manages the following activities:

Building the parameters and startup messages for NDMCOM
Creating and opening NDMCOM
Passing the parameters and startup messages to NDMCOM

NDMCOM then automatically opens the API, sends the version, issues the OPEN command to NDMSRVR,
and validates the user ID. If NDMSRVR opens, and you are a valid user and logged on to NDMCOM, then you
can issue commands through the API.

Refer to the appropriate HP NonStop manuals for details on building parameters and startup messages. The
program, USERAPIC, provides sample source code showing the preliminary steps. The sample program may
need to be modified to ensure that file references are properly qualified, and the compiler environment includes
all necessary subvolumes.

NDMCOM processes the data in its usual manner. If no output parameter is identified, the response is sent to
the home terminal of the NDMCOM process. If the OUT or the PRINT option is defined, such as SEL PROC
PRINT or SEL PROC OUT, the output is sent to the printer or a terminal. If the FILE parameter is used, such as
SEL PROC FILE, the output is sent to the API as a C-string control block. Data sent to the API can then
manipulated through Connect:Direct HP NonStop functions. Connect:Direct HP NonStop functions are
provided in the NDMAPI object file for C programs or the TAL API program.

Issue the EXIT command from your API to close NDMCOM. Connect:Direct HP NonStop passes an ERRCS
followed by NDMREADY to the API indicating successful completion of the command.

Refer to Chapter 5, Sample Code, for sample code that submits a Connect:Direct HP NonStop Process,
monitors Process execution, and performs message handling functions.

Using the FILE Parameter
Use the FILE parameter to issue SELECT or DISPLAY commands, such as SELECT PROCESS, SELECT
STATISTICS, SELECT USER, DISPLAY STATINFO and DISPLAY LOGGING. The FILE parameter
specifies that the output from these commands bypasses the reportwriter and returns to the API in C-string
format.

The following example illustrates a command with the FILE parameter:

Note: After passing a command to NDMCOM, the API should always check for MSGID SSUB531I, Invalid
command.

SELECT PROCESS DETAIL FILE PNUMBER=1

28 Connect:Direct HP NonStop Management Programming Guide
Command Control Structure Keywords
The following tables describe the fields in various C-string control structures. Each table describes a particular
command. Each command listing describes header information, the keywords as they should appear in control
block functions, the keywords as they should appear in control blocks, and a description of the fields.

The content of C-string control structure is dependent on the command issued. Refer to CB Function
Prototypes on page 40 for a description of how functions affect the control blocks they send and receive.

About the DISPLAY STATINFO Control Structure
The following table describes the DISPLAY STATINFO control structure. The header is:

Following are the keywords as they should appear in control block functions, in control blocks, and a
description of the fields:

Note: Some commands only return an ERRCS; however, the select commands return a C-string control
structure and an ERRCS.

CB ! STATINFO !.

Keyword in the Control Block
Function

Keyword in the Control Block Description of Field

CBKEY_STATCRITERIA STATCRITERIA Deletion criteria for records in the statistics files.

CBKEY_STATMIDNITE STATMIDNITE Midnight flag for execution of NDMSTDL.

CBKEY_STATPERCENT STATPERCENT Maximum allowable percentage statistics files can
be used before NDMSTDL is created.

“STDL_TIMESTAMP” STDL_TIMESTAMP Date and time NDMSTDL last executed.

“FILENAME0" FILENAME0 STATFILE file name.

“EXTSIZE0" EXTSIZE0 Primary extent size for STATFILE.

“SECEXTSIZE0" SECEXTSIZE0 Secondary extent size for STATFILE.

“MAXEXT0" MAXEXT0 Maximum number of extents for STATFILE.

“EXTALLOC0" EXTALLOC0 Extents allocated for STATFILE.

“EOF0" EOF0 End-of-file flag for STATFILE.

“FILEPERCENT0" FILEPERCENT0 File percentage for STATFILE.

“MAXFILESIZE0" MAXFILESIZE0 Maximum file size for STATFILE.

“FILENAME1" FILENAME1 STATSRCH file name.

“EXTSIZE1" EXTSIZE1 Primary extent size for STATSRCH.

“SECEXTSIZE1" SECEXTSIZE1 Secondary extent size for STATSRCH.

“MAXEXT1" MAXEXT1 Maximum number of extents for STATSRCH.

Chapter 3 / Programming the API 29
About the ENVIRONMENT Control Structure
The following table describes the ENVIRONMENT control structure. The header is:

Following are the keywords as they should appear in control block functions, in control blocks, and a
description of the fields:

“EXTALLOC1" EXTALLOC1 Extents allocated for STATSRCH.

“EOF1" EOF1 End-of-file flag.

“FILEPERCENT1" FILEPERCENT1 File percentage for STATSRCH.

“MAXFILESIZE1" MAXFILESIZE1 Maximum file size for STATSRCH.

“FILENAME2" FILENAME2 STATSRC0 file name.

“EXTSIZE2" EXTSIZE2 Primary extent size for STATSRC0.

“SECEXTSIZE2" SECEXTSIZE2 Secondary extent size for STATSRC0.

“MAXEXT2" MAXEXT2 Maximum number of extents for STATSRC0.

“EXTALLOC2" EXTALLOC2 Extents allocated for STATSRC0.

“EOF2" EOF2 End-of-file flag for STATSRC0.

“FILEPERCENT2" FILEPERCENT2 File percentage for STATSRC0.

“MAXFILESIZE2" MAXFILESIZE2 Maximum file size for STATSRC0.

CB ! ENV!.

Keyword in the Control Block Function Keyword in the Control Block Description of Field

CBKEY_CDLOBJ CDLOBJ CDL object

CBKEY_OBEYVOL OBEYVOL Obeyvolume

CBKEY_PRINTER PRINTER Printer

CBKEY_PROCVOL PROCVOL Process volume

CBKEY_SRVR SRVR Server object

CBKEY_USER USER User

CBKEY_VOLUME VOLUME Volume (current volume)

“SAVEVOL” SAVEVOL Save volume

“SYSTEM” SYSTEM System

Keyword in the Control Block
Function

Keyword in the Control Block Description of Field

30 Connect:Direct HP NonStop Management Programming Guide
About the NETMAP Control Structure
The following table describes the NETMAP control structure. The headers are:

Following are the keywords as they should appear in control block functions, in control blocks, and a
description of the fields:

CB ! NODE ! | CB ! SNODE ! | CB ! LU! | CB ! LOGMODE!.

Keyword in the Control Block
Function

Keyword in the Control Block Description of Field

CBKEY_ALLOC_RETRY_ADJ ALLOC.RETRY.ADJ Message ID. Indicates file allocation failure
on an adjacent node.

CBKEY_APPLID APPLID Application ID

CBKEY_CPU CPU CPU

CBKEY_HIPIN "HIGHPIN" HIGHPIN indicator (Y/N)

CBKEY_IPADDR "IPADDR" IP address

CBKEY_LNODE LNODE Local node

CBKEY_LOCAL_CPNAME "LOCAL.CPNAME" Name of the local HP NonStop node control
point

CBKEY_LOGMODE LOGMODE Name of the logmode record associated
with a specific LU

CBKEY_LOGMODE_COMPROT LOGMODE_COMPROT Common LU protocols for the logmode

CBKEY_LOGMODE_FMPROT LOGMODE_FMPROT Function management profile for the
logmode

CBKEY_LOGMODE_NAME LOGMODE_NAME Name of the logmode record

CBKEY_LOGMODE_PRIPROT LOGMODE_PRIPROT Primary LU protocol for the logmode

CBKEY_LOGMODE_PSERVIC LOGMODE_PSERVIC LU presentation services profile and usage
field for the logmode

CBKEY_LOGMODE_PSNDPAC LOGMODE_PSNDPAC Primary sending pacing count

CBKEY_LOGMODE_RUSIZE LOGMODE_RUSIZE Transmission buffer size

CBKEY_LOGMODE_SECPROT LOGMODE_SECPROT Secondary LU protocol for the logmode

CBKEY_LOGMODE_SRCVPAC LOGMODE_SRCVPAC Secondary receive pacing count

CBKEY_LOGMODE_SSNDPAC LOGMODE_SSNDPAC Secondary send pacing count

CBKEY_LU LU LU

CBKEY_LU_MAXRETRY LUMAXRETRY Number of connection attempts to a session
with the LU

CBKEY_LU_TIMEOUT LUTIMEOUT Time allowed for LU I/O

CBKEY_NAME NAME Name

CBKEY_PARSESS PARSESS Parallel sessions

Chapter 3 / Programming the API 31
About the PROCESS Control Structure
The following table describes the PROCESS control structure. The header is:

Following are the keywords as they should appear in control block functions, in control blocks, and a
description of the fields:

CBKEY_PORTNUM "PORTNUM" TCP/IP port number

CBKEY_SESSION_TYPE SESSION.TYPE Type of session

CBKEY_SNODE SNODE Secondary node

CBKEY_SNODE_MAXRETRY SNODEMAXRETRY Number of connection attempts to a session
with the adjacent node

CBKEY_TCP_PROCESS_NAME TCPNAME Initiates outbound connection requests.

CBKEY_TYPE TYPE Type

CBKEY_ALLOC_RETRY_ADJ “ALLOC.RETRY.ADJ” Allocation errors to retry on adjacent node

CB ! SEL_PROC !.

Keyword in the Control Block Function Keyword in the Control Block Description of Field

CBKEY_CLASS CLASS Class (submitter class)

CBKEY_CLASS_EXEC CLASSEX Execution class

CBKEY_FDSN FDSN From data set name

CBKEY_FILE FILE Process file

CBKEY_FUNC FUNC Function executing

CBKEY_FUNC_COPY FUNCCOPY Function copy

CBKEY_INBYTE INBYTE Number of incoming bytes

CBKEY_LU LU LU (logical unit)

CBKEY_OTBYTE OTBYTE Number of received bytes

CBKEY_PNAME PNAM Process name

CBKEY_PNUM PNUM Process number (in SELECT commands)

CBKEY_PRI PRI Priority (submitter priority)

CBKEY_Q Q Queue state

CBKEY_RBYTES RBYTES Number of bytes received

CBKEY_REC_READ RECRD Number of records read

Keyword in the Control Block
Function

Keyword in the Control Block Description of Field

32 Connect:Direct HP NonStop Management Programming Guide
About the SECURITY Control Structure
The following table describes the SECURITY control structure. The header is:

Following are the keywords as they should appear in control block functions, in control blocks, and a
description of the fields:

About the STATISTICS Control Structure
The following table describes the STATISTICS control structure. Headers are:

CBKEY_REC_WRITTEN RECWR Number of records written

CBKEY_RETAIN RETAIN Process retention

CBKEY_RU_RCVD RURCVD Number of RUs received

CBKEY_RU_SENT RUSENT Number of RUs sent

CBKEY_SBYTES SBYTES Number of bytes sent

CBKEY_SNODE SNODE Secondary node

CBKEY_START_DATE STDATE Start date (scheduled execution)

CBKEY_START_TIME STTIME Start time (scheduled execution)

CBKEY_STATE STATE State (execution state)

CBKEY_STEPNAME STEPNAME Step name (in the Process)

CBKEY_TDSN TDSN To data set name

CBKEY_UID UID User ID (submitter)

CBKEY_UNODE UNODE User node (submitter)

CB ! SEC !.

Keyword in the Control Block Function Keyword in the Control Block Description of Field

CBKEY_SEC_OTHER_NODE SEC_OTHER_NODE Adjacent node

CBKEY_SEC_OTHER_USERID SEC_OTHER_USERID Adjacent node User ID

CBKEY_SEC_LOCAL_USERID SEC_LOCAL_USERID Local node User ID

CB ! SUBMIT ! | CB ! PROCSTART ! | CB ! STEPSTART ! | CB ! STEPEND ! | CB ! MSG ! | CB
! PROCEND ! | CB ! CMD ! |CB ! SESS !.

Keyword in the Control Block Function Keyword in the Control Block Description of Field

Chapter 3 / Programming the API 33
Following are the keywords as they should appear in control block functions, in control blocks, and a
description of the fields:

Keyword in the Control Block Function Keyword in the Control Block Description of Field

CBKEY_ATOE ATOE ASCII to EBCDIC (translation)

CBKEY_CB CB Executed step

CBKEY_CDATE CDTE End date

CBKEY_CLASS CLASS Class

CBKEY_CMD_NAME CMDNM Command name

CBKEY_COMPRESS COMP Compress (Y/N)

CBKEY_CTIME CTME End time

CBKEY_DATA_RATE CDR Number of bytes per second

CBKEY_DATE DATE Systems date

CBKEY_ETOA ETOA EBCDIC to ASCII (translation)

CBKEY_FDBK FDBK Feedback code

CBKEY_FDSN FDSN From data set name

CBKEY_FILE FILE File name

CBKEY_FROM_COMP_PER FCMPPER Compression percentage (sending side)

CBKEY_FROM_PNODE FPNODE From primary node

CBKEY_TO_PNODE TPNODE To primary node

CBKEY_FUNC FUNC Function

CBKEY_INBYTE INBYTE Number of incoming bytes

CBKEY_INRECN INRECN Number of incoming records

CBKEY_LNKFL LNKFL Link stat

CBKEY_LU LU LU name

CBKEY_MSGID MSGID Message ID

CBKEY_MSG_TEXT MSGTXT Message text

CBKEY_NODE NODE Node type

CBKEY_OTBYTE OTBYTE Number of outgoing bytes

CBKEY_OTBLK OTBLK Number of outgoing blocks

CBKEY_OTRECN OTRECN Number of outgoing records

CBKEY_PC PC Process control

CBKEY_PGM PGM Program name

CBKEY_PNAME PNAM Process name

CBKEY_PNUM PNUM Process number

34 Connect:Direct HP NonStop Management Programming Guide
About the TIME Control Structure
The following table describes the TIME control structure. The header is:

Following are the keywords as they should appear in control block functions, in control blocks, and a
description of the fields:

CBKEY_PRI PRI Priority

CBKEY_RBYTES RBYTES Number of received bytes

CBKEY_RC RC Return code

CBKEY_RSTRT RSTRT Step restart (Y|N)

CBKEY_RUSZ RUSZ RU size

CBKEY_RU_RCVD RURCVD Number of RUs received

CBKEY_RU_SENT RUSENT Number of RUs sent

CBKEY_SBYTES SBYTES Number of bytes sent

CBKEY_SDATE SDATE Start date

CBKEY_SNODE SNODE Secondary node

CBKEY_STEP STEP Step name in a STEPEND control block

CBKEY_STEPNAME STEPNAME Step name in Statistics control blocks
other than STEPEND control block

CBKEY_STIME STIME Start time

CBKEY_SUB_ERR1 ERR1 Submit error message

CBKEY_TDSN TDSN To data set name

CBKEY_TIME TIME System time

CBKEY_TO_COMP_PER TCMPPER Compression percentage (receiving side)

CBKEY_UID UID User ID (submitter)

CBKEY_UNODE UNODE User node (submitter)

CBKEY_XNODE XNODE Transmit node

CB ! NDMTIME !.

Keyword in the Control Block Function Keyword in the Control Block Description of Field

“DAYOFWEEK” DAYOFWEEK Day of the week (text)

“MONTH” MONTH Month

“DAY” DAY Day of the month (number)

Keyword in the Control Block Function Keyword in the Control Block Description of Field

Chapter 3 / Programming the API 35
About the TYPE Control Structure
The following table shows the TYPE control structure. The header is:

Following are the keywords as they should appear in control block functions, in control blocks, and a
description of the fields:

“YEAR” YEAR Year

“TIME” TIME Time in hours, minutes, seconds, and
hundredths of seconds (HH:MM:SS:DDD)

CB ! TYPE !.

Keyword in the Control Block Function Keyword in the Control Block Description of Field

CBKEY_ALTFILE ALTF Alternate file

CBKEY_ALTKEY ALTK Alternate key

CBKEY_AUDIT AUD Audit

CBKEY_AUDITCOMPRESS AUDCOMP Audit compress

CBKEY_BLOCK BLK Data block length

CBKEY_BUFFERED BUFD Buffered. Default is NOBUFFERED

CBKEY_BUFFERSIZE BUFSIZE Buffer size

CBKEY_COMPRESS COMP Compress. Default is NOCOMPRESS

CBKEY_DCOMPRESS DCOMP No Decompress. Default is
NODCOMPRESS

CBKEY_FAST_LOAD FASTLOAD Fastload option (Y|N)

CBKEY_FAST_LOAD_CPU FASTLOADCPU Fastload option with CPU specified to run
FUP (0–15)

CBKEY_FAST_LOAD_PRI FASTLOADPRI Fastload option with priority specified to
run FUP (1–199)

CBKEY_FAST_LOAD_SORTED FASTLOADSORTED Fastload option with sorted data (Y|N)

CBKEY_FILE_CODE FCODE File code

CBKEY_FILE_TYPE FTYPE File type

CBKEY_FORMAT FORMAT Describes the preferred Enscribe file
format (0, 1,2). 0 is the default value.

CBKEY_ICOMPRESS ICOMP Compress in index blocks. Default is
NOICOMPRESS.

CBKEY_KEYLEN KYL Key length

Keyword in the Control Block Function Keyword in the Control Block Description of Field

36 Connect:Direct HP NonStop Management Programming Guide
About the USER Control Structure
The following table describes the USER control structure. The header is:

Following are the keywords as they should appear in control block functions, in control blocks, and a
description of the fields:

CBKEY_KEYOFF KYOFF Key offset

CBKEY_LIKE_FILE LFILE Like file name

CBKEY_LIKE_TYPE LTYPE Like file type

CBKEY_MAXEXTENTS MAXEXT Maximum extents

CBKEY_NOALTCREATE NOALTCR No alternate create. Default is
ALTCREATE.

CBKEY_NOBLOCKIO NOBLOCKIO No block I/O. Default is NOBLOCKIO.

CBKEY_NOLARGEIO NOLARGEIO No large I/O. Default is NOLARGEIO.

CBKEY_ODDUNSTR ODDUS No upward rounding of odd-numbered
unstructured files.

CBKEY_PART PART Partition specifications for partitioned files

CBKEY_PARTONLY PARTONLY Subsequent file creation in partitions.
Default is NOPARTONLY.

CBKEY_PRI_EXT PRIEXT Primary extents

CBKEY_RECSIZE RECSIZE Record size

CBKEY_REFRESH REFRESH Update volume label. Default is
NOREFRESH.

CBKEY_SEC_EXT SECEXT Secondary extents

CBKEY_SERIALWRITES SERWR Serial writes to disk. Default is
NOSERIALWRITES.

CBKEY_TYPEKEY TYPE Typekey name

CBKEY_VERIFIEDWRITES VERIFIEDWRITES Verify write. Default is
NOVERIFYWRITES.

CBKEY_XLATE XLATE Translate data (ON|OFF)

CB ! USER !.

Keyword in the Control Block Function Keyword in the Control Block Description of Field

CBKEY_ALIAS_CONVERT ALIAS.CONVERT Converts all aliases of this owner to
the owner ID at logon (Y/N)

CBKEY_DEFAULT_AUTHORITY DEFAUTH Default authority (A|G|O|N)

Keyword in the Control Block Function Keyword in the Control Block Description of Field

Chapter 3 / Programming the API 37
CBKEY_MODIFY MODIFY Modify (Y|N)

CBKEY_MYID MYID MYID option (Y|N)

CBKEY_NAME NAME Name

CBKEY_LOGGING LOGGING_UPD Logging update command (Y|N)

CBKEY_NETMAP_DEL NET_DEL Network map delete (Y|N)

CBKEY_NETMAP_INS NET_INS Network map insert (Y|N)

CBKEY_NETMAP_REL NET_REL Network map relate (Y|N)

CBKEY_NETMAP_SEL NET_SEL Network map select (Y|N)

CBKEY_NETMAP_UPD NET_UPD Network map update (Y|N)

CBKEY_OBEYVOL OBEYVOL Obeyvolume

CBKEY_PHONE PHONE Phone

CBKEY_PROCVOL PROCVOL Process volume

CBKEY_PROC_CH PROCALT Process change (alter) (A|G|O|N)

CBKEY_PROC_DEL PROCDEL Process delete (A|G|O|N)

CBKEY_PROC_FLUSH PROCSTOP Process flush (stop) (A|G|O|N)

CBKEY_PROC_SEL PROCSEL Process select (A|G|O|N)

CBKEY_PROC_SUSPEND PROCSUSP Process suspend (A|G|O|N)

CBKEY_SEC_DEL SECDELETE Security delete (Y|N)

CBKEY_SEC_INS SECADD Security insert (Y|N)

CBKEY_SEC_SEL SECLIST Security select (list) (Y|N)

CBKEY_SEC_UPD SECALT Security update (alter) (Y|N)

CBKEY_STATISTICS STATS Select statistics (A|O|N)

CBKEY_STATISTICS_UPD STATS_UPD Update statistics command (Y|N)

CBKEY_STOPNDM STOPNDM Stop Connect:Direct HP NonStop
operation (Y|N)

CBKEY_SUBMIT SUBMIT Submit command (Y|N)

CBKEY_TYPE_DEL TYPEDEL Typekey delete (Y|N)

CBKEY_TYPE_INS TYPEADD Typekey insert (Y|N)

CBKEY_TYPE_SEL TYPESEL Typekey select (Y|N)

CBKEY_TYPE_UPD TYPEALT Typekey update (alter) (Y|N)

CBKEY_USER USER User ID

CBKEY_USER_DEL USERDEL User delete (A|G|N)

CBKEY_USER_INS USERINS User insert (A|G|N)

CBKEY_USER_SEL USERSEL User select (A|G|O|N)

Keyword in the Control Block Function Keyword in the Control Block Description of Field

38 Connect:Direct HP NonStop Management Programming Guide
About the VERSION Control Structure
The following tables show the VERSION control structure. The header is:

Following are the keywords as they should appear in control block functions, in control blocks, and a
description of the fields:

ERRCS Optional Keywords
Upon successful execution, certain commands only return status messages in the form of ERRCS. The
following table describes the number of errors/messages returned by each command, the optional keywords in
control block functions, optional keywords in control blocks, and a field description.

Refer to CB Function Prototypes on page 40 for a description of how the various functions affect the control
blocks they send and receive.

CBKEY_USER_UPD USERUPD User update (A|G|O|N)

CBKEY_VOLUME VOLUME Volume (current)

CB ! NDMVER !.

Keyword in the Control Block Function Keyword in the Control Block Description of Field

“VERSION” VERSION Version

“RELEASE” RELEASE Release

“MODIFICATION” MODIFICATION Modification

“LOCALPUFLEVEL” LOCALPUFLEVEL Local maintenance level

Command # of
Errors
Returned

Optional Keyword
Used in the Control
Block Functions

Optional
Keyword
Used in the
Control Block

Field Description

DELETE NETMAP
LOCAL.NODE

1 CBKEY_NAME NAME Name of local node

INSERT NETMAP
LOCAL.NODE

2 CBKEY_NAME NAME Name of local node

DELETE NETMAP LOGMODE 2 CBKEY_LOGMODE_NAME LOGMODE_NAME Name of the logmode

INSERT NETMAP LOGMODE 1 CBKEY_LOGMODE_NAME LOGMODE_NAME Name of the logmode

Keyword in the Control Block Function Keyword in the Control Block Description of Field

Chapter 3 / Programming the API 39
UPDATE NETMAP LOGMODE 1 CBKEY_LOGMODE_NAME LOGMODE_NAME Name of the logmode

DELETE NETMAP LU 4 CBKEY_NAME NAME Name of the local
node

CBKEY_LU LU Name of the LU

CBKEY_NODE NODE Name of the adjacent
node

CBKEY_LU LU Name of the LU

CBKEY_NODE NODE Name of the adjacent
node

INSERT NETMAP LU 1 CBKEY_LU LU Name of the LU

UPDATE NETMAP LU 1 CBKEY_LU LU Name of the LU

DELETE NETMAP
ADJACENT.NODE

2 CBKEY_NAME NAME Name of the adjacent
node

INSERT NETMAP
ADJACENT.NODE

2 CBKEY_NAME NAME Name of the adjacent
node

RELATE NETMAP
ADJACENT.NODE

2 CBKEY_NAME NAME Name of the adjacent
node

CBKEY_LU LU Name of the LU

UPDATE NETMAP
ADJACENT.NODE

1 CBKEY_NAME NAME Name of the adjacent
node

DELETE USER 2 CBKEY_USER USER User name

INSERT USER 2 CBKEY_USER USER User name

UPDATE USER 2 CBKEY_USER USER User name

DELETE TYPE 2 CBKEY_TYPE TYPE Type name

INSERT TYPE 2 CBKEY_TYPE TYPE Type name

UPDATE TYPE 2 CBKEY_TYPE TYPE Type name

DELETE SECURITY 2 SECNODE SECNODE Adjacent node

SECUSER SECUSER User ID at adjacent
node

INSERT SECURITY 2 SECNODE SECNODE Adjacent node

SECUSER SECUSER User ID at adjacent
node

UPDATE SECURITY 2 SECNODE SECNODE Adjacent node

SECUSER SECUSER User ID at adjacent
node

VOLUME 1 CBKEY_VOL VOL Volume name

Command # of
Errors
Returned

Optional Keyword
Used in the Control
Block Functions

Optional
Keyword
Used in the
Control Block

Field Description

40 Connect:Direct HP NonStop Management Programming Guide
CB Function Prototypes
A CB function contains statements that perform specific tasks and often return a value to the statement that
calls them. Use the following CB function prototypes in your API to manipulate control blocks. Use the
prototypes for C applications except where noted. TAL prototypes for several commonly used routines can be
found in NDMAPITH.

OBEYVOLUME 1 CBKEY_VOL VOL Obey volume name

PROCVOLUME 1 CBKEY_VOL VOL Process volume name

SUBMIT FILE 1 NEWPNUM NEWPNUM Process number
assigned by
Connect:Direct HP
NonStop

CHANGE PROCESS 2 CBKEY_PNUM PNUM Process number

DELETE PROCESS 2 CBKEY_PNUM PNUM Process number

FLUSH PROCESS 2

MODIFY SESSION 1

STOP NDM I 1

EXIT 1

UPDATE STATISTICS
CRITERIA

1

UPDATE STATISTICS
MIDNITE

1

UPDATE STATISTICS
PERCENT

1

Note: Parameters in the functions are positional.

Prototype Format Description

CB_DATA char *CB_DATA (char *) Returns a pointer to the data string of the
associated C-string field.
Returns: *char
Example:
char *cb_field_ptr;
char *data;

data=CB_DATA (cb_field_ptr);

Command # of
Errors
Returned

Optional Keyword
Used in the Control
Block Functions

Optional
Keyword
Used in the
Control Block

Field Description

Chapter 3 / Programming the API 41
CB_NEXT_AVAILABLE char *CB_NEXT_AVAILABLE (char *)
Parameters:
1. (input) character pointer to the
beginning of a C-string control
structure.

2. (output) pointer to next available
location for a C-string control
structure

Receives a pointer to beginning of a C-string
control block. Returns a pointer to the next
location where a C-string control block should be
built.
Example:
char *csptr;
char *cbptr;
csptr=CB^NEXT^AVAILABLE (cbptr)

CB_NEXT_CB char *CB_NEXT_CB (char *) Returns a pointer to the next control block in a
C-string control structure. Returns a NULL value
if the passed pointer is the last control block in
the structure.
Returns: *char
Example:
char *cbptr;
char *next_cb_ptr;

next_cb_ptr=CB_NEXT_CB (cbptr);

CB_FIND_CB char *CB_FIND_CB
(char *, char *)

Parameters:
1. (input) character pointer to the
beginning of a C-string control
structure.

2. (input) pointer to a string
containing the name of the requested
control block.

Returns a pointer to the requested control block
in a C-string control structure. Returns a NULL
value if the passed pointer is not found.
Returns: *char
Example:
char *cbptr;
char *req_cb_ptr;

req_cb_ptr=CB_FIND_CB (cbptr, “COPY”);

CB_FIND_FIELD char *CB_FIND_FIELD (char *, char
*, char **)

Parameters:
1. (input) character pointer to the
beginning of a target C-string control
block.

2. (input) pointer to a string
containing the name of a requested
field.

3. (output) pointer to a pointer to char.
Returns with a pointer to a pointer to
the data portion of a target field.

Returns a pointer to the field having the same
name as the passed name argument.
Returns: *char
Example:
char *cbptr;
char *data;

if ((CB_FIND_FIELD (cbptr, “FILE1",
&data))==NULL) /* FILE1 was NOT found*/;
else
/* the data portion of the field points to the data
associated with FILE1*/;

Prototype Format Description

42 Connect:Direct HP NonStop Management Programming Guide
CB_POINT_MSG char *CB_POINT_MSG (char *, char
**, char **, char **)
Parameters:
1. (input) pointer to the ERRCS.

2. (output) pointer to a pointer to the
message ID returned.

3. (output) pointer to a pointer to the
return code returned.

4. (output) pointer to a pointer to the
feedback code returned.

Sets pointers to the most recent error in an
ERRCS.
Returns: char * pointer to message CB. The
value is null if a message is not found.
Example:
char *errptr;
char *msg;
char *rc;
char *fdbk;
char *cb;

cb=CB_POINT_MSG (errptr, &msg, &rc, &fdbk);

CB_TOP_MSG char *CB_TOP_MSG (char *)

Parameters:
1. (input) char * pointer to an ERRCS.

Sets pointers to the most important error in an
ERRCS.
Returns: char * pointer to message CB. The
value is NULL if a message is not found.
Example:
char *errptr;
char *msg;

msg=CB_TOP_MSG (errptr);

CB_MSG_COUNT short CB_MSG_COUNT (char *)

Parameters:
1. (input) char * pointer to an ERRCS.

Returns the number of messages in an ERRCS.
Returns: (short) number of messages in the
ERRCS.
Example:
char *errptr;
short count;

count=CB_MSG_COUNT (errptr);

MSG_SHORT char *MSG_SHORT (short , char *)

Parameters:
1. (input) short message file number.

2. (input) char * pointer to message
ID.

Reads the message file and returns a pointer to
the short text of the message. If an error occurs
during the read of the message file, a pointer to a
null string is returned.
Returns: char * pointer to short text of message.
Example:
char *mess;
char *msgid;
short file_num;

mess=MSG_SHORT (file_num, msgid);

Prototype Format Description

Chapter 3 / Programming the API 43
Message File Structure
The record format for the message file is composed of a C-string control block and one key, which is the
message ID. The message ID is a maximum of 8 characters, plus one null byte (!).

MSG_OPEN short MSG_OPEN (short *, short ,
char *, short *)

Parameters:
1. short * file number (by reference).

2. short open mode (0x400=read only
mode, 0x200=write only mode,
0=read/write mode).

3. char * file name.
For TAL programs, the filename must
be fully qualified; for example,
$DATA.NDMFILES.MSGFILE.

4. short * rc return code. The value
for the string is the return code.

Opens the message file.
Returns: TRUE/FALSE
Example:
short flag;
short error;
short file_num;

flag=MSG_OPEN (&file_num, 0x400,
“MSGFILE”, &error);

MSG_DISPLAY void MSG_DISPLAY (FILE * , short , char *)

Parameters:
1. (input) FILE * fp out file pointer
(opened with fopen call).

2. (input) short message file number
(opened with MSG_OPEN).

3. (input) char * pointer to message
ID.

Reads the message record from the message
file and displays it on the OUT file. Only the
message is displayed. No symbolic substitution
occurs.
Returns: void
Example:
char *id;
short msgfnum;

MSG_DISPLAY (stdout, msgfnum, ID);

ERRCS_DISPLAY short ERRCS_DISPLAY (FILE *
short, char *)

Parameters:
1. (input) FILE * fp out file pointer
(opened with fopen call).

2. (input) short message file number
(opened with MSG_OPEN).

3. (input) char * pointer to ERRCS.

Displays messages from an ERRCS. If a top
message is set, the top message is displayed
first. Remaining messages are displayed in the
order they occurred.
Returns: void
Example:
char *errptr;
short msg_fnum;

ERRCS_DISPLAY (stdout, msg_fnum, errptr);

Note: The entire message record, which includes short text, symbol indicator, and program name, can be no
larger than 4096 bytes.

Prototype Format Description

44 Connect:Direct HP NonStop Management Programming Guide
The following keywords define the structure of a message record:

Example
The following example illustrates records in a message file:

The following example illustrates a sample control block describing the values. The percent sign (%) denotes a
carriage return.

Keyword Definition

CB ! ! Required.

PGM ! <program name> ! Contains a maximum of 29 characters.

COMMON|IBM ! Indicates whether the message is common to both the host and
Connect:Direct HP NonStop message files, or if the message is only a part of
the IBM message file.

SYM ! <on|off> ! Indicates whether symbols are used in the message.

S ! <short text> ! Contains a maximum of 72 characters.

L ! <text> <\n> <text> <\n> <text><\n> ! Can consist of approximately 20 lines of text, with a maximum of 72 characters
per line.

CBEND ! ! Required.

The message ID (key) is : SAPI101I
The program name is : com_sel_command
It is a COMMON message.
No Symbols are used
The short text is : The select command was successfully executed.
The long text is : You can check your output file
Long text line 2 is : and check for completion codes.

SAPI101I!!CB!PGM!com_sel_command!COMMON!!SYM!OFF!S!The select
command was successfully executed.!L!You can check your output file%
and check for completion codes.!CBEND!!

Chapter 4

Interface for User-Written Programs

Connect:Direct provides an interface to user-written programs that allows manipulation of data formats and
database architectures not currently supported by Connect:Direct HP NonStop, as well as an interface to
DataLoader MP. You determine whether to use a standard I/O exit, generic Inter-Processor Communications
(IPC) processing, or DataLoader MP. This chapter details the types of I/O exits and provides information about
determining which type of exit to define.

Determining the Type of Exit to Define
You determine when to use generic IPC processing or a standard I/O exit. Advantages of using an IPC I/O exit
are:

Generic IPC uses less overhead because only data is exchanged. No additional request buffers are sent.
Generic IPC is independent of Connect:Direct request and response record formats. The IPC exit is only
required to recognize the standard HP NonStop open and close messages, and the data.

Disadvantages of using an IPC exit are:

Generic IPC I/O exit feature can only be used to write data received from a remote node. Data sent from
HP NonStop to a remote node cannot use generic IPC.
Connect:Direct does not receive error messages from the IPC exit. You must define error handling within
the IPC exit program to ensure that messages are properly logged.

Advantages of using a standard I/O exit are:

The exchange of standardized action requests means that Connect:Direct and the I/O exit may be
synchronized at several stages so that each is proceeding at the same stage of the copy.
Connect:Direct and a standard I/O exit may exchange error messages, allowing results to be recorded in
the statistics log.

Disadvantages of using a standard I/O exit are:

The exchange must adhere to the formats outlined in this chapter for specific request and response types.
The extra exchange of requests and responses adds overhead and potentially slows the copy.

Specifying a Standard I/O Exit
Specify a standard I/O exit on the HP NonStop node in the FROM and TO clauses of the COPY statement. You
can specify a different user-written I/O exit in each clause.

46 Connect:Direct HP NonStop Management Programming Guide

The following example shows a Process that is submitted from a HP NonStop node and invokes an I/O exit on
the HP NonStop node:

You can specify the I/O exit in the COPY statement in two different ways:

Specify the program name and startup parameters. The syntax for specifying an I/O exit with startup
parameters follows:

Specify the name of a Process with which Connect:Direct HP NonStop should communicate.
Connect:Direct HP NonStop assumes that the Process is already running when the COPY operation is
underway. The syntax for specifying an I/O exit where the process is already running follows:

Invoking an I/O Exit on an OS/390 Node
Exits on the OS/390 node pass parameters in a different manner from those on a HP NonStop node. The
Process in the following example is submitted from a HP NonStop node and invokes an I/O exit on the OS/390
node:

Note: Do not define DSN and FILE parameters in the same clause as the IOEXIT parameter.

PROC1PROCESSSNODE=TAN.NODE1 SNODEID(USER01, &PW)
STEP1COPY TO (PNODE,IOEXIT=(EIGHTCHR-

‘/CPU 1, NAME $ZXIT,-
VOL \K2.$SYSTEM.NDMST, HIGHPIN OFF/’))-

 COMPRESS PRIME X’20’-
FROM(SNODE DSN=&FR DISP=SHR)

IOEXIT=(ioexit-pgm ‘startup-parameters’)

IOEXIT=($process-name)

Note: The receiving Process must be started and be in read mode when Connect:Direct HP NonStop
attempts to open the user Process.

The I/O exit ignores DCB information specified in a Process. Refer to the Connect:Direct Process
Statements Guide for syntax and parameter descriptions for the IOEXIT parameter.

PROC1PROCESSSNODE=390.NODE1
COPY FROM(IOEXIT=(IOEXIT,-

 "C’SYSTEM.BACKUP.FILE’,-
 C’($DATA.FILES.CODE)’,-

X’05’, -
C’NO’, -
C’YES’, -
C’OFF’, -
C’ON’, -
XL5’7F’ ") -

SNODE) -
TO(DSN=$DATA.FILES.CODE, DISP=RPL PNODE-

SYSOPTS="SET XLATE ON")

Chapter 4 / Interface for User-Written Programs 47
Implementing an I/O Exit
The I/O exit function contains routines that start the specified I/O exit program, send the startup message and
the I/O exit requests, and handle interprocess communications. When you include an I/O exit statement in the
COPY statement, Connect:Direct HP NonStop starts the specified I/O exit program and sends it the startup
message. The I/O exit program gets the startup message and the I/O exit requests through $RECEIVE. The
input file parameter in the startup message is always $RECEIVE, because all the requests are sent through
$RECEIVE. If you specify the input file in the I/O exit statement, Connect:Direct HP NonStop ignores it.

If Connect:Direct HP NonStop cannot start the I/O exit program or communicate with the I/O exit process, it
cancels the Process and terminates the session.

After the I/O exit program successfully starts or opens, Connect:Direct HP NonStop initiates a BEGIN request.
Other requests depend on whether Connect:Direct HP NonStop is the receiver or sender.

Sending Request Sequence
Connect:Direct HP NonStop uses this request sequence to send requests to the I/O exit on the sending side:

1. BEGIN request.

2. OPEN request.

3. INFO request.

4. GET request.

5. Connect:Direct HP NonStop passes data to the HP NonStop communications software.

6. CLOSE request.

7. END request.

Receiving Request Sequence
Connect:Direct HP NonStop uses this request sequence to send requests to the I/O exit on the receiving side:

1. BEGIN request.

2. OPEN request.

3. INFO request.

4. Connect:Direct HP NonStop receives data from the HP NonStop communications software.

5. ADD request.

6. CLOSE request.

7. END request.

If the I/O exit program returns an error during the COPY operation, Connect:Direct HP NonStop sends a
CLOSE request followed by an END request for an orderly shutdown of the I/O exit program. The status code
returned by the I/O exit program in the exit control block as a response to the CLOSE or END request is
ignored at this point. After the I/O exit program receives the END request, the I/O exit program stops itself.

Note: Steps 4 and 5 repeat until the I/O exit returns an end of data message.

Note: Steps 4 and 5 repeat until the exit program receives all data from the HP NonStop
communications software.

48 Connect:Direct HP NonStop Management Programming Guide
If an ABEND occurs in the I/O exit program during the COPY operation, Connect:Direct HP NonStop cancels
the operation and terminates the session.

The following figure displays the data flow of a standard I/O exit on the receiving side:

The following figure shows the data flow of a standard I/O exit on the sending side:

Sample I/O exits (IOEXITC and IOEXITT) are in the NDMSAMP subvolume. IOEXITC is written in C, and
IOEXITT is written in TAL. Connect:Direct HP NonStop starts these sample exits and reads or adds data for
specified data files depending on the types of requests (GET or ADD).

I/O Exit Requests
After you specify an I/O exit, Connect:Direct HP NonStop starts the user-written I/O exit program and sends it
the startup parameters from the I/O exit statement. Then I/O exit requests are sent to the I/O exit program. All
requests contain a common control block—the exit control block.

Note: If any error occurs during the I/O exit processing, Connect:Direct HP NonStop sends a CLOSE request
followed by an END request to the I/O exit program. This procedure enables the I/O exit program to
close the files that are open.

DataHP NonStop
Communications
Software

Source
Node

Reply

Connect:Direct HP
NonStop

I/O Exit

User-Written
I/O Exit

Data
Reply

Data

Database

HP NonStop
Communications
Software

Data
Destination
Node

Reply

Connect:Direct HP
NonStop I/O Exit

User-Written
 I/O Exit

Data
Request

Data

Database

Chapter 4 / Interface for User-Written Programs 49
Connect:Direct HP NonStop sends the following requests to the I/O exit program:

Request Description

ADD Connect:Direct HP NonStop makes the ADD request to insert a record or block. The EXTOPER field in
the exit control block has a value of ADD.
The request consists of the exit control block and the record to be written to the database. The record is
put in the buffer beginning at the offset indicated by the EXTOTARA field of the exit control block. The
EXTOTLNG field contains the record length.
The I/O exit program returns any error during the insertion of the record in the EXTRTNCD field.

BEGIN Connect:Direct HP NonStop sends the BEGIN request to begin communication with the exit program.
BEGIN is the first request that the I/O exit program receives. This request only consists of the exit control
block. No user data is passed or expected. The EXTOPER field in the exit control block is a string of
BEGIN.

CLOSE Connect:Direct HP NonStop issues the CLOSE request to the I/O exit program to have the file closed.
This request contains only the exit control block. No user data is passed or expected. The EXTOPER
field in the exit control block has a value of CLOSE.

END Connect:Direct HP NonStop makes the END request to an I/O exit program to end communication with
the exit. END is the last request an I/O exit program allocates after it receives the BEGIN request. This
request contains only the exit control block. No user data is passed or expected. The EXTOPER field has
a value of END.
Because all the processing is complete at this point, Connect:Direct HP NonStop ignores any error
returned in the EXTRTNCD field in the exit control block. Connect:Direct HP NonStop sends this request
to the I/O exit program, then stops the I/O exit program.

GET Connect:Direct HP NonStop issues the GET request to the I/O exit program to read a record or block into
the buffer. The I/O exit program must return the buffer where the record or block resides.
This request consists of only the exit control block in which the EXTOPER field has a value of GET. The
I/O exit program should return the user data in the reply. The EXTINARA field should indicate the offset
within the reply at which the user data begins. The EXTINLNG field indicates the length of the user data
returned.
If an End of File (or End of Data) occurs, the I/O exit program sets the EXTRTNCD field to EXTRCEOD
(hex 0004).

50 Connect:Direct HP NonStop Management Programming Guide
INFO Connect:Direct HP NonStop sends the INFO request to the I/O exit program to retrieve the file attributes
and place them into the INFOCB area.
This request contains only the exit control block with INFO in the EXTOPER field. The I/O exit program
should return the file attributes in the form of INFOCB that begins at the offset indicated by EXTVSWRK
with a length indicated by EXTVSWKL.
The following example describes the INFOCB structure:

* FILENAME file name or catalog name if SQL
 03 FILENAME TYPE CHARACTER 36.
* FILE-TYPE file type
 03 FILE-TYPE TYPE BINARY 16.
* FILE-CODE file code
 03 FILE-CODE TYPE BINARY 16.
* REC-LEN logical record length
 03 REC-LEN TYPE BINARY 16.
* BLOCKLEN Block Length
 03 BLOCKLEN TYPE BINARY 16.
* KEY-LEN primary key length for key-sequenced file
 03 KEY-LEN TYPE BINARY 16.
* KEY-OFF primary key offset for key-sequenced file
 03 KEY-OFF TYPE BINARY 16.
* PRI-EXT primary extents
 03 PRI-EXT TYPE BINARY 32.
* SEC-EXT secondary extents
 03 SEC-EXT TYPE BINARY 32.
* NUM-EXT number of extents allocated
 03 NUM-EXT TYPE BINARY 16.
* MAX-EXT maximum extents
 03 MAX-EXT TYPE BINARY 16.
END

OPEN Connect:Direct HP NonStop makes the OPEN request to an I/O exit program to allocate and open the
file. The request indicates whether the file is to be read or written.
This request contains only the exit control block with a string OPEN in the EXTOPER field. The
EXTRTNCD field in the reply from the I/O exit program indicates whether the OPEN performed
successfully.

Request Description

Chapter 4 / Interface for User-Written Programs 51
Defining the Exit Control Block
The following example describes the exit control block, which serves as the basic message structure of the I/O
exit requests.

* IOEXIT control block
DEF EXITCB.
* EXTCBLNG IOEXIT control block length
 03 EXTCBLNG TYPE BINARY 16.
* EXTIDENT IOEXIT Identification
* IO = I/O Exit
* SQ = SQL Exit
 03 EXTIDENT TYPE CHARACTER 2.
* EXTFORW forward chain pointer
 03 EXTFORW TYPE BINARY 16.
* EXTBACKW backward chain pointer
 03 EXTBACKW TYPE BINARY 16.
* EXTNAME name of user exit program
 03 EXTEXITN.
 05 VOL TYPE CHARACTER 8.
 05 SVOL TYPE CHARACTER 8.
 05 FNAME TYPE CHARACTER 8.
* EXTFNUM file number of user exit program
 03 EXTFNUM TYPE BINARY 16.
* EXTOPER requested exit operation
* ADD, BEGIN, CLOSE, END, GET, INFO
 03 EXTOPER TYPE CHARACTER 8.
* EXTTASKN Task number
 03 EXTTASKN TYPE BINARY 16.
* EXTRTNCD return code from exit program
* EXTRCOK X’0000’ normal
* EXTRCEOD X’0004’ end of data
* EXTRCLGC X’FFFF’ logic error
 03 EXTRTNCD TYPE BINARY 16.
* EXTMSGID message id from exit program
 03 EXTMSGID TYPE CHARACTER 8.
 03 EXTWKARA TYPE BINARY 16.
* EXTINARA input record area offset
 03 EXTINARA TYPE BINARY 16.
* EXTOTARA output record area offset
 03 EXTOTARA TYPE BINARY 16.
* EXTINLNG input record length
 03 EXTINLNG TYPE BINARY 16.
* EXTOTLNG output record length
 03 EXTOTLNG TYPE BINARY 16.
* EXTMAXLEN maximum output record length
 03 EXTMAXLN TYPE BINARY 16.
* EXTSRECL source lrecl
 03 EXTSRECL TYPE CHARACTER 5.
* EXTSRECF source recfm
 03 EXTSRECF TYPE CHARACTER 4.
* EXTSBLKZ source blksize
 03 EXTSBLKZ TYPE CHARACTER 5.
* EXTDRECL destination lrecl
 03 EXTDRECL TYPE CHARACTER 5.
* EXTDRECF destination recfm
 03 EXTDRECF TYPE CHARACTER 4.
* EXTDBLKZ destination blksize
 03 EXTDBLKZ TYPE CHARACTER 5.
* EXTDIR direction of transfer,
* S = sending side,R = receiving side
 03 EXTDIR TYPE CHARACTER 1.

Continued

52 Connect:Direct HP NonStop Management Programming Guide
* EXTFUNC requested function,
* I = initialize, P = process record, E = exit
 03 EXTFUNC TYPE CHARACTER 1.
* EXTSFLAG source descriptor flags
* EXTSRCL X’80’ source lrecl specified
* EXTSRCF X’40’ source recfm specified
* EXTSBKZ X’20’ source blksize specified
* EXTSIOX X’10’ IOEXIT specified
* EXTSSQL X’08’ SQL specified
* EXTSDBP X’04’ DBPARMS specified
 03 EXTSFLAG TYPE CHARACTER 1.
* EXTDFLAG destination descriptor flags
* EXTDRCL X’80’ destination lrecl specified
* EXTDRCF X’40’ destination recfm specified
* EXTDBKZ X’20’ destination blksize specified
* EXTDIOX X’10’ IOEXIT specified
* EXTDSQL X’08’ SQL specified
* EXTDDBP X’04’ DBPARMS specified
 03 EXTDFLAG TYPE CHARACTER 1.
* EXTMISC general flags for exit processing
* EXTCONI X’80’ exit got cntl at least once
* EXTCONP X’40’ exit got cntl but has not returned
* EXTCONR X’20’ exit got cntl, return at least once
 03 EXTMISC TYPE CHARACTER 1.
* EXTFLAG1 more flags for exit processing
 03 EXTFLAG1 TYPE CHARACTER 1.
* EXTIRECN # records read from database
 03 EXTIRECN TYPE BINARY 32.
* EXTIBLKN # blocks read from database
 03 EXTIBLKN TYPE BINARY 32.
* EXTORECN # records written to database
 03 EXTORECN TYPE BINARY 32.
* EXTOBLKN # blocks written to database
 03 EXTOBLKN TYPE BINARY 32.
* EXTIBYTN # bytes read from database
 03 EXTIBYTN TYPE BINARY 64.
* EXTOBYTN # bytes written to database
 03 EXTOBYTN TYPE BINARY 64.
* EXTCKPT1 for checkpointing
 03 EXTCKPT1 TYPE CHARACTER 16.
* EXTVSWRK INFOCB area offset (waddr)
 03 EXTVSWRK TYPE BINARY 16.
* EXTVSWKL INFOCB area length
 03 EXTVSWKL TYPE BINARY 16.
END

Chapter 4 / Interface for User-Written Programs 53
Sample Standard I/O Exit
Following is an example of standard IOEXIT Blocked processing:

Specifying Generic IPC Processing
Connect:Direct HP NonStop supports a generic inter-processor communications (IPC) mechanism that gives
you enhanced flexibility when communicating with user-defined Processes. You can write all data received by
Connect:Direct to an alternate Process rather than directly to disk, spool, or tape. Connect:Direct can operate
with any HP NonStop Process on an IPC level, but the receiving Process must be started before Connect:Direct
attempts to perform an open operation.

When Connect:Direct HP NonStop receives incoming data from a remote node, the data is buffered, then
written to a user-initiated process using IPC. The Connect:Direct HP NonStop Session Manager and your
Process create a buffer to hold intermediate data and perform IPC write operations when the buffer is full
(current maximum IPC size is 32,000 bytes). Unlike standard I/O exit processing where message overhead is
required to communicate to the user-supplied I/O exit process, IPC I/O exit processing only sends data.

Types of Blocking
Generic IPC processing uses two forms of blocking of data between Connect:Direct and alternate processes:
fixed and variable. To use IPC processing, you must ensure that data is fully processed and that all records are
deblocked.

Fixed-block (FB) IPC assumes that all data sent to a Process is fixed-block records. No record lengths are
contained within the IPC buffer sent to the alternate Process; therefore, you cannot generate a zero length
record. When no more fixed length records fit into an IPC buffer, the buffer is written to the user Process for
processing.

Variable-block (VB) IPC assumes that the data sent to the Process are of any record length. As with fixed-block
transfers, when the IPC buffer fills, the buffer is written to the user Process. Variable-block IPC is the default
for Connect:Direct HP NonStop. Within the buffer, each record is preceded by a 4-byte length indicator. The
end of the buffer is indicated by a -1 (hex FFFF) in the final 4 bytes.

 BLOCKED PROCESS PNODE=YOUR.PNODE -
 SNODE=YOUR.SNODE -
 SNODEID=(GROUP.USER,PASSWORD)

 STEP10 RUN TASK (PGM=FUP -
 SYSOPTS="/OUT $S.#FUP.S10/PURGE DESTFILE!")

 STEP20 RUN TASK (PGM=FUP -
 SYSOPTS="/OUT $S.#FUP.S20/CREATE DESTFILE")

 STEP30 RUN TASK (PGM=FUP -
 SYSOPTS="/OUT $S.#FUP.S30/INFO DESTFILE,DETAIL")

 COPYFILE COPY -
 FROM (DSN=$VOLUME.SUBVOL.SRCFILE -
 SNODE DISP=SHR) -
 TO (IOEXIT=($USERP) -
 PNODE DISP=RPL -
 SYSOPTS=("SET IPC N", -
 "SET IPC.VB Y", -
 "SET IPC.BLOCKLEN 32000"))

54 Connect:Direct HP NonStop Management Programming Guide
Specifying an IPC I/O Exit
Specify an IPC I/O exit on the HP NonStop node in the TO clause of the Connect:Direct HP NonStop COPY
statement.

Specify the name of a Process with which Connect:Direct HP NonStop communicates. Connect:Direct HP
NonStop assumes that the Process is already running when the COPY operation starts. The syntax for
specifying an IPC I/O exit when the Process is already running follows:.

Implementing an IPC I/O Exit
When you include an IPC I/O exit statement in the COPY statement, Connect:Direct HP NonStopopens the
specified IPC I/O exit program.

If Connect:Direct HP NonStopcannot communicate with the IPC I/O exit process, it cancels the Process and
terminates the session.

The copy to an IPC I/O exit ignores DCB information specified in a Process. Refer to the Connect:Direct
Process Statements Guide for syntax and parameter descriptions for the IOEXIT parameter.

Required Parameter
Generic IPC processing uses the following required SYSOPTS parameter:

Optional Parameters
The optional parameters for generic IPC processing are listed in the following table. These parameters only
apply if IPC=yes.

FILE = $process-name or DSN = $process-name

Note: For generic IPC, you must use the keyword FILE or DSN and not IOEXIT.

Note: IPC I/O exit processing occurs only on the HP NonStop platform.

Parameter Description

IPC <yes-no>† Specifies whether the RECEIVE task uses generic IPC processing to manage output. This
parameter is required for IPC Processing, where <yes-no> ::= {Y[ES] | N[O]}.

† The receiving Process must be started and be in read mode when Connect:Direct HP NonStop attempts to open the user Process.

Parameter Description

IPC.BLOCKLEN <nnnnn> IF IPC=Yes:
IPC.BLOCKLEN indicates the length of the buffer used for data that is read from the
remote Connect:Direct HP NonStop node then written to a user initiated process. The
value ranges from 4096 (4K) bytes to the current IPC maximum of 32000 bytes, where
<length> ::= {4096..32000}.

Chapter 4 / Interface for User-Written Programs 55
Integrating Dataloader/MP
Connect:Direct HP NonStop can integrate Dataloader/MP during all HP NonStop receiving operations. This
improves performance when transmitting partitioned data, load operations, and SQL-based data. The
Connect:Direct Dataloader/MP extensions increase normal functionality with newer file structures, such as
Compaq FORMAT 2 files.

How Dataloader/MP Works
To maximize throughput, Dataloader/MP uses Inter-Process Communications (IPC) operations. When
Connect:Direct receives incoming data from a remote node, the data is buffered, then written to a newly created
Dataloader/MP process by using IPC. The Connect:Direct Session Manager and Dataloader/MP create a
variable blocked structure to hold intermediate data and perform IPC write operations when the buffer is full
(current maximum IPC size is 32,000 bytes). In addition to buffering, IPC I/O operations are queued so that
disk I/O throughput is maximized.

For more details concerning HP NonStop Dataloader/MP capabilities, refer to the HP NonStop Dataloader/MP
Users Guide.

Specifying a Dataloader/MP Exit
Specify the name of the DataLoader process with which Connect:Direct HP NonStop communicates.
Connect:Direct HP NonStop assumes that the Process is already running when the COPY operation starts. The
syntax for specifying a DataLoader/MP exit where the Process is already running follows:

IPC.PAD <nnn> IPC.PAD represents the pad character value used for blocked IOEXIT processing. The pad
character is uniform for fixed length blocks only. Valid values are 0–255.

IPC.RECLEN <nnnnn> IPC.RECLEN represents the length of each record used for data that is either read from or
written to a remote Connect:Direct HP NonStop node. Valid values range from 4096 to
32000.

Note: The default value assumes 32,000-byte buffers for IPC_BLOCKLEN.

IPC.VARIN <yes |no> IPC.VARIN specifies whether the RECEIVE task uses variable length records with generic
IPC processing. Refer to the HP NonStop Operations Utility Guide for more details
concerning the FUP VARIN format. If you use fixed-block records, you must explicitly
request the IPC.VARIN parameter with a value of NO, where <yes-no> ::= { Y[ES] | N[O] }.

IOEXIT = $process-name

Note: For DataLoader/MP, you must use the keyword IOEXIT and not DSN or FILE.

Parameter Description

56 Connect:Direct HP NonStop Management Programming Guide
Dataloader/MP Parameters
To implement Dataloader/MP, use the following SYSOPTS parameters:

Example Process Stream
Following is an example of using the Dataloader/MP parameters:

Parameter Description

IPC.DATALOAD <yes-no> Specifies if the RECEIVE task uses HP NonStop Dataloader/MP utility program to
manage output. This parameter is required for IPC processing. The default is NO.

Where <yes-no> ::= { Y[ES] | N[O] }

IPC <yes-no>† Specifies if the RECEIVE task uses generic IPC process to manage output. This
parameter is required for IPC processing. The default is NO.

Where <yes-no> ::= {Y[ES] | N[O]}

† The receiving process must be started and be in read mode when Connect:Direct HP NonStop attempts to open the user process.

Note: The DataLoader/MP interface also supports all of the optional SYSOPTS parameters specified for
generic IPC, that is, IPC.BLOCKLEN, IPC.PAD, IPC.RECLEN, and IPC.VARIN.

IO102 PROCESS PNODE=YOUR.PNODE -
 SNODE=YOUR.SNODE -
 SNODEID=(GROUP.USER,PASSWORD)
/* Purgedata the OUTPUT file */
STEP10 RUN TASK PNODE PGM=FUP-
 SYSOPTS="/OUT $S.#FUP.KSDS/PURGEdata $vol.subvol.file"
/* RUN the IOEXIT sample */
/* OUTPUT file MUST be Key-Sequenced, 80 bytes with a 4 byte key for testing */
STEP20 COPY -
 FROM (dsn=$vol.subvol.file -
 SNODE disp=shr) -
 TO (PNODE IOEXIT=$DLD1 -
 SYSOPTS=("SET IPC Y" -
 "SET IPC.DATALOAD Y" -
 "SET IPC.BLOCKLEN 80" -
 "SET IPC.PAD 55" -
 "SET IPC.RECLEN 80"))

Chapter 4 / Interface for User-Written Programs 57
Following is an example of Dataloader (special case of IPC IOEXIT processing):

Following is an example of IPC IOEXIT processing:

 DATALOAD PROCESS PNODE=YOUR.PNODE -
 SNODE=YOUR.SNODE -
 SNODEID=(GROUP.USER,PASSWORD)

 STEP10 RUN TASK (PGM=FUP -
 SYSOPTS="/OUT $S.#FUP.S10/PURGE DESTFILE!")

 STEP20 RUN TASK (PGM=FUP -
 SYSOPTS="/OUT $S.#FUP.S20/CREATE DESTFILE")

 STEP30 RUN TASK (PGM=FUP -
 SYSOPTS="/OUT $S.#FUP.S30/INFO DESTFILE,DETAIL")

 COPYFILE COPY -
 FROM (DSN=$VOLUME.SUBVOL.SRCFILE -
 SNODE DISP=SHR) -
 TO (IOEXIT=$DL1 -
 PNODE DISP=RPL -
 SYSOPTS=("SET IPC Y", -
 "SET IPC.VB N", -
 "SET IPC.DATALOAD Y", -
 "SET IPC.BLOCKLEN 80"))

 IPCexit PROCESS PNODE=YOUR.PNODE -
 SNODE=YOUR.SNODE -
 SNODEID=(GROUP.USER,PASSWORD)

 STEP10 RUN TASK (PGM=FUP -
 SYSOPTS="/OUT $S.#FUP.S10/PURGE DESTFILE!")

 STEP20 RUN TASK (PGM=FUP -
 SYSOPTS="/OUT $S.#FUP.S20/CREATE DESTFILE")

 STEP30 RUN TASK (PGM=FUP -
 SYSOPTS="/OUT $S.#FUP.S30/INFO DESTFILE,DETAIL")

 COPYFILE COPY -
 FROM (DSN=$VOLUME.SUBVOL.SRCFILE -
 SNODE DISP=SHR) -
 TO (IOEXIT=($USERP) -
 PNODE DISP=RPL -
 SYSOPTS=("SET IPC Y", -
 "SET IPC.VB N", -
 "SET IPC.BLOCKLEN 32000"))

58 Connect:Direct HP NonStop Management Programming Guide

Chapter 5

Sample Code

The example in this chapter illustrates concepts and considerations that are useful when you write an API. The
sample code, written in C, shows how to submit a Connect:Direct HP NonStop Process, handle messages, and
check the status of Process execution with Connect:Direct HP NonStop SUBMIT and PROCESS commands.

Before issuing commands through an API, you must set parameters for both NDMCOM and the API and start
the API as a named process. Refer to Setting Parameters on page 26 for information about creating and running
APIs and to the source program, USERAPIC, in the NDMAPI subvolume for sample code.

Example
First, the API opens the message file (MSGFILE) to search for any message IDs that require action.

WARNING: You can modify the API at the source code level if you run NDMCOM as a HIGHPIN process.
Any API that communicates with a HIGHPIN process must be converted to use the D series
system procedure calls. If the API process currently closes the NDMCOM process with the
WRITE() procedure using a message code of -31, porting the API code to D40 causes an
ABEND on NDMCOM. HP NonStop has changed the message code for issuing a close to -104,
and this code must be generated with the CLOSE() procedure when running in a D40
environment. Attempting to close NDMCOM with a WRITE() and using a -104 instead of a -31
causes NDMCOM to loop in the INITIALIZER function of the HP NonStop C runtime library.

short fnum_msgfile = -1;
short error;

if (! MSG_OPEN (&fnum_msgfile /* file number */
 ,0x0400 /* Read-only */
 ,“MSGFILE” /* file name */
 ,&error)) /* return error */

{
 fnum_msgfile = -1;
 fprintf (stdout, “Unable to open message file, error
 #(%d)\n", error);
 exit (-1);
}

60 Connect:Direct HP NonStop Management Programming Guide
Next, build the NDMCOM command to submit a Process.

For example: SUBMIT FILE=$SYSTEM.NDMPROC.SEND

Perform a WRITEX to the NDMCOM file pointer to set the length in write_cnt and check for errors. The
ndmcom_fp variable contains the file number obtained by the creation of NDMCOM through the API.

If you receive no indication of errors, perform a do-while loop to read data (control blocks) coming from
NDMCOM to determine further steps. If no errors occur, two control blocks are returned.

This example searches for a MSGID of SSRV101I, which indicates that the Process was submitted
successfully, and searches for the keyword NEWPNUM to extract the new Process number assigned to the
Connect:Direct HP NonStop Process by NDMSRVR.

Find the N keyword in the CB to determine the number of error messages present in the CB ERR. Refer to
Error Control Structure on page 23 for details on the N keyword.

The following example shows a control block passed to the API due to successful execution of the SUBMIT
command. The character ! (exclamation point) denotes a binary zero (null).

 char send_buffer [4096];
 short rc;
 short write_cnt;
 short cnt_write;

strcpy (send_buffer, “sub file=$system.ndmproc.send”);
write_cnt = strlen (send_buffer) + 1;

rc = WRITEX (ndmcom_fp, send_buffer,
write_cnt, &cnt_write);
if (rc != 0)
 exit (-1);

 short read_cnt;
 short cnt_read;
 short save_proc_num;
 short end_flag = 0;
 char *data;
 char receive_buffer[4096];
 char *cbptr;
 char *csptr;
do
{

read_cnt = sizeof (receive_buffer);
rc = READX (api_fp, receive_buffer, read_cnt, &cnt_read);
csptr = cbptr = receive_buffer;

CB!ERR!N!1!T!0!CBEND!ERR!CB!E1!NEWPNUM!5!
FDBK!0!RC!0!MSGID!SSRV101I!CBEND!E1!

CB_FIND_FIELD (cbptr, “N”, &data);
if (atoi (data) == 1)
{

Chapter 5 / Sample Code 61
If the data portion of the field N is equal to 1, skip to the next CB to find the MSGID and NEWPNUM fields.

If the MSGID is not equal to SSRV101I, display the contents of CB ERR and terminate the API.

NEWPNUM is the keyword for the field that returns the new Process number after a Process is submitted
successfully.

If the ERR CB has no messages coming back, display the ERR CB and exit from the API.

NDMCOM always returns an error control block, with or without messages, after every Connect:Direct HP
NonStop command. NDMCOM returns an NDMREADY message to the API after the error control block to
indicate that there are no further error control blocks for that command.

If there are no errors, issue the following command to monitor the status of the Process:

You must specify the FILE parameter with any of the select commands for data to bypass the NDMCOM
reportwriter and return in C-string control block format.

 cbptr = CB_NEXT_CB (cbptr);
 CB_FIND_FIELD (cbptr, CBKEY_MSGID, &data);

 if (strcmp (data, “SSRV101I”))
 {

 ERRCS_DISPLAY (stdout, fnum_msgfile, csptr);
 exit (-1);
 }
 else
 {

 CB_FIND_FIELD (cbptr, “NEWPNUM”, &data);
 fprintf (stdout, “process submitted & the proc # is \

 %s\n", data);
 save_proc_num = atoi(data);

 } /* end else */

 ERRCS_DISPLAY (stdout, fnum_msgfile, cbptr);
 exit (-1);

} /* end if data */

} while (strcmp (receive_buffer, “NDMREADY”) != 0);

SELECT PROCESS DETAIL FILE PNUM=N

62 Connect:Direct HP NonStop Management Programming Guide
Perform a WRITEX to NDMCOM file pointer (ndmcom_fp) for the length of write_cnt and to check for errors.

After you send the SELECT PROCESS command to NDMCOM, perform a READX operation to analyze the
returning control blocks.

Because the SELECT PROCESS command monitors data transmission, different information returns in control
blocks every time the command is invoked during Process execution. The code in this example loops until the
end of Process execution and the MSGID SAPI101I returns. Your API determines the action on the data
returned.

Determine whether the control block is an error control block. If an error control block is present, determine
whether the Process completed its execution or was issued using invalid syntax.

The following control block indicates the Process was not found:

This control block shows an invalid command:

 short cnt_write;
 short write_cnt;
 char command[50];

strcpy (command, “select process detail file pnum=n”);
strcat (command, data);

strcpy (send_buffer,command);
write_cnt = strlen (send_buffer) + 1;

do
{

rc = WRITEX (ndmcom_fp, send_buffer, write_cnt,&cnt_write);
if (rc != 0)
 exit (-1);

Note: After passing a command to NDMCOM, the API should always check for MSGID SSUB531I,
indicating an invalid command.

 read_cnt = sizeof (receive_buffer);
 rc = READX (api_fp, receive_buffer,read_cnt,&cnt_read);
 csptr = cbptr = receive_buffer;

CB!ERR!N!1!T!0!CBEND!ERR!CB!E1!
FDBK!0!RC!0!MSGID!SAPI101I!CBEND!E1!

CB!ERR!N!1!T!0!CBEND!ERR!CB!E1!
ERR1!INVALID COMMAND! FDBK!0!RC!0!
MSGID!SSUB531I!CBEND!E1!

Chapter 5 / Sample Code 63
Following is a control block for a Process in execution state:

Note that the CB!SEL_PROC! control block does not end with CBEND!SEL_PROC!. The Process is still in its
execution state and NDMSRVR is still writing to the TCQ file.

If the data for the N equals 1, then skip to the next CB to find the MSGID.

If the MSGID equals SSUB531I, an invalid command, display the message ID and terminate the API.

If the MSGID equals SAPI101I, notify the user that the Process finished and OPR.JONES must perform
further action.

CB!SEL_PROC!DTL!!EXECUTING!!RECRD!0!RECWR!
RUSENT!1!RURCVD!0!SBYTES!3900!RBYTES!0!CLASSEX!1!
INBYTE!0!OBYTES!3900!NODE!F!PNUM!5!PNAM!SEND!
STEPNAME!SENDCOPY!

 if (CB_FIND_FIELD (cbptr, “CB”, &data) && !strcmp (data,
“ERR”))

 {
 CB_FIND_FIELD (cbptr, “N”, &data);
 if (atoi (data) == 1)
 {

 cbptr = CB_NEXT_CB (csptr);
 CB_FIND_FIELD (cbptr, CBKEY_MSGID, &data);
 if (! strcmp (data, “SSUB531I”))
 {

 ERRCS_DISPLAY (stdout, fnum_msgfile, csptr);
 exit (-1);
 }
 else
 {

 if (!strcmp (data, “SAPI101I”))
 {
 fprintf(stdout, “OPR.JONES, proc #%d completed; \
 check for further action.\n", save_proc_num);
 end_flag = 1;
 continue;
 } /* end of proc */

 } /* end else */

 } /* end if data */

64 Connect:Direct HP NonStop Management Programming Guide
If the returned control block is not an error control block, pass the control blocks to STDOUT.

Check for the end flag to equal TRUE to terminate processing, otherwise the do-while loop is executed again.

 dump (stdout, (char *) cbptr, (size_t) 300);

} /* end if ERR */

 } while (end_flag == 0);

exit (0);

Chapter 6

Using DSM/EMS Event Reporting

Event Management Service (EMS) is a collection of processes, tools, and interfaces that provide
event-message collection and distribution in the HP NonStop Distributed Systems Management (DSM)
environment. Connect:Direct HP NonStop generates and reports event messages to EMS, and writes event
messages to statistics file. Each type of statistics record is a different event to EMS. In addition, Connect:Direct
HP NonStop generates event messages for the startup and shutdown of such processes as NDMSRVR and
session managers.

You can set up a dedicated console by using a printing distributor and a filter. The distributor uses a filter, and
only the events that meet the specifications of the filter are passed. You can configure Viewpoint, a DSM
console application, to filter Connect:Direct HP NonStop event messages. Refer to the HP NonStop
documentation for EMS operation.

Connect:Direct HP NonStop provides all the facilities to customize operation in a DSM environment. For
example, you can create complex filters using the samples provided with the product. Modify the sample
templates as appropriate for your environment.

66 Connect:Direct HP NonStop Management Programming Guide
The following figure shows Connect:Direct HP NonStop in a DSM environment. Connect:Direct HP NonStop
can log to a primary or alternate collector. The three types of distributors are consumer, printing, and
forwarding. The DSM application can be Viewpoint.

Sample filters and a text template for event-message reporting are in the NDMDSM subvolume. Modify these
samples to customize your Connect:Direct HP NonStop environment. Refer to Integrating Connect:Direct HP
NonStop in a DSM Environment on page 68 for additional details.

Control the disposition of event messages from the initialization parameters file. You can override the values
with a Connect:Direct HP NonStop command, UPDATE LOGGING. An overview of initialization parameters
and logging commands follows.

Note: Connect:Direct HP NonStop reports the output resulting from server errors to EMS and the server
output file as you defined in the RUN statement to start NDMMON and the server.

HP NonStop

Connect:Direct HP
NonStop

Primary

P

Management ServicesSubsystem
Environment

Operations
Environment

EXPAND

SPI

EMS

DSM
APPL

LOG

FAlternate LOG

C

Chapter 6 / Using DSM/EMS Event Reporting 67
EMS-Specific Initialization Parameters
The following initialization parameters control the disposition of event messages:

Set either EMS or STATS to ON. If you set both parameters to OFF, Connect:Direct HP NonStop forces STATS
ON.

Logging Commands
You can use the following commands in conjunction with EMS logging:

The UPDATE LOGGING command enables you to alter settings for EMS, STATS, and COLLECTOR.
Refer to the Controlling EMS Logging chapter in the Connect:Direct HP NonStop Administration Guide
for command syntax and examples.
If you specify the collector parameter and EMS logging is on or if you issue the UPDATE LOGGING
command to activate it, Connect:Direct HP NonStop closes and opens the collector file. This action
automatically resets the connection between Connect:Direct HP NonStop and the collector.

The DISPLAY LOGGING command displays the EMS settings, the STATS settings, and the name of the
collector process. Optional parameters associated with this command are FILE, PRINT, and OUT.

Distribution Files
The following files, pertinent only to EMS, are in the NDMDSM subvolume on the distribution tape.

Parameter Description

EMS Controls whether Connect:Direct HP NonStop logs events to EMS. Valid values are OFF and ON.
The default is OFF.

STATS Controls whether Connect:Direct HP NonStop logs events to the statistics file. Valid values are
OFF and ON. The default is ON.

COLLECTOR Specifies the collector you want to use for event-message generation. The collector can be the
primary collector for the system ($0) or an alternate collector. The default collector is $0.

File Description

NDMDDL The source file for token definitions for Connect:Direct HP NonStop. Field type definitions for all EMS
tokens are in this file. Use this file to produce a data dictionary.

WARNING: Do not modify NDMDDL.

NDMC The DDL output of NDMDDL for C.

NDMTACL The DDL output of NDMDDL for TACL.

NDMTAL The DDL output of NDMDDL for TAL.

68 Connect:Direct HP NonStop Management Programming Guide
Integrating Connect:Direct HP NonStop in a DSM Environment
You can integrate Connect:Direct HP NonStop into a DSM environment using the files in the NDMDSM
subvolume. If you are customizing your environment, you can use the files as a starting point.

RUNDIST is a sample obey file for running a printing distributor. To start a printing distributor, modify the
filter parameter in RUNDIST to point to the volume where Connect:Direct HP NonStop is installed. Three
sample filter source files are provided.

Use one of the following filters for the type of messages you require:

FLTSRC1 The sample filter source that passes all Connect:Direct HP NonStop events.

FLTSRC2 The sample filter source that passes Connect:Direct HP NonStop events that are step starts and step ends.

FLTSRC3 The sample filter source that passes Connect:Direct HP NonStop events with a return code greater than
zero.

FLTSRC4 The sample filter source that passes Connect:Direct HP NonStop Spooler option events.

NDMFLT1 The filter object file for FLTSRC1.

NDMFLT2 The filter object file for FLTSRC2.

NDMFLT3 The filter object file for FLTSRC3.

NDMFLT4 The filter object file for FLTSRC4.

RUNDIST The sample obey file for starting a printing distributor.

STALTCOL The sample obey file for starting an alternate collector.

TEMPSRC The sample template source file designed to be used with a printing distributor. TEMPSRC provides more
detail than TEMPVIEW.

TEMPOBJ The object file produced by the template compiler for TEMPSRC. Add this file to the CONFTEXT file to
install templates during SYSGEN.

TEMPVIEW The sample template source file designed to be used with Viewpoint or NonStop NET/MASTER.
TEMPVIEW packs pertinent information on a single line.

TEMPVOBJ The object file produced by the template compiler for TEMPVIEW. Add this file to the CONFTEXT file to
install templates during SYSGEN.

Filter Description

NDMFLT1 Passes all Connect:Direct HP NonStop events.

NDMFLT2 Passes Connect:Direct HP NonStop events that are step starts and step ends.

NDMFLT3 Passes Connect:Direct HP NonStop events with a return code greater than zero.

NDMFLT4 Passes Connect:Direct HP NonStop Spooler option events.

File Description

Chapter 6 / Using DSM/EMS Event Reporting 69
Templates are provided in object format. This format allows you to add the templates to your system in your
CONFTEXT file or through the Configuration Utility Program (COUP). For temporary use or testing, add
_EMS_TEMPLATES to TACL with the DEFINE statement.

The tokens in NDMTACL allow you to construct complex filters. To compile the filters you write, load the
TACL variables in the NDMTACL file. Use the filter sources as references. For more information on the filter
language and the compiler, refer to the HP NonStop Event Management Service Manual.

Modify the provided templates for Connect:Direct HP NonStop as appropriate to your environment. The
source for the templates is in TEMPSRC. Use NDMDDL, the DDL source file, to compile the new templates
and create a data dictionary containing Connect:Direct HP NonStop tokens and events.

You can use TEMPNRES to generate your system’s nonresident template file. The TEMPLI utility constructed
the delivered TEMPNRES on a D30.02 system. The TEMPNRES should be regenerated to run on an operating
system version different from D30.02. Refer to the HP NonStop DSM Template Services Manual for complete
information on templates.

The files, NDMC, NDMTACL, and NDMTAL, contain token definitions and are provided for you to use in any
DSM applications you write.

Connect:Direct HP NonStop Tokens
The following table lists Connect:Direct HP NonStop tokens (in TACL format) and a brief description of each
token. The tokens are found in events generated by Connect:Direct HP NonStop. Tokens are specified in TACL
format when constructing filters. The tokens are in C and TAL format in NDMC and NDMTAL, respectively.

Token Description

NDM^TKN^CDATE End date

NDM^TKN^CLASS Class

NDM^TKN^COMPRESS Compress (Y|N)

NDM^TKN^CTIME End time

NDM^TKN^DATA^RATE Number of bytes per second

NDM^TKN^DATE System date

NDM^TKN^FDBK Feedback code

NDM^TKN^FDSN From data set name

NDM^TKN^FILE File name for SUBMIT

NDM^TKN^FROM^COMP^PER Compression percentage on sending side

NDM^TKN^FUNC Connect:Direct HP NonStop function, such as COPY and RUN
TASK

NDM^TKN^INBYTE Number of incoming bytes

NDM^TKN^INRECN Number of incoming records

NDM^TKN^LNKFL Link status

NDM^TKN^LU LU name

NDM^TKN^MSGID Connect:Direct HP NonStop message ID

NDM^TKN^NODE Node type (PNODE or SNODE)

70 Connect:Direct HP NonStop Management Programming Guide
NDM^TKN^OTBYTE Number of outgoing bytes

NDM^TKN^OTBLK Number of outgoing blocks

NDM^TKN^OTRECN Number of outgoing records

NDM^TKN^PC Process control

NDM^TKN^PGM Program name for RUN TASK

NDM^TKN^PNAME Process name

NDM^TKN^PNUM Process number

NDM^TKN^PRI Priority

NDM^TKN^PROCESS Session manager or server process name

NDM^TKN^RBYTES Number of received bytes

NDM^TKN^RC Return code

NDM^TKN^RSTRT Step restart (Y|N)

NDM^TKN^RUSZ RU size

NDM^TKN^RU^RCVD Number of RUs received

NDM^TKN^RU^SENT Number of RUs sent

NDM^TKN^SBYTES Number of bytes sent

NDM^TKN^SDATE Start date

NDM^TKN^SNODE Secondary node name

NDM^TKN^STEPNAME Step name

NDM^TKN^STIME Start time

NDM^TKN^TDSN To data set name

NDM^TKN^TIME System time

NDM^TKN^TO^COMP^PER Compression percentage on receiving size

NDM^TKN^TRANS Translation (ATOE|ETOA)
ATOE-ASCII to EBCDIC
ETOA-EBCDIC to ASCII

NDM^TKN^UID USERID of submitter

NDM^TKN^UNODE User node of submitter

NDM^TKN^XNODE Transmit node-primary or secondary (P|S)

SPL^TKN^NDM^FDBK Feedback code

SPL^TKN^IO^PROCEDURE System procedure call operation

SPL^TKN^IO^FILE File name

SPL^TKN^IO^ERROR^NUM Error number returned by the operating system

SPL^TKN^SPOOL^NUM PERUSE job number

Token Description

Chapter 6 / Using DSM/EMS Event Reporting 71
Following are event names, their description, tokens, and event numbers for all events generated by
Connect:Direct HP NonStop. Event names and subject tokens are in TACL format.

SPL^TKN^NDM^COMMAND Connect:Direct HP NonStop command (for example, SUBMIT)

SPL^TKN^NDM^MESSAGE Connect:Direct HP NonStop message ID

SPL^TKN^NDM^PNUM Process number

SPL^TKN^CB^FIELD Connect:Direct HP NonStop internal control block field name

SPL^TKN^NDMSPL^NAME Operating system process name for Connect:Direct HP NonStop
Spooler option

SPL^TKN^NDMCOM^NAME Operating system process name for NDMCOM

NDM_TKN_IPADDR IP address

NDM_TKN_PORTNUM Port number

Event Name Description Subject Token Event Number

NDM^EVT^SESST Session start NDM^TKN^LU 50

NDM^EVT^PRCST Process start NDM^TKN^PNUM 51

NDM^EVT^STPST Step start NDM^TKN^PNUM 52

NDM^EVT^STPND Step end NDM^TKN^PNUM 53

NDM^EVT^PRCND Process end NDM^TKN^PNUM 54

NDM^EVT^SESND Session end NDM^TKN^LU 55

NDM^EVT^MSG General message NDM^TKN^LU 56

NDM^EVT^SUBMIT Process submit NDM^TKN^PNUM 57

NDM^EVT^SRVST Server start NDM^TKN^PROCESS 58

NDM^EVT^SRVND Server end NDM^TKN^PROCESS 59

NDM^EVT^SRVAB Server ABEND NDM^TKN^PROCESS 60

NDM^EVT^SMGST Session manager
start

NDM^TKN^PROCESS 61

NDM^EVT^SMGND Session manager end NDM^TKN^PROCESS 62

NDM^EVT^SMGAB Session manager
ABEND

NDM^TKN^PROCESS 63

NDM^EVT^STDST NDMSTDL start NDM^TKN^PROCESS 64

NDM^EVT^STDND NDMSTDL end NDM^TKN^PROCESS 65

NDM^EVT^STDAB NDMSTDL ABEND NDM^TKN^PROCESS 66

NDM^EVT^NTXST NETEX start NDM^TKN^PROCESS 67

NDM^EVT^NTXND NETEX end NDM^TKN^PROCESS 68

Token Description

72 Connect:Direct HP NonStop Management Programming Guide
NDM^EVT^NTXAB NETEX ABEND NDM^TKN^PROCESS 69

NDM^EVT^COMST NDMCOM start NDM^TKN^PROCESS 70

NDM^EVT^COMND NDMCOM end NDM^TKN^PROCESS 71

NDM^EVT^COMAB NDMCOM ABEND NDM^TKN^PROCESS 72

NDM^EVT^NETEX^MSG NETEX message NDM^TKN^LU 73

NDM^EVT^IO^ERR^MSG Data file I/O error
message

NDM^TKN^LU 74

NDM^EVT^FMH^ERR^MSG Connect:Direct HP
NonStop FMH error
message

NDM^TKN^LU 75

NDM^EVT^INIT^ERR^MSG Initialization error
message

NDM^TKN^LU 76

NDM^EVT^SESS^ERR^MSG Session error message NDM^TKN^LU 77

NDM^EVT^TAN^ERR^MSG HP NonStop operational
error message

NDM^TKN^LU 78

NDM^EVT^NDM^ERR^MSG Connect:Direct HP
NonStop operational
error message

NDM^TKN^LU 79

NDM^EVT^SEC^LIC^MSG Security or licensing
error message

NDM^TKN^LU 80

NDM^EVT^INFO^MSG Informational message NDM^TKN^LU 81

NDM^EVT^ALERT^MSG Cautionary message NDM^TKN^LU 82

NDM^EVT^BKUPREST Backup and restore
message

NDM^TKN^PNUM 83

SPL^EVT^IO^ERROR I/O error message SPL^TKN^IO^
PROCEDURE

84

SPL^EVT^NDM^COMMAND^ERR Connect:Direct HP
NonStop command
failure message

SPL^TKN^NDM^
COMMAND

85

SPL^EVT^MISSING^CB^FIELD Control block is missing
an expected tokenized
label (internal error)

SPL^TKN^CB^
FIELD

86

SPL^EVT^MISSING^CB An expected control
block is missing (internal
error)

SPL^TKN^CB^
FIELD

87

SPL^EVT^SUPERVISOR^ERROR Spooler supervisor
command failure

SPL^TKN^IO^
PROCEDURE

88

SPL^EVT^START^MSG NDMSPL startup
message

SPL^TKN^NDMSPL^
NAME

89

SPL^EVT^STOP^MSG NDMSPL termination
message

SPL^TKN^NDMSPL^
NAME

90

Event Name Description Subject Token Event Number

Chapter 6 / Using DSM/EMS Event Reporting 73
The following table lists the tokens returned with each event. It is possible that message events only return a
subset of the listed tokens.

SPL^EVT^TEXT^MSG General processing error
message

SPL^TKN^NDMSPL^
NAME

91

Event Token

NDM^EVT^SESST NDM^TKN^SNODE
NDM^TKN^CLASS
NDM^TKN^LU
NDM^TKN^NODE
NDM_TKN_IPADDR
NDM_TKN_PORTNUM

NDM^EVT^PRCST NDM^TKN^CLASS
NDM^TKN^LU
NDM^TKN^UNODE
NDM^TKN^UID
NDM^TKN^PNAME
NDM^TKN^PNUM
NDM^TKN^SNODE
NDM^TKN^XNODE
NDM_TKN_IPADDR
NDM_TKN_PORTNUM
NDM^TKN^PC

NDM^EVT^STPST NDM^TKN^PC
NDM^TKN^FUNC
NDM^TKN^STEPNAME
NDM^TKN^UNODE
NDM^TKN^UID
NDM^TKN^PNAME
NDM^TKN^PNUM
NDM^TKN^SNODE
NDM^TKN^FDSN
NDM^TKN^TDSN
NDM^TKN^XNODE

Event Name Description Subject Token Event Number

74 Connect:Direct HP NonStop Management Programming Guide
NDM^EVT^STPND NDM^TKN^UNODE
NDM^TKN^UID
NDM^TKN^PNAME
NDM^TKN^PNUM
NDM^TKN^SNODE
NDM^TKN^TRANS
NDM^TKN^XNODE
NDM^TKN^CTIME
NDM^TKN^CDATE
NDM^TKN^STIME
NDM^TKN^SDATE
NDM^TKN^FDBK
NDM^TKN^RC
NDM^TKN^MSGID
NDM^TKN^STEPNAME
NDM^TKN^RUSZ
NDM^TKN^INBYTE
NDM^TKN^INRECN
NDM^TKN^RU^SENT
NDM^TKN^RU^RCVD
NDM^TKN^SBYTES
NDM^TKN^FDSN
NDM^TKN^TDSN
NDM^TKN^COMPRESS
NDM^TKN^OTBYTE
NDM^TKN^OTRECN
NDM^TKN^RBYTES
NDM^TKN^FROM^COMP^PER
NDM^TKN^TO^COMP^PER

NDM^EVT^PRCND NDM^TKN^UNODE
NDM^TKN^UID
NDM^TKN^PNAME
NDM^TKN^PNUM
NDM^TKN^SNODE
NDM^TKN^XNODE

NDM^EVT^SESND NDM^TKN^SNODE
NDM^TKN^CLASS
NDM^TKN^LU
NDM^TKN^NODE
NDM_TKN_IPADDR
NDM_TKN_PORTNUM

NDM^EVT^MSG ZEMS^TKN^TEXT
NDM^TKN^LU
NDM^TKN^SNODE
NDM^TKN^UNODE
NDM^TKN^UID
NDM^TKN^PNUM
NDM^TKN^PNAME

NDM^EVT^SUBMIT NDM^TKN^PNUM
NDM^TKN^PNAME
NDM^TKN^UNODE
NDM^TKN^UID
NDM^TKN^RC
NDM^TKN^FDBK
NDM^TKN^FILE

Event Token

Chapter 6 / Using DSM/EMS Event Reporting 75
NDM^EVT^SRVST NDM^TKN^PROCESS
ZEMS^TKN^TEXT

NDM^EVT^SRVND NDM^TKN^PROCESS
ZEMS^TKN^TEXT

NDM^EVT^SRVAB NDM^TKN^PROCESS
ZEMS^TKN^TEXT

NDM^EVT^SMGST NDM^TKN^PROCESS
ZEMS^TKN^TEXT

NDM^EVT^SMGND NDM^TKN^PROCESS
ZEMS^TKN^TEXT

NDM^EVT^SMGAB NDM^TKN^PROCESS
ZEMS^TKN^TEXT

NDM^EVT^BKUPREST NDM^TKN^PNUM
ZEMS^TKN^TEXT

SPL^EVT^IO^ERROR SPL^TKN^IO^PROCEDURE
SPL^TKN^IO^FILE
SPL^TKN^IO^ERROR^NUM

SPL^EVT^NDM^COMMAND^ERR SPL^TKN^NDM^COMMAND
SPL^TKN^NDM^MESSAGE
NDM^TKN^RC
SPL^TKN^NDM^FDBK
SPL^TKN^SPOOL^NUM
SPL^TKN^NDM^PNUM

SPL^EVT^MISSING^CB^FIELD SPL^TKN^CB^FIELD

SPL^EVT^MISSING^CB SPL^TKN^CB^FIELD

SPL^EVT^SUPERVISOR^ERR SPL^TKN^IO^PROCEDURE
SPL^TKN^IO^ERROR^NUM
SPL^TKN^SPOOL^NUM

SPL^EVT^START^MSG SPL^TKN^NDMSPL^NAME
SPL^TKN^NDMCOM^NAME

SPL^EVT^STOP^MSG SPL^TKN^NDMSPL^NAME
SPL^TKN^NDMCOM^NAME

SPL^EVT^TEXT^MSG SPL^TKN^NDMSPL^NAME

Event Token

76 Connect:Direct HP NonStop Management Programming Guide

Glossary

A

Adjacent Node
An adjacent node is an entry in the Network Map that defines a Connect:Direct HP NonStop node with which
the local Connect:Direct HP NonStop node can communicate. The adjacent node is also called a remote node.

AIMS
The automated installation and management system (AIMS) is a menu-driven system that guides you through
the installation procedure for Connect:Direct HP NonStop.

Application Programming Interface (API)
The Application Programming Interface (API) is a Connect:Direct HP NonStop component that accepts
commands and places them in an executable format.

API Manager
An API manager is a network map entity, that handles communications sessions between Connect:Direct HP
NonStop and external applications on a TCP/IP network. After the API manager has been set up, users of these
other Sterling Commerce products can configure, control, and operate Connect:Direct HP NonStop from any
host on a TCP/IP network.

AUTHFILE
The authorization file contains records of user attribute defaults. Each record defines the features of
Connect:Direct HP NonStop that you can access.

B

Background Mode
The background mode enables you to execute NDMCOM using a disk file containing Connect:Direct HP
NonStop commands as input. All Connect:Direct HP NonStop commands, except the FC command, are used in
this mode.

78 Connect:Direct HP NonStop Management Programming Guide
C

CB Function
The CB (Control Block) function is a group of statements that performs a specific task and often returns a value
to the statement that calls it.

C-string Control Block
The C-string control block (CB) is the data format that returns output generated by Connect:Direct HP
NonStop Processes and commands to the API. A C-string control block consists of two or more fields.

C-string Control Structure
The C-string control structure groups one or more related C-string control blocks.

Checkpoint Restart
The checkpoint restart feature eliminates the need to retransmit an entire file in the event of a transmission
failure. If a copy procedure is interrupted, Connect:Direct HP NonStop restarts that copy at the last checkpoint.

Command Line Interface
The command line interface is a Connect:Direct HP NonStop interface that enables you to submit
Connect:Direct HP NonStop Processes and commands from your native command line environment.

Commands
Connect:Direct HP NonStop commands initiate and monitor activity within the Connect:Direct HP NonStop
system.

Connect:Direct HP NonStop Commands
Connect:Direct HP NonStop commands use a command structure common to the rest of the Connect:Direct
family of products. The commands are issued three ways: in interactive mode directly from the command line,
in background mode by issuing the Connect:Direct HP NonStop OBEY command, or through an API.

Connect:Direct HP NonStop Spooler Option
The Connect:Direct HP NonStop spooler option is a Connect:Direct HP NonStop application that permits an
installation to transfer output spooler jobs automatically from a Connect:Direct HP NonStop node to a disk file
on an adjacent node.

Connect:Direct/Plex
Connect:Direct/Plex is a Connect:Direct OS/390 (zOS) system consisting of a Connect:Direct/Manager and
one or more Connect:Direct/Servers in a TCP/IP environment. Connect:Direct HP NonStop can establish
sessions with Connect:Direct/Plex.

Glossary 79
Cyclic Redundancy Checking (CRC)
CRC is a method used to validate data integrity during data transfers between Connect:Direct nodes across a
TCP/IP network. CRC can be controlled using any of the following options:

A global initialization parameter
An adjacent node definition
A Process statement parameter
A SUBMIT command parameter

 Domain Server
Connect:Direct HP NonStop can be configured to handle inbound connection requests from a TCP domain,
that is, a range of IP addresses, using the ADJ NODE record type NDM.DOMAIN. This allows the application
to recognize connection requests from IP addresses that are not explicitly configured in the network map, as
long as they fall within one of the defined domains.

Downstream Connection
See Receiving Connection.

Dynamic LUs
Connect:Direct HP NonStop starts dynamic LUs as needed and automatically stops them upon Process
completion. Dynamic LUs are options when using TCP/IP.

E

EMS Filters
The EMS filters provide a programmatic method for selecting events for processing.

Environment Commands
These commands enable you to perform various Connect:Direct HP NonStop functions, such as displaying
environment values and invoking TEDIT. Some environment commands allow you to set specific environment
parameter values in NDMCOM. These values remain in effect only for the duration of the current session,
unless they are changed by you or another user logs on to the same NDMCOM.

ERR Control Block
The ERR control block is the first control block of an error control structure (ERRCS). The beginning and
ending fields are: CB ! ERR ! and CBEND ! ERR !. The two other required fields in the ERR control block are:
N (number) field and T (top message) field. N specifies the number of messages in the ERRCS; T specifies the
number of the most important message.

Error Control Structure (ERRCS)
The error control structure (ERRCS) is a particular C-string control structure designed to identify the messages
occurring when executing Connect:Direct HP NonStop Processes and commands.

80 Connect:Direct HP NonStop Management Programming Guide
Event Management Service (EMS)
Event management performs event-collection, logging, and distribution in the distributed systems management
(DSM) environment.

F

FASTLOAD
This Connect:Direct HP NonStop function can reduce disk I/O overhead. It is used when the Connect:Direct
HP NonStop node is the destination. With FASTLOAD, Connect:Direct HP NonStop passes data through SPI
to FUP to load into a destination data file. The feature is particularly useful for key-sequenced files, but it is
also supported for entry-sequenced and relative record files.

Field
A field is two null-terminated strings—key and data. Two or more fields make up a C-string control block.

I

I/O Exit Support
This support provides exit points for user-written programs to serve as application interfaces for data transfers.

Interactive Mode
This mode enables you to issue commands through NDMCOM and receive an immediate response.

L

Local Node
The local node is the Connect:Direct HP NonStop server.

M

Message Commands
The message commands allow you to display, add, delete, modify, and print Connect:Direct HP NonStop
messages from the command interpreter (TACL).

Message Control Blocks
Message control blocks are part of an ERRCS. These blocks are sequenced as they occur. The fields in a
message control block are CB ! En !, FDBK ! fb !, RC ! rc !, MSGID ! msgid !, and OK ! od ! (optional
keyword ! optional data !).

Glossary 81
N

NDMCOM
NDMCOM is the Connect:Direct HP NonStop user interface.

NDMMON
The monitor Process (NDMMON) ensures nonstop operation of Connect:Direct HP NonStop.

NDMSTDL
The statistics deletion program (NDMSTDL) ensures sufficient space is available to write statistics records in
the statistics files. It deletes records from STATFILE and STATSRCH based on user-specified deletion criteria
and maximum percentage of file capacity.

NETEX Option
NETEX is a connection option for Connect:Direct OS/390.

Network Map
The network map (netmap) is a file that identifies all valid Connect:Direct nodes in the network. One network
map is associated with each Connect:Direct HP NonStop local node. The netmap has one entry for each of the
other Connect:Direct nodes to which the local Connect:Direct HP NonStop node communicates. The netmap
entries also contain the rules or protocol that the nodes adhere to when communicating.

Node
A node is any site in a network from which information distribution is initiated.

P

Primary Node
The primary node (PNODE) is the Connect:Direct HP NonStop node on which the Process is submitted. The
primary node is also referred to as the controlling node or initiating node, but is not necessarily interpreted as
the sending node, because PNODE can be the receiver. In every Process, one PNODE and one SNODE are
specified. The submitter of a Process is always the PNODE.

PNODE=SNODE Transmission
This transmission enables you to create a Process to send data to another file on your node. In this type of
transmission, your node is both the PNODE and the SNODE.

Primary Logical Unit
The primary logical unit (PLU) is the logical unit that controls an LU to LU session. The PLU formats and
sends an NLD request that begins a session.

82 Connect:Direct HP NonStop Management Programming Guide
Process (Source File)
A Process is a series of statements that initiate Connect:Direct activity, such as copying files, running jobs, and
so on.

Process Statements
Process statements are instructions for transferring files, running operating system jobs, executing programs, or
submitting other Connect:Direct HP NonStop Processes. You use Process statements to build a Connect:Direct
HP NonStop Process.

R

Receiving Connection
The receiving connection is a connection between Connect:Direct HP NonStop and other nodes
(AS/400—TCP only) where the Connect:Direct HP NonStop node supports the primary functions of the data
link and the HP NonStop LU functions as a primary LU (PLU).

Remote Node
A remote node is an entry in the network map that defines a Connect:Direct node with which the local
Connect:Direct HP NonStop node can communicate. The remote node is also called an adjacent node.

Retry Interval
The retry interval is the interval at which retries are performed as a part of the checkpoint-restart feature.

S

SECFILE
The security file (SECFILE) relates the node name and user ID assigned to an incoming Connect:Direct HP
NonStop operation to a HP NonStop user ID.

Secondary Logical Unit
The secondary logical unit (SLU) is the logical unit that functions under the control of a PLU. The SLU accepts
the incoming NLD request from the PLU.

Secondary Node
The secondary node (SNODE) is the Connect:Direct HP NonStop node that interacts with the primary node
(PNODE) during Process execution. SNODE is also referred to as the participating (non controlling) or partner
node. Every Process has one PNODE and one SNODE.

Secure Point of Entry
The secure point of entry enables Processes from other nodes to be written without the use of passwords.

Glossary 83
Sending Connection
The sending connection is between HP NonStop and the IBM 370 nodes (OS/390, VM, VSE) where the IBM
node supports the primary functions of the data link and the IBM LU functions as a primary LU (PLU).

Server
The server (NDMSRVR) is responsible for processing command requests, communicating with the session
manager when work is placed in the transmission control queue, and accepting session establishment requests
from remote nodes.

Session Manager
The session manager (NDMSMGR) is responsible for establishing communication sessions, performing
standard session management functions, and executing Processes.

SNA (Systems Network Architecture)
A network architecture designed to provide compatibility among a wide variety of hardware and software
products that enable you to build complex networks. It defines protocols, standards, and message formats to
which different hardware and software products must conform.

SNA Primary
SNA primary defines the LU as a primary LU (PLU).

SNA Secondary
SNA secondary defines the LU as a secondary LU (SLU).

SNAX Passthrough
SNAX passthrough is a function of the SNAX line access software that permits interaction between a host
application program and an SNA device connected to a HP NonStop system. The Connect:Direct HP NonStop
system, which is not a Connect:Direct HP NonStop node, appears to the host as a cluster controller.

SNODE
The secondary node (SNODE) is the node participating in Process execution initiated by another node (the
PNODE).

Statistics File
The statistics file holds Connect:Direct HP NonStop statistics records that document the history of a Process.

Statistics Facility
The Connect:Direct HP NonStop statistics facility records Connect:Direct HP NonStop activities.

Static LUs
Static LUs are user-controlled and are quiesced and resumed with the MODIFY command. Static LUs are
options when using TCP/IP.

84 Connect:Direct HP NonStop Management Programming Guide
T

Transmission Control Queue
The Transmission Control Queue (TCQ) holds information about Connect:Direct HP NonStop Processes that
are currently executing or scheduled to execute in the future.

TCP/IP Option
TCP/IP is a connectivity option for Connect:Direct OS/390, UNIX, OpenVMS, VSE, OS/400, Stratus VOS,
and Windows, and HP NonStop nodes.

Type File
The type file contains records that define file attributes for new files.

U

Upstream Connection
See Sending Connection.

Index
Symbols
! (exclamation point) 22

#defines for C 25

A
ADD request, I/O exit 49

AIMS (Automated Installation and Management System),
description 11

An 11

API
Basics 25
binding 25
building PARAMS and STARTUP messages 21, 27
compiling requirements 25
description 21
execution of 26
exiting NDMCOM 27
overview 21
parameters 26
requirements 21, 26, 27
understanding 27

B
BEGIN request, I/O exit 49

Binary zero 22

C
CB function prototypes

CB_DATA 40
CB_FIND_CB 41
CB_FIND_FIELD 41
CB_MSG_COUNT 42
CB_NEXT_AVAILABLE 41
CB_NEXT_CB 41
CB_POINT_MSG 42
CB_TOP_MSG 42

CB function prototypes (continued)
described 40
ERRCS_DISPLAY 43
MSG_DISPLAY 43
MSG_OPEN 43
MSG_SHORT 42

CB key 22

CBEND key 22

CHANGE PROCESS optional keywords 40

CLOSE request, I/O exit 49

COLLECTOR initialization parameter 67

Command Control Structure Keywords 28

Commands
environment 17
general 15
message 18
user and administrator 16

Components of Connect:Direct HP NonStop 9

Connect:Direct HP NonStop
components 9
concepts 12
customizing EMS 68
flow of operations 18
integrating in a DSM environment 68
tokens 69

Connect:Direct Secure+ Option 13, 15

Connect:Direct Spooler option description 11

Connect:Direct user interface 10

Connect:Direct⁄Plex 13

Control block exit 51

Control structure keywords
DISPLAY STATINFO 28
ENVIRONMENT 29
listed 28
NETMAP 30

86 Connect:Direct HP NonStop Management Programming Guide
Control structure keywords (continued)
PROCESS 31
SECURITY 32
STATISTICS 32
TIME 34
TYPE 35
USER 36
VERSION 38

C-string control block 21, 22

C-string control structure 21, 22

D
Data string 22

DataLoader/MP
description 55
implementing 56
interfacing 55
SYSOPT parameters 56

DELETE NETMAP ADJACENT.NODE optional
keywords 39

DELETE NETMAP LOCAL.NODE optional
keywords 38

DELETE NETMAP LOGMODE optional keywords 38

DELETE NETMAP LU optional keywords 39

DELETE PROCESS optional keywords 40

DELETE SECURITY optional keywords 39

DELETE TYPE optional keywords 39

DELETE USER optional keyword 39

DISPLAY LOGGING command 67

DISPLAY STATINFO Control Structure, about 28

Distribution files
API 25
EMS 67
NDMDSM 67

Domain Nodes 13

E
EMS

Connect:Direct HP NonStop tokens 69
customizing Connect:Direct HP NonStop 68
distribution files 67
EMS-Specific Initialization Parameters 67
general 65
initialization parameter 67

EMS (continued)
logging commands 67

END request, I/O exit 49

Environment commands 17

ENVIRONMENT Control Structure, about 29

ERRCS Optional Keywords 38

Error checking 23

Error control structure
description 23
example 23
fields 23
format 23
optional keywords 23, 38

Event messages, disposition of 67

Exit Control Block 51

Exit I/O, description 11

EXIT optional keywords 40

Exits
I/O exit control block 51
I/O requests 48
I/O sample 48
I/O, implementing 47
I/O, specifying 45

F
Field description 22

FILE parameter, using 27

FLTSRC1 filter source file 68

FLTSRC2 filter source file 68

FLTSRC3 filter source file 68

FLTSRC4 filter source file 68

FLUSH PROCESS optional keywords 40

Function declarations 25

G
Generic IPC processing

implementing 54
SYSOPTS parameters 54, 56
SYSOPTS parameters, IPC 54, 56
SYSOPTS parameters, IPC.VARIN 55
SYSOPTS parameters, IPC.VB 55
SYSOPTS parameters, IPC_BLOCKLEN 54

Index 87
GET request, I/O exit 49

I
I/O exit

description 11
exit control block 51
implementing 47
invoking on an OS/390 Node 46
requests 48
sample 48
specifying 45

INFO request, I/O exit 50

Initialization parameters, EMS-specific 67

INSERT NETMAP ADJACENT.NODE optional
keywords 39

INSERT NETMAP LOCAL.NODE optional
keywords 38

INSERT NETMAP LOGMODE optional keywords 38

INSERT NETMAP LU optional keywords 39

INSERT SECURITY optional keywords 39

INSERT TYPE optional keywords 39

INSERT USER optional keywords 39

Inter-Processor Communications (IPC), description 55

IPC, generic IPC processing parameter 54, 56

IPC_BLOCKLEN, generic IPC processing
parameter 54

IPC_VARIN, generic IPC processing parameter 55

K
Key string 22

L
List of

environment commands 17
user and administrator commands 16

Logging commands, EMS 67

M
Message commands 18

Message control block 23

Message file structure 43

MODIFY SESSION optional keywords 40

N
NDMAPI object file 25, 27

NDMAPI subvolume 25

NDMAPIB object file 25

NDMAPIC object file 25

NDMAPICH 25

NDMAPIH object file 25

NDMAPITH 25

NDMC DDL output file 67

NDMCOM
description 10
exiting 27
parameters 26
responsibilities 21

NDMDDL source file 67

NDMDSM subvolume 67

NDMFLT1 filter object file 68

NDMFLT2 filter object file 68

NDMFLT3 filter object file 68

NDMFLT4 filter object file 68

NDMMON, description 10

NDMREADY 24

NDMSMGR description 11

NDMSRVR
description 10
work flow 21

NDMSTDL, description 11

NDMTACL DDL output file 67

NDMTAL DDL output file 67

NETMAP Control Structure, about 30

Network map, general 12

Null character 22

O
OBEYVOLUME optional keywords 40

OPEN request, I/O exit 51

Opening the message file, example 59

88 Connect:Direct HP NonStop Management Programming Guide
Optional keywords, ERRCS 38

Output from SELECT commands 27

P
PARAM command 26

Process, language definition 12

PROCESS Control Structure, about 31

Processing flow 22

PROCVOLUME optional keywords 40

R
Records in a message file, example 44

RELATE NETMAP ADJACENT.NODE optional
keywords 39

Reportwriter, bypassing 27

Request sequence 47

Request Sequence, sending 47

RUNDIST obey file 68

Running an API 26

S
Sample API 59

SECURITY Control Structure, about 32

Server (NDMSRVR) description 10

Session manager (NDMSMGR), description 11

Session Redirection 13

Setting Parameters 26

Specifying an I/O Exit 45

STALTCOL obey file 68

STATISTICS Control Structure, about 32

Statistics deletion program 11

STATS initialization parameter 67

STOP NDM I optional keywords 40

SUBMIT FILE optional keywords 40

T
TAL (Transaction Application Language) 25

routines 43

TEMPOBJ object file 68

TEMPSRC template source file 68

TEMPVIEW template 68

TEMPVOBJ object file 68

TIME Control Structure, about 34

Tokens, EMS 69

Transmission Control Queue (TCQ), general
description 12

TYPE Control Structure, about 35

U
UPDATE LOGGING command 67

UPDATE NETMAP ADJACENT.NODE optional
keywords 39

UPDATE NETMAP LOGMODE optional keywords 39

UPDATE NETMAP LU optional keywords 39

UPDATE SECURITY optional keywords 39

UPDATE STATISTICS CRITERIA optional
keywords 40

UPDATE STATISTICS MIDNITE optional
keywords 40

UPDATE STATISTICS PERCENT optional
keywords 40

UPDATE TYPE optional keywords 39

UPDATE USER optional keywords 39

User and administrator commands 16

USER Control Structure, about 36

User interface 10

USERAPIC 25, 27

V
VERSION Control Structure, about 38

VOLUME optional keywords 39

	Connect:Direct HP NonStop Management Programming Guide Version 3.4 First Edition
	Contents
	Preface
	Related Documentation
	About Connect:Direct HP NonStop
	Connect:Direct HP NonStop Components
	Automated Installation and Management System
	Connect:Direct HP NonStop Concepts
	Processes
	Transmission Control Queue
	Network Map
	Connect:Direct Secure+ Option
	External Applications
	Commands

	Flow of Connect:Direct HP NonStop Operations

	Using Application Programming Interfaces
	API Overview
	Elements of C-String Control Structures
	Error Control Structure

	Programming the API
	API Basics
	Setting Parameters
	Running the API
	Understanding the API
	Using the FILE Parameter

	Command Control Structure Keywords
	About the DISPLAY STATINFO Control Structure
	About the ENVIRONMENT Control Structure
	About the NETMAP Control Structure
	About the PROCESS Control Structure
	About the SECURITY Control Structure
	About the STATISTICS Control Structure
	About the TIME Control Structure
	About the TYPE Control Structure
	About the USER Control Structure
	About the VERSION Control Structure

	ERRCS Optional Keywords
	CB Function Prototypes
	Message File Structure
	Example

	Interface for User-Written Programs
	Determining the Type of Exit to Define
	Specifying a Standard I/O Exit
	Invoking an I/O Exit on an OS/390 Node
	Implementing an I/O Exit
	I/O Exit Requests
	Defining the Exit Control Block
	Sample Standard I/O Exit

	Specifying Generic IPC Processing
	Types of Blocking
	Specifying an IPC I/O Exit
	Implementing an IPC I/O Exit
	Required Parameter
	Optional Parameters
	Integrating Dataloader/MP

	Sample Code
	Example

	Using DSM/EMS Event Reporting
	EMS-Specific Initialization Parameters
	Logging Commands
	Distribution Files
	Integrating Connect:Direct HP NonStop in a DSM Environment
	Connect:Direct HP NonStop Tokens

	Glossary
	Index

