
Connect:Direct®

for OpenVMS

User’s Guide

Version 3.4

Connect:Direct for OpenVMS User’s Guide
Version 3.4
First Edition
Copyright © 1989 - 2007.
Sterling Commerce, Inc.
ALL RIGHTS RESERVED

STERLING COMMERCE SOFTWARE
TRADE SECRET NOTICE
THE CONNECT:DIRECT® FOR OPENVMS SOFTWARE (“STERLING COMMERCE SOFTWARE”) IS THE
CONFIDENTIAL AND TRADE SECRET PROPERTY OF STERLING COMMERCE, INC., ITS AFFILIATED
COMPANIES OR ITS OR THEIR LICENSORS, AND IS PROVIDED UNDER THE TERMS OF A LICENSE
AGREEMENT. NO DUPLICATION OR DISCLOSURE WITHOUT PRIOR WRITTEN PERMISSION.
RESTRICTED RIGHTS.
This documentation was prepared to assist licensed users of the Sterling Commerce Connect:Direct for OpenVMS
software. The Sterling Commerce Software, the related documentation and the information and know-how it
contains, is proprietary and confidential and constitutes valuable trade secrets of Sterling Commerce, Inc., its
affiliated companies or its or their licensors (collectively “Sterling Commerce”), and may not be used for any
unauthorized purpose or disclosed to others without the prior written permission of Sterling Commerce. The Sterling
Commerce Software and the information and know-how it contains have been provided pursuant to a license
agreement which contains prohibitions against and/or restrictions on its copying, modification and use. Duplication,
in whole or in part, if and when permitted, shall bear this notice and the Sterling Commerce, Inc. copyright legend.
Where any of the Sterling Commerce Software is used, duplicated or disclosed by or to the United States government
or a government contractor or subcontractor, it is provided with RESTRICTED RIGHTS as defined in Title 48 CFR
52.227-19 and is subject to the following: Title 48 CFR 2.101, 12.212, 52.227-19, 227.7201 through 227.7202-4,
FAR 52.227-14(g)(2)(6/87), and FAR 52.227-19(c)(2) and (6/87), and where applicable, the customary Sterling
Commerce license, as described in Title 48 CFR 227-7202-3 with respect to commercial software and commercial
software documentation including DFAR 252.227-7013(c) (1), 252.227-7015(b) and (2), DFAR 252.227-7015(b)(6/
95), DFAR 227.7202-3(a), all as applicable.
References in this manual to Sterling Commerce products, programs, or services do not imply that Sterling
Commerce intends to make these available in all countries in which Sterling Commerce operates.
Printed in the United States of America
WARRANTY DISCLAIMER
The Sterling Commerce Software and the related documentation are licensed either "AS IS" or with a limited
warranty, as described in the Sterling Commerce license agreement. Other than any such limited warranties provided
in the license agreement, NO OTHER WARRANTY IS EXPRESSED AND NONE SHALL BE IMPLIED,
INCLUDING THE WARRANTIES OF MERCHANTABILITY AND FITNESS FOR USE OR FOR A
PARTICULAR PURPOSE. The applicable Sterling Commerce entity reserves the right to revise this publication
from time to time and to make changes in the content hereof without the obligation to notify any person or entity of
such revisions or changes.
Connect:Direct is a registered trademark of Sterling Commerce. All Third Party Product names are trademarks or
registered trademarks of their respective companies.
CDOVMSUG705

Contents

Chapter 1 About Connect:Direct for OpenVMS

Connect:Direct for OpenVMS Documentation... 9
About This Guide... 9
Conventions Used in This Guide ... 10

Chapter 2 Understanding the User Interface

Using Connect:Direct for OpenVMS.. 11
Understanding the User Interface .. 12
Understanding the Command Syntax .. 12

Using Abbreviations ... 12
Using Comments .. 13
Continuing a Command on Additional Lines... 13

Chapter 3 Using Additional Features

Using Connect:Direct for OpenVMS Logicals ... 15

Using Connect:Direct for OpenVMS Type File Records ... 15

Implementing Connect:Direct for OpenVMS Security .. 16
Using Security Checking for Connect:Direct Processes.. 16

Using Symbols to Check NDM Command Execution.. 16

Using the Checkpoint-Restart Feature .. 17

Viewing Online Messages .. 18
Displaying Message Identifiers ... 18

Specifying Case Sensitivity .. 18

Using the Remote Procedure Execution Facility .. 19
 Understanding the Remote Procedure Execution Facility .. 19
Executing RPX Procedures.. 19

OpenVMS Configuration ... 20
Configuring the Logical Names... 21

Run Job and Run Task Translation... 22
RPX Process Startup... 22
Procedure Testing ... 23

Compiling a Script .. 23
Methods of Compiling a Script.. 23
Script Compilation Parameters .. 24

4 Connect:Direct for OpenVMS User’s Guide
Using Placeholders... 25
Access Control Considerations .. 27

Using the Event Logging Facility ... 28
Enabling and Disabling Event Logging ... 29
Event Message Format ... 29
Event Procedures.. 31
Replaying Event Messages .. 35

Chapter 4 Using Connect:Direct for OpenVMS Commands

Reviewing Connect:Direct for OpenVMS Commands ... 37

Modifying Processes ... 37
Reviewing the Command Format .. 37
Parameters .. 38
Required Qualifiers .. 38
Qualifiers.. 38
Examples .. 41

Deleting Processes... 41
Reviewing the Command Format .. 41
Parameters .. 42
Qualifiers.. 42
Examples .. 43

Exiting Interactive Mode... 43
Reviewing the Command Format .. 43
Parameters .. 43
Qualifiers.. 43
Example.. 43

Flushing an Executing Process.. 44
Reviewing the Command Format .. 44
Parameters .. 44
Qualifiers.. 44
Examples .. 45

Displaying Online HELP... 46
Reviewing the Command Format .. 46
Examples .. 46

Changing the Default Server ... 47
Reviewing the Command Format .. 47
Required Parameters .. 48
Qualifiers.. 48
Example.. 48

Displaying the Process Last Submitted ... 48
Reviewing the Command Format .. 48
Parameters .. 48
Qualifiers.. 48
Example.. 49

Displaying the Long Text of a Message.. 49
Reviewing the Command Format .. 49

5

Required Parameter.. 49
Qualifiers ... 49

Listing Nodes in the Network Map... 49
Reviewing the Command Format .. 50
Parameters.. 50
Qualifiers ... 50
Examples.. 51

Monitoring Processes in the TCQ... 51
Reviewing the Command Format .. 52
Parameters.. 52
Required Qualifiers.. 52
Qualifiers ... 52
Examples.. 54

Displaying Current Server Settings... 55
Understanding the Command Format.. 55
Parameters.. 56
Qualifiers ... 56
Example ... 56

Examining Process Statistics .. 56
Reviewing the Command Format .. 56
Parameters.. 57
Required Qualifiers.. 57
Qualifiers ... 57
Examples.. 61

1 PROCESS-SUBMIT ... 62
2 PROCESS-PROCSTART ... 63
3 PROCESS-STEPSTART... 64
4 PROCESS-STEPEND ... 65
5 MESSAGE-MSG... 67
6 PROCEND.. 67

Obtaining Current Version.. 68
Reviewing the Command Format .. 68
Parameters.. 69
Qualifiers ... 69
Example ... 69

Issuing DCL Commands... 69
Reviewing the Command Format .. 69

Stopping Connect:Direct... 69
Reviewing the Command Format .. 70
Parameters.. 70
Qualifiers ... 70
Examples.. 70

Submitting a Process ... 70
Reviewing the Command Format .. 71
Required Parameters .. 71
Qualifiers ... 72
Examples.. 75

Interrupting an Executing Process .. 76

6 Connect:Direct for OpenVMS User’s Guide
Reviewing the Command Format .. 76
Parameters .. 76
Required Qualifiers .. 76
Qualifiers.. 76
Examples .. 77

Chapter 5 Using the Application Programming Interface

Understanding the API .. 79

CSX Application Programming Interface ... 80

Submitting a Compiled Script for Execution .. 80
Reviewing the Format and Arguments .. 80
Return Values... 80
Arguments .. 81
Using the NDM_CSX_API_SCRIPT_EXEC_SUBMIT Routine 82
Returned Condition Values .. 83

Enabling Script Termination Notification... 83
Reviewing the Format and Arguments .. 83
Return Values... 83
Arguments .. 84
Using the NDM_CSX_API_SCRIPT_TERM_NOTIFY Routine................................. 84

Call Format for the Notify Routine... 85
Arguments... 85

Returned Condition Values .. 87

Event Application Programming Interface.. 87
Currently Defined Routines ... 89

Receiving the Event Message Stream ... 89
Reviewing the Format and Arguments .. 89
Return Values... 90
Arguments .. 90
Using the NDM_EVENT_API_RECEIVE_STREAM Routine.................................... 90

Call Format for the Action Routine .. 91
Arguments... 91

Returned Condition Values .. 92

Decoding Event Messages... 93
Reviewing the Format and Arguments .. 93
Return Values... 93
Argument.. 93
Using the NDM_EVENT_API_DECODE_MESSAGE Routine 95

Call Format for Action Routine .. 95
Arguments... 96
Returned Condition Values... 98

Decoding Event Data Items... 98
Reviewing the Format and Arguments .. 98
Return Values... 99
Arguments .. 99
Returned Condition Values .. 101

Writing User-Defined Event Messages... 101

7

Reviewing the Format and Arguments .. 101
Return Values .. 102
Arguments.. 102
Returned Condition Values.. 102

Opening a Connect:Direct for OpenVMS Message File .. 103
Reviewing the Format and Arguments .. 103
Return Values .. 103
Arguments.. 103
Returned Condition Values.. 104

Displaying Connect:Direct Message File Text ... 105
Reviewing the Format and Arguments .. 105
Return Values .. 105
Arguments.. 105
Using the NDM_EVENT_API_MSGFILE_DISPLAY Routine 107

Call Format for Action Routine.. 107
Arguments.. 107
Returned Condition Values.. 108

Closing a Connect:Direct for OpenVMS Message File.. 108
Reviewing the Format and Arguments .. 108
Return Values .. 109
Arguments.. 109
Returned Condition Values.. 109

Obtaining the Current API Version Number .. 110
Reviewing the Format and Arguments .. 110
Return Values .. 110
Arguments.. 110
Using the NDM_EVENT_API_GET_VERSION Routine ... 110
Returned Condition Values.. 111

Appendix A Event Logging Facility-Event Information

Event List .. 113

Event Class Definitions... 116

Event Types... 117

Event Item Description ... 119

Event Item Codes .. 120

Sample Event Message Formats ... 122

Glossary

Index

8 Connect:Direct for OpenVMS User’s Guide

Chapter 1

About Connect:Direct for OpenVMS

The Connect:Direct product links technologies and moves all types of information between networked
systems/computers. It manages high-performance transfers by providing such features as: automation,
reliability, efficient use of resources, application integration, and ease of use. Connect:Direct software offers
choices in communications protocols, hardware platforms, and operating systems. It provides the flexibility to
move information among mainframes, midrange systems, desktop systems, and LAN-based workstations.

The Connect:Direct for OpenVMS product supports connectivity between OpenVMS systems and the
following systems:

IBM systems (z/OS, VM, and VSE) using Transmission Control Protocol/Internet Protocol (TCP/IP)
Alpha AXP systems using DECnet and TCP/IP
HP NonStop, UNIX, NT, and OS/400 systems using TCP/IP

Refer to the Connect:Direct for OpenVMS Release Notes for enhancement and release-specific information.

Connect:Direct for OpenVMS Documentation
See Connect:Direct for OpenVMS Release Notes for a complete list of the product documentation.

About This Guide
The Connect:Direct for OpenVMS User’s Guide is for programmers and network operations staff who install
and maintain the Connect:Direct for OpenVMS product.

Read the first two chapters in the book to gain the general knowledge required to use the Connect:Direct for
OpenVMS product. These chapters introduce you to general concepts.

This guide assumes knowledge of the Digital Equipment Corporation (DEC) OpenVMS operating system,
including its applications, network, and environment. If you are not familiar with the OpenVMS operating
system, refer to the DEC library of manuals.

The organization of the Connect:Direct for OpenVMS User’s Guide follows:

Chapter 1, About Connect:Direct for OpenVMS, provides general information about the Connect:Direct
product and describes how Connect:Direct for OpenVMS works.
Chapter 2, Understanding the User Interface, summarizes how to use Connect:Direct for OpenVMS
through the user interface. The command syntax is also discussed.
Chapter 3, Using Additional Features, provides information about Connect:Direct for OpenVMS features.

10 Connect:Direct for OpenVMS User’s Guide
Chapter 4, Using Connect:Direct for OpenVMS Commands, details the Connect:Direct for OpenVMS
commands, presented in alphabetical order.
Chapter 5, Using the Application Programming Interface, describes the API, its functions and supported
routines, and its usage.
Appendix A, Event Logging Facility-Event Information, describes event information relating to the event
logging facility.
Glossary defines Connect:Direct terms used in this manual.

Conventions Used in This Guide
The Connect:Direct for OpenVMS User’s Guide uses certain notational conventions. This section describes the
conventions used in this guide.

Convention Description

UPPERCASE
LETTERS

Uppercase letters in the command format indicate that you type in information as shown.

UPPERCASE and
lowercase Letters

A statement, command, or parameter in uppercase letters followed by lowercase letters indicates
an alternative to typing the entire command. For example, SELect PROCess means that you
need only type SEL PROC for the command to be valid.

lowercase letters Lowercase letters or words in commands or syntax boxes require substitution by the user. For
example, PNODE=primary-node-name indicates that you must provide the name of the primary
node.

Bold Letters Bold print in syntax boxes indicates Connect:Direct commands and required parameters. For
example, DSN=filename indicates that the parameter DSN is required.

Underlined Letters Underlining indicates default values for parameters and subparameters. For example,
RETAIN=Yes|No|Initial specifies that the default for RETAIN is NO.

Vertical Bars (|) Vertical bars indicate that you can supply one of a series of values separated by the vertical bars.
For example HOLD=Yes|No|Call specifies that Yes or No or Call is valid.

Brackets [] Brackets indicate that information is optional. For example,
STARTT=([date|day][,hh:mm:ssXM]) indicates that you can specify either a date or a day,
a date or a day plus a time, or just a time.

Italics Italic letters are placeholders for information you must provide. Italic font also indicates book,
chapter, and section titles and is used for emphasis in the text.

Monospaced
characters
(characters of equal
width)

Monospaced characters represent information for screens, commands, Processes, and
reports.

Punctuation Code all commas and parentheses as they appear.

Chapter 2

Understanding the User Interface

This chapter summarizes how to use Connect:Direct for OpenVMS through the user interface. The command
syntax is also discussed.

Using Connect:Direct for OpenVMS
To use Connect:Direct for OpenVMS interactively, you must first invoke the user interface. You can invoke the
user interface in one of three ways. Check with your Connect:Direct administrator to determine the method to
use, based on the way the product is installed.

To run Connect:Direct for OpenVMS software:

As a native DCL command, enter NDMUI at the command line. This option is available if your
administrator installed the Connect:Direct product and added the user interface in the DCL command
tables.
As a foreign DCL command, you must define user interface as a foreign command by entering the
following for each login:

Include the previous line in your LOGIN.COM file to avoid entering this string after each login.

With the DCL RUN command, enter the following at the command line:

This method does not support a single-line command, such as:

$ NDMUI:==$NDM$$DIRECTORY:NDMUI

$ RUN NDM$$DIRECTORY:NDMUI

$ RUN NDM$$DIRECTORY:NDMUI SUBMIT process-name <CR>

12 Connect:Direct for OpenVMS User’s Guide
Understanding the User Interface
The user interface is the interface through which you communicate with Connect:Direct. The modes of
operation determine the way you communicate with the server through the user interface. You can execute all
commands in either of the modes of operation as shown in the following examples:

Noninteractive Mode
Enter Connect:Direct commands, such as SUBMIT, at the OpenVMS prompt for noninteractive operation
mode. NDMUI must precede all commands. After the command executes, control returns to the
OpenVMS prompt.

Interactive Mode
You can invoke interactive mode by entering NDMUI at the DCL command-line prompt. The prompt
changes to Connect:Direct>. You can then enter a series of Connect:Direct commands. Press the
RETURN key at the end of each command to execute the command. The EXIT command returns control
to DCL.

The user interface maintains an internal command recall buffer. By using the up-arrow and down-arrow keys
on the keyboard, you can recall up to 20 previously issued commands. The command can be reissued as is, or it
can be modified and reissued.

Understanding the Command Syntax
Connect:Direct for OpenVMS command syntax includes abbreviations, comments, and continuation marks.

Using Abbreviations
Abbreviations allow you to use as few keystrokes as possible to enter commands, required parameters, and
qualifiers.

Commands can be abbreviated to the shortest unique length, as with DCL. For example, you can abbreviate the
SHOW PROCESS command to SHO PROC, because no other Connect:Direct command begins with the
letters SHO and PROC. Similarly, you can abbreviate the /OUTPUT qualifier as /OUT, because no other
qualifier begins with OUT.

The following example shows the use of the SHO PROC and /OUT abbreviations:

$ NDMUI SUBMIT TODALLAS

Connect:Direct> COPY SYS$LOGIN:LOGIN.COM -
_> SC.MVS.DALLAS“SMITH QWERTY”::SMITH.LOGIN.COM
Connect:Direct> EXIT
$

$ NDMUI SHO PROC /PNAM=TODALLAS /OUT=DALLAS.LIS

Chapter 2 / Understanding the User Interface 13
Using Comments
Comments within Connect:Direct command procedures are denoted by asterisk (*). Command procedures are
discussed in the @FILENAME Command section of Chapter 4, Using Connect:Direct for OpenVMS
Commands. The following is a sample of commented text:

Continuing a Command on Additional Lines
The hyphen (-) is used as a continuation mark in Connect:Direct commands. The continuation mark can be
used at any time to split a command that is too long to fit on one line or as a break to make a lengthy command
more readable. The continuation mark must be the last character of the line, with the continuation text entered
after the prompt on the following line. There is no limit to the number of lines that you can use to enter a
command, as long as you do not exceed the DCL command limit of 1,022 characters.

The following example shows how to continue a command in noninteractive mode.

The following example shows how to continue a command in interactive mode.

* This Process copies the text files developed at
* our San Francisco location to our data center in
* Dallas.
*
* This Process executes daily at 18:00 PST.
*
* In case of emergency, contact the following persons in
* the order in which they are listed.

$ NDMUI SUBMIT TODALLAS /hold=yes /startt=(“”,13:00:00) -
_> /prty=7

Connect:Direct> SUBMIT TODALLAS /hold=yes -
_> /startt=(“”,13:00:00) /prty=7

14 Connect:Direct for OpenVMS User’s Guide

Chapter 3

Using Additional Features

This chapter contains information about the following Connect:Direct for OpenVMS features:

Logicals
Type file records
Security
Process Status Checking
Checkpoint-restart
Online messages
Case sensitivity
Remote procedure execution
Script compilation
Event logging facility

Using Connect:Direct for OpenVMS Logicals
The Connect:Direct for OpenVMS software requires that certain OpenVMS logical names be defined. During
product installation, your system administrator should have set up all required logical names.

Define your default Process directory as NDM$$PROCESS. When a SUBMIT command is issued, if the
Process is not found in the current directory, the directory defined as NDM$$PROCESS is searched.

Using Connect:Direct for OpenVMS Type File Records
Type file records are stored as entries in the NDM_TYPE.TLB text library. Entries include FIXED,
FORTRAN, IMAGE, RELATIVE, SAVESET, STREAM, STREAM_CR, and STREAM_LF. Add your own
type records into the library by creating a customized record and inserting it into the text library. Refer to the
DEC File Definition Language (FDL) manual for further details. Online help within OpenVMS is also useful.
To view online help, issue the following command:

$ HELP topic

16 Connect:Direct for OpenVMS User’s Guide
Implementing Connect:Direct for OpenVMS Security
Login processing is performed automatically when you invoke the user interface or specify the /SERVER
qualifier.

Validation of your authorization to sign on to a particular Connect:Direct for OpenVMS (including the local
node) is performed by the server, using the OpenVMS user name used for the login. If the server node is
different from the node running the user interface, the user name is treated as a proxy id on the OpenVMS node
running the server. The user name is processed in a way similar to a proxy login initiated by DECnet.

If the user interface is running on the same node as the server, the User Authorization File (UAF) is checked to
verify that the user name exists for that node; however, no password verification is performed.

Using Security Checking for Connect:Direct Processes
Security checking during Process execution is based on a user name in the Process submitter field and
information in either the PNODEID or SNODEID fields, if they exist.

If Connect:Direct for OpenVMS is executing a Process, it uses the submitter id and PNODEID information, if
any, for security checking. If the remote node is executing a Process, Connect:Direct for OpenVMS uses the
submitter id and the SNODEID information, if any, for security checking.

The Connect:Direct for OpenVMS software validates the security id for the Process in one of two ways: by
verifying a user name and password in the UAF or verifying that a node and user name combination for a
particular remote node exists in the OpenVMS proxy database (NETUAF) in a way similar to a DECnet proxy
login.

If an OpenVMS user name and password are specified in the PNODEID or SNODEID parameters of a
Process, Connect:Direct for OpenVMS verifies the user name and password in the UAF. The password is
then converted into an internal OpenVMS format and is compared with the password field in the UAF
record for the specified OpenVMS user name. If the password values do not match or the UAF record does
not exist, the security check fails.
Verifying that a node and user name combination exists in a proxy database has the advantage that
passwords are not required in Processes. The Process submitter’s user name is treated as an OpenVMS
proxy id. You can specify an OpenVMS user name existing in the UAF in the PNODEID or SNODEID
parameter. The OpenVMS user name is used as the security id, if the proxy id processing is successful.

Using Symbols to Check NDM Command Execution
Five symbols can be used within a command procedure to check Process status that is returned by the user
interface. These symbols indicate the status of the last command performed by the user interface. If you want to
verify that the user interface successfully executed a command, you can interpret the following symbols within
your DCL command procedure to retrieve status information.

Symbols Status

NDM$$FDBK Feedback string value displayed on the status line

NDM$$MSGID Message ID string displayed on the status line

NDM$$PNAME Process name string displayed on the status line

Chapter 3 / Using Additional Features 17
These symbols correspond to the status message displayed upon completion of a command issued in either
interactive or noninteractive mode. An example of a status message for a Process named SEND_VB that
submitted successfully follows:

If this Process is submitted within your command procedure, the previous status message is assembled into the
following status symbols:

If a Process is not submitted successfully, a Process name and Process number is not assigned. Therefore, the
values of the symbols representing PNAME and PNUMBER are NDM_NOPNAME and NDM_NOPNUM,
respectively. If the operation does not have a status, the value of NDM$$MSGID is NDM_NOMSGID.

Using the Checkpoint-Restart Feature
The Connect:Direct for OpenVMS product provides a checkpoint-restart feature for sequential disk files. This
feature eliminates the need to retransmit an entire file in the event of a transmission failure. A value on the
COPY statement or in the initialization parameters specifies the checkpoint interval. If a COPY procedure is
interrupted, the Connect:Direct software restarts that COPY operation at the last checkpoint.

Checkpoint-restart functions whether Connect:Direct for OpenVMS is the sender or the receiver.
Checkpoint-restart is a function of the COPY statement, therefore, refer to the Connect:Direct Process
Statements Guide for further information.

NDM$$PNUM Process number string displayed on the status line

NDM$$RC Reply string value displayed on the status line

Note: The standard OpenVMS symbol $SEVERITY is also returned.

VSRV101I: Feedback: 0 Reply: 0 Function: dtf_submit
Process submitted successfully. Process number : 6

Symbols Corresponding Value

NDM$$FDBK 0

NDM$$MSGID VSRV101I

NDM$$PNAME SEND_VB

NDM$$PNUM 6

NDM$$RC 0

Note: You can display Connect:Direct symbols by issuing the following OpenVMS command:

SHOW SYMBOL NDM$$*

Symbols Status

18 Connect:Direct for OpenVMS User’s Guide
Viewing Online Messages
The Connect:Direct for OpenVMS product has an online message file, consisting of short text, followed by
long text. Only the short text is displayed by the user interface when an error occurs.

Displaying Message Identifiers
You can use a DCL procedure to display Connect:Direct message identifiers. Use the following command to
invoke the procedure:

The following are definitions for the DCL procedure parameters:

msgid
is the message identifier.

msgfile
is the C:D OpenVMS message file.

If the message file parameter (p2) is not specified, the default value is ndm$$directory:msgfile.dat.

There is no default for the message identifier parameter (p1). If the message identifier does not exist, no
diagnostic information is displayed.

Specifying Case Sensitivity
Some remote nodes that Connect:Direct for OpenVMS communicates with are case-sensitive operating
systems. To preserve lowercase or mixed-case characters, you must enclose all filenames in quotation marks.
To accommodate case-sensitivity requirements, the following qualifiers and commands are included as
applicable.

To accommodate case sensitivity requirements, use the following qualifiers and commands:

Qualifiers
The /CASE qualifier ensures that case is preserved for all characters enclosed in quotation marks. If you
specify the /NOCASE qualifier, Connect:Direct ignores the case of characters enclosed in quotation marks
and converts them to uppercase. You can specify the /CASE and /NOCASE qualifiers with the following
commands:

SUBMIT

CHANGE PROCESS

DELETE PROCESS

SELECT PROCESS

SUSPEND PROCESS

SELECT STATISTICS

Commands

@ ndm$msgid_display msgid [msgfile]

Chapter 3 / Using Additional Features 19
SET CASE defines a logical NDM$$PRESERVE_CASE. SET NOCASE clears the logical. There are no
parameters or qualifiers for these commands.

If you define NDM$$PRESERVE_CASE, the /CASE qualifier becomes the default and need not be specified
explicitly when issuing commands. To override the default, you must specify the /NOCASE qualifier when
issuing commands. If you do not define NDM$$PRESERVE_CASE, the /NOCASE qualifier becomes the
default.

If you define the NDM$$PRESERVE_CASE logical but specify /NOCASE, Connect:Direct converts all
characters to uppercase. If you do not define the NDM$$PRESERVE_CASE logical but specify /CASE,
Connect:Direct preserves case for all characters that Digital Command Language (DCL) does not convert, for
example, characters enclosed in quotation marks.

Using the Remote Procedure Execution Facility
The optional Remote Procedure Execution (RPX) facility makes the support of remote procedure execution
requests more robust and efficient. In addition, the RPX facility removes the possibility of procedure
re-execution caused by system or line failure.

 Understanding the Remote Procedure Execution Facility
When Connect:Direct OpenVMS processes an RPX request, it passes the request to an agent server process
dedicated to this function. The server process constructs a context procedure placed in the specified user's login
directory which in turn invokes the requested procedure.

Executing RPX Procedures
A node may request that a procedure be executed on an OpenVMS system by using the Connect:Direct for
OpenVMS Submit verb as follows:

I

A description of each field follows:

stepname
is an optional label assigned to the Connect:Direct for OpenVMS script statement.

Note: You can define the NDM$$PRESERVE_CASE logical in the process table outside of
Connect:Direct.

Note: The RPX facility does not affect existing functionality. No changes to existing inbound execution
requests to OpenVMS systems are required.

Note: The procedure directory path must be readable by the specified user.

[stepname] submit file|dsn="@ @rpx[w] procedure [pl] ...[p8]" -
[sacct="...’] | [pacct="..."] -
subnode=[snode|pnode]

20 Connect:Direct for OpenVMS User’s Guide
@rpx
indicates that the procedure executes asynchronously. In other words, the initiator does not wait until
the procedure is completed. The initiator only waits until the procedure begins execution.

@rpw
indicates that the procedure executes synchronously. In other words, the initiator waits until the
procedure is complete and receives the completion status.

procedure

specifies the name of the procedure to be executed.

p1-p8
specifies optional procedure parameters.

sacct
may be used to optionally extend the 'file I dsn' field when subnode=snode.

pacct
may be used to optionally extend the 'file | dsn' field when subnode=pnode.

subnode
specifies the system on which the procedure is to be executed. There is no default.

The length of the 'file | dsn' specification is limited to to 255 characters, however, the actual command
procedure execution request is obtained by appending the 'pacct' or 'sacct' fields to the 'file | dsn' specification
depending on the value of the 'subnode' field and the 'file' field must at least specify either '@rpxf or 'C@rpxwf.

Some Connect:Direct for OpenVMS platforms use the 'file' keyword and others use 'dsn' as a keyword to
specify the platform filename of the Connect:Direct for OpenVMS script or the type of construct to be
executed.

Parameters are delimited by spaces. Quote marks (‘ , ") are removed. Null parameters are specified by an
exclamation point (!).

OpenVMS Configuration
A procedure name must:

have a filetype of '.COM’.
reside in the procedure directory specified by the NDM$$RPX-PROCEDURE-DIRECTORY system
logical name.

A procedure name may be up to 39 characters in length.

The context procedure defines the following reserved symbols:

rpx$node
specifies the name of the requesting node.

rpx$user
specifies the name of the requesting user.

rpx$pnam
specifies the session name assigned by the requesting node.

rpx$pnum
specifies the session number assigned by the requesting node.

Chapter 3 / Using Additional Features 21
rpx$step
specifies the session label assigned by the requesting node.

These symbols may be referenced by the user procedure to further qualify the execution context. The following
script requests that a procedure named 'sync_procedure' be executed on the OpenVMS system referenced by
the Connect:Direct for OpenVMS node name of 'vms.node.name'.

If this script is executed namel by a user named 'syncuser' and is assigned a session sequence number of 12345,
the procedure context symbol definitions will be as follows:

The Remote Procedure Execution server process may be used optionally by any number of Connect:Direct
OpenVMS server processes and the startup of this optional facility should precede the startup of any
Connect:Direct OpenVMS server process which intends to use it.

Additionally, any Connect:Direct OpenVMS server process may be started or shut down independently of the
Remote Procedure Execution server process and the presence of the Remote Procedure Execution server
process does not automatically imply usage. In other words, one Connect:Direct OpenVMS server process may
employ this facility and another may not.

Configuring the Logical Names
This facility uses the following primary logical names:

ndm$$rpx_procedure_directory
specifies the procedure directories. There is no default.

ndm$$rpx_procedure_queue
specifies the queue used to execute a procedure. The default is "SYS$BATCH".

ndm$$rpx_procedure_log
specifies whether a log file is to be produced. The default value specifies that no log files are to
produced. The default is " /nolog".

ndm$$rpx_procedure_start_tmo
specifies the maximum time in minutes to wait for the procedure to start execution from the time it is
queued. The maximum time is 24 hours. The default is 15 minutes.

ndm$$rpx_procedure_finish_tmo
specifies the maximum time in minutes to wait for the procedure to finish execution from the
procedure start time. The maximum time is 72 hours. The default is 60 minutes.

ndm$$rpx_procedure_nodelete
specifies that the context procedure should not be deleted. The default is "/delete”.

syncproc process vms.node.name snodeid=(username,password)
sync0001 submit file="@rpx sync_procedure sync_parameter" -

subnode=snode

rpx$node = "SYNC.NODE.NAME”
rpx$user = "SYNCUSER"
rpx$pnam = "SYNCPROC"
rpx$pnum = "12345"
rpx$step = "SYNC0001"

22 Connect:Direct for OpenVMS User’s Guide
ndm$$rpx_procedure_event_notify
specifies that RPX server trace opcom messages be generated which indicate the progress of a
procedure execution request. It is used for troubleshooting. The default specifies that no RPX server
trace opcom messages are generated.

ndm$$rpx_process-priority
specifies the RPX server process priority. The default is the system default process priority.

With the exception of 'ndm$$rpxgrocessgriority', these logical names may be defined dynamically. For
example, one may enable the generation of procedure log files to troubleshoot a problem and then deassign the
logcal name to prevent the logging of subsequent requests. The 'ndm$rpx_setparams.com' template startup
parameter file may be modified to define these logcal names at process startup.

Although the specification of a queue is optional, it is recommended that a site define a queue dedicated to
Connect:Direct OpenVMS RPX requests when using this facility. An example definition is provided in the
'ndm-sampsrc.tlbl example source library. The 'ndm$rpx_example_create_queue.com procedure creates the
execution queue 'ndm$$rpx-queue' with a job limit of 255 and a base priority of 6.

In general, the procedure directory and all components leading to it should be readable (and in the case of the
Connect:Direct OpenVMS Run Task statement, writeable as well) by the uic of the effective username under
which the procedure is actually run.

Run Job and Run Task Translation
In most cases, it is possible to translate a Run Task or Run Job request into an RPX facility request without
modification. In other words, the initiator does not need to modify the originating Connect:Direct for
OpenVMS script file. However, there are some restrictions. This section outlines the Run Task or Run Job
restrictions.

Run Job Translation
The 'wait' option and procedure parameters are honored. If the 'wait' option is in effect, the status return is that
at procedure exit. The 'log', 'print', 'queue', and 'keep' options are ignored and quotes (',") are removed from all
parameter strings.

To enable the translation of Run Job requests, specify the initial parameter logical name as follows:

Run Task Translation
The 'output' option is ignored. To enable the translation of Run Task requests, specify the initial parameter
logcal name as follows:

RPX Process Startup
The procedure 'ndm$rpx_startup.com' is used to perform RPX startup.

The procedure 'ndm$rpx_shutdown.com' is used to perform RPX shutdown.

The procedure 'ndm$rpx_setparams.com' is used to define startup parameters.

ndm$$rpx_translate_runjob_enable y

ndm$$rpx_translate_runtask_enable y

Chapter 3 / Using Additional Features 23
Procedure Testing
You may want to occasionally test a procedure external to Connect:Direct for OpenVMS. Use the
NDM_RPX_TEST.EXE image to test a procedure external to Connect:Direct for OpenVMS. The prompts
issued by this facility when run interactively are as follows along with the corresponding procedure execution
context parameter values:

A null parameter is specified by 'return' or by a null record.

Compiling a Script
By using a compiled script, you can:

reduce the time-to-execution overhead
increase security by concealing the remote access control stored in script files or in DCL procedures
enhance your ability to use the native OpenVMS queuing and scheduling facilities
use it repeatedly without modifying

Methods of Compiling a Script
To request script compilation, use the /CSO qualifier on the Connect:Direct for OpenVMS NDMUI Submit
verb as shown in the following example:

The resulting compiled script is written to a file named ndm.csx. You can rename the file if desired.

This form of script execution is faster and less resource-intensive than using the user interface (ndmui)
program. This is because no server process connection being is required and repetitive parsing is eliminated.

You can execute a compiled script directly within a DCL procedure or by the API routines. For information on
executing a compiled script using the API, refer to CSX Application Programming Interface on page 80.

Procedure Name __________________________________name of procedure to be executed
Await Completion? [Y/N] ________________________ ywait, n=nowait
Remote C:D Node Name ____________________________name of requesting node [rpx$node]
Remote C:D User Name ____________________________name of requesting user [rpx$user]
Session/Script Name _____________________________name of session [rpx$pnam]
Session/Script Number ___________________________number of session [rpx$pnum]
Session/Script Stepname _________________________request statement label [rpx$step]
Parameter 1 _____________________________________p1
Parameter 2 _____________________________________p2
Parameter 3 _____________________________________p3
Parameter 4 _____________________________________p4
Parameter 5 _____________________________________p5
Parameter 6 _____________________________________p6
Parameter 7 _____________________________________p7
Parameter 8 _____________________________________p8

$ ndmui submit script.ndm /cso

Note: The /CSO qualifier does not execute the script; it just requests that a script object file be produced for
later use.

24 Connect:Direct for OpenVMS User’s Guide
Execute a compiled script within a DCL procedure by using the ndm_csx_script_submit.exe image in either
of the following methods:

Script Compilation Parameters
Define the image parameters by symbol or by logical name. If the symbol is undefined, the corresponding
logical names are translated. Currently, the only required parameter is the parameter that specifies the filename
of the script to be submitted. All other parameters are optional. These parameters are as follows:

ndm$$csx_script_submit_filename
the filename of the script to be submitted. This parameter is required.

ndm$$csx_script_submit_environment
the optional environment name. The default value is NDM.

ndm$$csx_script_submit_waitcomplete
this optional definition specifies that the process is to await completion of the script. The value of this
parameter is irrelevant. The default action is to proceed.

ndm$$csx_script_submit_waittimeout
this optional definition specifies the maximum time (in minutes) to await script completion. The
default value is indefinite.

If the compiled script is successfully submitted, the following primary symbols will be defined:

ndm$$csx_sx_rqid
the request identifier assigned to the script by Connect:Direct for OpenVMS

ndm$$csx_sx_name
the request name assigned to the script by the user.

ndm$$csx_sx_number
the request number assigned to the script by Connect:Direct for OpenVMS

If the ndm$$csx_script_submit_waitcomplete parameter is specified, you can define a symbol
(ndm$$csx_sx_term) that reflects script termination status. Use the following Run Job clause to define the
termination status:

In the previous example, term_status is a decimal ASCII string.

$ run ndm$$directory:ndm_csx_script_submit.exe

$ run ndm_csx_script_submit.exe

Note: This parameter is ignored if the ndm$$csx_script_submit_waitcomplete parameter is not
specified.

Note: A compiled script cannot be the object of a Connect:Direct for OpenVMS Submit statement
regardless of whether it is issued by the ndmui (user interface) program or whether it appears
as a language statement in a script file.

run job (dsn="#csx$status term_status" pnode)

Chapter 3 / Using Additional Features 25
Double-quotes ("") must delimit the string and the pnode must be specified as part of the Run Job clause. An
example follows:

The previous script language statement returns a status of file-not-found to the process awaiting completion.

Usually the termination status returned to the process awaiting completion should be an OpenVMS completion
code; however, this is not enforced. If you did not define this symbol, or if an unrecoverable error occurred
(such as a remote authorization failure), Connect:Direct for OpenVMS will define this symbol. If
Connect:Direct for OpenVMS defines this symbol, it will always be a valid OpenVMS system completion
code.

Completion status is not and cannot be returned in the same manner and context as in standard OpenVMS
constructions and command procedures. Successful submission does not imply successful execution.

As a result, the primary symbols could be defined to reflect successful script submission, but the script
execution may actually fail.

Although not required to produce a script object file, OPER privilege is required to execute a compiled script.

Using Placeholders
To allow a compiled script to serve as a template, you can use placeholder specifications.

A placeholder is specified by a three-character reserved word sequence (trigraph) symbol of the form ?xn
which is replaced by its value at execution time.

The trigraphs are as follows:

An & can be used instead of an ? and the symbol case is ignored. That is, ?p1 is equivalent to &P1.

This type of a pattern is replaced by its value at execution time. The value of an undefined symbol reference is
a null string.

The value of a placeholder is obtained as follows (progressing in order of failure):

1. Translate the symbol name as a symbol.

2. Translate the symbol name as a logical name.

3. Translate the derived name as a logical name.

4. The placeholder value is null.

If Step (2) fails, a derived name of the form ndm$$csx_$symbol$_[placeholder] is translated as a logical
name.

For example, if the name q3 did not exist as either a symbol name or as a logical name, the logical name
ndm$$csx_$symbol$_q3 would be translated. If this logical name does not exist, the value of the ?q3
placeholder would be the zero-length (null) string.

csx_status run job (dsn="#csx$status 98962" pnode)

?p1 ?p2 ?p3 ?p4 ?p5 ?p6 ?p7 ?p8
?q1 ?q2 ?q3 ?q4 ?q5 ?q6 ?q7 ?q8
?r1 ?r2 ?r3 ?r4 ?r5 ?r6 ?r7 ?r8
?s1 ?s2 ?s3 ?s4 ?s5 ?s6 ?s7 ?s8
?t1 ?t2 ?t3 ?t4 ?t5 ?t6 ?t7 ?t8

26 Connect:Direct for OpenVMS User’s Guide
The following sample script (sample.txn) and procedure fragment indicates one of several methods for
generating unique filenames when transmitting to a remote node.

The placeholder symbols are defined by a DCL procedure as follows:

A placeholder can be specified anywhere in the source script that a syntactically valid token may appear, as in
the following example:

In this example, the script field names are determined as follows:

sessname process snode=?s1
txstep copy from (dsn=123.txt pnode)-
 to (dsn=hlq.?q1.?q2 snode)

$!
$! Lookup Remote Node Name
$!
$ s1 = "sci.remote.node"
$!
$! Generate Filename Identifiers
$!
$ tm = f$cvtime ("")
$ q1 = f$extract (0, 4, tm) + -
 f$extract (5, 2, tm) + -
 f$extract (8, 2, tm)
$ q2 = f$extract (11, 2, tm) + -
 f$extract (14, 2, tm) + -
 f$extract (17, 2, tm) + -
 f$extract (20, 2, tm)
$!
$! Issue Request to C:D OpenVMS
$!
$ ndm$$csx_submit_filename = "sample.txn"
$ run ndm$$directory:ndm_csx_script_submit
$ if .not. $status
$ then
$ say "C:D Submit Failure"
$ endif
$ exit $status

?p1 process snode=?p2 snodeid=?r1
?s1 copy from (dsn = ?t1 pnode) -
 to (dsn = ?t2 snode)
?s2 run job (dsn = "?t3" snode)

 - script name P1
 - remote node name P2
 - remote user name R1
 - name of COPY step S1
 - name of source file T1
 - name of destination file T2
 - name of Run Job Step S2
 - name of Run Job procedure file T3

Chapter 3 / Using Additional Features 27
Access Control Considerations
A placeholder specifier has no meaning, and its text is substituted where it appears. The exception to this is the
?_actl (access control) reserved word placeholder.

In the following example, the remote access control is always given by the value of the ?q1 placeholder and no
password can be specified:

In the following example, the remote access control of the compiled script is constant.

To specify remote access control in a more flexible manner, the ?_actl placeholder should be specified as in the
following example:

This placeholder (or alternatively, &_actl) is used exclusively for this purpose and cannot appear more than
once in a compiled script. Unlike other reserved word placeholder specifiers, the placeholder value is subject to
further processing.

Specifically, the character sequences %#, and %@ are considered to be introducers when they appear at the at
the beginning of an access control placeholder value.

The access control placeholder allows you to specify remote access control directly, indirectly, immediately, or
not at all in the following forms:

A) Direct username
B) Indirect %@access_control_identifier
C) Immediate %#username:password
D) NULL NULL

In (A) the effective specification is as follows:

If the introducers appear as part of the actual username, you can use a script with another placeholder specifier
or multiple scripts each with constant remote access control.

In (B) the text following the %@ is considered to be an access control identifier used to retrieve the remote
username and encrypted password from a previously generated password file. The effective specification is as
follows:

If the identifier is undefined or the password file does not exist, this condition is processed as if no access
control had been specified.

In (C) the text following the %# is considered to be a plain-text username and password separated by a :
(colon). This form will be used by programs that define the remote access control placeholder, but which do not

txn00001 process snode=remote.node snodeid=(?q1)

txn00002 process snode=?s1 snodeid=(usr,pwd)

txn00003 process snode=remote.node snodeid=(?_actl)

txn00001 process snode=remote.node snodeid=(usr)

txn00001 process snode=remote.node snodeid=(usr, pwd)

28 Connect:Direct for OpenVMS User’s Guide
make this information ordinarily visible. The password is then encrypted as if it had been directly specified.
The effective specification is as follows:

In (D) the placeholder is specified but is undefined. This case is treated as if no access control were specified
at all. The effective specification is as follows:

The following is a placeholder example.

Using reserved word placeholders is optional. You can compile a script to conceal the access control of a
remote system and then archive the original script file. In this case, security is enhanced because plain-text
passwords are not present in script files. By using the password file, security can be further enhanced since
remote plain-text passwords do not need to be present in script files or in DCL procedures.

Using the Event Logging Facility
The event logging facility allows you to obtain near real-time status messages from Connect:Direct for
OpenVMS. You can process these messages, site-written programs, and procedures, thus eliminating the need
to use resource-intensive statistics using keyed files. As a result, event logging may increase operational
efficiency by:

Eliminating the overhead associated with keyed files and foreign keys
The optional event log is a sequential file.

Minimizing internal data conversions
Conversions are performed only when needed.

Reducing the amount of information generated along with more concise content.

txn00001 process snode=remote.node snodeid=(usr,pwd)

txn00001 process snode=remote.node

$!
$! [Direct] Specify The Remote Username
$!
$ _actl = "usr" ! Specify Remote Username

$!
$! [Indirect] Retrieve Username/Password Of
$! "RemoteNode::RemoteUser" Entry
$!
$ _actl = "%@RemoteNode::RemoteUser"
$!
$! [Immediate] Specify Username/Password Explicitly
$!
$ _actl = "%#usr:pwd"
$!
$! [NULL] Remove All Remote Access Control
$!
$ delete /symbol _actl

Note: These considerations do not apply to the PNODEID clause nor do they apply to SNODEID clauses of
the form snodeid=(usr,pwd,new).

Chapter 3 / Using Additional Features 29
Facilitating the promulgating of information by site.
The event logging component of Connect:Direct for OpenVMS is separate from the rest of the product. As a
result, you can install it on a node where Connect:Direct for OpenVMS is not installed. The event process can
then function as a network sink agent for a cluster or other network nodes.

Enabling and Disabling Event Logging
If event logging resides on a system where Connect:Direct for OpenVMS is installed, its startup procedure
must be executed before the startup procedure of Connect:Direct for OpenVMS. If Event Logging will not be
used, no changes to the system startup procedure are required.

Use the following event process startup and shutdown procedures to enable event logging:

The event process startup parameter file (ndm$event_process_setparams.com) describes the startup
parameters. The ndm$$event_process_log_file_startup_disable parameter disables event message recording.

You may want to disable event message recording for the following situations:

to forward generated messages to a remote sink node
to place such functionality into site-written event procedures
to process events with site-written programs that use the event API

Event messages are logged in files that can only be displayed directly through site-written programs or
indirectly through site-written event procedures.

Statistics files recording is still supported, however, you should disable this function when using the event
logging facility. This will further reduce any unnecessary system overhead. To disable the recording of
statistics files, specify the following parameter in the initial parameter file (initparms.dat):

Event Message Format
Events are identified as an event class and an event type. The class denotes the major component definition and
the type specifies the event within that component class.

The event logs are variable length sequential files with a maximum record length of 2048 bytes.

Each record/message in a Connect:Direct for OpenVMS event log/stream has the following format:

@ ndm$event_process_startup
@ ndm$event_process_shutdown

ndm$$stat_shutdown y

Note: The format of the event log files will not change in future releases of Connect:Direct for OpenVMS.

0 8 16 18 20 24 28 32
--_------
Event Time | Reserved | Event | Event | Event | Event | Reserved | Event
 | (SBZ) | Class | Type | Node | Flags | (SBZ) oooooo| Data

30 Connect:Direct for OpenVMS User’s Guide
The field (decimal) displacement is displayed above each field. The following table lists descriptions for each
field.

The following are descriptions of the event message/record format in selected languages:

Field Description

Event Time A signed quadword that specifies the source node local absolute system
time of the event.

Reserved (1) An unsigned quadword reserved for future use.

Event Class An unsigned word which specifies the class of the event.

Event Type An unsigned word which specifies the type of the event.

Event Node An unsigned longword which specifies the site-specified source node
context value of the event. The value 0 is reserved.

Event Flags An unsigned flags longword used by the Connect:Direct for OpenVMS
event facility.

Reserved (2) An unsigned quadword reserved for future use.

Event Data The event message data in binary [itemcode,value] format. The length of
the event message data is the message/record record length less 32.

* Macro .psect event_message,abs
 event_time: .blkq 1
 reserved_1: .blkq 1
 event_class: .blkw 1
 event_type: .blkw 1
 event_node: .blkl 1
 event_flags: .blkl 1
 reserved_2: .blkl 1
 event_data: .blkb 2048-event_data-event_time

* Fortran STRUCTURE /EVENT_MESSAGE/
 CHARACTER*8 EVENT_TIME
 CHARACTER*8 RESERVED_1
 INTEGER*2 EVENT_CLASS
 INTEGER*2 EVENT_TYPE
 INTEGER*4 EVENT_NODE
 INTEGER*4 EVENT_FLAGS
 INTEGER*4 RESERVED_2
 CHARACTER*2016 EVENT_DATA
 END STRUCTURE

* C structure event_message
 {
 unsigned int event_time [2] ;
 unsigned char reserved_1 [8] ;
 unsigned short event_class ;
 unsigned short event_type ;
 unsigned int event_node ;
 unsigned int event_flags ;
 unsigned int reserved_2 ;
 unsigned char event_data [2016] ;
 } ;

Chapter 3 / Using Additional Features 31
Local systems can receive event messages through site-written event procedures and event stream listener
programs.

Event Procedures
A site-written procedure that executes whenever a particular event occurs is termed an event procedure. The
content of an event message is specified to an event procedure in such a way that it is easily processed by a
DCL. An event procedure driver process is supplied to assist in writing site-written event procedures. The
event procedure driver process is executed as follows:

@ ndm$event_procedure_startup

32 Connect:Direct for OpenVMS User’s Guide
The input to this procedure is a parameter template file as follows:

(continued)

$!
$! C:D OpenVMS Event Procedure Parameter Template File
$!
$!define ndm$$event_procedure_filename procedure_filename
$!
$! This parameter defines the procedure to be
$! executed when an event occurs and must be defined.
$!
$! Default: None
$!
$!define ndm$$event_procedure_directory procedure_directory_name
$!
$! This parameter defines the directory from which
$! the constructed procedures will be executed.
$!
$! Default: None
$!
$!define ndm$$event_procedure_queue sys$batch
$!
$! This parameter defines the queue to which the
$! procedure is to be submitted for execution.
$!
$! Default: SYS$BATCH
$!
$!define ndm$$event_procedure_queue_001 queue_001
$! ...
$!define ndm$$event_procedure_queue_255 queue_255
$!
$! These parameters define additional queues to which
$! procedures may be submitted for execution in turn.
$!
$! Default: None
$!
$!define ndm$$event_procedure_queue_username startup_username
$!
$! This parameter defines the username under which
$! the procedure is to be submitted for execution.
$!
$! Default: The event procedure process username.
$!
$!define ndm$$event_procedure_logfile Y
$!
$! This parameter specifies that a procedure execution
$! log file is to be generated and is the equivalent
$! of /LOG. This parameter would normally be defined
$! externally to the Event Procedure process startup
$! and then deassigned when procedure log files are no
$! longer desired.
$!
$! Default: /NOLOG
$!
$!define ndm$$event_procedure_priority 6
$!
$! This parameter defines the priority at which
$! the event procedure process executes.
$!
$! Default: 6
$!

Chapter 3 / Using Additional Features 33
The event procedure driver process performs the following actions when an event message is received:

1. The list of event procedure triggers (event filter) is examined; if the event message does not pass the filter,
it is discarded.

The event procedure triggers (event filter) are listed in a specific form to expedite processing. For
example, event 13.8 would be written as 013008. This format is used to specify the P1 parameter when
invoking the event procedure.

2. If the event passes the filter, a driver procedure is created in the directory specified by the
ndm$$event_procedure_directory parameter. This in turn invokes the site-written event procedure
specified by the ndm$$event_procedure_filename parameter.

$!define ndm$$event_procedure_keep Y
$!
$! This parameter specifies that the event context
$! procedure file is to be retained after the event
$! procedure terminates. This logical name is dynamic
$! and may be defined and deassigned as desired.
$!$! Default: The event context procedure is deleted.
$!
$!define ndm$$event_procedure_trigger_CCCTTT Y
$! ...
$!define ndm$$event_procedure_trigger_001002 Y
$!
$! These parameters define the events which trigger
$! the execution of the event procedure. Only those
$! events defined as triggers will cause the event
$! procedure to be executed.
$!
$! Default: All events are trigger events if no
$! definitions are specified.
$!
$!define ndm$$event_procedure_trigger$filter Y
$!
$! This parameter specifies that event trigger names
$! actually specify event filter names. That is, only
$! those events NOT defined in the event list will
$! cause the event procedure to be executed.
$!
$! Default: The logical names specify an event trigger
$! list as opposed to an event filter list.
$!
$!define ndm$$event_procedure_noreference_list Y
$!
$! This parameter specifies that no event data item
$! reference list is to be generated by the driver
$! procedure.
$!
$! Default: An event data item list of the form
$! ’NDMEVL$EVENT_DATA_nn’ is generated.
$!
$!define ndm$$event_procedure_item_description Y
$!
$! This parameter specifies that a symbol of the form
$! ’ITEM_NAME’_ specifying the description of
$! ’ITEM_NAME’ is to be generated for each event data
$! item.
$!
$! Default: No data item description is generated.

34 Connect:Direct for OpenVMS User’s Guide
The event procedure is invoked as follows:

The following are the definitions for the previous parameters:

event—the event class/type in CCCTTT format

time—the event time in DD-MMM-YYYY HH:MM:SS.CC format

count—the number of event data items associated with the message

node—the site-specified node context unsigned longword value

sequence—the sequence number of this message assigned by the driver process

[replay]—event replay indicator: if present, the message is being replayed

The P3 argument to the event procedure specifies the number of data items present in the message. The
event data is decoded for use by the event procedure as a series of symbols given by the item name and
value.

For example, the event procedure driver process represents the ^X70000020 item code in the driver
context procedure as follows:

As a result, the event procedure can determine whether a particular data item (a step name) is present in the
message as in the following examples:

In addition, a reference symbol is defined for each data item symbol so that the item list can easily be
displayed, as follows:

For example, if the remote node name appeared as the fourth data item and the step name as the eleventh
data item, the reference symbols would be defined as follows:

@ ndm$$event_procedure_filename event time count node sequence [replay]

$ NDMEVLIS_REMOTENODENAME="remote.node.name"

$ if f$type (NDMEVL$I$S_SESSIONSCRIPTSTEP) .eqs. ""
$ then
$ write sys$output "Step Transaction Name/Number Not Present"
$ else
$ write sys$output "Transaction Number: ", NDMEVLIS_SESSIONSCRIPTSTEP
$ endif
$ if f$type (NDMEVL$I$S_REMOTENODEMSGID) .eqs. ""
$ then
$ write sys$output "No Remote C:D Message Identifier Found."
$ else
$ write sys$output "** Displaying Remote C:D Message Identifier **"
$ @ ndm$msgid_display ’NDMEVL$I$S_REMOTENODEMSGID
$ endif

$ ndmevl$event_data_[k] = "name of kth data item"
 ...
$ ndmevl$event_data_[count]="name of last item"

 ...
$ ndmevl$event_data_4 = "NDMEVL$I$S_REMOTENODENAME"
 ...
$ ndmevl$event_data_11 = "NDMEVL$I$S_SESSIONSCRIPTSTEP"
 ...

Chapter 3 / Using Additional Features 35
The symbol ndmevl$event_description is also defined to specify the descriptive name/text associated with
the event.

1. The created driver procedure is submitted to the next queue based on:

the values of the ndm$$event_procedure_queue

the ndm$$event_procedure_queue_nnn parameters under the username based on the value of the
ndm$$event_procedure_queue_username parameter

The ndm$$event_procedure_logfile, which can be defined at any time, is translated. If defined, a
procedure log file is specified.

2. The created driver procedure executes.

3. The created driver procedure file is deleted unless the ndm$$event_procedure_keep parameter is defined.

For information on processing event messages using the API, refer to Event Application Programming
Interface on page 87.

Replaying Event Messages
You might encounter a situation where event messages are recorded, but the site-written event procedures (as
well as any associated downstream procedures) did not execute properly. This could occur because of any
number of technical reasons including cluster node failure, quota exhaustion, DCL coding errors, and so forth.
As a precaution, you may want to process any outstanding events as part of the error recovery process.

Event messages can be replayed from an event log file as follows:

The following are definitions for the previous fields:

logfile
specifies the filename of the event log to be replayed. The default is None.

after
specifies the beginning absolute time. The default is Today.

before
specifies the ending absolute time. The default is Tomorrow.

remote
specifies if messages are broadcast to remote nodes. The default is No Broadcast.

To determine if events would be replayed in a given time interval, without actually replaying them, define a
logical name as follows:

In the previous example, the events between the times will be displayed, but not replayed.

@ ndm$event_log_replay logfile after before remote

Note: Event messages received in this manner are received with the replay indicator set. The P6
(replay) event procedure argument would be set to REPLAY. Otherwise, the P6 argument is
not specified.

$ define ndm$$event_log_replay_readonly y

36 Connect:Direct for OpenVMS User’s Guide

Chapter 4

Using Connect:Direct for OpenVMS
Commands

This chapter describes Connect:Direct for OpenVMS command functions, syntax, parameters, and qualifiers.
Examples of the commands are provided at the end of each command section.

Some commands have parameters and qualifiers associated with them. Other commands have either
parameters or qualifiers, but not both. Qualifiers are indicated with a forward slash character (/).

Reviewing Connect:Direct for OpenVMS Commands
Activities in Connect:Direct for OpenVMS are implemented with commands and Processes.

Modifying Processes
Use the CHANGE PROCESS command to modify Process priority and queue status or to change such job
characteristics as destination node, start time, and start date of a nonexecuting Process.

Reviewing the Command Format
The following shows the command format and qualifiers for the CHANGE PROCESS command. Required
qualifiers are in bold print. Default values for qualifiers are underlined. A description of each qualifier follows
the CHANGE PROCESS command format. There are no parameters.

Command Qualifiers

CHANGE PROCESS /[NO]CASE

†/AFTER

 /DEST=destination_nodename

 /HOLD=No | Yes

 /PNAME=name|(list)

† Specify this time-based qualifier in the same format as other standard OpenVMS commands.

38 Connect:Direct for OpenVMS User’s Guide
Parameters
There are no parameters associated with the CHANGE PROCESS command.

Required Qualifiers
You must specify one or more of the following qualifiers: /DEST, /HOLD, /PRTY, /RELEASE, /SERVER,
or /STARTT.

If /PNAME, /PNUMBER, or /SUBMITTER are not specified, then the command will act on all processes
that are accessible by the user.

Qualifiers

/[NO]CASE
allows for case sensitivity as follows:

/CASE ensures that case is preserved for all characters enclosed in quotation marks.
/NO CASE ignores the case of characters enclosed in quotation marks and converts them to
uppercase.

/DEST=destination_nodename
specifies a new destination node and changes the name of the node in the TCQ.

destination_nodename is the name of the destination node. Nodes that you can communicate with
are listed in your network map.

/HOLD=No|Yes
delays the execution of a nonexecuting Process in the TCQ, releases a held Process for execution, or
delays execution until called.

When you specify both HOLD=YES and a STARTT (start time and/or start date) value, the Process is
placed in the Hold queue. If start time has not passed once you release the Process, the Process begins
at the specified start time.

No (default) specifies that the Process is executed immediately.

Yes specifies that the Process remains in the Hold queue until you take one of the following actions:

Release the Process with the CHANGE PROCESS /HOLD=NO command.

 /PNUMBER=number|(list)

 /PRTY=number

 /RELEASE

 /SERVER=server_alias

 /STARTT=([date|day][,hh:mm:ssXM])

 /SUBMITTER=("submitter_node,submitter_id")|(list)

Command Qualifiers

† Specify this time-based qualifier in the same format as other standard OpenVMS commands.

Chapter 4 / Using Connect:Direct for OpenVMS Commands 39
Remove the Process from the TCQ with the DELETE PROCESS command.
Release the Process for execution with the CHANGE PROCESS /RELEASE command.

/PNAME=name|(list)
searches for the Process by Process name. The length of Process names can range from 1–8
alphanumeric characters.

name specifies the name of a specific Process.

You can specify a list of Process names. The list is enclosed in parentheses, and each Process name is
separated by a comma; for example:

/PNUMBER=number|(list)
searches for the Process by Process number.

number specifies the Process number. Process numbers are assigned by Connect:Direct when
Processes are submitted successfully. Process numbers can range from 1–99999.

You can specify a list of Process numbers. The list is enclosed in parentheses, and each Process
number is separated by a comma; for example:

/PRTY=number
allows you to change the priority of a Process in the TCQ. Priority is used for Process selection and
does not affect the OpenVMS priority during transmission.

number is an integer ranging from 0–15.

/RELEASE
allows you to release a Process that has been suspended or held, that is, a Process in the Hold queue.

/SERVER=server_alias
specifies the particular server to receive the command.

server_alias specifies the 1–16 alphanumeric character name of the server as defined in
NDM$$DIRECTORY:SERVER.DAT.

/STARTT=([date|day][,hh:mm:ssXM])
allows you to change the start time and either the day or date of a nonexecuting Process in the TCQ.
Note that date, day, and time are positional; therefore, if the date or day is not specified, a null string
and a comma must precede time. For example, the following translates to the Process running at 8:00
a.m. on the current date:

Day, date, and time are handled as a unit, so a change to one will affect the other two. Therefore, when
you change the date, day, or time, you also must specify the information that you do not change.

date ensures that the Process executes on the specified date. You can specify dates in either Gregorian
or Julian format.

Gregorian dates always include numeric values for the month (m), day (d), and year (y).
Connect:Direct for OpenVMS only accepts the month-day-year format for Gregorian dates.

/PNAME=(PROC1,PROC2,PROC3. . .)

/PNUMBER=(1,2,3. . .)

/STARTT=("",8:00:00AM)

40 Connect:Direct for OpenVMS User’s Guide
Enter Gregorian dates with either a two-digit or a four-digit year. You can use periods and backslashes
(/) to separate the values.

mmddyy
mm/dd/yy or mm/dd/yyyy
mm.dd.yy or mm.dd.yyyy

You can use periods and backslashes (/) to separate the values. Connect:Direct for OpenVMS
processes the following Julian date formats:

yyddd or yyyyddd
yy/ddd or yyyy/ddd
yy.ddd or yyyy.ddd

If you specify only the date, time defaults to 00:00.

day releases the Process for execution on the specified day of the week.

If you specify a day of the week and you have used /RETAIN=YES, then the Process executes the
same day every week.

You can specify TODAY, which releases the Process for execution today, or TOMORROW, which
releases the Process for execution the next day.

hh:mm:ssXM indicates the time of day in hours (hh), minutes (mm), and seconds (ss) that the
Process is to be released. XM can be set to AM or PM. You do not have to specify minutes and
seconds.

You can express time using the 24-hour clock or the 12-hour clock. If you use the 24-hour clock, valid
times are from 00:00 through 24:00. If you use the 12-hour clock, you must express time using AM or
PM; therefore, the 24-hour clock is assumed if you do not use AM or PM.

If you specify hh:mm:ssXM and you use /RETAIN=YES, then the Process executes the same time
every day.

You can specify NOON, which releases the Process for execution at noon, or MIDNIGHT, which
releases the Process for execution at midnight.

/SUBMITTER=(“submitter_node,submitter_id”)|(list)
searches for the Process by the submitter node and submitter id of the Process submitter.

submitter_node is a 1–16 alphanumeric character name that specifies the symbolic node name of the
node.

submitter_id is the alphanumeric character name that specifies the OpenVMS user name of the
Process submitter.

Note: You must use a separator to specify a four-digit Gregorian year.

Note: If you are using a date format with slashes, start values should be enclosed within double
quotation marks; for example:

/STARTT=(“09/21/1998”)

Chapter 4 / Using Connect:Direct for OpenVMS Commands 41
You can specify a list of submitter nodes and submitter ids. Each submitter_node and submitter_id
pair is enclosed in double quotes and is separated by a comma; for example:

Examples
The following commands are examples of the CHANGE PROCESS command in noninteractive mode.

The following command changes the Process named TEST1 (in the Wait queue) from executing only once to
executing every time the server is initialized:

The following command changes the Process named TEST2 (in the Wait queue) to a new destination node
(SNODE) of SC.VMS.VXNED1:

The following command changes Process number 3 named TEST3 on the Wait queue to start at 8:00 p.m. on
Tuesday:

Deleting Processes
The DELETE PROCESS command allows you to remove nonexecuting Processes from the TCQ.

Reviewing the Command Format
The following shows the command format and qualifiers for the DELETE PROCESS command. A description
of each qualifier follows the DELETE PROCESS command format. There are no parameters.

/SUBMITTER=("submitter_node1,submitter_id1"-
,"submitter_node2,submitter_id2", . . .)

$ NDMUI CHANGE PROCESS /PNAME=TEST1 /RETAIN=INITIAL

$ NDMUI CHANGE PROCESS /PNAME=TEST2 /DEST=SC.VMS.VXNED1

$ NDMUI CHANGE PROCESS /PNUMBER=3 /PNAME=TEST3 -
_> $/STARTT=(Tuesday,8:00PM)

Command Qualifiers

DELETE PROCESS /[NO]CASE

/PNAME=name|(list)

/PNUMBER=number|(list)

/SUBMITTER=("submitter_node,submitter_id")|(list)

/SERVER=server_alias

42 Connect:Direct for OpenVMS User’s Guide
Parameters
There are no parameters associated with the DELETE PROCESS command.

If /PNAME, /PNUMBER, or /SUBMITTER are not specified, then the command will act on all processes
that are accessible by the user.

Qualifiers

/[NO]CASE
allows for the case sensitivity as follows:

/CASE ensures that case is preserved for all characters enclosed in quotation marks.
/NO CASE ignores the case of characters enclosed in quotation marks and converts them to
uppercase.

/PNAME=name|(list)
searches for the Process by Process name.

name specifies the name of a specific Process. Process names can be from 1–8 alphanumeric
characters long.

You can specify a list of Process names. The list is enclosed in parentheses, and each Process name is
separated by a comma; for example:

/PNUMBER=number|(list)
searches for the Process by Process number. Process numbers can range from 1–99999.

number specifies the specific number of a Process. Process numbers are assigned by Connect:Direct
when Processes are submitted successfully.

You can specify a list of Process numbers. The list is enclosed in parentheses, and each Process
number is separated by a comma; for example:

/SUBMITTER=("submitter_node,submitter_id")|(list)
searches for Processes by submitter node and submitter id of the Process submitter.

submitter_node is a 1–16 alphanumeric character name that specifies the symbolic node name of the
node.

submitter_id is the alphanumeric character name that specifies the OpenVMS user name of the
Process submitter.

You can specify a list of submitter nodes and submitter ids. Each submitter_node and submitter_id
pair is enclosed in double quotes and is separated by a comma; for example:

/SERVER=server_alias
specifies the particular server to receive the command.

server_alias specifies the 1–16 alphanumeric character name of the server as defined in
NDM$$DIRECTORY:SERVER.DAT.

/PNAME=(PROC1,PROC2,PROC3. . .)

/PNUMBER=(1,2,3. . .)

/SUBMITTER=("submitter_node1,submitter_id1"-
,"submitter_node2,submitter_id2", . . .)

Chapter 4 / Using Connect:Direct for OpenVMS Commands 43
Examples
The following examples illustrate the use of DELETE PROCESS commands in noninteractive mode.

The following command deletes a nonexecuting Process named TEST1 from the TCQ:

The following command deletes the nonexecuting Process number 3 from the TCQ:

The following command deletes all nonexecuting Processes submitted by nodename SC.VMS.QA4 with a user
id of QA11 from the TCQ:

Exiting Interactive Mode
Use the EXIT command when you are working in interactive mode and want to return to the DCL prompt.
EXIT is equivalent to reading an end-of-file marker. Once in interactive mode, type EXIT or enter Ctrl-Z.

Reviewing the Command Format
The following shows the format of the EXIT command. The required information is in bold type. There are no
parameters are qualifiers.

Parameters
There are no parameters associated with the EXIT command.

Qualifiers
There are no required qualifiers for the EXIT command

Example
Executing the EXIT command returns you to the DCL command-line prompt from interactive mode.

$ NDMUI DELETE PROCESS /PNAME=TEST1

$ NDMUI DELETE PROCESS /PNUMBER=3

$ NDMUI DELETE PROCESS /SUBMITTER=("SC.VMS.QA4,QA11")

Command

EXIT

Connect:Direct> EXIT

44 Connect:Direct for OpenVMS User’s Guide
Flushing an Executing Process
The FLUSH PROCESS command allows you to delete an executing Process from the TCQ.

Reviewing the Command Format
The following shows the format of the FLUSH PROCESS command.

The following shows the command format and qualifiers for the FLUSH PROCESS command. Required
qualifiers are in bold print. A description of each qualifier follows the FLUSH PROCESS command format.
There are no parameters.

Parameters
There are no parameters associated with the FLUSH PROCESS command.

If /PNAME, /PNUMBER, or /SUBMITTER are not specified, then the command will act on all processes
that are accessible by the user.

Qualifiers

/FORCE
flushes the Process by stopping the session manager. This qualifier is useful if a Process is in an
unsatisfied wait state (hanging condition).

/PNAME=name|(list)
searches for the Process by Process name.

name specifies the name of a specific Process. Process names can range from 1–8 alphanumeric
characters.

You can specify a list of Process names. The list is enclosed in parentheses, and each Process name is
separated by a comma; for example:

/PNUMBER= number|(list)
searches for the Process by Process number.

number specifies the specific number of a Process. The Process number is assigned by
Connect:Direct when Processes are successfully submitted. Process numbers can range from
1–99999.

Command Qualifiers

FLUSH PROCESS /FORCE

/PNAME=name|(list)

/PNUMBER=number|(list)

/SUBMITTER=("submitter_node,submitter_id")|(list)

/SERVER=server_alias

/PNAME=(PROC1,PROC2,PROC3. . .)

Chapter 4 / Using Connect:Direct for OpenVMS Commands 45
You can specify a list of Process numbers. The list is enclosed in parentheses, and each Process
number is separated by a comma; for example:

/SERVER= server_alias
specifies the particular server to receive the command.

server_alias specifies the 1–16 alphanumeric character name of the server as defined in
NDM$$DIRECTORY:SERVER.DAT.

/SUBMITTER=(“submitter_node,submitter_id”)|(list)
searches for the Process by the submitter node and submitter id of the Process submitter.

submitter_node is a 1–16 alphanumeric character name that specifies the symbolic node name of the
node.

submitter_id is the alphanumeric character name that specifies the OpenVMS user name of the
Process submitter.

You can specify a list of submitter nodes and submitter ids. Each submitter_node and submitter_id
pair is enclosed in double quotes and is separated by a comma; for example:

Examples
The following are examples of using the FLUSH PROCESS command in noninteractive mode:

The following command flushes an executing Process named TEST1 from the TCQ:

The following command flushes an executing Process number 3 from the TCQ:

The following command flushes an executing Process submitted by nodename SC.VMS.QA4 user id QA11
from the TCQ:

The following command flushes a hung Process named TEST1 from the TCQ:

/PNUMBER=(1,2,3. . .)

/SUBMITTER=("submitter_node1,submitter_id1"-
,"submitter_node2,submitter_id2", . . .)

$ NDMUI FLUSH PROCESS /PNAME=TEST1

$ NDMUI FLUSH PROCESS /PNUMBER=3

$ NDMUI FLUSH PROCESS /SUBMITTER=("SC.VMS.QA4,QA11")

$ NDMUI FLUSH PROCESS /PNAME=TEST1 /FORCE

46 Connect:Direct for OpenVMS User’s Guide
Displaying Online HELP
The HELP command allows you to display online help information about Connect:Direct. For instance, you
can display definitions and syntax requirements for any of the Connect:Direct for OpenVMS commands.
Additionally, help information is available on a variety of subjects, including qualifiers, logicals, and file
specifications.

The Connect:Direct HELP command is structured like the OpenVMS HELP command. You can use the HELP
command either at the DCL noninteractive prompt or at the Connect:Direct prompt (interactive mode).
Entering the HELP command without a topic displays a list of topics from which to choose. However, you can
go directly to help information on a particular subject by entering the HELP command and the topic.

Reviewing the Command Format
The following shows the format for the HELP command. There are no qualifiers.

Examples
This command displays a list of topics for which help is available.

The following figure shows an example of the Help Main Topic Screen. This screen displays when you request
HELP.

Command Parameters

HELP

$ NDMUI HELP

Note: If the Connect:Direct for OpenVMS Help File was copied into the OpenVMS Help Library at
installation, then Help can also be accessed through the OpenVMS Help Facility under the topic
NDMUI. For example, the following command will display help about the SUBMIT command:

$ HELP NDMUI SUBMIT

NDMUI
Invokes the User Interface

NDMUI can operate under two modes: Interactive Mode and
Noninteractive Mode. Under Noninteractive Mode, NDMUI subcommands
are entered via DCL prompt parameters and qualifiers. If no
parameters are supplied when invoking NDMUI, then NDMUI is invoked
under Interactive Mode. Under Interactive Mode, NDMUI subcommands
are read from input (SYS$INPUT) until reaching end-of-file. If
SYS$INPUT is your terminal, you will see the prompt
"Connect:Direct>" while you are running NDMUI.

Additional information available:

SUBMIT STOPNDM SPAWN EXIT Statistics_Command
Process Commands Netmap Commands

NDMUI Subtopic?

Chapter 4 / Using Connect:Direct for OpenVMS Commands 47
The following figure shows an example of displaying a subtopic from the Help Topic Screen. This screen is
obtained by entering the subtopic STOPNDM at the prompt on the Help Main Topic Screen.

By using the OpenVMS Help Facility, you can bypass the screens shown in the previous examples and display
help information on a particular subtopic. The following figure shows an example of what you would type at
the command line to get help information on the subtopic qualifier /FORCE for STOPNDM.

The following figure shows the output from the previous command.

Changing the Default Server
The SET SERVER command changes the default server accessed by the user interface.

Reviewing the Command Format
The following shows the command format and parameters for the SET SERVER command. Required
parameters are in bold print. A description of each parameter follows the SET SERVER command format.
There are no qualifiers.

NDMUI
STOPNDM

The STOPNDM command stops the server currently
connected to the NDMUI.

Format:
NDMUI STOPNDM

Additional information available:

Command qualifiers
/FORCE /IMMEDIATE /QUIESCE /STEP

NDMUI STOPNDM Subtopic?

$ HELP NDMUI STOPNDM /FORCE

NDMUI

STOPNDM

/FORCE

Stops Connect:Direct immediately. The server cancels all session
managers.

Command Parameters

SET SERVER server_alias

48 Connect:Direct for OpenVMS User’s Guide
Required Parameters

server_alias
specifies the 1–16 alphanumeric character name of the server as defined in
NDM$$DIRECTORY:SERVER.DAT.

Qualifiers
There are no qualifiers associated with the SET SERVER command.

Example
This example shows an output from the SET SERVER command.

Displaying the Process Last Submitted
The SHOW LAST command allows you to determine the Process number of the last submitted Process.

Reviewing the Command Format
The following is the format for the SHOW LAST command. There are no parameters or qualifiers.

Parameters
There are no parameters associated with the SHOW LAST command.

Qualifiers
There are no qualifiers associated with the SHOW LAST command.

Note: To set the default server back to the local server, specify the server_alias parameter to be the
local server environment name-NDM, for example, in a production environment.

Note: To see the results of using this SET SERVER command, see Example on page 56.

Connect:Direct> set server q1a

Command

SHOW LAST

Chapter 4 / Using Connect:Direct for OpenVMS Commands 49
Example
This example shows an output from the SHOW LAST command.

Displaying the Long Text of a Message
The SHOW MESSAGE command allows you to display the long text of a Connect:Direct message.

Reviewing the Command Format
The following shows the format and parameters of the SHOW MESSAGE command. The required parameter
is in bold print. There are no qualifiers.

Required Parameter

message_id
is the 8-character alphanumeric message id.

Qualifiers
There are no qualifiers associated with the SHOW MESSAGE command.

Listing Nodes in the Network Map
Use the SHOW NETMAP command to display a list of the nodes in your network map. You can determine
which nodes you are authorized to use from the display. You can direct the output from the SHOW NETMAP
command to a screen, printer, or file.

The network map file contains definitions for the local node and adjacent nodes. The local node is the node on
which your OpenVMS process is running. The adjacent node is the node definition for a remote node that is
used when the local node requests a connection.

Refer to the Connect:Direct for OpenVMS Installation and Administration Guide for the commands to alter the
network map file.

SHOW LAST
Last Assigned Process Number: 12

Command Parameters

SHOW
MESSAGE message_id

Note: You can substitute SELECT NETMAP for SHOW NETMAP. CTRL C terminates output from all
SELECT/SHOW commands.

50 Connect:Direct for OpenVMS User’s Guide
Reviewing the Command Format
The following shows the command format and qualifiers for the SHOW NETMAP command. A description of
each qualifier follows the SHOW NETMAP command format. There are no parameters.

Parameters
There are no parameters associated with the SHOW NETMAP command.

Qualifiers
If you do not specify any of the following qualifiers, all are shown:

/LOCAL_NODE
/NODE

/LOCAL_NODE
is the node on which your OpenVMS process is running; it is not necessary to refer to the nodename
of the local node.

/NODE=nodename|*|(list)
is an adjacent node as defined in your network map.

nodename is a 1–16 character name of an adjacent node.

Asterisk (*) is a wildcard character used to indicate the names of all nodes.

You can specify a list of node names. The list is enclosed in parentheses, and each node name is
separated by a comma; for example:

/OUTPUT=filename
specifies the name of a file to which you want to direct the output of the SELECT/SHOW PROCESS
command. The output is formatted in tabular form.

filename is the name of a file based on OpenVMS file naming conventions.

/PRINT
routes the output of the SELECT/SHOW PROCESS command to the default printer. The output will
be formatted in tabular form as it would be displayed interactively.

/SERVER=server_alias
specifies the particular server to receive the command.

Command Qualifiers

SHOW NETMAP /LOCAL_NODE

/NODE=nodename|*|(list)

/OUTPUT=filename

/PRINT

/SERVER=server_alias

/NODE=(node1,node2,node3. . .)

Chapter 4 / Using Connect:Direct for OpenVMS Commands 51
server_alias specifies the 1–16 alphanumeric character name of the server as defined in
NDM$$DIRECTORY:SERVER.DAT.

Examples
The following examples illustrate the use of the SHOW NETMAP command in noninteractive mode.

The following command displays the network map parameters for the adjacent node named SC.MVS.USER1.
Notice that adjacent is omitted when selecting the network map for an adjacent_node.

Output from the preceding command is as follows:

The following command displays the NETMAP parameters for the local node from a network map. Notice that
the name of the local_node is omitted when selecting the network map for a local_node.

Output from the preceding command is as follows:

Monitoring Processes in the TCQ
The SHOW PROCESS command allows you to monitor all Processes on the TCQ. Issuing the SHOW
PROCESS command furnishes you with the Process name and number, submitter node and id, destination
node, and the queue, based on the selection criteria specified.

$ NDMUI SHOW NETMAP /NODE=SC.MVS.USER1

= =
 SELECT NETWORK MAP
= =

Adjacent Node => SC.MVS.USER1 Parsess Max => 4
Default Conn => SCAN Parsess Dep => 3

Communications Paths
 NAME=DECPTH TYPE=DECNET DECNET.NODE=NDM DECNET.OBJ=TEK_SRVR

$ NDMUI SHOW NETMAP /LOCAL_NODE

= =
 SELECT NETWORK MAP
= =

Local Node => MY.NODE

Note: You can substitute SELECT PROCESS for SHOW PROCESS. Output from all SELECT and SHOW
commands can be terminated with CTRL-C.

52 Connect:Direct for OpenVMS User’s Guide
Reviewing the Command Format
The following shows the command format and qualifiers for the SHOW PROCESS command. A description of
each qualifier follows the SHOW PROCESS command format. There are no parameters.

Parameters
There are no parameters associated with the SHOW PROCESS command.

Required Qualifiers
You do not have to specify a qualifier with the SHOW PROCESS command. However, if you do not specify a
qualifier, all Processes are selected.

Qualifiers

/[NO]CASE
allows for the case sensitivity as follows:

/CASE ensures that case is preserved for all characters enclosed in quotation marks.
/NO CASE ignores the case of characters enclosed in quotation marks and converts them to
uppercase.

/DEST=destination_nodename|(list)
searches for the Process by destination node, as well as other selection criteria as you choose to
specify. Destination nodename is used interchangeably with SNODE (secondary node). This qualifier
is especially useful when you need to monitor a Process but several have the same PNAME with
different SNODEs.

destination_nodename is the name of the node with which you are communicating. Refer to the
network map of your system for node names.

You can specify a list of destination node names. The list is enclosed in parentheses, and each
destination node name is separated by a comma.

Command Qualifiers

SHOW PROCESS /[NO]CASE

/DEST=destination_nodename|(list)

/DETAIL

/LAST

/OUTPUT=filename

/PNAME=name|(list)

/PNUMBER=number|(list)

/PRINT

/QUEUE=All|B|E|H|R|S|W|Y|(list)

/SERVER=server_alias

/SUBMITTER=("submitter_node,submitter_id")|(list)

Chapter 4 / Using Connect:Direct for OpenVMS Commands 53
/DETAIL
shows additional details, such as; submitter class, priority, scheduled start time, scheduled start day
and/or date, Process file name, and the value associated with the /RETAIN qualifier. If /RETAIN was
not specified, a value is not displayed.

/LAST
selects records for the last Process submitted.

/OUTPUT=filename
specifies the name of a file to which you want to direct the output of the SELECT/SHOW PROCESS
command. The output will be formatted in tabular form.

filename is the name of a file based on OpenVMS file naming conventions.

/PNAME=name|(list)
searches for the Process by Process name.

name specifies the name of a specific Process. Process names can range from 1–8 alphanumeric
characters.

Asterisk (*) lists all Processes in the TCQ.

You can specify a list of Process names. The list is enclosed in parentheses, and each Process name is
separated by a comma; for example:

/PNUMBER=number|(list)
searches for the Process by Process number.

number specifies the specific Process number of a Process. Process numbers are assigned by
Connect:Direct when Processes are submitted successfully. Process numbers can range from 1–99999.

You can specify a list of Process numbers. The list is enclosed in parentheses, and each Process
number is separated by a comma; for example:

/PRINT
routes the output of the SELECT/SHOW PROCESS command to the default printer. The output is
formatted in tabular form.

/QUEUE=A|B|E|H|R|S|W|Y|(list)
searches for a Process on the specified queue. Possible values are A, B, E, H, R, S, W, and Y. The
default is A, which stands for All.

The following table defines each of the /QUEUE values.

Note: The * is valid as a wildcard character with the /PNAME qualifier in the SELECT/SHOW
PROCESS command.

/PNAME=(PROC1,PROC2,PROC3. . .)

/PNUMBER=(1,2,3. . .)

Queue Definition

A (All) All Processes in the TCQ will be displayed. All is the default.

54 Connect:Direct for OpenVMS User’s Guide
You can specify a list of queues. The list is enclosed in parentheses, and each queue is separated by a
comma; for example:

/SERVER= server_alias
specifies the particular server to receive the command.

server_alias specifies the 1–16 alphanumeric character name of the server as defined in
NDM$$DIRECTORY:SERVER.DAT.

/SUBMITTER=(“submitter_node, submitter_id”)|(list)
searches for the Process by the submitter node and submitter id of the Process submitter.

submitter_node is a 1–16 alphanumeric character name that specifies the adjacent node name of the
node.

submitter_id is the alphanumeric character name that specifies the OpenVMS user name of the
Process submitter.

You can specify a list of submitter nodes and submitter ids. Each submitter_node and submitter_id
pair is enclosed in double quotes and is separated by a comma; for example:

Examples
The following examples illustrate the use of the SHOW PROCESS command in noninteractive mode.

The following command selects the Process named TEST1 with a destination node of SC.VMS.VXNED1:

B (Bad) An error occurred during initiation of Process execution. This can occur because of
a security error of some other unrecoverable error.

E (Execute) The Process is currently executing.

H (Hold) The Process will remain on the Hold queue until an operator releases it by
specifying CHANGE PROCESS where /PNAME=filename and /HOLD=NO.
/RELEASE can be used in place of /HOLD=NO.

R (Retain) The Process will be retained after execution. A copy of this Process can be
released for execution by specifying CHANGE PROCESS where
/PNAME=filename and /RELEASE.

S (Suspend) The Process is suspended by the SUSPEND PROCESS command. The Process
can be released from the Suspend queue by specifying CHANGE PROCESS
where /PNAME=filename and /RELEASE.

W (Wait) The Process is waiting for execution.

Y (Retry) The Process is retried after a certain interval if the error that occurred is
recoverable.

/QUEUE=(A,E,W. . .)

/SUBMITTER=("submitter_node1,submitter_id1"-
,"submitter_node2,submitter_id2", . . .)

$ NDMUI SHOW PROCESS /PNAME=TEST1 /DEST=SC.VMS.VXNED1

Queue Definition

Chapter 4 / Using Connect:Direct for OpenVMS Commands 55
The following command selects all Processes:

The following command selects all Processes and prints the results in tabular form on the default printer:

The following examples show samples of the displays available for monitoring the progress of your
transmission.

The following is an example of the SHOW PROCESS display:

The following example is a detailed SHOW PROCESS display output:

Displaying Current Server Settings
The SHOW SERVER command shows you the current server setting.

Understanding the Command Format
The following shows the format of the SHOW SERVER command. There are no parameters or qualifiers.

$ NDMUI SHOW PROCESS /PNAME=*

$ NDMUI SHOW PROCESS /PNAME=*/PRINT

= =
 PNAME PNUMBER SUBMITTER NODE SUBMITTER ID OTHER NODE QUEUE
= =
 TODALLAS 1 SC.VMS.BOSTON BOSTON11 SC.VMS.DAL Exec

= =
 SELECT PROCESS
= =
Process Name=> TODALLAS Submitter => SC.VMS.BOSTON BOST11
Process Number => 1 Pnode => SC.VMS.DAL Queue => Exec
Submitter Class => NON Priority => 10 Retain =>
Schedule Time => Date/Day =>
Process File => STEP
Execution Class => 3 State => Exec Prc+PC\File Write
Executing SM =>
Step Name => STEP01 Function => COPY Exec Node =>
RECEIVING
Sent:Bytes => 0 Recs => 0 RUs => 0 Xmit Bytes => 0
Rcvd:Bytes => 23440 Recs => 293 RUs => 12 Xmit Bytes => 24576
FROM FILE => SCQA1.FDATA
TO FILE => NDM$$OUTPUT:MVS_TES1.OUT

Command

SHOW SERVER

56 Connect:Direct for OpenVMS User’s Guide
Parameters
There are no parameters associated with the SHOW SERVER command.

Qualifiers
There are no qualifiers associated with the SHOW SERVER command.

Example
The following example shows the results of using the SHOW SERVER command after changing the default
server (see Example on page 48).

Examining Process Statistics
The SHOW STATISTICS command allows you to examine statistics for Processes. The type of information in
the detailed statistics report includes pertinent data, such as date, Process name and number, PNODE, SNODE,
return code, message id, feedback, file name, short message text, the function (subroutine) issuing the message,
and the OpenVMS Process name of the session manager issuing the Process.

Examples of the command and a sample statistics log are provided beginning on page 61.

The qualifiers used with the command allow you to determine search criteria and the form in which the
information is presented. Unless otherwise specified, the output is displayed. You can direct the output to an
OpenVMS file or to the default printer.

Reviewing the Command Format
The following shows the command format and qualifiers for the SHOW STATISTICS command. A description
of each qualifier follows the SHOW STATISTICS command format. There are no parameters.

Connect:Direct> show server
 Q1A//TSC6::TSC6$DKA100:[QAITAN.Q1A]NDM_SRV.EXE;6
Connect:Direct> show proc
===
PNAME PNUMBER SUBMITTER NODE SUBMITTER ID OTHER NODE QUEUE
===
COPY 1 Q1A.ITAN.V3400 SHEMP1 Q1A.ZOS.V4600 Hold
COPY 6 Q1A.ITAN.V3400 SHEMP1 Q1A.ZOS.V4600 Hold
COPY 7 Q1A.ITAN.V3400 SHEMP1 Q1A.ZOS.V4600 Hold

Note: You can substitute SELECT STATISTICS for SHOW STATISTICS. Output from all SELECT/SHOW
commands can be terminated with CTRL-C.

Command Qualifiers

SHOW STATISTICS /[NO]CASE

†/AFTER

†/BEFORE

† Specify these time-based qualifiers in the same format as other standard OpenVMS commands.

Chapter 4 / Using Connect:Direct for OpenVMS Commands 57
Parameters
There are no parameters associated with the SHOW STATISTICS command.

Required Qualifiers
There are no required qualifiers for the SHOW STATISTICS command.

Qualifiers

/[NO]CASE
allows for the case sensitivity as follows:

/CASE ensures that case is preserved for all characters enclosed in quotation marks.
/NO CASE ignores the case of characters enclosed in quotation marks and converts them to
uppercase.

/CCODE=(condition,completion code)
searches for records by completion codes for each step of a Process.

condition allows you to set limits on the record search by completion code. The options for specifying
a condition are: GT (greater than), LT (less than), EQ (equal), NE (not equal), GE (greater than or
equal), or LE (less than or equal).

completion code specifies a completion code value. For example, if CCODE = (GT,0) is specified,
you will see statistics records in which the step completion code is greater than zero, as long as the
records also meet other specified criteria. A zero completion code indicates that the step was
successful.

The standard completion codes are as follows:

 /CCODE=(condition,completion code)

 /DETAIL

 /EXCLUDE=(MEMBER|MCR|WTO|NOTWTO)

 /LAST

 /OUTPUT=filename

 /PNAME=name|(list)

 /PNUMBER=number|(list)

 /PRINT

 /SERVER=server_alias

†/SINCE

 /STARTT=([date|day][,hh:mm:ssXM])

 /STOPT=([date|day][,hh:mm:ssXM])

 /SUBMITTER=("submitter_node,submitter_id")|(list)

Command Qualifiers

† Specify these time-based qualifiers in the same format as other standard OpenVMS commands.

58 Connect:Direct for OpenVMS User’s Guide
0 indicates successful execution of the Process step.
4 indicates a warning level error was encountered. The command probably completed normally
but you should verify the execution results.
8 indicates an error occurred during Process step execution.
16 indicates a severe error occurred during Process step execution.

/DETAIL
shows additional details such as: submitter class, priority, scheduled start time, scheduled start day
and date, Process name, return code, message id, and feedback.

/EXCLUDE=(MEMBER|MCR|WTO|NOTWTO)
specifies that certain statistics records are not selected. If this qualifier is not entered, all statistics are
selected.

MEMBER or MCR specifies that copy steps involving library modules are excluded.

WTO specifies that informational messages are excluded from the SHOW STATISTICS command.

NOTWTO specifies that all normal statistics are excluded.

/LAST
show statistics records for the last Process submitted. It cannot be specified if the /STARTT qualifier
is specified.

/OUTPUT=filename
directs the output of the SHOW STATISTICS command to the specified filename or device. The
output is formatted in tabular form, that is, as it is typically displayed online.

filename specifies a filename that conforms to standard OpenVMS naming conventions.

/PNAME=name|(list)
searches for the Process by Process name.

name specifies the name of a specific Process. Process names can range from 1–8 alphanumeric
characters.

You can specify a list of Process names. The list is enclosed in parentheses, and each Process name is
separated by a comma; for example:

/PNUMBER=number|(list)
searches for Processes by Process number.

number specifies the specific Process number of a Process. Process numbers are assigned by
Connect:Direct when Processes are successfully submitted. Process numbers can range from
1–99999.

You can specify a list of Process numbers. The list is enclosed in parentheses, and each Process
number is separated by a comma; for example:

/PRINT
routes the output of the SHOW STATISTICS command to the default printer. The output is formatted
in tabular form as it would be displayed online.

/PNAME=(PROC1,PROC2,PROC3. . .)

/PNUMBER=(1,2,3. . .)

Chapter 4 / Using Connect:Direct for OpenVMS Commands 59
/SERVER=server_alias
specifies the particular server to receive the command.

server_alias specifies the 1–16 alphanumeric character name of the server as defined in
NDM$$DIRECTORY:SERVER.DAT.

/STARTT=([date|day][,hh:mm:ssXM])
searches for statistics by start time and either the day or date. Note that date, day, and time are
positional parameters. If the date or day is not specified, a null string and a comma must precede the
time; for example:

date indicates the beginning date for the records search. You can specify dates in either Gregorian or
Julian format.

Gregorian dates always include numeric values for the month (m), day (d), and year (y).
Connect:Direct for OpenVMS only accepts the month-day-year format for Gregorian dates.

Enter Gregorian dates with either a two-digit or a four-digit year. You can use periods and backslashes
(/) to separate the values.

mmddyy
mm/dd/yy or mm/dd/yyyy
mm.dd.yy or mm.dd.yyyy

You can use periods and backslashes (/) to separate the values. Connect:Direct for OpenVMS
processes the following Julian date formats:

yyddd or yyyyddd
yy/ddd or yyyy/ddd
yy.ddd or yyyy.ddd

If only the date is specified, the time will default to 00:00.

day indicates the beginning day for the record search. If only the day is specified, the time defaults to
00:00. You can also specify TODAY.

hh:mm:ssXM indicates the time of day in hours (hh), minutes (mm), and seconds (ss) that the
Process executed. XM can be set to AM or PM. You do not have to specify minutes and seconds.

You can express the time using the 24-hour clock or the 12-hour clock. If you use the 24-hour clock,
valid times are from 00:00 through 24:00. If you use the 12-hour clock, you would express time using
AM or PM; therefore, the 24-hour clock is assumed if you do not use AM or PM. You can also specify
NOON or MIDNIGHT.

If the STARTT qualifier is not specified, the search criterion consists of any time before the STOPT
qualifier.

If the /LAST qualifier is specified, you cannot specify STARTT.

/STARTT=("",8:00:00AM)

Note: You must use a separator to specify a four-digit Gregorian year.

Note: If you are using a date format with slashes, start values should be enclosed within double
quotation marks; for example:

/STARTT=(“09/21/1998”)

60 Connect:Direct for OpenVMS User’s Guide
/STOPT= [date|day][,hh:mm:ssXM])
specifies that statistics records are searched for up to and including the designated date, day, and time.
Date, day, and time are positional parameters. If the date or day is not specified, a null string and a
comma must precede the time; for example:

date indicates the beginning date for the records search. You can specify dates in either Gregorian or
Julian format.

Gregorian dates always include numeric values for the month (m), day (d), and year (y).
Connect:Direct for OpenVMS only accepts the month-day-year format for Gregorian dates.

Enter Gregorian dates with either a two-digit or a four-digit year. You can use periods and
backslashes (/) to separate the values.

mmddyy
mm/dd/yy or mm/dd/yyyy
mm.dd.yy or mm.dd.yyyy

You can use periods and backslashes (/) to separate the values. Connect:Direct for OpenVMS
processes the following Julian date formats:

yyddd or yyyyddd
yy/ddd or yyyy/ddd
yy.ddd or yyyy.ddd

If only the date is specified, the time will default to 00:00.

day indicates the ending day for the records search. You can also specify TODAY.

hh:mm:ssXM indicates the time of day in hours, minutes, and seconds that the last statistics record is
selected. XM can be set to AM or PM.

You can express the time using the 24-hour clock or the 12-hour clock. If you use the 24-hour clock,
valid times are from 00:00 through 24:00. If you use the 12-hour clock, you would express time using
AM or PM; therefore, the 24-hour clock is assumed if you do not use AM or PM. Minutes and
seconds need not be specified. You also can specify NOON or MIDNIGHT.

The default for the time is 24:00:00, the end of the day. If the STOPT qualifier is not specified,
statistics are selected until the present.

/SUBMITTER=(“submitter_node, submitter_id”)|(list)
searches for statistics of a Process by the submitter node and submitter id of the Process submitter.

submitter_node is a 1–16 alphanumeric character name that specifies the symbolic nodename of the
node.

submitter_id is the alphanumeric character name that specifies the OpenVMS user name of the
Process submitter.

/STOPT=("",8:00:00AM)

Note: You must use a separator to specify a four-digit Gregorian year.

Note: If you are using a date format with slashes, stop values should be enclosed within double
quotation marks; for example:

/STOPT=(“09/21/1998”)

Chapter 4 / Using Connect:Direct for OpenVMS Commands 61
You can specify a list of submitter nodes and submitter ids. Each submitter_node and submitter_id
pair is enclosed in double quotes and is separated by a comma; for example:

Examples
The following examples illustrate the use of the SHOW STATISTICS command in noninteractive mode.

The following command selects all statistics records for the Process named TEST1 that executed today:

The following command selects all statistics records for Processes that executed between 8:00 a.m. and 10:00
p.m. today:

The following command selects Processes with the criteria: completion codes greater than 0, Process number
equal to 1, executed since Wednesday at 1:00 p.m.:

The following is an example of the SHOW STATISTICS display:

The following Process generates the statistics records shown in the figure on page 62.

If the above Process was submitted today and assigned Process number 1, then the following command will
select all its statistics records.

/SUBMITTER=("submitter_node1,submitter_id1"-
,"submitter_node2,submitter_id2", . . .)

$ NDMUI SHOW STATISTICS /PNAME=TEST1 -
_> /STARTT=TODAY

$ NDMUI SHOW STATISTICS /STARTT=("",8:00) -
_> /STOPT=("",10:00PM)

$ NDMUI SHOW STATISTICS /CCODE=(GT,0) -
_> /PNUMBER=1 /STARTT=(WEDNESDAY,13:00)

=
 DATE TIME PNUM PNAME EVENT DESCRIPTION
=
 09.15.1998 08:06:09 1 COPYVMS SUBMIT SC.VMS.DAL

*THE FOLLOWING PROCESS WILL COPY A SEQUENTIAL FILE,
*SCQA1.FDATA, FROM MVS TO VMS
STEPTEST PROCES SNODE=SC.MVS.BOSTON
STEP01 COPY FROM DSN=SCQA1.FDATA SNODE -

DISP=SHR) -
 COMPRESS=PRIME=X’20’ -
 TO (DSN=U1:<DLSS.TEST>MVS.OUT -

PNODE DISP=RPL)

$ NDMUI SHOW STATISTICS /DETAIL /PNUMBER=1 /STARTT=TODAY

62 Connect:Direct for OpenVMS User’s Guide
The following is the output from the previous command:

The various elements of the statistics log shown in the previous figure are divided into six records: SUBMIT,
PROCSTART, STEPSTART, STEPEND, MSG, and PROCEND. Each section in the previous figure is labeled.
A description of each line in the records is provided.

1 PROCESS-SUBMIT
PROCESS-SUBMIT provides statistics about the submittal of the Process.

Date
indicates the date the Process was submitted to the TCQ.

Time
indicates the time the Process was submitted to the TCQ.

PROCESS-SUBMIT
is the label that describes this phase of the submitted Process.

Note: If Secure+ Option is enabled, protocol and cipher information is included in the STEPEND and
PROCEND records.

 =
 SELECT STATISTICS
 =
Date => 01.24.1999 Time => 16:27:51.18 PROCESS-SUBMIT
Pnumber => 1 Node => SC.MVS.BOSTON
Pname => STEPTEST Submitter => SC.VMS.DAL DLSS
Rtncd => 0 Message ID => VSRV101I Feedback => 0
File STEP
VSRV101I: Feedback: 0 Reply: 0 Function: dtf_submit
Process submitted successfully. Process number: 1
 ..
Date => 01.24.1999 Time => 16:28:19.92 PROCESS-PROCSTART
Pnumber => 1 Snode => SC.MVS.BOSTON Xnode => P
Pname => STEPTEST Submitter => SC.VMS.DAL DLSS
SM Name => QA4_AT_026 Class => 4
 ..
Date => 01.24.1999 Time => 16:28:29.50 PROCESS-STEPSTART
Pnumber => 1 Snode => SC.MVS.BOSTON Xnode => P
Pname => STEP_TEST Submitter => SC.VMS.DAL DLSS
Function => COPY Step Name => STEP01
 ..
Date => 01.24.1999 Time => 16:30:55.45 PROCESS-STEPEND
Pnumber => 1 Xlate => Start Date => 01:24.1999
Pname => STEPTEST Compress => YES Start Time => 16:27:51.18
Msgid => SCPA000I Restart => NO End Date => 01:24.1999
Rtncd => 0 Link Stat => OK End Time => 16:30:48.21
FDBK => 0 Snode => SC.MVS.BOSTON Direction => RECEIVE
Step => STEP01 Submitter => SC.VMS.DAL DLSS
 From Snode DSN= SCQA1.FDATA RUsize= 2048
 I/O Bytes=> 80000 Xmit Bytes=> 78483
 I/O Recs => 1000 Xmit RUs=> 39 Comp%=> 1.90
 To Pnode DSN= U1:<DLSS.TEST>:MVS.OUT
 I/O Bytes=> 80000 Xmit Bytes=> 78483
 I/O Recs=> 1000 Xmit RUs=> 39 Comp%=> 1.90
SCPA000I: Feedback: 0 Reply: 0 Function: copy_function
COPY successfully completed.
 ..
Date => 01.24.1999 Time => 16:30:58.98 MESSAGE-MSG
Pnumber => 1 Node => SC.MVS.BOSTON SM Name => QA4_AT_02G
Pname => STEPTEST Submitter => SC.VMS.DAL DLSS
Exit step, ending process execution - (execute_process)
 ..
Date => 01.24.1999 Time => 16:31:04.40 PROCEND
Pnumber => 1 Snode => SC.MVS.BOSTON Xnode => P
Pname => STEPTEST Submitter => SC.VMS.DAL DLSS
Rtncd => 0 Message ID => VSMT000I Feedback => 0
VSMT000I: Feedback: 0 Reply: 0 Function: execute_process
End of Process.

1

2

3

4

5

6

Chapter 4 / Using Connect:Direct for OpenVMS Commands 63
Pnumber
is the Process number that was assigned by Connect:Direct when the Process was submitted
successfully.

Node
is the secondary nodename.

Pname
is the label on the PROCESS statement.

Submitter
is the name of the node submitting the Process. DLSS is the submitter’s OpenVMS user name.

Rtncd
is the completion code for the step. A zero (0) indicates successful completion of a step. The field
can be shown in decimal or hexadecimal format.

Message ID
is the identification number of the message in the online message file.

Feedback
is optional information for diagnostic purposes.

File
is the name of the file containing the Process that you are submitting.

VSRV101I
is the identification number of the message in the online message file. A short version follows the
message id number. In this case, the Process submitted successfully.

Feedback
is repeated as part of the short message text and provides optional information for diagnostic
purposes.

Reply
is the return code that is repeated as part of the short message. It is the completion code for the step.
A zero (0) translates to successful completion of a step.

Function
is the subroutine name for the particular step in the Process. It is a name that is part of Connect:Direct
internals and is used for diagnostic purposes.

Process submitted successfully
is the short version of the message text. If you need further information, refer to the online message
file, using the message id number that is provided as part of this record.

Process number
is repeated as part of the short message text and is the number assigned by Connect:Direct when the
Process was submitted successfully.

2 PROCESS-PROCSTART
PROCESS-PROCSTART provides statistics about the start of the Process.

Date
indicates the date the Process actually started running.

64 Connect:Direct for OpenVMS User’s Guide
Time
indicates the time the Process started running.

PROCESS-PROCSTART
is the label that describes this phase of the submitted Process.

Pnumber
is the number assigned by Connect:Direct when the Process was submitted successfully.

Snode
is the secondary nodename.

Xnode
indicates the node with Process control. In this example, the Xnode is the PNODE.

Pname
is the label on the PROCESS statement.

Submitter
is the name of the node submitting the Process. DLSS is the submitter’s OpenVMS user name.

SM Name
is the OpenVMS process name of the session manager that is executing the Process.

Class
defines the session used.

3 PROCESS-STEPSTART
PROCESS-STEPNAME provides statistics about the start of a step of a Process.

Date
indicates the date the particular step of a Process actually started running.

Time
indicates the time the particular step of a Process started running.

PROCESS-STEPSTART
is the label that describes this phase of the submitted Process.

Pnumber
is the number assigned by Connect:Direct when the Process was submitted successfully.

Snode
is the secondary nodename.

Xnode
indicates the node that is transmitting the data during this step. In this example, the Xnode is the
PNODE.

Pname
is the label on the PROCESS statement.

Submitter
is the name of the node submitting the Process. DLSS is the submitter’s OpenVMS user name.

Chapter 4 / Using Connect:Direct for OpenVMS Commands 65
Function
is the subroutine name for the particular step in the Process. It is a name that is part of Connect:Direct
internals and is used for diagnostic purposes. In this case, it identifies the COPY statement entered as
part of the Process.

Step Name
is the label in the Process.

4 PROCESS-STEPEND
PROCESS-STEPEND provides statistics about the end of a step of a Process.

Date
indicates the date the particular step of a Process stopped running.

Time
indicates the time the particular step of a Process stopped running.

PROCESS-STEPEND
is the label that describes this phase of the submitted Process.

Pnumber
is the number assigned by Connect:Direct when the Process was submitted successfully.

Xlate
indicates that you are converting from EBCDIC to ASCII.

Start Date
indicates the date the Process actually started running.

Pname
is the label on the PROCESS statement.

Compress
indicates whether you have requested data compression of the data that was transmitted.

Start Time
indicates the time the Process started running.

Message ID
is the identification number of the message in the online message file.

Restart
indicates whether the transmission was interrupted and the Process was restarted.

End Date
is the ending date for the particular step in the Process.

Rtncd
is the completion code for the step. A zero (0) translates to successful completion of a step. The field
can be shown in decimal or hexadecimal format.

Link Stat
indicates the status of the communications link to the node to which you are transmitting. Values for
this field include OK and failed.

66 Connect:Direct for OpenVMS User’s Guide
End Time
is the ending time for the particular step in the Process.

FDBK (feedback)
is optional information for diagnostic purposes.

Snode
is the secondary nodename.

Direction
is the direction of the files transfer. Values for this field are SEND and RECEIVE.

Step
is the label name as assigned by the user as part of the Process.

Submitter
is the name of the node submitting the Process. DLSS is the submitter’s user id.

From Snode DSN
is the name of the data set from which the data is being transmitted. In this example, the Process is
submitted from the SNODE.

To Pnode DSN
is the name of the data set that is receiving the transmission. In this example, the Process is received
at the PNODE.

I/O Bytes
fields indicate the number of bytes that are read or written from disk or tape. This information is
provided for both SNODE and PNODE.

Xmit Bytes
fields indicate the number of bytes sent or received during the session, including Connect:Direct
control information. This information is provided for both SNODE and PNODE.

Comp%
indicates the compression percentage. This information is provided for both SNODE and PNODE.

I/O Recs
indicate the number of actual records transmitted. This information is provided for both SNODE and
PNODE.

Xmit RUs
indicate the number of request units transmitted. This information is provided for both SNODE and
PNODE.

SCPA000I
is the identification number of the message in the online message file. A short version follows the
message id number. In this example, the COPY successfully completed.

Feedback
is repeated as part of the short message text and provides optional information for diagnostic
purposes.

Reply
is the return code that is repeated as part of the short message; it is the completion code for the step. A
zero (0) translates to successful completion of a step.

Chapter 4 / Using Connect:Direct for OpenVMS Commands 67
Function
is the subroutine name for the particular step in the Process; it is a name that is part of Connect:Direct
internals and is used for diagnostic purposes.

COPY successfully completed
is the short version of the message text. If you need further information, refer to the online message
file, using the message id number that is provided as part of this record.

5 MESSAGE-MSG
MESSAGE-MSG provides statistics about informational messages.

Date
indicates the date of the message.

Time
indicates the time of the message.

MESSAGE-MSG
is the label that describes this phase of the submitted Process.

Pnumber
is the number assigned by Connect:Direct when the Process was submitted successfully.

Node
is the secondary nodename.

SM Name
is the OpenVMS process name of the session manager that is executing the Process.

Pname
is the label on the PROCESS statement.

Submitter
is the name of the node submitting the Process. DLSS is the submitter’s OpenVMS user name.

Exit step, ending process execution - (execute_process)
is the message indicating that execution is complete.

6 PROCEND
PROCEND provides statistics about the end of the Process.

Date
indicates the date the Process ended.

Time
indicates the time the Process ended.

PROCEND
is the label that describes this phase of the submitted Process.

Pnumber
is the number assigned by Connect:Direct when the Process was submitted successfully.

Snode
is the secondary nodename.

68 Connect:Direct for OpenVMS User’s Guide
Xnode
indicates the node that is transmitting the data during this step. In this case, the Xnode is the PNODE.

Pname
is the label on the PROCESS statement.

Submitter
is the name of the node submitting the Process. DLSS is the submitter’s OpenVMS user name.

RTNCD
is the completion code for the step. A zero (0) translates to successful completion of a step. The field
can be shown in decimal or hexadecimal format.

Message ID
is the identification number of the message in the online message file.

Feedback
is optional information for diagnostic purposes.

VSTM000I
is the identification number of the message in the online message file. A short version follows the
message id number.

Feedback
is repeated as part of the short message text and provides optional information for diagnostic
purposes.

Reply
is the return code that is repeated as part of the short message; it is the completion code for the step. A
zero (0) translates to successful completion of a step.

Function
is the subroutine name for the particular step in the Process; it is a name that is part of Connect:Direct
internals and is used for diagnostic purposes.

End of Process
is the short version of the message text. If you need additional information, refer to the online
message file, using the message id number that is provided as part of this record.

Obtaining Current Version
The SHOW VERSION command allows you to display the current version of Connect:Direct for OpenVMS.

Reviewing the Command Format
The following shows the format of the SHOW VERSION command. There are no parameters or qualifiers.

Command Parameters

SHOW VERSION

Chapter 4 / Using Connect:Direct for OpenVMS Commands 69
Parameters
There are no parameters associated with the SHOW VERSION command.

Qualifiers
There are no qualifiers associated with the SHOW VERSION command.

Example
Results of the SHOW VERSION command are displayed as follows:

Issuing DCL Commands
The SPAWN command is useful when you are in interactive mode. It creates a subprocess that allows you to
issue DCL commands at the DCL prompt without terminating your Connect:Direct session.

SPAWN can work in two ways. If you issue the SPAWN command without specifying a DCL command, you
can work at the DCL prompt for an extended period of time. You can return to interactive mode at any time by
entering the DCL LOGOUT command, or you can issue the SPAWN command with a single DCL command.
Once the DCL command executes, you return to interactive mode without entering LOGOUT.

Reviewing the Command Format
The following shows the command format of the SPAWN command.

Stopping Connect:Direct
The STOPNDM command allows you to stop Connect:Direct while it is executing. If you are issuing
commands in interactive mode and issue the STOPNDM command, you also need to exit the NDMUI by
issuing the EXIT command.

Connect:Direct for OpenVMS Version 3.4.00

Command

SPAWN

70 Connect:Direct for OpenVMS User’s Guide
Reviewing the Command Format
The following shows the command format and qualifiers of the STOPNDM command. A description of the
qualifiers follows the STOPNDM command format. Default values are underlined. There are no parameters.

Parameters
There are no parameters associated with the STOPNDM command.

Qualifiers
There are no required qualifiers for the STOPNDM command

/FORCE
stops Connect:Direct immediately; the server immediately cancels all session managers.

Examples
The following examples illustrate the STOPNDM command in noninteractive and interactive modes.

In noninteractive mode, STOPNDM stops Connect:Direct upon completion of the executing Processes. The
prompt returns to the OpenVMS prompt.

In interactive mode, STOPNDM stops Connect:Direct upon completion of the executing Processes. The
prompt returns to user interface after the STOPNDM command is executed. The EXIT command is required in
order to return to the OpenVMS prompt.

Submitting a Process
Use the SUBMIT command to place a Process in the TCQ for execution.

Command Qualifiers

STOPNDM /FORCE

$ NDMUI STOPNDM

$ NDMUI
Connect:Direct> STOPNDM
Connect:Direct> EXIT
$

Chapter 4 / Using Connect:Direct for OpenVMS Commands 71
Reviewing the Command Format
The following shows the format, parameters, and qualifiers of the SUBMIT command. The required parameter
is in bold print. Qualifiers are indicated with a forward slash character (/). A description of the parameter and
qualifiers follows the SUBMIT command format. Default values for qualifiers are underlined.

Required Parameters

filename
names the file you are submitting that contains the Process. The filename can be any valid OpenVMS
filename. An extension of NDM is not required; however NDM is assumed if an extension is not
provided.

Command Parameters and Qualifiers

SUBMIT filename

†/AFTER

 /[NO]CASE

 /CLASS=number

/DEFCONN_MODE=FIRST|SCAN|name

 /HOLD=No|Yes

 /LOG[=file]

 /MAIL=[username|(list)]

 /NOKEEP

 /NORESTART

 /NOTIFY=[username|(list)]

 /PNAME=name

 /PRTY=number

 /RETAIN=No|Yes|Initial

 /RETRY_LIMIT=number

 /SACCT=‘snode-accounting-data’

 /SERVER=server_alias

 /SNODE=nodename

 /SNODEID=(id, pswd [,newpswd])

 /STARTT=([date|day] [,hh:mm:ssXM])

 /SYMBOLICS=(symbol=value [,symbol1=value1])

 /TEST

 /[NO]WAIT

 /XSID=REMOTE_ACCT_IDENTIFIER

† Specify this time-based qualifier in the same format as other standard OpenVMS commands.

72 Connect:Direct for OpenVMS User’s Guide
Qualifiers
There are no required qualifiers for the SUBMIT command.

/[NO]CASE
allows for the case sensitivity as follows:

/CASE ensures that case is preserved for all characters enclosed in quotation marks.
/NO CASE ignores the case of characters enclosed in quotation marks and converts them to
uppercase.

/CLASS=number
determines the node-to-node session on which a Process can execute. If CLASS is not specified in
your Process, it will default to the class value specified for PARSESS in the network map.

/DEFCONN_MODE=FIRST|SCAN|name
specifies the default method of selecting a communication path that is used to establish a session for
Process execution.

FIRST specifies that Connect:Direct uses only the first COMM_PATH specification to establish a
connection.

SCAN specifies that Connect:Direct uses each COMM_PATH specification in turn until a connection
is successfully made.

name specifies an actual COMM_PATH name which Connect:Direct uses when establishing a
connection.

/HOLD=No|Yes
delays execution of a Process until it is released or until it is called by a remote node.

If you specify both HOLD=YES and a STARTT (start time and/or start date) value, the Process is
placed in the Hold queue. If the start time has not passed once you release the Process, the Process
begins execution at the specified start time.

If you specify RETAIN=YES and HOLD=NO, HOLD is ignored.

No specifies that the Process is executed immediately. The default is No.

Yes specifies that the Process remains in the Hold queue until you take one of the following actions:

Release the Process with the CHANGE PROCESS /HOLD=NO command.
Delete the Process with the DELETE PROCESS command.
Release the Process with the CHANGE PROCESS /RELEASE command.

/LOG[=file]
causes Process termination status messages to be written to a file.

file is the user-defined specific log file. The default file specification is
SYS$LOGIN:NDM_EVENT.LOG.

/MAIL=[username|(list)
causes Process termination status messages to be mailed to the specified user name or list of user
names.

username is the user name to receive the status message. The default user name is the command
issuer.

Chapter 4 / Using Connect:Direct for OpenVMS Commands 73
You can specify a list of user names. The list is enclosed in parentheses, and each user name is
separated by a comma.

/NOKEEP
indicates that the Process is not to be retained in the Hold queue when it has exhausted its retry limit.

/NORESTART
indicates that the Process cannot be restarted in case of node or server failure.

/NOTIFY=[username|(list)
causes Process termination status messages to be broadcast to a user name or list of user names.

username is the user name to receive the status broadcast. The default user name is the command
issuer.

You can specify a list of user names. The list is enclosed in parentheses, and each user name is
separated by a comma.

/PNAME=name
overrides the label on the PROCESS statement in the statistics records for this operation.

name is the 1–8 character alphanumeric name of the Process.

/PRTY=number
sets the priority of the Process in the TCQ. This priority is used for Process selection and does not
affect the OpenVMS priority. The default priority is defined during installation of Connect:Direct.

number is an integer in the range 0–15.

/RETAIN=No|Yes|Initial
keeps a copy of the Process in the TCQ after it executed and establishes other times and days that it
will execute. The Process number of the copy is incremented by 100,000.

If you enter the SUBMIT command with /RETAIN=YES, a date cannot be used with /STARTT. You
can only specify a start time and day or start time or day.

If you enter the SUBMIT command with /RETAIN=YES and a STARTT (start time only) value, the
Process executes at the same time every day.

If you enter the SUBMIT command with /RETAIN=YES and STARTT (start time and day) values, a
Process executes at the specified time and day each week.

If you enter the SUBMIT command with only /RETAIN=YES, the Process is placed on the Hold
queue and can be released with the CHANGE PROCESS /RELEASE command.

The /STARTT qualifier is not valid with /RETAIN=INITIAL.

No deletes the Process after execution. The default is No.

Yes keeps a copy of the Process in the TCQ after execution and executes it as instructed by the
STARTT values.

Initial keeps a copy of the Process and executes it every time that Connect:Direct is initialized.

/RETRY_LIMIT=number
is used to override the default server table value.

/MAIL=(username1,username2 ,username3. . .)

/NOTIFY=(username1, username2. . .)

74 Connect:Direct for OpenVMS User’s Guide
number is an integer indicating the number of retries.

/SACCT=’snode-accounting-data’
specifies the accounting data for the secondary node.

snode-accounting-data has a maximum length of 256 characters. If special characters or blanks are
part of the accounting data, the string must be enclosed in double quotation marks.

/SERVER=server_alias
specifies the particular server to receive the command.

server_alias specifies the 1–16 alphanumeric character name of the server as defined in
NDM$$DIRECTORY:SERVER.DAT.

/SNODE=nodename
overrides the default SNODE (secondary node) assigned in the Process on the PROCESS statement.

nodename is the alphanumeric character name of the secondary node. It can contain up to 16
characters.

/SNODEID=(id, pswd [, newpswd])
specifies security userids and security passwords at the SNODE.

id specifies the security id that will be passed to a security exit.

pswd specifies the current security password. This parameter can be used by the security exit to
validate the current security password.

newpswd specifies the new security password. This changes the current security password to the new
security password.

/STARTT=([date|day][,hh:mm:ssXM])
specifies the start time and either the date or day the Process is to execute. Note that date, day, and
time are positional; therefore, if the date or day is not specified, a null string and a comma must
precede the time. The following example specifies the Process runs on the current date at 8:00 a.m. If
8:00 a.m. is already past, the Process will run immediately.

/STARTT is not valid if you specify /RETAIN=INITIAL.

You cannot specify a date within the /STARTT qualifier with /RETAIN =YES; you can only specify
day and time.

date ensures that the Process executes on the specified date. You can specify dates in either Gregorian
or Julian format.

Gregorian dates always include numeric values for the month (m), day (d), and year (y).
Connect:Direct for OpenVMS only accepts the month-day-year format for Gregorian dates.

Enter Gregorian dates with either a two-digit or a four-digit year. You can use periods and
backslashes (/) to separate the values.

mmddyy
mm/dd/yy or mm/dd/yyyy
mm.dd.yy or mm.dd.yyyy

/STARTT=("",8:00:00AM)

Note: You must use a separator to specify a four-digit Gregorian year.

Chapter 4 / Using Connect:Direct for OpenVMS Commands 75
You can use periods and backslashes (/) to separate the values. Connect:Direct for OpenVMS
processes the following Julian date formats:

yyddd or yyyyddd
yy/ddd or yyyy/ddd
yy.ddd or yyyy.ddd

If only the date is specified, the time will default to 00:00.

day releases the Process for execution on the specified day of the week.

If only the day is specified, the time will default to 00:00; therefore, if you submit a Process on
Monday, with Monday as the only /STARTT qualifier, the Process will not run until the following
Monday.

You also can specify TODAY, which releases the Process for execution today, or TOMORROW,
which releases the Process for execution the next day.

hh:mm:ssXM indicates the time of day in hours (hh), minutes (mm), and seconds (ss) that the
Process is to be released. XM can be set to AM or PM. You do not have to specify minutes and
seconds.

You can express the time using the 24-hour clock or the 12-hour clock. If you use the 24-hour clock,
valid times are from 00:00 through 24:00. If you use the 12-hour clock, you would express time using
AM or PM; therefore, the 24-hour clock is assumed if you do not use AM or PM.

If you specify hh:mm:ssXM and you use /RETAIN=YES, then the Process will execute the same time
every day.

You can also specify NOON, which releases the Process for execution at noon, or MIDNIGHT,
releases the Process for execution at midnight.

/SYMBOLICS= (symbol=value [,symbol1=value1])
specifies a set of symbol substitutions in the Process. The substitutions override any default values
specified in the PROCESS statement. Values specified in a symbol statement cannot be overridden.

A null value can be specified if the equal (=) sign is immediately followed by a comma. Symbolics
containing special characters must be enclosed in double quotation marks.

/TEST
allows you to check the syntax and modal logic of a Process without having to actually submit the
Process for execution.

/[NO]WAIT
causes the operation to be performed asynchronously. NOWAIT is the default.

/[XSID=REMOTE_ACCT_IDENTIFIER
a string identifier that references a specific [username,password] entry in a password file.

Examples
The following example illustrates the SUBMIT command and the /SYMBOLICS qualifier in noninteractive
mode.

Note: If you are using a date format with slashes, start values must be enclosed within double
quotation marks; for example:

/STARTT=("09/21/1998")

76 Connect:Direct for OpenVMS User’s Guide
Assume you have the following Process:

The following command submits the Process. The values for the TO and FROM data set names specified in
the /SYMBOLICS qualifier will be substituted in the Process.

Interrupting an Executing Process
The SUSPEND PROCESS command allows you to interrupt an executing Process.

Reviewing the Command Format
The following shows the format and qualifiers of the SUSPEND PROCESS command. Required qualifiers are
in bold print. A description of the qualifiers follows the SUSPEND PROCESS command format. There are no
parameters.

Parameters
There are no parameters associated with the SUSPEND PROCESS command.

Required Qualifiers
If /PNAME, /PNUMBER, or /SUBMITTER are not specified, then the command will act on all processes
that are accessible by the user. Additional qualifiers are optional.

Qualifiers

/[NO]CASE
allows for the case sensitivity as follows:

/CASE ensures that case is preserved for all characters enclosed in quotation marks.

SEND PROCESSNODE=MVS.NODE
STEP01 COPYFROM(DSN=&FROM PNODE)-

TO (DSN=&TO DISP=RPL)

$ NDMUI SUBMIT SEND.TXT-
_> /SYMBOLICS=("TO=MVS.FILE","FROM=VMS.TXT")

Command Qualifiers

SUSPEND PROCESS /[NO]CASE

/PNAME=name|(list)

/PNUMBER=number|(list)

/SUBMITTER=("submitter_node,submitter_id")|(list)

/FORCE

/SERVER=server_alias

Chapter 4 / Using Connect:Direct for OpenVMS Commands 77
/NO CASE ignores the case of characters enclosed in quotation marks and converts them to
uppercase.

/PNAME=name|(list)
searches for the Process by Process name.

name specifies the name of a specific Process. Process names can range from 1–8 alphanumeric
characters.

You can specify a list of Process names. The list is enclosed in parentheses, and each Process name is
separated by a comma; for example:

/PNUMBER=number|(list)
searches for the Process by Process number.

number specifies the specific number of a Process. These numbers are assigned by Connect:Direct
when Processes are submitted successfully. Process numbers can range from 1–99999.

You can specify a list of Process numbers. The list is enclosed in parentheses, and each Process
number is separated by a comma; for example:

/SUBMITTER=(“submitter_node, submitter_id”) |(list)
searches for the Process by the submitter node and submitter id of the submitter of the Process.

submitter_node is a 1–16 alphanumeric character name that specifies the symbolic node name of the
node.

submitter_id is the alphanumeric character name that specifies the OpenVMS user name of the
submitter of the Process.

You can specify a list of submitter nodes and submitter ids. Each submitter_node and submitter_id
pair is enclosed in double quotes and is separated by a comma; for example:

/FORCE
suspends the Process by stopping the session manager. You can use this qualifier to terminate the
OpenVMS process that is executing the Connect:Direct script. The Connect:Direct script is then
retained in the TCQ.

/SERVER=server_alias
specifies the particular server to receive the command.

server_alias specifies the 1–16 alphanumeric character name of the server as defined in
NDM$$DIRECTORY:SERVER.DAT.

Examples
The following examples illustrate the use of the SUSPEND PROCESS command in noninteractive mode.

/PNAME=(PROC1,PROC2,PROC3. . .)

/PNUMBER=(1,2,3. . .)

/SUBMITTER=("submitter_node1,submitter_id1"-
,"submitter_node2,submitter_id2", . . .)

78 Connect:Direct for OpenVMS User’s Guide
The following command suspends an executing Process named TEST1 and places it on the TCQ:

The following command suspends an executing Process number 3 and places it on the TCQ:

The following command suspends an executing Process submitted by nodename SC.VMS.QA4 and userid of
QA11 and places it in the TCQ:

The following command suspends a hanging Process named TEST1 and places it on the TCQ:

$ NDMUI SUSPEND PROCESS /PNAME=TEST1

$ NDMUI SUSPEND PROCESS /PNUMBER=3

$ NDMUI SUSPEND PROCESS /SUBMITTER=("SC.VMS.QA4,QA11")

$ NDMUI SUSPEND PROCESS /PNAME=TEST1 /FORCE

Chapter 5

Using the Application Programming Interface

The Application Programming Interface (API) provides a precise and controlled interface to Connect:Direct for
OpenVMS. The API does replace the user interface program, but rather supplements it. It does not provide all
the features and functions of Connect:Direct for OpenVMS; however, the provided capabilities cover the vast
majority of normal situations.

The following compiled script routines are currently supported:

NDM_CSX_API_SCRIPT_EXEC_SUBMIT
NDM_CSX_API_SCRIPT_TERM_NOTIFY

The following event API routines are currently supported:

NDM_EVENT_API_RECEIVE STREAM
NDM_EVENT_API_DECODE_MESSAGE
NDM_EVENT_API_DECODE_ITEM
NDM_EVENT_API_WRITE_MESSAGE
NDM_EVENT_API_MSGFILE_OPEN
NDM_EVENT_API_MSGFILE_DISPLAY
NDM_EVENT_API_MSGFILE_CLOSE
NDM_EVENT_API_GET_VERSION

This chapter describes the API, its functions and supported routines, and its usage.

Understanding the API
The API follows standard OpenVMS conventions and can be used by any supported OpenVMS language. All
routines return standard condition values in register zero (R0) and can be used by any supported language on
OpenVMS systems. Because these routines require ast’s to complete their processing, ast’s should not
generally be disabled and ast states are unaffected by these routines. To access these routines, link against the
appropriate shareable image.

80 Connect:Direct for OpenVMS User’s Guide
CSX Application Programming Interface
You can submit compiled scripts under direct program control, by using a shareable image
(NDM_CSX_SHR.EXE). It contains routines that obey the OpenVMS procedure calling standards.

The following sections describe the currently defined procedures.

Submitting a Compiled Script for Execution
The NDM_CSX_API_SCRIPT_EXEC_SUBMIT (Submit Compiled Script for Execution) routine performs
the following tasks:

Opens the specified script file
Performs placeholder substitution
Issues an execution request to the Connect:Direct for OpenVMS server process.

Reviewing the Format and Arguments
The following table shows the format and arguments for the NDM_CSX_API_SCRIPT_EXEC_SUBMIT
routine. A description of each argument follows the routine format.

Return Values
The following are values returned in register zero (0) for the NDM_CSX_API_SCRIPT_EXEC_SUBMIT
routine:

OpenVMS usage: cond_value
type: longword (signed)
access: write only
mechanism: by value

Routine Arguments

NDM_CSX_API_SCRIPT_EXEC_SUBMIT sx_file

[sx_env]

[sx_notify]

sx_rqid

rqid_size

sx_name

sx_number

reserved_1

reserved_2

Chapter 5 / Using the Application Programming Interface 81
Arguments
The following are descriptions for each argument for the NDM_CSX_API_SCRIPT_EXEC_SUBMIT routine:

sx_file
the filename of the script to be submitted for execution. This is the address of a descriptor pointing to
the script filename.

OpenVMS Usage: char_string
type: character string
access: read only
mechanism: by descriptor

sx_env
the Connect:Direct for OpenVMS server process environment name. This is the address of a
descriptor pointing to the environment name.

OpenVMS Usage: char_string
type: character string
access: read only
mechanism: by descriptor

sx_notify
the address of a longword that contains a notification context identifier created by a previous call to
NDM_CSX_API_SCRIPT_TERM_NOTIFY.

OpenVMS Usage: identifier
type: longword (unsigned)
access: read only
mechanism: by reference

sx_rqid
the address of a descriptor pointing to a character string where
NDM_CSX_API_SCRIPT_EXEC_SUBMIT writes the request identifier. The request identifier can
be up to 64 bytes in length.

OpenVMS Usage: char_string
type: character string
access: write only
mechanism: by descriptor

rqid_size
the length of the request identifier returned by NDM_CSX_API_SCRIPT_EXEC_SUBMIT. The
rqid_size argument is the address of a unsigned word integer into which
NDM_CSX_API_SCRIPT_EXEC_SUBMIT writes the length.

OpenVMS Usage: word_unsigned
type: word (unsigned)
access: write only
mechanism: by reference

82 Connect:Direct for OpenVMS User’s Guide
sx_name
the address of a descriptor pointing to a character string into which
NDM_CSX_API_SCRIPT_EXEC_SUBMIT writes the name assigned the script by the user. The
script name can be up to 8 bytes in length.

OpenVMS Usage: char_string
type: character string
access: write only
mechanism: by descriptor

name_size
the length of the script name returned by NDM_CSX_API_SCRIPT_EXEC_SUBMIT. This is the
address of a unsigned word integer into which NDM_CSX_API_SCRIPT_EXEC_SUBMIT writes
the length.

OpenVMS Usage: word_unsigned
type: word (unsigned)
access: write only
mechanism: by reference

sx_number
the address of a signed longword into which NDM_CSX_API_SCRIPT_EXEC_SUBMIT writes the
number assigned to the execution of the script by Connect:Direct for OpenVMS.

OpenVMS Usage: longword_signed
type: ongword integer (signed)
access: write only
mechanism: by reference

reserved_1
placeholding argument reserved to Sterling Commerce. This argument must be specified as zero.

OpenVMS Usage: null_arg
type: longword integer (unsigned)
access: read only
mechanism: by value

reserved_2
placeholding argument reserved to Sterling Commerce. This argument must be specified as zero.

OpenVMS Usage: null_arg
type: longword integer (unsigned)
access: read only
mechanism: by value

Using the NDM_CSX_API_SCRIPT_EXEC_SUBMIT Routine
NDM_CSX_API_SCRIPT_EXEC_SUBMIT opens the specified compiled script file and performs placeholder
substitution and remote access control processing as necessary. The script submit symbols are cleared and the
resulting script is issued to the appropriate Connect:Direct for OpenVMS server process given by the
environment name. Upon successful submission, the request identifier assigned to the script execution is
returned to the process.

Multiple submission requests can use the returned identifiers to distinguish between outstanding requests for
notification purposes.

TMPMBX, NETMBX, OPER privileges are required to use this routine.

Chapter 5 / Using the Application Programming Interface 83
Returned Condition Values
The following table shows the condition values returned by the routine and their meaning.

Enabling Script Termination Notification
The NDM_CSX_API_SCRIPT_TERM_NOTIFY (Enable Script Termination Notification) routine enables the
Process to receive notification of compiled script termination.

Reviewing the Format and Arguments
The following table shows the format and arguments for the NDM_CSX_API_SCRIPT_TERM_NOTIFY
routine. A description of each argument follows the routine format.

Return Values
The following are values returned in register zero (0) for the NDM_CSX_API_SCRIPT_TERM_NOTIFY
routine:

OpenVMS usage: cond_value
type: longword (signed)
access: write only
mechanism: by value

Condition Value Returned Meaning

SS$_NORMAL The script was successfully submitted.

SS$_BADPARAM A reserved argument was not specified or is not zero.

SS$_UNSUPPORTED The specified file is not recognized as a compile script file.

SS$_BADCHKSUM A checksum error was encountered in accessing the script
file.

SS$_RESULTOVF An output descriptor specified a buffer which is too small to
contain the information to be returned.

Note: Any condition value returned by RMS, $QIO, $CREMBX, or LIB$ANALYZE_SDESC is also stored
in register zero (0).

Routine Arguments

NDM_CSX_API_SCRIPT_TERM_NOTIFY notify_procedure

[notify_context]

notify_ident

reserved_1

reserved_2

84 Connect:Direct for OpenVMS User’s Guide
Arguments
The following are descriptions for each argument for the NDM_CSX_API_SCRIPT_TERM_NOTIFY routine:

notify_procedure
the address of a user-supplied routine that NDM_CSX_API_SCRIPT_TERM_NOTIFY calls when a
message indicating script termination is received.

OpenVMS Usage: procedure
type: procedure value
access: function call (before return)
mechanism: by value

notify_context
the user-supplied argument that NDM_CSX_API_SCRIPT_TERM_NOTIFY passes to the
notification procedure. Whatever mechanism is used to pass notify_context to
NDM_CSX_API_SCRIPT_TERM_NOTIFY is also used to pass it to the notify routine. If this
argument is omitted, a zero value is passed.

OpenVMS Usage: user_arg
type: longword (unsigned)
access: read only
mechanism: by value

notify_ident
the address of an unsigned longword that receives a notify process identifier. The address of this
argument can be specified in subsequent script submissions for which notification of termination is
desired.

OpenVMS Usage: identifier
type: longword (unsigned)
access: write only
mechanism: by reference

reserved_1
placeholding argument reserved to Sterling Commerce. This argument must be specified as zero.

OpenVMS Usage: null_arg
type: longword integer (unsigned)
access: read only
mechanism: by value

reserved_2
placeholding argument reserved to Sterling Commerce. This argument must be specified as zero.

OpenVMS Usage: null_arg
type: longword integer (unsigned)
access: read only
mechanism: by value

Using the NDM_CSX_API_SCRIPT_TERM_NOTIFY Routine
NDM_CSX_API_SCRIPT_TERM_NOTIFY enables the calling process to receive notification from
Connect:Direct for OpenVMS that the execution of a compiled script has terminated.

The notify_ident argument can be specified as a parameter in subsequent calls to
NDM_CSX_API_SCRIPT_EXEC_SUBMIT to request notification of script termination as desired. If

Chapter 5 / Using the Application Programming Interface 85
notification of script termination is desired, this routine is called prior to any subsequent calls to
NDM_CSX_API_SCRIPT_EXEC_SUBMIT.

Call Format for the Notify Routine
The following table shows the calling format and arguments for the notify routine. A description of each
argument follows the routine format.

Arguments
The following are the arguments for the notify routine:

notify_context
value passed by NDM_CSX_API_SCRIPT_TERM_NOTIFY to the notify routine. The same passing
mechanism that was used to pass notify_context to NDM_CSX_API_SCRIPT_TERM_NOTIFY is
used by NDM_CSX_API_SCRIPT_TERM_NOTIFY to pass notify_context to the notify routine.

OpenVMS Usage: user_arg
type: longword (unsigned)
access: read only
mechanism: by value

term_status
value assigned by the user or by Connect:Direct for OpenVMS at the termination of the compiled
script.

OpenVMS Usage: user_arg
type: longword (unsigned)
access: read only
mechanism: by value

Routine Arguments

notify_procedure notify_context

term_status

process_id

process_name

procesS_user

sx_rqid

sx_name

sx_number

reserved_1

reserved_2

86 Connect:Direct for OpenVMS User’s Guide
process_id
the process identifier of the process that submitted the script to be executed.

OpenVMS Usage: process_identifier
type: longword (unsigned)
access: read only
mechanism: by value

process_name
the process name of the process that submitted the script to be executed. The process_name
argument is the address of a descriptor that points to a character string containing the process name.

OpenVMS Usage: process_name
type: character-coded text string
access: read only
mechanism: by descriptor - fixed length string

descriptor

process_user
the process user name of the process that submitted the script to be executed. The process_user
argument is the address of a descriptor that points to a character string containing the process user
name.

OpenVMS Usage: char_string
type: character-coded text string
access: read only
mechanism: by descriptor - fixed length string

descriptor

sx_rqid
the request identifier assigned to the script at the time of submission. The sx_rqid argument is the
address of a descriptor that points to a character string containing the request identifier.

OpenVMS Usage: char_string
type: character-coded text string
access: read only
mechanism: by descriptor - fixed length string

descriptor

sx_name
the name assigned to the script by the user. The sx_name argument is the address of a descriptor that
points to a character string containing the script name.

OpenVMS Usage: char_string
type: character-coded text string
access: read only
mechanism: by descriptor - fixed length string

descriptor

sx_number
the number assigned to the execution of the script by Connect:Direct for OpenVMS.

OpenVMS Usage: user_arg
type: longword (signed)
access: read only
mechanism: by value

Chapter 5 / Using the Application Programming Interface 87
reserved_1
placeholding argument reserved to Sterling Commerce.

OpenVMS Usage: null_arg
type: longword (unsigned)
access: read only
mechanism: by value

reserved_2
placeholding argument reserved to Sterling Commerce.

OpenVMS Usage: null_arg
type: longword (unsigned)
access: read only
mechanism: by value

Returned Condition Values
The following table shows the condition values returned by the routine and their meaning.

Event Application Programming Interface
An application programming interface, API, in the form of a shareable image allows you to have complete
control over processing event messages.

The API defines a set of global symbols beginning with a prefix that corresponds to a specific function. The
symbols and functions are as follows:

Condition Values Meaning

SS$_NORMAL Notification was successfully enabled.

SS$_BADPARAM A reserved argument was not specified or is not zero.

Note: Any condition value returned by $QIO, $CREMBX, LIB$GET_VM, $GETDVI, LIB$GET_EF is also
stored in register zero (0).

Symbol Function

NDMEVLC_ Specifies event class codes.

NDMEVLT_ Specifies event type codes.

NDMEVLIx_ Symbols with this prefix specify event item type codes of type x as follows:
NDMEVLIF_ Logical Flag Value
NDMEVLIB_ Unsigned Byte
NDMEVLIW_ Unsigned Word
NDMEVLIL_ Unsigned Longword
NDMEVLIQ_ Unsigned Quadword
NDMEVLIT_ OpenVMS Time Quadword
NDMEVLIS_ ASCII String
NDMEVLIV_ Vector Block

88 Connect:Direct for OpenVMS User’s Guide
The preceding symbols also define the item type codes.

When linking against the API, you must use the constructs and conventions provided in the language being
used to reference global symbols. The following are sample program segments that display the value of the
NDMEVLC_EVENT_FACILITY class code:

The following template equate files are defined in the NDM_SAMPSRC.TLB library:

NDM$EVENT_CLASS.EQU
Class Code Equates

NDM$EVENT_TYPE.EQU
Type Code Equates

NDM$EVENT_ITEM.EQU
Item Code Equates

You can process event messages as they are received or later by reading the event log files.

To process event messages in near real-time, a process calls NDM_EVENT_API_RECEIVE_STREAM.
When a message arrives, the caller’s action routine is called with the event message class and type to enable the
caller to more efficiently filter messages without first having to decode them. In this way, only those messages
that pass the caller’s event filter need to be decoded. To discard a message, the caller’s action routine simply
returns.

Alternatively, you can process event messages on a deferred basis by reading the event message log files. After
an event log record has been retrieved, the process normally calls NDM_EVENT_API_DECODE_MESSAGE
to decode the event message. The event message class and type can be retrieved directly using the Event
Message Format described previously. The information contained in the event message record header is in
native OpenVMS format.

To process Connect:Direct for OpenVMS message identifier strings, the calling process must open the
Connect:Direct for OpenVMS message file by calling the NDM_EVENT_API_MSGFILE_OPEN routine.
This routine would normally be called only once at process initialization before subsequent event message
processing. However, this is not enforced and the Connect:Direct for OpenVMS message file may be
opened/closed at any time and as many times as necessary.

The calling process obtains the text associated with a Connect:Direct for OpenVMS message identifier string
by calling the NDM_EVENT_API_MSGFILE_DISPLAY routine. This routine invokes the caller’s action
routine for each line of text associated with the message identifier.

* Macro
 .external NDMEVLC_EVENT_FACILITY
 .external display_longword
 ...
 pushl #NDMEVLC_EVENT_FACILITY
 calls #1,L^display_longword
 ...
 ret
* C
 globalvalue int NDMEVLC_EVENT_FACILITY ;
 display_longword (NDMEVLC_EVENT_FACILITY) ;
 return
* Fortan
 EXTERNAL NDMEVLC_EVENT_FACILITY
 DISPLAY_LONGWORD (%LOC(NDMEVLC_EVENT_FACILITY))
 RETURN

Chapter 5 / Using the Application Programming Interface 89
The calling process closes the Connect:Direct for OpenVMS message file by calling the
NDM_EVENT_API_MSGFILE_CLOSE routine.

Currently Defined Routines
The following routines are currently defined:

NDM_EVENT_API_RECEIVE_STREAM
NDM_EVENT_API_DECODE_MESSAGE
NDM_EVENT_API_DECODE_ITEM
NDM_EVENT_API_WRITE_MESSAGE
NDM_EVENT_API_MSGFILE_OPEN
NDM_EVENT_API_MSGFILE_DISPLAY
NDM_EVENT_API_MSGFILE_CLOSE
NDM_EVENT_API_GET_VERSION

The event message API routines obey OpenVMS calling procedure standards. All routines return system and
library conditions value in R0 and serious errors are signalled as well as returned. Refer to Appendix A, Event
Logging Facility-Event Information for a list of event information.

Receiving the Event Message Stream
The NDM_EVENT_API_RECEIVE_STREAM (Receive the Event Message Stream) routine causes the
process to become an event logging monitor.

Reviewing the Format and Arguments
The following table shows the format and arguments for the NDM_EVENT_API_RECEIVE_STREAM
routine. A description of each argument follows the routine format.

Note: The Connect:Direct for OpenVMS message file is not a standard OpenVMS message file.

Routine Arguments

NDM_EVENT_API_RECEIVE_STREAM action_procedure

action_context

reserved_1

reserved_2

90 Connect:Direct for OpenVMS User’s Guide
Return Values
The following are values returned in register zero (0) for the NDM_EVENT_API_RECEIVE_STREAM
routine:

OpenVMS usage: cond_value
type: longword (signed)
access: write only
mechanism: by value

Arguments
The following are descriptions for each NDM_EVENT_API_RECEIVE_STREAM routine argument.

action_procedure
the address of a user-supplied action routine called when an event message is received.

OpenVMS Usage: procedure
type: procedure value
access: function call (before return)
mechanism: by value

action_context
a user-supplied argument that NDM_CSX_API_SCRIPT_TERM_NOTIFY passes to the action
procedure. The method used to pass action_context to NDM_EVENT_API_RECEIVE_STREAM is
also used to pass it to the action routine. If this argument is omitted, a zero is passed by value.

OpenVMS Usage: user_arg
type: longword (unsigned)
access: read only
mechanism: by value

reserved_1
placeholding argument reserved to Sterling Commerce. This argument must be specified as zero.

OpenVMS Usage: null_arg
type: longword integer (unsigned)
access: read only
mechanism: by value

reserved_2
placeholding argument reserved to Sterling Commerce. This argument must be specified as zero.

OpenVMS Usage: null_arg
type: longword integer (unsigned)
access: read only
mechanism: by value

Using the NDM_EVENT_API_RECEIVE_STREAM Routine
NDM_EVENT_API_RECEIVE_STREAM enables the calling process to receive all event messages received
by the Connect:Direct for OpenVMS event logger process. The event action routine is called for every
message that is received.

Chapter 5 / Using the Application Programming Interface 91
Call Format for the Action Routine
The following table shows the calling format and arguments for the action routine. A description of each
argument follows the routine format.

Arguments
The following are the arguments for the action routine:

action_context
value passed by NDM_EVENT_API_RECEIVE_STREAM to the action routine. The same passing
method used to pass action_context to NDM_EVENT_API_RECEIVE_STREAM is used by
NDM_EVENT_API_RECEIVE_STREAM to pass action_context to the action routine.

OpenVMS Usage: user_arg
type: longword (unsigned)
access: read only
mechanism: by value

message
the event message as received from the Connect:Direct for OpenVMS event logger process. The
message argument is the address of a descriptor that points to a buffer containing the event message.

OpenVMS Usage: char_string
type: character string
access: read only
mechanism: by descriptor - fixed length string

descriptor

sequence
the received message counter sequence number of the message.

OpenVMS Usage: user_arg
type: longword (signed)
access: read only
mechanism: by value

Routine Arguments

action_procedure action_context

message

sequence

class

type

replay

reserved_1

reserved_2

92 Connect:Direct for OpenVMS User’s Guide
class
specifies the event message class.

OpenVMS Usage: user_arg
type: word (unsigned)
access: read only
mechanism: by value

type
specifies the event message type.

OpenVMS Usage: user_arg
type: word (unsigned)
access: read only
mechanism: by value

replay
specifies whether the event is a replay as follows:

0-Original Message
1-Replayed Message

OpenVMS Usage: user_arg
type: longword (signed)
access: read only
mechanism: by value

reserved_1
placeholding argument reserved to Sterling Commerce.

OpenVMS Usage: null_arg
type: longword (unsigned)
access: read only
mechanism: by value

reserved_2
laceholding argument reserved to Sterling Commerce.

OpenVMS Usage: null_arg
type: longword (unsigned)
access: read only
mechanism: by value

Returned Condition Values
The following table shows the condition values returned by the routine and their meaning.

Condition Values Meaning

SS$_NORMAL Notification was successfully enabled.

SS$_BADPARAM A reserved argument was not specified or is not zero.

SS$_UNSUPPORTED Connect:Direct for OpenVMS event logger process not
running.

Note: Any condition value returned by $ASSIGN, $QIO, $CREMBX, LIB$GET_VM, $GETDVI,
LIBGET_EF, LIBFREE_VM is also stored in register zero (0).

Chapter 5 / Using the Application Programming Interface 93
Decoding Event Messages
The NDM_EVENT_API_DECODE_MESSAGE (Decode Event Message) routine decodes an event message
into its constituent header and data information.

Reviewing the Format and Arguments
The following table shows the format and arguments for the NDM_EVENT_API_DECODE_MESSAGE
routine. A description of each argument follows the routine format.

Return Values
The following are values returned in register zero (0) for the NDM_EVENT_API_DECODE_MESSAGE
routine:

OpenVMS usage: cond_value
type: longword (signed)
access: write only
mechanism: by value

Argument
The following are descriptions for each NDM_EVENT_API_DECODE_MESSAGE routine argument:

message
the address of a descriptor that points to a buffer containing the event message.

OpenVMS Usage: char_string
type: character string
access: read only
mechanism: by descriptor

Routine Arguments

NDM_EVENT_API_DECODE_MESSAGE message

[time]

[class]

[type]

[node]

[name]

[name_length]

[data_procedure]

[data_context]

reserved_1

reserved_2

reserved_3

94 Connect:Direct for OpenVMS User’s Guide
time
the address of a quadword to receive the system time of the event.

OpenVMS Usage: date_time
type: quadword (signed)
access: write only
mechanism: by reference

class
the address of a word to receive the event message class.

OpenVMS Usage: user_arg
type: word (unsigned)
access: write only
mechanism: by reference

type
the address of a word to receive the event message type.

OpenVMS Usage: user_arg
type: word (unsigned)
access: write only
mechanism: by reference

node
the site-specified source node context value of the event message.

OpenVMS Usage: user_arg
type: longword (unsigned)
access: write only
mechanism: by reference

name
the address of descriptor that points to a character string that receives the descriptive name associated
with the event. An event name can be up to 64 characters.

OpenVMS Usage: char_string
type: character string
access: write only
mechanism: by descriptor

name_length
the address of a word that receives the length of the descriptive name.

OpenVMS Usage: ser_arg
type: word (unsigned)
access: write only
mechanism: by reference

data_procedure
the address of a user-supplied action routine that NDM_EVENT_API_DECODE_MESSAGE calls
for each message data item found.

OpenVMS Usage: procedure
type: procedure value
access: function call (before return)
mechanism: by value

Chapter 5 / Using the Application Programming Interface 95
data_context
user-supplied argument that NDM_EVENT_API_DECODE_MESSAGE passes to the data action
procedure. The same method used to pass data_context to
NDM_EVENT_API_DECODE_MESSAGE is also used to pass it to the data action routine. If this
argument is omitted, a zero is passed by value.

OpenVMS Usage: user_arg
type: longword (unsigned)
access: read only
mechanism: by value

reserved_1
placeholding argument reserved to Sterling Commerce. This argument must be specified as zero.

OpenVMS Usage: null_arg
type: ongword integer (unsigned)
access: read only
mechanism: by value

reserved_2
placeholding argument reserved to Sterling Commerce. This argument must be specified as zero.

OpenVMS Usage: null_arg
type: longword integer (unsigned)
access: read only
mechanism: by value

reserved_3
placeholding argument reserved to Sterling Commerce. This argument must be specified as zero.

OpenVMS Usage: null_arg
type: longword integer (unsigned)
access: read only
mechanism: by value

Using the NDM_EVENT_API_DECODE_MESSAGE Routine
NDM_EVENT_API_DECODE_MESSAGE decodes an event message returning the message header fields
directly and returning the message data indirectly by means of an action routine. The action routine is called
for each data item present in the message. If the low-bit of the status returned by the action routine is clear, no
further data items are decoded.

Call Format for Action Routine
The following table shows the calling format and arguments for the action routine. A description of each
argument follows the routine format.

Routine Arguments

data_procedure data_context

message

sequence

item_code

96 Connect:Direct for OpenVMS User’s Guide
Arguments
The following are the arguments for the action routine:

data_context
value passed by NDM_EVENT_API_DECODE_MESSAGE action routine. The same passing
method used to pass data_context to NDM_EVENT_API_DECODE_MESSAGE is used by
NDM_EVENT_API_DECODE_MESSAGE to pass data_context to the action routine.

OpenVMS Usage: user_arg
type: longword (unsigned)
access: read only
mechanism: by value

message
the event message as received from the Connect:Direct for OpenVMS event logger process. The
message argument is the address of a descriptor that points to a buffer containing the event message.

OpenVMS Usage: char_string
type: character string
access: read only
mechanism: by descriptor - fixed length string

descriptor

sequence
the sequence number of the data item in the event message.

OpenVMS Usage: user_arg
type: longword (signed)
access: read only
mechanism: by value

item_code
specifies the binary identifier code of the data item.

OpenVMS Usage: user_arg
type: longword (unsigned)
access: read only
mechanism: by value

item_name

item_type

item_data

item_value

item_desc

reserved

Routine Arguments

Chapter 5 / Using the Application Programming Interface 97
item_name
the address of a descriptor that points to a string containing the name of the data item.

OpenVMS Usage: char_string
type: character string
access: read only
mechanism: by descriptor - fixed length string

descriptor

item_type
specifies the data item type.

OpenVMS Usage: user_arg
type: longword (unsigned)
access: read only
mechanism: by value

item_data
the address of a descriptor that points to the binary data item.

OpenVMS Usage: char_string
type: character string
access: read only
mechanism: by descriptor - fixed length string

descriptor

item_value
the address of a descriptor that points to a string containing the converted ASCII value of the data
item.

OpenVMS Usage: char_string
type: character string
access: read only
mechanism: by descriptor - fixed length string

descriptor

item_desc
the address of a descriptor that points to a string containing the descriptive text associated with the
data item.

OpenVMS Usage: char_string
type: character string
access: read only
mechanism: by descriptor - fixed length string

descriptor

reserved
placeholding argument reserved to Sterling Commerce.

OpenVMS Usage: null_arg
type: longword (unsigned)
access: read only
mechanism: by value

98 Connect:Direct for OpenVMS User’s Guide
Returned Condition Values
The following table shows the condition values returned by the routine and their meaning.

Decoding Event Data Items
The NDM_EVENT_API_DECODE_ITEM (Decode Event Data Item) routine locates and decodes an event
message data item.

Reviewing the Format and Arguments
The following table shows the format and arguments for the NDM_EVENT_API_DECODE_ITEM routine. A
description of each argument follows the routine format.

Condition Values Meaning

SS$_NORMAL Notification was successfully enabled.

SS$_BADPARAM A reserved argument was not specified or is not zero.

SS$_BADCONTEXT Invalid or corrupted message specified.

Note: Any condition value returned by LIB$ANALYZE_SDESC is also stored in register zero (0).

Routine Arguments

NDM_EVENT_API_DECODE_ITEM message

[sequence]

item_code

[name]

[name_length]

[item_type]

[item_data]

[data_length]

[item_value]

[value_length]

[item_desc]

[desc_length]

reserved_1

reserved_2

Chapter 5 / Using the Application Programming Interface 99
Return Values
The following are values returned in register zero (0) for the NDM_EVENT_API_DECODE_ITEM routine:

OpenVMS usage: cond_value
type: longword (signed)
access: write only
mechanism: by value

Arguments
The following are descriptions for each NDM_EVENT_API_DECODE_ITEM routine argument:

message
the address of a descriptor that points to a buffer containing the event message.

OpenVMS Usage: char_string
type: character string
access: read only
mechanism: by descriptor

sequence
the address of a longword that receives the sequence number of the item in the event message.

OpenVMS Usage: user_arg
type: longword (signed)
access: write only
mechanism: by reference

item_code
the binary item code identifier value.

OpenVMS Usage: user_arg
type: longword (unsigned)
access: read only
mechanism: by value

name
the address of descriptor that points to a character string that receives the name of the item. An item
name can be up to 31 bytes.

OpenVMS Usage: char_string
type: character string
access: write only
mechanism: by descriptor

name_length
the address of a word that receives the length of the item name.

OpenVMS Usage: user_arg
type: word (unsigned)
access: write only
mechanism: by reference

100 Connect:Direct for OpenVMS User’s Guide
item_type
the address of a longword that receives the binary item type.

OpenVMS Usage: user_arg
type: longword (unsigned)
access: write only
mechanism: by reference

item_data
the address of descriptor that points to a character string that receives the binary item data. A data
item can be up to 255 bytes.

OpenVMS Usage: char_string
type: character string
access: write only
mechanism: by descriptor

data_length
the address of a word that receives the length of the binary data item.

OpenVMS Usage: user_arg
type: word (unsigned)
access: write only
mechanism: by reference

item_value
the address of descriptor that points to a character string that receives the converted ASCII value of
the binary data item. The data item value can be up to 255 bytes.

OpenVMS Usage: char_string
type: character string
access: write only
mechanism: by descriptor

value_length
the address of a word that receives the length of the converted ASCII value of the binary data item.

OpenVMS Usage: user_arg
type: word (unsigned)
access: write only
mechanism: by reference

item_desc
the address of descriptor that points to a character string that receives the descriptive text associated
with the data item. The descriptive text can be up to 64 bytes.

OpenVMS Usage: char_string
type: character string
access: write only
mechanism: by descriptor

desc_length
the address of a word that receives the length of the descriptive text.

OpenVMS Usage: user_arg
type: word (unsigned)
access: write only
mechanism: by reference

Chapter 5 / Using the Application Programming Interface 101
reserved_1
placeholding argument reserved to Sterling Commerce. This argument must be specified as zero.

OpenVMS Usage: null_arg
type: longword integer (unsigned)
access: read only
mechanism: by value

reserved_2
placeholding argument reserved to Sterling Commerce. This argument must be specified as zero.

OpenVMS Usage: null_arg
type: longword integer (unsigned)
access: read only
mechanism: by value

Returned Condition Values
The following table shows the condition values returned by the routine and their meaning.

Writing User-Defined Event Messages
The NDM_EVENT_API_WRITE_MESSAGE (Write User-Defined Event Messages) routine writes a
customer-defined message to the event logger process. A user-defined message is obscure and can range from
0–255 characters in length.

Reviewing the Format and Arguments
The following table shows the format and arguments for the NDM_EVENT_API_WRITE_MESSAGE
routine. A description of each argument follows the routine format.

Condition Values Meaning

SS$_NORMAL Decode was successful.

SS$_ITEMNOTFOUND Data item was not found.

SS$_BADPARAM A reserved argument was not specified or is not zero.

SS$_RESULTOVF Return argument string overflow.

SS$_BADCONTEXT Invalid or corrupted message specified.

Note: Any condition value returned by LIB$ANALYZE_SDESC is also stored in register zero (0).

Routine Arguments

NDM_EVENT_API_WRITE_MESSAGE [message]

reserved_1

102 Connect:Direct for OpenVMS User’s Guide
Return Values
The following are values returned in register zero (0) for the NDM_EVENT_API_WRITE_MESSAGE
routine:

OpenVMS usage: cond_value
type: longword (signed)
access: write only
mechanism: by value

Arguments
The following are descriptions for each NDM_EVENT_API_WRITE_MESSAGE routine argument:

message
the address of a descriptor that points to a buffer containing the event message.

OpenVMS Usage: char_string
type: character string
access: read only
mechanism: by descriptor

reserved_1
placeholding argument reserved to Sterling Commerce. This argument must be specified as zero.

OpenVMS Usage: null_arg
type: longword integer (unsigned)
access: read only
mechanism: by value

reserved_2
placeholding argument reserved to Sterling Commerce. This argument must be specified as zero.

OpenVMS Usage: null_arg
type: longword integer (unsigned)
access: read only
mechanism: by value

Returned Condition Values
The following table shows the condition values returned by the routine and their meaning.

reserved_2

Condition Values Meaning

SS$_NORMAL Message successfully written.

SS$_BADPARAM A reserved argument was not specified or is not zero.

SS$_UNSUPPORTED Connect:Direct for OpenVMS event logger process was not
running or an invalid message length was received.

Routine Arguments

Chapter 5 / Using the Application Programming Interface 103
Opening a Connect:Direct for OpenVMS Message File
The NDM_EVENT_API_MSGFILE_OPEN (Open Message File) routine opens a Connect:Direct for
OpenVMS message file. The returned context identifier is used as an input argument to the
NDM_EVENT_API_MSGFILE_CLOSE and NDM_EVENT_MSGFILE_DISPLAY routines. The
Connect:Direct for OpenVMS message file is not a standard OpenVMS message file.

Reviewing the Format and Arguments
The following table shows the format and arguments for the NDM_EVENT_API_MSGFILE_OPEN routine.
A description of each argument follows the routine format.

Return Values
The following are values returned in register zero (0) for the NDM_EVENT_API_MSGFILE_OPEN routine:

OpenVMS usage: cond_value
type: longword (signed)
access: write only
mechanism: by value

Arguments
The following are descriptions for each NDM_EVENT_API_MSGFILE_OPEN routine argument:

message
the address of a descriptor that points to a character string containing the filename of a Connect:Direct
for OpenVMS message file.

OpenVMS Usage: char_string
type: character string
access: read only
mechanism: by descriptor

Note: Any condition value returned by $ASSIGN, QIO, LIBANALYZE_SDESC, $TRNLNM is also
stored in register zero (0).

Routine Arguments

NDM_EVENT_API_MSGFILE_OPEN msg_file

msg_fctx

reserved_1

reserved_2

reserved_3

reserved_4

104 Connect:Direct for OpenVMS User’s Guide
msg_fctx
the address of a longword that receives the Connect:Direct for OpenVMS message file open context
identifier.

OpenVMS Usage: context
type: longword (unsigned)
access: write only
mechanism: by reference

reserved_1
placeholding argument reserved to Sterling Commerce. This argument must be specified as zero.

OpenVMS Usage: null_arg
type: longword integer (unsigned)
access: read only
mechanism: by value

reserved_2
placeholding argument reserved to Sterling Commerce. This argument must be specified as zero.

OpenVMS Usage: null_arg
type: longword integer (unsigned)
access: read only
mechanism: by value

reserved_3
placeholding argument reserved to Sterling Commerce. This argument must be specified as zero.

OpenVMS Usage: null_arg
type: longword integer (unsigned)
access: read only
mechanism: by value

reserved_4
placeholding argument reserved to Sterling Commerce. This argument must be specified as zero.

OpenVMS Usage: null_arg
type: longword integer (unsigned)
access: read only
mechanism: by value

Returned Condition Values
The following table shows the condition values returned by the routine and their meaning.

Condition Values Meaning

SS$_NORMAL Open successful.

SS$_BADPARAM A reserved argument was not specified or is not zero.

Note: Any condition value returned by RMS, LIB$ANALYZE_SDESC, LIB$GET_VM, LIB$FREE_VM
is also stored in register zero (0).

Chapter 5 / Using the Application Programming Interface 105
Displaying Connect:Direct Message File Text
The NDM_EVENT_API_MSGFILE_DISPLAY (Display Connect:Direct Message File Text) routine returns
the message file text associated with a specified message identifier string.

Reviewing the Format and Arguments
The following table shows the format and arguments for the NDM_EVENT_API_MSGFILE_DISPLAY
routine. A description of each argument follows the routine format.

Return Values
The following are values returned in register zero (0) for the NDM_EVENT_API_MSGFILE_DISPLAY
routine:

OpenVMS usage: cond_value
type: longword (signed)
access: write only
mechanism: by value

Arguments
The following are the arguments for the routine:

msg_fctx
the value of the Connect:Direct for OpenVMS message file identifier returned by the
NDM_EVENT_API_MSGFILE_OPEN routine.

OpenVMS Usage: context
type: longword (unsigned)
access: read only
mechanism: by value

Routine Arguments

NDM_EVENT_API_MSGFILE_DISPLAY msg_fctx

msg_key

msg_procedure

msg_context

reserved_1

reserved_2

reserved_3

reserved_4

106 Connect:Direct for OpenVMS User’s Guide
msg_key
the address of a descriptor that points to a character string containing the message identifier to be
found. The message identifier can be up to 8 characters in length.

OpenVMS Usage: char_string
type: character string
access: read only
mechanism: by descriptor

msg_procedure
the address of a user-supplied action routine that NDM_EVENT_API_MSGFILE_DISPLAY calls for
each line of associated message file text.

OpenVMS Usage: procedure
type: procedure value
access: function call (before return)
mechanism: by value

msg_context
user-supplied argument that NDM_EVENT_API_MSGFILE_DISPLAY passes to the message file
text action procedure. The same method used to pass msg_context to
NDM_EVENT_API_MSGFILE_DISPLAY is also used to pass it to message file text action routine.
If this argument is omitted, a zero is passed by value.

OpenVMS Usage: user_arg
type: longword (unsigned)
access: read only
mechanism: by value

reserved_1
placeholding argument reserved to Sterling Commerce. This argument must be specified as zero.

OpenVMS Usage: null_arg
type: longword integer (unsigned)
access: read only
mechanism: by value

reserved_2
placeholding argument reserved to Sterling Commerce. This argument must be specified as zero.

OpenVMS Usage: null_arg
type: longword integer (unsigned)
access: read only
mechanism: by value

reserved_3
placeholding argument reserved to Sterling Commerce. This argument must be specified as zero.

OpenVMS Usage: null_arg
type: longword integer (unsigned)
access: read only
mechanism: by value

Chapter 5 / Using the Application Programming Interface 107
reserved_4
placeholding argument reserved to Sterling Commerce. This argument must be specified as zero.

OpenVMS Usage: null_arg
type: longword integer (unsigned)
access: read only
mechanism: by value

Using the NDM_EVENT_API_MSGFILE_DISPLAY Routine
NDM_EVENT_API_MSGFILE_DISPLAY performs a file lookup using the specified message file identifier
and returns the message file text indirectly by means of an action routine. The action routine is called for each
line of associated message file text. If the low-bit of the status returned by the action routine is clear, no further
message file text lines are returned.

Call Format for Action Routine
The following table shows the calling format and arguments for the action routine. A description of each
argument follows the routine format.

Arguments
The following are the arguments for the action routine:

msg_context
value passed by NDM_EVENT_API_MSGFILE_DISPLAY action routine. The same passing
method used to pass msg_context to NDM_EVENT_API_MSGFILE_DISPLAY is used by
NDM_EVENT_API_MSGFILE_DISPLAY to pass msg_context to the action routine.

OpenVMS Usage: user_arg
type: longword (unsigned)
 access: read only
mechanism: by value

msg_text
the address of a descriptor that points to a buffer containing a line of the associated message file text.

OpenVMS Usage: char_string
type: character string
access: read only
mechanism: by descriptor - fixed length string

descriptor

Routine Arguments

msg_procedure msg_context

msg_text

reserved

108 Connect:Direct for OpenVMS User’s Guide
reserved
placeholding argument reserved to Sterling Commerce.

OpenVMS Usage: null_arg
type: longword (unsigned)
access: read only
mechanism: by value

Returned Condition Values
The following table shows the condition values returned by the routine and their meaning.

Closing a Connect:Direct for OpenVMS Message File
The NDM_EVENT_API_MSGFILE_CLOSE (Close Message File) routine closes a Connect:Direct for
OpenVMS message file.

Reviewing the Format and Arguments
The following table shows the format and arguments for the NDM_EVENT_API_MSGFILE_CLOSE routine.
A description of each argument follows the routine format.

Condition Values Meaning

SS$_NORMAL Success.

SS$_BADPARAM A reserved argument was not specified or is not zero.

RMS$_RNF No such message identifier exists.

Note: Any condition value returned by RMS, LIB$ANALYZE_SDESC is also stored in register zero (0).

Routine Arguments

NDM_EVENT_API_MSGFILE_CLOSE msg_fctx

reserved_1

reserved_2

reserved_3

reserved_4

Chapter 5 / Using the Application Programming Interface 109
Return Values
The following are values returned in register zero (0) for the NDM_EVENT_API_MSGFILE_CLOSE routine:

OpenVMS usage: cond_value
type: longword (signed)
access: write only
mechanism: by value

Arguments
The following are descriptions for the NDM_EVENT_API_MSGFILE_CLOSE routine arguments:

msg_fctx
the value of the Connect:Direct for OpenVMS message file identifier returned by the
NDM_EVENT_API_MSGFILE_OPEN routine.

OpenVMS Usage: context
type: longword (unsigned)
access: read only
mechanism: by value

reserved_1
placeholding argument reserved to Sterling Commerce. This argument must be specified as zero.

OpenVMS Usage: null_arg
type: longword integer (unsigned)
access: read only
mechanism: by value

reserved_2
placeholding argument reserved to Sterling Commerce. This argument must be specified as zero.

OpenVMS Usage: null_arg
type: longword integer (unsigned)
access: read only
mechanism: by value

Returned Condition Values
The following table shows the condition values returned by the routine and their meaning.

Condition Values Meaning

SS$_NORMAL Success.

SS$_BADPARAM A reserved argument was not specified or is not zero.

Note: Any condition value returned by RMS, LIB$FREE_VM is also stored in register zero (0).

110 Connect:Direct for OpenVMS User’s Guide
Obtaining the Current API Version Number
The NDM_EVENT_API_GET_VERSION (Return Version Number) routine returns the API version number.

Reviewing the Format and Arguments
The following table shows the format and arguments for the NDM_EVENT_API_GET_VERSION routine. A
description of each argument follows the routine format.

Return Values
The following are values returned in register zero (0) for the NDM_EVENT_API_GET_VERSION routine:

OpenVMS usage: cond_value
type: longword (signed)
access: write only
mechanism: by value

Arguments
The following are the descriptions for the NDM_EVENT_API_GET_VERSION routine arguments:

version
the address of a longword that receives the API version number.

OpenVMS Usage: user_arg
type: longword (signed)
access: write only
mechanism: by reference

reserved
placeholding argument reserved to Sterling Commerce. This argument must be specified as zero.

OpenVMS Usage: null_arg
type: longword integer (unsigned)
access: read only
mechanism: by value

Using the NDM_EVENT_API_GET_VERSION Routine
NDM_EVENT_API_GET_VERSION returns the version number in the following form:

For example, V3.4.00 would be returned as 30400.

Routine Arguments

NDM_EVENT_API_GET_VERSION version

reserved

(major_version_number * 10000) + (minor_version_number * 100).

Chapter 5 / Using the Application Programming Interface 111
Returned Condition Values
The following table shows the condition values returned by the routine and their meaning.

Condition Values Meaning

SS$_NORMAL Success.

SS$_BADPARAM A reserved argument was not specified or is not zero.

112 Connect:Direct for OpenVMS User’s Guide

Appendix A

Event Logging Facility-Event Information

This appendix lists the following Event Logging Facility event information:

Event list
Event class
Event types
Event item description
Event item codes
Sample event message formats

Event List
The current event list is as follows:

Event Description

9.9 UserInterface.Could Not Establish Link

11.1 Operational.Server Process Starting

11.2 Operational.Server Process Startup Complete

11.3 Operational.User Interface/DECnet Request Link Established

11.4 Operational.User Interface/DECnet Request Link Lost

11.5 Operational.User Interface Access Complete

11.6 Operational.User Interface Access Failure

11.7 Operational.User Interface Proxy Access Complete

11.8 Operational.User Interface Proxy Access Requested

11.9 Operational.User Interface Proxy Access Failure

11.10 Operational.C:D Script File Submit Request Complete

11.11 Operational.C:D Script File Submit Request Failure

11.12 Operational.Netmap Change Request Received

114 Connect:Direct for OpenVMS User’s Guide
11.13 Operational.C:D Script Status Change Request Received

11.14 Operational.Session Process Create Failure

11.15 Operational.Session Process Timeout Failure

11.16 Operational.User Interface Access Failure

11.17 Operational.Session Process Terminated Abnormally

11.18 Operational.DECnet Session Process Create Request Received

11.19 Operational.C:D Script File Retry Limit Reached

11.20 Operational.C:D Server Process Diagnostic Message

13.1 Requester.Session Process Create Complete

13.2 Requester.Remote Access Control Complete

13.3 Requester.Remote Access Control Failure

13.5 Requester.Remote Proxy Access Requested

13.8 Requester.Session Link Established

13.9 Requester.Session Link Not Established

13.10 Requester.Session Link Lost

13.14 Requester.File Transmit Started

13.15 Requester.File Transmit Complete

13.16 Requester.File Transmit Failure

13.19 Requester.File Receive Started

13.20 Requester.File Receive Complete

13.21 Requester.File Receive Failure

13.24 Requester.RunTask On Local Node Started

13.25 Requester.RunTask On Local Node Complete

13.26 Requester.RunTask On Local Node Failure

13.29 Requester.RunTask On Remote Node Started

13.30 Requester.RunTask On Remote Node Complete

13.31 Requester.RunTask On Remote Node Failure

13.33 Requester.RunJob On Local Node Started

13.34 Requester.RunJob On Local Node Complete

13.35 Requester.RunJob On Local Node Failure

13.38 Requester.RunJob On Remote Node Started

13.39 Requester.RunJob On Remote Node Complete

13.40 Requester.RunJob On Remote Node Failure

13.42 Requester.Submit On Local Node Started

Event Description

Appendix A / Event Logging Facility-Event Information 115
13.43 Requester.Submit On Local Node Complete

13.44 Requester.Submit On Local Node Failure

13.47 Requester.Submit On Remote Node Started

13.48 Requester.Submit On Remote Node Complete

13.49 Requester.Submit On Remote Node Failure

13.51 Requester.Session User Persona Changed

13.52 Requester.Session Complete

13.53 Requester.C:D Session Diagnostic Message

15.1 Responder.Session Process Create Complete

15.2 Responder.Remote Access Control Complete

15.3 Responder.Remote Access Control/Permitted Node Reject Failure

15.5 Responder.Remote Proxy Access Requested

15.7 Responder.Remote Proxy Access Rejected

15.8 Responder.Session Link Established

15.9 Responder.Session Link Not Established

15.10 Responder.Session Link Lost

15.11 Responder.Session Rejected With Remote Node

15.14 Responder.File Transmit Started

15.15 Responder.File Transmit Complete

15.16 Responder.File Transmit Failure

15.19 Responder.File Receive Started

15.20 Responder.File Receive Complete

15.21 Responder.File Receive Failure

15.24 Responder.RunTask On Local Node Started

15.25 Responder.RunTask On Local Node Complete

15.26 Responder.RunTask On Local Node Failure

15.27 Responder.RunTask On Local Node Rejected

15.33 Responder.RunJob On Local Node Started

15.34 Responder.RunJob On Local Node Complete

15.35 Responder.RunJob On Local Node Failure

15.36 Responder.RunJob On Local Node Rejected

15.42 Responder.Submit On Local Node Started

15.43 Responder.Submit On Local Node Complete

15.44 Responder.Submit On Local Node Failure

Event Description

116 Connect:Direct for OpenVMS User’s Guide
Event Class Definitions
The following are the current event class definitions:

The following table defines which programs use event class:

15.45 Responder.Submit On Local Node Rejected

15.51 Responder.Session User Persona Changed

15.52 Responder.Session Complete

15.53 Responder.C:D Session Diagnostic Message

129.1 EventProcess.Log File Started

129.2 EventProcess.Log File Error Occurred

129.3 EventProcess.Shutdown Request Received

129.4 EventProcess.C:D Server Process Has Terminated

129.8 EventProcess.Path To Sink/Source Node Complete

129.9 EventProcess.Path To Sink/Source Node Failed

129.10 EventProcess.Path To Sink/Source Node Lost

256.1 Customer.Message Generated By Customer

Event Class Definition

NDMEVLC_USER_INTERFACE %X00000009

NDMEVLC_OPERATIONAL %X0000000B

NDMEVLC_SESSION_REQUESTER %X0000000D

NDMEVLC_SESSION_RESPONDER %X0000000F

NDMEVLC_EVENT_FACILITY %X00000081

NDMEVLC_CUSTOMER_DEFINED %X00000100

Event Class Program

User Interface User Interface (NDMUI) program

Operational Server process, utilities

SessionRequester Outbound Session

SessionResponder Inbound Session

Event Facility Event Logger Process

Event Description

Appendix A / Event Logging Facility-Event Information 117
Event Types
The following are the currently defined event type codes:

Customer Customer-Defined Messages

Event Types Codes

NDMEVLT_PROCESSSTARTUP %X00000001

NDMEVLT_STARTUPCOMPLETE %X00000002

NDMEVLT_UILINKCOMPLETE %X00000003

NDMEVLT_UILINKLOST %X00000004

NDMEVLT_UIACCESSCOMPLETE %X00000005

NDMEVLT_UIACCESSFAILURE %X00000006

NDMEVLT_UIPROXYACCESSCOMPLETE %X00000007

NDMEVLT_UIPROXYACCESSREQUEST %X00000008

NDMEVLT_UIPROXYACCESSFAILURE %X00000009

NDMEVLT_SUBMITREQUESTCOMPLETE %X0000000A

NDMEVLT_SUBMITREQUESTFAILURE %X0000000B

NDMEVLT_NETMAPCHANGEREQUESTED %X0000000C

NDMEVLT_STATUSCHANGEREQUESTED %X0000000D

NDMEVLT_PROCESSCREATEFAILURE %X0000000E

NDMEVLT_PROCESSTIMEOUTFAILURE %X0000000F

NDMEVLT_PROCESSTERMABNORMAL %X00000011

NDMEVLT_DECNETREQUESTRECEIVED %X00000012

NDMEVLT_RETRYLIMITREACHED %X00000013

NDMEVLT_CDSERVERPRCDIAGNOSTIC %X00000014

NDMEVLT_PROCESSCREATECOMPLETE %X00000001

NDMEVLT_ACCESSCOMPLETE %X00000002

NDMEVLT_ACCESSFAILURE %X00000003

NDMEVLT_PROXYACCESSREQUEST %X00000005

NDMEVLT_PROXYACCESSREJECTED %X00000007

NDMEVLT_LINKCOMPLETE %X00000008

NDMEVLT_LINKFAILURE %X00000009

Event Class Program

118 Connect:Direct for OpenVMS User’s Guide
NDMEVLT_LINKLOST %X0000000A

NDMEVLT_SESSIONREJECTED %X0000000B

NDMEVLT_TRANSMITSTARTED %X0000000E

NDMEVLT_TRANSMITCOMPLETE %X0000000F

NDMEVLT_TRANSMITFAILURE %X00000010

NDMEVLT_RECEIVESTARTED %X00000013

NDMEVLT_RECEIVECOMPLETE %X00000014

NDMEVLT_RECEIVEFAILURE %X00000015

NDMEVLT_RUNTASKLOCALSTARTED %X00000018

NDMEVLT_RUNTASKLOCALCOMPLETE %X00000019

NDMEVLT_RUNTASKLOCALFAILURE %X0000001A

NDMEVLT_RUNTASKLOCALREJECTED %X0000001B

NDMEVLT_RUNTASKREMOTESTARTED %X0000001D

NDMEVLT_RUNTASKREMOTECOMPLETE %X0000001E

NDMEVLT_RUNTASKREMOTEFAILURE %X0000001F

NDMEVLT_RUNJOBLOCALSTARTED %X00000021

NDMEVLT_RUNJOBLOCALCOMPLETE %X00000022

NDMEVLT_RUNJOBLOCALFAILURE %X00000023

NDMEVLT_RUNJOBLOCALREJECTED %X00000024

NDMEVLT_RUNJOBREMOTESTARTED %X00000026

NDMEVLT_RUNJOBREMOTECOMPLETE %X00000027

NDMEVLT_RUNJOBREMOTEFAILURE %X00000028

NDMEVLT_SUBMITLOCALSTARTED %X0000002A

NDMEVLT_SUBMITLOCALCOMPLETE %X0000002B

NDMEVLT_SUBMITLOCALFAILURE %X0000002C

NDMEVLT_SUBMITLOCALREJECTED %X0000002D

NDMEVLT_SUBMITREMOTESTARTED %X0000002F

NDMEVLT_SUBMITREMOTECOMPLETE %X00000030

NDMEVLT_SUBMITREMOTEFAILURE %X00000031

NDMEVLT_SESSIONPERSONACHANGE %X00000033

NDMEVLT_SESSIONCOMPLETE %X00000034

NDMEVLT_CDSESSIONDIAGNOSTIC %X00000035

NDMEVLT_LOGFILESTARTED %X00000001

NDMEVLT_LOGFILEERROR %X00000002

Event Types Codes

Appendix A / Event Logging Facility-Event Information 119
Event Item Description
The following are descriptions of the current event data items:

NDMEVLT_SHUTDOWNRECEIVED %X00000003

NDMEVLT_SERVERPRCTERMINATED %X00000004

NDMEVLT_CUSTOMERDATA %X00000001

Event Data Items Description

NDMEVLIF_DATACOMPRESSION Data Compression

NDMEVLIF_CHECKPOINTRESTART Checkpoint/Restart

NDMEVLIF_SESSIONRESTART Session Restarted

NDMEVLIB_REMOTENODERC Remote Node RC

NDMEVLIB_LOCALNODERC Local Node RC

NDMEVLIB_CDDIAGNOSTICRC Connect:Direct Diagnostic RC

NDMEVLIL_LOCALNODESTATUS Local Node System Status Code

NDMEVLIL_LOCALNODESTATUSVALUE Local Node System Status Value

NDMEVLIL_SESSIONSCRIPTNUMBER Script File Session Number

NDMEVLIL_REMOTENODEFDBK Remote Node FDBK

NDMEVLIL_LOCALNODEFDBK Local Node FDBK

NDMEVLIL_PROCESSIDENTIFIER OpenVMS Process PID

NDMEVLIL_CDDIAGNOSTICFDBK Connect:Direct Diagnostic FDBK

NDMEVLIQ_RECEIVERECORDCOUNT Local Node Records Received

NDMEVLIQ_RECEIVEBYTECOUNT Local Node Bytes Received

NDMEVLIQ_TRANSMITRECORDCOUNT Local Node Records Sent

NDMEVLIQ_TRANSMITBYTECOUNT Local Node Bytes Sent

NDMEVLIT_TRANSFERSTARTTIME Transfer Start Time

NDMEVLIT_TRANSFERSTOPTIME Transfer Stop Time

NDMEVLIS_REQUESTIDENTIFIER Script File Submit Request Identifier

NDMEVLIS_SESSIONSCRIPTNAME Script File Session Name

NDMEVLIS_SESSIONSCRIPTSTEP Script File Session Stepname

NDMEVLIS_SESSIONSCRIPTFILE Script File Session Pathname

NDMEVLIS_SCRIPTSUBMITUSERNAME Script File Submit Username

Event Types Codes

120 Connect:Direct for OpenVMS User’s Guide
Event Item Codes
The following is the current list of event data item codes:

NDMEVLIS_SESSIONLINKTYPE Script File Session Protocol Type

NDMEVLIS_SESSIONDECNETNODE Remote DECnet Node Name

NDMEVLIS_SESSIONDECNETTASK Remote DECnet Node Task

NDMEVLIS_SESSIONTCPADDRESS Remote TCP/IP Node Address

NDMEVLIS_SESSIONTCPPORTNUMBER Remote TCP/IP Node Port Number

NDMEVLIS_REMOTENODENAME Remote C:D Node Name

NDMEVLIS_REMOTENODEUSER Remote Node User Name

NDMEVLIS_REMOTENODEMSGID Remote Node MSGID

NDMEVLIS_LOCALNODENAME Local C:D Node Name

NDMEVLIS_LOCALNODEUSER Local Node User Name

NDMEVLIS_LOCALNODEMSGID Local Node MSGID

NDMEVLIS_SOURCEFILENAME Source File Name

NDMEVLIS_DESTINATIONFILENAME Destination File Name

NDMEVLIS_PROCESSNAME OpenVMS Process Name

NDMEVLIS_RELEASEVERSIONSTRING Product Release Version String

NDMEVLIS_DECNETDEVICENAME DECnet Object/Link Device Name

NDMEVLIS_PROCESSNODENAME OpenVMS Process Node Name

NDMEVLIS_REQUESTERUSERNAME Username Of Requester

NDMEVLIS_REQUESTERUSERNODE Nodename Of Requester

NDMEVLIS_REQUESTERACTION Action Requested By User

NDMEVLIS_CDDIAGNOSTICMSGID Connect:Direct Diagnostic MSGID

NDMEVLIV_CUSTOMERDEFINEDDATA Customer Data

Event Data Item Code

NDMEVLIM_ %XF0000000

NDMEVLIF_ %X10000000

NDMEVLIB_ %X20000000

NDMEVLIW_ %X30000000

NDMEVLIL_ %X40000000

Event Data Items Description

Appendix A / Event Logging Facility-Event Information 121
NDMEVLIQ_ %X50000000

NDMEVLIT_ %X60000000

NDMEVLIS_ %X70000000

NDMEVLIV_ %X80000000

NDMEVLIL_LOCALNODESTATUS %X40000002

NDMEVLIL_LOCALNODESTATUSVALUE %X40000004

NDMEVLIS_REQUESTIDENTIFIER %X70000006

NDMEVLIS_SESSIONSCRIPTNAME %X70000008

NDMEVLIL_SESSIONSCRIPTNUMBER %X4000000A

NDMEVLIS_SESSIONSCRIPTSTEP %X7000000C

NDMEVLIS_SESSIONSCRIPTFILE %X7000000E

NDMEVLIS_SCRIPTSUBMITUSERNAME %X70000010

NDMEVLIS_SESSIONLINKTYPE %X70000012

NDMEVLIS_SESSIONDECNETNODE %X70000014

NDMEVLIS_SESSIONDECNETTASK %X70000016

NDMEVLIS_SESSIONTCPADDRESS %X70000018

NDMEVLIS_SESSIONTCPPORTNUMBER %X7000001A

NDMEVLIS_REMOTENODENAME %X70000020

NDMEVLIS_REMOTENODEUSER %X70000022

NDMEVLIB_REMOTENODERC %X20000024

NDMEVLIS_REMOTENODEMSGID %X70000026

NDMEVLIL_REMOTENODEFDBK %X40000028

NDMEVLIS_LOCALNODENAME %X7000002A

NDMEVLIS_LOCALNODEUSER %X7000002C

NDMEVLIB_LOCALNODERC %X2000002E

NDMEVLIS_LOCALNODEMSGID %X70000030

NDMEVLIL_LOCALNODEFDBK %X40000032

NDMEVLIS_SOURCEFILENAME %X70000034

NDMEVLIS_DESTINATIONFILENAME %X70000036

NDMEVLIQ_RECEIVERECORDCOUNT %X50000038

NDMEVLIQ_RECEIVEBYTECOUNT %X5000003A

NDMEVLIQ_TRANSMITRECORDCOUNT %X5000003C

NDMEVLIQ_TRANSMITBYTECOUNT %X5000003E

NDMEVLIF_DATACOMPRESSION %X10000040

Event Data Item Code

122 Connect:Direct for OpenVMS User’s Guide
Sample Event Message Formats
The following are examples of selected event messages that specify the typical data items associated with the
message.

Event 11.10 Operational.C:D Script File Submit Request Complete
NDMEVLIS_REQUESTERUSERNAME
NDMEVLIS_SESSIONSCRIPTFILE
NDMEVLIS_REQUESTIDENTIFIER
NDMEVLIS_SESSIONSCRIPTNAME
NDMEVLIL_SESSIONSCRIPTNUMBER

Event 13.15 Requester.File Transmit Complete
NDMEVLIS_REQUESTIDENTIFIER
NDMEVLIS_SESSIONSCRIPTNAME
NDMEVLIL_SESSIONSCRIPTNUMBER
NDMEVLIT_TRANSFERSTARTTIME
NDMEVLIT_TRANSFERSTOPTIME
NDMEVLIS_SOURCEFILENAME
NDMEVLIS_DESTINATIONFILENAME
NDMEVLIS_REMOTENODENAME
NDMEVLIS_REQUESTERUSERNAME
NDMEVLIQ_TRANSMITBYTECOUNT
NDMEVLIQ_TRANSMITRECORDCOUNT

NDMEVLIF_CHECKPOINTRESTART %X10000042

NDMEVLIS_PROCESSNAME %X70000044

NDMEVLIL_PROCESSIDENTIFIER %X40000046

NDMEVLIS_RELEASEVERSIONSTRING %X70000048

NDMEVLIS_DECNETDEVICENAME %X7000004A

NDMEVLIS_PROCESSNODENAME %X7000004C

NDMEVLIS_REQUESTERUSERNAME %X7000004E

NDMEVLIS_REQUESTERUSERNODE %X70000050

NDMEVLIS_REQUESTERACTION %X70000052

NDMEVLIB_CDDIAGNOSTICRC %X20000056

NDMEVLIS_CDDIAGNOSTICMSGID %X70000058

NDMEVLIL_CDDIAGNOSTICFDBK %X4000005A

NDMEVLIF_SESSIONRESTART %X1000005C

NDMEVLIT_TRANSFERSTARTTIME %X6000005E

NDMEVLIT_TRANSFERSTOPTIME %X60000060

NDMEVLIV_CUSTOMERDEFINEDDATA %X80001000

Event Data Item Code

Appendix A / Event Logging Facility-Event Information 123
Event 13.16 Requester.File Transmit Failure
NDMEVLIS_REQUESTIDENTIFIER
NDMEVLIS_SESSIONSCRIPTNAME
NDMEVLIL_SESSIONSCRIPTNUMBER
NDMEVLIT_TRANSFERSTARTTIME
NDMEVLIT_TRANSFERSTOPTIME
NDMEVLIS_SOURCEFILENAME
NDMEVLIS_DESTINATIONFILENAME
NDMEVLIS_REMOTENODENAME
NDMEVLIS_REQUESTERUSERNAME
NDMEVLIQ_TRANSMITBYTECOUNT
NDMEVLIQ_TRANSMITRECORDCOUNT
NDMEVLIB_REMOTENODERC
NDMEVLIS_REMOTENODEMSGID
NDMEVLIL_REMOTENODEFDBK

Event 15.20 Responder.File Receive Complete
NDMEVLIS_REQUESTIDENTIFIER
NDMEVLIS_SESSIONSCRIPTNAME
NDMEVLIL_SESSIONSCRIPTNUMBER
NDMEVLIT_TRANSFERSTARTTIME
NDMEVLIT_TRANSFERSTOPTIME
NDMEVLIS_SOURCEFILENAME
NDMEVLIS_DESTINATIONFILENAME
NDMEVLIS_REMOTENODENAME
NDMEVLIS_REQUESTERUSERNAME
NDMEVLIQ_RECEIVEBYTECOUNT
NDMEVLIQ_RECEIVERECORDCOUNT

Event 15.20 Responder.File Receive Failure
NDMEVLIS_REQUESTIDENTIFIER
NDMEVLIS_SESSIONSCRIPTNAME
NDMEVLIL_SESSIONSCRIPTNUMBER
NDMEVLIT_TRANSFERSTARTTIME
NDMEVLIT_TRANSFERSTOPTIME
NDMEVLIS_SOURCEFILENAME
NDMEVLIS_DESTINATIONFILENAME
NDMEVLIS_REMOTENODENAME
NDMEVLIS_REQUESTERUSERNAME
NDMEVLIQ_RECEIVEBYTECOUNT
NDMEVLIQ_RECEIVERECORDCOUNT
NDMEVLIB_LOCALNODERC
NDMEVLIS_LOCALNODEMSGID
NDMEVLIL_LOCALNODEFDBK

Event 15.53 Responder.C:D Session Diagnostic Message
NDMEVLIS_REQUESTIDENTIFIER
NDMEVLIS_SESSIONSCRIPTNAME
NDMEVLIL_SESSIONSCRIPTNUMBER
NDMEVLIS_REMOTENODENAME
NDMEVLIB_CDDIAGNOSTICRC
NDMEVLIL_CDDIAGNOSTICFDBK
NDMEVLIS_CDDIAGNOSTICMSGID

124 Connect:Direct for OpenVMS User’s Guide

Glossary

A

Adjacent Node
An adjacent node is an entry in the Network Map that defines a Connect:Direct node with which the local
Connect:Direct node can communicate. The adjacent node is also referred to as a remote node.

Application Program Interface (API)
The Application Program Interface (API) is a Connect:Direct component that accepts commands and places
them in an executable format.

C

Checkpoint Restart
The Checkpoint Restart feature eliminates the need to re-transmit an entire file in the event of a transmission
failure. If a copy procedure is interrupted, Connect:Direct restarts that copy at the last checkpoint.

Command Line Interface
The Command Line Interface is a Connect:Direct interface that allows users to submit Connect:Direct
Processes and commands from their native command line environment.

Commands
Connect:Direct commands initiate and monitor activity within the Connect:Direct system.

I

Interactive Mode
The interactive mode of operation allows you to input multiple commands with one invocation of the user
interface (NDMUI).

126 Connect:Direct for OpenVMS User’s Guide
L

Local Node
The local node is the Connect:Direct server.

N

NDMUI
is the command that invokes the user interface. The user interface is one of the windows through which you
communicate with Connect:Direct for OpenVMS.

Network Map (Netmap)
The Network Map (netmap) is a file that identifies all valid Connect:Direct nodes in the network. One Network
Map is associated with each Connect:Direct local node. The netmap has one entry for each of the other
Connect:Direct nodes to which the local Connect:Direct node communicates. The netmap entries also contain
the rules or protocol that the nodes adhere to when communicating.

Node
A node is any site in a network from which information distribution can be initiated.

Noninteractive Mode
The noninteractive mode of operation allows you to issue a single command in one invocation of the NDMUI.

P

Primary Node (PNODE)
The Primary Node (PNODE) is the Connect:Direct node on which the Process is submitted. The primary node
can also be referred to as the controlling node or initiating node, but should not necessarily be interpreted as the
sending node, since PNODE can be the receiver. In every Process, there is one PNODE and one SNODE
specified. The submitter of a Process is always the PNODE.

Process
A Process is a series of statements that initiate Connect:Direct activity, such as copying files, running jobs, and
so on.

Process Statements
Process Statements are instructions for transferring files, running operating system jobs, executing programs,
or submitting other Connect:Direct Processes. They are used to build a Connect:Direct Process.

R

127
Remote Node
A remote node is an entry in the Network Map that defines a Connect:Direct node with which the local
Connect:Direct node can communicate. The remote node is also referred to as an adjacent node.

Retry Interval
The retry interval is the interval at which retries are performed if the Process encounters nonfatal errors.

S

Secondary Node (SNODE)
The secondary node (SNODE) is the Connect:Direct node that interacts with the primary node (PNODE)
during Process execution. SNODE can also be referred to as the participating (non-controlling) or partner node.
Every Process has one PNODE and one SNODE.

Server
The server accepts command requests, communicates with the session manager when work is placed in the
Transmission Control Queue (TCQ), and accepts session establishment requests from remote nodes.

Session Manager
The session manager establishes communication sessions, performs standard session management functions,
and executes Processes.

Statistics File
The statistics file holds Connect:Direct statistics records that document the history of a Process.

Statistics Facility
The Connect:Direct Statistics Facility records Connect:Direct activities.

T

Transmission Control Queue (TCQ)
The Transmission Control Queue (TCQ) holds information about Connect:Direct Processes that are currently
executing or scheduled to execute in the future.

U

User Interface (NDMUI or UI)
The communications process used to interface with the server. Commands are issued through the user interface
when you want to work with the Connect:Direct product.

128 Connect:Direct for OpenVMS User’s Guide

Index
Symbols
$SEVERITY 17

/CCODE qualifier 57

/CLASS qualifier 72

/DEST qualifier 38, 52

/DETAIL qualifier 53, 58

/EXCLUDE qualifier 58

/FORCE qualifier 44, 70, 76, 77

/HOLD qualifier 38, 72

/LAST qualifier 53, 58

/LOCAL_NODE qualifier 50

/LOG qualifier 72

/MAIL qualifier 72

/NO CASE qualifier
CHANGE PROCESS command 38
DELETE PROCESS command 42
SELECT PROCESS command 52
SELECT STATISTICS command 57
SHOW PROCESS command 52
SHOW STATISTICS command 57

/NODE qualifier 50

/NORESTART qualifier, SUBMIT command 73

/NOTIFY qualifier 73

/OUTPUT qualifier 50, 53, 58

/PNAME qualifier 39, 42, 44, 53, 58, 73, 77

/PNUMBER qualifier 39, 42, 44, 53, 58, 77

/PRINT qualifier 50, 53, 58

/PRTY qualifier 39, 73

/QUEUE qualifier 53

/RELEASE qualifier 39

/RETAIN qualifier 73

/RETRY_LIMIT qualifier, SUBMIT command 73

/SACCT qualifier 74

/SERVER
qualifier 39, 42, 45, 50, 54, 59, 74,
77

/SNODE qualifier 74

/SNODEID qualifier 74

/STARTT qualifier 39, 59, 74

/STOPT qualifier 60

/SUBMITTER qualifier 40, 42, 45, 54, 60, 77

/SYMBOLICS qualifier 75

/TEST qualifier 75

/XSID qualifier 75

@FILENAME command 13

A
abbreviations 12

accounting data, snode (SACCT) 74

adjacent node 50

application programming interface
description 79
event logging 108
event logging routines

NDM__EVENT_API_DECODE_ITEM 98
NDM__EVENT_API_DECODE_MESSAGE 93,

95
NDM__EVENT_API_GET_VERSION 110
NDM__EVENT_API_MSGFILE_CLOSE 108
NDM__EVENT_API_MSGFILE_DISPLAY 105,

107
NDM__EVENT_API_MSGFILE_OPEN 103
NDM__EVENT_API_RECEIVE_STREAM 89,

90
NDM__EVENT_API_WRITE_MESSAGE 101

script compilation 80, 82, 83, 84

130 Connect:Direct for OpenVMS User’s Guide
application programming interface (continued)
script compilation routines

NDM__CSX_API_SCRIPT_EXEC_SUBMIT 80,
82

NDM__CSX_API_SCRIPT_TERM_NOTIFY 83,
84

asterisk, denoting wildcard 50, 53

authorization, security 16

B
bold letters, notational conventions 10

brackets, notational conventions 10

C
Case sensitivity 18

case sensitivity 18

checkpoint-restart 17

Commands, case sensitivity 18

commands
@FILENAME 13
CHANGE PROCESS 37
DELETE PROCESS 41
FLUSH PROCESS 44
HELP 46
PROCESS 37, 41, 44, 51, 76
SELECT NETMAP 49
SELECT PROCESS 51
SELECT STATISTICS 56
SET SERVER 47
SHOW LAST 48
SHOW MESSAGE 49
SHOW NETMAP 49
SHOW PROCESS 51
SHOW SERVER 55
SHOW STATISTICS 56
SHOW VERSION 68
SPAWN 69
STOPNDM 69
SUBMIT 70
SUSPEND PROCESS 76
syntax 12

comments, within Connect:Direct for OpenVMS
command procedures 13

Connect:Direct, description 9

Connect:Direct for OpenVMS commands
CHANGE PROCESS 37

Connect:Direct for OpenVMS commands (continued)
DELETE PROCESS 41
EXIT 43
FLUSH PROCESS 44
HELP 46
PROCESS 41, 44, 51, 76
SELECT NETMAP 49
SELECT PROCESS 51
SELECT STATISTICS 56
SET SERVER 47
SHOW LAST 48
SHOW MESSAGE 49
SHOW NETMAP 49
SHOW PROCESS 51
SHOW SERVER 55
SHOW STATISTICS 56
SHOW VERSION 68
SPAWN 69
STOPNDM 69
SUBMIT 70
SUSPEND PROCESS 76
syntax 12

abbreviations 12
comments 13
continuation (hyphen) 13

connectivity options 9

continuation mark (hyphen) 13

CSX API
submitting compiled scripts 80

procedures 80, 83, 85

CTRZ (exit) 43

D
database, VMS proxy 16

DCL command
foreign, NDMUI 11
native, NDMUI 11
RUN 11

DCL command procedure 16

DCL command tables 11

DELETE PROCESS command 41

directories, NDM$$PROCESS 15

E
Enable Script Termination Notification routine,

description 83

131
event logging facility 28
application programming interface 87
description 28
disabling 29
enabling 29
event information 113

event class definitions 116
event item codes 120
event item description 119
event list 113
event types 117
sample event message formats 122

event procedures 31

event messages, replaying 35

event procedures
driver process 33

examples 34
executing 31
invoking 34
parameter template file 32

F
feedback, status line 16

filename parameter, SUBMIT command 71

H
HELP command 46

hyphen (continuation mark) 13

I
interactive mode

description 12, 46
with EXIT command 43
with SPAWN command 69

L
local node 49

qualifier
SELECT NETMAP command 50
SHOW NETMAP command 50

logicals 15, 21

login
and foreign commands 11
proxy 16

LOGIN.COM file 11

lowercase letters, notational conventions 10

M
message id, status line 16

message_id parameter, SHOW MESSAGE
command 49

messages 18

mode
interactive

description 12, 46
example of 12
with EXIT command 43
with SPAWN command 69

noninteractive
description 12, 46
example of 12

N
NDM command execution, checking 16

NDM$$ status symbols 16

NDM$$PROCESS 15

NDMUI 12
entering at the command line 11

network map (netmap) 49

node
qualifier

SELECT NETMAP command 50
SHOW NETMAP command 50

noninteractive mode, description 12, 46

notational conventions
bold letters 10
brackets 10
lowercase letters 10
miscellaneous 10
underlined letters 10
uppercase and lowercase letters 10
uppercase letters 10
vertical bars 10

notify routine, description 85

O
online help 46

online messages
displaying message identifiers 18

132 Connect:Direct for OpenVMS User’s Guide
online messages (continued)
viewing 18

P
parameters

SET SERVER command 48
SHOW MESSAGE command 49
SUBMIT command 71

placeholders
access control 27, 28

example 28
access control reserved word 27
in a compiled script 25
specifying 25

priority, see also /PRTY qualifier

PROCESS commands 37, 41, 44, 51, 76

process name, status line 16

process number, status line 17

proxy access 16

Q
qualifiers

PROCESS commands 38, 42, 44, 52, 76
SELECT NETMAP command 50
SELECT STATISTICS command 57
SHOW NETMAP command 50
SHOW STATISTICS command 57
STOPNDM command 43, 70
SUBMIT command 72

R
remote access control

placeholders 27, 28
examples 27

remote procedure execution facility
executing 19
starting 22

reply string, status line 17

RPX facility
executing 19
starting 22

run job translation 22

run task translation 22

S
script compilation 23

/CSO qualifier 23
benefits of using 23
Enable Script Termination Notification routine 83
notify routine 85
parameters 23, 24
requesting 23
required privileges 25
Submit Compiled Script for Execution routine 80
using API routines 23
using as a template 25
using CSX API 80
using CSX API procedures 80
using placeholders 25
using Run Job 24
using Run Job clause 24
within a DCL procedure 24

Secure+ Option, statistics for 62

security 16
checking during Process execution 16

SELECT NETMAP command 49

SELECT PROCESS command 51

SELECT STATISTICS commands 56

server
qualifier

SELECT NETMAP command 50
SHOW NETMAP command 50

server_alias parameter, SET SERVER command 48

session manager, and STOPNDM command 70

SET SERVER command 47

SHOW LAST command 48

SHOW MESSAGE command 49

SHOW NETMAP command 49

SHOW PROCESS command 51

SHOW SERVER command 55

SHOW STATISTICS command 56

SHOW VERSION command 68

SPAWN command 69

status checking 16

STOPNDM command 69

SUBMIT command 70
/NO CASE qualifier 72

133
SUBMIT command 70 (continued)
/NOKEEP qualifier 73

Submit Compiled Script for Execution routine,
description 80

supported connectivity 9

SUSPEND PROCESS command 76

syntax 12

T
type file records 15

U
underlined letters, notational conventions 10

uppercase and lowercase letters, notational
conventions 10

uppercase letters, notational conventions 10

user interface 11
description 12
invoking 11

V
version 68

vertical bars, notational conventions 10

W
wildcard 50, 53

134 Connect:Direct for OpenVMS User’s Guide

	Index
	About Connect:Direct for OpenVMS
	Connect:Direct for OpenVMS Documentation
	About This Guide
	Conventions Used in This Guide

	Understanding the User Interface
	Using Connect:Direct for OpenVMS
	Understanding the User Interface
	Understanding the Command Syntax
	Using Abbreviations
	Using Comments
	Continuing a Command on Additional Lines

	Using Additional Features
	Using Connect:Direct for OpenVMS Logicals
	Using Connect:Direct for OpenVMS Type File Records
	Implementing Connect:Direct for OpenVMS Security
	Using Security Checking for Connect:Direct Processes

	Using Symbols to Check NDM Command Execution
	Using the Checkpoint-Restart Feature
	Viewing Online Messages
	Displaying Message Identifiers

	Specifying Case Sensitivity
	Using the Remote Procedure Execution Facility
	Understanding the Remote Procedure Execution Facility
	Executing RPX Procedures
	OpenVMS Configuration

	Configuring the Logical Names
	Run Job and Run Task Translation
	RPX Process Startup
	Procedure Testing

	Compiling a Script
	Methods of Compiling a Script
	Script Compilation Parameters
	Using Placeholders
	Access Control Considerations

	Using the Event Logging Facility
	Enabling and Disabling Event Logging
	Event Message Format
	Event Procedures
	Replaying Event Messages

	Using Connect:Direct for OpenVMS Commands
	Reviewing Connect:Direct for OpenVMS Commands
	Modifying Processes
	Reviewing the Command Format
	Parameters
	Required Qualifiers
	Qualifiers
	Examples

	Deleting Processes
	Reviewing the Command Format
	Parameters
	Qualifiers
	Examples

	Exiting Interactive Mode
	Reviewing the Command Format
	Parameters
	Qualifiers
	Example

	Flushing an Executing Process
	Reviewing the Command Format
	Parameters
	Qualifiers
	Examples

	Displaying Online HELP
	Reviewing the Command Format
	Examples

	Changing the Default Server
	Reviewing the Command Format
	Required Parameters
	Qualifiers
	Example

	Displaying the Process Last Submitted
	Reviewing the Command Format
	Parameters
	Qualifiers
	Example

	Displaying the Long Text of a Message
	Reviewing the Command Format
	Required Parameter
	Qualifiers

	Listing Nodes in the Network Map
	Reviewing the Command Format
	Parameters
	Qualifiers
	Examples

	Monitoring Processes in the TCQ
	Reviewing the Command Format
	Parameters
	Required Qualifiers
	Qualifiers
	Examples

	Displaying Current Server Settings
	Understanding the Command Format
	Parameters
	Qualifiers
	Example

	Examining Process Statistics
	Reviewing the Command Format
	Parameters
	Required Qualifiers
	Qualifiers
	Examples
	1 PROCESS-SUBMIT
	2 PROCESS-PROCSTART
	3 PROCESS-STEPSTART
	4 PROCESS-STEPEND
	5 MESSAGE-MSG
	6 PROCEND

	Obtaining Current Version
	Reviewing the Command Format
	Parameters
	Qualifiers
	Example

	Issuing DCL Commands
	Reviewing the Command Format

	Stopping Connect:Direct
	Reviewing the Command Format
	Parameters
	Qualifiers
	Examples

	Submitting a Process
	Reviewing the Command Format
	Required Parameters
	Qualifiers
	Examples

	Interrupting an Executing Process
	Reviewing the Command Format
	Parameters
	Required Qualifiers
	Qualifiers
	Examples

	Using the Application Programming Interface
	Understanding the API
	CSX Application Programming Interface
	Submitting a Compiled Script for Execution
	Reviewing the Format and Arguments
	Return Values
	Arguments
	Using the NDM_CSX_API_SCRIPT_EXEC_SUBMIT Routine
	Returned Condition Values

	Enabling Script Termination Notification
	Reviewing the Format and Arguments
	Return Values
	Arguments
	Using the NDM_CSX_API_SCRIPT_TERM_NOTIFY Routine
	Call Format for the Notify Routine
	Arguments

	Returned Condition Values

	Event Application Programming Interface
	Currently Defined Routines

	Receiving the Event Message Stream
	Reviewing the Format and Arguments
	Return Values
	Arguments
	Using the NDM_EVENT_API_RECEIVE_STREAM Routine
	Call Format for the Action Routine
	Arguments

	Returned Condition Values

	Decoding Event Messages
	Reviewing the Format and Arguments
	Return Values
	Argument
	Using the NDM_EVENT_API_DECODE_MESSAGE Routine
	Call Format for Action Routine
	Arguments
	Returned Condition Values

	Decoding Event Data Items
	Reviewing the Format and Arguments
	Return Values
	Arguments
	Returned Condition Values

	Writing User-Defined Event Messages
	Reviewing the Format and Arguments
	Return Values
	Arguments
	Returned Condition Values

	Opening a Connect:Direct for OpenVMS Message File
	Reviewing the Format and Arguments
	Return Values
	Arguments
	Returned Condition Values

	Displaying Connect:Direct Message File Text
	Reviewing the Format and Arguments
	Return Values
	Arguments
	Using the NDM_EVENT_API_MSGFILE_DISPLAY Routine
	Call Format for Action Routine

	Arguments
	Returned Condition Values

	Closing a Connect:Direct for OpenVMS Message File
	Reviewing the Format and Arguments
	Return Values
	Arguments
	Returned Condition Values

	Obtaining the Current API Version Number
	Reviewing the Format and Arguments
	Return Values
	Arguments
	Using the NDM_EVENT_API_GET_VERSION Routine
	Returned Condition Values

	Event Logging Facility-Event Information
	Event List
	Event Class Definitions
	Event Types
	Event Item Description
	Event Item Codes
	Sample Event Message Formats

	Glossary
	Index

