
Connect:Direct®
for Windows SDK

Programmer’s Guide

Version 4.4

Connect:Direct for Windows SDK Programmer’s Guide
Version 4.4
First Edition
Copyright © 1995, 2004–2007. Sterling Commerce, Inc. All rights reserved. Additional copyright information is
located at the end of the release notes.
TRADE SECRET NOTICE

THE CONNECT:DIRECT FOR WINDOWS SDK SOFTWARE ("STERLING COMMERCE SOFTWARE") IS
THE CONFIDENTIAL AND TRADE SECRET PROPERTY OF STERLING COMMERCE, INC., ITS
AFFILIATED COMPANIES OR ITS OR THEIR LICENSORS, AND IS PROVIDED UNDER THE TERMS OF A
LICENSE AGREEMENT. NO DUPLICATION OR DISCLOSURE WITHOUT PRIOR WRITTEN PERMISSION.
RESTRICTED RIGHTS.
This documentation was prepared to assist licensed users of the Connect:Direct system (“Sterling Commerce
Software”). The Sterling Commerce Software, the related documentation and the information and know-how it
contains, is proprietary and confidential and constitutes valuable trade secrets of Sterling Commerce, Inc., its
affiliated companies or its or their licensors (collectively “Sterling Commerce”), and may not be used for any
unauthorized purpose or disclosed to others without the prior written permission of Sterling Commerce. The Sterling
Commerce Software and the information and know-how it contains have been provided pursuant to a license
agreement which contains prohibitions against and/or restrictions on its copying, modification and use. Duplication,
in whole or in part, if and when permitted, shall bear this notice and the Sterling Commerce, Inc. copyright legend.
Portions of the Sterling Commerce Software may include products, or may be distributed on the same storage media
with products ("Third Party Software") offered by third parties ("Third Party Licensors"). Sterling Commerce
Software may include Third Party Software covered by the following copyrights: Copyright © 1996 – 2004
Macrovision Corporation and Copyright © 1997 Stingray Software, Inc. All rights reserved by all listed parties.
Where any of the Sterling Commerce Software or Third Party Software is used, duplicated or disclosed by or to the
United States government or a government contractor or subcontractor, it is provided as unpublished, copyrighted,
trade secret, proprietary data with RESTRICTED RIGHTS in accordance with FAR 52.227-19 Commercial
Computer Software. The Software manufacturer is Sterling Commerce. Certain Third Party Software is also subject
to the restrictions set forth in Title 48 CFR 12.212 or 227.7202, the restrictions set forth in subparagraph (c)(1)(ii) of
the rights in Technical Data and Computer Software clause at DFARS 252.227-7013, and/or subparagraphs (c)(1) and
(2) at 48 CFR 52.227-19, as applicable.
The Sterling Commerce Software and the related documentation are licensed either “AS IS” or with a limited
warranty, as described in the Sterling Commerce license agreement. Other than any limited warranties provided, NO
OTHER WARRANTY IS EXPRESSED AND NONE SHALL BE IMPLIED, INCLUDING THE WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR USE OR FOR A PARTICULAR PURPOSE. The applicable
Sterling Commerce entity reserves the right to revise this publication from time to time and to make changes in the
content hereof without the obligation to notify any person or entity of such revisions or changes.
As set forth in the README.CDSDK.TXT file located at /Sterling Commerce/Connect Direct v4.2.00/SDK ("Read
Me file"), certain of the Third Party Licensors assert specific terms with respect to their respective products. Such
terms shall only apply as to the specific Third Party Licensor product and not to those portions of the product derived
from other Third Party Licensor products or to the Sterling Commerce Software as a whole. Except as otherwise
described in the README file, the Third Party Software is provided 'AS IS' AND ANY EXPRESSED OR IMPLIED
WARRANTIES, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
Connect:Direct is a registered trademark of Sterling Commerce. All Third Party Software names are trademarks or
registered trademarks of their respective companies. All other brand or product names are trademarks or registered
trademarks of their respective companies.
CDWSDKPG707

Contents

Chapter 1 Connect:Direct for Windows SDK 7

Overview . 7
Connect:Direct for Windows Documentation . 8

About This Guide . 8
Task Overview . 8

Chapter 2 Editing Connection Settings 9

About the Client Connection Utility . 9
Starting the Client Connection Utility. 10
Understanding the Tool Bar . 10

Adding and Deleting a Node Connection Definition . 11
Adding a Node . 11
Deleting a Node . 12

Adding and Deleting a User Connection Definition . 12
Adding a User . 12
Deleting a User . 13

Updating Node and User Properties . 13
Defining a Default Node or Default User . 14
Importing and Exporting Registry Settings . 15

Importing Registry Settings . 15
Exporting Registry Settings. 15

Printing Registry Settings . 15

Chapter 3 Applying the C Applications Programming Interface 17

Understanding Standard C API Functions. 17
Using Handles. 17
Waiting for a Process . 18
Retrieving Error Text . 18
Blocking. 18

Compiling and Debugging . 19
Turning Tracing On . 19
Understanding Registry C API Functions . 19
Using the Standard API Functions . 20
Understanding API Errors . 20
Viewing Sample Programs . 20
Connect:Direct for Windows SDK Programmer’s Guide 3

 Contents
Chapter 4 Applying the C++ Class Interface 21

Compiling and Debugging . 21
Turning Traces On. 21
Manipulating Nodes. 22

Creating an Object to Connect to the Connect:Direct Node 23
Managing Connections . 24

Viewing Information . 24
Controlling the Return of Information. 25

Understanding Iterators. 25
Accessing Iterator Records . 26

Executing Connect:Direct Commands. 26
Managing Exception Conditions . 28
Managing Administrative Functions. 29

Creating a Thread Example . 31
Terminating a Thread . 31
Catching the Exception . 31

Understanding Multithreaded Access and Blocking . 32
Using Objects on the Stack . 32

Chapter 5 Applying the ActiveX Control Interface 33

Submitting Processes . 33
Methods . 34
Events . 34

Displaying Select Statistics Results. 34
Properties . 35
Methods . 40
Events . 41

Chapter 6 Applying the Automation Servers 43

Creating Virtual Servers Using the Node Factory . 43
Applying the Node Object . 44
Identifying Active Processes . 44
Identifying Statistic Records . 45

Creating Node Objects, Select Processes, and Select Statistics Using
Automation Objects . 48

Creating Node Objects . 48
Using Nodes . 48
Selecting Processes . 48
Selecting Statistics . 49
Understanding Errors . 49

Chapter 7 Enhance Security and Automate File Opening with User Exits 51

Applying Enhanced Security . 51
Applying Passticket Support . 51
Security Exit Structures. 52
Accessing Sample Code . 53
4 Connect:Direct for Windows SDK Programmer’s Guide

Contents
Applying Automated File Opening . 53
Applying the File Open Exit. 53
File Open Exit Structures . 54

FILE_OPEN . 54
FILE_OPEN_REPLY . 54

Accessing Sample Code . 54

Appendix A Structure Types 55

NETMAP_DESC_STRUCT Structure . 55
Members . 55

USER_STRUCT Structure. 56
Members . 56

MESSAGE_STRUCT Structure. 58
Members . 58

NETMAP_MODE_SNA Structure . 59
Members . 59

NETMAP_MODE_STRUCT Structure. 59
Members . 60

NETMAP_MODE_TCP Structure . 60
Members . 61

NETMAP_NODE_STRUCT Structure . 61
Members . 62

NETMAP_PATH_STRUCT Structure . 62
Members . 63

PROCESS_STRUCT Structure. 64
Members . 66

NODE_STRUCT Structure . 67
Members . 68

STATISTICS_STRUCT Structure . 69
Members . 69

TRACE_STRUCT Structure . 70
Members . 70

TRANSLATE_STRUCT Structure . 71
Members . 71

Appendix B Return Codes 73

Glossary 75

Index 79
Connect:Direct for Windows SDK Programmer’s Guide 5

 Contents
6 Connect:Direct for Windows SDK Programmer’s Guide

Chapter 1

Connect:Direct for Windows SDK

The Connect:Direct for Windows SDK Programmer’s Guide provides system programmers and
system developers with the information needed to extend the capabilities of the Connect:Direct
environment.

Overview
Use the Software Development Kit (SDK) to extend an application to include the automated file
transfer capabilities of Connect:Direct for Windows. SDK uses a 32-bit interface for C and C++ as
well as an OLE automation server for Visual Basic applications. SDK also provides ActiveX
controls for Submit Process and Select Statistics commands. The tools available in SDK include:

✦ C API functions—Standard and registry API functions. The standard functions allow you to
connect to a Connect:Direct node, execute Connect:Direct commands, manage command
response data, and retrieve error information. The Registry API functions store and retrieve
client connection information to and from the Registry. The C API is implemented using the
C++ Classes.

✦ C++ Class interface—Provides the foundation for the other Connect:Direct interfaces and
provides Visual C++ programmers an object-oriented interface to Connect:Direct.

✦ ActiveX control interface—Uses the CDSubmit and CDStatistics functions to submit
Processes to the server and display statistics from the statistics database.

✦ Direct Automation Servers—Provides an automation wrapper around the Connect:Direct SDK
C++ classes. They provide direct automation support for languages like Visual Basic. The
Connect:Direct Automation Servers provide the following primary classes that map directly to
the CDNode, CDProcess, and CDStatistics classes in the Connect:Direct SDK C++ classes:

✦ User exits—Provides a way to customize Connect:Direct operations. User exits are
user-defined dynamic link libraries (DLLs) that are loaded and called when the user exit is
enabled through an initialization parameter. Two user exits are provided: one for enhanced
security and one for automated file opening.

Before you can use the SDK tools, you must run the Client Connection Utility initially to configure
server access information, such as TCP/IP information.
Connect:Direct for Windows SDK Programmer’s Guide 7

Chapter 1 Connect:Direct for Windows SDK
Connect:Direct for Windows Documentation
See Connect:Direct for Windows Version 4.4.00 Release Notes for a complete list of the product
documentation.

About This Guide
The Connect:Direct for Windows SDK Programmer’s Guide is for programmers and network
operations staff who install, configure, and maintain the Connect:Direct for Windows product.

This guide assumes knowledge of the Windows operating system, including its applications,
network, and environment. If you are not familiar with the Windows operating system, refer to the
Windows library of manuals. Likewise, users should be familiar with C, C++, or Visual Basic
programming language. If you are not familiar with the C or C+ programming language, refer to the
relevant documentation.

Task Overview
The following table directs you to the information required to perform the tasks documented in this
guide:

Task Reference

Using the Connect:Direct Client Connection Utility
to view, edit, update, import, export, and print the
Connect:Direct for Windows client-to-node
connection settings in the Windows Registry.

Chapter 2, Editing Connection Settings

Understanding the purpose and format of the
Connect:Direct C API functions.

Chapter 3, Applying the C Applications
Programming Interface

Understanding the purpose and format of the
Connect:Direct C++ Class interface

Chapter 4, Applying the C++ Class Interface

Applying the Connect:Direct ActiveX Controls Chapter 5, Applying the ActiveX Control Interface

Applying the Connect:Direct Automation Servers Chapter 6, Applying the Automation Servers

Applying user exits to enhance security and
automate file opening

Chapter 7, Enhance Security and Automate File
Opening with User Exits

Refernce information on C and C++ structures and
return codes

Appendix A, Structure Types
Appendix B, Return Codes
8 Connect:Direct for Windows SDK Programmer’s Guide

Chapter 2

Editing Connection Settings

Before you begin using the SDK to create your own programs, you must create connection settings
for each user. Two methods are available to create local node definitions. You can use either
Connect:Direct Requester or the Client Connection Utility. If you want to use Connect:Direct
Requester, refer to the Connect:Direct for Windows System Guide for instructions. This chapter
provides instructions on using the Client Connection Utility.

About the Client Connection Utility
The Connect:Direct for Windows client software uses the Microsoft Windows Registry to store its
configuration information. The Connect:Direct Client Connection Utility allows you to update the
connection settings within the Registry.

You can view, edit, and update Connect:Direct for Windows connection settings in the Windows
Registry with the Client Connection Utility. These settings enable communication between the user
interfaces and the Connect:Direct server. You can set up and update connection settings in the
following ways:

✦ Add and delete a node
✦ Add and delete a user
✦ Configure node and user properties
✦ Define a default node or user
To facilitate updating connection settings on multiple servers, you can import and export connection
settings using the Client Connection Utility. After you configure the connection for a server, you can
export the server’s settings for use on other servers. You can then import the settings into the target
server’s Registry. You can also print connection settings.

Caution: Use the Connect:Direct Client Connection Utility to update any Registry settings rather than
editing them directly.
Connect:Direct for Windows SDK Programmer’s Guide 9

Chapter 2 Editing Connection Settings
Starting the Client Connection Utility
To start the Client Connection Utility:

1. Click Start, and then point to Programs.
2. Click the Sterling Commerce Connect Direct v4.4.00 program.
3. Select CD Client Connection Utility. The Client Connection Utility main window is

displayed.

Understanding the Tool Bar
The Client Connection Utility toolbar provides the following icons to perform frequently used
actions:

Select To

Create a new node.

Create a new user.

Save Registry settings.

Configure highlighted node or user settings.

Delete a node or user.
10 Connect:Direct for Windows SDK Programmer’s Guide

Adding and Deleting a Node Connection Definition
Adding and Deleting a Node Connection Definition
The Connect:Direct Client Connection Utility enables you add new Connect:Direct nodes and
identify the properties of the nodes, such as node name, TCP/IP address, and port number. These
properties establish a node so you can access it from Connect:Direct Requester or the Command
Line Interface (CLI).

You can also use the Client Connection Utility to delete existing nodes.

Adding a Node
To add a new Connect:Direct for Windows node:

1. From the File menu, select New Node to display the Node Properties dialog box:
d.

2. To add a node registered in the Active Directory:
a. Select Windows in the Operating System field.
b. Select the node to add from the Active Directory Nodes drop down box.

The name, address, and port fields are automatically updated with information from the
Active Directory list.

3. To add a node that is not registered in the Active Directory, do the following:
a. In the Name field, type the name of the Connect:Direct node you want to add.
b. If necessary, change the operating system value in the Operating System field.

Note: Click Refresh to update the address and port stored on the local computer with the values
from the Active Directory listing.
Connect:Direct for Windows SDK Programmer’s Guide 11

Chapter 2 Editing Connection Settings
c. In the Address field, type the TCP/IP address of the new node.
d. The Port field automatically defaults to 1363; if necessary, type in a different port number.

4. To specify the new node as the default node, click the Set as the default node check box.
5. Click OK to save your settings and close the Node Properties dialog box.
6. From the File menu, select Save to save the new settings.

Deleting a Node
To delete a node:

1. In the Client Connection Utility main window, select the node you want to delete.
2. Select Delete from the Edit menu.
3. Click Yes to confirm the deletion.
4. Select Save from the File menu to delete the node.

 The node is no longer displayed in the Client Connection Utility window.

Adding and Deleting a User Connection Definition
Use the Connect:Direct Client Connection Utility to set up new users for a node by specifying user
properties, such as the user name and password. These properties establish users of the node who
can access the server through Connect:Direct Requester or the CLI.

Adding a User
To add a new Connect:Direct user:

1. In the Client Connection Utility main window, select the node where you want to add a new
user.

2. From the File menu, select New User to display the User Properties dialog box.

Note: Changes made to the node settings are not written to the Registry until you select Save.

Note: Changes made to the node settings are not written to the Registry until you select Save.
12 Connect:Direct for Windows SDK Programmer’s Guide

Updating Node and User Properties
3. Type information into the following fields:

Name—type the name of the new user. Either type the user name as defined in the
Windows setup, such as lmore or type a fully qualified user name in the UPN format, such
as lmore@adtree.stercomm.com

Password— type the password defined for the user.

Verify Password—retype the password defined for the user.

4. Click the Remember password check box to automatically reload the password when you
attach as this user.

5. Click the Set as the default user check box if you want the new user to be the default user for
the node.

6. Click OK to save the settings and close the User Properties dialog box.
7. If the verification password you typed does not match the initial password, you receive a

message indicating the passwords do not match when you click OK. Retype the verification
password and click OK.

8. From the File menu, select Save to save the settings.

Deleting a User
To delete a user from the node:

1. If the user names are not displayed, click the plus (+) sign next to the node containing the user
you want to delete.

2. Select the user you want to delete.
3. From the Edit menu, select Delete.
4. Click Yes to confirm the deletion.
5. From the File menu, select Save to save the new configuration.

Updating Node and User Properties
The Connect:Direct Client Connection Utility lets you update node and user properties to maintain
accurate information.

To update node properties:

1. Do one of the following:

To update a node, highlight the node you want to configure.

To update a user properties, highlight the user you want to configure.

Note: Changes made to node settings are not written to the Registry until you select Save.

Note: Changes made to node settings are not written to the Registry until you select Save.
Connect:Direct for Windows SDK Programmer’s Guide 13

Chapter 2 Editing Connection Settings
2. From the File menu, select Properties to display the Node Properties dialog box:

3. Select the fields you want to edit and make the appropriate changes.
4. Click OK to save your settings and return to the Node Properties dialog box.
5. From the File menu, select Save to save the settings.

Defining a Default Node or Default User
The Connect:Direct Client Connection Utility allows you to define a default node or default user.
The default node and user will be used by the Connect:Direct Requester and the CLI.

To define a default node or user:

1. Take one of the following actions:

To define a default node, highlight the node.

To define a default user, highlight the user.

2. From the Options menu, select Set as Default to set the default node or user.
3. From the File menu, select Save to save the settings. The default node or user is displayed in

the main Client Connection Utility window as bold text.

Note: Changes made to node settings are not written to the Registry until you select Save.

Note: Changes made to node settings are not written to the Registry until you select Save.
14 Connect:Direct for Windows SDK Programmer’s Guide

Importing and Exporting Registry Settings
Importing and Exporting Registry Settings
The Connect:Direct Client Connection Utility allows you to import and export connection settings
to a file. These settings can be saved and used on another computer or node.

Importing Registry Settings
To import Registry settings:

1. Select the node in which to import the Registry settings.
2. From the File menu, select Import. A message informing you that all settings will be lost is

displayed.
3. Click Yes. The Open dialog box is displayed.

4. Select the Registry settings file you want to import (.REX extension) and click OK. The
imported Registry settings are applied to the node you selected.

5. From the File menu, select Save to save the settings.

Exporting Registry Settings
To export Registry settings:

1. From the Client Connection Utility main window, select the node containing the Registry
settings you want to export.

2. From the File menu, select Export. The Save As dialog box is displayed.
3. Name the exported Registry file with a REX extension and click OK. The Registry settings in

the file can now be imported to another computer or node.

Printing Registry Settings
The Connect:Direct Client Connection Utility allows you to generate a report of Registry settings.
To print the Registry settings report:

1. To preview the Registry settings report before printing it:
a. Select File > Print Preview.
b. Click Zoom In to enlarge the text and read the report.

Note: Importing a Registry settings file causes all current changes to the selected node to be lost if
they have not been saved.

Note: Changes made to node settings are not written to the Registry until you select Save.
Connect:Direct for Windows SDK Programmer’s Guide 15

Chapter 2 Editing Connection Settings
2. To print the report:
a. Select File > Print to display the Print dialog box.
b. If necessary, select the printer.
c. Click OK. A report of all Registry settings is generated.

Note: Additional node detail is provided if the node has been used at least once by the client
software.
16 Connect:Direct for Windows SDK Programmer’s Guide

Chapter 3

Applying the C Applications Programming
Interface

This chapter describes the purpose and format of the Connect:Direct C API functions. The
Connect:Direct C applications programming interface consists of Standard and Registry API
functions. The Standard API functions connect to a Connect:Direct node, execute Connect:Direct
commands, manage command response data, and retrieve error information. The Registry API
functions store and retrieve client connection information to and from the Registry. The C API is
implemented using the C++ Classes. This interface is used by C programmers.

Understanding Standard C API Functions
This section provides an overview of the Standard C API functions and their responses.

Using Handles
Handles simplify object and memory management by referencing a particular object. Pass a handle to
an API to uniquely identify an object. The Connect:Direct C API uses the following types of object
handles to return node, Process, statistics, message, and trace information:

✦ Node Handles—Represent the Connect:Direct node that is the target of the operation. It is a
virtual connection to a Connect:Direct node. The node handle is a special type of object handle;
it holds information about the node, but does not return data from the node.
A node handle is created by calling the CdConnect() function and passing in the node name,
user ID, password, and protocol within a NODE_STRUCT structure. After you finish with a
node handle, you call the CdCloseHandle() to close it. Closing the handle releases the virtual
connection and any internal resources associated with it. The node handle is no longer valid on
subsequent operations.

Note: You are responsible for closing the node handle and for releasing any resources that you allocate.
Connect:Direct for Windows SDK Programmer’s Guide 17

Chapter 3 Applying the C Applications Programming Interface
✦ Process Handles—Handles returned from a submit command or from a Process object, which
is created when a select process, change process, or delete process command is executed. The
following example demonstrates the select process command returning a Process:

✦ Statistic Handles—Statistics objects that are returned after a select statistics command is
executed.

✦ Message Handles—Message objects that are returned when a select message command is
executed.

✦ Trace Handles—Trace objects that are returned when a traceon or traceoff command is
executed.

Waiting for a Process
Use the following function to wait for a Process:

✦ CdWaitOnProcess()—Use this function to serialize Connect:Direct Process execution. This
function blocks the calling thread until the specified Process is no longer in the TCQ. It takes a
Process handle that contains references to the target Process object. Any Process object handle
can enable you to specify Processes to wait on. Use this method to wait on a Process returned
from a submit command and any Process returned by the select process command.

Retrieving Error Text
Use the following functions to retrieve error text:

✦ CdGetErrorText()—Call this function to translate return code values into messages that
explain the error. This helps the user understand the error message and provides a method for
logging meaningful trace messages within an application.

✦ CdGetDetailedError()—Use this function to retrieve messages one at a time until
CD_ENDOFDATA is returned. This call fills in the MESSAGE_STRUCT structure with a
detailed error message for node, parser, and connection errors. The messages are erased upon
entry to any other API to prepare for other potential errors.

Blocking
The C Application Programming Interface is synchronous; when an API that performs a complex
function (such as the CdConnect() or CdExecuteCmd() functions) is called, the caller’s thread is
blocked until the request is completed or until a failure occurs. The caller’s thread blocks while
waiting for other threads to finish the request.

If the CdConnect() function is called from a Windows application, it should not called from the
primary user interface (UI) thread. Calling the function from the UI thread causes the user interface
of the program to run slowly.

if (CdExecuteCommand (hNode, “SELECT PROCESS”, &hProc))
{
 if (CdGetProcRec(hProc, &Proc))
 {
 printf("%d %s/n", Proc.ProcessNumber, Proc.ProcessName);
 }
}

18 Connect:Direct for Windows SDK Programmer’s Guide

Compiling and Debugging
Compiling and Debugging
When you are ready to compile the program created with the API, include the CDCAPI.H header
file. Including the CDCAPI.H file in your project automatically links a program with the
appropriate import library. Debug configurations link with the CDCAPID.LIB and release
configurations link with the CDCAPI.LIB.

The CDCAPI.LIB and CDCAPID.LIB files contain the following information:

✦ Name of the DLL to dynamically load at run time.
✦ Definitions of all exported functions. This is used by the linker to resolve all calls to the

CDCAPI.DLL.
When the program runs or the DLL is loaded, the appropriate CDCAPI.DLL is loaded. The
CDCAPI.DLL is dynamically loaded when a release configuration is executed, and the
CDCAPID.DLL is dynamically loaded to support debug configurations.

The C APIs are based on the core C++ APIs. This required API layer is contained in CDCORE.DLL
(or CDCORED.DLL if compiling for debug mode). The appropriate core DLL must be in your path
for the C APIs to work properly.

Turning Tracing On
The Output window of the Microsoft Visual Studio displays trace messages. Use the following
parameters to activate tracing:

Understanding Registry C API Functions
The Connect:Direct Registry C API functions store and retrieve client connection information to
and from the Registry. This connection information is used by the CDConnect() function to
connect to a Connect:Direct node. This information is stored in the NODE_STRUCT structure.

Parameter Description

CdGetTraceFlags(unsigned int*
pgrfTrace);

Retrieves the current trace settings for the Connect:Direct API.

CdSetTraceFlags(unsigned int
grfTrace);

Sets new trace settings for the Connect:Direct API.

CdSetTraceFile(LPCTSTR
pszFilename);

Provides a file name to the tracing facility. If a file is given, trace
messages are written to the Output window and to the specified
file.
Connect:Direct for Windows SDK Programmer’s Guide 19

Chapter 3 Applying the C Applications Programming Interface
Using the Standard API Functions
When using the C APIs, it is not necessary to follow a sequence. Refer to the C API Reference Guide
for a list of standard API functions. All handles are self-contained and are not dependent on other
handles.

You must call the CdConnect() function to create a valid node handle. This handle is required to
execute commands on the node using the CdExecuteCommand() function. When all commands
are executed, the handle obtained from the CdConnect() function is no longer required. The
handles returned by the CdExecuteCommand() function are completely self-sufficient. When the
handle is no longer needed, call the CdCloseHandle() function to release the unused resources.
Following is an example of an execution sequence:

Understanding API Errors
Most of the C APIs return an integer value to indicate the type of error encountered while executing
the API. The CdGetError() API returns a text string that gives a general description of the error as
indicated by the return code value passed into the API. Refer to Appendix B, Return Codes for a
description of the available return codes. For information about an error, repeatedly call
GetNextMsg().

Viewing Sample Programs
Refer to the documentation CD-ROM directory, CDSDK\Samples for the C, C++, and Visual Basic
sample code. The sample code contains the following:

✦ The CSample1.C sample program demonstrates how to connect to a node, execute a
command, and view the data returned by the node.

✦ The CSample2.C sample program demonstrates a more complex transaction of connecting to a
node, submitting a Process, waiting for completion, and requesting statistics for the Process.

✦ CPPSamp1
✦ CPPSamp2
✦ VBAuto
✦ VBStat
✦ VBSubmit
✦ VBSubmit2

CdConnect
 CdExecuteCommand
 (Any API used to access either handle)
 CdCloseHandle
CdCloseHandle
20 Connect:Direct for Windows SDK Programmer’s Guide

Chapter 4

Applying the C++ Class Interface

This chapter describes the purpose and format of the Connect:Direct C++ Class interface. The
Connect:Direct C++ Class interface provides the foundation for the other Connect:Direct interfaces
and provides Visual C++ programmers an object-oriented interface to Connect:Direct.

Compiling and Debugging
To use the Connect:Direct C++ interface, include the CDSDK.H header file. Including the
CDSDK.H file in a project automatically links the program with the appropriate import library.
Debug configurations link with the CDCORED.LIB, and the release configurations link with the
CDCORE.LIB

.

The CDCORED.lib and CDCORE.lib files contain the name of the DLL to dynamically load at run
time and class definitions for the linker to resolve the Connect:Direct SDK symbols included in the
CDSDK.H file. When a program executes or a DLL is loaded, the appropriate CDCORE.DLL is
loaded. Applying.DLL is dynamically loaded when a debug configuration is executed and to
support a release configuration.

Turning Traces On
If you want to activate tracing, use the following class methods:

Note: You do not need to add the LIB to the LINK section of the project or makefile.

Note: You do not have to create a CDNode to use these methods. Tracing does not relate to nodes directly,
but to the Connect:Direct SDK. The methods are placed in the CDNode because it is the central class
to everything in the Connect:Direct SDK.
Connect:Direct for Windows SDK Programmer’s Guide 21

Chapter 4 Applying the C++ Class Interface
Manipulating Nodes
The Connect:Direct Component Group classes represent Connect:Direct entities and provide
methods to manipulate an object to generate changes on the Connect:Direct node. Use the following
classes to manipulate nodes:

Class Method Description

CDNode::GetCDSDKTraceFlags(); Returns the current trace settings for the
Connect:Direct SDK.

CDNode::SetCDSDKTraceFlags(DWORD
bmFlags);

Sets new trace settings for the Connect:Direct SDK.

CDNode::SetCDSDKTraceFilename(LPCTSTR
pszFilename);

Provides a file name to the tracing facility. If a file is
provided, trace messages are written to the Output
window and also to the file.

Class Description

CDNode Contains the high-level Connect:Direct functionality. It returns network map,
initialization parameters, and translation table information as well as User and
Proxy objects that maintain node information and execute command objects.

CDUser Contains the user functional authority information. Use to add, delete, and
update functional authorities on the Connect:Direct node, including Network
map Access Flags, Command Access Flags, Control Flags, Process Statement
Flags, and default directories.

CDProxy Contains the Connect:Direct proxy information. Use to add, delete, and update
proxy information on the Connect:Direct node. The remote user proxy contains
information for operations initiated from a remote Connect:Direct node and
defines relationships between a remote node and local user IDs.

CDTranslationTable Contains and maintains the translation table information that translates data
being sent to other nodes and provides methods for setting and retrieving
translation information.

CDTrace Holds the trace criteria. It contains all the fields returned from the node with the
TRACEON command, with no parameters and provides access methods for all
of the Trace fields.

CDNetmapNode Contains the network map node information.

CDNetmapDesc Contains the description for a network map node.

CDNetmapPath Contains the network map path information.

CDNetmapMode Contains the network map mode information.
22 Connect:Direct for Windows SDK Programmer’s Guide

Manipulating Nodes
When using the C++ Class interface, no sequence must be followed when using the C++ classes.
All objects are self-contained and are not dependent on any other classes when fully constructed.
Each object’s constructor is different and some of the objects require another object to be built
successfully.

The first and most important class is the CDNode class. This class is the first one to use when
interacting with any Connect:Direct node.

While the only prerequisite for constructing a class is the creation of the objects needed by the
constructor, the following example shows a possible sample execution sequence:

The Connect:Direct CDNode class serves as the virtual Connect:Direct node. It enables you to
manipulate and send commands to the actual Connect:Direct node. You manipulate this object
through the use of the CDNode methods and issue commands to the node using Command objects.
Calling these methods and using the objects sends KQV streams to the physical Connect:Direct
node. See the C++ API Reference Guide for more information.

Creating an Object to Connect to the Connect:Direct Node
The name of the Connect:Direct node and the connection information is set at object creation time
using the CDNode constructor. If a parameter is not supplied (NULL pointer), the default value for
that parameter is read from the Registry. During construction, the CDNode object attempts to
connect to the physical Connect:Direct node, using the protocol information contained in the
Registry. If the connection fails, the CDConnectionException is returned. If the connection is
successful, but the logon is denied by the server, a CDLogonException is returned.

The CDNode object creates and removes the connection to the Connect:Direct node as needed.
Connections are shared and reused as different requests are made. The following section of the class
definition displays the methods to construct a CDNode object and methods to retrieve node
information:

CDNode creation
 CDSelectProcCommand creation
 CDProcIterator creation
 (Use the data)
 CDProcIterator destruction
 CDSelectProcCommand destruction
CDNode destruction

// Constructor for CDNode
CDNode(LPCTSTR szName=NULL, LPCTSTR szUserid=NULL,
 LPCTSTR szPassword=NULL, int nProtocol=CD_PROTOCOL_TCPIP);
CDNode(LPCTSTR szFilename);
CDNode(const CDNode &Node);
~CDNode();
//Node Information Methods
const CString GetName() const;
LPCTSTR GetCDName() const;
LPCTSTR GetUserid() const;
LPCTSTR GetServer() const;
int GetProtocol();
Connect:Direct for Windows SDK Programmer’s Guide 23

Chapter 4 Applying the C++ Class Interface
The following two examples illustrate two different methods for creating a CDNode object. The
first method creates the CDNode object locally on the stack. The second example creates a dynamic
allocation of a CDNode object from the stack. Both methods then execute a SELECT PROCESS
command using the CDNode object.

Managing Connections
The CDNode class creates and deletes connections to the Connect:Direct node as needed and
deletes the connections if they are idle for a specified period of time. The connections are stored in
an array and are created and assigned by the CDNode object when a command requests a
connection to the physical node. Connections are reused when they are idle and are deleted if they
remain idle for an extended period of time. Because each connection consumes resources on both
the client and the server, use them as efficiently as possible. The DisconnectAll member function
is used to disconnect all connections to all nodes.

Viewing Information
The Connect:Direct Record Group Classes contain related information about Processes, statistics,
messages, and users. Use the following classes to obtain information:

{
 CDNode MyNode(“MYNODE”, “MYUSERID”, “MYPASSWORD”);
 CDSelectProcCmd cmd;

 //Execute the “SELECT PROCESS” command
 CDProcIterator it = cmd.Execute(MyNode);

}

{
 CDNode *pNode = new CDNode(“MYNODE”, “MYUSERID”, “MYPASSWORD”);
 CDSelectProcCmd cmd;

 //Execute the "SELECT PROCESS" command
 CDProcIterator it = cmd.Execute(pNode);

 delete pNode;
 }
24 Connect:Direct for Windows SDK Programmer’s Guide

Controlling the Return of Information
Controlling the Return of Information
Commands and methods store multiple items in a iterator. The iterator provides methods to
enumerate through each returned object.

Understanding Iterators
Commands that retrieve a single record from the server block the calling thread in the Execute()
method until the data arrives. The data is then put into a record object and returned. Other
commands, like select statistics, can potentially return hundreds of records. If the Execute()
method blocks until all records are returned, it can take longer to receive any feedback. If the
records are all returned in one large block instead of being consumed at one time, the computer
slows down.

To solve these problems, commands that potentially retrieve multiple records return an iterator
object as soon as the first record arrives. As data is returned, a background thread automatically
appends to the iterator. The iterator has a connection to the server and the command object is not
involved. This method allows you to process records as they arrive. The following example
demonstrates the select process command returning a process iterator:

Class Description

CDProcess Contains all of the Process criteria information returned from a SUBMIT or SELECT
PROCESS command after a Process is submitted. You can submit a Process for
execution using one of the following methods:
Create a CDSubmitCmd object and initialize the parameters. Next, call the
CDSubmitCmd::Execute() method and specify the CDNode object to run on. Call
the CDNode::Submit() method and specify the text of the Process. This method
internally creates the CDSubmitCmd object and calls the Execute() method.

CDStatistic Provides two methods for holding statistics information.
GetAuditField() Method—Because audit data is optional, and different records
have different KQV keys, use a single method to access the data. To retrieve a
value, call GetAuditField(), passing the KQV key for the desired field.
The GetAuditMap() function retrieves all audit fields defined in the current record.
An MFC CMapStringToString object maps from KQV keywords to the corresponding
values. This method enables you to view each association in the map to determine
what audit fields are available and to ask the map for the value of the given field.

CDMessage Holds information about a specific message that is retrieved from the Connect:Direct
node.

CDUser Holds the user functional authority information to add, delete, and update functional
authority information on the Connect:Direct node.

CDSelectProcCmd cmd;
CDProcIterator it = cmd.Execute(node):
Connect:Direct for Windows SDK Programmer’s Guide 25

Chapter 4 Applying the C++ Class Interface
Accessing Iterator Records
The iterator keeps an internal list of all records returned from the server. Use the following
commands to control iterator records:

✦ HasMore()—Call this method to determine if any records are available in the list.

✦ GetNext()—If HasMore() returns TRUE, obtain the next record in the list using this
command. It removes the next record from the list and returns it.

When all records are received from the server, the server notifies the iterator that the command is
complete. After all records are removed using GetNext(), HasMore() returns FALSE.

If the iterator’s list is empty, but the server has not notified the iterator that the command is
complete, the iterator cannot determine whether there are more records. In this case, HasMore()
blocks until more records are received from the server or a completion notification is received. Only
then can the iterator return TRUE or FALSE.

The following is an example of accessing statistics records using an iterator:

Executing Connect:Direct Commands
The Connect:Direct Command Group classes execute Connect:Direct commands against
Connect:Direct nodes. Use the following Command Group classes to execute commands:

Note: You must always call HasMore() before calling GetNext(). It is not legal to call GetNext() if
there are no records.

CDSelectStatCmd cmd;
CDStatIterator it = node.Execute (cmd);
while (it.HasMore())
{
 CDStatistic stat = it.GetNext();
 // use the statistics object
}

26 Connect:Direct for Windows SDK Programmer’s Guide

Executing Connect:Direct Commands
Class Description

CDCommand The base class for all Connect:Direct command objects. It wraps the parser
within a class and enables methods for data manipulation. Each derived class
provides an Execute() method to execute the command and return the
resulting data or object.
If the result is several items, the command object returns a iterator object that
holds the data. The following CDCommand class definition shows the type of
methods available in this class:

class
CDCommand
{
public:
 // Constructor for CDCommand
 CDCommand(LPCTSTR pCommand=NULL);
 virtual ~CDCommand();

 virtual void ClearParms();
 void SetCommand(const CString& strCmd);
 virtual CString GetCommand() const;
 virtual CString GetKQV() const;
 // Execute() methods are provided by each
 // derived command class.

CDSelectStatCmd Derived from the CDCommand base class, it enables you to set the SELECT
STATISTICS parameters. When you call the Execute() method, an iterator
data object is dynamically created and attached to the connection assigned
by the CDNode object to execute the command.

CDSelectProcCmd Derived from the CDCommand base class, it enables you to set the SELECT
PROCESS parameters. When you call the Execute() method, the
CDProcIterator object is created dynamically and attached to the connection
assigned to execute the command.
The following example demonstrates the CDSelectProcCmd class:

CDSelectProcCmd cmd;
CDProcIterator it = node.Execute(cmd);
while (it.HasMore())
{
 CDProcess proc = it.GetNext();
 // use the process
}

CDChangeProcCmd Derived from the CDCommand base class, it enables you to set the
CHANGE PROCESS parameters. When the Execute() method is called, an
iterator data object is dynamically created and attached to the connection
assigned to execute the command. A CDProcIterator is attached to the
iterator data and returned from the Execute() method.

CDDeleteProcCmd Derived from the CDCommand base class, it enables you to set the DELETE
PROCESS parameters. When the Execute() method is called, a
CDProcData object is dynamically created and attached to the connection
assigned to execute the command. A CDProcIterator is attached to the
iterator data and returned from the Execute() method.
Connect:Direct for Windows SDK Programmer’s Guide 27

Chapter 4 Applying the C++ Class Interface
Managing Exception Conditions
Connect:Direct generates Exception Group classes if an exception condition is encountered while
a request is being processed. Following is an exception scenario where a message is pushed into the
exception before the initial throw.

Function A calls Function B, and Function B calls Function C. Function C is a helper routine called
by many routines so it does not include information specific to a task. Since the exception occurred
in C, it throws the exception. A message describing the error is added and flagged as a technical
message.

Function B traps the exception. A message describing the error is added and flagged as a user
message. User messages are displayed in dialog boxes. For example, a user message reads:
Communication with the server has been lost.

CDSelectMsgCmd Derived from the CDCommand base class, it enables you to set the SELECT
MESSAGE parameters. When you call the Execute() method, the command
is executed and the resulting message text is stored in the internal
CDMessage object.

CDStopCmd Derived from the CDCommand base class, it enables you to set the STOP
parameter. When you call the Execute() method, the command is executed.

CDSubmitCmd Used for submitting a Process object for execution on a node. It enables you
to set the options of the SUBMIT command and then execute the command
on a node. When you call the Execute() method, a CDProcess object is
dynamically created and attached to the connection assigned to execute the
command. The following example demonstrates the CDSubmitCmd class:
.
.
.
CDSubmitCmd cmd;
cmd.SetFile ("myproc.cdp");
CDProcess proc = node.Execute(cmd);
proc.WaitForCompletion();
.
.
.

CDTraceOnCmd Derived from the CDCommand base class, it enables you to set and retrieve
trace options from the Connect:Direct node. The TraceOnCmd class handles
all the options available from the TRACEON command. The Execute()
method returns a CDTrace object that contains the current trace state.

CDTraceOffCmd Derived from the CDCommand base class, it enables you to clear trace
options from the Connect:Direct node. The CDTraceOffCmd class handles all
of the options available from the TRACEOFF command. You call methods to
clear the desired trace parameters and then call the Execute() method. The
Execute() method returns a CDTrace object that contains the current trace
state.

Class Description
28 Connect:Direct for Windows SDK Programmer’s Guide

Managing Administrative Functions
The CDMsgException class stores the messages as an array of strings. The messages are stored in
a last-in first-out (LIFO) order because messages added later are more general as the exception
moves up the call stack.

Following is a description of the Exception Group classes:

Managing Administrative Functions
The Connect:Direct Helper Group classes are provided for convenience. They represent common
functionality that can be used for consistency.

Class Description

CDMsgException The base exception class for all Connect:Direct exception objects. It provides a
message stack for troubleshooting.

CDConnectionExcep
tion

This exception is generated when communication with the node is lost or cannot
be established.

CDCommandExcepti
on

Generated when an object cannot be executed because parameters are invalid,
including submitted Process containing errors.

CDLogonException Generated if the Connect:Direct node rejects the user ID and password supplied
in the logon attempt. You can respond to this exception by prompting the user for
the correct logon information.
Connect:Direct for Windows SDK Programmer’s Guide 29

Chapter 4 Applying the C++ Class Interface
Class Description

CDLogonDlg The Connect:Direct common logon dialog box enables you to write your own
logon applications. The CDLogon dialog box enables you to change the node,
the user ID and password to connect to the Connect:Direct node as well as
enable the Remember Password check box, click the Configure button to save
new server logon information and change the title.
Below are the components of the CDLogonDlg class:
Node—Specifies the Connect:Direct node to which the user wants to logon.
userid—Specifies the user ID for the Connect:Direct node.
Password—Specifies the password defined for the user ID.
Remember Password—Specifies whether the user wants the password to
persist after the user logs off. If the check box is enabled, the password is
retrieved to set the password field of the dialog box when the logon dialog is
displayed. This prevents the user from having to re-type the password
information for the session. Enabling the check box also specifies whether or not
to write the password information as nonvolatile data. Nonvolatile keys persist
after the user logs off. If the user does not enable the Remember Password
check box, the password only persists until the user logs off.
The Connect:Direct Logon dialog box does not perform the logon. It captures the
entries and returns them to the calling program.
Normally, the programmer creates a CDLogon dialog box, sets the parameters,
and calls the DoModal() function to display and run the dialog box. If the user
clicks the OK button, then the CDLogonDlg class returns IDOK and a logon is
attempted using the supplied connection information. If the user clicks the
Cancel button, the CDLogonDlg class returns IDCANCEL and the logon is
cancelled.
After a user successfully logs on to the Connect:Direct node, the connection
information is written to the Registry under the HKEY_CURRENT_USER key.

CDExceptionDlg Displays the exception dialog box. The dialog box displays the information in the
exception object.

CDThread Coordinates the clean termination of threads and provides a thread class that
can unblock object.

CDBeginThread Creates a worker thread for use with API objects.

Return Values A pointer to the newly created thread object.
30 Connect:Direct for Windows SDK Programmer’s Guide

Managing Administrative Functions
Creating a Thread Example
The following example illustrates how to create a thread:

Terminating a Thread
In the preceding sample code, the only blocking that takes place is in the Execute() function.
Execute() blocks until the Process information returns from the server. To terminate the thread
without waiting, call CDThread::Exit, which signals any blocking CD objects in the thread to stop
blocking and throw a thread exit exception. In the previous example, if CDThread::Exit is called,
an exception is thrown, and no return object is returned from the Execute() function.

When CDThread::Exit is called, CDThread::IsExiting returns TRUE. You can use this method
in loops to determine when to exit because CD objects only throw the exception when they are
blocking.

Catching the Exception
It is not necessary to catch the CDThreadDeath exception. If not caught, the exception unwinds the
stack, destroying all objects on the stack, and the CDThread object itself handles the exception. To
provide clean-up for heap allocated items, the exception can be caught. Rethrowing the exception
is not required.

void SomeFunc()
{
 CDThread* pThread = CDBeginThread(ThreadFunc);
}

void ThreadFunc(LPARAM lParam)
{
 CSomeCmd cmd(...);
 CDProcess proc = cmd.Execute(...);
 DWORD dwId = proc.GetId();
 SetDlgItemInt(IDC_SOMECONTROL, (int)dwId);
}

Note: It is not possible for one thread to throw an exception in another. CDThread::Exit sets flags in the
CDThread object that other CD objects use.

Caution: Do not call the Win32 TerminateThread. TerminateThread does not give the thread a chance to
shut down gracefully. Calling TerminateThread can corrupt the state of the CD objects. CD
objects use critical sections and other resources that must be managed carefully.
Connect:Direct for Windows SDK Programmer’s Guide 31

Chapter 4 Applying the C++ Class Interface
Understanding Multithreaded Access and Blocking
Because the Connect:Direct C++ Class API uses multiple threads, the API objects are thread safe.
The API objects provide efficient blocking for use in multithreaded programs.

Using Objects on the Stack
C++ programs that make good use of exceptions move as much data from the heap to the stack as
possible. This ensures that destructors run and memory is released when an exception occurs. It also
reduces the complexity of the program by eliminating many pointers, reducing the chances of
memory leaks, and letting the compiler ensure that objects are valid (as opposed to pointers that
could be NULL or bad).

To ensure objects are used on the stack efficiently, most CD objects store their data externally. The
following example is of an iterator object that holds 500 statistics records:

 When the iterator is created, an iterator data object is also created to hold the records. The data
object also has a reference count that indicates how many objects are using the data. When an object
is copied, the new object (the copy) is linked to the data and the reference count of the data object
is incremented. There are still only 500 records (not 1000), and the reference count is now 2.

When connected objects are destroyed, they decrement the reference count in the data object. When
the reference count reaches 0, the data object is also destroyed. The following figure provides an
example of the efficiency possible when shared data is copied:

On line 3 the sample code calls the CreateIterator() function. The CreateIterator() function
returns an iterator, called itLocal. This iterator is created on line 9 and returned on line 10.

At line 11 the C++ compiler creates a temporary copy of itLocal before destroying it. As part of the
copy, the iterator data reference count is incremented to 2. When itLocal is destroyed, the reference
count drops to 1 so that the records are not deleted.

Next, the C++ compiler constructs itLocal on line 3 by passing the temporary to its copy
constructor. The reference count is again incremented to 2 because both iterators are pointing to it.
The temporary is then destroyed, reducing the reference count to 1.

The result is that an unlimited number of records are passed to the stack with little more than the
copying of two pointers and some reference counting.

1. void Func()
2. (
3. Iterator itFinal = CreateIterator();
4. }
5.
6. Iterator CreateIterator()
7. {
8. CSomeCmd cmd(...);
9. Iterator itLocal = node.Execute(cmd);
10. return itLocal;
11. }
32 Connect:Direct for Windows SDK Programmer’s Guide

Chapter 5

Applying the ActiveX Control Interface

This chapter describes how to use the Connect:Direct ActiveX control interface. The CDSubmit and
CDStatistics controls provide mechanisms to submit Processes to the server and display statistics from
the statistics database.

The Connect:Direct ActiveX control interface provides CDSubmit and CDStatistics controls. Refer to
the VBSTAT.VBP and VBSUBMIT2.VBP files in the Samples subdirectory for a sample Visual
Basic application that uses the ActiveX controls included in this chapter.

Submitting Processes
The Connect:Direct CDSubmit control is a command line control that submits Processes to the server.
Because submitting a Process can be a lengthy procedure, the Execute command returns immediately.
When a Process is submitted and the server responds, or a time-out occurs, the client is notified
through the SubmitStatus event. Additionally, the client can request notification when the Process has
completed on the server. Properties for the CDSubmit control follow:

Property Description

Node=nodename The name of the node that you want to connect to. The node name must be valid in
the Windows system Registry.

User=userid The user ID used to log on to the Connect:Direct node.

Password=password The password used by the user ID to log on to the node.

Text=text The text of the Process.
Connect:Direct for Windows SDK Programmer’s Guide 33

Chapter 5 Applying the ActiveX Control Interface
Methods
Use the following methods to submit a Process:

Events
The following events are activated by the CDSubmit control:

Displaying Select Statistics Results
The CSDStatistics control is a multi-column list that displays SELECT STATISTICS command
results. The CDStatistics control properties determine the node that you are connected to, logon
information, and selection criteria. The following figure shows the CDStatistics control where only
the message ID and message text are selected.

Method Description

Execute(BOOL bWait) Submits the Process to the server. An event is fired when the server
responds to notify the client of the status of the submit. If bWait is TRUE,
another event is fired when the Process completes on the server.

SetSymbolic(symbolic, value) Sets the symbolic value for symbolic. Call for each symbolic in the
Process.

ClearSymbolics Clears all symbolics. Call before submitting a Process to clear the
previous values.

Method Description

Submitted Describes whether the Process is accepted by the server.

Completed The ProcessComplete event is sent when the Process is no longer in the server’s
queue. Because more resources are required to wait on a Process, this event is only
fired if requested in the call to Execute.

Error The standard error event. Possible codes are:
CTL_E_PERMISSIONDENIED—cannot log onto the node.
CTL_E_DEVICEUNAVAILABLE—cannot connect to the node.
CTL_E_OUTOFMEMORY—out of memory.
CTL_E_ILLEGALFUNCTIONCALL—an unknown error. The error message
describes the error.
34 Connect:Direct for Windows SDK Programmer’s Guide

Displaying Select Statistics Results

Properties
Properties for the CDStatistics control are listed below:

Property Description

ColCount=nnnnn Specifies the number of columns to display. The range for the
ColCount value is 1–32,000.

Col=nnnnn Specifies the current column. The range for the Col value is
1–32,000.

ColWidth=nnnnn Specifies the width of the current column (Col) in pixels. The range
for the ColWidth value is 0–32,000.

Header Specifies the column header text for the current column. Provide
text for the value or leave it blank.

Row=nnnnn... Specifies the current row. If set to 0, the current row is the header.
The range for the Row value is 0–Infinity, where the number of rows
is limited only by memory.

RowCount=positive integer Specifies the number of rows in the list, not including the header.
This field is read-only and is determined by the number of records
returned by the server.

Node=node name Specifies the name of the node to which you want to connect. The
node name must be valid in the Windows NT system Registry.

User=userid Specifies the user ID used to log on to the Connect:Direct node.

Password=password Specifies the password defined to allow the user ID log on to the
node.

Field Specifies the statistics structure field the current column is
displaying. Valid values are Process Name, Process Number,
Condition Code, Feedback, MsgId, MsgText, MsgData,
LogDateTime, StartDateTime, StopDateTime, Submitter, SNode,
RecCat, and RecId.
Connect:Direct for Windows SDK Programmer’s Guide 35

Chapter 5 Applying the ActiveX Control Interface
ccode=(operator, code) Selects statistics records based on the completion code operator
and return code values associated with step termination. The
condition code operator default is eq. You must specify the return
code. Refer to dfile=destination filename | (list) on page 5-36 for
valid operators and values.

dfile=destination filename | (list) Searches all copy termination records (CAPR category, CTRC
record ID) to find those with a destination file name matching the file
name or list of file names specified.
This parameter is not supported in a UNIX environment.

pname=Process name | generic |
(list)

Selects Process statistics by Process name, a generic name, or a
list of names. The name can be 1–8 alphanumeric characters long.

pnumber=Process number | (list) Selects statistics by Process number or a list of Process numbers.
Connect:Direct assigns the Process number when the Process is
submitted.

reccat=caev | capr | (caev , capr) Selects statistics based on whether the record category is related to
events or to a Connect:Direct Process.
The default for this keyword depends on the other search criteria
specified. If you specify Process characteristics, such as Process
name, Process number, or Submitter, the default is capr. If you
perform a general search using startt or stopt, the default is caev
and capr.
caev specifies that the retrieved statistics file records include those
related to Connect:Direct events, such as a Connect:Direct
shutdown.
capr specifies that the retrieved statistics file records include those
related to one or more Connect:Direct Processes.

rnode=remote node name |
generic | (list)

Selects statistics file records by remote node name, a generic node
name, or a list of node names. The range for the remote node name
is 1–16 alphanumeric characters long.

sfile=filename | (list) Searches all copy Process Termination records (CAPR category,
CTRC record ID) to find those with a source file name matching the
name or list of names you specify.

Property Description
36 Connect:Direct for Windows SDK Programmer’s Guide

Displaying Select Statistics Results
startt=([date | day] [, time]) selects statistics starting with records logged since the specified
date, day, or time. The date, day, and time are positional
parameters. If you do not specify a date or day, type a comma
before the time.
date Specifies the day (dd), month (mm), and year (yy), which you
can code as mm/dd/yyyy or mm-dd-yyyy. If you only specify date,
the time defaults to 00:00:00. The current date is the default.
day Specifies the day of the week. Values are today, yesterday,
Monday, Tuesday, Wednesday, Thursday, Friday, Saturday, and
Sunday. If you specify a day of the week, Connect:Direct uses the
previous matching day.
time Specifies the time of day coded as hh:mm:ss[am | pm] where
hh is hours, mm is minutes, and ss is seconds. You can specify the
hour in either 12- or 24-hour format. If you use the 12-hour format,
then you must specify am or pm. The default format is the 24-hour
format. The default value is 00:00:00, which indicates midnight. If
you specify only the day value, the time defaults to 00:00:00.

stopt=([date | day] [, time]) Retrieves statistics including records logged up to and including the
specified date, day, or time. The date, day, and time are positional
parameters. If you do not specify a date or a day, type a comma
before the time.
date specifies the day (dd), month (mm), and year (yy), which you
can code as mm/dd/yyyy or mm-dd-yyyy. If you only specify date,
the time defaults to 00:00:00. The current date is the default.
day specifies the day of the week. Values are today, yesterday,
Monday, Tuesday, Wednesday, Thursday, Friday, Saturday, and
Sunday. If you specify a day of the week, Connect:Direct uses the
previous matching day.
time specifies the time of day coded as hh:mm:ss[am | pm] where
hh is hours, mm is minutes, and ss is seconds. You can specify the
hour in either 12- or 24-hour format. If you use the 12-hour format,
then you must specify am or pm. The default is the 24-hour format.
The default value is 00:00:00, which indicates midnight. If you
specify only the day value, the time defaults to 00:00:00.

Property Description
Connect:Direct for Windows SDK Programmer’s Guide 37

Chapter 5 Applying the ActiveX Control Interface
submitter=(node name, userid) |
generic | (list)

Selects statistics by the node name and user ID of the Process
owner (submitter). You can also specify a generic name and user ID
or a list of names and user IDs. The maximum combined length,
including the node name and user ID, is 66 characters.
Valid completion code operators for the ccode property are listed
below:
eq | = | ==Equal (default)
ge | >= | =>Greater than or equal
gt | >Greater than
le | <= | =<Less than or equal
lt | <Less than
ne | !=Not equal

Valid completion codes for the ccode property are listed below:
 0—Successful execution of the Process.
 4— A warning-level error was encountered. The statement
probably completed normally, but verify the execution results.
 8—An error occurred during Process execution.
16—A severe error occurred during Process execution.

recids=record id | (list) Specifies selection by record ID or a list of record IDs. This
parameter identifies particular types of statistics records, such as a
copy termination records or initialization event records. Following is
a list of the record IDs:
APCK—Asset protection check
AUPR—Authorization file processing
CHGP—Change Process command issued

COAC—Communication activated
CMLT—CMGR listen thread terminated
CRHT—Connect:Direct copyright

CSTP—Child Process stopped

CTRC—Copy control record written

CTRM—Child Process terminated

CUKN—Child process unknown status

CXIT—Child process exited

DELP—Delete Process command issued

FLSP—Flush Process command issued

FMRV—Formatted Header (FMH) received

FMSD—Formatted Header (FMH) sent

GPRC—Get Process issued

Property Description
38 Connect:Direct for Windows SDK Programmer’s Guide

Displaying Select Statistics Results
recids (continued) IFED—If statement ended
IPPR—Initialization parameter processing
LIEX—License has expired

LIOK—Listen okay
LSST—The record ID of a step on the local node
LWEX—License will expire in 14 days

NAUH—Node Authorization check issued

NMOP—Network map file opened

NMPR—The network map is updated through Browser, Control
Center, or KQV Interface.

NUIC—Connect:Direct initialization complete

NUIS—Connect:Direct start initialization
NUT1—Connect:Direct phase one termination complete status
NUT1—Connect:Direct phase two termination complete status
NUTC—Connect:Direct termination complete
NUTR—Connect:Direct termination requested
PERR—Process error was detected

PFLS—Process was flushed
PMED—Process Manager ended
PMIP—Process Manager Initprocs thread initialized
PMMX—Process Manager Max Age thread initialized
PMRC—Process Manager release cell thread initialized
PMST—Process Manager started
PPER—Pipe error
PRED—Process ended
PRIN—Process interrupted
PSAV—Process was saved

PSED—Process step was detected

PSTR—Process has started
QCEX—A Process moved from another queue to the EXEC queue
QCHO—A Process moved from another queue to the HOLD queue
QCWA—A Process moved from another queue to the WAIT queue
QCTI—A Process moved from another queue to the TIMER queue
QCHO—A Process moved from another queue to the HOLD queue
RJED—Run Job command completed

RNCF—Remote Connect:Direct server call failed
RSST—The record ID of a step on the remote node
RTED—Run Task command completed

SBED—Submit complete

SELP—Select Process command issued

Property Description
Connect:Direct for Windows SDK Programmer’s Guide 39

Chapter 5 Applying the ActiveX Control Interface
Methods
The CDStatistics control provides the following methods:

recids (continued) SELS—Select Statistics command issued

SEND—Session end issued

SERR—System error
SFSZ—Size of the file submitted
SHUD—Connect:Direct shutdown

SIGC—System error
SMED—Session Manager ended
SMST—Session Manager started
SNMP—SNMP
SSTR—Session start issued

STOP—Stop Connect:Direct command issued

SUBP—Submit command issued
TCPI—TCP started
TRAC—Trace command issued
TZDI—Time zone of the local node represented as the difference in
seconds between the time at the local node and the Coordinated
Universal Time
UNKN—Unknown command issued
USEC—User Security check issued

xxxx—Record types identified by the first four characters of the
message ID

Method Description

BOOL Execute() Executes the SELECT STATISTICS command and stores the returned records
in the control. If the control was already retrieving records, the previous
command is stopped and the old records are removed from the control.

Clear Clears the existing records from the display. The Clear method does not stop
retrieval.

Property Description
40 Connect:Direct for Windows SDK Programmer’s Guide

Displaying Select Statistics Results
Events
The following events are controlled by CDStatistics.

Method Description

Complete Sent after all records are retrieved.

Error The standard error event. Possible codes are:
CTL_E_PERMISSIONDENIED—cannot log onto the node.
CTL_E_DEVICEUNAVALIABLE—cannot connect to the node.
CTL_E_OUTOFMEMORY—out of memory.
CTL_E_ILLEGALFUNCTIONCALL—an unknown error.
Connect:Direct for Windows SDK Programmer’s Guide 41

Chapter 5 Applying the ActiveX Control Interface
42 Connect:Direct for Windows SDK Programmer’s Guide

Chapter 6

Applying the Automation Servers

The Connect:Direct Automation Servers provide an automation wrapper around the Connect:Direct
SDK C++ classes. They provide direct automation support for languages like Visual Basic. The
following section provides a reference for the automation objects. Refer to Creating Node Objects on
page 48 for information on applying the automation objects.

Creating Virtual Servers Using the Node Factory
The node factory creates node objects, which act as virtual servers. They represent a Connect:Direct
server (node). The Automation Server Node Factory provides the following properties:

The Connect:Direct Automation Server Node provides the following methods:

Property Description

Node Name Specifies the name of the node to connect to. The node name is set using the
Connect:Direct Client Connection Utility.

Userid Specifies the user ID to use when connecting to the node.

Password Specifies the password to use for the user ID to connect to the node.

Method Description

SelectStats(criteria) The criteria specifies the complete SELECT STATISTICS string.

SelectProc(criteria) The criteria specifies the complete SELECT PROCESS string.

Submit(text) The text specifies the Process to SUBMIT.
Connect:Direct for Windows SDK Programmer’s Guide 43

Chapter 6 Applying the Automation Servers
Applying the Node Object
The node object represents the connection to the Connect:Direct node. The node acts as the virtual
server. The Connect:Direct Automation Server Node provides the following properties:

The Connect:Direct Automation Server Node provides the following methods:

Identifying Active Processes
The Process object represents a Process running on the node. The records are returned as Process
objects, stored in a ProcCollection container. The Connect:Direct Automation Server Process
object provides the following properties:

Property Description

Name Specifies the node name used while connecting. It is read only.

Userid Specifies the user ID used while connecting. It is read only.

Method Description

SelectStats(criteria) The criteria specifies the complete SELECT STATISTICS string.

SelectProc(criteria) The criteria specifies the complete SELECT PROCESS string.

Property Type Description

ProcessName String Specifies the Process name.

ProcessNumber Long Specifies the Process number assigned by Connect:Direct when the
Process is placed in the TCQ.

ConditionCode Long Specifies the return code.

Feedback Long Provides additional return code information.

MsgId String Provides the message identifier field.

MsgText String Provides the message text field.

MsgData String Specifies the message substitution fields.

LogDateTime Date Provides the logged time stamp.

SchedDateTime Date Specifies the date and time the Process is scheduled to be submitted.

SubmitNode String Specifies the node name from which the Process was submitted.

Submitter String Specifies the user ID of the person submitting the Process.
44 Connect:Direct for Windows SDK Programmer’s Guide

Creating Virtual Servers Using the Node Factory
Identifying Statistic Records
The Statistic object represents the records in the statistics database. They are returned from a
SELECT STATISTICS query. The Connect:Direct Automation Server Statistic object provides the
following properties:

PNode String Specifies the primary or controlling node in the Process.

SNode String Specifies the secondary or partner node in the Process.

Status String Specifies the status of the Process in the queue.

Retain String Specifiers whether the Process is to be retained in the TCQ for future
submission.

Hold String Specifies the TCQ hold status of the Process.

Class Long Specifies the session class on which the Process is executing.

Priority Long Specifies the TCQ selection priority of the Process.

ExecPriority Long Specifies the operating system execution priority of the Process.

Queue String Specifies the logical queue where the Process is currently located
(Execution, Hold, Wait, or Timer).

Step Name String Specifies the currently executing step of the Process.

LocalNode String Specifies whether the primary or secondary node is the local node
and has primary control.

FromNode String Specifies whether the primary or secondary node is the source node
in a copy.

SimpleCompress Boolean Specifies to perform repetitive character compression.

ExtendedCompress
ion

Boolean Specifies to perform repetitive string compression.

Checkpoint Boolean Specifies the use of checkpointing in a copy step.

Restart Boolean Specifies whether the Process is restarted.

SourceFile String Specifies the name of the source file.

TotalBytes Long Specifies the number of data bytes read or written.

TotalRecs Long Specifies the number of data records read or written.

SentBytes Long Specifies the number of data bytes sent.

Sent RUs Long Specifies the number of RU bytes sent.

DestFile String Specifies the name of the destination file.

Property Type Description
Connect:Direct for Windows SDK Programmer’s Guide 45

Chapter 6 Applying the Automation Servers
Property Data Type Description

ProcessName String Specifies the Process name.

ProcessNumber Long Specifies the Process number assigned by Connect:Direct when the
Process is placed in the TCQ.

Feedback Long Provides additional return code information.

MsgId String Provides the message identifier field.

MsgText String Provides the message text field.

MsgData String Specifies the message substitution fields.

LogDateTime Date Provides the logged time stamp.

StartDateTime Date Specifies the start time stamp

StopDateTime Date Specifies the stop time stamp.

Submitter String Specifies the submitter’s user ID.

SNode String Specifies the secondary node name.

RecCat String Specifies the record category field.

RecId String Specifies the record identifier tag field.
46 Connect:Direct for Windows SDK Programmer’s Guide

Creating Virtual Servers Using the Node Factory
GetAuditField String Returns the audit field value.
The GetAuditField() function supports the following audit
information field names:

Bytes Sent/Received

Checkpoint

Class

Destination Disposition #1

Destination Disposition #2

Destination Disposition #3

Destination File

Execution

Extended Compression

From Node

Function

Hold

Local Node

Priority

Queue

Remote Node

Restart

Retain

RUs Sent/Received

Scheduled Date/Time

Source Disposition #1

Source Disposition #2

Source Disposition #3

Source File

Standard Compression

Status

Step Name

Submit Date/Time

Total Bytes

Total Records

Property Data Type Description
Connect:Direct for Windows SDK Programmer’s Guide 47

Chapter 6 Applying the Automation Servers
Creating Node Objects, Select Processes, and Select
Statistics Using Automation Objects

This section provides instructions on using the node factory and nodes, selecting statistics, and
selecting Processes. The Connect:Direct automation objects use late binding, so you must
dimension your variables as type Object.

Creating Node Objects
The Connect:Direct node factory creates node objects. These node objects serve as virtual servers
and represent a connection to a Connect:Direct server (node).

To obtain a connection (and therefore a node), you must use the node factory. Create the node
factory using the ProgID CD.NodeFactory:

To determine the node that you want to connect to, set the properties of the factory object. Next,
call CreateNode to connect to the node. If the connection is successful, a node object returns.
Otherwise, an error is thrown indicating the cause of the problem.

The node name refers to the name used by the Client Connection Utility. You must set up the nodes
that you want to connect to using the Client Connection Utility prior to using the Connect:Direct
SDK.

Using Nodes
The node object represents the connection to a Connect:Direct node. Using the node enables you to
select statistics or Processes.

Selecting Processes
To select Processes, you must first format a select Process command and pass it to the SelectProc
method. The records return as Process objects and are stored in the ProcCollection container.
Because a background thread populates the collection, it is returned to the caller before it is
completely filled. Therefore, the only access method available is using the For Each construct.

Dim factory as Object
Set factory = CreateObject (“CD.NodeFactory”)

factory.NodeName = “CD.Node1"
factory.UserId = “user1"
factory.Password = “password”

Dim node as Object
Set node = factory.CreateNode()

Note: The usual Count property is not available because the count is not known until all the records are
returned.
48 Connect:Direct for Windows SDK Programmer’s Guide

Creating Node Objects, Select Processes, and Select Statistics Using Automation Objects
Selecting Statistics
To select statistics records, you must format a select statistics command and pass it on to the
SelectStats method of the node. The records return as Statistic objects stored in a StatCollection
container. Because a background thread populates the collection, it returns to the caller before it is
completely filled. Therefore, the only access method available is using the For Each construct.

Because the server can send records slowly, the interface can be jerky while reading records.
Because records are read using a background thread, it useful to select the statistics before
time-consuming tasks like constructing windows. This method enables the server to send records in
the background.

Understanding Errors
The automation classes use the standard Visual Basic error-handling mechanism. When an error is
raised in an automation object, no real value is returned from the function. For example, if an error
is raised in the node factory example in the Creating Node Objects on page 6-48, node does not have
a value (it has the default value of nothing) because CreateNode has not returned anything.

When the Connect:Direct automation objects raise an error, they set the error number to a
Connect:Direct SDK error value and store a description in the error text.

Dim procs as Object ; the process collection
Dim proc as Object ; each process record

Set procs = node.SelectProc (“SELECT PROCESS ”)
For Each proc in procs
 Debug.Print proc.ProcessName
Next proc

Note: The usual Count property is not available because the count is not known until all records are
returned.

Dim stats as object ; the Statistics collection
Dim stat as Object ; each statistic record

Set stats = node.SelectStats (“SELECT STATISTICS“)
For Each stat in stats
 Debug.Print stat.RecId
Next stat
Connect:Direct for Windows SDK Programmer’s Guide 49

Chapter 6 Applying the Automation Servers
50 Connect:Direct for Windows SDK Programmer’s Guide

Chapter 7

Enhance Security and Automate File
Opening with User Exits

You can customize Connect:Direct operations with user exits. User exits are user-defined dynamic
link libraries (DLLs) that are loaded and called when the user exit is enabled through an
initialization parameter. Two user exits are provided: one for enhanced security and one for
automated file opening.

Applying Enhanced Security
You can implement enhanced security with passtickets. A passticket is a one-time password
generated on the primary node and passed to the secondary node within 10 minutes, where it is
validated before further processing is performed.

Applying Passticket Support
Connect:Direct passticket support is implemented as a user exit called from the Connect:Direct
session manager during Process execution. To enable the security exit, change the value of the
security.exit initialization parameter to the name or path name of the security exit DLL.

See Appendix B, Changing Connect:Direct for Windows Settings, in Connect:Direct for Windows
System Guide for a description of the security.exit parameter. If the DLL is not in the search path
of the server, then you must specify the fully qualified file name of the DLL.

The user’s security exit must contain the GeneratePassticket() and ValidatePassticket()
functions. The parameters for these functions are defined in the userexit.h header file. The
userexit.h header file is in the Connect:Direct samples directory. If the security exit cannot be found
or loaded, or if the addresses of the two required functions cannot be resolved successfully, an error
message is generated and Process execution terminates.

✦ The passticket is only valid for 10 minutes after it is generated. As a result, the system clocks
on the two nodes should be synchronized.

✦ When generating passtickets, Connect:Direct for Windows fills in the GENMSG_T structure
fields and passes the structure to the security exit. The security exit should generate the
Connect:Direct for Windows SDK Programmer’s Guide 51

Chapter 7 Enhance Security and Automate File Opening with User Exits
passticket, fill in the GENMSG_REPLY_T structure fields, and return an appropriate return
code to Connect:Direct.

✦ When validating a passticket, Connect:Direct for Windows fills in the VALMSG_T structure
fields and passes the structure to the security exit. The security exit validates the passticket,
fills in the VALMSG_REPLY_T structure fields, and returns an appropriate return code to
Connect:Direct. If the passticket is successfully validated, Connect:Direct for Windows
continues as if the Process is using a remote user proxy.

Security Exit Structures
Following is a list of the security exit structures:

✦ GENERATE_MSG—Sends a message to the local node to allow the security exit to determine
user ID and security token (passticket) to use for remote node authentication. The
GENERATE_MSG contains:

Submitter ID

Local node ID and password

Remote node ID and password

Local node name

Remote node name

✦ GENERATE_MSG_REPLY—The user exit GeneratePassticket() function fills the
GENERATE_MSG_REPLY structure. The GENERATE_MSG_REPLY contains:

Status value of GOOD_RC (0) for success, or ERROR_RC (8) for failure.

Status text message. If the status value is failure, then status text message is included in the
error message.

ID to be used for security context on the remote node. This may or may not be the same ID
that was passed in.

Passticket to use in conjunction with the ID for security on the remote node.

✦ VALIDATE_MSG—The message sent to the remote node to allow the security exit to validate
the user ID and passticket. The VALIDATE_MSG contains:

Submitter ID

Local node ID and password

Remote node ID and password

Local node name

Remote node name

ID to be used for security checking

Passticket generated on the local node

✦ VALIDATE_MSG_REPLY—The user ValidatePassticket0 function fills the
VALIDATE_MSG_REPLY structure. The VALIDATE_MSG contains:

GOOD_RC (0) if the reply was a success or ERROR_RC (8) for failure.
52 Connect:Direct for Windows SDK Programmer’s Guide

Applying Automated File Opening
Status text message. If the status value is failure, the status text message is included in the
error message.

ID to be used for security context the remote node side. This value may or may not be the
same ID as in the generate message.

Passticket to use in conjunction with ID for security on the remote node.

Accessing Sample Code
The following header file and sample code files for passticket implementation are copied to
X:\installation directory\Samples during the installation.

✦ USEREXIT.H—Contains defined constants used for passtickets, the structures that are passed
to the passticket functions, and the function prototypes.

✦ USERSKEL.C—Consists of the GeneratePassticket() and ValidatePassticket() functions.
The GeneratePassticket() function generates the passticket nnnnnnn, fills in the structure,
and returns a valid return code. The ValidatePassticket() function returns a good return code
indicating that the passticket passed in is valid. There is no real checking done in this routine.

✦ USERSAMP.C—Demonstrates a full implementation of passticket support. The
GeneratePassticket() and ValidatePassticket() functions call the Passtk() function which
performs the actual generation, or validation of the passticket.

The sample user exit can be compiled and linked into a DLL using Microsoft Visual C++™. The
exit was tested using Microsoft Visual C++ version 4.2.

Applying Automated File Opening
You can override the values specified in the COPY statement with the file open exit feature. The
file open exit is an initialization parameter (file.exit) that you can set to point to a user-written DLL.
You can customize Connect:Direct COPY operations by defining values in the file open exit DLL
that override the COPY statement parameters.

Applying the File Open Exit
Connect:Direct file open support is implemented as a user exit called from the Connect:Direct
session manager during Connect:Direct COPY statement execution. To enable the file open exit,
change the value of the file.exit initialization parameter to the name or path name of the file open
exit DLL. Refer to Appendix B, Changing Connect:Direct Windows Settings, in the Connect:Direct
for Windows System Guide for a description of the file.exit parameter. If the DLL is not in the search
path of the server, then you must specify the fully qualified file name of the DLL.

The user’s file open exit must contain the FileOpen() function. The parameters for this function are
File_Open and File_Open_Reply. These parameters are pointers to corresponding structures in the
userexit.h header file. The userexit.h header file is in the Connect:Direct samples directory.
Connect:Direct for Windows SDK Programmer’s Guide 53

Chapter 7 Enhance Security and Automate File Opening with User Exits
File Open Exit Structures
The file open exit contains the following two types of structures:

FILE_OPEN
The FILE_OPEN structure contains the information that implements the file open user exit. The
FILE_OPEN structure contains the following components:

✦ int oflag—Flags that Connect:Direct uses to open the file.
✦ int srcdstflag—Specifies whether the file is a source file (the file to read) or a destination file

(the file to write to).
✦ char user_name[MAX_USER_NAME]—Specifies the name of the user that submitted the

Process.
✦ COPY_T copy_ctl—Points to the Connect:Direct Copy Control Block data structure that

contains information concerning the COPY operation about to be performed.
✦ COPY_SYSOPTS_T cp_sysopts—Points to the Sysopts data structure that contains a

representation of all of the COPY operation sysopts that Connect:Direct supports. Refer to the
Connect:Direct Process Web site for more information about COPY sysopts.

FILE_OPEN_REPLY
The FILE_OPEN_REPLY structure contains the information that specifies whether the file exit
operation succeeded. The FILE_OPEN structure contains the following components:

✦ HANDLE hFile—Contains a valid file handle if the file was opened successfully.
✦ char filename[MAX_FILE_NAME_LEN]—Contains the actual name of the file opened by

the file open exit.

Accessing Sample Code
The following header file and sample code files for file open exit implementation are copied to
X:\installation directory\Samples during Connect:Direct for Windows installation.

✦ userexit.h
✦ FileOpenDLL.CPP
54 Connect:Direct for Windows SDK Programmer’s Guide

Appendix A

Structure Types

This appendix contains a list of the common C and C++ Class interface structures, constants, and their
descriptions. All of the common C and C++ Class API structures are contained within the
CONNDIR.H header file.

NETMAP_DESC_STRUCT Structure
The NETMAP_DESC_STRUCT structure contains the Netmap Node Description information. This structure
is used for retrieving and setting the Netmap Node Description information. The following figure represents
the NETMAP_DESC_STRUCT structure:

Members
The NETMAP_DESC_STRUCT structure contains the following members:

struct Netmap_Desc_Struct
{
 TCHAR Name[MAX_NODE_NAME_LEN+1];
 TCHAR ContactPhone[MAX_PHONE_NUMBER+1];
 TCHAR ContactName[MAX_CONTACT_NAME+1];
 TCHAR Description[MAX_DESCRIPTION+1];
};
typedef struct Netmap_Desc_Struct NETMAP_DESC_STRUCT;

Member Description

Name [MAX_NODE_NAME_LEN+1] Specifies the node name.

ContactPhone
[MAX_PHONE_NUMBER+1]

Specifies the phone number of the person responsible for this
node.

ContactName [MAX_CONTACT_NAME+1] Specifies the name of the person responsible for this node.

Description [MAX_DESCRIPTION+1] Specifies the node description information.
Connect:Direct for Windows SDK Programmer’s Guide 55

Appendix A Structure Types
USER_STRUCT Structure
The USER_STRUCT structure contains the User Functional Authority information. This structure
is used for retrieving and setting the User Functional Authority information.

The following figure represents the USER_STRUCT structure:

Members
The USER_STRUCT structure contains the following members:

struct User_Struct
{ TCHAR Name [MAX_OBJECT_NAME+1];
 TCHAR UpdateNetmap;
 TCHAR UpdateUser;
 TCHAR UpdateProxy;
 TCHAR ChangeProcess;
 TCHAR DeleteProcess;
 TCHAR SelectProcess;
 TCHAR SubmitProcess;
 TCHAR SelectStats;
 TCHAR SecureRead;
 TCHAR SecureWrite;
 TCHAR Stop;
 TCHAR Trace;
 TCHAR SelectNetmap;
 TCHAR SelectMessage;
 TCHAR Refresh;
 TCHAR ProcessCopy;
 TCHAR ProcessRunJob;
 TCHAR ProcessRunTask;
 TCHAR ProcessSubmit;
 TCHAR InheritRights;
 TCHAR TrusteeAssign;
 TCHAR UpdateACL;
 TCHAR FileAttributes;
 TCHAR SNodeId;
 TCHAR ExecutionPriority;
 TCHAR ProcessSend;
 TCHAR ProcessReceive;
 TCHAR UpdateTranslation;
 TCHAR DownloadDirectory[MAX_DIRECTORY_NAME+1];
 TCHAR UploadDirectory[MAX_DIRECTORY_NAME+1];
 TCHAR ProcessDirectory[MAX_DIRECTORY_NAME+1];
 TCHAR ProgramDirectory[MAX_DIRECTORY_NAME+1];
};
typedef struct User_Struct USER_STRUCT;

Member Description

Name [MAX_OBJECT_NAME+1] Specifies the user name for this functional authority record.

SpecifiesUpdateNetmap Specifies the permission to update the network map.
56 Connect:Direct for Windows SDK Programmer’s Guide

USER_STRUCT Structure
UpdateUser Specifies the permission to update other user functional
authority.

UpdateProxy Specifies the permission to update proxy user information.

ChangeProcess Specifies the permission to issue CHANGE PROCESS.

DeleteProcess Specifies the permission to issue DELETE PROCESS.

SelectProcess Specifies the permission to issue SELECT PROCESS.

SubmitProcess Specifies the permission to issue SUBMIT PROCESS.

SelectStats Specifies the permission to issue SELECT STATISTICS.

SecureRead Specifies the permission to read Secure+ network map
fields.

SecureWrite Specifies the permission to modify Secure+ network map
fields.

Stop Specifies the permission to issue the STOP Connect:Direct
server command.

Trace Specifies the permission to start and stop Connect:Direct
tracing.

SelectNetmap Specifies the permission to get the network map objects
from the Connect:Direct server.

SelectMessage Specifies the permission to get Connect:Direct message
information from the Connect:Direct server.

Refresh Specifies the permission to execute the REFRESH
INITPARMS commands.

ProcessCopy Specifies the permission to issue a COPY command within
a Process.

ProcessRunJob Specifies the permission to issue a RUN JOB command
within a Process.

ProcessRunTask Specifies the permission to issue a RUN TASK command
within a Process.

ProcessSubmit Specifies the permission to issue a SUBMIT command
within a Process.

Inherit Rights Specifies the Inherit Rights flag.

TrusteeAssign Specifies the Trustee Assign flag.

UpdateACL Specifies the Update ACL flag.

FileAttributes Specifies the File Attribute flag.

SNodeId Specifies the Remote Node ID flag.

Member Description
Connect:Direct for Windows SDK Programmer’s Guide 57

Appendix A Structure Types
MESSAGE_STRUCT Structure
The MESSAGE_STRUCT structure contains the Connect:Direct message information. This
structure is used for retrieving the Connect:Direct message information. It contains the unique
message identifier.

The following figure represents the MESSAGE_STRUCT structure:

Members
The MESSAGE_STRUCT structure contains the following members:

ExecutionPriority Specifies the permission to change execution priority.

ProcessSend Specifies the Process Send flag.

ProcessReceive Specifies the Process Receive flag.

UpdateTranslation Specifies the permission to update the translation table
information.

DownloadDirectory
[MAX_DIRECTORY_NAME+1]

Specifies the default download directory.

UploadDirectory
[MAX_DIRECTORY_NAME+1]

Specifies the default upload directory.

ProcessDirectory
[MAX_DIRECTORY_NAME+1]

Specifies the default Process file directory.

ProgramDirectory
[MAX_DIRECTORY_NAME+1]

Specifies the default program file directory.

struct Message_Struct
{
 TCHAR MsgId[MAX_MESSAGE_ID+1];
 int ConditionCode;
 int Feedback;
 TCHAR MsgText[MAX_MESSAGE_TEXT+1];
 TCHAR MsgData[MAX_MESSAGE_DATA+1];
};
typedef struct Message_Struct MESSAGE_STRUCT;

Member Description

MsgId [MAX_MESSAGE_ID+1] Specifies the message identifier that uniquely identifies this
message.

ConditionCode Specifies the return code accompanying the message.

Member Description
58 Connect:Direct for Windows SDK Programmer’s Guide

NETMAP_MODE_SNA Structure
NETMAP_MODE_SNA Structure
The NETMAP_MODE_SNA structure contains the Netmap SNA Mode information. This structure
is part of the NETMAP_MODE_STRUCT for SNA modes.

The following figure represents the NETMAP_MODE_SNA structure:

Members
The NETMAP_MODE_SNA structure contains the following members

:

NETMAP_MODE_STRUCT Structure
The NETMAP_MODE_STRUCT structure contains the Netmap Mode information. This structure
is used for retrieving and setting the Netmap Mode information.

Feedback Specifies additional return code information.

MsgText [MAX_MESSAGE_TEXT+1] Specifies the message text.

MsgData [MAX_MESSAGE_DATA+1] Specifies the message substitution fields.

struct Netmap_Mode_Sna
{
 long lMaxRUSize;
 short MaxPacingSize;
 short MaxNetSessLimit;
};
typedef struct Netmap_Mode_Sna NETMAP_MODE_SNA;

Member Description

lMaxRUSize Specifies the maximum RU size.

MaxPacingSize Specifies the maximum pacing size.

MaxNetSessLimit Specifies the maximum net session limit.

Member Description
Connect:Direct for Windows SDK Programmer’s Guide 59

Appendix A Structure Types
The following figure represents the NETMAP_MODE_STRUCT structure:

Members
The MODE_STRUCT structure contains the following members:

NETMAP_MODE_TCP Structure
The NETMAP_MODE_TCP structure contains the Netmap TCP/IP Mode information. This
structure is part of the NETMAP_MODE_STRUCT for TCP/IP modes.

The following figure represents the NETMAP_MODE_TCP structure:

struct Netmap_Mode_Struct
{
 TCHAR Name[MAX_OBJECT_NAME+1];
 BOOL bDetail;
 int Protocol;
 union
 {
 NETMAP_MODE_SNA Sna;
 NETMAP_MODE_TCP Tcp;
 }
 Type;
};
typedef struct Netmap_Mode_Struct NETMAP_MODE_STRUCT;

Member Description

Name [MAX_OBJECT_NAME+1] Specifies the mode name.

bDetail Specifies the detail flag.

Protocol Specifies the mode protocol.

Sna MODE_SNA contains the SNA mode-specific fields.

Tcp MODE_TCP contains the TCP/IP mode-specific fields.

struct Netmap_Mode_Tcp
{
 long lBufferSize;
 long lPacingSendCount;
 long lPacingSendDelay;
 char tcp_crc[4];
};
typedef struct Netmap_Mode_Tcp NETMAP_MODE_TCP;
60 Connect:Direct for Windows SDK Programmer’s Guide

NETMAP_NODE_STRUCT Structure
Members
The NETMAP_MODE_TCP structure contains the following members:

NETMAP_NODE_STRUCT Structure
The NETMAP_NODE_STRUCT structure contains the Netmap node information. This structure
is used for retrieving and setting the Netmap node information.

The following figure represents the NETMAP_NODE_STRUCT structure:

Member Description

lBufferSize Specifies the buffer size.

lPacingSendCount Specifies the pacing send count.

lPacingSendDelay Specifies the pacing send delay.

char tcp_crc[4] Specifies if TCP CRC checking is on.

struct Netmap_Node_Struct
{
 TCHAR Name[MAX_OBJECT_NAME_LEN+1];
 BOOL bDetail;
 int LongTermRetry;
 long lLongTermWait;
 int ShortTermRetry;
 long lShortTermWait;
 int MaxPNode;
 int MaxSNode;
 int DefaultClass;
 int RemoteOSType;
 TCHAR TcpModeName[MAX_OBJECT_NAME+1];
 TCHAR TcpAddress[MAX_TCP_ADDRESS+1];
 TCHAR SnaModeName[MAX_OBJECT_NAME+1];
 TCHAR SnaNetName[MAX_NET_NAME+1];
 TCHAR SnaPartnerName[MAX_PARTNER_NAME+1];
 TCHAR SnaTPName[MAX_TPNAME+1];
};
typedef struct Netmap_Node_Struct NETMAP_NODE_STRUCT;
Connect:Direct for Windows SDK Programmer’s Guide 61

Appendix A Structure Types
Members
The NETMAP_NODE_STRUCT structure contains the following members:

:

NETMAP_PATH_STRUCT Structure
The NETMAP_PATH_STRUCT structure contains the Netmap path information. This structure is
used for retrieving and setting the Netmap path information.

Member Description

Name [MAX_OBJECT_NAME_LEN+1] Specifies the node name.

bDetail Specifies detail included flag.

LongTermRetry Specifies the long-term retry interval.

lLongTermWait Specifies the long-term wait interval.

ShortTermRetry Specifies the short-term retry interval.

lShortTermWait Specifies the short-term wait interval.

MaxPNode Specifies the maximum local nodes.

MaxSNode Specifies the maximum remote nodes.

DefaultClass Specifies the default class.

RemoteOSType Specifies the node operating system type.

TcpModeName [MAX_OBJECT_NAME+1] Specifies the TCP/IP communications mode name.

TcpAddress [MAX_TCP_ADDRESS+1] Specifies the nodes TCP/IP address.

SnaModeName [MAX_OBJECT_NAME+1] Specifies the SNA communications mode name.

SnaNetName [MAX_NET_NAME+1] Specifies the SNA net name.

SnaPartnerName [MAX_PARTNER_NAME+1] Specifies the partner name.

SnaTPName [MAX_TPNAME+1] Specifies the TP name.
62 Connect:Direct for Windows SDK Programmer’s Guide

NETMAP_PATH_STRUCT Structure
The following figure represents the NETMAP_PATH_STRUCT structure:
:

Members
The NETMAP_PATH_STRUCT structure contains the following members:

struct Netmap_Path_Struct
{ TCHAR Name[MAX_OBJECT_NAME+1];
 BOOL bDetail;
 int Transport;
 int Adapter;
 BYTE Address[MAX_ADDRESS];
 char CustomQLLC[MAX_CUSTOM_ADDRESS+1];
 int Protocol;
 TCHAR SnaProfileName[MAX_PROFILE_NAME+1];
 TCHAR SnaLocalNetId[MAX_LOCALNETID+1];
 TCHAR SnaPUName[MAX_PUNAME+1];
 TCHAR SnaLUName[MAX_LUNAME+1];
 int SnaLULocAddr;
 int SnaLUSessLimit;
 int TCPMaxTimeToWait;
 int DialupHangon;
 char DialupEntry[MAX_DIALUP_ENTRY+1];
 char DialupUserid[MAX_OBJECT_NAME+1];
 char DialupPassword[MAX_OBJECT_NAME+1];
 TCHAR ModeName[MAX_OBJECT_NAME+1];
};
typedef struct Netmap_Path_Struct NETMAP_PATH_STRUCT;

Member Description

Name [MAX_OBJECT_NAME+1] Specifies the path name.

bDetail Specifies the detail flag.

Transport Specifies the transport type.

Adapter Specifies the adapter.

Address [MAX_ADDRESS] Specifies the adapter address.

CustomQLLC[MAX_CUSTOM_ADDRESS+1] Specifies the custom or QLLC adapter address.

Protocol Specifies the protocol type.

SnaProfileName[MAX_PROFILE_NAME+1] Specifies the SNA profile name.

SnaLocalNetId [MAX_LOCALNETID+1] Specifies the SNA local net ID.

SnaPUName [MAX_PUNAME+1] Specifies the SNA PU name.

SnaLUName [MAX_LUNAME+1] Specifies the SNA LU name.

SnaLULocAddr Specifies the SNA LU local address.

SnaLUSessLimit Specifies the SNA LU session limit.
Connect:Direct for Windows SDK Programmer’s Guide 63

Appendix A Structure Types
PROCESS_STRUCT Structure
The PROCESS_STRUCT structure contains the Connect:Direct Process information. This
structure is sent to the client from the Connect:Direct server upon accepting a Process for execution.
It is also sent in response to a SELECT PROCESS command. It contains the Process name, Process
number, and queue.

The following figure represents the PROCESS_STRUCT structure:

TCPMaxTimeToWait Specifies TCP maximum time to wait.

DialupHangon Specifies seconds to stay connected after dialup
hangon completes.

DialupEntry[MAX_DIALUP_ENTRY+1] Specifies dialup entry name.

DialupUserid[MAX_OBJECT_NAME+1] Specifies dialup user ID.

DialupPassword[MAX_OBJECT_NAME+1] Specifies dialup password.

ModeName [MAX_OBJECT_NAME+1] Specifies the mode name used by this path.

Member Description
64 Connect:Direct for Windows SDK Programmer’s Guide

PROCESS_STRUCT Structure
:

struct Process_Struct
{
 TCHAR ProcessName[MAX_PROCESS_NAME+1];
 DWORD ProcessNumber;
 int ConditionCode;
 int Feedback;
 TCHAR MsgId[MAX_MESSAGE_ID+1];
 TCHAR MsgText[MAX_MESSAGE_TEXT+1];
 TCHAR MsgData[MAX_MESSAGE_DATA+1];
 time_t LogDateTime;
 time_t SchedDateTime;
 TCHAR SubmitNode[17];
 TCHAR Submitter[65];
 TCHAR PNode[17];
 TCHAR SNode[17];
 TCHAR Status[3];

 TCHAR Retain;
 TCHAR Hold;
 int Class;
 int Priority;
 int ExecPriority;
 TCHAR Queue[5];
 TCHAR Function[6];
 TCHAR StepName[9];
 TCHAR LocalNode;
 TCHAR FromNode;
 BOOL bStandardCompression;
 BOOL bExtendedCompression;
 BOOL bCheckpoint;
 BOOL bRestart;
TCHAR SourceFile[MAX_FILENAME+1];
TCHAR SourceDisp1;
TCHAR SourceDisp2;
TCHAR SourceDisp3;
__int64 ByteCount;
__int64 RecordCount;
 __int64 XmitBytes;
long XmitRUs;
 TCHAR DestFile[MAX_FILENAME+1];
 TCHAR DestDisp1;
 TCHAR DestDisp2;
 TCHAR DestDisp3;
//SECURE_PLUS
 BOOL bSecurePlusEnabled;
 TCHAR EncAlgName[MAX_OBJECT_NAME];
 BOOL bSignature;
};
typedef struct Process_Struct PROCESS_STRUCT;

Connect:Direct for Windows SDK Programmer’s Guide 65

Appendix A Structure Types
Members
The PROCESS_STRUCT structure contains the following members:

Member Description

ProcessName [MAX_PROCESS_NAME+1] Specifies the Process name.

ProcessNumber Specifies the Process number.

ConditionCode Specifies the return code.

Feedback Specifies additional return code information.

MsgId [MAX_MESSAGE_ID+1] Specifies the message identifier field.

MsgText [MAX_MESSAGE_TEXT+1] Specifies the message text field.

MsgData [MAX_MESSAGE_DATA+1] Specifies the message substitution data.

LogDateTime Specifies the logged time stamp.

SchedDateTime Specifies the scheduled time stamp.

SubmitNode [17] Specifies the submitter’s node.

Submitter [65] Specifies the submitter’s user name.

PNode [17] Specifies the primary node.

SNode [17] Specifies the secondary node.

Status [3] Specifies the current status.

Retain Specifies the retain flag.

Hold Specifies the hold flag.

Class Specifies the class.

Priority Specifies the current priority.

ExecPriority Specifies the current execution priority.

Queue [5] Specifies the current queue that contains this
Process.

Function[6] Specifies the function executing in the Process.

StepName [9] Specifies the current step name.

LocalNode Specifies the local node flag.

FromNode Specifies the from node flag.

bStandardCompression Specifies the standard compression indicator.

bExtendedCompression Specifies the extended compression indicator.

bCheckpoint Specifies the checkpointing enabled indicator.
66 Connect:Direct for Windows SDK Programmer’s Guide

NODE_STRUCT Structure
NODE_STRUCT Structure
The NODE_STRUCT structure contains the Connect:Direct node information. This structure
contains the Connect:Direct node name, the login information, operating system information, and
protocol information. This information is stored in the Registry and is sent to the client after
successfully logging on.

bRestart Restart indicator.

SourceFile [MAX_FILENAME+1] Specifies the source file name.

SourceDisp1 Specifies the source displacement 1.

SourceDisp2 Specifies the source displacement 2.

SourceDisp3 Specifies the source displacement 3.

ByteCount Specifies the total byte count.

RecordCount Specifies the total record count.

XmitBytes Specifies the sent byte count.

XmitRUs Specifies the sent RU count.

DestFile[MAX_FILENAME+1] Specifies the destination file name.

DestDisp1 Specifies the destination displacement 1.

DestDisp2 Specifies the destination displacement 2.

DestDisp3 Specifies the destination displacement 3.

bSecurePlusEnabled Specifies the Secure+ enabled flag.

EncAlgName[MAX_OBJECT_NAME] Specifies the effective encryption algorithm.

bSignature Specifies the effective signature setting.

Member Description
Connect:Direct for Windows SDK Programmer’s Guide 67

Appendix A Structure Types
The following figure represents the NODE_STRUCT structure:

Members
The NODE_STRUCT structure contains the following members

:

struct Node_Struct
{
 TCHAR Name[MAX_NODE_NAME_LEN+1];
 TCHAR CDName[MAX_NODE_NAME_LEN+1];
 TCHAR Server[MAX_OBJECT_NAME+1];
 long ApiVersion;
 long SecurePlusVersion;
 int CompLevel;
 int SelectedOSType;
 int OSType
 int SubType
 TCHAR Userid[MAX_OBJECT_NAME+1];
 TCHAR Password[MAX_OBJECT_NAME+1];
 BOOL bTemporary;
 BOOL bRememberPW;
 int Protocol
 TCHAR TcpAddress[MAX_TCP_ADDRESS+1]
};
typedef struct Node_Struct NODE_STRUCT;

Member Description

Name [MAX_NODE_NAME_LEN+1] Specifies the Connect:Direct node alias name.

CDName
[MAX_NODE_NAME_LEN+1]

Specifies the Connect:Direct node name.

Server [MAX_OBJECT_NAME+1] Specifies the file server name.

ApiVersion Specifies the API version.

SecurePlusVersion Specifies the Secure+ version; value is 0 if Secure+ is not
supported.

CompLevel Specifies the KQV Communications Compatibility Level.

SelectedOSType Specifies the user-selected operating system type.

OSType Specifies the operating system type.

SubType Specifies the sub type information.

Userid [MAX_OBJECT_NAME+1] Specifies the user name.

Password [MAX_OBJECT_NAME+1] Specifies the user-defined password.

bTemporary Specifies to hold the user information temporary.

bRememberPW Specifies to save the password in the Registry.

Protocol Specifies the protocol type.
68 Connect:Direct for Windows SDK Programmer’s Guide

STATISTICS_STRUCT Structure
STATISTICS_STRUCT Structure
The STATISTICS_STRUCT structure contains the Connect:Direct statistics information for a
Process. This structure is sent to the client as a result of a SELECT STATISTICS command.

The following figure represents the STATISTICS_STRUCT structure:

Members
The STATISTICS_STRUCT structure contains the following members:

struct Statistic_Struct
{
 TCHAR ProcessName[MAX_PROCESS_NAME+1];
 DWORD ProcessNumber;
 int ConditionCode;
 int Feedback;
 TCHAR MsgId[MAX_MESSAGE_ID+1];
 TCHAR MsgText[MAX_MESSAGE_TEXT+1];
 TCHAR MsgData[MAX_MESSAGE_DATA+1];
 time_t LogDateTime;
 time_t StartDateTime;
 time_t StopDateTime;
 TCHAR Submitter[65];
 TCHAR SNode[17];
 TCHAR RecCat[5];
 TCHAR RecId[5];
};
typedef struct Statistic_Struct STATISTIC_STRUCT;

Member Description

ProcessName
[MAX_PROCESS_NAME+1]

Specifies the Process name.

ProcessNumber Specifies the Process number.

ConditionCode Specifies the return code.

Feedback Specifies the additional return code information.

MsgId [MAX_MESSAGE_ID+1] Specifies the message identifier field.

MsgText [MAX_MESSAGE_TEXT+1] Specifies the message text field.

MsgData [MAX_MESSAGE_DATA+1] Specifies the message substitution data.

LogDateTime Specifies the logged time stamp.

StartDateTime Specifies the start time stamp.

StopDateTime Specifies the stop time stamp.

Submitter [65] Specifies the submitter’s user ID.
Connect:Direct for Windows SDK Programmer’s Guide 69

Appendix A Structure Types
TRACE_STRUCT Structure
The TRACE_STRUCT structure contains the trace information. This structure is used for retrieving
the trace information.

The following figure represents the TRACE_STRUCT structure:

Members
The TRACE_STRUCT structure contains the following members:

SNode [17] Specifies the secondary node name.

RecCat [5] Specifies the record category field.

RecId [5] Specifies the record identifier tag field.

struct Trace_Struct
{
 TCHAR cMainLevel;
 TCHAR cCommLevel;
 TCHAR cCMgrLevel;
 TCHAR cPMgrLevel;
 TCHAR cSMgrLevel;
 TCHAR cStatLevel;
 TCHAR szFilesize[MAX_FILENAME+1];
 long cbFilesize;
 BOOL bWrap;
 BOOL bPNode;
 BOOL bSNode;
 int PNums[4];
 TCHAR PNames[4] [MAX_PROCESS_NAME+1];
 TCHAR DestNodes[4] [17];
};
typedef struct Trace_Struct TRACE_STRUCT;

Member Description

cMainLevel Specifies the MAIN trace level.

cCommLevel Specifies the COMM trace level.

cCMgrLevel Specifies the CMGR trace level.

cPMgrLevel Specifies the PMGR trace level.

cSMgrLevel Specifies the SMGR trace level.

Member Description
70 Connect:Direct for Windows SDK Programmer’s Guide

TRANSLATE_STRUCT Structure
TRANSLATE_STRUCT Structure
The TRANSLATE_STRUCT structure contains the translation table information. This structure is
used for retrieving and setting the translation table information.

The following figure represents the TRANSLATE_STRUCT structure:

Members
The TRANSLATE_STRUCT structure contains the following members:

cStatLevel Specifies the STAT trace level.

szFilename[MAX_FILENAME+1] Specifies the trace file name.

cbFilesize Specifies the size of the trace file.

bWrap Specifies whether to wrap when cbFile is reached.

bPNode Specifies the PNODE trace flag.

bSNode Specifies the SNode trace flag.

PNums[8] Specifies an integer array of up to four Process numbers.

PNames[8]
[MAX_PROCESS_NAME+1]

Specifies the string array of Process names.

DestNodes[8] [17] Specifies the string array of destination node names.

struct Translate_Struct
{
TCHAR Filename[MAX_OBJECT_NAME+1];
BYTE Table[256];
TCHAR MsgId[MAX_MESSAGE_ID+1];
int ConditionCode;
int Feedback;
TCHAR MsgText[MAX_MESSAGE_TEXT+1];
TCHAR MsgData[MAX_MESSAGE_DATA+1];

};
typedef struct Translate_Struct TRANSLATE_STRUCT;

Member Description

FileName [MAX_OBJECT_NAME+1] Specifies the name of the file where the translation information
is stored.

Table [256] Specifies the actual translation table information.

Member Description
Connect:Direct for Windows SDK Programmer’s Guide 71

Appendix A Structure Types
MsgId[MAX_MESSAGE_ID+1] Specifies the message identifier that uniquely identifies a
message.

ConditionCode Specifies the return code that accompanies a message.

Feedback Specifies additional return code information.

MsgText[MAX_MESSAGE_TEXT+1] Specifies the message text.

MsgData[MAX_MESSAGE_DATA+1] Specifies the message substitution field.

Member Description
72 Connect:Direct for Windows SDK Programmer’s Guide

Appendix B

Return Codes

This appendix contains a list of return code values returned from the Connect:Direct C++ Class and
the C applications programming interface functions. The following table lists the return codes defined
in the CDAPI.H header file:

Name Description

CD_NO_ERROR No error detected.

CD_ENDOFDATA No more data available.

CD_PARM_ERROR Invalid parameter detected.

CD_INITIALIZE_ERROR Initialization failed or initialization has not been performed.

CD_CONNECT_ERROR Error occurred during attach processing.

CD_CONNECT_CANCELLED Attach operation cancelled by the user.

CD_CONNECTED_ERROR Invalid Connect:Direct server name.

CD_DISCONNECT_ERROR Connect:Direct server disconnected from the client.

CD_NODENAME_ERROR The Name field not set and the default not found.

CD_USERID_ERROR Invalid user ID specified.

CD_ADDRESS_ERROR Invalid TCP/IP address.

CD_PROTOCOL_ERROR Invalid or unsupported protocol specified.

CD_HANDLE_ERROR Invalid handle.

CD_HANDLE_TYPE_ERROR The wrong handle type specified.

CD_LOGON_ERROR Error while logging on to the Connect:Direct server. The user ID or
password may be invalid.

CD_DIALOG_ERROR Dialog box not created correctly.
Connect:Direct for Windows SDK Programmer’s Guide 73

Appendix B Return Codes
CD_CANCEL An error occurred creating the dialog box or retrieving the entered
information.

CD_BUSY_ERROR Operation failed. Connection is currently busy.

CD_IDLE_ERROR Operation failed. Connection is currently idle.

CD_KQV_ERROR Invalid KQV stream detected.

CD_NOT_FOUND Object not found.

CD_ALREADY_EXISTS Object already exists.

CD_ALLOCATE_ERROR Allocation error occurred.

CD_NODE_ERROR Invalid network map node.

CD_PARSER_ERROR Parser detected an error.

CD_ACCESS_DENIED Object access denied.

CD_SEND_ERROR Error while sending error.

CD_RECEIVE_ERROR Error while receiving error.

CD_CONNECTION_ERROR A connection error occurred.

CD_REGISTRY_ERROR An error occurred while opening the Registry.

CD_TIMEOUT_ERROR Time-out value was reached.

CD_BUFFER_ERROR The buffer is not big enough to hold all of the items in the list.

CD_COMMAND_ERROR The command was not recognized.

CD_PROCESS_ERROR The Process status is HE, held in error.

CD_UNDEFINED_ERROR An unknown exception.

CD_NOT_SUPPORTED An unknown exception.

Name Description
74 Connect:Direct for Windows SDK Programmer’s Guide

Glossary

A

Adjacent Node
An entry in the network map that defines a Connect:Direct node with which the local Connect:Direct

node can communicate. The adjacent node is also referred to as a remote node.

Advanced Program-To-Program Communication (APPC)

The general facility characterizing the LU 6.2 architecture and its various implementations in
products.

Application Program Interface (API)

A Connect:Direct component that accepts commands and places them in an executable format.

C
Checkpoint Restart

Feature that eliminates the need to retransmit an entire file in the event of a transmission failure. If a
copy procedure is interrupted, Connect:Direct restarts that copy at the last checkpoint.

Commands

Initiate and monitor activity within the Connect:Direct system.

Configuration Registry

A database of configuration information central to Windows operation. The Registry is the storage
location for configuration settings for Windows applications. The Registry centralizes all
Windows settings and provides security and control over system, security, and user account
settings.
Connect:Direct for Windows SDK Programmer’s Guide 75

Glossary
D
Domain Name Service (DNS)

A distributed database that provides a hierarchical naming system for identifying Internet hosts.

L
Local Node Record

The base record in a parameters file that defines the Connect:Direct server. It includes the most
commonly used settings at a site and is the central node through which all communication is
filtered. Depending upon how each remote node record is configured, trading partner node
records can use settings that are defined in the local node record.

Logical Unit (LU) 6.2

A type of logical unit that supports general communication between programs in a distributed
processing environment. LU 6.2 is characterized by (a) a peer relationship between session
partners, (b) efficient utilization of a session for multiple transactions, (c) comprehensive
end-to-end error processing, and (d) a generic application program interface (API) consisting
of structured verbs that are mapped into a product implementation.

N
Network Map (Netmap)

The file that identifies all valid Connect:Direct nodes in a network including a local node record and
a remote node record for each trading partner. The network map also defines the rules or
protocols used by each node when communicating with the local Connect:Direct node.

Node

Any site in a network from which information distribution can be initiated.

New Technology File System (NTFS)

A system that uses fixed disks to organize data. NTFS treats files as objects with user and system
defined attributes.
76 Connect:Direct for Windows SDK Programmer’s Guide

Glossary
P
Primary Node (PNODE)

The node that submits the Connect:Direct Process to the secondary node (SNODE). In every
communication, you must have a PNODE and an SNODE.

Process

A series of statements that initiate Connect:Direct activity, such as copying files and running jobs.

Process Statements

Instructions for transferring files, running operating system jobs, executing programs, or submitting
other Connect:Direct Processes. They are used to build a Connect:Direct Process.

R
Registry

See Configuration Registry.

Remote Node

An entry in the network map that defines a Connect:Direct node with which the local
Connect:Direct node can communicate. The remote node is also referred to as an adjacent node.

Retry Interval

The interval at which retries are performed as a part of the checkpoint-restart feature.

S
Secondary Node (SNODE)

The Connect:Direct node that interacts with the primary node (PNODE) during Connect:Direct
Process execution and is the noncontrolling node. Every Process has one secondary node and
one primary node.

Statistics File

Holds Connect:Direct statistics records that document the history of a Process.
Connect:Direct for Windows SDK Programmer’s Guide 77

Glossary
Statistics Facility

Records Connect:Direct activities.

Systems Network Architecture (SNA)

The description of the logical structure, formats, protocols, and operational sequences for
transmitting information units through, and controlling the configuration and operation of,
networks.

T
Transmission Control Queue (TCQ)

Holds information about Connect:Direct Processes that are currently executing or scheduled to
execute in the future.
78 Connect:Direct for Windows SDK Programmer’s Guide

Index
A
Accessing, sample code 53

ActiveX control
CDStatistics 34
CDSubmit 33
using 33

Adapter member 63

Adding a node, Client Connection Utility 11

Adding a user, Client Connection Utility 12

Address [MAX_ADDRESS] member 63

ApiVersion member 68

Automation objects, using to create node objects 48

B
bCheckpoint member 66

bDetail member
NETMAP_MODE_STRUCT structure 60
NETMAP_NODE_STRUCT structure 62

bPNode member 71

bRememberPW member 68

bRestart member 67

bSNode member 71

bTemporary member 68

bWrap member 71

ByteCount member 67

C
C API sample program 20

C++ Class groups
command 26
component 22
exception 28
helper 29
iterators 25

Catching the exception 31

cbFilesize members 71

cCMgrLevel member 70

cCommlevel member 70

CDLogonDlg class, remember password 30

CDNode class
connecting 23
managing connections 24

CDStatistic class
using the GetAuditField() method 25
using the GetAuditMap() method 25

CDStatistics ActiveX control 34

CDStatistics control
events 41
methods 40
properties 35

CDSubmit ActiveX control 33

CDSubmit control
events 34
methods 34

ChangeProcess member 57

Choosing a default node, Client Connection Utility 14

Choosing a default user, Client Connection Utility 14

Class member 66

Class, property 45

Client Connection Utility
adding a node 11
adding a user 12
choosing a default node 14
choosing a default user 14
configuring node properties 13
configuring user properties 13
deleting a node 11
deleting a user 12
exporting Registry settings 15
importing Registry settings 15
Connect:Direct for Windows SDK Programmer’s Guide 79

 Index
starting 9
stopping 9
using 9
using the tool bar 10

cMainLevel members 70

CompLevel member 68

ConditionCode member
MESSAGE_STRUCT structure 58
PROCESS_STRUCT structure 66
STATISTICS_STRUCT structure 69

Configuring node properties, Client Connection
Utility 13

Configuring user properties, Client Connection
Utility 13

ContactName[MAX_CONTACT_NAME+1]
member 55

ContactPhone[MAX_PHONE_NUMBER+1]
member 55

cPMgrLevel member 70

Creating
node objects 48
select Processes 48
select Statistics 48
virtual servers using the node factory 43

cSMgrLevel member 70

cStatLevel member 71

D
DeleteProcess member 57

Deleting
a node, Client Connection Utility 11
a user, Client Connection Utility 12

Description[MAX_DESCRIPTION+1] member 55

DestDisp1 member 67

DestDisp2 member 67

DestDisp3 member 67

DestFile, property 45

DestNodes[8] [17] members 71

DownloadDirectory [MAX_DIRECTORY_NAME+1]
member 58

E
Errors, understanding 49

Exceptions, catching 31

ExecPriority member 66

ExecPriority, property 45

ExecutionPriority member 58

Exporting Registry settings, Client Connection
Utility 15

ExtendedCompression property 45

F
Feedback member

MESSAGE_STRUCT structure 59
PROCESS_STRUCT structure 66
STATISTICS_STRUCT structure 69

Feedback, property 46

File Open Exit
implementing 53
structures 54

FileAttributes member 57

FileName [MAX_OBJECT_NAME+1] member 71

FromNode
member 66
property 45

Function calls 17

G
GetAuditField

property 47

GetAuditField() method 25

GetAuditMap() method 25

H
Hold

property 45

Hold member 66

I
Identifying

active processes 44
statistic records 45
80 Connect:Direct for Windows SDK Programmer’s Guide

Index
IMaxRUSize member 59

Implementing
automated file opening 53
enhanced security 51
passticket support 51

Importing Registry settings, Client Connection
Utility 15

InheritRights member 57

Interfaces
ActiveX control 33
C API 17

Iterators 25

L
lBufferSize member 61

lLongTermWait member 62

LocalNode
member 66
property 45

LogDateTime member
PROCESS_STRUCT structure 66
STATISTICS_STRUCT structure 69

LogDateTime, property 44, 46

LongTermRetry member 62

lPacingCount member 61

lPacingSendDelay member 61

lShortTermWait member 62

M
Managing connections 24

MaxNetSessLimit member 59

MaxPacingSize member 59

MaxPNode member 62

MaxSNode member 62

Members
MESSAGE_STRUCT structure 58
NETMAP_DESC_STRUCT structure 55
NETMAP_MODE_SNA structure 59
NETMAP_MODE_STRUCT structure 60
NETMAP_MODE_TCP structure 61

NETMAP_NODE_STRUCT structure 62
NETMAP_PATH_STRUCT structure 63
NODE_STRUCT structure 68
PROCESS_STRUCT structure 66
STATISTICS_STRUCT structure 69
TRACE_STRUCT structure 70
TRANSLATE_STRUCT structure 71

MESSAGE_STRUCT structure 58

Methods
GetAuditField() 25
GetAuditMap() 25

ModeName [MAX_OBJECT_NAME+1] member 64

MsgData [MAX_MESSAGE_DATA+1] member
MESSAGE_STRUCT structure 59
PROCESS_STRUCT structure 66
STATISTICS_STRUCT structure 69

MsgData, property 44, 46

MsgId [MAX_MESSAGE_ID+1] member
MESSAGE_STRUCT structure 58
PROCESS_STRUCT structure 66
STATISTICS_STRUCT structure 69

MsgId member
property 46

MsgId, property 44

MsgText [MAX_MESSAGE_TEXT+1] member
MESSAGE_STRUCT structure 59
PROCESS_STRUCT structure 66
STATISTICS_STRUCT structure 69

MsgText member
property 44, 46

Multithreaded access and blocking 32

N
Name [MAX_NODE_NAME_LEN+1] member 68

Name [MAX_OBJECT_NAME+1] member
NETMAP_MODE_STRUCT structure 60
NETMAP_PATH_STRUCT structure 63

Name [MAX_OBJECT_NAME_LEN+1] member 62

Name, node object property 44

Name[MAX_NODE_NAME_LEN+1] member 55

Name[MAX_OBJECT_NAME+1] member 56

NETMAP_DESC_STRUCT structure 55
Connect:Direct for Windows SDK Programmer’s Guide 81

 Index
NETMAP_MODE_SNA structure 59

NETMAP_MODE_STRUCT structure 59

NETMAP_MODE_TCP structure 60

NETMAP_NODE_STRUCT structure 61

NETMAP_PATH_STRUCT structure 62

Node name, properties 43

Node objects, creating 48

NODE_STRUCT structure 67

O
Objects, using on the stack 32

OSType member 68

P
Passticket support

implementing 51
security exits 52
user exits 51

Password member 68

Password properties 43

PNames[8] [MAX_PROCESS_NAME+1] members 71

PNode [17] member 66

PNode property 45

PNums[8] members 71

Printing, registry settings 15

Priority
property 45

Priority member 66

PROCESS_STRUCT structure 64

ProcessCopy member 57

ProcessDirectory [MAX_DIRECTORY_NAME+1]
member 58

Processes, identifying, active 44

ProcessName
property 44, 46

ProcessName [MAX_PROCESS_NAME+1]
member 66

ProcessNumber
property 44, 46

ProcessNumber member
PROCESS_STRUCT structure 66
STATISTICS_STRUCT structure 69

ProcessReceive member 58

ProcessRunJob member 57

ProcessRunTask member 57

ProcessSend member 58

ProcessSubmit member 57

ProgramDirectory [MAX_DIRECTORY_NAME+1]
member 58

Protocol member
NETMAP_PATH_STRUCT structure 63
NODE_STRUCT structure 68

Q
Queue [5] member 66

Queue. property 45

R
RecCat [5] member 70

RecCat property 46

RecId
property 46

RecId [5] member 70

RecordCount member 67

Refresh member 57

Registry settings
exporting 15
importing 15
printing 15

Registry, understanding 9

Remember password 30

RemoteOSType member 62

Restart property 45

Retain member 66

Retain property 45
82 Connect:Direct for Windows SDK Programmer’s Guide

Index
S
Sample code, accessing 53

Sample program in C API 20

SchedDateTime member 66

SchedDateTime, property 44

Security Exit, structures 52

Security exits, passticket support 52

SelectedOSType member 68

Selecting Processes 48

Selecting Statistics 49

SelectNetmap member 57

SelectProc(criteria), node object method 44

SelectProcess member 57

SelectStats member 57

SelectStats(criteria), node object method 44

Sent RUs, property 45

SentBytes, property 45

Server [MAX_OBJECT_NAME+1] member 68

ShortTermRetry member 62

SimpleCompress, property 45

Sna member 60

SnaLocalNetId [MAX_LOCALNETID+1] member 63

SnaLULocAddr member 63

SnaLUName [MAX_LUNAME+1] member 63

SnaLUSessLimit member 63

SnaModeName [MAX_OBJECT_NAME+1]
member 62

SnaNetName [MAX_NET_NAME+1] member 62

SnaPartnerName [MAX_PARTNER_NAME+1]
member 62

SnaPUName [MAX_PUNAME+1] member 63

SnaTPName [MAX_TPNAME+1] member 62

SNode
property 45, 46

SNode [17] member
PROCESS_STRUCT structure 66
STATISTICS_STRUCT structure 70

SNodeId member 57

SourceDisp1 member 67

SourceDisp2 member 67

SourceDisp3 member 67

SourceFile [MAX_FILENAME+1] member 67

SourceFile, property 45

Stack objects 32

Standard function calls 20

StartDateTime member 69

StartDateTime, property 46

starting the Client Connection Utility 9

Statistics
identifying records 45

STATISTICS_STRUCT structure 69

Status [3] member 66

Status, property 45

Step Name, property 45

StepName [9] member 66

Stop member 57

StopDateTime member 69

StopDateTime, property 46

Stopping the Client Connection Utility 9

Structures
for security exits 52
MESSAGE_STRUCT 58
NETMAP_DESC_STRUCT 55
NETMAP_MODE_SNA 59
NETMAP_MODE_STRUCT 59
NETMAP_MODE_TCP 60
NETMAP_NODE_STRUCT 61
NETMAP_PATH_STRUCT 62
NODE_STRUCT 67
PROCESS_STRUCT 64
STATISTICS_STRUCT 69
TRACE_STRUCT 70
TRANSLATE_STRUCT 71
types 55
USER_STRUCT 56

SubmitNode
[17] member 66
property 44

SubmitProcess member 57

Submitter
property 44, 46
Connect:Direct for Windows SDK Programmer’s Guide 83

 Index
Submitter [65] member
PROCESS_STRUCT structure 66
STATISTICS_STRUCT structure 69

SubType member 68

szFilename[MAX_FILENAME+1] members 71

T
Table [256] member 71

Tcp member 60

TcpAddress [MAX_TCP_ADDRESS+1] member 62

TcpModeName [MAX_OBJECT_NAME+1]
member 62

Terminating a thread 31

Threads, terminating a thread 31

Tool bar
Client Connection Utility 10

TotalBytes, property 45

TotalRecs, property 45

Trace member 57

TRACE_STRUCT structure 70

TRANSLATE_STRUCT structure 71

Transport member 63

TrusteeAssign member 57

U
Understanding Errors 49

Update proxy member 57

UpdateACL member 57

UpdateNetmap member 56

UpdateTranslation member 58

UpdateUser member 57

UploadDirectory [MAX_DIRECTORY_NAME+1]
member 58

User exits
Passticket support 51

USER_STRUCT structure 56

Userid
member 68
node object property 44
properties 43

Using Nodes 48

W
Windows Registry 9

X
XmitBytes member 67

XmitRUs member 67
84 Connect:Direct for Windows SDK Programmer’s Guide

	Contents
	Connect:Direct for Windows SDK
	About This Guide
	Task Overview

	Editing Connection Settings
	Starting the Client Connection Utility
	Understanding the Tool Bar
	Adding a Node
	Deleting a Node
	Adding a User
	Deleting a User
	Importing Registry Settings
	Exporting Registry Settings

	Applying the C Applications Programming Interface
	Using Handles
	Waiting for a Process
	Retrieving Error Text
	Blocking

	Applying the C++ Class Interface
	Creating an Object to Connect to the Connect:Direct Node
	Managing Connections
	Understanding Iterators
	Accessing Iterator Records
	Creating a Thread Example
	Terminating a Thread
	Catching the Exception

	Applying the ActiveX Control Interface
	Methods
	Events
	Properties
	Methods
	Events

	Applying the Automation Servers
	Applying the Node Object
	Identifying Active Processes
	Identifying Statistic Records
	Creating Node Objects
	Using Nodes
	Selecting Processes
	Selecting Statistics
	Understanding Errors

	Enhance Security and Automate File Opening with User Exits
	Applying Passticket Support
	Security Exit Structures
	Accessing Sample Code
	Applying the File Open Exit
	File Open Exit Structures
	FILE_OPEN
	FILE_OPEN_REPLY

	Accessing Sample Code

	Structure Types
	Members
	Members
	Members
	Members
	Members
	Members
	Members
	Members
	Members
	Members
	Members
	Members
	Members

	Return Codes
	Glossary
	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

