
Determining When to Use UDT
(Sterling File Accelerator) for

Connect:Direct for UNIX

Sterling File Accelerator offers a UDP-based Data Transport (UDT) option for Connect:Direct for
UNIX 4.0.00 or later This document summarizes when UDT should be used instead of TCP, based
on experimental tests conducted by Stering Commerce.

Introduction
UDT is an alternative transport layer protocol to TCP that is designed for high latency with
high-bandwidth connections. Over this type of connection, UDT achieves higher data transfer rates
than TCP. For more information about UDT, refer to http://udt.sourceforge.net.

High-latency connections have always existed, but high-latency, high-bandwidth connections are a
more recent development. One situation in which this type of connection may occur is the
connection between geographically distant data centers. In this case, latencies can be 50ms or more,
and bandwidths may fall in the Gbps range.

When to Use UDT
The following table summarizes which of UDT and TCP achieves the greater data transfer rate over
a range of round-trip latencies and bandwidths. The results apply to a connection with little or no
packet loss.

Bandwidth Round-trip Latency (ms)

(Mbps) 0 10 20 30 and above

45 TCP

155 TCP UDT
Sterling File Accelerator 1

http://udt.sourceforge.net
http://udt.sourceforge.net
http://udt.sourceforge.net

 Determining When to Use UDT (Sterling File Accelerator) for Connect:Direct for UNIX
At zero latency, TCP is better than or equal to UDT at all bandwidths. At 45 Mbps, UDT and TCP
achieve the same data transfer rate. At 155 Mbps, UDT outperforms TCP above 20ms of latency,
and at 1Gbps, UDT outperforms TCP above 10ms of latency.

CPU Usage
A UDT session consumes approximately twice the CPU resources as a TCP session. This is an
important consideration on a CPU-bound system.

Measuring Latency and Bandwidth
Round-trip latency is reported by many implementations of the “ping” command. Bandwidth was
determined using the Iperf tool (http://sourceforge.net/projects/iperf).

Using Iperf
Iperf must be installed on the systems on both ends of the connection that will be instrumented. On
one system, Iperf is launched as a server with the following command:

On the other system, Iperf is run as a client using the following command to communicate with the
Iperf server:

Below are sample Iperf runs from the two ends of a connection. The endpoints have hostnames
"NodeA" and "NodeB" and IP addresses 10.20.43.12 and 10.20.43.11, respectively. For each
endpoint, the command used to launch Iperf and the output from Iperf are shown.

1,000 TCP UDT

iperf -s

iperf -c <server system address>

Bandwidth Round-trip Latency (ms)

(Mbps) 0 10 20 30 and above
2 Sterling File Accelerator

http://sourceforge.net/projects/iperf
http://sourceforge.net/projects/iperf

Experimental Results
In this case, Iperf has determined that the bandwidth of the connection is 807 Mbits/sec.

Experimental Results
The following results were obtained with two instances of Connect:Direct for UNIX version 4.0
running on Linux systems separated by an IP Impairment device. The experiments consisted of
copying a 5GB file between the two systems.

Test Systems
Both test systems ran the SuSE Enterprise 10 OS. The sending system had one dual-core, 2.1 GHz
AMD Opteron 8218 CPU and 2G of memory. The receiving system had two 2.4 GHz Intel Xeon
CPUs and 3.7G of memory.

TCP Tuning
TCP often requires a non-default configuration to function effectively in the presence of latency. In
the case of systems that support TCP Windows Size auto-tuning, such as the more recent releases
of Linux, the maximum TCP Window Size must be set to a value that is at least the Bandwidth
Delay Product of the connection. All the experiments were performed with the TCP Windows Size
tuned appropriately.

NodeA# iperf -s
--
Server listening on TCP port 5001
TCP window size: 85.3 KByte (default)
--
[4] local 10.20.43.12 port 5001 connected with 10.20.43.11 port 55819
[4] 0.0- 9.4 sec 900 MBytes 807 Mbits/sec

NodeB# iperf -c NodeA
--
Client connecting to arsles-ps, TCP port 5001
TCP window size: 16.0 KByte (default)
--
[3] local 10.20.43.11 port 55819 connected with 10.20.43.12 port 5001
[3] 0.0-10.0 sec 900 MBytes 807 Mbits/sec
Sterling File Accelerator 3

 Determining When to Use UDT (Sterling File Accelerator) for Connect:Direct for UNIX
1 Gbps Bandwidth

155 Mbps Bandwidth

1 Gbps link - 5GB file transfer

0.00

100.00

200.00

300.00

400.00

500.00

600.00

700.00

800.00

900.00

1000.00

0 25 50 100 200 400 600

Latency (ms)

M
bp

s TCP

UDT

155 Mbps link - 5GB file transfer

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

0 25 50 100 200 400 600

Latency (ms)

M
bp

s TCP

UDT
4 Sterling File Accelerator

Experimental Results
45 Mbps Bandwidth

45 Mbps link - 5GB file transfer

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

0 25 50 100 200 400 600

Latency (ms)

M
bp

s TCP

UDT
Sterling File Accelerator 5

 Determining When to Use UDT (Sterling File Accelerator) for Connect:Direct for UNIX
6 Sterling File Accelerator

	CPU Usage
	Using Iperf
	Test Systems
	TCP Tuning
	1 Gbps Bandwidth
	155 Mbps Bandwidth
	45 Mbps Bandwidth

