Connect:Enterprisee
UNIX

Programmer’s Guide

Version 2.3

Connect:Enterprise UNIX Programmer’s Guide
\ersion 2.3

Copyright © 2004, 2005 Sterling Commerce, Inc.
All rights reserved.
First Edition

This documentation was prepared to assist licensed users of the Connect:Enterprise UNIX system (“Sterling Commerce
Software”). The Sterling Commerce Software, the related documentation and the information and know-how it
contains, is proprietary and confidential and constitutes valuable trade secrets of Sterling Commerce, Inc., its affiliated
companies or its or their licensors (collectively “Sterling Commerce”), and may not be used for any unauthorized
purpose or disclosed to others without the prior written permission of Sterling Commerce. The Sterling Commerce
Software and the information and know-how it contains have been provided pursuant to a license agreement which
contains prohibitions against and/or restrictions on its copying, modification and use. Duplication, in whole or in part,
if and when permitted, shall bear this notice and the Sterling Commerce, Inc. copyright legend.

Portions of the Sterling Commerce Software may include products, or may be distributed on the same storage media
with products, ("Third Party Software™) offered by third parties ("Third Party Licensors™). Sterling Commerce
Software may include Third Party Software covered by the following copyrights: Copyright © 1999-2005 The Apache
Software Foundation. Copyright © 1995 Tatu Ylonen <ylo@cs.hut.fi>. Copyright © 1998-2003 The OpenSSL Project.
Copyright © 1999-2002 Certicom Corp. Portions copyright 1992-2004 FairCom Corporation. “FairCom" and "c-tree
Plus™ are trademarks of FairCom Corporation and are registered in the United States and other countries. Copyright ©
2003 Mort Bay Consulting Pty. Ltd. Copyright © 1994 — 2005, Sun Microsystems, Inc. Copyright © 2000 — 2004
Jason Hunter & Brett McLaughlin. Copyright © 1999 — 2005 by Shingeru Chiba. Copyright © 2005, Michael Glad
and Pawel Vesolv. Copyright © 2001 Zero G Software, Inc. This product includes code licensed from RSA Security,
Inc. Some portions licensed from IBM are available at http://oss.software.ibm.com/icudj/. CONTAINS
IBM(R) 32-bit Runtime Environment for AIX(TM), Java(TM) 2 Technology Edition, Version 1.4 Modules (c)
Copyright IBM Corporation 1999, 2002. All Rights Reserved. All rights reserved by all listed parties.

Where any of the Sterling Commerce Software or Third Party Software is used, duplicated or disclosed by or to the
United States government or a government contractor or subcontractor, it is provided with RESTRICTED RIGHTS as
defined in Title 48 CFR 52.227-19 and is subject to the following: Title 48 CFR 2.101, 52.227-19, 227.7201 through
227.7202-4, FAR 52.227-14, and FAR 52.227-19(c)(1-2) and (6/87), and where applicable, the customary Sterling
Commerce license, as described in Title 48 CFR 227-7202 with respect to commercial software and commercial
software documentation including DFAR 252.227-7013, DFAR 252,227-7014, DFAR 252.227-7015 and DFAR
252.227-7018, all as applicable.

The Sterling Commerce Software and the related documentation are licensed either “AS IS or with a limited warranty,
as described in the Sterling Commerce license agreement. Other than any limited warranties provided, NO OTHER
WARRANTY IS EXPRESSED AND NONE SHALL BE IMPLIED, INCLUDING THE WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR USE OR FOR A PARTICULAR PURPOSE. The applicable Sterling
Commerce entity reserves the right to revise this publication from time to time and to make changes in the content
hereof without the obligation to notify any person or entity of such revisions or changes.

Connect:Enterprise is a registered trademark of Sterling Commerce. All Third Party Software names are trademarks or
registered trademarks of their respective companies.

CEUNXPG507

Contents

Chapter 2 User Exits 7
Using Exits in Connect:Enterprise.t 7
Enabling User EXitS.o 7
Compiling the User Exit Functions 8
Header File LOCatioNS o e e 9
User Exit System Considerations 9
Modifying the CMUUSERLOG Utility 9
AP FUNCHON EXit. e e 10
Function Definition 10
AU NS, .ot e e 10
Return Value e 11
Batch Receive 64 EXit e 11
Function Definition 11
AU NS, .« .o e e e 12
Return Value e 12
Batch Receive EXit e 13
Function Definition e 13
AU NS, .o e e 13
Return Value e 14
Batch Send 64 EXit e 14
Function Definition 14
AU NS, L . ot e e 15
Return Value e 15
Batch Send EXit. 15
Function Definition 15
AU NS, L Lot e e 16
Return Value e 16
LOg EXit . .. 16
Function Definition e 17
AU NS, .o e e e 17
Return Value e 17
Definition of the LOG_MSG_T Information Structure 17
Mailbox Initialization EXit e 25
Function Definition 25
AU NS, .ot e e e 26
Return Value e 26

Connect:Enterprise UNIX Programmer’s Guide 3

Mailbox Termination EXit.t e e 26

Function Definition e 26
AU NS, L o ot e e e 26
Return Value. 26
Remote Command EXit. i e 27
Function Definition e 27
AU NS, . o ot e e e 27
Return Value. 28
PARM CTLBLK T .. e e e e 28
SECUNY EXIt. . . oottt 29
Function Definition e 29
AU NS, L o ot e e e 30
Return Value e e 30
Session Initial Buffer EXit. e 30
Function Definition e 31
AU NS, . o ot e e e 31
Return Value. 31
Session Initialization EXit. 31
Function Definition 32
AU NS, . o ot e e e e 32
Return Value. 32
Session Termination EXit. e 32
)15 G 33
AU NS, . o ot e e e e 33
Return Value. 33
Chapter 3 API Calls 35
Shared ObJECES e 37
Internal Message ENCryption. i 37
Tracing APl ACtiVItYo e e 37
CMUAPIL _OpPENSESSION. . o vttt ettt e e e e e e 38
Function Definition e 38
ATQUMENES. . . oot 39
Return Value. 39
Example Code e 39
CMUAPI_Cl0SESESSION. . o ottt e e e e 40
Function Definition e 40
ATQUMENES. .ot t 40
Return Value. e 40
Example Code e 40
CMUAPL_ Commandt e e e e e e 41
Function Definition e 41
ATQUIMBNES. . o o e e e 41
Return Value. 42
Example Code e 42
APICMD _ADD ... e e 42
Function Definition e 42
ATQUMENES. . . oottt 43
Return Value. 45
Example Code 45

Connect:Enterprise UNIX Programmer’s Guide

APICMD_CONNECT ... e 45

Function Definition 45
AU NS, .ot e e 46
Return Value e 47
Example Code. 48
APICMD _DELETE e e e e 48
Function Definition 48
AU NS, L .ot e e e 49
Return Value e 50
Example Code. 50
APICMD _ERASE 50
Function Definition e 51
AU NS, .o e e e 51
Return Value e 53
Example Code. 53
APICMD _EXTRACT .. o e e e 53
Function Definition e 53
AU BNES. .o e e 55
Return Value e 57
Example Code. 57
APICMD _LIST . e 58
Function Definition 58
AU NS, L .ot e e e 58
Return Value e 60
Example Code. 60
APICMD_REFRESH 60
Function Definition 60
AU NS, .ot e e e 60
Return Value e 60
Example Code. 61
APICMD_DAEMON_REFRESH i 61
Function Definition 61
AU NS, L . ot e e 61
Return Value e 61
APICMD_SSLPASS REFRESH i 62
Function Definition 62
AU NS, .ot e e e 62
Return Value e 62
APICMD_SSHPASS REFRESH i 62
Function Definition e 63
AU NS, . ot e e e 63
Return Value e 63
APICMD_IDMBPASS REFRESH 63
Function Definition e 63
AU NS, L .ot e e 64
Return Value. e 64
APICMD _SESSION 64
Function Definition 64
AU NS, o Lot e e e 65
Return Value e 65
Example Code. 65

Connect:Enterprise UNIX Programmer’s Guide

APICMD_SHUTDOWNo e 66

Function Definition 66
AU NS, .ot e e 66
Return Value e 66
Example Code. 66
APICMD ST ART . e 67
Function Definition 67
AU NS, L .ot e e e 67
Return Value e 67
Example Code. 67
APICMD _STATUS .. 68
Function Definition e 68
AU NS, L .o e e 69
Return Value e 70
Example Code. 70
APICMD ST OP ... e 71
Function Definition e 71
AU NS, .o e e 71
Return Value e 71
Example Code. 71
APICMD_CEUTRACE e e e e e i 72
Function Definition 72
AU NS, L .ot e e e 73
Return Value e 73
Example Code. 73
Index 75

6 Connect:Enterprise UNIX Programmer’s Guide

Chapter 2

User Exits

User Exits in Connect:Enterprise can customize processing of user information and batches as
corresponding events occur. Each User Exit is defined as a user modifiable C language subroutine.
When an Exit point in the Connect:Enterprise process flow is reached, the corresponding User Exit
subroutine is called. Each subroutine may be modified to customize the processing of the
corresponding event.

There are thirteen User Exit subroutines provided with Connect:Enterprise. The subroutine entry
points are located in the SCMUHOME/exits/cmuexits.c source code file. An ANSI compatible C
language compiler is necessary to compile the cmuexits.c source code module after modifications
have been made.

The use of User Exits is optional. No User Exit subroutines are enabled in Connect:Enterprise by
default.

Using Exits in Connect:Enterprise

User Exits in Connect:Enterprise are called when specific events occur. For example, when a batch
of data is successfully received by Connect:Enterprise, the Batch Receive Exit function is called
with information corresponding to the batch. The User Exit may be customized to automate the
processing of the batch.

Enabling User Exits

Enable specific exits by checking the appropriate check box in the Define Configuration function
of the Site Administration Web interface. Connect:Enterprise supports the following exits:

Argument Description

API Function Exit invoked before any API function call. If this exit is enabled, all command line utilities
(when executed) result in invocation of this exit function.

Connect:Enterprise UNIX Programmer’s Guide 7

Chapter 2 User Exits

Argument

Description

Batch Receive Exit

invoked when a batch of data is added to the repository, either from a remote site
(cmuadd) or from an API-generated add. Only compatible with batches of less than
2,147,483,647 bytes. If you are working with batches larger than this, use the Batch
Receive 64 Exit. You cannot use both Batch Receive Exit and Batch Receive 64 Exit.

Batch Receive 64
Exit

invoked when a batch of data is added to the repository, either from a remote site
(cmuadd) or from an API-generated add. You cannot use both Batch Receive Exit
and Batch Receive 64 Exit.

Batch Send Exit

invoked when a batch of data is sent from the repository. Only compatible with
batches of less than 2,147,483,647 bytes. If you are working with batches larger than
this, use the Batch Send 64 Exit. You cannot use both Batch Send Exit and Batch
Send 64 Exit.

Batch Send 64 Exit

invoked when a batch of data is sent from the repository. You cannot use both Batch
Send Exit and Batch Send 64 Exit.

Log Exit

invoked before any Accounting Log Record is written.

Mailbox
Initialization Exit

invoked when Connect:Enterprise starts execution.

Mailbox
Termination Exit

invoked when Connect:Enterprise terminates execution.

Remote Command
Exit

invoked when a remote site issues a command with either the $$ syntax or FTP
commands.

Security Exit

invoked before access to the repository is given. Validates the user and password
information.

Session Initial
Buffer Exit

invoked when a session is started with a remote site using Bisync or non-interactive
Async protocols.

Session
Initialization Exit

invoked each time a remote site connects to Connect:Enterprise with a online
protocol.

Session
Termination Exit

invoked when a session is ended with a remote site using any one of the supported
communication protocols (FTP, ASYNC, or Bisync). It is not invoked for autoconnect
activity.

All Connect:Enterprise user exits are called using standard UNIX C calls. An Exit Parameter List
is passed to each of the user exits.

Compiling the User Exit Functions

To use the exit program, follow this procedure:

1. Enable the appropriate user exits check box in the Define Configuration function of the Site
Administration Web interface.

2. Open the skeleton exit file, cmuexits.c, located under the $CMUHOME/exits directory. The
file contains housekeeping code followed by the exit function definitions. Each function
definition is similar to the example shown:

Connect:Enterprise UNIX Programmer’s Guide

Using Exits in Connect:Enterprise

long CMUEXIT_ MboxInit (char *achMboxName) ;
{

printf("Initializing Mailbox System.\n");
return 0;

}

Select the exit call you have enabled in the MCD file.
Replace the printf line with your code.

When you are finished, save and exit cmuexits.c.
Issue a ceushutdown command.

N o gk~ ow

At the UNIX prompt, use this command to compile the new code:

makeexits

The makeexits script and makefile compile cmuexits.c code.

Note: If you are using a compiler other than the XLC Compiler Version 1.3.0.xx on AlX or the
Optional C Compiler on HP-UX, the makeexits command may fail with an unknown options
error.

8. Issue a ceustartup command to restart the Connect:Enterprise system.

Header File Locations

The User Exit Function parameter lists consist of values and C structures defined in the
$CMUHOME/include/cmuexit.h, SCMUHOME/include/cmuexits.h header files, and
$CMUHOME/src/samples.h.

User Exit System Considerations

The User Exits are called as separate UNIX processes in an asynchronous manner for each
invocation. Connect:Enterprise and the host system performance can degrade if the User EXxits are
implemented so that they slow batch processing or impede general functioning of
Connect:Enterprise.

The processes coded for the User Exits should be kept as brief and simple as possible. An example
would be to use the Batch Receive EXxit to simply notify an external agent that a batch has arrived
instead of extracting and processing the batch as part of the Batch Receive Exit function itself. This
would keep the time and system requirements of the Batch Receive Exit to a minimum.

Modifying the CMUUSERLOG Utility

The cmuuserlog utility provides an alternative function to the Log Exit (cmulogd). The Log Exit
(cmulogd) starts a subprocess for each record transmitted. The cmuuserlog utility allows you to
monitor and manipulate the data in real time without starting a separate subprocess for each record.

Connect:Enterprise UNIX Programmer’s Guide 9

Chapter 2 User Exits

Note: Modifying the cmuuserlog utility eliminates network level activity between the cmulogd and the
cmuexitd programs. Because a new subprocess is not created for each user exit, fewer system
resources are required to process your data.

The following steps enable you to modify File Agent to use this utility.
1. If the product is running, issue the ceushutdown command.
2. Modify $CMUHOME/exits/userlog.c and add your system-specific code.

3. Run the makeexits utility script to compile the User Exit functions and the cmuuserlog utility
program.

4. Modify $CMUHOME/etc/ceustartup and add “-S CMUHOME/arch/bin/cmuuserlog” to the
startup script for the cmulogd program.

5. Issue the ceustartup command.

APl Function Exit

The API Function Exit is called each time an offline command or APl command is performed.

The API Function Exit could be used to limit specific users from performing operations using
offline commands and API programs.

Function Definition

The function of the API Function Exit follows:

long CMUEXIT_APIFunc (achOrigRemoteId, ulFunction)
char *achOrigRemoteId;
long ulFunction;

return 0;

Arguments

Argument Description

achOrigRemoteld user ID performing a API or offline command.

10 Connect:Enterprise UNIX Programmer’s Guide

Batch Receive 64 Exit

Argument Description

ulFunction function code corresponding to the command being performed. Possible values are:
¢+ APICMD_ADD
¢+ APICMD_CONNECT
¢+ APICMD_DELETE
¢+ APICMD_ERASE
¢+ APICMD_EXTRACT
¢ APICMD_LIST
¢+ APICMD_REFRESH
¢+ APICMD_DAEMON_REFRESH
¢ APICMD_SSLPASS_REFRESH
¢+ APICMD_SSHPASS_REFRESH
¢+ APICMD_SESSION
¢+ APICMD_SHUTDOWN
¢+ APICMD_START
¢+ APICMD_STATUS
¢+ APICMD_STOP
¢+ APICMD_TRACE

Return Value

The API Function Exit returns zero for success and non-zero for failure. A return of zero indicates
the operation is allowed to proceed. A non-zero return code indicates the operation is not allowed
to proceed and a failure code is returned to the context where the command was initiated.

Batch Receive 64 Exit

The Batch Receive 64 Exit is called each time a batch of data is successfully deposited in the
repository. The Batch Receive 64 Exit is called for all batches regardless of the communication
protocol used to deposit the batch. This includes the online protocols and the offline API protocols.

The Batch Receive 64 Exit may be used to automate the processing of batches as they are received
by Connect:Enterprise. A typical use of the Batch Receive 64 Exit might be to notify a external
program that the batch has arrived. The external program would then process the batch
asynchronously. You cannot use both Batch Receive Exit and Batch Receive 64 Exit.

Function Definition

The function of the Batch Receive 64 Exit follows:

Connect:Enterprise UNIX Programmer’s Guide 11

Chapter 2

User Exits

long

CMUEXIT_ BatchRecv64 (usProtocol, achOrigRemoteId, achMboxId, achBatchId,
ulBatchNo, ullBytes, ulStartTime, ulStopTime)

short usProtocol;

char
char
char
long
long
long
long

*achOrigRemoteId;
*achMboxId;
*achBatchId;
ulBatchNo;

long ullBytes;
ulStartTime;
ulStopTime;

{

return O;

}

Arguments

Argument

Description

usProtocol

protocol used to establish the connection with File Agent. Value is passed for
reference only. Refer to samples.h in the $CMUHOME/samples directory for a list of
valid values.

achOrigRemoteld

mailbox logon used when the communication session was initiated. Value is passed
for reference only.

achMboxld logical mailbox where the batch was deposited. Value is passed for reference only.

achBatchld batch ID associated with the batch of data. Value is passed for reference only.

ulBatchNo batch number associated with the batch of data. Value is passed for reference only.

ullBytes size of the batch in bytes. Value is passed for reference only.

ulStartTime timestamp corresponding to the time the batch transmission started. Standard UNIX
time format, may be processed with ctime(3) or localtime(3) for formatting. Value is
passed for reference only.

ulStopTime timestamp corresponding to the time the batch transmission ended. Standard UNIX

time format, may be processed with ctime(3) or localtime(3) for formatting. Value is
passed for reference only.

Return Value

12

Return value has no significance.

Connect:Enterprise UNIX Programmer’s Guide

Batch Receive Exit

Batch Receive Exit

The Batch Receive Exit is called each time a batch of data is successfully deposited in the repository.
The Batch Receive Exit is called for all batches regardless of the communication protocol used to
deposit the batch. This includes the online protocols and the offline API protocols.

The Batch Receive Exit may be used to automate the processing of batches as they are received by

Connect:Enterprise.

A typical use of the Batch Receive Exit might be to notify a external program

that the batch has arrived. The external program would then process the batch asynchronously.

The Batch Receive Exit is the same as the Batch Receive 64 Exit except that the Batch Receive Exit
accurately reports only batch sizes less than 2,147,483,647 bytes. Batch sizes larger than

2,147,483,647 bytes

are reported as zero. Because of this limitation, it is best to switch to the Batch

Receive 64 Exit. You cannot use both Batch Receive Exit and Batch Receive 64 EXxit.

Function Definition

The function of the Batch Receive Exit follows:

short usProtocol;

char *achMboxId;
char *achBatchId;
long ulBatchNo;
long ulBytes;
long ulStartTime;
long ulStopTime;
{

long CMUEXIT_BatchRecv (usProtocol, achOrigRemoteId, achMboxId, achBatchId,

char *achOrigRemoteId;

ulBatchNo, ulBytes, ulStartTime, ulStopTime)

return 0;
}
Arguments
Argument Description
usProtocol protocol used to establish the connection with File Agent. This value is passed for

reference only. Refer to samples.h in the $CMUHOME/samples directory for a list of
valid values.

achOrigRemoteld

mailbox logon used when the communication session was initiated. Value is passed
for reference only.

achMboxId logical mailbox where the batch was deposited. Value is passed for reference only.
achBatchld batch ID associated with the batch of data. Value is passed for reference only.
ulBatchNo batch number associated with the batch of data. Value is passed for reference only.
ulBytes size of the batch in bytes. Value is passed for reference only.

Connect:Enterprise UNIX Programmer’s Guide 13

Chapter 2 User Exits

Argument Description

ulStartTime timestamp corresponding to the time the batch transmission started. Standard UNIX
time format, may be processed with ctime(3) or localtime(3) for formatting. Value is
passed for reference only.

ulStopTime timestamp corresponding to the time the batch transmission ended. Standard UNIX
time format, may be processed with ctime(3) or localtime(3) for formatting. Value is
passed for reference only.

Return Value

Return value has no significance.

Batch Send 64 Exit

The Batch Send 64 Exit is called whenever a batch is sent from the repository. The Batch Send 64
Exit is called regardless of the communication protocol used.

The Batch Send 64 Exit could be used to notify a administrator that a batch was sent from the
repository. You cannot use both Batch Receive Exit and Batch Receive 64 Exit.

Function Definition
The function of the Batch Send 64 Exit follows:

long CMUEXIT_ BatchSendé64 (usProtocol, achOrigRemoteId, achMboxId, achBatchId,
ulBatchNo, ullBytes, ulStartTime, ulStopTime)

short usProtocol;
char *achOrigRemoteId;
char *achMboxId;
char *achBatchId;
long ulBatchNo;
long long ullBytes;
long ulStartTime;
long ulStopTime;
{
return 0;

}

14 Connect:Enterprise UNIX Programmer’s Guide

Batch Send Exit

Arguments
Argument Description
usProtocol protocol used to establish the connection with File Agent. Value is passed for

reference only. Refer to samples.h in the $CMUHOME/samples directory for a list of
valid values.

achOrigRemoteld

mailbox logon used when the communication session was initiated. Value is passed
for reference only.

achMboxId logical mailbox where the batch was deposited. Value is passed for reference only.

achBatchld batch ID associated with the batch of data. Value is passed for reference only.

ulBatchNo batch number associated with the batch of data. Value is passed for reference only.

ullBytes size of the batch in bytes. Value is passed for reference only.

ulStartTime timestamp corresponding to the time the batch transmission started. Standard UNIX
time format, may be processed with ctime(3) or localtime(3) for formatting. Value is
passed for reference only.

ulStopTime timestamp corresponding to the time the batch transmission ended. Standard UNIX

time format, may be processed with ctime(3) or localtime(3) for formatting. Value is
passed for reference only.

Return Value

Return value has no significance.

Batch Send Exit

The Batch Send Exit is called whenever a batch is sent from the repository. The Batch Send Exit is
called regardless of the communication protocol used.

The Batch Send Exit could be used to notify a administrator that a batch was sent from the

repository.

The Batch Send Exit is the same as the Batch Send 64 EXxit, except that Batch Send Exit accurately
reports only batch sizes less than 2,147,483,647 bytes. Batch sizes larger than 2,147,483,647 bytes
are reported as zero. Because of this limitation, it is best to switch to the Batch Send 64 Exit. You
cannot use both Batch Send Exit and Batch Send 64 Exit.

Function Definition

The function of the Batch Send Exit follows:

Connect:Enterprise UNIX Programmer’s Guide

15

Chapter 2 User Exits

long CMUEXIT_BatchSend (usProtocol, achOrigRemoteId, achMboxId, achBatchId, ulBatchNo,
ulBytes, ulStartTime, ulStopTime)

short usProtocol;

char *achOrigRemoteId;

char *achMboxId;

char *achBatchId;

long ulBatchNo;

long ulBytes;

long ulStartTime;

long ulStopTime;

{

return O;
}
Arguments
Argument Description
usProtocol protocol used to establish the connection with File Agent. Value is passed for
reference only. Refer to samples.h in the $CMUHOME/samples directory for a list of
valid values.

achOrigRemoteld mailbox logon used when the communication session was initiated. Value is passed
for reference only.

achMboxld logical mailbox where the batch was deposited. Value is passed for reference only.
achBatchld batch ID associated with the batch of data. Value is passed for reference only.
ulBatchNo batch number associated with the batch of data. Value is passed for reference only.
ulBytes size of the batch in bytes. Value is passed for reference only.

ulStartTime timestamp corresponding to the time the batch transmission started. Standard UNIX

time format, may be processed with ctime(3) or localtime(3) for formatting. Value is
passed for reference only.

ulStopTime timestamp corresponding to the time the batch transmission ended. Standard UNIX
time format, may be processed with ctime(3) or localtime(3) for formatting. Value is
passed for reference only.

Return Value

Return value has no significance.

Log Exit

The Log Exit is called whenever there is a Connect:Enterprise log record sent from any source to
the cmulogd program. The cmulogd program manages writing the product activity log. The product

16 Connect:Enterprise UNIX Programmer’s Guide

Log Exit

activity log is used for generating reports with the cmureport program. The Log Exit provides the
capability of examining the log records before they are written to the product activity log.

The Log Exit could be used to intercept communication failures and perform notification when
these events occur. The Log Exit is called in the following contexts:

4+ Remote Session Start — Remote Session Startup

Remote Info — Remote Command Information

Remote Session End — Remote Session Termination

Autoconnect Session Start — Communication Session Started
Autoconnect Remote Start — Transfer Start

Autoconnect Command Information — Transfer Command Information
Autoconnect Remote End — Transfer End

Autoconnect Session End — Communication Session Terminated
Offline Transaction (API Transactions and Offline Commands)

R IR IR IR IR SRS

Queued Autoconnect Transactions

Function Definition

The function of the Log Exit follows:

long CMUEXIT_Log (pAcctLogMsg)
LOG_MSG_T *pAcctLogMsg;
{

return 0;
}
Arguments
Argument Description
pAcctLogMsg pointer to a Log Message structure. It is passed for reference only. Only selected

elements of the structure are valid for a given Log Message context.

Return Value

A return value of zero (0) indicates success. A non-zero value indicates failure. If a return code of
zero is returned the log record is written to the product activity log. If a non-zero value is returned
the log record is not written to the product activity log.

Definition of the LOG_MSG_T Information Structure
The parameter pAcctLogMsg of the Log Exit points to the LOG_MSG_T structure.

Connect:Enterprise UNIX Programmer’s Guide 17

Chapter 2 User Exits

typedef struct
USHORT
USHORT
ULONG
UCHAR
time_t
ULONG
USHORT
time_t
USHORT
USHORT
USHORT
ULONG
ULONG
ULLONG
ULONG
ULONG
ULONG
ULONG
ULONG
ULONG
ULONG
UCHAR
UCHAR
UCHAR
UCHAR
UCHAR

} LOG_MSG_T;

_LOG_MSG {

ulDeleteFlag;
usOpType;
ulRecordVersion;
achRmtORLst [9] ;
tStartDateTime;
ulImposedSessionNo;
usMsgType;
tEndDateTime;
usSubMsgType;
usStatus;
usFuncCode;
ulProtocol;
ulBatchSize;
ullBatchSize;
ulBatchNo;
ulCountl;

ulCount2;

ulCount3;

ulCount4;

ulCount5;

ulMsgNo;
achRmtID[MC_RMTID] ;
achBatchID[MC_BATCHID] ;
achextraField[105];
szConnResource[80];
szbase;

The members of the LOG_MSG_T structure are only valid in some contexts. The following
sections describe the log messages and the members of the LOG_MSG_T structure used for each.

LOG_MSG_T Values for Remote Session Start Log Messages

18

Remote Session Start log messages are recorded when a remote user initiates a communication
session with Connect:Enterprise.

The following members are valid in the LOG_MSG _T structure used for a Remote Session Start
log message. The number in parenthesis preceding the member name indicates the position that the
value occupies in the 26-position pipe-delimited output of the cmureport command (cmureport -d

-v).
Value Description
usOpType has a value of decimal 10 (LOG_RC_TYPE).
usMsgType has a value of decimal 1 (LOG_STRT).

ullmposedSession
No

has a value corresponding to the communication session number used internally by
Connect:Enterprise.

achRmtORLst

logon ID used by remote. It must correspond to a Remote Site Definition (RSD).

tStartDateTime

timestamp for session startup. It may be formatted with ctime(3) functions.

Connect:Enterprise UNIX Programmer’s Guide

Log Exit

Value

Description

ulProtocol

protocol used to establish the connection with the repository. The value is passed for
reference only. Refer to samples.h in the $CMUHOME/samples directory for a list of
valid values.

LOG_MSG_T Values for Remote Session Information Log Messages

Remote Session Information log messages are recorded when a remote user performs a command
to add, request, or delete a batch or when a directory command is performed.

The add, request, and delete remote command functions result in individual log messages for each
batch affected by the command. The directory command results in a single log message regardless
of how many batches are listed.

The following variables are valid members of the LOG_MST _T structure for Remote Session
Information log messages.

Value Description

usOpType has a value of decimal 10 (LOG_RC_TYPE).

achRmtORLst logon ID used by remote. It must correspond to an RSD.

tStartDateTime timestamp for corresponding to the time the remote command started. It may be

formatted with ctime(3) functions.

ullmposedSession
No

has a value corresponding to the communication session number used internally by
Connect:Enterprise.

usMsgType has a value of decimal 3 (LOG_RMTINFO).

tEndDateTime Timestamp corresponding to the time the remote command ended. It may be
formatted with ctime(3) functions.

usStatus Status code for the remote command. Values are noted in Appendix A, Error
Messages, in the Connect:Enterprise Installation and Administration Guide.

usFuncCode function code corresponding to the operation performed by the remote command.
The value is C_ADD, C_REQ, C_DEL, or C_DIR.

ulBatchSize size in bytes of the batch affected by the remote command. Accurately reports batch
sizes less than 2,147,483,647 bytes. Batch sizes larger than 2,147,483,647 bytes are
reported as zero.

ullBatchSize size in bytes of the batch affected by the remote command. Accurately reports all
batch sizes.

ulBatchNo batch number corresponding to the batch affected by the remote command.

achRmtID mailbox ID corresponding to mailbox affected by the command issued by the remote
user. It may or may not correspond to an RSD.

achBatchlD batch ID corresponding to the batch affected by the remote command.

Connect:Enterprise UNIX Programmer’s Guide 19

Chapter 2 User Exits

LOG_MSG_T Values for Remote Session End Log Messages

20

Remote Session End log messages are recorded when a remote user disconnects a communication
session with Connect:Enterprise.

The following variables are valid members of the LOG_MSG_T structure for Remote Session End

log messages.

Value Description
usOpType has a value of decimal 10 (LOG_RC_TYPE).
achRmtORLst logon ID used by remote. It must correspond to an RSD.

ullmposedSession
No

has a value corresponding to the communication session number used internally by
Connect:Enterprise.

usMsgType has a value of decimal 6 (LOG_END).

tEndDateTime timestamp corresponding to the time the remote command ended. It may be
formatted with ctime(3) functions.

usStatus status code for the remote command. Values are noted in Appendix A, Error
Messages, in the Connect:Enterprise Installation and Administration Guide.

long Countl indicates number of batches added during a remote command session.

long Count2 indicates number of batches requested during a remote command session.

long Count3 indicates number of directory commands during a remote command session.

long Count4 indicates number of delete commands processed during a remote command session.

long Count5 indicates number of add commands performed during a Bisync or non-interactive

Async session without a $$ADD card.

Connect:Enterprise UNIX Programmer’s Guide

Log Exit

LOG_MSG_T Values for Autoconnect Session Start Log Messages

Autoconnect Session Start log messages are recorded when a connection to a remote site is initiated
by Connect:Enterprise.

The following variables are valid members of the LOG_MSG_T structure for Autoconnect Session

Start log messages.

Value Description
usOpType has a value of decimal 20 (LOG_AC_TYPE).
usMsgType has a value of decimal 1 (LOG_STRT).

ullmposedSession

has a value corresponding to the communication session number used internally by

No Connect:Enterprise.
achRmtORLst name of Autoconnect Definition (ACD) used for initiating the communication session.
tStartDateTime timestamp for session startup. It may be formatted with ctime(3) functions.

LOG_MSG_T Values for Autoconnect Remote Start Log Messages

Autoconnect Remote Start log messages are recorded when a remote block defined in an ACD is
processed and a communication session is attempted with a remote communication partner.

The following variables are valid members of the LOG_MSG_T structure valid for the Autoconnect
Remote Start log messages.

Value Description
usOpType has a value of decimal 20 (LOG_AC_TYPE).
usMsgType has a value of decimal 2 (LOG_RMTSTRT).

ullmposedSession

has a value corresponding to the communication session number used internally by

No Connect:Enterprise.

achRmtORLst name of ACD used for initiating the communication session.

tStartDateTime timestamp for session startup. May be formatted with ctime(3) functions.

achRmtID value of the mailbox ID specified in the remote block used in the current phase of the
auto connect attempt. This mailbox ID corresponds to an RSD.

ulProtocol protocol used to establish the connection with the repository. The value is passed for

reference only. Refer to samples.h in the $CMUHOME/samples directory for a list of
valid values.

Connect:Enterprise UNIX Programmer’s Guide 21

Chapter 2 User Exits

LOG_MSG_T Values for Autoconnect Remote Information Log Messages

Autoconnect Remote Information log messages are recorded each time a protocol command is
performed as part of an autoconnect.

The following variables are members of the LOG_MSG_T structure valid for the Autoconnect
Remote Information log messages.

Value Description

usOpType has a value of decimal 20 (LOG_AC_TYPE).

achRmtORLst name of ACD used for initiating the communication session.

tStartDateTime timestamp for corresponding to the time the command started. May be formatted with

ctime(3) functions.

ullmposedSession has a value corresponding to the communication session number used internally by

No Connect:Enterprise.
usMsgType has a value of decimal 4 (LOG_RMTINFO).
tEndDateTime timestamp corresponding to the time the command ended. May be formatted with

ctime(3) functions.

short command performed. The value is C_ADD, C_REQ, C_DEL, or C_DIR.
sSubMsgType
usStatus status code for the command. Values are noted in Appendix A, Error Messages, in

the Connect:Enterprise Installation and Administration Guide.

ulBatchSize size in bytes of the batch affected by the command. Valid for C_ADD and C_REQ.
Accurately reports batch sizes less than 2,147,483,647 bytes. Batch sizes larger than
2,147,483,647 bytes are reported as zero.

ullBatchSize size in bytes of the batch affected by the command. Valid for C_ADD and C_REQ.
Accurately reports all file sizes.

ulBatchNo batch number corresponding to the batch affected by the command. Valid for C_ADD,
C_REQ and C_DEL.

achRmtID mailbox ID corresponding to mailbox affected by the command. May or may not
correspond to an RSD.

achBatchID batch ID corresponding to the batch affected by the command. Valid for C_ADD,
C_REQ and C_DEL.

LOG_MSG_T Values for Autoconnect Remote End Log Messages

Autoconnect Remote End log messages are recorded when a communication session defined by a
remote block in an ACD is completed. This log message corresponds only to the end of the
communication session with the individual remote and does not necessarily mean the end of the
autoconnect session.

The following variables are valid members of the LOG_MSG_T structure valid for the Autoconnect
Remote End log messages.

22 Connect:Enterprise UNIX Programmer’s Guide

Log Exit

Value Description
usOpType has a value of decimal 20 (LOG_AC_TYPE).
achRmtORLst name of ACD used for initiating the communication session.

ullmposedSession has a value corresponding to the communication session number used internally by

No Connect:Enterprise.
usMsgType has a value of decimal 5 (LOG_RMTEND).
tEndDateTime timestamp corresponding to the time the command ended. May be formatted with

ctime(3) functions.

short set to the overall status of the connection with the remote defined in achRmtID.
sSubMsgType
achRmtID mailbox ID corresponding to the mailbox affected by the command. May or may not

correspond to an RSD.

LOG_MSG_T Values for Autoconnect Session End Log Messages

Autoconnect Session End log messages are recorded when a connection to a remote site is
terminated by Connect:Enterprise.

The following variables are valid members of the LOG_MSG _T structure for Autoconnect Session
Start log messages.

Value Description

usOpType has a value of decimal 20 (LOG_AC_TYPE).

usMsgType has a value of decimal 6 (LOG_END).

ullmposedSession has a value corresponding to the communication session number used internally by
No Connect:Enterprise.

achRmtORLst name of ACD used for initiating the communication session.

tEndDateTime timestamp for session end. May be formatted with ctime(3) functions.

usStatus the status of the entire autoconnect session. Values are noted in Appendix A, Error

Messages, in the Connect:Enterprise Installation and Administration Guide.

ulCountl The number of batches successfully transmitted

ulCount2 The Number of batches that failed to transmit

ulCount3 The number of batches collected from the remote

ulCount4 The number of batches that failed during collection.
achBatchlD batch ID if this was a manual autoconnect by specific batch ID.

Connect:Enterprise UNIX Programmer’s Guide 23

Chapter 2 User Exits

LOG_MSG_T Values for Queued Autoconnect Log Messages

The Queued Autoconnect log messages are recorded when a communication session fails and is
entered into the Autoconnect Requeue system. This log message is informational and indicates a
change in the state of an autoconnect session from active to failed and is only seen if the ACD has
been configured to requeue the autoconnect.

The following variables are valid members of the LOG_MSG_T structure for Queued Autoconnect

log messages.

Value Description

usOpType has a value of decimal 30 (LOG_QAC_TYPE).

achRmtORLst name of ACD used for initiating the communication session.

tStartDateTime timestamp corresponding to the time the autoconnect entered Requeue state. May be

formatted with ctime(3) functions.

ullmposedSession
No

has a value corresponding to the communication session number used internally by
Connect:Enterprise.

usMsgType has a value of decimal 3 (LOG_RMTINFO).

usStatus status code for the command. Values are noted in Appendix A, Error Messages, in
the Connect:Enterprise Installation and Administration Guide.

usFuncCode function code corresponding to the operation performed by the remote command.
The value is C_ADD, C_REQ, C_DEL, or C_DIR.

achRmtID mailbox ID corresponding to the mailbox affected by the command. May or may not
correspond to an RSD.

achBatchID batch ID corresponding to the batch affected by the command. Valid for C_ADD,

C_REQ, and C_DEL.

LOG_MSG_T Values for Offine Command Log Messages

The Offline Command log messages are recorded for all TCP/IP communication sessions including
the offline batch manipulation commands and custom API Program implementations using the
Connect:Enterprise API.

24

The following variables are valid members of the LOG_MSG_T structure for Offline Command log

messages.

Value Description

usOpType has a value of decimal 40 (LOG_OFFLINE_TYPE).

achRmtORLst name of ACD used for initiating the communication session.

tStartDateTime timestamp for corresponding to the time the remote command started. May be

formatted with ctime(3) functions.

Connect:Enterprise UNIX Programmer’s Guide

Mailbox Initialization Exit

Value

Description

ullmposedSession
No

has a value corresponding to the communication session number used internally by
Connect:Enterprise.

usMsgType has a value of decimal 4 (LOG_INFO).

tEndDateTime timestamp corresponding to the time the command ended. May be formatted with
ctime(3) functions.

Countl command performed. The value is 0 (add), 1 (extract), 2 (status), 3 (delete), or 4
(erase).

ulBatchSize size in bytes of the batch affected by the command. Accurately reports batch sizes
less than 2,147,483,647 bytes. Batch sizes larger than 2,147,483,647 bytes are
reported as zero.

ullBatchSize size in bytes of the batch affected by the command. Accurately reports all file sizes.

ulBatchNo batch number corresponding to the batch affected by the command.

achRmtID mailbox ID corresponding to the mailbox affected by the command. May or may not
correspond to an RSD.

achBatchlD batch ID corresponding to the batch affected by the command.

Mailbox Initialization EXxit

The Mailbox Initialization Exit is invoked after Connect:Enterprise has been started and initialized,
but before any user or session activity is allowed. This exit is called only once.

The Mailbox Initialization Exit could be used to start other tasks needed for processing information
while Connect:Enterprise is executing.

Function Definition

The function of the Mailbox Initialization Exit follows:

{

return 0;

}

long CMUEXIT_ MboxInit (achMboxName)
char *achMboxName;

Connect:Enterprise UNIX Programmer’s Guide

25

Chapter 2 User Exits

Arguments
Argument Description
achMboxName value of the System Name parameter in the Mailbox Control Definitions file. Value

is passed for reference only.

Return Value

The Mailbox Initialization Exit returns zero (0) for success and non-zero for failure. A return code
of zero indicates the product startup should proceed. A non-zero return indicates File Agent startup
should abort and no further processing performed.

Mailbox Termination Exit

The Mailbox Termination exit is invoked in the Control Daemon as part of termination processing.
The exit is called only once.

The Mailbox Termination Exit could be used to terminate other tasks running in parallel with
Connect:Enterprise.

Function Definition

The function of the Mailbox Termination Exit follows:

long CMUEXIT_MboxTerm (achMboxName)
char *achMboxName;
{

return 0;
}
Arguments
Argument Description
achMboxName value of the System Name parameter in the Mailbox Control Definitions file. Value

is passed for reference only.

Return Value

Return value has no significance.

26 Connect:Enterprise UNIX Programmer’s Guide

Remote Command Exit

Remote Command Exit

The Remote Command EXxit is called each time a mailbox command is issued in a remote connect
communication session.

There are four basic commands performed by remote sites regardless of the protocol. The
commands are add, request, list, and delete. Each time one of these operations is requested by a
remote site, the Remote Command Exit is called to authenticate the request. All operations are
allowed by default.

The Remote Command Exit may be used to implement a high granularity Access Control
mechanism within Connect:Enterprise, over and above what is available with the built-in ACL and
SECURITY=Batch mechanisms.

A simple use for the Remote Command Exit would be to limit access of remote mailbox users to
the mailbox ID they used as a logon when the communication session was initiated.

Function Definition

The function of the Remote Command Exit follows:

long CMUEXIT_RmtCmd(usProtocol, usCommand, usRmtConn_Auto_Conn,
achOrigRemoteId, pParmCtlBlk, ulDataSize,
achDataBuffer)

short usProtocol;

short usCommand;

short usRmtConn_AutoConn;

char *achOrigRemoteId;

PARMCTLBLK_T (*pParmCtlBlk) ;

long ulDataSize;

char *achDataBuffer;

{

return O;
}
Arguments

Argument Description

usProtocol protocol used to establish the connection with File Agent. Valid values are P_BSC
(Bisync), P_ASYNC (Async), P_FTP (non-secure FTP), and P_FTPS (secure FTP).
Value is passed for reference only.

usCommand command issued. The value is RMTCMD_ADD, RMTCMD_REQ, RMTCMD_DIR, or

RMTCMD_DEL. (Defined in cmuexit.h)

usRmtConn_AutoC 0 — autoconnect
onn

1 - remote connect Currently only set to one (1) for all contexts.

Connect:Enterprise UNIX Programmer’s Guide 27

Chapter 2 User Exits

Argument Description

achOrigRemoteld File Agent logon used when the communication session was initiated. Value is
passed for reference only.

pParmCitlBlk pointer to a structure of information describing the batch. (lllustrated in cmuexit.h). If
a remote user is using FTP and issues an mget command, the
ParmsCtlIBlk->achBchld field will contain the batch number instead of the batch ID of
the batch being requested.

ulDataSize unused.

achDataBuffer unused.

Return Value

The Remote Command Exit returns zero (0) for success and a non-zero value for failure. If a value
of zero is returned the requested operation is allowed to continue. If a non-zero value is returned
the requested operation is disallowed.

PARMCTLBLK_T

The parameter pParmCtIBIk of the Remote Command Exit points to the PARMCTLBLK _T
structure. The PARMCTLBLK T structure has all of the internal Connect:Enterprise specific
information associated with the batch being processed.

typedef struct_PARMCTLBLK {
short sCommand;
char achId[MC_RMTID];
char achBchId[MC_BATCHID];
char achPassword[MC_PASSWORD] ;
char achRecvFile[MC_RECVFILE]; /* PI:745101 */
unsigned short usBlock;
long 1Nap;
long 1lRetries;
char chRecSepl[l];
char chMedial[ll];
char chBchSep[l];
char chCodel[l];
short sConv;
char achCCList [MC_CCLIST];
long 1Flags;
char achSearchOrigId[9];
char achSearchFlags|[9];
time_t tFromTime;
time_t tEndTime;
long 1FlagsSupplied;

} PARMCTLBLK_T;

The following variables are valid members of PARMCTLBLK_T for the Remote Command Exit.

28 Connect:Enterprise UNIX Programmer’s Guide

Security Exit

Variable Description

sCommand commands issued. Valid values are C_ADD (1), C_REQ (2), C_DIR (3), C_DEL (4),
C_NOOP (5).

achld mailbox ID where batch resides or is being added to.

achBatchld batch ID associated with the batch being processed.

Security Exit

The Security Exit is called each time a user authentication is performed in Connect:Enterprise. This
includes both online communication sessions, offline mailbox commands, and APl commands.

For the FTP and Secure FTP protocols, the Security Exit is called after the user responds to the
logon and password prompts and before the logon information compared to an RSD (Remote Site
Definitions file).

For interactive Async, the Security Exit is called after the user responds to the logon and password
prompts and before the logon information is compared to an RSD.

For non-interactive Async and Bisync, the Security Exit is called after the interpretation of the first
control card in the data stream and before the information is compared to an RSD.

The Security Exit could be used to authenticate the ID and password parameters against a external
database. The Security Exit could also be used to map the given ID and password parameters to
valid IDs and passwords for mailbox.

Function Definition

The function of the Security Exit follows:

long CMUEXIT_Security(id, passwd, protocol)
char *id;
char *passwd;
unsigned long protocol;
{
return 0;

}

Connect:Enterprise UNIX Programmer’s Guide 29

Chapter 2 User Exits

Arguments
Argument Description
id logon user ID. Value may be modified in the Security Exit. Maximum allowed length
for the replacement is 128 characters.
passwd password corresponding to ID. Value may be modified in the Security Exit. Maximum
length for the replacement is 128 characters.
protocol protocol used to establish the connection with File Agent. Value is passed for

reference only. Following is a list of values. You can also find this list in samples.h in
the $CMUHOME/samples directory.

Value Protocol Associated Command Type

1 TCPIP Offline commands + API
2 ASYNC Async

3 FTP FTP

4 BSC Bisync

6 FTPS Secure FTP

7 HTTP AS2 HTTP

8 EDIINT AS2 EDI

9 GIS GIS BP

10 SSH SSH

Return Value

The Security Exit returns zero (0) for success and non-zero for failure. A return code of zero
indicates success and the logon should be allowed to proceed. This does not indicate that the logon
is valid to Connect:Enterprise, just that the logon information presented to the Security Exit has
passed the scrutiny of the Exit. A non-zero return code indicates the logon information failed the
scrutiny of the Security Exit and the logon attempt is returned to the user as failed.

Session Initial Buffer Exit

30

The Session Initial Buffer Exit is called only for Bisync and non-interactive Async remote
connections. The purpose of the Exit is to allow modification of the data buffer before logon
validation is performed.

The Session Initial Buffer Exit is called as soon as the first buffer of data is received for a Bisync
or a non-interactive Async remote connection and before any examination of the data for control
cards is performed. The Exit is called prior to the Session Initialization Exit. This Exit could be used
to map non-File Agent logon cards to Connect:Enterprise control card syntax and would be
especially useful in situations where legacy logon information needs to be mapped to
Connect:Enterprise control cards.

Connect:Enterprise UNIX Programmer’s Guide

Session Initialization Exit

Function Definition

The function of the Session Initial Buffer Exit follows:

long CMUEXIT_ SessInitBuff (Protocol, BufSize, Buffer)
unsigned short Protocol;

unsigned long *BufSize;

unsigned char *Buffer;

{

return O;

}

Arguments

Argument Description

Protocol protocol used to establish the connection with File Agent. Any values can be present,
but only P_BSC (Bisync) and P_ASYNC (Async) are valid. Value is passed for
reference only.

BufSize size of buffer. Value may be modified if the size of the buffer changes. Maximum
value is 4096 bytes.

Buffer pointer to the storage area containing the first buffer of data. The buffer may be

modified. If the size changes, the new size must be reflected in BufSize.

Return Value

A return value of zero (0) indicates success. A non-zero value indicates failure. If a return code of
zero is returned the session is allowed to proceed. If a non-zero value is returned the session is
disconnected.

Session Initialization Exit

The Session Initialization Exit is called each time a Remote Site connects to Connect:Enterprise
with a online protocol. These protocols are Async, Bisync, FTP, and Secure FTP.

The Session Initialization Exit may be used to perform custom remote user authentication. The Exit
is called after the first buffer is parsed for control cards. The Session Initialization Exit is called for
all remote connects; however, Bisync and non-interactive Async sessions pass the ulDataSize and
achDataBuffer parameters. These two parameters may be modified inside of the Exit and the
modified values will be returned to the calling process context. The modified size and buffer
contents will be used to replace the first buffer of data sent by the remote user.

Note: The Session Initialization Exit is only called when remotes connect to Connect:Enterprise. The exit
is not called for autoconnect.

Connect:Enterprise UNIX Programmer’s Guide 31

Chapter 2 User Exits

Function Definition

The function of the Session Initialization Exit follows:

long CMUEXIT_ SessionInit (usProtocol, achOrigRemoteId, achPassword,
ulAddress, ulDataSize, achDataBuffer)

short usProtocol;

char *achOrigRemoteId;

char *achPassword;

long ulAddress;

long ulDataSize;

char *achDataBuffer

{

return 0;
}
Arguments
Argument Description
usProtocol protocol used to establish the connection with File Agent. Value is passed for
reference only. Refer to samples.h in the $CMUHOME/samples directory for a list of
valid values.

achOrigRemoteld login ID used to authenticate to Connect:Enterprise. Value is passed for reference

only.
achPassword password used to authenticate to Connect:Enterprise. Value is passed for reference
only.
ulAddress (FTP only) TCP/IP address of remote. Value is passed for reference only.
ulDataSize (non-interactive Async and Bisync only) size of achDataBuffer. Value may be

modified if the size of achDataBuffer changes.

achDataBuffer (non-interactive Async and Bisync only) first buffer passed in protocol connection
from the remote.

Return Value

A return value of zero (0) indicates success. A non-zero value indicates failure. If a return code of
zero is returned the session is allowed to proceed. If a non-zero value is returned the session is
disconnected.

Session Termination Exit

The Session Termination Exit is called when a remote connect communication session terminates,
regardless of whether the session was successful or not.

32 Connect:Enterprise UNIX Programmer’s Guide

Session Termination Exit

The Session Termination Exit could be used to process batches deposited during the
communication session.

Syntax

The function of the Session Termination Exit follows:

long CMUEXIT_ SessionTerm(usProtocol, achOrigRemoteId, usStatus, usReason)
short usProtocol;

char *achOrigRemoteId;

short usStatus;

short usReason;

{

return 0;
}
Arguments
Argument Description
usProtocol protocol used to establish the connection with File Agent. Value is passed for
reference only. Refer to samples.h in the $CMUHOME/samples directory for a list of
valid values.

achOrigRemoteld logon ID used for the remote connect session.

usStatus unused.

usReason unused.

Return Value

Return value has no significance.

Connect:Enterprise UNIX Programmer’s Guide 33

Chapter 2 User Exits

34 Connect:Enterprise UNIX Programmer’s Guide

Chapter 3

API Calls

Connect:Enterprise Application Program Interfaces (API) are standard C function calls that can be
embedded in an application program. The Sterling Commerce-supplied API subroutines are
responsible for performing inter-process communication with the appropriate Connect:Enterprise
components and report errors or completions back to the calling application. All the command line
utilities supplied with Connect:Enterprise (such as cmuadd and cmuextract, with the exception of
cmureport) were developed using this API layer.

M

a Application
i

n

t

e

n User API
a

n

c

e

Core System

Exits

An application program can communicate with either a host Connect:Enterprise system through a
TCP/IP protocol, or with any Connect:Enterprise system in the TCP/IP network. Also, the
application program can be distributed to any computer in the TCP/IP network when talking to a
host Connect:Enterprise system. A TCP/IP interface is used to communicate between the API
subroutines and the online Connect:Enterprise daemons that perform the work.

The Connect:Enterprise APIs enable users to incorporate Connect:Enterprise commands into their
own applications. It gives the user the ability to add data to the repository, extract data from the
repository, and perform other functions supported by Connect:Enterprise command line utility
programs. The utility programs are described in the File Agent Installation and Administration
Guide.

For example, if you are designing a custom payroll program, you might have to collect weekly
payroll reports from various remote sites. To gather the payroll information, you would use
Connect:Enterprise APIs. All sample programs are available in the SCMUHOME/src directory.

Only three API calls are needed to access Connect:Enterprise and the command utilities. These
APIs are:

Connect:Enterprise UNIX Programmer’s Guide 35

Chapter 3 API Calls

36

4+ CMUAPI_OpenSession
4+ CMUAPI_Command
4 CMUAPI_CloseSession

A prototype for each of these APIs is available in the samples.h file residing in the
$CMUHOME/src directory. Several of the sample C files provided in the $CMUHOME/src
directory call these functions. Refer to these C files as examples.

To use these APIs:
1. Write your application using C.

2. Use the CMUAPI_OpenSession call to connect to the Connect:Enterprise control daemon at
the point where you want to insert the Connect:Enterprise instructions. A Connect:Enterprise
session handle is returned by this API call which is used with any subsequent calls.

3. Insert the CMUAPI_Command call for each Connect:Enterprise utility command you need
to issue, supplying the appropriate session handle. Use any of these arguments:

¢ APICMD_ADD
¢ APICMD_CONNECT
¢ APICMD_DELETE
¢+ APICMD_ERASE
¢ APICMD_EXTRACT
¢ APICMD_LIST
¢ APICMD_REFRESH
¢ APICMD_DAEMON_REFRESH
¢ APICMD_SSLPASS_REFRESH
¢ APICMD_SSHPASS_REFRESH
¢ APICMD_SESSION
¢+ APICMD_SHUTDOWN
¢ APICMD_START
¢ APICMD_STATUS
¢ APICMD_STOP
¢+ APICMD_TRACE
4. Close your session with Connect:Enterprise with a CMUAPI_CloseSession call.
Finish and compile your application.

Connect:Enterprise UNIX Programmer’s Guide

Shared Objects

Shared Objects

The File Agent API uses a shared object for communicating with the File Agent server. The API
will not work without this object. The shared objects are:

4+ libcmusips.so (for Solaris, Linux, and AlX)
4+ libcmusips.sl (for HP-UX)

To use the shared object, set the environment variables to specify the location of the shared object.
Use the following table as a guide:

Operating Environment Variable Location of Shared Object

System

AlIX LIBPATH $CMUHOME/aix/lib/

HP-UX LD_LIBRARY_PATH, $CMUHOME/hpux/lib/
SHLIB_PATH

Linux LD_LIBRARY_PATH $CMUHOME/linux/lib/

Solaris LD_LIBRARY_PATH $CMUHOME/sun/lib/

If you run API programs on a remote computer (any computer other than the computer
Connect:Enterprise is running on), copy the shared object to the remote computer and set the
environment variables appropriate for the operating system on the remote computer.

Internal Message Encryption

If your APl communicates with an instance of File Agent that has internal message encryption
enabled, the sipskey file must be available on the computer where your AP1 is running. Refer to the
Encrypting Internal Product Communications chapter of the Connect:Enterprise UNIX Installation
and Administration Guide for more information.

Tracing API Activity

When your API program is running, you can trace the activity of CMUUAPI. This allows you to
view SIPS activity for purposes of debugging. Use the following procedure:

1. Inyour program that calls CMUUAPI, define variables for dbgfd and dbglvl as follows:

extern int dbgfd, dbglvl;

Connect:Enterprise UNIX Programmer’s Guide 37

Chapter 3 API Calls

2. Open afile to which the trace output should go, before calling the API.
Set dbgfd with the file descriptor of the file you opened in step 2.

Set dbglvl to the desired trace level (0-99) into the dbglvl variable. When choosing your debug
level, consider that debug levels can affect performance.

Following is an example:

if (IsNum (optarg))
dbglvl = atoi (optarg) ;
if (dbglvl >= 0) {
sprintf (debugfn, "cmuadd.out.%d", getpid());
dbgfd = open(debugfn, O_CREAT|O_WRONLY, S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH) ;

extern int dbgfd, dbglvl;/* Connect:Enterprise UNIX API debugging variables */
char debugfn[20];

dbglvl = 9;/* 5 = SIPS summary, 9 = SIPS detail, 99 = all */

sprintf (debugfn, "cmuadd.out.%d", getpid());

dbgfd = open(debugfn, O_CREAT|O_WRONLY, S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH) ;

CMUAPI_OpenSession

The CMUAPI_OpenSession call starts a session with a Connect:Enterprise (host or remote).

The CMUAPI_OpenSession API returns a handle of type APISESSION, which must be supplied
as input to calls CMUAPI_Command and CMUAPI_CloseSession. Refer to
$CMUHOME/src/samples.h for details.

Note: An application can have multiple session handles opened by calling open session APl multiple
times. At the end of the application, all open sessions must be closed.

Function Definition
The function of CMUAPI_OpenSession follows:

APISESSION *CMUAPI_OpenSession (

char *gzSystem, /* Connect:Enterprise (see *szMailbox).*/
USHORT usPort, /* Port of Connect:Enterprise. */

char *szUser, /* Connect:Enterprise User ID.*/

char *szPassword, /* Connect:Enterprise Password.*/

char *Reserved /* This should always be set to NULL.*/

38 Connect:Enterprise UNIX Programmer’s Guide

CMUAPI_OpenSession

Arguments

Argument Description

szSystem string that represents the Internet address of the host on which control daemon is
running. (This can include a dot notation or a domain name.)

usPort port number on which the cmuctld daemon is listening.

szUser pointer to an ASCII null-terminated string that identifies the Connect:Enterprise user
ID of the individual executing the API call. This information and the szPassword
parameter are passed to both the Connect:Enterprise and any user-supplied security
routines for validation and logging. The maximum length of szUser is 8 bytes plus
one null byte.

szPassword pointer to an 64-character ASCII null-terminated string containing the password for
the user specified in the szUser parameter. The length of the string should not exceed
64 bytes because this is the maximum password length supported by
Connect:Enterprise.

Reserved always set to NULL.

Return Value

The return value, a structure of type APISESSION (defined in $CMUHOME/src/samples.h) defines
an API session handle to the communication channel to a remote or host Connect:Enterprise.
External variables such as APlerrno will contain error values which identify the failure of a specific
function call and isolate a cause for the failure.

Example Code
The example code for CMUAPI_OpenSession follows:

/* Open User API session*/

ApiSession =CMUAPI_OpenSession(“mailbox.host.com”,

8000,
“mailbox”,
“password”,
NULL) ;
if (ApiSession == NULL) {
printf ("ERROR: Unable to open a session. ");
exit(-1);

Connect:Enterprise UNIX Programmer’s Guide 39

Chapter 3 API Calls

CMUAPI_CloseSession

The CMUAPI_CloseSession call ends a session with a host or remote user.

Function Definition

The function of CMUAPI_CloseSession follows:

int CMUAPI_CloseSession (

APISESSION *ApiSessionHandle /* Session value returned from
CMUAPI_OpenSession */

Arguments

Argument Description

ApiSessionHandle specifies a pointer to the value that defines a communication channel to a remote or
host Connect:Enterprise. It is of type APISESSION (defined in
$CMUHOME/src/samples.h).

Return Value

After the command is executed, a code is returned to reflect the status of the operation. This value

is either APIRC_OK, indicating success, or an error value placed in the external variables
CMUErrno and APlerrno.

Example Code

40

The example code for CMUAPI_CloseSession follows:

if((rc = CMUAPI_CloseSession (ApiSession)) 1= 0){
printf("\n Close Session Failed");
exit (-1);

Connect:Enterprise UNIX Programmer’s Guide

CMUAPI_Command

CMUAPI_Command

The CMUAPI_Command API call issues Connect:Enterprise commands to the host
Connect:Enterprise system or to any Connect:Enterprise system in the TCP/IP network.

Use a new CMUAPI_Command call for each Connect:Enterprise command required. For
example, to invoke both cmuadd and cmuextract, include two CMUAPI_Command calls and
their associated arguments within your application code.

The application program fills in the szCommand area and other required parameters, then calls the
API. The API first validates the parameters and then the supplied command syntax and values.

Function Definition

The function of CMUAPI_Command follows:

int CMUAPI_ command (
APISESSION *ApiSessionHandle, /* Session Handle */
ULONG ulApiCmd, /* Command Code to execute */
/* Variable argument list */

Arguments

Argument Description

ApiSessionHandle specifies a pointer to the value that defines a communication channel to a remote or
host Connect:Enterprise.

ulApiCmd long value that contains the command you want to execute. Valid values are:
+ APICMD_ADD
+ APICMD_CONNECT
¢ APICMD_DELETE
+ APICMD_ERASE
+ APICMD_EXTRACT
¢ APICMD_LIST
¢ APICMD_REFRESH
+ APICMD_DAEMON_REFRESH
¢+ APICMD_SSLPASS REFRESH
+ APICMD_SSHPASS REFRESH
+ APICMD_SESSION
¢+ APICMD_SHUTDOWN
+ APICMD_START
+ APICMD_STATUS
¢ APICMD_STOP
+ APICMD_CEUTRACE

variable-length argument list where the list depends on the previous parameter,
ulApiCmd. Each command description follows.

Connect:Enterprise UNIX Programmer’s Guide 41

Chapter 3 API Calls

Return Value

The API returns APIRC_OK (0) on success. On failure, it returns an APlerrno (an unsigned long).
The reason for the error is indicated by an externally defined variable, CMUErrno. Values are noted
in Appendix A, Error Messages, in the File Agent Installation and Administration Guide.

Example Code

Refer to the sample code in your SCMUHOME/src directory to see an example of the
CMUAPI_Command. Various samp*.c files in this directory call CMUAPI_Command.

APICMD_ADD

Use the APICMD_ADD argument in the CMUAPI_Command API call to add batches to the host
Connect:Enterprise system or to any Connect:Enterprise system in the TCP/IP network.

Specify batch attributes by providing values for szMailboxld, szBatchld, IProcessFlags, and
IDataFormatFlags. Data generated by the application is passed through the cbGetFileData()
callback function. Batch information returned from the Mailbox Engine is provided to the
application through the cbhGetBatchlInfo() callback function. The cbGetFileData() is required.
The cbGetBatchlInfo callback is optional (its value can be set to null).

The cbGetBatchinfo() and pBatchlnfo structure may appear to be redundant, but are not. The
cbGetBatchlnfo() function is called immediately after Connect:Enterprise allocates a batch slot in
its database (each batch number is unique) and before any batch data has been added to
Connect:Enterprise. The pBatchlInfo structure contains all the batch information and is available
after the add operation is complete.

Note: Itis possible to add batches with batch id fields containing characters that may act as meta
characters in the UNIX shell environment and the operating system environments where the batches
are to be sent. If non-alphanumeric characters are used in batch 1Ds, take appropriate precautions in
any context where the batch ID will be exposed to a UNIX shell or other scripting type of
environment.

Function Definition

42

The function of APICMD_ADD follows:

Connect:Enterprise UNIX Programmer’s Guide

APICMD_ADD

int CMUAPI_Command (
APISESSION *ApiSessionHandle, /* Session Handle */

ULONG ulApiCmd, /* Must be equal to APICMD_ADD */

CALLBACK cbGetFileData, /* a user defined callback function that passes
data to the Mailbox Engine */

void *pGetFileDataArg, /* a void pointer to a user-defined structure

that will pass to the above callback function
as an argument */

CALLBACK cbGetBatchInfo, /* a user defined callback function that API call
passes batch information as an Argument */
void *pGetBatchInfoArg, /* a void pointer to a user-defined structure

that will be passed to the above callback
function as an argument */
MBOXBATCH_INFO_T *pBatchInfo, /* an address of BATCHINFO structure */

char *szMailboxId, /* First mailbox ID (max size of 8)where the
batch will be added. See also *szCCList. */
char *szBatchId, /* User Batch ID (Max of 64) of the Added batch */
ULONG 1lProcessFlag, /* Processing Flags Bitmap */
ULONG lDataFormatFlag, /* Data Format Flags Bitmap (ASCII, EBCDIC,
BINARY) */
USHORT keepadd, /* Do not remove $$ADD card from data */
int splitcount, /* divide this batch into multiple batches with
maximum size equal to this count. */
char *szUserRecord, /* A string that points to a file where Macro
Substitution is specified */
char *szLink, /* Batch Number or External file to be linked to */
ULONG 1UserFlags, /* Reserved (Unused) */
USHORT sEncrypt, /* If Not Zero perform Encryption.*/
char *achKey, /* User supplied Encryption key. */
char *szCCList, /* Identifies additional recipients(mailbox IDs)
for the batch (max size of 256)*/
int iTrigger /* Boolean variable (must be 1 or 0)to indicate

whether to invoke automatic routing
functionality.*/

Arguments

Argument Description

ApiSessionHandle holds a pointer to the value that defines a communication channel to a remote or host
Connect:Enterprise.

ulApiCmd long value that contains the command to be executed.

Connect:Enterprise UNIX Programmer’s Guide 43

Chapter 3 API Calls

Argument

Description

cbGetFileData

user-defined callback function that passes data to the Mailbox Engine. This function is
called multiple times until it returns 0. The return value of 0 indicates to
Connect:Enterprise that an application does not have any more data to be written to the
repository. The function returns the size of the buffer. Function syntax is as follows:
int cbGetFileData (char **buffer,
void *pGetFileDataArg) ;

/* A pointer to the

location of the data */
/* A pointer to a user

defined structure */

char **buffer,

void *pGetFileDataArg

pGetFileDataArg

void pointer indicating a user-defined structure that is passed to the above callback
function as an argument. It enables users to pass information to the callback function
instead of using global variables.

cbGetBatchinfo

user-defined callback function that the API call passes batch information to as an
argument. This function is called for each added batch. The syntax is shown as follows:
int cbGetBatchInfo (MBOXBATCH_INFO_T *pBatchInfo,
void *pGetBatchInfoArg) ;
MBOXBATCH_INFO_T *pBatchInfo /* A pointer to the batch info */
void *pGetBatchInfoArg, /* A pointer to a user defined

structure */

pGetBatchinfoArg

void pointer indicating a user-defined structure that is passed to the above callback
function as an argument.

pBatchinfo

address of a MBOXBATCH_INFO_T structure that contains current added batch
information.

szMailboxId

mailbox ID (1-8 characters) of the added batches. Connect:Enterprise searches the
repository for all batches that match the submitted Mailbox ID. Wildcard specifications
are supported. For more information, refer to the Connect:Enterprise UNIX Remote
User’s Guide.

szBatchld

user batch ID (1-64 characters) of the added batch. The batch ID can specify either a
number for a specific batch or a 1-64 character literal. The string must be enclosed in
guotes and can include embedded blanks.

IProcessFlag

processing flags bitmap (such as FLG_MULTXMIT and FLG_XMITONCE). See
$CMUHOME/src/samples.h for definitions of flags.

IDataFormatFlag

data format flags bitmap (such as FLG_ASCII, FLG_EBCDIC, and FLG_BINARY). See
$CMUHOME/src/samples.h for definitions of flags.

keepadd indicates that the program must not remove $$ADD cards from data if the data is not
zero.

splitcount indicates that the program must divide this batch into multiple smaller batches, each
containing <splitcount> bytes. The value must be at least 512; otherwise
APIRC_SPLIT_TOO_SMALL is returned. Or, specify 0 to disable splitting.

szUserRecord string that points to a file where Macro substitution is specified.

szLink batch number or external file to be linked to.

IUserFlags reserved (unused).

Connect:Enterprise UNIX Programmer’s Guide

APICMD_CONNECT

Argument Description

sEncrypt perform encryption if not equal to zero.

achKey user-supplied encryption key.

szCClList character string, which can be up to 256 characters in length, can contain a
comma-separated list of additional mailbox IDs to which the batch will be added. If this
string is left blank, then the batch will only be added to the mailbox ID specified in the
szMailboxId field.

iTrigger indicates whether triggering is enabled. This integer can only have two values: 0 and 1.

If 0, cmuadd is performed without -t specified. If 1, cmuadd is performed with -t
specified.

Use this parameter to tell the mailbox daemon to invoke the automatic routing function
after the batch has been added. For this feature to work, an ACD file must be
configured with the CONTACT parameter set to Forward data to Remote site
automatically, and the Send ID parameter should specify an ID that is either
szMailboxId or one of the IDs specified in the szCCList. Refer to the File Agent
Installation and Administration Guide for more information about automatic routing.

Return Value

The API returns APIRC_OK (0) on success. On failure, it returns an APlerrno. The reason for the
error is indicated by an externally defined variable, CMUErrno. Values are noted in Appendix A,
Error Messages, in the File Agent Installation and Administration Guide.

Example Code

Refer to the sample source file called sampadd.c in your $CMUHOME/src directory to see an
example of the APICMD_ADD command.

APICMD_CONNECT

Use the APICMD_CONNECT argument in the CMUAPI_Command API call to trigger an
autoconnect session of a specific Autoconnect Definition (ACD) from the host Connect:Enterprise
system or from any Connect:Enterprise system in the TCP/IP network.

Specify the ACD name as one of the parameters. You can override certain parameters in the ACD
such as Retries, Mailbox ID, and Batch ID. Some parameters allow the application to retrieve auto
connect messages. Auto connect messages from the auto connect subsystem transfer to the
application through the cbGetlInteractMsgs() callback function. cbGetlInteractMsgs() is required
if the sInteractive option is set.

Function Definition

The function of APICMD_CONNECT follows:

Connect:Enterprise UNIX Programmer’s Guide 45

Chapter 3 API Calls

int CMUAPI_ command (

APISESSION *ApiSessionHandle, /* Session Handle */

ULONG ulApiCmd, /* Must be set to APICMD_CONNECT */

CALLBACK cbGetInteractMsgs, /* a user defined callback function that
retrieves messages from the Mailbox
AutoConnect subsystem */

char *szAcdList, /* AutoConnect list name (1 - 8) */

char *szMailboxId, /* Mailbox ID (1 - 8) of the selected batches */

char *szBatchId, /* User Batch ID (1 - 64) of the selected
batches */

USHORT sACMode, /* AutoConnect Mode (SendRecv, RecvSend,
SendOnly,RecvOnly) */

USHORT sOneBatch, /* Set the OneBatch option on a $SREQ operation */

USHORT sRetry, /* Override the retry parameter */

USHORT sInterval, /* Waiting period between queries */

USHORT sBatchSep, /* Batch separation (NO, OPT1,0PT2, OPT3) */

USHORT sInteractive, /* If it is set, allow the messages to be
retrieved */

USHORT sBlock, /* Block value (Bisync only) */

USHORT sCompress, /* Compress white spaces (Bisync only) */

USHORT sTransparent, /* Make batch transparent (Bisync only) */

char *gszDaemonName, /* The daemon name (Max of 8), specified when a
Master server is started with a -N option. */

char *gzPortName, /* The specific ports of a resource
(ex. /dev/ttyl or port0) */

USHORT sType, /* Specify data type */

USHORT sTrunc, /* Truncate trailing blanks (Bisync only) */

USHORT sConv /* Indicates whether to autoconvert the data on
transmission */

char *bpid, /* overrides the business process name that the

autoconnect daemon passes to the GIS adapter.*/

Arguments

Argument Description

ApiSessionHandle holds a pointer to the value that defines a communication channel to a remote or host
Connect:Enterprise.

ulApiCmd long value that contains the command to be executed.

cbGetinteractMsgs user-defined callback function that retrieves messages from the Connect:Enterprise
autoconnect subsystem.

szAcdList ACD name (1-8 characters).

szMailboxId mailbox ID (1-8 characters) of the selected batches. Connect:Enterprise searches
the repository for all batches that match the submitted mailbox ID. Wildcard
specifications are supported. For more information, refer to the Connect:Enterprise
UNIX Remote User’s Guide.

46 Connect:Enterprise UNIX Programmer’s Guide

APICMD_CONNECT

Argument Description

szBatchld user batch ID (1-64 characters) of the deleted batches. The batch ID can specify
either a number for a specific batch or a 1-64 character literal. The string must be
enclosed in quotes and can include embedded blanks. Wild card specifications (like
an asterisk, *) are also allowed. A specific batch number is preceded by a pound sign,
such as #14. One or more hyphenated ranges of batch ID numbers can be specified
after the pound sign, separated by commas (for example,
#57-59,88,95,100-110,128).

sACMode autoconnect mode (valid values are SendRecv, RecvSend, SendOnly, and
RecvOnly).

sOneBatch set the OneBatch option on during a $$REQ operation.

sRetry override the retry parameter.

sinterval waiting period between queries.

sBatchSep batch separation (valid values are NO, OPT1, OPT2, and OPT3).

sInteractive (optional) enables the program to retrieve messages.

sBlock (optional, Bisync only) forces Connect:Enterprise to send multiple records in a single

record data block, separated by record separators. This applies to EBCDIC data only.

sCompress (optional, Bisync only) specifies that Bisync blank compression is performed on the
data before transmission.

sTransparent (optional, Bisync only) specifies that data is transparent.

szDaemonName daemon name (1-8 characters), specified when a Master server is started with the -N
option. If the -N option is not used, default names are associated with each daemon.

The default names for daemons are:
¢+ Async-asyncd
+ Bisync-bisyncd

+ FTP-ftpd
szPortName specific ports of a resource (ex. /dev/ttyl or port0).
sType specifies the type of data being sent or received (ASCII, EBCDIC, or Binary).
sTrunc (optional, Bisync only) specifies that Connect:Enterprise can truncate trailing blanks

before records are transmitted.

sConv indicates whether to autoconvert the data on transmission (NO_CONVERT,
TO_ASCII, TO_EBCDIC). See $CMUHOME/src/samples.h for definitions.

bpid overrides the business process that the auto connect daemon passes to the GIS
adapter.

Return Value

The API returns APIRC_OK (0) on success. On failure, it returns an APIErrno. The reason for the
error is indicated by an externally defined variable, CMUErrno. Values are noted in Appendix A,
Error Messages, in the File Agent Installation and Administration Guide.

Connect:Enterprise UNIX Programmer’s Guide 47

Chapter 3 API Calls

Example Code

Refer to the sample source file called sampconnect.c in your SCMUHOME/src directory to see an
example of the APICMD_CONNECT command.

APICMD_DELETE

Use the APICMD_DELETE argument in the CMUAPI_Command API call to delete batches
from the local Connect:Enterprise system or from any Connect:Enterprise system in the TCP/IP

network.

Select batches by specifying values for szMailboxld, szBatchld, szFrom, and szTo parameters.
Batch information from Mailbox Engine transfers to the application through the coPutBatchlinfo()
callback function. However, if the chRecvConfirm is not set to zero (0x00) then the batch
information will not be available.

Function Definition

The function of APICMD_DELETE follows:

APISESSION
ULONG

CALLBACK

void

ULONG
char

char

char
char
char

ULONG
char
char

int CMUAPI_command (
*ApiSessionHandle,

ulApiCmd,

cbPutBatchInfo,

*pPutBatchInfoArg,

*ulTotal,
*szMailboxId,

*szBatchId,

*szFrom,
*szTo,
chRecvConfirm,

1lUserFlags,
*szOrig,
*szFlags,

/*
/*

/*

/*
/*

/*

/*
/*
/*

/*
/*
/*

Session Handle */

Must be equal to
APICMD_DELETE */

a user-defined callback
function that API call passes
batch information as an
Argument */

a void pointer to
user-defined structure that
will be passed to the above
callback function as an
argument */

Total batches deleted */
Mailbox ID (Max of 8) of the
deleted batches */

User Batch ID (Max of 64) of the deleted
batches */

Start Time/Date range */

End Time/Date range */
Receive confirmation for
each deleted batch

(BatchInfo) */

Reserved (Unused) */
Originating id */
Batch flags */

48

Connect:Enterprise UNIX Programmer’s Guide

Arguments

APICMD_DELETE

Argument

Description

ApiSessionHandle

holds a pointer to the value that defines a communication channel to a remote or local
Connect:Enterprise system.

ulApiCmd

long value containing the command to be executed.

cbPutBatchinfo

user-defined callback function to which the API call passes batch information as an
argument. This function is called for each deleted batch. It follows this syntax:

int cbPutBatchInfo (MBOXBATCH_INFO_T *pBatchInfo,
void *pPutBatchInfoArg) ;
MBOXBATCH_INFO_T *pBatchInfo, /* A pointer to the batch
info */
void *pPutBatchInfoArg /* A pointer to a

user-defined structure */

pPutBatchinfoArg

void pointer indicating a user-defined structure that is passed to the above callback
function as an argument.

ulTotal

address of a long value containing the total number of batches deleted.

szMailboxId

mailbox ID (1-8 characters) of the deleted batches. Connect:Enterprise searches the
repository for all batches that match the submitted mailbox ID. Wildcard specifications
are supported. For more information, refer to the Connect:Enterprise UNIX Remote
User’s Guide.

szBatchld

user batch ID (1-64 characters) of the deleted batches. The batch ID can specify
either a number for a specific batch or a 1-64 character literal. The string must be
enclosed in quotes and can include embedded blanks. Wild card specifications (like
an asterisk, *) are also allowed. A specific batch number is preceded by a pound sign,
such as #14. One or more hyphenated ranges of batch ID numbers can be specified
after the pound sign, separated by commas (for example,
#57-59,88,95,100-110,128).

szFrom

start time/date range specified as an ASCII string with this syntax:
[[CClyymmdd|nnn[:hhmm|/hhmm]]|[hhmm]

The following options are available:

+ [CClyymmdd—on or after the date [CClyymmdd

¢ [CClyymmdd:hhmm-on or after the date and time [CClyymmdd and hhmm

¢ [CClyymmdd/hhmm-on or after the date [CClyymmdd, but on or after the time
hhmm each day

+ nnn-on or after the date nnn days ago
+ nnn:hhmm-on or after the date and time nnn days ago and hhmm

+ nnn/hhmm-on or after the date nnn days ago, but on or after the time hhmm each
day

¢+ hhmm-on or after the time hhmm today

Connect:Enterprise UNIX Programmer’s Guide

49

Chapter 3 API Calls

Argument Description

szTo end time/date range specified as an ASCII string with this syntax:
[[CClyymmdd|nnn[:hhmm|/hhmm]]|[hhmm]
The following options are available:
¢ [CClyymmdd—on or before the date [CClyymmdd
+ [CClyymmdd:hhmm-on or before the date and time [CClyymmdd and hhmm

¢ [CClyymmdd/hhmm-on or before the date [CClyymmdd, but on or before the time
hhmm each day

+ nnn-on or before the date nnn days ago
+ nnn:hhmm-on or before the date and time nnn days ago and hhmm

+ nnn/hhmm-on or before the date nnn days ago, but on or before the time hhmm
each day

¢+ hhmm-on or before the time hhmm today

chRecvConfirm receive confirmation for each deleted batch (Batchinfo). If this is set to (0x00) then
Batchinfo structure will not be received as a confirmation of the Delete operation.

IlUserFlags reserved (unused). Must be set to zero.
szOrig originating ID of the deleted batches. Null selects all originating IDs.
szFlags selects batches with specified flags. Null allows any flag to match.

Return Value

The API returns APIRC_OK (0) on success. On failure, it returns an APIErrno. The reason for the
error is indicated by an externally defined variable, CMUErrno. Values are noted in Appendix A,
Error Messages, in the File Agent Installation and Administration Guide.

Example Code

Refer to the sample source file called sampdelete.c in your SCMUHOME/src directory to see an
example of the APICMD_DELETE command.

APICMD_ERASE

Use the APICMD_ERASE argument in the CMUAPI_Command API call to erase batches from
the host Connect:Enterprise system or from any Connect:Enterprise system in the TCP/IP network.

Select batches by specifying values for szMailboxld, szBatchld, chOR_AND, szFrom, and szTo
parameters. Batch information from the Mailbox Engine transfers to the application through the
cbPutBatchlInfo() callback function. However, if the chRecvConfirm is not set (0x00) then the
batch information will not be available.

50 Connect:Enterprise UNIX Programmer’s Guide

Function Definition

APICMD_ERASE

The function of APICMD_ERASE follows:

int CMUAPI_command (

APISESSION *ApiSessionHandle, /* Session Handle */

ULONG ulApiCmd, /* Must be set to APICMD_ERASE */

CALLBACK cbPutBatchInfo, /* A user-defined callback function
that API call passes batch
information as an Argument */

void *pPutBatchInfoArg, /* Void pointer to a user-defined
structure that passes to the
callback function as an
argument */

ULONG *ulTotal, /* Total batches Erased */

char *szMailboxId, /* Mailbox ID (Max of 8) of
the Erased batches */

char *szBatchId, /* User Batch ID (Max of 64
of the Erased batches */

char *szFrom, /* Start Time/Date range */

char *szTo, /* End Time/Date range */

ULONG 1ProcessFlag, /* Processing Flags Bitmap */

char chOR_AND, /* If logical OR or AND
should be performed on the
Processing Flags Bitmap
(0 means AND, 1 means OR) */

char chRecvConfirm, /* Receive confirmation for
each erased batch (BatchInfo) */

ULONG lUserFlags /* Reserved (Unused) */

char *szOrig, /* Originating id */

char *szFlags /* Batch flags */

)

Arguments
Argument Description

ApiSessionHandle

holds a pointer to the value that defines a communication channel to a remote or host
Connect:Enterprise system.

ulApiCmd

long value containing the command to be executed.

cbPutBatchinfo

user-defined callback function that the API call passes batch information to as an
Argument. This function is called for each erased batch. The syntax is as follows:
int cbPutBatchInfo (MBOXBATCH_INFO_T *pBatchInfo,
void *pPutBatchInfoArg) ;
MBOXBATCH_INFO_T *pBatchInfo, /* A pointer to
the batch info */
void *pPutBatchInfoArg /* A pointer to a
user-defined
structure */

pPutBatchinfoArg

void pointer to a user-defined structure that is passed to the above callback function
as an argument.

ulTotal

address of a long value that contains the total number of batches erased.

Connect:Enterprise UNIX Programmer’s Guide

51

Chapter 3 API Calls

52

Argument Description

szMailboxId mailbox ID (1-8 characters) of the erased batches. Connect:Enterprise searches the
repository for all batches that match the submitted mailbox ID. Wildcard specifications
are supported. For more information, refer to the Connect:Enterprise UNIX Remote
User's Guide.

szBatchld user batch ID (1-64 characters) of the erased batches. The batch ID can specify
either a number for a specific batch or a 1-64 character literal. The string must be
enclosed in quotes and can include embedded blanks. Wild card specifications (like
an asterisk, *) are also allowed. A specific batch number is preceded by a pound sign,
such as #14. One or more hyphenated ranges of batch ID numbers can be specified
after the pound sign, separated by commas (for example,
#57-59,88,95,100-110,128).

szFrom start time/date range specified as an ASCII string with this syntax:
[[CClyymmdd|nnn[:hhmm]|/hhmm]]|[hhmm]
The following options are available:
+ [CClyymmdd—on or after the date [CClyymmdd
¢ [CClyymmdd:hhmm-on or after the date and time [CClyymmdd and hhmm
¢ [CClyymmdd/hhmm-on or after the date [CClyymmdd, but on or after the time

hhmm each day
¢ nnn-on or after the date nnn days ago
+ nnn:hhmm-on or after the date and time nnn days ago and hhmm
+ nnn/hhmm-on or after the date nnn days ago, but on or after the time hhmm each
day

+ hhmm-on or after the time hhmm today

szTo end time/date range specified as an ASCII string with this syntax:

[[CClyymmdd|nnn[:hhmm|/hhmm]]|[hhmm]

The following options are available:

¢ [CC]yymmdd-on or before the date [CClyymmdd

¢ [CClyymmdd:hhmm-on or before the date and time [CClyymmdd and hhmm

+ [CClyymmdd/hhmm-on or before the date [CClyymmdd, but on or before the time
hhmm each day

+ nnn-on or before the date nnn days ago
+ nnn:hhmm-on or before the date and time nnn days ago and hhmm

+ nnn/hhmm-on or before the date nnn days ago, but on or before the time hhmm
each day

+ hhmm-on or before the time hhmm today

IProcessFlag

processing flags bitmap (such as FLG_MULTXMIT and FLG_XMITONCE). See
$CMUHOME/src/samples.h for definitions of flags.

chOR_AND specifies whether a logical OR or AND should be performed on the Processing Flags
Bitmap (0 means AND; 1 means OR).

chRecvConfirm receive confirmation for each erased batch. If this is set to zero (0x00) then the
Batchinfo structure will not be received as a confirmation of the erase operation.

IlUserFlags reserved (unused). Must be set to zero.

Connect:Enterprise UNIX Programmer’s Guide

APICMD_EXTRACT

Argument Description
szOrig originating ID of the deleted batches. Null selects all originating IDs.
szFlags selects batches with specified flags. Null allows any flag to match.

Return Value

The API returns APIRC_OK (0) on success. On failure, it returns an APIErro. The reason for the
error is indicated by an externally defined variable, CMUErrno. Values are noted in Appendix A,
Error Messages, in the File Agent Installation and Administration Guide.

Example Code

Refer to the sample source file called samperase.c in your SCMUHOME/src directory to see an
example of the APICMD_ERASE command.

APICMD_EXTRACT

Use the APICMD_EXTRACT argument in the CMUAPI_Command API call to extract batches
from the host Connect:Enterprise system or from any Connect:Enterprise system in the TCP/IP
network. Select batches by specifying values for szMailboxId, szBatchld, IProcessFlags,
ICommProtocolFlags, SpecialOpFlags, IDataFormatFlags, szFrom, szTo, szOrig, and szFlags.
Data retrieved from the Mailbox Engine is passed to the application through the cbPutData()
callback function. Batch information from the Mailbox Engine transfers to the application through
the cbPutBatchInfo() callback function. The cbPutData() is required. The cbPutBatchlInfo
callback is optional and can be set to null. The cbPutBatchlnfo() function is selected after the
Mailbox Engine identifies a batch to be extracted and before any batch data has been extracted.

Function Definition
The function of APICMD_EXTRACT follows:

Connect:Enterprise UNIX Programmer’s Guide 53

Chapter 3 API Calls

54

int CMUAPI_ command (
APISESSION *ApiSessionHandle,
ULONG wulApiCmd,

CALLBACK cbPutFileData,

void *pPutFileDataArg,

CALLBACK cbPutBatchInfo,

void *pPutBatchInfoArg,

ULONG *ulTotal,
char *szMailboxId,

char *szBatchId,

ULONG 1ProcessFlag,
ULONG 1CommProtocolFlag,
ULONG 1DataFormatFlag,

ULONG 1SpecialOpFlags,

ULONG 1UserFlags,

struct CMUExtractCounters
*XtractCnts,

USHORT sDecrypt,

char *achKey,

char *szUserRecord,

USHORT sconv,

char *szFrom,
char *szTo,
char *szOrig,

char *szFlags

/*
/*

/*

/*

/*

/*

/*
/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*
/*
/*
/*

Session Handle */

Must be equal to
APICMD_EXTRACT */

a user defined callback
function that retrieves data
from the Mailbox Engine */

a void pointer to a
user-defined structure to pass
to the callback function */

a user defined callback
function that API call passes
batch information as an
Argument*/

a void pointer to a
user-defined structure that will
be passed to the above callback
function as an argument */
Total batches extracted */
Mailbox ID (Max of 8) of the
extracted batches */

User Batch ID (Max of 64) of
the extracted batches */
Processing Flags Bitmap */
Communication Protocol flag
Bitmap (FLG_FTP, FLG_ BSC,
FLG_ASYNC) */

Data Format Flags Bitmap
(ASCII, EBCDIC, BINARY) */
Specify a selection criteria
based on the attributes of the
batch (FLG_OPT3, FLG_ONEBATCH
etc.) */

Reserved (Unused) */

A structure containing all
totals (batches skipped, etc.)*/
If non-zero, perform
Decryption.*/

User-supplied decryption key */
A string that points to a

file where Macro substitution is
specified */

Indicates whether to
autoconvert the data on
transmission. */

Start time/date range */

End time/date range */
Originating ID */

Batch flags */

Connect:Enterprise UNIX Programmer’s Guide

Arguments

APICMD_EXTRACT

Argument

Description

ApiSessionHandle

holds a pointer to the value that defines a communication channel to a remote or
host Connect:Enterprise system.

ulApiCmd

long value that contains the command to be executed.

cbPutFileData

user-defined callback function that retrieves data from the Mailbox Engine. bufsize
can have the following values on entry:

>0 = bytes of valid data in buffer

0 = end of current batch data

-1=end of current mailbox id (if one id was being extracted)

-2=end of all mailbox id's (if id1,id2,id3 was being extracted)

This function returns the size of the data buffer that was retrieved correctly.
Function syntax is as follows:
int cbPutFileData(char *buffer, long bufsize,
void *pPutFileDatalArg) ;

char *buffer /* A pointer that points
to the location of the
data */

long bufsize /* The size of the

retrieved data*/
void *pPutFileDataArg /* A pointer to a
user-defined structure */

pPutFileDataArg

void pointer indicating a user-defined structure that is passed to the above
callback function as an argument. It enables users to pass information to the
callback function instead of using global variables.

cbPutBatchinfo

user-defined callback function that the API call passes batch information to as an
argument. This callback function is called for each extracted batch.
int cbPutBatchInfo (MBOXBATCH_INFO_T *pBatchInfo,
void *pPutBatchInfoArg) ;
MBOXBATCH_INFO_T *pBatchInfo /* A pointer to
the batch info */
void *pPutBatchInfoArg /* A pointer to a
user-defined

structure */

pPutBatchinfoArg

void pointer indicating a user-defined structure that is passed to the above
callback function as an argument.

ulTotal

address of a long value that contains the total number of batches extracted.

szMailboxId

mailbox ID (1-8 characters) of the extracted batches. Connect:Enterprise
searches the repository for all batches that match the submitted mailbox ID.
Wildcard specifications are supported. For more information, refer to the
Connect:Enterprise UNIX Remote User’s Guide.

Connect:Enterprise UNIX Programmer’s Guide 55

Chapter 3 API Calls

Argument Description

szBatchld user batch ID (1-64 characters) of the extracted batches. The batch ID can
specify either a number for a specific batch or a 1-64 character literal. The string
must be enclosed in quotes and can include embedded blanks. Wild card
specifications (like an asterisk, *) are also allowed. A specific batch number is
preceded by a pound sign, such as #14. One or more hyphenated ranges of batch
ID numbers can be specified after the pound sign, separated by commas (for

example, #57-59,88,95,100-110,128).

IProcessFlag processing flags bitmap (such as FLG_MULTXMIT and FLG_XMITONCE). See

$CMUHOME/src/samples.h for definitions of flags.

ICommProtocolFlag communication protocol flag bitmap (FLG_FTP, FLG_BSC, FLG_ASYNC). See

$CMUHOME/src/samples.h for definitions of flags.

IDataFormatFlag

data format flags bitmap (such as FLG_ASCII, FLG_EBCDIC, AND
FLG_BINARY). See $CMUHOME/src/samples.h for definitions of flags.

ISpecialOpFlags specifies a selection criteria based on the attributes of the batch (such as
FLG_OPT3 and FLG_ONEBATCH).

IlUserFlags reserved (unused).

XtractCnts structure that contains all totals, such as batches skipped or extracted.

sDecrypt if non-zero, the program performs a decryption.

achKey user-supplied decryption key.

szUserRecord string that points to a file where macro substitution is specified.

sconv indicates whether to autoconvert the data on transmission (NO_CONVERT,
TO_ASCII, TO_EBCDIC). See $CMUHOME/src/samples.h for definitions.

szOrig originating ID of the deleted batches. Null selects all originating IDs.

szFlags selects batches with specified flags. Null allows any flag to match.

szFrom start time/date range specified as an ASCII string with this syntax:

[[CClyymmdd|nnn[:hhmm|/hhmm]]|[hhmm]

The following options are available:

¢ [CC]yymmdd-on or after the date [CClyymmdd

¢ [CClyymmdd:hhmm-on or after the date and time [CClyymmdd and hhmm

¢ [CClyymmdd/hhmm-on or after the date [CClyymmdd, but on or after the time
hhmm each day

+ nnn-on or after the date nnn days ago
+ nnn:hhmm-on or after the date and time nnn days ago and hhmm

+ nnn/hhmm-on or after the date nnn days ago, but on or after the time hhmm
each day

¢+ hhmm-on or after the time hhmm today

56 Connect:Enterprise UNIX Programmer’s Guide

APICMD_EXTRACT

Argument

Description

szTo

end time/date range specified as an ASCII string with this syntax:
[[CClyymmdd|nnn[:hhmm]|/hhmm]]|[hhmm]
The following options are available:

*

*

*

[CClyymmdd—on or before the date [CClyymmdd

[CClyymmdd:hhmm-—on or before the date and time [CClyymmdd and hhmm
nnn—on or before the date nnn days ago

nnn:hhmm-on or before the date and time nnn days ago and hhmm

nnn/hhmm-on or before the date nnn days ago, but on or before the time
hhmm each day

hhmm-on or before the time hhmm today

Return Value

The API returns APIRC_OK (0) on success. On failure, it returns an APlerrno. The reason for the
error is indicated by an externally defined variable, CMUErrno. Values are noted in Appendix A,
Error Messages, in the File Agent Installation and Administration Guide.

It is possible for the APICMD_EXTRACT call to return a CMURC_OK return code, even if no
batches were actually extracted from the repository. In this situation, ul Total and XtractCnts are set
to zero. Also, the USHORT usProcessStatusCode in the MBOXBATCH_INFO for each batch
matching the extract criteria reflects the processing status of the associated batch. Values include:

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

NOT_EXTRACT

EXTRACT_OK 99
BYPASS_BATCH 98
FILTER_BATCH 97
BYPASS_TRANSPDATA 11
BYPASS_INCOMPLETE 12
EXTRCT_INCOMPLETE 13
BYPASS_DELETED 14
EXTRCT_DELETED 15
RE_EXTRACTED 18

Example Code

Refer to the sample source file called sampextract.c in your SCMUHOME/src directory to see an
example of the APICMD_EXTRACT command.

Connect:Enterprise UNIX Programmer’s Guide

57

Chapter 3 API Calls

APICMD_LIST

Use the APICMD_LIST argument in the CMUAPI_Command API call to list batches from the
host Connect:Enterprise system or from any Connect:Enterprise system in the TCP/IP network.

Select batches by specifying values for szMailboxld, szBatchld, szFrom, and szTo parameters.
Batch information from the Mailbox Engine transfers to the application through the
cbPutBatchlInfo() callback function. The cbPutBatchlInfo() is required.

Function Definition
The function of APICMD_LIST follows:

int CMUAPI_command (

APISESSION *ApiSessionHandle, /* Session Handle */

ULONG ulApiCmd, /* Must be equal to APICMD_LIST */

CALLBACK cbPutBatchInfo, /* a user defined callback
function that API call passes
batch information as an Argument */

void *pPutBatchInfoArg, /* a void pointer that points
to a user defined structure that
will be passed to the above
callback function as an argument */

ULONG *ulTotal, /* Total batches listed */

char *szMailboxId, /* Mailbox ID (1-8 char) of the
listed batches */

char *szBatchId, /* User Batch ID (1-64 char) of
the listed batches */

char *szFrom, /* Start Time/Date range */

char *szTo, /* End Time/Date range */

ULONG 1UserFlags /* Reserved (Unused) */

)

Arguments
Argument Description

ApiSessionHandle holds a pointer to the value that defines a communication channel to a remote or host
Connect:Enterprise system.

ulApiCmd long value that contains the command to be executed.

cbPutBatchinfo user-defined callback function that the API call passes batch information to as an
argument. This function is called for each listed batch. The syntax of this argument is:
int cbPutBatchInfo (MBOXBATCH_INFO_T *pBatchInfo,
void *pPutBatchInfoArg) ;
MBOXBATCH_INFO_T *pBatchInfo /* A pointer to the
batch info */
void *pPutBatchInfoArg /* A pointer to a
user-defined

structure */

58 Connect:Enterprise UNIX Programmer’s Guide

APICMD_LIST

Argument

Description

pPutBatchinfoArg

void pointer indicating a user-defined structure that is passed to the above callback
function as an argument.

ulTotal

address of a long value containing the total number of batches listed.

szMailboxId

mailbox ID (1-8 characters) of the listed batches. Connect:Enterprise searches the
repository for all batches that match the submitted mailbox ID. Wildcard specifications
are supported. For more information, refer to the Connect:Enterprise UNIX Remote
User’s Guide.

szBatchld

user batch ID (1-64 characters) of the listed batches. The batch ID can specify either
a number for a specific batch or a 1-64 character literal. The string must be enclosed
in quotes and can include embedded blanks. Wild card specifications (like an
asterisk, *) are also allowed. A specific batch number is preceded by a pound sign,
such as #14. One or more hyphenated ranges of batch ID numbers can be specified
after the pound sign, separated by commas (for example,
#57-59,88,95,100-110,128).

szFrom

start time/date range specified as an ASCII string with this syntax:
[[CClyymmdd|nnn[:hhmm|/hhmm]]|[hhmm]

The following options are available:

¢ [CClyymmdd—on or after the date [CClyymmdd

¢ [CClyymmdd:hhmm-on or after the date and time [CClyymmdd and hhmm

¢ [CClyymmdd/hhmm-on or after the date [CClyymmdd, but on or after the time
hhmm each day

* nnn-on or after the date nnn days ago
+ nnn:hhmm-on or after the date and time nnn days ago and hhmm

+ nnn/hhmm-on or after the date nnn days ago, but on or after the time hhmm each
day

¢+ hhmm-on or after the time hhmm today

szTo

end time/date range specified as an ASCII string with this syntax:
[[CClyymmdd|nnn[:hhmm|/hhmm]]|[hhmm]

The following options are available:

+ [CClyymmdd—on or before the date [CClyymmdd

¢ [CClyymmdd:hhmm-on or before the date and time [CClyymmdd and hhmm
+ nnn-on or before the date nnn days ago

+ nnn:hhmm-on or before the date and time nnn days ago and hhmm

+ nnn/hhmm-on or before the date nnn days ago, but on or before the time hhmm
each day

+ hhmm-on or before the time hhmm today

IlUserFlags

reserved (unused). Must be set to zero.

Connect:Enterprise UNIX Programmer’s Guide

59

Chapter 3 API Calls

Return Value

The API returns APIRC_OK (0) on success. On failure, it returns an APlerrno. The reason for the
error is indicated by an externally defined variable, CMUErrno. Values are noted in Appendix A,
Error Messages, in the File Agent Installation and Administration Guide.

Example Code

Refer to the sample source file called samplist.c in your $CMUHOME/src directory to see an
example of the APICMD_LIST command.

APICMD_REFRESH

Use the APICMD_REFRESH argument in CMUAPI_Command API call to refresh the
autoconnect subsystem of the Connect:Enterprise system or from any Connect:Enterprise system in
the TCP/IP network by examining all the ACDs for any new calendar information.

Function Definition
The function of APICMD_REFRESH follows:

int CMUAPI_ command (

APISESSION *ApiSessionHandle, /* Session Handle */

ULONG ulApiCmd /* Must be equal to APICMD_REFRESH */
)

Arguments

Argument Description

ApiSessionHandle holds a pointer to the value defining a communication channel to a remote or host
Connect:Enterprise system.

ulApiCmd long value that contains the command to be executed.

Return Value

The API returns APIRC_OK (0) on success. On failure, it returns an APIErrno. The reason for the
error is indicated by an externally defined variable, CMUErrno. Values are noted in Appendix A,
Error Messages, in the File Agent Installation and Administration Guide.

60 Connect:Enterprise UNIX Programmer’s Guide

APICMD_DAEMON_REFRESH

Example Code

Refer to the sample source file called samprefresh.c in your SCMUHOME/src directory to see an
example of the APICMD_REFRESH command.

APICMD_DAEMON_REFRESH

Use the APICMD_DAEMON_REFRESH argument in the CMUAPI_Command API call to
refresh an ACD master daemon or an EDIINT service daemon from any Connect:Enterprise system
in the TCP/IP network. Use this argument only in programs you intend to execute on the
Connect:Enterprise UNIX repository host.

Function Definition
The function of APICMD_DAEMON_REFRESH follows:

int CMUAPI_ command (
APISESSION *ApiSessionHandle, /* Session Handle */
ULONG ulApiCmd, /* Must be equal to APICMD_DAEMON_REFRESH */
char *DaemonName /* Name of the daemon to refresh */
)
Arguments
Argument Description
ulApiCmd long value that contains the command to be executed.
DaemonName The resource name of a running daemon to refresh. This call should only be made to

the ACD master daemon or to an EDIINT service daemon. In the case of an ACD
master daemon, the auto connect database is refreshed. In the case of an EDIINT
service daemon, the AS2 configuration file is refreshed.

Return Value

The API returns APIRC_OK (0) on success. On failure, it returns an APIErrno. The reason for the
error is indicated by an externally defined variable, CMUErrno. Values are noted in Appendix A,
Error Messages, in the File Agent Installation and Administration Guide.

Connect:Enterprise UNIX Programmer’s Guide 61

Chapter 3 API Calls

APICMD_SSLPASS_REFRESH

Use the APICMD_SSLPASS REFRESH argument in the CMUAPI_Command API call to
refresh the SSL passphrase for transfers involving Secure FTP and AS2 (HTTP and EDIINT). Use
the argument from any Connect:Enterprise system in the TCP/IP network.

Function Definition
The function of APICMD_SSLPASS REFRESH follows:

int CMUAPI_ command (
APISESSION *ApiSessionHandle, /* Session Handle */
ULONG ulApiCmd, /* Must be equal to APICMD_SSLPASS_REFRESH */
char *Pass /* The SSL passphrase */
char *DaemonName /* Name of the daemon to refresh */
)
Arguments
Argument Description
ulApiCmd long value that contains the command to be executed.
Pass The SSL passphrase. This passphrase can by up to 256 bytes plus a null terminator.
DaemonName The resource name of the daemon that receives the passphrase. If DaemonName is

left out, all daemons of the types SVID, AUTH, FTP, HTTP, and EDIINT receive the
Pass argument as the passphrase for their SSL server certificate. This can cause
some services to fail or malfunction.

Return Value

The API returns APIRC_OK (0) on success. On failure, it returns an APIErrno. The reason for the
error is indicated by an externally defined variable, CMUErrno. Values are noted in Appendix A,
Error Messages, in the File Agent Installation and Administration Guide.

APICMD_SSHPASS REFRESH
Use the APICMD_SSLPASS REFRESH argument in the CMUAPI_Command API call to

refresh the passphrase for an SSH protocol daemon. Use the argument from any Connect:Enterprise
system in the TCP/IP network.

62 Connect:Enterprise UNIX Programmer’s Guide

APICMD_IDMBPASS_REFRESH

Function Definition
The function of APICMD_SSLPASS REFRESH follows:

int CMUAPI_command (
APISESSION *ApiSessionHandle, /* Session Handle */
ULONG ulApiCmd, /* Must be equal to APICMD_SSHPASS_REFRESH */
char *Pass /* The SSH passphrase */
char *DaemonName /* Name of the daemon to refresh */
)
Arguments
Argument Description
ulApiCmd long value that contains the command to be executed.
Pass The SSH passphrase. This passphrase can by up to 256 bytes plus a null terminator.
DaemonName The resource name of the daemon that receives the passphrase. If DaemonName is

left out, all SSH daemons receive the Pass argument as the passphrase for their SSH
server certificate. This can cause some services to fail or malfunction.

Return Value

The API returns APIRC_OK (0) on success. On failure, it returns an APIErrno. The reason for the
error is indicated by an externally defined variable, CMUErrno. Values are noted in Appendix A,
Error Messages, in the File Agent Installation and Administration Guide.

APICMD_IDMBPASS_REFRESH

Use the APICMD_IDMBPASS REFRESH argument in the CMUAPI_Command API call to
refresh the SSL passphrase for transfers involving Secure FTP and AS2 (HTTP and EDIINT). Use
the argument from any Connect:Enterprise system in the TCP/IP network.

Function Definition
The function of APICMD_IDMBPASS_REFRESH follows:

int CMUAPI_ command (

APISESSION *ApiSessionHandle, /* Session Handle */
ULONG ulApiCmd, /* Must be equal to APICMD_IDMBPASS_REFRESH */
char *Pass /* The SSL passphrase */

Connect:Enterprise UNIX Programmer’s Guide 63

Chapter 3 API Calls

Arguments
Argument Description
ulApiCmd long value that contains the command to be executed.
Pass The SSL passphrase. This passphrase can by up to 256 bytes plus a null terminator.

Return Value

The API returns APIRC_OK (0) on success.

On failure, it returns an APIErrno. The reason for the

error is indicated by an externally defined variable, CMUETrrno.

APICMD_SESSION

Use the APICMD_SESSION argument in the CMUAPI_Command API call to retrieve session
information from the host Connect:Enterprise system or from any Connect:Enterprise system in the

TCP/IP network.

Select sessions by specifying values for the sDaemonType. Session information from
Connect:Enterprise control transfers to the application through the cbPutSessioninfo() callback

function.

Function Definition

The function of APICMD_SESSION follows:

int CMUAPI_command (
APISESSION *ApiSessionHandle, /*
ULONG ulApiCmd, /*

CALLBACK cbPutSessionInfo, /*

void *pPutSessionInfoArg, /*

int *iTotal, /*
USHORT sDaemonType, /*

char *achDaemonName /*
)

Session Handle */

Must be equal to
APICMD_SESSION */

a user defined callback
function that API call passes
session information as an
Argument */

a void pointer that points to
a user defined structure that
will pass to the above callback
function as an argument */
Total Sessions retrieved */
Daemon Type D_FTP, D_MATLBOX,
D_BSC, D_ASYNC */

Specifies the Daemon to use./

64

Connect:Enterprise UNIX Programmer’s Guide

APICMD_SESSION

Arguments

Argument Description

ApiSessionHandle holds a pointer to the value that defines a communication channel to a remote or host
Connect:Enterprise system.

ulApiCmd long value that contains the command to be executed.

cbPutSessioninfo user-defined callback function that the API call passes batch information to as an
argument. This function is called for each Connect:Enterprise session.

The syntax of this argument is:
int cbPutSessionInfo (SESSION_STATS_T *pSessionInfo,
void *pPutSessionInfoArg) ;

SESSION_STATS_T *pSessionInfo, /* The pointer to
the Session info
*/

void *pPutSessionInfoArg /* A pointer to a
user-defined

structure */

pPutSessioninfoAr void pointer to a user-defined structure that is passed to the above callback function

g as an argument.

iTotal address of an integer value containing the total number of sessions retrieved.

sDaemonType short value identifying the daemon type under Connect:Enterprise (Daemon Type
D_FTP, D_MAILBOX, D_BSC, D_ASYNC). See $CMUHOME!/src/samples.h for
definitions.

achDaemonName specifies the daemon to use. “” returns all.

Return Value

The API returns APIRC_OK (0) on success. On failure, it returns an APIErrno. The reason for the
error is indicated by an externally defined variable, CMUErrno. Values are noted in Appendix A,
Error Messages, in the File Agent Installation and Administration Guide.

Example Code

Refer to the sample source file called sampsession.c in your $SCMUHOME/src directory to see an
example of the APICMD_SESSION command.

Connect:Enterprise UNIX Programmer’s Guide 65

Chapter 3 API Calls

APICMD_SHUTDOWN

Use the APICMD_SHUTDOWN argument in the CMUAPI_Command API call to shut down
the Connect:Enterprise system or any Connect:Enterprise system in the TCP/IP network.

Function Definition
The function of APICMD_SHUTDOWN follows:

int CMUAPI_command (

APISESSION *ApiSessionHandle, /* Session Handle */
ULONG ulApiCmd, /* Must be equal to
APICMD_SHUTDOWN */
char *szUser, /* Connect:Enterprise User ID.*/
char *szPassword, /* Connect:Enterprise Password.*/
USHORT sUrgency /* Level of urgency for stopping

this session */

Arguments

Argument Description

ApiSessionHandle holds a pointer to the value defining a communication channel to a remote or host
Connect:Enterprise system.

ulApiCmd long value that contains the command to be executed.

szUser pointer to an 8-character ASCII null-terminated string identifying the
Connect:Enterprise User ID of the individual executing the API call. This information,
and the szPassword parameter, are both passed to Connect:Enterprise and
user-supplied security routines for validation and logging.

szPassword pointer to an 64-character ASCII null-terminated string containing the password for
the user specified in the szUser parameter. The length of the string should not exceed
64 bytes because this is the maximum password length supported by
Connect:Enterprise.

sUrgency level of urgency for shutting down the system where zero means immediate.

Return Value

The API returns APIRC_SYSTEM_DOWN(5) on success. On failure, it returns an APIErrno. The
reason for the error is indicated by an externally defined variable, CMUErrno. Values are noted in
Appendix A, Error Messages, in the File Agent Installation and Administration Guide.

Example Code

Refer to the sample source file called sampshutdown.c in your SCMUHOME/src directory to see an
example of the APICMD_SHUTDOWN command.

66 Connect:Enterprise UNIX Programmer’s Guide

APICMD_START

APICMD_START

Use the APICMD_START argument in the CMUAPI_Command API call to start a session that
was stopped by the APICMD_STOP Command in the Connect:Enterprise system or from any
Connect:Enterprise system in the TCP/IP network.

Function Definition
The function of APICMD_START follows:

int CMUAPI_ command (
APISESSION *ApiSessionHandle, /* Session Handle */

ULONG ulApiCmd, /* Must be equal to APICMD_START */
ULONG ulSessionId /* Session ID to start */
)
Arguments
Argument Description

ApiSessionHandle holds a pointer to the value that defines a communication channel to a remote or host
Connect:Enterprise system.

ulApiCmd long value that contains the command to be executed.

ulSessionld ID for a session to start up.

Return Value

The API returns APIRC_OK (0) on success. On failure, it returns an APIErrno. The reason for the
error is indicated by an externally defined variable, CMUErrno. Values are noted in Appendix A,
Error Messages, in the File Agent Installation and Administration Guide.

Example Code

Refer to the sample source file called sampstart.c in your $CMUHOME/src directory to see an
example of the APICMD_START command.

Connect:Enterprise UNIX Programmer’s Guide 67

Chapter 3 API Calls

APICMD_STATUS

Use the APICMD_STATUS argument in the CMUAPI_Command API call to update flags
associated with batches from the host Connect:Enterprise system or from any Connect:Enterprise
system in the TCP/IP network.

Select batches by specifying values for szMailboxld, szBatchld, szFrom, and szTo parameters.
Batch information from the Mailbox Engine transfers to the application through the
cbPutBatchlInfo() callback function. However, if the chRecvConfirm is not set (0x00) then the
batch information will not be available. The selected batches are updated with the values specified
in szNewMailboxld, szNewBatchld, IProcessFlagsOn, IProcessFlagOff, IDataFormatOn, and
IDataFormatOff.

Function Definition

68

The function of APICMD_STATUS follows:

int CMUAPI_command (

APISESSION *ApiSessionHandle, /* Session Handle */

ULONG ulApiCmd, /* Must be equal to
APICMD_STATUS */

CALLBACK cbPutBatchInfo, /* a user defined callback

function that API call
passes batch information as
an Argument */

void “*pPutBatchInfoArg, /* a void pointer to a
user-defined structure that
will be passed to the above
callback function as an
argument */

ULONG *ulTotal, /* Total batches updated */

char *szMailboxId, /* Mailbox ID (Max of 8) of
the updated batches */

char *szBatchId, /* User Batch ID (Max of 64)
of the updated batches */

char *szNewMailboxId, /* Mailbox ID (Max of 8) of
the new updated batches */

char *szNewBatchId, /* User Batch ID (Max of 64)
of new updated batches */

char *szFrom, /* Start Time/Date range */

char *szTo, /* End Time/Date range */

ULONG 1ProcessFlagOn, /* Processing Flags to be
turned On */

ULONG 1lProcessFlagOff, /* Processing Flags to be
turned Off */

ULONG 1lDataFormatFlagOn, /* Data Format Flags to be
turned On (ASCII, EBCDIC,
BINARY) */

ULONG lDataFormatFlagOff, /* Data Format Flags to be
turned Off (ASCII, EBCDIC,
BINARY) */

char chRecvConfirm, /* Receive confirmation for

each updated batch
(BatchInfo) */

ULONG 1lUserFlags, /* Reserved (Unused) */
char *szOrig, /* Originating id */
char *szFlags /* Batch flags */

Connect:Enterprise UNIX Programmer’s Guide

Arguments

APICMD_STATUS

Argument

Description

ApiSessionHandle

holds a pointer to the value that defines a communication channel to a remote or host
Connect:Enterprise system.

ulApiCmd

long value that contains the command to be executed.

cbPutBatchinfo

user-defined callback function to which the API call passes batch information as an
Argument. This function is called for each updated batch. Syntax of this argument is
as follows:
int cbPutBatchInfo (MBOXBATCH_INFO_T *pBatchInfo,
void *pPutBatchInfoArg) ;

MBOXBATCH_INFO_T *pBatchInf, /* A pointer to the
batch info */
void *pPutBatchInfoArg /* A pointer to a

user-defined
structure */

pPutBatchinfoArg

void pointer to a user-defined structure that is passed to the above callback function
as an argument.

ulTotal address of a long value containing the total number of batches updated.

szMailboxId mailbox ID (1-8 characters) of the updated batches.Wildcard specifications are
supported. For more information, refer to the Connect:Enterprise UNIX Remote
User’s Guide.

szBatchld user batch ID (1-64 characters) of the updated batches. The batch ID can specify

either a number for a specific batch or a 1-64 character literal. The string must be
enclosed in quotes and can include embedded blanks. Wild card specifications (like
an asterisk, *) are also allowed. A specific batch number is preceded by a pound sign,
such as #14. One or more hyphenated ranges of batch ID numbers can be specified
after the pound sign, separated by commas (for example,
#57-59,88,95,100-110,128).

szNewMailboxld

mailbox ID (1-8 characters) of the new updated batches.

szNewBatchld

user batch ID (1-64 characters) of the new updated batches.

szFrom

start time/date range specified as an ASCII string with this syntax:
[[CClyymmdd|nnn[:hhmm|/hhmm]]|[hhmm]

The following options are available:

+ [CClyymmdd—on or after the date [CClyymmdd

¢ [CClyymmdd:hhmm-on or after the date and time [CClyymmdd and hhmm

¢ [CClyymmdd/hhmm-on or after the date [CClyymmdd, but on or after the time
hhmm each day

+ nnn-on or after the date nnn days ago
¢ nnn:hhmm-on or after the date and time nnn days ago and hhmm

+ nnn/hhmm-on or after the date nnn days ago, but on or after the time hhmm each
day

+ hhmm-on or after the time hhmm today

Connect:Enterprise UNIX Programmer’s Guide

69

Chapter 3 API Calls

Argument Description

szTo end time/date range specified as an ASCII string with this syntax:
[[CClyymmdd|nnn[:hhmm|/hhmm]]|[hhmm]
The following options are available:
+ [CClyymmdd—on or before the date [CClyymmdd
¢ [CClyymmdd:hhmm-on or before the date and time [CClyymmdd and hhmm

¢ [CClyymmdd/hhmm-on or before the date [CC]lyymmdd, but on or before the time
hhmm each day

+ nnn-on or before the date nnn days ago
+ nnn:hhmm-on or before the date and time nnn days ago and hhmm

+ nnn/hhmm-on or before the date nnn days ago, but on or before the time hhmm
each day

¢+ hhmm-on or before the time hhmm today

IProcessFlagOn processing flags to be turned On such as FLG_MULTXMIT and FLG_XMITONCE.
See $CMUHOME/src/samples.h for definitions of flags.

IProcessFlagOff processing flags to be turned Off such as FLG_MULTXMIT and FLG_XMITONCE.
See $CMUHOME/src/samples.h for definitions of flags.

IDataFormatFlagO data format flags to be turned On (such as FLG_ASCII, FLG_EBCDIC, AND

n FLG_BINARY). See $CMUHOME/src/samples.h for definitions of flags.
IDataFormatFlagOf data format flags to be turned Off (such as FLG_ASCII, FLG_EBCDIC, AND

f FLG_BINARY). See $CMUHOME/src/samples.h for definitions of flags.
chRecvConfirm receive confirmation for each updated batch (Batchinfo). If this is set to (0x00), the

Batchinfo structure will not be received as a confirmation of the update operation.

IlUserFlags reserved (unused). Must be set to zero.
szOrig selects batches with the specified originating ID. NULL selects all originating 1Ds.
szFlags selects batches with the specified flags.

Return Value

The API returns APIRC_OK (0) on success. On failure, it returns an APIErrno. The reason for the
error is indicated by an externally defined variable, CMUErrno. Values are noted in Appendix A,
Error Messages, in the File Agent Installation and Administration Guide.

Example Code

Refer to the sample source file called sampstatus.c in your $CMUHOME/src directory to see an
example of the APICMD_STATUS command.

70 Connect:Enterprise UNIX Programmer’s Guide

APICMD_STOP

APICMD_STOP

Use the APICMD_STOP argument in the CMUAPI_Command API call to stop a session from
executing in the Connect:Enterprise system or from any Connect:Enterprise system in the TCP/IP
network.

Function Definition
The function of APICMD_STOP follows:

int CMUAPI_command (

APISESSION *ApiSessionHandle, /* Session Handle */

ULONG ulApiCmd, /* Must be equal to APICMD_STOP */
ULONG ulSessionId, /* Session ID to stop */

USHORT sUrgency /* Level of urgency for stopping

this session */

Arguments

Argument Description

ApiSessionHandle holds a pointer to the value defining a communication channel to a remote or host
Connect:Enterprise system.

ulApiCmd long value that contains the command to be executed.

ulSessionld ID for a session to be stopped/terminated. Obtain this ID by using
CMUAPI_Command() with ulApiCmd equal to APICMD_SESSION.

sUrgency level of urgency for stopping this session where zero means immediate.

Return Value

The API returns APIRC_OK (0) on success. On failure, it returns an APIErrno. The reason for the
error is indicated by an externally defined variable, CMUErrno. Values are noted in Appendix A,
Error Messages, in the File Agent Installation and Administration Guide.

Example Code

Refer to the sample source file called sampstop.c in your $CMUHOME/src directory to see an
example of the APICMD_STOP command.

Connect:Enterprise UNIX Programmer’s Guide 71

Chapter 3 API Calls

APICMD_CEUTRACE

Use the APICMD_CEUTRACE argument in the CMUAPI_Command API call to dynamically
inquire about or change trace settings for the master daemons or the Connect:Enterprise system
from any Connect:Enterprise system in the TCP/IP network.

Function Definition
The function of APICMD_CEUTRACE follows:

int CMUAPI_command (
APISESSION *ApiSessionHandle, /* Session Handle */

CALLBACK cbPutTracelInfo, /* a user defined callback
function that APT call
passes daemon information as
an Argument */
void *pPutTraceInfoArg, /* a void pointer to a
user-defined structure that
will be passed to the above
callback function as an
argument */

int traceState /* Turn trace on or off. 1=On, 2=0ff,

0=No change

char *traceFilePrefix /* Specifies the prefix of the tracefile.

Null to leave unchanged

int traceLevel, /* Level of trace, 1-99

-1= don’'t change*/

char *daemonName, /* Daemons to include

Null=all daemons */

char *accountName, /* Accounts to include. For future use
Must pass NULL pointer*/

char *resourceName, /* Resources to include. For future use
Must pass NULL pointer*/

char *autoconnectName, /* Autoconnects to include. For future use
Must pass NULL pointer*/

int mailboxAlso, /* Includes related mailbox daemon

activity. For future use
Must pass NULL pointer*/
)

72 Connect:Enterprise UNIX Programmer’s Guide

Arguments

APICMD_CEUTRACE

Argument

Description

ApiSessionHandle

Holds a pointer to the value defining a communication channel to a remote or
local Connect:Enterprise system.

cbPutTracelnfo

User-defined callback function to which the API call passes daemon information
as an Argument. This function is called for each daemon. Trace information is
returned only for each master daemon. Child and slaves daemons are not
included in the trace.

pPutTracelnfoArg

Void pointer to a user-defined structure that is passed to the above callback
function as an argument.

traceState

Specifies the state of the trace. 1=0n, 2=0ff, 0=No change

traceFilePrefix

Specifies the prefix of the tracefile. A null value indicates no change to the
current prefix. This only takes effect if exactly one master daemon is provided in
the daemonName argument.

traceLevel Specifies the level of the trace. When selecting a trace level, consider that
debug levels can affect performance. Valid values are 1-99. Use -1 to leave the
trace level unchanged.

daemonName Specifies the daemons to include in the trace.

accountName Specifies the accounts to include in the trace. This feature is not yet available. It
must be included with a null value.

resourceName Specifies the resource to include in the trace. This feature is not yet available. It
must be included with a null value.

autoconnectName Specifies the autoconnect to include in the trace. This feature is not yet
available. It must be included with a null value.

mailboxAlso Includes related mailbox daemon activity. This feature is not yet available. It

must be included with a null value.

Return Value

The API returns APIRC_OK (0) on success. On failure, it returns an APIErrno. The reason for the
error is indicated by an externally defined variable, CMUErrno. Values are noted in Appendix A,
Error Messages, in the Connect:Enterprise UNIX Installation and Administration Guide.

Example Code

Refer to the sample source file called sampceutrace.c in your SCMUHOME/src directory to see an
example of the APICMD_CEUTRACE command.

Connect:Enterprise UNIX Programmer’s Guide 73

Chapter 3 API Calls

74 Connect:Enterprise UNIX Programmer’s Guide

API calls 35

API Commands
APICMD_ADD 42
APICMD_CONNECT 45
APICMD_DAEMON_REFRESH 61
APICMD_DELETE 48
APICMD_ERASE 50
APICMD_EXTRACT 53
APICMD_LIST 58
APICMD_REFRESH 60, 62, 63
APICMD_SESSION 64
APICMD_SHUTDOWN 66
APICMD_START 67
APICMD_STATUS 68
APICMD_STOP 71
APICMD_TRACE 72
CMUAPI_CloseSession 40
CMUAPI_Command 41
CMUAPI_OpenSession 38

API Function Exit 7, 10
arguments 10
function definition 10
return value 11

APICMD_ADD 42
arguments 43
example code 45
function definition 42
return value 45

APICMD_CONNECT 45
arguments 46
example code 48
function definition 45
return value 47

APICMD_DAEMON_REFRESH
arguments 61
function definition 61

Connect:Enterprise UNIX Programmer’s Guide

Index

APICMD_DAEMON_REFRESH (continued)
return value 61

APICMD_DELETE 48
arguments 49
example code 50
function definition 48
return value 50

APICMD_ERASE 50
arguments 51
example code 53
function definition 51
return value 53

APICMD_EXTRACT 53
arguments 55
example code 57
function definition 53
return value 57

APICMD_LIST 58
arguments 58
example code 60
function definition 58
return value 60

APICMD_REFRESH 60, 61
arguments 60
example code 61
function definition 60
return value 60

APICMD_SESSION 64
arguments 65
example code 65
function definition 64
return value 65

APICMD_SHUTDOWN 66
arguments 66
example code 66
function definition 66
return value 66

75

APICMD_SSHPASS REFRESH 62 Batch Send Exit 8, 15 (continued)
arguments 63 return value 16
function definition 63
return value 63 C

APICMD_SSLPASS REFRESH 62, 63
arguments 62, 64
function definition 62, 63
return value 62, 64

CMUAPI_CloseSession 36, 40
arguments 40
example code 40

function definition 40
AP|CMD_START 67 return value 40

arguments 67
example code 67
function definition 67
return value 67

CMUAPI_Command 36, 41
arguments 41
example code 42

function definition 41
AP|CMD_STATUS 68 return value 42

arguments 69
example code 70
function definition 68
return value 70

CMUAPI_OpenSession 36, 38
arguments 39
example code 39

function definition 38
APICMD_STOP 71 return value 39

arguments 71

example code 71 E
function definition 71

return value 71 exit program 8

APICMD_TRACE 72
arguments 73 F

example code 73 .
function definition 72 function requested 11

return value 73

K

B keepadd, keep $$ADD cards 44
Batch Receive 64 Exit 11
arguments 12 |_
function definition 11 .
return value 12 Log Exit 8, 16

arguments 17

Batch Receive Exit 8, 13 function definition 17

arguments 13 return value 17

function definition 13

return value 14 LOG_MSG_T 17

Autoconnect Remote End 22

Batch Send 64 Exit 14, 16 Autoconnect Remote Information 22

arguments 15 Autoconnect Remote Start 21

function definition 14 Autoconnect Session End 23

return value 15 Autoconnect Session Start 21
Batch Send Exit 8, 15 C definition 17

arguments 16 Offline Command 24

function definition 15 Queued Autoconnect 24

76 Connect:Enterprise UNIX Programmer’s Guide

LOG_MSG_T 17 (continued)
Remote Session End 20
Remote Session Information 19
Remote Session Start 18

M

Mailbox Initialization Exit 8, 25
arguments 26
function definition 25
return value 26

Mailbox Termination Exit 8, 26
arguments 26
function definition 26
return value 26

P

PARMCTLBLK_T 28
protocol, TCP/IP 35

R

Remote Command Exit 27
arguments 27
function definition 27
return value 28

remote site command exit 8

S

Security Exit 8, 29
arguments 30
function definition 29
return value 30

Session Initial Buffer Exit 8, 30
arguments 31
function definition 31
return value 31

Session Initialization Exit 8, 31
arguments 32
function definition 32
return value 32

Session Termination Exit 8, 32
arguments 33
function definition 33
return value 33

Connect:Enterprise UNIX Programmer’s Guide

TCP/IP 35

ulFunction, APl Function Exit 11

XtractCnts, totals (all) 56

U

X

77

78

Connect:Enterprise UNIX Programmer’s Guide

	Contents
	User Exits
	Using Exits in Connect:Enterprise
	Enabling User Exits
	Compiling the User Exit Functions
	Header File Locations
	User Exit System Considerations
	Modifying the CMUUSERLOG Utility

	API Function Exit
	Function Definition
	Arguments
	Return Value

	Batch Receive 64 Exit
	Function Definition
	Arguments
	Return Value

	Batch Receive Exit
	Function Definition
	Arguments
	Return Value

	Batch Send 64 Exit
	Function Definition
	Arguments
	Return Value

	Batch Send Exit
	Function Definition
	Arguments
	Return Value

	Log Exit
	Function Definition
	Arguments
	Return Value
	Definition of the LOG_MSG_T Information Structure

	Mailbox Initialization Exit
	Function Definition
	Arguments
	Return Value

	Mailbox Termination Exit
	Function Definition
	Arguments
	Return Value

	Remote Command Exit
	Function Definition
	Arguments
	Return Value
	PARMCTLBLK_T

	Security Exit
	Function Definition
	Arguments
	Return Value

	Session Initial Buffer Exit
	Function Definition
	Arguments
	Return Value

	Session Initialization Exit
	Function Definition
	Arguments
	Return Value

	Session Termination Exit
	Syntax
	Arguments
	Return Value

	API Calls
	Shared Objects
	Internal Message Encryption
	Tracing API Activity
	CMUAPI_OpenSession
	Function Definition
	Arguments
	Return Value
	Example Code

	CMUAPI_CloseSession
	Function Definition
	Arguments
	Return Value
	Example Code

	CMUAPI_Command
	Function Definition
	Arguments
	Return Value
	Example Code

	APICMD_ADD
	Function Definition
	Arguments
	Return Value
	Example Code

	APICMD_CONNECT
	Function Definition
	Arguments
	Return Value
	Example Code

	APICMD_DELETE
	Function Definition
	Arguments
	Return Value
	Example Code

	APICMD_ERASE
	Function Definition
	Arguments
	Return Value
	Example Code

	APICMD_EXTRACT
	Function Definition
	Arguments
	Return Value
	Example Code

	APICMD_LIST
	Function Definition
	Arguments
	Return Value
	Example Code

	APICMD_REFRESH
	Function Definition
	Arguments
	Return Value
	Example Code

	APICMD_DAEMON_REFRESH
	Function Definition
	Arguments
	Return Value

	APICMD_SSLPASS_REFRESH
	Function Definition
	Arguments
	Return Value

	APICMD_SSHPASS_REFRESH
	Function Definition
	Arguments
	Return Value

	APICMD_IDMBPASS_REFRESH
	Function Definition
	Arguments
	Return Value

	APICMD_SESSION
	Function Definition
	Arguments
	Return Value
	Example Code

	APICMD_SHUTDOWN
	Function Definition
	Arguments
	Return Value
	Example Code

	APICMD_START
	Function Definition
	Arguments
	Return Value
	Example Code

	APICMD_STATUS
	Function Definition
	Arguments
	Return Value
	Example Code

	APICMD_STOP
	Function Definition
	Arguments
	Return Value
	Example Code

	APICMD_CEUTRACE
	Function Definition
	Arguments
	Return Value
	Example Code

	Index

