
Connect:Enterprise®

for z/OS

Application Agents and User Exits Guide

 Version 1.4

CEzOSAPPX807

Connect:Enterprise for z/OS Application Agents and User Exits Guide
Version 1.4
First Edition
 (c) Copyright 2000-2008 Sterling Commerce, Inc. All rights reserved. Additional copyright information is located at the end of the release notes.

STERLING COMMERCE SOFTWARE

TRADE SECRET NOTICE

THE CONNECT:ENTERPRISE SOFTWARE (“STERLING COMMERCE SOFTWARE”) IS THE CONFIDENTIAL AND TRADE SECRET
PROPERTY OF STERLING COMMERCE, INC., ITS AFFILIATED COMPANIES OR ITS OR THEIR LICENSORS, AND IS PROVIDED
UNDER THE TERMS OF A LICENSE AGREEMENT. NO DUPLICATION OR DISCLOSURE WITHOUT PRIOR WRITTEN PERMISSION.
RESTRICTED RIGHTS.

This documentation, the Sterling Commerce Software it describes, and the information and know-how they contain constitute the proprietary,
confidential and valuable trade secret information of Sterling Commerce, Inc., its affiliated companies or its or their licensors, and may not be used for
any unauthorized purpose, or disclosed to others without the prior written permission of the applicable Sterling Commerce entity. This documentation
and the Sterling Commerce Software that it describes have been provided pursuant to a license agreement that contains prohibitions against and/or
restrictions on their copying, modification and use. Duplication, in whole or in part, if and when permitted, shall bear this notice and the Sterling
Commerce, Inc. copyright notice. As and when provided to any governmental entity, government contractor or subcontractor subject to the FARs, this
documentation is provided with RESTRICTED RIGHTS under Title 48 52.227-19. Further, as and when provided to any governmental entity,
government contractor or subcontractor subject to DFARs, this documentation and the Sterling Commerce Software it describes are provided pursuant
to the customary Sterling Commerce license, as described in Title 48 CFR 227-7202 with respect to commercial software and commercial software
documentation.

These terms of use shall be governed by the laws of the State of Ohio, USA, without regard to its conflict of laws provisions. If you are accessing the
Sterling Commerce Software under an executed agreement, then nothing in these terms and conditions supersedes or modifies the executed agreement.

Where any of the Sterling Commerce Software or Third Party Software is used, duplicated or disclosed by or to the United States government or a
government contractor or subcontractor, it is provided with RESTRICTED RIGHTS as defined in Title 48 CFR 52.227-19 and is subject to the
following: Title 48 CFR 2.101, 52.227-19, 227.7201 through 227.7202-4, FAR 52.227-14, and FAR 52.227-19(c)(1-2) and (6/87), and where
applicable, the customary Sterling Commerce license, as described in Title 48 CFR 227-7202 with respect to commercial software and commercial
software documentation including DFAR 252.227-7013, DFAR 252,227-7014, DFAR 252.227-7015 and DFAR 252.227-7018, all as applicable.

The Sterling Commerce Software and the related documentation are licensed either “AS IS” or with a limited warranty, as described in the Sterling
Commerce license agreement. Other than any limited warranties provided, NO OTHER WARRANTY IS EXPRESSED AND NONE SHALL BE
IMPLIED, INCLUDING THE WARRANTIES OF MERCHANTABILITY AND FITNESS FOR USE OR FOR A PARTICULAR PURPOSE. The
applicable Sterling Commerce entity reserves the right to revise this publication from time to time and to make changes in the content hereof without
the obligation to notify any person or entity of such revisions or changes.

Connect:Direct is a registered trademark of Sterling Commerce. Connect:Enterprise is a registered trademark of Sterling Commerce, U.S. Patent
Number 5,734,820. All Third Party Software names are trademarks or registered trademarks of their respective companies. All other brand or product
names are trademarks or registered trademarks of their respective companies.

Sterling Commerce, Inc.
4600 Lakehurst Court Dublin, OH 43016-2000 *
614/793-7000

Contents

Chapter 1 Overview of Connect:Enterprise Application Agents 11

Console Application Agent . 12
Console Rules. 14
Console Rules Example . 14

End of Batch Application Agent . 15
End of Batch Rules . 16
End of Batch Rules Example . 18

Logging Application Agent . 20
Logging Rules . 21
Logging Rules Example . 22

Scheduler Application Agent . 23
Scheduler Rules . 24
Scheduler Rules Example. 25

Wake Up Terminate Application Agent . 26
Wake Up Terminate Rules . 27
Wake Up Terminate Rules Example . 28

How Connect:Enterprise Uses Application Agents . 29

Chapter 2 Creating and Verifying Application Agent Rules 31

Rule Set Components and Structure. 31
Guidelines for Defining a Rule Set . 32
Rule Structure and Syntax. 33

Continuation Marks in a Statement . 34
Continuation Marks in a Parameter. 34
Comments. 35
Special Characters . 35
Special-Purpose Bracketing . 35

Symbolic Substitution . 36
Ampersand (&) and At Sign (@) Variables . 37
Symbolic Variables Valid for Application Agent Rules . 43

Instructions . 49
COMMAND Instruction . 50

COMMAND Instruction Format. 50
COMMAND Instruction Parameters . 51

EXECUTE Instruction . 51
EXECUTE Instruction Format. 51
Connect:Enterprise for z/OS Application Agents and User Exits Guide 3

 Contents
EXECUTE Instruction Parameters . 52
Application Agent Parameters Passed to User-Specified Programs 52

MESSAGE Instruction. 54
MESSAGE Instruction Format . 55
MESSAGE Instruction Parameters. 55

NOP Instruction. 56
ROUTE Instruction . 57

ROUTE Instruction Format . 57
ROUTE Instruction Parameters . 58
Resolving Route Instruction Parameters When Communicating with
Connect:Direct . 65

SNMPTRAP Instruction. 66
SNMPTRAP Instruction Format . 66
SNMPTRAP Instruction Parameters. 66
SNMPTRAP Layout and Contents . 67

STATFLG Instruction . 69
STATFLG Instruction Format . 69
STATFLG Instruction Parameters . 70

SUBMIT Instruction . 71
SUBMIT Instruction Format . 71
SUBMIT Instruction Parameters . 71

WAKEUP Instruction . 72
WAKEUP Instruction Format . 72
WAKEUP Instruction Parameters . 72

SELECT Statement . 73
SELECT Statement Format . 76
SELECT Statement Parameters . 76

Verifying Application Agent Rule Sets . 86
Offline Rules Verification Utility Files . 86

Chapter 3 Implementing Application Agent Rules 89

Implementing Application Agents . 89
Connect:Enterprise JCL and ODF Configuration for Application Agents. 92
Refreshing Application Agent Rules . 93
Troubleshooting Application Agent Requests . 94

Tracing Application Agent Requests . 94
Example 1—End of Batch Application Agent Request Trace Entry (Match) 96
Example 2—End of Batch Application Agent Request Trace Entry
(No Match) . 97

Detecting Application Agent Loops . 97
Sample End of Batch and Wake Up Terminate Rules Implementations 99

Site Requirements Example . 99
End of Batch Application Agent Rules Example . 99
RULESJCL DD Member Example . 100
Wake Up Terminate Application Agent Rules Example 100

Sample Log Rules Implementations . 100
Site Requirements Example for Successful Batch Collection 101
Logging Application Agent Rules Example . 101
4 Connect:Enterprise for z/OS Application Agents and User Exits Guide

Contents
Site Requirements Example for Failed Logon Attempt . 101
Sample Console Rules Implementation. 102

Site Requirements Example . 102
Console Application Agent Rules Example. 103
Console Application Agent Request Operator Messages Example 103
Console Application Agent Request Trace Entry (Match and No Match)
Example . 104

Sample Scheduler Rules Implementation . 106
Site Requirements Example . 106
Scheduler Application Agent Rules Example . 106
Scheduler Application Agent – Calendar Example . 107
Scheduler Application Agent Request Operator Messages Example 107
Scheduler Application Agent Request Trace Entry Example 109

Chapter 4 Using Connect:Enterprise Online Exits 113

How Connect:Enterprise Uses Online User Exits . 114
Implementing Online Exits . 114
Coding User Exits . 115
Testing Online Exits . 116
Tracing the User Exits. 117
Creating an Options Definition Trace Record . 117
Using the Console Trace Command . 117
Specifying Trace Output . 117
Understanding the Exit Control Block . 118
Using the Exit Trace for Log Exit. 118
Using a Dummy Exit Program. 119

Sample Online Exits . 119
Using the Input Exit . 120

Input Exit Parameters . 121
Input Exit Requirements . 122
Sample Input User Exit STINPS (SNA Only) . 123
STINPS Program Logic. 123
Implementing STINPS. 123
Sample Input User Exit STINP (BSC Only). 124

STINP Program Logic. 124
Implementing STINP. 124

Using Session Security Exit. 125
Session Security Exit Parameters. 125
Session Security Exit Requirements . 129
Sample Session Security Exit STSECFTP (FTP only) . 131

STSECFTP Program Logic. 131
Implementing STSECFTP . 131

Using Security Exit One. 131
Security Exit One Parameters. 132
Security Exit One Requirements . 135
Sample Security User Exit STSEC1 . 135

STSEC1 Program Logic . 136
Implementing STSEC1 . 137

Using Security Exit Two. 137
Security Exit Two Parameters. 138
Security Exit Two Requirements . 139
Sample Security User Exit STSEC2 . 140
Connect:Enterprise for z/OS Application Agents and User Exits Guide 5

 Contents
STSEC2 Program Logic . 140
Implementing STSEC2 . 140

Using the Output Exit. 141
Output Exit Parameters. 141
Output Exit Requirements . 142
Sample Output User Exit STOUT . 143

STOUT Program Logic . 143
Implementing STOUT. 143

Using the End of Batch Exit . 144
End of Batch Exit Parameters . 144
Nonreentrant End of Batch Exit Requirements . 145
Sample End of Batch User Exits STEOBX, STEOBX2, and STEOBX2V. 145

STEOBX Program Logic. 145
STEOBX2 Program Logic. 146
STEOBX2V Program Logic . 146
Implementing Nonreentrant End of Batch Exits . 146

Reentrant End of Batch Exit Requirements . 147
Implementing Reentrant End of Batch Exits . 147

Using the Initialization Exit. 148
Initialization Exit Parameter. 148
Sample Initialization User Exit STXINIT . 148

Using the Termination Exit . 148
Termination Exit Parameter . 149
Sample Termination User Exit STTERM. 149

Using the Log Exit . 149
Log Exit Parameters . 149
Log Exit Requirements . 150

Auto Connect Logging . 151
Queued Auto Connect Logging . 151
Remote Connect Logging . 151
Connect:Enterprise CICS API ADD and REQUEST Logging. 152

Sample Log User Exit STLOGX . 152
STLOGX Program Logic. 152
Implementing STLOGX. 153

Using the APPC Security Exit . 153
APPC Security Exit Parameters . 153
APPC Security Exit Requirements . 154
Sample APPC Security User Exit STCSEC . 154

STCSEC Program Logic. 154
Implementing STCSEC. 155

Using the CICS Wake Up Initiate Exit . 155
Wake Up Initiate Exit Parameters . 156
Wake Up Initiate Exit Requirements . 156
Sample Wake Up Initiate User Exit STCWI . 157

STCWI Program Logic . 157
Implementing STCWI . 157

Using the CICS Wake Up Terminate Exit . 157
Wake Up Terminate Exit Parameters . 158
Wake Up Terminate Exit Requirements . 158
Sample Wake Up Terminate User Exit STCWT . 159
6 Connect:Enterprise for z/OS Application Agents and User Exits Guide

Contents
STCWT Program Logic. 159
Implementing STCWT . 159

Using the COBOL User Exit . 159
Sample COBOL User Exit STCOBOL. 159

STCOBOL Program Logic . 159
Implementing STCOBOL . 160

Chapter 5 Using Connect:Enterprise Offline Utility Exits 163

How Connect:Enterprise Uses Offline Utility Exits. 163
Coding Offline Utility Exits. 164
Testing Offline Utility Exits . 164
Sample Offline Utility Exits . 164

Using the Offline ADD Security Exit. 164
ADD Security Exit Parameters . 165
ADD Security Exit Requirements . 165
Sample ADD Security User Exit STSECA . 165

STSECA Program Logic . 166
Implementing STSECA. 166

Using the Offline EXTRACT Security Exit . 167
EXTRACT Security Exit Parameters. 167
EXTRACT Security Exit Requirements . 167
Sample EXTRACT Security User Exit STSECE . 168

STSECE Program Logic . 168
Implementing STSECE. 168

Using the Offline STATFLG/DELETE/ERASE/MOVE/PURGE Security Exit 169
STATFLG/DELETE/ERASE/MOVE/PURGE Security Exit Parameters 169
STATFLG/DELETE/ERASE/MOVE/PURGE Security Exit Requirements 169
Sample Security User Exit STSECOU . 170
STSECOU Program Logic . 170
Implementing STSECOU . 171

Using the Offline Utility Startup Exit. 171
Startup Exit Parameters . 171
Startup Exit Requirements . 172
Sample Startup User Exit STUTAXIT . 172

STUTAXIT Program Logic . 172
Implementing STUTAXIT . 172

Chapter 6 Using the Connect:Enterprise CSCU Startup Exit 173

Specifying Preprocessing Parameters with the STCSCUSR User Exit. 173
Sample Cross System Client Startup Exit STCSCUSR 174
STCSCUSR Program Logic . 174
Implementing STCSCUSR . 175

Chapter 7 Using the VSAM File Server Exit 177

How Connect:Enterprise Uses the VSAM File Server Exit . 177
Coding the VSAM File Server Exit. 178
Connect:Enterprise for z/OS Application Agents and User Exits Guide 7

 Contents
Testing the VSAM File Server Exit . 178
Sample VSAM File Server Exit . 178
Using the VSAM File Server Open User Exit. 178

VSAM File Server Open User Exit Parameters. 178
VSAM File Server Open User Exit Requirements. 179
Sample Open User Exit BTVSMOSX . 179
Implementing BTVSMOSX . 179

Chapter 8 Using ISPF Interface User Exits 181

Coding ISPF interface User Exits . 181
Testing ISPF Interface User Exits . 181
Sample ISPF Interface User Exits . 182
Using the Function Initiate Security Exit . 182

Function Initiate Security Exit Parameters . 182
Function Initiate Security Exit Requirements . 185
Sample Function Initiate Security User Exit MZMCPFIX 185

Using the Function Request Security Exit . 186
Function Request Security Exit Parameters . 186
Function Request Security Exit Requirements . 187
Sample Function Request Security User Exit MZAPCFRX 187

Chapter 9 Using CICS Interface User Exits 189

How Connect:Enterprise Uses CICS User Interface Exits. 190
Implementing CICS Interface User Exits . 190
Coding CICS Interface User Exits . 190
Testing CICS Interface User Exits . 191
Linking CICS Interface User Exits . 191
Sample CICS Interface User Exits. 192
Using the Initialization Exit. 192

Initialization Exit Parameters. 192
Understanding Initialization Exit Usage. 193

Using the Security (Before) Exit . 193
Security (Before) Exit Parameters. 193
Understanding Security (Before) Exit Usage . 194

Using the Security (After) Exit . 194
Security (After) Exit Parameters . 194
Understanding Security (After) Exit Usage . 195

Using the Data Modification Exit . 195
Data Modification Exit Parameters . 196
Understanding Data Modification Exit Usage . 200

Using the Termination Exit . 200
Termination Exit Parameters. 201
Understanding Termination Exit Usage . 201

Chapter 10 CICS User API 203

Activating Interface Parameter Structure. 203
Using a CICS TSQ to Pass the IPS . 204
8 Connect:Enterprise for z/OS Application Agents and User Exits Guide

Contents
Passing the IPS as a COMMAREA. 205
Interface Parameter Structure Format . 205
Interface Parameter Structure Content . 206

IPS Header Portion Data. 207
IPS Fixed Header Data . 207
IPS Variable Header Data. 211
IPS Trailer Portion Data . 213

Using the Wake Up Transaction . 215
Transaction Execution. 216
Trailer Data . 216

Using the ADD Transaction . 217
Transaction Execution. 217
Fixed Trailer Data . 219
Initial Variable Trailer Data . 219
Using the Reserved Area . 220
Variable Trailer Data . 220
Batch Data Encryption . 221

Using the REQUEST Transaction . 222
Fixed Trailer Data . 224
Initial Variable Trailer Data . 224
Using the Reserved Area . 225
Variable Trailer Data . 226
Batch Data Decryption . 226

Connect:Enterprise Command Transactions. 227
Fixed Trailer Data . 228
Initiating an Auto Connect Command . 228
Requesting a $$DUMP Command . 229
Requesting a $$LIST Command. 229
Issuing Connect:Enterprise $$SHUTDOWN Command 234
Restarting a Closed Line ($$START) Command . 234
Stopping an Auto Connect or Remote Connect Command 234
Stop/Start Traces Command. 234
Requesting a Files Listing ($$LIST FILES Command): 236
Requesting a Files Listing ($$LIST FILES Command response) 236
Issuing Connect:Enterprise $$ALLOC Command. 238
Issuing Connect:Enterprise $$DALLOC Command . 238
Requesting a Space Allocation Listing ($$SPACE Command). 238
Requesting a File Space Allocation Listing ($$SPACE Command Response). . 239
Requesting Auto Connect Completion Messages. 241

Using the Directory Listing Transaction. 242
Fixed Trailer Data . 243
Requesting a Directory Listing . 243
Requesting Directory Information . 247

Appendix A IPS Trailers 253

Glossary 263

Index 277
Connect:Enterprise for z/OS Application Agents and User Exits Guide 9

 Contents
10 Connect:Enterprise for z/OS Application Agents and User Exits Guide

Chapter 1

Overview of Connect:Enterprise Application
Agents

This chapter provides an overview of the Connect:Enterprise for z/OS application agents and
summarizes how Connect:Enterprise uses application agents. The next two chapters describe
creating the rule sets that control application agents and implementing application agents,
respectively, so the three chapters should be used together.

An application agent is an interface that customizes the execution and automation of your
Connect:Enterprise environment. Application agents are event driven and controlled by a set of
user-specified rules. Application agents are dispatched just prior to calling the corresponding user
exit, if one is implemented. Application agents and user exits are independent of one another. For
example, you can use the End of Batch application agent with or without implementing the End of
Batch user exit. Similarly, you can use the End of Batch user exit with or without implementing the
End of Batch application agent.

Application agents are controlled by rule sets. You define a rule set for each type of application
agent to specify the actions to perform based on the characteristics of the event that causes
Connect:Enterprise to initiate an application agent request. A rule set consists of statements and
instructions. The RULE statement defines the name of the rule that has associated instructions to
execute. The SELECT statement specifies the selection criteria and points to up to eight rules to
process if a match is made for an application agent request. Instructions specify the operations to
perform when the selection criteria is met.

Connect:Enterprise provides the following application agents:

✦ Console (CON). This agent is invoked whenever Connect:Enterprise issues a specific
message.

✦ End of Batch (EOB). This agent is invoked whenever an online batch is collected successfully.
✦ Logging (LOG). This agent is invoked whenever a log record is written.
✦ Scheduler (SCH). This agent is invoked whenever a specific time of day is reached.
✦ Wake Up Terminate (WKT). This agent is invoked whenever a wake up acknowledgment is

sent by CICS.
Connect:Enterprise for z/OS Application Agents and User Exits Guide 11

Chapter 1 Overview of Connect:Enterprise Application Agents
Console Application Agent
A Console Application Agent is triggered in the following instances:

✦ When a $$INVOKE console command specifies RULES=CON,TEXT='msgid …'.
✦ When an application agent rule contains a MESSAGE instruction that specifies the parameter

CONEVENT=YES.
✦ When a MSG01 specified by a SELECT statement in the RULESCON member matches the

message ID portion of a WTO issued by the Connect:Enterprise Main Task. However, multiple
classes of these messages cannot trigger Application Agents, including:

Messages that are not issued by STCC03 and error messages that are generated by
STCC03 while another message is being processed. If these messages are specified in a
SELECT MSG01 parameter, they are detected during RULES scanning and rejected with
message CMR115I in SYSPRINT.
• CMB000I
• CMB001I
• CMB011E
• CMB220E
• CMB333I
• CMB400E
• CMB595I
• CMB596I
• CMB597I
• CMB598I
• CMB599I
• CMB703E
• CMB996I
• CMB997I
• CEDEBUG

Messages that are only issued once at startup but before the Process Router initialization is
complete. If these messages are specified in a SELECT MSG01 parameter, they are
detected during RULES scanning and rejected with message CMR115I in SYSPRINT.
• CMB277I
• CMB278I
• CMB279I
• CMB388E

Note: See the Connect:Enterprise for z/OS Messages and Codes Guide for more information on
all messages.
12 Connect:Enterprise for z/OS Application Agents and User Exits Guide

Console Application Agent
Messages that are issued before Process Router initialization is complete and that can be
reissued later. For these messages, STCC03 issues message CMB997I (ENVIRONMENT
NOT ACTIVE) to the Main Task’s JESMSGLG when the too-early condition is
encountered. Otherwise, these messages are eligible for CONSOLE agent processing.
• CMB002I
• CMB006I
• CMB096I
• CMB126E
• CMB170I
• CMB171I
• CMB219I
• CMB349I
• CMB353I
• CMB2101I

When an application agent is triggered by a $$INVOKE console command or by a MESSAGE
instruction that specifies CONEVENT=YES, the Console application agent checks the message
against all Console application agent SELECT statements for a match. If no match is found, no
further processing is done for that message. Unless the Console application agent rules trace is
turned on, there is no indication of the failure to find a match.

By defining the Console application agent rules, you can specify different actions to take based on
certain messages. Each rule defined can instruct the application agent to process one or more of the
following instructions:

✦ COMMAND—issue a console command
✦ EXECUTE—execute a user-specified program
✦ MESSAGE—issue a console message
✦ NOP—issue a no operation instruction to selectively exclude log records from processing
✦ SNMPTRAP—issue an SNMP trap (a message that reports a problem or a significant event,

formatted and encoded as defined in RFC 1442, and sent as a UDP datagram) to an IP address
✦ SUBMIT—submit a job to the internal reader
Connect:Enterprise for z/OS Application Agents and User Exits Guide 13

Chapter 1 Overview of Connect:Enterprise Application Agents
Console Rules
The following RULE statements and instructions are valid for the Console application agent.
Statements and instructions are highlighted in bold text. Parameters are indented under the related
instruction, and parameter default values are underlined.

Console Rules Example
The following is an example of Console rules along with an explanation of what each line means.

RULE NAME=xxxxxxxx
COMMAND TEXT='xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx',

ERROR=CONTINUE|QUIT
EXECUTE PROGRAM=xxxxxxxx,

ERROR=CONTINUE|QUIT
MESSAGE TEXT='xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx',

ROUTCODE=(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),
DESCCODE=(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),
CONEVENT=YES|NO,
ERROR=CONTINUE|QUIT

NOP
SNMPTRAP TEXT='xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx',

IPADDR=host-name|nnn.nnn.nnn.nnn,
PORT=nnnnn|162,
GROUP1=ALARM|STATUS,
GROUP2=nnnn|9999,
ERROR=CONTINUE|QUIT

SUBMIT MEMBER=xxxxxxxx,
ERROR=CONTINUE|QUIT

SELECT RULE=(xxxxxxxx,xxxxxxxx…),
MSG01=(xxxxxxxxx,xxxxxxxx,….),
MSG02=(xxxxxxxxx,xxxxxxxx,….),
…
MSG96=(xxxxxxxxx,xxxxxxxx,….)

01 RULE NAME=RULE1
02 EXECUTE PROGRAM=PGM1,ERROR=CONTINUE
03 COMMAND TEXT='F ENTPRS,$$CONNECT LISTNAME=&MSG02'
04 RULE NAME=RULE2
05 MESSAGE TEXT='CON Echo: &MSG',ROUTCODE=(15)
06 SUBMIT MEMBER=JOB25
07 RULE NAME=RULE3
08 NOP
09 RULE NAME=RULE4
10 SNMPTRAP TEXT=' C:E ALARM 1234: &MSG',IPADDR=33.44.55.66,GROUP1=ALARM,GROUP2=1234
11 SELECT RULE=(RULE1,RULE4),MSG01=(CMB331E,CMB332E)
12 SELECT RULE=RULE2,MSG01=MYMSG,MSG02=(TEST3,TEST9)
13 SELECT RULE=(RULE4,RULE3,RULE1),MSG01=(GREEK),MSG02=(LETTER),MSG03=(ALPHA,GAMMA,OMEGA)

Note: The line numbers listed in the preceding example are not displayed in your rules. They are for
illustrative purposes only.
14 Connect:Enterprise for z/OS Application Agents and User Exits Guide

End of Batch Application Agent
The following table outlines detailed information for each line in the preceding example:

End of Batch Application Agent
The End of Batch application agent is invoked whenever an online batch is collected successfully.
You can also invoke the application agent manually by using the $$INVOKE operator command
and specifying a single batch number or a range of batch numbers to process.

By defining the End of Batch application agent rules, you can specify different actions to occur
based on certain characteristics of the batch. Each rule defined can instruct the application agent to
process one or more of the following instructions:

✦ COMMAND—issue a console command
✦ EXECUTE—execute a user-specified program
✦ MESSAGE—issue a console message
✦ NOP—issue a no operation instruction to selectively exclude batches from processing

Line
Number

Definition

01 Defines a rule named RULE1.

02 Specifies an EXECUTE instruction to call user program PGM1. If the program returns with a
non-zero return code, execute the next instruction.

03 Specifies a COMMAND instruction to issue the $$CONNECT console command indicated in
the quotes.

04 Defines a rule named RULE2.

05 Specifies the MESSAGE instruction is to write the message contained inside the single quotes.
The triggering message is substituted into &MSG, and the resulting text is truncated if
necessary to 125 bytes.
The ROUTCODE operand specifies a user-specified destination (route code 15).

06 Specifies a SUBMIT instruction. The member name JOB25 is submitted to the
Connect:Enterprise internal reader. JOB25 is retrieved from the data set or data sets
referenced by the //RULESJCL DD statement in the Connect:Enterprise JCL.

07 Defines a rule named RULE3.

08 Specifies the NOP instruction. No operation is performed.

09 Defines a rule named RULE4.

10 Specifies the SNMPTRAP instruction. A trap containing the text is sent to IP address
33.44.55.66 port 162 (the default port), using GROUP1=ALARM (1) and GROUP2=1234.

11-13 Indicates the selection criteria to use in determining which rules to process for specific Console
agent events.
Connect:Enterprise for z/OS Application Agents and User Exits Guide 15

Chapter 1 Overview of Connect:Enterprise Application Agents
✦ ROUTE—sign on to Connect:Direct, submit a Process to Connect:Direct; usually to extract
the batch from Connect:Enterprise, and sign off from the Connect:Direct node

✦ SNMPTRAP—issue an SNMP trap (a message that reports a problem or a significant event,
formatted and encoded as defined in RFC 1442, and sent as a UDP datagram) to an IP address

✦ STATFLG—set batch status flags on or off
✦ SUBMIT—submit a job to the internal reader
✦ WAKEUP—issue a wakeup notification to inform CICS of the batch just collected

End of Batch Rules
The following RULE statements and instructions are valid for the End of Batch application agent.
Statements and instructions are highlighted in bold text. Parameters are indented under the related
instruction, and parameter default values are underlined.

RULE NAME=xxxxxxxx
COMMAND TEXT=‘xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx’,
 ERROR=CONTINUE|QUIT
 EXECUTE PROGRAM=xxxxxxxx,
 ERROR=CONTINUE|QUIT
 MESSAGE TEXT=‘xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx’,
 ROUTCODE=(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),
 DESCCODE=(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),
 CONEVENT=YES|NO,
 ERROR=CONTINUE|QUIT
 NOP
 ROUTE PROC=membername
PROCDSN=‘filename[(membername)]’,
PNODE=‘primary_nodename’,
PNODEID=(userid,password),
SNODE=‘secondary_nodename’,
SNODEID=(userid,password),
TODSN=‘filename[(membername)]’,
FTYPE=filetype,

Continued
16 Connect:Enterprise for z/OS Application Agents and User Exits Guide

End of Batch Application Agent
PROFDSN=‘filename[(membername)]’,
NETMAP=‘filename[(membername)]’,
NEWNAME=‘alias_process_name’,
PRTY=nn,
CLASS=nn,
CASE=YES|NO,
NOTIFY=userid|%USER,
SIGNONUID=(userid,password),
LOCAPPL=ISPF_APPLID_prefix,
LOGMODE=ISPF_logmode,
MBAPPL=APPC_APPL_ID,
BUFSIZE=nnnnn,
MAILBOXUID=(userid,password),
TRANSPORT=SNA|TCP,nnnnn,nnn.nnn.nnn.nnn
ERROR=CONTINUE|QUIT

SNMPTRAP TEXT='xxx',
IPADDR=host-name|nnn.nnn.nnn.nnn,
PORT=nnnnn|162,
GROUP1=ALARM|STATUS,
GROUP2=nnnn|9999,
ERROR=CONTINUE|QUIT
STATFLG ONFLAGS=(REQUESTABLE,DELETED,TRANSMITTED,EXTRACTED,MULTXMIT),
 OFFFLAGS=(REQUESTABLE,DELETED,TRANSMITTED,EXTRACTED,MULTXMIT),
 ERROR=CONTINUE|QUIT
SUBMIT MEMBER=xxxxxxxx,

 ERROR=CONTINUE|QUIT
 WAKEUP CICSDEFN=TRANSACTION|PROGRAM,
 CICSSYSID=xxxx,
 CICSPGMNM=xxxxxxxx,
 CICSTRANID=xxxx,
 CICSTERMID=xxxx,
 CICSUSER=xxxxxxxx,
 ERROR=CONTINUE|QUIT
SELECT RULE=(xxxxxxxx,xxxxxxxx…),
 BATCHID=‘xxxx....xxxx’|"yyyy....yyyy",

CASE_SENSITIVE=YES|NO
ID=xxxxxxxx,

 LINE=xxxxxxxx,
 REMOTE=xxxxxxxx,
 STATOR=(ADDED,BSC,COLLECTED,DELETED,EBCDIC,EXTRACTED,

WILD_CARD=BID
WILD_CARD_MULTI_CHAR=*|x[xxxxxxx]
WILD_CARD_SINGLE_CHAR=%|x[xxxxxxx]

FILE_STUCTURE,FTP,INCOMPLETE,MULTXMIT,
NONTRANSMITTABLE,REQUESTABLE,SNA,SSL,
TRANSPARENT,TRANSMITTED,UNEXTRACTABLE)
STATUS=(ADDED,BSC,COLLECTED,DELETED,EBCDIC,EXTRACTED,
FILE_STUCTURE,FTP,INCOMPLETE,MULTXMIT,
NONTRANSMITTABLE,REQUESTABLE,SNA,SSL,
TRANSPARENT,TRANSMITTED,UNEXTRACTABLE)
Connect:Enterprise for z/OS Application Agents and User Exits Guide 17

Chapter 1 Overview of Connect:Enterprise Application Agents
End of Batch Rules Example
The following is an example of End of Batch rules along with an explanation of what each line
means. The line numbers listed in this example are not displayed in your rules. They are for
illustrative purposes only.

The following table outlines detailed information for each line in the preceding example:

Note: To ensure accurate processing results, SELECT statements containing more detailed selection
criteria must precede SELECT statements containing general criteria, as shown in the following
example.

 72
01 RULE NAME=RULE1
02 EXECUTE PROGRAM=PGM1,ERROR=QUIT
03 EXECUTE PROGRAM=PGM2,ERROR=CONTINUE
04 COMMAND TEXT=‘F &STCNAME,$$CONNECT LISTNAME=ACCTING ID=&IDFIELD-
05 BID=&BATCH#’
06 RULE NAME=RULE2
07 SUBMIT MEMBER=JOB25
08 COMMAND TEXT=‘F ENTPRS,$$CONNECT LISTNAME=SALES’
09 RULE NAME=RULE3
10 SUBMIT MEMBER=JOB03,ERROR=QUIT
11 STATFLG ONFLAGS=(REQUESTABLE,MULTXMIT)
12 WAKEUP CICSDEFN=PROGRAM,CICSYSID=SYS1,CICSPGMNM=PGM085
13 RULE NAME=RULE4
14 WAKEUP CICSDEFN=TRANSACTION,CICSSYSID=SYS1,
15 CICSUSER=USER1,CICSTRANID=TRN1,CICSTERMID=TRM1

16 RULE NAME=RULE5
17 NOP
18 RULE NAME=RULE6
19 SNMPTRAP TEXT='BATCH#=&BATCH# ID=&IDFIELD BID=&BID24',IPADDR=11.22.33.44
20 SELECT RULE=RULE1,ID=SANFRAN,BATCHID=‘PAYROLL’,REMOTE=BRANCH1
21 SELECT RULE=RULE1,ID=SANFRAN,BATCHID=‘RECEIVABLES’,REMOTE=BRANCH1
22 SELECT RULE=RULE1,ID=SANFRAN,BATCHID=‘PAYABLES’,REMOTE=BRANCH1
23 SELECT RULE=RULE3,ID=NEWYORK,BATCHID=“INVENTORY”
24 SELECT RULE=RULE5,ID=CANADA,REMOTE=CANADA01
25 SELECT RULE=RULE4,ID=CANADA,REMOTE=CAN*
26 SELECT RULE=RULE2,ID=SANFRAN
27 SELECT RULE=RULE2,ID=DALLAS
28 SELECT RULE=(RULE6,RULE5),ID=RIPON
29 SELECT RULE=RULE5,ID=*

Line
Number

Definition

01 Defines a rule named RULE1.

02 Specifies an EXECUTE instruction to call user program PGM1. If the program returns with a
nonzero return code, do NOT execute any of the subsequent instructions.

03 Specifies an EXECUTE instruction to call user program PGM2. If the program returns with a
nonzero return code, continue with execution of the next instruction.
18 Connect:Enterprise for z/OS Application Agents and User Exits Guide

End of Batch Application Agent
04 Specifies a COMMAND instruction to issue the $$CONNECT console command to transmit
the newly collected batch. The command text is concatenated and continued on the next line.
Column 72 indicates continuation of the TEXT parameter.

05 This line is a continuation of the command text from line 04. The Connect:Enterprise started
task name, ID, and BID symbolics are resolved when the instruction is executed.

06 Defines a rule named RULE2.

07 Specifies a SUBMIT instruction. The member name JOB25 is submitted to the
Connect:Enterprise internal reader (//JESRDR DD). JOB25 is retrieved from the data set or
data sets referenced by the //RULESJCL DD statement in the Connect:Enterprise JCL.

08 Specifies a COMMAND instruction to issue the $$CONNECT console command indicated in
the quotes.

09 Defines a rule named RULE3.

10 Specifies a SUBMIT instruction. The member name JOB03 is submitted to the
Connect:Enterprise internal reader. JOB03 is retrieved from the data set or data sets
referenced by the //RULESJCL DD statement in the Connect:Enterprise JCL. If SUBMIT
cannot successfully process, do NOT execute any of the subsequent instructions.

11 Specifies a STATFLG instruction to turn on the R (REQUESTABLE) and M (MULTXMIT)
batch status flags.

12 Specifies the WAKEUP instruction. CICS Wakeup Initiate processing is started for this batch.

13 Defines a rule named RULE4.

14 Specifies the WAKEUP instruction. CICS Wakeup Initiate processing is started for this batch.
The ending comma implies continuation of the WAKEUP instruction.

15 This line is a continuation of the WAKEUP instruction coded on line 13.

16 Defines a rule named RULE5.

17 Specifies the NOP instruction. No operation is performed.

18 Defines a rule named RULE6.

19 Specifies the SNMPTRAP instruction. A trap containing the text is sent to IP address
11.22.33.44. (The default port is 162.)

20-29 Indicates the selection criteria that determines which set of rules to process for specific
batches.
Note: In the SELECT statements on lines 23 and 24 in the preceding example, for a

specific match of REMOTE=CANADA01, a different rule is processed than for the
generic REMOTE=CAN* at line 24. If lines 23 and 24 are coded in reverse order,
RULE5 for REMOTE=CANADA01 is not chosen. Instead, a match is made for the
generic value REMOTE=CAN*. The order of the SELECT statement is very
important.

Line
Number

Definition
Connect:Enterprise for z/OS Application Agents and User Exits Guide 19

Chapter 1 Overview of Connect:Enterprise Application Agents
Logging Application Agent
The Logging application agent is invoked whenever Connect:Enterprise writes a log record for one
of the following log record types:

✦ Auto Connect summary
✦ Auto Connect detail
✦ Remote Connect summary
✦ Remote Connect detail
✦ Auto Connect queue
By defining the Logging application agent rules, you can specify different actions to take based on
certain characteristics of the log record. Each rule defined can instruct the application agent to
process one or more of the following instructions:

✦ COMMAND—issue a console command
✦ EXECUTE—execute a user-specified program
✦ MESSAGE—issue a console message
✦ NOP—issue a no operation instruction to selectively exclude log records from processing
✦ SNMPTRAP—issue an SNMP trap (a message that reports a problem or a significant event,

formatted and encoded as defined in RFC 1442, and sent as a UDP datagram) to an IP address
✦ SUBMIT—submit a job to the internal reader
When you invoke the logging application agent, the number of requests that are queued to the rules
processors is increased very quickly, resulting in multiple occurrences of the message,
CMB321W–C:E/PR MAXRP CONGESTION OCCURRED. Although this congestion does not
cause problems processing the requests, processing is delayed until a rules processor is available. If
you get these messages often, increase the value of the ODF parameter MAXRP= to allow more
concurrent transactions to be processed.
20 Connect:Enterprise for z/OS Application Agents and User Exits Guide

Logging Application Agent
Logging Rules
The following RULE statements and instructions are valid for the Logging application agent.
Statements and instructions are highlighted in bold text. Parameters are indented under the related
instruction, and parameter default values are underlined.

 72
RULE NAME=xxxxxxxx
COMMAND TEXT=‘xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx’,
 ERROR=CONTINUE|QUIT
 EXECUTE PROGRAM=xxxxxxxx,
 ERROR=CONTINUE|QUIT
 MESSAGE TEXT=‘xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx’,
 ROUTCODE=(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),
 DESCCODE=(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),

CONEVENT=YES|NO,
ERROR=CONTINUE|QUIT

 NOP
 SNMPTRAP TEXT='xxx',

IPADDR=host-name|nnn.nnn.nnn.nnn,
PORT=nnnnn|162,
GROUP1=ALARM|STATUS,

 GROUP2=nnnn|9999,
 ERROR=CONTINUE|QUIT
 SUBMIT MEMBER=xxxxxxxx,
 ERROR=CONTINUE|QUIT
 SELECT RULE=(xxxxxxxx,xxxxxxxx…),
 ACFUNC=(CONN,DISC,LOGON,RECV,SEND,SESSEN,SESSST,ULOG),
 ACQREASON=(LINE,ACTIVE,SESSION,THREAD),
 BATCHID=‘xxxx....xxxx’|"yyyy....yyyy",
 FAILCODE=nnn|nnn–nnn|(nnn,...,nnn),
 ID=xxxxxxxx,
 LINE=xxxxxxxx,
 LISTNAME=xxxxxxxx,
 LOGFUNC=(NEW,UPDATE),
 RCFUNC=(ADD,CONN,DEL,DIR,DISC,NOADD,REQ,SIGNON),
 RECTYPE=ACSUMMARY|ACDETAIL|RCSUMMARY|RCDETAIL|ACQUEUE,
 REMOTE=xxxxxxxx

 ULTEXT01-96=xxxxxxxx|(xxxxxxxx,xxxxxxxx,xxxxxxxx)
Connect:Enterprise for z/OS Application Agents and User Exits Guide 21

Chapter 1 Overview of Connect:Enterprise Application Agents
Logging Rules Example
The following is an example of Logging rules. An explanation of what each line means follows the
example. The line numbers listed in this example are not displayed in your rules. They are for
illustrative purposes only.

The following table outlines detailed information for each line in the preceding example:

 72
 01 RULE NAME=RULE1
 02 EXECUTE PROGRAM=PGM1,ERROR=CONTINUE
 03 COMMAND TEXT=‘F ENTPRS,$$CONNECT LISTNAME=GROUP1’
 04 RULE NAME=RULE2
 05 MESSAGE TEXT=‘C:E ALERT! AC FAILED, LISTNAME=&LISTNAM LINE= -
 06 &LINNAME’,ROUTCODE=(1,15)
 07 SUBMIT MEMBER=JOB25
 08 RULE NAME=RULE3
 09 SUBMIT MEMBER=JOB03
 10 MESSAGE TEXT=‘C:E ALERT! RC FAILED, REMOTE=&RMTNAME’
 11 RULE NAME=RULE4
 12 SUBMIT MEMBER=JOB30
 13 RULE RULE5
 14 MESSAGE TEXT=‘C:E ALERT - AC FAILED, LISTNAME=&LISTNAM’
 15 RULE NAME=RULENOP
 16 NOP
17 RULE NAME=RULE6
18 SNMPTRAP TEXT=’C:E ALERT! AC

FAILED,LISTNAME=&LISTNAM’,IPADDR=11.22.33.44,GROUP2=9123
19 SELECT RULE=RULE1,RECTYPE=ACDETAIL,LISTNAME=GROUP1,FAILCODE=046

 20 SELECT RULE=RULE2,RECTYPE=ACSUMMARY,LISTNAME=BSCTEST,
 21 LOGFUNC=UPDATE,FAILCODE=2–999
 22 SELECT RULE=RULE3,RECTYPE=RCDETAIL,REMOTE=RMT1*,FAILCODE=1–999
23 SELECT RULE=RULE4,RECTYPE=RCSUMMARY,LOGFUNC=UPDATE

 24 SELECT RULE=RULE4,RECTYPE=RCDETAIL,RCFUNC=(ADD,NOADD)
 25 SELECT RULE=RULENOP,RECTYPE=ACDETAIL,FAILCODE=004
 26 SELECT RULE=RULE5,RECTYPE=ACDETAIL,FAILCODE=050–100
27 SELECT RULE=(RULE2,RULE6),RECTYPE=ACSUMMARY,LOGFUNC-UPDATE,FAILCODE=2-999
28 SELECT RULE=RULE7,RECTYPE=ACDETAIL,ACFUNC=ULOG,LISTNAME=LFTP1,REMOTE=FTPRMT1,
29 FAILCODE=240,ULTEXT02=(‘emergency’,’failure’,’error’),ULTEXT08=’call’,
30 ULTEXT10=’Helpdesk’

Line
Number

Definition

01 Defines a rule named RULE1.

02 Specifies an EXECUTE instruction to call user program PGM1. If the program returns with a
nonzero return code, execute the next instruction.

03 Specifies a COMMAND instruction to issue the $$CONNECT console command indicated in
the quotes.

04 Defines a rule named RULE2.
22 Connect:Enterprise for z/OS Application Agents and User Exits Guide

Scheduler Application Agent
Scheduler Application Agent
The Scheduler application agent can be invoked by:

✦ Setting parameters in the Scheduler SELECT statement

05 Specifies the MESSAGE instruction is to write the message contained inside the single
quotes. The nonblank character in column 72 indicates the parameter is continued on the
next line.

06 This line is a continuation of the MESSAGE instruction TEXT parameter on line 05. The
ROUTCODE operand specifies a system console and a user-specified destination (route
codes 1 and 15, respectively).

07 Specifies a SUBMIT instruction. The member name JOB25 is submitted to the
Connect:Enterprise internal reader. JOB25 is retrieved from the data set or data sets
referenced by the //RULESJCL DD statement in the Connect:Enterprise JCL.

08 Defines a rule named RULE3.

09 Specifies a SUBMIT instruction. The member name JOB03 is submitted to the
Connect:Enterprise internal reader. JOB03 is retrieved from the data set or data sets
referenced by the //RULESJCL DD statement in the Connect:Enterprise JCL.

10 Specifies the MESSAGE instruction to write the message contained inside the single quotes.
The remote name symbolic variable is resolved before the message is displayed. The
default route and descriptor codes are used (1 and 7, respectively).

11 Defines a rule named RULE4.

12 Specifies a SUBMIT instruction. The member name JOB30 is submitted to the
Connect:Enterprise internal reader. JOB30 is retrieved from the data set or data sets
referenced by the //RULESJCL DD statement in the Connect:Enterprise JCL.

13 Defines a rule named RULE5.

14 Specifies the MESSAGE instruction to write the message contained inside the quotes. The
default route and descriptor codes are used (1 and 7, respectively).

15 Defines a rule named RULENOP.

16 Specifies the NOP instruction. No operation is performed.

17 Defines a rule named RULE6.

18 Specifies the SNMPTRAP instruction. A trap containing the text is sent to IP address
11.22.33.144, port 162, using GROUP 2=9123.

19—30 Indicates the selection criteria to use in determining which rules to process for specific log
records.

Line
Number

Definition
Connect:Enterprise for z/OS Application Agents and User Exits Guide 23

Chapter 1 Overview of Connect:Enterprise Application Agents
The Scheduler SELECT statement enables you to specify a maximum of eight rules to be processed and
the dates, days, and times to activate processing. The CALENDAR= parameter enables you to specify
dates or days of the week to activate processing or exclude from processing. The TIME= parameter
enables you to specify the time of day to activate processing. To initiate processing, all parameters set in
the SELECT statement must match the application agent event.

✦ Using the $$INVOKE RULES=SCH command to specify the names of rules to be processed
or a SELECT statement to use for processing
The $$INVOKE command provides two ways of invoking rule processing. You can use the
RULENAME= parameter to specify a maximum of eight rules to be processed. When the
RULENAME= parameter is used with the $$INVOKE command, rules are processed in the order in
which they are listed, and multiple rules must be enclosed in parentheses. You can also request rules
processing using the SELECT=nnnnnnnn parameter, where nnnnnnnn is the sequence number assigned
to a SELECT statement during startup and refresh. The SELECT statement that you specify using the
sequence number determines the rule statements that are processed.

By defining the Scheduler application rules, you can specify different actions to take based on the
time of day. Each rule can instruct the application agent to process one or more of the following
instructions:

✦ COMMAND—issues a console command
✦ EXECUTE—executes a user-specified program
✦ MESSAGE—issues a console message
✦ NOP—issues a no operation instruction to selectively exclude log records from processing
✦ SNMPTRAP—issues an SNMP trap (a message that reports a problem or a significant event,

formatted and encoded as defined in RFC 1442, and sent as a UDP datagram) to an IP address
✦ SUBMIT—submits a job to the internal reader

Scheduler Rules
The following RULE statements and instructions are valid for the Scheduler application agent.
Statements and instructions are highlighted in bold text. Parameters are indented under the related
instruction, and parameter default values are underlined.
24 Connect:Enterprise for z/OS Application Agents and User Exits Guide

Scheduler Application Agent
Scheduler Rules Example
The following is an example of Scheduler rules. An explanation of what each line means follows
the example. The line numbers listed in this example are not displayed in your rules. They are for
illustrative purposes only.

The following table outlines detailed information for each line in the preceding example:

RULE NAME=xxxxxxxx
COMMAND TEXT='xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx',
ERROR=CONTINUE|QUIT

EXECUTE PROGRAM=xxxxxxxx,
ERROR=CONTINUE|QUIT

MESSAGE TEXT='xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx',
ROUTCODE=(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),
DESCCODE=(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),
CONEVENT=YES|NO,
ERROR=CONTINUE|QUIT

NOP
SNMPTRAP TEXT='xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx',
IPADDR=host-name|nnn.nnn.nnn.nnn,
PORT=nnnnn|162,
GROUP1=ALARM|STATUS,
GROUP2=nnnn|9999,
ERROR=CONTINUE|QUIT
SUBMIT MEMBER=xxxxxxxx,
ERROR=CONTINUE|QUIT

SELECT RULE=(xxxxxxxx,xxxxxxxx…),
DESCRIPTION=’xxx.xxx’
TIME=(hh:mm,hh:mm,….),
CALENDAR=xxxxxxxx

01 RULE NAME=RULE1
02 EXECUTE PROGRAM=PGM1,ERROR=CONTINUE
03 COMMAND TEXT='F ENTPRS,$$CONNECT LISTNAME=LN&TIME6'
04 RULE NAME=RULE2
05 MESSAGE TEXT='SCH Rule2 TIME=&TIME6',ROUTCODE=(15)
06 SUBMIT MEMBER=JOB25
07 RULE NAME=RULE3
08 NOP
09 RULE NAME=RULE4
10 SNMPTRAP TEXT=' C:E HEARTBEAT: &HHMMSSTH',IPADDR=33.44.55.66
11 SELECT RULE=(RULE1,RULE4),TIME=(11:33,23:33)
12 SELECT RULE=RULE2,TIME=(00:00,00:01,00:02,00:03,00:04,00:05,00:06,00:07,00:08,00:09,00:10,00:11,00:12)
13 SELECT RULE=(RULE4,RULE3,RULE1), TIME=08:15,CALENDAR=WEEKDAYS

Line Definition

01 Defines a rule named RULE1.

02 Specifies an EXECUTE instruction to call user program PGM1. If the program returns with a
nonzero return code, execute the next instruction.

03 Specifies a COMMAND instruction to issue the $$CONNECT console command indicated in the
quotes.

04 Defines a rule named RULE2.
Connect:Enterprise for z/OS Application Agents and User Exits Guide 25

Chapter 1 Overview of Connect:Enterprise Application Agents
Wake Up Terminate Application Agent
The Wake Up Terminate application agent is invoked whenever CICS sends a Wake Up Terminate
message to Connect:Enterprise. A Wake Up Terminate message is an acknowledgement to a prior
Wake Up Initiate sent from Connect:Enterprise to CICS.

By defining the Wake Up Terminate application agent rules, you can specify different actions to
take based on certain characteristics of the batch. Each rule defined can instruct the application
agent to process one or more of the following instructions:

✦ COMMAND—issue a console command
✦ EXECUTE—execute a user-specified program
✦ MESSAGE—issue a console message
✦ NOP—issue a no operation instruction to selectively exclude batches from processing
✦ SNMPTRAP—issues an SNMP trap (a message that reports a problem or a significant event,

formatted and encoded as defined in RFC 1442, and sent as a UDP datagram) to an IP address
✦ STATFLG—set batch status flags on or off
✦ SUBMIT—submit a job to the internal reader

05 Specifies the MESSAGE instruction is to write the message contained inside the single quotes.
The ROUTCODE operand specifies a user-specified destination (route code 15).

06 Specifies a SUBMIT instruction. The member name JOB25 is submitted to the
Connect:Enterprise internal reader. JOB25 is retrieved from the data set or data sets referenced
by the //RULESJCL DD statement in the Connect:Enterprise JCL.

07 Defines a rule named RULE3.

08 Specifies the NOP instruction. No operation is performed.

09 Defines a rule named RULE4.

10 Specifies the SNMPTRAP instruction. A trap containing the text is sent to 33.44.55.66 port 162,
using defaults, GROUP1= STATUS (2) and GROUP2 =9999.

11-13 Indicates the selection criteria to use in determining which rules to process for specific
Scheduler agent events.

Line Definition
26 Connect:Enterprise for z/OS Application Agents and User Exits Guide

Wake Up Terminate Application Agent
Wake Up Terminate Rules
The following RULE statements and instructions are valid for the Wake Up Terminate application
agent. Statements and instructions are highlighted in bold text. Parameters are indented under the
related instruction, and parameter default values are underlined.

 72
RULE NAME=xxxxxxxx
 COMMAND TEXT=‘xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx’,
 ERROR=CONTINUE|QUIT
 EXECUTE PROGRAM=xxxxxxxx,
 ERROR=CONTINUE|QUIT
 MESSAGE TEXT=‘xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx’,
 ROUTCODE=(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),
 DESCCODE=(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),

CONEVENT=YES|NO,
ERROR=CONTINUE|QUIT

 NOP
SNMPTRAP TEXT='xxx',
IPADDR=host-name|nnn.nnn.nnn.nnn,
PORT=nnnnn|162,
GROUP1=ALARM|STATUS,

 GROUP2=nnnn|9999,
ERROR=CONTINUE|QUIT

STATFLG ONFLAGS=(REQUESTABLE,DELETED,TRANSMITTED,EXTRACTED,MULTXMIT),
 OFFFLAGS=(REQUESTABLE,DELETED,TRANSMITTED,EXTRACTED,MULTXMIT),
 ERROR=CONTINUE|QUIT
SUBMIT MEMBER=xxxxxxxx,

 ERROR=CONTINUE|QUIT
SELECT RULE=(xxxxxxxx,xxxxxxxx…),

BATCHID=‘xxxx....xxxx’|"yyyy....yyyy",
CASE_SENSITIVE=YES|NO
CICSPGMNM=xxxxxxxx,

 CICSTRANID=xxxxxxxx,
 ID=xxxxxxxx,
 LINE=xxxxxxxx,
 ORIGIN=ALL|EOBRULES|EOBEXIT,
 REMOTE=xxxxxxxx,
 RTNCODE=nnnn|nnnn–nnnn|(nnnn,....,nnnn),

WILD_CARD=BID
WILD_CARD_MULTI_CHAR=*|x[xxxxxxx]
WILD_CARD_SINGLE_CHAR=%|x[xxxxxxx]

STATOR=(ADDED,BSC,COLLECTED,DELETED,EBCDIC,EXTRACTED,
FILE_STUCTURE,FTP,INCOMPLETE,MULTXMIT,
NONTRANSMITTABLE,REQUESTABLE,SNA,SSL,
TRANSPARENT,TRANSMITTED,UNEXTRACTABLE)
STATUS=(ADDED,BSC,COLLECTED,DELETED,EBCDIC,EXTRACTED,
FILE_STUCTURE,FTP,INCOMPLETE,MULTXMIT,
NONTRANSMITTABLE,REQUESTABLE,SNA,SSL,
TRANSPARENT,TRANSMITTED,UNEXTRACTABLE)
Connect:Enterprise for z/OS Application Agents and User Exits Guide 27

Chapter 1 Overview of Connect:Enterprise Application Agents
Wake Up Terminate Rules Example
The following is an example of Wake Up Terminate rules and an explanation of what each line
means. The line numbers listed in this example are not displayed in your rules. They are for
illustrative purposes only.

The following table outlines detailed information for each line in the preceding example:

 72
01 RULE NAME=RULE1
02 MESSAGE TEXT=‘WARNING, CICS WAKEUP FAILED FOR BATCHNO=&BATCH#
03 ID=&IDFIELD BID=&BID24’,ROUTCODE=(1,13,15)
04 COMMAND TEXT=‘F &STCNAME,$$DIR ID=&IDFIELD’
05 RULE NAME=RULE2
06 SUBMIT MEMBER=JOB25
07 RULE NAME=RULE3
08 STATFLG ONFLAGS=(EXTRACTED,DELETED)
09 EXECUTE PROGRAM=PGM33
10 RULE NAME=RULENOP
11 NOP
12 RULE NAME=RULE6
13 SNMPTRAP TEXT='BATCH#=&BATCH# ID=&IDFIELD BID=&BID24',IPADDR=11.22.33.44
14 SELECT RULE=RULENOP,RTNCODE=0025
15 SELECT RULE=RULE1,RTNCODE=F9F9
16 SELECT RULE=RULE2,RTNCODE=0001–0999,ORIGIN=EOBRULES
17 SELECT RULE=RULE3,ID=SANFRAN,BATCHID=‘RECEIVABLES’,
18 REMOTE=BRANCH*,RTNCODE=0000,STATOR=(SNA,BSC)
19 SELECT RULE=(RULE1,RULE6),RTNCODE=F8F8

Line Number Definition

01 Defines a rule named RULE1.

02 Specifies a user-defined console message. The symbolic variables for batch number,
Mailbox ID, and user batch ID is replaced with the actual values prior to issuing the
message. The continuation character, nonblank in column 72, indicates the parameter is
continued on the next line.

03 This line is a continuation of the MESSAGE instruction on line 02.

04 Specifies a COMMAND instruction to issue the $$DIRECTORY console command
indicated in the quotes. The symbolic variables for the task name and Mailbox ID is
replaced with the actual values prior to issuing the command.

05 Defines a rule named RULE2.

06 Specifies a SUBMIT instruction. The member name JOB25 is submitted to the
Connect:Enterprise internal reader. JOB25 is retrieved from the data set referenced by
the //RULESJCL DD statement allocated in the Connect:Enterprise job.

07 Defines a rule named RULE3.

08 Specifies a STATFLG instruction to turn on the E (EXTRACTED) and D (DELETED) batch
status flags.

09 Specifies an EXECUTE instruction to call user program PGM33.
28 Connect:Enterprise for z/OS Application Agents and User Exits Guide

How Connect:Enterprise Uses Application Agents
How Connect:Enterprise Uses Application Agents
Connect:Enterprise uses application agents as follows:

✦ Connect:Enterprise reads each rule set during startup or rules refresh and loads it into memory.
If Connect:Enterprise detects an error during startup, it terminates. If it detects an error during
a rules refresh, no refresh occurs and the application agent continues using the existing rules
tables loaded in memory. To avoid this, use the Rule Verification utility to verify the syntax
each time you make a change to an existing rule set.

✦ An event causes Connect:Enterprise to send an application agent request to the Process Router
task. Events are defined as follows for each type of application agent:

CON—a message is issued by Connect:Enterprise

EOB—a batch collection completes successfully

LOG—a log record is written

SCH—a specified time of day is reached

WKT—a wake up acknowledgement is sent from CICS

✦ The Process Router routes the request to the Rules Processor.

✦ The Rules Processor (RP) scans through the rules SELECT statements for a match on the
selection criteria.

✦ When a match is found, each instruction in the selected rules is executed.
✦ Processing is complete and the Rules Processor task is ready for another application agent

request.

10 Defines a rule named RULENOP.

11 Specifies the NOP instruction. No operation is performed.

12 Defines a rule named RULE6.

13 Specifies the SNMPTRAP instruction. A trap containing the text is sent to IP address
11.22.33.44. (The default port is 162.)

14 - 19 Indicates the selection criteria that determines which set of rules to process for specific
criteria. Note the SELECT statement on line 16 is continued on the next line.

Note: Each application agent request is processed asynchronously and independently from all other
Connect:Enterprise activity.

Line Number Definition
Connect:Enterprise for z/OS Application Agents and User Exits Guide 29

Chapter 1 Overview of Connect:Enterprise Application Agents
The following diagram illustrates how the Rules Processor task processes the application agent
requests.

See Chapter 2, Creating and Verifying Application Agent Rules, for the guidelines, structure, and
syntax for creating rule sets; the format and parameters of instructions; and how to verify rule sets.
See Chapter 3, Implementing Application Agent Rules, for information on implementing rules,
changing rules during processing, using the trace facility to test and debug rule sets, and for sample
implementations.

Process Router

Rules Files

(startup or
refresh)

Command
Processor(s)

(CPs)

Rules Processor(s)
(RPs)

AP
(LU6.2)

Console Rules Log
Rules

Wake Up
Rules

FTP Session Threads

Connect:Enterprise
(main task)

End of Batch
Rules

Scheduler
Rules

Scheduler Processor
(SP)
30 Connect:Enterprise for z/OS Application Agents and User Exits Guide

Chapter 2

Creating and Verifying Application Agent
Rules

This chapter describes the components and structure of a rule set for an application agent, guidelines
and syntax for rules, and the instructions and parameters that are valid for the application agents.

Rule Set Components and Structure
A rule set controls how Connect:Enterprise uses application agents. It consists of at least one RULE
statement, one instruction, and one SELECT statement. The RULE statement specifies the start of
a rule and the name of the rule. Each rule name must be unique within an application agent PDS
member. The format is as follows:

Instructions define the operations associated with a rule. The RULE statement must always be
followed by one or more instructions to execute for the rule. The SELECT statement specifies
selection criteria used to evaluate an event for processing and the rule, or rules, to process when an
event matches the selection criteria. The SELECT statement can point to up to eight rules. The basic
structure of each application agent rule set is as follows:

RULE NAME=xxxxxxxx

RULE NAME=rulename
 instruction
 instruction
 instruction
RULE NAME=rulename
 instruction
 instruction
 instruction
SELECT RULE=rulename,match criteria
SELECT RULE=rulename,match criteria
SELECT RULE=(rulename,rulename),match criteria
SELECT RULE=rulename,match criteria
Connect:Enterprise for z/OS Application Agents and User Exits Guide 31

Chapter 2 Creating and Verifying Application Agent Rules
The following example illustrates a simple rule set used to submit an extract job when
Connect:Enterprise collects a batch online with batch ID of BRANCH01. You implement the End
of Batch application agent to process the request, specify the rule name, and use the SUBMIT
instruction to define the extract job. The SELECT parameter specifies to apply RULE001 when a
batch with ID BRANCH01 is collected:

The End of Batch application agent processes the request when Connect:Enterprise collects a batch
online, then each SELECT statement is processed until a match is made on the selection criteria. As
the preceding rule set specifies, RULE001 is processed each time Connect:Enterprise collects a
batch with an ID of BRANCH01. RULE001 specifies a SUBMIT instruction with a JCL member
name of EXTRACT that is submitted to the internal reader. The member is read from the
RULESJCL DD file.

Guidelines for Defining a Rule Set
Adhere to the following guidelines when writing a rule set:

✦ Define a unique name for each rule; duplicate names are not allowed.
✦ Specify one or more instructions for each rule. There is no limit to the number of instructions

that you can specify in each rule.
✦ Specify instructions in each rule in the order that you want them processed. Each instruction

must have at least one parameter specified on the same line (record) as the instruction itself.
✦ Specify each SELECT statement to point to up to eight rules and include at least one

additional selection parameter. You can also specify multiple SELECT statements to reference
a single rule.

✦ To ensure accurate processing, list the SELECT statements that contain detailed selection
criteria before the SELECT statements that contain general selection criteria.
If NO match occurs on any of the SELECT statements, no rule is processed for the request.

✦ Specify RULE statements and SELECT statements in any order in each rule set.
✦ If you change a rules file while Connect:Enterprise is running, use the Verification utility to

verify the syntax before refreshing the rule set.

RULE NAME=RULE001
 SUBMIT MEMBER=EXTRACT
SELECT RULE=RULE001,ID=BRANCH01
32 Connect:Enterprise for z/OS Application Agents and User Exits Guide

Rule Structure and Syntax
The following diagram illustrates how the rules are used as input to Connect:Enterprise and the
Rules Verification utility:

Rule Structure and Syntax
This section explains the general syntax for writing rules. In each record, columns 1–71 are for
writing rules, column 72 is only for continuation, and columns 73–80 are ignored. The following
table details the function of some syntax elements.

Element Function Example

Statement
Identifier

Specifies a RULE or SELECT
statement or an instruction to execute
within a rule.

RULE NAME=Rule01 (statement)
SUBMIT MEMBER=EXTRACT (instruction)
SELECT RULE=RULE01,ID=BRANCH01
(statement)

Keyword
parameter

Specifies further instructions for
statements and is followed by an
equals sign. It can have a set of
subparameters. Multiple parameters
must be separated by commas.
Rules parameters are keyword
parameters.

MESSAGE TEXT=’My test message’,

ROUTCODE=(1,7,11),ERROR=QUIT

Subparameter Specifies variable information in a
keyword parameter including a list of
subparameters. Such a list can
comprise both text strings and
symbolic variables. Enclose the
subparameter list in parentheses and
separate the items by commas.

ROUTCODE=(1,7,11)

Edit
Rules

Rules
Files

Connect:Enterprise

 Rules Verification
 Utility
Connect:Enterprise for z/OS Application Agents and User Exits Guide 33

Chapter 2 Creating and Verifying Application Agent Rules
Continuation Marks in a Statement
A comma followed by a blank space indicates that the statement continues on the next line. The
following example illustrates a statement specified on one line:

You can also specify the previous example over multiple lines, as follows:

Continuation Marks in a Parameter
You can use a nonblank character in column 72 as a continuation mark to indicate a parameter value
continues on multiple lines. In the following examples, a hyphen (-) is the continuation character in
column 72:

The previous illustration is displayed as:

Another example of continuation marks follows:

Comma Separates items within a
subparameter list.

ROUTCODE=(1,7,11)

Separates keyword parameters. MESSAGE TEXT=’My test message’,

ROUTCODE=(1,7,11),ERROR=QUIT

Parentheses Enclose lists and associate groups of
values.

MESSAGE TEXT=’This is a test
message’,ROUTCODE=(1,5,7,13)

The subparameters specified in the ROUTCODE
keyword are enclosed in parentheses.

SELECT RULE=RULE022,BATCHID=’Test Batch ID’,ID=MBOX99

SELECT RULE=RULE022,

 BATCHID=’Test Batch ID’,

 ID=MBOX99

 72
MESSAGE TEXT=’This is a test msg to show how to conti-
 nue to line 2’

This is a test msg to show how to continue to line 2

 72
STATOR=(SNA,BSC,TRANSMITTED,REQUESTABLE,TRANSPARENT,E-
 BCDIC,MULTXMIT)

Element Function Example
34 Connect:Enterprise for z/OS Application Agents and User Exits Guide

Rule Structure and Syntax
The previous illustration is displayed as:

The parameter value is concatenated with the first nonblank character on the next line.

Comments
Use comments to include additional information in a set of Connect:Enterprise application agent
rules. Comments are indicated by one of the following methods:

✦ Placing an asterisk in column 1 indicates to ignore the entire record.
✦ Placing comments on any rule record to the right of all statements and parameters. Precede the

comment with at least one space. An example follows:

Special Characters
The symbols defined as special characters for Connect:Enterprise application agent rules are the
ampersand (&), the at sign (@), and the following delimiters:

Special-Purpose Bracketing
To maintain special characters as part of a string, enclose the string in either single quotation marks
(’ ’) or double quotation marks (“ ”).

✦ Use single quotation marks to embed special characters or blanks in a parameter or
subparameter value.

STATOR=(SNA,BSC,TRANSMITTED,REQUESTABLE,TRANSPARENT,EBCDIC,MULTXMIT)

**
* This rule executes the weekly payroll program *

RULE NAME=RULE001 this is a comment
 SUBMIT MEMBER=PAYROLL1 this is also a comment
SELECT RULE=RULE001, this is also a comment
 ID=MBOX001 this is also a comment

Symbol Description

 blank

= equal sign

* asterisk

, comma

() parentheses

’ single quotation mark

“ double quotation mark
Connect:Enterprise for z/OS Application Agents and User Exits Guide 35

Chapter 2 Creating and Verifying Application Agent Rules
The following is an example of special purpose bracketing before resolution:

The previous illustration is displayed as:

The following is an example of using single quotation marks:

The previous illustration is displayed as:

To obtain embedded single quotes, specify three consecutive single quotes to resolve to one.
✦ Use double quotation marks to specify a generic user batch ID in the BATCHID parameter in

a SELECT statement and enable you to use embedded blanks and special characters in the user
batch ID. An example follows:

Symbolic Substitution
Symbolic substitution enables you to substitute information in JCL members, console commands,
console messages, and SNMP trap messages. When rules processing encounters either an
ampersand (&) or an at sign (@), plus 1–7 alphanumeric characters defined as a symbolic variable,
the variable is replaced by the corresponding data string. Trailing blanks are treated differently in
substitutions using the ampersand (&) variable and the at sign (@) variable:

✦ When the & variable is used, trailing blanks are removed when the variable value is resolved.
✦ When the @ variable is used, trailing blanks are not removed when the variable value is

resolved (with the exception of the @APKEY, @MSG, @MSG01–@MSG96, and
@ULTEXT01–@ULTEXT96 variables).

You can use the symbolic variables only in the following places:

✦ Any of the SUBMIT instruction’s JCL member (columns 1–71 only)
✦ Console COMMAND instruction text
✦ Console MESSAGE instruction text
✦ SNMPTRAP instruction text

MESSAGE TEXT=’This is a test message with blanks’

This is a test message with blanks

 72
MESSAGE TEXT=’This is a test msg with ’’’quotes’’’ -
 and blanks on two lines’

This is a test msg with ’quotes’ and blanks on two lines

SELECT RULE01,BATCHID=“Test Batch 123"
36 Connect:Enterprise for z/OS Application Agents and User Exits Guide

Symbolic Substitution
Connect:Enterprise replaces symbolic variables with the actual values prior to submission. No
abbreviations are permitted. Specify each variable in upper case text.

All symbolic variables specified in a text string, for example, in MESSAGE TEXT or SNMPTRAP
TEXT, must be valid variables for that particular agent and RECTYPE under the SELECT
instruction. If a symbolic variable not valid for the agent and record type is included, the error,
CMB365E - C:E RULES DATA NOT AVAILABLE TO REPLACE SYMBOLICS IN
COMMAND xxxxxxx, results. For example, if you used the LOG agent with an ACS record type
under the SELECT instruction and included an SNMP instruction containing the ACFUNC
symbolic variable, an error would result because ACFUNC is not valid for the ACS RECTYPE.
(For a quick reference, see the matrix in Symbolic Variables Valid for Application Agent Rules on
page 43.) In this case, you would see the message, CMB365E - C:E RULES DATA NOT
AVAILABLE TO REPLACE SYMBOLICS IN SNMPTRAP.

Along with the CMB365E console message, Connect:Enterprise issues M$DUMP to trace the data
in error, which will be written to the SNAPOUT DD entitled 'STRPPS01 - DATA NOT
AVAILABLE TO REPLACE SYMBOLIC.'

Ampersand (&) and At Sign (@) Variables
The following table describes the value used for each ampersand (&) and at sign (@) variable.
Precede the variable with either the ampersand symbol (&) or at sign (@) symbol depending on
whether you want trailing blanks or not.

Variable Value Used

ACCDATE The Auto Connect completion date in 7-digit Julian date yyyyddd format.

ACCTIME The Auto Connect completion time in 6-digit hhmmss format.

ACFAILC The 4-digit Auto Connect summary total failed collection count.

ACFAILX The 4-digit Auto Connect summary total failed transmission count.

ACFUNC A 1-byte function code which corresponds to an Auto Connect function:
1 = RECV (batch collected)
3 = SEND (batch transmittedl)
8 = LOGON (FTP user logon)
C = CONN (FTP connect)
D = DISC (FTP disconnect)
E = SESSEN (FTP session end)
S = SESSST (FTP session start)
U = ULOG (FTP USERLOG record)

ACSDATE The Auto Connect start date in 7-digit Julian date yyyyddd format.

ACSTIME The Auto Connect start time in 6-digit hhmmss format.

ACSUCCC The 4-digit Auto Connect summary total successful collection count.

ACSUCCX The 4-digit Auto Connect summary total successful transmission count.
Connect:Enterprise for z/OS Application Agents and User Exits Guide 37

Chapter 2 Creating and Verifying Application Agent Rules
APKEY A string containing the APKEY records, W and Z records not included. The APKEY
can contain up to 1024 bytes. The records are stripped of trailing blanks and x'0D' is
added to the end of each record as a delimiter. x'0D' is also added when the end of file
is reached. If APDSN is not specified in the ODF, the APKEY value is null.

AQQDATE The queuing date of the Auto Connect in 5-digit Julian date yyddd format.

AQQTIME The queuing time of the Auto Connect in 4-digit hhmm format.

AQRDATE The queued Auto Connect restart date in 5-digit Julian date yyddd format.

AQRTIME The queued Auto Connect restart time in 6-digit hhmmss format.

BATCH# The 7-digit batch number, including the leading zeros.

BCDATE The batch creation date in 7-digit Julian date yyyyddd format.

BCTIME The batch creation time in 6-digit hhmmss format.

BID(PP,LL) A user-specified starting position and length of the user batch ID, where:
PP = a two-digit value representing the starting position. Valid values are 01–64.
LL = a two-digit value representing the length to be resolved. Valid values are 01–64.
Note: If start position PP + length value LL exceeds the end of the 64-character

user batch ID, the LL value is automatically adjusted such that PP + LL
equals the end of the batch ID and is resolved accordingly.

Example 1: If BID(14,06) is specified, positions 14–19 of the user batch ID are
resolved.
Example 2: If BID(01,64) is specified, the entire 64 character user batch ID is
resolved. This example would effectively be the same as specifying &BID64.
Example 3: If BID(64,01) is specified, only the last byte of the user batch ID is
resolved.
Example 4:If BID(60,10) is specified, the length value is adjusted to BID(60,05) at time
of symbolic resolution and bytes 60-64 of the batch ID are resolved.

BID1 The first 8 bytes of the 24-byte (or 64-byte) user batch ID.

BID2 The second 8 bytes of the 24-byte (or 64-byte) user batch ID.

BID3 The third 8 bytes of the 24-byte (or 64-byte) user batch ID.

BID4 The fourth 8 bytes of the 64-byte user batch ID.

BID5 The fifth 8 bytes of the 64-byte user batch ID.

BID6 The sixth 8 bytes of the 64-byte user batch ID.

BID7 The seventh 8 bytes of the 64-byte user batch ID.

BID8 The eighth 8 bytes of the 64-byte user batch ID.

BID24 The 24-byte user batch ID.

BID64 The 64-byte user batch ID.

BLKCNT The number of physical VSAM records in the batch.

Variable Value Used
38 Connect:Enterprise for z/OS Application Agents and User Exits Guide

Symbolic Substitution
BYTECNT The number of bytes in the batch.

CCVBQDSN The 44-byte data set name of the current collection file.

CCVBQID The 5-byte current collection file VBQnn value (VBQ01 - VBQ20).

CCVBQNUM The 2-byte number of the current collection VBQ (01 - 20).

CCVLFDSN The 44-byte data set name of the current log file.

CCVLFNUM The 1-byte number of the current collection VLF (1 - 8).

CCVLFID The 4-byte current collection file VLFn value (VLF1 - VLF8).

DATE The current Julian date (YYYYDDD).

DAY The day of the week in mixed case (Monday, Tuesday, etc.).

DAYUC The day of the week in uppercase (MONDAY, TUESDAY, etc.).

DD The current date in 2-digit dd format.

DDMMYYYY The current date in 8-digit ddmmyyyy format.

FAILCODE A 3-digit character value of nnn (where nnn is the auto connect -or- remote connect
failcode).

FCDATE The remote connection function completion date in 7-digit Julian date yyyyddd format.
See SELECT Statement Parameters on page 76, for a description of the RCFUNC
parameter.

FCTIME The remote connection function completion time in 6-digit hhmmss format. See
SELECT Statement Parameters on page 76, for a description of the RCFUNC
parameter.

FSDATE The remote connection function start date in 7-digit Julian date yyyyddd format. See
SELECT Statement Parameters on page 76, for a description of the RCFUNC
parameter.

FSTIME The remote connection function start time in 6-digit hhmmss format. See SELECT
Statement Parameters on page 76, for a description of the RCFUNC parameter.

HHMM The current time in 4-digit HHMM format.

HHMMSS The current time in 6-digit HHMMSS format.

HHMMSSTH The current time in 8-digit HHMMSSTH format.

HOUR The current time in 2-digit hh (hours) format.

IDFIELD The 8-byte Mailbox ID, if available.

KEY The 36 byte unpacked key of the log record being written which triggered the logging
application agent event. Log records are often updated. The &KEY variable allows
you to associate a "New" logging event with a subsequent "Update" logging event.

LINNAME The 8-byte BSC line ID.

Variable Value Used
Connect:Enterprise for z/OS Application Agents and User Exits Guide 39

Chapter 2 Creating and Verifying Application Agent Rules
LISTNAM The Auto Connect list name (Auto Connect only).

LOGFUNC A 1-byte character indicating that the log record being written is new (N) or an update
(U) to an existing log record.

MBXNAME The 8-byte Mailbox name specified in the ODF *OPTIONS (MBXNAME=).

MIN The current time in 2-digit mm (minutes) format.

MM The current month in 2-digit mm format.

MMDDYYYY The current date in 8-digit MMDDYYY format.

MONTH The month in mixed case (January, February, etc.).

MONTHUC The month in uppercase (JANUARY, FEBRUARY, etc.).

MSG The message text, which can contain up to 700 bytes.

MSG01 The first blank-delimited word of the &MSG variable uppercased.

MSG02–MSG96 The words (delimited by blank, comma, period, or colon) of the &MSG variable after
&MSG01, or are null.

NXVBQDSN The 44-byte data set name of the next (CC+1, or next available) VBQ. If VBQROTAT
is less than 2, the data set name of the current collection file is used.

NXVBQID The 5-byte ID of the next (CC+1, or next available) VBQ. If VBQROTAT is less than 2,
the data set name of the current collection file is used.

NXVBQNUM The 2-byte number of the next (CC+1, or next available) VBQ (01 - 20). If VBQROTAT
is less than 2, the number of the current collection file is used.

NXVLFDSN The 44-byte data set name of the next (CC+1, or next available) VLF. If VLFOTAT is
less than 2, the data set name of the current collection file is used.

NXVLFID The 5-byte ID of the next (CC+1, or next available) VLF (1 - 8). If VBQROTAT is less
than 2, the data set name of the current collection file is used.

NXVLFNUM The 1-byte number of the next (CC+1, or next available) VLF (1 - 8). If VBQROTAT is
less than 2, the number of the current collection file is used.

PRVBQDSN The 44-byte data set name of the previous (CC-1) VBQ. If VBQROTAT is less than 2,
the data set name of the current collection file is used.

OSNAME The 4 to 6 byte operating system name, such as z/OS)

OSVER The operating system version in a 6-digit vvrrmm format

PRVBQNUM The 2-byte number of the previous (CC-1) VBQ (01 - 20).

PRVBQID The 5-byte ID of the previous (CC-1) VBQ. If VBQROTAT is less than 2, the data set
name of the current collection file is used.

PRVLFDSN The 44-byte data set name of the previous (CC-1) VLF. If VLFROTAT is less than 2,
the data set name of the current collection file is used.

Variable Value Used
40 Connect:Enterprise for z/OS Application Agents and User Exits Guide

Symbolic Substitution
PRVLFID The 5-byte ID of the previous (CC-1) VLF. If VLFROTAT is less than 2, the data set
name of the current collection file is used.

PRVLFNUM The 1-byte number of the previous (CC-1) VLF (1 - 8).

RCFUNC A 1-byte function code which corresponds to an Remote Connect function:
1 = ADD (batch containing a $$ADD record)
2 = NOADD (batch without a $$ADD record)
3 = REQ (batch request from the remote)
4 = DIR (directory request from the remote)
5 = DEL (delete request from the remote)
8 = SIGNON (signon/logon)
C = CONN (connect)
D = DISC (disconnect)

RCSCDAT The remote connection summary completion date in 7-digit Julian date yyyyddd
format. See SELECT Statement Parameters on page 76, for a description of the
RCFUNC parameter.

RCSCTIM The remote connection summary completion time in 6-digit hhmmss format. See
SELECT Statement Parameters on page 76, for a description of the RCFUNC
parameter.

RCSSDAT The remote connection summary start date in 7-digit Julian date yyyyddd format. See
SELECT Statement Parameters on page 76, for a description of the RCFUNC
parameter.

RCSSTIM The remote connection summary start time in 6-digit hhmmss format. See SELECT
Statement Parameters on page 76, for a description of the RCFUNC parameter.

RECCNT The number of logical data records in the batch.

RMTNAME The 8-byte remote name.

RMTTYPE The 1-byte representation of the remote type (1=BSC, 2=SNA, 4=FTP).

SEC The current time in 2-digit (seconds) ss format.

SRVRID The 4-character VSAM file server name.

STCNAME The Connect:Enterprise started task name.

TH The current time in 2-digit (tenths/hundredths) th format.

TIME The hour and minute (HHMM) of the current time.

TIME6 The current time in hour/minute/second hhmmss format.

ULTEXT01–
ULTEXT96

The words, delimited by blanks, commas, periods, or colons, of the text written to the
FTP Auto Connect Detail USERLOG record.

VBQO1DSN The VBQ01 data set name.

VBQO2DSN The VBQ02 data set name.

Variable Value Used
Connect:Enterprise for z/OS Application Agents and User Exits Guide 41

Chapter 2 Creating and Verifying Application Agent Rules
VBQO3DSN The VBQ03 data set name.

VBQO4DSN The VBQ04 data set name.

VBQO5DSN The VBQ05 data set name.

VBQO6DSN The VBQ06 data set name.

VBQO7DSN The VBQ07 data set name.

VBQO8DSN The VBQ08 data set name.

VBQO9DSN The VBQ09 data set name.

VBQ10DSN The VBQ10 data set name.

VBQ11DSN The VBQ11 data set name.

VBQ12DSN The VBQ12 data set name.

VBQ13DSN The VBQ13 data set name.

VBQ14DSN The VBQ14 data set name.

VBQ15DSN The VBQ15 data set name.

VBQ16DSN The VBQ16 data set name.

VBQ17DSN The VBQ17 data set name.

VBQ18DSN The VBQ18 data set name.

VBQ19DSN The VBQ19 data set name.

VBQ20DSN The VBQ20 data set name.

VCFDSN The VCF data set name.

VLF1DSN The VLF1 data set name.

VLF2DSN The VLF2 data set name.

VLF3DSN The VLF3 data set name.

VLF4DSN The VLF4 data set name.

VLF5DSN The VLF5 data set name.

VLF6DSN The VLF6 data set name.

VLF7DSN The VLF7 data set name.

VLF8DSN The VLF8 data set name.

VPFDSN The VPF data set name.

YY The current date in 2-digit yy format, e.g., 03.

YYDDD The current Julian date in 5-digit YYDDD format.

Variable Value Used
42 Connect:Enterprise for z/OS Application Agents and User Exits Guide

Symbolic Substitution
The symbolic variable values listed are used in the following examples:

The following is an example of using the ampersand (&) variable with trailing blanks removed:

The previous illustration is displayed as:

The following is an example of using the at sign (@) variable without the trailing blanks removed:

The previous example is displayed as:

Symbolic Variables Valid for Application Agent Rules
The following table identifies which symbolic variables are valid for each application agent rule
type and applies to both & and @ symbolic variables. Logging rules are further classified by log
record type (RECTYPE).

YYYY The current date in 4-digit yyyy format, e.g., 2003.

YYYYDDD The current Julian date in 7-digit YYYYDDD format.

YYYYMMDD The current Julian date in 8-digit YYYYDDD format.

Symbolic Variable Description Data Length Data Value

IDFIELD Mailbox ID 8 ’MBOX1 ’

BID24 User batch ID 24 ’Test Batch ’

RMTNAME Remote Name 8 ’RMT001 ’

MESSAGE TEXT=’BATCH COLLECTED ID=&IDFIELD BID=&BID24
 REMOTE=&RMTNAME’

BATCH COLLECTED ID=MBOX1 BID=Test Batch REMOTE=RMT001

MESSAGE TEXT=’BATCH COLLECTED ID=@IDFIELD BID=@BID24 REMOTE=@RMTNAME’

BATCH COLLECTED ID=MBOX1 BID=Test Batch REMOTE=RMT001

Variable Value Used
Connect:Enterprise for z/OS Application Agents and User Exits Guide 43

Chapter 2 Creating and Verifying Application Agent Rules
Symbolic
Variable

Application Agent Rule Type

CON EOB SCH WKT LOG
(ACS)

LOG
(ACD)

LOG
(RCS)

LOG
(RCD)

LOG
(ACQ)

ACCDATE X X

ACCTIME X X

ACFAILC X

ACFAILX X

ACFUNC X

ACSDATE X X

ACSTIME X X

ACSUCCC X

ACSUCCX X

APKEY X X X X X X X X X

AQQDATE X

AQQTIME X

AQRDATE X

AQRTIME X

BATCH# X X X X

BCDATE X X

BCTIME X X

BID(PP,LL) X X X X

BID1 X X X X

BID2 X X X X

BID3 X X X X

BID4 X X X X

BID5 X X X X

1 CON=Console
EOB=End of Batch
SCH=Scheduler
WKT=Wake Up Terminate

2 LOG=Logging
ACS=Auto Connect Summary Log Record
ACD=Auto Connect Detail Log Record
RCS=Remote Connect Summary Log Record
RCD=Remote Connect Detail Log Record
ACQ=Auto Connect Queue Log Record
44 Connect:Enterprise for z/OS Application Agents and User Exits Guide

Symbolic Substitution
BID6 X X X X

BID7 X X X X

BID8 X X X X

BID24 X X X X

BID64 X X X X

BLKCNT X X X

BYTECNT X X

CCVBQDSN X X X X X X X X X

CCVBQID X X X X X X X X X

CCVBQNUM X X X X X X X X X

CCVLFDSN X X X X X X X X X

CCVLFID X X X X X X X X X

CCVLFNUM X X X X X X X X X

DATE X X X X X X X X X

DAY X X X X X X X X X

DAYUC X X X X X X X X X

DD X X X X X X X X X

DDMMYYYY X X X X X X X X X

FAILCODE X X X X

FCDATE X

FCTIME X

FSDATE X

FSTIME X

Symbolic
Variable

Application Agent Rule Type

CON EOB SCH WKT LOG
(ACS)

LOG
(ACD)

LOG
(RCS)

LOG
(RCD)

LOG
(ACQ)

1 CON=Console
EOB=End of Batch
SCH=Scheduler
WKT=Wake Up Terminate

2 LOG=Logging
ACS=Auto Connect Summary Log Record
ACD=Auto Connect Detail Log Record
RCS=Remote Connect Summary Log Record
RCD=Remote Connect Detail Log Record
ACQ=Auto Connect Queue Log Record
Connect:Enterprise for z/OS Application Agents and User Exits Guide 45

Chapter 2 Creating and Verifying Application Agent Rules
HHMM X X X X X X X X X

HHMMSS X X X X X X X X X

HHMMSSTH X X X X X X X X X

HOUR X X X X X X X X X

IDFIELD X X X X

KEY X X X X

LINNAME X X X X

LISTNAM X X X

LOGFUNC X X

MBXNAME X X X X X X X X X

MIN X X X X X X X X X

MM X X X X X X X X X

MMDDYYYY X X X X X X X X X

MONTH X X X X X X X X X

MONTHUC X X X X X X X X X

MSG X

MSG01 X

MSG02 –
MSG96

X

NXVBQDSN X X X X X X X X X

NXVBQID X X X X X X X X X

NXVBQNUM X X X X X X X X X

NXVLFDSN X X X X X X X X X

Symbolic
Variable

Application Agent Rule Type

CON EOB SCH WKT LOG
(ACS)

LOG
(ACD)

LOG
(RCS)

LOG
(RCD)

LOG
(ACQ)

1 CON=Console
EOB=End of Batch
SCH=Scheduler
WKT=Wake Up Terminate

2 LOG=Logging
ACS=Auto Connect Summary Log Record
ACD=Auto Connect Detail Log Record
RCS=Remote Connect Summary Log Record
RCD=Remote Connect Detail Log Record
ACQ=Auto Connect Queue Log Record
46 Connect:Enterprise for z/OS Application Agents and User Exits Guide

Symbolic Substitution
NXVLFID X X X X X X X X X

NXVLFNUM X X X X X X X X X

PRVBQDSN X X X X X X X X X

PRVBQID X X X X X X X X X

PRVBQNUM X X X X X X X X X

PRVLFDSN X X X X X X X X X

PRVLFID X X X X X X X X X

PRVLFNUM X X X X X X X X X

RCFUNC X

RCSCDAT X

RCSCTIM X

RCSSDAT X

RCSSTIM X

RECCNT X

RMTNAME X X X X X

RMTTYPE X X X X X

SEC X X X X X X X X X

SRVRID X X X X X X X X X

STCNAME X X X X X X X X X

TH X X X X X X X X X

TIME X X X X X X X X X

TIME6 X X X X X X X X X

Symbolic
Variable

Application Agent Rule Type

CON EOB SCH WKT LOG
(ACS)

LOG
(ACD)

LOG
(RCS)

LOG
(RCD)

LOG
(ACQ)

1 CON=Console
EOB=End of Batch
SCH=Scheduler
WKT=Wake Up Terminate

2 LOG=Logging
ACS=Auto Connect Summary Log Record
ACD=Auto Connect Detail Log Record
RCS=Remote Connect Summary Log Record
RCD=Remote Connect Detail Log Record
ACQ=Auto Connect Queue Log Record
Connect:Enterprise for z/OS Application Agents and User Exits Guide 47

Chapter 2 Creating and Verifying Application Agent Rules
ULTEXT01–
ULTEXT96

X

VBQ01DSN X X X X X X X X X

VBQ02DSN X X X X X X X X X

VBQ03DSN X X X X X X X X X

VBQ04DSN X X X X X X X X X

VBQ05DSN X X X X X X X X X

VBQ06DSN X X X X X X X X X

VBQ07DSN X X X X X X X X X

VBQ08DSN X X X X X X X X X

VBQ09DSN X X X X X X X X X

VBQ10DSN X X X X X X X X X

VBQ11DSN X X X X X X X X X

VBQ12DSN X X X X X X X X X

VBQ13DSN X X X X X X X X X

VBQ14DSN X X X X X X X X X

VBQ15DSN X X X X X X X X X

VBQ16DSN X X X X X X X X X

VBQ17DSN X X X X X X X X X

VBQ18DSN X X X X X X X X X

VBQ19DSN X X X X X X X X X

VBQ20DSN X X X X X X X X X

VCFDSN X X X X X X X X X

Symbolic
Variable

Application Agent Rule Type

CON EOB SCH WKT LOG
(ACS)

LOG
(ACD)

LOG
(RCS)

LOG
(RCD)

LOG
(ACQ)

1 CON=Console
EOB=End of Batch
SCH=Scheduler
WKT=Wake Up Terminate

2 LOG=Logging
ACS=Auto Connect Summary Log Record
ACD=Auto Connect Detail Log Record
RCS=Remote Connect Summary Log Record
RCD=Remote Connect Detail Log Record
ACQ=Auto Connect Queue Log Record
48 Connect:Enterprise for z/OS Application Agents and User Exits Guide

Instructions
Instructions
Instructions specify the operations to perform based on the characteristics of the event that causes
Connect:Enterprise to initiate an application agent request. The following table summarizes the
instructions that are valid for each type of application agent rule. The remainder of this section
describes the format and parameters for each instruction.

VLF1DSN X X X X X X X X X

VLF2DSN X X X X X X X X X

VLF3DSN X X X X X X X X X

VLF4DSN X X X X X X X X X

VLF5DSN X X X X X X X X X

VLF6DSN X X X X X X X X X

VLF7DSN X X X X X X X X X

VLF8DSN X X X X X X X X X

VPFDSN X X X X X X X X X

YY X X X X X X X X X

YYDDD X X X X X X X X X

YYYY X X X X X X X X X

YYYYDDD X X X X X X X X X

YYYYMMDD X X X X X X X X X

Symbolic
Variable

Application Agent Rule Type

CON EOB SCH WKT LOG
(ACS)

LOG
(ACD)

LOG
(RCS)

LOG
(RCD)

LOG
(ACQ)

1 CON=Console
EOB=End of Batch
SCH=Scheduler
WKT=Wake Up Terminate

2 LOG=Logging
ACS=Auto Connect Summary Log Record
ACD=Auto Connect Detail Log Record
RCS=Remote Connect Summary Log Record
RCD=Remote Connect Detail Log Record
ACQ=Auto Connect Queue Log Record
Connect:Enterprise for z/OS Application Agents and User Exits Guide 49

Chapter 2 Creating and Verifying Application Agent Rules

COMMAND Instruction
You can use the COMMAND instruction to issue an operator console command. The COMMAND
instruction is valid for all rule types.

To execute the COMMAND instruction, all load libraries in the Connect:Enterprise JOBLIB or
STEPLIB must be APF authorized.

This instruction uses the z/OS Extended Multiple Console Support facility. Each time a
COMMAND instruction is processed, a temporary logical console ID is allocated. The console ID
is the value specified in the MBXNAME=xxxxxxxx parameter found in the *OPTIONS section of
the ODF (Options Definition File). If the MBXNAME parameter is not specified, a default value of
MAILBOX is used.

Each installation has the option of securing extended multiple console support through a vendor
security package such as RACF, CA-TOPSECRET, and CA-ACF2. Check with your security
administrator to determine if your site is using such a security package to restrict the use of extended
multiple console support. If so, the Connect:Enterprise name must be authorized to issue any
console commands specified in your application agent rules.

COMMAND Instruction Format
The following example illustrates the COMMAND instruction format. Default values for
parameters and subparameters are underlined.

Instruction Application Agent Rule Type

 Console End of Batch Scheduler Wake up
Terminate

Logging

COMMAND X X X X X

EXECUTE X X X X X

MESSAGE X X X X X

NOP X X X X X

ROUTE X

SNMPTRAP X X X X X

STATFLG X X

SUBMIT X X X X X

WAKEUP X

COMMAND TEXT=‘xxxx...xxxx’,
ERROR=CONTINUE|QUIT
50 Connect:Enterprise for z/OS Application Agents and User Exits Guide

Instructions
COMMAND Instruction Parameters
The following table describes the COMMAND instruction parameters:

EXECUTE Instruction
Use the EXECUTE instruction to execute a user-written program. The EXECUTE instruction is
valid for all rule types.

Connect:Enterprise loads the user program into memory for each execution. A branch instruction
passes control to the program. User-written programs do not have to be reentrant. If you need for a
user-written program to maintain information from one invocation to another, use the Initialization
Exit Word to obtain and point to common storage. Refer to the documentation on the Initialization
Exit in Chapter 3, Using Connect:Enterprise Online Exits. Because multiple copies of a
user-written program execute simultaneously, use caution when updating information in common
storage.

EXECUTE Instruction Format
The following describes the EXECUTE instruction format. Default values for parameters and
subparameters are underlined.

Parameter Definition

TEXT=‘xxxx....xxxx’ Required. Specifies a console command, up to 112 bytes in length, to
issue. You must enclose the value in single quotes. Any symbolic
parameters embedded in the command are replaced by the proper values.
This parameter is case sensitive.
If the console command that is issued is a Connect:Enterprise command,
Connect:Enterprise must run as a started task with MODIFY=YES
specified in the ODF.
To issue a command to Connect:Enterprise, the COMMAND text can use
symbolic substitution to supply the Connect:Enterprise started task name.
For example:
TEXT=’F &STCNAME,$$CONNECT L=ACCTING ID=&IDFIELD’

ERROR=CONTINUE | QUIT Optional. Indicates the action for Connect:Enterprise to take if the
command is not successfully issued.
CONTINUE = specifies that the next instruction executes.
QUIT = specifies that no subsequent instructions execute.

EXECUTE PROGRAM=xxxxxx,
ERROR=CONTINUE|QUIT
Connect:Enterprise for z/OS Application Agents and User Exits Guide 51

Chapter 2 Creating and Verifying Application Agent Rules
EXECUTE Instruction Parameters
The following table describes the EXECUTE instruction parameters:

Application Agent Parameters Passed to User-Specified Programs
Parameters passed to the user-specified program are addressed by register 1. The parameters and
contents of the data field pointed to by the parameters for each type of application agent are
discussed in the following sections.

Console Application Agent Parameters
The following table lists the parameters passed from the Console application agent:

End of Batch Application Agent Parameters

The following table lists the parameters passed from the End of Batch application agent:

Parameter Definition

PROGRAM=xxxxxxxx Required. Specifies the name of a user-written program that is called
when this rule is executed. Link each program as a separate load
module. This parameter is case sensitive.

ERROR=CONTINUE | QUIT Optional. Indicates the action for Connect:Enterprise to take if the
program returns a non-zero return code.
CONTINUE = specifies that the next instruction executes.
QUIT = specifies that no subsequent instructions execute.

R1 Points to
Parameter List

Contains Address of Data Field Contents

+0(4) Fullword return code A fullword return code field which the user program can set.
Any non-zero value is treated as an error condition.

+4(4) C$CON control block Message text parsed into words

+8(4) Initialization Exit Word A fullword containing the information or address returned
from the Initialization Exit. This value is X’00’ if no
Initialization Exit is used.

R1 Points to
Parameter List

Contains Address of Data Field Contents

+0(4) Fullword return code A fullword return code field which the user program can set.
Any non-zero value is treated as an error condition.
Note: The user program can update only the return

code.
52 Connect:Enterprise for z/OS Application Agents and User Exits Guide

Instructions
Logging Application Agent Parameters

The following table lists the parameters passed from the Logging application agent:

+4(4) Batch Control Record 4-byte address of a copy of the Batch Control Record
(M$BCREC Macro)

+8(4) Initialization Exit Word A fullword containing the information or address returned
from the Initialization Exit. This value is X’00’ if no
Initialization Exit is used.

R1 Points to
Parameter List

Contains Address of Data Field Contents

+0(4) Fullword return code A fullword return code field which the user program can set.
Any non-zero value is treated as an error condition.
Note: The user program can update only the return

code.

+4(4) Log Function Type 1-byte Log Function Type
C’1’ = Put New Log Record
C’2’ = Update Log Record

+8(4) Address of Log Record
Key

18-byte Log Record Key
1st byte C’A’ = Auto Connect
1st byte C’B’ = Remote Connect
1st byte C’D’ = Auto Connect Queue

+12(4) Address of Log Record
Data

4-byte address of a copy of the Log Record.
Refer to the M$ACREC macro for the Auto Connect DSECT.
Refer to the M$LOGB macro for the Remote Connect
DSECT.
Refer to the M$DCREC macro for the Auto Connect Queue
DSECT.

+16(4) Address of Log Record
Data Length

Halfword length of data portion of the log record.

+20(4) Initialization Exit Word A fullword containing the information or address returned
from the Connect:Enterprise Initialization Exit. This value is
X’00’ if no Initialization Exit is used.

R1 Points to
Parameter List

Contains Address of Data Field Contents
Connect:Enterprise for z/OS Application Agents and User Exits Guide 53

Chapter 2 Creating and Verifying Application Agent Rules
Scheduler Application Agent Parameters

The following table lists the parameters passed from the Scheduler application agent:

Wake Up Terminate Application Agent Parameters

The following table lists the parameters passed from the Wake Up Terminate application agent:

MESSAGE Instruction
Use the MESSAGE instruction to issue a console message. The MESSAGE instruction is valid for
all rule types.

R1 Points to
Parameter List

Contains Address of Data Field Contents

+0(4) Fullword return code A fullword return code field which the user program can set.
Any non-zero value is treated as an error condition.
Note: The user program can update only the return

code.

+4(4) Initialization Exit Word A fullword containing the information or address returned
from the Initialization Exit. This value is X’00’ if no
Initialization Exit is used.

R1 Points to
Parameter List

Contains Address of Data Field Contents

+0(4) Fullword return code A fullword return code field which the user program can set.
Any non-zero value is treated as an error condition.
Note: The user program can update only the return

code.

+4(4) Input Parameter Structure
GDS Header

4-byte address of a copy of the Application Agent Request
Header (A$GDS Macro)

+8(4) Input Parameter Structure
Header

4-byte address of a copy of the Application Agent Request
Header (C$H00 Macro)

+12(4) Input Parameter Structure
Trailer

4-byte address of a copy of the Application Agent Request
Trailer (C$WKT Macro)

+16(4) Initialization Exit Word A fullword containing the information or address returned
from the Connect:Enterprise Initialization Exit. This value is
X’00’ if no Initialization Exit is used.
54 Connect:Enterprise for z/OS Application Agents and User Exits Guide

Instructions
MESSAGE Instruction Format
The following example illustrates the MESSAGE instruction format. Default values for parameters
and subparameters are underlined.

MESSAGE Instruction Parameters
The following table describes the MESSAGE instruction parameters:

MESSAGE TEXT=‘xxxx...xxxx’,
ROUTCODE=(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),
DESCCODE=(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),
CONEVENT=YES|NO,
ERROR=CONTINUE|QUIT

Parameter Definition

TEXT=‘xxxx....xxxx’ Required. Specifies a user-defined console message of a maximum of
125 bytes. You must enclose the message in single quotes. Any
symbolic parameters embedded in the message are replaced by the
proper values. The message is routed to the operator console by
default. The message is not prefixed with a message number, so you
may want to assign your own in the first 8 bytes of the text. This
parameter is case sensitive.

ROUTCODE=(1,2,3,4,5,6,7,8,9,
10,11,12,13,14,15,16)

Optional. Specifies one or more routing codes to use when issuing the
message. Delimit the codes with commas and enclose them in
parentheses.
The values of the codes follow:
1 = master console action
2 = master console information
3 = tape pool
4 = direct access pool
5 = tape library
6 = disk library
7 = unit record pool
8 = teleprocessing control
9 = system security
10 = system error/maintenance
11 = programmer information
12 = emulators
13 = reserved for user’s choice
14 = reserved for user’s choice
15 = reserved for user’s choice
16 = reserved for user’s choice
Connect:Enterprise for z/OS Application Agents and User Exits Guide 55

Chapter 2 Creating and Verifying Application Agent Rules
NOP Instruction
The NOP instruction is a null instruction and performs no activity (no operation). The NOP
instruction is valid for all rule types.

Use the NOP instruction to selectively make exclusions from generic selection criteria. To
implement this use, define a rule that contains only the NOP instruction. Place the specific SELECT
statements to exclude from the generic selection before the generic selection statement.

DESCCODE=(1,2,3,4,5,6,7,8,9,
10,11,12,13,14,15,16)

Optional. Specifies one or more descriptor codes to use when issuing
the message. Delimit the codes with commas and enclose them in
parentheses.
The value of the codes follow:
1 = system failure
2 = immediate action required
3 = eventual action required
4 = system status
5 = immediate command response
6 = job status
7 = application/programmer response
8 = out-of-line message
9 = operator request
10 = dynamic status displays
11 = critical eventual action required
12 = reserved for future use
13 = reserved for future use
14 = reserved for future use
15 = reserved for future use
16 = reserved for future use

CONEVENT=YES|NO Indicates whether the message will cause the Console application
agent to be invoked. The default value, NO, specifies that the message
will not cause the Console application agent to be invoked.
YES specifies that the message will cause the Console application
agent to be invoked. In addition, a Console agent rule must be coded
with a SELECT statement specifying the message ID in the MSG01
parameter; otherwise, the invoked Console application agent will not
process any instructions for this message. See Detecting Application
Agent Loops on page 97 for more information.

ERROR=CONTINUE | QUIT Optional. Indicates the action for Connect:Enterprise to take if the
command is not successfully issued.
CONTINUE = specifies that the next instruction executes.
QUIT = specifies that no subsequent instructions execute.

Parameter Definition
56 Connect:Enterprise for z/OS Application Agents and User Exits Guide

Instructions
You can also use the NOP instruction with the application agent trace facility. The trace report
displays application agent requests, but no activity is performed.

The following example illustrates the NOP instruction format. It has no parameters.

ROUTE Instruction
The ROUTE instruction tells Connect:Enterprise to sign on to the Connect:Direct node, submit a
Process to Connect:Direct, and sign off from the Connect:Direct node. The ROUTE instruction is
valid for the End-of-Batch rule type.

ROUTE Instruction Format
The following example illustrates the ROUTE instruction format. Default values for parameters and
subparameters are underlined.

NOP

ROUTE PROC=membername
PROCDSN=‘filename[(membername)]’,
PNODE=‘primary_nodename’,
PNODEID=(userid,password),
SNODE=‘secondary_nodename’,
SNODEID=(userid,password),
TODSN=‘filename[(membername)]’,
FTYPE=filetype,
PROFDSN=‘filename[(membername)]’,
NETMAP=‘filename[(membername)]’,
NEWNAME=‘alias_process_name’,
PRTY=nn,
CNFMFIL=’filename[(membername)]’
RPTSFIL='filename[(membername)]',
CLASS=nnn,
CASE=YES|NO,
ESF=NO|YES,
NOTIFY=userid|%USER,
SIGNONUID=(userid,password),
LOCAPPL=APPLID_prefix,
LOGMODE=logmode,
MBAPPL=APPC_APPL_ID,
BUFSIZE=nnnnn,
MAILBOXUID=(userid,password),
TRANSPORT=SNA|TCP,nnnnn,nnn.nnn.nnn.nnn
ODISP='disp',
ODCB='dcb-parameter-string',
OBLKSIZE='blksize',
ODSORG='dsorg',
OLRECL='lrecl',
ORECFM='recfm',
OSPACE='space',
OUNIT='unit',
ERROR=CONTINUE|QUIT
Connect:Enterprise for z/OS Application Agents and User Exits Guide 57

Chapter 2 Creating and Verifying Application Agent Rules
If a value needs to maintain lowercase, enclose the characters in lowercase within single quotes and
set the keyword, CASE, to YES. The following format example illustrates how to specify lowercase
values.

ROUTE Instruction Parameters
The following table describes the ROUTE instruction parameters:

ROUTE PROC=membername
...
 PNODEID=(‘userid’,’password’)
 SNODEID=(‘userid’,’password’)
 SIGNONUID=(‘userid’,’password’)

CASE=YES
...

Parameter Definition

PROC=membername Specifies the member name that contains the Connect:Direct
Process to submit for the EXTRACT (the MB#EXT Process). The
Process member resides in the //DMPUBLIB DD data set
allocated by Connect:Enterprise.
Note: You must specify either this parameter or the

PROCDSN parameter, but not both.

PROCDSN=filename[(membername)] Specifies the name of a sequential data set or a member of a
partitioned data set containing the Connect:Direct Process to
submit for the EXTRACT. This data set is dynamically allocated
when the ROUTE instruction is executed.
Note: You must specify either this parameter or the PROC

parameter, but not both.

PNODE=primary_nodename Optional. The 1–16 character Connect:Direct node name where
the SUBMIT Process is submitted (the primary node). If you omit
this parameter, the default is the Connect:Direct node defined as
the local node in the DMNETMAP DD data set allocated in the
Connect:Enterprise JCL. Either the DMNETMAP DD statement
must point to a valid NETMAP data set or you must specify the
NETMAP parameter.
Note: Connect:Enterprise must have access to the

Connect:Direct NETMAP data set.

PNODEID=(userid,password) Optional. Specifies the security information used to sign onto the
primary node, if required. It consists of the user ID, followed by
the password. Enclosing the ID and password in single quotation
marks enforces lowercase values, for example,
PNODEID=(‘userid’,’password’).

SNODE=secondary_nodename Optional. Specifies the 1–16 character secondary node to use in
the SUBMIT Process. This is usually the Connect:Direct node
where the batch is sent.
58 Connect:Enterprise for z/OS Application Agents and User Exits Guide

Instructions
SNODEID=(userid,password) Optional. The security information to sign onto the secondary
node, if required. It consists of the user ID, followed by the
password. Enclosing the ID and password in single quotation
marks enforces lowercase values, for example,
SNODEID=(‘userid’,’password’).

TODSN=filename[(membername)] Optional. Specifies the name to assign to the file created on the
Connect:Direct node. The name must follow Connect:Direct file
naming conventions.
You can use symbolic values in the file name.
Connect:Enterprise replaces the strings in the file name with the
actual values. For a list of valid symbolic values, see the
Symbolic Substitution on page 36.

FTYPE=file type Optional. Specifies the file type parameter for the file created on
the Connect:Direct node. See the Connect:Direct Administration
Guide for valid file types.

PROFDSN=filename[(membername)] Optional. Specifies the data set and member name of the
EXTRACT profile that Connect:Direct uses to extract the batch
from Connect:Enterprise. Only Connect:Direct accesses this data
set. You do not have to allocate it to the Connect:Enterprise
address space.

NETMAP=filename[(membername)] The name of the Connect:Direct NETMAP to use. This parameter
enables you to use different NETMAPS for different ROUTE
instructions.
Note: If a DMNETMAP DD statement is not specified in the

Connect:Enterprise JCL, this parameter is required;
otherwise, it is optional.

NEWNAME=alias_process_name Optional. A Process alias used on all displays and reports of the
submitted Process.

PRTY=nn Optional. Specifies the 1–2 digit priority of the SUBMIT command.
Specify a number from 1–15. If you omit this keyword, no priority
is specified.
This parameter specifies the Process priority in the
Connect:Direct Transmission Control Queue. The higher the
number the higher the priority. Connect:Direct uses this priority
only for Process selection. It does not affect the priority during
transmission.

CNFMFIL=’filename[(membername)]’ Optional. Provides the fully qualified name of the file which
receives the Confirmation SYSPRINT report. You can use
symbolic values in the file name. Connect:Enterprise replaces the
strings in the file name with the actual values. For a list of valid
symbolic values, see Symbolic Substitution on page 36.

Parameter Definition
Connect:Enterprise for z/OS Application Agents and User Exits Guide 59

Chapter 2 Creating and Verifying Application Agent Rules
RPTSFIL='filename[(membername)]' Optional. Provides the fully qualified name of the file which
receives the REPORTS file (Connect:Enterprise offline
REPORTS DD file). This report is formatted the same as the
offline utility reports and includes all of the same detail information
provided in the STOUTL REPORTS DD. You can use symbolic
values in the file name. Connect:Enterprise replaces the strings
in the file name with the actual values. For a list of valid symbolic
values, see Symbolic Substitution on page 36.

CLASS=nnn Optional. Specifies the 1–3 digit CLASS that Connect:Direct uses
to select a node-to-node session. Specify a number from 1–255.

CASE=YES | NO Optional. Passed to the Connect:Direct Process. Specifies
whether parameters associated with accounting data, user ID,
password and data set names in the Connect:Direct SUBMIT
command and in the PROCESS are case sensitive. The valid
values are:
YES = Parameters are case sensitive.
NO = Parameters are not case sensitive. This is the default.

ESF=YES|NO Optional. Specifies whether the Extended Submit Facility (ESF) is
available for the current signon. The default value is NO. ESF
enables you to submit Processes even if the DTF is not active.
When signing on to a Connect:Direct DTF that is active, but with
no VTAM APPLID available, ESF enables signon to the DTF.
When you submit the Process, it is enabled and placed in the
TCQ.

NOTIFY=userid | %USER Optional. Specifies the user ID to notify of the request status.
Valid values are:
userid = Notifies the specified user ID to notify .
%USER = Notifies the user who submitted the Process.

SIGNONUID=(userid,password) Optional. Specifies the user ID and password to sign onto
Connect:Direct. Each value has a maximum length of 64
characters. Enclosing the ID and password in single quotation
marks enforces lowercase values, for example,
SIGNONUID=(‘userid’,’password’).

LOCAPPL=APPLID_prefix Optional. Specifies the APPLID prefix that the API uses to sign
onto Connect:Enterprise.

LOGMODE=logmode Optional. Specifies the logmode.

MBAPPL=APPC_APPL_ID Optional. Specifies the APPC APPLID that the API signs on to.

BUFSIZE=nnnnn Optional. Specifies the VTAM buffer size.

MAILBOXUID=(userid,password) Optional. Specifies the user ID and password to use to sign onto
Connect:Enterprise.

Parameter Definition
60 Connect:Enterprise for z/OS Application Agents and User Exits Guide

Instructions
TRANSPORT=SNA |
TCP,nnnnn,nnn.nnn.nnn.nnn

Optional. Specifies the protocol to use to sign onto
Connect:Direct. The valid values are:
SNA = Use SNA protocol.
TCP = Use TCP protocol.
If you use TCP, you must also specify the following
subparameters:

nnnnn = The port that the Connect:Direct TCP.API is listening
on.

nnn.nnn.nnn.nnn = The IP address of the open API port.

Parameter Definition
Connect:Enterprise for z/OS Application Agents and User Exits Guide 61

Chapter 2 Creating and Verifying Application Agent Rules
ODISP=(NEW|MOD|RPL|SHR]|[,KEEP
|CATLG]|[,KEEP|CATLG|DELETE])

Optional. Passed to the Connect:Direct Process. Specifies the
status and disposition of the EXTRACT OUTFILE file on the
receiving node Subparameters are as follows:
First Subparameter specifies the status of the file before the
Process executes. Only the OLD and RPL dispositions apply to
VSAM files. Valid options for this subparameter are as follows:

NEW specifies that the Process step will create the destination
file. NEW is the default.

OLD specifies that the destination file already exists. The
Process will have exclusive control of the file.

MOD specifies that the Process step will modify the file by
appending data at the end of the file.

RPL specifies that the destination file will replace any existing
file or if none exists, will allocate a new file.

SHR specifies that the destination file already exists. The file
can be used simultaneously by another job or Process.

Second Subparameter specifies the normal termination
disposition. Valid destination file dispositions are as follows:

KEEP specifies that the system keeps the file after the
Process step completes. If DISP=(NEW,KEEP), a volume
serial number must also be specified.

CATLG specifies that the system keeps the file after the
Process step completes and an entry is to be placed in the
catalog. CATLG is the default.

Third Subparameter specifies the disposition of the file after an
abnormal Process step termination resulting in a non-zero
completion code. This subparameter applies only to non-VSAM
files. Valid destination file dispositions are as follows:

KEEP specifies that the system keeps the file after the
Process step terminates abnormally or with a non-zero return
code.

CATLG specifies that the system keeps the file after the
Process step terminates abnormally and that an entry is to be
placed in the catalog.

DELETE specifies that the system deletes the file if the
Process step terminates abnormally.

Parameter Definition
62 Connect:Enterprise for z/OS Application Agents and User Exits Guide

Instructions
ODCB=([BLKZIZE=no.-bytes][,DSORG
=PS|PO][,LRECL=no.-bytes]
[,RECFM=record-fmt])

Optional. Passed to the Connect:Direct Process. Specifies the
attributes to be used in allocating the EXTRACT OUTFILE.
BLKSIZE = length in bytes of the block. The maximum block size
is 32,760 bytes.
DSORG = file organization. Supported file organizations are PO
and PS.
LRECL = record length in bytes.
RECFM = format of the records in the EXTRACT output file. Any
valid record format, such as F (Fixed), FA (Fixed ASA printer
control), FB (Fixed Block), FBA (Fixed Block ANSI carriage
control), FM (Fixed Machine code control character), U
(Undefined), V (Variable), VB (Variable Block), VBA (Variable
Block ASA printer control), VBM (Variable Block Machine code
control character), VS (Variable Spanned) and VBS (Variable
Block Spanned), can be specified.
Note: The ODCB= parameter allows the entire DCB

parameter string to be passed to the Connect:Direct
Process. Alternatively, any of the 4 DCB
subparameters (BLKSIZE, DSORG, LRECL, and
RECFM) may be individually passed to the
Connect:Direct Process by using the 4 corresponding
ROUTE instruction parameters:OBLKSIZE, ODSORG,
OLRECL, and ORECFM respectively.

OBLKSIZE=no.-bytes Optional. Specifies the length in bytes of the block. The maximum
length is 32,760 bytes.

ODSORG=PO|PS Optional. Specifies the file organization. Supported file
organizations are PO and PS.

OLRECL=no.-bytes Optional. Specifies the record length in bytes.

ORECFM=record-format Optional. Specifies the format of the records in the EXTRACT
OUTFILE.

Parameter Definition
Connect:Enterprise for z/OS Application Agents and User Exits Guide 63

Chapter 2 Creating and Verifying Application Agent Rules
OSPACE=(CYL|TRK|blk|av-rec-len,
(prim,[sec],dir),,[RLSE],[CONTIG],
[ROUND])

Optional. Specifies the amount of storage to be allocated for new
files on the destination node. If SPACE is specified, the DISP of
the destination file must be NEW. If SPACE is not specified in the
Process or the TYPE file, and the DISP is NEW, the output file is
allocated as follows:

If no secondary space allocation exists on the input file, then
the primary amount of space allocated (rather than used) is
used to allocate the NEW output file.

If secondary space exists on the input file, then space used
(rather than allocated) is used to allocate the output file and it
is allocated with secondary extents.

If the AVGREC parameter is also specified in the TO clause of
the COPY statement, the allocation of the data set is done on
a record size basis instead of TRK, CYL, or blk. The TRK,
CYL and blk subparameters are not valid when the AVGREC
parameter is specified in the COPY TO statement. Valid
choices for this parameter are as follows:

CYL = space will be allocated by cylinder
TRK = space will be allocated by track
blk = space will be allocated by the average block length of the
data. The system computes the number of tracks to be allocated.
If the subparameter ROUND is also specified, the system
allocates the space in cylinders. ROUND is preferred because
allocation is performed on cylinders in a device-independent
manner. If no space information is specified, allocation is in
blocks, due to device dependencies.
av-rec-length = average record length, in bytes, of the data. The
system computes the BLKSIZE and the number of tracks to
allocate. The record length must be a decimal value from
1-65535.
prim = primary allocation of storage (number of units)
sec = secondary allocation of storage (number of units)
dir = number of PDS directory blocks to be created in the file
RLSE =release of the unused storage allocated to the output file
CONTIG = storage for the primary allocation must be contiguous
ROUND= storage allocated by average block length is rounded to
an integral number of cylinders

OUNIT=([unit-address|device-type|
group-name]

Optional. Specifies the unit address, device type, or
user-assigned group name where the file resides or will reside.

ERROR=CONTINUE | QUIT Optional. Indicates the action for Connect:Enterprise to take if the
ROUTE instruction is not successfully issued. Valid values are:
CONTINUE = specifies that the next instruction executes.
QUIT = specifies that no subsequent instructions execute.

Parameter Definition
64 Connect:Enterprise for z/OS Application Agents and User Exits Guide

Instructions
Resolving Route Instruction Parameters When Communicating with Connect:Direct
When communicating with Connect:Direct, you control the value of certain variables sent from
Connect:Enterprise using the ROUTE instruction parameters listed in the following table. Column
one contains the ROUTE instruction parameter and column two lists the resulting text string that is
sent to Connect:Direct as part of the SIGNON and SUBMIT commands.

Parameter Keyword=value string used by Connect:Direct

NETMAP=’filename[(member-name)]’ NETMAP=filename[(member-name)]

SIGNONUID=(userid,password) USERID=(userid,password)

TRANSPORT=SNA |
TCP,nnnnn,nnn,nnn,nnn,nnn

TRANSPORT=SNA | TCP
COMADDR=nnnnn,nnn,nnn,nnn,nnn

PROC=member-name PROC=member-name

PROCDSN=’filename[(member-name)]’ DSN=filename[(member-name)]

PNODE=primary-nodename PNODE=primary-nodename

PNODEID=(userid,password) PNODEID=(userid,password)

SNODE=secondary-nodename SNODE=secondary-nodename

SNODEID=(userid,password) SNODEID=(userid,password)

NEWNAME=’alias-process-name’ NEWNAME=alias-process-name

PRIORITY=nn PRTY=nn

CLASS=nnn CLASS=nnn

NOTIFY=userid | %USER NOTIFY=userid | %USER

TODSN=’filename[(member-name)]’ &&TODSN=filename[(member-name)]

PROFDSN=’filename[(member-name)]’ &&PROFDSN=filename
&&PROFMEM=member

FTYPE=filetype &&FILETYP=filetype

LOCAPPL=applid-prefix &&LOCAPPL=applid-prefix

MBAPPL=appc-appl-id &&MBAPPL=appc-appl-id

LOGMODE-logmode &&LOGMODE=logmode

BUFFSIZE=nnnnn &&BUFFSIXE=nnnnn

MAILBOXUID=(userid,password) &&USERID=userid
&&PASSWORD=password
Connect:Enterprise for z/OS Application Agents and User Exits Guide 65

Chapter 2 Creating and Verifying Application Agent Rules
SNMPTRAP Instruction
Use the SNMPTRAP instruction to issue a SNMP V2 trap (a message that reports a problem or a
significant event, formatted and encoded as defined in RFC 1442, and sent as a UDP datagram) to
any IP address and port. The SNMPTRAP instruction is valid for all rule types.

SNMPTRAP Instruction Format
The following example illustrates the SNMPTRAP instruction format. Default values for
parameters and subparameters are underlined.

SNMPTRAP Instruction Parameters
The following table describes the SNMPTRAP instruction parameters:

Note: The remaining variables used by
Connect:Direct have no
corresponding Connect:Enterprise
ROUTE instruction parameter.
The values in these variables are
generated from the JCL or from the
VCF or ODF definition for each
SUBMIT command sent to
Connect:Direct.

&&RMTID=mailbox-id (source: VCF – BC$KYID)

&&BATCHNO=batch number (source: VCF – BC$KYBNO)

&&BATCHID=batchid (source: VCF – BC$BCHID)

&&MBNAME=mailbox-name (source: ODF – MBXNAME=)

&&VSERVER=server-name (source: JCL – SC$SUBSN)

&&VPF=vpf-filename (source: ODF – VPF=)

Note: UDP is a protocol which does not guarantee delivery of IP packets. Therefore, keep in mind that
there is a very low but non-zero probability that an SNMP trap can get lost in the Internet.
Unfortunately, Connect:Enterprise cannot affect this probability in any way.

SNMPTRAP TEXT='xxxx...xxxx',
IPADDR=hostname | nnn.nnn.nnn.nnn,
PORT=162 | nnnnn,
GROUP1=ALARM | STATUS,
GROUP2=9999 | nnnn,
ERROR=CONTINUE | QUIT

Parameter Definition

TEXT=‘string’ Required. Specifies a user-defined string of a maximum 254 bytes. You
must enclose the string in single quotes. Any symbolic parameters
embedded in the string are replaced by the proper values. The resolved
value can be up 1024 bytes. The text will be encoded into a trap varbind
pair, using OID 1.3.6.1.4.1.1733.4.5.11 which is defined in the
Management Information Base as ceSNMPTRAPtext. See the CE.MIB file
on the distribution tape.

Parameter Keyword=value string used by Connect:Direct
66 Connect:Enterprise for z/OS Application Agents and User Exits Guide

Instructions
SNMPTRAP Layout and Contents
The layout of a SNMP V2 trap is defined by RFC (Request for Comments, that is, Internet protocol
standards) 1442. Generally, the layout consists of a header followed by multiple varbind pairs, each
of which consists of an object identifier (OID) – a multilevel dotted decimal string – and a data
object. The prefix for all Sterling Commerce OIDs is 1.3.6.1.4.1.1733. The next level determines
the Sterling Commerce product. For Connect:Enterprise, it is 4. OIDs are given labels in a
Management Information Base (MIB). A copy of the entire Sterling Commerce MIB is in the
CE.MIB file on the distribution tape, but the portions not relating to Connect:Enterprise may be out
of date. Contact Sterling Commerce Customer Support if you suspect you may not have the most
recent MIB. The relevant parts of the Connect:Enterprise MIB are summarized in the following
table:

IPADDR=hostname |
nnn.nnn.nnn.nnn

Required. Specifies the IPADDR to send the trap to. It can be either in
dotted decimal format or a more user-friendly hostname format. The
maximum length is 64 bytes. If rule tracing is active, both formats are
shown. If the dotted decimal format is specified, the first value in a
reverse-hostname lookup is shown.

PORT=162 | nnnnn Optional. Specifies the port number to send the trap to. It must be a
number from 1 to 65535.

GROUP1=ALARM | STATUS Optional. Specifies the first of two parameters which provides partial user
specification of the snmpTrapOID data object (which is an OID). This
parameter sets a middle level of the snmpTrapOID OID to either 1 or 2.
ALARM is resolved to the digit 1 and STATUS to 2, thus providing a way to
categorize a trap using these two SNMP standard types. If desired,
user-defined labels for the resulting snmpTrapOID OID can be added to a
MIB imported by the trap receiver. Sterling Commerce does not distribute
labels for the nearly 100,000 possible application agent snmpTrapOID
OIDs that can be generated by combinations of the agent type, GROUP1
and GROUP2 parameters.

GROUP2=9999 | nnnn Optional. Specifies the second of two parameters which provides partial
user specification of the snmpTrapOID data object (which is also an OID).
This parameter sets the final level of the snmpTrapOID OID to a number
between 1 and 9999. If desired, user-defined labels for the resulting
snmpTrapOID OID can be added to a MIB imported by the trap receiver.
Sterling Commerce does not distribute labels for the nearly 100,000
possible application agent snmpTrapOID OIDs that can be generated by
combinations of the agent type, GROUP1 and GROUP2 parameters.

ERROR=CONTINUE | QUIT Optional. Indicates the action for Connect:Enterprise to take if the
SNMPTRAP instruction is not successfully issued. CONTINUE specifies
that the next instruction executes. QUIT specifies that no subsequent
instructions execute.

Parameter Definition
Connect:Enterprise for z/OS Application Agents and User Exits Guide 67

Chapter 2 Creating and Verifying Application Agent Rules
The SNMP trap contains the following varbind pairs (in order of appearance):

Label Object Identifier (OID)

centerpriseOS390 1.3.6.1.4.1.1733.4

ceAlarmTraps 1.3.6.1.4.1.1733.4.1

ceApplAgentsAlarm 1.3.6.1.4.1.1733.4.1.1

ceAAeobAlarm 1.3.6.1.4.1.1733.4.1.1.1

ceAAlogAlarm 1.3.6.1.4.1.1733.4.1.1.2

ceAAwktAlarm 1.3.6.1.4.1.1733.4.1.1.3

ceAAschAlarm 1.3.6.1.4.1.1733.4.1.1.4

ceAAconAlarm 1.3.6.1.4.1.1733.4.1.1.5

ceStatusTraps 1.3.6.1.4.1.1733.4.2

ceApplAgentsStatus 1.3.6.1.4.1.1733.4.2.1

ceAAeobStatus 1.3.6.1.4.1.1733.4.2.1.1

ceAAlogStatus 1.3.6.1.4.1.1733.4.2.1.2

ceAAwktStatus 1.3.6.1.4.1.1733.4.2.1.3

ceAAschStatus 1.3.6.1.4.1.1733.4.2.1.4

ceAAconStatus 1.3.6.1.4.1.1733.4.2.1.5

ceTrapMembers 1.3.6.1.4.1.1733.4.5

ceDateTimeTrapSent 1.3.6.1.4.1.1733.4.5.3

ceMVSsystemName 1.3.6.1.4.1.1733.4.5.4

ceJobName 1.3.6.1.4.1.1733.4.5.5

ceJobId 1.3.6.1.4.1.1733.4.5.6

ceApplAgentType 1.3.6.1.4.1.1733.4.5.7

ceRuleMemberName 1.3.6.1.4.1.1733.4.5.8

ceRelativeSelectStmt 1.3.6.1.4.1.1733.4.5.9

ceRuleName 1.3.6.1.4.1.1733.4.5.10

ceSNMPTRAPtext 1.3.6.1.4.1.1733.4.5.11

ceVersion 1.3.6.1.4.1.1733.4.5.12

Label Object Identifier (OID) Data Object

sysUpTime 1.3.6.1.2.1.1.3.0 The number of seconds Connect:Enterprise
has been up
68 Connect:Enterprise for z/OS Application Agents and User Exits Guide

Instructions
STATFLG Instruction
Use the STATFLG instruction to change the status flags for the selected batches on the VSAM
batch files. The batch status is changed immediately, prior to executing the next instruction.

The STATFLG instruction is valid for the End of Batch and Wake Up Terminate rule types.

STATFLG Instruction Format
The following example illustrates the STATFLG instruction format. Default values for the
parameters and subparameters are underlined.

snmpTrapOID 1.3.6.1.6.3.1.1.4.1.0 The trap OID generated from the agent type,
GROUP1 and GROUP2

ceDateTimeTrapSent 1.3.6.1.4.1.1733.4.5.3 The local system date, time and UTC offset
from CVTTZ when the trap was sent

ceSNMPTRAPtext 1.3.6.1.4.1.1733.4.5.11 The resolved value of the SNMPTRAP TEXT
parameter

ceMVSsystemName 1.3.6.1.4.1.1733.4.5.4 The MVS system name from CVTSNAME

ceJobName 1.3.6.1.4.1.1733.4.5.5 The jobname of the Connect:Enterprise main
task

ceJobId 1.3.6.1.4.1.1733.4.5.6 The JES2 jobid of the Connect:Enterprise main
task

ceApplAgentType 1.3.6.1.4.1.1733.4.5.7 The application agent type (CON, EOB, LOG,
SCH, WKT)

ceRuleMemberName 1.3.6.1.4.1.1733.4.5.8 The current rule set member name

ceRelativeSelectStmt 1.3.6.1.4.1.1733.4.5.9 The matching SELECT statement number in
the rule set

ceRuleName 1.3.6.1.4.1.1733.4.5.10 The name of the RULE containing the
SNMPTRAP instruction

ceVersion 1.3.6.1.4.1.1733.4.5.12 A string containing the Connect:Enterprise
version

Label Object Identifier (OID) Data Object
Connect:Enterprise for z/OS Application Agents and User Exits Guide 69

Chapter 2 Creating and Verifying Application Agent Rules
STATFLG Instruction Parameters
The following table describes the STATFLG instruction parameters. You must specify either
ONFLAGS or OFFFLAGS. Both parameters can be used in a single STATFLG instruction. If both
are used, the flags are processed in the order specified in the instruction.

STATFLG ONFLAGS=(REQUESTABLE,DELETED,TRANSMITTED,EXTRACTED,MULTXMIT),
OFFFLAGS=(REQUESTABLE,DELETED,TRANSMITTED,EXTRACTED,MULTXMIT),
ERROR=CONTINUE|QUIT

or (short form)

STATFLG ONFLAGS=(R,D,T,E,M),
OFFFLAGS=(R,D,T,E,M),
ERROR=CONTINUE|QUIT

or (short form)

STATFLG ON=(R,D,T,E,M),
OFF=(R,D,T,E,M),
ERROR=CONTINUE|QUIT

Note: If you turn on the ‘M’ (MULTXMIT) flag, the ‘R’ (REQUESTABLE) flag is
automatically turned on. If you turn off the ‘R’ (REQUESTABLE) flag, the ‘M’
(MULTXMIT) flag is automatically turned off.

Parameter Definition

ONFLAGS Optional. Specifies which batch status flags are turned on for the
selected batch. Separate multiple values by commas.
REQUESTABLE = A remote site can request the batch or a
host-initiated Auto Connect can transmit the batch.
DELETED = The batch is flagged for deletion.
TRANSMITTED = The batch was transmitted to a remote site.
EXTRACTED = The batch was extracted from the VSAM batch files.
MULTXMIT = The batch is available for multiple transmission and
transmission to any remote site.
Note: You must specify ONFLAGS or OFFFLAGS. Both can be

used in a single instruction.
70 Connect:Enterprise for z/OS Application Agents and User Exits Guide

Instructions
SUBMIT Instruction
Use the SUBMIT instruction to submit a job to the internal reader. The SUBMIT instruction is valid
for End of Batch, Wake Up Terminate, and Logging rule types.

SUBMIT Instruction Format
The following example illustrates the SUBMIT instruction format. Default values for parameters
and subparameters are underlined.

SUBMIT Instruction Parameters
The following table describes the SUBMIT instruction parameters:

OFFFLAGS Optional. Specifies which batch status flags are turned off for the
selected batch. Separate multiple values by commas.
REQUESTABLE = A remote site can request the batch or a
host-initiated Auto Connect can transmit the batch.
DELETED = The batch is flagged for deletion.
TRANSMITTED = The batch was transmitted to a remote site.
EXTRACTED = The batch was extracted from the VSAM batch files.
MULTXMIT = The batch is available for multiple transmission and
transmission to any remote site.
Note: You must specify ONFLAGS or OFFFLAGS. Both can be

used in a single instruction.

ERROR=CONTINUE | QUIT Optional. Indicates the action for Connect:Enterprise to take if the
STATFLG instruction is not successfully issued.
CONTINUE = specifies that the next instruction executes.
QUIT = specifies that no subsequent instructions execute.

SUBMIT MEMBER=xxxxxxxx,
ERROR=CONTINUE|QUIT

Parameter Definition

MEMBER=xxxxxxxx Required. Specifies the member in the //RULESJCL DD data set that is
read and written to the internal reader. Any symbolic parameters
embedded in columns 1–71 of the JCL are replaced by the proper values.
This parameter is case sensitive.

ERROR=CONTINUE | QUIT Optional. Indicates the action for Connect:Enterprise to take if the JCL
cannot be submitted to the internal reader.
CONTINUE = specifies that the next instruction executes.
QUIT = specifies that no subsequent instructions execute.

Parameter Definition
Connect:Enterprise for z/OS Application Agents and User Exits Guide 71

Chapter 2 Creating and Verifying Application Agent Rules
WAKEUP Instruction
Use the WAKEUP instruction to indicate that Wake Up Initiate processing is started for a specific
batch. A Wake Up notification is sent to CICS for the batch just added to Connect:Enterprise. The
parameters are passed to CICS in the Wake Up request message (C$W00 IPS).

The WAKEUP instruction is valid for the End of Batch rule type.

WAKEUP Instruction Format
The following example illustrates the WAKEUP instruction format. Default values for parameters
and subparameters are underlined.

WAKEUP Instruction Parameters
The following table describes the WAKEUP instruction parameters:

WAKEUP CICSDEFN=TRANSACTION|PROGRAM,
 CICSSYSID=xxxx,
 CICSPGMNM=xxxxxxxx,
 CICSTRANID=xxxx,
 CICSTERMID=xxxx,
 CICSUSER=xxxxxxxx,
 ERROR=CONTINUE|QUIT

Parameters Definition

CICSDEFN=TRANSACTION/PROGRAM Required. Informs CICS to execute either a transaction or a
program with this notification.

CICSSYSID=xxxx Required. Specifies the 4-byte ID of the CICS system that
receives this notification. This value is defined in the CICS
System Initialization Table uniquely identifying the CICS
region.

CICSPGMNM=xxxxxxxx Optional. Specifies the 8-byte program name to invoke as a
result of this notification.
Note: This parameter is required if

CICSDEFN=PROGRAM.

CICSTRANID=xxxx Optional. Specifies the 4-byte transaction ID to invoke as a
result of this notification.
Note: This parameter is required if

CICSDEFN=TRANSACTION.

CICSTERMID=xxxx Optional. Specifies the 4-byte terminal ID that is passed with
this notification. This parameter is only valid if
CICSDEFN=TRANSACTION.

CICSUSER=xxxxxxxx Specifies the 8-byte user ID that is passed with this
notification. This parameter is only valid if
CICSDEFN=TRANSACTION and CICSTERMID is specified.
72 Connect:Enterprise for z/OS Application Agents and User Exits Guide

SELECT Statement
SELECT Statement
This section describes the parameters that you can use with the SELECT statement and the
guidelines for creating SELECT statements:

✦ In addition to the RULE parameter, you must specify a minimum of one parameter for each
SELECT statement that you define.

✦ Some parameter values are case sensitive and are noted as such. Case sensitive means that
upper and lower case values are retained. For example, if you specify the Mailbox ID selection
parameter as ID=testID01, a match only occurs for testID01, not TESTID01, Testid01, and so
on.

✦ Specify each SELECT statement to point to up to eight rules. You can also specify multiple
SELECT statements to reference a single rule.

✦ To ensure accurate processing, list the SELECT statements that contain detailed selection
criteria before the SELECT statements that contain general selection criteria.

The following table lists all SELECT statement parameters and indicates the type of application
agent rule that for which each is valid. Logging rules are further classified by log record type
(RECTYPE=). O indicates the parameter is optional; R indicates the parameter is required.

ERROR=CONTINUE | QUIT Optional. Indicates the action for Connect:Enterprise to take if
the WAKEUP instruction cannot execute.
CONTINUE = specifies that the next instruction executes.
QUIT = specifies that no subsequent instructions execute.

SELECT Parameter Application Agent Rule Type

CON EOB SCH WKT LOG
(ACS)

LOG
(ACD)

LOG
(RCS)

LOG
(RCD)

LOG
(ACQ)

ACFUNC O

ACQREASON O

1 CON=Console
EOB=End of Batch
SCH=Scheduler
WKT=Wake Up Terminate

2 LOG=Logging
ACS=Auto Connect Summary Log Record
ACD=Auto Connect Detail Log Record
RCS=Remote Connect Summary Log Record
RCD=Remote Connect Detail Log Record
ACQ=Auto Connect Queue Log Record

Parameters Definition
Connect:Enterprise for z/OS Application Agents and User Exits Guide 73

Chapter 2 Creating and Verifying Application Agent Rules
BATCHID O O O O

CALENDAR O

CASE_SENSITIVE O O O O O O O

CICSPGMNM O

CICSTRANID O

DESCRIPTION O

FAILCODE O O O

ID O O O O

LINE O O O O

LISTNAME O O O

LOGFUNC O O O O O

MSG01 R

MSG02–MSG96 O

ORIGIN O

RCFUNC O

RECTYPE R R R R R

REMOTE O O O O O

RTNCODE O

RTYPE O O O O O

RULE R R R R R R R R R

STATOR O O

STATUS O O

TIME O

SELECT Parameter Application Agent Rule Type

CON EOB SCH WKT LOG
(ACS)

LOG
(ACD)

LOG
(RCS)

LOG
(RCD)

LOG
(ACQ)

1 CON=Console
EOB=End of Batch
SCH=Scheduler
WKT=Wake Up Terminate

2 LOG=Logging
ACS=Auto Connect Summary Log Record
ACD=Auto Connect Detail Log Record
RCS=Remote Connect Summary Log Record
RCD=Remote Connect Detail Log Record
ACQ=Auto Connect Queue Log Record
74 Connect:Enterprise for z/OS Application Agents and User Exits Guide

SELECT Statement
ULTEXT01–
ULTEXT96

O

WILD_CARD O O O O O O O

WILD_CARD_
MULTI_CHAR

O O O O O O O

WILD_CARD_
SINGLE_CHAR

O O O O O O O

SELECT Parameter Application Agent Rule Type

CON EOB SCH WKT LOG
(ACS)

LOG
(ACD)

LOG
(RCS)

LOG
(RCD)

LOG
(ACQ)

1 CON=Console
EOB=End of Batch
SCH=Scheduler
WKT=Wake Up Terminate

2 LOG=Logging
ACS=Auto Connect Summary Log Record
ACD=Auto Connect Detail Log Record
RCS=Remote Connect Summary Log Record
RCD=Remote Connect Detail Log Record
ACQ=Auto Connect Queue Log Record
Connect:Enterprise for z/OS Application Agents and User Exits Guide 75

Chapter 2 Creating and Verifying Application Agent Rules
SELECT Statement Format
The following describes the SELECT statement format and parameters. Default values for
parameters and subparameters are underlined. A description of each parameter and subparameter
follows the SELECT statement format.

SELECT Statement Parameters
The following are required and optional parameters you can use in SELECT statements:

SELECT RULE=(xxxxxxxx[xxxxxxxx,....,xxxxxxxx])
†RECTYPE=ACSUMMARY|ACDETAIL|ACQUEUE|RCSUMMARY|RCDETAIL,
ACFUNC=(CONN,DISC,LOGON,RECV,SEND,SESSEN,SESSST,ULOG),
ACQREASON=(LINE,ACTIVE,SESSION,THREAD),
BATCHID=‘xxxx....xxxx’|"yyyy....yyyy",
CALENDAR=xxxxxxxx
CICSPGMNM=xxxxxxxx
CICSTRANID=xxxx
DESCRIPTION=’xxx.xxx’
FAILCODE=nnn|nnn–nnn|(nnn,...,nnn),
ID=xxxxxxxx,
LINE=xxxxxxxx,
LISTNAME=xxxxxxxx,
LOGFUNC=(NEW,UPDATE),
MSG01=xxxxxxxx|(xxxxxxxx,xxxxxxxx...)
MSG02=xxxxxxxx|(xxxxxxxx,xxxxxxxx...)

...
MSG96=xxxxxxxx|(xxxxxxxx,xxxxxxxx...)
ORIGIN=ALL|EOBRULES|EOBEXIT
RCFUNC=(ADD,CONN,DEL,DIR,DISC,NOADD,REQ,SIGNON),
REMOTE=xxxxxxxx
RTNCODE=nnnn|nnnn–nnnn|(nnnn,...,nnnn)
RTYPE=(BSC,FTP,SNA)
STATOR=(ADDED,BSC,COLLECTED,DELETE,EBCDIC,EXTRACTED,
FILE_STUCTURE,FTP,INCOMPLETE,MULTXMIT,
NONTRANSMITTABLE,REQUESTABLE,SNA,SSL,
TRANSPARENT,TRANSMITTED,UNEXTRACTABLE)
STATUS=(ADDED,BSC,COLLECTED,DELETE,EBCDIC,EXTRACTED,
FILE_STUCTURE,FTP,INCOMPLETE,MULTXMIT,
NONTRANSMITTABLE,REQUESTABLE,SNA,SSL,
TRANSPARENT,TRANSMITTED,UNEXTRACTABLE)
TIME=hh:mm|(hh:mm,hh:mm...)
ULTEXT01=xxxxxxxx|(xxxxxxxx,xxxxxxxx...)

...
ULTEXT96=xxxxxxxx|(xxxxxxxx,xxxxxxxx...)

Parameters Definition

RULE=(xxxxxxxx[xxxxxxxx,
....,xxxxxxxx])

Required. Valid for all rules.
Specifies the rule names to process when a match occurs on all
criteria specified in the SELECT statement.
xxxxxxxx specifies the 1–8 character names of the rules to process. A
minimum of one rule name must be specified, but up to eight rules
can be listed. The rules are processed in the order specified.
76 Connect:Enterprise for z/OS Application Agents and User Exits Guide

SELECT Statement
RECTYPE=ACSUMMARY |
ACDETAIL | ACQUEUE |
RCSUMMARY | RCDETAIL

Required. Valid only for Logging rules.
Specifies the log record type to process. You can specify only one log
record type.
ACSUMMARY = Processes Auto Connect Summary records.
ACDETAIL = Processes Auto Connect Detail records.
ACQUEUE = Processes Auto Connect Queue records.
RCSUMMARY = Processes Remote Connect Summary records.
RCDETAIL = Processes Remote Connect Detail records.

ACFUNC=(SEND,RECV) Optional. Valid only for Logging rules and when
RECTYPE=ACDETAIL.
Specifies the Auto Connect function to perform.
Note: If this parameter is omitted, all function request types are

assumed. To reduce internal storage and other resource
utilization and overhead, it is recommended that you
specify which auto connect functions to perform.

CONN = Connect on control port (FTP only).
DISC = Disconnect on control port (FTP only).
LOGON = Processes USER and PASS commands (FTP only).
RECV = Performs batch collection.
SEND = Performs batch transmission.
SESSEN = Ends script execution (FTP only).
SESSST = Starts script execution (FTP only).
ULOG = Processes USERLOG command to log user data (FTP only)
Note: See Connect:Enterprise for z/OS Administration Guide for

more information on host commands used in script
processing and FTP auto connect sessions, including
USERLOG.

ACQREASON=(LINE,ACTIVE,
SESSION,THREAD)

Optional. Valid for Logging rules.
Specifies the reason for queueing the Auto Connect request. If
omitted, all Auto Connect queue reasons are assumed. Specify this
parameter only if RECTYPE=ACQUEUE.
ACTIVE = Selects Auto Connects queued because they were already
initiated and running.
LINE = Selects Auto Connects queued for BSC lines.
SESSION = Selects Auto Connects queued because no SNA session
was established.
THREAD = Selects Auto Connect queued because no FTP threads
were available.

Parameters Definition
Connect:Enterprise for z/OS Application Agents and User Exits Guide 77

Chapter 2 Creating and Verifying Application Agent Rules
BATCHID=’xxxx...xxxx’ |
“yyyy...yyyy”

Optional. Valid for End of Batch, Wake Up Terminate, and Logging
rules.
Specifies the specific or generic user batch ID of the batch or batches
to process. This parameter is case sensitive.
 ’xxxx...xxxx’ = Full user batch ID of the batch or batches to process.
Ensure that the user batch ID is 1–64 characters long and conforms
to the standards at your site. The user batch ID can contain blanks
and you must enclose it in single quotes.
“yyyy...yyyy” =Generic user batch ID used for selecting the batch or
batches for processing. Ensure that the generic user batch ID is 1–63
characters in length and conforms to the standards at your site. The
user batch ID can contain blanks and you must enclose it in double
quotes. BID= is the short form of this parameter.
Note: If you use this parameter for Logging rules, it is only valid

for RECTYPE=ACDETAIL | RCDETAIL.
Note: When selecting by batch ID, you may optionally use full

wildcard search capability, instead of performing an exact
string comparison on the 64-character Batch ID (or a
generic Batch ID prefix). When full wildcard support is used,
the BATCHID= value is treated as a pattern, in which
wildcard characters can be used to mask out one or more
portions of the Batch ID. To activate wildcard checking, the
WILD_CARD=BID parameter must be specified. See the
following parameters for a complete description on how to
activate wildcard checking:

 CASE_SENSITIVE

 WILD_CARD=

 WILD_CARD_MULTI_CHAR=

 WILD_CARD_SINGLE_CHAR=

CALENDAR=xxxxxxxx Optional. Valid only in a Scheduler Agent rule.
Specifies the 1 to 8-character name of a calendar defined in the ODF.
The calendar can specify dates or days of the week identified for
activation or exclusion. When a time of day occurs that matches a
value in the SELECT statement's TIME parameter, and the calendar
identifies the current date or day of the week for activation, it is
considered a match. If the time matches but the calendar identifies
the current date or day of the week for exclusion (exception day or
date), it is NOT considered a match. If omitted, only the time of day
determines when a match occurs. For more information on defining
calendars, refer to Chapter 7, Configuring *CALENDAR Records, in
the Connect:Enterprise for z/OS Administration Guide.

Parameters Definition
78 Connect:Enterprise for z/OS Application Agents and User Exits Guide

SELECT Statement
CASE_SENSITIVE=YES|NO Optional. Valid for End of Batch, Wake Up Terminate, and Logging
rules.
Specifies whether characters are to be treated as case-sensitive
when performing a wild card comparison. The default value is yes.
YES = Treats the tested string and mask pattern as case-sensitive,
that is, leaves the input value as is when performing the wildcard
comparison.
NO = Uppercases both the tested character string and the mask
pattern, prior to performing the wild card comparison.
Note: You must specify the WILD_CARD=BID parameter when

using this parameter.

CICSPGMNM=xxxxxxxx Optional. Valid only for Wake Up Terminate rules.
Specifies the 8-byte CICS program name that was invoked as a result
of the Wake Up notification. Specify a generic name with an asterisk,
such as CICSPGMNM=PGM99*.

CICSTRANID=xxxx Optional. Valid only for Wake Up Terminate rules.
Specifies the 4-byte CICS transaction ID that was invoked as a result
of the Wake Up notification. Specify a generic name with an asterisk,
such as CICSTRANID=TR*.

DESCRIPTION=’xxx...xxx’ Optional. Valid only for Scheduler Agents rules.
Specifies a 1–50 character string, which can be used to provide a
description of what the SELECT statement will process. The string
can contain blanks, if enclosed in quotes.
The description is displayed on the user interface Scheduler Selection
List panel used to invoke a Scheduler SELECT statement.

FAILCODE=nnn | nnn–nnn |
(nnn,.....,nnn)

Optional. Valid for Logging rules.
Specifies a 1–3 digit Auto Connect or Remote Connect failure code or
range of failure codes, as documented in Connect:Enterprise for z/OS
Messages and Codes Guide. Leading zeros are not required. Can
also include user-defined fail codes in the 240-255 range.
Note: The FAILCODE value of each PUT NEW ACSUMMARY

log record is 001 (connect process was started, but not
completed). Therefore, RECTYPE=ACSUMMARY with
LOGFUNC=NEW and FAILCODE=001 is not an error. This
combination of SELECT criteria occurs each time an Auto
Connect begins in Connect:Enterprise.

nnn = Specifies a connect failure code
nnn–nnn = Specifies a range of connect failure codes
nnn,....,nnn = Specifies a list of up to 16 failure codes.

Parameters Definition
Connect:Enterprise for z/OS Application Agents and User Exits Guide 79

Chapter 2 Creating and Verifying Application Agent Rules
ID=xxxxxxxx Optional. Valid for End of Batch, Wake Up Terminate, and Logging
rules.
Specifies the 1–8 byte Mailbox ID. Specify a generic name with an
asterisk, such as ID=BRCH*. The value of this parameter is case
sensitive.
Note: If used for Logging rules, this parameter is valid only for

RECTYPE=ACDETAIL | RCDETAIL.

LINE=xxxxxxxx Optional. Valid for End of Batch, Wake Up Terminate, and Logging
rules.
Specifies the 1–8 byte BSC line ID. Specify a generic name with an
asterisk, such as LINE=LINE0*. The value of this parameter is case
sensitive.
Note: If used for Logging rules, this parameter is valid only for

RECTYPE=ACDETAIL | RCDETAIL.

LISTNAME=xxxxxxxx Optional. Valid only for Logging rules.
Specifies the Auto Connect list name. Specify a generic name with an
asterisk, such as LISTNAME=LIST0*. The value of this parameter is
case sensitive.
Note: This parameter is valid only for RECTYPE=ACSUMMARY

| ACDETAIL | ACQUEUE.

LOGFUNC=(NEW,UPDATE) Optional. Valid only for Logging rules.
Specifies the log function type. If this parameter is omitted, both log
function types are assumed.
NEW = Specifies selection for a new log record.
UPDATE = Specifies selection for an update log record.
Note: To understand what function to base your selection on,

review the Log Exit Requirements on page 150.

MSG01=xxxxxxxx|(xxxxxxxx,
xxxxxxxx...)

Required. Valid only for in a Console Application Agent rules.
Specifies the first blank-delimited word in the message and is
commonly known as the message ID (MSGID). Specify 1–-16 words
(up to 125 bytes each), separated by commas and enclosed in
parentheses if more than one word is specified. The comparison is
not case sensitive. No wildcards are supported.

Parameters Definition
80 Connect:Enterprise for z/OS Application Agents and User Exits Guide

SELECT Statement
MSG02–MSG96=xxxxxxxx|
(xxxxxxxx,xxxxxxxx...)

Optional. Valid only in Console Application Agent rules.
Specifies the 2nd – 96th words in the message. Specify 1–16 words
(up to 125 bytes each), separated by commas and enclosed in
parentheses if more than one word is specified. The comparison is
case-sensitive. Wildcards are supported. An asterisk (*) represents
any 0-125 byte string. A percent (%) represents any one character.
The rule is selected if, for every MSGnn parameter specified, one of
the parameter's values matches the associated word in the message.
If any MSGnn parameter is not specified, the associated word in the
message is not part of the selection process. It is not necessary to
specify contiguous MSGnn parameters; for example, you can specify
MSG03 and either specify or omit MSG02. However, MSG01 must
always be specified. Message words matched to MSG02-96 can be
delimited by the following characters in addition to blanks: period,
comma, equal sign, open parenthesis and close parenthesis. These
same delimiters are used to break up the symbolic &MSG into
symbolics &MSG02 – &MSG96.
Note: When the SELECT statement is processed, the first blank

delimited word in the message text string is upper cased
and set into MSG01. The remainder of MSG is then
translated so that the following characters are converted to
blanks: period, comma, equals sign, open parenthesis, and
close parenthesis. Lastly, the translated string is broken
into blank-delimited words, with MSG02 taking the value of
the word after MSG01, and so on, until MSG96.

ORIGIN=ALL | EOBRULES |
EOBEXIT

Optional. Valid only for Wake Up Terminate rules.
Specifies the origin of the Wake Up Initiate transaction. Use this
parameter to select Wake Up Terminate rules based on the origin of
the Wake Up Initiate request.
ALL= Specifies all points of Wake Up Initiate origin. This value
includes both End of Batch application agent rules processing and
End of Batch user exit.
EOBRULES = Specifies the Wake Up Initiate request originated as a
result of End of Batch rules processing (in other words, generated by
the WAKEUP instruction in the End of Batch rules).
EOBEXIT = Specifies the Wake Up Initiate request originated as a
result of the End of Batch user exit. For example, the request was
generated by the data repository as a result of the user exit setting the
action code indicator to ‘W’, issue Wake Up Initiate.

Parameters Definition
Connect:Enterprise for z/OS Application Agents and User Exits Guide 81

Chapter 2 Creating and Verifying Application Agent Rules
RCFUNC=(ADD,CONN,DEL,
DIR,DISC,NOADD,REQ,
SIGNON)

Optional. Valid only for Logging rules and when
RECTYPE=RCDETAIL.
Specifies the type of function requested by the remote node.
Note: If this parameter is omitted, all function request types are

assumed. To reduce internal storage and other resource
utilization and overhead, it is recommended that you
specify which remote connect functions to perform.

ADD = Batch containing a $$ADD record
CONN = Connect
DEL = $$DELET request from the remote.
DIR = $$DIRECTORY request from the remote
DISC = Disconnect
NOADD = Batch without a $$ADD record
REQ = $$REQUEST from the remote
SIGNON = BSC signon request from the remote

REMOTE=xxxxxxxx Optional. Valid for End of Batch, Wake Up Terminate, and Logging
rules.
Specifies the 1–8 byte name of the remote site. Specify a generic
name with an asterisk, such as REMOTE=RMT*. The value of this
parameter is case sensitive.
Note: If used for Logging rules, this parameter is valid only for

RECTYPE=ACDETAIL | RCDETAIL | RCSUMMARY.

RTNCODE=nnnn | nnnn–nnnn |
(nnnn,.....,nnnn)

Optional. Valid for Wake Up Terminate rules.
Specifies the 4-digit hex return code or range of return codes set by
CICS in the Wake Up Terminate IPS header as specified in
Connect:Enterprise for z/OS Messages and Codes Guide. Leading
zeros are required.
nnnn = specifies a 4-digit hex return code.
nnnn–nnnn = specifies a range of 4-digit hex return codes.
nnnn,.....,nnnn = specifies a list of up to 16 return codes.

RTYPE=(BSC,FTP,SNA) Optional. Valid only for Logging Application Agent rules.
Specifies the type of remote connection.
BSC = specifies a BSC connection
FTP = specifies a FTP connection
SNA = specifies a SNA connection

Parameters Definition
82 Connect:Enterprise for z/OS Application Agents and User Exits Guide

SELECT Statement
STATOR=(ADDED,BSC,
COLLECTED,DELETE,EBCDIC,
EXTRACTED,
FILE_STRUCTURE,
FTP,INCOMPLETE,MULTXMIT,
NONTRANSMITTABLE,
REQUESTABLE,SNA,SSL,
TRANSPARENT,
TRANSMITTED,
UNEXTRACTABLE)

Optional. Valid for End of Batch and Wake Up Terminate rules.
Specifies one or more status flags for batches selected for
processing. Each batch with any of the specified STATOR flags is
processed. STATUS and STATOR are mutually exclusive.
ADDED = batch was added offline.
BSC = batch was collected through a BSC transmission.
COLLECTED = batch was collected online.
DELETE = batch is flagged for deletion.
EBCDIC = batch was collected through the APPC API.
EXTRACTED = batch was extracted.
FILE_STRUCTURE = batch is stored as non-record oriented.
FTP = batch was collected through an FTP transmission.
INCOMPLETE = batch is incomplete (not successfully collected).
MULTXMIT = batch is available for multiple transmission.
NONTRANSMITTABLE = batch cannot be transmitted.
REQUESTABLE = batch is available for online requests by remote
sites or for transmission by host-initiated Auto Connect sessions.
SNA = batch was collected through an SNA transmission.
SSL = batch was collected over a secured connection using SSL or
TLS.
TRANSMITTED = batch was transmitted.
TRANSPARENT = batch contains transparent data.
UNEXTRACTABLE = batch cannot be extracted.
The abbreviated form for this parameter is:
STATOR=(A,B,C,D,EB,EX,FI,FTP,I,M,N,R,SN,SS,TRANSP,TRANS
M,U)

Parameters Definition
Connect:Enterprise for z/OS Application Agents and User Exits Guide 83

Chapter 2 Creating and Verifying Application Agent Rules
STATUS=(ADDED,BSC,
COLLECTED,DELETE,EBCDIC,
EXTRACTED,
FILE_STRUCTURE,
FTP,INCOMPLETE,MULTXMIT,
NONTRANSMITTABLE,
REQUESTABLE,SNA,SSL,
TRANSPARENT,
TRANSMITTED,
UNEXTRACTABLE)

Optional. Valid for End of Batch and Wake Up Terminate rules.
Specifies one or more status flags for batches selected for
processing. Only those batches with all the specified batch status
flags are processed. STATUS and STATOR are mutually exclusive.
ADDED = batch was added offline.
BSC = batch was collected through a BSC transmission.
COLLECTED = batch was collected online.
DELETE = batch was flagged for deletion.
EBCDIC = batch was collected through the APPC API.
EXTRACTED = batch was extracted.
FILE_STRUCTURE = batch is stored as non-record oriented.
FTP = batch was collected through an FTP transmission.
INCOMPLETE = batch is incomplete (not successfully collected).
MULTXMIT = batch is available for multiple transmission.
NONTRANSMITTABLE = batch cannot be transmitted.
REQUESTABLE = batch is available for online requests by remote
sites or for transmission by host-initiated Auto Connect sessions.
SNA = batch was collected through an SNA transmission.
SSL = batch was collected over a secured connection using SSL or
TLS.
TRANSPARENT = batch contains transparent data.
TRANSMITTED = batch was transmitted.
UNEXTRACTABLE = batch cannot be extracted.
The abbreviated form for this parameter is: STATUS=(A,B,C,D,EB,
EX,FI, FTP,I,M,N,R,SN,SS,TRANSP,TRANSM,U)

TIME=hh:mm | (hh:mm,hh:mm…) Required. Valid only in Scheduler Application Agent rules.
Specifies the particular times, in universal (military) hh:mm format, to
schedule one or more rules to be processed. Specify 1 to 128
different time values, separated by commas and enclosed in
parentheses if more than one value is specified. A calendar can also
be specified in conjunction with the TIME= parameter to schedule one
or more rules to be processed at a specified time and day/date. For
information, refer to the description for the parameter, CALENDAR on
page 74.

Parameters Definition
84 Connect:Enterprise for z/OS Application Agents and User Exits Guide

SELECT Statement
ULTEXT01–ULTEXT96=xxxxxxxx|
(xxxxxxxx,xxxxxxxx...)

Optional. Valid only in Log Application Agent rules for ACDETAIL
record type.
Specifies the 1st – 96th words in the user log text. Specify 1–16
words (up to 255 bytes each) in each ULTEXTnn keyword parameter,
separated by commas and enclosed in parentheses if more than one
word is specified. The comparison is case-sensitive. Wildcards are
supported. An asterisk (*) represents any 0-255 byte string. A percent
(%) represents any one character. The rule is selected if, for every
ULTEXTnn parameter specified, one of the parameter's values
matches the associated word in the message. If any ULTEXTnn
parameter is not specified, the associated word in the message is not
part of the selection process. It is not necessary to specify contiguous
ULTEXTnn parameters; for example, you can specify ULTEXT03 and
either specify or omit ULTEXT02. User text words matched to
ULTEXT01–ULTEXT96 can be delimited by the following characters
in addition to blanks: period, comma, equal sign, open parenthesis
and close parenthesis.

WILD_CARD=BID Optional. Valid for End of Batch, Wake Up Terminate, and Logging
rules.
Turns on wildcard checking using the specified BATCHID as the
criterion for selecting batches.
BID = Performs wildcard checking on the User Batch ID
You can place wildcard mask characters (multi character and single
character) anywhere in the selection pattern. To turn case-sensitivity
off, you must use the CASE_SENSITIVE=NO parameter with this
parameter; otherwise, the default is to treat the tested string and
mask pattern as case-sensitive. For more information, see page 79.
Note: For more information on using wildcards when selecting

BIDs, see Connect:Enterprise for z/OS Release Notes.

WILD_CARD_MULTI_CHAR=* |
x[xxxxxxx]

Optional. Valid for End of Batch, Wake Up Terminate, and Logging
rules.
Specifies the pattern of 1-8 special characters used to represent zero
or more characters in the field being compared with the specified
BATCHID value as the criterion for selecting batches.
A contiguously repeating multi-wildcard character has no additional
effect, for example, 'A*' is identical to 'A**' , 'A***', and so on.
The default value is '*'.
Note: You must specify the WILD_CARD=BID parameter when

using this parameter.

Parameters Definition
Connect:Enterprise for z/OS Application Agents and User Exits Guide 85

Chapter 2 Creating and Verifying Application Agent Rules
Verifying Application Agent Rule Sets
The Rules Offline Verification utility verifies the syntax of an application agent rule set. Execute
the utility as a stand-alone offline batch job. Run the Rules Verification utility whenever you create
or modify a rule set.

The following JCL executes the Rules Verification utility. It is located in the Connect:Enterprise
sample library shipped on the distribution tape in the member name VERIFYRL

.

Offline Rules Verification Utility Files
The offline Rules Verification utility uses the following input and output files at execution time:

WILD_CARD_SINGLE_
CHAR=% | x[xxxxxxx]

Optional. Valid for End of Batch, Wake Up Terminate, and Logging
rules.
Specifies a single character used to represent exactly one character
in the field being compared with the specified BATCHID value as the
criterion for selecting batches.
The default value is '%'.
Note: You must specify the WILD_CARD=BID parameter when

using this parameter.

//VERIFYRL JOB as required by your site
//**
//* APPLICATION AGENT RULES VERIFICATION UTILITY *
//**
//VERIFYRL EXEC PGM=STMC99,REGION=2000K,TIME=1440
//STEPLIB DD DISP=SHR,DSN=ENTPRS.LOAD
//SYSPRINT DD SYSOUT=*
//SNAPOUT DD SYSOUT=*,DCB=(RECFM=VBA,LRECL=125,BLKSIZE=1632)
//SYSUDUMP DD SYSOUT=*
//RULES DD DISP=SHR,DSN=ENTPRS.RULES
//SYSIN DD *,DLM=ZZ
 RULESCON=XXXXXXXX
 RULESEOB=XXXXXXXX
 RULESLOG=XXXXXXXX
 RULESSCH=XXXXXXXX
 RULESWKT=XXXXXXXX
 TRACE=NO|YES
ZZ

Files Definition

RULES The input file containing the application agent rules members. Define the file as an
80-byte fixed blocked PDS (partitioned data set).

Parameters Definition
86 Connect:Enterprise for z/OS Application Agents and User Exits Guide

Verifying Application Agent Rule Sets
SNAPOUT Contains the trace data if tracing is specified.

SYSUDUMP Contains diagnostic information if internal errors occur.

SYSPRINT Contains a printout of all 80-character SYSIN control records, followed by the input
RULES records. Columns 73–80 are ignored and set to blanks when written to the
SYSPRINT file. However, on each SELECT statement, columns 73–80 contain a
sequence number generated by the Rules Verification utility.
If the verification program detects any errors, error messages are also written to this
file. All such error messages begin with CMRnnnx, where nnn is the specific
message number and x denotes severity. These messages are documented in
Connect:Enterprise for z/OS Messages and Codes Guide.

SYSIN Contains 80-character input control records that specify the rule member names to
verify. Comment records are allowed by specifying an asterisk in column one.
SYSIN control records are as follows:

RULESCON=xxxxxxxx = Console rules member to verify.

RULESEOB=xxxxxxxx = End of Batch rules member to verify.

RULESLOG=xxxxxxxx = Log rules member to verify.

RULESSCH=xxxxxxxx = Scheduler rules member to verify.

RULESWKT=xxxxxxxx = Wake Up Terminate rules member to verify.

TRACE=NO | YES = Trace the rules control blocks.

Note: If you specify YES, all of the rules control blocks are written to the
SNAPOUT DD file. TRACE is only for debugging and is not required.

Specify any of the previous control statements for one execution, but only one of
each type. No multiple occurrences of a given control record are allowed.

Files Definition
Connect:Enterprise for z/OS Application Agents and User Exits Guide 87

Chapter 2 Creating and Verifying Application Agent Rules
88 Connect:Enterprise for z/OS Application Agents and User Exits Guide

Chapter 3

Implementing Application Agent Rules

This chapter describes the general procedure for implementing application agents, changing rule
sets during Connect:Enterprise for z/OS processing, debugging rule sets using the trace facility, and
it provides sample application agent implementations.

Implementing Application Agents
After you define and verify the rule sets for processing, you are ready to implement the application
agents. This section outlines the general procedure for implementing application agents and
explains Connect:Enterprise JCL and Options Definition File (ODF) requirements. See
Connect:Enterprise JCL and ODF Configuration for Application Agents on page 92 for examples
of the JCL and ODF.

To implement application agents:

1. Allocate the //RULES DD file. The //RULES DD file is a PDS with LRECL=80,RECFM=FB.
2. Create the RULES member or members in the //RULES DD file that you allocated in the

previous step. Refer to Chapter 2, Creating and Verifying Application Agent Rules, for
information about defining a rule set.
An example of each rule set is in the example library, ENTPRS.EXAMPLE, on the
Connect:Enterprise release tape. The example rule member names are as follows:

$RCON—Console application agent rules

$REOB—End of Batch application agent rules

$RLOG—Logging application agent rules

$RSCH—Scheduler application agent rules

$RWKT—Wake Up Terminate application agent rules

3. Create any required JCL member or members in the //RULESJCL file that you allocated in
Step 1 above.

4. If the SUBMIT instruction is in your rules, allocate the //RULESJCL DD file. The
//RULESJCL DD file is a PDS with LRECL=80,RECFM=FB.
Connect:Enterprise for z/OS Application Agents and User Exits Guide 89

Chapter 3 Implementing Application Agent Rules
5. If you need to trace the flow of application agent processing, allocate the //RULTRACE
DD file. The //RULTRACE DD file is a sequential file or SYSOUT with LRECL=133,
RECFM=FBA.

6. Update the Connect:Enterprise JCL with the following statements, using the table for
reference:

//JESRDR DD

//RULES DD

//RULESJCL DD

//RULTRACE DD (required only for using the trace feature)

7. Activate application agent processing and individual application agents by updating the
Options Definition File using this table for reference:

RULES=YES (required to activate application agent processing)

MAXRP=nn

RULESCON=xxxxxxxx (member name from //RULES file)

RULESEOB=xxxxxxxx (member name from //RULES file)

DD Statement Description

//JESRDR DD Enables the application agent to submit jobs. This DD statement is for the internal
reader.
This file is required if the SUBMIT instruction is included in your rules file.

//RULES DD Identifies the data set where the application agent rules reside. Allocate this file as a
partitioned data set with a record format of FB (fixed block) and a record size of 80.
This file is required.

//RULESJCL DD Identifies the data set where the JCL members, used by the SUBMIT instruction,
reside. Allocate this file as a partitioned data set with a record format of FB (fixed
block) and a record size of 80.
This file is required.

//SYSPRINT DD Required. Contains a listing of the rules members read during Connect:Enterprise
startup or rules refresh, along with any error messages resulting from incorrectly
specified RULE statements. Columns 73–80 are ignored and set to blanks when
written to the SYSPRINT file. However, on each SELECT statement, columns 73–80
contain a sequence number. This number uniquely identifies each SELECT
statement and is useful when tracing application agent requests. Allocate this file as
a sequential data set with a record format of FB (fixed block) and a record size of
133. You can also specify SYSOUT.

//RULTRACE DD Identifies the data set to write the application agent trace records to. Allocate this file
as a sequential data set with a record format of FBA (fixed block) and a record size
of 133.
This file is only required when application agent tracing is turned on.
90 Connect:Enterprise for z/OS Application Agents and User Exits Guide

Implementing Application Agents
RULESLOG=xxxxxxxx (member name from //RULES file)

RULESSCH=xxxxxxxx (member name from //RULES file)

RULESWKT=xxxxxxxx (member name from //RULES file)

RULES_IR=YES|NO

RULES_RECURSION_MAX=nnnnnnnnnn

Application Agent
Parameters

Definition

RULES=YES Activates the application agent processing environment within the data
repository.
Note: You must specify RULES=YES to activate application agent

processing. You can activate individual application agents by
specifying the member name for each application agent.

MAXRP=nn Specifies the maximum number of Rules Processor subtasks allowed to
concurrently process requests. Specify a number between 1 and 99; however,
the number permitted is limited by the storage available to your system. The
default value is 2.
Note: Based on the MAXRP value and the amount of other activity defined

in Connect:Enterprise, you may need to increase your region value.
See Connect:Enterprise for z/OS Administration Guide for more
information about the MAXRP parameter and all other parameters.

RULESCON=xxxxxxxx Specifies the Console application agent rules PDS member. This member must
reside in the //RULES DD file. Specify this parameter to activate the Console
application agent.

RULESEOB=xxxxxxxx Specifies the End of Batch application agent rules PDS member. This member
must reside in the //RULES DD file. Specify this parameter to activate the End of
Batch application agent.

RULESLOG=xxxxxxxx Specifies the Logging application agent rules PDS member. This member must
reside in the //RULES DD file. Specify this parameter to activate the Logging
application agent.

RULESSCH=xxxxxxxx Specifies the Scheduler application agent rules PDS member. This member
must reside in the //RULES DD file. Specify this parameter to activate the
Scheduler application agent.

RULESWKT=xxxxxxxx Specifies the Wake Up Terminate application agent rules PDS member. This
member must reside in the //RULES DD file. Specify this parameter to activate
the Wake Up Terminate application agent.

RULES_IR=YES|NO Specifies whether each RP task subtask allocates its own JES2 internal reader,
and does not use //JESRDR when submitting JCL from //RULESJCL.
Connect:Enterprise for z/OS Application Agents and User Exits Guide 91

Chapter 3 Implementing Application Agent Rules
8. Start Connect:Enterprise.

Connect:Enterprise JCL and ODF Configuration for
Application Agents

The following example illustrates the Connect:Enterprise JCL and Options Definition File
configured for application agent processing. Modifications required for application agents
processing are highlighted in bold text.

RULES_RECURSION_
MAX=nnnnnnnnnn | 5

Defines number of times console application agent-to-console application agent
recursions (C2C recursions) are allowed to loop.
5 = Default; allows some recursion while preventing a loop from overwhelming
the job or system log with messages.
0 = No C2C recursion is allowed.
nnnnnnnnnn = 2147483647. For practical purposes, sets no limit.
Note: See Detecting Application Agent Loops on page 97 for more

information on this parameter, which is used when troubleshooting
and testing application agents.

Application Agent
Parameters

Definition
92 Connect:Enterprise for z/OS Application Agents and User Exits Guide

Refreshing Application Agent Rules
Refreshing Application Agent Rules
The $$REFRESH Console command enables you to change the application agent rules while
Connect:Enterprise is processing. You can apply the $$REFRESH command to all agents or to
individual application agents. Enter the $$REFRESH command as a system console command as
follows:

//jobcard JOB as required by your site //**
 //* Connect:Enterprise for z/OS *
 //**
 //MAILBOX EXEC PGM=STMAIN,REGION=6000K,TIME=1440,PARM=xxxx
 //STEPLIB DD DISP=SHR,DSN=ENTPRS.LOAD
 //SYSPRINT DD SYSOUT=*
 //SNAPOUT DD SYSOUT=*,DCB=(RECFM=VBA,LRECL=125,BLKSIZE=1632)
 //BTSNAP DD SYSOUT=*,DCB=(RECFM=VBA,LRECL=125,BLKSIZE=1632) //SYSUDUMP DD SYSOUT=*
 //JESRDR DD SYSOUT=(A,INTRDR)
 //RULES DD DISP=SHR,DSN=ENTPRS.RULES
 //RULESJCL DD DISP=SHR,DSN=ENTPRS.RULES.CNTL
 //RULTRACE DD DISP=SHR,DSN=ENTPRS.RULES.TRACE
 //SYSABEND DD SYSOUT=*,DCB=(RECFM=VBA,LRECL=125,BLKSIZE=1632)
 //OPTDEF DD *,DLM=ZZ
 *OPTIONS
 VPF=’ENTPRS.VPF’
 VBQROTAT=10
 VBQPCT=90
 VSESSLIM=0
 VTAM=YES
 ACQDEFAULT=YES
 PASSWORD=BANANA
 APPLID=LU050
 **----- APPLICATION AGENT RULES -----
 RULES=YES
RULES_IR=YES
RULES_RECURSION_MAX=nnnnnnnnnn
MAXRP=nn

 RULESCON=XXXXXXXX
 RULESEOB=XXXXXXXX
 RULESLOG=XXXXXXXX
 RULESSCH=XXXXXXXX
 RULESWKT=XXXXXXXX
 **---- CICS ------------------------
 MAXCP=2
 APPC=YES
 APPCAPPL=LU051
 CICSMODE=TESTLU62
 CICSAPPL=CICS0001
 CICSTR1=CM62
 **----------------------------------
 CONSLOG=YES
 LOGONMSG=’SUCCESSFUL LOGON TO Connect:Enterprise SYSTEM’
 CMB001I=’Connect:Enterprise PRODUCTION SYSTEM’
 *CONNECT
 LISTNAME=LIST1
 TYPE=LU1RJE
 DISCINTV=15
 ACSESS#=1
 RETRY=1
 TIME=19:35
 RMTA001 IDLIST=TEST2 TEST111 TEST1111
 *REMOTES
 NAME=RMTA001
 TYPE=LU1RJE
 CONSOLE=NO
 RMTACB=LU002
 USERDATA=’RMTB001’
 COMPRESS=NO
 BLKSIZE=256
Connect:Enterprise for z/OS Application Agents and User Exits Guide 93

Chapter 3 Implementing Application Agent Rules
You can also enter the $$REFRESH command through the CICS or ISPF interface.

When you issue a $$REFRESH command, active transactions in progress complete using the old
rules. If the refresh rules are parsed successfully, the new rules are rolled in and new transactions
begin using the new rules. The SYSPRINT file for the Connect:Enterprise job is updated with a
listing of the new rules, including a time and date stamp for the refresh.

For $$REFRESH RULES=ALL, if the refresh parsing detects any errors, none of the new rules are
rolled in. Refer to the SYSPRINT file for rules error messages.

Troubleshooting Application Agent Requests
To test and debug rule sets, use the trace facility that records the flow of application agent
processing. If you suspect a logic problem in the execution of a rule set, see Detecting Application
Agent Loops on page 97.

Tracing Application Agent Requests
Tracing allows you to see which rule is processed for each application agent request. The trace
facility writes the trace messages to the //RULTRACE DD file specified in your Connect:Enterprise
JCL. The presence of the //RULTRACE DD statement indicates that the trace facility can trace
application agent processing flow. Tracing for specific agents is activated by options set in the ODF
*OPTIONS section, by operator console commands, or by requests from the CICS/ISPF interfaces.

To activate application agent flow traces, use one of the following:

✦ ODF (Options Definition File)
*OPTIONS

• TRACE=RPCON activates Console application agent traces.
• TRACE=RPEOB activates End of Batch application agent traces.
• TRACE=RPLOG activates Logging application agent traces.
• TRACE=RPSCH activates Scheduler application agent traces.
• TRACE=RPWKT activates Wake Up Terminate application agent traces.

✦ Operator Console Commands
To Activate

• $$TRACE RPCON
• $$TRACE RPEON

$$REFRESH RULES=ALL
 CON

 EOB
LOG

 SCH
 WKT
94 Connect:Enterprise for z/OS Application Agents and User Exits Guide

Troubleshooting Application Agent Requests
• $$TRACE RPLON
• $$TRACE RPSON
• $$TRACE RPWON
To Deactivate

• $$TRACE RPCOFF
• $$TRACE RPEOFF
• $$TRACE RPLOFF
• $$TRACE RPSOFF
• $$TRACE RPWOFF

✦ ISPF/CICS Trace Management Screen
Select one of the following:

• RPCON
• RPEOB
• RPLOG
• RPSCH
• RPWKT

When Connect:Enterprise sends an application agent request to the Rules Processor, the Rules
Processor checks the SELECT statements for a match against the request data and processes the
rules pointed to by the first matching SELECT statement.

Each trace entry contains information about the application agent request, the chosen SELECT
statement and rule, and the associated instructions executed within that rule. The following two
examples illustrate the trace entry layout of both a matched and nonmatched request.

Trace messages begin with the message ID followed by a 3-digit number and date and time stamp.
The 3-digit number represents the specific rules processor task that processed the request. Usually
the trace messages are grouped together by processor task number. Heavy system activity that
drives more than one rules processor task interleaves the traces. In this case, the 3-digit number
enables you to find related traces.
Connect:Enterprise for z/OS Application Agents and User Exits Guide 95

Chapter 3 Implementing Application Agent Rules
Example 1—End of Batch Application Agent Request Trace Entry (Match)
The following is an example of an End of Batch application agent request trace entry that found a
match during the selection processing:

The following is detailed information concerning the preceding example:

CMR701I - 001 yyddd-17:48:05 EOB Rules processing started, using "RULE001 " rule dated
yyddd-17:46:21
CMR702I - 001 yyddd-17:48:05 SELECT statement #00000001 matched. EOB Application
Agent request data:
CMR730I - 001 yyddd-17:48:05 ID=TESTID01 B#=0000008 BATCHID=’TESTID01 BATCHID ’
REMOTE=none LINEID=none
CMR731I - 001 yyddd-17:48:05 STATUS=A,M,R
CMR708I - 001 yyddd-17:48:05 EXECUTE program SV$BR14
CMR706I - 001 yyddd-17:48:07 COMMAND sent to console: DNET,ID=SBLDUB97
CMR707I - 001 yyddd-17:48:07 MESSAGE sent to console: THIS IS AN APPLICATION AGENT
TEST MSG
CMR711I - 001 yyddd-17:48:07 NOP
CMR709I - 001 yyddd-17:48:07 SUBMIT member LISTA
CMR715I - 001 yyddd-17:48:07 STATFLG ONFLAGS=RM OFFFLAGS=none STATUS before: A
after: A R M
CMR710I - 001 yyddd-17:48:07 WAKEUP CICSSYSID=C212 CICSTRANID=CMS1
CMR720I - 001 yyddd-17:48:07 EOB Rules processing complete

Trace Message ID # Description

CMR701I Lists the rule selected for processing and includes a date and time stamp. This trace
message is important if you REFRESH the rules while Connect:Enterprise is online,
because it indicates which rules were used by the date and time stamp on the rules
SYSPRINT header.

CMR702I Lists the sequence number of the SELECT statement that matched the request. This
sequence number is the same number listed in columns 73–80 on the SYSPRINT
listing.

CMR730I and
CMR731I

Displays information from the application agent request

CMR708I, CMR706I,
CMR707I, CMR711I,
CMR709I, CMR715I,
and CMR710I

Lists the instructions in the order they execute

CMR720I Indicates processing is complete for this End of Batch application agent request
96 Connect:Enterprise for z/OS Application Agents and User Exits Guide

Troubleshooting Application Agent Requests
Example 2—End of Batch Application Agent Request Trace Entry (No Match)
The following is an example of End of Batch application agent request trace entry that did not find
a match, during the selection processing:

The following is detailed information concerning the preceding example:

Detecting Application Agent Loops
When enabling application agents, care should be taken to avoid creating a loop. A loop results
when one agent triggers another (a “recursion”), and that agent triggers another, and so on without
end. One or more recursions are a necessary, but insufficient condition for a loop—a loop also
requires that the last recursion in a chain (which can be any length) trigger a previous part of the
chain. Application Agent rules can cause the following types of recursions:

✦ An agent could issue a MESSAGE instruction with CONEVENT=YES, which would directly
trigger a Console Agent.

✦ An agent could issue a COMMAND instruction, which causes a new agent to be triggered.
Such commands include:

$$INVOKE, which directly triggers an EOB or Console agent.

$$CONNECT, which can cause a batch to be received which triggers an EOB agent.

Any $$ command which causes the Connect:Enterprise main task to issue a message
which triggers a Console agent.

✦ An agent could issue a SUBMIT instruction whose batch job causes a new agent to be
triggered.

The batch job could issue the same commands described above in the COMMAND
instruction, and subsequently trigger an agent.

The batch job could execute a STOUTL or Cross System Client utility, which could cause
the Connect:Enterprise main task to issue a message which triggers a Console Application
Agent.

✦ An agent could issue an EXECUTE instruction, which causes a user-written program to be
executed, which in turn causes an agent to be triggered.

CMR703I-001 yyddd-17:48:34 EOB Rules processing started, no selection criteria matched
CMR730I-001 yyddd-17:48:34 ID=TESTID01 B#=0000010 BATCHID=’ENCRYPTED’ REMOTE=none LINEID=none
CMR731I-001 yyddd-17:48:34 STATUS=C,EB,R,TRANSP
CMR720I-001 yyddd-17:48:34 EOB Rules processing complete

Trace Message ID # Description

CMR703I Indicates that no SELECT statement was chosen for this request

CMR730I and CMR731I Displays information from the application agent request

CMR720I Indicates processing is complete for this End of Batch application agent request
Connect:Enterprise for z/OS Application Agents and User Exits Guide 97

Chapter 3 Implementing Application Agent Rules
The program could issue an operator command, which would have the same effect as
using the Application Agent COMMAND instruction.

The program could submit a batch job, which would have the same effect as using the
Application Agent SUBMIT instruction.

✦ An agent could issue a WAKEUP instruction, which could cause CICS to run a transaction
which triggers an agent.

The CICS transaction could cause a batch to be received, which triggers an End of Batch
application agent.

The CICS transaction could issue the same commands described above in the
COMMAND instruction, and so trigger an agent.

The CICS transaction could submit a batch job which triggers an agent as described in the
SUBMIT instruction above.

Once a loop is started, it can be stopped manually in one of two ways:

✦ Stop any application agent that plays a part in the loop. For example, to stop the Console
agent, use this console command, $$STOP RULES=CON.

✦ Shut down the Connect:Enterprise main task—it is recommended that you use the immediate
option, that is, $$SHUTDOWN,I.

After stopping the loop, you can change the Application Agent rules to eliminate the loop. Then you
can either:

✦ Refresh the rules ($$REFRESH RULES=ALL) and restart the stopped Application Agent. For
example, start the Console agent, use this console command, $$START RULES=CON.

✦ Restart the Connect:Enterprise main task
A loop can be stopped automatically as long as it is completely consists of console application
agent-to-console application agent recursions (referred to as “C2C recursion”) . Once any part of
the loop occurs outside of console application agent processing, it is impossible to determine
whether it is a recursion or not, and so such loops must be stopped manually as described above.
The maximum depth of C2C recursion that is allowed is specified by the ODF parameter
RULES_RECURSION_MAX. (See the chapter on the ODF in the Connect:Enterprise for z/OS
Administration Guide for more information on this parameter.) If this parameter is set to 0, no C2C
recursion is allowed. It can be set to any number up to 2,147,483,647, which for all practical
purposes is no limit at all. The default of 5 allows some room for deliberate C2C recursion while
preventing a loop from swamping the job or system log with messages.

In this example, the C2C loop is limited to MSGID CMB087I:

RULE NAME=RULE1
MESSAGE TEXT='CMB087I RULE1',

ROUTCODE=(11),
DESCCODE=(7),
CONEVENT=YES

SELECT RULE=(RULE1),
MSG01=(CMB087I)
98 Connect:Enterprise for z/OS Application Agents and User Exits Guide

Sample End of Batch and Wake Up Terminate Rules Implementations
In this example, the C2C loop can happen for either CMB087I or CMB088I. Note the use of the
Console application agent variable ‘&MSG01’ in the first word in the TEXT parameter. The same
loop would result if it were ‘@MSG01’, ‘&MSG’, or ‘@MSG’.

Sample End of Batch and Wake Up Terminate Rules
Implementations

The following example illustrates how to use the End of Batch and Wake Up Terminate application
agents to process collected batches.

Site Requirements Example
Whenever Connect:Enterprise collects a batch with a mailbox ID beginning with either MBOX1 or
MBOX2, it performs the following actions:

✦ Issues an Auto Connect for LISTNAME=DEST1 to transmit the newly collected batch.
✦ Extracts the batch to a PDS. The member name of the extracted batch is Bnnnnnnn, where

nnnnnnn is the 7-digit batch number.
✦ Issues a Wake Up transaction to notify CICS of the collected batch. CICS then STARTs

transaction TRN1 on system SYS1.
✦ If CICS does not successfully START transaction TRN1, Connect:Enterprise issues a message

to the operator as follows:

ID—8-character Mailbox ID

BID—64-character user batch ID

BATCHNO—7-digit batch number

The following End of Batch rules, EXTRACT job, and Wake Up Terminate rules accomplish the
processing described in the preceding site requirements.

End of Batch Application Agent Rules Example
The following example illustrates an End of Batch application rule that processes batches collected
for the site requirements:

RULE NAME=RULE2
MESSAGE TEXT='&MSG01 RULE2',

ROUTCODE=(11),
DESCCODE=(7),
CONEVENT=YES

SELECT RULE=(RULE2),
MSG01=(CMB087I,CMB088I)

“CICS ALERT - WAKEUP TRN1 FAILED FOR ID=xxxxxxxx BID=xxxx....xxxx BATCHNO=nnnnnnn”
Connect:Enterprise for z/OS Application Agents and User Exits Guide 99

Chapter 3 Implementing Application Agent Rules
RULESJCL DD Member Example
The following example illustrates EXTR001, which is the RULESJCL DD member used in the
SUBMIT instruction in the preceding example:

Wake Up Terminate Application Agent Rules Example
The following is an example of Wake Up Terminate application agent rules:

Sample Log Rules Implementations
These examples demonstrate how the Connect:Enterprise Logging application agent can be used to
process specific logging events—the first involving a message being sent to the operator console
whenever a successful batch collection is logged during connect sessions and the second involving
user log text to be included in reports and user interface screens upon a failed logon attempt.

RULE NAME=RULE1
 COMMAND TEXT=‘F &STCNAME,$$CONNECT LISTNAME=DEST1 ID=&IDFIELD BATCHID=BATCH#’
 SUBMIT MEMBER=EXTR001
 WAKEUP CICSDEFN=TRANSACTION,
 CICSSYSID=SYS1,
 CICSTRANID=TRN1
 SELECT RULE=RULE1,ID=MBOX1*
 SELECT RULE=RULE1,ID=MBOX2*

//jobname JOB as required by your site
//EXTRACT EXEC PGM=STOUTL,PARM=’xxxx’,REGION=2M
//STEPLIB DD DISP=SHR,DSN=ENTPRS.LOAD
//JESRDR DD SYSOUT=(A,INTRDR)
//SYSTERM DD SYSOUT=*,DCB=(RECFM=FA,LRECL=133,BUFNO=0)
//BTSNAP DD SYSOUT=*,DCB=(RECFM=FA,LRECL=133,BUFNO=0)
//PRINT DD SYSOUT=*,DCB=(RECFM=FA,LRECL=133,BUFNO=0)
//SYSPRINT DD SYSOUT=*,DCB=(RECFM=FA,LRECL=133,BUFNO=0)
//REPORTS DD SYSOUT=*,DCB=(RECFM=FA,LRECL=133,BUFNO=0)
//OUTFILE DD DISP=OLD,DSN=ENTPRS.EXTRACT(B&BATCH#)
//SYSIN DD DATA,DLM=ZZ
 EXTRACT
 VPF=’ENTPRS.VPF
 BATCHNUM=&BATCH#
ZZ

RULE NAME=RULE1
 MESSAGE TEXT=‘CICS ALERT - WAKEUP TRN1 FAILED FOR ID=&IDFIELD BID-
 =&BID64 BATCHNO=&BATCH#’
 SELECT RULE=RULE1,ID=MBOX1*,RTNCODE=0001–FFFF
 SELECT RULE=RULE1,ID=MBOX2*,RTNCODE=0001–FFFF
100 Connect:Enterprise for z/OS Application Agents and User Exits Guide

Sample Log Rules Implementations
Site Requirements Example for Successful Batch Collection
Whenever Connect:Enterprise logs a successful batch collection during an Auto Connect, write the
following message to the operator console:

Whenever Connect:Enterprise logs a successful batch collection during a Remote Connect, write
the following message to the operator console:

✦ ID—8-character Mailbox ID
✦ Batchid—24-character user batch ID
✦ Batch#—7-digit batch number
✦ Listname—8-character Auto Connect listname
✦ Remote—8-character remote name

Logging Application Agent Rules Example
The following example illustrates the Logging application agent rules to write to log a successful
batch collection:

Site Requirements Example for Failed Logon Attempt
Whenever Connect:Enterprise logs an unsuccessful logon attempt during an FTP Auto Connect,
write the following fail code and user log text to the ACDETAIL report and the related ISPF and
CICS user interface screens:

BATCH COLL VIA AUTO CONNECT: ID=xxxxxxxx
Batchid=xxxxxxxxxxxxxxxxxxxxxxxx
Batch#=nnnnnnn Listname=xxxxxxxx

BATCH COLL VIA REMOTE CONNECT: ID=xxxxxxxx
Batchid=xxxxxxxxxxxxxxxxxxxxxxxx
Batch#=nnnnnnn Remote=xxxxxxxx

RULE NAME=RULE001
 MESSAGE TEXT=‘BATCH COLL VIA AUTO CONNECT: ID=@IDFIELD Batch-
 id=@* BID24 Batch#=@BATCH# Listname=@LISTNAM’
RULE NAME=RULE002

MESSAGE TEXT=’BATCH COLL VIA REMOTE CONNECT:ID=@IDFIELD Batch-
id=@* BID24 Batch#=@BATCH# Remote=@RMTNAME’

SELECT RULE=RULE001,
 RECTYPE=ACDETAIL, AUTO CONNECT DETAIL
 ACFUNC=RECV, COLL WITH $$ADD, WITHOUT $$ADD
 LOGFUNC=(NEW,UPDATE),
 FAILCODE=000
SELECT RULE=RULE002,
 RECTYPE=RCDETAIL, REMOTE CONNECT DETAIL
 RCFUNC=(ADD,NOADD),COLL WITH $$ADD, WITHOUT $$ADD
 LOGFUNC=(NEW,UPDATE),
 FAILCODE=000

Script FTPLOGON failed on PASS command, FC=240 for USER FTPRMTB.
Connect:Enterprise for z/OS Application Agents and User Exits Guide 101

Chapter 3 Implementing Application Agent Rules
Fail code 240 through 255 are user-defined CONNECT fail codes in the STUAMMT table. Text
from these user log fail codes is listed along with the text predefined for fail code 240. (See
Connect:Enterprise for z/OS User’s Guide for more information about customizing text for
user-defined fail codes.)

Sample Console Rules Implementation
This example illustrates a Console application agent that handles certain C:E FTP message traffic.

Site Requirements Example
Whenever Connect:Enterprise issues a CMB2103I message (or DUMMY001 or DUMMY003)
whose fifth word is "SERVER", it performs the following actions:

✦ Executes a program
✦ Issues an operator command
✦ Reformats the CMB2103I message and issues it to the operator console
✦ Captures the number of FTP threads in the message and sends an SNMP trap to a Network

Manager.
✦ Submits a batch job

 RULE NAME=RULE240
 MESSAGE TEXT='RULE240 ACFUNC=ULOG ULFC=240 SELECTED'
 RULE NAME=RULE25X
 MESSAGE TEXT='RULE25X ACFUNC=ULOG ULFC=250-255 SELECTED'
 SELECT RULE=RULE240,RECTYPE=ACDETAIL,
 ACFUNC=ULOG,LISTNAME=LFTP1,REMOTE=FTPRMT1,FAILCODE=240,
 ULTEXT02=('emergency','failure','error'),
 ULTEXT08='call',
 ULTEXT10='Helpdesk',
 SELECT RULE=RULE25X,RECTYPE=ACDETAIL,
 ACFUNC=ULOG,LISTNAME=LFTP1,REMOTE=FTPRMT1,FAILCODE=250-255,
 ULTEXT01=(U250,U251,U252,U253,U254,U255)
102 Connect:Enterprise for z/OS Application Agents and User Exits Guide

Sample Console Rules Implementation
Console Application Agent Rules Example
The following example illustrates the application agent rule set that implements the site
requirements.

Console Application Agent Request Operator Messages Example
Following is an example of system log output when Connect:Enterprise is started with the above
rule. The first CMB2103I matches the rule, the second does not. The rest of the messages are
generated by the matching rule.

* CONSOLE APPLICATION AGENT RULES EXAMPLE *

RULE NAME=RULE001
 EXECUTE PROGRAM=IEFBR14,
 ERROR=CONTINUE
 COMMAND TEXT='D NET,ID=RDXSA064',
 ERROR=CONTINUE
 MESSAGE TEXT='CON RULE001 &MSG04 &MSG05 &MSG11 &MSG12 &MSG02 &MSG09',
 ERROR=CONTINUE
 NOP
 SNMPTRAP TEXT='CON RULE001 &MSG',
 IPADDR=MYCOMPANY.COM,
 PORT=162,
 GROUP1=STATUS,
 GROUP2=2222,
 ERROR=CONTINUE
 SUBMIT MEMBER=IEFBR14
SELECT RULE=(RULE001),MSG01=(DUMMY001,CMB2103I,DUMMY003),MSG05=(SERVER)

16.19.29 STC00469 CMB2103I - C:E FTP SERVER THREAD INITIALIZATION COMPLETE. 0002
SESSION THREADS ALLOCATED.
16.19.29 STC00469 CMB2103I - C:E FTP CLIENT THREAD INITIALIZATION COMPLETE. 0002
SESSION THREADS ALLOCATED.
16.19.29 STC00469 IEA630I OPERATOR MBXNAMEA NOW ACTIVE, SYSTEM=CSGA ,
LU=MBXNAMEA
16.19.29 STC00469 D NET,ID=RDXSA064
16.19.29 STC00469 IEA631I OPERATOR MBXNAMEA NOW INACTIVE, SYSTEM=CSGA ,
LU=MBXNAMEA
16.19.29 STC00469 CON RULE001 FTP SERVER THREADS ALLOCATED - 0002
Connect:Enterprise for z/OS Application Agents and User Exits Guide 103

Chapter 3 Implementing Application Agent Rules
Console Application Agent Request Trace Entry (Match and No Match) Example
The following is an example of application agent RULTRACE DD output when C:E is started with
the above rule:

CMR750I - 001 2004034-16:19:29 CON Selection processing started
CMR751I - 001 2004034-16:19:29 Match on SELECT stmt 00000001 MSG01 CMB2103I
and list word 02 CMB2103I
CMR751I - 001 2004034-16:19:29 Match on SELECT stmt 00000001 MSG05 SERVER
and list word 01 SERVER
CMR753I - 001 2004034-16:19:29 CON Selection processing ended

CMR702I - 001 2004034-16:19:29 SELECT statement #00000001 matched. CON Application
Agent request data:
CMR754I - 001 2004034-16:19:29 MSG=CMB2103I - C:E FTP SERVER THREAD INITIALIZATION
COMPLETE. 0002 SESSION THREADS ALLOC
CMR701I - 001 2004034-16:19:29 CON Rules processing started, using "RULE001 " rule
dated 2004034-16:19:23
CMR708I - 001 2004034-16:19:29 EXECUTE program IEFBR14
CMR706I - 001 2004034-16:19:29 COMMAND sent to console: D NET,ID=RDXSA064
CMR707I - 001 2004034-16:19:29 MESSAGE sent to console: CON RULE001 &MSG04 &MSG05
&MSG11 &MSG12 &MSG02 &MSG09
CMR711I - 001 2004034-16:19:29 NOP
CMR712I - 001 2004034-16:19:29 SNMPTRAP Description:
CMR713I - 001 2004034-16:19:29 TEXT (U) : CON RULE001 &MSG
CMR713I - 001 2004034-16:19:29 TEXT (R) : CON RULE001 CMB2103I - C:E FTP SERVER
THREAD INITIALIZATION COMPLETE.

Continued

CMR713I - 001 2004034-16:19:29 " " : 0002 SESSION THREADS ALLOCATED.
CMR713I - 001 2004034-16:19:29 IPADDR : MYCOMPANY.COM (10.20.4.1)
CMR713I - 001 2004034-16:19:29 PORT : 162
CMR713I - 001 2004034-16:19:29 GROUP1 : 2
CMR713I - 001 2004034-16:19:29 GROUP2 : 2222
CMR713I - 001 2004034-16:19:29 TRAP OID : 1.3.6.1.4.1.1733.4.2.1.5.2222
CMR713I - 001 2004034-16:19:29 TRAPDATA : b % xb j b d
CMR713I - 001 2004034-16:19:29 " " :
|+ < (
CMR713I - 001 2004034-16:19:29 " " : + < ! |+ |(&<
|+ <<|
CMR713I - 001 2004034-16:19:29 " " : &
|+
CMR713I - 001 2004034-16:19:29 " " : |+ <
(
CMR709I - 001 2004034-16:19:29 SUBMIT member IEFBR14
CMR720I - 001 2004034-16:19:29 CON Rules processing complete
CMR750I - 001 2004034-16:19:29 CON Selection processing started
CMR751I - 001 2004034-16:19:29 Match on SELECT stmt 00000001 MSG01 CMB2103I
and list word 02 CMB2103I
CMR752I - 001 2004034-16:19:29 No Match on SELECT stmt 00000001 MSG05 CLIENT
CMR753I - 001 2004034-16:19:29 CON Selection processing ended

CMR703I - 001 2004034-16:19:29 CON Rules processing started, no selection criteria
matched
CMR754I - 001 2004034-16:19:29 MSG=CMB2103I - C:E FTP CLIENT THREAD INITIALIZATION
COMPLETE. 0002 SESSION THREADS ALLOC
CMR720I - 001 2004034-16:19:29 CON Rules processing complete
104 Connect:Enterprise for z/OS Application Agents and User Exits Guide

Sample Console Rules Implementation
The following is detailed information concerning the previous example:

Trace Message ID # Description

CMR750I Indicates the beginning of Selection processing for the first CMB2103I message.

CMR751I (#1) Indicates a successful match of the first criterion in the SELECT statement. The
number of the SELECT statement being checked is listed as well as the matching
value in the message and the match criterion. In this case, the message's MSG01
is CMB2103I, and it matches the second word in the list specified by the SELECT
statement's MSG01 parameter. The MSG01 parameter is also shown since it could
contain wildcard characters.

CMR751I (#2) Indicates a successful match of the second criterion in the SELECT statement.

CMR753I Indicates the end of Selection processing for the request. At this point, there is no
indication whether all criteria matched or not.

CMR702I Indicates that the request matched all the criteria for a SELECT statement, and
gives the number of that SELECT statement. This sequence number is the same
number listed in columns 73-80 on the SYSPRINT listing.

CMR754I Lists the message of the request that matched the SELECT statement.

CMR701I Lists the rule selected for processing and gives the rule's date and time stamp.
This trace message is important if you REFRESH the rules while
Connect:Enterprise is online, because it indicates which rules were used by the
date and time stamp on the rules SYSPRINT header.

CMR708I, CMR706I,
CMR707I, CMR711I,
CMR712I, and
CMR709I

List the instructions in the order they execute.

CMR712I Indicates that an SNMP trap is being built and its description will follow.

CMR713I Describes the SNMP trap in detail.
TEXT (U) = Lists the unresolved message text as it appears in the rule. It may be
continued onto multiple lines.
TEXT (R) = Lists the resolved message text, that is, the text after variable
substitution. It may be continued onto multiple lines. It will be converted to ASCII,
then encoded using ASN.1 as the value of the ceSNMPTRAPtext varbind pair.
IPADDR = Lists the IP address as it appears in the rule, followed by the Hostname
or Reverse Hostname lookup value in parentheses.
PORT = Lists the port number as it appears in the rule. Combined with the IP
address, this indicates where the trap will be sent.
GROUP1 = Lists the GROUP1 number. If 1, the rule specified GROUP1=ALARM.
If 2, the rule specified GROUP1=STATUS.
GROUP2 = Lists the GROUP2 number as it appears in the rule. GROUP1 and
GROUP2 give partial user control over the TRAP OID.
TRAP OID = Lists the OID generated for the entire trap. It becomes the value of the
snmpTrapOID varbind pair.
Connect:Enterprise for z/OS Application Agents and User Exits Guide 105

Chapter 3 Implementing Application Agent Rules
Sample Scheduler Rules Implementation
The following example illustrates a Scheduler application agent that handles certain time events.

Site Requirements Example
Whenever certain times of day occur on weekdays, Connect:Enterprise performs the following
actions:

✦ Executes a program
✦ Issues an operator command
✦ Issues a message to the operator console
✦ Sends an SNMP trap to a Network Manager.
✦ Submits a batch job

Scheduler Application Agent Rules Example
The following example illustrates the Scheduler application agent rule set that implements the site
requirements.

TRAPDATA Lists the encoded string which comprises the entire SNMP trap. This is the data in
the UDP packet sent to IPADDR/PORT.

CMR720I Indicates processing is complete for the first CMB2103I message.

CMR750I Indicates the beginning of Selection processing for the second CMB2103I
message.

CMR751I Indicates a successful match of the first criterion in the SELECT statement.

CMR752I Indicates an unsuccessful match of the second criterion in the SELECT statement.

CMR753I Indicates the end of Selection processing for the request. At this point, there is no
indication whether all criteria matched or not.

CMR703I indicates that the request did not matched all the criteria for any single SELECT
statement.

CMR754I Lists the message of the request that matched no SELECT statement(s).

CMR720I Indicates processing is complete for the second CMB2103I message.

Trace Message ID # Description
106 Connect:Enterprise for z/OS Application Agents and User Exits Guide

Sample Scheduler Rules Implementation
Scheduler Application Agent – Calendar Example
The following example illustrates the ODF calendar definitions that implements the site
requirements.

When Connect:Enterprise is started with the above rule and calendar on a Wednesday:

✦ At 14:05, Select statement 1 is processed.
✦ At 14:06, Select statements 1 and 3 are processed.
✦ At 14:07, Select statement 1 is processed.
✦ At 14:08, Select statement 3 is processed.
Select statement 2 is not processed because Wednesday is excluded in the WEEKEND calendar.

Scheduler Application Agent Request Operator Messages Example
The following is an example of system log output from the above processing:

* SCHEDULER APPLICATION AGENT RULES EXAMPLE *

RULE NAME=RULE001
 EXECUTE PROGRAM=IEFBR14,
 ERROR=CONTINUE
 COMMAND TEXT='D NET,ID=RULE001',
 ERROR=CONTINUE
 MESSAGE TEXT='SCH RULE001 MSG',
 ERROR=CONTINUE
 NOP
 SNMPTRAP TEXT='SCH RULE001 TRAP',
 IPADDR=EPETERS2K.CSG.STERCOMM.COM,
 PORT=162,
 GROUP1=STATUS,

GROUP2=2222,
 ERROR=CONTINUE
 SUBMIT MEMBER=IEFBR14
RULE NAME=RULE002
 MESSAGE TEXT='SCH RULE002 MSG'
RULE NAME=RULE003
 MESSAGE TEXT='SCH RULE003 MSG'
RULE NAME=RULE004
 MESSAGE TEXT='SCH RULE004 MSG'
SELECT RULE=RULE001,TIME=(14:05,14:06,14:07),CALENDAR=WEEKDAY
SELECT RULE=RULE002,TIME=(14:05,14:06,14:07),CALENDAR=WEEKEND
SELECT RULE=(RULE003,RULE004),TIME=(14:06,14:08)

*CALENDAR
**
NAME=WEEKEND
 EXDAYS=MON TUE WED THU FRI
NAME=WEEKDAY
 EXDAYS=SAT SUN
Connect:Enterprise for z/OS Application Agents and User Exits Guide 107

Chapter 3 Implementing Application Agent Rules
14.05.00 STC04005 IEA630I OPERATOR MBXNAMEA NOW ACTIVE, SYSTEM=CSGA ,
LU=MBXNAMEA
14.05.00 STC04005 D NET,ID=RULE001
14.05.00 STC04005 IEA631I OPERATOR MBXNAMEA NOW INACTIVE, SYSTEM=CSGA ,
LU=MBXNAMEA
14.05.00 STC04005 SCH RULE001 MSG
14.06.00 STC04005 SCH RULE003 MSG
14.06.00 STC04005 SCH RULE004 MSG
14.06.00 STC04005 IEA630I OPERATOR MBXNAMEA NOW ACTIVE, SYSTEM=CSGA ,
LU=MBXNAMEA
14.06.00 STC04005 D NET,ID=RULE001
14.06.00 STC04005 IEA631I OPERATOR MBXNAMEA NOW INACTIVE, SYSTEM=CSGA ,
LU=MBXNAMEA
14.06.00 STC04005 SCH RULE001 MSG
14.07.00 STC04005 IEA630I OPERATOR MBXNAMEA NOW ACTIVE, SYSTEM=CSGA ,
LU=MBXNAMEA
14.07.00 STC04005 D NET,ID=RULE001
14.07.00 STC04005 IEA631I OPERATOR MBXNAMEA NOW INACTIVE, SYSTEM=CSGA ,
LU=MBXNAMEA
14.07.00 STC04005 SCH RULE001 MSG
14.08.00 STC04005 SCH RULE003 MSG
14.08.00 STC04005 SCH RULE004 MSG
108 Connect:Enterprise for z/OS Application Agents and User Exits Guide

Sample Scheduler Rules Implementation
Scheduler Application Agent Request Trace Entry Example
The following is an example of application agent RULTRACE DD output when Connect:Enterprise
is started with the above rule:

CMR702I - 001 2004035-14:05:00 SELECT statement #00000001 matched. SCH Application
Agent request data:

CMR701I - 001 2004035-14:05:00 SCH Rules processing started, using "RULE001 " rule
dated 2004035-14:04:40
CMR708I - 001 2004035-14:05:00 EXECUTE program IEFBR14
CMR706I - 001 2004035-14:05:00 COMMAND sent to console: D NET,ID=RULE001
CMR707I - 001 2004035-14:05:00 MESSAGE sent to console: SCH RULE001 MSG
CMR711I - 001 2004035-14:05:00 NOP
CMR712I - 001 2004035-14:05:00 SNMPTRAP Description:
CMR713I - 001 2004035-14:05:00 TEXT (U) : SCH RULE001 TRAP
CMR713I - 001 2004035-14:05:00 TEXT (R) : SCH RULE001 TRAP
CMR713I - 001 2004035-14:05:00 IPADDR : EP2K.CSG.STERCOMM.COM (10.20.4.1)
CMR713I - 001 2004035-14:05:00 PORT : 162
CMR713I - 001 2004035-14:05:00 GROUP1 : 2
CMR713I - 001 2004035-14:05:00 GROUP2 : 2222
CMR713I - 001 2004035-14:05:00 TRAP OID : 1.3.6.1.4.1.1733.4.2.1.4.2222
CMR713I - 001 2004035-14:05:00 TRAPDATA : b . % xb b
u j
CMR713I - 001 2004035-14:05:00 " " :
< &
CMR713I - 001 2004035-14:05:00 " " : &
CMR713I - 001 2004035-14:05:00 " " : <
(
CMR709I - 001 2004035-14:05:00 SUBMIT member IEFBR14
CMR720I - 001 2004035-14:05:00 SCH Rules processing complete

CMR702I - 001 2004035-14:06:00 SELECT statement #00000003 matched. SCH Application
Agent request data:

CMR701I - 001 2004035-14:06:00 SCH Rules processing started, using "RULE003 " rule
dated 2004035-14:04:40
CMR707I - 001 2004035-14:06:00 MESSAGE sent to console: SCH RULE003 MSG

CMR701I - 001 2004035-14:06:00 SCH Rules processing started, using "RULE004 " rule
dated 2004035-14:04:40
CMR707I - 001 2004035-14:06:00 MESSAGE sent to console: SCH RULE004 MSG
CMR720I - 001 2004035-14:06:00 SCH Rules processing complete
CMR702I - 001 2004035-14:06:00 SELECT statement #00000001 matched. SCH Application
Agent request data:

CMR701I - 001 2004035-14:06:00 SCH Rules processing started, using "RULE001 " rule
dated 2004035-14:04:40
CMR708I - 001 2004035-14:06:00 EXECUTE program IEFBR14
CMR706I - 001 2004035-14:06:00 COMMAND sent to console: D NET,ID=RULE001
CMR707I - 001 2004035-14:06:00 MESSAGE sent to console: SCH RULE001 MSG
CMR711I - 001 2004035-14:06:00 NOP
CMR712I - 001 2004035-14:06:00 SNMPTRAP Description:
CMR713I - 001 2004035-14:06:00 TEXT (U) : SCH RULE001 TRAP
CMR713I - 001 2004035-14:06:00 TEXT (R) : SCH RULE001 TRAP
CMR713I - 001 2004035-14:06:00 IPADDR : EP2K.CSG.STERCOMM.COM (10.20.4.1)

Continued
Connect:Enterprise for z/OS Application Agents and User Exits Guide 109

Chapter 3 Implementing Application Agent Rules
CMR713I - 001 2004035-14:06:00 PORT : 162
CMR713I - 001 2004035-14:06:00 GROUP1 : 2
CMR713I - 001 2004035-14:06:00 GROUP2 : 2222
CMR713I - 001 2004035-14:06:00 TRAP OID : 1.3.6.1.4.1.1733.4.2.1.4.2222
CMR713I - 001 2004035-14:06:00 TRAPDATA : b . % xb b
j
CMR713I - 001 2004035-14:06:00 " " :
< &
CMR713I - 001 2004035-14:06:00 " " : &
CMR713I - 001 2004035-14:06:00 " " : <
(
CMR709I - 001 2004035-14:06:00 SUBMIT member IEFBR14
CMR720I - 001 2004035-14:06:00 SCH Rules processing complete

CMR702I - 001 2004035-14:07:00 SELECT statement #00000001 matched. SCH Application
Agent request data:

CMR701I - 001 2004035-14:07:00 SCH Rules processing started, using "RULE001 " rule
dated 2004035-14:04:40
CMR708I - 001 2004035-14:07:00 EXECUTE program IEFBR14
CMR706I - 001 2004035-14:07:00 COMMAND sent to console: D NET,ID=RULE001
CMR707I - 001 2004035-14:07:00 MESSAGE sent to console: SCH RULE001 MSG
CMR711I - 001 2004035-14:07:00 NOP
CMR712I - 001 2004035-14:07:00 SNMPTRAP Description:
CMR713I - 001 2004035-14:07:00 TEXT (U) : SCH RULE001 TRAP
CMR713I - 001 2004035-14:07:00 TEXT (R) : SCH RULE001 TRAP
CMR713I - 001 2004035-14:07:00 IPADDR : EP2K.CSG.STERCOMM.COM (10.20.4.1)
CMR713I - 001 2004035-14:07:00 PORT : 162
CMR713I - 001 2004035-14:07:00 GROUP1 : 2
CMR713I - 001 2004035-14:07:00 GROUP2 : 2222
CMR713I - 001 2004035-14:07:00 TRAP OID : 1.3.6.1.4.1.1733.4.2.1.4.2222
CMR713I - 001 2004035-14:07:00 TRAPDATA : b . % xb b
j
CMR713I - 001 2004035-14:07:00 " " :
< &
CMR713I - 001 2004035-14:07:00 " " : &
CMR713I - 001 2004035-14:07:00 " " : <
(
CMR709I - 001 2004035-14:07:00 SUBMIT member IEFBR14
CMR720I - 001 2004035-14:07:00 SCH Rules processing complete

CMR702I - 001 2004035-14:08:00 SELECT statement #00000003 matched. SCH Application
Agent request data:

CMR701I - 001 2004035-14:08:00 SCH Rules processing started, using "RULE003 " rule
dated 2004035-14:04:40
CMR707I - 001 2004035-14:08:00 MESSAGE sent to console: SCH RULE003 MSG

CMR701I - 001 2004035-14:08:00 SCH Rules processing started, using "RULE004 " rule
dated 2004035-14:04:40
CMR707I - 001 2004035-14:08:00 MESSAGE sent to console: SCH RULE004 MSG
CMR720I - 001 2004035-14:08:00 SCH Rules processing complete
110 Connect:Enterprise for z/OS Application Agents and User Exits Guide

Sample Scheduler Rules Implementation
The following is detailed information concerning the previous example:

Trace Message ID # Description

CMR702I Indicates that the request matched all the criteria for a Select statement, and gives
the number of that SELECT statement. This sequence number is the same
number listed in columns 73-80 on the SYSPRINT listing.

CMR701I Lists the rule selected for processing and gives the rule's date and time stamp.
This trace message is important if you REFRESH the rules while
Connect:Enterprise is online, because it indicates which rules were used by the
date and time stamp on the rules SYSPRINT header.

CMR708I, MR706I,
CMR707I, CMR711I,
CMR712I, CMR713I,
and CMR709I

List the instructions in the order they execute.

CMR712I Indicates that an SNMP trap is being built and its description will follow.

CMR713I Describes the SNMP trap in detail. See CMR713I on page 105 for more details.

CMR720I Indicates processing is complete for the Select statement.
Connect:Enterprise for z/OS Application Agents and User Exits Guide 111

Chapter 3 Implementing Application Agent Rules
112 Connect:Enterprise for z/OS Application Agents and User Exits Guide

Chapter 4

Using Connect:Enterprise Online Exits

Several optional user exits are provided to customize the online execution of Connect:Enterprise.
Connect:Enterprise calls these online exits at the appropriate time during Connect:Enterprise
processing and can set an action code before returning to alter the standard Connect:Enterprise
processing. Connect:Enterprise only provides the linkage to the online exits. You must define, code,
assemble, link, and test your own exits. Online exit programs are optional and the system default is
no exits.

You can supply several user exit programs that are called by online Connect:Enterprise. The exits
available are as follows:

✦ Input exit
✦ Session security exit (FTP)
✦ Security exit one (BSC, SNA)
✦ Security exit two (BSC, SNA)
✦ Output exit
✦ End Of Batch exit
✦ Initialization exit
✦ Termination exit
✦ Log exit
✦ APPC security exit
✦ CICS Wake Up Initiate exit
✦ CICS Wake Up Terminate exit
The online exits are called by Connect:Enterprise using standard CALL linkage. Therefore, when
the exits are in control, Connect:Enterprise is not. Define, assemble, link, and test your programs
carefully because, when an ABEND occurs or the system goes into a loop, the entire
Connect:Enterprise system is affected.

An exit trace feature is provided to aid in testing and debugging of online exits. This trace feature
can be invoked to snap the information passed to and from the exits before and after each CALL.
Connect:Enterprise for z/OS Application Agents and User Exits Guide 113

Chapter 4 Using Connect:Enterprise Online Exits
This chapter describes the different types of online exits and their uses.

How Connect:Enterprise Uses Online User Exits
All Connect:Enterprise online exits are called using a standard z/OS CALL issued by an assembler
language program. Sample user exit programs demonstrating the necessary entry and return coding
requirements are provided for each exit.

An exit parameter list is passed to each online exit. The parameter list points to all of the data that
can be examined and modified by the exit programs. The calling parameters and action codes for
each of the user exit programs are documented with the descriptions for each type of user exit. The
parameter list is a series of 4-byte addresses that point to the actual data field. The data field contents
description uses letter codes to describe the field format. C is character data; X is hexadecimal data.

The Connect:Enterprise release tape includes several macros containing the parameter lists:

DSECTS are not provided for the other exits. Use of the DSECTs for coding assembler language
user exit programs is demonstrated in the sample exit programs provided on the release tape.

Assembler language programs must save and restore the calling program’s registers. At entry to the
user exit, the parameter list address is in register 1.

COBOL programs must provide a LINKAGE SECTION that describes the parameter list passed to
the user exit. A USING for the parameter list must be included in the PROCEDURE DIVISION. A
single-byte hexadecimal action code is passed back to Connect:Enterprise, as demonstrated in the
STCOBOL sample user exit.

Implementing Online Exits
Online exits are activated by control records in the Options Definition File (ODF) when you are
using the online Connect:Enterprise. A keyword parameter in the *OPTIONS section indicates the
exit is being used and supplies the name of the load module to be loaded and executed.

Note: You can use the sample member, ASMLKXIT, to assemble and link your user exits.

Macro Description

M$XPARM DSECTs for the input, security one, security two, and output exits.

M$SECMAP DSECTs for the session security exit (FTP).

M$OUXCB DSECT for the offline utility exits.

M$ACREC, M$LOGB, and
M$DCREC

DSECTs for the Auto Connect record, remote connect records, and Auto
Connect queue records. Use these macros when coding a log exit.

M$BCREC DSECT for the VCF batch control record used by End Of Batch exit.
114 Connect:Enterprise for z/OS Application Agents and User Exits Guide

How Connect:Enterprise Uses Online User Exits
For example, to initiate these exit programs (STXINIT, STINP, STSECFTP, STSEC1, STSEC2,
STOUT, STEOBX, STTERM, and STLOGX), use the following *OPTIONS parameters:

These parameters along with others related to implementing user exits are discussed in the
Connect:Enterprise for z/OS Administration Guide. See the chapters related to the ODF in that book
for more information. Connect:Enterprise loads these exits and gets storage for exit-related control
blocks during system initialization. If the programs cannot be found in your JOBLIB or STEPLIB,
Connect:Enterprise issues an appropriate console message and terminates.

Coding User Exits
The following requirements apply to all online exits. You must follow these rules for proper
execution of all exits.

✦ For maximum performance, code your exits to run in 31-bit addressing mode. Existing exits
that are coded to run in 24-bit addressing mode are supported; however, you must upgrade
them to 31-bit addressing mode to avoid performance degradation.

✦ When changing parameters passed to your exit programs, always use values that are valid for
use by Connect:Enterprise. Failure to use valid data can cause system ABENDs or
unpredictable results. All character fields are passed as left-justified, blank-filled, and should
be returned in the same format.

✦ The passed parameter list always contains valid addresses for all fields defined for each user
exit. However, the data field pointed to by a parameter address sometimes does not contain
data and may be set to blanks. The data fields that are filled in depend on the transaction type
being used.
For example, a $$ADD transaction does not supply a password, so the password data field is
not used. For details on the setting of data fields, you may want to use a dummy exit program
as described in this chapter.

✦ Set a valid action code. The default action code is X‘00’, which indicates that
Connect:Enterprise should continue processing as normal. If an invalid action code is set,
Connect:Enterprise forces an action code of X‘00’.

✦ Connect:Enterprise provides one 256-byte user work area for each remote site that logs onto
your Connect:Enterprise system. The values you save in this area are related to individual
remotes being processed by the system, and are not tied to a specific user exit. Therefore, you
can use the user work area to pass data for any remote between online exits. It also means that
your online exits, when properly written, can handle many simultaneously-active transactions
on many different lines defined to Connect:Enterprise. The exit programs do not need to be

*OPTIONS
 ...
 ...
 XINIT=STINIT
 XINPUT=STINPS
 X_SECURE=STSECFTP
 XSECUR1=STSEC1
 XSECUR2=STSEC2
 XOUTPUT=STOUT
 XENDOFB=STEOBX
 XTERM=STTERM
 XLOG=STLOGX
Connect:Enterprise for z/OS Application Agents and User Exits Guide 115

Chapter 4 Using Connect:Enterprise Online Exits
true re-entrant programs since they are not interrupted for new calls while they are processing
a call. They should, however, use the user work area to pass information between exits or to
save information for future entries to the same exit for each remote session.

✦ The FTP session security exit must be coded re-entrant, since multiple FTP threads may
concurrently invoke your exit.

✦ If you want to reinitialize the user work area, you must do so in your online exits. The user
work area is initialized to binary zeros at system startup, but is never again referenced or used
by Connect:Enterprise. If you require more than 256 bytes, set the GETMAIN storage for each
individual user work area and save the address of the GETMAIN storage in the user work area.
The 256-byte user work area is not available to Initialization, Termination, Log, or End Of
Batch exits.

✦ Use the Initialization and Termination exits to allocate and open special files to be used by all
sessions or to GETMAIN storage to pass system level information between sessions and/or
online exits. These exits provide you with a method of passing global system information
between sessions and online exits.

✦ Use an address in the one-word (4-byte) area available for storing information from the
Initialization exit. This address can then be the address of a GETMAIN area, which can be
further interrogated and modified by other exits or sessions.
The value specified in this one-word area word is passed to each user exit and to the
Termination exit. You must close any open files, deallocate any allocated files, and
FREEMAIN any storage acquired by the Initialization exit. It is recommended that these
functions be performed in the Termination exit.

Testing Online Exits
Fully test online exits before you implement them into a production Connect:Enterprise system. An
ABEND or loop in a user exit affects all of Connect:Enterprise, not just your exit load module. Use
the following guidelines when testing online exits:

✦ Test online Connect:Enterprise with the exits, then test all offline utilities to ensure that they
execute properly. Testing the EXTRACT utility is particularly important if you use the Input
exit to modify input data. The EXTRACT offline utility relies on the presence of proper
control characters when it extracts batches. If you use the Log exit to modify Auto Connect or
remote connect log records, test the REPORT offline utility.

✦ If you access the BATCHID field in your exits, test the many different forms that it can take.
BATCHID can be omitted entirely (and set to blanks); or it can be a character value; a generic
value where the first byte indicates the length of generic BATCHID; or the
Connect:Enterprise-assigned 7-digit packed batch number.

✦ Review the system console and data set for warning messages if you experience ABENDs
during your testing. Connect:Enterprise sets a flag when it passes control to your exit, then
resets the flag upon return. Connect:Enterprise also uses the ESTAE system macro to trap

Note: While your online exits are executing, Connect:Enterprise is waiting for them to return from the
CALL and is not processing other transactions. For this reason, avoid writing exits that will
excessively slow down the system. This is particularly important when using the Input exit or
Output exit, which is called for every I/O to a remote site.
116 Connect:Enterprise for z/OS Application Agents and User Exits Guide

How Connect:Enterprise Uses Online User Exits
ABENDs that occur in the system. If an ABEND occurs and the flag that indicates an exit is in
control is set, Connect:Enterprise issues a message to the system console and creates a small
snapshot dump in the SNAPOUT data set. The following messages displays on the system
console:

The SNAPOUT data set contains a small snap with the following title:

Tracing the User Exits
Connect:Enterprise provides many TRACE capabilities for the online system through the use of
TRACE parameters in the ODF *OPTIONS section or by using the TRACE console command. One
of these values may be helpful in testing your online exits.

Creating an Options Definition Trace Record
Specify TRACE=EXITS in the ODF to cause Connect:Enterprise to create a small snapshot dump
on the standard Snapshot data set. Use the following in your ODF within the *OPTIONS section:

Using the Console Trace Command
The trace command can be entered as a console command:

Specifying Trace Output
When specified, Connect:Enterprise snaps different data depending on the exit, as follows:

✦ The Exit Control Block (XCB) is snapped before and after each CALL to the Input exit,
Output exit, Security exit one and Security exit two. Passwords used by the security interface
in the XCB are not snapped; they are replaced with question marks.

✦ The batch control record that was just added is snapped for the End Of Batch exit.
✦ The calling parameter list and the log record are snapped before and after each call to the Log

exit.

CMB079W -WARNING: ABEND DURING USER EXIT (xxxxxxxx). PROBABLE USER EXIT ERROR.
(xxxxxxxx = XINPUT, XOUTPUT, XSECUR1 XSECUR2, XENDOFB, XINIT, XTERM, or XLOG)

STMC01 ABEXIT - SCB - ABEND DURING USER EXIT

TRACE=EXITS

$$TRACE EXITON starts trace
$$TRACE EXITOFF stops trace

Note: The exit trace feature is not available for the Initialization exit or the Termination exit. No trace data
is provided for these exits.
Connect:Enterprise for z/OS Application Agents and User Exits Guide 117

Chapter 4 Using Connect:Enterprise Online Exits
Understanding the Exit Control Block
The XCB contains most of the important data passed to and from the exits. The data in the XCB
includes the following:

✦ User exit work area
✦ Calling parameter data field values which are actually passed to the online exits. You can

code your exits to change some of these values.
✦ Calling parameter list
Character values indicate the start of many of the sections in the snapshot data set.

For example, the words XCB USER AREA appear just before the start of the user exit work area.
If you want more details on the exact layout of the Exit Control Block, refer to its DSECT in the
M$XCB macro supplied on the Connect:Enterprise release tape.

The snapshot dumps have appropriate titles that indicate whether they were obtained before or after
the CALL to your exit program.

One area that is not contained in the XCB is the Connect:Enterprise input and output buffers, which
you may want to examine if you are testing an Input exit or Output exit. To include this area in the
Snapshot Data Set (interleaved with your exit trace), use the TRACE=ALLTP or
TRACEID=xxxxxxxx parameters in the *OPTIONS records or use the corresponding trace console
commands.

For APPC activity, the TRACE feature also snaps the IPS passed to and from the exits. However,
when these traces are used, massive output is generated to the snapshot data set.

Using the Exit Trace for Log Exit
If you specify XLOG=xxxxxxxx and TRACE=EXITS in the ODF, Connect:Enterprise snaps the
calling parameter list and the log record before and after each call to the Log exit program. The snap
dump title contains the words PARMS, LOGREC to identify the snap contents. The first seven full
words of the snap data contain the calling parameters passed to the Log exit. These seven full words
are followed by:

✦ 1-byte exit type field (6=Log exit)
✦ 1-byte return code field (X‘00’)
✦ 1-byte log function type (1=PUT NEW 2=UPDATE)
✦ 18-byte log record key
✦ 256-byte area that contains log record data, blank-filled
✦ 2-byte log data length
✦ 4-byte initialization exit word

Note: Some of the data that follows the seven fullword calling parameters is a COPY of the actual data.
This data was moved adjacent to the calling parameters to reduce the number of snaps required to
display all the data. Therefore, the calling parameters may not always point to the data displayed in
the snap.
118 Connect:Enterprise for z/OS Application Agents and User Exits Guide

Sample Online Exits
Using a Dummy Exit Program
If you are unsure of the possible values set by Connect:Enterprise in some of the data fields passed
to the exits, a dummy exit program combined with the use of TRACE=EXITS may answer many
of your questions.

Code, assemble, and link a small dummy exit program, as shown in the following example, which
simply returns immediately to the caller:

After creating the load module, named X$DUMMY in this example, execute Connect:Enterprise
using the dummy exit load module name as one or all of the user exit names. Be sure to specify
TRACE=EXITS.

For example, to examine all data passed to and from Security exit one and Security exit two, specify
the following records in the *OPTIONS section:

Use a remote site to send a variety of $$ commands to Connect:Enterprise. Try a wide range of
parameters on the $$ commands and create some security violations to cause entry to both dummy
exits. Then bring down Connect:Enterprise, and print and examine the SNAPOUT data set,
referring to the XCB DSECT in the M$XCB macro supplied with Connect:Enterprise.

The SNAPOUT data set can be directed to SYSOUT for print or can be printed from a file.

Sample Online Exits
The Connect:Enterprise release tape contains several sample user exit programs. All programs
except STCOBOL are written in assembler language. STCOBOL shows how to use the online exits
if you are writing them in COBOL. Use the sample programs as guidelines in coding your own
online exits:

//DUMMYX JOB ...as required for your shop
 //***
 //* ASSEMBLE AND LINK DUMMY EXIT PROGRAM
 //***
 DUMMYX EXEC ASMHFCL,PARM.LKED=(NCAL,LIST,XREF)
 //ASM.SYSIN DD *
 BR 14
 END

*OPTIONS
 ...
 XSECUR1=X$DUMMY
 XSECUR2=X$DUMMY
 TRACE=EXITS
Connect:Enterprise for z/OS Application Agents and User Exits Guide 119

Chapter 4 Using Connect:Enterprise Online Exits
Using the Input Exit
The Input user exit is called after every input completion, when Connect:Enterprise is receiving data
from a remote site. The Input exit can examine and even change data in the input buffer, as long as
the maximum buffer size is not exceeded. If data is changed, you must still retain the proper line
and record control characters.

The Input exit can set an action code that requests Connect:Enterprise to continue normally, to use
the data as changed by the exit, or to ignore the data and set up to receive more input from the
sender.

Sample User
Exit Programs Description

STINP Input exit (BSC)

STINPS Input exit (SNA)

STSECFTP Session security exit (FTP)

STSEC1 Security exit one (BSC, SNA)

STSEC2 Security exit two (BSC, SNA)

STTERM Termination exit

STEOBX End Of Batch exit

STEOBX2 End Of Batch exit (2nd example)

STXINIT Initialization exit

STLOGX Log exit

STOUT Output exit

STCSEC APPC Security exit

STCWI CICS Wake Up Initiate exit

STCWT CICS Wake Up Terminate exit

STCOBOL Security exit one (COBOL sample)
120 Connect:Enterprise for z/OS Application Agents and User Exits Guide

Using the Input Exit
Input Exit Parameters
Parameters passed to the Input exit are addressed by the X3$DSECT in the M$XPARM macro. A
listing of the parameters and the contents of the data field pointed to by the parameters is in the
following table:

DSECT Label Contains Address of Data Field Contents

 X3$XTYPE Exit Type Code 1-byte Exit Type Code
 C‘3’ = Input exit

 X3$ACODE Area to return
Action Code

1-byte exit action code
X‘00’ = Process as Normally
X‘04’ = Input Area was Changed
X‘08’ = Ignore this Input Block

X3$WORKA User Work Area Address of 256-byte user work area

 X3$LINID Remote Name 8-byte Remote Name from which the input data
was received

X3$ICTYP Input Completion Type 1-byte Input Completion Type
If BSC:
C‘1’ = Initial Input with normal completion
C‘2’ = Subsequent Input with normal completion
C‘3’ = Abnormal Input or no data
If SNA:
C‘1’ = All Input with normal completion
C‘3’ = Abnormal Input or no data

X3$IMAXL Maximum Length of Input Area 2-byte Maximum Length of Input Area
(hexadecimal)

X3$INPTL Length of Input Data 2-byte Length of Input Data received, including all
control characters (hexadecimal)

X3$INPTA Input Area Input data received from remote. Maximum size
in X3$IMAXL, Actual size in X3$INPTL.

X3$LNTYP Line Type 1-byte Line Type Code indicator:
X‘01’= BSC Switched
X‘02’= BSC Non switched
X‘03’= SNA LU Type 1

X3$INIT@ Initialization exit word 1 word containing the address or information exit
word returned from the Initialization exit. This
value is all X ‘00’ if no Initialization exit is used.
Connect:Enterprise for z/OS Application Agents and User Exits Guide 121

Chapter 4 Using Connect:Enterprise Online Exits
The Input exit can change four fields pointed to by the parameter list. They are as follows:

✦ X3$ACODE
✦ X3$WORKA
✦ X3$INPTL
✦ X3$INPTA

Input Exit Requirements
The following requirements apply to the Input exit. You must follow these rules for proper exit use.

✦ The purpose of the Input exit is to allow normal text message examination and modification.
Do not attempt to use this exit to do your own I/O or line error recovery.

For SNA sites—The Input exit is called for standard text input and for the receipt of SNA
Function Management Headers. The exit is not called for nontext input such as SNA
commands or negative responses.

For BSC sites —The Input exit is called for standard text input and for the receipt of EOT
or DLE/EOT (End of Transmission or Disconnect). The exit is not called for nontext read
completions, such as RESETPL completions and temporary text delays.

✦ Use the following rules when changing the input data:
If you change the length of the input data you must set the new data length in the
X3$INPTL parameter. The length must never exceed the value pointed to by
X3$IMAXL.

Because the actual Connect:Enterprise input buffer is passed to you, use caution when
modifying data that you do not overlay other areas and cause a system ABEND.

You must retain all SNA record control, such as SCB, IRS, and NL. Both online
Connect:Enterprise and the offline utilities rely on the presence of proper control
characters.

✦ For abnormal read completions (input completion type = C‘3’), the length of the input data is
set to binary zeros. Do not access the input buffer, since the data present is not reliable.

For BSC sites —If the input buffer begins with an EOT (X‘37’) or DLE/EOT (X‘1037’),
then this is the last input block for a batch. When this situation occurs, the input buffer
does not contain any text data. In this instance, action code X‘00’ should always be set. If
the remote site sends BSC transparent data, remember that the input buffer begins with
DLE/STX (X‘1002’) rather than the standard STX (X‘02’). An input completion type of
C‘1’ is set only for the completion of a BTAM READ INITIAL.

✦ An action code of X‘04’ or X‘08’ is not allowed and is ignored in these instances:
Abnormal read completions

Note: Connect:Enterprise does not clear all old data out of the input buffer before issuing a
Receive. There may be some data remaining in the input buffer from a previous
transaction. Always use the input length parameter that is pointed to by X3$INPTL to
determine the length of the current data.
122 Connect:Enterprise for z/OS Application Agents and User Exits Guide

Using the Input Exit
Receipt of SNA Function Management Headers (SNA sites only)

Last block of batch EOT or DLE/EOT (BSC sites only)

Sample Input User Exit STINPS (SNA Only)
The STINPS sample user exit program demonstrates how to do the following:

✦ Examine and change data in the input buffer before Connect:Enterprise examines the data
✦ Ignore blocks that contain a certain text header

STINPS Program Logic
The STINPS program performs the following processing:

✦ Scans the input data for the text SPECIAL HEADER= and ignores data records that contain
this text. The STINPS program then sets an action code of X‘08’ and returns to
Connect:Enterprise to ignore the input.

✦ If the special header is not found, the STINPS program scans the text for a special ID
parameter within the first 40 bytes of the block. If an ID is found that begins with the
characters ST, then it is a 10-byte ID which must be changed to an 8-byte ID before
Connect:Enterprise examines the input. If ID=ST is found, STINPS overlays the ST with the 8
bytes that follow. Notes that the message length was not changed, so the X3$INPTL value
need not be changed. The program sets an action code of X‘04’ if the data was changed and
returns to Connect:Enterprise.

Implementing STINPS
To run STINPS with online Connect:Enterprise:

1. Insert the following information into your ODF:

2. Insert the following header data to test the removal of blocks. The special header record must
be the first record in the block.

3. Test the use of 10-byte IDs. The $$ADD records must occur on a block boundary, such as:

*OPTIONS
 ...
 XINPUT=STINPS

SPECIAL HEADER=SIGNON FROM BRANCH001
Data record 1
Data record 2
...

$$ADD ID=STTESTEXIT BATCHID=‘TEST STINPS’
....
$$ADD ID=STXXXXXXXX BATCHID=‘TEST STINPS’
....
Connect:Enterprise for z/OS Application Agents and User Exits Guide 123

Chapter 4 Using Connect:Enterprise Online Exits
Sample Input User Exit STINP (BSC Only)
The STINP sample user exit program demonstrates how to do the following:

✦ Examine and change data in the input buffer before Connect:Enterprise examines the data
✦ Ignore blocks that contain a certain text header

STINP Program Logic
The STINP program performs the following processing:

✦ If the input area contains a final input (EOT or DLE/EOT), the STINP program returns to
Connect:Enterprise with an action code of 00, which indicates to continue processing.

✦ Scans the input data for the text SPECIAL HEADER= and ignores data records that contain
this text.

✦ If the special header is found and the input contains blocked records, the STINP program
removes the single record that contains the special header and adjusts the input length (pointed
to by X3$INPTL) for the record removed. The program then sets an action code of X’04’ to
tell Connect:Enterprise the data was changed.

✦ If the special header is found and the input contains only a single record, the STINP program
ignores the record. The program then sets an action code of X’08’ and returns to
Connect:Enterprise to ignore the input.

✦ If the special header is not found or has been removed from blocked data, the STINP program
scans the remaining text for a special ID parameter. If an ID is found that begins with the
characters ST, then it is a 10-byte ID, and it must be changed to an 8-byte ID before
Connect:Enterprise examines the input. If ID=ST is found, the program overlays the ST with
the 8 bytes that follow it. Note that the message length was not changed, so the X3$INPTL
value need not be changed. The program then sets an action code of X’04’ if the data was
changed and returns to Connect:Enterprise.

Implementing STINP
To run STINP with online Connect:Enterprise:

1. Place the following records into your ODF:

2. Test the removal of blocks with a special header by using data, such as the following:

*OPTIONS
 ...
 XINPUT=STINP

SPECIAL HEADER=THIS BLOCK SHOULD BE IGNORED
RECORD 1
RECORD 2
SPECIAL HEADER=THIS BLOCK SHOULD BE IGNORED
RECORD 3
124 Connect:Enterprise for z/OS Application Agents and User Exits Guide

Using Session Security Exit
3. Test the use of 10-byte IDs, such as the following:

Using Session Security Exit
The session security exit enables users to extend or replace the standard Connect:Enterprise security
interface functions. The session security exit is used for FTP sessions only.

The session security exit is optional. You must define, code, assemble, link, and test your own
session security exit.

To have Connect:Enterprise call the exit, specify the name of the load module you created in the
X_SECURE parameter in the ODF *OPTIONS record. A sample exit (STSECFTP) is included in
the source library as a starting point for you.

Session Security Exit Parameters
The following table describes the parameters that are passed to the session security exit. This
parameter list is documented by the M$SECMAP macro in the source library:

$$ADD ID=STTESTEXIT BATCHID=‘TEST STINP’
....
$$ADD ID=STXXXXXXXX BATCHID=‘TEST STINP’
....

Field Name Contains Address
of

Data
Field
Length

Data Field
Type

Data Field Contents

E1$TYPE Exit Type Code 1 Character 1 = Session Security Exit (FTP server)
2 = Session Security Exit (FTP client)
Connect:Enterprise for z/OS Application Agents and User Exits Guide 125

Chapter 4 Using Connect:Enterprise Online Exits
E1$ACTCD User Action Code (1) 1 Character 1 = Continue as normal
2 = Bypass all remaining security
checks.
3 = Process as a security violation.
4 = Process as a security violation and
terminate the session.
5 = Use reply number and text in
E1$MSG as Reply substitution
If the security interface uses the ODF
*OPTIONS parameter MBXSECURE=,
the security interface is called
immediately after returning from the
session security exit. The security
interface is called after the exit returns
control from processing the commands
listed below:

For Logon Security: PASS command.

For Batch Function Security: DELE,
LIST, NLST, RETR, STOR, and
STOU commands.

For complete information about using the
security interface, refer to
Connect:Enterprise for z/OS User's
Guide.

E1$WORK User Work Area 256 User-defined Specified by user.

E1$MSG User Message Area 256 Character Message text sent if User Action Code
is 3, 4, or 5.

E1$CMDTP Command Type
Code

1 Character 1 = The Logon function is set if the
command is PASS.
2 = Session functions involving data
transfer are set if the command is one of
the following: LIST, NLST, RETR, STOR,
or STOU.
3 = Session functions not involving data
transfers are set if the command is
DELE, APSV, or SITE.

Field Name Contains Address
of

Data
Field
Length

Data Field
Type

Data Field Contents
126 Connect:Enterprise for z/OS Application Agents and User Exits Guide

Using Session Security Exit
E1$CMD Command 4 Character The 4-character FTP command code.
The exit is called for the following
commands: APSV, CWD, DELE, LIST,
NLST, PASS, PASV, PORT, RETR,
RNFR, RNTO, SITE, STOR, STOU,
USER.
Note: When E1$CMD = “CWD”, you

can modify the E1$ID
(Mailbox ID) value. When
E1$CMD = “STOR” or
“STOU”, you can modify both
the E1$ID and E1$BID
(BATCHID) values. When
E1$CMD='LIST' or 'NLST',
you can modify the E1$BID
(Batch ID), E1$BIDL (Batch ID
Length), and E1$LOPT (List
Options) values.

E1$TEXTLN Command String Text
Length

2 Hex Halfword value of the length, in hex, of
the entire FTP command string received
by the remote, including the trailing
1-byte x'15' new line character.

E1$TEXT Command String variable Character The FTP command string received by
the remote including the trailing 1-byte
x'15' new line character.

E1$RMTNM Remote Name 8 Character The remote name/user ID provided by
the client, padded with trailing blanks.

Field Name Contains Address
of

Data
Field
Length

Data Field
Type

Data Field Contents
Connect:Enterprise for z/OS Application Agents and User Exits Guide 127

Chapter 4 Using Connect:Enterprise Online Exits
E1$PASSWD Password 8 Character Password provided by the client, padded
with trailing blanks.
This field is set to binary zeros on a
PASS command. When processing a
PASS command (when
E1$CMD=PASS), the password can be
obtained from the command string value
contained in E1$TEXT. The format of the
PASS command string is:
PASS password or
PASS password/newpass/newpass
When parsing the PASS command
string, allow for multiple blanks between
PASS and password.
If the user exit makes Security Access
Facility (SAF) calls directly, make sure to
uppercase the USERID and
PASSWORD values prior to issuing the
RACROUTE macro. If upper casing is
not performed by the user exit, the FTP
client will be required to send these
values as uppercase in the USER and
PASS command strings (the security
packages use uppercase values).

E1$ID Mailbox ID (Current
Working Directory)

8 Character The mailbox ID specified by the client,
padded with trailing blanks.
Note: You can modify this value

when E1$CMD =“STOR”,
“STOU”, or “CWD”.

E1$BID User Batch ID (File
Name)

64 Character User Batch ID specified by the client,
padded with trailing blanks.
Note: You can modify this value

when E1$CMD = “STOR”,
“STOU”, “LIST”, or “NLIST”.

Field Name Contains Address
of

Data
Field
Length

Data Field
Type

Data Field Contents
128 Connect:Enterprise for z/OS Application Agents and User Exits Guide

Using Session Security Exit
The User Work Area and User Message Area are the only parameters that the exit updates.

Session Security Exit Requirements
The session security exit requirements are:

✦ The exit load module must be placed in the Connect:Enterprise load library.
✦ The exit must be coded to be reentrant.
✦ The exit is called using standard z/OS call linkage.
✦ The exit is entered in the following environment:

Task mode

Problem state

E1$BID User Batch ID length 2 Hex Halfword value of the length, in hex, of
the User Batch ID received in the LIST or
NLST command. Length of User Batch
ID in the LIST/NLST command text
string.
Note: You can modify this value

when E1$CMD='LIST' or
'NLST'. If Batch ID is changed
by the exit (pointed to
E1$BID), this field should also
be set by the exit, indicating
the new length to be used for
LIST and NLST processing.

E1$LOPT List Options 1 Character 1 = Use first 24 bytes of User Batch ID
2 = Use Last 24 bytes of User Batch ID
Note: You can modify this value

when E1$CMD='LIST' or
'NLST'.

E1$LOGST Logon status of the
remote/user

1 Character 1 = User has not logged on yet.
2 = User has completed logon.

E1$SSLST Secure Connection
Status

1 Character 1 = This is not a secure connection.
2 = This is a secure connection using
SSL.

E1$ASITE Current SITE Values
Table

4 Address Pointer to a table that contains all the
values set by previous SITE commands.
The SITE Values Table is mapped by the
M$SITEMP macro, located in the source
library.

Field Name Contains Address
of

Data
Field
Length

Data Field
Type

Data Field Contents
Connect:Enterprise for z/OS Application Agents and User Exits Guide 129

Chapter 4 Using Connect:Enterprise Online Exits
User key (storage key 8)

AMODE 31

Unlocked

Non CMS (HASN=PASN=SASN)

Primary ASC (non AR mode)

✦ Communications between Connect:Enterprise and an installation exit is done through the
parameter lists.
When changing parameters passed to the exit, always use values that are valid for
Connect:Enterprise use. Using invalid data can cause unpredictable results, including a system
ABEND.
All character field parameters passed to and from the installation exit are left justified and
padded to the right with blanks.
The parameter lists always contain valid addresses for all fields defined for each installation
exit. Data fields pointed to by a parameter address may contain data or may be set to blanks.

✦ The exit must preserve the contents of general-purpose register (GPR) 14. It does not need to
preserve the contents of other registers.
Configure the exit to use the standard 18-word (72-byte) register save area (RSA), whose
address is in register 13.
Connect:Enterprise restores the contents of general-purpose registers 0 through 13 and 15
upon return from the exit.

✦ Connect:Enterprise provides one 256-byte work area for each FTP session in progress.
Information you store in this work area is retained throughout the session. No information is
shared between sessions. No information is retained after a session completes.
Connect:Enterprise initializes the 256-byte work area to binary zeros at session startup.
Connect:Enterprise does not reference the 256-byte work area after initialization. You can
reinitialize the area from your exit. If you require more than 256-bytes, allocate virtual storage
and store the address and length of the allocated storage in the 256-byte work area.
The following table shows register contents on security exit entry and the expected register
contents on exit from the security exit. The exit should not use access registers.

GPR Contents on Entry Expected Contents on Exit

0 Binary zero Ignored

1 Address of parameter list Ignored

2-12 Binary zero Ignored

13 Address of standard register save area Ignored

14 Return Address Return Address passed on entry

15 Entry Address Ignored
130 Connect:Enterprise for z/OS Application Agents and User Exits Guide

Using Security Exit One
Sample Session Security Exit STSECFTP (FTP only)
The STSECFTP sample user exit program specifies one of the following actions:

✦ Security check passed. Continue with the security interface check (if active).
✦ Security check passed. Bypass the security interface check.
✦ Security check failed. Process as a security violation and continue the session.

Connect:Enterprise stops processing the command.
✦ Security check failed. Process as a security violation and terminate the session.

Connect:Enterprise stops processing the command and terminates the connection.
The session security exit can specify additional error message information when it returns a security
violation. The error message information is formatted into a reply, and a reply code prefix is added
before the reply is sent to the remote FTP. The following shows a sample security exit error
message:

The STSECFTP sample user exit program can also use reply numbers and text stored in E1$MSG
as reply substitution to RNFR and RNTO commands. See coding details in sample STSECFTP
program.

STSECFTP Program Logic
The STSECFTP program performs the following processing:

✦ Examines the input command type flag (i.e. logon, data transfer, session control), and
indicates to continue processing as normal.

Implementing STSECFTP
To run STSECFTP with online Connect:Enterprise, use an ODF that contains the following:

Using Security Exit One
Security exit one can be used to do the following:

✦ Examine and override values used in all remote $$ commands or in a data collection without
$$ADD.

✦ Provide security in addition to or instead of the Connect:Enterprise security.
Security exit one is called after Connect:Enterprise detects and reformats a $$ command ($$ADD,
$$REQUEST, $$DELETE, $$LOGOFF, and $$DIRECTORY) from a remote site. It is also called
for new data batches received without a $$ADD record and for attempted LOGONs to

550-Improper authorization.
550 USER command failed. Request denied by session security exit.

*OPTIONS
 ...
 X_SECURE=STSECFTP
Connect:Enterprise for z/OS Application Agents and User Exits Guide 131

Chapter 4 Using Connect:Enterprise Online Exits
Connect:Enterprise. The exit can examine and change values set by the $$ commands, as long as
standard Connect:Enterprise values are used.

This exit can set an action code that requests Connect:Enterprise to continue normally, to bypass all
ID validation, or to process the transaction as a security violation.

At SNA sites, this user exit can provide a substitute security violation message to replace the
Connect:Enterprise default message.

Security Exit One Parameters
Parameters passed to Security exit one are addressed through the X1$DSECT in the M$XPARM
macro. A list of the parameters and the contents of the data field pointed to by the parameters is
shown in the following table.

DSECT Label Contains Address of Data Field Contents

 X1$XTYPE Exit Type Code 1-byte Exit Type Code
C‘1’ = Security exit one

 X1$ACODE Area to return
Action Code

1-byte exit action code
X‘00’ = Continue as normal
X‘04’ = Bypass MBXSECURE and
SECURITY=BATCH ID Validation
X‘08’ = Process as Security Violation

X1$WORKA User Work Area 256-byte user work area

 X1$LINID Remote Name
or BSC Line ID

8-byte Remote Name for which the transaction is in
progress. If the Remote Name is not available for
BSC, the Line ID is used.

X1$CTYPE $$ Command Type 1-byte $$ Command Type
C‘1’ = $$ADD
C‘2’ = Missing $$ADD
C‘3’ = $$REQUEST
C‘4’ = $$DIRECTORY
C‘5’ = $$DELETE
C‘6’ = $$LOGOFF
C‘7’ = SNA LOGON
C‘8’ = BSC LOGON

X1$ID Mailbox ID 8-byte Mailbox ID used

X1$BCHID BATCHID 64-byte user BATCHID used

X1$PASSW Password 8-byte Password entered

X1$BLOCK Block Factor 1-byte Block Factor (hexadecimal)
(Not used in SNA systems.)
132 Connect:Enterprise for z/OS Application Agents and User Exits Guide

Using Security Exit One
X1$XMIT XMIT Value 1-byte XMIT Value
C‘Y’ = XMIT = Y
C‘N’ = XMIT = N

X1$MULTX MULTXMIT Value 1-byte MULTXMIT Value
C‘Y’ = MULTXMIT = Y
C‘N’ = MULTXMIT = N

X1$TRUNC TRUNC Value 1-byte TRUNC Value (not used in SNA systems.)
C‘Y’ = TRUNC = Y
C‘N’ = TRUNC = N

X1$CMP CMP Value 1-byte CMP Value (not used in SNA systems.)
C‘Y’ = CMP = Y
C‘N’ = CMP = N

X1$RCSEP RECSEP Value 1-byte RECSEP used (not used in SNA systems.)

X1$MEDIA MEDIA Value 1-byte MEDIA used (not used in BSC systems)
X‘00’ = Console media
X‘10’ = Transmission Exchange media
X‘11’ = Basic Exchange Diskette
X‘20’ = Card punch or card reader
X‘30’ = Printer
X‘FF’ = No explicit media specified

X1$APLID APPLID Value 8-byte APPLID used (LUNAME when SPC Logon)

X1$RMTNM BSC or SNA Remote
Name

8-byte Remote Name. Set for BSC only if BSC Signon
is used.

X1$UMSG@ User Message Address Address Security violation message. This value is
valid only if a return code of X‘08’ is returned in
X1$ACODE.

X1$UMSGL User Message Length Halfword value of the length in hex of the Substitute
Security violation message specified in X1$UMSG@

X1$LNTYP Line Type 1-byte value indicating the line type:
X‘01’ = BSC Switched
X‘02’ = BSC Non-switched
X‘03’ = SNA LU Type 1

X1$INIT@ Initialization exit word Fullword containing the address or information
returned from the Initialization exit. This value is all
X‘00’ if no Initialization exit is used.

DSECT Label Contains Address of Data Field Contents
Connect:Enterprise for z/OS Application Agents and User Exits Guide 133

Chapter 4 Using Connect:Enterprise Online Exits
Security exit one can change the following fields pointed to by the parameter list:

✦ X1$ACODE
✦ X1$APLID (SNA only)
✦ X1$BCHID
✦ X1$BLOCK (BSC only)
✦ X1$CMP (BSC only)
✦ X1$ID
✦ X1$SFLAG
✦ X1$LPASS
✦ X1$MEDIA (SNA only)
✦ X1$MULTX
✦ X1$NPASS
✦ X1$ONEB
✦ X1$PASSW
✦ X1$RCSEP (BSC only)

X1$ONEB ONEBATCH Value 1-byte value indicating the use of ONEBATCH with
$$REQUEST.
C’Y’ = ONEBATCH=YES
C’N’ = ONEBATCH=NO

X1$LPASS Logon Password 8-byte Logon Password to be used by the security
interface.

X1$NPASS New Logon Password 8-byte New Logon Password to be used by the
security interface.

X1$SFLAG Logon Successfully
Completed Flag

1 hex byte flag indicating if logon and batch/function
security processing has been successfully completed.
Could also be set on to skip normal logon or
batch/function processing that is done by the security
interface.

XX$LGNOK X'01' Bypass
MBXSECURE=LOGON Validation

XX$BCHOK X'02' Bypass
MBXSECURE=BATCH Validation

X1$RBUFA Input Buffer Address
(ADD only)

Fullword containing the address of the input buffer.

X1RBUFS Input Buffer Size (ADD
only)

2-byte hex pointing to length of the input buffer.

X1$VBQNO VBQ # for ADD 2-byte hex number (1–20) of the VBQ to use.

DSECT Label Contains Address of Data Field Contents
134 Connect:Enterprise for z/OS Application Agents and User Exits Guide

Using Security Exit One
✦ X1$RMTNM (SNA or BSC if BSC Signon is used)
✦ X1$TRUNC (BSC only)
✦ X1$UMSG@
✦ X1$UMSGL
✦ X1$VBQNO
✦ X1$WORKA
✦ X1$XMIT

Security Exit One Requirements
The following requirements apply to Security exit one. You must follow these rules for proper exit
use.

✦ Security exit one is called when Connect:Enterprise detects a $$ command in an input buffer
from a remote site, when a new data collection is beginning for a remote site that does not
supply a $$ADD at the front of the data, or when an SNA LOGON or BSC Signon is
attempted.

✦ Security exit one is not called for $$ commands from the system console. It is also not called
for host-initiated transmissions to a remote site during an Auto Connect, since these
transmissions are initiated due to a request at the host site. The exit is called for data
collections from the remote site during an Auto Connect.

✦ Some data fields pointed to by the parameter list are not set for all transactions. For example,
$$REQUEST does not specify a MULTXMIT parameter, so do not use the MULTXMIT data
field.

✦ If Security exit one is called for a data collection without a $$ADD ($$ Command Type =
C‘2’), the data fields are set to the standard system defaults for a missing $$ADD. They are as
follows:

✦ Use this exit to change these default values. You cannot change the ID to blanks. If you do,
Connect:Enterprise uses the remote name as the Mailbox ID.

✦ If action code X‘08’ is set to force a security violation and you also supply a Security exit two,
then Security exit two is later called by Connect:Enterprise. If action code X‘08’ is set and
X1$UMSG@ is nonzero, it is assumed that a substitute security violation message is used as
specified by X1$UMSG@ and X1$UMSGL.

Sample Security User Exit STSEC1
The STSEC1 sample user exit program demonstrates how to do the following:

✦ Access the user work area
✦ Bypass all Connect:Enterprise security checks
✦ Force security violations

ID=the Remote Name (if BSC without SIGNON, the Line ID)
 BATCHID=’BATCH WITHOUT $$ADD’
 XMIT=N
Connect:Enterprise for z/OS Application Agents and User Exits Guide 135

Chapter 4 Using Connect:Enterprise Online Exits
✦ Change values set by Connect:Enterprise for a Mailbox ID, BATCHID, and so forth
✦ Provide a second level of security (such as an operator security code) for $$ADD and

$$REQUEST transactions. When this exit is installed, a remote site must supply the proper
4-digit security code for its Mailbox ID in the first four characters of the 64-byte nongeneric
BATCHID field.

✦ Provide your own security violation messages

STSEC1 Program Logic
The STSEC1 program performs the following processing:

✦ For the first entry only, the STSEC1 program builds a security table in the user work area from
a //SECURITY DD file supplied in the JCL for Connect:Enterprise. Data in the //SECURITY
DD file may resemble the following:

✦ If the Mailbox ID=SECRET where SECRET is a special ID that is allowed unlimited system
access, the STSEC1 program sets the action code to X’04’ to bypass all security checks and
returns to Connect:Enterprise.

✦ If the command is a $$DELETE, the command is not allowed. The STSEC1 program sets the
action code to X’08’ to process as a security violation and returns to Connect:Enterprise.

✦ If the command is a $$DIRECTORY, SNA LOGON or BSC SIGNON, the STSEC1 program
uses standard Connect:Enterprise processing, leaves the action code set to the default value of
X’00’, and returns to Connect:Enterprise.

✦ If the transaction is a data collection that is missing a $$ADD record, the program changes the
system default values to the following:

ID=NOADD

BATCHID=‘0000 NO $$ADD’

XMIT=Y

✦ For standard $$ADD and $$REQUEST transactions, the 4-digit security code supplied in the
BATCHID parameter must now be validated. The remote site must specify the security code
in the first four digits of the nongeneric BATCHID parameter.

✦ First looks up the Mailbox ID value in the security table in the user work area. If the ID is not
in the table, overlays the security code with 9999, sets the action code to X’08’ for a security
violation, and returns to Connect:Enterprise.

✦ If the ID is valid, checks the first four digits of the nongeneric BATCHID against the security
table in the user work area. If the security code is not in the table, overlays the security code
with 9999, sets the action code to X’08’ for a security violation, provides a substitute security
violation message, and returns to Connect:Enterprise.

✦ If the security code is valid, overlays it with 0000. The security code is overlaid so it will not
appear in any output, after which it would no longer be secure.

//SECURITY DD *
OPER01 0432
OPER02 7856
MARYJANE3887
136 Connect:Enterprise for z/OS Application Agents and User Exits Guide

Using Security Exit Two
✦ If the transaction is a $$ADD, leaves the action code set to X’00’ and returns to
Connect:Enterprise.

✦ If the transaction is a $$REQUEST, provides for the capability to request all batches for a
Mailbox ID (BATCHID set to blanks) or to request batches by specific batch number.

✦ If BATCHID=‘CCCC #NNNN’ (4-digit security code followed by # and the 4-digit batch
number), changes the BATCHID to X‘00’ followed by the batch number (the format expected
by the Connect:Enterprise system).

✦ If BATCHID=‘CCCC ALL’ (4-digit security code followed by the word ALL), changes the
BATCHID to blanks. This format is expected by the Connect:Enterprise system.

✦ Leaves the action code set to X’00’ and returns to Connect:Enterprise.

Implementing STSEC1
To run STSEC1 with online Connect:Enterprise, follow these instructions:

1. Use an ODF that contains the following:

2. Provide a security file in the online Connect:Enterprise execution JCL. The records should
contain all valid 8-byte Mailbox IDs followed by the assigned 4-digit security code. For
example:

3. Test a variety of $$ commands, such as the following:

Using Security Exit Two
Security exit two is called after Connect:Enterprise detects a security violation during its optional
security processing. The reason for the violation is passed to the exit program.

*OPTIONS
 ...
 XSECUR1=STSEC1

//SECURITY DD *
OPER01 0432
OPER02 7856
MARYJANE3887

OK: $$ADD ID=MARYJANE BATCHID=‘3887 PAYROLL DATA’
...
...
OK: $$REQUEST ID=MARYJANE BATCHID=‘3887 ALL’
OK: $$REQUEST ID=MARYJANE BATCHID=‘3887 PAYROLL DATA’
FAIL: $$REQUEST ID=MARYJANE BATCHID=‘0432 ALL’
FAIL: $$REQUEST ID=OPER01 BATCHID=#0052
FAIL: $$REQUEST ID=OPER02
OK: $$DIRECTORY ID=TEST
FAIL: $$DELETE ID=OPER01 BATCHID=#0001
Connect:Enterprise for z/OS Application Agents and User Exits Guide 137

Chapter 4 Using Connect:Enterprise Online Exits
This exit can set an action code that requests Connect:Enterprise to continue as normally and
process the violation, or to ignore the violation and allow the transaction.

Security Exit Two Parameters
Parameters passed to Security exit two are addressed by the X2$DSECT in the M$XPARM macro.
A listing of the parameters and the contents of the data field pointed to by the parameters is in the
following table:

DSECT Label Contains Address of Data Field Contents

 X2$XTYPE Exit Type Code 1-byte exit type code
C‘2’ = Security exit two

 X2$ACODE Area to return
Action Code

1-byte exit action code
X‘00’ = Continue as normally
X‘04’ = Ignore Security Violation

X2$WORKA User Work Area 256-byte user work area

X2$LINID Remote Name
or BSC Line ID

8-byte Remote Name for which the transaction is in
progress. If the Remote Name is not available for BSC,
the Line ID is used.

X2$CTYPE $$ Command Type 1-byte $$ Command Type
C‘1’ = $$ADD
C‘2’ = Missing $$ADD
C‘3’ = $$REQUEST
C‘4’ = $$DIRECTORY
C‘5’ = $$DELETE
C‘6’ = $$LOGOFF
C‘7’ = SNA LOGON
C‘8’ = BSC LOGON

X2$ID Mailbox ID 8-byte Mailbox ID used

X2$BCHID BATCHID 64-byte user BATCHID
If BATCHID=‘xxx...xxx’, this field contains the user batch
ID without the quotes.
If BATCHID=#nnnnnnn, this field contains X‘00’ followed
by the 7-digit packed decimal batch number.
If BATCHID parameter was invalid, this field is set to
X‘FF’ followed by blanks.

X2$PASSW Password 8-byte Password entered
138 Connect:Enterprise for z/OS Application Agents and User Exits Guide

Using Security Exit Two
Security exit two can change five fields pointed to by the parameter list. They are as follows:

✦ X2$ACODE
✦ X2$WORKA
✦ X2$ID
✦ X2$BCHID
✦ X2$PASSW

Security Exit Two Requirements
The following requirements apply to Security exit two. You must follow these rules for proper exit
use.

✦ Security exit two is called after Connect:Enterprise detects a security violation. Four security
violation codes explain the reason for the failure. The address of the four codes is passed in the
parameter list. The four codes occupy contiguous storage, and the proper code is set to C‘1’ to
indicate the reason for the security violation.

If Byte 1 is set to C‘1’, Connect:Enterprise Batch Security failed. The ODF specified
SECURITY=BATCH, but the ID supplied by the remote site was not defined as valid in
the *SECURITY records of the ODF.

(For BSC Only) If Byte 1 is set to C‘2’, BTAM ID verification failed. The ID exchange
during a connection attempt on a switched line failed, and BTAM has disconnected the
line.

If Byte 2 is set to C‘1’, the PASSWORD supplied in a $$DIRECTORY command without
an ID was incorrect.

X2$SVCOD Security Violation Codes Four 1-byte value Security Violation Codes. (The proper
1-byte code is set to indicate which security violation
occurred.)
Byte 1 = C‘1’ ID validation failed
Byte 2 = C‘1’ Password incorrect
Byte 3 = C‘X’ SNA LOGON security error
Byte 4 = C‘1’ Security exit one requested error

X2$LNTYP Line Type 1-byte value indicating the line type:
X‘01’ = BSC Switched
X‘02’ = BSC Non-switched
X‘03’ = SNA LU Type 1

X2$INIT@ Initialization exit word Fullword containing the address or information returned
from the Initialization exit. This value is all X‘00’ if no
Initialization exit is used.

DSECT Label Contains Address of Data Field Contents
Connect:Enterprise for z/OS Application Agents and User Exits Guide 139

Chapter 4 Using Connect:Enterprise Online Exits
(For SNA Only) If Byte 3 is set to any value other than C‘0’, an SNA LOGON attempt is
being rejected by Connect:Enterprise. You cannot attempt to override an SNA LOGON
reject. (This byte should be ignored in BSC connections.)

If Byte 4 is set to C‘1’, your Security exit one or the Connect:Enterprise security interface
requested Connect:Enterprise to treat this transaction as a security violation by setting an
action code = X‘08’. You can set an action code = X‘00’ to agree that the transaction is a
security violation, or you can override Security exit one or the security interface by setting
an action code = X‘04’ to allow the transaction.

✦ Some data fields pointed to by the parameter list are not set for all transactions. For example,
$$REQUEST can be entered with only an ID parameter, so the BATCHID can be set to
blanks.

Sample Security User Exit STSEC2
The STSEC2 sample user exit program demonstrates how to do the following:

✦ Override a security violation detected by Connect:Enterprise
✦ Produce a report of security violations

STSEC2 Program Logic
The STSEC2 program performs the following processing:

✦ For the first entry only, opens an output security report file and prints the security report
headers.

✦ If the ID=SECRET, sets the action code to X’04’ to override the security violation and allow
the transaction, and returns to Connect:Enterprise.

✦ For all other errors, formats a detail line on the security report that displays the reason for the
failure, the $$ Command Type, ID, BATCHID, password, and line ID.

✦ Leaves the action code set to X’00’ and returns to Connect:Enterprise.

Implementing STSEC2
To run STSEC2 with online Connect:Enterprise, follow these instructions:

1. Use an ODF that contains the following:

2. Provide a DD statement for the output security report such as:

*OPTIONS
 ...
 PASSWORD=BANANA
 ...
 XSECUR2=STSEC2
 XSECUR1=STSEC1 (optional)
 SECURITY=BATCH
 MBXSECURE=ALL (optional)
*SECURITY
 ID=OPER01 ID=OPER02 ID=MARYJANE ID=SECRET
140 Connect:Enterprise for z/OS Application Agents and User Exits Guide

Using the Output Exit
3. Test a variety of $$ commands that cause security errors. For example, use IDs that are not
defined in your *SECURITY records, use invalid passwords on $$DIRECTORY, or test with
the supplied STSEC1 user exit and cause some failures.

Using the Output Exit
The Output exit is called before every text write when transmitting data to a remote site. The Output
exit can examine and change data in the output buffer, as long as the maximum buffer size is not
exceeded. If data is changed, you must still retain the proper line and record control characters. The
Output exit can set an action code that requests Connect:Enterprise to continue as normally, to use
the data as changed by the exit, or to ignore the data and bypass the write to the remote site.

Output Exit Parameters
Parameters passed to the Output exit are addressed through the X4$DSECT in the M$XPARM
macro. A listing of the parameters and the contents of the data field pointed to by the parameters is
in the following table:

//SECREPT DD SYSOUT=*,DCB=(RECFM=FBA,LRECL=133,BLKSIZE=133)

OK: $$REQUEST ID=MARYJANE BATCHID=‘3887 ALL’
FAIL: $$REQUEST ID=MARY BATCHID=‘3887 ALL’
OK: $$DIRECTORY PASSWORD=BANANA
FAIL: $$DIRECTORY PASSWORD=BANANAS
FAIL: $$DIRECTORY ID=BADID

DSECT Label Contains Address of Data Field Contents

 X4$XTYPE Exit Type Code 1-byte Exit Type Code
C‘4’ = Output exit

 X4$ACODE Area to return
Action Code

1-byte exit action code
X‘00’ = Continue as normal
X‘04’ = Output Data Changed
X‘08’ = Ignore Output Block

X4$WORKA User Work Area 256-byte user work area

X4$LINID Remote Name
or BSC Line ID

8-byte Remote Name for which the transaction
is in progress. If the Remote Name is not
available, the Line ID is used.

 X4$OFLAG Output Data Flag Byte 1-byte data flags
X‘80’ = SNA SCBs are present
X‘40’ = SNA Data contains an FMH
Connect:Enterprise for z/OS Application Agents and User Exits Guide 141

Chapter 4 Using Connect:Enterprise Online Exits
The Output exit can change four fields pointed to by the parameter list. They are as follows:

✦ X4$ACODE
✦ X4$WORKA
✦ X4$OUTPL
✦ X4$OUTPA

Output Exit Requirements
The following requirements apply to the Output exit. You must follow these rules for proper exit
use.

✦ The purpose of the Output exit is to allow normal text message examination and modification.
Do not attempt to use this exit to do your own I/O.

✦ The Output exit is called for standard text output only. The exit is not called for nontext
output, such as WRITE TD (disconnect in BSC connections) or CLSDST (end session in SNA
connections).

If you want to change the output data there are several rules which you must follow:

 X4$OMAXL Maximum Length 2-byte Maximum Length of Output Area

 X4$OUTPL Length of Output Data 2-byte Length of Output Data, including control
characters (hexadecimal)

 X4$OUTPA Output Area Output Data to be Sent to Remote

X4$LNTYP Line Type 1-byte value indicating the line type:
X‘01’ = BSC Switched
X‘02’ = BSC Non-switched
X‘03’ = SNA LU Type 1

X4$CTYPE Command Type 1-byte area indicating which command is
currently being processed from the requested
output type commands:
C‘1’ = $$ADD
C‘2’ = Missing $$ADD
C‘3’ = $$REQUEST
C‘4’ = $$DIRECTORY
C‘5’ = $$DELETE
C‘6’ = $$LOGOFF
C‘7’ = SNA LOGON
C‘8’ = BSC LOGON

X4$INIT@ Initialization exit word Fullword containing the address or information
returned from the Initialization exit. This value is
all X‘00’ if no Initialization exit is used.

DSECT Label Contains Address of Data Field Contents
142 Connect:Enterprise for z/OS Application Agents and User Exits Guide

Using the Output Exit
✦ If you change the length of the output data, you must set new data length in the X4$OUTPL
parameter. The length must never exceed the value pointed to by X4$OMAXL.

✦ You are passed the actual Connect:Enterprise output buffer. Be careful when modifying data
that you do not overlay other areas and cause a system ABEND.

✦ You must retain all SNA control characters, such as IRS, and SCBs.
✦ You must retain all BSC line control, such as STX, ETX, and IRS.
✦ You must not use return code X’08’ to ignore critical writes, such as those that affect chaining

or brackets or contain an ETX.

Sample Output User Exit STOUT
The STOUT sample user exit program demonstrates how to do the following:

✦ Examine and change data in the output buffer before Connect:Enterprise sends it to a remote
site

✦ Ignore blocks that contain a certain text header.

STOUT Program Logic
The STOUT program performs the following processing:

✦ If the output buffer contains SNA compressed records, sets the action code to X’00’ and sends
the block unchanged.

✦ If the output buffer contains the word IGNORE starting anywhere in the first 10 bytes, sets the
action code to X’08’ to ignore the block and returns to Connect:Enterprise.

✦ If the output buffer contains the word NOCHG starting anywhere in the first 10 bytes, leaves
the action code set to X’00’ to send the block unchanged and returns to Connect:Enterprise.

✦ Otherwise, moves a 4-character standard field (the word OUT followed by a record separator)
to the front of the output block, sets the action code to X’04’ to send the changed block, and
returns to Connect:Enterprise.

Implementing STOUT
To run STOUT with online Connect:Enterprise, follow these instructions:

1. Use an ODF that contains the following:

2. Create a batch for transmission containing the three types of special records and use the offline
utilities to ADD it to the VSAM batch files. The batch could contain:

*OPTIONS
 ...
 XOUTPUT=STOUT

1 - THIS SHOULD BE PRECEDED BY AN OUT RECORD
2 - THIS SHOULD BE PRECEDED BY AN OUT RECORD
3 - IGNORE . . . SHOULD NOT BE SENT
4 - NOCHG . . . SHOULD NOT BE PRECEDED BY OUT
5 - IGNORE . . . SHOULD NOT BE SENT
6 - THIS SHOULD BE PRECEDED BY AN OUT RECORD
Connect:Enterprise for z/OS Application Agents and User Exits Guide 143

Chapter 4 Using Connect:Enterprise Online Exits
3. $$REQUEST the added batch and examine the data sent to the remote site.

Using the End of Batch Exit
The End of Batch exit is called at the successful completion of an online batch collection. The exit
can examine the Mailbox ID and BATCHID and submit an EXTRACT job or, if desired, begin an
Auto Connect list. The exit can also invoke wake-up transaction processing if the CICS interface
has been implemented. The End of Batch exit is entered only once per batch, that is, at the
successful completion of the batch being added to Connect:Enterprise.

The purpose of the End of Batch exit is to give you control when a batch has been added
successfully to Connect:Enterprise. The exit enables the user to extract or to automatically begin an
Auto Connect or to do other processing as soon as a batch is received.

Connect:Enterprise remains compatible with nonreentrant type programs, including any
user-written exits and earlier versions of STEOBX and STEOBX2 assuming you have not
implemented any of the FTP components. However, Connect:Enterprise version 1.x and later uses
reentrant programming standards for those customers using FTP. The reentrant standards are
enforced by the ODF parameter XEOBVER=2. Specific requirements are described in the
following sections. The sample exits, starting with Connect:Enterprise version 1.x, conform to these
standards, and any user-written exits must also conform if you are using FTP.

End of Batch Exit Parameters
Parameters passed to the End of Batch exits are addressed by Register 1. A listing of the parameters
and contents of the data field pointed to by the parameters is in the following table:

Note: Depending on your End of Batch processing requirements, you can use the End of Batch application
agent as an alternative to coding and maintaining an exit program. Refer to Chapter 1, Overview of
Connect:Enterprise Application Agents, for complete details.

R1 Points to Parameter
List

Contains Address of Data Field Contents

+0(4) Exit type code 1-byte exit type code
C’5’ = End of Batch exit

+4(4) Area to return action code 1-byte exit action code
X’00’ = Continue as normal
C’W’ = Initiate CICS wake-up transaction
X’08’ = Program failed initialization during
Start processing (ABENDU0253)

+8(4) Batch Control record 4-byte address of the Batch Control record
(M$BCREC Macro)
144 Connect:Enterprise for z/OS Application Agents and User Exits Guide

Using the End of Batch Exit
The End of Batch exit can change the exit action code.

Nonreentrant End of Batch Exit Requirements
The following requirements apply to the End of Batch exits. You must follow these rules for proper
exit use.

✦ Do not modify any of the fields in the BC$RECRD DSECT. They are intended as read only.
✦ To start an Auto Connect by modify commands, you must specify MODIFY=YES in

Connect:Enterprise in the *OPTIONS section of the ODF and set the Auto Connect to start in
the console.

✦ When using STEOBX2, you can write an End of Batch exit program to read a partitioned data
set and select different members to be sent to the INTRDR based on the SUBTABLE. The
SUBTABLE can also be a member of the PDS. This process requires you to add two data sets
to the Connect:Enterprise JCL and enables you to make changes by updating only the PDS.

✦ Do not implement any FTP component.

Sample End of Batch User Exits STEOBX, STEOBX2, and STEOBX2V
Three sample End of Batch exits are provided in Connect:Enterprise:

✦ STEOBX
✦ STEOBX2
✦ STEOBX2V
All three sample user programs demonstrate how to do the following.

✦ Address the BC$RECRD DSECT and examine the fields. They contain information about the
batch that was just received: Mailbox ID, batch number, BATCHID, number of blocks, and so
on.

✦ Set up a table that determines if, when a batch is added, it is also extracted.
✦ Set up a physical sequential data set and a JES2 INTRDR data set.
✦ Write JCL or operator commands to the JES2 INTRDR.

STEOBX Program Logic
The program contains a user-tailored action table that is defined and assembled in the exit program
source and is written as one of four sequential data sets to submit a user-written JCL stream for
post-batch receive processing. Only four user JCL files (STJCL01, STJCL02, STJCL03, and
STJCL04) are read for submission to the operating system to execute in the sample STEOBX.

+C(4) Initialization Word 4-byte address of the initialization exit word

+10(4) Shared Storage Address 4-byte address of version 2 exit shared
storage area address

R1 Points to Parameter
List

Contains Address of Data Field Contents
Connect:Enterprise for z/OS Application Agents and User Exits Guide 145

Chapter 4 Using Connect:Enterprise Online Exits
The STEOBX program performs the following processing:

✦ Checks the SUBTABLE TYPE to see if the system compares ID only, BATCHID only, or ID
and BATCHID.

✦ Performs the appropriate compare against the batch that has just completed to determine what
action, if any, is to be done.

✦ If a JOB is to be submitted or an Auto Connect list is to be started, the program opens the
proper JCL file, opens a JES2 INTRDR, and writes the JCL and/or MODIFY commands to
JES2.

STEOBX2 Program Logic
The program reads the STPDS data set member SUBTABLE and creates the user-determined action
table dynamically and holds it in memory for the duration of that instance of Connect:Enterprise.
This capability permits you to update only the SUBTABLS PDS member between uses as your
work load changes, rather than requiring you to reprogram the tables defined for the STEOBX
source. Unlike STEOBX, which uses only four standard user JCL files, STEOBX2 retrieves the
user-written JCL from members stored in the STPDS data set. You can define a JCL for a specific
set of naming attributes (ID, ID+BATCHID, or BATCHID), limited only by the size of the data set.

STEOBX2V Program Logic
The program retrieves SUBTABLE-like look-up information from a VSAM data set and performs
the user-determined action in a more dynamic manner than the STEOBX2 sample SOURCE exit
program. When the VSAM data set is defined with SHAREOPTIONS(4), you can add or modify
entries in the SUBTABLE dynamically; that is, they are recognized immediately without restarting
the product. You can also use some third-party software packages to delete obsolete records from
the VSAM data sets. After you update records or delete obsolete records in VSAM files, perform
regular file maintenance to reclaim file space. See Connect:Enterprise for z/OS Administration
Guide for more information on maintaining VSAM files.

The STEOBX2V sample exit conforms to all other STEOBX2 programming specifications and
uses only the reentrant version of exit processing due to the popularity of the FTP protocol. You can
define the VSAM KSDS key and record layout to meet your system requirements. However, the
sample SOURCE program uses a 72-byte record key consisting of the 8-byte Mailbox ID and the
64-byte User BATCHID values followed by an 8-byte PDS member name. This record key is used
to fetch the EXTRACT job or Auto Connect Modify command syntax to be retrieved from the
STPDS data set and submitted to the operating system by the STINTRDR reader file.

Implementing Nonreentrant End of Batch Exits
To run End of Batch exits with online Connect:Enterprise:

1. Use an ODF that contains:

*OPTIONS

...
XEOBVER=1
XENDOFB=exit name
146 Connect:Enterprise for z/OS Application Agents and User Exits Guide

Using the End of Batch Exit
where XEOBVER=1 indicates nonreentrant standards are in place, and where exit name is
STEOBX, STEOBX2, or the name of your user-written exit.

2. Successfully add batches online and verify the correct actions were taken.

Reentrant End of Batch Exit Requirements
In addition to the general exit requirements described previously, the reentrant (version 2)
programming standard also requires you to adhere to the following requirements:

✦ In the *OPTIONS section of the ODF (DD=OPTDEF), set the XEOBVER= parameter to a
value of 2 to indicate reentrant programming standards have been coded.

✦ The product initialization call that allocates and prepares the shared storage work area is
mapped by the SOURCE data set macro members, S$EOBX, S$EOBX2, or S$EOBX2V. Use
the mapping macro appropriate to the source program you are using, STEOBX, STEOBX2, or
STEOBX2V.
The pointer to this shared storage is passed as a parameter located at offset 16x’10’ from entry
Register 1. This parameter points to the address established by the initialization call to the
EOB exit which contains any data control block (DCB) areas for files to be shared
(STINTRDR, STPDS). It may also include the allocation for the in-storage SUBTABLE
which directs the processing flow during the actual EOB event calls, and prevents repeat
loading of this control table for each invocation of an exit.

✦ No batch control record address will be passed during this call because it occurs during
initialization and is not a legitimate End of Batch event.

✦ To conform to reentrant standards, the programs cannot modify themselves during use.
Implementing this restriction requires you to use the MF=L and MF=E type features on many
standard operating system macros used by your exit program. Sample macros include
OPEN/CLOSE, WTO, MGCR, and ENQ/DEQ.

✦ The program must serialize use of the shared storage areas to protect areas such as the DCB
files. The sample SOURCE programs use a specific resource name combination where
QNAME=CL8’MAILBOX’ and the RNAME=CL8’EOB EXIT.’ The scope of this resource is
EXCLUSIVE, STEP to prevent bottlenecks resulting from users executing multiple copies of
Connect:Enterprise. This is necessary because the program is coded to handle all EOB events
concurrently, regardless of origin, and it must support calls from both the C:E STMAIN task
and any number of concurrent FTP thread tasks.

Implementing Reentrant End of Batch Exits
To run an End of Batch exit with online Connect:Enterprise using the version 2 standards:

1. Use an ODF that contains:

Note: Setting the return action code to x’08’ during this call results in initialization termination
indicating that the exit requirements were not satisfied by the current configuration.
Connect:Enterprise for z/OS Application Agents and User Exits Guide 147

Chapter 4 Using Connect:Enterprise Online Exits
where XEOBVER=2 indicates reentrant standards are in place, and where exit name is
STEOBX, STEOBX2, STEOBX2V, or the name of your user-written exit.

2. Successfully add batches online and verify the correct actions were taken.

Using the Initialization Exit
The Initialization exit is called prior to Connect:Enterprise system initialization. The exit is passed
a 1-word (4-byte) area in which it can store information. This area is subsequently passed to all other
online exits to allow them to interrogate information that can be stored there.

Initialization Exit Parameter
The parameter passed to the Initialization exit is a fullword of storage (4 bytes aligned to a fullword)
pointed to by register 1 on entry. This field is available to all online exits.

Sample Initialization User Exit STXINIT
The STXINIT sample user exit program demonstrates how to do the following:

✦ Perform global system initialization routines
✦ Pass appropriate information to other online exits
The STXINIT program performs the following processing:

✦ Dynamically allocates and opens the JES2 INTRDR
✦ Retains the DCB address in the Initialization exit word for subsequent use by the End Of

Batch exit and the Termination exit

Using the Termination Exit
The Termination exit is called prior to Connect:Enterprise system shutdown. It is passed the same
1-word (4-byte) area returned by the Initialization exit.

*OPTIONS

...
XEOBVER=2
XENDOFB=exit name
148 Connect:Enterprise for z/OS Application Agents and User Exits Guide

Using the Log Exit
Termination Exit Parameter
The parameter passed to the Termination exit is a fullword of storage (4 bytes aligned to a fullword)
pointed to by register 1 on entry. This field is available to all other online exits, and is the same
field given to the Initialization exit.

Sample Termination User Exit STTERM
The STTERM sample user exit program demonstrates how to do the following:

✦ Perform global system termination routines
✦ Perform system level cleanup
The STTERM program performs the following processing:

✦ Dynamically deallocates and closes the JES2 INTRDR
✦ Returns control to Connect:Enterprise for system termination

Using the Log Exit
The Log exit is called before each log record is written or updated on the VSAM log file. The exit
is given control for both Auto Connect records (complete or queued) and remote connect records.

The Log exit can examine and change data in the log records, but cannot alter the log record key.
The data must retain its standard format for the offline utilities REPORT function to process
properly. The length of the log record cannot be changed.

Log Exit Parameters
The following macros are provided on the installation tape in the MAILBOX.SOURCE library:

✦ M$ACREC–Contains the DSECT for the Auto Connect record.
✦ M$DCREC–Contains the DSECT for the Auto Connect Queue record.
✦ M$LOGBQ–Contains the DSECT for the remote connect record.

Note: Depending on your log processing requirements, you can use the Logging application agent as an
alternative to coding and maintaining an exit program. Refer to Chapter 1, Overview of
Connect:Enterprise Application Agents for complete details.
Connect:Enterprise for z/OS Application Agents and User Exits Guide 149

Chapter 4 Using Connect:Enterprise Online Exits
The parameters passed to the Log exit are pointed to by register 1 and are described in the following
table:

The Log exit can change the Log record data.

Log Exit Requirements
The Log exit is called for Auto Connects and remote connects and for both summary and detail
records. The Log exit is not called for the GET function, which is used only for positioning before
a PUT UPDATE is done, or for accessing the Auto Connect master record.

The use of logging in Connect:Enterprise varies depending on the type of transaction being
processed:

✦ Auto Connect
✦ Queued Auto Connect
✦ Remote Connect, and
✦ CICS API ADD and REQUEST functions.

R1 Points to
Parameter List

Parameter Contents Data Field Contents

+0(4) Address of Exit Type Field 1-byte exit type code
C‘6’ = Log exit

+4(4) Address of Return Code Byte 18-byte Return Code
X‘00’ = Process as normal

+8(4) Address of Log Function Type 1-byte Log Function Type
C‘1’ = Put New Log record
C‘2’ =Update Log record

+C(4) Address of log record key 18-byte log record key
1st byte C‘A’ = Auto Connect
1st byte C‘B’ = remote connect
1st byte C‘D’ = Auto Connect queue

+10(4) Address of log record data Refer to the M$ACREC macro for the Auto
Connect DSECT.
Refer to the M$LOGB macro for the remote
connect DSECT. Refer to the M$DCREC
macro for the queued Auto Connect DSECT.

+14(4) Address of Halfword Log
Record Data Length

2-byte length of data portion of the log record

+18(4) Address of Initialization exit
word

A fullword containing the address of information
returned from the Initialization exit. This value
is binary zero if no Initialization exit is used.
150 Connect:Enterprise for z/OS Application Agents and User Exits Guide

Using the Log Exit
Auto Connect Logging
Auto Connects write a single summary record for the entire Auto Connect, regardless of the number
of remote sites contacted during the Auto Connect. A detail record is written for each batch sent or
received, or for each error condition that occurs during the Auto Connect. When the Auto Connect
ends, the summary record is updated with statistics for the completed Auto Connect.

For example, an Auto Connect that sends two batches to a remote site gives control to the Log exit
as follows:

1. PUT NEW summary record (failure code 001 is set in case the Auto Connect does not
complete).

2. PUT NEW detail record for batch number 1.
3. PUT NEW detail record for batch number 2.
4. PUT UPDATE summary record (failure code 001 is reset).

Queued Auto Connect Logging
When an Auto Connect is queued, a single log record is written. When the Auto Connect is
reactivated, the log record is updated to reflect the reactivation status, date, and time. When a
queued Auto Connect is deleted, the log record is updated with delete status, date and time.

If a reactivated Auto Connect still cannot establish a session with one remote, it is queued again.
In this case, a new log record is created.

For example, an Auto Connect is queued and later reactivated, the log record receives control as
follows:

1. PUT NEW Auto Connect queue record.
2. PUT UPDATE Auto Connect queue record.

Remote Connect Logging
Remote connects write a single summary record for a single connection from a remote site. A detail
record is written, and sometimes updated, for each individual function used during the connection.
When the connection ends, the summary record is updated with statistics for the connection.

Detail records are written for the short duration functions (CONNECT and DISCONNECT). Detail
records are written and later updated for the long duration functions:

✦ ADD
✦ REQUEST
✦ DIRECTORY
✦ DELETE
✦ SIGNON
For example, a remote connect that adds one batch and requests one batch would give control to the
Log exit as follows:

1. PUT NEW summary record.
2. PUT NEW detail record for CONNECT.
Connect:Enterprise for z/OS Application Agents and User Exits Guide 151

Chapter 4 Using Connect:Enterprise Online Exits
3. PUT NEW detail record for batch ADD.
4. PUT UPDATE detail record for batch ADD.
5. PUT NEW detail record for REQUEST.
6. PUT UPDATE detail record for REQUEST.
7. PUT NEW detail record for DISCONNECT.
8. PUT UPDATE summary record.

Connect:Enterprise CICS API ADD and REQUEST Logging
Logging for the CICS API transactions for ADD and REQUEST batches uses only detail records.
Summary records are not required because each transaction is stand alone, rather than part of a
connection process.

Each batch ADD and each batch REQUEST gives control to the Log exit for a PUT NEW detail
record.

Sample Log User Exit STLOGX
The STLOGX sample user exit program demonstrates how to do the following:

✦ Differentiate between Auto Connect and Remote Connect log records
✦ Examine and change data in the log records before Connect:Enterprise writes the data to the

VSAM log file
✦ How to display a console message for some log record failure codes.

STLOGX Program Logic
This program performs the following processing:

✦ If the log record key begins with C‘A’ for auto connect:
Checks for a failure code 011 (X ’0B’—no batches for transmission) and changes it to
zero to suppress an error for this condition.

Checks for a failure code 001 (X’01’) on an Auto Connect summary record. This code is
not an error, because this failure code is reset when the Auto Connect later ends.

For all other failure codes, displays a message on the system console that contains the
failure code.

✦ If the log record key begins with C‘B’ for remote connect:
Checks for a failure code 011 (X’0B’—no batches for transmission) and changes it to zero
to suppress an error for this condition.

Checks for a failure code 001 (X’01’) on any remote connect record. This code is not an
error, because this failure code is reset when the function later ends.

For all other failure codes, displays a message on the system console which contains the
failure code.
152 Connect:Enterprise for z/OS Application Agents and User Exits Guide

Using the APPC Security Exit
Implementing STLOGX
To run STLOGX with online Connect:Enterprise:

1. Use an ODF that contains the following:

2. Create some log records with failure codes to see the console message displayed. For a remote
connect, try a $$DIRECTORY with an invalid password. For an Auto Connect, try to establish
a connection with a remote site that is unavailable.

Using the APPC Security Exit
The APPC Security exit is called for every new transaction received from the CICS or ISPF
interface. Transactions that are not new do not invoke this exit, such as an ADD or REQUEST that
is in progress. There is no way for transactions in progress to circumvent security by switching
functions midstream.

When called, the APPC Security exit is passed the address of the Interface Parameter Structure
(IPS). The IPS includes a GDS header, an IPS header, and usually an IPS trailer. The IPS header
contains the REQUEST CODE to identify the transaction type. A list of all valid request codes is
in the table REQTAB in the sample security exit (STCSEC) supplied during installation.

The IPS trailer immediately follows the IPS header for most transactions. Only the VERIFY
transaction, which provides the capability to verify the user ID and password, does not contain an
IPS trailer.

APPC Security Exit Parameters
Register 1 points to a parameter list upon entry to the user-supplied APPC Security exit program.
The parameter list contains 7 fullwords as shown in the following table:

*OPTIONS
 ...
 XLOG=STLOGX

Note: If you use the APPC security exit, you must modify the Interface Paramaeter Structure (IPS) macro
that it calls. For more information, see IPS Trailer Portion Data on page 213 and the upgrading
section in the Connect:Enterprise for z/OS Release Notes.

R1 Points to Parameter
List

Parameter Contents Data Field Contents

+0(4) Address of exit type code C’C’=Security exit
Connect:Enterprise for z/OS Application Agents and User Exits Guide 153

Chapter 4 Using Connect:Enterprise Online Exits
APPC Security Exit Requirements
The following requirements apply to the APPC Security exit. You must follow these rules for
proper exit use.

✦ Use the APPC Security exit to validate the user ID and password in the VERIFY transaction,
or to examine or alter data in the IPS.

✦ Do not change the size of the IPS.
✦ The Connect:Enterprise APPC password is encrypted for security reasons. It is decrypted

immediately before passing control to the security exit, and re-encrypted upon return.
✦ The security exit can set an action code to indicate the success or failure of the security checks.
✦ Modify only the password and new password fields in the IPS header.

Sample APPC Security User Exit STCSEC
The STCSEC sample user exit program demonstrates how to do the following:

✦ Validate a user and password from a CICS or ISPF interface transaction
✦ Validate that a user is authorized to perform any CICS or ISPF interface transaction
✦ Limit a batch browse to selected batches

STCSEC Program Logic
The STCSEC program performs the following processing:

+4(4) Address of area to return action
code

X‘00’ ... Security Check OK
X‘04’ ... Error, invalid password
X‘08’ ... Error, user-defined error code is
set in H00RTNCD

+8(4) Address of IPS IPS GDS Header
(A$GDS DSECT)

+C(4) Address of IPS header IPS Header (C$H00 DSECT)

+10(4) Address of IPS trailer IPS Trailer (DSECT macro name matches
the request code in H00REQCD, binary
zeros if H00REQCD=VERIFY)

+14(4) Address of Initialization exit word A fullword containing the address of
information returned from the Initialization
exit. This value is binary zero if no
Initialization exit is used.

+18(4) Address of Logon/Batch/Function
Security Flag

Points to a flag that indicates if logon and
request processing has been successfully
completed. This flag could also be set on to
skip normal security interface processing.

R1 Points to Parameter
List

Parameter Contents Data Field Contents
154 Connect:Enterprise for z/OS Application Agents and User Exits Guide

Using the CICS Wake Up Initiate Exit
✦ Builds a security table of user IDs and passwords from an input file.
✦ Refreshes the security table when a specific user ID/password is entered.
✦ Validates the user ID/password passed in the verify transaction, and sets return codes for user

ID or password failure.
✦ Validates the request code in the IPS header.
✦ Checks that the user ID is authorized to use a request code. This example assumes an 8-byte

user ID with the last byte set to a numeric authorization code.
✦ Checks the IPS trailer for the C$U22 request code (batch file data request) to determine if the

batch can be browsed. This example only allows batches that begin with D to be browsed.

Implementing STCSEC
To run STCSEC with online Connect:Enterprise, follow these instructions:

1. Use an ODF that contains:

2. Perform various CICS interface transactions and verify the correct actions are being taken. For
example, a batch that begins with an X cannot be browsed and a batch beginning with D can
be browsed.

3. If you are using the provided sample exit, a CSECIN DD statement is needed for the security
PDS.

Using the CICS Wake Up Initiate Exit
The Wake Up Initiate exit is called when a Connect:Enterprise End Of Batch exit sets a return code
W to request that a wake up transaction be initiated and sent to a CICS API. Thus, when an online
ADD completes, a CICS program can be notified of the event. The Wake Up Initiate exit is also
driven each time a batch is successfully added by the APPC LU6.2 Interface.

The Wake Up Initiate exit is passed an Interface Parameter Structure or IPS. The IPS includes a
GDS header, an IPS header, and a trailer that is unique for the wake up transaction. The IPS header
request code is set to C$W00, which is also the name of the macro that generates the DSECT for
the wake up IPS trailer. The Wake Up Initiate exit can set an action code to send the IPS to the CICS
API, to ignore the IPS, or it can set an error code.

*OPTIONS
 ...
 XAPPCSEC=STCSEC

Note: If you use the CICS Wake Up Initiate exit, you must modify the Interface Parameter Structure (IPS)
macro that it calls. For more information, see IPS Trailer Portion Data on page 213 and the
upgrading section in the Connect:Enterprise for z/OS Release Notes.
Connect:Enterprise for z/OS Application Agents and User Exits Guide 155

Chapter 4 Using Connect:Enterprise Online Exits
Wake Up Initiate Exit Parameters
Register 1 points to a parameter list upon entry to the user-supplied Wake Up Initiate exit program.
The parameter list contains seven fullwords, as shown in the following table:

Wake Up Initiate Exit Requirements
Because the Wake Up Initiate exit is communicating with a user-supplied CICS API by sending it
an IPS, some fields in the IPS header must be properly set to route the IPS. The following fields
define the user transaction:

✦ H00CDEFN (CICS Resource Definitions)
✦ H00SYSID (CICS System ID)
✦ H00CRESC (CICS Resource Identifiers)
For complete details on the contents of these fields, refer to the IPS Header DSECT, generated by
the macro C$H00.

The IPS trailer contains information for the batch that was added to Connect:Enterprise, such as the
Mailbox ID, batch number, user batch ID, and number of blocks in the batch. This information can

Note: Depending on your Wake Up Initiate processing requirements, you can use the End Of Batch
application agent with the WAKEUP instruction as an alternative to coding and maintaining an exit
program. By invoking CICS wake up in this manner, you do not need either the End Of Batch exit
or the APPC Wake Up Initiate exit to start a CICS wake up. Refer to Chapter 1, Overview of
Connect:Enterprise Application Agents for complete details.

R1 Points to
Parameter List

Parameter Contents Data Field Contents

+0(4) Address of exit type code A=Wake Up Initiate exit

+4(4) Address of area to return action
code

X‘00’ ... Send Wake Up IPS to
 CICS
X‘04’ ... Do not Wake Up CICS
X‘08’ ... Unrecoverable error

+8(4) Address of IPS IPS GDS Header
(A$GDS DSECT)

+C(4) Address of IPS header IPS Header (C$H00 DSECT)

+10(4) Address of IPS trailer IPS Trailer (C$W00 DSECT)

+14(4) Address of Initialization exit word A fullword containing the address of information
returned from the Initialization exit. This value is
binary zero if no Initialization exit is used.

+18(4) Address of Wake Up reason code C‘1’ Mailbox online ADD
C‘2’ APPC online ADD
156 Connect:Enterprise for z/OS Application Agents and User Exits Guide

Using the CICS Wake Up Terminate Exit
be examined by the Wake Up Initiate exit and used to determine the processing requirements for
the transaction. Refer to the IPS trailer DSECT, generated by the macro C$W00.

Sample Wake Up Initiate User Exit STCWI
The STCWI sample user exit program demonstrates how to do the following:

✦ Examine the Connect:Enterprise batch information to determine routing of the transaction
✦ Set installation-specific fields to send the wake up transaction to a CICS API. In this sample,

the process to be executed is identified by user transaction ID, and is given control using a
START with data.

STCWI Program Logic
The STCWI program performs the following processing:

✦ If Mailbox ID=NOWAKEUP, returns an action code of X’04’, which does not wake up CICS.
✦ If Mailbox ID is not equal to NOWAKEUP and the batch is not added by a CICS API

transaction, sets the action code to X’00’ and wakes up CICS.

Implementing STCWI
To run STCWI with online Connect:Enterprise, follow these instructions:

1. Use an ODF that contains:

2. Implement an End Of Batch exit which sets a return code of C’W’.
3. Define the correct CICS definitions within the program. Assemble and link the program.

H00CDEFN (CICS Resource Definitions)

H00SYSID (CICS System ID)

H00CRESC (CICS Resource Identifiers)

4. Add batches to Connect:Enterprise and verify that the CICS transaction is started for the
correct batches.

Using the CICS Wake Up Terminate Exit
The Wake Up Terminate exit is called after the Wake Up Initiate transaction is delivered to the
CICS API. Additionally, the exit is called with a return code set if the wake up transaction could
not be delivered to the CICS API. The Wake Up Terminate exit is informed about the success or
failure of the delivery of the message, but not about the results of the processing in the CICS API.

*OPTIONS
 ...
 XAPPCWI
Connect:Enterprise for z/OS Application Agents and User Exits Guide 157

Chapter 4 Using Connect:Enterprise Online Exits
✦ The Wake Up Terminate exit can provide logging or reporting on the results of the wake up
delivery.

✦ The Wake Up Terminate exit is passed an IPS which includes a GDS header, an IPS header,
and a trailer that is unique for the wake up transaction. The IPS header request code is set to
C$W00, that is also the name of the macro which generates the DSECT for the wake up STIPS
trailer.

✦ The Wake Up Terminate exit can set an action code to free the IPS, or it can set an error code.

Wake Up Terminate Exit Parameters
Register 1 points to a parameter list upon entry to the user-supplied Wake Up Terminate exit
program. The parameter list contains six fullwords, as shown in the following table:

Wake Up Terminate Exit Requirements
Because the Wake Up Terminate exit is communicating with a user-supplied CICS API, the setting
and testing of return codes in the IPS is under their control. A return code can be set and tested in
H00RTNCD in the IPS header, and values X’0400’ through X’0499’ are reserved for all online
exits’ use (APPC Security, Wake Up Initiate, and Wake Up Terminate).

Note: If you use the CICS Wake Up Terminate exit, you must modify the Interface Parameter Structure
(IPS) macro that it calls. For more information, see IPS Trailer Portion Data on page 213 and the
upgrading section in the Connect:Enterprise for z/OS Release Notes.

Note: Depending on your Wake Up Terminate processing requirements, you can use the Wake Up
Terminate application agent as an alternative to coding and maintaining an exit program. Refer to
Chapter 1, Overview of Connect:Enterprise Application Agents for complete details.

R1 Points to
Parameter List

Parameter Contents Data Field Contents

+0(4) Address of exit type code B=Wake Up Terminate exit

+4(4) Address of area to return action
code

X‘00’ ... Successful, free IPS
X‘08’ ... Unrecoverable error

+8(4) Address of IPS IPS GDS Header (A$GDS DSECT)

+C(4) Address of IPS header IPS Header (C$H00 DSECT)

+10(4) Address of IPS trailer IPS Trailer Wake Up Transaction (C$W00 DSECT)

+14(4) Address of Initialization exit
word

A fullword containing the address of information
returned from the Initialization exit. This value is
binary zero if no Initialization exit is used.
158 Connect:Enterprise for z/OS Application Agents and User Exits Guide

Using the COBOL User Exit
Sample Wake Up Terminate User Exit STCWT
The STCWT program demonstrates how to do the following:

✦ Examine fields in the STIPS header and trailer
✦ Format a report of the Mailbox ID, batch number, user batch ID, and return code for the wake

up transaction

STCWT Program Logic
The STCWT program performs the following processing:

✦ Opens a report file to report on wake up transaction activity.
✦ Writes information to the report file on each wake up transaction completed.

Implementing STCWT
To run STCWT with online Connect:Enterprise, follow these instructions:

1. Use an ODF that contains the following:

2. Provide a DD statement in Connect:Enterprise JCL for the report file such as the following:

3. Test in conjunction with the Wake Up Initiate and End Of Batch exits.

Using the COBOL User Exit
A user exit is provided to illustrate how to link the online exits if you are writing them in COBOL.

Sample COBOL User Exit STCOBOL
The STCOBOL program demonstrates how to do the following:

✦ Specify proper linkage for COBOL online exits
✦ Use Security exit one to force the use of unique passwords for each Mailbox ID when using a

full $$DIRECTORY request

STCOBOL Program Logic
The STCOBOL program performs the following processing:

✦ If the $$ command type is not a $$DIRECTORY, returns to Connect:Enterprise for normal
processing.

*OPTIONS
 ...
 XAPPCWT=STCWT

//CWTREPT DD SYSOUT=*,DCB=(RECFM=FBA,LRECL=133,BLKSIZE=1330)
Connect:Enterprise for z/OS Application Agents and User Exits Guide 159

Chapter 4 Using Connect:Enterprise Online Exits
✦ If the password is all blanks (was not supplied), returns to Connect:Enterprise for normal
processing.

✦ Looks up the 8-byte Mailbox ID in a security table in the program. If the ID is not in the table,
sets the action code to X’08’ for a security violation and returns to Connect:Enterprise.

✦ If the Mailbox ID is found in the security table, compares the password to the password in the
security table.

✦ If the passwords match, changes the transaction password to BANANA and changes the
transaction Mailbox ID to blanks. Note that BANANA is the valid Connect:Enterprise
password.

✦ If the passwords do not match, changes the transaction password to ZZZZZZZZ to force a
password failure.

✦ Returns to Connect:Enterprise to process the $$DIRECTORY normally.
✦ When this exit is being used, the parameters supplied for a $$DIRECTORY from a remote site

differ slightly from the standard Connect:Enterprise method. On a full directory request, an ID
must be supplied. It is examined by the exit, then changed to blanks if it is correct.
To request a full directory listing of all IDs:

Implementing STCOBOL
To run STCOBOL with online Connect:Enterprise, follow these instructions:

1. Use an ODF that contains:

2. The following ID/PASSWORD combinations are allowed:

3. Test a variety of $$ commands and a variety of $$DIRECTORY commands.

$$DIRECTORY PASSWORD=xxxxxxxx ID=xxxxxxxx

$$DIRECTORY ID=xxxxxxxx

*OPTIONS
 VTAM=YES
 PASSWORD=BANANA
 ...
 XSECUR1=STCOBOL

ID PASSWORD
OPER01 APPLE
OPER02 ORANGE
OPER03 FIG
MARYJANE PEAR
FRED PEACH
160 Connect:Enterprise for z/OS Application Agents and User Exits Guide

Using the COBOL User Exit
OK: $$DIRECTORY ID=MARYJANE PASSWORD=PEAR
OK: $$REQUEST ID=MARYJANE
OK: $$ADD ID=MARYJANE BATCHID=‘PAYROLL DATA’
 ...
 ...
FAIL: $$DIRECTORY PASSWORD=BANANA
FAIL: $$DIRECTORY ID=OPER01 PASSWORD=FRUIT
OK: $$DIRECTORY ID=TEST
OK: $$DIRECTORY ID=OPER03
Connect:Enterprise for z/OS Application Agents and User Exits Guide 161

Chapter 4 Using Connect:Enterprise Online Exits
162 Connect:Enterprise for z/OS Application Agents and User Exits Guide

Chapter 5

Using Connect:Enterprise Offline Utility Exits

Connect:Enterprise provides several offline utility exits. Connect:Enterprise only provides the
linkage to the offline utility exits. You must define, code, assemble, link, and test your own exits.
Offline utility exit programs are optional and the system default is no exits.

The following offline utility user exits are available:

✦ Offline ADD Security exit
✦ Offline EXTRACT Security exit
✦ Offline STATFLG/DELETE/ERASE/MOVE/PURGE Security exit
✦ Offline Utility Startup exit
When the exits are in control, the Connect:Enterprise offline utility is not. Define, assemble, link,
and test your programs carefully because, when an ABEND occurs (the system goes into a loop),
the entire utility is affected.

This chapter describes the different types of offline exits and their uses.

How Connect:Enterprise Uses Offline Utility Exits
All Connect:Enterprise offline utility user exits are called using standard MVS CALL linkage. The
executable user exit load modules must be present in your Connect:Enterprise utility load library.

An exit parameter list is passed to each of the user exits. The parameter list points to all of the data
that can be examined and modified by the exit programs. The calling parameters and action codes
for each of the user exit programs are documented with the descriptions for each type of user exit.
For all the exits, the parameter list is a series of 4-byte addresses that point to the actual data field.
The data field contents description uses letter codes to describe the field format. C is character data;
X is hexadecimal data.

The M$OUXCB macro on the Connect:Enterprise release tape contain the parameter lists in the
DSECT for the offline utility exits.

Note: You can use the sample member, ASMLKXIT, to assemble and link your user exits.
Connect:Enterprise for z/OS Application Agents and User Exits Guide 163

Chapter 5 Using Connect:Enterprise Offline Utility Exits
Assembly language programs must save and restore the calling program registers. At entry to the
user exit, the parameter list address is in Register 1.

Coding Offline Utility Exits
The following requirements apply to all user exits. You must follow these rules for proper execution
of all exits.

✦ When changing parameters passed to your exit programs, always use values that are valid for
use by Connect:Enterprise. Failure to use valid data can cause system ABENDs or
unpredictable results. All character fields are passed as left-justified, blank-filled, and should
be returned in the same format.

✦ Ensure that the passed parameter list always contains valid addresses for all fields defined for
each user exit.

✦ The default action code is X‘00’, which indicates that Connect:Enterprise should continue
processing as normal. If an invalid action code is set, Connect:Enterprise forces an action code
of X‘00’.

Testing Offline Utility Exits
Test the user exits before they are used in a production Connect:Enterprise system. An ABEND or
loop in a user exit affects all of Connect:Enterprise, not just your exit load module.

Sample Offline Utility Exits
The Connect:Enterprise release tape contains several sample offline user exit programs.

Using the Offline ADD Security Exit
The Offline ADD Security exit is called at the beginning of each offline ADD request. Use this exit
to:

Sample User Exit Programs Definition

STSECA Offline ADD Security exit

STSECE Offline EXTRACT Security exit

STSECOU Offline STATFLG/DELETE/ERASE/MOVE/PURGE Security exit

STUTAXIT Offline Utility Startup exit

Note: When implementing an offline user exit, you must use the same name of the corresponding sample
exit.
164 Connect:Enterprise for z/OS Application Agents and User Exits Guide

Using the Offline ADD Security Exit
✦ Perform security verification
✦ Set an action code that indicates to either continue normally or to not perform the ADD

request

ADD Security Exit Parameters
Parameters passed to the ADD Security exit are addressed by the XO$DSECT in the M$OUXCB
macro. A listing of the parameters and the contents of the data field pointed to by the parameters is
in the following table:

ADD Security Exit Requirements
The following requirements apply to the Offline ADD Security exit. You must follow these rules
for proper exit use.

The purpose of the ADD Security exit is to allow a security check to be performed.

✦ If the action code pointed to by XO$ACODE is set to X‘08’, the batch is not added.
✦ If you want the entire job stream to be terminated, set the return code in register 15 to 12

(X‘0C’).
✦ You can set or alter the VBQ ID for the VBQ to which the batch is added. The user exit is

responsible for verifying the VBQ is defined and can be allocated.

Sample ADD Security User Exit STSECA
The STSECA program demonstrates how to do the following:

✦ Retrieve the userid of the submitted job

DSECT Label Contains Address of Data Field Contents

 XO$ID Mailbox ID 8-byte Mailbox ID

 XO$BID Batch Identification 64-byte batch ID

 XO$ACODE Area to Return
Action Code

1-byte exit action code
X‘00’ = Process as Normal
X‘08’ = Terminate ADD Request
X‘0C’ = Terminate entire offline utility job stream.

XO$VPF VPF DSN 44-byte VPF DSN

XO$PGMID Utility Name 8-byte Utility Name (ADD)

XO$MBXNM Mailbox Name 8-byte name assigned to the Mailbox system.

XO$SFLAG Security Flag Flag that indicates if security processing is active.
This flag could also be set on to skip normal
security processing.

XO$VBQNO VBQ ID (ADD only) 2-byte VBQ ID to which the batch is added.
Connect:Enterprise for z/OS Application Agents and User Exits Guide 165

Chapter 5 Using Connect:Enterprise Offline Utility Exits
✦ Verify user authority to add batches with specific Mailbox ID and user batch ID values
✦ Verify the VPF DSN
You can use this exit to override the ID and BATCHID values regardless of where these values
originated from, for example, in a SYSIN control record or an embedded $$ADD ID=xxxxxxxx
BATCHID='xxx...xxx' record. See the sample STSECA source code for an example of performing
a simple table lookup against the input ID/BATCHID and altering these values, based on a match.

STSECA Program Logic
The STSECA sample user exit program performs the following processing:

✦ Obtains the user ID for the job and then checks the user ID against the authorization table.
✦ If a match is found, another check is made against the table entry to see if the 8-byte

Mailbox ID, 64-byte user batch ID, and VPF DSN are allowed for this user. If so, the action is
allowed. If not, subsequent table items are searched. When the table is exhausted, the action is
disallowed.

The following is an example of an authorization table:

Implementing STSECA
To run STSECA with the offline utilities, follow these instructions:

1. Code your version of STSECA. If you do not code your own version of STSECA, use the load
module shipped with the installation tape.

2. Assemble and link STSECA into your offline utility load library.

Sample Authorization Table in STSECA Description

DC CL4‘UID1’ First 4 bytes of user ID

DC CL4‘MID1’ Allowed Mailbox ID (first 4 bytes)

DC CL10‘USER BID1’ Allowed user batch ID (first 10 bytes)

DC CL44’VPF.TEST1’ 44-byte VPF data set name

DC CL4‘UID2’ First 4 bytes of user ID

DC CL4‘MID2’ Allowed Mailbox ID (first 4 bytes)

DC CL10‘USER BID2’ Allowed user batch ID (first 10 bytes)

DC CL44’VPF.TEST2’ 44-byte VPF data set name

DC CL4‘UID3’ First 4 bytes of user ID

DC CL4‘MID3’ Allowed Mailbox ID (first 4 bytes)

DC CL10‘USER BID3’ Allowed user batch ID (first 10 bytes)

DC CL44’VPF.TEST3’ 44-byte VPF data set name
166 Connect:Enterprise for z/OS Application Agents and User Exits Guide

Using the Offline EXTRACT Security Exit
Using the Offline EXTRACT Security Exit
The Offline EXTRACT Security exit is called at the beginning of each offline EXTRACT request.
Use this exit to:

✦ Perform security verification
✦ Set an action code that indicates to either continue normally or to not extract the batch

EXTRACT Security Exit Parameters
Parameters passed to the EXTRACT Security exit are addressed by the XO$DSECT in the
M$OUXCB macro. A listing of the parameters and the contents of the data field pointed to by the
parameters is in the following table:

EXTRACT Security Exit Requirements
The following requirements apply to the Offline EXTRACT Security exit. You must follow these
rules for proper exit use. The purpose of the EXTRACT Security exit is to allow a security check
to be performed.

✦ If the action code pointed to by XO$ACODE is set to X‘08’, the batch is not extracted.
✦ If you want the entire job stream to be terminated, set the return code in register 15 to 12

(X‘0C’).

DSECT Label Contains Address of Data Field Contents

 XO$ID Mailbox ID 8-byte Mailbox ID

 XO$BID Batch Identification 64-byte batch ID

 XO$ACODE Area to Return
Action Code

1-byte exit action code
X‘00’ = Process as normal
X‘08’ = Terminate EXTRACT Request
X’0C’ = Terminate entire offline utility job stream

XO$VPF VPF DSN 44-byte VPF DSN

XO$PGMID Utility Name 8-byte Utility Name (EXTRACT)

XO$MBXNM Mailbox Name 8-byte name assigned to the Mailbox system.

XO$SFLAG Security Flag Flag that indicates if security processing is active.
This flag could also be set on to skip normal
security processing.

XO$VBQNO VBQ ID (ADD only) 2-byte VBQ ID to which the batch is added.
Connect:Enterprise for z/OS Application Agents and User Exits Guide 167

Chapter 5 Using Connect:Enterprise Offline Utility Exits
Sample EXTRACT Security User Exit STSECE
The STSECE program demonstrates how to do the following:

✦ Retrieve the user ID of the submitted job
✦ Verify user authority to extract batches with specific Mailbox ID, User Batch ID, and VPF

DSN

STSECE Program Logic
The STSECE sample user exit program performs the following processing:

✦ Obtains the user ID for the job, and then checks the user ID against the authorization table.
✦ If a match is found, makes another check against the table entry to see if the 8-byte

Mailbox ID, 64-byte user batch ID, and VPF DSN is allowed for this user. If so, the action is
allowed. If not, subsequent table items are searched. When the table is exhausted, the action is
disallowed.

The following is an example of an authorization table:

Implementing STSECE
To run STSECE with the offline utilities, complete the following steps:

1. Code your version of STSECE. If you do not code your own version of STSECE, use the load
module shipped with the installation tape.

2. Assemble and link STSECE into your offline utility load library.

Sample Authorization Table in STSECE Description

DC CL4‘UID1’ First 4 bytes of user ID

DC CL4‘MID1’ Allowed Mailbox ID (first 4 bytes)

DC CL10‘USER BID1’ Allowed user batch ID (first 10 bytes)

DC CL44’VPF.TEST1’ 44-byte VPF data set name

DC CL4‘UID2’ First 4 bytes of user ID

DC CL4‘MID2’ Allowed Mailbox ID (first 4 bytes)

DC CL10‘USER BID2’ Allowed user batch ID (first 10 bytes)

DC CL44’VPF.TEST2’ 44-byte VPF data set name

DC CL4‘UID3’ First 4 bytes of user ID

DC CL4‘MID3’ Allowed Mailbox ID (first 4 bytes)

DC CL10‘USER BID3’ Allowed user batch ID (first 10 bytes)

DC CL44’VPF.TEST3’ 44-byte VPF data set name
168 Connect:Enterprise for z/OS Application Agents and User Exits Guide

Using the Offline STATFLG/DELETE/ERASE/MOVE/PURGE Security Exit
Using the Offline STATFLG/DELETE/ERASE/MOVE/PURGE
Security Exit

This user exit is called at the beginning of each offline STATFLG, DELETE, ERASE, MOVE, and
PURGE request. Use this exit to:

✦ Perform security verification
✦ Set an action code that indicates to either continue normally or to not perform the function

STATFLG/DELETE/ERASE/MOVE/PURGE Security Exit Parameters
Parameters passed to the STATFLG/DELETE/ERASE/MOVE/PURGE Security exit are addressed
by the XO$DSECT in the M$OUXCB macro. A listing of the parameters and the contents of the
data field pointed to by the parameters is in the following table:

STATFLG/DELETE/ERASE/MOVE/PURGE Security Exit Requirements
The purpose of the STATFLG/DELETE/ERASE/MOVE/PURGE Security exit is to allow a
security check to be performed.

DSECT Label Contains Address of Data Field Contents

 XO$ID Mailbox ID 8-byte Mailbox ID

 XO$BID Batch Identification 64-byte batch ID

 XO$ACODE Area to Return
Action Code

1-byte exit action code
X‘00’ = Process as normal
X‘08’ = Terminate STATFLG/DELETE/
ERASE/MOVE/ PURGE
X’0C’ = Terminate entire offline utility job stream

XO$VPF VPF DSN 44-byte VPF DSN

XO$PGMID Program ID 8-byte STATFLAG, DELETE, ERASE, MOVE, or
PURGE (left justified, blank-filled)

XO$MBXNM Mailbox Name 8-byte name assigned to the Mailbox system.

XO$SFLAG Security Flag Flag that indicates if security processing is active.
This flag could also be set on to skip normal security
processing.

XO$VBQNO VBQ ID (ADD only) 2-byte VBQ ID to which the batch is added.

Note: Since the PURGE Utility is not batch specific, the Mailbox ID and user batch ID fields are blank.
Connect:Enterprise for z/OS Application Agents and User Exits Guide 169

Chapter 5 Using Connect:Enterprise Offline Utility Exits
The following requirements apply to the Offline STATFLG/DELETE/ERASE/MOVE/PURGE
Security exit. You must follow these rules for proper exit use.

✦ If the action code pointed to by XO$ACODE is set to X‘08’, the function is not performed.
✦ If you want the entire job stream to be terminated, set the return code in register 15 to 12

(X‘0C’).

Sample Security User Exit STSECOU
The STSECOU sample user exit program demonstrates how to do the following:

✦ Retrieve the user ID of the submitted job
✦ Verify user authority to alter statflags, delete, erase, or move batches with specific Mailbox ID

and user batch ID values
✦ Verify the VPF DSN
✦ Verify Program ID and use separate tables

STSECOU Program Logic
The STSECOU sample user exit program performs the following logic:

✦ Obtains the user ID for the job and the checks the user ID against the authorization table.
✦ If a match is found, another check is made against the table entry to see if the 8-byte

Mailbox ID, 64-byte user batch ID and VPF DSN is allowed for this user. If so, the action is
allowed. If not, subsequent table items are searched. When the table is exhausted, the action is
disallowed.

The following is an example of an authorization table:

Sample Authorization Table in STSECOU Description

DC CL4‘UID1’ First 4 bytes of user ID

DC CL4‘MID1’ Allowed Mailbox ID (first 4 bytes)

DC CL10‘USER BID1’ Allowed user batch ID (first 10 bytes)

DC CL44’VPF.TEST1’ 44-byte VPF data set name

DC CL4‘UID2’ First 4 bytes of user ID

DC CL4‘MID2’ Allowed Mailbox ID (first 4 bytes)

DC CL10‘USER BID2’ Allowed user batch ID (first 10 bytes)

DC CL44’VPF.TEST2’ 44-byte VPF data set name

DC CL4‘UID3’ First 4 bytes of user ID

DC CL4‘MID3’ Allowed Mailbox ID (first 4 bytes)

DC CL10‘USER BID3’ Allowed user batch ID (first 10 bytes)

DC CL44’VPF.TEST3’ 44-byte VPF data set name
170 Connect:Enterprise for z/OS Application Agents and User Exits Guide

Using the Offline Utility Startup Exit
Implementing STSECOU
To run STSECOU with the offline utilities, complete the following steps:

1. Code your version of STSECOU. If you do not code your own version of STSECOU, use the
load module shipped with the installation tape.

2. Assemble and link STSECOU into your offline utility load library.

Using the Offline Utility Startup Exit
The Startup exit is called only once at the beginning of each STOUTL execution. The exit can be
used for conversion aid and security.

Use this exit to set the default VSAM File Server name and the VPF data set name which are
required when executing any offline utilities. This exit enables you to use existing JCL members
without having to update each one with the two parameters mentioned above; however, other JCL
changes must still be made to some DD statements.

This exit can also be used for offline security authorization. For example, the exit could retrieve the
user ID of the submitted job and check it against a table of authorized users. If the authorization
check fails, the exit can set the return code to 12 (X‘0C’) in register 15 which terminates execution
of the job. For examples of retrieving and checking the submitted job’s user ID, see any of the other
offline utility security exits (STSECA, STSECE, or STSECOU).

This exit can also perform security by ensuring the VSAM File Server name is valid. If the VSAM
File Server name is not valid, the job can be terminated with a return code 12 (X‘0C’) in register 15.

Startup Exit Parameters
Parameters are passed to the Startup exit using the standard convention. Register 1 points to a
parameter list containing the addresses of the data. A listing of the parameters and the contents of
the data field pointed to by the parameters is shown in the following table:

Parameter List Offset Contains Address of Data Field Contents

0 (4) Area to return
Action Code

1-byte action code
X‘00’ = No returned Server Name/VPF DSN
X‘01’ = Use returned Server/VPF DSN

4 (4) VSAM File Server Name 4-byte VSAM File Server Name (returned if
action code = X‘01’). Upon entry, this parameter
is that set by the user or “SRV1".

8 (4) VPF Cluster Name 44-byte DSN of VPF
(returned if action code = X‘01’)
Connect:Enterprise for z/OS Application Agents and User Exits Guide 171

Chapter 5 Using Connect:Enterprise Offline Utility Exits
Startup Exit Requirements
The purpose of the Startup exit is either to enable setting of the default VSAM File Server name and
the VPF DSN or allow performing of security authorization.

✦ If the user exit sets the action code to X’01’, the offline utility (STOUTL) expects the 4-byte
VSAM File Server name and the 44-byte VPF cluster name to be filled in by the exit.
STOUTL then uses these values passed back on return from the exit.

✦ Verify that the return code is set to 0 in register 15. If you use the exit for security purposes and
want the entire job stream terminated, set the return code in register 15 to 12 (X‘0C’).

Sample Startup User Exit STUTAXIT
The STUTAXIT program demonstrates how to do the following:

✦ Set the VSAM File Server name used by the utilities
✦ Set the VPF by the utilities

STUTAXIT Program Logic
The STUTAXIT sample user exit program performs the following processing:

✦ A flag field (USENAMES) activates or deactivates this program.
✦ If USENAMES is X‘00’ (the default), the VSAM File Server name and VPF cluster name

cannot be set by the program, in which case they must be provided in the JCL.
✦ If USENAMES is X‘01’, the VSAM File Server name and VPF cluster name is set by the

program and used for STOUTL execution. The Server name used in the EXIT overrides the
JCL, but the VPF cluster name in the EXIT is only used if VPF= is not coded in the SYSIN.

Implementing STUTAXIT
To run STUTAXIT with the offline utilities, complete the following steps:

1. Code your version of STUTAXIT.

2. Assemble and link STUTAXIT into your offline utility load library.

Note: If you do not code your own version of STUTAXIT, use the load module shipped with the
installation tape.
172 Connect:Enterprise for z/OS Application Agents and User Exits Guide

Chapter 6

Using the Connect:Enterprise CSCU Startup
Exit

The Cross System Client Utility (CSCU) user exit is called once, at the beginning of each
STCSC000 execution. Use this exit to:

✦ Override the SYSIN2 processing parameters specified in the JCL.
✦ Perform a security check and set an action code that indicates to either continue normally or to

end the job.

Specifying Preprocessing Parameters with the STCSCUSR
User Exit

You can use the STCSCUSR user exit to assign or override preprocessing parameters. This user exit
is called during CSCU startup. The parameters are passed in a standard parameter list. Register 1
(R1) points to a parameter list containing a list of addresses. Upon return from the user exit, the
CSCU uses the specified parameters.

The following table shows the STCSCUSR user exit parameters.

Caution: Test the user exit before it is used in a production environment. An ABEND or loop in a user
exit can affect the operation of the entire Connect:Enterprise system, not just your exit load
module. You can use the sample member, ASMLKXIT, to assemble and link your user exits.

R1 Points to
Parameter List

Contains Address of Description

+0(4) SYSIN DD name 8-byte DD name for the SYSIN file.

+4(4) PRINT DD name 8-byte DD name for the PRINT file.

+8(4) INPUT DD name 8-byte DD name for the INPUT file.
Connect:Enterprise for z/OS Application Agents and User Exits Guide 173

Chapter 6 Using the Connect:Enterprise CSCU Startup Exit
Sample Cross System Client Startup Exit STCSCUSR
The STCSCUSR sample user exit program demonstrates how to do the following:

✦ Print the parameter list data values passed from the caller (STCSC000).
✦ Verify user authority to execute the CSCU based on job name, job submitter, and destination

Connect:Enterprise name.
✦ Validate the password of the specified User ID.

STCSCUSR Program Logic
The STCSCUSR program demonstrates how to do the following:

✦ Print the parameter list data values passed from the caller (STCSC000).
✦ If a match is found against authorization table 1 (job name table), another check is made to see

if the job submitter has authority to execute the CSCU against the targeted Connect:Enterprise
system.

+12(4) OUTPUT DD name 8-byte DD name for the OUTPUT file.

+16(4) SYSPRT DD name 8-byte DD name for the SYSPRINT file.

+20(4) LOGFILE DD name 8-byte DD name for the LOGFILE file.

+24(4) SNAPOUT DD name 8-byte DD name for the SNAPOUT file.

+28(4) Local VTAM APPL 8-byte name of the local (CSCU) VTAM APPL.

+32(4) Remote VTAM APPL 8-byte name of the remote (Connect:Enterprise)
APPL.

+36(4) Logmode Table Entry Name 8-byte name of the Logmode table defining the LU6.2
session characteristics.

+40(4) Enterprise User ID 8-byte Connect:Enterprise user ID used for security
authorization.

+44(4) Enterprise User Password 8-byte Connect:Enterprise user password used for
security authorization.

+48(4) Enterprise Name 8-byte (Currently not used).

+52(4) Jobname 8-byte job name.

+56(4) Stepname 8-byte step name.

+60(4) User Id 8-byte user ID of the person who submitted the job.

+64(4) Return code 1-byte exit action code. The values are:
x’00’ = Continue as normally
x’08’ = End job with user return code 08
x’nn’ = End job with user return code nn

R1 Points to
Parameter List

Contains Address of Description
174 Connect:Enterprise for z/OS Application Agents and User Exits Guide

Specifying Preprocessing Parameters with the STCSCUSR User Exit
✦ If a successful match is made against the job name authorization table, a second check is made
against authorization table 2 (user/password table), to see if the specified Connect:Enterprise
user ID and password match.

✦ If either of the above checks fail, the return code is set to x’08’ to end the job with an RC=08.
The following is a sample job name table.

The following is a sample user/password authorization table.

Implementing STCSCUSR
Perform these steps to run STCSCUSR with the Cross System Client:

1. Code your version of STCSCUSR.

2. Assemble and link STCSCUSR into your Cross System Client load library.

Authorization Table 1 Description

DC CL8’JOBNAME1’ 8-byte job name

DC CL*’JOBUSER1’ 8-byte user ID of the person who submitted the job

DC CL8’ENTPRS1’ 8-byte Connect:Enterprise System Name

DC CL8’JOBNAME2’ 8-byte job name

DC CL8’JOBUSER2’ 8-byte user ID of the person who submitted the job

DC CL8’ENTPRS2’ 8-byte Connect:Enterprise System Name

DC CL8’JOBNAME3’ 8-byte job name

DC CL8’JOBUSER3’ 8-byte user ID of the person who submitted the job

DC CL8’ENTPRS3’ 8-byte Connect:Enterprise System Name

Authorization Table 2 Description

DC CL8’USERID1’ 8-byte name of the Connect:Enterprise user ID

DC CL8’USERPW1’ 8-byte password for the Connect:Enterprise user ID

DC CL8’USERID2’ 8-byte name of the Connect:Enterprise user ID

DC CL8’USERPW2’ 8-byte password for the Connect:Enterprise user ID

DC CL8’USERID3’ 8-byte name of the Connect:Enterprise user ID

DC CL8’USERPW3’ 8-byte password for the Connect:Enterprise user ID

Note: If you do not code your own version of STCSUSR, use the load module shipped with the
installation tape.
Connect:Enterprise for z/OS Application Agents and User Exits Guide 175

Chapter 6 Using the Connect:Enterprise CSCU Startup Exit
176 Connect:Enterprise for z/OS Application Agents and User Exits Guide

Chapter 7

 Using the VSAM File Server Exit

An optional VSAM File Server user exit is provided to call the VSAM File Server each time a
request is made to allocate and open a VSAM data set that is not currently open. This exit can then
examine the cluster name requested and determine if the open should occur.

Connect:Enterprise only provides the linkage to this exit. You must define, code, assemble, link,
and test your own exit. The VSAM File Server exit program is optional and the system default is NO
exit.

The VSAM File Server exit uses standard CALL linkage. Therefore, when the exit is in control, the
VSAM File Server is not in control. Define, assemble, link, and test your programs carefully
because, when an ABEND occurs, the entire VSAM File Server system is affected.

No testing or debugging aids are built into the VSAM File Server exit. Use standard Assembler
language debugging and testing techniques.

This chapter describes the exit available for the VSAM File Server.

How Connect:Enterprise Uses the VSAM File Server Exit
The VSAM File Server Open exit is called by the VSAM File Server each time a specific request
is made by a client task, either by Connect:Enterprise or offline utilities. Each exit then determines
if the request should be processed. If the exit determines that processing should not continue, a
negative response is returned to the client.

The identity of the client task is not always known by the VSAM File Server exits when invoked.
Your user exit programs must take this into consideration.

To activate the VSAM File Server exit, replace the dummy exit version that was provided with your
version. To deactivate the VSAM File Server exit, replace your version with the dummy version.

Because of the internal relationship between the C language and the VSAM File Server, the exit and
entry macros that are provided in the sample VSAM File Server exit should be used all the time,
even if you modify the exit to suit your needs.

Note: You can use the sample member, ASMLKXIT, to assemble and link your user exits.
Connect:Enterprise for z/OS Application Agents and User Exits Guide 177

Chapter 7 Using the VSAM File Server Exit
Coding the VSAM File Server Exit
The following requirements apply to the VSAM File Server exit. You must follow these rules for
the proper execution of the exit.

✦ Parameters defined to exist for the exit are always passed to the exit.
✦ Alter only the parameters that are recommended for alteration; unpredictable results an occur

if other parameters are altered.
✦ Code exits to assume that they are always being entered for the first time.

Testing the VSAM File Server Exit
Fully test VSAM File Server exits before implementing them on a production Connect:Enterprise
system. An ABEND or loop in an exit could cause the VSAM File Server and Connect:Enterprise
to terminate completely.

No trace or snap features are provided with the VSAM File Server exits. Use standard Assembler
language debugging and testing techniques.

Sample VSAM File Server Exit
The Connect:Enterprise release tape contains the BTVSMOSX VSAM File Server Open sample
user exit program in the source library.

Using the VSAM File Server Open User Exit
The VSAM File Server Open exit is called by the VSAM File Server each time a request is made
to allocate and open a VSAM data set that is not currently open. This exit can then examine the
cluster name requested and determine if the open should occur.

VSAM File Server Open User Exit Parameters
A single parameter is passed to the Open User exit. This parameter is the address of the data set
name requested. The data set name is left justified and padded to 44 characters with hex zeros. This
data set name cannot be changed.

Note: While your VSAM File Server exit is executing, the VSAM File Server is waiting for it to return
from the CALL and is not processing other transactions. For this reason, avoid writing exits that
excessively slow down the system.
178 Connect:Enterprise for z/OS Application Agents and User Exits Guide

Using the VSAM File Server Open User Exit
Upon return from the Open User exit, the return code value passed in register 15 is examined. If the
return code value is zero, processing continues and the allocation/open attempted. If the return code
value is non-zero, the allocation/open request is denied and a return code=8, reason=98
(authorization failed) is passed back to the requester.

VSAM File Server Open User Exit Requirements
The following requirements apply to the VSAM File Server Open exit. You must follow these rules
for proper exit use.

✦ Link this exit as RENT and AMODE=31.
✦ Link this exit as a separate module that is loaded by the VSAM File Server each time it is

needed. The module name must be BTVSMOSX.
✦ If the VSAM File Server is executing when you link this module, you must stop the server and

restart it.
✦ Because this exit resides in the VSAM File Server, no trace facility is available.
✦ You do not need to change any startup parameters to activate this exit. The existence of the

module in the load library is all that is required.
✦ To deactivate the exit, replace it with the dummy BTVSMOSX module supplied with the

product.
✦ A sample of this exit is found in member BTVSMOSX in the source library.

Sample Open User Exit BTVSMOSX
The BTVSMOSX program demonstrates how to do the following:

✦ Examine the data set name passed as input
✦ Compare the data set name against a static list of data set names, either specific names or

generic names

BTVSMOSX Program Logic
The BTVSMOSX sample user exit program performs the following processing:

✦ Obtains the input data set name
✦ Sets the default return code to a nonzero value that fails the open request
✦ Loops through the table of data set names that are allowed by this VSAM File Server
✦ When a match is found, resets the return code to zero and exits the loop
✦ Returns with the set return code.

Implementing BTVSMOSX
To run BTVSMOSX with the VSAM File Server, complete the following steps:

1. Modify the data set name table (CLUSTTBL) to include data sets that should be used by the
VSAM File Server. Assemble and link the program into the library used by the VSAM File
Server.
Connect:Enterprise for z/OS Application Agents and User Exits Guide 179

Chapter 7 Using the VSAM File Server Exit
2. If the VSAM file server is already active, stop and restart it.
3. Test the allocation/open by starting an online Connect:Enterprise system that uses data sets

listed in the table.
4. Test the allocation/open by starting an online Connect:Enterprise system that uses data sets not

listed in the table.
180 Connect:Enterprise for z/OS Application Agents and User Exits Guide

Chapter 8

Using ISPF Interface User Exits

You can supply two user exit programs that are called by the ISPF interface. The exits available are
as follows:

✦ Function Initiate Security exit
✦ Function Request Security exit
The Function Initiate Security exit is invoked when each ISPF function or function menu is
selected. The Function Request Security exit is invoked when a request is sent to the
Connect:Enterprise system. The return code returned by each exit determines if processing
continues or is not allowed.

This chapter describes the two available ISPF interface user exits and their use.

Coding ISPF interface User Exits
Write each exit as a single executable load module. Each load module is loaded once during ISPF
interface startup and called (branch entry) each time processing is required. A dummy version of
each exit is supplied with the ISPF interface.

Testing ISPF Interface User Exits
When the exits are in control, the ISPF interface is not. Define, assemble, link, and test your
programs carefully because, if an ABEND occurs, the entire ISPF interface is affected.

Note: You can use the sample member, ASMLKXIT, to assemble and link your user exits.
Connect:Enterprise for z/OS Application Agents and User Exits Guide 181

Chapter 8 Using ISPF Interface User Exits
Sample ISPF Interface User Exits
The Connect:Enterprise release tape contains several sample ISPF user exit programs. Use the
sample programs as guidelines in coding your own ISPF interface exits:

Using the Function Initiate Security Exit
This exit is called each time an ISPF user attempts to invoke an ISPF interface function or selects a
lower level menu panel. Within the exit, the ISPF Administrator can control which functions (or
groups of functions) can be used by individual users.

Function Initiate Security Exit Parameters
Parameters are passed to the Function Initiate Security exit using the standard convention. Register
1 points to a parameter list containing the address of the data. The data pointed to is as follows:

Sample User
Exit Programs Description

MZMCPFIX Function initiate security exit

MZAPCFRX Function request security exit

Parameter List Offset Contains Address of Data Field Contents

0(4)
Function String
(left justified and blank
filled)

20-byte Function Control String:
Administration
All functions under main panel option 10

GLOBALDEFAULTS Option 10.1

CONNECTIONDEFINITION Option 10.2

INTERFACEDEFINITIONS Option 10.3

DISPLAYDEFINITIONS Option 10.4

REINITIALIZE Option 10.5

SYSTEMTRACES Option 10.6

USERFUNCTIONS
All functions under main panel option 20
182 Connect:Enterprise for z/OS Application Agents and User Exits Guide

Using the Function Initiate Security Exit
BATCHFILEREPORTING
All functions under main panel option 21

BATCHQUEUEFUNCTIONS
All functions under main panel option 22

AUTOCONNECTMODEL
All functions under main panel option 23 and option
20.8

0(4)
Function String
(left justified and blank filled)

BATCHUTILITYFUNCTION
All functions under main panel option 24 and option 20.9

AUTOCONNECTSUMMARY Option 20.1 and 21.1

AUTOCONNECTDETAIL Option 20.2 and 21.2

REMOTECONNECTSUMMARY Option 20.3 and 21.3

REMOTECONNECTDETAIL Option 20.4 and 21.4

QUEUEDAUTOCONNECT Option 20.5 and 21.5

BATCHQUEUELIST Option 20.6 and 22.1

BATCHUTILIZATIONSTAT Option 20.7 and 22.2

BATCHUTILITYMODEL Option 20.9.91

BATCHUTILITYSUBMIT Option 20.9.92

ADDUTILITYMODEL Option 24.1

EXTRACTUTILITYMODEL Option 24.2

ADDUTILITYSUBMIT Option 24.3

EXTRACTUTILITYSUBMIT Option 24.4

LISTUTILITYSUBMIT Option 24.5

STATFLGUTILITYSUBMIT Option 24.6

DELETEUTILITYSUBMIT Option 24.7

ERASEUTILITYSUBMIT Option 24.8

PURGEUTILITYSUBMIT Option 24.9

ACSUMMARYRPTSUBMIT Option 24.10

ACDETAILRPTSUBMIT Option 24.11

RCSUMMARYRPTSUBMIT Option 24.12

RCDETAILRPTSUBMIT Option 24.13

ACQRPTSUBMIT Option 24.14

Parameter List Offset Contains Address of Data Field Contents
Connect:Enterprise for z/OS Application Agents and User Exits Guide 183

Chapter 8 Using ISPF Interface User Exits
OFFLINERPTSUBMIT Option 24.15

MOVEUTILITYSUBMIT Option 24.16

OPERATORTASKS
All functions under main panel option 30

ISSUECOMMANDS
All functions under main panel option 31

MONITORACTIVITY
All functions under main panel option 32

ONLINEODFUPDATES
All functions under main panel option 33

0(4)
Function String
(left justified and blank filled)

$$CONNECT Option 30.1 and 31.1

$$DUMP Option 30.2 and 31.2

$$LIST Option 30.3 and 31.3

$$SHUTDOWN Option 30.4 and 31.4

$$START Option 30.5 and 31.5

$$STOP Option 30.6 and 31.6

$$TRACE Option 30.7 and 31.7

$$LISTFILES Option 30.8 and 31.8

$$SPACE Option 30.9 and 31.9

$$ALLOC Option 30.10 and 31.10

$$DALLOC Option 30.11 and 31.11

$$REFRESH Option 30.12 and 31.12

$$INVOKE Option 30.13 and 31.13

$$DIALOG Option 20.14 and 21.14

ACTIVESESSIONS Option 30.21 and 32.1

ACTIVEAUTOCONNECT Option 30.22 and 32.2

ONLINEOPTIONSUPDATE Option 30.30.1 and 33.1

ONLINESECURITYUPDATE Option 30.30.2 and 33.2

ONLINECONNECTUPDATE Option 30.30.3 and 33.3

ONLINEREMOTESUPDATE Option 30.30.4 and 33.4

ONLINECALENDARUPDATE Option 30.30.7 and 33.7

Parameter List Offset Contains Address of Data Field Contents
184 Connect:Enterprise for z/OS Application Agents and User Exits Guide

Using the Function Initiate Security Exit
Function Initiate Security Exit Requirements
The load module name must be MZMCPFIX. A dummy module is supplied in the ISPF interface
ISPLLIB library. To activate this exit, simply replace the dummy module with your user-written
exit module.

Upon entry, the exit parameters indicate what function (or group of functions) is being accessed
(parameter 1) and who is attempting the function (parameter 2). After determining if the user is
allowed to use the function, set the result field (parameter 3) to the appropriate value. Any nonzero
value in the result field denies access to the function (or group of functions). An appropriate
message is displayed indicating that access is denied to the function. The user is allowed to continue
using the other functions of the ISPF interface.

Because the Function Initiate Security exit load module is loaded once and called by branch entry,
it is possible for the program to load in a security table during its first invocation and use it again
later during subsequent calls.

Sample Function Initiate Security User Exit MZMCPFIX
The MZMCPFIX sample user exit program demonstrates how to do the following:

✦ Obtain the input parameters passed to the exit
✦ Validate a request using a security table
✦ Return a positive or negative response from the exit

MESSAGELIBRARY
All functions under main panel option 40

SECURITY
All functions under main panel option 50

USERIDLIST
All functions under main panel option 60 Option 30.3.5

QUPDATE Option 31.3.4

ACQ

4(4) TSO Userid (left
justified and blank
filled)

8-byte User ID

8(4) Result Field Halfword Result Field
H’0’—continue processing
else —disallow processing

Parameter List Offset Contains Address of Data Field Contents
Connect:Enterprise for z/OS Application Agents and User Exits Guide 185

Chapter 8 Using ISPF Interface User Exits
MZMCPFIX Program Logic
The MZMCPFIX program performs the following processing:

✦ Stores all input parameters for use by the exit
✦ Begins searching the security table for a match to the 20 byte function string
✦ If a match is found, the 8-byte TSO user ID is checked for a match
✦ If a match is found the request is disallowed
✦ If no match is found, the next entry in the security table is checked
✦ The result field is set and the exit returns to the calling program

Using the Function Request Security Exit
The Function Request Security exit is called each time an ISPF user attempts to send a request to
the Connect:Enterprise system. Within the exit, the ISPF Administrator can control which requests
can be sent to certain Connect:Enterprise systems by which users.

Function Request Security Exit Parameters
Parameters are passed to the Function Request Security exit using the standard convention. Register
1 points to a parameter list containing the address of the data. The data pointed to is as follows:

Parameter List
Offset

Contains Address of Data Field Contents

0(4) Addr of IPS Header The IPS header is mapped by the C$H00 macro in the
Connect:Enterprise source library. The IPS header identifies
the user ID and encrypted password that is passed to the
Connect:Enterprise system, the Connect:Enterprise system
(and release level) the request is for. It also identifies the
request type that is being sent to the Connect:Enterprise
system. IPS request types (trailers) are individually
documented and mapped in the Connect:Enterprise source
library (all macros that begin with C$) and Appendix A, IPS
Trailers. This data is read-only and should not be modified.

4(4) Addr of IPS Trailer The IPS trailer identifies the actual request being sent to the
Connect:Enterprise system. This field is zero if a Security
Function (option 50) is being sent. Each IPS trailer identifies
the unique parameters inherent to that function. IPS trailers
are individually documented and mapped in the
Connect:Enterprise source library (all macros that begin with
C$) and Appendix A, IPS Trailers. This data is read-only and
should not be modified.

8(4) TSO Userid (left
justified and blank
filled)

8-byte user ID
186 Connect:Enterprise for z/OS Application Agents and User Exits Guide

Using the Function Request Security Exit
Function Request Security Exit Requirements
The load module name must be MZAPCFRX. A dummy module is supplied in the ISPF interface
ISPLLIB library. To activate this exit, simply replace the dummy module with your user-written
exit module.

Upon entry, the exit parameters indicate the following information:

✦ Function request information, through the IPS header
✦ Request specific information, through the IPS trailer
✦ The requester, through the TSO user ID
✦ Identify the Connect:Enterprise system, through the MID table entry
After determining if the user is allowed to send the function request, the exit sets register 15 to an
appropriate value. Any nonzero value in register 15 denies access to the function request. An
appropriate message is displayed indicating that the requested function was denied. The user can
continue making requests to the same and other Connect:Enterprise systems.

Because the Function Request Security Exit load module is loaded once and called by branch entry,
it is possible for the program to load in a security table during its first invocation and use it again
later during subsequent calls.

Sample Function Request Security User Exit MZAPCFRX
The MZAPCFRX sample user exit program demonstrates how to do the following:

✦ Obtain the input parameters passed to the exit
✦ Obtain information from each control block pointed to by the input parameters
✦ Validate a request using a security table
✦ Return a positive or negative response from the exit

MZAPCFRX Program Logic
The MZAPCFRX program performs the following processing:

✦ Stores all input parameters for use by the exit.
✦ Obtains information from the request Header.
✦ Obtains information from the request Trailer, if one was available.

12(4) Addr of MID Table
Entry

This field is zero if a Security Function (option 50) is being
sent. For all other requests, this information contained in this
table entry identifies the Connect:Enterprise system the
request is sent to. It shows the friendly name assigned to the
Connect:Enterprise system, the operating system type, and
the release level.

Parameter List
Offset

Contains Address of Data Field Contents
Connect:Enterprise for z/OS Application Agents and User Exits Guide 187

Chapter 8 Using ISPF Interface User Exits
✦ Obtains information for the MID table entry, if one was available.
✦ Begins searching the security table for a match to the 8-byte Mailbox name.
✦ If a match is found, the 8-byte Trailer ID (function type) is checked for a match.
✦ If a trailer ID match is found, the mailbox user ID from the Header is checked against the

security table. If the table entry is blank or the name matches, the request is disallowed.
✦ If a Trailer ID match is found, the TSO user ID is checked against the security table. It the

table entry is blank or the name matches, the request is disallowed.
✦ If a Trailer ID match is found, the Enterprise system type (MVS or VSE) from the MID table

entry is checked against the security table. If the table entry is blank or the type matches, the
request is disallowed.

✦ If no mailbox name and trailer ID match is found, the next entry in the security table is
checked.

✦ The result field is set and the exit returns to the calling program.
188 Connect:Enterprise for z/OS Application Agents and User Exits Guide

Chapter 9

 Using CICS Interface User Exits

The user-written exit feature is available in the CICS interface only during interactive operation.
These exits are not available to a user-written Application Programming Interface (API) program.
Any exit (or security) processing required by the API process is the responsibility of the API
designer and programmer.

The optional user exits can be invoked to examine or record information that is in process. No
modification of data values is possible from the user-written exits in the CICS interface. A return
code parameter is provided to the user-written exit program to allow the exit program to
communicate an accept/reject condition back to the CICS interface. If the return code is set to
accept, the activity in process is completed. Otherwise, the process is terminated with an error
message displayed to the terminal user.

Initialization and termination exit points are provided to allow special global level operations to be
performed prior to CICS interface initialization or termination or both. An exit point is provided
both before and after initial contact with the Connect:Enterprise system. An exit is also invoked
before any data modification occurs. You must define, code, assemble, link, and test your own exit
processing.

You can supply up to four user-written exit programs which are invoked by the CICS interface. The
exits available are defined as follows:

✦ Initialization
✦ Security (invoked before and after the initial contact with Connect:Enterprise)
✦ Data Modification
✦ Termination
The exits are invoked at appropriate times during CICS interface processing to perform user defined
functions. The return code value set by the exit can alter the normal CICS interface processing.

This chapter discusses the CICS interface User exits and their uses.

Note: You can use the sample member, ASMLKXIT, to assemble and link your user exits.
Connect:Enterprise for z/OS Application Agents and User Exits Guide 189

Chapter 9 Using CICS Interface User Exits
How Connect:Enterprise Uses CICS User Interface Exits
These exits are invoked by the CICS interface using a CICS LINK command. Therefore, when these
exits are in control, the CICS interface is suspended waiting for the exit code to issue a CICS
RETURN. In case of an ABEND, HANDLE processing in the CICS interface terminates the
transaction.

Due to the real-time nature of the CICS interface and its relationship to Connect:Enterprise, the
before image for a data modification exit is the data known to the transaction when it was last
retrieved for processing. No enqueue or other form of protection is utilized to ensure that this data
remains unmodified except when processing ODF updates. The modification (if allowed by the
user-written exit program) can overwrite data that no longer matches the before image if another
transaction has performed a similar modification request.

Implementing CICS Interface User Exits
To implement a user-written exit program, you must code the appropriate processing for the type
of exit to be invoked. You can develop a single program to handle all four types of exit processing
or you can develop an individual program for each of the four types of exit processing or some other
suitable combination. You can activate as many of the exit types as you desire. None are required
for operation of the CICS interface.

These programs must then be assembled (compiled) and link edited into a library defined to CICS.
The CICS definitions (CEDA PROGRAM definition or DFHPPT macro definition) must be
completed and finally, the programs must be identified to the CICS interface via the Interface
System Exit Definition Update (Panel 1.4). The program name must be entered in each exit category
for which it is to be invoked. If a single user-written exit program services all exit types, Panel 1.4
must specify the same program name for all exit types.

Coding CICS Interface User Exits
This section and the sample program supplied with the CICS interface aid in the design and testing
of user-written exits. No application data can be modified by your exit program. The express
purpose of user-written exits in the CICS interface system is to interrogate application data related
to current processing at specific exit points and to accept (allow) or reject (disallow) the logical
conclusion of the process. For example, if the user-written initialization exit determines the terminal
user initiating the transaction should not be granted access to the application (based upon the User
ID, Terminal ID, or other information available) and sets the return code as REJECT, the
transaction is terminated before the terminal user sees the Primary Panel for the CICS interface.

The CICS interface sets a REJECT return code value in the COMMAREA prior to LINKing a
user-written exit program. A zero return code value set by a user-written exit program indicates
acceptance or acknowledgment of the in process activity and normal CICS interface processing
190 Connect:Enterprise for z/OS Application Agents and User Exits Guide

Testing CICS Interface User Exits
continues. A return code value other than zero set by the user-written exit program indicates that
the in process activity should be terminated with an error message to the terminal user. The return
code values allowed for each exit are documented with the description for each exit.

Because user-written exit programs are linked, the CICS interface is suspended expecting a return
from your program. An ABEND HANDLE is provided in the CICS interface to free associated
resources and terminate the transaction. If a user-written exit program has established a local
ABEND HANDLE, it must conclude the local ABEND processing activities by issuing an EXEC
CICS ABEND using the original ABEND code or an ABEND code of your designation. The CICS
interface then regains control in its ABEND HANDLE logic and completes transaction termination.

Testing CICS Interface User Exits
User-written exit programs should be fully tested before they are used in a production environment.
An ABEND temporarily terminates a terminal user’s access to the system. Extreme mistakes in
logic can result in the entire CICS interface being disabled. It can be beneficial to assemble the
supplied test program EXITSAMP and review the execution and output from this program prior to
installing your own version of an exit program.

Linking CICS Interface User Exits
Exit parameter data is passed to the exit program as a COMMAREA. All application data that can
be examined by a specific exit program is included in this COMMAREA. In your installation source
library is a member named EXITS that describes in detail each field of information provided to each
exit. You should study this DSECT for complete understanding of the information available at each
exit invocation. Typically, information available to the user-written exit program from CICS, such
as EIB data and EXEC CICS ASSIGN data, is not supplied in the exit parameter data.

Several different DSECTs are provided to define the specific data type records in conjunction with
the DSECT defined by the member EXITS. The STATFLG before and after data in the
COMMAREA are defined by the DSECT supplied in macro C$U28. The Auto Connect Queue
before and after data in the COMMAREA are defined by the DSECT supplied in macro C$064. The
CICS interface model records and Help text records before and after data in the COMMAREA are
defined by the DSECT supplied in macro C$VSAM. The Options Definition File (ODF) before and
after data in the COMMAREA are defined by a series of DSECTs supplied in macro format. The
macros involved are defined by name in comments following the label ODFTYPE in the EXITS
member. They are also coded at the end of the sample program, member EXITSAMP in your
installation source library.

The parameters passed to each user exit program are documented with the description for each type
of exit.

Note: Prior release user-written exits MUST be reassembled using the new source members C$VSAM,
EXITS and the related macros supplied in the current version installation source library.
Connect:Enterprise for z/OS Application Agents and User Exits Guide 191

Chapter 9 Using CICS Interface User Exits
Sample CICS Interface User Exits
The Connect:Enterprise release tape contains a sample program. The member named EXITSAMP
in your CICS interface installation source library is an Assembler Language CICS Command Level
program that demonstrates the use of each exit type. A review of this sample program reveals:

✦ How a user-written exit program receives the COMMAREA when the program is LINKed by
the CICS interface

✦ How the data in the COMMAREA is examined for each exit type
✦ How, during a data modification exit, each data type is interrogated
✦ How the return code value is set to indicate acceptance of the CICS interface in process

activity
✦ How all types of data modification can be rejected for a specific user ID
This program should be used as a guideline in coding your own user exits.

Using the Initialization Exit
This exit is invoked before an interactive user gains access to the CICS interface. The
Connect:Enterprise Interface Primary Menu (Panel 0.0) is not displayed until after invocation of the
user-written exit program generates an ACCEPT return code value. If an ACCEPT return code
value is not set by the user-written exit program, the CICS task is terminated. The terminal user
briefly sees a message stating: Access denied by initialization exit. This message is followed by a
blank screen.

Initialization Exit Parameters
Parameters passed to the Initialization exit are addressed by the CMCIXITS DSECT in member
EXITS in your CICS interface installation source library. A listing of the parameters and the content
of the data fields passed to the user written exit program is shown in the following table.

DSECT label Description of data Data Field content

EXITLEN Halfword (2-byte) length of the parameter data Assembled value of DSECT label INITLEN

EXITID An 8-byte character format identifier stamp The character string CMCIXITS

EXITPROG An 8-byte character format name of LINKed
program

Data from Initialization field on Panel 1.4

EXITTYPE A 1-byte character format type of exit indicator Assembled value of DSECT label XINIT

EXITRC A 1-byte hexadecimal return code value Assembled value of DSECT label
XRCABORT
192 Connect:Enterprise for z/OS Application Agents and User Exits Guide

Using the Security (Before) Exit
Understanding Initialization Exit Usage
The purpose of the Initialization exit is to provide notification prior to a terminal user gaining access
to the CICS interface. You can validate the identifying information (CICS User ID if specified, or
the originating Terminal ID) as authorized to use the CICS interface. For charge-back or auditing
use, you can record the identifying information, such as date, time, user, and terminal of the user
beginning to use the CICS interface.

To allow the terminal user access to the CICS interface, the EXITRC field in the exit parameter data
(COMMAREA) must be set to the assembled value of DSECT label XRCOKAY before executing
a CICS RETURN in the user-written exit program.

Using the Security (Before) Exit
This exit is invoked after the User ID and Password for a specific Connect:Enterprise are entered
on Panel 5.0 Connect:Enterprise Security Update, but before the connection to the specified
Connect:Enterprise for verification of this information is initiated. The LU6.2 connection is not
attempted until after invocation of the user-written exit program generates an ACCEPT return code
value. If an ACCEPT return code value is not set by the user-written exit program, Panel 5.0 is
re-displayed with the message: Access denied by security exit. The CICS interface functions that
do not require contact with Connect:Enterprise can continue to be performed by the terminal user.

Security (Before) Exit Parameters
Parameters passed to the Security (Before) exit are addressed by the CMCIXITS DSECT in
member EXITS in your CICS interface installation source library. A listing of the parameters and
the content of the data fields passed to the user-written exit program is shown in the following table:

DSECT label Description of data Data Field content

EXITLEN Halfword (2-byte) length of the parameter data Assembled value of DSECT label
SECLEN

EXITID An 8-byte character format identifier stamp The character string CMCIXITS

EXITPROG An 8-byte character format name of LINKed
program

Data from Security field on Panel 1.4

EXITTYPE A 1-byte character format type of exit indicator Assembled value of DSECT label
XSEC1

EXITRC A 1-byte hexadecimal return code value Assembled value of DSECT label
XRCABORT

SECSID An 8-byte character format Connect:Enterprise
Symbolic name (Not APPLID)

Connect:Enterprise Name entered on
Panel 5.0 by the terminal user

SECSUSER An 8-byte character format User ID for
validation by Connect:Enterprise

Connect:Enterprise user ID entered
on Panel 5.0 by the terminal user
Connect:Enterprise for z/OS Application Agents and User Exits Guide 193

Chapter 9 Using CICS Interface User Exits
Understanding Security (Before) Exit Usage
The purpose of the Security (Before) exit is to provide notification prior to a terminal user gaining
access to the specified Connect:Enterprise. You can validate the identifying information (CICS
User ID if specified, or the originating Terminal ID) and any of the DSECT data as authorized to
connect to the specified Connect:Enterprise. For charge-back or auditing use, the identifying
information, such as date, time, user, and terminal of the user can be recorded.

To allow the terminal user to attempt initial connection with Connect:Enterprise, the EXITRC field
in the exit parameter data (COMMAREA) must be set to the assembled value of DSECT label
XRCOKAY before executing a CICS RETURN in the user-written exit program.

Using the Security (After) Exit
This exit is invoked after the connection processing has completed. It is solely a reporting function
by the CICS interface to the user-written exit program. It in no way can be used to alter the
processing path of the CICS interface.

Security (After) Exit Parameters
Parameters passed to the Security (After) exit are addressed by the CMCIXITS DSECT in member
EXITS in your CICS interface installation source library. A listing of the parameters and the content
of the data fields passed to the user-written exit program is shown in the following table:

SECPSWD An 8-byte character format Password for
validation by Connect:Enterprise

Connect:Enterprise Password
entered on Panel 5.0 by the terminal
user

SECRC A 2-byte hexadecimal process completion
return code value

Not used when EXITTYPE = XSEC1

DSECT label Description of data Data Field content

EXITLEN Halfword (2-byte) length of the parameter
data

Assembled value of DSECT label SECLEN

EXITID An 8-byte character format identifier stamp The character string CMCIXITS

EXITPROG An 8-byte character format name of linked
program

Data from Security field on Panel 1.4

EXITTYPE A 1-byte character format type of exit
indicator

Assembled value of DSECT label XSEC2

DSECT label Description of data Data Field content
194 Connect:Enterprise for z/OS Application Agents and User Exits Guide

Using the Data Modification Exit
Understanding Security (After) Exit Usage
The purpose of the Security (After) exit is to report to the user-written exit program the result of the
attempt to contact Connect:Enterprise. The SECRC return code value can be from
Connect:Enterprise regarding the verification of the User ID and Password. A return code value in
the range X‘0000’ through X‘7FFF’ means the connection was successful and the return code was
generated by Connect:Enterprise or an associated exit program. Interpret these return codes based
upon documented return codes related to Connect:Enterprise. A return code in the range X‘8000’
through X‘FFFF’ means the connection attempt failed and the return code was generated by the
CICS interface. Interpret these return codes based upon documented return codes related to the
CICS interface for Connect:Enterprise.

A record of failed attempts and the reason for these failures can be a useful diagnostic tool.
Identifying information, such as date, time, user, and terminal, can be recorded for charge-back or
auditing purposes.

Although the return code value from the user-written exit program has no affect on the subsequent
CICS interface processing following the Security (After) exit, as a standard, set the EXITRC field
in the exit parameter data (COMMAREA) to the assembled value of the DSECT label XRCOKAY
before executing a CICS RETURN in the user-written exit program.

Using the Data Modification Exit
This exit is invoked before an interactive user request to modify data is processed. The types of data
that are observed by this exit include:

✦ STATFLG updates on the Connect:Enterprise Batch Queues
✦ Connect:Enterprise Auto Connect Queue updates
✦ Connect:Enterprise Options Definitions updates

EXITRC A 1-byte hexadecimal return code value Assembled value of DSECT label
XRCABORT

SECSID An 8-byte character format
Connect:Enterprise Symbolic name (Not
APPLID)

Connect:Enterprise Name entered on
Panel 5.0 by the terminal user

SECSUSER An 8-byte character format User ID for
validation by Connect:Enterprise

Connect:Enterprise user ID entered on
Panel 5.0 by the terminal user

SECPSWD An 8-byte character format Password for
validation by Connect:Enterprise

Connect:Enterprise Password entered on
Panel 5.0 by the terminal user

SECRC A 2-byte hexadecimal process completion
return code value

Return code from the IPS Header field
(H00RTNCD)

DSECT label Description of data Data Field content
Connect:Enterprise for z/OS Application Agents and User Exits Guide 195

Chapter 9 Using CICS Interface User Exits
✦ CICS interface Model Library record updates
✦ CICS interface Help text record updates
The data modification is not performed until after invocation off the user-written exit program
generates an ACCEPT return code value. If an ACCEPT return code value is not set by the
user-written exit program the CICS interface does not complete the modification activity and the
terminal user receives the following message:

Data Modification Exit Parameters
Parameters passed to the Data Modification exit are addressed by the CMCIXITS DSECT in
member EXITS in your CICS interface installation source library. A listing of the parameters and
the content of the data fields passed to the user-written exit program is shown in the following table:

Action disallowed by modification exit.

DSECT label Description of data Data Field content

EXITLEN Halfword (2-byte) length of the parameter
data

Assembled value of DSECT label:
DMEHLEN—Help text
DMEMALEN—ADD Model
DMEMCLEN—CONNECT Model
DMEMELEN—EXTRACT Model
DMEMJLEN—User JCL Model
DMESULEN—STATFLG update
DMEQULEN—A/C Queue update
DMEODLEN—ODF Update

EXITID An 8-byte character format identifier
stamp

The character string CMCIXITS

EXITPROG An 8-byte character format name of
linked program

Data from Modification field on Panel 1.4

EXITTYPE A 1-byte character format type of exit
indicator

Assembled value of DSECT label
XMDFY

EXITRC A 1-byte hexadecimal return code value Assembled value of DSECT label
XRCABORT

DMEDTYPE A 1-byte character format type of data
indicator

Assembled value of DSECT label:
AMODEL—ADD Model
CMODEL—CONNECT Model
EMODEL—EXTRACT Model
JMODEL—User JCL MODEL
HELP—Help text
ODF—ODF Update
STATF—STATFLG update
ACQUEUE—A/C Queue update
196 Connect:Enterprise for z/OS Application Agents and User Exits Guide

Using the Data Modification Exit
The remainder of the exit parameter data must be interpreted using the DMEDTYPE (type of data
indicator) described. If DMEDTYPE = AMODEL, the remaining data in the DSECT is as follows:

If DMEDTYPE = CMODEL, then the remaining data in the DSECT is as follows:

If DMEDTYPE = EMODEL, then the remaining data in the DSECT is as follows:

DSECT label Description of data Data Field content

AFMABEF A fixed length data area containing a single
ADD model. See macro C$VSAM for field
definitions of the multiple record (3 records)
model entry.

An image of the complete ADD
model prior to any modification

AFMAAFT A fixed length data area containing a single
ADD model. See macro C$VSAM for field
definitions of the multiple record (3 records)
model entry.

An image of the complete ADD
model after the modification

DSECT label Description of data Data Field content

AFMCBEF A fixed length data area containing a single
CONNECT model. See macro C$VSAM for
field definitions of the multiple record (3
records) model entry.

An image of the complete
CONNECT model prior to any
modification

AFMCAFT A fixed length data area containing a single
CONNECT model. See macro C$VSAM for
field definitions of the multiple record (3
records) model entry.

An image of the complete
CONNECT model after the
modification

DSECT label Description of data Data Field content

AFMEBEF A fixed length data area containing a single
EXTRACT model. See macro C$VSAM for
field definitions of the multiple record (3
records) model entry.

An image of the complete
EXTRACT model prior to any
modification

AFMEAFT A fixed length data area containing a single
EXTRACT model. See macro C$VSAM for
field definitions of the multiple record (3
records) model entry.

An image of the complete
EXTRACT model after the
modification
Connect:Enterprise for z/OS Application Agents and User Exits Guide 197

Chapter 9 Using CICS Interface User Exits
If DMEDTYPE = JMODEL, then the remaining data in the DSECT is as follows:

If DMEDTYPE = HELP, then the remaining data in the DSECT is as follows:

DSECT label Description of data Data Field content

AFMJBEF A fixed length data area containing a single
USER JCL model. See macro C$VSAM for
field definitions of the multiple record (3
records) model entry.

An image of the complete USER
JCL model prior to any
modification

AFMJAFT A fixed length data area containing a single
USER JCL model. See macro C$VSAM for
field definitions of the multiple record (3
records) model entry.

An image of the complete USER
JCL model after the modification

DSECT label Description of data Data Field content

AFMHBEF A fixed length data area containing a single HELP
model. See macro C$VSAM for field definitions of
the multiple record (3 records) model entry.

An image of the complete HELP
model prior to any modification

AFMHAFT A fixed length data area containing a single HELP
model. See macro C$VSAM for field definitions of
the multiple record (3 records) model entry.

An image of the complete HELP
model after the modification
198 Connect:Enterprise for z/OS Application Agents and User Exits Guide

Using the Data Modification Exit
If DMEDTYPE = ODF, then the remaining data in the DSECT is as follows:

If DMEDTYPE = STATF, then the remaining data in the DSECT is as follows:

DSECT label Description data Data Field content

ODFTYPE A 1-byte character format type of data
indicator

Assembled value of DSECT label:
ODFUSEC—Security
ODFUOPT—Options
ODFUREM—Remotes
ODFUSIGN—Signon
ODFUCLST—Connect List
Add/Modify
ODFUCLDL—Connect List Delete
ODFUCRMT—Connect List
Remote
ODFUCLIN—Connect List
ODFUCTIM—Connect List
ODFUCMOD—Connect Copy
update exist
ODFUCFIN—Connect Finish
ODFUCCPY—Connect Copy
ODFUCCAN—Connect Cancel
ODFUPOOL—Pools Delete
ODFUPLUN—Pools/LUName
Add/Update
ODFUCAL—Calendar Delete
ODFUDATE—Days/Date
Add/Update

ODFBEF A fixed length data area which contains
variable length data mapped by a C$Onn
DSECT. See the ODFTYPE comments for
the DSECT identifiers. See macro C$Onn
for field definitions of the entire record
layout.

An image of the specific ODF data
prior to any modification

ODFAFT A fixed length data area which contains
variable length data mapped by a C$Onn
DSECT. See the ODFTYPE comments for
the DSECT identifiers. See macro C$Onn
for field definitions of the entire record
layout.

An image of the specific ODF data
modification activity, (delete, add,
modify) to be performed and the
related (add, modify) data

DSECT label Description of data Data Field content

SUBEF A fixed length data area containing a variable
number of Status Flags data. See macro
C$U28 for field definitions of the entire
record.

An image of the Status Flags for
one or more batches prior to any
modification
Connect:Enterprise for z/OS Application Agents and User Exits Guide 199

Chapter 9 Using CICS Interface User Exits
If DMEDTYPE = ACQUEUE, then the remaining data in the DSECT is as follows:

Understanding Data Modification Exit Usage
The purpose of the Data Modification exit is to provide notification prior to a terminal user
modifying any system data. You can validate the identifying information (CICS User ID if
specified, or the originating terminal ID) and any of the DSECT data as authorized to be modified.
You can set limits on what can be modified or determine that modifications are appropriate.
Identifying information, such as date, time, user, and terminal, as well as actual data that will be
modified can be recorded for charge-back or auditing purposes.

To allow the terminal user to modify system data, the EXITRC field in the exit parameter data
(COMMAREA) must be set to the assembled value of DSECT label XRCOKAY before executing
a CICS RETURN in the user-written exit program.

Using the Termination Exit
This exit is invoked before use of the CICS interface is terminated completely by an interactive user.
It is solely a reporting function by the CICS interface to the user-written exit program. It in no way
can be used to alter the processing path of the CICS interface.

SUAFT A fixed length data area containing a variable
number of Status Flags data. See macro
C$U28 for field definitions of the entire
record.

An image of the Status Flags for
one or more batches after
modification

DSECT label Description of data Data Field content

ACQBEF A fixed length data area containing a
variable number of A/C Queue entries. See
macro C$064 for field definitions of the
entire record.

An image of the A/C Queue entry
for one or more Auto Connects
prior to any modification

ACQAFT A fixed length data area containing a
variable number of Status Flags data. See
macro C$064 for field definitions of the
entire record.

An image of the A/C Queue data
modification action, (delete,
modify) to be performed and the
related (modify) data for one or
more A/C Queue entries

DSECT label Description of data Data Field content
200 Connect:Enterprise for z/OS Application Agents and User Exits Guide

Using the Termination Exit
Termination Exit Parameters
Parameters passed to the Termination exit are addressed by the CMCIXITS DSECT in member
EXITS in your CICS interface installation source library. A listing of the parameters and the content
of the data fields passed to the user-written exit program is shown in the following table:

Understanding Termination Exit Usage
The purpose of the Termination exit is to provide notification of a terminal user terminating use of
the CICS interface. As the terminal user discontinues use of the CICS interface, information, such
as date, time, user, and terminal, for charge-back or auditing purposes can be recorded.

The return code value from the user-written exit program has no affect on the subsequent CICS
interface processing that follows the Termination exit. It is recommended that the EXITRC field in
the exit parameter data, COMMAREA, be set to the assembled value of DSECT label XRCOKAY
before executing a CICS RETURN in the user-written exit program.

DSECT label Description of data Data Field content

EXITLEN Halfword (2-byte) length of the parameter
data

Assembled value of DSECT label
TERMLEN

EXITID An 8-byte character format identifier
stamp

The character string CMCIXITS

EXITPROG An 8-byte character format name of linked
program

Data from Termination field on Panel 1.4

EXITTYPE A 1-byte character format type of exit
indicator

Assembled value of DSECT label
XTERM

EXITRC A 1-byte hexadecimal return code value Assembled value of DSECT label
XRCABORT
Connect:Enterprise for z/OS Application Agents and User Exits Guide 201

Chapter 9 Using CICS Interface User Exits
202 Connect:Enterprise for z/OS Application Agents and User Exits Guide

Chapter 10

CICS User API

The User Application Programming Interface (UAPI) facilitates data exchange between a
user-developed CICS transaction and the CICS interface. The data to exchange is defined in an
Interface Parameter Structure (IPS).

An IPS is a collection of data for a specific task or function. The IPS describes either a function
and the data required for its execution, or the results of an executed function. The IPS has two parts:

✦ A fixed-length header is always present. All data exchanges use this portion of the IPS.
✦ A variable-length trailer that is included only if an in-progress activity requires it. A field in

the header portion of the IPS specifies the header length plus any present trailer portion.
This chapter describes the available UAPI functions in the CICS interface, including:

✦ Wake Up Transaction—This feature initiates a transaction or program that is specified by a
user-written exit or by an Connect:Enterprise End of Batch application agent. This initiation
occurs as the result of an End of Batch exit invoking a Wake Up exit or an End of Batch
application agent using the WAKEUP instruction.

✦ Online Batch ADD—This user-written transaction requests that a specified
Connect:Enterprise perform an ADD function. The user-written transaction delivers batch file
data to the Connect:Enterprise through the CICS interface.

✦ Online Batch REQUEST—This user-written transaction contains a REQUEST for file data
from a specified Connect:Enterprise. Connect:Enterprise delivers batch file data to the
user-written transaction through the CICS interface.

✦ Issue Connect:Enterprise Commands—This user-written transaction requests execution of
Connect:Enterprise commands and receives acknowledgments.

✦ Request Directory Listing—This user-written transaction requests information about
Connect:Enterprise Batch Queue content.

Activating Interface Parameter Structure
Your coded CICS transactions and programs contain an IPS definition. This definition can be a Data
Definition in COBOL, a DSECT in Assembler Language, or a Structure declaration in C.
Connect:Enterprise for z/OS Application Agents and User Exits Guide 203

Chapter 10 CICS User API
Based on the request to be issued by the user program, you must supply specific fields in the IPS
with data values. After all fields in the IPS are initialized, the IPS must be passed to the CICS
interface. Either of two methods can be used to accomplish this task:

✦ Using a CICS Temporary Storage Queue (TSQ)
✦ Passing the IPS as a COMMAREA when the CICS interface is linked by your transaction.
The two methods are described below. In either method, the CICS interface determines which
method was selected by the user transaction for transferring the IPS data. Return (response) IPS data
is returned to the user transaction using the same method used to deliver it originally.

A user-developed UAPI transaction invokes the CICS interface by issuing an EXEC CICS LINK
command from the user transaction. This LINK command specifies the program xx62002. The
transaction prefix, xx, is established for all Connect:Enterprise transactions. The default is CM,
which is combined with a COMMAREA. The COMMAREA specified in the EXEC CICS LINK
command can be either the actual IPS or locator data (described below) used for retrieving the IPS.

Using a CICS TSQ to Pass the IPS
In certain situations, you may want to store the IPS in a CICS TSQ, and then provide data to the
CICS interface for locating and retrieving the stored IPS. The IPS data to be sent to the CICS
interface can be written into a TSQ of your choice.

The user-written transaction can format a control COMMAREA and pass this COMMAREA when
linking to the CICS interface program. Format the locator data as described below:

✦ An 8-character identifier string containing the value CMCIS$CA
✦ A half-word reserved for the return code.
✦ A half-word of reserved space. Initialize to low values. Do not further modify.
✦ Name of the TSQ that contains the IPS to be processed. This name must be 8 characters,

left-justified, padded with blanks on the right.
✦ A full word containing the TSQ item number that contains the IPS to be processed.

When a response is returned to the user transaction, this field indicates the TSQ item number
that contains the processed IPS.

✦ A full word containing the length of the IPS stored in the TSQ entry.
✦ 8 bytes reserved for EIBFN and EIBRCODE data in case of an unexpected error condition.
✦ 20 bytes of reserved space. This space must be included. Initialize to low values. Do not

further modify.
When the CICS interface program returns the response IPS, it is written into the specified TSQ as
the next available item number. The assigned item number is returned in the item number field of
your control COMMAREA.

There is a macro named C$CTLCA in your CICS interface installation source library that describes
each field required in a control COMMAREA.
204 Connect:Enterprise for z/OS Application Agents and User Exits Guide

Interface Parameter Structure Format
Passing the IPS as a COMMAREA
In other situations, you may want to specify the actual IPS address and length in the EXEC CICS
LINK command parameters. The COMMAREA passed by the user-written transaction program to
the CICS interface program serves as both the send and receive buffer for the LU6.2 conversation.
As a result, it must be large enough to accommodate the anticipated response to your request. The
IPS data (header and trailer) is formatted as the COMMAREA and the header field H00TSLNG
describes the data bytes actually sent to Connect:Enterprise.

When control returns to the user-written transaction program following the CICS LINK, your
COMMAREA contains the response IPS.

Interface Parameter Structure Format
The CICS interface source library created during CICS interface installation contains three sample
programs that demonstrate the functionality of a user-written API. The supplied sample programs
are identified by CSECT name.

For these samples to execute correctly, you must change the following lines of code to your
site-specific definitions:

1. Locate every occurrence of the label H00SNAME and change it to specify the symbolic name
for your Connect:Enterprise system. Check Panel 1.3 or 1.5 if you are unsure of the symbolic
name.

2. Modify each reference to H00SUSER and H00SPSWD to specify the user ID and password
required by your Connect:Enterprise system. If you do not have security activated in the
Connect:Enterprise system, these fields do not require changes.

3. After you modify the sample programs, assemble and link edit them into your CICS load
library

4. Complete the PPT and PCT definitions. You can define the first three characters of the PCT
names. However, the fourth character of the PCT names are hard coded into the samples and
must be numbered from 1 to 3, as shown below:
xxx1 CSECT APISAMP1
xxx2 CSECT APISAMP2
xxx3 CSECT APISAMP3
Also, the Wake Up exit in Connect:Enterprise must initiate transaction xxx1 to start the entire
sample exercise.

The sample programs simulate the following situation:

1. A CICS transaction or program is initiated and receives standard Connect:Enterprise End of
Batch information.
Transaction xxx1 is initiated in the sample exercise.

2. Using the End of Batch information, batch data is requested from Connect:Enterprise and
stored by the CICS transaction or program for later processing.
Connect:Enterprise for z/OS Application Agents and User Exits Guide 205

Chapter 10 CICS User API
Transaction xxx1 writes batch data records to a TSQ. Each batch of data is terminated by an
End of Batch record. When all batch data has been received, an End Of File record is written
to Temporary Storage to simulate EOF processing. The TSQ name, first and last Item Number,
and other batch-related identifiers are then passed to transaction xxx2 using a START
command (with a 10-second delay).

3. After related processing, another CICS transaction or program is initiated to add new batch
data to Connect:Enterprise Batch Queues.
The 10-second delay, specified by transaction xxx1, simulates related processing (that
presumably has modified the batch data). Transaction xxx2 is then initiated. This transaction
reads the batch data from the TSQ and adds it to the Connect:Enterprise Batch Queues. At End
of Batch, Connect:Enterprise returns the new Batch Number that has been assigned.

4. The Batch Number of the newly added batch is used in a $$CONNECT command requested
by the CICS transaction or program.
Transaction xxx2 continues execution and formats a $$CONNECT command specifying the
Batch Number and identifies Transaction xxx3 as the transaction to be invoked when the Auto
Connect completes.

5. When the Auto Connect completes, a CICS transaction or program is initiated and receives
standard Connect:Enterprise completion messages.

6. Transaction xxx3 is invoked and simulates processing of Auto Connect completion messages.
Once all messages are disposed of, the transaction terminates.

Interface Parameter Structure Content
Every IPS is designed to contain header and trailer data. These separate data groups must form a
physically contiguous storage area record as shown in the following example:

Both the header and trailer portions contain required data, referred to as the fixed data. Additional
data that might be present (conditionally required) in either the header or trailer is referred to as
variable data.

The Source Library delivered with the CICS interface contains DSECTs that describe the IPS
discussed below. Each description includes the name of the applicable Source Library member.

Note: Ensure that your End of Batch exit or Wake Up exit or application agent rules in
Connect:Enterprise can differentiate the batch that was initially added (to start the sample
program demonstration) and the batch added by the ADD API sample program (Transaction
xxx2). Failure to do so results in a continuous execution of the sample program demonstration
set.

Header Trailer
206 Connect:Enterprise for z/OS Application Agents and User Exits Guide

Interface Parameter Structure Content
Review the identified DSECT while reading the following descriptions to increase your
understanding of UAPI functions and IPS requirements.

IPS Header Portion Data
The header portion (source member C$H00) contains both fixed and variable data. A full header
contains both fixed and variable data. A mini header contains only fixed data. The full header is
required in all cases except during a batch data file transfer to Connect:Enterprise (an ADD) or from
Connect:Enterprise (a REQUEST).

The following summarizes the rules applying to headers:

✦ Every IPS must contain a header portion.
✦ The first IPS in every function requires a full header.

Each request to ADD a batch of data.

Each request to retrieve (REQUEST) batch data. Multiple batches can be returned by a
single REQUEST.

Each request to issue commands.

✦ All subsequent IPSs require a mini header.
Second through the remaining IPSs required to complete addition (ADD) of a single
batch.

Second through the remaining IPSs required to complete receipt of all batch data resulting
from a single REQUEST.

IPS Fixed Header Data
The following table describes the fixed header data in the sequence that it appears in the DSECT.
The data is identified by the DSECT field label. All fields are required.

Field Label Description

H00HLNG An aligned half-word format field containing the length of the header portion of the IPS. The
length of a full header is defined by the equated DSECT value (H00HLEN). The length of a
mini header is defined by the equated DSECT value (H00MHLEN).

H00HDRID An 8-character identifier stamp that must always contain C$H00 followed by three blanks.
The stamp is the same in both types of headers.

H00HTYPE Defines the type of header data that is present. A full header contains both fixed data and
variable data. A mini header contains only fixed data.
Connect:Enterprise for z/OS Application Agents and User Exits Guide 207

Chapter 10 CICS User API
H00REQCD An 8-character name identifying the function requested by the initiator of the process.
Generally, this request identifier is the trailer portion identifier stamp.
For example, when a batch data file transfer to Connect:Enterprise (an ADD) is requested,
both this field and the trailer data are identified by C$A20 followed by three blanks.
Similarly, when a batch data file transfer from Connect:Enterprise (a REQUEST) is
requested, both this field and the trailer data are identified by C$R20 followed by three
blanks.
A complete list of request codes is included later in this section.

H00RTNCD A half-word aligned 2-byte field containing the return code from the requested function.
When this field contains low values the requested function has been completed (or at least
initiated) without error.
If an error condition exists during execution of a requested function, the return code field
contains unique values that identify both the source of the return code and the error
condition. A hexadecimal value in the range X’0100-X’05FF’ indicates the code was
returned by Connect:Enterprise. The hexadecimal value in the range X’0400’-X’04FF’
indicates the error condition was detected by a user-written exit executing in
Connect:Enterprise. Character values 0x–9x (hexadecimal values F0xx–F9xx) indicate the
code was returned by the CICS interface.
A complete list of Connect:Enterprise or the CICS interface supplied return codes is
included in Connect:Enterprise for z/OS Messages and Codes Guide.

H00DATA Defines the type of data carried in the IPS. Equated values are provided for defining or
interrogating the type of data field. Type of data depends on the activity being performed.
A user-written API to ADD batch data to Connect:Enterprise or to REQUEST batch data
from Connect:Enterprise uses the equated value H00UAPI to indicate the correct data type.
A user-written API that requests issuance of a console command by Connect:Enterprise
uses the equated value H00REQ to indicate the correct data type.
An acknowledgment from Connect:Enterprise following any request is identified as
response data (equated value H00RSP). The IPS from Connect:Enterprise does not
indicate response type data when Connect:Enterprise initiates a Wake Up transaction. In
this case, the data type is identified as wake-up (equated value H00WAKE) data. This type
of data is explained later in this section.

Field Label Description
208 Connect:Enterprise for z/OS Application Agents and User Exits Guide

Interface Parameter Structure Content
H00CFCTL Defines both the conversation flow required by the user application and the conversation
condition that exists in the system. The field must be set correctly by the user each time a
request function is passed to the CICS interface. The returned values must be interrogated
each time control is returned by the CICS interface. If so indicated, alter subsequent
processing logic to accommodate system conditions. The sample programs include
examples of how this field is set and tested. The sample programs also include code to
demonstrate how to process exceptional conditions.
In the request IPS, indicate the processing sequence that will be executed by the CICS
interface. Choices include SEND data, RECEIVE data, request CONFIRMATION of
completed activity, or TERMINATE the process. Most combinations of processing
sequences are allowed except CONFIRMATION which can only follow and be requested
simultaneously with SEND. At this time, a user-written transaction has no requirement to
issue a CONFIRMATION request and should never do so.
In the response IPS, the CICS interface indicates the condition of the conversation that
exists following execution of the requested flow control. Possibilities include:

NODATA received (your IPS buffer is unchanged from what was passed to the CICS
interface).

Data received is INCOMPLETE (your IPS buffer is too small for the data to be received
and a subsequent RECEIVE request must be executed to get the remaining data).

END RECEIVE (you have received all possible data).

 CONVERSATION TERMINATED.

These conditions can be present in logical combinations. The user-written API must test
these conditions in every response IPS to determine if the conversation requires more
attention or if it has satisfactorily completed. The condition CONVERSATION
TERMINATED must be attained before the user-written API can permanently suspend
CICS interface use.
Failure to do so results in conversations (LU6.2 connections) to Connect:Enterprise being in
an active, but unusable, condition.

Field Label Description
Connect:Enterprise for z/OS Application Agents and User Exits Guide 209

Chapter 10 CICS User API
The DSECT provides a complete list of equated values that can be used to define the
required or desired flow control and to interrogate the condition of the conversation.
Examples of usual flow control combinations are:

A user-written API to receive batch data from Connect:Enterprise normally requests
combined flow control to SEND (send the request to Connect:Enterprise) then
RECEIVE (receive the batch data from Connect:Enterprise). As batch data is received,
a flag in the trailer data indicates first, middle, or end segment of batch data. At the end
of the batch, the user-written transaction executes the end of file processing as required
by the application. Following each end of file process, the user-written transaction must
format an IPS containing a zero return code indicating that the batch data has been
accepted or a nonzero return code indicating the batch data has been rejected. This
IPS must also indicate flow control RECEIVE if the conversation condition END
RECEIVE is not indicated (Connect:Enterprise has more batch data to be sent) or QUIT
(eliminate the LU6.2 connection to Connect:Enterprise) if the condition END RECEIVE
is indicated. The CICS interface uses this IPS and the return code value to fulfill an
outstanding confirmation request from Connect:Enterprise before the requested flow
control is executed.

A user-written API to send batch data to Connect:Enterprise normally requests flow
control to SEND (send the request and the initial batch data to Connect:Enterprise).
Subsequent blocks or segments of data are sent to Connect:Enterprise by another
request to SEND. All SEND requests after the initial send for each batch of data are
done through a mini header. When the last data for this batch is placed into the IPS, the
flow control specifies a combination of SEND (send the final data to
Connect:Enterprise) then RECEIVE (receive the batch number that has been assigned
by Connect:Enterprise) then QUIT (eliminate the LU6.2 connection to
Connect:Enterprise). The RECEIVE (for the batch number from Connect:Enterprise)
forms an implied confirmation because when a Batch Number is available,
Connect:Enterprise has accepted the data and recorded it to the Batch Queues. If the
batch was not accepted, a nonzero return code IPS (with a zero Batch Number) is
returned by the RECEIVE.

A user-written API to request that an Connect:Enterprise console command be issued
normally requests a combination flow control to SEND (send the issue command
request to Connect:Enterprise) then RECEIVE (receive notification that the command
was either issued or that the request to issue was rejected or receive the response
data) then QUIT (eliminate the LU6.2 connection to Connect:Enterprise).

The flow control and conversation condition flags place the authority for the success or
failure of the attempted processes under the control of the user-written API. The first
request in a processing sequence must be SEND. RECEIVE must initially follow SEND or
a previous RECEIVE if the condition END RECEIVE was not indicated. QUIT must be the
last request made in a processing sequence.

H00IDENT An internal control field for the CICS interface. The user-written API must initialize it to low
values when the IPS is formatted prior to the first SEND request. Do not modify this field
until after the QUIT request has executed.

Field Label Description
210 Connect:Enterprise for z/OS Application Agents and User Exits Guide

Interface Parameter Structure Content
IPS Variable Header Data
The following table describes variable header data in the sequence that it appears in the DSECT. It
is identified by the DSECT field label. These fields are defined in a full header but can be used
conditionally, depending on the processing activity.

H00TSLNG Defines the length of the header portion plus any trailer portion that is present. The length
must correspond to the length supplied in the trailer data (if any) plus the value stored in the
H00HLNG field described previously. The length defines the data to be sent to
Connect:Enterprise. This field does not relate to the length of the data received from
Connect:Enterprise (or the maximum buffer size to be used). The receive data length
maximum is defined by the length of the actual IPS data area supplied to the CICS interface
as a COMMAREA (supplied through the CICS LINK) or the maximum TSQ record length.

Field Label Description

H00FDBK These 12 bytes are a collection of system-dependent error codes that can be included
in the IPS to further describe a nonzero return code in the IPS.
If the return code was supplied by Connect:Enterprise, feedback information indicates
whether the error was VTAM or VSAM related, the severity of the VTAM errors, the
identity of the failing VSAM function and the detailed error identification.
If the return code was supplied by the CICS interface, feedback information contains
the last CICS command executed (EIBFN), the CICS response code (EIBRCODE) and,
if the error was related to LU6.2 communication activity, the CICS LU6.2 conversation
error indicator (EIBERRCD).
If the return code was supplied by a user-written exit executing in Connect:Enterprise,
feedback information is defined or utilized by the application designer. The system
does not modify this field except when setting nonzero return codes.

H00CDEFN,
H00SYSID,
H00CPROG or
H00CTRAN,
H00CTERM and
H00CUSER

These fields are required when a user-written API requests that an Auto Connect be
initiated by Connect:Enterprise. The initiation of the specified Auto Connect is
immediately reported to the requesting user-written API. The completion of the Auto
Connect is reported later (possibly hours later) to the transaction or program defined
and identified by these fields. These same definition fields are used by the
Connect:Enterprise Wake Up process to identify the transaction or program that is
executed as the result of a Wake Up call.

H00CDEFN Indicates if a PROGRAM is executed through an XCTL command or if a
TRANSACTION is initiated through a START command. Also, this field indicates if a
terminal identifier and an associated user identifier are present in related fields. If
present, it further indicates whether or not the START command should specify a
terminal. Generally, starting a transaction as terminal attached is not recommended.
However, the capability to do so is provided to the user-written API.

H00SYSID Indicates the system identification of the CICS system identified in the SYSID
parameter of the START transaction command. When the equated value of
H00TRNID is present in H00CDEFN this field is required.

Field Label Description
Connect:Enterprise for z/OS Application Agents and User Exits Guide 211

Chapter 10 CICS User API
H00CRESC Generically defines the area containing the target program name and terminal identifier
(if specified) or the transaction identifier and terminal identifier (if specified). This area
is redefined as indicated below.

H00CPROG If the equated value H00PGNME is present in H00CDEFN, this field (the first eight
bytes of H00CRESC defined above) must contain the program (PPT) name to be
executed through an XCTL command. If this option is chosen, the program to be
executed must reside in the same CICS system as the CICS interface as no facility is
provided to specify a CICS SYSID in the XCTL command.

H00CTRAN If the equated value H00TRNID is present in H00CDEFN, this field (the first eight bytes
of H00CRESC defined above) must contain the transaction (PCT) identifier to be
initiated through a START command. Transaction ID must be left justified in this field
definition. If this option is chosen, the H00SYSID specification is included in the
START command.

H00CTERM If the equated value H00TRMID or H00TRMUS is present in H00CDEFN, this field (the
second eight bytes of H00CRESC defined above) must contain the terminal (TCT)
identifier. Terminal ID must be left justified in this field definition. If the equated values
found in H00CDEFN are H00TRNID and H00TRMID, the specified terminal identifier is
included in the START transaction command. If the equated values found in
H00CDEFN are H00TRNID and H00TRMUS, the START transaction command does
not specify a terminal but the start data (the IPS) contains the Terminal ID and the User
ID as part of the header data. If the equated value found in H00CDEFN is
H00PGNME, the COMMAREA (the IPS) passed during the XCTL contains the
Terminal ID (and possibly the User ID) as part of the header data.

H00CUSER If the equated value H00TRMUS is present in H00CDEFN, this field contains the User
ID to be associated with the executed resource. This field is manipulated in an
application-specific manner. This field data does not affect either the XCTL or the
START command. The field data is simply passed to the program or transaction as
part of the COMMAREA or Start Data respectively. If this field is indicated as present
(H00TRMUS present in H00CDEFN) it must not contain blanks or low values.

H00CINTV Describes, in minutes, the maximum amount of time that can elapse between CICS
LINKs to the CICS interface by the user-written API. The time interval is used to
determine whether LU6.2 resources are occupied by tasks that appear to be
terminated. A normal conversation occurrence (SEND or RECEIVE a buffer of data)
would normally be measured in terms of seconds, not minutes. The user-written API
logically pursues application-specific processing between conversation occurrences.
This processing time must be estimated in minutes and indicated in this field. If the
user-written API has not returned to the CICS interface in the estimated time interval,
the task is considered dead and any CICS resources it is holding are released or
cleaned up.
This field is not fully implemented in the current version of this system.

H00SNAME Identifies the Connect:Enterprise APPC component that is to be contacted on behalf of
the user-written API. The name is a symbolic name that has been defined by the CICS
interface administrator. It is not necessarily the APPLID of the Connect:Enterprise
APPC component, although the administrator can assign symbolic names that match
the APPLID. This symbolic name is required in every IPS formatted with a full header.

Field Label Description
212 Connect:Enterprise for z/OS Application Agents and User Exits Guide

Interface Parameter Structure Content
IPS Trailer Portion Data
Every request directed to Connect:Enterprise requires a trailer portion to complete the IPS. The
trailer portion must be physically adjacent to the last byte of the header portion. The format of every
trailer is divided into fixed and variable data portions.

Fixed trailer data varies from one DSECT to another; however every trailer DSECT begins with a
half-word aligned half-word format length field followed by an 8-character identifier stamp. This
stamp contains the trailer identifier C$xxx followed by blanks. The xxx characters in the trailer
identifier define the purpose or source of the IPS trailer data.

Beginning with Connect:Enterprise for z/OS Version 1.4, certain IPS trailer layouts were increased
in size to accommodate the expanded User Batch ID (BID64). Each of these macro definitions can
be generated with the following layouts (FORMAT=1 and FORMAT=2).

✦ C$xxx FORMAT=1 which generates the IPS trailer used when communicating with a pre-1.4
Connect:Enterprise for z/OS system

✦ C$xxx FORMAT=2 which generates the IPS trailer used when communicating with a 1.4 or
later version of Connect:Enterprise for z/OS

Your program must build the correct trailer format to properly communicate with the corresponding
version of Connect:Enterprise for z/OS.

Following is a list of the C$xxx macro definitions, which must be specified with either FORMAT=1
or 2, depending on which release level of Connect:Enterprise for z/OS your application is
communicating with. All of these macro definitions default to FORMAT=1.

✦ C$O03—AUTO CONNECT INITIATION REQUEST
✦ C$O29—ACTIVE SESSION DETAIL DISPLAY OF REMOTE AC/RC

H00SUSER A user ID defined to an external security package or a security exit executed from in
Connect:Enterprise. This user ID (and the associated password) is used to validate or
authorize the request defined by this IPS. This user ID is required in every IPS
formatted with a full header.

H00SPSWD Contains the user’s password defined to an external security package or a security exit
executed from Connect:Enterprise. This password (and the associated user ID) is used
to validate or authorize the request defined by this IPS. This password is required in
every IPS formatted with a full header.

H00SVRM Contains the version, release and modification level of the target Connect:Enterprise
and is included in every full header IPS sent to the user by Connect:Enterprise. This
information is provided by the system for user control or validation functions. You are
not required to supply this information in any IPS sent to Connect:Enterprise. The data
in this 3-byte binary field, when returned to character representation, is VVRRMM
where:

VV = version (2 digits; 02–99)

RR = release (2 digits; 00–99)

MM = modification (2 digits; 00–99)

H00NPSW Contains a new password that is assigned to the user after confirmation of the current
password.

Field Label Description
Connect:Enterprise for z/OS Application Agents and User Exits Guide 213

Chapter 10 CICS User API
✦ C$O34—ACTIVE A/C REMOTE SUMMARY DISPLAY
✦ C$O43— REMOTES LIST DISPLAY
✦ C$O44—REMOTES UPDATE
✦ C$U06—AUTO CONNECT DETAIL REQUEST
✦ C$U07—AUTO CONNECT DETAIL SELECTION LIST DATA
✦ C$U071—QUEUED AUTO CONNECT DISPLAY
✦ C$U12—REMOTE CONNECT DETAIL REQUEST
✦ C$U13—REMOTE CONNECT DETAIL DISPLAY
✦ C$U15—BATCH QUEUE DIRECTORY REQUEST
✦ C$U16—BATCH QUEUE DIRECTORY LIST
✦ C$U28— BATCH STATUS FLAGS REQUEST
✦ C$W00—C:E ISSUES "WAKE-UP" CALL AT THE COMPLETION OF A SPECIFIED

ACTIVITY
The following table describes several common trailer identifiers. For a complete listing of IPS
trailers, see Appendix A, IPS Trailers.

Identifier Description

C$W00 Identifies the trailer, built by Connect:Enterprise, to be passed to a user-written CICS
program or transaction that is initiated by the CICS interface, triggered by an End of
Batch exit requesting that a Wake Up exit be executed in the Connect:Enterprise
APPC component. This process is known as the Wake Up transaction and is
discussed in greater detail later in this section.
Note: The C$W00 and C$U15 macros must be invoked with FORMAT=2 when

communicating with a Connect:Enterprise for z/OS Version 1.4 or later
release, and with FORMAT=1 when communicating with a release prior to
Version 1.4. When FORMAT=2 is specified, the W00FMTID and U15FMTID
fields must contain c'F2'. For more upgrading information, see the
Connect:Enterprise for z/OS Release Notes.

C$A20 Identifies the trailer, built by the user-written API, to request batch data be ADDed to
Connect:Enterprise and to supply the batch data records. Additionally, if encryption of
the batch data records is desirable, the encryption controls (such as method and key)
are included as the first data record in the ADD request trailer. The CICS interface
uses this encryption information to process all subsequent batch data during the ADD.
The encryption control information is not sent to Connect:Enterprise. When data is
encrypted, it must be decrypted using the same control information to be usable.
Connect:Enterprise uses the same trailer format (with different variable data) to return
the batch number when the ADD is successfully completed.
214 Connect:Enterprise for z/OS Application Agents and User Exits Guide

Using the Wake Up Transaction
A list of all IPS Trailers is in Appendix A, IPS Trailers.

Using the Wake Up Transaction
Wake Up transactions can be generated in Connect:Enterprise to contact a CICS system in two
ways: user-written exits or an application agent.

A user-written exit, such as the Wake Up exit, in Connect:Enterprise can contact a CICS system
whenever an End of Batch has occurred. The normal Connect:Enterprise End of Batch exit must be
invoked to request that the Wake Up exit also be invoked. See Chapter 4, Using Connect:Enterprise
Online Exits. The user-written Wake Up exit defines which CICS system to contact and whether a
program or transaction is to be initiated. This information is carried in the header portion (see

C$R20 Identifies the trailer, built by the user-written API, to REQUEST batch data from
Connect:Enterprise. Additionally, if batch data record decryption is required, the
decryption controls (such as method and key) are included in the REQUEST request
trailer. The CICS interface uses this decryption information to process all batch data
received during the REQUEST. The decryption control information is not sent to
Connect:Enterprise. When data is decrypted, it must have been encrypted using the
same control information to be usable. The batch data is returned by
Connect:Enterprise using the same trailer format with different variable data.

C$O03 Identifies the trailer, built by the user-written API, to request Connect:Enterprise to
initiate an Auto Connect. The acknowledgment (response) from Connect:Enterprise
indicating that the Auto Connect was initiated is returned to the user-written API as
only a return code value in the header portion of the IPS. No trailer data is present in
this response IPS.

C$O02 Identifies the trailer, built by Connect:Enterprise, to be passed to a user-written CICS
program or transaction that is initiated by the CICS interface, triggered by the
completion of an Auto Connect that was initiated earlier through an IPS with the
C$O03 trailer discussed above.

C$O66 Identifies the trailer, built by the user-written API, to request Connect:Enterprise to
issue a $$LIST FILES command and return a list of the files that meet the specified
criteria. C$O67 identifies the trailer that contains the response (file status listing)
information.

C$U15 Identifies the trailer, built by the user-written API, to request Connect:Enterprise to
read through the Batch Queues and return a listing of all batches that meet the
specified criteria. C$U16 identifies the trailer, built by Connect:Enterprise, that
contains the response information.
Note: The C$W00 and C$U15 macros must be invoked with FORMAT=2 when

communicating with a Connect:Enterprise for z/OS Version 1.4 or later
release, and with FORMAT=1 when communicating with a release prior to
Version 1.4. When FORMAT=2 is specified, the W00FMTID and U15FMTID
fields must contain c'F2'. For more upgrading information, see the
Connect:Enterprise for z/OS Release Notes.

Identifier Description
Connect:Enterprise for z/OS Application Agents and User Exits Guide 215

Chapter 10 CICS User API
H00CDEFN and related fields) of the IPS that is transmitted from Connect:Enterprise to the CICS
interface. The header on this IPS is a full header. (See Interface Parameter Structure Content on
page 206 for a description of header data.)

Usually the End of Batch application agent WAKEUP can be used to provide an easier method of
implementing a CICS wake up. See Chapter 1, Overview of Connect:Enterprise Application Agents
for implementation details. The application agent builds the IPS that is transmitted from
Connect:Enterprise to the CICS, using parameters you supply in the End of Batch application agent
rules.

Transaction Execution
The IPS is formatted, either by the user-written Wake Up exit and Connect:Enterprise or by the
user-supplied End of Batch application agent rules, and transmitted to the CICS interface. The user
defined program or transaction in the specified CICS system is then initiated by the CICS interface.
If a program is initiated, the complete IPS (both header and trailer) is passed as a COMMAREA
specified in the XCTL command. If a transaction is initiated, the complete IPS is passed as DATA
in the START command.

The CICS interface then notifies Connect:Enterprise regarding the success or failure of the task
initiation and terminates. The user-written program or transaction is not related to or controlled by
the CICS interface after it is initiated.

The following diagram depicts the events that occur when a Wake Up transaction is requested
through the End of Batch exit. Understanding the steps that the user completes as well as the order
in which these steps are completed will help you understand the Wake Up transaction processing
flow.

Trailer Data
The following table describes the trailer (source member C$W00) data in the order that it appears
in the DSECT. It is identified by the DSECT field label.

CICS Interface

Initiate Program
Receive
 Initiate UAPI:
 XCLT - program (Commarea)
 START - transaction (data)
 Alter C$H00+C$W00
 H00RETCD=nn
Send IPS
1Receive
 .
EXEC CICS RETURN
(Terminate)

User-Written API

Transaction/Program initiated.
Processing is not related to or
controlled by the CICS interface.

Connect:Enterprise

End Of Batch exit executes
Wake Up exit executes

- or -
End Of Batch application
agent WAKEUP instruction
is processed
Format C$H00(full)+C$W00
Allocate conversation
Send IPS
Receive
 .
 .
 .
 .
 .
Log Wake Up result
DEALLOCATE conversation
Processing as may be required

Transaction terminates
216 Connect:Enterprise for z/OS Application Agents and User Exits Guide

Using the ADD Transaction
Connect:Enterprise for z/OS Application Agents and User Exits Guide 217

Using the ADD Transaction
This facility enables a user-written transaction to add batch data to the Connect:Enterprise Batch
Queues. The header on the initial IPS for each batch is a full header. If the volume of batch data
requires more than one IPS, each subsequent IPS must be formatted with a mini header. See
Interface Parameter Structure Content on page 206 for a description of header data fields and
content.

Transaction Execution
All IPSs are formatted by the user-written API and passed to the CICS interface through a CICS
LINK command. The IPS is then transmitted (using LU6.2 facilities) to Connect:Enterprise. The
transmission flow control specified in the header is executed by the CICS interface. If the flow
control flag indicates only SEND (indicating more user batch data remains to be sent to
Connect:Enterprise), the CICS interface transmits the IPS to Connect:Enterprise and informs the
user-written API regarding the success or failure of the transmission. When the flow control flag
indicates SEND then RECEIVE (indicating the final batch data has been formatted into the IPS) the
CICS interface transmits the IPS to Connect:Enterprise and waits for the response. The
Connect:Enterprise response containing the batch number assigned when the batch data was
recorded on the Batch Queues is returned to the user-written API. Additional processing can be
requested or the connection to Connect:Enterprise can be terminated.

The following diagram shows the events that occur when a user-written API initiates an ADD
transaction to add batch data to the Connect:Enterprise batch Queues. Understanding the steps that
the user must complete as well as the order in which these steps are completed will help you
understand the ADD transaction processing flow. Two batches of data are shown being added to
Connect:Enterprise. Notice that the flow control flag (H00CFCTL) is specified each time the CICS
interface is LINKed.

Field Description

W00FMTID An identifier that must contain c'F2'. This field is only present when the source
macro is generated using C$W00 FORMAT=2.

W00TLNG A half-word aligned half-word format field containing the length of the trailer
portion of the IPS. The length of this trailer is constant as it contains only fixed
data.

W00TRLID An 8-character identifier stamp that must always contain C$W00 followed by
three blanks.

W00KEYID, W00BNO,
W00UBID, W00BLKCT,
W00ERCL, W00EOB@,
W00FLAG1,
W00FLAG2,
W00CTIME,
W00CDATE,
W00OPRID,
W00RTYPE and
W00FILL

These fields are standard Connect:Enterprise End of Batch exit information
fields. See the Using the End of Batch Exit on page 144 for a description and use
of this data.

Chapter 10 CICS User API
CICS Interface

ALLOCATE conversation
Send IPS
Set H00RETCD=00
EXEC CICS RETURN

Send IPS
Set H00RETCD=0
EXEC CICS RETURN

Send IPS
Receive
 .
 .
 .
 .

EXEC CICS RETURN

Send IPS .
Set H00RETCD=00
EXEC CICS RETURN

Send IPS .
Set H00RETCD=00
EXEC CICS RETURN

Send IPS .
Receive
 .
 .
 .
 .
 .
DEALLOCATE conversation
H00CFCTL=H00TERM
EXEC CICS RETURN

User-Written API

Retrieve batch data #1 (beginning)
Format C$H00(full)+CA20+data
 H00CFCTL=H00SSEND
 H00IDENT=00000000
 A20TRLRT=A20FIRST
 A20ID, A20UBID, etc.
EXEC CICS LINK

Retrieve batch data #1 (middle)
Format C$H00(mini)+C$A20+data
 H00CFCTL=H00SSEND
 A20TRLRT=A20MID
EXEC CICS LINK

Retrieve batch data #1 (end of file)
Format C$H00(mini)+C$A20+data
 H00CFCTL=H00H00SSR
 A20TRLRT=A20LAST
EXEC CICS LINK

Processing as may be required

 (This processing determines
 that batch data #2 should be
 ADDed to CONNECT:Enterprise.)

Retrieve batch data #2 (beginning)
Format C$H00(fill)+C$A20+data
 H00CFCTL=H00SSEND
 A20TRLRT=A20FIRST
 A20ID, A20UBID, etc.
EXEC CICS LINK

Retrieve batch data #2 (middle)
Format C$H00(mini)+C$A20+data
 H00CFCTL=H00SSEND
 A20TRLRT=A20MID
EXEC CICS LINK

Retrieve batch data #2 (end of file)
Format C$H00(mini)+C$A20+data
 H00CFCTL=H00SSRQ
 A20TRLRT=A20LAST
EXEC CICS LINK

Processing as may be required

Transaction terminates

Connect:Enterprise

Retrieve batch data #1 (beginning)

Initiate conversation
Receive
Preserve batch data
Receive
 .
 .
 .
 .

Preserve batch data
Receive

End of file processing
Format C$H00(mini)+C$A20
 H00RETCD=00
 A20ID, A20UBID, etc.
 A20BN0=nnnnnnnn
Send IPS
Receive
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
Preserve batch data
Receive
 .
 .
 .
 .
 .
Preserve batch data
Receive
 .
 .
 .
 .
 .
End of file processing
Format C$H00(mini)+C$A20
 H00RETCD=00
 A20ID, A20UBID, etc.
 A20BN0=nnnnnnnn
Send IPS
Receive
Conversation terminated
218 Connect:Enterprise for z/OS Application Agents and User Exits Guide

Using the ADD Transaction
Fixed Trailer Data
The following table describes trailer (source member C$A20) data in the sequence that it appears
in the DSECT. The data is identified by the DSECT field label.

Initial Variable Trailer Data
Variable trailer data is described below in the sequence it appears in the DSECT. It is identified by
the field label from the DSECT.

The following table describes the variable fields in the initial (or only) trailer to pass control
information to Connect:Enterprise. These fields are also present in the response IPS (which contains
the Batch Number) returned by Connect:Enterprise when the batch data is added successfully to the
Batch Queue.

Field Description

A20TLNG A half-word aligned half-word format field containing the length of the trailer portion of the IPS.
The length of this trailer is variable as it contains both fixed data and variable data
(user-defined records).

A20TRLID An 8-character identifier stamp that must always contain C$A20 followed by three blanks.

A20TRLRT A flag byte that defines the content of the trailer in terms of its relationship to the entire batch
data file. In the initial, IPS (for each batch) this flag must be set to the equated value
A20FIRST to indicate the first trailer of file data. If the entire batch data file is contained in the
initial IPS the flag must be set to A20ONLY. As the transfer of batch data proceeds, this flag
byte must be set to A20MID for each intermediate IPS and when the final batch data is
formatted into the IPS, this flag byte must be set to A20LAST.

A20DDSP A half-word aligned half-word format field containing the displacement (number of bytes) from
the first byte of the C$A20 trailer (label A20TLNG) to the first byte of the first user data length
(label A20LEN) field. Use of this displacement field allows the trailer format to change without
requiring reassembly of user programs that choose not to use the new trailer fields. When the
initial C$A20 trailer is built, users are encouraged to provide the amount of reserved space as
indicated at the end of the DSECT labeled A20DSECT.

Field Description

A20ID The Mailbox ID assigned to your site by host site operations.

A20UBID The free-form user batch ID. The maximum length is 24 bytes.

A20XMIT The flag byte that controls whether the batch data is available only for host site operations
or whether it is available for transmission to other remote sites.

A20MULTX The flag byte that controls whether the batch data is to be marked T once it is transmitted to
a remote site, making it unavailable for additional transmission unless requested by Batch
Number.

A20TONCE The flag byte that allows transmission of batch data to occur only once.
Connect:Enterprise for z/OS Application Agents and User Exits Guide 219

Chapter 10 CICS User API
Using the Reserved Area
The reserved area is subject to change. For best results, allocate the specified amount of reserved
space. Use the field A20DDSP to locate the first entry of user data.

Variable Trailer Data
User data is present in every IPS that is transmitted to Connect:Enterprise. In an initial, or only,
trailer the user batch data immediately follows the initial variable trailer data fields just described
above. In all other trailers the user batch data immediately follows the fixed data fields.

A20EONCE The flag byte that allows batch data to be extracted only once.

A20BNO The Batch Number, assigned by Connect:Enterprise, when the batch data file addition has
been successfully completed.

A20UBID64 The free-form user batch ID. The maximum length is 64 bytes.

A20VBQ# The target VSAM Batch Queue Number. You can specify the VBQ to which the batch is
added or you can allow the batch to be added to the Current Collection Queue. To indicate
the Current Collection Queue, set this field to low values (hex zeros). To indicate a specific
VBQ, the VBQ must be defined and currently allocated to Connect:Enterprise. Place the
VBQ identifier number (as a binary value, displayed in hex below) in this field. Identifier
numbers are:
VBQ Specify
01 x‘01’
02 x‘02’
03x‘03’
04 x‘04’
05 x‘05’
06 x‘06’
07 x‘07’
08 x‘08’
09 x‘09’
10 x‘0A’
11 x‘0B’
12 x‘0C’
13 x‘0D’
14 x‘0E’
15 x‘0F’
16 x‘10’
17 x‘11’
18 x‘12’
19 x‘13’
20 x‘14’

Field Description
220 Connect:Enterprise for z/OS Application Agents and User Exits Guide

Using the ADD Transaction
The following table describes the variable trailer data:

Batch Data Encryption
When batch data is encrypted before transmission to Connect:Enterprise, the encryption request and
control information must be passed to the CICS interface as the first user data in the first C$A20
trailer. The A20LEN field must be set to include the length of the encryption control information
plus two bytes for the length itself, just as is done for any other user data entry. The following table
shows how to format the user data (A20DATA) entry containing the encryption control
information:

Field Description

A20LEN A half-word aligned half-word format field containing the length of the user data that follows
plus the length of this length field. For example, if a user data record of 80 characters follows,
the value in this field must be 82. This field allows you to format multiple records (or record
segments) in an IPS, completely under the control of the user-written API.

A20DATA DSECT label that locates the first byte of user data for this record (or record segment).
Multiple records can be blocked into an IPS. The complete length of the trailer data
(A20TLNG described above) must include the length of every data record (A20DATA) plus two
bytes for every data record length (A20LEN) plus the length of the fixed and any variable data.

Field Description

A20EID1 A 5-character identifier stamp that must always contain C:EAE (Connect:Enterprise ADD
encryption) to indicate that data encryption is required.

A20EID2 The sixth character of the identifier stamp field and must always contain the value assigned to
the label A20FIRST to further validate the request for encryption.

A20EID3 The last two bytes of the identifier stamp field. This field must always contain the same value
as A20DDSP. This displacement value locates the user data length (A20LEN) field for this
user data entry.

A20EACT A flag byte that concludes the positive identification that this user data is a request for
encryption of the batch data that follows. This field must always contain the value assigned to
the label A20ENCR.

A20ETYP A single byte method code that describes the method of encryption that is invoked. Comments
in the A20DSECT adjacent to this field define the supported methods. This field must always
contain a valid encryption method code.

A20EKYL A half-word aligned half-word format field containing the length of the encryption key data.
Unlike other length fields, this field contains the length of the actual data only, not length of the
data plus two bytes. Encryption key data can be from 1 to 16,383 bytes in length. If the batch
data is decrypted using the Connect:Enterprise system standard utility program, the encryption
key length must be eight bytes.
Connect:Enterprise for z/OS Application Agents and User Exits Guide 221

Chapter 10 CICS User API
222 Connect:Enterprise for z/OS Application Agents and User Exits Guide

Using the REQUEST Transaction
This facility allows a user-written transaction to retrieve batch data from the Connect:Enterprise
Batch Queues. Header data is omitted from the following discussion. The header on the initial IPS
is a full header. The initial IPS on each REQUEST contains a flow control flag that indicates SEND
(H00SSEND) or SEND in combination with another flow control command, generally RECEIVE
(H00SSR). All IPSs returned with batch data by Connect:Enterprise are formatted with a mini
header. See the previous discussion for clarification of header data fields and content.

All IPSs are formatted by the user-written API and passed to the CICS interface through a CICS
LINK command. The request (initial) IPS is then transmitted (using LU6.2 facilities) to
Connect:Enterprise. The flow control flag in the request IPS must be SEND then RECEIVE. This
flow control flag setting indicates that the request is sent to Connect:Enterprise and a response
(batch data) is returned by Connect:Enterprise. The CICS interface transmits the IPS to
Connect:Enterprise and waits for the response. The response from Connect:Enterprise contains
batch data records from the requested batch.

After processing the batch data record(s), the user-written API must set H00RETCD to indicate the
acceptance (RC= zero) or rejection (RC= nonzero) of the batch data just processed. This return code
value is used by the CICS interface to determine whether processing continues and to provide
confirmation to Connect:Enterprise for each end of file that is encountered during batch data
extraction.

After setting the return code, the user-written API must check the flow control flag for H00END. If
the flow control flag does not indicate H00END, the new flow control flag must indicate RECEIVE
(H00SRECV) to receive the remaining batch data. If the flow control flag indicates H00END, the
new flow control flag must indicate SEND (H00SSEND or in some combination) to initiate
additional processing or QUIT (H00SQUIT) to cause the connection to Connect:Enterprise to
terminate. The completed IPS is again given to the CICS interface through a CICS LINK command.
The CICS interface executes the flow control flag explicitly to receive additional data or provide
confirmation at end of file (using the H00RTNCD value) and then initiate additional processing or
terminate the connection to Connect:Enterprise.

The following diagram shows the events that occur when a user-written API initiates a REQUEST
transaction to retrieve batch data from the Connect:Enterprise Batch Queues. Understanding the
steps that the user must complete as well as the order in which the steps are completed will help you
understand the REQUEST transaction processing flow. In the following diagram, two batches of
data are returned by Connect:Enterprise. Notice that the flow control flag (H00CFCTL) is specified
each time the CICS interface is LINKed.

A20EKEY This DSECT label locates the first byte of the user supplied encryption key data. The length of
this data is defined by the value in A20EKYL. If the batch data is decrypted using the
Connect:Enterprise standard utility program, the encryption key data must be eight bytes in
length, left justified, padded on the right with blanks.
No encryption control information is transmitted to Connect:Enterprise. The encryption key is
stored within the CICS interface in an encrypted format to protect the integrity of the encryption
process.

Field Description

Using the REQUEST Transaction
User-Written API

Format C$H00(full)+C$R20
 H00CFCTL=H00SSR
 H00IDENT=00000000
 R20TRLRT=R20REQ
 R20ID, R20BN0, R20UBID
EXEC CICS LINK

Preserve the batch data record(s)
Check for R20LAST
Format C$H00(mini)
 H00RETCD=00 (all okay)
 H00CFCTL=H00SRECV (not H00END)
EXEC CICS LINK

Preserve the batch data record(s)
Check for R20LAST
Format C$H00(mini)
 H00RETCD=00 (all okay)
 H00CFCTL=H00SRECV (not H00END)
EXEC CICS LINK

Preserve the batch data record(s)
Execute EOF processing (R20LAST indicated)
Format C$H00(mini)
 H00RETCD=00 (all okay)
 H00CFCTL=H00SRECV (not H00END)
EXEC CICS LINK

Preserve the batch data record(s)
Check for R20LAST
Format C$H00(mini)
 H00RETCD=00 (all okay)
 H00CFCTL=H00SRECV (not H00END)
EXEC CICS LINK

Preserve the batch data record(s)
Execute EOF processing (R20LAST indicated)
Format C$H00(mini)
 H00RETCD=00 (all okay)
 H00CFCTL=H00SQUIT (H00END indicated)
EXEC CICS LINK

Processing as required

Transaction terminates

* C$H00 must be "Full" if H00CFCTL equals H00SSEND or some combination with H00SSEND.

CICS Interface

ALLOCATE conversation
Send IPS
Receive
 .
 .
 .
 .
EXEC CICS RETURN

Receive
EXEC CICS RETURN

Receive
EXEC CICS RETURN

H00RTNCD=confirm
Receive
 .
 .
 .
 .
EXEC CICS RETURN

Receive
EXEC CICS RETURN

H00RTNCD = confirm
DEALLOCATE conversation
H00CFCTL=H00TERM
EXEC CICS RETURN

Connect:Enterprise

Initiate conversation
Receive request
Read batch #1 & format
 C$H00(mini)+C$R20+data
 H00RETCD=00
 R20TRLRT=R20FIRST
Send IPS
Read batch #1 & format
 C$H00(mini)+C$R20+data
 H00RETCD=00
 R20TRLRT=R20MID
Send IPS
 . .
 . .
Read batch #1 & format
C$H00(mini)+C$R20+data
 H00RETCD=00
 R20TRLRT=R20LAST
Send IPS; Confirm
 . .
 . .
Confirm required
 . .
 . .
 . .
 . .
 . .
 . .
Read batch #2 & format
 C$H00(mini)+C$R20+data
 H00RETCD=00
 R20TRLRT=R20FIRST
Send IPS
Read batch #2 & format
 C$H00(mini)+C$R20+data
 H00RETCD=00
 R20TRLRT=R20LAST
Send IPS; Confirm; Receive

Confirm required; Receive

Receive
Conversation terminated
Connect:Enterprise for z/OS Application Agents and User Exits Guide 223

Chapter 10 CICS User API
Fixed Trailer Data
The following table describes trailer (source member C$R20) data in the sequence it appears in the
DSECT. The data is identified by the DSECT field label:

Initial Variable Trailer Data
The following table describes variable trailer data is in the sequence that it appears in the DSECT.
The data is identified by the DSECT field label. The variable fields are defined in the initial (or
request) trailer to supply selection criteria to Connect:Enterprise.

Field Description

R20TLNG A half-word aligned half-word format field containing the length of the trailer portion of the IPS.
The length of this trailer is variable as it contains both fixed data and variable data
(user-defined records).

R20TRLID An 8-character identifier stamp that must always contain C$R20 followed by three blanks.

R20TRLRT A flag byte that defines the content of the trailer as it relates to the entire batch data file. In the
initial IPS (for each batch) this flag must be set to the equated value R20REQ indicating that
this trailer carries the identifiers of the batch file for Connect:Enterprise to return. When
Connect:Enterprise formats the subsequent IPS, this flag byte is set to R20ONLY if the entire
batch data file is contained in the initial response IPS. If the volume of batch data exceeds the
capacity of the initial IPS this flag is set to R20FIRST.
As the transfer of batch data proceeds, this flag byte is set to R20MID for each intermediate
IPS and when the final batch data is formatted into the IPS, this flag byte is set to R20LAST.
When this flag indicates R20LAST and the final batch data in this IPS has been processed,
the user-written API performs end of file processing for the output file. The end of file
indication does not necessarily mean that Connect:Enterprise has completed sending batch
data. Test the flow control flag for H00END to determine whether more batch data is being
sent by Connect:Enterprise.

R20DDSP A half-word aligned half-word format field containing the displacement (number of bytes) from
the first byte of the C$R20 trailer (label R20TLNG) to the first byte of the first user data length
(label R20LEN) field. This displacement field allows the trailer format to change without
requiring reassembling user programs that did not use the new trailer fields. When the initial
C$R20 trailer is built that includes decryption control information, users are encouraged to
provide the amount of reserved space as indicated at the end of the DSECT labeled
R20DSECT. When the initial C$R20 trailer is built that does not include decryption control
information, this field is set to low values.

Field Description

R20ID The Mailbox ID assigned to your site by host site operations.

R20BNO The Batch Number that was assigned by Connect:Enterprise when the batch data
was originally added to the Batch Queues.
224 Connect:Enterprise for z/OS Application Agents and User Exits Guide

Using the REQUEST Transaction
Using the Reserved Area
The reserved area is subject to change. When including decryption data in the C$R20 trailer,
allocate the specified amount of reserved space. Use the field R20DDSP to locate the user data.

R20UBID The free-form user batch ID; maximum length is 24 bytes
When supplying the selection criteria described above, the following are true:

Mailbox ID (R20ID) must always be specified.

When only Mailbox ID (R20ID) is specified, all batches for the ID are returned.
Specify R20ONEB=Y to limit the batch data returned to only the first batch found.

If both Mailbox ID and user batch ID (R20UBID) are specified, all batches for the
ID that match the specified user batch ID are returned. Specify R20ONEB=Y to
limit the batch data returned to only the first batch found.

If both Mailbox ID and Batch Number (R20BNO) are specified, a single batch, if
found, is returned.

If both user batch ID and Batch Number are specified, an error is returned.

R20UBID64 The free-form user batch ID. The maximum length is 64 bytes.

R20XRLEN A half-word aligned half-word format field containing the record length to use when
deblocking transparent BSC batch data. This field is valid only when deblocking is
requested, the data is indicated as transparent and the batch is BSC data. All output
records returned to the user application are the length specified by this field.

R20ONEB A flag byte that can be used to limit the number of batches that are returned if more
than one batch exists for the specified selection criteria. If R20ONEB=Y is not
specified and multiple batches exist, all batches that match the selection criteria are
returned to the user application.

R20DEBLK A flag byte that can be used to request deblocking of batch data by
Connect:Enterprise prior to transmitting it to the CICS interface. Deblocking is allowed
for BSC and SNA batches. Batch data that has been encrypted (by the system
standard utility program or another UAPI) cannot be deblocked.

R20PCC A flag byte that specifies the method of handling BSC Print Carriage Control ESC
sequences that can be in batches from remote sites. These characters can be present
in some print files created for printing at the remote site. You can remove, keep or
convert these special characters. See the PCC (Print Carriage Control) parameter in
the appendix listing the offline utility parameters in Connect:Enterprise for z/OS User’s
Guide for a description of PCC processing options and results.

Field Description
Connect:Enterprise for z/OS Application Agents and User Exits Guide 225

Chapter 10 CICS User API
Variable Trailer Data
User data is present in every IPS that is returned from Connect:Enterprise and immediately follows
the fixed data fields. The following table describes the data:

Batch Data Decryption
When batch data must be decrypted after receipt from Connect:Enterprise, the decryption request
and control information must be passed to the CICS interface as user data in the initial C$R20 trailer
built by the user-written API. The R20DDSP field must be set to locate the user data as explained
previously. The R20LEN field must be set to include the length of the decryption control
information plus two bytes for the length itself.

The following table describes how to format the user data (R20DATA) entry containing the
decryption control information:

Field Description

R20LEN A half-word aligned half-word format field containing the length of the user data that
follows plus the length of this length field. For example, if a user data record of 80
characters follows, the value in this field must be 82. This field allows you to format
multiple records (or record segments) into an IPS, depending on the original format of
the user data.

R20DATA This DSECT label locates the first byte of user data for this record (or record
segment). Multiple records can be blocked in an IPS. The complete length of the
trailer data (R20TLNG described above) includes the length of every data record
(R20DATA) plus two bytes for every data record length (R20LEN) plus the length of
the fixed data in the trailer.

Field Description

R20DACT A flag byte that must always contain the value assigned to the label R20DECR.

R20DTYP A single byte method code that describes the method of decryption that is invoked.
Comments in the R20DSECT adjacent to this field define the supported methods. This field
must always contain a valid decryption method code.

R20DKYL A half-word aligned half-word format field containing the length of the decryption key data.
Unlike other length fields, this field contains the length of the actual data only, not length of the
data plus two bytes. Decryption key data can be from 1–16,383 bytes in length. If the batch
data was encrypted using the Connect:Enterprise system standard utility program, the
decryption key length must be eight bytes.

R20DKEY This DSECT label locates the first byte of the user supplied decryption key data. The length of
this data is defined by the value in R20DKYL. If the batch data was encrypted using the
Connect:Enterprise system standard utility program, the decryption key data must be eight
bytes in length, left justified, padded on the right with blanks.
226 Connect:Enterprise for z/OS Application Agents and User Exits Guide

Connect:Enterprise Command Transactions
No decryption control information is transmitted to Connect:Enterprise. The decryption key is
stored within the CICS interface in an encrypted format to protect the integrity of the decryption
process.

Connect:Enterprise Command Transactions
This facility allows a user-written API to issue a subset of the console commands that are available
in Connect:Enterprise. The commands that are supported and the trailer DSECT source member
identifiers for each are:

✦ Initiate an Auto Connect (source member C$O03)
Auto Connect completion messages (source member C$O02)

✦ Request a SNAP dump (source member C$O05)
✦ Request List status of Traces, BSC lines, SNA sessions, Auto Connect Queue, or a

combination list of all except the A/C Queue (source member C$O07)
Traces Status Display (source member C$O08)

BSC Lines Status Display (source member C$O09)

SNA Sessions Status Display (source member C$O13)

Traces/BSC Lines/SNA Sessions Status Display (source member C$O15)

Auto Connect Queue Status Display (source member C$O17)

✦ Request Connect:Enterprise shutdown (source member C$O16)
✦ Restart a closed BSC line (source member C$O19)
✦ Stop an Auto Connect or Remote Connect (source member C$O21)
✦ Start/Stop Traces (source member C$O23)
✦ Request an Connect:Enterprise System Files listing (source member C$O66)

Connect:Enterprise System Files listing (source member C$O67)

✦ Request an Connect:Enterprise system file allocation (source member C$O68)
✦ Request an Connect:Enterprise system file deallocation (source member C$O69)
✦ Request an Connect:Enterprise system File Space Allocation Display (source member C$O70)

Connect:Enterprise system File Space Allocation Display (source member C$O71)

The DSECTs provided are specific to each of these functions. The structure of the DSECTs is
similar to those previously discussed. Header data is omitted from the following discussion except
where defining specific header fields clarifies the documentation. Only full headers are used for the
request IPS. Every request IPS issued by a user-written API receives a response (or
acknowledgment) IPS from Connect:Enterprise.

The following diagram depicts the events that occur when a user-written API initiates an ISSUE
COMMAND transaction to simulate entry of a console command in Connect:Enterprise.
Connect:Enterprise for z/OS Application Agents and User Exits Guide 227

Chapter 10 CICS User API
Understanding the steps, as well as their chronological order, helps you understand the overall
processing flow that is required in the execution of an ISSUE COMMAND transaction.

Fixed Trailer Data
The following trailer data is present in every DSECT and is described in the sequence it appears in
the DSECT and is identified by the DSECT field label, where nn represents the last two characters
in the specific DSECT.

Initiating an Auto Connect Command
Initiating an Auto Connect is unique because both an immediate response (command issued
acknowledgment) is received and a delayed response (the Auto Connect completion messages) are
forthcoming. Disposition of the delayed response is defined in the original request through the
header fields H00CDEFN, H00SYSID, H00CPROG or H00CTRAN and optionally H00CTERM
and H00CUSER. When present, these fields are edited for validity (nonblank, nonnulls, and so on).
If the user-written API does not wish to receive delayed response messages these fields should be
set to low values.

Note: The header field H00CDEFN and other related fields are utilized in the Initiate an Auto Connect
command.

Field Description

OnnTLNG A half-word aligned half-word format field containing the length of the trailer portion of the IPS.
The length of this trailer can be variable if it contains both fixed data and variable data.
DSECTS that include variable data are C$O02, C$O09, C$O13, C$O15, C$O17, C$O67 and
C$O71.

OnnTRLID An 8-character identifier stamp that must always contain C$Onn followed by three blanks.

User-Written API

Format C$H00(full)+C$0nn
 H00CFCTL=H00SSRQ
 H00IDENT=00000000
 H00.... fields (see Note below)
 0nn.... fields as required
EXEC CICS LINK

Processing as may be required

Transaction terminates

CICS Interface

ALLOCATE conversation
Send IPS
Receive
 .
 .
 .
 .
 H00CFCTL=H00END
 Deallocate conversation
 H00CFCTL=H00TERM
 EXEC CICS RETURN

Connect:Enterprise

Initiate conversation
 Receive request
 Processes as required
 Format C$H00(full)+C$0nn
 H00RETCD=00
 0nn.... fields as required
Send IPS
Receive

Conversation terminated
228 Connect:Enterprise for z/OS Application Agents and User Exits Guide

Connect:Enterprise Command Transactions
The delayed response DSECT (source member C$O02) and the communication flow diagram is
presented at the end of the Issue Commands narrative.

Requesting a $$DUMP Command
Requesting a SNAP dump requires the following information.

The data specified in this DSECT is used to issue an equivalent $$DUMP command to
Connect:Enterprise.

Requesting a $$LIST Command
Requesting a List status of Traces, BSC lines, SNA sessions, Auto Connect Queue, or a
combination list of all except the Auto Connect Queue requires the following information.

Field Description

O03CMD A character format command line field that must contain the $$CONNECT command and
appropriate parameters to define the Auto Connect for Connect:Enterprise to initiate. The format
of the command line data is identical to the syntax used for actual console entry.

Field Description

O05SCOPE A single character format byte that defines the type of the SNAP dump to generate:
1 = Connect:Enterprise list of all Auto Connects.
2 = Control blocks related to the specified Line ID
3 = Complete Connect:Enterprise region
4 = Connect:Enterprise system (anchor) control block
5 = Processor Router system control block

O05LINID An 8-character format field that must contain the BSC Line ID when the O05SCOPE field
specifies 2.

Field Description

O07OPTN A single-character format byte that defines the type of list to generate.

1 Traces

2 BSC Lines

3 SNA Sessions

4 All of the above (A/C Queue is not included)

5 Auto Connect Queue
Connect:Enterprise for z/OS Application Agents and User Exits Guide 229

Chapter 10 CICS User API
The data specified in this DSECT is used to issue an equivalent $$LIST command to
Connect:Enterprise. The $$LIST result is returned to the user-written API in one of five DSECTs.

If the $$LIST request specified only traces, the Traces Status Display is returned in DSECT C$O08.

O07MXENT A half-word aligned half-word format field that must contain the maximum number of entries
the user-written API is prepared to handle at a specific instance. This format relates directly
to the size of the response buffer (length of the linked COMMAREA or the maximum TSQ
record length) that is provided to the CICS interface. A reasonable value for this number
and the length of the response buffer by response trailer DSECT identifier follows:

Response
DSECT ID

O07MXENT
Value

Response Buffer Length Calculation Formula

C$O08 1 H00HLEN+O08LNGTH

C$O09 90 H00HLEN+O09LNGTH+(O09SEGLN*90)

C$O13 100 H00HLEN+O13LNGTH+(O13SEGLN*100)

C$O15 190 H00HLEN+O15LNGTH+(O15SEGLN*190)

C$O17 150 H00HLEN+O17LNGTH+(O17SEGLN*150)

Field Description

O08TRCID An 8-character field containing the Trace ID if one has been specified previously.

O08ALLTP An 8-character field containing either ACTIVE or INACTIVE to indicate the status of tracing
ALLTP activity.

O08SNA An 8-character field containing either ACTIVE or INACTIVE indicating the status of tracing
SNA activity.

O08VSAM An 8-character field containing either ACTIVE or INACTIVE indicating the status of tracing
VSAM activity.

O08EXITS An 8-character field containing either ACTIVE or INACTIVE indicating the status of tracing
information exchanged with user exits.

O08RPEOB An 8-character field containing either ACTIVE or INACTIVE indicating the status of tracing
End of Batch application agent rules processing activity.

O08ACONN An 8-character field containing either ACTIVE or INACTIVE indicating the status of tracing
the initiation and completion of Auto Connect activity.

O08PR An 8-character field containing either ACTIVE or INACTIVE indicating the status of tracing
the processor routing (entry/exit) activity.

O08CP An 8-character field containing either ACTIVE or INACTIVE indicating the status of tracing
the TP activity associated with certain command processors.

Field Description
230 Connect:Enterprise for z/OS Application Agents and User Exits Guide

Connect:Enterprise Command Transactions
Connect:Enterprise traces can be required for debugging. Sterling Commerce Customer Services
may ask you to turn on some traces. Several of these trace facilities can be resource intensive and
can cause system performance degradation. You should not start traces (or allow traces to remain
active) without a specific purpose.

If the $$LIST request specified only BSC Lines, the BSC Lines Status Display is returned in
DSECT C$O09.

O08RPLOG An 8-character field containing either ACTIVE or INACTIVE indicating the status of tracing
Logging application agent rules processing activity.

O08APO An 8-character field containing either ACTIVE or INACTIVE indicating the status of tracing
(SNAP dumping) all APPC activity. This trace can generate massive volumes of output
data and should not be used unless directed to do so by Sterling Commerce Customer
Services personnel.

O08APQ An 8-character field containing either ACTIVE or INACTIVE indicating the status of tracing
the activity between the Process Router and the APPC function. This trace provides a
before and after view of all APPC traffic. This trace can generate massive volumes of
output data and should not be used unless directed to do so by Sterling Commerce
Customer Services personnel.

O08RPWKT An 8-character field containing either ACTIVE or INACTIVE indicating the status of tracing
Wake Up Terminate application agent rules processing activity.

O08TCPC An 8-character field containing either ACTIVE or INACTIVE indicating the status of tracing
the TCP Scheduler.

Field Description

O09#ENT A half-word aligned half-word format field that contains the number of BSC Line entries that
are included in the response IPS.

O09LNID An 8-character field containing the BSC Line ID.

O09COND A 6-character field containing either OPEN or CLOSED indicating the condition of the line.

O09LNST An 8-character field containing either ACTIVE or INACTIVE indicating the status of the line.

O09AC A 1-character field containing either Y or N indicating whether this BSC Line activity was
initiated through an Auto Connect.

O09BID An 8-character field containing the Mailbox ID.

O09ACLST An 8-character field containing either the Auto Connect list name or the Remote name.

Field Description
Connect:Enterprise for z/OS Application Agents and User Exits Guide 231

Chapter 10 CICS User API
If the $$LIST request specified only SNA Sessions, the SNA Sessions Status Display is returned in
DSECT C$O13.

If the $$LIST request specified Traces, BSC Lines and SNA Sessions, the SNA Sessions/BSC
Lines/Traces Status Display is returned in DSECT C$O15.

Field Description

O13#ENT A half-word aligned half-word format field that contains the number of SNA Session entries
that are included in the response IPS.

O13REMID An 8-character field containing the Mailbox ID.

O13SESST An 8-character field containing either ACTIVE or INACTIVE indicating the status of the
session.

O13FRAC A 1-character field containing either Y or N indicating whether this SNA Session activity
was initiated through an Auto Connect.

O13BID An 8-character field containing the Mailbox ID.

Field Description

O15#ENT A half-word aligned half-word format field that contains the number of SNA Session/BSC
Line entries that are included in the response IPS.

O15TRCID An 8-character field containing the Trace ID if one has been specified previously.

O15ALLTP An 8-character field containing either ACTIVE or INACTIVE indicating the status of tracing
ALLTP activity.

O15SNA An 8-character field containing either ACTIVE or INACTIVE indicating the status of tracing
SNA activity.

O15VSAM An 8-character field containing either ACTIVE or INACTIVE indicating the status of tracing
VSAM activity.

O15EXITS An 8-character field containing either ACTIVE or INACTIVE indicating the status of tracing
information exchanged with user exits.

O15ACONN An 8-character field containing either ACTIVE or INACTIVE indicating the status of tracing
the initiation and completion of Auto Connect activity.

O15PR An 8-character field containing either ACTIVE or INACTIVE indicating the status of tracing
the processor routing (entry/exit) activity.

O15CP An 8-character field containing either ACTIVE or INACTIVE indicating the status of tracing
the TP activity associated with certain command processors.

O15APO An 8-character field containing either ACTIVE or INACTIVE indicating the status of tracing
(SNAP dumping) all APPC activity. This trace can generate massive volumes of output
data and should not be used unless directed to do so by Sterling Commerce Customer
Services personnel.
232 Connect:Enterprise for z/OS Application Agents and User Exits Guide

Connect:Enterprise Command Transactions
If the $$LIST request specified Auto Connect Queue, the Auto Connect Queue Status Display is
returned in DSECT C$O17.

O15APQ An 8-character field containing either ACTIVE or INACTIVE indicating the status of tracing
the activity between the Process Router and the APPC function. This trace provides a
before and after view of all APPC traffic. This trace can generate massive volumes of
output data and should not be used unless directed to do so by Sterling Commerce
Customer Services personnel.

O15RPEOB An 8-character field containing either ACTIVE or INACTIVE indicating the status of tracing
End of Batch application agent rules processing activity.

O15RPWKT An 8-character field containing either ACTIVE or INACTIVE indicating the status of tracing
Wake Up Terminate application agent rules processing activity.

O15RPLOG An 8-character field containing either ACTIVE or INACTIVE indicating the status of tracing
Logging application agent rules processing activity.

O15LID An 8-character field containing the BSC Line ID.

O15RMT An 8-character field containing the SNA Remote name
O15RMT and O15LID share the same eight positions of storage in the DSECT.

O15COND A 6-character field containing either OPEN or CLOSED indicating the condition of the BSC
line. This field is not used for SNA Session entries.

O15SESST An 8-character field containing either ACTIVE or INACTIVE indicating the status of the line
(for BSC Line entries) or of the session (for SNA Session entries).

O15FRAC A 1-character field containing either Y or N indicating if this BSC Line or SNA Session
activity was initiated through an Auto Connect.

O15BID An 8-character field containing the Mailbox ID.

O15ACLST An 8-character field containing either the Auto Connect list name or the Remote name.

O15THRD# An 8-character field containing the FTP thread number.

O15TYPE A 3-character field containing either BSC or SNA to indicate the type of entry.

Field Description

O17#ENT A half-word aligned half-word format field that contains the number of Auto Connect Queue
entries that are included in the response IPS.

O17LNAM An 8-character field containing the queued Auto Connect list name.

O17QDAT A 5-character field containing the date (YYDDD) that the Auto Connect list was queued.

O17QTIM A 5-character field containing the time (HH:MM) that the Auto Connect list was queued.

O17PRTY A 10-character field containing the priority value used in controlling the sequence of starting
queued Auto Connects.

O17REAS A 20-character field containing a brief description of why the Auto Connect was queued.

Field Description
Connect:Enterprise for z/OS Application Agents and User Exits Guide 233

Chapter 10 CICS User API
Issuing Connect:Enterprise $$SHUTDOWN Command
Issuing an Connect:Enterprise shutdown requires the following information:

Restarting a Closed Line ($$START) Command
Restarting a closed line requires the following information:

Stopping an Auto Connect or Remote Connect Command
Stopping an Auto Connect or Remote Connect requires the following information.

Stop/Start Traces Command
Connect:Enterprise traces can be required for debugging. Sterling Commerce Customer Services
personnel may ask you to turn on some traces. Several of these trace facilities can be resource
intensive and can cause system performance degradation. Do not start traces (or allow traces to
remain active) without a specific purpose.

Issuing a Stop or Start traces command requires the following information.

Field Description

O16CMD A character format command line field that must contain the $$SHUTDOWN or
$$SHUTDOWN,I command for Connect:Enterprise to initiate. The format of the
command line data is identical to the syntax used for actual console entry.

Field Description

O19CMD A character format command line field that must contain the $$START command and
BSC Line ID for Connect:Enterprise to restart. The format of the command line data is
identical to the syntax used for actual console entry.

Field Description

O21CMD A character format command line field that must contain the $$STOP command and
appropriate parameters to define the Auto Connect or Remote for Connect:Enterprise
to terminate. The format of the command line data is identical to the syntax used for
actual console entry.

Field Description

O23TRCID An 8-character field containing the Trace ID of the trace to activate.
234 Connect:Enterprise for z/OS Application Agents and User Exits Guide

Connect:Enterprise Command Transactions
O23IDOFF A 1-character flag field that contains a 2 if the current Trace ID should be eliminated (turned
off) or a 1 if the Trace ID should remain unchanged.

O23ALLTP A 1-character field containing either 1 (to activate) or 2 (to deactivate) the tracing of ALLTP
activity.

O23SNA A 1-character field containing either 1 (to activate) or 2 (to deactivate) the tracing of SNA
activity.

O23VSAM A 1-character field containing either 1 (to activate) or 2 (to deactivate) the tracing of VSAM
activity.

O23EXITS A 1-character field containing either 1 (to activate) or 2 (to deactivate) the tracing of
information exchanged with user exits.

O23RPEOB A 1-character field containing either 1 (to activate) or 2 (to deactivate) the tracing of End of
Batch application agent rules processing activity.

O23ACONN A 1-character field containing either 1 (to activate) or 2 (to deactivate) the tracing of the
initiation and completion of Auto Connect activity.

O23PR A 1-character field containing either 1 (to activate) or 2 (to deactivate) the tracing of
processor routing (entry/exit) activity.

O23CP A 1-character field containing either 1 (to activate) or 2 (to deactivate) the tracing of TP
activity associated with certain command processors.

O23RPLOG A 1-character field containing either 1 (to activate) or 2 (to deactivate) the tracing of Logging
application agent rules processing activity.

O23APO A 1-character field containing either 1 (to activate) or 2 (to deactivate) the tracing (SNAP
dumping) of all APPC activity. This trace can generate massive volumes of output data and
should not be used unless you are asked to run it by Sterling Commerce Customer Services
personnel.

O23APQ A 1-character field containing either 1 (to activate) or 2 (to deactivate) the tracing of activity
between the Process Router and the APPC function. This trace provides a before and after
view of all APPC traffic. This trace can generate massive volumes of output data and
should not be used unless directed to do so by Sterling Commerce Customer Services
personnel.

O23RPWKT A 1-character field containing either 1 (to activate) or 2 (to deactivate) tracing Wake Up
Terminate application agent rules processing activity.

O23TCPSC A 1-character field containing either 1 (to activate) or 2 (to deactivate) tracing of the TCP
Scheduler.

O23FTPB A 1-character field containing either 1 (to activate) or 2 (to deactivate) tracing of the FTP
trace buffer.

O23FTPD A 1-character field containing either 1 (to activate) or 2 (to deactivate) tracing of the FTP
dialog buffer.

O23FTPTR The FTP trace remote name.

O23FTPDR The FTP dialog remote name.

Field Description
Connect:Enterprise for z/OS Application Agents and User Exits Guide 235

Chapter 10 CICS User API
Requesting a Files Listing ($$LIST FILES Command):
Requesting a Connect:Enterprise system files listing command requires the following information:

Requesting a Files Listing ($$LIST FILES Command response)
Requesting a Connect:Enterprise system files listing command response requires the following
information:

Field Description

O66MXENT A half-word aligned half-word format field that must contain the maximum number of
file entries that the user-written API is prepared to handle at a specific instance. This
format relates directly to the size of the response buffer (the length of the linked
COMMAREA or the maximum TSQ record length) that is provided to the CICS
interface.
To request a maximum of 24 file entries this field would be specified as a half-word
24, requiring a buffer size computed as follows:
H00HLEN+O67LNGTH+(O67FLEN*24)
Because these DSECT labels are subject to change without prior notice, use the
specified labels in your API program to calculate the actual buffer size.

O66DIRCT A 1-character field that describes in which direction to search the list of system file
names. Use the equated values O66FWD and O66BKWD (supplied in the DSECT)
to specify the desired direction. This indicator is used in conjunction with the field
O66FNAM to define the beginning key and direction for processing the list of system
files.

O66FNAM An 8-character field that contains a file ID name (VCF, VPF, VBQ01 through VBQ20,
VLF1 or VLF2). This file ID name is used in conjunction with the field O66DIRCT to
control processing the list of system files. To search the list of system files from the
beginning, set this field to low values and indicate forward (O66FWD) in the
O66DIRCT field.
To request file information for only the log files, set this field to ‘VLF1 ’, indicate
forward search in O66DIRCT and specify 2 files in O66MXENT.
The data specified in this DSECT is used to issue an equivalent $$LIST FILES
command to Connect:Enterprise. The $$LIST FILES result is returned to the
user-written API in the C$O67 DSECT.

Field Description

O67BFNAM An 8-character field (not all characters are currently used) that contains the file ID
name that describes the beginning point within the list of system files for data
returned in this C$O67 DSECT. See O67SCIND for an explanation of the validation
process and how this field can be used.

O67EFNAM An 8-character field (not all characters are currently used) that contains the file ID
name that describes the ending point within the list of system files for data returned in
this C$O67 DSECT. See O67SCIND for an explanation of the validation process and
how this field can be used.
236 Connect:Enterprise for z/OS Application Agents and User Exits Guide

Connect:Enterprise Command Transactions
If forward files are available, the field O67EFNAM contains a valid file ID name to use for
searching forward. This file ID name, placed into field O66FNAM in conjunction with field
O66DIRCT being set to O66FWD, instructs Connect:Enterprise to search the list of system files
forward for the number of file entries specified in O66MXENT.

If backward files are available, the field O67BFNAM contains a valid file ID name to use for
searching backward. This file ID name, placed into field O66FNAM in conjunction with field
O66DIRCT being set to O66BKWD, tells Connect:Enterprise to search the list of system files
backward for the number of file entries specified in O66MXENT.

O67#ENT A half-word aligned half-word format field that contains the actual number of file
entries returned in the variable portion of this trailer DSECT.

O67SCIND A 1-character field that describes the current placement within the list of system files
relative to your request. If you requested a single file entry, this field is not used. In a
multiple file entry request, if the first file entry returned in this trailer DSECT is not the
first file in the list of system files, O67BKWD is set indicating you can search
backward in the list for more files. If the last file entry returned in this trailer DSECT is
not the last file in the list of system files, O67FWD is set indicating you can search
forward in the list for more files. Use the equated values O67FWD and O67BKWD
(supplied in the DSECT) to interpret this field.

Note: The remaining fields described in the C$O67 DSECT below represent a single file entry. This data
is repeated within the actual buffer area the number of times defined by O67#ENT.

Field Description

O67FNAME An 8-character field (not all characters are currently used) that contains the file ID name of
this file.

O67FSTAT A 1-character field that describes the status of this file. A file is either allocated or not
allocated. If allocated, it is either the current collection file or not the current collection file.
Use the equated values O67ALLOC and O67CURC (supplied in the DSECT) to interpret
this field.

O67FDSN A 44-character field containing the VSAM Cluster name of this file.

Field Description
Connect:Enterprise for z/OS Application Agents and User Exits Guide 237

Chapter 10 CICS User API
Issuing Connect:Enterprise $$ALLOC Command
Issuing a Connect:Enterprise system file allocation requires the following information:

Issuing Connect:Enterprise $$DALLOC Command
Issuing a Connect:Enterprise system file deallocation requires the following information:

Requesting a Space Allocation Listing ($$SPACE Command)
Requesting a Connect:Enterprise system File Space Allocation Display requires the following
information:

Field Description

O68CMD A character format command line field that must contain the command $$ALLOC xxxxx or
$$ALLOC xxxxx,C (where xxxxx is VBQ01 through VBQ20, VLF1 through VLF8) for
execution by Connect:Enterprise. The format of the command line data is identical to the
syntax used for actual console entry.

Field Description

O69CMD A character format command line field that must contain the command $$DALLOC xxxxx
(where xxxxx is VBQ01 through VBQ20, VLF1 through VLF8) for execution by
Connect:Enterprise. The format of the command line data and the rules of execution are
identical to those used for actual console entry.

Field Description

O70MXENT A half-word aligned half-word format field that must contain the maximum number of file
entries that the user-written API is prepared to handle at a specific instance. This format
relates directly to the size of the response buffer (the length of the LINKed COMMAREA or
the maximum TSQ record length) that is provided to the CICS interface.
To request a maximum of 24 file entries this field would be specified as a half-word 24,
requiring a buffer size computed as follows:
H00HLEN+O71LNGTH+(O71FLEN*24)
Because these DSECT labels are subject to change without prior notice, it is
recommended that the specified labels be used in your API program to calculate the actual
buffer size.

O70DIRCT A 1-character field that describes the direction in which to search the list of system file
names. Use the equated values O70FWD and O70BKWD (supplied in the DSECT) to
specify the desired direction. This indicator is used in conjunction with the field O70FNAM
to define the beginning key and direction for processing the list of system files.
238 Connect:Enterprise for z/OS Application Agents and User Exits Guide

Connect:Enterprise Command Transactions
Requesting a File Space Allocation Listing ($$SPACE Command Response)
Requesting a File Space Allocation Listing requires the following information:

If forward files are available, the field O71EFNAM contains a valid file ID name to use for
searching forward. This file ID name, placed into field O70FNAM in conjunction with field
O70DIRCT being set to O70FWD, instructs Connect:Enterprise to search the list of system files
forward for the number of file entries specified in O70MXENT.

If backward files are available, the field O71BFNAM contains a valid file ID name to use for
searching backward. This file ID name, placed into field O70FNAM in conjunction with field

O70FNAM An 8-character field that contains a file ID name (VCF, VPF, VBQ01 through VBQ20, VLF1
or VLF2). This file ID name is used in conjunction with the field O70DIRCT to control
processing the list of system files. To search the list of system files from the beginning, set
this field to low values and indicate forward (O70FWD) in the O70DIRCT field.
To request file information for only the log files, set this field to ‘VLF1 ’, indicate forward
search in O70DIRCT and specify 2 files in O70MXENT.
The data specified in this DSECT is used to issue an equivalent $$SPACE command to
Connect:Enterprise. The $$SPACE result is returned to the user-written API in the C$O71
DSECT.

Field Description

O71BFNAM An 8-character field (not all characters are currently used) that contains the file ID name
that describes the beginning point within the list of system files for data returned in this
C$O71 DSECT. See O71SCIND for an explanation of the validation process and how this
field can be used.

O71EFNAM An 8-character field (not all characters are currently used) that contains the file ID name
that describes the ending point within the list of system files for data returned in this
C$O71 DSECT. See O71SCIND below for an explanation of the validation process and
how this field can be used.

O71#ENT A half-word aligned half-word format field that contains the actual number of file entries
returned in the variable portion of this trailer DSECT.

O71SCIND A 1-character field that describes the current placement within the list of system files
relative to your request. If you requested a single file entry, this field is not used. In a
multiple file entry request, if the first file entry returned in this trailer DSECT is not the first
file in the list of system files, O71BKWD is set indicating you can search backward in the
list for more files. If the last file entry returned in this trailer DSECT is not the last file in the
list of system files, O71FWD is set indicating you can search forward in the list for more
files. Use the equated values O71FWD and O71BKWD (supplied in the DSECT) to
interpret this field.

Field Description
Connect:Enterprise for z/OS Application Agents and User Exits Guide 239

Chapter 10 CICS User API
O70DIRCT being set to O70BKWD, instructs Connect:Enterprise to search the list of system files
backward for the number of file entries specified in O70MXENT.

Note: The remaining fields described in the C$O71 DSECT below represent a single file entry. This data
is repeated within the actual buffer area the number of times defined by O71#ENT.

Field Description

O71FNAME An 8-character field (not all characters are currently used) that contains the file ID name of
this file.

O71TYPE A 1-character field that describes the format of the data within this file entry. Information in
this file entry is either valid space allocation information or an error entry. Use the equated
values O71VSPC and O71ERRE (supplied in the DSECT) to interpret this field.

The following fields constitute a valid space allocation information entry.

O71PCT A 3-character field that contains, in decimal characters (0–9), a percentage of the VSAM
data component capacity that is currently used. In other words, how full this file is. The
valid range for this data is C‘000’ through C‘100’.

O71HRBA A 10-character field that contains, in decimal characters (0–9), the high allocated relative
byte address of the end of the data component (for example, the last available byte in the
data set). The valid range for this data is C‘0000000000’ through C‘4294967295’.

O71ERBA A 10-character field that contains, in decimal characters (0–9), the ending relative byte
address of the space used in the data component (for example, the last used byte in the
data set at the current time). The valid range for this data is C‘0000000000’ through
C‘4294967295’.

O71FREE A 10-character field that contains, in decimal characters (0–9), the number of bytes of
available space in the data component. The valid range for this data is C‘0000000000’
through C‘4294967295’.

O71XTNT A 3-character field that contains, in decimal characters (0–9), the number of extents now
allocated to the data component. The valid range for this data is character C‘001’ through
character C‘123’.

O71XTNTP A 1-character field that contains either a blank (X‘40’) or a plus sign (+). The plus sign
indicates that the data set has gone into additional extents since the VSAM Server last
opened the file.

The following fields constitute a VSAM error entry.

O71FUNC An 8-character field that contains a character string identifier describing the VSAM function
(OPEN, CLOSE, or SHOWCB) that failed during the attempt to retrieve the space allocation
information.

O71RC A 4-character field that contains, in decimal characters (0–9), the Register 15 value
returned following the VSAM error. The valid data for this field is any Return Code
generated by VSAM for OPEN, CLOSE, or SHOWCB.

O71RSN An 8-character field that contains, in hexadecimal characters (0–F), the Reason Code value
returned following the VSAM error. The valid data for this field is any Reason Code
generated by VSAM for OPEN, CLOSE, or SHOWCB.
240 Connect:Enterprise for z/OS Application Agents and User Exits Guide

Connect:Enterprise Command Transactions
Requesting Auto Connect Completion Messages
This response is returned to the transaction or program that was defined in the header of the Initiate
an Auto Connect command (DSECT C$O03). The use of the header field H00CDEFN and related
fields to define the recipient of this DSECT was explained in Initiating an Auto Connect Command
on page 228.

The following diagram shows what events occur when an Auto Connect (initiated by an command
from the CICS interface) completes. The steps the user completes as well as the order in which these
steps are completed are important to understanding the processing flow of the Auto Connect
completion delayed response transaction.

O71ERR An 8-character field that contains, in hexadecimal characters (0–F), the Error Code value
returned following the VSAM OPEN or CLOSE error. The valid data for this field is any
Error Code generated by VSAM.

Field Description

O02#ENT A half-word aligned half-word format field that contains the number of message record
entries that are included in the response IPS.

O02STMSG A 79-character format field that contains an Connect:Enterprise console message. The
format of the message data is identical to the format used for actual console displays.

Field Description

CICS Interface

Initiate Program
Receive
Initiate UAPI:
XCLT - program (Commarea)
START - transaction (data)
Conversation is DEALLOCATED
EXEC CICS RETURN (Terminate)

User Written API

Transaction/Program initiated.
Processing need not be related to
and is not controlled by the CICS
interface.

Connect:Enterprise

CICS interface initiated
 Auto Connect completes
Format C$H00(full)+C$002
 H00RETCD=00
 O02#ENT=nn
 O02TMSG=xxx.....xxx (multiple occurrences)
ALLOCATE conversation
Send IPS
DEALLOCATE conversation
Transaction terminates
Connect:Enterprise for z/OS Application Agents and User Exits Guide 241

Chapter 10 CICS User API
Using the Directory Listing Transaction
This facility allows a user-written transaction to receive information describing the content of Batch
Queues from Connect:Enterprise. The header on each IPS must be a full header. See the Interface
Parameter Structure Content on page 206 for a description of header data fields and content.

The C$U15 DSECT is used to specify selection criteria, thereby reducing the volume of directory
information that is returned by Connect:Enterprise. The VSAM record key that controls reading the
Batch Queue(s) is also specified in this DSECT. The C$U16 DSECT contains directory information
returned by Connect:Enterprise. The VSAM record keys (beginning and ending) that describe the
returned data are also included in this DSECT. These keys are used (in DSECT C$U15) to control
subsequent reading of the VSAM Batch Queue(s). The response (C$U16 DSECT) returned by
Connect:Enterprise is formatted with a full header.

The following diagram depicts the events that occur when a user-written API initiates a Directory
Listing transaction to retrieve information about current content of the Batch Queues from
Connect:Enterprise. Understanding the steps that the user must complete as well as the order in
which the steps are completed will help you understand the Directory Listing processing flow. The
following diagram illustrates a single Directory Listing request being serviced by
Connect:Enterprise. The flow control flag (C$U15 DSECT) is shown as SEND, RECEIVE then
QUIT (H00SSRQ). Additional requests are executed in the identical manner except the beginning
VSAM key within the C$U15 DSECT is set from data returned in the previous response DSECT.

User-Written API

Format C$H00(full)+C$U15
 H00CFCTL=H00SSRQ
 H00IDENT=00000000
 U15..... fields as required
EXEC CICS LINK

Processing as may be required

Transaction terminates

CICS Interface

ALLOCATE conversation
Send IPS
Receive
 .
 .
 .
 .
H00CFCTL=H00END
DEALLOCATE conversation
H00CFCTL=H00TERM
EXEC CICS RETURN

Connect:Enterprise

Initiate conversation
Receive request
Processes as required
Format C$H00(full)+C$U16
 H00RETCD=00
 U16.... fields as required
Send IPS
Receive
 .
Conversation terminated
242 Connect:Enterprise for z/OS Application Agents and User Exits Guide

Using the Directory Listing Transaction
Fixed Trailer Data
The trailer data below is present in both DSECTs and is described in the sequence it appears in the
DSECT and is identified by the DSECT field label where (nn) represents the last two characters in
the specific DSECT.

Requesting a Directory Listing
Requesting a directory listing requires the following information.

Field Description

UnnTLNG A half-word aligned half-word format field containing the length of the trailer portion of the IPS.
The length of the C$U15 DSECT is fixed while the length of the C$U16 DSECT is variable.

UnnTRLID An 8-character identifier stamp that must always contain C$Unn followed by three blanks.

Field Description

U15MXENT A half-word aligned half-word format field that must contain the maximum number of
directory entries that the user-written API is prepared to handle at a specific instance. This
format relates directly to the size of the response buffer (the length of the linked
COMMAREA or the maximum TSQ record length) that is provided to the CICS interface.
To request a maximum of 100 directory entries this field would be specified as a half-word
100, requiring a buffer size computed as follows:
H00HLEN+U16LNGT+(U16SEGL*100)
Because these DSECT labels are subject to change without prior notice, use the specified
labels in your API program to calculate the actual buffer size.

U15REMID An 8-character field containing a Mailbox ID or blanks. If the field is nonblank, any directory
entries returned match the Mailbox ID specified. A generic Mailbox ID can be specified by
entering an asterisk (*) as the final character in the Mailbox ID field. If the field is blank, the
directory entries returned are not restricted to any specific Mailbox ID.

U15USBID A 24-character field containing a user batch ID or blanks. If the field is nonblank, any
directory entries returned match the user batch ID specified. If the field contains blanks, the
directory entries returned are not restricted to any specific user batch ID.
Note: This field is only generated if FORMAT=1 is specified (as a 24 byte field).

The following flag bytes are similar in function. Each field is a 1-character field indicating a specific batch
status. If the field contains a 1, any directory entries returned match the specified status. If the field
contains a 2, any directory entries returned cannot match the specified status. If the field contains a blank,
the specified status is not used to influence whether or not the batch becomes a directory entry that is
returned.

U15RFLG The Online Requestable status.

U15DFLG The Flagged for Deletion status.

U15TFLG The Online Transmitted status.
Connect:Enterprise for z/OS Application Agents and User Exits Guide 243

Chapter 10 CICS User API
U15EFLG The Extracted status.

U15MFLG The Multiple Transmit status.

U15IFLG The Incomplete Batch status.

U15XFLG The Transparent Data status.

U15DIRCT A 1-character field that describes the type of VSAM read. Use the equated values
U15FWD and U15BKWD (supplied in the DSECT) to specify the desired direction. This
indicator is used in conjunction with the field U15BEGKY to define the beginning key and
direction for reading the VSAM Batch Queue.

U15BEGKY An 18-character field that contains the VSAM Batch Queue identifier and the key for the
VSAM Batch Queue. This key is used in conjunction with the field U15DIRCT to control
reading the VSAM Batch Queue(s). Initially this field is low values to begin searching the
Batch Queue at the first record. With each directory data response from
Connect:Enterprise, a key is returned that defines the beginning and ending record for the
returned data. When the API program has completed processing the directory entries and is
ready to request the next group of directory entries, the ending key (U16ENDKY) from the
current directory response is placed into this field. See the description of U16BEGKY and
U16ENDKY for additional information.

U15VBQTP A 1-character field that describes the Batch Queue(s) to use for the directory listing data.
Use the equated values U15CCQ, U15QNN or U15ALLQ (supplied in the DSECT) to
specify the desired Batch Queue.
When the current collection queue (U15CCQ) is initially requested, Connect:Enterprise
returns a specific Batch Queue number in the response. If a scroll request is issued (to
logically continue the directory listing) you must use the specific Batch Queue number that
was returned to ensure the same Batch Queue is being accessed.
When a specific Batch Queue (U15QNN) is requested, the associated field U15BQNN must
contain the identifier number for the target Batch Queue.
When all Batch Queues (U15ALLQ) is requested, the key fields (U16BVBQ and U16EVBQ)
in each response identify the current location within the Batch Queues.

U15BQNN A 1-character field that describes a specific Batch Queue to use for the directory listing
data. This field must contain the Batch Queue number (01–20) in binary format whenever
U15VBQTP is set to U15QNN.

U15BID64 A 64-character field that specifies the user batch ID.
Note: This field is only generated if FORMAT=2 is specified.

U15BID64L A 1-character field that specifies the length of the U15BID64 field.
Note: This field is only generated if FORMAT=2 is specified.

U15FMTID A 1-character field that must contain c'F2'.
Note: This field is only generated if FORMAT=2 is specified.

Field Description
244 Connect:Enterprise for z/OS Application Agents and User Exits Guide

Using the Directory Listing Transaction
U15UBLEN A 2-character field that defines the length of the user batch ID field when the FORMAT=1
parameter is specified. The field contains the length (as a binary value) of the data stored
in the field U15USBID. The length can be interpreted as follows:
0 = no user batch ID data is supplied. The field U15USBID should be blanks.
01 - 23 = generic user batch ID is supplied. The field U15USBID contains a User Batch ID
of the length specified followed by low-values.
24 = specific user batch ID is supplied. The field U15USBID contains a 24-character user
batch ID.
Note: This field is only generated if FORMAT=1 is specified.

U15FDATE A 7-character field that contains the From Date used in a date range search of the Batch
Queues. The field can contain one of three date formats:
YYYYDDD = a modified Julian format date that combines a 4-digit year with a 3-digit day.
YYDDD = a conventional Julian format date. Left justify and pad with blanks.
NNN = a number of days to subtract from the current date resulting in the desired From
Date. Left justify and pad with blanks.
The field can be filled with blanks to indicate the From Date includes the oldest batch date
on file.

U15FDFOR A 1-character field that describes the contents of the U15FDATE field. Use the equated
values U15FD7, U15FD5 or U15FD3 (supplied with the DSECT) to indicate which format
U15FDATE contains. When U15FDATE is blank, this field contains low-values.

U15TDATE A 7-character field that contains the To Date used in a date range search of the Batch
Queues. The field can contain one of three date formats:
YYYYDDD = a modified Julian format date that combines a 4-digit year with a 3-digit day.
YYDDD = a conventional Julian format date. Left justify and pad with blanks.
NNN = a number of days to subtract from the current date resulting in the desired To Date.
Left justify and pad with blanks.
The field can be filled with blanks to indicate the To Date includes the newest batch date on
file.

U15TDFOR A 1-character field that describes the contents of the U15TDATE field. Use the equated
values U15TD7, U15TD5 or U15TD3 (supplied with the DSECT) to indicate which format
U15TDATE contains. When U15TDATE is blank, this field contains low-values.

U15FTIME A 4-character field that contains the From Time used to search the Batch Queues. The field
contains military format (24 hour clock) hour and minute. For example, 11:59 in the
morning (one minute before noon) is specified as 1159 while 11:59 at night (one minute
before midnight) is specified as 2359. The field can be filled with blanks to specify the From
Time as midnight. See the associated field U15TMFOR for a description of how the time
value is used during the search process.

U15TTIME A 4-character field that contains the To Time used to search the Batch Queues. The field
contains military format (24 hour clock) hour and minute. The field can be filled with blanks
to specify the To Time as the current time when Connect:Enterprise is actually processing
the IPS. See the associated field U15TMFOR for a description of how the time value is used
during the search process.

Field Description
Connect:Enterprise for z/OS Application Agents and User Exits Guide 245

Chapter 10 CICS User API
U15TMFOR A 1-character field that describes how the From Time and To Time fields are used. Use the
equated values U15TWIN or U15TABS (supplied with the DSECT) to indicate which
selection method is used.

If you specify a time window (U15TWIN), the From Time and To Time are applied each
day of the specified date range. For example, if you specify From 0800 To 1730,
batches that were created between 8:00am and 5:30pm on each day of the specified
date range are qualified for selection based upon the date criteria.

If you specify an absolute time (U15TABS), the From Time is the beginning time on the
first day of the date range and To Time is the ending time on the last day of the date
range. For example, if you specify From 0800 To 1730, batches that were created
between 8:00am on the first day of the specified date range and 5:30pm on the last day
of the specified date range are qualified for selection based upon the date criteria.

U15BNOBG A 7-character field that contains the range beginning Batch Number or blanks. If the field is
nonblank, any directory entries returned are within the Batch Number range specified.
When this field is nonblank U15BNOEN must also be specified. If the field contains blanks,
the directory entries returned are not restricted to a specific range of batch numbers.

U15BNOEN A 7-character field that contains the range ending Batch Number or blanks. If the field is
nonblank, any directory entries returned are within the Batch Number range specified.
When this field is nonblank U15BNOBG must also be specified. If the field contains blanks,
the directory entries returned are not restricted to a specific range of batch numbers.

U15ORUS A 1-character field that describes the selection criteria relationship. Use the equated values
U15ANY or U15ALL (supplied with the DSECT) to indicate which selection method is used.

If you specify U15ANY, directory entries that match any of your specified selection
criteria qualify to be returned.

If you specify U15ALL, only those directory entries that match all of your specified
selection criteria qualify to be returned. This field is required and must be specified.

U15SCAMT A 4-byte binary scroll amount.

U15WILD A 1-byte wild card character for user batch ID selection.

U15CASE A 1-character field indicating if the selection on the Mailbox ID should be case sensitive.

U15UORL A 1-character field indicating if upper/lower case is used.

The following flag bytes are a continuation of the Batch Status Selection Criteria described earlier in this
DSECT definition. As indicated earlier, each field is a 1-character field indicating a specific batch status. If
the field contains a 1, any directory entries returned matches the specified status. If the field contains a 2,
any directory entries returned do not match the specified status. If the field contains a blank, the specified
status is not used to influence whether or not the batch becomes a directory entry that is returned.

U15AFLG The Added Offline status.

U15BFLG The BSC Transmission status.

U15CFLG The Collected Online status.

U15QFLG The EBCDIC (API) added status.

U15SFLG The SNA Transmission status.

Field Description
246 Connect:Enterprise for z/OS Application Agents and User Exits Guide

Using the Directory Listing Transaction
Requesting Directory Information
Requesting directory information requires the following information.

U15NFLG The Non-Transmittable status.

U15UFLG The Un-Extractable status.

U15FFLG The FTP transmission status.

U15LFLG Reserved

U15GFLG The File Structure status.

U15HFLG The SSL status.

Field Description

U16#ENT A half-word aligned half-word format field that contains the actual number of directory entries
returned in the variable portion of this trailer DSECT.

U16BCHID A 24-character field containing the user batch ID associated with the batch.
Note: This field is only generated if FORMAT=1 is specified.

U16BCH64 A 64-character field containing a user batch ID or blanks used for each returned batch.
Note: This field is only generated if FORMAT=2 is specified.

U16REMID An 8-character field containing a Mailbox ID or blanks. It echoes the value specified for
U15REMID.

U16USBID A 24-character field containing a user batch ID or blanks. If the field is nonblank, any directory
entries returned match the user batch ID specified. If the field contains blanks, the directory
entries returned are not restricted to any specific user batch ID.
Note: This field is only generated if FORMAT=1 is specified.

U16BID64 A 64-character field that specifies the user batch ID.
Note: This field is only generated if FORMAT=2 is specified.

U16BID64L A 1-character field that specifies the length of the U16BID64 field.
Note: This field is only generated if FORMAT=2 is specified.

U16RFLG The Online Requestable status.

U16DFLG The Flagged for Deletion status.

U16TFLG The Online Transmitted status.

U16EFLG The Extracted status.

U16MFLG The Multiple Transmit status.

U16IFLG The Incomplete Batch status.

Field Description
Connect:Enterprise for z/OS Application Agents and User Exits Guide 247

Chapter 10 CICS User API
If forward records are available, the field U16ENDKY contains a valid record key to be used for
reading forward. This key value, placed into field U15BEGKY in conjunction with field
U15DIRCT being set to U15FWD, instructs Connect:Enterprise to read the VSAM Batch Queue
forward for the number of directory entries specified in U15MXENT.

If backward records are available, the field U16BEGKY contains a valid record key to be used for
reading backward. This key value, placed into field U15BEGKY in conjunction with field
U15DIRCT being set to U15BKWD, instructs Connect:Enterprise to read the VSAM Batch Queue
backward for the number of directory entries specified in U15MXENT.

U16XFLG The Transparent Data status.

U16SCIND A 1-character field that describes the current placement within the VSAM Batch Queue. Use
the equated values U16FWD and U16BKWD (supplied in the DSECT) to interpret this field.

Field Description

U16BEGKY An 18-character field that contains the VSAM Batch Queue identifier (U16BVBQ) and the
key for the VSAM Batch Queue (U16BGKY). This key describes the record prior to (if any)
the first directory entry contained within this C$U16 DSECT. This key does not necessarily
echo the value specified for U15BEGKY. See U16SCIND for an explanation of the
validation process and how this field can be used.

U16ENDKY An 18-character field that contains the VSAM Batch Queue identifier (U16EVBQ) and the
key for the VSAM Batch Queue (U16ENKY). This key describes the record following (if any)
the last directory entry contained within this C$U16 DSECT. This field has no equivalent in
the C$U15 DSECT. See U16SCIND for an explanation of the validation process and how
this field can be used.

U16VBQTP A 1-character field that describes the Batch Queue(s) to be used for the directory listing
data. It echoes the value specified for U15VBQTP unless U15VBQTP was set to U15CCQ.
In this case, U16VBQTP is set to U16QNN and U16BQNN contains the Batch Queue
identification number of the current collection batch queue.

U16BQNN A 1-character field that describes a specific Batch Queue to be used for the directory listing
data. It echoes the value specified for U15BQNN except as explained for U16VBQTP
when U15VBQTP was set to U15CCQ.

U16UBLEN A 1-byte hex field that defines the length of the user batch ID field. It echoes the value
specified in U15UBLEN.
Note: If C$U16 FORMAT=1 is specified, U16UBLEN values = 0, 1-23, 24.This field is

only generated if FORMAT=1 is specified.

U16FMTID A 1-character field that must contain c'F2' when the FORMAT=2 parameter is specified.

U16FDATE A 7-character field that contains the From Date or blanks used in a date range search of the
Batch Queues. It echoes the value specified in U15FDATE.

U16FDFOR A 1-character field that describes the contents of the U16FDATE field. It echoes the value
specified in U15FDFOR.

Field Description
248 Connect:Enterprise for z/OS Application Agents and User Exits Guide

Using the Directory Listing Transaction
U16TDATE A 7-character field that contains the To Date or blanks used in a date range search of the
Batch Queues. It echoes the value specified in U15TDATE.

U16TDFOR A 1-character field that describes the contents of the U16TDATE field. It echoes the value
specified in U15TDFOR.

U16FTIME A 4-character field that contains the From Time or blanks used to search the Batch Queues.
It echoes the value specified in U15FTIME.

U16TTIME A 4-character field that contains the To Time or blanks used to search the Batch Queues. It
echoes the value specified in U15TTIME.

U16TMFOR A 1-character field that describes how the From Time and To Time fields are used. It
echoes the value specified in U15TMFOR.

U16BNOBG A 7-character field that contains the range beginning Batch Number or blanks. It echoes
the value specified in U15BNOBG.

U16BNOEN A 7-character field that contains the range ending Batch Number or blanks. It echoes the
value specified in U15BNOEN.

U16ORUS A 1-character field that describes the selection criteria relationship. It echoes the value
specified in U15ORUS.

The following flag bytes are a continuation of the Batch Status Selection Criteria described earlier in this
DSECT definition. Each field is a 1-character field indicating a specific batch status. The field contains a 1,
a 2, or is left blank. Each field echoes the value specified for the equivalent field in the C$U15 DSECT.

U16AFLG The Added Offline status.

U16BFLG The BSC Transmission status.

U16CFLG The Collected Online status.

U16QFLG The EBCDIC (API) added status.

U16SFLG The SNA Transmission status.

U16NFLG The Not-Transmittable status.

U16UFLG The Un-Extractable status.

U16UORL A 1–character field indicating if upper/lower case is
used.

U16FFLG The FTP transmission status.

U16GFLG The File Structure status.

U16HFLG The SSL status.

Field Description
Connect:Enterprise for z/OS Application Agents and User Exits Guide 249

Chapter 10 CICS User API
U16ADJ An equated value that defines the length of the additional data that was added to the fixed
portion of the C$U16 DSECT by the Version 2.1 modifications. By using this label as a
negative adjustment with any labels from U16VCFKY to U16FILL you can correctly address
a C$U16 trailer created by a Version 1.1 Connect:Enterprise while using the new C$U16
format DSECT.
For example, assume you have can address the first byte of the C$U16 data and you wish
to reference field U16KYID. The location of U16KYID is different in Version 1.1 than it is in
Version 2.1. Once you determine the source of the C$U16 data you can access the
appropriate data location as follows:

Data from Version 2.1 Data from Version 1.1

LA Rn,U16KYID LA Rn,U16KYID-U16ADJ

MVC,U16KYID MVC,U16KYID-U16ADJ

CLC U16KYID,..... CLC U16KYID-U16ADJ,.....

U16VCFKY A 4-byte packed decimal field that contains the batch number.

U16KYID An 8-character field containing a Mailbox ID. This data is part of the 18-byte VSAM Batch
Queue number and record key.

U16KYBNO A 4-byte packed decimal field that contains the batch number. This data is part of the
18-byte VSAM Batch Queue number and record key.

U16KYRNO A 5-byte packed decimal field that contains the record number (always zero for a directory
listing). This data is part of the 18-byte VSAM Batch Queue number and record key.

U16KEY This field redefines the U16KY... key data fields as a single length field containing the
non-VCF file VSAM Batch Queue number and record key.

U16#BLKS A 5-byte packed decimal field that contains the number of blocks in the batch.

The following flag bytes are each 1-character fields indicating information about the batch through bit flags
in these flag bytes. Use the equated values (supplied in the DSECT) to interpret each of these flag bytes.

U16FLAG1 See C$U16 DSECT for interpretation values and comments.

U16FLAG2 See C$U16 DSECT for interpretation values and comments.

U16FLAG3 See C$U16 DSECT for interpretation values and comments.

U16FLAG4 See C$U16 DSECT for interpretation values and comments.

U16NEXT# A 4-byte packed decimal field that contains the batch number of a related batch.

U16CDATE A 6-character field that contains the year and day (Julian format YYDDD) recorded as the
batch creation date. The right-most position of this field is blank.

U16OPRID An 8-character field that contains an operator ID. This field is reserved for future use.

U16RTYPE A 1-character field that describes the Remote type for batches that were collected online.
Use the equated values (supplied in the DSECT) to interpret this field.

Field Description
250 Connect:Enterprise for z/OS Application Agents and User Exits Guide

Using the Directory Listing Transaction
U16ERCL A 2-character field that contains the exchange record length value when MEDIA=Basic
Exchange.

U16EOB@ A 1-character field that contains an indication that the End of Batch exit has been driven for
this batch. Use the equated value (supplied in the DSECT) to interpret this field.

U16MEDIA A 1-character field that indicates the received batch media type. Use the equated values
(supplied in the DSECT) to interpret this field.

U16KYBQN A 1-character field that contains the Batch Queue number on which this entry resides. This
character is a binary value from 01 (x’01’) through 20 (x’14’).

U16CTIM A 6-character field that contains the hour, minute and second (HHMMSS) recorded as the
batch creation time.

Field Description
Connect:Enterprise for z/OS Application Agents and User Exits Guide 251

Chapter 10 CICS User API
252 Connect:Enterprise for z/OS Application Agents and User Exits Guide

Appendix A

IPS Trailers

The following table identifies all IPS trailers used by the ISPF interface, CICS interface and CICS
User API. You can use this information when diagnosing problems, creating user-written programs
that use the CICS User API, or determining what functions need to be protected with the security
interface or security exits.

Note: The third character for some of the items in the Trailer ID column is the letter O. There are no C$0xx
IPS Trailers (using the numeral 0).

Trailer ID: Screen
Number:

Screen Title: Screen Type: Screen Function:

C$A20 GENERIC NONE INPUT/OUTPUT
(Connect:Enterprise
REQUEST &
RESPONSE)

USER API "ADD" REQUEST
AND RESPONSE

C$O02 GENERIC GENERIC
RESPONSE

OUTPUT
(Connect:Enterprise
RESPONSE)

RETURN CONSOLE
CM.XXXX MESSAGES

C$O03 3.1.1 AUTO
CONNECT
INITIATION
REQUEST

INPUT
(Connect:Enterprise
REQUEST)

Connect:Enterprise RECEIVES
$$CONNECT REQUEST

C$O05 3.1.2 ONLINE SNAP
DUMP
REQUEST

INPUT
(Connect:Enterprise
REQUEST)

Connect:Enterprise RECEIVES
$$DUMP REQUEST

C$O07 3.1.3 LIST REQUEST INPUT
(Connect:Enterprise
REQUEST)

Connect:Enterprise RECEIVES
$$LIST REQUEST

C$O074 3.1.3.7 FTP SESSIONS
STATUS
DISPLAY

OUTPUT
(Connect:Enterprise
RESPONSE)

DISPLAY STATUS OF FTP
SESSIONS
Connect:Enterprise for z/OS Application Agents and User Exits Guide 253

Appendix A IPS Trailers
C$O078 CEBR
BROWSE

C:E
Connect:Enterpri
se RESOURCE
UTILIZATION
DISPLAY

OUTPUT
(Connect:Enterprise
RESPONSE)

DISPLAY RESOURCE
UTILIZATION STATISTICS

C$O079 CEBR
BROWSE

C:E
Connect:Enterpri
se STORAGE
MAP DISPLAY

OUTPUT
(Connect:Enterprise
RESPONSE)

DISPLAY STORAGE USAGE

C$O08 3.1.3.1 TRACES
STATUS
DISPLAY

OUTPUT
(Connect:Enterprise
RESPONSE)

DISPLAY STATUS OF $$LIST
TRACES

C$O09 3.1.3.2 BSC LINES
STATUS
DISPLAY

OUTPUT
(Connect:Enterprise
RESPONSE)

DISPLAY STATUS OF $$LIST
LINES

C$O10 3.1.3.1 RULES STATUS
DISPLAY

OUTPUT
(Connect:Enterprise
RESPONSE)

DISPLAY STATUS OF $$LIST
RULES

C$O11 3.1.12 REFRESH
FILES
REQUEST

INPUT
(Connect:Enterprise
REQUEST)

Connect:Enterprise RECEIVES
$$REFRESH FILES
COMMAND

C$O12 3.1.13 INVOKE RULES
REQUEST

INPUT
(Connect:Enterprise
REQUEST)

Connect:Enterprise RECEIVES
$$INVOKE RULES COMMAND

C$O13 3.1.3.3 SNA SESSION
STATUS
DISPLAY

OUTPUT
(Connect:Enterprise
RESPONSE)

DISPLAY STATUS OF $$LIST
SESSIONS

C$O14 3.1.12.1 REFRESH
RULES
REQUEST

INPUT
(Connect:Enterprise
REQUEST)

REFRESH RULES REQUEST

C$O15 3.1.3.4 SNA
SESSION/BSC
LINES/TRACES
STATUS
DISPLAY

OUTPUT
(Connect:Enterprise
RESPONSE)

DISPLAY STATUS OF $$LIST
ALL

C$O16 3.1.4 Connect:Enterpri
se SHUTDOWN
REQUEST

INPUT
(Connect:Enterprise
REQUEST)

Connect:Enterprise RECEIVES
$$SHUTDOWN REQUEST

C$O17 3.1.3.5 AUTO
CONNECT
QUEUE
STATUS
DISPLAY

OUTPUT
(Connect:Enterprise
RESPONSE)

DISPLAY STATUS OF $$LIST
ACQ

Trailer ID: Screen
Number:

Screen Title: Screen Type: Screen Function:
254 Connect:Enterprise for z/OS Application Agents and User Exits Guide

IPS Trailers
C$O19 3.1.5 START
LINES/RULES
REQUEST

INPUT
(Connect:Enterprise
REQUEST)

Connect:Enterprise RECEIVES
$$START COMMAND

C$O21 3.1.6 STOP A/C R/C
RULES
REQUEST

INPUT
(Connect:Enterprise
REQUEST)

Connect:Enterprise RECEIVES
$$STOP COMMAND

C$O23 3.1.7 TRACE
MANAGEMENT
REQUEST

INPUT
(Connect:Enterprise
REQUEST)

Connect:Enterprise RECEIVES
$$TRACE REQUEST

C$O25 3.2.1 ACTIVE
SESSIONS
SUMMARY
REQUEST

INPUT
(Connect:Enterprise
REQUEST)

REQUEST ACTIVE SESSION
SUMMARY

C$O26 3.2.1.1 ACTIVE
SESSIONS
SUMMARY
DISPLAY

OUTPUT
(Connect:Enterprise
RESPONSE)

DISPLAY SUMMARY OF
ACTIVE SESSIONS

C$O27 3.2.1.1 and
3.2.2.1.1

ACTIVE
SESSIONS
SUMMARY
DETAIL
REQUEST

INPUT
(Connect:Enterprise
REQUEST)

REQUEST ACTIVE SESSION
DETAIL

C$O29 3.2.1.1.1 ACTIVE
SESSION
DETAIL
DISPLAY OF
REMOTE
AC/RC

OUTPUT
(Connect:Enterprise
RESPONSE)

DISPLAY DETAIL OF AUTO
CONNECT REMOTE

C$O31 3.2.2 ACTIVE A/C
SUMMARY
REQUEST

INPUT
(Connect:Enterprise
REQUEST)

REQUEST ACTIVE A/C
SUMMARY DISPLAY

C$O311 3.2.2.2 QUEUED A/C
SUMMARY
DISPLAY

OUTPUT
(Connect:Enterprise
RESPONSE DATA)

DISPLAY LIST OF QUEUED
AUTO CONNECTS

C$O32 3.2.2.1 ACTIVE A/C
SUMMARY
DISPLAY

OUTPUT
(Connect:Enterprise
RESPONSE)

DISPLAY SUMMARY OF
ACTIVE AUTO CONNECTS

C$O321 3.2.2.2 QUEUED A/C
SUMMARY
DISPLAY

OUTPUT
(Connect:Enterprise
RESPONSE)

DISPLAY SUMMARY OF
QUEUED AUTO CONNECTS

C$O33 3.2.2.1 ACTIVE A/C
REMOTE
SUMMARY
DISPLAY
REQUEST

INPUT
(Connect:Enterprise
REQUEST)

REQUEST ACTIVE A/C
REMOTE SUMMARY
DISPLAY FROM

Trailer ID: Screen
Number:

Screen Title: Screen Type: Screen Function:
Connect:Enterprise for z/OS Application Agents and User Exits Guide 255

Appendix A IPS Trailers
C$O34 3.2.2.1.1 ACTIVE A/C
REMOTE
SUMMARY
DISPLAY

OUTPUT
(Connect:Enterprise
RESPONSE)

DISPLAY SUMMARY OF
ACTIVE AUTO CONNECT
REMOTES

C$O35 3.3.2 SECURITY
RECORD
SEARCH

INPUT
(Connect:Enterprise
REQUEST)

Connect:Enterprise RECEIVES
SEARCH REQUEST

C$O36 3.3.2.1 SECURITY ID
DISPLAY

OUTPUT
(Connect:Enterprise
RESPONSE)

DISPLAY SECURITY ID’S

C$O37 3.3.2.1 SECURITY ID
UPDATE

INPUT
(Connect:Enterprise
REQUEST)

Connect:Enterprise RECEIVES
UPDATE REQUEST

C$O38 3.3.1 OPTIONS
DISPLAY

INPUT
(Connect:Enterprise
REQUEST)

Connect:Enterprise RECEIVES
OPTIONS DISPLAY
REQUEST

C$O39 3.3.1 OPTIONS
DISPLAY/UPDA
TE

OUTPUT
(Connect:Enterprise
RESPONSE)

Connect:Enterprise
RESPONSE TO OPTIONS
DISPLAY/UPDATE

C$O40 3.3.5 SIGNON
RECORD
DISPLAY

INPUT
(Connect:Enterprise
REQUEST)

Connect:Enterprise RECEIVES
SIGNON RECORD

C$O41 3.3.5 SIGNON
RECORD
DISPLAY/UPDA
TE

OUTPUT
(Connect:Enterprise
RESPONSE)

DISPLAY/UPDATE SIGNON
RECORDS

C$O42 3.3.4 REMOTES
DISPLAY

INPUT
(Connect:Enterprise
REQUEST)

Connect:Enterprise RECEIVES
REMOTES DISPLAY
REQUEST

C$O421 3.3.6 POOLS
RECORD
SELECTION
REQUEST

INPUT
(Connect:Enterprise
REQUEST)

Connect:Enterprise RECEIVES
POOLS DISPLAY REQUEST

C$O43 3.3.4.1 REMOTES LIST
DISPLAY

OUTPUT
(Connect:Enterprise
RESPONSE)

Connect:Enterprise
RESPONSE TO REMOTES
DISPLAY

C$O431 3.3.6.1 POOLS
SELECTION
LIST DISPLAY

OUTPUT
(Connect:Enterprise
RESPONSE)

Connect:Enterprise
RESPONSE TO POOLS
DISPLAY

C$O44 3.3.4.1.1 REMOTES
UPDATE

INPUT
(Connect:Enterprise
REQUEST)

Connect:Enterprise REQUEST
TO UPDATE REMOTE

Trailer ID: Screen
Number:

Screen Title: Screen Type: Screen Function:
256 Connect:Enterprise for z/OS Application Agents and User Exits Guide

IPS Trailers
C$O441 3.3.6.1 POOLS
RECORD
SELECTION
LIST

INPUT
(Connect:Enterprise
REQUEST)

Connect:Enterprise REQUEST
TO DELETE POOL

C$O45 3.3.3 AUTO
CONNECT
LISTNAME
SEARCH

INPUT
(Connect:Enterprise
REQUEST)

Connect:Enterprise RECEIVES
SEARCH REQUEST

C$O46 3.3.3.1;
3.3.3.1.1;
3.3.3.1.2

AUTO
CONNECT
LISTNAME
DISPLAY

OUTPUT
(Connect:Enterprise
RESPONSE)

Connect:Enterprise
RESPONSE TO LISTNAME
SEARCH

C$O47 3.3.3.1.3 AUTO
CONNECT
REMOTE
SEARCH

INPUT
(Connect:Enterprise
REQUEST)

Connect:Enterprise RECEIVES
SEARCH REQUEST

C$O48 3.3.3.1.3 AUTO
CONNECT
REMOTE
SEARCH
RESPONSE

OUTPUT
(Connect:Enterprise
RESPONSE)

Connect:Enterprise
RESPONSE TO LISTNAME
REMOTE SEARCH

C$O49 3.3.3.1.4 ;
3.3.3.1.5

AUTO
CONNECT
REMOTE
MODIFY

INPUT
(Connect:Enterprise
REQUEST)

Connect:Enterprise REQUEST
TO MODIFY LISTNAME
REMOTE

C$O50 3.3.3.1.1 ;
3.3.3.1.2

AUTO
CONNECT
LISTNAME
MODIFY

INPUT
(Connect:Enterprise
REQUEST)

Connect:Enterprise REQUEST
TO MODIFY LISTNAME

C$O51 3.3.3.1.4 ;
3.3.3.1.5

AUTO
CONNECT
REMOTE
DETAIL
REQUEST

INPUT
(Connect:Enterprise
REQUEST)

Connect:Enterprise REQUEST
FOR LISTNAME REMOTE
DETAIL

C$O52 3.3.3.1.4;
3.3.3.1.5

AUTO
CONNECT
REMOTE
DETAIL
RESPONSE

OUTPUT
(Connect:Enterprise
RESPONSE)

Connect:Enterprise
RESPONSE TO LISTNAME
REMOTE DETAIL

C$O53 3.3.3.1.6 AUTO
CONNECT BSC
LINE SEARCH

INPUT
(Connect:Enterprise
REQUEST)

Connect:Enterprise RECEIVES
SEARCH REQUEST

Trailer ID: Screen
Number:

Screen Title: Screen Type: Screen Function:
Connect:Enterprise for z/OS Application Agents and User Exits Guide 257

Appendix A IPS Trailers
C$O54 3.3.3.1.6 AUTO
CONNECT BSC
LINE SEARCH
RESPONSE

OUTPUT
(Connect:Enterprise
RESPONSE)

Connect:Enterprise
RESPONSE TO LINE
SEARCH

C$O55 3.3.3.1.6 AUTO
CONNECT BSC
LINE UPDATE

INPUT
(Connect:Enterprise
REQUEST)

Connect:Enterprise RECEIVES
UPDATE REQUEST

C$O56 3.3.3.1.7 AUTO
CONNECT TIME
SEARCH

INPUT
(Connect:Enterprise
REQUEST)

Connect:Enterprise RECEIVES
SEARCH REQUEST

C$O561 3.3.6.1.1 POOLS
RECORD
LUNAME
UPDATE

INPUT
(Connect:Enterprise
REQUEST)

Connect:Enterprise RECEIVES
SEARCH REQUEST

C$O57 3.3.3.1.7 AUTO
CONNECT TIME
SEARCH
RESPONSE

OUTPUT
(Connect:Enterprise
RESPONSE)

Connect:Enterprise
RESPONSE TO TIME
SEARCH

C$O571 3.3.6.1.1 POOL RECORD
LUNAME
UPDATE

OUTPUT
(Connect:Enterprise
RESPONSE)

Connect:Enterprise
RESPONSE TO POOL

C$O58 3.3.3.1.7 AUTO
CONNECT TIME
UPDATE

INPUT
(Connect:Enterprise
REQUEST)

Connect:Enterprise RECEIVES
UPDATE REQUEST

C$O581 3.3.6.1.1 POOLS
RECORD
LUNAME
UPDATE

INPUT
(Connect:Enterprise
REQUEST)

Connect:Enterprise REQUEST
TO UPDATE POOL LUNAME

C$O59 3.3.3.1.1 OR
3.3.3.1.2
(AFTER
1=UPDATE
ON 3.3.3.1)

CONNECT
RECORD
BSC/SNA
PARAMETER
UPDATE

INPUT
(Connect:Enterprise
REQUEST)

Connect:Enterprise RECEIVES
COPY REMOTE REQUEST

C$O60 3.3.3.1.1 OR
3.3.3.1.2 -
UPDATE
(PF3)

CONNECT
RECORD
BSC/SNA
PARAMETER
UPDATE

INPUT
(Connect:Enterprise
REQUEST)

Connect:Enterprise UPDATES

C$O61 3.3.3.1.1 OR
3.3.3.1.2
(AFTER
2=COPY ON
3.3.3.1)

CONNECT
RECORD
BSC/SNA
PARAMETER
UPDATE

INPUT
(Connect:Enterprise
REQUEST)

Connect:Enterprise RECEIVES
COPY REQUEST - COPY A

Trailer ID: Screen
Number:

Screen Title: Screen Type: Screen Function:
258 Connect:Enterprise for z/OS Application Agents and User Exits Guide

IPS Trailers
C$O62 3.3.3.1.1 OR
3.3.3.1.2 -
CANCEL
(PF12) OR
ANY

CONNECT
RECORD
BSC/SNA
PARAMETER
UPDATE

INPUT
(Connect:Enterprise
REQUEST)

ABANDONS "*CONNECT"
UPDATE

C$O63 3.3.3.1
(DELETE
ONLY)

AUTO
CONNECT
SELECTION
LIST

INPUT
(Connect:Enterprise
REQUEST)

LIST A/C LISTNAMES FOR
MODIFY, COPY OR DELETE

C$O64 3.2.2.2 QUEUED A/C
SUMMARY
DISPLAY

QUEUE
MODIFICATION
INPUT
(Connect:Enterprise
REQUEST)

MODIFY QUEUED A/C
ELEMENTS

C$O66 3.1.8.1 Connect:Enterpri
se FILES
DISPLAY

INPUT
(Connect:Enterprise
REQUEST)

Connect:Enterprise RECEIVES
LISTA REQUEST

C$O67 3.1.8.1 Connect:Enterpri
se FILES
DISPLAY

OUTPUT
(Connect:Enterprise
RESPONSE)

DISPLAY SYSTEM FILES AND
STATUS

C$O68 3.1.10 ALLOCATE FILE
REQUEST

INPUT
(Connect:Enterprise
REQUEST)

Connect:Enterprise RECEIVES
$$ALLOC REQUEST

C$O69 3.1.11 DEALLOCATE
FILE REQUEST

INPUT
(Connect:Enterprise
REQUEST)

Connect:Enterprise RECEIVES
$$DALLOC REQUEST

C$O70 3.1.9.1 FILE SPACE
ALLOCATION
DISPLAY
REQUEST

INPUT
(Connect:Enterprise
REQUEST)

Connect:Enterprise RECEIVES
SPACE REQUEST

C$O71 3.1.8.1 FILE SPACE
ALLOCATION
DISPLAY

OUTPUT
(Connect:Enterprise
RESPONSE)

DISPLAY SYSTEM FILES
SPACE ALLOCATIONS

C$O71X 3.1.8.1 FILE SPACE
ALLOCATION
DISPLAY

OUTPUT
(Connect:Enterprise
RESPONSE)

DISPLAY SYSTEM FILES
SPACE ALLOCATIONS
(Extended VSAM support)

C$O72 3.3.7 CALENDAR
RECORD
SELECTION
REQUEST

INPUT
(Connect:Enterprise
REQUEST)

Connect:Enterprise RECEIVES
CALENDAR DISPLAY

C$O73 3.3.7.1 CALENDAR
SELECTION
LIST DISPLAY

OUTPUT
(Connect:Enterprise
RESPONSE)

Connect:Enterprise
RESPONSE TO CALENDAR
DISPLAY

Trailer ID: Screen
Number:

Screen Title: Screen Type: Screen Function:
Connect:Enterprise for z/OS Application Agents and User Exits Guide 259

Appendix A IPS Trailers
C$O74 3.3.7.1 CALENDAR
RECORD
SELECTION
LIST

INPUT
(Connect:Enterprise
REQUEST)

Connect:Enterprise REQUEST
TO DELETE CALENDAR

C$O75 3.3.7.1.1 CALENDAR
RECORD
UPDATE

INPUT
(Connect:Enterprise
REQUEST)

Connect:Enterprise RECEIVES
SEARCH REQUEST

C$O76 3.3.7.1.1 CALENDAR
RECORD
UPDATE

OUTPUT
(Connect:Enterprise
RESPONSE)

Connect:Enterprise
RESPONSE TO CALENDAR
SEARCH

C$O77 3.3.7.1.1 CALENDAR
RECORD
UPDATE

INPUT
(Connect:Enterprise
REQUEST)

Connect:Enterprise REQUEST
TO UPDATE CALENDAR

C$R20 GENERIC NONE INPUT/OUTPUT
(Connect:Enterprise
REQUEST &
RESPONSE)

USER API "REQUEST"
REQUEST AND RESPONSE

C$U03 2.1.1 AUTO
CONNECT
SUMMARY
REQUEST

INPUT
(Connect:Enterprise
REQUEST)

REQUEST AUTO CONNECT
SUMMARY HISTORY
INFORMATION

C$U04 2.1.1.1 AUTO
CONNECT
SUMMARY
SELECTION
LIST DATA

OUTPUT
(Connect:Enterprise
RESPONSE)

DISPLAY SUMMARY
RECORD DATA

C$U06 2.1.2 AUTO
CONNECT
DETAIL
REQUEST

INPUT
(Connect:Enterprise
REQUEST)

REQUEST AUTO CONNECT
DETAIL HISTORY
INFORMATION

C$U061 2.1.5 QUEUED AUTO
CONNECT
REQUEST

INPUT
(Connect:Enterprise
REQUEST)

REQUEST QUEUED AUTO
CONNECT HISTORY INFO

C$U07 2.1.2.1 AUTO
CONNECT
DETAIL
SELECTION
LIST DATA

OUTPUT
(Connect:Enterprise
RESPONSE)

DISPLAY DETAIL RECORD
DATA

C$U071 2.1.5.1 QUEUED AUTO
CONNECT
DISPLAY

OUTPUT
(Connect:Enterprise
RESPONSE)

DISPLAY DETAIL RECORD
DATA

C$U09 2.1.3 REMOTE
CONNECT
SUMMARY
REPORT

INPUT
(Connect:Enterprise
REQUEST)

REQUEST REMOTE
CONNECT SUMMARY
HISTORY INFORMATION

Trailer ID: Screen
Number:

Screen Title: Screen Type: Screen Function:
260 Connect:Enterprise for z/OS Application Agents and User Exits Guide

IPS Trailers
C$U10 2.1.3.1 REMOTE
CONNECT
SUMMARY
SELECTION
LIST DATA

OUTPUT
(Connect:Enterprise
RESPONSE)

DISPLAY SUMMARY
RECORD DATA

C$U12 2.1.4 REMOTE
CONNECT
DETAIL
REQUEST

INPUT
(Connect:Enterprise
REQUEST)

REQUEST REMOTE
CONNECT DETAIL HISTORY
INFORMATION

C$U13 2.1.4.1 REMOTE
CONNECT
DETAIL
DISPLAY

OUTPUT
(Connect:Enterprise
RESPONSE)

DISPLAY DETAIL RECORD
DATA

C$U15 2.2.1 BATCH QUEUE
DIRECTORY
REQUEST

INPUT
(Connect:Enterprise
REQUEST)

REQUEST BATCH QUEUE
DIRECTORY LIST

C$U16 2.2.1.1 BATCH QUEUE
DIRECTORY
LIST

OUTPUT
(Connect:Enterprise
RESPONSE)

DISPLAY BATCH QUEUE
DIRECTORY LIST

C$U18 2.2.2 BATCH
UTILIZATION
REQUEST

INPUT
(Connect:Enterprise
REQUEST)

REQUEST BATCH
UTILIZATION STATISTICS

C$U19 2.2.2 BATCH
UTILIZATION
LIST

OUTPUT
(Connect:Enterprise
RESPONSE)

DISPLAY BATCH
UTILIZATION STATISTICS

C$U22 2.2.1.2 SELECT ONE
BATCH FILE TO
BROWSE
REQUEST
(CICS ONLY)

INPUT
(Connect:Enterprise
REQUEST)

REQUEST TO BROWSE THE
DATA FROM ONE BATCH
FILE.

C$U25 2.2.4 BATCH STATUS
FLAGS
REQUEST

INPUT
(Connect:Enterprise
REQUEST)

REQUEST FOR BATCH
STATUS FLAGS

C$U26 2.2.4.1 BATCH STATUS
FLAGS LIST

OUTPUT
(Connect:Enterprise
RESPONSE)

DISPLAY BATCH STATUS
FLAGS FOR BROWSING

C$U28 2.2.1.3 OR
2.2.1.1
(MASS
CHANGE)

BATCH STATUS
FLAGS
REQUEST

UPDATE
(Connect:Enterprise
REQUEST)

BATCH STATUS FLAGS
UPDATE

C$U29 2.4.1.0.1,
2.4.1.0.2 OR
2.4.1.0.3
(ADD)

BATCH
SUBMISSION
(ADD/EXTRACT
/GENERIC)

OUTPUT
(Connect:Enterprise
RESPONSE)

Connect:Enterprise RECEIVES
BATCH FOR SUBMISSION

Trailer ID: Screen
Number:

Screen Title: Screen Type: Screen Function:
Connect:Enterprise for z/OS Application Agents and User Exits Guide 261

Appendix A IPS Trailers
C$U31 SELECT ONE
BATCH FILE TO
BROWSE
REQUEST

INPUT
(Connect:Enterprise
REQUEST)

REQUEST TO BROWSE THE
DATA FROM ONE BATCH
FILE.

C$U32 BROWSE
BATCH BATCH
FILE DISPLAY

OUTPUT
(Connect:Enterprise
RESPONSE)

DISPLAY BATCH FILE
DISPLAY FOR BROWSING

C$U33 2.2.1.1 BATCH DETAIL
REQUEST

INPUT
(Connect:Enterprise
REQUEST)

REQUEST FOR BATCH
DETAIL INFORMATION

C$U34 2.2.D.1
2.2.D.2
2.2.D.3
2.2.D.4

BATCH DETAIL
DISPLAY

OUTPUT
(Connect:Enterprise
RESPONSE)

DISPLAY BATCH DETAIL
INFORMATION

C$W00 OUTPUT
(Connect:
Enterprise
RESPONSE)

CICS WAKE UP
INITIATE REQUEST

NONE

Trailer ID: Screen
Number:

Screen Title: Screen Type: Screen Function:
262 Connect:Enterprise for z/OS Application Agents and User Exits Guide

Glossary
A

ACQUEUE
Specifies the disposition of an Auto Connect session that is unable to be initiated because there is no BSC line,
SNA session, or FTP thread available or the Auto Connect session is currently active. When the parameter
ACQUEUE=YES is specified, the Auto Connect session is queued and initiation is attempted at a later time.
Otherwise, the Auto Connect session is terminated with an error condition.

ADD Utility
A set of instructions used to submit the Connect:Enterprise ADD utility. The ADD utility is used to add batches
to the VSAM batch files for access by the remote sites.

APPL (Application)
See VTAM Application Program.

Application Agent
A Connect:Enterprise interface that allows the customization of Connect:Enterprise execution. Each application
agent is driven by a user-defined set of rules. The rules can display system console messages, issue system
console commands, execute programs, and submit jobs. Connect:Enterprise supports the following application
agents: Console, End Of Batch, Logging, Scheduler, and Wake Up Terminate.

Auto Connect
A Connect:Enterprise feature that allows host-initiated data communications to one or more remote sites. The
host and remote sites may be connected using SNA, FTP, bisync manual dial, auto dial, or nonswitched lines.
The Auto Connect session may be fully automated by time of day, or controlled with the $$CONNECT console
command. Full reporting of Auto Connect activity is available.

Auto Dial
Refers to the capability of the host computer to automatically dial the remote site to establish a connection on a
switched line. The Auto Dial feature is usually generated for the Transmission Control Unit or front-end
processor of the host site on a line-by-line basis.

B

Batch
A set of related data collected by or added to Connect:Enterprise and maintained on the VSAM Batch Files at the
host.
Connect:Enterprise for z/OS Application Agents and User Exits Guide 263

Glossary
Batch Number
A unique 7-digit number assigned internally by Connect:Enterprise to each individual batch on the VSAM
Batch Files. The number may be obtained by the $$DIRECTORY function or the offline utilities LIST
function.

Batch Queue
See VBQ (VSAM Batch Queue).

Batch Security
Optional Connect:Enterprise method of providing security for remote site access to the system. Mailbox
IDs are assigned to remote sites and defined as valid at the host site. If Batch Security is used, remote sites
must supply a valid ID as part of the $$ commands that access the Connect:Enterprise data files. (Formerly
called ID Validation.)

Batch Status
A set of flags maintained for each batch on the VSAM Batch Files. The Batch Status flags are displayed in
the LIST offline utility report or the $$DIRECTORY output data. Some of the Batch Status indicators are
incomplete batch, deleted batch, batch transmitted to remote site, and batch extracted at the host site.

Batch Type
Used to indicate which batches to recall from Connect:Enterprise. Types include batches containing data
received from remote sites and batches containing data to be transmitted.

Blank Compression
A method of replacing strings of contiguous blanks with control characters indicating the number of blanks
removed. Commonly used to shorten the amount of data sent over telecommunications lines.
Connect:Enterprise uses standard 3780 blank compression techniques on BSC lines and standard SNA blank
and character compression on SNA sessions.

Blank Truncation
A method of dropping trailing blanks from the end of fixed length data records before sending the data over
telecommunications lines. Used by Connect:Enterprise as an option to shorten the amount of data sent over
telecommunications lines.

BSC (Binary Synchronous)
A standard telecommunications line protocol used to transmit blocks of data over telecommunications lines
between host computers and remote sites. Binary Synchronous (also known as bisync) allows a faster
transmission rate than a start/stop protocol, because its ratio of data bits to checking bits is higher. This line
protocol is used by Connect:Enterprise.

BTAM (Basic Telecommunications Access Method)
A standard IBM access method used by Connect:Enterprise to read and write data over telecommunications
lines to a variety of terminals and devices.
264 Connect:Enterprise for z/OS Application Agents and User Exits Guide

Glossary
BTAM ID Verification
An optional BTAM feature that enables the exchange and verification of host site and remote site IDs.
Available on switched lines only, the feature provides added security in a Connect:Enterprise system. Both
the host site and the remote site must be capable of implementing the option. Connect:Enterprise allows the
host site ID to be sent, the remote site ID to be received, or both IDs to be exchanged.

C

Clear Control Channel (CCC)
A command that enables Connect:Enterprise to negotiate a clear-text control channel after the user ID and
password have been transmitted in encrypted format. The control channel remains in clear-text until the
connection ends. All data and objects transferred between the client and server remain encrypted. Both
ends of the connection must support the use of this command.

Compression
See Blank Compression.

Connection ID
The CICS definition that describes the remote system in terms of Netname (APPLID). The connection ID is
a local name (within the local CICS only) that is used to define the remote partner system
(Connect:Enterprise).

Cross System Client Utility (CSCU)
A Connect:Enterprise utility that enables you to use a subset of the offline utilities to access the VSAM
batch and log files from a remote logical partitioning (LPAR), unlike offline utilities which must run from
the same LPAR as the Connect:Enterprise VSAM File Server. CSCU control and output is similar to the
offline utilities.

D

Data Collection
The process in which Connect:Enterprise collects data from remote sites and stores it in the VSAM Batch
Files. Data Collection means data is input from a remote site to Connect:Enterprise at the host computer.

Data Repository
The component that transmits and collects data from BSC, FTP, and SNA sites. The repository handles all
session activity and accepts service requests from the console, the user API, the ISPF interface, the CICS
interface, and the Connect:Enterprise FTP server.
Connect:Enterprise for z/OS Application Agents and User Exits Guide 265

Glossary
Data Transmission
The process in which Connect:Enterprise transmits data from the VSAM Batch Files to remote sites. Data
transmission means data is output from Connect:Enterprise at the host computer to the remote site.

Directory
A formatted listing of control information for batches on the Connect:Enterprise VSAM Batch Files. It is
obtained from the $$DIRECTORY command.

 Disconnect Interval
The number of seconds a session may be inactive before forcing session termination. This may differ for
each remote site defined to Connect:Enterprise. This safety feature, which is implemented using the
DISCINTV parameter, is used to reduce the use of resources by remote sites that have no current activity
and to prevent an Auto Connect session from suspending if a remote site does not respond.

EXTRACT Utility Model
A set of JCL statements and parameter (specification) data submitted by Connect:Enterprise CICS or ISPF
interface to initiate execution of the Connect:Enterprise EXTRACT utility. The EXTRACT utility is used to
retrieve batches from VSAM batch files to a sequential output file.

F

FMH (Function Management Header)
A standard SNA feature that allows a data stream to be sent to a specific destination and controls the way the
data is presented at the destination. Connect:Enterprise supports FMH Type 1, a 6-character field sent at the
start and the end of a data stream. This FMH selects the media used for the data, marks the beginning and
end of a Connect:Enterprise batch, and further describes the format of the data.

FTP (File Transfer Protocol)
An international standard for reading and writing files across a TCP/IP network.

FTP Server
The capability of Connect:Enterprise to function as an FTP server. This enables remote FTP client sites to
access, retrieve, and send data to the Connect:Enterprise batch queues through standard FTP commands.

G

GSKKYMAN
An IBM utility that is used to create and maintain the SSL key database.
266 Connect:Enterprise for z/OS Application Agents and User Exits Guide

Glossary
H

Host
The main processing computer where Connect:Enterprise is running and where you send your data batches.
Also referred to as the host site or host computer.

I

IRS (Inter-Record Separator)
A special character used to separate multiple records in a block of data being transmitted over a
telecommunications line. Connect:Enterprise allows either X’1E’ or X’1F’ as the inter-record separator on
BSC lines, and allows only X’1E’ for SNA sessions. Also referred to as an IRS.

J

Job Entry Subsystem (JES)
A system facility for spooling, job queuing, and managing job-related data.

L

Leased Line
Refers to telecommunications lines on which connection is not established through a switched network.
Connect:Enterprise Leased Line support is point-to-point and therefore allows data to be exchanged only
between the host site and a single remote site. Leased Multipoint lines are not supported by BSC
connections in Connect:Enterprise.

Line ID
Uniquely identifies a BSC line that is accessed during Auto and Remote Connects. This is a BSC-only entry
generated by a nonswitched M$LINE or M$LINEX macro in the User Assembly.

List Name
The Auto Connect List Name defined in the Connect:Enterprise ODF.

Log Facility
A Connect:Enterprise feature that provides file logging and full reporting for remote-initiated transactions.
An additional option provides host system console log messages both for host-initiated and for
remote-initiated connections and disconnections.
Connect:Enterprise for z/OS Application Agents and User Exits Guide 267

Glossary
LOGOFF
The process of ending a remote site session with a host site program such as Connect:Enterprise. A
LOGOFF may be a text command or a control function from a remote device.

LOGON
The process of establishing a session between a remote site and a host site program such as
Connect:Enterprise. A LOGON may be automatic after a connection is established, or may be entered as a
text command or a control function. In Connect:Enterprise, either the remote site or the host site may
attempt to initiate the LOGON process.

Logon Mode Table
A table defined to VTAM containing a set of entries that provide session parameters, or the rules for
controlling SNA communications. The LOGON that attempts to establish a session causes access to this
table to obtain the session rules.

LOGON Security
An optional Connect:Enterprise/SNA method of providing security during a remote site’s attempt to
LOGON to Connect:Enterprise. The LUNAME (assigned to the remote site as part of the VTAM definition
process) is provided to and validated by Connect:Enterprise when a LOGON is attempted.

LU (Logical Unit)
A logical unit provides the port for user access to an SNA network. Each remote device that can establish a
session with Connect:Enterprise is a logical unit.

LU1RJE (LU Type 1 RJE)
A device emulating 3770, or a similar device or software package that uses Logical Unit Type 1 protocols
and is used primarily for data transfer or RJE (Remote Job Entry) purposes. The devices typically have
multiple I/O devices, such as printers, card readers, and storage devices. An operator console for messages
or interactive use is often present.

M

Mailbox ID
The 1–8 character ID which defines batches in the VSAM Batch Files.

Mailbox Name
The 8-character symbolic name used to identify individual Connect:Enterprise systems to the user interface.

Mailbox Password
A security password used to control access to Connect:Enterprise systems.
268 Connect:Enterprise for z/OS Application Agents and User Exits Guide

Glossary
Mailbox User ID
An 8-character field used to identify each user to Connect:Enterprise. In order for a user to access a
Connect:Enterprise system, the User ID must be defined and assigned. The CICS and ISPF Interface panel
displays the current user in the upper right corner.

Manual Dial
Refers to the method the host site uses to dial remote sites to establish a connection on a switched line. With
Manual Dial, an operator at the host site must manually dial the telephone number of the remote site if the
connection is initiated by the host site.

If the connection is initiated by the remote site, the manual dialing at the host is not used.

Media
An input/output device on a terminal, such as a printer, card reader, card punch, keyboard, display, or
diskette. Commonly available on LU Type 1 RJE terminals, and supported by Connect:Enterprise/SNA.

MLU (Multiple Logical Unit)
A terminal designed to allow the operation of more than one session between a remote terminal and a host
site such as Connect:Enterprise. A single terminal may actually appear as multiple devices, and may have
concurrent inbound and outbound data streams active for each. Some 3770-type devices have this
capability. Connect:Enterprise supports up to six MLU sessions per remote site.

N

NCP (Network Control Program)
The Network Control Program, generated by host site personnel, that controls the operations of a
communications controller such as a 37x5.

Non-Switched Line
A telecommunications line on which connection is not established through a switched network. Sometimes
referred to as a Leased Line.

NPSI (Network Control Program Packet Switching Interface)
An IBM licensed program that allows SNA users to communicate over packet switching data networks that
have interfaces complying with CCITT Recommendation X.25. It allows SNA programs to communicate
with SNA or non-SNA equipment over such networks.
Connect:Enterprise for z/OS Application Agents and User Exits Guide 269

Glossary
O

(ODF) Options Definition File
A file containing Connect:Enterprise control records and keyword parameters that specify options in effect
for the current execution of online Connect:Enterprise. The file contains options that control security,
password, Auto Dial telephone numbers, SIGNON records, Auto Connect, SNA sites, and other system
options.

Offline Utilities
The Connect:Enterprise utilities used to access and maintain the data batches on the VSAM Batch Files.
The offline utilities allow you to LIST control information for batches, ADD batches, EXTRACT batches,
DELETE batches, ERASE batches, alter batch status flags (STATFLG), MOVE batches from one VBQ to
another, and REPORT on session activity.

P

Password
See Mailbox Password.

PLU (Primary Logical Unit)
In a particular session between two LUs, one LU adheres to a set of SNA-defined primary protocols and is
known as the primary logical unit (PLU) for that session. The other LU adheres to a set of secondary
protocols and is known as the secondary logical unit (SLU) for that session. More than one session can exist
between two LUs. Multiple concurrent sessions between the same two LUs are referred to as parallel
sessions. Not all LUs have parallel session capability.

Point-to-Point Line
A telecommunications line connection that allows data exchange between two points on the connection,
usually the host site and a remote site. When a dialed connection is established on a switched network, the
connection is considered point-to-point. Leased lines where the remote site is a single station are also
considered point-to-point.

R

RDW (Record Descriptor Word)
A 4-byte field used to define the length of variable length records within a data file. For batch data coming
into Connect:Enterprise (ADD), the RDW may be removed or retained. For batch data sent from
Connect:Enterprise (REQUEST) the RDW may be created or not created.
270 Connect:Enterprise for z/OS Application Agents and User Exits Guide

Glossary
Remote Name
A 1–8 character name assigned to identify a remote site that may be contacted by the host site during an
Auto Connect session. Also used to identify every remote site that can establish a session with
Connect:Enterprise.

Remote Site
Any terminal, computer, or software that can connect with Connect:Enterprise in the host computer.

REXX (Restructured Extended Executor) Language
A general-purpose, procedural language for scripting end-user programs designed for IBM systems.

RFC (Request for Comments)
One of a series, begun in 1969, of numbered Internet informational documents and standards widely
followed by commercial software and freeware in the Internet and UNIX communities.

S

Session
A logical connection between Connect:Enterprise at the host site and another logical unit, such as a 3770
device. When a LOGON is completed between Connect:Enterprise and a remote site, they are said to be in
session.

SIGNON
A special format data record sent by some remote BSC terminals designed to communicate with RJE
software (such as JES or VSE POWER) in the host computer. The SIGNON record may be required by
Connect:Enterprise provided Connect:Enterprise has been configured to do so when installed. The
SIGNON format(s) used must also be specified at installation. A SIGNON is not required and not supported
for SNA remote sites.

SLU (Secondary Logical Unit)
See PLU (Primary Logical Unit).

SNA (Systems Network Architecture)
A set of rules, procedures, and structures for a communications network.

Socket Number
A two way connection identified by the unique combination of IP addresses and port numbers in a given
connection. For example, the following combination illustrates the unique ID representing a complete
socket: Client IPAddress/Port Number - Server IPAddress/Port Number.
Connect:Enterprise for z/OS Application Agents and User Exits Guide 271

Glossary
SPLITCOUNT
Specifies a 1–4 digit numeric count of records to be contained in an added batch, allowing you to split a
large sequential input file into several smaller batches with the same batch identifiers. Sequential input
records are read and added to the output batch until the SPLITCOUNT limit is reached. Connect:Enterprise
then closes out the batch and begins a new batch with the same identifiers.

SSL (Secure Sockets Layer)
A protocol for transmitting private documents over the Internet. SSL uses a private key to encrypt data that
is transferred over the SSL connection.

Status Codes
The status flag indicators for a batch. Codes include the following: D, deleted; T, transmitted; R,
Requestable; E, Extracted; M, Multxmit (for a list of these codes, see information on VSAM Batch Status
Flags in the Connect:Enterprise for z/OS User’s Guide).

Switched Line
A telecommunications line on which connection is established over a switched (dialup) telephone line.

T

TLS (Transport Layer Security)
A protocol based on SSL 3.0 protocol specification and designed to provide privacy and data integrity
between two communicating applications.

TRACE
In Connect:Enterprise, the capability to create a snapshot dump of internal Connect:Enterprise control
information for communications activity, User Exit calls, or VSAM Batch Files access.

Transparency
A method of transmitting data over a telecommunications line wherein special line control characters
embedded in the data are transparent and do not function in their normal capacity as line control characters.
Transparency is used when non-text data (such as object modules or other binary data) must be sent over
telecommunications lines. Connect:Enterprise supports both BSC transparency and SNA transparency.

Truncation
See Blank Truncation.

$TURNLINE$
An optional feature in Connect:Enterprise that provides for a limited conversational mode transmission.
When a $TURNLINE$ record is encountered in data being sent to a remote site, the sender temporarily
272 Connect:Enterprise for z/OS Application Agents and User Exits Guide

Glossary
stops sending and issues the proper BSC protocol to turn around the line and begin receiving. After all data
is received, sending resumes with the record following $TURNLINE$.

U

User
See Mailbox User ID.

User Assembly
A series of macros used to define a network of BSC lines to be used by Connect:Enterprise. The macros are
generated by each user to define their requirements and input to the Assembler to create a module for use by
Connect:Enterprise BSC connections. A User Assembly is not required by SNA connections.

User Batch ID
A 1–64 character free-form batch identifier used to describe the contents of a batch of data on the
Connect:Enterprise VSAM Batch Files.

User Exits
A user-written program called by online Connect:Enterprise, offline utilities, and the CICS interface at
appropriate times during the processing of a transaction. The user-supplied program can thereby alter the
standard processing done by Connect:Enterprise. User Exits may be supplied to examine all input data from
a remote site, to examine output data to a remote site, to provide unique security processing, or to examine
and alter data in Connect:Enterprise $$ commands. No alteration of data is possible by a user exit in the
offline utilities and the CICS interface processing.

USS Table
A table defined to VTAM that provides conversion of character-coded LOGON or LOGOFF to
field-formatted LOGON or LOGOFF. You may need to provide this table to VTAM to allow a remote site to
establish and terminate SNA sessions with Connect:Enterprise.

V

VBQ (VSAM Batch Queue)
The Connect:Enterprise data set used for storing batches of data collected from remote sites during online
Connect:Enterprise. These batches may be available for transmission to remote sites, and are always
available for extraction at the host site. The VSAM Batch Queue may be defined as a single VSAM cluster
or up to 20 VSAM clusters that are processed as a single repository for batch data. The VSAM Batch Queue
contains multiple individual batches of data which can be accessed by their Mailbox ID.
Connect:Enterprise for z/OS Application Agents and User Exits Guide 273

Glossary
VBQ Blocking
A Connect:Enterprise feature that blocks multiple records or collection buffers into a single VBQ record for
transmission. This improves transmission performance by reducing the disk I/O overhead.

VCF (VSAM Control File)
The Connect:Enterprise data set that contains control information for batches stored on the VSAM Batch
Queue.

VLF (VSAM Log File)
The Connect:Enterprise data set that contains logged information on the progress of a Connect:Enterprise
execution.

VPF (VSAM Pointer File)
The Connect:Enterprise data set that contains control information for every file defined in the
Connect:Enterprise system and locator information for every existing batch.

VSAM (Virtual Storage Access Method)
A standard IBM access method for creating and maintaining data sets at the host. Used by
Connect:Enterprise for the VSAM Batch Files.

VSAM Batch Files
A term used for the group of up to 24 files used by the Connect:Enterprise system for storing and
maintaining data. The VSAM Batch Files consist of the VSAM Control File, the VSAM Pointer File, the
VSAM Batch Queue Files (up to 20), and the VSAM Log Files (up to 2).

VTAM (Virtual Telecommunications Access Method)
An SNA access method used by Connect:Enterprise to receive and send data to a variety of SNA devices or
application programs.

VTAM Application Program
A program, such as Connect:Enterprise, that is defined to VTAM and can establish sessions with SNA
devices or other VTAM application programs.

X

Xmit once
Specifies that the batch cannot be extracted and that it can be transmitted only one time. After a successful
transmit, the batch is permanently locked.
274 Connect:Enterprise for z/OS Application Agents and User Exits Guide

Glossary
Connect:Enterprise for z/OS Application Agents and User Exits Guide 275

Glossary
276 Connect:Enterprise for z/OS Application Agents and User Exits Guide

Index
Symbols
$$ commands 119

$$ALLOC command transaction 238

$$DALLOC command transaction 238

$$DUMP command transaction 229

$$INVOKE command transaction 15

$$LIST command transaction 229
BSC lines only 231
SNA sessions only 232

$$LIST FILES command transaction 236

$$SHUTDOWN command transaction 234

$$SHUTDOWN,I command transaction 234

$$SPACE command transaction 238, 239

$$START command transaction 234

$$STOP command transaction 234

$REOB rules file member 89

$RLOG rules file member 89

$RWKT rules file member 89

& variables
&APKEY 38
&AQQDATE 38
&AQQTIME 38
&AQRDATE 38
&AQRTIME 38
&BATCH# 38
&BCDATE 38
&BCTIME 38
&BID1 38
&BID2 38
&BID24 38
&BID3 38
&BID4 38
&BID5 38
&BID6 38
&BID64 38
&BID7 38

& variables (continued)
&BID8 38
&BLKCNT 38
&BYTECNT 39
&CCVBQDSN 39
&CCVBQID 39
&CCVBQNUM 39
&CCVLFDSN 39
&CCVLFID 39
&CCVLFNUM 39
&DATE 39
&DAY 39
&DAYUC 39
&DD 39
&DDMMYYYY 39
&FAILCODE 39
&FCDATE 39
&FCTIME 39
&FSDATE 39
&FSTIME 39
&HHMM 39
&HHMMSS 39
&HHMMSSTH 39
&HOUR 39
&IDFIELD 39
&KEY 39
&LINNAME 39
&LISTNAM 40
&MBXNAME 40
&MIN 40
&MM 40
&MONTH 40
&MONTHUC 40
&MSG 40
&MSG01 40
&MSG01-MSG32 40
&MSG02-MSG32 40
&NXVBQDSN 40
&NXVBQID 40
&NXVBQNUM 40
&NXVLFDSN 40
&NXVLFID 40
&NXVLFNUM 40
Connect:Enterprise for z/OS Application Agents and User Exits Guide 277

 Index
& variables (continued)
&OSNAME 40
&OSVER 40
&PRVBQDSN 40
&PRVBQID 40
&PRVBQNUM 40
&PRVLFDSN 40
&PRVLFID 41
&PRVLFNUM 41
&RCFUNC 41
&RCSCDAT 41
&RCSCTIM 41
&RCSSDAT 41
&RCSSTIM 41
&RECCNT 41
&RMTNAME 41
&RMTTYPE 41
&SEC 41
&SRVRID 41
&STCNAME 41
&TH 41
&TIME 41
&TIME6 41
&ULTEXT01– ULTEXT96 41
&VBQ10DSN 42
&VBQ11DSN 42
&VBQ12DSN 42
&VBQ13DSN 42
&VBQ14DSN 42
&VBQ15DSN 42
&VBQ16DSN 42
&VBQ17DSN 42
&VBQ18DSN 42
&VBQ19DSN 42
&VBQ20DSN 42
&VBQO1DSN 41
&VBQO2DSN 41
&VBQO3DSN 42
&VBQO4DSN 42
&VBQO5DSN 42
&VBQO6DSN 42
&VBQO7DSN 42
&VBQO8DSN 42
&VBQO9DSN 42
&VCFDSN 42
&VLF1DSN 42
&VLF2DSN 42
&VLF3DSN 42
&VLF4DSN 42

& variables (continued)
&VLF5DSN 42
&VLF6DSN 42
&VLF7DSN 42
&VLF8DSN 42
&VPFDSN 42
&YY 42
&YYYY 43
&YYYYDDD 43
&YYYYMMDD 43
summary 43

& variables&
MMDDYYYY 40
YYDDD 42

*OPTIONS 114
MAXRP 91
RULES 91
RULESEOB 91
RULESLOG 91
RULESWKT 91

//INTRDR DD 90

//RULES DD 90

//RULESJCL DD 90

//RULTRACE DD 90, 94

//SYSPRINT DD 90

@ variables, summary 43

A
ACQAFT 200

ACQBEF 200

ADD Security exit
description 164
parameters 165

XO$ACODE 165
XO$BID 165
XO$ID 165
XO$MBXNM 165
XO$PGMID 165
XO$SFLAG 165
XO$VBQNO 165
XO$VPF 165

requirements 165

ADD Transaction
description 217
278 Connect:Enterprise for z/OS Application Agents and User Exits Guide

Index
ADD Transaction (continued)
encryption of batch data 221
execution 217
fixed trailer data 219
initial variable trailer data 219
reserved area 220
variable trailer data 220

AFMAAFT 197

AFMABEF 197

AFMCAFT 197

AFMCBEF 197

AFMEAFT 197

AFMEBEF 197

AFMHAFT 198

AFMHBEF 198

AFMJAFT 198

AFMJBEF 198

agent rules, Refreshing application 93

agent, Console application 11

Allocation Listing request, Space 238

Allocation Listing, File Space 239

ampersand and at sign variables, examples 43

ampersand variables, values 37

APPC
activity 118
Security exit

description 153
parameters 153
requirements 154
rules 154

Wake Up Initiate exit
parameters 156
requirements 156

Wake Up Terminate exit
parameters 158
requirements 158

Application agent
definition 11
how Connect, Enterprise uses 29
implementation procedure 89
implementing 89
optional file 90

Application agent (continued)
parameters

MAXRP 91
RULES 91
RULESEOB 91
RULESLOG 91
RULESWKT 91

processing
JCL 92
Options Definition File 92

requests 29, 30
required files 90
trace utility 94
types 11

application agent rules, Refreshing 93

area size per remote, User work 115

area, User exit work 118

area, work 130

Auto Connect
command transaction 229
completion messages 241
logging 151
queued logging 151

Auto Connect logging, Queued 151

Auto Connector Remote Command, Stop an 234

B
BATCHID parameter 78, 138

Block, Exit Control 118

Brackets, rule syntax 35

BTVSMOSX
implementing 179
program logic 179

buffers, Input and output 118

BUFSIZE parameter 60

C
C$CTLCA macro 204

C$U28 macro 191

CASE parameter, in ROUTE instruction 60
Connect:Enterprise for z/OS Application Agents and User Exits Guide 279

 Index
CASE_SENSITIVE
parameter 17, 27, 74, 78, 79, 85

characters, see special characters

CICS
API ADD and Request logging 152
Interface

IPS trailers 253
User exits 189

coding 190, 192
COMMAREA 191
Data Modification exit 189
exit parameter data 191
exit points 189
Initialization exit 189, 192
installing 190
invoking 189
linking 191
sample 192
Security (After) exit 189
Security (Before) exit 189
Termination exit 189
testing 191

Temporary Storage Queue (TSQ) 204
User API, IPS trailers 253
Wake Up Initiate exit 113, 155
Wake Up Terminate exit 113, 157

CLASS parameter, in ROUTE instruction 60

Closed Line Command, Restart a 234

CMCIXITS DSECT 192, 193, 194, 196, 201

CNFMFIL 59

COMMAND instruction
format and parameters 50
required parameters 51
using 50
valid rule types 50

Command, Request a Files Listing 236

Command, Restart a Closed Line 234

Command, Stop an Auto Connector Remote 234

commands, $$ 119

Commands, Connect:Enterprise 203

COMMAREA 191, 192, 193, 194, 195, 200, 201,
204, 230, 236, 243

Comments
rules 35
use 35

Connect logging, Queued Auto 151

Connect:Enterprise, Shutting down 234

Connector Remote Command, Stop an Auto 234

Console application agent 11
implementation example 102
parameter default values 14
parameters 52
rules example 14

Console ID
default value 50
MBXNAME parameter 50

console support, Extended multiple 50

Continuation marks
in a parameter 34
in a statement 34

Control Block, Exit 118

D
Data Modification exit

description 195
parameters 196
usage 200

DD sample member, RULESJCL 100

DD, //INTRDR 90

DD, //RULES 90

DD, //RULESJCL 90

DD, //RULTRACE 90, 94

DD, //SYSPRINT 90

Definition File, Options 117, 191

Directory Listing Transaction
description 242
directory information

batch status selection criteria, batch flags 250
directory listing request 243
fixed trailer data 243

Directory Listing, Request 203

DMEDTYPE 196

double quotation marks, rules 36

down Connect:Enterprise, Shutting 234

DSECT, CMCIXITS 192, 193, 194, 196, 201
280 Connect:Enterprise for z/OS Application Agents and User Exits Guide

Index
dummy exit program 119

dump, SNAP 232

E
E1$ACTCD parameter 126

E1$ASITE parameter 129

E1$BID parameter 128

E1$CMD parameter 127

E1$CMDTP parameter 126

E1$ID parameter 128

E1$LOGST parameter 129

E1$MSG parameter 126

E1$PASSWD parameter 128

E1$RMTNM parameter 127

E1$SSLST parameter 129

E1$TEXT parameter 127

E1$TEXTLN parameter 127

E1$TYPE parameter 125

E1$WORK parameter 126

End Of Batch application agent
collecting batches 99
invoking 15
parameters 52, 54
rules 99
rules example 18

End Of Batch exit
trace output 117
user work area 116

ERROR parameter 64

EXECUTE instruction
format and parameters 51
optional parameters, ERROR 52
required parameters 52

PROGRAM 52
using 51
valid rule types 51

Exit Control Block 118
also see XCB

Exit programs
changing parameters passed to 115

Exit programs (continued)
dummy 115, 119
EXITINIT 115
EXITINP 115
EXITLOG 115
EXITOUT 115
EXITSEC1 115
EXITSEC2 115
EXITSECFTP 115
re-entrant 115

exit work area, User 118

EXITID 192, 193, 194, 196, 201

EXITLEN 192, 193, 194, 196, 201

EXITPROG 192, 193, 194, 196, 201

EXITRC 192, 193, 195, 196, 201

exits, VSAM File Server 177

EXITSAMP 192

EXITTYPE 192, 193, 194, 196, 201

Extended multiple console support 50

EXTRACT Security exit
description 167
parameters

XO$ACODE 167
XO$BID 167
XO$ID 167
XO$MBXNM 167
XO$PGMID 167
XO$SFLAG 167
XO$VBQNO 167
XO$VPF 167

requirements 167

EXTRACT utility 116

F
file member, $REOB rules 89

file member, $RLOG rules 89

file member, $RWKT rules 89

File Server exits, VSAM 177

File Space Allocation Listing 239

File, Options Definition 117, 191

file, SNAPOUT 87
Connect:Enterprise for z/OS Application Agents and User Exits Guide 281

 Index
file, SYSPRINT 87

file, SYSUDUMP 87

FILES command transaction, $$LIST 236

Files Listing Command, Request a 236

FTP
security

Session Security Exit
parameters 125
requirements 129
work area 130

FTYPE parameter 59

Function Initiate Security exit
description 182
MZMCPFIX, program logic 186
parameters 182
requirements 185
sample 185

Function Request Security exit
description 186
MZAPCFRX, program logic 187
parameters 186
requirements 187
sample 187

I
Initialization exit

description 148, 192
parameter 148
parameters 192

EXITID 192
EXITLEN 192
EXITPROG 192
EXITRC 192
EXITTYPE 192

passing information between sessions and online
exits 116

trace feature 117
usage 193
user work area 116

Input and output buffers 118

Input exit
BSC sites, special considerations 122
caution when using 116
changing input data 122
description 120

Input exit (continued)
fields changed by 122

X3$ACODE 122
X3$INPTA 122
X3$INPTL 122
X3$WORKA 122

function for BSC sites 122
function for SNA sites 122
parameters 121
purpose of 122
requirements for writing 122
sample (BSC) 124
sample (SNA) 123
SNA sites, special considerations 123
testing 118
trace output 117

Instructions
COMMAND 50
EXECUTE 51
invoked by End Of Batch application agent 15
invoked by Logging application agent 20
invoked by Wake Up Terminate application agent 26
MESSAGE 54, 66
NOP 56
ROUTE 57
SUBMIT 71
summary 49
WAKEUP 72

Interface Parameter Structure, see IPS

Interface, application agents 11

IPS
activation 204
content 206
fixed header data 207
format 205
header 203
header and trailer data 206
header portion data 207
passing the IPS as a COMMAREA 205
sample programs 205
size 154
trailer 215, 253
trailer portion 203
trailer portion data 213
variable header data 211

ISPF Interface
IPS trailer 253
282 Connect:Enterprise for z/OS Application Agents and User Exits Guide

Index
ISPF Interface (continued)
User exits

Function Initiate Security exit 181
Function Request Security exit 181

Issue commands transaction
description 227
fixed trailer data 228

L
Line Command, Restart a Closed 234

Listing Command, Request a Files 236

Listing request, Space Allocation 238

Listing, File Space Allocation 239

Listing, Request Directory 203

LOCAPPL parameter 60

Log exit
description 149
parameters 149
requirements 150
specifying parameters in ODF 118
trace output 117
user work area 116

Logging
application agent 11

default parameters 21
implementation example 100
invoking 20
parameters 53
rules 101
rules example 22

remote connect 151

logging, Queued Auto Connect 151

LOGMODE parameter 60

M
M$ACREC 149

M$ACREC macro 114

M$BCREC macro 114

M$DCREC 149

M$DCREC macro 114

M$LOGB 149

M$LOGB macro 114

M$OUXCB macro 114, 163, 165, 167, 169

M$XCB macro 118, 119

M$XPARM macro 114, 121, 132, 138, 141

macro, C$CTLCA 204

macro, C$U28 191

macro, M$ACREC 114

macro, M$BCREC 114

macro, M$DCREC 114

macro, M$LOGB 114

macro, M$OUXCB 114, 163, 165, 167, 169

macro, M$XCB 118, 119

macro, M$XPARM 114, 121, 132, 138, 141

MAILBOXUID parameter 60

MBAPPL parameter 60

member, $REOB rules file 89

member, $RLOG rules file 89

member, $RWKT rules file 89

member, RULESJCL DD sample 100

MESSAGE instruction
format and parameters 55, 66
optional parameters

CONEVENT 56
DESCCODE 56
ERROR 56
ROUTCODE 55

required parameters, TEXT 55, 66
using 54, 66
valid rule types 54

multiple console support, Extended 50

N
NETMAP parameter 59

NEWNAME parameter 59

NOP instruction
format 57
using 56
valid rule types 56

NOTIFY 60
Connect:Enterprise for z/OS Application Agents and User Exits Guide 283

 Index
O
ODFAFT 199

ODFBEF 199

ODFTYPE 199

Offline Utility exits
ADD Security exit 163
coding 164
EXTRACT Security exit 163
invoking 163
parameter lists 163, 164
requirements 164
samples 164
Startup exit 163
STATFLG/DELETE/ERASE/MOVE/PURGE

Security exit 163
testing 164

Online Batch
ADD 203
REQUEST 203

Online exits
activating with ODF records 114
calling 113
coding, requirements 115
installing 114
invoking 114
parameter list 114
parameter lists 115
testing 116
testing and debugging 113

Open User exit
description 177, 178
parameter 178
requirements 179
sample 179

Options Definition File 117, 191
configuration 92

output buffers, Input and 118

Output exit
caution when using 116
description 141
parameters 141

X4$ACODE 141, 142
X4$CTYPE 142
X4$INIT@ 142
X4$LINID 141

Output exit (continued)
parameters 141

X4$LNTYP 142
X4$OFLAG 141
X4$OMAXL 142
X4$OUTPA 142
X4$OUTPL 142
X4$WORKA 141, 142
X4$XTYPE 141

requirements 142
testing 118
trace output 117

P
Parameter list

macros containing 114
passed to online exit 114

parameter, BUFSIZE 60

parameter, E1$ACTCD 126

parameter, E1$ASITE 129

parameter, E1$BID 128

parameter, E1$CMD 127

parameter, E1$CMDTP 126

parameter, E1$ID 128

parameter, E1$LOGST 129

parameter, E1$MSG 126

parameter, E1$PASSWD 128

parameter, E1$RMTNM 127

parameter, E1$SSLST 129

parameter, E1$TEXT 127

parameter, E1$TEXTLN 127

parameter, E1$TYPE 125

parameter, E1$WORK 126

parameter, ERROR 64

parameter, FTYPE 59

parameter, LOCAPPL 60

parameter, LOGMODE 60

parameter, MAILBOXUID 60

parameter, MBAPPL 60
284 Connect:Enterprise for z/OS Application Agents and User Exits Guide

Index
parameter, NETMAP 59

parameter, NEWNAME 59

parameter, PNODE 58

parameter, PROC 58

parameter, PROCDSN 58

parameter, PROFDSN 59

parameter, PRTY 59

parameter, SIGNONUID 60

parameter, SNODE 58

parameter, SNODEID 59

parameter, TODSN 59

parameter, TRANSPORT 61

Parentheses, rules 35

per remote, User work area size 115

PNODE parameter 58

PROC parameter 58

PROCDSN parameter 58

Processor (RP), Rules 95

PROFDSN parameter 59

program, dummy exit 119

PRTY parameter 59

punctuation 35, 36

Q
Queue, Temporary Storage 230, 236, 243

Queued Auto Connect logging 151

quotation marks
double 36
single 35

R
Refreshing application agent rules 93

Remote Command, Stop an Auto Connector 234

Remote Connect, logging 151

remote, User work area size per 115

Request a Files Listing Command 236

Request Directory Listing 203

REQUEST Transaction
decryption of batch data 226
description 222
fixed trailer data 224
initial variable trailer data 224
reserved area 225
variable trailer data 226

request, Space Allocation Listing 238

resolving ROUTE instruction parameters
communicating with Connect, Direct 65

Restart a Closed Line Command 234

Rule set
components 11, 31
function 11
guidelines when writing 32
structure 31
writing 31

Rule statement, function 11

Rules
Comments 35
Continuation Marks in a Parameter 34
Continuation Marks in a Statement 34
Double Quotation Marks 36
End Of Batch application agent 16
file

member names 89
Rules Offline Verification Utility 86

Logging application agent, valid for 21
Parentheses 35
refreshing application agent rules 93
Single Quotation Marks 35
Special Characters 35
Special Purpose Bracketing 35
structure and syntax, understanding 33
Symbolic Substitution 36
syntax 33
use of 32
verifying 86
Wake Up Terminate application agent 27

rules file member, $REOB 89

rules file member, $RLOG 89

rules file member, $RWKT 89

Rules Offline Verification Utility
files used by 86
Connect:Enterprise for z/OS Application Agents and User Exits Guide 285

 Index
Rules Offline Verification Utility (continued)
how to execute 86
location of 86
when to use 86

Rules Processor (RP) 95

Rules Verification Utility 33

rules, Refreshing application agent 93

RULESEOB 87

RULESJCL DD sample member 100

RULESLOG 87

RULESWKT 87

S
sample member, RULESJCL DD 100

Sample online exits
STCOBOL 120
STCSEC 120
STCWI 120
STCWT 120
STEOBX 120
STEOBX2 120
STINP 120
STINPS 120
STLOGX 120
STOUT 120
STSEC1 120
STSEC2 120
STSECFTP 120, 125
STTERM 120
STXINIT 120

Scheduler application agent
implementation example 106
invoking 23
parameter default values 24
rules 24
rules example 25

SECPSWD 194, 195

SECRC 194, 195

SECSID 193, 195

SECSUSER 193, 195

Security (After) exit
description 194

Security (After) exit (continued)
parameters

EXITID 194
EXITLEN 194
EXITPROG 194
EXITRC 195
EXITTYPE 194
SECPSWD 195
SECRC 195
SECSID 195
SECSUSER 195

usage 195

Security (Before) exit
description 193
parameters

EXITID 193
EXITLEN 193
EXITPROG 193
EXITRC 193
EXITTYPE 193
SECPSWD 194
SECRC 194
SECSID 193
SECSUSER 193

usage 194

Security Exit one
description 131
parameters

X1$ACODE 132, 134
X1$APLID 133
X1$APLID (SNA only) 134
X1$BCHID 132, 134
X1$BLOCK 132
X1$BLOCK (BSC only) 134
X1$CMP 133
X1$CMP (BSC only) 134
X1$CTYPE 132
X1$ID 132, 134
X1$INIT@ 133
X1$LINID 132
X1$LNTYP 133
X1$LPASS 134
X1$MEDIA 133
X1$MEDIA (SNA only) 134
X1$MULTX 133, 134
X1$NPASS 134
X1$ONEB 134
X1$PASSW 132, 134
X1$RBUFA 134
286 Connect:Enterprise for z/OS Application Agents and User Exits Guide

Index
Security Exit one (continued)
parameters

X1$RBUFS 134
X1$RCSEP 133
X1$RCSEP (BSC only) 134
X1$RMTNM 133
X1$RMTNM (SNA or BSC if BSC Signon is

used) 135
X1$SFLAG 134
X1$TRUNC 133
X1$TRUNC (BSC only) 135
X1$UMSG@ 133, 135
X1$UMSGL 133, 135
X1$VBQNO 134, 135
X1$WORKA 132, 135
X1$XMIT 133, 135
X1$XTYPE 132
X2$WORKA 138

requirements 135
SNA sites 132
trace output 117

Security Exit two
description 137
M$XPARM macro 138
parameters 138

X2$ACODE 138, 139
X2$BCHID 138, 139
X2$CTYPE 138
X2$ID 138, 139
X2$INIT@ 139
X2$LINID 138
X2$LNTYP 139
X2$PASSW 138, 139
X2$SVCOD 139
X2$WORKA 139
X2$XTYPE 138

requirements 139
SNA only 140

trace output 117

SELECT Statement 95
format and parameters 76
function 11
guidelines 73
optional parameters

ACFUNC 77
ACQREASON 77
BATCHID 78
CICSPGMNM 79
CICSTRANID 79

SELECT Statement 95 (continued)
optional parameters

FAILCODE 79
ID 80
LINE 80
LISTNAME 80
LOGFUNC 80
ORIGIN 81
RCFUNC 82
REMOTE 82
RTNCODE 82
STATOR 83
STATUS 84

parameters 73
required parameters 76

RECTYPE 77
valid rule types 77

SELECT statement
parameters, summary table 73

Server exits, VSAM File 177

Session Security Exit
parameters 125
requirements 129
work area 130

Shutting down Connect:Enterprise 234

SIGNONUID parameter 60

single quotation marks, rules 35

size per remote, User work area 115

SNAP dump 232

SNAPOUT file 87

SNMPTRAP instruction
layout and contents 67
parameters 66

SNODE parameter 58

SNODEID parameter 59

Space Allocation Listing request 238

Space Allocation Listing, File 239

special characters, rules 35

Special Purpose Bracketing, rules 35

Startup exit
description 171
parameters 171
requirements 172
Connect:Enterprise for z/OS Application Agents and User Exits Guide 287

 Index
Statement, SELECT 95

STATFLG/DELETE/ERASE/MOVE/PURGE Security
exit

description 169
parameters

XO$ACODE 169
XO$BID 169
XO$ID 169
XO$MBXNM 169
XO$PGMID 169
XO$SFLAG 169
XO$VBQNO 169
XO$VPF 169

requirements 170

STCOBOL
description 159
implementing 160
program logic 159
sample user exit 114, 159

STCSCUSR, preprocessing parameters 173

STCSEC
implementing 155
program logic 154
sample security exit 153
sample user exit 154

STCWI
implementing 157
program logic 157
sample user exit 157

STCWT
implementing 159
program logic 159
sample user exit 159

STINP 124
implementing 124
program logic 124

STINPS 123
implementing 123
program logic 123

STLOGX
implementing 153
program logic 152
sample user exit 152

Stop an Auto Connector Remote Command 234

Storage Queue, Temporary 230, 236, 243

STOUT
implementing 143
program logic 143
sample user exit 143

structure, Rule 33

STSEC1
implementing 137
program logic 136
sample user exit 135

STSEC2
implementing 140
program logic 140
sample user exit 140

STSECA 164
implementing 166
program logic 166
sample ADD Security exit 165

STSECE 164
implementing 168
program logic 168
sample EXTRACT Security exit 168

STSECFTP 125
implementing 131
program logic 131
sample user exit 131

STSECOU 164
implementing 171
program logic 170
sample Security exit 170

STTERM
program logic 149
sample user exit 149

STUTAXIT 164
implementing 172
program logic 172
sample Startup exit 172

STXINIT
program logic 148
sample user exit 148

SUAFT 200

SUBEF 199

SUBMIT instruction
format and parameters 71
optional parameters, ERROR 71
288 Connect:Enterprise for z/OS Application Agents and User Exits Guide

Index
SUBMIT instruction (continued)
required parameters 58, 71

MEMBER 71
using 71
valid rule types 71

support, Extended multiple console 50

symbolic parameters
& variables, trailing blanks removed

&APKEY 38
&BATCH# 38
&BID1 38
&BID2 38
&BID24 38
&BID3 38
&DATE 39
&IDFIELD 39
&KEY 39
&LINNAME 39
&LISTNAM 40
&LOGFUNC 40
&MSG 40
&MSG01 40
&MSG01-MSG32 40
&RMTNAME 41
&STCNAME 41
&TIME 41

summary 43

symbolic substitution
rules 36
using ampersand and at sign 36

symbolic variables, commands used with 36

SYSIN file
control cards

RULESEOB 87
RULESLOG 87
RULESWKT 87
TRACE 87

control records 87
Rules Offline Verification Utility 87

SYSPRINT file 87

SYSUDUMP file 87

T
Temporary Storage Queue 230, 236, 243

Termination exit
description 148, 200
parameter 149
parameters 201

EXITID 201
EXITLEN 201
EXITPROG 201
EXITRC 201
EXITTYPE 201

passing information between sessions and online
exits 116

trace feature 117
usage 201
user work area 116

TODSN parameter 59

Trace entry layout
matched 96
no match 97

trace facility, debugging and testing rules 94

TRACE feature
console command 117
online exits 117
output, depending on exit 117
parameters in ODF * OPTIONS section 117
test and debug exits 113

Trace utility
activating by CICS/ISPF interfaces 94
activating by ISPF/CICS Trace Management Screen

RPEOB 95
RPLOG 95
RPWRK 95

activating by ODF *OPTIONS
RPEOB 94
RPLOG 94
RPWKT 94

activating by operator console commands
RPEON 94
RPLON 95
RPWON 95

deactivating by operator console commands
RPEOFF 95
RPLOFF 95
RPWOFF 95

ISPF/CICS Trace Management Screen 95

TRACE=NO|YES 87

Traces
activating and deactivating 231
Connect:Enterprise for z/OS Application Agents and User Exits Guide 289

 Index
Traces (continued)
APPC traffic 235

trailer, IPS 215, 253

transaction, $$ALLOC command 238

transaction, $$DALLOC command 238

transaction, $$DUMP command 229

transaction, $$INVOKE command 15

transaction, $$LIST command 229

transaction, $$LIST FILES command 236

transaction, $$SHUTDOWN command 234

transaction, $$SPACE command 238, 239

transaction, $$START command 234

transaction, $$STOP command 234

TRANSPORT parameter 61

U
User Application Programming Interface, see UAPI

User exit work area 118

User work area size per remote 115

utility, EXTRACT 116

Utility, Rules Verification 33

V
Verification Utility, Rules 33

VERIFYRL 86

VSAM File Server exits 177
caution when writing 178
coding 178
considerations for user exit programs 177
deactivating 177
invoking 177
Open User exit 177, 178
requirements 178

W
Wake Up Terminate application agent

implementing 99
invoking 26
parameter default values 27

Wake Up Terminate application agent (continued)
parameters 54
rules 27
rules example 28, 100

Wake Up transaction
description 215
execution 216
trailer data 216

WAKEUP instruction
format and parameters 72
optional parameters

CICSPGMNM 72
CICSTERMID 72
CICSTRANID 72
CICSUSER 72
ERROR 73

required parameters 72
CICSDEFN 72
CICSSYSID 72

using 72
valid rule types 72

WILD_CARD parameter 17, 27, 75, 78, 79, 85

WILD_CARD_MULTI_CHAR
parameter 17, 27, 75, 78, 85

WILD_CARD_SINGLE_CHAR
parameter 17, 27, 75, 78, 86

work area 130

work area size per remote, User 115

work area, User exit 118

X
X1$ACODE 132, 134

X1$APLID 133, 134

X1$BCHID 134

X1$BDHID 132

X1$BLOCK 132, 134

X1$CMP 133, 134

X1$CTYPE 132

X1$DSECT 132

X1$ID 132, 134

X1$INIT@ 133
290 Connect:Enterprise for z/OS Application Agents and User Exits Guide

Index
X1$LINID 132

X1$LNTYP 133

X1$LPASS 134

X1$MEDIA 133, 134

X1$MULTX 133, 134

X1$NPASS 134

X1$ONEB 134

X1$PASSW 132, 134

X1$RBUFA 134

X1$RBUFS 134

X1$RCSEP 133, 134

X1$RMTNM 133, 135

X1$SFLAG 134

X1$TRUNC 133, 135

X1$UMSG@ 133, 135

X1$UMSGL 133, 135

X1$VBQNO 134, 135

X1$WORKA 132, 135

X1$XMIT 133, 135

X1$XTYPE 132

X2$ACODE 138, 139

X2$BCHID 139

X2$BDHID 138

X2$CTYPE 138

X2$ID 138, 139

X2$INIT@ 139

X2$LINID 138

X2$LNTYP 139

X2$PASSW 138, 139

X2$SVCOD 139

X2$WORKA 138, 139

X2$XTYPE 138

X3$ACODE 122

X3$IMAXL 122

X3$INPTA 122

X3$INPTL 122, 123, 124

X3$WORKA 122

X4$ACODE 141, 142

X4$CTYPE 142

X4$INIT@ 142

x4$LINID 141

X4$LNTYP 142

X4$OFLAG 141

X4$OMAXL 142

X4$OUTPA 142

X4$OUTPL 142

X4$WORKA 141, 142

X4$XTYPE 141

X4OUTPA 142

XCB 117

XO$ACODE 165, 167, 169

XO$BID 165, 167, 169

XO$ID 165, 167, 169

XO$MBXNM 165, 167, 169

XO$PGMID 165, 167, 169

XO$SFLAG 165, 167, 169

XO$VBQNO 165, 167, 169

XO$VPF 165, 167, 169

XRCOKAY 193, 194, 195, 200, 201
Connect:Enterprise for z/OS Application Agents and User Exits Guide 291

 Index
292 Connect:Enterprise for z/OS Application Agents and User Exits Guide

	Contents
	Overview of Connect:Enterprise Application Agents
	Console Application Agent
	Console Rules
	Console Rules Example

	End of Batch Application Agent
	End of Batch Rules
	End of Batch Rules Example

	Logging Application Agent
	Logging Rules
	Logging Rules Example

	Scheduler Application Agent
	Scheduler Rules
	Scheduler Rules Example

	Wake Up Terminate Application Agent
	Wake Up Terminate Rules
	Wake Up Terminate Rules Example

	How Connect:Enterprise Uses Application Agents

	Creating and Verifying Application Agent Rules
	Rule Set Components and Structure
	Guidelines for Defining a Rule Set
	Rule Structure and Syntax
	Continuation Marks in a Statement
	Continuation Marks in a Parameter
	Comments
	Special Characters
	Special-Purpose Bracketing

	Symbolic Substitution
	Ampersand (&) and At Sign (@) Variables
	Symbolic Variables Valid for Application Agent Rules

	Instructions
	COMMAND Instruction
	COMMAND Instruction Format
	COMMAND Instruction Parameters

	EXECUTE Instruction
	EXECUTE Instruction Format
	EXECUTE Instruction Parameters
	Application Agent Parameters Passed to User-Specified Programs

	MESSAGE Instruction
	MESSAGE Instruction Format
	MESSAGE Instruction Parameters

	NOP Instruction
	ROUTE Instruction
	ROUTE Instruction Format
	ROUTE Instruction Parameters
	Resolving Route Instruction Parameters When Communicating with Connect:Direct

	SNMPTRAP Instruction
	SNMPTRAP Instruction Format
	SNMPTRAP Instruction Parameters
	SNMPTRAP Layout and Contents

	STATFLG Instruction
	STATFLG Instruction Format
	STATFLG Instruction Parameters

	SUBMIT Instruction
	SUBMIT Instruction Format
	SUBMIT Instruction Parameters

	WAKEUP Instruction
	WAKEUP Instruction Format
	WAKEUP Instruction Parameters

	SELECT Statement
	SELECT Statement Format
	SELECT Statement Parameters

	Verifying Application Agent Rule Sets
	Offline Rules Verification Utility Files

	Implementing Application Agent Rules
	Implementing Application Agents
	Connect:Enterprise JCL and ODF Configuration for Application Agents
	Refreshing Application Agent Rules
	Troubleshooting Application Agent Requests
	Tracing Application Agent Requests
	Example 1-End of Batch Application Agent Request Trace Entry (Match)
	Example 2-End of Batch Application Agent Request Trace Entry (No Match)

	Detecting Application Agent Loops

	Sample End of Batch and Wake Up Terminate Rules Implementations
	Site Requirements Example
	End of Batch Application Agent Rules Example
	RULESJCL DD Member Example
	Wake Up Terminate Application Agent Rules Example

	Sample Log Rules Implementations
	Site Requirements Example for Successful Batch Collection
	Logging Application Agent Rules Example
	Site Requirements Example for Failed Logon Attempt

	Sample Console Rules Implementation
	Site Requirements Example
	Console Application Agent Rules Example
	Console Application Agent Request Operator Messages Example
	Console Application Agent Request Trace Entry (Match and No Match) Example

	Sample Scheduler Rules Implementation
	Site Requirements Example
	Scheduler Application Agent Rules Example
	Scheduler Application Agent - Calendar Example
	Scheduler Application Agent Request Operator Messages Example
	Scheduler Application Agent Request Trace Entry Example

	Using Connect:Enterprise Online Exits
	How Connect:Enterprise Uses Online User Exits
	Implementing Online Exits
	Coding User Exits
	Testing Online Exits
	Tracing the User Exits
	Creating an Options Definition Trace Record
	Using the Console Trace Command
	Specifying Trace Output
	Understanding the Exit Control Block
	Using the Exit Trace for Log Exit
	Using a Dummy Exit Program

	Sample Online Exits
	Using the Input Exit
	Input Exit Parameters
	Input Exit Requirements
	Sample Input User Exit STINPS (SNA Only)
	STINPS Program Logic
	Implementing STINPS
	Sample Input User Exit STINP (BSC Only)
	STINP Program Logic
	Implementing STINP

	Using Session Security Exit
	Session Security Exit Parameters
	Session Security Exit Requirements
	Sample Session Security Exit STSECFTP (FTP only)
	STSECFTP Program Logic
	Implementing STSECFTP

	Using Security Exit One
	Security Exit One Parameters
	Security Exit One Requirements
	Sample Security User Exit STSEC1
	STSEC1 Program Logic
	Implementing STSEC1

	Using Security Exit Two
	Security Exit Two Parameters
	Security Exit Two Requirements
	Sample Security User Exit STSEC2
	STSEC2 Program Logic
	Implementing STSEC2

	Using the Output Exit
	Output Exit Parameters
	Output Exit Requirements
	Sample Output User Exit STOUT
	STOUT Program Logic
	Implementing STOUT

	Using the End of Batch Exit
	End of Batch Exit Parameters
	Nonreentrant End of Batch Exit Requirements
	Sample End of Batch User Exits STEOBX, STEOBX2, and STEOBX2V
	STEOBX Program Logic
	STEOBX2 Program Logic
	STEOBX2V Program Logic
	Implementing Nonreentrant End of Batch Exits

	Reentrant End of Batch Exit Requirements
	Implementing Reentrant End of Batch Exits

	Using the Initialization Exit
	Initialization Exit Parameter
	Sample Initialization User Exit STXINIT

	Using the Termination Exit
	Termination Exit Parameter
	Sample Termination User Exit STTERM

	Using the Log Exit
	Log Exit Parameters
	Log Exit Requirements
	Auto Connect Logging
	Queued Auto Connect Logging
	Remote Connect Logging
	Connect:Enterprise CICS API ADD and REQUEST Logging

	Sample Log User Exit STLOGX
	STLOGX Program Logic
	Implementing STLOGX

	Using the APPC Security Exit
	APPC Security Exit Parameters
	APPC Security Exit Requirements
	Sample APPC Security User Exit STCSEC
	STCSEC Program Logic
	Implementing STCSEC

	Using the CICS Wake Up Initiate Exit
	Wake Up Initiate Exit Parameters
	Wake Up Initiate Exit Requirements
	Sample Wake Up Initiate User Exit STCWI
	STCWI Program Logic
	Implementing STCWI

	Using the CICS Wake Up Terminate Exit
	Wake Up Terminate Exit Parameters
	Wake Up Terminate Exit Requirements
	Sample Wake Up Terminate User Exit STCWT
	STCWT Program Logic
	Implementing STCWT

	Using the COBOL User Exit
	Sample COBOL User Exit STCOBOL
	STCOBOL Program Logic
	Implementing STCOBOL

	Using Connect:Enterprise Offline Utility Exits
	How Connect:Enterprise Uses Offline Utility Exits
	Coding Offline Utility Exits
	Testing Offline Utility Exits
	Sample Offline Utility Exits

	Using the Offline ADD Security Exit
	ADD Security Exit Parameters
	ADD Security Exit Requirements
	Sample ADD Security User Exit STSECA
	STSECA Program Logic
	Implementing STSECA

	Using the Offline EXTRACT Security Exit
	EXTRACT Security Exit Parameters
	EXTRACT Security Exit Requirements
	Sample EXTRACT Security User Exit STSECE
	STSECE Program Logic
	Implementing STSECE

	Using the Offline STATFLG/DELETE/ERASE/MOVE/PURGE Security Exit
	STATFLG/DELETE/ERASE/MOVE/PURGE Security Exit Parameters
	STATFLG/DELETE/ERASE/MOVE/PURGE Security Exit Requirements
	Sample Security User Exit STSECOU
	STSECOU Program Logic
	Implementing STSECOU

	Using the Offline Utility Startup Exit
	Startup Exit Parameters
	Startup Exit Requirements
	Sample Startup User Exit STUTAXIT
	STUTAXIT Program Logic
	Implementing STUTAXIT

	Using the Connect:Enterprise CSCU Startup Exit
	Specifying Preprocessing Parameters with the STCSCUSR User Exit
	Sample Cross System Client Startup Exit STCSCUSR
	STCSCUSR Program Logic
	Implementing STCSCUSR

	Using the VSAM File Server Exit
	How Connect:Enterprise Uses the VSAM File Server Exit
	Coding the VSAM File Server Exit
	Testing the VSAM File Server Exit
	Sample VSAM File Server Exit
	Using the VSAM File Server Open User Exit
	VSAM File Server Open User Exit Parameters
	VSAM File Server Open User Exit Requirements
	Sample Open User Exit BTVSMOSX
	Implementing BTVSMOSX

	Using ISPF Interface User Exits
	Coding ISPF interface User Exits
	Testing ISPF Interface User Exits
	Sample ISPF Interface User Exits
	Using the Function Initiate Security Exit
	Function Initiate Security Exit Parameters
	Function Initiate Security Exit Requirements
	Sample Function Initiate Security User Exit MZMCPFIX

	Using the Function Request Security Exit
	Function Request Security Exit Parameters
	Function Request Security Exit Requirements
	Sample Function Request Security User Exit MZAPCFRX

	Using CICS Interface User Exits
	How Connect:Enterprise Uses CICS User Interface Exits
	Implementing CICS Interface User Exits
	Coding CICS Interface User Exits
	Testing CICS Interface User Exits
	Linking CICS Interface User Exits
	Sample CICS Interface User Exits
	Using the Initialization Exit
	Initialization Exit Parameters
	Understanding Initialization Exit Usage

	Using the Security (Before) Exit
	Security (Before) Exit Parameters
	Understanding Security (Before) Exit Usage

	Using the Security (After) Exit
	Security (After) Exit Parameters
	Understanding Security (After) Exit Usage

	Using the Data Modification Exit
	Data Modification Exit Parameters
	Understanding Data Modification Exit Usage

	Using the Termination Exit
	Termination Exit Parameters
	Understanding Termination Exit Usage

	CICS User API
	Activating Interface Parameter Structure
	Using a CICS TSQ to Pass the IPS
	Passing the IPS as a COMMAREA

	Interface Parameter Structure Format
	Interface Parameter Structure Content
	IPS Header Portion Data
	IPS Fixed Header Data
	IPS Variable Header Data
	IPS Trailer Portion Data

	Using the Wake Up Transaction
	Transaction Execution
	Trailer Data

	Using the ADD Transaction
	Transaction Execution
	Fixed Trailer Data
	Initial Variable Trailer Data
	Using the Reserved Area
	Variable Trailer Data
	Batch Data Encryption

	Using the REQUEST Transaction
	Fixed Trailer Data
	Initial Variable Trailer Data
	Using the Reserved Area
	Variable Trailer Data
	Batch Data Decryption

	Connect:Enterprise Command Transactions
	Fixed Trailer Data
	Initiating an Auto Connect Command
	Requesting a $$DUMP Command
	Requesting a $$LIST Command
	Issuing Connect:Enterprise $$SHUTDOWN Command
	Restarting a Closed Line ($$START) Command
	Stopping an Auto Connect or Remote Connect Command
	Stop/Start Traces Command
	Requesting a Files Listing ($$LIST FILES Command):
	Requesting a Files Listing ($$LIST FILES Command response)
	Issuing Connect:Enterprise $$ALLOC Command
	Issuing Connect:Enterprise $$DALLOC Command
	Requesting a Space Allocation Listing ($$SPACE Command)
	Requesting a File Space Allocation Listing ($$SPACE Command Response)
	Requesting Auto Connect Completion Messages

	Using the Directory Listing Transaction
	Fixed Trailer Data
	Requesting a Directory Listing
	Requesting Directory Information

	IPS Trailers
	Glossary
	Index

