
Gentran Integration Suite™

MESA Developer Studio
Version 4.3

© Copyright 2007-2009 Sterling Commerce, Inc. All rights reserved.
Additional copyright information is located on the Gentran Integration Suite Documentation Library:
http://www.sterlingcommerce.com/Documentation/GIS43/homepage.htm
Sterling Commerce, Inc. 2

Contents

About MESA Developer Studio 6

Using MESA Developer Studio to Manage Gentran Integration Suite 6
Available MESA Developer Studio Editors . 6
License Management Settings . 7

Creating a MESA Developer Studio Project . 7
Managing Resources in MESA Developer Studio . 8

Working with Business Processes . 8
Working with Schemas . 9
Working with Properties Files . 9

Creating Services Using MESA Developer Studio SDK 10

Creating Custom Services. 10
Anatomy of a Service . 10

About MESA Developer Studio SDK . 11
Upgrading from Previous Versions . 12
Directory Structure for MESA Developer Studio SDK Projects. 12
Optional Directories Within a Service . 13
Using the MESA Developer Studio SDK Cheat Sheet . 13

Steps to Create a Service Using MESA Developer Studio SDK 14
Starting MESA Developer Studio SDK . 14
Creating a MESA Developer Studio SDK Project . 14
Adding Business Logic to a Service . 16
Adding Parameters to the Service Definition File . 16
Adding Resources to a Service. 18
Writing Log Messages into a Message Log File . 18
Creating a serviceinstances.xml File. 18
Changing the SDK Library Version . 20
Exporting a Service for Deployment . 20
Installing a Service into the Application. 21

Updating a Service Definition . 21

Working with the MESA Developer Studio Skin Editor 23

About the MESA Developer Studio Skin Editor . 23
Sterling Commerce, Inc. 3

Contents
Using the Skin Editor . 23
Retrieving Current Skin . 24
Previewing a Skin . 24
Saving Skin Changes . 24
Undoing Skin Changes . 24

Using the Skin Editor to Edit a Gentran Integration Suite Template 24
Using Advanced Editing . 25
Restoring the Default Skin . 25

Gentran Integration Suite Architecture 26

Introduction to Gentran Integration Suite Architecture . 26
Business Process Definitions . 26
Services . 27

Components of a Service . 28
Example of a Service . 29
Workflow Context . 29
Basic Service Framework . 29
Special Service Capabilities . 30

Relationship Between Business Processes and Services. 30
Example of Outbound Edges . 31
Starting a Business Process . 31
Many-to-Many Relationship . 31
Business Process Definition Fails to Start . 32
Running a Business Process . 33

Gentran Integration Suite Components and a J2EE Environment 33
Service Harness Implementation and Service Adapter Implementation 34
B2B Server . 35
Service and Operations Controllers . 36

Reference Information for Developing a Service 38

Service Architecture Summary . 38
Harness. 38
RMI (Service Adapter Implementation) . 38
Service XML File and Language Files . 39
Scalability . 39

Workflow Context . 39
Input Parameters. 39
Workflow Document Body. 40
Error Reporting . 40

Service Controller . 41
Stateless and Stateful Adapters . 41
Service Controller Interface. 41
Service Controller Interface – RMI . 42

Error and Status Reporting . 44
Basic Status . 44
Advanced Status . 45
Exceptions. 45
Status Report . 45
Sterling Commerce, Inc. 4

Contents
Configuring Services . 46
Language-Specific Properties Files . 46
Service XML File . 46

Logging Service. 49
Logging Event Guidelines . 49
XLogger Logging. 50
RMI Logging . 50
XLogger Logging Methods . 51
LogService Logging Methods . 51

File System Adapter Examples 53

FileSystemServer File . 53
FileSystemServerImpl File. 54
File System Adapter XML . 60
FileSystem XML . 62
Filesystem_en File. 63
FileSystemImpl File . 65
FileSystemServer File . 76
FileSystemServerImpl File. 76
FSFromCollectInfo File . 84
FSFromReadFile File . 85
FSToCollectInfo File . 85
FSToExtractInfo File . 86
WFStartThread File . 86

Index 88
Sterling Commerce, Inc. 5

About MESA Developer Studio

MESATM Developer Studio is used to create and edit application property files and business processes. You
can also use MESA Developer Studio to remotely start and stop a Gentran Integration Suite instance, install
third party files, list directory contents and current processes, and display disk usage. For example, within
Gentran Integration Suite you can only edit business processes using the Graphical Process Modeler (GPM).
From MESA Developer Studio, you can also edit business processes using a code editor.

Note: Before you can begin using MESA Developer Studio, you must first install MESA Developer
Studio. For more information, see the Gentran Integration Suite Installation Guide.

Using MESA Developer Studio to Manage Gentran Integration Suite
Caution: MESA Developer Studio is designed to assist you with application resource development.

Changes made with the MESA Developer Studio plug-ins should be thoroughly tested in a
development environment before moving them into production.

Use MESA Developer Studio to:

✦ Edit Gentran Integration Suite property files
✦ Work with business processes
✦ Start and stop application instances
✦ Install third-party files
✦ Manage Gentran Integration Suite resources
✦ List directory contents
✦ List current processes
✦ Display disk usage

Available MESA Developer Studio Editors
The following editors are available in MESA Developer Studio to assist you in creating or editing
properties, service definitions, and other code:

✦ Properties Editor
✦ JDBC Properties Editor
✦ Knowledgebase Properties Editor
Sterling Commerce, Inc. 6

Creating a MESA Developer Studio Project
✦ Service Definitions Editor
✦ BPML Editor

License Management Settings
Licenses provide you access to the different components offered by Gentran Integration Suite that you have
purchased. Without the proper licenses, Gentran Integration Suite does not operate. For example, after you
purchase Gentran Integration Suite, you can purchase new components and open those components with a
new license file. Occasionally, you may need to update your license file for either administrative purposes,
or when your license file expires. You can view the components license status and update your license files
through MESA Developer Studio.

To manage your license files:

1. From the MESA Developer Studio perspective, double-click an instance.
The instance overview appears in the Control Editor.

2. Click the Settings tab at the bottom of the Control Editor pane.
3. Click Update Licenses.
4. Navigate to the appropriate license file. Click Open.

The license file is automatically updated.

Creating a MESA Developer Studio Project
Create a project in the Package Explorer to organize the files and resources you will use on your local
system.

To create a project:

1. From the File menu, select New > Project.
2. Select Simple > Project.
3. Click Next.
4. Type a name for the project.
5. Click Finish. A new project is added to the Package Explorer under the folder name Other Projects.
Note: If no direct connection is possible between the host where Gentran Integration Suite is installed and

the Windows PC where Eclipse is installed, and you are using a proxy server, you must enable the
HTTP proxy connection. From the Window menu, select Preferences. On the left, select
Install/Update. In the Proxy settings section, add your proxy information and click Apply.
Sterling Commerce, Inc. 7

Managing Resources in MESA Developer Studio
Managing Resources in MESA Developer Studio
Resources are files, templates, and documents that may be deployed in Gentran Integration Suite and that
you can import and export from one Gentran Integration Suite system to another, such as when you are
migrating from a test to production environment. You can check in, check out, lock, and unlock the
following resources in MESA Developer Studio:

✦ Business Processes – Business process model definitions and their associated particulars
Note: In a cluster environment, business processes should be checked in from the application UI, not from

MESA Developer Studio. Currently, MESA Developer Studio is not configured to set specific
business processes.

✦ XML schemas – Data that makes up XML schemas

Working with Business Processes
Business processes may be created and edited in MESA Developer Studio using either the BPML text
editor, or the GPM. Files with a .bp extension will by default open the GPM; however, they may also be
edited by using a option to open the file with the BPML Editor.

Note: The default when you double-click a business process is for it to open in the GPM. If you want to
edit a business process using the BPML Editor, right-click on the business process and select Open
With > BPML Editor. MESA Developer Studio remembers this setting so that the next time you
double-click on that business process, it will open in the BPML Editor.

The BPML Editor allows XML-like text editing of business processes along with autofill of BPML
activities. MESA Developer Studio allows you to start the GPM; however, it runs independently of Eclipse.

Setting Up the GPM
To use MESA Developer Studio to edit business processes, you must set up the GPM to be used in MESA
Developer Studio. This enables you to launch the GPM from within Eclipse when you double-click on a
business process name, either in your Package Explorer list of projects (local) or on your test server through
a configured instance. (Only files that have been checked out from the server are displayed in that view.)

To set up the GPM:

1. In Eclipse, from the Window menu, select Preferences.
2. On the left, select the Java > Installed JREs category.
3. In the Installed JREs section, click Add.
4. Enter the following information:

JRE name – Type GBM JRE.

JRE home directory – Click Browse to select the directory. You must use a 1.5 JRE with the GPM.
This is usually located in C:\Program Files\javasoft\jre\1.5.

5. Click OK. You are now ready to edit business process files from within MESA Developer Studio.
Sterling Commerce, Inc. 8

Managing Resources in MESA Developer Studio
Note: The first time you start the GPM from Eclipse, your Gentran Integration Suite instance must be
running.

For more information on managing business processes, see the business process documentation.

Working with Schemas
An XML schema is an XML document that specifies the structure of a valid XML document. Comparable
to a document template, an XML schema ensures that every item is in the correct form. An XML schema
consists of the following components:

✦ XML declaration – Defines the XML version that the schema uses
✦ Schema element – Identifies the document as an XML schema
✦ Element declaration – Defines the element
✦ Attribute declaration – Defines the attribute
Schemas are used in Gentran Integration Suite to validate translation data in the Map Editor. When you
submit an XML document using Gentran Integration Suite, the XML document is compared to the XML
Schema to ensure that the document is in the appropriate format and is valid. For more information on
managing schemas, see the schema documentation.

Working with Properties Files
From Mesa Developer Studio, you can add, edit, or delete properties within existing files.

To open a property file:

1. From the MESA Developer Studio perspective, expand the Properties Files folder.
2. Double-click on the property file name you want to work with to open it in the editor.
3. Do one of the following:

Click Add to add a property. Type a name and value for the property.

Select a property and click Delete to remove it.
Sterling Commerce, Inc. 9

Creating Services Using MESA Developer
Studio SDK

Creating Custom Services
Gentran Integration Suite can perform most common tasks needed by a user, but there are instances where
functionality is needed that is not provided and an existing service is not available. This usually occurs in
environments with legacy systems that do not use standards-based methods for communication. There are
several ways to interact with these systems, including the Command Line Adapter 2 and the Scripting
adapter, but the capabilities of these adapters are limited.

MESATM Developer Studio Software Development Kit (SDK) provides the tightest integration with
Gentran Integration Suite and enables you to create complex and complete services and adapters. These
services use the same APIs as the services included with Gentran Integration Suite, so all of the benefits and
infrastructure of the application are available. This flexibility and tight integration means that creating a
service is more advanced and requires good knowledge of Java development, Gentran Integration Suite
APIs, and the APIs of any system that will be accessed by the service.

Note: Because all adapters are a type of service, this guide uses the term service for both services and
adapters. This guide uses the term adapter when the information is unique to adapters.

Anatomy of a Service
This section describes the various service components that Gentran Integration Suite uses.

What is a Service?
A service is a component that can be configured to carry out an activity in a Gentran Integration Suite
business process.

What is a Parameter?
Parameters can be configured to define and control your service. Any parameters that you want to add to a
service must be added to a parameter group.
Sterling Commerce, Inc. 10

About MESA Developer Studio SDK
What is a Parameter Group?
Parameter groups are logical groupings of similar parameters (for example, host name and port). It is
acceptable to have a parameter group with only one parameter. There are three types of parameter groups:

✦ Global
✦ Instance
✦ Workflow
The following table describes the types of parameter groups. The location refers to the area in Gentran
Integration Suite where, in addition to in MESA Developer Studio SDK:, this service parameter may be
edited.

What is an Adapter?
An adapter is a type of service that communicates with external systems to move data in and out of Gentran
Integration Suite.

What is a Method?
A method is the Java equivalent of functions, subroutines, or procedures in other programming languages.

About MESA Developer Studio SDK
The MESA Developer Studio SDK helps you create and edit custom services and adapters using the Eclipse
development environment. The MESA Developer Studio SDK is designed as an Eclipse plug-in, installed
locally, that extends the Eclipse Integrated Development Environment (IDE). Use the SDK to create a
service, build and export a service package within the Eclipse development environment, then install and
test it with Gentran Integration Suite.

Like the MESA Developer Studio plug-in, the SDK runs independently from Gentran Integration Suite
in the Eclipse IDE.

Parameter Group Description Location for End User

Global Definition Widest possible scope, applicable to all
services of this type. They have a constant
value for all instances of a service.

Gentran Integration Suite interface:
Deployment > Services >
Installation/Setup.

Workflow Definition Specific to a single invocation of a service.
May have different values every time the
service is called.

Graphical Process Modeler.

Instance Definition Specific to a single copy of a service. May
have different values for each instance of a
business process that calls the service
instance.

Page in a service configuration wizard
accessed through Gentran Integration
Suite interface, Deployment > Services >
Configuration.
Sterling Commerce, Inc. 11

About MESA Developer Studio SDK
Upgrading from Previous Versions
MESA Developer Studio SDK is available for use with Gentran Integration Suite. You cannot open projects
created with the previous Service SDK in MESA Developer Studio SDK; however, you can import your
existing java files from an old project into a new SDK project. MESA Developer Studio SDK includes all
of the previously available Service SDK features, and includes new and enhanced features such as code
editors, validation, consistency check, and wizards that guide you through specific tasks.

Directory Structure for MESA Developer Studio SDK Projects
MESA Developer Studio SDK creates a directory structure in the location you specify when you create a
new service project (servicename.xml). The following table describes the files the SDK creates in the
location you specified:

Directory Path File Contents

src/<packagename> serviceImpl.java Service Harness Implementation portion of the adapter.
Contains the required processData() function for interaction
with the activity engine.

src/<packagename> servicenameServer.java RMI remote interface portion of the adapter that describes the
functions that can be called. This file is created for adapters
only.

src/<packagename> servicenameServerImpl.j
ava

RMI implementation portion of the adapter. This file is created
for adapters only.

src/<packagename> ServicenameResources.
properties

Property file that holds strings mapped to certain messages.
Primarily used for logging purposes.

servicedefs servicename.xml How the user interface is presented by the configuration
wizard at run time.

ui/properties/lang/<Lang
Abrev>

servicename_LangAbrev
.properties

Language properties in the default language of the computer
on which you are working. For example,
servicename_en.properties is an English language property
file.
For more information about reference information, see
Reference Information for Developing a Service.

ServiceSDK Libraries woodstock.jar
Security.jar

Gentran Integration Suite related libraries used by the SDK
during compilation.
Sterling Commerce, Inc. 12

About MESA Developer Studio SDK
Optional Directories Within a Service
The following table lists the optional directories and their corresponding files in alphabetical order:

Note: Do not create optional directories that do not contain at least one file. Empty directories will cause
the deployment of a service to fail.

Using the MESA Developer Studio SDK Cheat Sheet
MESA Developer Studio provides a cheat sheet to guide you through the service development process. The
SDK Cheat Sheet provides you with information and step-by-step help to create a service by listing the
sequence of steps required to create and package a service. As you progress from one step to the next, the
cheat sheet automatically launches the required tools for you. If there is a manual step in the process, the
step will tell you to perform the task and click a button in the cheat sheet to move on to the next step.
Relevant help information is also available to guide you.

To access the SDK Cheat Sheet:

1. Open the MESA Developer Studio SDK perspective.
2. From the Help menu, select Cheat Sheets.
3. In the Cheat Sheet Selection window, expand the Gentran Integration Suite Studio folder and select

MESA Developer Studio SDK.
4. Click OK. The MESA Developer Studio SDK Cheat Sheet opens on the right.

Directory Path File Contents

bpml/<subdir> *.bpml Business processes that belong to this service.
Caution: Use a subdirectory within bpml for your bpml files. If
you do not use a subdirectory for your bpml files, they will not
be installed correctly when your service package is deployed.

db *.dat Database specific files that belong to this service.

files * Additional files that belong to this service, optionally
organized in subdirs.

import *.xml Application Resources to be imported that belong to this
service.

scripts PostServiceInstall.class
PreServiceInstall.class

Pre-/Post Installation java classes that belong to this service.

schema *.dtd, *.xsd XML Schema files that belong to this service.
Sterling Commerce, Inc. 13

Steps to Create a Service Using MESA Developer Studio SDK
Steps to Create a Service Using MESA Developer Studio SDK
The process of creating and installing a service using MESA Developer Studio SDK involves a series of
several steps. The following steps provide a high-level overview of what is required. Click a corresponding
link to see detailed instructions for each step.

To create and install a service:

1. Start MESA Developer Studio SDK. See Starting MESA Developer Studio SDK.
2. Create a new SDK project. See Starting MESA Developer Studio SDK.
3. Add business logic. See Adding Business Logic to a Service.
4. Add service parameters (optional). See Adding Parameters to the Service Definition File.
5. Add any additional objects (optional). See Optional Directories Within a Service.
6. Build a service package. See Exporting a Service for Deployment.
7. Install and run the service in a Gentran Integration Suite test instance and verify that the service works

as expected. See Installing a Service into the Application.
8. Install the service to the Gentran Integration Suite production environment.

Starting MESA Developer Studio SDK
Start MESA Developer Studio SDK from your computer by launching Eclipse. The SDK is run
independently from Gentran Integration Suite. The WebDAV server must be running the first time you
launch the SDK and each time you want to deploy a service package to the instance.

Note: If you are creating adapters, verify that the system with which you will be integrating Gentran
Integration Suite is implemented and working correctly.

To start MESA Developer Studio SDK:

1. Launch Eclipse.
2. From the Window menu, select Open Perspective > Other.
3. From the list, select MESA Developer Studio SDK.
4. If this is the first time you have launched SDK, you are asked to enter license information.
5. Type your WebDAV info, and user ID/password from Gentran Integration Suite.

Creating a MESA Developer Studio SDK Project
Caution: Services developed with the SDK should be tested and deployed in a test environment before

being deployed to a production instance.

You can either use the Cheat Sheet (see Using the MESA Developer Studio SDK Cheat Sheet) or follow
these steps:
Sterling Commerce, Inc. 14

Steps to Create a Service Using MESA Developer Studio SDK
To create a project:

1. From the File menu, select New > Project.
2. Select MESA Developer Studio > MESA Developer Studio SDK Project and click Next.

3. Type a project name, which is a unique name for the project, and click Next. Do not use spaces.
4. Complete the following Service Profile information and click Next:

Service name – unique name for the service, using Java naming standards. Defaults to project
name.

Service package - name of the Java package where the service should be stored. Defaults to
com.mypackage.

Service label – name of the service as it should appear in Gentran Integration Suite UI. Defaults to
project name. You should make this name unique so that it can be more easily recognized in
Gentran Integration Suite.

Service description – meaningful description as it should appear in Gentran Integration Suite UI.
Defaults to start with “This service implements…”

Service Version – required for the service definition file. System created .
Sterling Commerce, Inc. 15

Steps to Create a Service Using MESA Developer Studio SDK
Service type - Service or Adapter. If you select adapter, also select if it should be stateless. For
more information, see Stateless and Stateful Adapters.

5. Complete the Build Options and click Next:

Document Storage Type Options – How the service running in Gentran Integration Suite will store
documents. This option is used in the Big A and Little a.

Code generation options – If checked, the selected Document Storage Type option will be used.

Create project folder options – See Optional Directories Within a Service for more information.

6. Select the Gentran Integration Suite Library version. The Gentran Integration Suite library version
available depends on the instance you are connecting to. You can load additional libraries. See
Changing the SDK Library Version.

7. Click Finish. The project is created. The system creates all required fields that represent a deployable
service.
You should now edit the resource and Java files as needed to develop the service. For more
information, see Adding Business Logic to a Service.

Note: Saving the project regenerates the view of the project. The project should be saved anytime a change
is made that affects the navigation options for the project. For example, adding a new file or folder
creates a new navigation object.

Adding Business Logic to a Service
You must add business logic to the service. This is what makes the service perform the intended tasks. In
this step you extend the generated Service code by your own business logic to the Big A portion of the
service using Java:

1. From the Window menu, select Show Views > Other > General > Tasks.
2. Double-click on a TODO item. In the Eclipse editor, you should see the method processData().
3. Add logic that fits your service or adapter.
4. Save the project and regenerate the code.

Adding Parameters to the Service Definition File
In this step you can define service parameters that can be used to configure and control your Service.

To add a parameter to a service:

1. In the Package Explorer, expand the servicedefs node and right-click on <service name>.xml.
2. Select Open With > Service Definition Editor. The following view opens with the parameter group

types displayed.
3. Right click on a parameter group type and select New Group.
4. Type a title for the new group and click OK.
5. Click the new group title to add instructions to the group properties.
6. Add parameters to the group. Right-click on the group title and select New Vardef.
Sterling Commerce, Inc. 16

Steps to Create a Service Using MESA Developer Studio SDK
7. Type a name for the vardef (variable definition) and click OK.
8. Click the new vardef to add properties to this parameter.

9. Complete the following:

Name – Required. Name of the parameter as it will appear to the user. System provided. Cannot
contain spaces.

Type – Required. Java type of the parameter. Default value is string.

HTML Type – Required. HTML input type of the parameter. Valid values are: Text, Select, and
Radio. Default is Text

Label – Required. Cannot contain spaces.

Validator – Optional. Type of validator. Select from the list.

Size – Optional. Number of characters for the parameter display size.

Max Size – Optional. Maximum number of characters allowed for the parameter.

Options – Optional.

10. Click File > Save project.
11. The Language property file (ui/properties/lang/en/<service name>_en.properties) contains label/value

pairs that allow to give labels (for example, variables) a descriptive name in the user interface. If the
language property file does not contain a label for each corresponding entry you will receive an error
message. Right-click on the error message and select Quick Fix.

12. Select the desired fix and click OK. The language property file is updated with the new label and an
editor with the updated language property file displays.

13. Save the language property file.
Sterling Commerce, Inc. 17

Steps to Create a Service Using MESA Developer Studio SDK
Note: Each time a Service Definition file or the language property file is saved, a consistency check
between both files is performed.

Adding Resources to a Service
Depending on the service you are creating, you may need to add third-party files such as BPML, scripts,
databases, properties, libraries, and .jar files. In addition to adding these resources, you can also remove
resources from the project file (the original files are not deleted from their original location). Additionally,
you can create folders for any files you want to add to the service project.

The Service SDK adds these files in the location you specify when you create the service. If you add any of
these resources, you must add the folders described in the table of optional directories. For more
information, see Optional Directories Within a Service.

Writing Log Messages into a Message Log File
MESA Developer Studio SDK supports the user in externalizing log messages strings into separate message
property files which can be used in the Java classes of the service. Service Projects contain the following
java classes for defining Log messages:

✦ Message String Declaration File: <service_name>Messages
✦ Message Property File : <service_name>Resources.properties
To write log messages:

1. Edit declaration file <service_name>Messages. Declare a constant String variable for each log
message you want to use. The declaration has following Syntax: public static String <MessageID>. It
is useful to start the message ID with a component prefix.
Example: public static String ExampleImpl_NoTicketsAvail

2. Edit resource file <service_name>Resources.properties. The log message entries have following
simple Syntax: <MessageID>=<Message_Text>.
Example: ExampleImpl_NoTicketsAvail=No more tickets available

3. Use Log Message in Java Source Code Editor. To write a error message with the XLogger log, the
logError method is used. This takes a string parameter as an argument. To pass the name of the
message string, write "ExampleMessages" then use shortcut "ctrl-tab" to open the Eclipse Java Editor
auto-complete drop-down box, select the log message ID, and hit Return.
Example: log.logError(ExampleMessages.ExampleImpl_NoTicketsAvail)

Creating a serviceinstances.xml File
To create a Service instance:

1. Right-click on the project name and select New > File.
2. In the File Name field, type serviceinstances.xml.
3. Click Finish. A new file is created in the project.
Sterling Commerce, Inc. 18

Steps to Create a Service Using MESA Developer Studio SDK
4. Open the file serviceinstances.xml in an XML editor and define your adapter instance as described in
the previous example.

5. If there is already a serviceinstances.xml file, you can import that file to your project. When you
deploy your adapter package, the adapter instance is created automatically.

Example (Serviceinstances.xml)
In the following example for an serviceinstance.xml file an Adapter instance MyExample is created for the
Adapter Example which is described in the service definition file below. The Adapter Example has only one
instance variable, UserName. In the Adapter Instance MyExample, the instance variable UserName is
configured with the value “Smith.”
<?xml version="1.0" encoding="UTF-8"?>
<services>
<service parentdefname="ExampleAdapter"
name="MyExample"
 displayname="Example Adapter"
 description="Test Instance of ExampleAdapter"
targetenv="all"
activestatus="1"
systemservice="0"
parentdefid="-1">
<parm name="UserName" value="Smith"/>
</service>
</services>

Service Definition File
<SERVICES>
 <SERVICE name=" ExampleAdapter "
 description="example.description"
 label="example.label"
 implementationType="CLASS"

JNDIName="com.mycompany.example.ExampleAdapter"
 type="Adapter"
 adapterType="STATEFUL"
 adapterClass=" com.mycompany.example.ExampleAdapterImpl"
 version="3.0"
 SystemService="NO">
 <VARS type="instance">
 <GROUP title="example.group1.title"
 instructions="example.group1.instructions">

 <VARDEF varname="UserName" type="String" htmlType="text"
 validator=" ALPHANUMERIC " size="20" maxsize="40"
 label="example.username" />
 </GROUP>
 </VARS>
 </SERVICE>

</SERVICES>
Sterling Commerce, Inc. 19

Steps to Create a Service Using MESA Developer Studio SDK
Changing the SDK Library Version
If you need to use SDK Libraries other than those supplied with your version of Gentran Integration Suite
(woodstock.jar and Security.jar), you can switch to a different (older or newer) SDK Library.

To change library versions:

1. Download the required two jar files to the Windows machine where Eclipse and MESA Developer
Studio SDK are installed.

2. Navigate to the directory of your Eclipse installation to the
<Eclipse-root>\plugins\com.sterlingcommerce.mesa.servicesdk_1.0.0\lib directory. The directory
4.1.0-0 that contains the two SDK Libraries (jar files) delivered with this version are listed.

3. On the same level, create a subdirectory containing the name of the additional or new Gentran
Integration Suite version and copy the two jars from step 1 into the new directory.

4. Navigate to the <Eclipse-root>\plugins\com.sterlingcommerce.mesa.servicesdk_1.0.0\res directory.
This directory holds a subdirectory with the Gentran Integration Suite version (same name as in step 2)
that contains a file AntExport.xml which is used by the Export Wizard.

5. Similar to step 3, create in the
<Eclipse-root>\plugins\com.sterlingcommerce.mesa.servicesdk_1.0.0\res directory a new
subdirectory with the name of the other Gentran Integration Suite version (for example, 4.1.0-1).

6. If you did not create a newer AntExport.xml file, copy the file from Gentran Integration Suite version
4.1.0-0 to the new directory. If you have a newer AntExport.xml file you may copy this one to the new
directory.

7. Repeat steps 1 - 6 for all different versions of SDK Libraries you require in the SDK.
8. Start Eclipse and switch the Perspective to MESA Developer Studio SDK.
9. If you want to change the application version of a service that is already created, select SDK Libraries

[4.1.0-0] from your project the directory.
10. Right-click and select Configure.
11. Select from the drop down any of the SDK Libraries you have placed according to steps 1 -6.
12. Click Finish. The new SDK library version is now available from the list in the New Project Wizard.

Exporting a Service for Deployment
Once you have created a service you can package it for installation into Gentran Integration Suite. In this
step, you package all required service resources of your project in a package (Jar-archive) that can be
deployed into a Gentran Integration Suite system.

To build a service package:

1. Select the project you want to export in the Package Explorer. You can package more than one service
at the same time by using the Ctrl key when selecting.

2. Right-click and select Export.
3. In the Export window, select Service Package as the export destination and click Next.
4. Browse to select the destination directory.
Sterling Commerce, Inc. 20

Updating a Service Definition
5. Click Finish. The service package <service name>_<version>.jar is built and placed in the <selected
package folder>/<service name>/dist/<service name> folder. You may be prompted to save resources
before the export is executed.

Note: The export process always exports the entire project even if you selected only one or more of its
subcomponents.

The export process writes to the AntExport.log file in the <destination directory/adaptername> directory for
with the results of the packaging process. The service is now ready to be installed into Gentran Integration
Suite.

Installing a Service into the Application
After you create a service and package the source code, you must install the service package into Gentran
Integration Suite.

Note: Before you install the service package into a production environment, you should install and test it
in a test environment.

To install a service package:

1. From the MESA Studio perspective, choose the instance in which you want to install the package.
2. Right-click and choose Install Service Package.
3. Locate the package file. Click Open.
4. Click Finish and restart the instance.

Updating a Service Definition
Anytime a service definition is modified, the version must be changed in the service definition (.xml
extension) file. When the updated service is exported to your application, the version numbers are
compared. If the new version number is greater, the old service definition is overwrtten in the database by
the updated files.

To update a service definition:

1. Make changes to files for your service as needed.
2. In the Package Explorer, expand your project and open the servicedefs folder.
3. Doubleclick the service definition (.xml extension) file. A service.xml tab appears at the top.
4. Click the Design tab at the bottom and expand SERVICE to display the attributes for your service.
5. Replace the value for the version attribute with the new version number.

Restriction: The new version number must be incremented by a whole number or a decimal. Strings
such as 2.1.1 cannot be used.
Note: Alternately, click the Source tab at the bottom and edit the .xml file directly. Example:
name="FileRename" type="Service" version="3.1"

6. Save and close the service definition (.xml) file.
Sterling Commerce, Inc. 21

Updating a Service Definition
7. Rebuild (export) the service. See Exporting a Service for Deployment.
8. Reinstall the service into the application. If asked whether previous files should be overwritten, click

Yes. See Installing a Service into the Application.
Sterling Commerce, Inc. 22

Working with the MESA Developer Studio
Skin Editor

About the MESA Developer Studio Skin Editor
The MESATM Developer Studio Skin Editor provides an interface where you can quickly change the
appearance or branding of Gentran Integration Suite. This includes basic page colors, images, and
fonts. The Skin Editor allows you to edit all five of the main Gentran Integration Suite templates. You can
change their properties so that they better reflect your company’s brand image. The templates (pages) you
can edit include:

✦ AFT/myAFT
✦ Dashboard
✦ Login
✦ MBI (mailbox)
✦ Admin
✦ Community Management
Basic properties include page colors, images, and fonts. Advanced properties include the use of Cascading
Style Sheets (.css files). Changes are made through the Skin Editor Plug-in in the Eclipse interface. You
download a copy of the current skin, make changes, then upload the revised skin to your Gentran Integration
Suite installation. You can revert to the default skin at any time. Multiple skin versions can be saved for
future use.

Note: Gentran Integration Suite must be running the first time MESA Developer Studio Skin Editor is used
to verify the license and to download and deploy the skin.

Using the Skin Editor
When you open the Skin Editor, you must select a server from the Studio Tree View.
Sterling Commerce, Inc. 23

Using the Skin Editor to Edit a Gentran Integration Suite Template
Retrieving Current Skin
Before editing a template, you must retrieve the current Gentran Integration Suite page skin from the
instance. From the toolbar at the top of the page, select Skin > Download skin.

Note: If the current skin has not been downloaded, you are prompted to retrieve the skin from the instance.

Previewing a Skin
Once you have made changes to the template, you can view the changes by selecting Preview to open the
selected page in the preview pane.

Note: When a template is edited, all other pages sharing the same skin are updated.

Saving Skin Changes
When the skin is ready to be deployed, select Skin > Deploy changes. The changes are saved to the remote
Gentran Integration Suite instance.

Undoing Skin Changes
You can undo the last change made by selecting Skin > Undo skin edit or redo the last change made by
selecting Skin > Redo skin edit from the toolbar at the top of the page.

The original skin can also be reapplied by selecting Skin > Apply default skin. The original skin will be
restored to the remote instance.

Using the Skin Editor to Edit a Gentran Integration Suite
Template
Once the existing Gentran Integration Suite skin is downloaded, you can use the Skin Editor to make
changes to an existing template. The top left view provides a list of editable Gentran Integration Suite pages.
Click on a page to open the property editor in the bottom left view, and open a preview window on the right.

To edit a template:

1. Open Eclipse and select the Skin Editor perspective.
2. Select the UI page type to be edited. The UI colors, image files, fonts, and properties appropriate for

that page type are displayed.
3. Make desired changes and click Save. The changes are displayed in a preview.

Note: You can refresh the view of the current skin at any time to see changes applied.
4. Specify the instance to apply the changes.
5. Test the connection to your instance.
Sterling Commerce, Inc. 24

Using the Skin Editor to Edit a Gentran Integration Suite Template
6. Update the configured instance with the new look and feel information. The system confirms the
update and displays a progress message.

7. You must restart/relaunch Gentran Integration Suite for the changes to take effect.

Using Advanced Editing
Use the advanced editing option in the Skin Editor to edit a Cascading Style Sheet (.css file) to your skin. If
your company uses an existing style sheet for other applications, you can add it to the Skin Editor and use
it to customize Gentran Integration Suite so that it will match your other applications.

You can also use advanced editing to views and makes changes to either the default UI settings, or the UI
settings for the specified page type.

Restoring the Default Skin
You can restore the default skin that was included with Gentran Integration Suite at any time by selecting
Skin > Apply default skin.
Sterling Commerce, Inc. 25

Gentran Integration Suite Architecture

Introduction to Gentran Integration Suite Architecture
Gentran Integration Suite executes customer-specific business processes. An XML-based business process
model directs the order of all processing activities in the application. This process model makes Gentran
Integration Suite adaptable to a variety of processing situations.

Business Process Definitions
Gentran Integration Suite business process definitions are based on the draft Business Process Modeling
Language (BPML) specification from the Business Process Management Initiative (www.bpmi.org).
Because business process definitions are stored in XML, a business analyst can define business processes
in several ways. An analyst can create definitions using a graphical editor, simple text editor, or any
graphical process editor that can export the XML format recognized by Gentran Integration Suite.

The following figure shows a business process. A circle represents activities and a diamond represents a
decision point.

Translate Document Report Error

Process Document

Is Total > Max?

No

Yes
Sterling Commerce, Inc. 26

http://www.bpmi.org
http://www.bpmi.org
http://www.bpmi.org
http://www.bpmi.org

Introduction to Gentran Integration Suite Architecture
Services
The application views every activity in a business process as a service. A service can initiate:

✦ Legacy programs
✦ ERP systems
✦ Perl scripts
✦ Java code
✦ Decision engines
✦ Any computer program
A service in a business process can also invoke another business process, making that business process a
subprocess. If the subprocess changes, the changes are reflected in all business processes that include that
subprocess.

The following figure shows a subprocess:

Gentran Integration Suite supports reuse of business processes. Reuse enables you to determine what should
be implemented as a service, a business process, or subprocess.

Reuse also enables a business analyst to work with information technology staff to determine whether the
business processes should be written with multiple reusable components or as a single large service. For
example, RosettaNet™ support can be implemented as multiple activities strung together to form a business
process or as a single service.

Service 4 Service 5
Invoke BP A

Service 1 Service 2 Service 3

Business Process A

Business Process B (Business Process A is a Subprocess)
Sterling Commerce, Inc. 27

Components of a Service
Types of Services
There are several basic types of services in Gentran Integration Suite. The following table describes the
various service types:

Adapters
Adapters are services that interact with external systems.

For more information about starting a business process, see Starting a Business Process.

Components of a Service
Every service accepts a business process state and produces a modified business process state or workflow
context (WFC). Every service also has a harness. For the service, the harness performs the following
functions:

1. Receives the input WFC
2. Extracts the information from it that the service needs
3. Runs the service
4. Places the results from the service in a new WFC or output for future steps in the business process

workflow

Type Description

Internal Services that are completely inside Gentran Integration Suite.
Although internal services accept parameters and produce results, they do not directly
interact with external systems (systems outside Gentran Integration Suite).

Input Services that must receive data from external systems.

Output Services that must send data to external systems.

Transport Adapter Services that use communications protocols like FTP and HTTP to bring data into Gentran
Integration Suite.

Application Adapter Services that interact with external application systems.
Sterling Commerce, Inc. 28

Components of a Service
The following figure shows a business process:

Example of a Service
To call an inventory system, the harness extracts the product ID from a document, sets up the calling
parameters, sends the request to the external inventory system, extracts the inventory status from the return,
and puts the appropriate status code in the workflow context.

Workflow Context
The workflow context (WFC) represents the business process state after each service has run. The WFC
input to a service is written to a database. The service is complete after the new WFC is placed in persistent
storage. Thus, the collection of persisted WFCs represents the state of all business processes in Gentran
Integration Suite.

If Gentran Integration Suite stops, it can be restarted from the persisted WFCs by finding the most recent
WFCs and sending those requests to the appropriate services. Internal services can be restarted
automatically but external services require user intervention to restart them.

Basic Service Framework
The basic service framework or harness model enables Gentran Integration Suite to view all services
similarly. For example, both the Translation service and the File System adapter have harnesses. Although
these are different services, they support the same API as represented by the harnesses.

Sometimes an adapter harnesses a system that is outside the control of Gentran Integration Suite (for
example, SAP®). Having a harness that presents a consistent interface to the rest of the system is very
important. The harness is generic but the adapter is specific to the system with which it interacts to send and

Base ServiceWFC WFC

Service

Harness
Sterling Commerce, Inc. 29

Relationship Between Business Processes and Services
receive requests. Using the basic framework, you can start, configure, and stop an adapter for an external
system in the Gentran Integration Suite interface. The actual operations of the external system are separate.

The harness also provides better performance. For example, the harness wrapped around the Translation
service caches and reuses translation maps. The actual Translation service is unaffected by this action. This
independence is especially important when the wrapped service is outside the control of Gentran Integration
Suite.

Split and Join
Through the use of a split, a single business process can have multiple services running simultaneously.

A WFC reflects the status of only one thread or instance of the business process. A join enables the multiple
instances to be collected to create a single WFC.

The following figure shows a business process with a split and a join:

Special Service Capabilities
Gentran Integration Suite supports the following unique capabilities, which afford you great flexibility with
managing services:

✦ Large file support – The ability for services to handle files larger than available memory. This can be
an effective way to help manage load sharing.

✦ Service groups – The ability to group “like” services together and treat them as a pool of services
✦ Storage types – The ability to select the document storage type for a service, such as Database, or File

System
For more information about these topics, see the Service and Adapter Guide.

Relationship Between Business Processes and Services
Before you can run a business process definition, you must validate and compile it. Validation ensures that
all activities in the business process definition are configured appropriately.

Compilation breaks the definition into smaller chunks: a header and entries. The header specifies global
properties of the business process definition. Each service within the definition has an entry. The compiled

A B Split

C

F

D

G

E

Join H

Business Process
Sterling Commerce, Inc. 30

Relationship Between Business Processes and Services
information for each service includes all outbound edges, from that service to subsequent services and the
parameters that they require. Outbound edges use service status to direct the flow of execution from one
service to another.

Example of Outbound Edges
If Service A returns success or failure, its success outbound edge directs processing to continue to Service
B, whereas its failure outbound edge directs processing to continue to Service X.

Gentran Integration Suite stores the compiled information for each service in the compiled ActivityInfo.
ActivityInfo contains an abstract description of the service, such as Translate the current document using
map 5.

Compilation enables Gentran Integration Suite to predetermine the start node of a business process. This
capability makes the business process easy to instantiate and run and prevents Gentran Integration Suite
from repeatedly parsing XML. Compilation also reduces the number of database queries because the
next-step pointer is stored in the current activity information.

Starting a Business Process
Gentran Integration Suite supports dynamic selection (bootstrapping) of business processes. To specify
dynamic selection of a business process, configure an adapter to select a business process definition by
matching one or more adapter properties. For example, when a user creates an HTTP Server adapter
configuration, the user specifies a uniform resource identifier (URI) and then selects either a business
process definition or .war file specific to that URI. The user can create many HTTP Server adapter
configurations with different URIs, each of which invokes a business process.

Input data enters Gentran Integration Suite through an input adapter. An input adapter performs the
following functions:

✦ Receives data from an external system
✦ Puts the data and any metadata into an initial workflow context (IWFC)
✦ Calls the IWFC start method to start the business process, which causes a business process definition

to be found and instantiated for the input data
If the input data requires Gentran Integration Suite to start a new process, then the following steps take
place:

1. A new WFC is created.
2. The WFC is put in persistent storage.
3. Gentran Integration Suite starts the associated business process.

Many-to-Many Relationship
Gentran Integration Suite bootstrapping creates a many-to-many relationship between adapters and business
process definitions. Using the metadata given to the IWFC, one adapter can start several business processes.
Sterling Commerce, Inc. 31

Relationship Between Business Processes and Services
Conversely, several adapters can start the same business process. A many-to-many relationship between
adapters and business process definitions enables Gentran Integration Suite to focus on business problems,
not just on how data arrives.

Making an input adapter the first step in a business process impairs the many-to-many relationship and
keeps the business process from being reused as a subprocess.

Business Process Definition Fails to Start
If an adapter tries to start a business process definition that does not exist or is disabled, Gentran Integration
Suite saves the request to start the business process definition and any related documents within Gentran
Integration Suite. The user can use the business process monitor to view error messages for any business
process definitions that failed to execute.

✦ If the business process definition cannot be found, the user can do an advanced restart and select a
different business process definition, which uses the same input data.

✦ If the business process definition is disabled, then when the user enables that business process
definition, Gentran Integration Suite automatically resumes any instances of that business process
definition that stopped.

To ensure that an adapter catches the InitialWorkFlowContextException, code its logic accordingly:
{
 iwfc.start()
}
 catch (InitialWorkFlowContextException)
 {
 //do not delete our data here if this happens
 //set the appropriate response to the user
 }

To enable an adapter to start a business process with more than one document, code the following
commands:
//for a single document
Document doc = new Document();
etc.
iwfc.putDocument(doc)
//for more than one document
Document doc1 = new Document();
etc.
Document doc2 = new Document();
etc.
iwfc.putDocument(name1, doc2);
iwfc.putDocument(name2, doc2);

name1 and name2 are unique keys for the document within Gentran Integration Suite. When there is only
one document, Gentran Integration Suite assigns the unique key of PrimaryDocument.

If a service needs to write more than one document, the service calls:
wfc.putDocument(name, doc);

For a single document, the service calls:
wfc.putDocument(doc))
Sterling Commerce, Inc. 32

Gentran Integration Suite Components and a J2EE Environment
To get a specific document from a set, the service calls:
wfc.getDocument(name)

Running a Business Process
When a business process starts, the workflow engine (WFE) executes the services defined in the business
process definition and the WFE creates a workflow context (WFC) from the initial workflow context
(IWFC). The WFE uses the compiled ActivityInfo to get information about the first service to call. Next,
the WFE puts the WFC on the JMS queue, so that the client initiating the business process does not wait for
it to complete.

The WFE analyzes the compiled information to determine the current activity (service) that needs to be run.
This information is stored in the compiled ActivityInfo. The ActivityInfo contains an abstract description
of the service.

The WFE determines, for example, how the Translation service has been configured to run.

The following figure shows the execution cycle:

The JMS queue acts as a hand-off point. It does more than routing—it guarantees that the Java thread of
execution is not interrupted during the running of the business process. The listener attached to the JMS
queue is a lightweight activity engine. The activity engine takes the WFC off the JMS queue and invokes
the service. Logically part of the workflow engine, the activity engine calls the service, takes the results from
the service, and immediately starts the next cycle, determining the service that needs to be called and
requesting that service on the JMS queue.

When configured properly, the usejms property of Gentran Integration Suite enables the activity engine to
cycle-call the service directly. Cycle calling avoids the cost of using the JMS queue. However, cycle-calling
also limits the clustering capabilities of application servers.

The activity engine can determine the next service because the harness has analyzed the service results and
set the state values in the WFC. The activity engine consults these values to determine the next activity. The
activity engine uses the return code from the current service to choose the next activity from a set of
potential activities listed in the current ActivityInfo.

Gentran Integration Suite Components and a J2EE
Environment
Gentran Integration Suite is written in Java and runs in a container proprietary to Sterling Commerce. This
container allows Gentran Integration Suite to be independent of, yet integrate with popular J2EE application

Workflow Engine JMS Queue Activity Engine Service Harness
Sterling Commerce, Inc. 33

Gentran Integration Suite Components and a J2EE Environment
servers through standard means such as EJB and JCA clients. For the development of adapters, the service
architecture provides a clear separation of concerns. There are two parts to each Adapter Implementation:
the Service Harness Implementation that provides interaction and interface with the workflow engine, and
the Service Adapter Implementation, which provides the interface to the external system. This allows the
Service Adapter Implementation to run independently of the container if necessary, and gives more
implementation options for the developer. For services that have no need to interface beyond the process
boundary of Gentran Integration Suite, the implementation can be done with the harness.

Service Harness Implementation and Service Adapter Implementation
To overcome these restrictions, Gentran Integration Suite adapters are composed of two parts: Service
Harness Implementation, the part of the adapter inside the ASI container; and Service Adapter
Implementation, the part outside the ASI container. Services do not have a Service Adapter Implementation
component.

The following figure shows an adapter implemented as Service Harness Implementation and Service
Adapter Implementation:

The Service Harness Implementation automatically scales and is portable across clusters because it is
instantiated from within the ASI container. The Service Adapter Implementation is tied to a specific
computer. The Service Harness Implementation can even move around from one call to the next. The
Service Adapter Implementation, however, is fixed next to the resource it is accessing.

Example of Service Harness Implementation and Service Adapter Implementation
A cluster of computers in a ASI environment has private disk space on one computer. The Service Adapter
Implementation portion of the File System adapter must be on the computer that can access the disk. The
Service Harness Implementation portion of the File System adapter, however, can run in any container on
any computer.

a A

ASI Environment

ASI Container
Sterling Commerce, Inc. 34

Gentran Integration Suite Components and a J2EE Environment
In the following figure, the Service Harness Implementation is moved to a different container in a different
Java VM:

B2B Server
The application includes a business-to-business (B2B) server. The B2B server can be viewed as an
independent system.

The following figure shows a traditional model of B2B and enterprise application integration (EAI):

However, within Gentran Integration Suite it is more appropriate to view the B2B server as a complex
adapter. The B2B server has a two-part Service Adapter Implementation. One part runs in the DMZ and one
part runs in the ASI environment.

ASI Environment

Java Virtual Machine Java Virtual Machine

Service
Controller

Operations
Controller

Service
Controller

Operations
Controller

ASI Container ASI Container

Operations Server Operations Server

a A A

Outside

Firewall Firewall

B2B EAI (Broker)

DMZ
Secure

Internal Area
Sterling Commerce, Inc. 35

Gentran Integration Suite Components and a J2EE Environment
The following figure shows a B2B server as a complex adapter:

Secure DMZ
The part of the B2B server that runs in the DMZ performs communications activities only. It stores no data.
Trading profiles are stored in the secure area where Gentran Integration Suite resides. The part of the B2B
server in the DMZ can run in a simple Java Virtual Machine (JVM) or a complete ASI environment.

The part of the B2B server in the DMZ and the part of the B2B server inside the secure area communicate
as if they were separate systems and not part of a single ASI environment.

Service and Operations Controllers
The application service and operations controllers monitor and manage executing services and workflows
within the application environment. These controllers free system operators and business analysts from
having to attend to application-server details.

Service controllers provide a single place within a VM to manage, configure, query, and cache all
service-related information. They also enable Gentran Integration Suite to scale and manage the Service
Adapter Implementation parts of adapters. There is one service controller per VM in the ASI Container.

Operations controllers manage resources across VM boundaries. You can have multiple operations servers
for redundancy and several embedded components, one per VM. Operations servers provide a single point
of contact for all operational questions.

Outside
a AB2B

Comm

ASI Environment
(Sterling Integrator)

ASI ContainerComplete B2B

firewall firewall
Sterling Commerce, Inc. 36

Gentran Integration Suite Components and a J2EE Environment
The following figure shows the service and operations controllers:

ASI Environment

Java Virtual Machine Java Virtual Machine

Service
Controller

Operations
Controller

Service
Controller

Operations
Controller

ASI Container ASI Container

Operations Server Operations Server
Sterling Commerce, Inc. 37

Reference Information for Developing a
Service

In addition to knowing how to use MESATM Developer Studio SDK, you need to understand the following
concepts to develop a service for Gentran Integration Suite.

This section covers the following topics:

✦ Service Architecture Summary
✦ Workflow Context
✦ Service Controller
✦ Error and Status Reporting
✦ Configuring Services
✦ Logging Service

Service Architecture Summary
An adapter interacts with external systems to get data in and out of Gentran Integration Suite. Typically, an
adapter consists of a harness, a Remote Method Invocation (RMI), and files that enable the adapter to be
used in the Gentran Integration Suite interface.

Harness
The harness part of the adapter must implement the processData() function, which the activity engine calls
whenever it has work for the adapter to perform. This function can be called to push data out of the system
or signal that data needs to be collected.

RMI (Service Adapter Implementation)
Preferably, most of an adapter workload should reside in the Service Harness Implementation. The Service
Implementation exists mainly to allow for a separation of concerns from the harness.
Sterling Commerce, Inc. 38

Workflow Context
Typically, adapters do some work that would be inefficient or hindering operating completely within the
ASI Container. For example, the service implementation can be set up to wait for data to arrive and to
periodically poll the external system for data.

Service XML File and Language Files
For a service to appear in the Gentran Integration Suite user interface and to be configured, XML entries
must be added to the service.xml file with its associated language file.

For more information about language properties, see Language-Specific Properties Files and Service XML
File.

Scalability
Services in Gentran Integration Suite are scalable: For adapters, the Service Implementation creates a new
thread to service each new request it receives. The Service Implementation is multi-threaded by default. You
do not need to write additional code.

Workflow Context
The workflow context API encapsulates a basic unit of work, including all parameters required by the
adapter to act on that unit of work.

The workflow context maintains the state of the business process from service to service. It contains, among
other things, the document being manipulated by the business process. This is also where each service
reports errors and status. The Gentran Integration Suite infrastructure is designed to persist the workflow
context between steps.

The workflow context contains several components:

✦ Input Parameters – Retrieve parameters before beginning the operation
✦ Workflow Document Body – Set up the document body
✦ Error Reporting – Set up status and error reporting

Input Parameters
A service should have all of its parameters before doing any of its core logic. The workflow context provides
the getWFContent method to retrieve parameters:
getWFContent(String parmName);

The getWFContent method retrieves a named input parameter from the workflow context. It gets global
(service type), copy (service configuration), and WFD (workflow definition or business process definition)
level parameters.
Sterling Commerce, Inc. 39

Workflow Context
WFD parameters override service configuration parameters, which override service type parameters. If the
workflow content message contains a string value with the parmName requested in the getWFContent
method call, then the value in the workflow content hash table overrides all other values.

The hash table can contain any type of object. The getWFContent method enables a parameter to override
a higher-level parameter only if its value is stored as a string in the hash table.

For example, the following string would retrieve an input parameter named URL:
String url = getWFContent("URL");

The service may need to get a parameter passed at run time by a previous service. If the parameter is not a
service type, service configuration, or WFD parameter being overridden, then the service calls:
getWFContent(parmName);

Workflow Document Body
A typical service or adapter operates on a document contained within the workflow context. The document
contains the body of the document, information about the name of the body, and metadata that describes the
document.

To retrieve the document from the workflow context, use the getPrimaryDocument method:
getPrimaryDocument(document);

Here is an example:
Document doc = wfc.getPrimaryDocument();
if(doc == null) { // no document?

theAdapterLog.logError("Required document not found");
wfc.setBasicStatusError();
sci.unregisterThread();
return wfc;

} // end if

byte[] body = doc.getBody();

After the document is retrieved, you can obtain the body of the document by using the getBody method:
getBody(body);

The following example shows a new document body inserted into the workflow context:
Document document = wfc.createDocument();
document.setBody(body);
document.setBodyName("somename");
wfc.putPrimaryDocument(document);

Error Reporting
Another important component of the workflow context is status and error reporting. The workflow engine
requires an adapter to return status information at the completion of the requested activity. The requesting
business process uses this information to make decisions that control business process flow. Status is
reported within the workflow context.

For more information about error reporting, see Error and Status Reporting on page 44.
Sterling Commerce, Inc. 40

Service Controller
Service Controller
The service controller is a unified framework that all adapters use to remove application-server
dependencies.

The service controller is also responsible for starting and stopping the adapter.

Stateless and Stateful Adapters
Stateless and stateful adapters differ at the object level. For stateless adapters, the service controller
instantiates one object that services all configured copies of the adapter. Each request to the Service
Implementation of the adapter must be a complete request, because states cannot be maintained between
requests. For stateful adapters, the service controller instantiates one object for each configured copy of the
adapter.

Instance variables for RMI objects are not useful because multiple threads (or, in the case of stateless
adapters, multiple copies of the adapter) have access to the same instance variables, as if they were class
variables.

Method variables are unique to the invocation of the method, so they are acceptable to use.

Service Controller Interface
An adapter is composed of two parts:

✦ A harness that is the interface to the workflow engine
✦ An RMI server that communicates with external systems
The following code example shows how the adapter processData method:

1. Registers with the service controller
2. Finds its RMI service
3. Invokes an RMI method
4. Unregisters with the service controller
5. Returns to the following code to the workflow engine:
String svcName = wfc.getServiceName;
ServicesControllerImpl sci = ServicesControllerImpl.getInstance();
sci.harnessRegister(new Integer(wfc.getWorkFlowId()).toString(),
 svcName);
 try{
 rmi = (Yourserver)sci.getAdapter(svcName);
 }
 catch(Exception e){
 wfc.setBasicStatusError();
 sci.unregisterThread();
 return wfc;
 }
 if (rmi == null){
Sterling Commerce, Inc. 41

Service Controller
 wfc.setBasicStatusError();
 sci.unregisterThread();
 return wfc;
 }
 try {

// request “Service Adapter Implementation” to do work
 rmi.someRMIMethod(parms, xmlInBytes);
 }
 catch(Exception e) {
 wfc.setBasicStatusError();
 sci.unregisterThread();
 return wfc;
 }

This code example uses the following methods to accomplish its work:

Service Controller Interface – RMI
The IAdapterImpl class provides the following methods for use in the Service Implementation of the
adapter:

Method Description

harnessRegister(workflowID, serviceName) Assists the service controller in its monitoring and control
functions. The harnessRegister should be called at the
beginning of the processData method.
Returns – None.

UnregisterThread() Assists the service controller in its monitoring and control
functions. It should be called before the return of the
processData method.
Returns – None.

Method Description

startup() The service controller calls startup() after a stateful adapter is
created. Startup() should perform all setup and initialization
necessary for the adapter to function correctly.
This method returns a Boolean value. A true return indicates
that startup was successful.
Sterling Commerce, Inc. 42

Service Controller
shutdown() The service controller calls the shutdown() method when a
stateful adapter shutdown is required. shutdown() should
perform all operations necessary to shut down the adapter.
In the case of a multi-threaded adapter, shutdown() must
ensure that all of its threads are stopped before returning to
the service controller. shutdown() should wait for threads that
are performing work directly for a workflow to become
quiescent. The adapter can stop threads that are waiting for
external input.
The IAdapterImpl base class provides the methods
interruptThreads() and stopThreads() to assist in shutting
down errant threads.
As an additional assistance to the shutdown() method, the
base class provides a count of registered threads. This count
can be found in the invokes variable. The shutdown() method
should poll this variable no more than once a second, waiting
for it to decrement to zero. Note that the shutdown thread
does not appear in this count.
If the adapter has threads that listen on sockets, the invokes
count may never go to zero. The shutdown() method will need
to account for this case.
The service controller will not wait indefinitely for shutdown()
to fulfill its responsibilities. The adapter can configure the
time-out period by overriding getShutdownTimeout(). The
service controller enables shutdown() the amount of time
returned from getShutdownTimeout(), and then the shutdown
thread is terminated.
This method returns a Boolean value. A true return indicates
that the shutdown() method completed successfully.

refresh() The service controller calls refresh() when the configuration
changes for a stateful adapter. refresh() should perform all
setup and initialization necessary for the adapter to function
correctly.
If an adapter maintains a connection or connections to an end
system, and the connectivity configuration changes, refresh()
should return a false value to the service controller. In this
case, the service controller shuts down the adapter and then
restarts it. This action prevents workflows from trying to invoke
the adapter while connectivity changes are occurring.
This method returns a Boolean value. A true return indicates
that refresh() completed successfully. A false return indicates
that the adapter did not refresh, in which case the service
controller shuts down the adapter and then restarts it.

Method Description
Sterling Commerce, Inc. 43

Error and Status Reporting
Error and Status Reporting
The workflow engine requires a service to return status information at the completion of the requested
activity. The requesting business process uses this information to make decisions that control business
process flow.

Three types of status information are returned to the workflow engine:

✦ Basic status
✦ Advanced status
✦ Exceptions

Basic Status
Basic status is the overall status of the work performed by the service.

getShutdownTimeout() The service controller calls getShutdownTimeout() to
determine how long to wait for shutdown to complete before
terminating the adapter threads.
A default implementation provided in the base class returns
60 seconds.
This method returns the period for shutdown to complete, in
milliseconds.

interruptThreads() The interruptThreads method is provided in the base class to
assist the adapter shutdown() method in shutting down its
active threads. interruptThreads() calls the interrupt method
on each active thread and assists in a graceful shutdown
where possible.
Returns – None.

stopThreads() The stopThreads method is provided in the base class to
assist the adapter shutdown() method for active threads.
stopThreads() terminates every active thread.
Returns – None.

registerThread() The registerThread method assists the service controller in its
monitoring and control functions. registerThread() should be
called at the beginning of each method called by the Service
Harness Implementation portion of the adapter.
Returns – None.

unregisterThread() The unregisterThread method assists the service controller in
its monitoring and control functions. unregisterThread()
should be called at the end of each method called by the
Service Harness Implementation portion of the adapter.
Returns – None.

Method Description
Sterling Commerce, Inc. 44

Error and Status Reporting
setBasicStatus(status)

For example:
setBasicStatus(com.sterlingcommerce.woodstock.workflow.WorkFlowContext.ERROR);

Advanced Status
The advanced status is a modifier for the basic status. Reporting the advanced status requires the service
writer to analyze the service error categories. Business analysts use the list of advanced errors to test for
error conditions. The list should be representative, but not long.

The workflow context provides the following method for setting advanced status:
setAdvancedStatus(String advancedStatus);

Exceptions
An exception indicates a possible failure condition. A service may need to generate a workflow exception
when a required input parameter is:

✦ Missing
✦ Invalid
✦ Disabled. For example, a map or a workflow definition is disabled.
Use the following syntax to construct an exception:
new WorkFlowException(String errorText, int reasonCode)

Workflow exception reason codes are:

✦ public final static int GENERAL_PARM_ERROR = 0; (Default)
Use this in situations that require, for example, missing properties files.

✦ public final static int MANDATORY_PARM_MISSING = 1;
✦ public final static int INVALID_VALUE_FOR_PARM = 2;
✦ public final static int RESOURCE_DISABLED = 3;
✦ public final static int NO_DOCUMENT = 4
The workflow engine places the error text string for the workflow exception into the status report.

Status Report
The service can add text describing the activity performed to the workflow context. The workflow context
uses the following method for this purpose:
setWFStatusRpt(“Status_Report”, String statusReportText);

A status report is available to view if an Info icon appears in the Report column. Click the icon to display
the status report for that service. You can view the status report text from the Gentran Integration Suite
interface.
Sterling Commerce, Inc. 45

Configuring Services
Successful Invocation
Use the Gentran Integration Suite interface to view the progress of a business process as it executes; use the
business process monitor to view details after a business process has run. When a service is successfully
invoked, the Status column displays Success. This display is a result of calling the setBasicStatusSuccess()
method in the workflow context. In this case, the advanced status does not need to be set.

Unsuccessful Invocation
An unsuccessful invocation of an adapter or service should result in the Status column displaying Error.
This display is a result of calling the setBasicStatusFailure() method in the workflow context. The
setAdvancedStatus() method is also called to give additional information about the failure condition.

Configuring Services
The Gentran Integration Suite console can be set up to prompt for configuration information specific to the
service being developed. Simple service configuration does not require you to write any Java code. The only
requirement is that the service XML file is set up to specify the information to be collected.

To set up the Gentran Integration Suite console, you must use the following files:

✦ Language-specific properties files – Provide screen text in the language chosen by the user
✦ Service XML file – Describes the information collected at configuration time

Language-Specific Properties Files
The language-specific files should exist for each service XML file. It is also the custom to pick a two- or
three-character service abbreviation for the service and prepend this abbreviation to each language-specific
property name. For example, for a file system, fs would indicate file system and look like fs.label or
fs.description. This convention helps to guarantee that the language-specific property names are unique.

Here is an example of a language-specific properties file:
fs.label = File System Adapter
fs.description = Collects and Extracts files from a file system.
fs.wfd.group1.title = Workflow Properties
fs.wfd.group1.instructions = Specify the appropriate workflow settings.
fs.instance.group1.title = Collection
fs.instance.group1.instructions = Specify the appropriate settings for collecting
data using the File System Adapter.
fs.action = Action
fs.cfolder = Collection Folder name
fs.efolder = Extraction Folder name
fs.pollinterval = Poll Interval (mins)

Service XML File
Here is an example of the service XML file:
Sterling Commerce, Inc. 46

Configuring Services
SERVICE name="FileSystem" description="fs.description" label="fs.label"
implementationType="CLASS" JNDIName="FileSystemEJBHome" type="Adapter"
adapterType="STATELESS"
adapterClass="com.sterlingcommerce.woodstock.services.filesystem.FileSystemServerImp
l" version="1.0" SystemService="NO">

The following table describes the variables in the service XML file:

<VARS> Tags
Inside the <Service> tag are <VARS> tags. The <VARS> tags contain definitions of configuration items to
collect from the user. Three types of <VARS> tags correspond to the scope of the configuration:

✦ global – The widest possible scope, applicable to all adapters of this type. Configuration parameters
are displayed in the Deployment > Services > Installation/Setup section.

✦ instance – Limited in scope to a single instance of an adapter. Configuration parameters are displayed
in the Deployment > Services > Configuration section.

✦ wfd – Workflow definition configuration for use only by the Graphical Process Modeler. The primary
purpose of this tag type is to define the possible configuration that can be made in the workflow
definition. Because the configuration is defined here, the Graphical Process Modeler can display the
possible configuration to the user.

<VARS> Tag Example
Following is a sample <VARS> tag:
<VARS type="instance">

<GROUP> Tags
Inside the <VARS> tags are <GROUP> tags. <GROUP> tags group configuration information by page. The
<GROUP> tag is part of the <VARS> tag and contains title and instructions.

Variable Description

name Descriptive name of the service

description Description in language-specific form

label Descriptive name in language-specific form

implementationType Either RMI or CLASS

JNDIName Lookup name of the service

type Either Adapter, basic, Advanced, Split, or Join

adapterType Either STATEFUL or STATELESS

adapterClass Class name of the Service Implementation of the adapter

version 1.0. This value is system-assigned when a new project is created and must be
updated when changes are made to the service definition.

systemService NO for adapters
Sterling Commerce, Inc. 47

Configuring Services
✦ title – The title of the current page
✦ instructions – Help about what the user is supposed to do with the current page.

<Group> Tags Example
Following is a sample <Group> tag:
<GROUP title="fs.instance.group1.title"
instructions="fs.instance.group1.instructions">

<VARDEF> Tag
Inside the <GROUP> tag is the <VARDEF> tag.

The following table describes the <VARDEF> tag elements:

The following example shows how all of the tags work together:
<VARS type="instance">
 <GROUP title="fs.instance.group1.title"
instructions="fs.instance.group1.instructions">
<VARDEF varname="collectionFolder" type="String" htmlType="text"
validator="ALPHANUMERIC" size="30" maxsize="250" label="fs.cfolder" />
 <VARDEF varname="useSubFolder" type="String" htmlType="radio"
validator="ALPHANUMERIC" options="radio2" label="fs.subfolders" />
 </GROUP>
</VARS>

Tag Type Description

varname Name of the Java property that a service uses to retrieve data collected from
the user.

type Type of the input, normally String.

htmlType Type of input you are retrieving from the user.
Normal textual information is htmlType text, radio buttons are specified with
radio, and password information can be retrieved with the htmlType Password.
For text area, specify textarea. For drop-down list, specify the htmlType select.

validator Validation types—for example, ALPHANUMERIC specifies that only alphabetic
and numeric characters are accepted as input. NUMBER and NUMERIC
specify only numeric validation.

label Description of the configuration to be entered by the user.

size Field size that displays to the user when collecting information.

maxsize Maximum number of characters the user can enter for this variable.

required=NO Specified only if the variable is not required.

defaultVal Default value that is useful only if the VARS type is wfd.
Sterling Commerce, Inc. 48

Logging Service
Logging Service
This section provides general guidelines for logging from a service in the Gentran Integration Suite
framework. The Logging service is a unified framework for logging messages.

Because services may have different needs and functions, apply the following guidelines only with a good
understanding of the service logging output.

Logging Event Guidelines
The following table lists the guidelines for the types of events to log for each logging method:

Method Guideline

Error Log any non-exception occurrence that would cause the intended operation of
the service to fail.
Examples

Communication failed to external system

Invalid input data

Exception Log any checked exceptions that are the result of an error or fault. Exceptions
that are handled by the service should not be logged with logException.
Example
Any caught exception that is not handled by the adapter

Warn Log any system disruption that is neither fatal nor a handled exception. Also log
any notifications of possible error conditions.
Examples

Connection to external resource is lost while no processing is occurring

Disk space limits

License file expirations

Debug Log anything that is useful information for development/debugging purposes,
including general processing information and functionally relevant occurrences.
Examples

Entering and exiting of major methods

Method input parameters

Method return values

Parameter values (setting and getting)

Initiation and completion of operations
Sterling Commerce, Inc. 49

Logging Service
XLogger Logging
The XLogger class provides a unified log output, which includes the following:

✦ Module name
✦ Thread ID
✦ Service name
This class can also be used in stateful RMI adapters (Service Adapter Implementation’s).

For more information about RMI logging, see RMI Logging on page 50.

EJB Logging
In the Service Harness Implementation of the adapter, the service name is available in the workflow context
and can be used in the constructor when creating an XLogger copy.

For example, use this form of the constructor at the beginning of the processData method:
adapterLogger = new XLogger(classsName, getServiceName());

The adapterLogger should be an instance variable of type XLogger.

RMI Logging
For the Service Implementation of the adapter there are two approaches, depending on whether the adapter
is stateless or stateful.

For stateless adapters, there is only one object created for all copies of the adapter. Therefore, instance
variables are shared by all copies of the adapter.

The service name is not available to the Service Implementation of a stateless adapter from the Gentran
Integration Suite infrastructure. The EJB must pass the service name to the Service Implementation of the
adapter. The service name should not be used in the constructor when creating an XLogger copy—for
example, adapterLogger = new XLogger(classsName). AdapterLogger should be a class variable of type
XLogger. In this case, use the logging method that includes the service name.

For stateful adapters, there is an object created for each copy of the adapter, but all the threads of that adapter
copy share the same object. Therefore, all threads of an adapter copy share instance variables.

Log Log anything that should always appear in the log file. This method sends
messages to the default log regardless of log level.
Examples

Adapter StartUp

Adapter ShutDown

Adapter Refresh

Connection to external systems

Method Guideline
Sterling Commerce, Inc. 50

Logging Service
The service name is available to the Service Implementation of a stateful adapter from the Gentran
Integration Suite infrastructure by calling getServiceName().

The following is sample code:
adapterLogger = new XLogger(classsName, getServiceName());

The adapterLogger should be a class variable of type XLogger. The easiest way to do this is to construct a
new XLogger if one does not already exist.

XLogger Logging Methods
You can use the XLogger logging methods in the EJB and RMI parts of the adapter. However, the
availability of the service name varies.

Use the XLogger methods for logging from adapters. These methods format the class name and the service
name provided along with a thread identifier, and add the message to be logged. The result is a log message
that includes date/time, class name, service name, thread ID, and message.

The following table describes the XLogger class methods and indicates where they are used:

LogService Logging Methods
The LogService class provides the following static logging methods. Use these methods at any time in an
EJB or RMI part of an adapter. Because each method implies a different logging threshold, some general
usage guidelines are provided.

Method Used by Stateful
RMI and EJBs

Used by Stateless
RMI

XLogger(String ClassName) Constructor

XLogger(String ClassName, String ServiceName) Constructor

logError(String ServiceName, String message) Logging errors

logError(String message) Logging errors

logException(String ServiceName, String message,
Exception e)

Logging fault exceptions

logException(String message, Exception e) Logging fault exceptions

logWarn(String ServiceName, String message) Logging warning messages

logWarn(String message) Logging warning messages

logDebug(String ServiceName, String message) Logging debug messages

logDebug(String message) Logging debug messages

log(String ServiceName, String message) General logging

log(String message) General logging
Sterling Commerce, Inc. 51

Logging Service
Each log message generated through LogService has a timestamp and logging level. You must supply the
name of the originating class and a message.

The following sample code shows an example:
[2001-06-12 12:46:55.381] ALL [SiebelEJBBean] Hello World

The following table lists the log methods and general guidelines for their formatting:

Note: For the BPML specifications that Gentran Integration Suite accepts, see the Gentran Integration
Suite Business Process Guide.

Timestamp Logging Level Originating Class Message

[2001-06-12
12:46:55.381]

ALL [SiebelEJBBean] Hello
World

Method Format Guideline Example

logError() [Class name] General business error. Specific
application error.

[SiebelEJBBean] Error: Adapter unable
to process request. Action parameter is
null.

logException() [Class name] General business error. Specific
application error.
The logException() method requires both a
message and an exception. This method logs the
exception name and stack trace.

[SiebelEJBBean] Exception: Adapter
unable to process Read request. Unable
to connect to the file system server.

logWarn() [Class name] General Warning. Expected results or
recommended actions to be taken.

[SiebelEJBBean] Warning: Available disk
space is less than 1 GB. Delete
unnecessary files.

logDebug() [Class name] Debug message [SiebelEJBBean] Entering ProcessData
method.

log() [Class name] Log message [SiebelEJBBean] Adapter started.
Sterling Commerce, Inc. 52

File System Adapter Examples

This appendix contains code examples of a working, fully functional File System adapter. Use these
examples as a reference to help you to create your own adapter.

This appendix contains the following sample files:

✦ FileSystemServer File
✦ FileSystemServerImpl File
✦ File System Adapter XML
✦ FileSystem XML
✦ Filesystem_en File
✦ FileSystemImpl File
✦ FileSystemServer File
✦ FileSystemServerImpl File
✦ FSFromCollectInfo File
✦ FSFromReadFile File
✦ FSToCollectInfo File
✦ FSToExtractInfo File
✦ WFStartThread File

FileSystemServer File
The following sample code shows a FileSystemServer.java file:
/**
 * Copyright: Sterling Commerce, 2000-2001. All rights reserved.
 *
 * This software is the proprietary information of
 Sterling Commerce,
 * Inc. Use is subject to license terms.
 */
package com.sterlingcommerce.woodstock.services.filesystem;

import weblogic.rmi.Remote;
Sterling Commerce, Inc. 53

FileSystemServerImpl File
import weblogic.rmi.RemoteException;
import com.sterlingcommerce.woodstock.services.AdapterException;
import com.sterlingcommerce.woodstock.services.IAdapterRMI;

/**
 * Title: FileSystem Adapter project
 * Description: This adapter can collect or extract files
 to a file system
 * Copyright: Sterling Commerce, 2000. All rights reserved.
 * @version 1.0, 2/6/2001
 * @since Woodstock 2.0
 */
public interface FileSystemServer extends IAdapterRMI
{
 String[] scanFolder(String folder, String fileFilter, boolean
 useSubFolders) throws AdapterException, RemoteException;

 void createFile(String absoluteFileName) throws
 AdapterException, RemoteException;

 byte[] readFile(String absoluteFileName) throws
 AdapterException, RemoteException;

 void writeFile(String absoluteFileName, byte[] buffer) throws
 AdapterException, RemoteException;

 void deleteFile(String absoluteFileName) throws
 AdapterException, RemoteException;
}

FileSystemServerImpl File
The following sample code shows a FileSystemServerImpl.java file:
/**
 * Copyright: Sterling Commerce, 2000-2001. All rights reserved.
 *
 * This software is the proprietary information of
 Sterling Commerce,
 * Inc. Use is subject to license terms.
 */
package com.sterlingcommerce.woodstock.services.filesystem;

import java.io.File;
import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.BufferedInputStream;
import java.io.BufferedOutputStream;
import java.util.Vector;
import java.util.*;
import java.util.Properties;
import com.sterlingcommerce.woodstock.util.WildCardFilter;
import com.sterlingcommerce.woodstock.util.frame.Manager;
Sterling Commerce, Inc. 54

FileSystemServerImpl File
import com.sterlingcommerce.woodstock.services.*;
import com.sterlingcommerce.woodstock.workflow.*;
import com.sterlingcommerce.woodstock.util.frame.log.*;

/**
 * Implements the I/O routines for the File System EJB
 * @version 1.0, 2/6/2001
 * @since Woodstock 2.0
 */
public class FileSystemServerImpl extends IAdapterImpl implements FileSystemServer
{
 public FileSystemServerImpl() { super(); }
 public void refreshAdapter(Properties p) {}
 public String message(String s) { return s; }
 public void startupAdapter(Properties p) {}
 public void shutdownAdapter() {}

 /**
 * Method for returning an array of filenames in a directory
 * @param folderName name of the directory
 * @param useSubFolders
 * @since Woodstock 2.0
 */
 public String[] scanFolder(String folderName, String fileFilter, boolean
useSubFolders)
 {
 registerThread();
 Vector fileVect = new Vector();
 WildCardFilter filter = new WildCardFilter(fileFilter);
 traverseDir(fileVect, filter, folderName, useSubFolders);
 String[] fileNames = null;
 int vectSize = fileVect.size();
 if (vectSize > 0)
 {
 fileNames = new String[vectSize];
 while (vectSize-- > 0)
 {
 fileNames[vectSize] = (String)fileVect.elementAt(vectSize);
 }
 }
 unregisterThread();
 return fileNames;
 }

 /**
 * Method for recursively traversing a directory structure
 * @param fileVect Vector object used to collect the recursed information
 * @param folderName name of the directory
 * @param useSubFolders
 * @since Woodstock 2.0
 */
 public void traverseDir(Vector fileVect, WildCardFilter filter, String
folderName, boolean useSubFolders)
 {
 if (folderName != null)
 {
Sterling Commerce, Inc. 55

FileSystemServerImpl File
 File folder = new File(folderName);
 File[] fileList = folder.listFiles(filter);
 if (fileList != null)
 {
 for (int i = 0; i < fileList.length; i++)
 {
 if (!fileList[i].isDirectory())
 {
 fileVect.add(fileList[i].getAbsolutePath());
 }
 else if (useSubFolders)
 {
 traverseDir(fileVect, filter, fileList[i].getAbsolutePath(),
useSubFolders);
 }
 }
 }
 }
 }

 /**
 * Method for creating a file on disk
 * @param absoluteFileName name of the file with its absolute path
 * @exception AdapterException
 * @since Woodstock 2.0
 */
 public void createFile(String absoluteFileName) throws AdapterException
 {
 registerThread();
 try
 {
 new File(absoluteFileName);
 }
 catch(Exception e)
 {
 unregisterThread();
 throw new AdapterException(e);
 }
 unregisterThread();
 }

 /**
 * Method for deleting a file on disk
 * @param absoluteFileName name of the file with its absolute path
 * @exception AdapterException
 * @since Woodstock 2.0
 */
 public void deleteFile(String absoluteFileName) throws AdapterException
 {
 registerThread();
 File file = null;
 try
 {
 file = new File(absoluteFileName);
 file.delete();
 }
Sterling Commerce, Inc. 56

FileSystemServerImpl File
 catch(Exception e)
 {
 unregisterThread();
 throw new AdapterException(e);
 }
 unregisterThread();
 }

 /**
 * Method for reading a file from disk.<p>
 * @param absoluteFileName name of the file (inc. its absolute path name)
 * @return byte[] array of bytes making up the data
 * @exception AdapterException
 * @since Woodstock 2.0
 */
 public byte[] readFile(String absoluteFileName) throws AdapterException
 {
 registerThread();
 BufferedInputStream biStream = null;
 File file = new File(absoluteFileName);
 long fileSize = 0;
 int cbRead = 0;
 byte[] buffer = null;

 try
 {
 biStream = new BufferedInputStream(new FileInputStream(file));
 fileSize = file.length();
 buffer = new byte[(int)fileSize];
 cbRead = biStream.read(buffer, 0, (int)fileSize);
 }
 catch(Exception e)
 {
 unregisterThread();
 throw new AdapterException(e);
 }
 finally
 {
 if (biStream != null)
 {
 try
 {
 biStream.close();
 }
 catch(Exception e)
 {
 LogService.out.logWarn(e.getMessage());
 }
 }
 }

 unregisterThread();
 if (cbRead > 0)
 {
 return buffer;
 }
Sterling Commerce, Inc. 57

FileSystemServerImpl File
 else
 {
 return null;
 }
 }

 //JOE - STUFF
 private static Hashtable threadTable = new Hashtable();
 private final static int thresh = 10; // only do 10 threads

 public void workflowStart(String wfId, String name, byte[] stuff, String path,
String svcName) throws AdapterException
 {
 synchronized(threadTable)
 {
 registerThread();
 try
 {
 int iwfId = -1;
 if (wfId != null && !wfId.equals(""))
 {
 try
 {
 iwfId = Integer.parseInt(wfId);
 }
 catch(NumberFormatException nfe)
 {
 iwfId = -1;
 }
 }
 InitialWorkFlowContext iwfc = new InitialWorkFlowContext();
 iwfc.setWorkFlowDefId(iwfId);
 iwfc.setDocumentName(name);
 iwfc.setDocumentBody(stuff);

 if (threadTable.size() > thresh)
 {
 waitForComplete();
 }

 WFStartThread wfst = new WFStartThread(iwfc, path, svcName);
 Thread t = new Thread(wfst);
 String id = "FS." + wfId + "." + name + "." +
System.currentTimeMillis() + ":" + iwfc.hashCode();
 threadTable.put(id, t);
 t.start();
 }
 catch(Exception e)
 {
 unregisterThread();
 throw new AdapterException(e);
 }
 unregisterThread();
 }
 }
Sterling Commerce, Inc. 58

FileSystemServerImpl File
 private void waitForComplete()
 {
 Thread t = null;
 Enumeration e = null;
 boolean again = true;
 String k;
 int ct = 0;
 while (again && ct < 100000)
 {
 e = threadTable.keys();
 while (e.hasMoreElements())
 {
 k = (String)e.nextElement();
 t = (Thread)threadTable.get(k);
 if (!t.isAlive())
 {
 threadTable.remove(k);
 again = false;
 }
 }
 ct++;
 try
 {
 Thread.sleep(100);
 }
 catch(Exception ex)
 {
 ex.printStackTrace();
 }
 }
 }

 /**
 * Method for writing a file to disk.<p>
 * @param absoluteFileName name of the file with its absolute path
 * @param buffer array of byte to write to the file
 * @exception AdapterException
 * @since Woodstock 2.0
 */
 public void writeFile(String absoluteFileName, byte[] buffer) throws
AdapterException
 {
 registerThread();
 BufferedOutputStream boStream = null;
 try
 {
 boStream = new BufferedOutputStream(new FileOutputStream(new
File(absoluteFileName)));
 boStream.write(buffer, 0, buffer.length);
 }
 catch(Exception e)
 {
 unregisterThread();
 throw new AdapterException(e);
 }
 finally
Sterling Commerce, Inc. 59

File System Adapter XML
 {
 if (boStream != null)
 {
 try
 {
 boStream.flush();
 boStream.close();
 }
 catch(Exception e)
 {
 LogService.out.logWarn(e.getMessage());
 }
 }
 }
 unregisterThread();
 }
}

File System Adapter XML
The following sample code shows a File System adapter XML:
<SERVICES>

<SERVICE name="FileSystem" description="fs.description" label="fs.label"
implementationType="EJB" JNDIName="FileSystemEJBHome" type="Adapter"
adapterType="STATELESS"
adapterClass="com.sterlingcommerce.woodstock.services.filesystem.FileSystemServerImp
l" version="1.0" SystemService="NO">
 <BP_XML>
 <![CDATA[<process name="Scheduler_&service_name;">
 <sequence>
 <operation name="Service">
 <participant name="&service_name;"/>
 <output message="Xout">
 <assign to="." from="*"></assign>
 <assign to="Action">FS_COLLECT</assign>
 </output>
 <input message="Xin">
 <assign to="." from="*"></assign>
 </input>
 </operation>
 </sequence>
 </process>]]>
 </BP_XML>
 <VARS type="wfd">
 <GROUP title="fs.wfd.group1.title" instructions="fs.wfd.group1.instructions">
 <VARDEF varname="Action" type="String" htmlType="select"
validator="ALPHANUMERIC" label="fs.action" options="fstype" />
 </GROUP>
 </VARS>
 <VARS type="instance">
Sterling Commerce, Inc. 60

File System Adapter XML
 <GROUP title="fs.instance.group1.title"
instructions="fs.instance.group1.instructions">
 <VARDEF varname="collectionFolder" type="String" htmlType="text"
validator="ALPHANUMERIC" size="30" maxsize="250" label="fs.cfolder" />
 <VARDEF varname="useSubFolder" type="String" htmlType="radio"
validator="ALPHANUMERIC" options="radio2" label="fs.subfolders" />
 </GROUP>
 <GROUP title="fs.instance.group2.title"
instructions="fs.instance.group2.instructions">
 <VARDEF varname="extractionFolder" type="String" htmlType="text"
validator="ALPHANUMERIC" size="30" maxsize="250" label="fs.efolder" />
 <VARDEF varname="assignFilename" type="String" htmlType="radio"
validator="ALPHANUMERIC" options="fsfilename" label="fs.filename">
 <SUBGROUP dependencyvalue="true" title="fs.instance.group2a.title"
instructions="fs.instance.group2a.instructions">
 <VARDEF varname="assignedFilename" type="String" htmlType="text"
validator="ALPHANUMERIC" size="40" maxsize="250" label="fs.extractfilename" />
 </SUBGROUP>
 </VARDEF>
 </GROUP>
 <GROUP title="system.sched.title" instructions="system.sched.instructions">
 <VARDEF varname="schedDay" type="String" htmlType="select" validator="NUMBER"
label="system.schedDay.label" options="schedDay"/>
 <VARDEF varname="schedHour" type="String" htmlType="select" validator="NUMBER"
label="system.schedHour.label" options="schedHour"/>
 <VARDEF varname="schedMinute" type="String" htmlType="select" validator="NUMBER"
label="system.schedMinute.label" options="schedMinute"/>
 <VARDEF varname="schedOnMin" type="String" htmlType="select"
validator="ALPHANUMERIC" label="system.schedOnMin.label" options="schedOnMinute"/>
 <VARDEF varname="schedMerid" type="String" htmlType="select" validator="NUMBER"
label="system.schedMerid.label" options="schedMeridian"/>
 </GROUP>
 </VARS>
 <VARS type="assignbp">
 <GROUP title="bpsched.assignbp.title"
instructions="bpsched.assignbp.instructions">
 <VARDEF varname="initialWorkFlowId" type="String" htmlType="select"
validator="ALPHANUMERIC" label="bpsched.assignbp.title" options="bplist" />
 </GROUP>
 </VARS>
</SERVICE>

<OPTION name="fstype">
 <ELE value="FS_COLLECT" displayname="fs.Collection" />
 <ELE value="FS_EXTRACT" displayname="fs.Extraction" />
</OPTION>

<OPTION name="fsfilename">
 <ELE value="false" displayname="fs.useOriginal" />
 <ELE value="true" displayname="fs.assignName" />
</OPTION>

</SERVICES>
Sterling Commerce, Inc. 61

FileSystem XML
FileSystem XML
The following sample code is a FileSystem XML file:
-->
- <SERVICES>
- <SERVICE name="FileSystem" description="fs.description" label="fs.label"
implementationType="CLASS"
JNDIName="com.sterlingcommerce.woodstock.services.filesystem.FileSystemImpl"
type="Adapter" adapterType="STATELESS"
adapterClass="com.sterlingcommerce.woodstock.services.filesystem.FileSystemServerImp
l" version="1.0" SystemService="NO">
- <BP_XML>
- <![CDATA[
<process name="Scheduler_&service_name;">
 <sequence>
 <operation name="Service">
 <participant name="&service_name;"/>
 <output message="Xout">
 <assign to="." from="*"></assign>
 <assign to="Action">FS_COLLECT</assign>
 </output>
 <input message="Xin">
 <assign to="." from="*"></assign>
 </input>
 </operation>
 </sequence>
 </process>
]]>
</BP_XML>
- <VARS type="wfd">
- <GROUP title="fs.wfd.group1.title" instructions="fs.wfd.group1.instructions">
<VARDEF varname="Action" type="String" htmlType="select" validator="ALPHANUMERIC"
label="fs.action" options="fstype" />
<VARDEF varname="appendOnExtract" type="String" htmlType="select"
validator="ALPHANUMERIC" label="fs.append" options="radio2" />
<VARDEF varname="deleteAfterCollect" type="String" htmlType="select"
validator="ALPHANUMERIC" label="fs.delete" options="radio2" />
<VARDEF varname="collectZeroByteFiles" type="String" htmlType="select"
validator="ALPHANUMERIC" label="fs.zero" options="radio2" />
<VARDEF varname="fileModTimeThreshold" type="String" htmlType="text"
validator="ALPHANUMERIC" size="30" maxsize="250" label="fs.modtime" />
<VARDEF varname="maxThreads" type="String" htmlType="text" validator="NUMBER"
size="5" maxsize="5" label="fs.maxthreads" />
</GROUP>
</VARS>
- <VARS type="instance">
- <GROUP title="fs.instance.group1.title"
instructions="fs.instance.group1.instructions">
<VARDEF varname="collectionFolder" type="String" htmlType="text"
validator="ALPHANUMERIC" size="30" maxsize="250" label="fs.cfolder" />
<VARDEF varname="filter" type="String" htmlType="text" size="30" maxsize="250"
label="fs.filter" required="NO" />
Sterling Commerce, Inc. 62

Filesystem_en File
<VARDEF varname="useSubFolders" type="String" htmlType="radio"
validator="ALPHANUMERIC" options="radio2" label="fs.subfolders" />
<VARDEF varname="keepPath" type="String" htmlType="radio" validator="ALPHANUMERIC"
options="radio2" label="fs.keepPath" defaultVal="false" />
- <VARDEF varname="bootstrap" type="String" htmlType="radio" validator="ALPHANUMERIC"
options="radio2" label="fs.bootstrap">
- <SUBGROUP dependencyvar="bootstrap" dependencyvalue="true"
title="bpsched.assignbp.title" instructions="bpsched.assignbp.instructions">
<VARDEF varname="initialWorkFlowId" type="String" htmlType="select"
validator="ALPHANUMERIC" label="bpsched.assignbp.title" options="bplist" />
</SUBGROUP>
<SUBGROUP dependencyvar="bootstrap" dependencyvalue="true"
handler="com.sterlingcommerce.woodstock.ui.ScheduleConfig" wizard="Scheduler" />
</VARDEF>
</GROUP>
- <GROUP title="fs.instance.group2.title"
instructions="fs.instance.group2.instructions">
<VARDEF varname="extractionFolder" type="String" htmlType="text"
validator="ALPHANUMERIC" size="30" maxsize="250" label="fs.efolder" />
- <VARDEF varname="assignFilename" type="String" htmlType="radio"
validator="ALPHANUMERIC" options="fsfilename" label="fs.filename">
- <SUBGROUP dependencyvalue="true" title="fs.instance.group2a.title"
instructions="fs.instance.group2a.instructions">
<VARDEF varname="assignedFilename" type="String" htmlType="text" size="40"
maxsize="250" label="fs.extractfilename" />
</SUBGROUP>
</VARDEF>
</GROUP>
</VARS>
</SERVICE>
- <OPTION name="fstype">
<ELE value="FS_COLLECT" displayname="fs.Collection" />
<ELE value="FS_EXTRACT" displayname="fs.Extraction" />
</OPTION>
- <OPTION name="fsfilename">
<ELE value="false" displayname="fs.useOriginal" />
<ELE value="true" displayname="fs.assignName" />
</OPTION>
</SERVICES>

Filesystem_en File
The following sample code is a Filesystem_en file:
fs.label = File System Adapter
fs.description = Collects and Extracts files from a file system.
as2fs.label = AS2 File System Adapter
as2fs.description = Collects and Extracts as2 files from a file system.

fs.action = Action
fs.append = Append to file when extracting?
fs.delete = Delete file after collecting?
fs.zero = Collect zero byte files?
Sterling Commerce, Inc. 63

Filesystem_en File
fs.modtime = The modification time of a file must be older than the number of seconds
specified or it will not be collected.
fs.cfolder = Collection folder
fs.efolder = Extraction folder
fs.filter = Filename filter
fs.pollinterval = Poll Interval (mins)
fs.subfolders = Collect files from sub folders within and including the collection
folder?
fs.keepPath = Use the absolute file path name for the document name?
fs.bootstrap = Start a business process once files are collected?
fs.extractfilename = Filename
fs.filename = Filenaming convention
fs.Collection = Collection
fs.Extraction = Extraction
fs.useOriginal = Use the original filename as the extracted filename
fs.assignName = Assign a specific name
fs.maxthreads = Maximum number of threads to use when bootstrapping collected files
fs.contract = Contratc

fs.wfd.group1.title = Workflow Properties
fs.wfd.group1.instructions = Specify the appropriate workflow settings.

fs.instance.group1.title = Collection
fs.instance.group1.instructions = \
<table border=0 cellpadding=1 cellspacing=1>\
<tr>\
 <td colspan=2 valign="top" align="left" class='info'>\
 Specify the appropriate settings for collecting data.\
 </td>\
</tr>\
<tr>\
 <TD class='bullet'>•</TD>\
 <td valign="top" align="left" class='info'>\
 Specify the folder to collect files from.\
 </td>\
</tr>\
<tr>\
 <TD class='bullet'>•</TD>\
 <td valign="top" align="left" class='info'>\
 An optional filter can be used to only collect certain files (i.e. *.txt).\
 </td>\
</tr>\
<tr>\
 <TD class='bullet'>•</TD>\
 <td valign="top" align="left" class='info'>\
 Specify whether to search any sub folders within the main collection folder.\
 </td>\
</tr>\
<tr>\
 <TD class='bullet'>•</TD>\
 <td valign="top" align="left" class='info'>\
 Specify whether or not a business process is started once files are collected.\
 </td>\
</tr>\
</table>
Sterling Commerce, Inc. 64

FileSystemImpl File
fs.instance.group2.title = Extraction
fs.instance.group2.instructions = \
<table border=0 cellpadding=1 cellspacing=1>\
<tr>\
 <td colspan=2 valign="top" align="left" class='info'>\
 Specify the appropriate settings for extracting files.\
 </td>\
</tr>\
<tr>\
 <TD class='bullet'>•</TD>\
 <td valign="top" align="left" class='info'>\
 Specify the folder to extract files to.\
 </td>\
</tr>\
<tr>\
 <TD class='bullet'>•</TD>\
 <td valign="top" align="left" class='info'>\
 Specify whether to use the original document filename or assign a different one.\
 </td>\
</tr>\
</table>

fs.instance.group2a.title = User defined
fs.instance.group2a.instructions = \
<table border=0 cellpadding=1 cellspacing=1>\
<tr>\
 <td colspan=2 valign="top" align="left" class='info'>\
 Specify the filename to assign to the extracted files. To generate unique
filenames, the escape code %^ will be replaced with a unique number in the format
yyyymmddhhmmsslll (i.e. specifying Rcv%^.dat will generate Rcv200110191259123.dat).\
 </td>\
</tr>\
</table>

FileSystemImpl File
The following sample code is a FileSystemImpl file:

package com.sterlingcommerce.woodstock.services.filesystem;

import java.io.File;
import java.util.Arrays;
import com.sterlingcommerce.woodstock.util.Util;
import com.sterlingcommerce.woodstock.workflow.WorkFlowDef;
import com.sterlingcommerce.woodstock.workflow.WorkFlowContext;
import com.sterlingcommerce.woodstock.workflow.WorkFlowException;
import com.sterlingcommerce.woodstock.services.IService;
import com.sterlingcommerce.woodstock.services.XLogger;
import com.sterlingcommerce.woodstock.util.frame.Manager;
import com.sterlingcommerce.woodstock.util.frame.log.LogService;
import com.sterlingcommerce.woodstock.util.frame.lock.LockManager;
import com.sterlingcommerce.woodstock.services.controller.ServicesControllerImpl;
Sterling Commerce, Inc. 65

FileSystemImpl File
import org.w3c.dom.Document;
import org.w3c.dom.Node;

public class FileSystemImpl implements IService {
 static final int DEF_LOCKLOOP = 5000;
 static final int DEF_AGELOOP = 6;

//##
############
 public WorkFlowContext processData(WorkFlowContext wfc) throws WorkFlowException
{
 String badCfg = "No 'Action' or request specified";
 String svcName = wfc.getServiceName();
 XLogger log = new XLogger("FileSystemImpl", svcName);
 ServicesControllerImpl sci = ServicesControllerImpl.getInstance();
 sci.harnessRegister(String.valueOf(wfc.getWorkFlowId()), svcName);
 try {
 FileSystemServer rmi = (FileSystemServer)sci.getAdapter(svcName);
 if (rmi == null) {
 handleError(wfc, log, "RMI instance is null");
 }
 else {
 wfc.suspendTransaction();
 String action = wfc.getParm("Action"); // determine action
 if (action == null) {
 Node node = (Node)wfc.getWFContent("/*");
 if (node != null) {
 String inputMsg = node.getNodeName();
 if (inputMsg != null) {
 if (inputMsg.equals("importFileRequest")) {
 doImportFile(wfc, log, rmi);
 }
 else if (inputMsg.equals("exportDocumentRequest")) {
 doExportFile(wfc, log, rmi);
 }
 else { // no idea what to do
 handleError(wfc, log, badCfg);
 }
 }
 else { // inputMsg is null
 handleError(wfc, log, badCfg);
 }
 }
 else { // node is null
 handleError(wfc, log, badCfg);
 }
 }
 else if (action.equals("FS_EXTRACT")) {
 doExtract(wfc, log, rmi);
 }
 else if (action.equals("FS_COLLECT")) {
 doCollect(wfc, log, rmi, svcName);
 }
 else {
 handleError(wfc, log, "Unknown 'Action' value: " + action);
Sterling Commerce, Inc. 66

FileSystemImpl File
 }
 wfc.resumeTransaction();
 }
 }
 catch(Exception e) {
 handleException(wfc, log, "Exception in processData", e);
 }
 sci.unregisterThread();
 return wfc;
 }

//##
############
 private void doExtract(WorkFlowContext wfc, XLogger log, FileSystemServer rmi) {
 String msg = "Exception in doExtract"; // a multi-use message string var
 try {
 String advStatus = null;
 FSToExtractInfo tei = new FSToExtractInfo();
 tei.folder = wfc.getParm("extractionFolder");
 if (tei.folder == null || tei.folder.length() == 0) {
 handleError(wfc, log, "Missing required 'extractionFolder'
parameter");
 }
 else {
 com.sterlingcommerce.woodstock.workflow.Document doc =
wfc.getPrimaryDocument();
 if (doc == null) {
 handleError(wfc, log, "Primary document is null");
 }
 else {
 tei.data = doc.getBody();
 if (tei.data == null) {
 advStatus = "0 byte file";
 }
 tei.bodyName = doc.getBodyName();
 if (tei.bodyName == null || tei.bodyName.length() == 0) {
 tei.bodyName = Util.getUniqueFileName("%^.dat");
 }
 if ("true".equals(wfc.getParm("assignFilename"))) {
 tei.assignedFilename = wfc.getParm("assignedFilename");
 }
 if ("true".equals(wfc.getParm("appendOnExtract"))) {
 tei.append = true;
 }
 msg = "Exception in writeFile"; // load in case it throws exception
 rmi.writeFile(tei);
 setStatus(wfc, WorkFlowContext.SUCCESS, advStatus);
 }
 }
 }
 catch(Exception e) {
 handleException(wfc, log, msg, e);
 }
 }
Sterling Commerce, Inc. 67

FileSystemImpl File

//##
############
 private void doCollect(WorkFlowContext wfc, XLogger log, FileSystemServer rmi,
String svcName) {
 try {
 FSToCollectInfo tci = new FSToCollectInfo();
 tci.wfctm = wfc.packMessageToChild();
 tci.svcName = svcName;
 String tmp = wfc.getParm("fileModTimeThreshold");
 if (tmp == null || tmp.length() == 0) {
 tmp = Manager.getProperty("FSAdapterFileModSeconds");
 }
 try {
 tci.modTime = Integer.parseInt(tmp);
 }
 catch(Exception e) {
 tci.modTime = 30;
 }
 tci.modTime *= 1000; // adjust to milliseconds

 tci.folder = wfc.getParm("collectionFolder");
 if (tci.folder == null || tci.folder.length() == 0) {
 handleError(wfc, log, "Missing required 'collectionFolder'
parameter");
 }
 else {
 tmp = wfc.getParm("useSubFolders");
 if ("true".equals(tmp)) {
 tci.useSubFolders = true;
 }
 tmp = wfc.getParm("keepPath");
 if ("true".equals(tmp)) {
 tci.keepPath = true;
 }
 tmp = wfc.getParm("deleteAfterCollect");
 if ("false".equals(tmp)) {
 tci.delete = false;
 }
 tmp = wfc.getParm("collectZeroByteFiles");
 if ("true".equals(tmp)) {
 tci.getzero = true;
 }
 tci.filter = wfc.getParm("filter");
 if (tci.filter == null || tci.filter.length() == 0) {
 tci.filter = "*";
 }
 tmp = wfc.getParm("bootstrap");
 if ("false".equals(tmp)) {
 doCollectNoBootstrap(wfc, log, rmi, tci);
 }
 else {
 doCollectWithBootstrap(wfc, log, rmi, tci);
 }
 }
 }
Sterling Commerce, Inc. 68

FileSystemImpl File
 catch(Exception e) {
 handleException(wfc, log, "Exception in doCollect", e);
 }
 }

//##
############
 private void doCollectWithBootstrap(WorkFlowContext wfc, XLogger log,
FileSystemServer rmi, FSToCollectInfo tci) {
 String msg = "Exception in doCollectWithBootstrap";
 boolean isLocked = false;
 try {
 String iwfId = wfc.getParm("initialWorkFlowId");
 String iwfName = wfc.getParm("initialWorkFlowName");
 if (iwfId == null) {
 if (iwfName != null) {
 try {
 tci.iwfid = WorkFlowDef.getIDForName(iwfName);
 }
 catch(Exception e) {
 tci.iwfid = -1;
 }
 }
 }
 else {
 try {
 tci.iwfid = WorkFlowDef.getIDForName(iwfId);
 }
 catch(Exception e) {
 try {
 tci.iwfid = Integer.parseInt(iwfId);
 }
 catch(NumberFormatException nfe) {
 tci.iwfid = -1;
 }
 }
 }
 if (tci.iwfid == -1) {
 handleError(wfc, log, "Required 'initialWorkFlowId' parameter not
found or invalid");
 }
 else {
 try {
 tci.maxThreads = Integer.parseInt(wfc.getParm("maxThreads"));
 }
 catch(Exception e) {
 tci.maxThreads = 10;
 }
 if (tci.maxThreads < 1) {
 tci.maxThreads = 1; // gotta have at least one
 }
 if (LockManager.isLocked(tci.folder)) {
 setStatus(wfc, WorkFlowContext.SUCCESS, tci.folder + " is locked");
 }
 else {
Sterling Commerce, Inc. 69

FileSystemImpl File
 LockManager.lock(tci.folder, tci.svcName, 0, true);
 isLocked = true;
 msg = "Exception in collect";
 FSFromCollectInfo fci = rmi.collect(tci);
 if (fci.workflows != null && fci.filesCollected > 0) {
 wfc.addBootStrapWorkFlows(fci.workflows);
 }
 LockManager.unlock(tci.folder);
 isLocked = false;
 if (fci.couldntRead) {
 if (fci.filesCollected == 0) {
 handleError(wfc, log, "Unable to collect any files");
 }
 else {
 setStatus(wfc, WorkFlowContext.SUCCESS, "Unable to collect
one or more files");
 }
 }
 else if (fci.filesCollected == 0) {
 setStatus(wfc, WorkFlowContext.SUCCESS, "No files to collect");
 }
 else {
 setStatus(wfc, WorkFlowContext.SUCCESS, fci.filesCollected +
" files collected");
 }
 }
 }
 }
 catch(Exception e) {
 if (isLocked) {
 LockManager.unlock(tci.folder);
 }
 handleException(wfc, log, msg, e);
 }
 }

//##
############
 private void doCollectNoBootstrap(WorkFlowContext wfc, XLogger log,
FileSystemServer rmi, FSToCollectInfo tci) {
 String msg = "Exception in doCollectNoBootstrap";
 boolean isLocked = false;
 try {
 if (tci.filter.indexOf("*") != -1) {
 int lockLoop = 5;
 while (lockLoop-- > 0) {
 if (LockManager.isLocked(tci.folder)) {
 if (lockLoop == 0) {
 handleError(wfc, log, tci.folder + " is still locked after
5 attempts");
 return;
 }
 try {
 Thread.sleep(DEF_LOCKLOOP);
 }
Sterling Commerce, Inc. 70

FileSystemImpl File
 catch(Exception e) {
 log.logException("Exception during Thread.sleep in lock
loop", e);
 }
 }
 else {
 break;
 }
 }
 LockManager.lock(tci.folder, tci.svcName, 0, true);
 isLocked = true;
 }
 int filesRead = 0; // used when all reads return null so we can set "no
files to collect"
 boolean couldntRead = false;
 msg = "Exception in scanFolder";
 String[] files = rmi.scanFolder(tci.folder, tci.filter, tci.useSubFolders,
true); // get list of files
 if (files != null) {
 FSFromReadFile frf = null;
 int i = 0;
 int aged = DEF_AGELOOP;
 while (i < files.length) {
 msg = "Exception in readFile";
 frf = rmi.readFile(files[i], tci.modTime, true);
 if (frf.goodfile) {
 if (frf.data == null) {
 if (tci.getzero) {
 frf.data = "".getBytes(); // allows for collecting zero
byte files
 }
 else {
 i++;
 continue;
 }
 }
 filesRead++;
 com.sterlingcommerce.woodstock.workflow.Document doc =
wfc.createDocument();
 doc.setBody(frf.data);
 String tmp = files[i];
 if (!tci.keepPath) {
 tmp = new File(files[i]).getName();
 }
 doc.setBodyName(tmp);
 wfc.putPrimaryDocument(doc);
 if (tci.delete) {
 msg = "Exception in deleteFile";
 rmi.deleteFile(files[i]);
 }
 break;
 }
 else if (frf.data != null && Arrays.equals(frf.data,
FileSystemServerImpl.CANTREAD)) {
 couldntRead = true;
 }
Sterling Commerce, Inc. 71

FileSystemImpl File
 else if (files.length == 1 && aged-- > 0) {
 // if we get to this point, we're trying to read just one file
and it wasn't aged enough
 try {
 Thread.sleep(tci.modTime);
 }
 catch(Exception e) {
 log.logException("Exception during Thread.sleep", e);
 }
 continue; // won't increment so it will try getting the same
file again
 }
 i++;
 }
 }
 if (couldntRead) {
 if (filesRead == 0) {
 handleError(wfc, log, "Unable to collect any files");
 }
 else {
 setStatus(wfc, WorkFlowContext.SUCCESS, null);
 }
 }
 else if (filesRead == 0) {
 handleError(wfc, log, "No files to collect");
 }
 else {
 setStatus(wfc, WorkFlowContext.SUCCESS, null);
 }
 }
 catch(Exception e) {
 handleException(wfc, log, msg, e);
 }
 finally {
 if (isLocked) {
 LockManager.unlock(tci.folder);
 }
 }
 }

//##
############
 private void doImportFile(WorkFlowContext wfc, XLogger log, FileSystemServer rmi)
{
 String msg = "Exception in doImportFile";
 try {
 if (LogService.out.debug) {
 log.logDebug("importFileRequest");
 }
 String filename = wfc.getParm("filename"); // ImportFile
 if (filename == null || filename.length() == 0) {
 handleError(wfc, log, "Missing required 'filename' parameter");
 }
 else {
 String dirname = wfc.getParm("dirname");
Sterling Commerce, Inc. 72

FileSystemImpl File
 FSFromReadFile frf = null;
 int aged = DEF_AGELOOP;
 while (aged-- > 0) {
 msg = "Exception in importFile";
 frf = rmi.importFile(dirname, filename);
 if (frf.goodfile) {
 if (frf.data == null) {
 frf.data = "".getBytes(); // allows for collecting zero
byte files
 }
 com.sterlingcommerce.woodstock.workflow.Document doc =
wfc.createDocument();
 doc.setBody(frf.data);
 doc.setBodyName(filename);
 wfc.putDocument("document", doc);
 Object value = doc.getDocumentId();
 if (value instanceof org.w3c.dom.Document) {
 value = ((org.w3c.dom.Document)value).getDocumentElement();
 }
 wfc.setWFContent("doc:document-id", value, false);
 setStatus(wfc, WorkFlowContext.SUCCESS, null);
 aged = 1; // just in case it's zero at the time it works
 break;
 }
 else if (frf.data != null && Arrays.equals(frf.data,
FileSystemServerImpl.CANTREAD)) {
 handleError(wfc, log, "Unable to read " + frf.importFile);
 }
 else {
 // if we get here, the file is probably not aged enough
 try {
 Thread.sleep(FileSystemServerImpl.DEF_MODTIME);
 }
 catch(Exception e) {
 log.logException("Exception during Thread.sleep", e);
 }
 }
 }
 if (aged == 0) { // if we get here - importFileRequest did not work
 handleError(wfc, log, frf.importFile + " was not collected");
 }
 }
 }
 catch(Exception e) {
 handleException(wfc, log, msg, e);
 }
 }

//##
############
 private void doExportFile(WorkFlowContext wfc, XLogger log, FileSystemServer rmi)
{
 String msg = "Exception in doExportFile";
 try {
 if (LogService.out.debug) {
Sterling Commerce, Inc. 73

FileSystemImpl File
 log.logDebug("exportDocumentRequest");
 }
 String docId = wfc.getParm("doc:document-id");
 String filename = wfc.getParm("filename");
 String prefix = wfc.getParm("filename-prefix");
 if (docId == null || docId.trim().length() == 0) {
 handleError(wfc, log, "Missing required 'doc:document-id' parameter");
 }
 else {
 if (prefix == null || prefix.trim().length() == 0) {
 prefix = "document-";
 }
 if (filename == null || filename.trim().length() == 0) {
 filename = prefix + docId;
 }
 com.sterlingcommerce.woodstock.workflow.Document doc = new
com.sterlingcommerce.woodstock.workflow.Document(docId);
 if (doc == null) {
 handleError(wfc, log, "Document is null: " + docId);
 }
 else {
 msg = "Exception in exportFile";
 rmi.exportFile(filename, doc.getBody());
 wfc.setWFContent("filename", filename);
 setStatus(wfc, WorkFlowContext.SUCCESS, null);
 }
 }
 }
 catch(Exception e) {
 handleException(wfc, log, msg, e);
 }
 }

//##
############
 private void handleError(WorkFlowContext wfc, XLogger log, String advStatus) {
 log.logError(advStatus);
 setStatus(wfc, WorkFlowContext.ERROR, advStatus);
 }

//##
############
 private void handleException(WorkFlowContext wfc, XLogger log, String advStatus,
Exception e) {
 log.logException(advStatus, e);
 setStatus(wfc, WorkFlowContext.ERROR, e.getMessage());
 }

//##
############
 private void setStatus(WorkFlowContext wfc, int basicStatus, String advStatus) {
 wfc.setBasicStatus(basicStatus);
 if (advStatus != null) {
Sterling Commerce, Inc. 74

FileSystemImpl File
 wfc.setAdvancedStatus(advStatus);
Sterling Commerce, Inc. 75

FileSystemServer File
FileSystemServer File
The following sample code is a FileSystemServer file:

package com.sterlingcommerce.woodstock.services.filesystem;

import java.rmi.*;
import java.rmi.server.*;
import java.rmi.RemoteException;
import com.sterlingcommerce.woodstock.services.AdapterException;
import com.sterlingcommerce.woodstock.services.IAdapterRMI;

/**
 * Remote interface of the I/O routines used by the File System Adapter
 * @since Woodstock 2.0
 */
public interface FileSystemServer extends IAdapterRMI
{
 public FSFromCollectInfo collect(FSToCollectInfo tci) throws AdapterException,
RemoteException;
 public String[] scanFolder(String folder, String fileFilter, boolean
useSubFolders, boolean doreg) throws AdapterException, RemoteException;
 public FSFromReadFile readFile(String absoluteFileName, int modTime, boolean
doreg) throws AdapterException, RemoteException;
 public FSFromReadFile importFile(String dirname, String filename) throws
AdapterException, RemoteException;
 public void exportFile(String filename, byte[] data) throws AdapterException,
RemoteException;
 public void writeFile(FSToExtractInfo tei) throws AdapterException,
RemoteException;
 public void deleteFile(String absoluteFileName) throws AdapterException,
RemoteException;
}

FileSystemServerImpl File
The following sample code is a FileSystemServerImpl file:

package com.sterlingcommerce.woodstock.services.filesystem;

import java.io.File;
import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.BufferedInputStream;
import java.io.BufferedOutputStream;
import java.io.ByteArrayOutputStream;
import java.util.Properties;
import java.util.Vector;
import com.sterlingcommerce.woodstock.util.Util;
import com.sterlingcommerce.woodstock.util.WildCardFilter;
Sterling Commerce, Inc. 76

FileSystemServerImpl File
import com.sterlingcommerce.woodstock.services.AdapterException;
import com.sterlingcommerce.woodstock.services.IAdapterImpl;
import com.sterlingcommerce.woodstock.util.frame.Manager;
import com.sterlingcommerce.woodstock.util.frame.log.LogService;

public class FileSystemServerImpl extends IAdapterImpl implements FileSystemServer {
 public FileSystemServerImpl() { super(); }
 public void refreshAdapter(Properties p) {}
 public String message(String s) { return s; }
 public void startupAdapter(Properties p) {}
 public void shutdownAdapter() {}
 public static final byte[] CANTREAD = "<Can't @#$ read>".getBytes(); // special
chars used to make it unique (encoding doesn't matter)
 public static final int DEF_MODTIME = 30000; // 30 seconds
 private static final int BUFFER_SIZE = 1024;

 /**
 * Method for collecting files and starting workflows
 * @param tci a FSToCollectInfo class containing all the necessary parms
 * @return a FSFromCollectInfo class containing all the necessary info
 * @since Woodstock 2.0
 */
 public FSFromCollectInfo collect(FSToCollectInfo tci) throws AdapterException {
 registerThread();
 FSFromCollectInfo fci = new FSFromCollectInfo();
 WFStartThread wfst = null;
 Thread t = null;
 try {
 String[] files = scanFolder(tci.folder, tci.filter, tci.useSubFolders,
false);
 if (files != null) {
 fci.workflows = new Vector(files.length);
 for (int i = 0; i < files.length; i++) {
 while (fci.threadCnt == tci.maxThreads) {
 Thread.yield();
 }
 wfst = new WFStartThread(files[i], tci, fci, this);
 t = new Thread(wfst);
 fci.threadCounter(true); // synchronized increment
 t.start();
 }
 while (fci.threadCnt > 0) {
 Thread.yield();
 }
 }
 }
 catch(Exception e) {
 LogService.out.logException("Exception in collect method", e);
 unregisterThread();
 throw new AdapterException(e);
 }
 unregisterThread();
 return fci;
 }

 /**
Sterling Commerce, Inc. 77

FileSystemServerImpl File
 * Method for returning an array of filenames in a directory
 * @param folderName name of the directory
 * @param fileFilter file filter to apply
 * @param useSubFolders whether to scan subdirectories or not
 * @param doreg controls whether it was called from the collect method internally
or from a RMI call
 * @return A string array of filenames
 * @since Woodstock 2.0
 */
 public String[] scanFolder(String folderName, String fileFilter, boolean
useSubFolders, boolean doreg) throws AdapterException {
 if (doreg) {
 registerThread();
 }
 String folder = null;
 try {
 folder = new File(folderName).getCanonicalPath();
 }
 catch(Exception e) {
 folder = folderName; // should never happen but in case it does, just use
it as is
 }
 File wdir = new File(folder);
 if (!wdir.exists()) {
 throw new AdapterException(folder + " does not exist");
 }

 Vector fileVect = new Vector(10);
 WildCardFilter filter = new WildCardFilter(fileFilter);
 traverseDir(fileVect, filter, folder, useSubFolders);
 String[] fileNames = null;
 int vectSize = fileVect.size();
 if (vectSize > 0) {
 fileNames = new String[vectSize];
 while (vectSize-- > 0) {
 fileNames[vectSize] = (String)fileVect.elementAt(vectSize);
 }
 }
 if (doreg) {
 unregisterThread();
 }
 return fileNames;
 }

 /**
 * Method for recursively traversing a directory structure
 * @param fileVect Vector object used to collect the recursed information
 * @param filter file filter to apply
 * @param folderName name of the directory
 * @param useSubFolders whether to scan subdirectories or not
 * @since Woodstock 2.0
 */
 public void traverseDir(Vector fileVect, WildCardFilter filter, String
folderName, boolean useSubFolders) {
 if (folderName != null) {
 File folder = new File(folderName);
Sterling Commerce, Inc. 78

FileSystemServerImpl File
 File[] fileList = folder.listFiles();
 if (fileList != null) {
 for (int i = 0; i < fileList.length; i++) {
 if (!fileList[i].isDirectory()) {
 if (filter.accept(folder, fileList[i].getName())) {
 try {
 fileVect.add(fileList[i].getCanonicalPath());
 }
 catch(Exception e) {
 fileVect.add(fileList[i].getAbsolutePath());
 }
 }
 }
 else if (useSubFolders) {
 try {
 traverseDir(fileVect, filter,
fileList[i].getCanonicalPath(), useSubFolders);
 }
 catch(Exception e) {
 traverseDir(fileVect, filter,
fileList[i].getAbsolutePath(), useSubFolders);
 }
 }
 }
 }
 }
 }

 /**
 * Method for reading a file from disk.<p>
 * @param absoluteFileName name of the file (inc. its absolute path name)
 * @param modTime the value used to check against the file modification time to
determine whether or not to pickup
 * @param doreg controls whether it was called from the collect method internally
or from a RMI call
 * @return FSFromReadFile information passed back from this method
 * @exception AdapterException
 * @since Woodstock 2.0
 */
 public FSFromReadFile readFile(String absoluteFileName, int modTime, boolean
doreg) throws AdapterException {
 if (doreg) {
 registerThread();
 }
 FSFromReadFile frf = new FSFromReadFile();
 if (LogService.out.debug) {
 LogService.out.logDebug("Trying to read file " + absoluteFileName);
 }
 File file = new File(absoluteFileName);
 if (!file.canRead()) {
 if (LogService.out.debug) {
 LogService.out.logDebug("can't read file");
 }
 if (doreg) {
 unregisterThread();
 }
Sterling Commerce, Inc. 79

FileSystemServerImpl File
 frf.data = CANTREAD;
 return frf;
 }
 final long lastmod = file.lastModified();
 final long curtime = System.currentTimeMillis();
 if (curtime - lastmod < modTime) {
 if (LogService.out.debug) {
 LogService.out.logDebug("Modification time still under limit");
 }
 if (doreg) {
 unregisterThread();
 }
 return frf;
 }
 final int fileSize = (int)file.length();
 int bytesRead = 0;
 int bufSize = BUFFER_SIZE;
 ByteArrayOutputStream baoStream = new ByteArrayOutputStream(fileSize);
 BufferedInputStream biStream = null;

 if (fileSize > 0) {
 try {
 if (fileSize < bufSize) {
 bufSize = fileSize;
 }
 biStream = new BufferedInputStream(new FileInputStream(file),
bufSize*2);
 frf.data = new byte[bufSize];

 while ((bytesRead = biStream.read(frf.data)) != -1) {
 baoStream.write(frf.data, 0, bytesRead);
 }
 frf.data = baoStream.toByteArray();
 }
 catch(Exception e) {
 if (doreg) {
 unregisterThread();
 }
 LogService.out.logException("Exception in readFile:", e);
 throw new AdapterException(e);
 }
 finally {
 if (biStream != null) {
 try {
 biStream.close();
 }
 catch(Exception e) {
 LogService.out.logWarn(e.getMessage());
 }
 }
 }
 }

 // check if file has been modified since read
 if (file.lastModified() == lastmod) {
 frf.goodfile = true;
Sterling Commerce, Inc. 80

FileSystemServerImpl File
 }
 if (doreg) {
 unregisterThread();
 }
 return frf;
 }

 /**
 * Method for writing a file to disk.<p>
 * @param tei a FSToExtractInfo class containing all the necessary parms
 * @exception AdapterException
 * @since Woodstock 2.0
 */
 public void writeFile(FSToExtractInfo tei) throws AdapterException {
 registerThread();
 BufferedOutputStream boStream = null;
 try {
 String filename = null;
 String folder = new File(tei.folder).getCanonicalPath();
 if (tei.assignedFilename != null && tei.assignedFilename.length() > 0) {
 tei.assignedFilename = new File(tei.assignedFilename).getName();
 filename = folder + java.io.File.separator +
Util.getUniqueFileName(tei.assignedFilename);
 }
 else {
 filename = folder + java.io.File.separator + new
File(tei.bodyName).getName();
 }
 boStream = new BufferedOutputStream(new FileOutputStream(filename,
tei.append));
 if (tei.data != null) {
 boStream.write(tei.data, 0, tei.data.length);
 boStream.flush();
 }
 boStream.close();

 // Workaround for websphere bug
 String rfp = Manager.getProperty("resetFilePerms");
 if ("true".equalsIgnoreCase(rfp) || "yes".equalsIgnoreCase(rfp)) {
 String mask = Manager.getProperty("resetFilePermsMask");
 if (mask == null) {
 mask = "664";
 }
 String os = System.getProperty("os.name");
 if (os != null && os.toLowerCase().indexOf("windows") == -1) {
 Runtime.getRuntime().exec(new String[]{"chmod", mask, filename});
 }
 }
 }
 catch(Exception e) {
 unregisterThread();
 throw new AdapterException(e);
 }
 finally {
 if (boStream != null) {
 try {
Sterling Commerce, Inc. 81

FileSystemServerImpl File
 boStream.flush();
 boStream.close();
 }
 catch(Exception e) {
 LogService.out.logWarn(e.getMessage());
 }
 }
 }
 unregisterThread();
 }

 /**
 * Method for deleting a file on disk
 * @param absoluteFileName name of the file with its absolute path
 * @exception AdapterException
 * @since Woodstock 2.0
 */
 public void deleteFile(String absoluteFileName) throws AdapterException {
 registerThread();
 File file = null;
 try {
 file = new File(absoluteFileName);
 file.delete();
 }
 catch(Exception e) {
 unregisterThread();
 throw new AdapterException(e);
 }
 unregisterThread();
 }

 /**
 * Method used to import a file directly
 * @param dirname the directory name
 * @param filename the filename
 * @return FSFromReadFile information passed back from this method
 * @since Woodstock 2.2
 */
 public FSFromReadFile importFile(String dirname, String filename) throws
AdapterException {
 registerThread();
 String fileToRead = filename;
 if (dirname != null && dirname.length() > 0) {
 try {
 fileToRead = new File(dirname, filename).getCanonicalPath();
 }
 catch(Exception e) {
 unregisterThread();
 throw new AdapterException(e);
 }
 }

 FSFromReadFile frf = null;
 try {
 frf = readFile(fileToRead, DEF_MODTIME, false);
 }
Sterling Commerce, Inc. 82

FileSystemServerImpl File
 catch(Exception e) {
 unregisterThread();
 throw new AdapterException(e);
 }
 frf.importFile = fileToRead;
 unregisterThread();
 return frf;
 }

 /**
 * Method used to export a file directly
 * @param filename the filename
 * @since Woodstock 2.2
 */
 public void exportFile(String filename, byte[] data) throws AdapterException {
 registerThread();
 BufferedOutputStream boStream = null;
 try {
 boStream = new BufferedOutputStream(new FileOutputStream(filename));
 if (data != null) {
 boStream.write(data, 0, data.length);
 boStream.flush();
 }
 boStream.close();

 // Workaround for websphere bug
 String rfp = Manager.getProperty("resetFilePerms");
 if ("true".equalsIgnoreCase(rfp) || "yes".equalsIgnoreCase(rfp)) {
 String mask = Manager.getProperty("resetFilePermsMask");
 if (mask == null) {
 mask = "664";
 }
 String os = System.getProperty("os.name");
 if (os != null && os.toLowerCase().indexOf("windows") == -1) {
 Runtime.getRuntime().exec(new String[]{"chmod", mask, filename});
 }
 }
 }
 catch(Exception e) {
 unregisterThread();
 throw new AdapterException(e);
 }
 finally {
 if (boStream != null) {
 try {
 boStream.flush();
 boStream.close();
 }
 catch(Exception e) {
 LogService.out.logWarn(e.getMessage());
 }
 }
 }
 unregisterThread();
 }
}

Sterling Commerce, Inc. 83

FSFromCollectInfo File
FSFromCollectInfo File
The following sample code is an FSFromCollectInfo file:

package com.sterlingcommerce.woodstock.services.filesystem;

import java.util.Vector;

/**
 * Information passed from the collect method
 * @since Woodstock 2.1
 */
public class FSFromCollectInfo implements java.io.Serializable {
 public int threadCnt = 0;
 public int filesCollected = 0;
 public boolean couldntRead = false;
 public Vector workflows = null;

 public FSFromCollectInfo() {}

 public synchronized void addBootstrapWF(String wfId) {
 workflows.add(wfId);
 }

 public synchronized void fileCounter() {
 filesCollected++;
 }

 public synchronized void threadCounter(boolean add) {
 if (add) {
 threadCnt++;
 }
 else {
 threadCnt--;
Sterling Commerce, Inc. 84

FSFromReadFile File
FSFromReadFile File
The following sample code is an FSFromReadFile:

package com.sterlingcommerce.woodstock.services.filesystem;

/**
 * Information passed from the readFile method
 * @since Woodstock 2.1
 */
public class FSFromReadFile implements java.io.Serializable
{
 byte[] data = null;
 boolean goodfile = false;
 String importFile = null;

 public FSFromReadFile() {}
}

FSToCollectInfo File
The following sample code is an FSToCollectInfo file:

package com.sterlingcommerce.woodstock.services.filesystem;

import java.util.Vector;
import com.sterlingcommerce.woodstock.workflow.WFCTransportMessage;

/**
 * Information passed to the collect method
 * @since Woodstock 2.1
 */
public class FSToCollectInfo implements java.io.Serializable {
 public int iwfid = -1;
 public int modTime = 0;
 public int maxThreads = 10;
 public boolean useSubFolders = false;
 public boolean keepPath = false;
 public boolean delete = true;
 public boolean getzero = false;
 public String folder = null;
 public String filter = null;
 public String svcName = null;
 public WFCTransportMessage wfctm = null;
 public FSToCollectInfo() {}
}

Sterling Commerce, Inc. 85

FSToExtractInfo File
FSToExtractInfo File
The following sample code is an FSToExtractInfo file:
package com.sterlingcommerce.woodstock.services.filesystem;

import java.util.Vector;

/**
 * Information passed to the collect method
 * @since Woodstock 2.1
 */
public class FSToExtractInfo implements java.io.Serializable
{
 public boolean append = false;
 public String folder = null;
 public String bodyName = null;
 public String assignedFilename = null;
 public byte[] data = null;

 public FSToExtractInfo() {}
}

WFStartThread File
The following sample code is a WFStartThread file:

package com.sterlingcommerce.woodstock.services.filesystem;

import java.io.File;
import java.util.Arrays;
import com.sterlingcommerce.woodstock.services.XLogger;
import com.sterlingcommerce.woodstock.workflow.InitialWorkFlowContext;
import com.sterlingcommerce.woodstock.workflow.WorkFlowContextCookie;

class WFStartThread implements Runnable {
 private String filename = null;
 private FSToCollectInfo tci = null;
 private FSFromCollectInfo fci = null;
 private FileSystemServerImpl parentThread = null;

 public WFStartThread(String filename, FSToCollectInfo tci, FSFromCollectInfo fci,
FileSystemServerImpl fsImpl) {
 this.filename = filename;
 this.tci = tci;
 this.fci = fci;
 parentThread = fsImpl;
 }
Sterling Commerce, Inc. 86

WFStartThread File
 public void run() {
 String msg = "Exception reading file"; // initialize to first possible
exception
 try {
 FSFromReadFile frf = parentThread.readFile(filename, tci.modTime, false);
 if (frf.goodfile) {
 if (frf.data == null && tci.getzero) {
 frf.data = "".getBytes(); // allows for collecting zero byte files
 }
 // don't do an 'else' here because frf.data might have just been set
above
 if (frf.data != null) { // only collect if data not null at this
point
 String file2del = filename; // in case path is stripped off
 if (!tci.keepPath) {
 filename = new File(filename).getName();
 }
 InitialWorkFlowContext iwfc = new InitialWorkFlowContext();
 iwfc.addContentElement("FileName", filename);
 iwfc.setWorkFlowDefId(tci.iwfid);
 iwfc.setDocumentName(filename);
 iwfc.setDocumentBody(frf.data);
 iwfc.setMessageToChild(tci.wfctm);
 msg = "Exception starting workflow";
 WorkFlowContextCookie wfcCookie = iwfc.start();
 if (wfcCookie != null) {
 fci.addBootstrapWF(Long.toString(wfcCookie.getWorkFlowId()));
 }
 fci.fileCounter(); // synchronized increment

 if (tci.delete) {
 msg = "Exception deleting file";
 File file = new File(file2del);
 file.delete();
 }
 }
 }
 else if (frf.data != null && Arrays.equals(frf.data,
FileSystemServerImpl.CANTREAD)) {
 fci.couldntRead = true;
 }
 }
 catch(Exception e) {
 XLogger log = new XLogger("WFStartThread", tci.svcName);
 log.logException(msg, e);
 }
 finally {
 fci.threadCounter(false); // synchronized decrement
Sterling Commerce, Inc. 87

Index
A
adapter

definition 28
definition of adapter 11
parts 41
stateful 41
stateless 41
terminology 10

adding BPML files 18

adding EJBs 18

adding maps 18

adding scripts 18

advanced status, reporting 45

API, workflow context 39

B
basic status, reporting 44

bootstrapping 31

business process
definition fails to start 32
join 30
model 10
overview 30
reuse 27
running 33
split 30
starting 31

Business Process Management Initiative (BPMI) 26

Business Process Modeling Language (BPML)
definition 26

business-to-business (B2B) server 35

D
decision engines 27

Developer SDK

installing service into product 21

E
EJB logging 50

ERP systems 27

error reporting 40

exception reporting 45

exceptions 45

F
File System adapter

FileSystemServer file 53
Ibm-ejb-jar-bnd.xmi file 60
Ibm-ejb-jar-ext.xmi file 60
sample files 53
sample XML 60
weblogic-ejb-jar file 60

File System Adapter XML 60

FileSystemServer file 53

FileSystemServerImpl File 54

framework, service 29

H
harness model 29

hash table 40

I
Ibm-ejb-jar-bnd.xmi file 60

Ibm-ejb-jar-ext.xmi file 60

input parameters 39

invocation
successful 46
unsuccessful 46
Sterling Commerce, Inc.

Index
J
J2EE environment, components 33

Java code 27

Java language 33

Java Virtual Machine (JVM) 36

join, business process 30

L
large file support 30

legacy programs 27

logging event guidelines 49

LogService logging methods 51

M
many-to-many relationship 31

O
outbound edges, example 31

P
parameter group

creating 16

parameters, input 39

Perl scripts 27

persisted workflow context 29

persistent storage 29

R
Remote Method Invocation (RMI)

logging 50
methods 42
part of adapter 38, 41
service adapter implementation 38

RMI logging 50

S
scalability 39

Secure DMZ 36

service
adapters 10
components 28
configuring 46
definition 27
diagram 29
framework 29
input parameters 39
installing into product 21
language-specific properties 46
status information 44
types 28

service adapter implementation 34, 38

service and operations controllers 36

service groups 30

service harness implementation 34, 38

service harness implementation and service adapter
implementation, example 34

Service SDK
service directory structure 18

split, business process 30

stateful adapter 41

stateless adapter 41

status information
advanced 45
basic 44
exception 45
status report 45

storage types 30

subprocess, example 27

W
weblogic-ejb-jar file 60

workflow context
API 39
components 39
definition 29
persisted 29

workflow document body 40

www.bpmi.org 26
Sterling Commerce, Inc. 89

Index
X
XLogger logging 50

XLogger logging methods 51
Sterling Commerce, Inc. 90

	About MESA Developer Studio
	Using MESA Developer Studio to Manage Gentran Integration Suite
	Available MESA Developer Studio Editors
	License Management Settings
	Creating a MESA Developer Studio Project
	Managing Resources in MESA Developer Studio
	Working with Business Processes
	Working with Schemas
	Working with Properties Files

	Creating Services Using MESA Developer Studio SDK
	Creating Custom Services
	Anatomy of a Service

	About MESA Developer Studio SDK
	Upgrading from Previous Versions
	Directory Structure for MESA Developer Studio SDK Projects
	Optional Directories Within a Service
	Using the MESA Developer Studio SDK Cheat Sheet

	Steps to Create a Service Using MESA Developer Studio SDK
	Starting MESA Developer Studio SDK
	Creating a MESA Developer Studio SDK Project
	Adding Business Logic to a Service
	Adding Parameters to the Service Definition File
	Adding Resources to a Service
	Writing Log Messages into a Message Log File
	Creating a serviceinstances.xml File
	Changing the SDK Library Version
	Exporting a Service for Deployment
	Installing a Service into the Application

	Updating a Service Definition

	Working with the MESA Developer Studio Skin Editor
	About the MESA Developer Studio Skin Editor
	Using the Skin Editor
	Retrieving Current Skin
	Previewing a Skin
	Saving Skin Changes
	Undoing Skin Changes

	Using the Skin Editor to Edit a Gentran Integration Suite Template
	Using Advanced Editing
	Restoring the Default Skin

	Gentran Integration Suite Architecture
	Introduction to Gentran Integration Suite Architecture
	Business Process Definitions
	Services

	Components of a Service
	Example of a Service
	Workflow Context
	Basic Service Framework
	Special Service Capabilities

	Relationship Between Business Processes and Services
	Example of Outbound Edges
	Starting a Business Process
	Many-to-Many Relationship
	Business Process Definition Fails to Start
	Running a Business Process

	Gentran Integration Suite Components and a J2EE Environment
	Service Harness Implementation and Service Adapter Implementation
	B2B Server
	Service and Operations Controllers

	Reference Information for Developing a Service
	Service Architecture Summary
	Harness
	RMI (Service Adapter Implementation)
	Service XML File and Language Files
	Scalability

	Workflow Context
	Input Parameters
	Workflow Document Body
	Error Reporting

	Service Controller
	Stateless and Stateful Adapters
	Service Controller Interface
	Service Controller Interface - RMI

	Error and Status Reporting
	Basic Status
	Advanced Status
	Exceptions
	Status Report

	Configuring Services
	Language-Specific Properties Files
	Service XML File

	Logging Service
	Logging Event Guidelines
	XLogger Logging
	RMI Logging
	XLogger Logging Methods
	LogService Logging Methods

	File System Adapter Examples
	FileSystemServer File
	FileSystemServerImpl File
	File System Adapter XML
	FileSystem XML
	Filesystem_en File
	FileSystemImpl File
	FileSystemServer File
	FileSystemServerImpl File
	FSFromCollectInfo File
	FSFromReadFile File
	FSToCollectInfo File
	FSToExtractInfo File
	WFStartThread File

