
Sterling Commerce

Platform BPML
Platform IFC 1.0

© Copyright 2008 Sterling Commerce, Inc. All rights reserved.

Contents

Application and BPML . 5
Where to Find Industry Information. 5
Business Process BPML Components . 5

Process Element . 6
What Is Process Data? . 8

About Input and Output Messages and Process Data . 9
Input and Output Examples . 9
Different Types of Assigns . 11
Using Assign Element To Copy All of Process Data Into the Message 12
Consider the Order In Which You Configure Assigns . 13
Specifying Constants (Literal Values) In Assign Elements. 13

Tips For Accessing Content . 14
XPath and Process Data . 15

Example 1. 15
Example 2. 15
Example 3. 15

XPath and DocToDOM . 16
DocToDOM function In an Assign Statement Examples. 17
DocToDOM Function . 18
DOMToDoc Function . 19
DOMToDoc Parameter Definitions . 19

XPath . 19
Document Name. 19
Default Behavior with XPath = /ProcessData/test . 19

DOMToDoc Examples . 21
Simple BPML Activities . 22

Produce and Consume Activities . 22
Produce Activity . 22
Consume Activity . 22

Operation Activity . 23
Participant Element . 23

Complex BPML Activities . 25
Sequence Activity . 25
All Activity . 25
Choice Activity. 26

Branching . 26
Rule Element. 28
Condition Element. 28

Process Activities and Elements . 29
Sterling Commerce, Inc. 3

Contents
Input and Output Elements . 29
Assign Activity . 29

Using Assign as an Independent Activity . 30
Repeat Activity . 30
Join and Spawn Activities . 31
onFault Element . 31

When Fault Code Does Not Match onFault Code . 33

Index 34
Sterling Commerce, Inc. 4

Application and BPML
A basic understanding of BPML fundamentals will enhance your understanding of Application and
facilitate your monitoring, troubleshooting, business process modeling, and process analysis activities.

Business Process Modeling Language (BPML) is an XML-based language used to describe (model) and run
business processes. Each business process is defined by a single, unique BPML document known as a
business process model (.bpml or .bp file). Each business process model is the definition of the process as
it will be run in Application.

This topic explains the basic components of BPML that make up your business process models so that you
can identify the components in your day-to-day interaction with Application operations.

Where to Find Industry Information
For comprehensive information about XML and BPML, and related topic, XPath, visit the following Web
sites:

✦ Sterling Commerce Support on Demand, at https://support.sterlingcommerce.com/user/login.aspx
✦ The Business Process Management Initiative, at www.bpmi.org
✦ The World Wide Web Consortium, at www.w3c.org
✦ The United Nations Centre for Trade Facilitation and Electronic Business (UN/UNECE and the

Organization for the Advancement of Structured Information Standards), at www.oasis-open.org

Business Process BPML Components
BPML code includes activities and elements. An activity is a step in a business process, and may be
comprised of multiple elements. Elements are defined components of code that provide structure and
instructions regarding the activity they embody. BPML refers to entities outside of the business process as
participants. An example of a participant is an inventory system.

✦ A simple activity is a single step in a business process. For examples, see Simple BPML Activities on
page 22.

✦ A complex activity is an activity that comprises a set of steps in a business process. For examples, see
Complex BPML Activities on page 25.

Activities within BPML code correspond to the icons you include in your business process models when
you create them using the GPM. However, while an icon displays as a single, contained, unit, viewing the
related BPML code shows the several elements that comprise the activity. You may refer to any service or
other business process model component as an activity, but in the context of BPML, an activity may also be
a BPML construct used to define the structure and progress of a business process flow.

The operation activity is a good example of this difference. The operation activity is the BPML component
used to call a service within a business process.

Some BPML activities are represented by icons in the GPM (such as the Sequence icons and choice icons),
while others are included within the service icons you can select in the GPM. For example, the operation
activity is the BPML component used to call a service within a business process. If you use a text editor to
write a business process model in BPML code, you include the operation activity, along with related
Sterling Commerce, Inc. 5

Application and BPML
elements, to call a service. If you create a business process model using the GPM, simply including the
appropriate icon for a service automatically builds the operation activity into the BPML source code for the
process model.

For example, the following figure shows the BPML for a business process; within it, the operation activity
is denoted by the <operation> name element:

The elements between <operation> and </operation> define the particulars of the activity, including calling
the EDI Overdue Acknowledgment Check service. The </operation> element indicates the conclusion of
the operation activity.

If you create business process models by direct-coding, you are responsible for including all of the
appropriate elements that make up activities. When you use the GPM to create your process models, the
icons you include automatically create the required BPML element components (although you may also
need to configure service parameters).

You can relate the example in the first figure to the GPM display in the following way:

✦ The Start icon provides the BPML code for the process name saved with the business process model.
✦ The Sequence Start icon provides the BPML for the sequence element.
✦ The participant name, output message, assign, and input message elements are provided by parameters

associated with the EDI Overdue Acknowledgment Check service.

Process Element
The process element defines an activity and is the root element of a business process model.

✦ A process activity consists of exactly one simple or complex activity. The process completes after this
activity completes.

<process name="OverdueAckCheck">
 <sequence>
 <operation>
 <participant name="OverdueAck"/>
 <output message="Xout">
 <assign to="." from="*"></assign>
 </output>
 <input message="Xin">
 <assign to="." from="*"></assign>
 </input>
 </operation>

 </sequence>
</process>

name element for the operation

Total activity,
comprised
of elements
Sterling Commerce, Inc. 6

Application and BPML
✦ A process element begins and ends every business process model and can contain only one complex
activity or one simple activity. The complex activity must contain all other activities required for the
business process model in question. A process element uses the following syntax:
<process name>

<rule name/>*

(simpleActivity | complexActivity)

</process>

✦ A process element has a name attribute to indicate the name of the business process. The name
attribute references any namespaces used in the business process.
<process name="ProcessCustomerOrder">

.

.

.

</process>
Sterling Commerce, Inc. 7

What Is Process Data?
To configure business process models you need to understand process data and associated concepts.

Process data is data related to a business process that accumulates, according to configured instructions in
the BPML, in an XML document during the life of the process. Business process writers use process data
to enable manipulation of pieces of information that are crucial to completing the activities in the process,
as follows:

✦ The BPML structure of business process models always includes a placeholder (root node) for process
data.

✦ The creator of a business process model configures services and activities to put information in process
data, and also configures services to access and use that data to complete the process activities. For
example, a step in a process may pull a routing number from the primary document and add it to the
process data, to be accessed by a subsequent step in the process that is configured to act using that
information (the primary document is the core document in a business process, such as a purchase
order).

✦ Exactly how these activities take place depends on the particulars of the configuration.
✦ The data that processes through a service in a step is always a combination of process data and the

primary document.
The type of information a service places in process data is variable from service to service according to the
service configuration and the task being completed. And some services operate solely on the primary
document and never use process data at all. Both the process data and primary document may change during
processing through a service.

Process data is likely to include:

✦ Information extracted from a document that is used for determining, from multiple choices, what the
next step will be

✦ Information assigned in a process’ BPML configuration to be used by a service in the business process,
such as a map name or extract directory, which helps the service do its job but is not part of the primary
document

✦ Information about the document or the processing of the document, placed by a service – such as a
content type indicator or sender information, which helps a service do its job and is specific to the
document

Because process data is XML, you can use XPath in your process models to access information within it.
You can use an XPath statement to refer to primary document content even when the primary document is
not in XML (see XPath and Process Data on page 15). Another benefit is that you can represent complex
hierarchical data directly in the process data.

Ideally, services are configured to access the primary document, bypassing the need for process data in a
step, however, complex processes generally require the use of process data to most efficiently obtain the
desired results.

In your day-to-day monitoring activities, you can view process data for individual steps in a process, should
you need to check the particulars of how the step uses process data. View the data through the Business
Process Detail page (from the Administration menu, select Business Processes > Current Processes > ID
of the selected process > info [in the Instance Data column for a step]).
Sterling Commerce, Inc. 8

What Is Process Data?
If you need technical information about configuring business process models with regard to process data,
you may find the rest of this topic useful. It assumes basic knowledge of BPML.

About Input and Output Messages and Process Data
Process data content is independent and is not directly available to services. Therefore, to configure a
service to use information placed in process data, the process writer must configure the service to enable
access to it.

The business process writer controls both the data that is sent to a service for a step and what data from a
service is put into process data, by configuring input and output instructions in the process definition
(BPML). The input and output data for a service is referred to as input and output messages (you can see
these terms used in the Service Editor in the GPM and your service configurations in the Application
interface).

The input and output instructions for the messages are BPML assign elements. Assign elements set a value
in the business process data that is equal to a fixed value. Inside an input or output element, the assign
element identifies a message it should receive from a participant or identifies the contents of a message it
should send to a participant. Therefore, assign elements specify the message data, and messages are the
mechanism by which services get data from and return data to a business process’ process data. These
messages are represented as XML (DOM) documents.

Note: In the GPM service editor, the output message – data being passed into the service – is referred to as
the Message To Service, and the input message – data being passed out of the service – is named the
Message From Service.

The syntax used to encode input and output messages with respect to the business process definition are as
follows:

✦ The <output> tag specifies what data should be output from the business process to the service (that is,
copied from the process data).

✦ The <input> tag specifies what data in the output of a service should be used as input to the business
process (that is, copied to the process data).

✦ Not all services require input or produce output. Even if a service does produce output, the business
process writer is not required to use any or all of the data returned by a service.

✦ Output assignments happen before the service executes. Input mappings happen after the service has
completed.

✦ The ‘from’ attribute of an assign statement can be any XPath expression and can identify multiple
nodes. The ‘to’ attribute of an assign statement must point to an individual node.

Note: Be sure to avoid the following possible problems when allowing a service to read and write the
process data area directly:

A service can read data that you may not have intended to be read.

A service can write data, or overwrite data, that you did not intend to be written or overwritten.

Input and Output Examples
Sterling Commerce, Inc. 9

What Is Process Data?
The following example illustrates output and input message configuration:

For this example, this is the process data:
<ProcessData>
 <PO>
 <CustomerNumber>12345</CustomerNumber>
 </PO>
</ProcessData>

Before the service runs, the output assigns are used to move data from process data to the input for the
service. The message sent to GetCustomerData looks like:
<MessageToGet>
 <ID>12345</ID>
</MessageToGet>

The message produced by GetCustomerData looks like:
<MessageFromGet>
 <NAME>Bob Smith</NAME>
 <EMAIL>bob_smith@sterlcomm.com</EMAIL>
</MessageFromGet>

After the service runs, the input assigns are used to move data from the output produced by the service back
into process data. After the input assignments are applied, the process data looks like:
<ProcessData>
 <PO>
 <CustomerNumber>12345</CustomerNumber>
 </PO>
 <CustomerName>Bob Smith</CustomerName>
 <CustomerEmail>bob_smith@sterlcomm.com</CustomerEmail>

<operation name="GetCustomerData">
<ouput name="MessageToGet">
<assign from="PO/CustomerNumber" to="ID">
</output>
<input name="MessageFromGet">
<assign from="NAME" to="CustomerName">
<assign from="EMAIL" to="CustomerEmail">
</input>
</operation>

This output element contains
the information needed by
the service to do its work.

Within the output section, assign
elements copy data from process data
into elements needed by the service;
in this case, the assign indicates that
the service requires an attribute
named ‘ID.’ The process writer knew
that ‘ID’ corresponded to an element
that existed in process data called
‘PO/CustomerNumber,’ so the writer
assigned that value to ‘ID,’ enabling
the service to reference the value.

The input section is the converse of
the output section. The assign
statement in the input section that is
<assign from="NAME"
to="CustomerName"> indicates that
the service returned a value for the
"NAME" and that the business process
writer wants this value to be copied to
"CustomerName" in process data to
be available for other services to use.
Sterling Commerce, Inc. 10

What Is Process Data?
</ProcessData>

The CustomerName and CustomerEmail data is now available for subsequent steps in the business process
to use. Remember, the business process writer is not required to use any or all of the data returned by a
service.

The following illustration shows a simple process that has three services. The triangles represent the XML
documents (input and output messages) that contain the actual data values obtained from evaluating the
assignments defined in each of the operations (services) in the process definition. The illustration provides
a graphic example of how the messages and services interact with process data in a larger process.

Different Types of Assigns
The assign element is a BPML construct you can use to perform simple assignment operations within a
service call, as illustrated in the first example (see Input and Output Examples on page 9). You can also use
assign statements outside of any operation, input, or output tags. Sometimes called top-level assignment,
this method enables you to manipulate the process data directly, outside the service call in a process rather
than within the service step.

Process

Process Data

Service 1

Msg to
Service

Msg
from

Service
Msg to
Service

Output
Assign

(Input to
Service)

Input
Assign
(Output

from
Service)

Service 3

Msg
from

Service

Service 2

Msg to
Service

Msg
from

Service
Sterling Commerce, Inc. 11

What Is Process Data?
Within the Application application, the Assign service configuration is available for this purpose, and in the
GPM, it is represented as the Assign activity, available as an icon from the BPML stencil. This topic
discusses the assign element, not the service or activity, but it is important to note that top-level assignments
follow the same conventions outlined here.

Note: If you are configuring a service in the GPM rather than by direct coding, and you want to include an
assign element in the service configuration, add it to the parameters on the Message To Service or
Message From Service tab, as appropriate. To add the element, click Advanced.

Using Assign Element To Copy All of Process Data Into the Message
In addition to the explicit assignments described thus far, you can also use assign elements within a service
implicitly—that is, to copy all of process data into the Message To Service (output message) so that a
service can access it. To use this method, code your assign element as follows:

assign from="*" to=".">

This instructs the service that all (*) of the process data document is available for use. You can use this type
of assignment separately for both input and output messages. This is a catch-all construct used when a
service may need access to all of process data. Recommended practice is to use explicit assignments in the
messages. Explicit assigns, in which the process steps act on or pass on only the useful and necessary pieces
of information in process data, yield more efficient overall processing that is less likely to negatively affect
system performance.

In the following example, which is a fragment of a business process, the GetCustomerData service executes,
processes, and produces the same information as in the first example (see Input and Output Examples on
page 9). But, because there are no explicit assign elements, all of the data must be in the correct place in
process data:
<operation name="GetCustomerData">
 <output name="MessageToGet">
 <assign from="*" to=".">
 </output>
 <input name="MessageFromGet">
 <assign from="*" to=".">
 </input>
</operation>

The following is process data:
<ProcessData>
 <ID>12345</ID>
</ProcessData>

As the service runs, it writes data directly to process data. After the service completes, the process data
looks like the following:
<ProcessData>
 <ID>12345</ID>
 <NAME>Bob Smith</NAME>
 <EMAIL>bob_smith@sterlcomm.com</EMAIL>
 <ADDRESS>4600 Lakehurst Court, Dublin, OH, 43016</ADDRESS>
 <PHONE>614-793-7000</PHONE>
</ProcessData>
Sterling Commerce, Inc. 12

What Is Process Data?
Consider the Order In Which You Configure Assigns
Configuring your processes is likely to involve situations in which a service needs to obtain parameters from
both process data and messages. These kinds of scenarios involve multiple assigns, possibly both implicit
and explicit, and the order in which the step processes the assigns is crucial to successful processing of the
step. Your process definition may need to indicate whether services first request values from messages or
process data.

Essentially, in cases where message data and process data are both involved in a step, you need to ensure
that the assignments happen in the appropriate order, either by direct-coding them such that they process in
the order you need, or by setting the order in the GPM Service Editor. You can specify different settings for
input and output messages within the same service. In the GPM, you can select the following instructions
for input and output messages:

Specifying Constants (Literal Values) In Assign Elements
As well as obtaining runtime values from process data, you can also specify constants (or literals) as
parameters. For example, if some parameters may not be specified in process data, defaults can be used.

Note: Because the BPML is represented as XML, literal values included in the ‘from’ attribute value must
be enclosed in single quotes within the double quotes (“‘ ’”). For example <assign to=”foo”
from=”’bar’”/>.

The following example illustrates the use of default parameters.
<operation name="GetCustomerData">
 <output name="MessageToGet">
 <assign to="ID">12345</assign>
 <assign from="*" to=".">
 </output>
 <input name="MessageFromGet">
 <assign from="NAME" to="CustomerName">
 <assign from="EMAIL" to="CustomerEmail">
 </input>
</operation>

Message To Service (Output Message) Message From Service (Input Message)

Messages Only – No process data is involved with this
option.

Allow Process Data write

Obtain Message first, then Process Data – Use this to
provide overrides for parameters. For example, if all but
one parameter is set in process data, the one missing
parameter could be put into the message for the
service to pick up.

Allow message write

Obtain Process Data first, then Messages – In this
scenario, when the service needs to look up data, it first
checks the process data and then goes to the
message. You can use this setting to provide defaults
for parameters, such as when some parameters are not
specified in process data.
Sterling Commerce, Inc. 13

What Is Process Data?
In this example, the service configured with a setting of Obtain Message first, then Process Data and has a
constant assignment to the ID parameter.

Tips For Accessing Content
The following methods are two ways to configure a a process to obtain the necessary data from the primary
document and place it in process data:

✦ If the primary document is in XML format, use the DocTODOM XPath function.
✦ If the primary document is not in XML format, create a map for the XML Encoder service that copies

only the required information from the primary document into process data.
Sterling Commerce, Inc. 14

XPath and Process Data
Use XPath syntax in an assign element to work with the process data. In the assign element, the two
attributes from and to are XPath expressions. The from attribute indicates the location in the source context
from which the business process should pull a value. The to attribute indicates the location in the target
context in which the process should place a value.

The source and target contexts for an assign element depend on whether the assign element is in an output
element, an input element, or an assign activity.

✦ In an output element, the target context is the message that the process sends to a participant. The
source context is the process data.

✦ In an input element, the target context is the process data and the source context is the message the
process receives from a participant.

✦ In an assign activity, the process data is both the source context and the target context.
The numbered examples following this section are based on the following sample process data:
<ProcessData>

<PurchaseOrder>
<LineItem>
<Price>12.34</Price>
</LineItem>

<LineItem>
<Price>95.61</Price>
</LineItem>

<LineItem>
<Price>34.52</Price>
</LineItem>
</PurchaseOrder>

</ProcessData>

Example 1
Count the number of line items and assign the count to a variable called LineItem.
<assign to="LineItem" from="count()"/>

Example 2
Calculate the sum of the line items in the purchase order and assign it to a variable sum in the process data.
<assign to="sum" from="sum(PurchaseOrder/LineItem/Price)"/>

Example 3
Extract the first line item and save it to LineItem1 in the process data.
<assign to="LineItem1" from=" PurchaseOrder/LineItem[1]"/>
Sterling Commerce, Inc. 15

XPath and Process Data
XPath and DocToDOM
The following function extracts the SCIObjectID attribute from the process data DOM and loads the
corresponding document into process data:
DocToDOM (xpath expression [, validate, loadDTD])

The XPath expression is required to complete a query executes against the process data DOM tree. The node
returned must have an SCIObjectID attribute. This enables the document to load by the ID and then parsed.
You can add additional XPath criteria following the function call to run an XPath query against the
document itself.

Additional functions shown in the previous example are:

✦ validate – Document validation value. Default value is true. Optional.
✦ loadDTD – Determines if the parser loads the DTD, as specified. Default value is true. Optional.
This document shows the XML file used in the following examples:
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE document SYSTEM "examples.dtd">
<Testplan>
 <Test1>
 <Unit_Price>5.25</Unit_Price>
 </Test1>
 <Test2>
 <Customer_ID>3</Customer_ID>
 <Zip>43013</Zip>
 <Entry_Date>2006-10-10</Entry_Date>
 </Test2>
 <Test3>
 <Customer_ID>2</Customer_ID>
 <Quantity>80000</Quantity>
 <Entry_Date>11/2/2006</Entry_Date>
 </Test3>
 <Test4>
 <Customer_ID>5</Customer_ID>
 <SirName>Mr.</SirName>
 <FirstName>Joe</FirstName>
 <LastName>Smith</LastName>
 <Address>555 Main St.</Address>
 <City>Anywhere</City>
 <State>OH</State>
 <Zip>55555</Zip>
 <Phone_Num>555-5632</Phone_Num>
 <Orders_Placed>2</Orders_Placed>
 </Test4>
 <Test5>
 <Customer_ID>5</Customer_ID>
 <City>Columbus</City>
 <Entry_Date>12/5/2006</Entry_Date>
 </Test5>
 <Test6>
 <Customer_ID>5</Customer_ID>
 </Test6>
 <Test7>
 <Unit_Price>43.25</Unit_Price>
Sterling Commerce, Inc. 16

XPath and Process Data
 </Test7>
 <Test8>
 <Customer_ID>3</Customer_ID>
 <Zip>43013</Zip>
 <Entry_Date>2006-10-10</Entry_Date>
 </Test8>
 <Test9>
 <Customer_ID>2</Customer_ID>
 <Quantity>80000</Quantity>
 </Test9>
 <Test10>
 <Customer_ID>1</Customer_ID>
 <City>Columbus</City>
 </Test10>
</Testplan>

DocToDOM function In an Assign Statement Examples
In the following example, the nodes returned are attached to process data at the root node:
<assign to="." from="DocToDOM(PrimaryDocument)"></assign>

In the following example, additional XPath (Test1) executes against the document to return only the nodes
that exist under Test1. The result is then attached to process data, under the message_test node:
<assign to="message_test" from=" DocToDOM(PrimaryDocument)/Test1"></assign>

In following example, validation is turned off and enables the DTD to load:
<assign to="." from="DocToDOM(PrimaryDocument, 'false','false')"/>

The following BPML example shows the assign statement:
<process name="DocToDOM">
 <sequence>

<assign to="." from="DocToDOM(PrimaryDocument)"></assign>
 </sequence>
</process>

This function runs an XPath query against the process data DOM and saves the node into a workflow
document:
DOMToDoc(xpath expression [, document_name, standalone, root_name, encoding,
systemURL, dtdName, publicURL])

The following parameters are shown in the previous example:

✦ XPath expression – XPath query to execute against the process data DOM tree. Required.
✦ documentName – Name of the workflow document. The default value is Document. Optional.
✦ standAlone – Value indicating whether this document is a single document (stands alone). Default

value is no. Optional.
Sterling Commerce, Inc. 17

XPath and Process Data
✦ rootName – Name of the document element that stores the result of the XPath query. This entire node
is written to the workflow document. If a name is not provided, the document element stores the root
node returning from the XPath query. Optional.

✦ encoding – String value that builds the encoding section of the XML header and specifies the encoding
type of the workflow document. If an encoding is not provided, the default parameter is UTF-8.
Optional.

The next set of parameters rebuilds the DOCTYPE element that was lost after executing the XPath query:

✦ systemURL – Value of the system URL. Optional.
✦ dtdName – Value of the DTD name. If a value for this parameter is specified, the publicURL parameter

is ignored. Optional.
✦ publicURL – Value of the public URL. If a value for this parameter is specified, the DtdName

parameter is ignored. Optional.
The following example shows the use of the DOMToDoc function in an assign statement:
<assign to="message_test" from="DOMToDoc(Testplan)"></assign>

The XPath specified in the following example identifies the nodes that exist below the root node. Therefore,
do not specify the root element in your XPath expression:
<Root>
 <Testplan>
 <Test1>some data</Test1>
 </Testplan>
</Root>

If you want to return the text in the Test1 node then my XPath will be:
DOMToDoc(Testplan/Test1/text()) Correct.
DOMToDoc(//Root/Testplan/Test1/text()) Wrong. Don't specify the root node in the
xpath query.

DocToDOM Function
The following example shows an XML document loading in to process data:
<process name = "DocToDOM_Example1">
 <sequence>
 <assign to="." from="DocToDOM(PrimaryDocument)" />
 </sequence>
</process>

Load a portion of an XML document into process data. The XPath query does not reference the document
element following the DocToDOM call. The nodes returned are stored under the Testpoint tag:
<process name = "DocToDOM_Example2">
 <sequence>
 <assign to="Testpoint" from="DocToDOM(PrimaryDocument)/Test4" />
 </sequence>
</process>
Sterling Commerce, Inc. 18

XPath and Process Data
DOMToDoc Function
The params in brackets “[]” are optional parameters.

DOMToDoc(XPath,[‘Document Name’],[‘stand alone?’],[‘root name’],[‘encoding’],[‘system url’],[‘dtd
name’],[‘public url’],[‘attribute quoting’])

DOMToDoc Parameter Definitions

XPath
The xpath parameter is the only required parameter. It is an xpath to the xml node in the business process
instance data (ProcessData) that you want extracted into the document.

<assign to="." from="DOMToDoc(/ProcessData/beginningxmlnode)" />

Document Name
The document name value, if specified is the name the document in process data is given, with the data from
the xpath node specified. If none is specified the default value of “Document” is used.

Usage Example:
<assign to="." from="DOMToDoc(/ProcessData/beginningxmlnode,’DOMToDoc_Document’)" />

Stand Alone
The values allowed for this option is “YES” or “NO”. It tells the function which value to use in the xml
declaration line of the document. (<?xml version="1.0" encoding="UTF-8" standalone="YES or NO"?>)
The default value is “no”.

Usage Example:

<assign to="." from="DOMToDoc(/ProcessData/beginningxmlnode,’’,’YES’)" />

Root Name
The root name sets the root xml element, to wrap the data specified by the XPath in the xml document
created, and will specify it in the DOCTYPE declaration. The default value is null, which means the xml
document will contain just the nodes specified in the XPath without any root element wrapping that data.

Usage Example:
<assign to="." from="DOMToDoc(/ProcessData/beginningxmlnode,’’,’’,’docroot’)" />

Default Behavior with XPath = /ProcessData/test
<ProcessData>
<test>
<data>123</data>
</test>
</ProcessData>
Becomes….
<?xml version=”1.0” encoding=”UTF-8” standalone=”no”?>
<test>
Sterling Commerce, Inc. 19

XPath and Process Data
<data>123</data>
</test>
Behavior when specified
<ProcessData>
<test>
<data>123</data>
</test>
</ProcessData>
Becomes….
<?xml version=”1.0” encoding=”UTF-8” standalone=”no”?>
<docroot>
<test>
<data>123</data>
</test>
</docroot>

Encoding
The encoding parameter sets the documents character encoding. This is a string value, and will set the
character encoding to any string passed, so it is important that you pass a valid encoding. No validation is
done against this parameter. The default value is “UTF-8”.

Usage Example:

<assign to="." from="DOMToDoc(/ProcessData/beginningxmlnode,’’,’’,’’,’UTF-16’)" />

System URL
Specifying this parameter will create a document type declaration in the xml document and set it to
SYSTEM with the url being the string specified. The default is null, meaning no declaration of system will
be done.

Usage Example:

<assign to="." from="DOMToDoc(/ProcessData/beginningxmlnode,’’,’’,’’,’’,’http://ster-
comm.com/xml/example’)" />

This will result in the document having <!DOCTYPE SYSTEM "http://stercomm.com/xml/example">

DTD Name
Specifying this parameter will create a document type declaration in the xml document and set it to PUBLIC
with the value being the dtd name specified in the value of this parameter. The default is null, meaning no
declaration of PUBLIC will be done.

Usage Example:

<assign to="." from="DOMToDoc(/ProcessData/beginningxmlnode,’’,’’,’’,’’,’’,’testdtd’)"
/>

This will result in the document having <!DOCTYPE PUBLIC "testdtd">
Sterling Commerce, Inc. 20

XPath and Process Data
Public URL
Specifying this parameterwill create a document type declaration in the xml document and set it to PUBLIC
with the value being the dtd name specified in the value of this parameter. The default is null, meaning no
declaration of PUBLIC will be done.

Usage Example:

<assign to="." from="DOMToDoc(/ProcessData/beginningxmlnode,’’,’’,’’,’’,’’,’’,’publi-
curl’)" />

This will result in the document having <!DOCTYPE PUBLIC "publicurl">

Attribute Quoting
This parameter specifies whether to wrap xml attributes in single quotes or double quotes. Both are
completely valid xml. The parameter takes a value of “single” or “double” with single quotes as the default
behavior.

Usage Example:

<assign to="." from="DOMToDoc(/ProcessData/beginningxmlnode,’’,’’,’’,’’,’’,’’,’’,’dou-
ble’)" />

This will result in the document having <test name=”testattribute”> instead of <test name=’testattribute’>

DOMToDoc Examples
The following example shows the output of the process data tree in a document:
<process name = "DOMToDoc_Example1">
 <sequence>
 <assign to="." from="DocToDOM(PrimaryDocument)" />
 <assign to="." from="DOMToDoc(//)" />
 </sequence>
</process>

The following example shows the output of the document that loaded into process data and back into a
document. I nodes returned from the DocToDOM call were placed into the Testpoint tag because the
DOMToDoc call did not return the tag specified in the XPath. This prevents the loss of the document
element.
<process name = "DOMToDoc_Example1">
 <sequence>
 <assign to="Testpoint" from="DocToDOM(PrimaryDocument)" />
 <assign to="." from="DOMToDoc(Testpoint)" />
 </sequence>
</process>
Sterling Commerce, Inc. 21

Simple BPML Activities
Simple BPML activities enable a business process to communicate with a participant. There are three types
of simple activities:

✦ Produce – Sends messages to participants asynchronously
✦ Consume – Receives messages from participants asynchronously
✦ Operation – Exchanges messages with participants synchronously

Produce and Consume Activities
The produce and consume activities enable business processes to communicate. Produce and consume are
used together.

Produce Activity
The produce activity sends a message to another business process.

In the following sample BPML code, a message called EmployeeDataMessage is sent to a business process
instance created by the spawn activity. The assign elements write the name and social security number of
an employee into the message. Note the significance of the name of the message; the spawned instance looks
for a message with exactly that name.
<produce name=’SendMessage’>

<participant name=’AnotherProcess’/>
<output message=’EmployeeDataMessage’>
assign to=’EmployeeName’>David</assign>
assign to=’SocialSecurityNumber’>123-45-6789</assign>
</output>

</produce>

Consume Activity
The consume activity reads in a message sent to it by another business process. A consume element can
contain a participant element. The participant element indicates which business process instances are
relevant to the consume activity.

The following sample BPML code represents the simplest form of the consume activity. The activity reads
in a message called EmployeeDataMessage, and then stores the message in process data.
<consume name=’ReceiveMessage’>

<input message=’EmployeeDataMessage’>
</input>

</consume>

The consume activity can also indicate that it will read a message only from a particular sending process,
and store only parts of the received message in process data.
Sterling Commerce, Inc. 22

Simple BPML Activities
Operation Activity
The operation activity invokes an action against a participant. Using an operation activity is the only way
that you can call a service.

The following specifications apply to the operation activity:

✦ An operation involves a synchronous request/response message exchange with a possible fault
message.

✦ When an operation is invoked, it delivers a request message and waits for a response message. If a
fault is communicated, the operation faults.

✦ How the business process communicates with a participant is left to the implementation. Use extension
elements to provide implementation details.

✦ Use the operation element to invoke an operation on a service.
✦ The participant element must be used.
✦ The output element must precede the input element.

Participant Element
Use the participant element to define a participant in the business process, or to reference a participant
within a simple activity. The participant element is used in the operation activity and with the produce and
consume elements.

In the business process or a simple activity, the participant element defines a static participant that must be
named using the name attribute. The definition can include annotations, metadata, and extension elements.

How the business process communicates with the participant and applies the proper security restrictions is
left to the implementation. Use extension elements to provide implementation details.

The following sample operation refers to the online bookseller scenario example discussed in the previous
sections, where the bookseller Process Customer Book Order process contacts the Inventory service to
determine whether a book is in stock.

The participant, output, and input elements are required and must be in the order shown in the following
example. Follow the specification for each line in the example exactly.

Line No. BPML

1 <operation name='User Name'>

2 <participant name='InventoryService' />

3 <output message='checkStockRequest'>

4 <assign to='ISBN'>1-56592-488-6</assign>

5 </output>

6 <input message='checkStockResponse'>

7 <assign to='foundBook' from='InStock' />

8 </input>
Sterling Commerce, Inc. 23

Simple BPML Activities
The following table describes the elements and activities of each line in the BPML:

9 </operation>

Line No. Description

1 Type of activity is an operation. Supplying a name for the operation activity is optional.
Note: This name has no impact when running the business process, but the GPM uses it as a label.

2 Operation activity communicates with a participant. The participant element in this line identifies the
participant with which this operation is associated. For Application, the name attribute must match the
name of an installed service, service instance, or service configuration. In this case, the name identifies
the Inventory service.

3 Output element contains the information to send to the service. The message attribute is required in
BPML, because a participant can perform different tasks, depending on the different messages it
receives.
For example, when the inventory service receives a checksStockRequest message, it determines an item
is in stock. A restockItemRequest message prompts the inventory system to restock the item.

4 An assign element within the output element provides the required information for the output message.
For example, if the business process and participant communicate through a message, the message
attribute of the output element specifies the title, checkStockRequest. The assign element on line no. 4
specifies the first line of the message, ISBN = 1-56592-488-6. Each additional assign element in that
output element adds another line to the message.

5 Ends the output element.

6 Within an output element, an input element identifies the response the process expects from the
participant. When the participant receives the message written by the process, the participant responds
with a return message that the input element reads. The message attribute of the input element identifies
the name and type of the return message expected from the participant. Because a participant can send
more than one type of message, a message attribute is required for the input element. The message
attribute indicates which message is expected.

7 The assign attribute in an input element differs from the assign attribute in the output element. In the input
element, the assign attribute reads information from the message and writes that information in the
process data.
For example, if the book for which the process performs a stock check is available, the InventoryService
response message contains a line similar to InStock = true.
The assign element within the input element writes the value from the InStock line to the process data.
The InStock line includes an identifier written to the process data.
In the bookseller example, the value from the InStock line is true, so the line written to the process data
would be similar to foundBook = true.

8 Ends the input element.

9 Ends the operation activity.

Line No. BPML
Sterling Commerce, Inc. 24

Complex BPML Activities
A complex activity is a combination of simple activities that are child activities to the parent complex
activity. The child activities can also be simple or complex.

A process element can contain only one parent complex activity. The parent complex activity contains all
of the simple and complex activities necessary to complete the business process.

There are three kinds of complex activities:

✦ Sequence (serial)
✦ Choice (conditional)
✦ All (parallel)

Sequence Activity
A sequence activity runs a series of child activities in the order in which it lists them. When a process runs,
all of the child activities are run. The sequence activity finishes only after the last child activity is finished.

The following example shows a sequence activity that contains two child activities: Check Inventory and
Verify Credit Card. When the process runs, Application runs Check Inventory first and Verify Credit Card
second because that is the order in which the activities are listed in the sequence. The name attribute in the
sequence element is optional.
<process name="ProcessCustomerOrder">

<sequence>
<operation name='Check Inventory'>
<participant name='InventoryService' />
<output message='checkStockRequest'>
<assign to='ISBN'>1-56592-488-6</assign>
</output>
<input message name='checkStockResponse'>
<assign to='foundBook' from='InStock' />
</input>
</operation>

<operation name='Verify Credit Card'> </operation>
</sequence>

</process>

All Activity
The all activity contains two or more complex child activities and runs all of them simultaneously. The all
activity finishes only after the child activities are finished.

The following example contains three child activity sequences: Seq_1, Seq_2, and Seq_3. Application
begins these sequences at the same time—that is, the first operations in the sequences (operations A, C, and
E) start simultaneously. The sequences continue to run independently until the last operation in each is
completed. The all activity finishes when all three child activity sequences finish.
<all>

<sequence name='Seq_1'>
Sterling Commerce, Inc. 25

Complex BPML Activities
<operation name='A'> … </operation>
<operation name='B'> … </operation>
</sequence>

<sequence name='Seq_2'>
<operation name='C'> … </operation>
<operation name='D'> … </operation>
</sequence>

 <sequence name='Seq_3'>
<operation name='E'> … </operation>
<operation name='F'> … </operation>
<operation name='G'> … </operation>
</sequence>

</all>

Choice Activity
The Choice activity makes decisions in the business process model and runs only one of the child activities
it contains. Conditions determine which child activity runs.

You define the rules for the choice conditions. The only child activity to run is the one tied to the first case
statement in the Choice activity that matches a rule. If none of the case statements in the Choice activity
match a rule, the process continues to the next activity after the choice.

Branching
The choice activity makes it possible to model process branching. To model process branching, the process
must evaluate one or more rules to reach a decision, and then specify which activity to run as a result of that
decision.

✦ The choice activity must include the select element.
✦ The select element must include one or more case elements.
✦ Each case element links the outcome of a rule to a child activity. The activity attribute in the case

element identifies the child activity to run.
✦ Each case element has a ref attribute, which contains the name of a rule that is defined at the top of the

process. Case elements refer to rules instead of conditions because:
A rule can contain more than one condition. If a rule element contains more than one condition, all
the conditions in the rule must be true in order for the rule to be true.

A condition is a single entity within a rule.

✦ If the rule is true, the activity runs.
✦ If the rule is false when the negative attribute is true, the activity runs.
✦ Multiple cases can reference the same activity. However, the activity runs only once.
✦ If an activity is not referenced, it does not run.
✦ If no activity runs, the choice activity completes immediately.
✦ Use a choice element with a simple activity to model a deferred activity.
Sterling Commerce, Inc. 26

Complex BPML Activities
✦ Priorities and defaults are modeled through rule dependencies, not through the order of the case
elements.

When the business process runs the choice activity, Application checks the case statements in the order that
they are listed in the select element. The first case statement in the select element determines whether the
rule is true. If the rule is true, the activity named by the activity attribute is run immediately. When that
activity completes, the choice activity is finished. If the second case statement in the select element refers
to the same rule as the first but has a negative attribute set to true, the case statement runs the named activity
if the rule is false.

In the online bookseller example discussed in previous sections, the Process Customer Book Order process
verifies a customer's credit card only if the book the customer selects to buy is in stock. The BookInStock
rule is true if the book is in stock and false if the book is out of stock.

If the inventory system determines that the book is in stock, the rule referred to in the case statement is true
and the proceed activity is run.
<process name="ProcessCustomerOrder">

<rule name="BookInStock">
<condition>foundBook = true </condition>
</rule>

<sequence>
<operation name='Check Inventory'>
<participant name='InventoryService' />
<output message='checkStockRequest'>
<assign to='ISBN'>1-56592-488-6</assign>
</output>
<input message name='checkStockResponse'>
<assign to='foundBook' from='InStock' />
</input>
</operation>

<choice>
<select>
<case ref="BookInStock" activity="proceed"/>
<case ref="BookInStock" negative="true" activity="stop"/>
</select>

<sequence name="proceed">
<operation name='Verify Credit Card'> … </operation>
…
</sequence>

<sequence name="stop">
<operation name='Apologize to Customer'> … </operation>
</sequence>
</choice>

<operation name='Update customer on status'> … </operation>
</sequence>

</process>
Sterling Commerce, Inc. 27

Complex BPML Activities
Rule Element
The rule element defines a rule, the conditions by which the rule is met, and dependency on other rules.

✦ The condition element formulates an expression. The condition is met if the expression evaluates to
true, or if the expression evaluates to false when the negative attribute is true.

✦ Multiple conditions inside a rule are listed in logical order.
✦ The rule element defines a rule that is referenced in a choice activity, used in an input element, or

dependent on another rule. Dependencies are not affected by the order that rules are listed.

Condition Element
The contents of the condition element must correspond to an XPath expression. Application expects an
XPath expression to evaluate a condition.
Sterling Commerce, Inc. 28

Process Activities and Elements
You can use several BPML activities and elements when creating business process models.

Input and Output Elements
The input element accepts a message delivered to the process. The input element has the following syntax:
<input message>

<assign/>*
</input>

✦ Use the input element in the operation activity to accept a message delivered from a participant to the
process (process input).

✦ Use the message attribute to reference the relevant message definition.
✦ Use the assign element to perform assignment (move data) from the message contents to the process

data. Use multiple assignments for multi-part messages.
The output element constructs a message delivered by the process to a participant. The output element has
the following syntax:
<output message>

<assign/>
</output>

✦ The message attribute references the relevant message definition.
✦ Use the assign element to perform assignment (move data) from the process data to the message

contents. Use multiple assignments for multi-part messages. No assignments are required for empty
messages.

Assign Activity
The assign element performs assignment and is a process activity. When using assign elements in an
operation, you must know the appropriate service parameters, such as the map name that the translator
needs.

Some specifications for assign elements are:

✦ How the assign element is used determines what it uses as a data source destination.
✦ In the output element, the assign element performs assignment from the process data to the outgoing

message. The to attribute corresponds to the path within the outgoing message and is used to construct
the message contents.

✦ In the input element, the assign element performs assignment from the incoming message to the
process data. The to attribute corresponds to a value within the process data.

The following example uses the assign element as an activity within an operation:
<operation name=’name’>

<participant name=’name of specific service’/>
<output message=’output message from service’/>
<input message=’input message for service’>
Sterling Commerce, Inc. 29

Process Activities and Elements
<assign to=’z’ from =‘x’/>
</input>

</operation>

Using Assign as an Independent Activity
The assign elements works the same as the assign activity inside an input or output element, but it is not tied
to a message. Used as an independent activity, the assign element inserts fixed numeric values or fixed
strings into the process data. Application accepts the assign element only when it sets something in the
process data equal to a fixed value.

When the assign element is used as an independent activity, it performs assignment from a constant to the
process data. The to attribute corresponds to a path within the process data. The from attribute is used to
extract information from a previously assigned value.

In the following example, the value 7 is assigned to X:
<assign to='X'>7</assign>

Assigns outside a service are visible to the whole process after the assign. Assigns within the service are
only visible to the service.

Repeat Activity
The repeat activity repeats a complex activity without recursion. It directs Application to return to the
beginning of a parent or child state, or to run an activity again. The repeat activity can be used only as a child
activity of the complex activity that it references.

The repeat element accepts the ref attribute, which names the complex activity to be repeated. The activity
to be repeated must be a complex activity that contains (directly or indirectly) the repeat activity.

In the following example, the repeat element is directly contained in the proceed sequence, which is
contained in the choice element. This means that the choice sequence indirectly contains the repeat element.
<process name='repeat'>

<rule name='checkX'>
<condition>X true = </condition>
</rule>

<sequence>
<assign to='X'>true</assign>

<choice name='loop'>
<select>
<case ref="checkX" activity="proceed"/>
</select>

<sequence name="proceed">
<operation name='…'> … </operation>
…
<repeat ref='loop' />
</sequence>
</choice>
Sterling Commerce, Inc. 30

Process Activities and Elements
</sequence>
</process>

In this example, X is set to true. The choice element checks for the value X. Because X is true, the activities
that are part of the proceed sequence begin to run. The last activity in the sequence is the repeat. The repeat
activity refers to the choice named loop, so the process tries to run the choice activity again. If X is still true,
the proceed sequence runs again. The sequence continues to repeat until X changes and becomes false. If X
does not change to false, the process runs indefinitely, in an infinite loop.

Join and Spawn Activities
The join and spawn activities are used together. Use the join activity to wait for subprocesses to be merged.
The join waits only for the subprocesses initiated from the same process in which the activity is run.

Use the spawn activity to start up a new process from within an existing process. The syntax is simple:
<spawn ref=’another process’/>

The ref attribute must match the name of a process in Application. After this process is run, a new instance
of a business process is created and run. The child process starts off with a copy of process data from its
parent. The two processes are completely independent of one another—the original process will not wait for
the spawned process to complete unless you explicitly configure it to.

The original and spawned processes can communicate using the produce and consume activities.

onFault Element
The onFault element is used to handle errors. You can include onFault elements in any complex activity for
which it may be necessary to recover from faults so that the process can continue. The onFault element
contains a fault handling activity. For information about using the onFault group in the GPM, see Using the
onFault Group in the GPM.

The following specifications apply to the onFault element:

✦ If the complex activity containing the onFault activity faults before the complex activity is finished,
the onFault activity runs.

✦ If the complex activity containing the onFault activity finishes successfully, the onFault activity
finishes successfully, too.

✦ Application accepts multiple onFault elements within a single complex activity, making it possible to
handle different fault codes.

Each set of onFault elements must use a unique fault code.

Omit the code attribute for only one element when using multiple onFault elements for a single
complex activity. Here is the syntax:
<onFault code?>

activity+

</onFault>
Sterling Commerce, Inc. 31

Process Activities and Elements
✦ In BPML, each fault can be associated with a unique code attribute. If the code attribute is provided,
the associated onFault element is triggered only by a fault that matches that code attribute. For
example, the onFault element has a code attribute set to SystemBusy. If the operation results in a fault
associated with a different code attribute, the SystemBusy onFault element does not run.

✦ You can force the process to run the onFault activity for any fault encountered, by omitting a code
attribute.

✦ If there are multiple layers of joins in BPML, each layer has onFault defined, an error occurs in the
branch, and the final join of the inner join layer carries the error, the onFault of this layer is executed
(even though the execution of the onFault does not have an error) and the error in the inner final join is
propagated to the next layer of the join. This should not happen, because the inner layer of the join
went to the inner onFault route and the on fault completes successfully. Avoid using complex multiple
join layers in the BPML. Use Invoke Service Sync Mode for the branches; this mode merges all data
from the subprocesses.

In the credit card example, the Verify Credit Card activity results in a SystemBusy fault, causing the process
to run the onFault element. When the onFault element runs, the complex activity that it contains also runs.
The onFault activity finishes when the complex activity it contains finishes. The complex activity that
contains the onFault finishes at the same time, regardless of whether it was fully or partially run. As a result,
the Verify Sufficient Credit activity does not fully run.
<process name="ProcessCustomerOrder">

<rule name="BookInStock">
<condition>foundBook true = </condition>
</rule>

<sequence>
<operation name='Check Inventory'>
<participant name='InventoryService' />
<output message='checkStockRequest'>
<assign to='ISBN'>1-56592-488-6</assign>
</output>
<input message name='checkStockResponse'>
<assign to='foundBook' from='InStock' />
</input>
</operation>

<choice>
<select>
<case ref="BookInStock" activity="proceed"/>
<case ref="BookInStock" negative="true" activity="stop"/>
</select>
<sequence name="proceed">
<sequence>
<operation name='Verify Credit Card'> … </operation>
<operation name='Verify Sufficient Credit'>…</operation>
<onFault code='SystemBusy'>
<sequence>
<!-- Logic to wait and retry -->
</sequence>
</onFault>
</sequence>
…
</sequence>
Sterling Commerce, Inc. 32

Process Activities and Elements
<sequence name="stop">
<operation name='Apologize to Customer'> … </operation>
</sequence>
</choice>

<operation name='Update customer on status'> … </operation>

<onFault>
<sequence>
<operation name='Inform Customer of Error'> … </operation>
<operation name='Signal Operator'> … </operation>
</sequence>
</onFault>
</sequence>

</process>

When Fault Code Does Not Match onFault Code
In a business process, a fault can occur in a complex activity that is not handled by an onFault element at
that level of the process. When the fault code does not match the onFault element at a level, Application
begins to search for the correct onFault element. When no code attribute exists and no match to a defined
attribute exists for an onFault element at a level, Application moves to a general onFault (no code attribute)
element. If Application does not find a fault code, Application halts the process.

In the credit card example, the Verify Credit Card activity results in a NetworkDown fault because
Application first looked at the onFault elements associated with that activity. Application found only one
onFault element in this activity and the code specified was not NetworkDown. Application then looked for
the correct onFault element in the next activity up in the process. Eventually, Application found a general
onFault element for which no code attribute exists at the highest level of the process. When the fault
handling activities finish, Application runs the next activity in the process until no other activities exist in
the process.
Sterling Commerce, Inc. 33

Index
A
All activity 25

Assign activity 29

assign elements 9

B
BPML

All activity 25
Assign activity 29
basics 5
Choice activity 26
complex activities 5, 25
condition element 28
Consume activity 22
elements 29
Join activity 31
onFault element 31
Operation activity 23
Produce activity 22
Repeat activity 30
Sequence activity 25
simple activities 5, 22
Spawn activity 31

branching in process models 26

business process
All activity 25
Assign activity 29
branching 26
Choice activity 26
complex BPML activities 25
condition element 28
Consume activity 22
error handling 31
file type 5
Join activity 31
onFault element 31
Operation activity 23
participant 5
Produce activity 22

Repeat activity 30
Rule element 28
Sequence activity 25
Spawn activity 31

C
Choice activity 26

complex BPML activities
about 25
All activity 25
faults not handled by onFault 33

condition element, BPML 28

Consume activity 22

D
DocToDOM XPath 16

E
error handling 31

I
input message 9

J
Join activity 31

N
name attribute in process element, BPML 7

O
onFault element 31

Operation activity 23

operation activity 5

output message 9
Sterling Commerce, Inc.

Index
P
primary document 8

process data 8
accessing content 14
XPath 15

process element 6

Produce activity 22

R
Repeat activity 30

Rule element 28

S
Sequence activity 25

service
input and output messages 9

Spawn activity 31

X
XML Path language (XPath)

condition element 28
DocToDOM 16
process data 15
Sterling Commerce, Inc. 35

	Application and BPML
	Where to Find Industry Information
	Business Process BPML Components
	Process Element

	What Is Process Data?
	About Input and Output Messages and Process Data
	Input and Output Examples
	Different Types of Assigns
	Using Assign Element To Copy All of Process Data Into the Message
	Consider the Order In Which You Configure Assigns
	Specifying Constants (Literal Values) In Assign Elements

	Tips For Accessing Content

	XPath and Process Data
	Example 1
	Example 2
	Example 3
	XPath and DocToDOM
	DocToDOM function In an Assign Statement Examples
	DocToDOM Function
	DOMToDoc Function
	DOMToDoc Parameter Definitions
	XPath
	Document Name
	Default Behavior with XPath = /ProcessData/test

	DOMToDoc Examples

	Simple BPML Activities
	Produce and Consume Activities
	Produce Activity
	Consume Activity

	Operation Activity
	Participant Element

	Complex BPML Activities
	Sequence Activity
	All Activity
	Choice Activity
	Branching

	Rule Element
	Condition Element

	Process Activities and Elements
	Input and Output Elements
	Assign Activity
	Using Assign as an Independent Activity

	Repeat Activity
	Join and Spawn Activities
	onFault Element
	When Fault Code Does Not Match onFault Code

