
Sterling Integrator®

MESA Developer Studio
Version 5.1

Contents

Using MESA Developer Studio...4
About MESA Developer Studio ...4

License Management Settings...5
Create a MESA Developer Studio Project..5
Managing Resources in MESA Developer Studio..5

Working with Business Processes...6
About Working with Schemas...7
Working with Properties Files...7

Using the MESA Skin Editor..8
About the MESA Developer Studio Skin Editor...8
Tips for Using the Skin Editor...8
Using the Skin Editor to Edit a Application Template..9

Creating Services Using the MESA SDK...10
Creating Custom Services...10
Knowledge Prerequisites for Creating Custom Services...11
Classes Available in MESA Developer Studio SDK...11
About MESA Developer Studio SDK...13

Use the MESA Developer Studio SDK Cheat Sheet...14
Steps to Create a Service Using MESA Developer Studio SDK..14

Start MESA Developer Studio SDK...14
Create a MESA Developer Studio SDK Project...15
Add Business Logic to a Service...16
Add Parameters to the Service Definition File..17
Adding Resources to a Service..18
Write Log Messages into a Message Log File..18
Create a serviceinstances.xml File..19
Change the SDK Library Version..20

Export a Service for Deployment..20
Install a Service into the Application...21
Update a Service Definition..21

Architecture..23
Introduction to Application Architecture...23
Components of a Service...24
Relationship Between Business Processes and Services...25
Service Harness Implementation and Service Adapter Implementation...27

Developing a Service..31
Adapter Architecture Summary...31
About the Workflow Context Used by Adapters...31
About the Service Controller Framework Used by Adapters..33
Error and Status Reporting..36
Setting Up User Prompts for Configuring a Service in the UI..38
Setting Up Event Logging for a Service..40

MESA Developer Studio2

File Rename Service Example...45
Example 1: Creating the File Rename Service..45
Create the FileRename SDK Project...46
About System Libraries...47
Jar Files Available..47
Add Custom Code to the FileRename Project...47
Create Parameters for the File Rename Service..49
Service Definition Parameters for the File Rename Service...49
Service Definition Parameter Field Reference..51
Add the Overwrite Parameter ...52
Add the Source File and Destination File Parameters...53
Add Language Property File Entries for the File Rename Service...54
Build the Service Package...55
Create the Text File to be Renamed ..56
Install the File Rename Service into the Application..56
Configure the File Rename Service Instance..56
Create Test BPML...57
Test the File Rename Service..57

Additional Examples..59
Example 1: Basic Adapter...59
Example 2: Bootstrap Adapter...63

Installing MESA Studio...68
Overview for Installing and Configuring MESA Developer Studio...68

Steps to Set Up MESA Developer Studio...68
Eclipse Terms..69

Configure the Java JDK on Your PC...69
Verify that MESA Developer Studio Uses the Correct JRE..70
Start the WebDAV Server..70

Start the Application WebDAV Server on UNIX...71
Start the Application WebDAV Server (iSeries)..71

Installing MESA Developer Studio Components..72
Install New Features..72

Set Up an Application Instance...73
Edit Connection Information...74
View Configuration Details...74
Refresh the Instance..74

Install Additional MESA Developer Studio Components and Updates..74
Install Reporting Services Plug-Ins...75

3© Copyright IBM Corp. 2012

Contents

Using MESA Developer Studio

About MESA Developer Studio

MESA™ Developer Studio is used to create and edit service definitions (using the SDK), maps, and business
processes. You can also use MESA Developer Studio to remotely start and stop an application instance, install
third party files, list directory contents and current processes, and display disk usage. For example, within the
application you can only edit business processes using the Graphical Process Modeler (GPM) or a text editor.
From MESA Developer Studio, you can also edit business processes using a code editor.

Note: Before you can being using MESA Developer Studio, you must first install it. See Installing MESA
Developer Studio and the Installation Guide for your application.

Using MESA Developer Studio to Manage the Application

Note: MESA Developer Studio is designed to assist you with resource development. Changes made with the
MESA Developer Studio plug-ins should be thoroughly tested in a development environment before moving
them into production.

Use MESA Developer Studio to:

• Edit property files
• Work with business processes
• Work with maps
• Work with service definitions
• Start and stop application instances
• Install third-party files
• Manage application resources
• List directory contents
• List current processes
• Display disk usage

Available MESA Developer Studio Editors

The following editors are available in MESA Developer Studio to assist you in creating or editing properties,
service definitions, and other code:

MESA Developer Studio4

• Properties Editor
• JDBC Properties Editor
• Knowledgebase Properties Editor
• Service Definitions Editor
• BPML Editor

License Management Settings

Licenses provide you access to the different components offered by the Application that you have purchased.
Without the proper licenses, Application does not operate. For example, after you purchase Application, you
can purchase new components and open those components with a new license file. Occasionally, you may
need to update your license file for either administrative purposes, or when your license file expires. You can
view the components license status and update your license files through MESA Developer Studio.

To manage your license files:

1. From the MESA Developer Studio perspective, double-click an instance. The instance overview appears
in the Control Editor.

2. Click the Settings tab at the bottom of the Control Editor pane.

3. Click Update Licenses.

4. Navigate to the appropriate license file. Click Open.

The license file is automatically updated.

Create a MESA Developer Studio Project

Create a project in the Package Explorer to organize the files and resources you will use on your local system.

To create a project:

1. From the File menu, select New > Project.

2. Select Java > Project.

3. Click Next.

4. Type a name for the project.

5. Click Finish. A new project is added to the Package Explorer under the folder name Other Projects.

Note: If no direct connection is possible between the host where the application is installed and the Windows
PC where Eclipse is installed, and you are using a proxy server, you must enable the HTTP proxy connection.
From the Window menu, select Preferences. On the left, select Install/Update. In the Proxy settings section,
add your proxy information and click Apply.

Managing Resources in MESA Developer Studio

Resources are files, templates, and documents that may be deployed in your application and that you can import
and export from one system to another, such as when you are migrating from a test to production environment.
You can check in, check out, lock, and unlock the following resources in MESA Developer Studio:

5© Copyright IBM Corp. 2012

• Business Processes – Business process model definitions and their associated particulars

Note: In a cluster environment, business processes should be checked in from the application UI, not from
MESA Developer Studio. Currently, MESA Developer Studio is not configured to set specific business
processes.

• Maps - Translation maps used for converting file types including flat files, CSV, EBCDIC, EDI, SWIFT,
ACH, XML and others to different formats

• Property Files - The property files for the application are available for editing in MESA Studio.

Caution: We strongly recommend that you do not edit these files directly . Instead, use MESA Studio to
view the property files, then create or edit a new property file called "customer_overrides.properties" and
add changes to property files there. This ensures that your customizations for property files are not lost or
overwritten by a patch or upgrade. See the Property Files documentation for more specific information about
creating and using the customer_overrides.properties file.

• XML schemas – Data that makes up XML schemas. In the application, XML schemas are used for several
functions, including Reporting Services, Web Services, translation maps, and reporting.

Working with Business Processes

Business processes may be created and edited in MESA Developer Studio using either the BPML text editor
or the GPM. Files with a .bp extension will by default open the GPM; however, they may also be edited by
using a option to open the file with the BPML Editor.

Note: The default when you double-click a business process is for it to open in the GPM. If you want to edit
a business process using the BPML Editor, right-click on the business process and select Open With > BPML
Editor. MESA Developer Studio remembers this setting so that the next time you double-click on that business
process, it will open in the BPML Editor.

The BPML Editor allows XML-like text editing of business processes along with autofill of BPML activities.
MESA Developer Studio allows you to start the GPM; however, it runs independently of Eclipse.

To use MESA Developer Studio to edit business processes, you must set up the GPM to be used in MESA
Developer Studio. This enables you to launch the GPM from within Eclipse when you double-click on a
business process name, either in your Package Explorer list of projects (local) or on your test server through
a configured instance. (Only files that have been checked out from the server are displayed in that view.)

To set up the GPM:

1. In Eclipse, from the Window menu, select Preferences.

2. On the left, select the Java > Installed JREs category.

3. In the Installed JREs section, click Add.

4. Enter the following information:

• JRE name - Type GBM JRE.
• JRE home directory - Click Browse to select the directory. You must use a 1.6 JRE with the GPM. This

is usually located in C:\Program Files\javasoft\jre\1.6.

5. Click OK.

You are now ready to edit business process files from within MESA Developer Studio.

Note: The first time you start the GPM from Eclipse, your application instance must be running.

MESA Developer Studio6

For more information on managing business processes, see the business process documentation.

About Working with Schemas

An XML schema is an XML document that specifies the structure of a valid XML document. Comparable to
a document template, an XML schema ensures that every item is in the correct form. An XML schema consists
of the following components:

• XML declaration – defines the XML version that the schema uses
• Schema element – identifies the document as an XML schema
• Element declaration – defines the element
• Attribute declaration – defines the attribute

Schemas are used in your application to validate translation data in the Map Editor. When you submit an XML
document using the application, the XML document is compared to the XML schema to ensure that the
document is in the appropriate format and is valid. For more information on managing schemas, see the schema
documentation.

Working with Properties Files

From Mesa Developer Studio, you can add, edit, or delete properties within existing files.

To open a property file:

1. From the Mesa Developer Studio perspective, expand the Properties Files folder.

2. Double-click on the property file name you want to work with to open it in the editor.

3. Do one of the following:

• Click Add to add a property. Type a name and value for the property.
• Select a property and click Delete to remove it.

7© Copyright IBM Corp. 2012

Using the MESA Skin Editor

About the MESA Developer Studio Skin Editor

The MESA™ Developer Studio Skin Editor provides an interface where you can quickly change the appearance
or branding of your application. This includes basic page colors, images, and fonts. The Skin Editor allows
you to edit all five of the main application templates. You can change their properties so that they better reflect
your company’s brand image. The templates (pages) you can edit include:

• AFT/myAFT
• Dashboard
• Login
• MBI (mailbox)
• Admin
• Community Management

Basic properties include page colors, images, and fonts. Advanced properties include the use of Cascading
Style Sheets (.css files). Changes are made through the Skin Editor Plug-in in the Eclipse interface. You
download a copy of the current skin, make changes, then upload the revised skin to your application installation.
You can revert to the default skin at any time. Multiple skin versions can be saved for future use.

Note: Your application must be running the first time MESA Developer Studio Skin Editor is used to verify
the license and to download and deploy the skin.

Tips for Using the Skin Editor

When you open the Skin Editor, you must select a server from the Studio Tree View.

TipTask

Before editing a template, you must retrieve the current
Application page skin from the instance. From the toolbar
at the top of the page, select Skin > Download skin.

Retrieve the current skin

MESA Developer Studio8

TipTask

Note: If the current skin has not been downloaded, you are
prompted to retrieve the skin from the instance.

Selecting Preview to open the selected page in the preview
pane and see changes you have made.

Preview a skin

Note: When a template is edited, all other pages sharing
the same skin are updated.

When the skin is ready to be deployed, select Skin > Deploy
changes. The changes are saved to the remote instance of
your application.

Save skin changes

Selecting Skin > Undo skin edit or redo the last change
made by selecting Skin > Redo skin edit from the toolbar
at the top of the page.

Undo or redo skin changes

SelectSkin > Apply default skin.
Restore the original (default) skin

The original skin will be restored to the remote instance.

Using the Skin Editor to Edit a Application Template

Once the existing Application skin is downloaded, you can use the Skin Editor to make changes to an existing
template. The top left view provides a list of editable Application pages. Click on a page to open the property
editor in the bottom left view, and open a preview window on the right.

To edit a template:

1. Open Eclipse and select the Skin Editor perspective.

2. Select the UI page type to be edited. The UI colors, image files, fonts, and properties appropriate for that
page type are displayed.

3. Make desired changes and click Save. The changes are displayed in a preview.

Note: You can refresh the view of the current skin at any time to see changes applied.

4. Specify the instance to apply the changes.

5. Test the connection to your instance.

6. Update the configured instance with the new look and feel information. The system confirms the update
and displays a progress message.

7. You must restart/relaunch your application for the changes to take effect.

Use the advanced editing option in the Skin Editor to edit a Cascading Style Sheet (.css file) to your skin. If
your company uses an existing style sheet for other applications, you can add it to the Skin Editor and use it
to customize your application so that it will match your other applications.

You can also use advanced editing to view and make changes to either the default UI settings, or the UI settings
for the specified page type.

9© Copyright IBM Corp. 2012

Creating Services Using the MESA SDK

Creating Custom Services

The application can perform most common tasks needed by a user, but there are instances where functionality
is needed that is not provided and an existing service is not available. This usually occurs in environments
with legacy systems that do not use standards-based methods for communication. There are several ways to
interact with these systems, including the Command Line Adapter 2 and the Script adapter, but the capabilities
of these adapters are limited.

MESA Developer Studio Software Development Kit (SDK) provides the tightest integration with the application
and enables you to create complex and complete services and adapters. These services use the same APIs as
the services included with the application, so all of the benefits and infrastructure of the application are available.
This flexibility and tight integration means that creating a service is more advanced and requires good knowledge
of Java development, application APIs, and the APIs of any system that will be accessed by the service.

Note: Because all adapters are a type of service, this guide uses the term service for both services and adapters.
This guide uses the term adapter when the information is unique to adapters.

What is a Service?

A service is a component that can be configured to carry out an activity in a business process.

What is a Parameter?

Parameters can be configured to define and control your service. Any parameters that you want to add to a
service must be added to a parameter group.

What is a Parameter Group?

Parameter groups are logical groupings of similar parameters (for example, host name and port). It is acceptable
to have a parameter group with only one parameter. There are three types of parameter groups, as described
in the following table:

MESA Developer Studio10

Can be edited in this location:DescriptionParameter Group

Application interface: Deployment > Services
> Installation/Setup.

Widest scope. Applicable to all services of this
type. They have a constant value for all
instances of a service.

Global Definition

Page in a service configuration wizard
accessed through Application interface,
Deployment > Services > Configuration.

Specific to a single copy of a service. Can have
different values for each instance of a business
process that calls the service instance.

Instance Definition

Graphical Process Modeler.Specific to a single invocation of a service. Can
have different values every time the service is
called.

Workflow Definition

What is an Adapter?

An adapter is a type of service that communicates with external systems to move data in and out of the
application.

What is a Method?

A method is the Java equivalent of functions, subroutines, or procedures in other programming languages.

Knowledge Prerequisites for Creating Custom Services

Creating custom services and adapters for use with the application requires specialized programming knowledge
and skills, as well as a solid understanding of the application.

The following list includes the types of knowledge and experience necessary for successfully creating custom
services and adapters:

• Java (J2SE) programming knowledge
• General operational and architectural knowledge of the application
• Eclipse programming experience

The following knowledge and experience are helpful, but not required:

• Multi-threaded programming experience in Java
• Ability to write custom APIs and user exits

Classes Available in MESA Developer Studio SDK

In MESA Developer Studio SDK, you have access to certain java classes for use in creating custom services
and adapters. You can find detailed information about each class in the MESA Studio javadocs, which are
located in the install_dir/install/studiodocs folder of your application installation. The classes are grouped by
functional area:

• ASI (Application Server Independence)
• IFC (Integration Framework Collection)

11© Copyright IBM Corp. 2012

• AFC (Application Framework Collection)

The following tables describe the classes available for use with the MESA Studio SDK.

ASI Classes

“Application Server Independence” refers to the architecture used for the B2B applications: no third party
application server is needed. Javadocs for these classes are located at install_dir/install/studiodocs/asi_javadocs.

DescriptionASI Class

Used to store adapter-specific information about an active adapter session.This
information is formatted and displayed as status information.

ActivityData

Represents incoming data (e.g., HTML or XML document) to the Workflow
system. Conceptually, it is the handle of the persisted document in permanent

Document

storage (i.e., the database), and provides the primary access to the document's
data.

Public interface for all adapters to implement method names.IAdapterRMI

Facilitates initiating and continuing workflows with or without input data. It contains
methods for supplying input data to the workflow in the form of key, value pairs

InitialWorkFlowContext

and as a Document with supporting data that describes the Document such as
a Document Name, Document Subject, Document Content Type, and so on. In
addition there are methods for specifying the workflow and version of the workflow
to be initiated or continued.

Service interface that will be implemented by the flat file services.IService

The LockManager utility allows users to write classes that use a common resource
that should not be updated concurrently by multiple classes. Classes can safely

LockManager

use such a resource by first "locking" the resource using this utility and then
performing the desired operations on that resource then "unlock" the resource
for use by another class. Classes that try to use a locked resource will receive
an exception that the resource is currently in use.

Implementation class of the ServicesController interface. Used to manage and
report on the status of different adapters.

ServicesControllerImpl

Extends BaseWFCConstants. Implements java.io.Serializable.WFCBase

All-encompassing structure that contains all the information regarding a workflow.
All data members, get/set methods should be in WFCBase.

WorkFlowContext

Thrown in response to events such as abnormal conditions defined within a
workflow, or run-time server exceptions.

WorkFlowException

IFC Classes

IFC classes are used to support the B2B application integration with other applications. Javadocs for these
classes are located at install_dir/install/studiodocs/ifc_javadocs.

DescriptionIFC Class

Represents an event that occurs in the system.
Event

MESA Developer Studio12

DescriptionIFC Class

All generated events are sent here. Hands the event to all the appropriate listeners
for actual processing.

This singleton class provides a single, global point of entry for all events generated
in the system. However, to prevent it from becoming a bottleneck, rather than

EventProcessor

have one processor synchronized against all the threads in the system, it is
actually a threadlocal singleton. This means that a new instance is created for
every thread that asks for one.This reduces the need for synchronization because
there will be an event processor per thread.

Instantiates event processors.EventProcessorFactory

Event processor interface.IEventProcessor

Uses an API generated by the Entity framework, and allows users to share one
single resource within the limit of count. The resource can be a connection to
extenal system or simply a database connection.

SemaphoreManager

AFC Classes

AFC classes include frameworks and classes that supply functions such as alert management, monitoring,
event management, UI frameworks, and reporting. Javadocs for these classes are located at
install_dir/install/studiodocs/afc_javadocs.

DescriptionAFC Class

Extends java.lang.Object. Implements java.io.Serializable.BaseDocument

AppendCipherInputStream.java extends DocumentInputStream and
re-implements some of it methods, which means that any public method added
to this class should be also added to AppendCipherInputStream.java.

DocumentInputStream

DocumentCipherOutputStream.java extends DocumentOutputStream and
reimplements some of it methods, which means that any public method added
to this class should be also added to DocumentCipherOutputStream.java.

DocumentOutputStream

Wrapper to an input stream for reading a blob from the database.JDBCInputStreamWrapper

Wrapper for writing the blob data to the database.JDBCOutputStreamWrapper

A singleton class that provides access to one or many connection pools defined
in a property file.

JDBCService

A management interface to the util.frame. Holds configuration values and allows
components to access vendor specific configurations.

Manager

About MESA Developer Studio SDK

The MESA Developer Studio SDK helps you create and edit custom services and adapters using the Eclipse
development environment. The MESA Developer Studio SDK is designed as an Eclipse plug-in and is installed
locally on your computer. Use the SDK to create a service, build and export a service package within the
Eclipse development environment, then install and test it with the application.

Like the MESA Studio plug-in, the SDK plug-in runs independently from the application in the Eclipse IDE.

13© Copyright IBM Corp. 2012

Upgrading from Previous Versions

MESA Developer Studio SDK is available for use with the application. You cannot open projects created with
the deprecated Service SDK in MESA Developer Studio SDK; however, you can import your existing java
files from an old project into a new SDK project. MESA Developer Studio SDK includes all of the previously
available Service SDK features, and includes new and enhanced features such as code editors, validation,
consistency check, and wizards that guide you through specific tasks.

Use the MESA Developer Studio SDK Cheat Sheet

MESA Developer Studio SDK provides a cheat sheet to guide you through the service development process.
The SDK Cheat Sheet provides you with information and step-by-step help to create a service by listing the
sequence of steps required to create and package a service. As you progress from one step to the next, the cheat
sheet automatically launches the required tools for you. If there is a manual step in the process, the step will
tell you to perform the task and click a button in the cheat sheet to move on to the next step. Relevant help
information is also available to guide you.

To access the SDK Cheat Sheet:

1. Open the MESA Developer Studio SDK perspective.

2. From the Help menu, select Cheat Sheets.

3. In the Cheat Sheet Selection window, expand the Application Studio folder and select MESA Developer
Studio SDK .

4. Click OK. The MESA Developer Studio SDK Cheat Sheet opens on the right.

Steps to Create a Service Using MESA Developer Studio SDK

The process of creating and installing a service using MESA Developer Studio SDK involves several steps.
The following list provides a high-level overview of what is required.

To create and install a service:

1. Create a new SDK project.

2. Add business logic.

3. Add service parameters (optional).

4. Add any additional objects (optional).

5. Build a service package.

6. Install and run the service in an application test instance and verify that the service works as expected.

7. Install the service in the application production environment.

Start MESA Developer Studio SDK

Start the MESA Developer Studio SDK from your computer in Eclipse. The SDK can run independently from
the application; that is, you do not have to be connected to the application instance in Eclipse at all times.
However, the WebDAV server must be running the first time you launch the SDK and each time you want to
deploy a service package to the instance.

Note: If you are creating an adapter, verify that the third-party system you will use the adapter to connect
with is running and working correctly.

MESA Developer Studio14

To start MESA Developer Studio SDK:

1. Launch Eclipse.

2. From the Window menu, select Open Perspective > Other.

3. From the list, select MESA Developer Studio SDK.

4. If this is the first time you have launched SDK, you are asked to enter licensing information.

5. Complete the following and click OK :

• Hostname - Type your application server name.
• Webdav Port - Type the WebDAV port number for your application server.
• Name - Type a descriptive name for this instance.
• Username - Type your application username.
• Password - Type the password for your username.

6. Click Finish.

Create a MESA Developer Studio SDK Project

Note: Services developed with the SDK should be tested and deployed in a test environment before being
deployed to a production instance.

You can either use the Cheat Sheet or follow these steps:

To create a project:

1. From the File menu, select New > Project.

2. Select MESA Developer Studio > MESA Developer Studio SDK Project and click Next.

15© Copyright IBM Corp. 2012

3. Type a unique project name (for example, the name of the service you are creating) and click Next. Do not
use spaces.

4. Complete the following Service Profile information and click Next:

• Service name – Unique name for the service, using Java naming standards. Defaults to project name.
• Service package - Name of the Java package where the service should be stored. Defaults to

com.mypackage.
• Service label – Name of the service as it should appear in the application UI. Defaults to project name.

Make this name unique so that it can be easily recognized in the application.
• Service description – Meaningful description that will appear in the application UI. Defaults to starting

with “This service implements…” but that can be changed or removed.
• Service Version – Required for the service definition file. System created.

Note: Whenever you revise the service definition file, you must increase this number (examples: 3 to 4,
3 to 3.1). When you reinstall the service and restart the application, the higher version will overwrite the
previous version in the database.

• Service type - Service or Adapter. If you select adapter, also select whether or not it will be stateful.

5. Complete the Service build options and click Next.

• Document Storage Type Options – How the service stores documents when running. This option is used
in both Big A and Little a.

• Code Generation Options – If checked, the selected Document Storage Type option will be used.
• Create Project Folder Options – Select the optional folders to be created for the service project.

6. Select the SI Library version. The library version available depends on the instance you are connecting to.
You can load additional libraries.

7. Click Finish. The project is created. The system creates all required fields for a deployable service.

Edit the resource and Java files as needed to develop the service.

Note: Saving the project regenerates the view of the project. The project should be saved anytime a change
is made that affects the navigation options for the project. For example, adding a new file or folder creates
a new navigation object.

Add Business Logic to a Service

For a service to perform tasks, you add business logic. In this step you extend the generated service code by
adding your own business logic to the Big A portion of the service using Java:

1. From the Window menu, select Show View > Other > General > Tasks .

2. In the MESA Developer Studio SDK Package Explorer, find your new service project. Expand the project
so that you can see all components of the project.

3. Under src > com.mypackage, find the folder called yourservicenameImpl.java, and double-click it.

4. The code for the project will be displayed in the Eclipse editor. Find the line // TODO: Start here to
implement the service logic.

5. Under that line, you can add logic that fits your service or adapter.

6. Save the project and regenerate the code.

MESA Developer Studio16

Add Parameters to the Service Definition File

In this step you can define service parameters that can be used to configure and control your Service.

To add a parameter to a service:

1. In the Package Explorer, expand the servicedefs node and right-click on <service name>.xml.

2. Select Open With > Service Definition Editor. The service view opens with the parameter group types
displayed.

3. Right click on a parameter group type and select New Group.

4. Type a title for the new group and click OK.

5. Click the new group title to add instructions to the group properties.

6. Add parameters to the group. Right-click on the group title and select New Vardef.

7. Type a name for the vardef (variable definition) and click OK.

8. Click the new vardef to add properties to this parameter.

9. Complete the following:

• Name – required. Name of the parameter as it will appear to the user. System provided. Cannot contain
spaces.

• Type – required. Java type of the parameter. Default value is string.
• HTML Type – required. HTML input type of the parameter. Valid values are: Text, Select, and Radio.

Default is Text
• Label – required. Cannot contain spaces.
• Validator – optional. Type of validator. Select from the list.
• Size – optional. Number of characters for the parameter display size.
• Max Size – optional. Maximum number of characters allowed for the parameter.
• Options – optional.

17© Copyright IBM Corp. 2012

10. Click File > Save project.

11. The Language property file (ui/properties/lang/en/service name_en.properties) contains label/value pairs
that allow to give labels (for example, variables) a descriptive name in the user interface. If the language
property file does not contain a label for each corresponding entry you will receive an error message.
Right-click on the error message and select Quick Fix.

12. Select the desired fix and click OK. The language property file is updated with the new label and an editor
with the updated language property file displays.

13. Save the language property file.

Note: Each time a Service Definition file or the language property file is saved, a consistency check is
performed between the files.

Adding Resources to a Service

Depending on the service you are creating, you may need to add third-party files such as BPML, scripts,
databases, properties, libraries, and .jar files. In addition to adding these resources, you can also remove
resources from the project file (the original files are not deleted from their original location). Additionally,
you can create folders for any files you want to add to the service project.

The Service SDK adds these files in the location you specify when you create the service. If you add any of
these resources, you must add the folders described in the table of optional directories.

Write Log Messages into a Message Log File

MESA Developer Studio SDK supports the user in externalizing log messages strings into separate message
property files which can be used in the Java classes of the service. Service projects contain the following java
classes for defining log messages:

• Message String Declaration File: service_nameMessages
• Message Property File : service_nameResources.properties

To write log messages:

1. Edit the declaration file service_nameMessages. Declare a constant string variable for each log message
you want to use. The declaration has the following syntax: public static String MessageID. It is helpful to
start the message ID with a component prefix.

Example: public static String ExampleImpl_NoTicketsAvail

2. Edit the resource file service_nameResources.properties. The log message entries have following simple
syntax: MessageID=Message_Text.

Example: ExampleImpl_NoTicketsAvail=No more tickets available

3. Use the log message in the Java Source Code Editor. To write an error message with the XLogger log, the
logError method is used. This takes a string parameter as an argument. To pass the name of the message
string, write "ExampleMessages" then use the shortcut "ctrl-tab" to open the Eclipse Java Editor
auto-complete drop-down box, select the log message ID, and press Enter.

Example:
log.logError(ExampleMessages.ExampleImpl_NoTicketsAvail)

MESA Developer Studio18

Create a serviceinstances.xml File

To create a service instance:

1. Right-click on the project name and select New > File.

2. In the File Name field, type serviceinstances.xml.

3. Click Finish.

A new file is created in the project.

4. Open the file serviceinstances.xml in an XML editor and define the instance.

5. If a serviceinstances.xml file already exists, you can import it into your project. When you deploy the service
package, the service instance is created automatically.

Example (Serviceinstances.xml)

In the following example of an serviceinstance.xml file, an Adapter instance MyExample is created for the
Adapter Example which is described in the service definition file below. The Adapter Example has only one
instance variable, UserName. In the Adapter Instance MyExample, the instance variable UserName is configured
with the value “Smith.”

<?xml version="1.0" encoding="UTF-8"?>
<services>
<service parentdefname="ExampleAdapter"
name="MyExample"
 displayname="Example Adapter"
 description="Test Instance of ExampleAdapter"
targetenv="all"
activestatus="1"
systemservice="0"
parentdefid="-1">
<parm name="UserName" value="Smith"/>
</service>
</services>

Service Definition File
<SERVICES>
<SERVICE name=" ExampleAdapter "
 description="example.description"
 label="example.label"
 implementationType="CLASS"
 JNDIName="com.mycompany.example.ExampleAdapter"
 type="Adapter"
 adapterType="STATEFUL"
 adapterClass=" com.mycompany.example.ExampleAdapterImpl"
 version="3.0"
 SystemService="NO">
 <VARS type="instance">
 <GROUP title="example.group1.title"
 instructions="example.group1.instructions">

 <VARDEF varname="UserName" type="String" htmlType="text"

19© Copyright IBM Corp. 2012

 validator=" ALPHANUMERIC " size="20" maxsize="40"
 label="example.username" />
 </GROUP>
 </VARS>
</SERVICE>
</SERVICES>

Change the SDK Library Version

If you need to use SDK Libraries other than those supplied with your version of the application
(platform_library.jar and Studio-API.jar), you can switch to a different (newer) SDK Library.

To change library versions:

1. Download the required two jar files to the Windows machine where Eclipse and MESA Developer Studio
SDK are installed.

2. Navigate to the directory of your Eclipse installation to the
Eclipse-root\plugins\com.sterlingcommerce.mesa.servicesdk_3000.0.0\lib directory. The subdirectory 3000
contains the two SDK Libraries (jar files) delivered with this version.

3. On the same level, create a subdirectory containing the name of the additional or new application version
and copy the two jars from step 1 into the new directory.

4. Navigate to the Eclipse-root\plugins\com.sterlingcommerce.mesa.servicesdk_3000.0.0\res directory. The
subdirectory 3000 contains the file AntExport.xml which is used by the Export Wizard.

5. In the Eclipse-root\plugins\com.sterlingcommerce.mesa.servicesdk_3000.0.0\res directory, create a new
subdirectory with the name of the new Mesa Developer Studio version (for example, 3000.0.1).

6. If you did not create a new AntExport.xml file, copy the existing file from the res\3000 directory to the
new directory. If you created a newer AntExport.xml file, copy that one to the new directory instead.

7. Repeat steps 1 - 6 for all different versions of SDK Libraries you require in the SDK.

8. Start Eclipse and switch the perspective to MESA Developer Studio SDK.

9. If you want to change the application version of a service that is already created, select SDK Libraries
[3000] from your project directory.

10. Right-click and select Configure.

11. From the list, select the SDK Libraries you added using steps 1 -6.

12. Click Finish. The new SDK library version is now available from the list in the New Project Wizard.

Export a Service for Deployment

Once you have created a service you can package it for installation into the application. In this process, you
bundle all of the required service resources from your project in a package (Jar-archive) that can be deployed
on your application system.

To build a service package:

1. In Eclipse, select the project you want to export in the Package Explorer. (You can package more than one
service at the same time by using the Ctrl key when selecting.)

2. Right-click and select Export.

3. In the Export window, select Mesa Studio > Service Packages as the export destination and click Next.

MESA Developer Studio20

4. Browse to select the destination directory.

5. Click Finish. The service package service name_version.jar is built and placed in the selected package
folder/service name/dist/service name folder. You may be prompted to save resources before the export is
executed.

Note: The export process always exports the entire project even if you selected only one or more of its
subcomponents.

The export process writes to the AntExport.log file in the destination directory/adaptername directory with
the results of the packaging process. The service is now ready to be installed into the application.

Install a Service into the Application

After you create a service and package the source code, you must install the service package into the application.

Note: Before you install the service package into a production environment, you should install and test it in
a test environment.

To install a service package:

1. From the MESA Studio perspective, choose the application instance where the service will be installed.

2. Right-click and choose Install Service Package.

3. Browse and select the package file. Click Open.

4. Click Finish to begin the installation of the service on the application instance.

5. After the service package is installed, restart the application instance.

6. Log in to the application and ensure that the service definition can be viewed and configured by using the
options available from the Deployment > Services > Configuration screen.

Update a Service Definition

Anytime a service definition is modified, the version must be changed in the service definition (.xml extension)
file. When the updated service is exported to your application, the version numbers are compared. If the new
version number is greater, the old service definition is overwrtten in the database by the updated files.

To update a service definition:

1. Make changes to files for your service as needed.

2. In the Package Explorer, expand your project and open the servicedefs folder.

3. Doubleclick the service definition (.xml extension) file. A service.xml tab appears at the top.

4. Click the Design tab at the bottom and expand SERVICE to display the attributes for your service.

5. Replace the value for the version attribute with the new version number.

Restriction: The new version number must be incremented by a whole number or a decimal. Strings such
as 2.1.1 cannot be used.

Note: Alternately, click the Source tab at the bottom and edit the .xml file directly. Example:

name="FileRename" type="Service" version="3.1"

21© Copyright IBM Corp. 2012

6. Save and close the service definition (.xml) file.

7. Rebuild (export) the service.

8. Reinstall the service into the application. If asked whether previous files should be overwritten, click Yes.

MESA Developer Studio22

Architecture

Introduction to Application Architecture

The application executes customer-specific business processes. An XML-based business process model directs
the order of all processing activities in the application.

Business Process Definitions

Application business process definitions are based on the draft Business Process Modeling Language (BPML)
specification from the Business Process Management Initiative (www.bpmi.org). Business process definitions
are stored in XML and can be created iin any editor that can export the XML format recognized by the
application.

Services

The application views every activity in a business process as a service. A service can initiate:

• Legacy programs
• ERP systems
• Perl scripts
• Java code
• Decision engines
• Most computer programs

The application supports reuse of business processes, which allows activities to be implemented as a service,
a business process, or subprocess.

Reuse also enables business processes to be written with multiple reusable components or as a single large
service. For example, RosettaNet™ support can be implemented as multiple activities strung together to form
a business process or as a single service.

There are several basic types of services in your application, as described in the following table:

DescriptionType

Services that are completely inside the application.
Internal

Although internal services accept parameters and produce results, they do not directly
interact with external systems (systems outside the application).

23© Copyright IBM Corp. 2012

DescriptionType

Services that receive data from external systems.Input

Services that send data to external systems.Output

Services that use communications protocols like FTP and HTTP to move data into or out
of the application.

Transport Adapter

Services that interact with external application systems.Application Adapter

Adapters

Adapters are generally defined as services that interact with external systems. They are special cases of services
that interact with external systems, or that store or manage state data outside of the workflow context.

Components of a Service

Every service accepts a business process state and produces a modified business process state or workflow
context (WFC). Every service also has a harness. For the service, the harness performs the following functions:

1. Receives the input WFC
2. Extracts the information from it that the service needs
3. Runs the service
4. Places the results from the service in a new WFC or output for future steps in the business process workflow

Example of a Service

A FileRename service uses the java.io.File class renameTo() method to rename files. The service takes three
input parameters: sourceFile, destinationFile, and overwrite, a Boolean flag to indicate if the target file is being
overwritten.

Workflow Context

The workflow context (WFC) object is the service's primary API to the engine. The WFC represents the
business process state after each service has run. The WFC input to a service is written to a database. The
service step is complete after the new WFC is placed in persistent storage.

If the application stops, it can be restarted from the persisted WFCs by finding the most recent WFCs and
sending those requests to the appropriate services. Services can be restarted automatically. Adapters, which
are put in a halting state when the application starts, require user intervention to restart them.

Basic Service Framework

The basic service framework, or harness model, enables the application to view all services in the same way.
For example, both the Translation service and the File System adapter have harnesses. Although they are
different services, they support the same API, which is represented by the harnesses.

Some adapters, such as the SAP and BEA Tuxedo adapters, are used to harness a system that is outside the
control of the application. Although these adapters perform diffierent activities, each has a harness that presents
a consistent interface to the rest of the system. The harness is generic, but the adapter itself is specific to the
system it interacts with. Using the basic framework, you can start, configure, and stop an adapter for an external
system in the application interface. The actual operations of the external system are separate.

MESA Developer Studio24

The harness enhances system performance. For example, the harness wrapped around the Translation service
caches and reuses translation maps. The actual Translation service is unaffected by this action. This independence
is especially important when the wrapped service is outside the control of the application.

Special Service Capabilities

The application supports the following unique capabilities, which provide flexibility in managing services:

• Large file support – The ability for services to handle files larger than available memory. This can be an
effective way to help manage load sharing.

• Service groups – The ability to group “like” services together and treat them as a pool of services
• Storage types – The ability to select the document storage type for a service, such as Database or File System

Relationship Between Business Processes and Services

Before you can run a business process definition, you must validate and compile it. Validation looks for and
reports certain known issues.

Compilation breaks the definition into smaller chunks: a header and entries. The header specifies global
properties of the business process definition. Each service within the definition has an entry. The compiled
information for each service orchestrates coordination between that service and subsequent services and the
parameters that they require. This coordination information uses the status of a service to determine the next
step in the flow of execution from the service to the engine.

Business Process Example

Service A is orchestrated in such a way that, if it returns success, it directs processing to continue to Service
B, but a failure directs processing to continue to Service X.

The application stores the compiled information for each service in the compiled ActivityInfo. ActivityInfo
contains an abstract description of the service, such as "Translate the current document using map 5."

Compilation enables the application to predetermine the start node of a business process. This capability makes
the business process easy to instantiate and run and prevents the application from repeatedly parsing XML.
Compilation also reduces the number of database queries because the next-step pointer is stored in the current
activity information.

Starting a Business Process

The application supports dynamic selection (bootstrapping) of business processes. To specify dynamic selection
of a business process, configure an adapter to select a business process definition by matching one or more
adapter properties.

Input data enters the application through an input adapter. An input adapter performs the following functions:

• Receives data from an external system
• Puts the data and any metadata into an initial workflow context (IWFC)
• Calls the IWFC start method to start the business process, which causes a business process definition to be

found and instantiated for the input data

The application starts a new process and the following steps are taken:

1. A new WFC is created.
2. The WFC is put in persistent storage.

25© Copyright IBM Corp. 2012

3. The application starts the associated business process.

Many-to-Many Relationship

The separation of business logic (BP) and the endpoint (adapter) allows for a many-to-many relationship
between adapters and business process definitions. Using the metadata given to the IWFC, one adapter can
start several business processes.

Conversely, several adapters can start the same business process. A many-to-many relationship between
adapters and business process definitions enables the application to focus on business problems, not just on
how data arrives.

Making an input adapter the first step in a business process impairs the many-to-many relationship and keeps
the business process from being reused as a subprocess.

Business Process Definition Fails to Start

If an adapter tries to start a business process definition that does not exist or is disabled, the application saves
the request to start the business process definition and any related documents within the application. The user
can use the business process monitor to view error messages for any business process definitions that failed
to execute.

• If the business process definition cannot be found, the user can do an advanced restart and select a different
business process definition, which uses the same input data.

• If the business process definition is disabled, then when the user enables that business process definition, the
application automatically resumes any instances of that business process definition that stopped.

To ensure that an adapter catches the InitialWorkFlowContextException, code its logic accordingly:

{
 iwfc.start()
}
 catch
(InitialWorkFlowContextException)
 {
//do not delete our data here if this happens
//set the appropriate response to the user
}

To enable an adapter to start a business process with more than one document, code the following commands:

//for a single document
Document doc = new Document();
etc.
iwfc.putDocument(doc)
//for more than one document
Document doc1 = new
Document();
etc.
Document doc2 = new Document();
etc.
iwfc.putDocument(name1, doc2);
iwfc.putDocument(name2, doc2);

name1 and name2 are unique keys for the document within the application. When there is only one document,
the application assigns the unique key of PrimaryDocument.

MESA Developer Studio26

If a service needs to write more than one document, the service calls:

wfc.putDocument(name,doc);

For a single document, the service calls:

wfc.putDocument(doc))

To get a specific document from a set, the service calls:

wfc.getDocument(name)

Running a Business Process

When a business process starts, the workflow engine (WFE) executes the services defined in the business
process definition and the WFE creates a workflow context (WFC) from the initial workflow context (IWFC).
The WFE uses the compiled ActivityInfo to get information about the first service to call. Next, the WFE puts
the WFC on the ASI queue, so that the client initiating the business process does not wait for it to complete.

The WFE analyzes the compiled information to determine the current activity (service) that needs to be run.
This information is stored in the compiled ActivityInfo. The ActivityInfo contains an abstract description of
the service.

The WFE determines, for example, how the Translation service has been configured to run.

The following figure shows the execution cycle:

The ASI queue acts as a hand-off point. It does more than routing-it guarantees that the Java thread of execution
is not interrupted during the running of the business process. The listener attached to the ASI queue is a
lightweight activity engine. The activity engine takes the WFC off the ASI queue and invokes the service.
Logically part of the workflow engine, the activity engine calls the service, takes the results from the service,
and immediately starts the next cycle, determining the service that needs to be called and requesting that service
on the ASI queue.

The activity engine can determine the next service because the harness has analyzed the service results and
set the state values in the WFC. The activity engine consults these values to determine the next activity. The
activity engine uses the return code from the current service to choose the next activity from a set of potential
activities listed in the current ActivityInfo.

Service Harness Implementation and Service Adapter Implementation

For the development of adapters, the service architecture provides a clear separation of concerns. There are
two parts to each adapter implementation:

• Service harness implementation is the part of the adapter inside the ASI container. It provides interaction
and interface with the workflow engine.

• Service adapter implementation is the part of the adapter outside the ASI container. It provides the interface
to the external system.

This allows the service adapter implementation to run independently of the container if necessary, and gives
more implementation options for the developer. Services that do not to interface beyond the process boundary
of the application do not need a service adapter implementation component .

27© Copyright IBM Corp. 2012

The following figure shows an adapter implemented with a service harness implementation and service adapter
implementation.

The service harness implementation automatically scales and is portable across clusters because it is instantiated
from within the ASI container. The service adapter implementation is tied to a specific computer. The service
harness implementation can move around from one call to the next. The service adapter implementation,
however, is fixed next to the resource it is accessing.

Example of Service Harness Implementation and Service Adapter Implementation

A cluster of computers in a ASI environment has private disk space on one computer. The service adapter
implementation portion of the File System adapter must be on the computer that can access the disk. The
service harness implementation portion of the File System adapter, however, can run in any container on any
computer.

In the following figure, the service harness implementation is moved to a different container in a different Java
VM:

B2B Server

The application includes a business-to-business (B2B) server. The B2B server can be viewed as an independent
system.

The following figure shows a traditional model of B2B and enterprise application integration (EAI):

MESA Developer Studio28

However, within the application, it is more appropriate to view the B2B server as a complex adapter. The B2B
server has a two-part service adapter implementation. One part runs in the DMZ and one part runs in the ASI
environment.

The following figure shows a B2B server as a complex adapter:

Secure DMZ

The part of the B2B server that runs in the DMZ performs communications activities only. It stores no data.
Trading profiles are stored in the secure area where the application resides. The part of the B2B server in the
DMZ can run in a simple Java Virtual Machine (JVM) or a complete ASI environment.

The part of the B2B server in the DMZ and the part of the B2B server inside the secure area communicate as
if they were separate systems and not part of a single ASI environment.

Service and Operations Controllers

The application service and operations controllers monitor and manage executing services and workflows
within the application environment. These controllers free system operators and business analysts from having
to attend to application-server details.

Service controllers provide a single place within a VM to manage, configure, query, and cache all service-related
information. They also enable the application to scale and manage the service adapter implementation parts
of adapters. There is one service controller per VM in the ASI Container.

Operations controllers manage resources across VM boundaries. You can have multiple operations servers for
redundancy and several embedded components, one per VM. Operations servers provide a single point of
contact for all operational questions.

The following figure shows the service and operations controllers:

29© Copyright IBM Corp. 2012

MESA Developer Studio30

Developing a Service

Adapter Architecture Summary

An adapter interacts with external systems to get data in and out of them. Typically, an adapter consists of a
harness, a Remote Method Invocation (RMI), and files that enable the adapter to be used in the application
interface.

Harness

The harness part of the adapter must implement the processData() function, which the activity engine calls
whenever it has work for the adapter to perform. This function can be called to push data out of the system or
signal that data needs to be collected.

RMI (Service Adapter Implementation)

Preferably, most of an adapter workload should reside in the Service Harness Implementation. The service
adapter implementation exists mainly to allow for a separation of concerns from the harness.

Typically, adapters do some work that would be inefficient or hinder operation completely within the ASI
Container. For example, the service adapter implementation can be set up to wait for data to arrive and to
periodically poll the external system for data.

Scalability

Services in the application are scalable: for adapters, the service adapter implementation creates a new thread
to service each new request it receives. The service adapter implementation is multi-threaded by default. You
do not need to write additional code.

About the Workflow Context Used by Adapters

The workflow context API encapsulates a basic unit of work, including all parameters required by the adapter
to act on that unit of work.

31© Copyright IBM Corp. 2012

The workflow context maintains the state of the business process from service to service. It contains, among
other things, the document being manipulated by the business process. This is also where each service reports
errors and status. The application infrastructure is designed to persist the workflow context between steps.

The workflow context contains several components:

• Input Parameters – Retrieve parameters before beginning the operation
• Workflow Document Body – Set up the document body
• Error Reporting – Set up status and error reporting

Input Parameters

A service should have all of its parameters before doing any of its core logic. The workflow context provides
the getWFContent method to retrieve parameters:

getWFContent(String parmName);

The getWFContent method retrieves a named input parameter from the workflow context. It gets global (service
type), copy (service configuration), and WFD (workflow definition or business process definition) level
parameters.

WFD parameters override service configuration parameters, which override service type parameters. If the
workflow content message contains a string value with the parmName requested in the getWFContent method
call, then the value in the workflow content hash table overrides all other values.

The hash table can contain any type of object. The getWFContent method enables a parameter to override a
higher-level parameter only if its value is stored as a string in the hash table.

For example, the following string would retrieve an input parameter named URL:

String url = getWFContent("URL");

The service may need to get a parameter passed at run time by a previous service. If the parameter is not a
service type, service configuration, or WFD parameter being overridden, then the service calls:

getWFContent(parmName);

Workflow Document Body

A typical service or adapter operates on a document contained within the workflow context. The document
contains the body of the document, information about the name of the body, and metadata that describes the
document.

To retrieve the document from the workflow context, use the streaming method:

InputStream inputStream = document.getInputStream();
byte[] body = new byte[102400];
int read = 0;
int position = 0;
while (inputStream.available() > 0) {
 read = inputStream.read(body, position, 102400);
 position += read;
 //do something with the bytes read
}
inputStream.close()

MESA Developer Studio32

After the document is retrieved, you can obtain the body of the document by using streaming APIs. The
following example shows a new document body inserted into the workflow context:

OutputStream outputStream = null;
Document document = wfc.createDocument();
document.setBodyName("somename");
try {
 outputStream = document.getOutputStream();
 outputStream.write(someByteArray);
 /*
 A more likely scenario is a looping construct where we read
 from one stream and write to another.
 */
} catch(Exception e) {
 theAdapterLog.logError("Houston, we have a problem." e);
 wfc.setBasicStatusError();
 sci.unregisterThread();
} finally {
 //Always make sure we close out document output streams.
 try {
 if (outputStream != null) {
 outputStream.close();
 }
 }catch(Exception e) {
 theAdapterLog.logError("Error closing document in adapter EXAMPLE." e);
 }
}
wfc.putPrimaryDocument(document);

Error Reporting

Another important component of the workflow context is status and error reporting. The workflow engine
requires an adapter to return status information at the completion of the requested activity. The requesting
business process uses this information to make decisions that control business process flow. Status is reported
within the workflow context.

About the Service Controller Framework Used by Adapters

The service controller is a unified framework that all adapters use to remove application-server dependencies.

The service controller is also responsible for starting and stopping the adapter.

Stateless and Stateful Adapters

Stateless and stateful adapters differ at the object level. For stateless adapters, the service controller instantiates
one object that services all configured copies of the adapter. Each request to the service adapter implementation
of the adapter must be a complete request, because states cannot be maintained between requests. For stateful
adapters, the service controller instantiates one object for each configured copy of the adapter.

Instance variables for RMI objects are not useful because multiple threads (or, in the case of stateless adapters,
multiple copies of the adapter) have access to the same instance variables, as if they were class variables.

Method variables are unique to the invocation of the method, so they are acceptable to use.

33© Copyright IBM Corp. 2012

Service Controller Interface

An adapter is composed of two parts:

• A harness that is the interface to the workflow engine
• An RMI server that communicates with external systems

The code example below shows how the adapter processData method does the following:

1. Registers with the service controller
2. Finds its RMI service
3. Invokes an RMI method
4. Unregisters with the service controller
5. Returns this code to the workflow engine:

String svcName = wfc.getServiceName;
ServicesControllerImpl sci = ServicesControllerImpl.getInstance();
sci.harnessRegister(new Integer(wfc.getWorkFlowId()).toString(),
 svcName);
 try{
 rmi = (Yourserver)sci.getAdapter(svcName);
 }catch(Exception e){
 wfc.setBasicStatusError();
 sci.unregisterThread();
 return wfc;
 }
 if (rmi == null){
 wfc.setBasicStatusError();
 sci.unregisterThread();
 return wfc;
 }
 try {
 // request “Service Adapter Implementation” to do work
 rmi.someRMIMethod(parms, xmlInBytes);
 }
 catch(Exception e) {
 wfc.setBasicStatusError();
 sci.unregisterThread();
 return wfc;
 }

This code example uses the following methods to accomplish its work:

DescriptionMethod

Assists the service controller in its monitoring and control functions. The
harnessRegister should be called at the beginning of the processData
method.

Returns – None.

harnessRegister(workflowID,
serviceName)

Assists the service controller in its monitoring and control functions. It
should be called before the return of the processData method.

Returns – None.

UnregisterThread()

MESA Developer Studio34

Service Controller Interface – RMI

The IAdapterImpl class provides the following methods for use in the service adapter implementation of the
adapter:

DescriptionMethod

The service controller calls startup() after a stateful adapter is created. Startup()
should perform all setup and initialization necessary for the adapter to function
correctly.

This method returns a Boolean value. A true return indicates that startup was
successful.

startup()

The service controller calls the shutdown() method when a stateful adapter shutdown
is required. shutdown() should perform all operations necessary to shut down the
adapter.

In the case of a multi-threaded adapter, shutdown() must ensure that all of its threads
are stopped before returning to the service controller. shutdown() should wait for
threads that are performing work directly for a workflow to become quiescent. The
adapter can stop threads that are waiting for external input.

The IAdapterImpl base class provides the methods interruptThreads() and
stopThreads() to assist in shutting down errant threads.

As an additional assistance to the shutdown() method, the base class provides a count
of registered threads. This count can be found in the invokes variable. The shutdown()
method should poll this variable no more than once a second, waiting for it to
decrement to zero. Note that the shutdown thread does not appear in this count.

If the adapter has threads that listen on sockets, the invokes count may never go to
zero. The shutdown() method will need to account for this case.

The service controller will not wait indefinitely for shutdown() to fulfill its
responsibilities. The adapter can configure the time-out period by overriding
getShutdownTimeout(). The service controller enables shutdown() for the amount
of time returned from getShutdownTimeout(), and then the shutdown thread is
terminated.

This method returns a Boolean value. A true return indicates that the shutdown()
method completed successfully.

shutdown()

The service controller calls refresh() when the configuration changes for a stateful
adapter. refresh() should perform all setup and initialization necessary for the adapter
to function correctly.

If an adapter maintains a connection or connections to an end system, and the
connectivity configuration changes, refresh() should return a false value to the service
controller. In this case, the service controller shuts down the adapter and then restarts
it. This action prevents workflows from trying to invoke the adapter while
connectivity changes are occurring.

This method returns a Boolean value. A true return indicates that refresh() completed
successfully. A false return indicates that the adapter did not refresh, in which case
the service controller shuts down the adapter and then restarts it.

refresh()

35© Copyright IBM Corp. 2012

DescriptionMethod

The service controller calls getShutdownTimeout() to determine how long to wait
for shutdown to complete before terminating the adapter threads.

A default implementation provided in the base class returns 60 seconds.

This method returns the period for shutdown to complete, in milliseconds.

getShutdownTimeout()

The interruptThreads method is provided in the base class to assist the adapter
shutdown() method in shutting down its active threads. interruptThreads() calls the
interrupt method on each active thread and assists in a graceful shutdown where
possible.

Returns – None.

interruptThreads()

The stopThreads method is provided in the base class to assist the adapter shutdown()
method for active threads. stopThreads() terminates every active thread.

Returns – None.

stopThreads()

The registerThread method assists the service controller in its monitoring and control
functions. registerThread() should be called at the beginning of each method called
by the service harness implementation portion of the adapter.

Returns – None.

registerThread()

The unregisterThread method assists the service controller in its monitoring and
control functions. unregisterThread() should be called at the end of each method
called by the service harness implementation portion of the adapter.

Returns – None.

unregisterThread()

Error and Status Reporting

The workflow engine requires a service to return status information at the completion of the requested activity.
The requesting business process uses this information to make decisions that control business process flow.

Three types of status information are returned to the workflow engine:

• Basic status
• Advanced status
• Exceptions

Basic Status

Basic status is the overall status of the work performed by the service.

wfc.setBasicStatus(status)

For example:

wfc.setBasicStatus(WorkFlowContext.ERROR);

MESA Developer Studio36

Advanced Status

The advanced status is a modifier for the basic status. Reporting the advanced status requires the service writer
to analyze the service error categories. Business analysts use the list of advanced errors to test for error
conditions. The list should be representative, but not long.

The workflow context provides the following method for setting advanced status:

wfc.setAdvancedStatus(StringadvancedStatus);

Exceptions

An exception indicates a possible failure condition. A service may need to generate a workflow exception
when a required input parameter is:

• Missing
• Invalid
• Disabled. For example, a map or a workflow definition is disabled.

Use the following syntax to construct an exception:

new
WorkFlowException(String errorText, int reasonCode)

Workflow exception reason codes are:

• public final static int GENERAL_PARM_ERROR = 0; (Default) Use this in situations that require, for
example, missing properties files.

• public final static int MANDATORY_PARM_MISSING = 1;
• public final static int INVALID_VALUE_FOR_PARM = 2;
• public final static int RESOURCE_DISABLED = 3;
• public final static int NO_DOCUMENT = 4

The workflow engine places the error text string for the workflow exception into the status report.

Status Report

The service can add text describing the activity performed to the workflow context. The workflow context
uses the following method for this purpose:

setWFStatusRpt(“Status_Report”,statusReportText);

A status report is available to view if an Info icon appears in the Report column. Click the icon to display the
status report for that service. You can view the status report text from the application interface.

Use the application interface to view the progress of a business process as it executes;
use the business process monitor to view details after a business process has run. When
a service is successfully invoked, the Status column displays Success. This display is
a result of calling the setBasicStatusSuccess() method in the workflow context. In this
case, the advanced status does not need to be set.

Successful
Invocation

An unsuccessful invocation of an adapter or service should result in the Status column
displaying Error. This display is a result of calling the setBasicStatusFailure() method
in the workflow context. The setAdvancedStatus() method is also called to give
additional information about the failure condition.

Unsuccessful
Invocation

37© Copyright IBM Corp. 2012

Setting Up User Prompts for Configuring a Service in the UI

The console can be set up to prompt for configuration information specific to the service being developed.
Simple service configuration does not require you to write any Java code. The only requirement is that the
service XML file is set up to specify the information to be collected.

To set up the console, use the following files:

• Language-specific properties files - Provides screen text in the language chosen by the user
• Service XML file - Describes the information collected at configuration time

Language-Specific Properties Files

The language-specific files should exist for each service XML file. It is also customary to pick a two- or
three-character service abbreviation for the service and prepend this abbreviation to each language-specific
property name. For example, for a file system, fs would indicate file system and look like fs.label or
fs.description. This convention helps to ensure that the language-specific property names are unique.

Here is an example of a language-specific properties file:

fs.label = File System Adapter
fs.description = Collects and Extracts files from a file system.
fs.wfd.group1.title = Workflow Properties
fs.wfd.group1.instructions = Specify the appropriate workflow settings.
fs.instance.group1.title = Collection
fs.instance.group1.instructions = Specify the appropriate settings for collecting
data using the File System Adapter.
fs.action = Action
fs.cfolder = Collection Folder name
fs.efolder = Extraction Folder name
fs.pollinterval = Poll Interval (mins)

Service XML File

Here is an example of the service XML file:

SERVICE name="FileSystem"
description="fs.description"
label="fs.label"
implementationType="CLASS"
JNDIName="FileSystemEJBHome" type="Adapter"
adapterType="STATELESS"
adapterClass=
 "com.sterlingcommerce.woodstock.services.filesystem.FileSystemServerImpl"
 version="1.0" SystemService="NO">

A service XML file includes these variables:

DescriptionVariable

Descriptive name of the servicename

Description in language-specific formdescription

MESA Developer Studio38

DescriptionVariable

Descriptive name in language-specific formlabel

Either RMI or CLASSimplementationType

Lookup name of the serviceJNDIName

Adapter, basic, Advanced, Split, or Jointype

STATEFUL or STATELESSadapterType

Class name of the Service Implementation of the adapteradapterClass

1.0 - System-assigned value when the project is created.version

If the service definition changes, the version number must be incremented before
the new definition is exported. See Update a Service Definition.

NO for adapterssystemService

<VARS> Tags

Inside the <Service> tag are <VARS> tags. The <VARS> tags contain definitions of configuration items to
collect from the user. Three types of <VARS> tags correspond to the scope of the configuration:

• global - The widest possible scope, applicable to all adapters of this type. Configuration parameters are
displayed in the Deployment > Services > Installation/Setup section.

• instance - Limited in scope to a single instance of an adapter. Configuration parameters are displayed in the
Deployment > Services > Configuration section.

• wfd - Workflow definition configuration for use only by the Graphical Process Modeler. The primary purpose
of this tag type is to define the possible configuration that can be made in the workflow definition. Because
the configuration is defined here, the Graphical Process Modeler can display the possible configuration to
the user.

<VARS> Tag Example

Following is a sample <VARS> tag:

<VARS type="instance">

<GROUP> Tags

Inside the <VARS> tags are <GROUP> tags. <GROUP> tags group configuration information by page. The
<GROUP> tag is part of the <VARS> tag and contains title and instructions.

• title - title of the current page
• instructions - help describing what the user is supposed to do with the current page.

The following is an example of a <Group> tag:

<GROUP title="fs.instance.group1.title"
instructions="fs.instance.group1.instructions">

39© Copyright IBM Corp. 2012

<VARDEF> Tag

Inside the <GROUP> tag is the <VARDEF> tag.

The following table describes the <VARDEF> tag elements:

DescriptionTag Type

Name of the Java property that a service uses to retrieve data collected from the
user.

varname

Type of the input, normally String.type

Type of input you are retrieving from the user.htmlType

Normal textual information is htmlType text, radio buttons are specified with radio,
and password information can be retrieved with the htmlType Password. For text
area, specify textarea. For drop-down list, specify the htmlType select.

Validation types-for example, ALPHANUMERIC specifies that only alphabetic and
numeric characters are accepted as input. NUMBER and NUMERIC specify only
numeric validation.

validator

Description of the configuration to be entered by the user.label

Field size that displays to the user when collecting information.size

Maximum number of characters the user can enter for this variable.maxsize

Specified only if the variable is not required.required=NO

Default value that is useful only if the VARS type is wfd.defaultVal

The following example shows how all of the tags work together:

<VARS type="instance">
 <GROUP title="fs.instance.group1.title"
instructions="fs.instance.group1.instructions">
 <VARDEF varname="collectionFolder" type="String" htmlType="text"
validator="ALPHANUMERIC" size="30" maxsize="250" label="fs.cfolder" />
 <VARDEF varname="useSubFolder" type="String" htmlType="radio"
validator="ALPHANUMERIC" options="radio2" label="fs.subfolders" />
 </GROUP>
</VARS>

Setting Up Event Logging for a Service

This section provides general guidelines for logging from a service in the framework. The Logging service is
a unified framework for logging messages.

MESA Developer Studio40

Because services may have different needs and functions, apply the following guidelines only with a good
understanding of the service logging output.

Logging Event Guidelines

The following table lists the guidelines for the types of events to log for each logging method:

GuidelineMethod

Log any non-exception occurrence that would cause the intended operation of the
service to fail, such as:

Error

• Communication failed to external system

• Invalid input data

Log any checked exception that is the result of an error or fault, such as a caught
exception that is not handled by the adapter.

Exception

Note: Exceptions that are handled by the service should not be logged with
logException.

Log any system disruption that is neither fatal nor a handled exception. Also log any
notifications of possible error conditions.

Warn

Examples:

• Connection to external resource is lost while no processing is occurring

• Disk space limits

• License file expirations

Log anything that is useful information for development/debugging purposes,
including general processing information and functionally relevant occurrences.

Debug

Examples:

• Entering and exiting of major methods

• Method input parameters

• Method return values

• Parameter values (setting and getting)

• Initiation and completion of operations

Log anything that should always appear in the log file.This method sends messages
to the default log regardless of log level.

Log

Examples:

• Adapter StartUp

• Adapter ShutDown

• Adapter Refresh

• Connection to external systems

XLogger Logging

The XLogger class provides a unified log output, which includes the following:

41© Copyright IBM Corp. 2012

• Module name
• Thread ID
• Service name

This class can also be used in stateful RMI adapters (service adapter implementations).

EJB Logging

In the service harness implementation of the adapter, the service name is available in the workflow context
and can be used in the constructor when creating an XLogger copy.

For example, use this form of the constructor at the beginning of the processData method:

adapterLogger = new XLogger(classsName, getServiceName());

The adapterLogger should be an instance variable of type XLogger.

RMI Logging

For the service adapter implementation of the adapter there are two approaches, depending on whether the
adapter is stateless or stateful.

For stateless adapters, there is only one object created for all copies of the adapter. Therefore, instance variables
are shared by all copies of the adapter.

The service name is not available to the service adapter implementation of a stateless adapter from the
infrastructure. The EJB must pass the service name to the service adapter implementation of the adapter. The
service name should not be used in the constructor when creating an XLogger copy-for example, adapterLogger
= new XLogger(classsName). AdapterLogger should be a class variable of type XLogger. In this case, use the
logging method that includes the service name.

For stateful adapters, there is an object created for each copy of the adapter, but all the threads of that adapter
copy share the same object. Therefore, all threads of an adapter copy share instance variables.

The service name is available to the service adapter implementation of a stateful adapter from the infrastructure
by calling getServiceName().

The following is sample code:

adapterLogger = new XLogger(classsName, getServiceName());

The adapterLogger should be a class variable of type XLogger. The easiest way to do this is to construct a new
XLogger if one does not already exist.

XLogger Logging Methods

You can use the XLogger logging methods in the EJB and RMI parts of the adapter. However, the availability
of the service name varies.

Use the XLogger methods for logging from adapters. These methods format the class name and the service
name provided along with a thread identifier, and add the message to be logged. The result is a log message
that includes date/time, class name, service name, thread ID, and message.

The following table describes the XLogger class methods and indicates where they are used:

Used by Stateless RMIUsed by Stateful RMI and
EJBs

Method

ConstructorXLogger(String ClassName)

MESA Developer Studio42

Used by Stateless RMIUsed by Stateful RMI and
EJBs

Method

ConstructorXLogger(String ClassName, String ServiceName)

Logging errorslogError(String ServiceName, String message)

Logging errorslogError(String message)

Logging fault exceptionslogException(String ServiceName, String message,
Exception e)

Logging fault exceptionslogException(String message, Exception e)

Logging warning messageslogWarn(String ServiceName, String message)

Logging warning messageslogWarn(String message)

Logging debug messageslogDebug(String ServiceName, String message)

Logging debug messageslogDebug(String message)

General logginglog(String ServiceName, String message)

General logginglog(String message)

LogService Logging Methods

The LogService class provides the following static logging methods. Use these methods at any time in an EJB
or RMI part of an adapter. Because each method implies a different logging threshold, some general usage
guidelines are provided.

Each log message generated through LogService has a timestamp and logging level. You must supply the
name of the originating class and a message.

The following sample code shows an example:

[2001-06-12 12:46:55.381] ALL [SiebelEJBBean] Hello World

MessageOriginating ClassLogging LevelTimestamp

Hello World[SiebelEJBBean]ALL[2001-06-12 12:46:55.381]

The following table lists the log methods and general guidelines for their formatting:

Note: For the BPML specifications that accepts, see the Business Process Guide.

43© Copyright IBM Corp. 2012

ExampleFormat GuidelineMethod

[SiebelEJBBean]
Error: Adapter

[Class name] General business error. Specific application error.
logError()

unable
to process request.
Action parameter is
null.

[SiebelEJBBean]
Exception: Adapter

[Class name] General business error. Specific application error.

The logException() method requires both a message and an
exception. This method logs the exception name and stack trace.

logException()

unable to process
Read request. Unable
 to connect to the
file system
server.

[SiebelEJBBean]
Warning: Available

[Class name] General Warning. Expected results or recommended
actions to be taken.

logWarn()

disk space is less
than 1 GB. Delete
unnecessary files.

[SiebelEJBBean]
Entering ProcessData
method.

[Class name] Debug message
logDebug()

[SiebelEJBBean]
Adapter started.

[Class name] Log message
log()

MESA Developer Studio44

File Rename Service Example

Example 1: Creating the File Rename Service

To learn about creating a simple service that has parameters, you can use this step-by-step example to create
a service called the FileRename service. This example walks through the following tasks in the sequence shown
in the table. Note that some are done on your PC, using Eclipse or a text editor; others are done on the server
where your application instance is located.

TaskTool or software to use
for the task

Location where the task is
performed

EclipseOn your PC • Create the service using the MESA Studio SDK Wizard.
• Add custom code to the service in the SDK.
• Verify, save, and compile the service.
• Export the service (createthe service package file).

Create a text file to use as input for a business process you
will build to test the service. This is the file that will be
renamed by the service when the business process runs.

Text editor (NotePad,
WordPad, etc.)

On your PC

Operating system
commands, file
management utility, or FTP

On the server • Copy the text file from your local system to the server.
Note the location so that you can find it when you are
ready to run the business process.

• Copy the service package file from your local system to
the server. Copy the service to the bin directory of your
application installation.

• Stop the application.
• Install the service in the application (run

InstallService.sh/cmd on the server while the application
is down).

• Restart the application.

In the application- • Create a service configuration in the application.
• Add information to the service configuration in the GPM.
• Create a business process to test the service.
• Check in the business process.
• Run the business process.

45© Copyright IBM Corp. 2012

TaskTool or software to use
for the task

Location where the task is
performed

• View the business process results to see if the file was
renamed correctly.

• Troubleshoot errors, repeating until successful.

Create the FileRename SDK Project

This task is done on your PC using Eclipse.

1. Open the MESA Studio SDK perspective in Eclipse.

2. Select File > New > Project.

3. Select MESA Developer Studio > MESA Developer Studio SDK Project.

4. Enter FileRename as the name for the project and click Next.

The project name is also the name for the service.

5. On the Service Profile screen, enter a description for the service: The service renames a file
passed in from the WFC. Click Next.

You can also change the label for the service from the Service Profile screen.

6. On the Service Build Options screen, leave all fields set to the defaults. Click Next.

7. On the SI System Libraries screen, select 3000 as the SI library version. Click Finish.

The project is created for the new service.

8. If the current perspective selected in Eclipse is not Mesa developer Studio SDK, an Open associated
perspective? dialog displays. Click Yes.

9. Open the Package Explorer pane in Eclipse to see the project for the service.

The project displays as follows:

MESA Developer Studio46

Tip: Click Window > Reset Perspective at any time if needed to refresh your view in MESA Studio SDK.

About System Libraries

The application system libraries includes collections of classes that you can use in your custom services and
adapters. See the following directories:

• install/xapidocs/api_javadocs/index.html
• install/studiodocs/afc_javadocs
• install/studiodocs/asi_javadocs
• install/studiodocs/ifcbase_javadocs

Jar Files Available

In MESA Developer Studio SDK, you have access to the following Java APIs. These are the jars most often
needed in custom service creation. Detailed information about each API is available in the javadocs located
in the install_dir/install/studiodocs folder in your application installation.

Java objects in the SDK include:

PathnameClass or Subclass

install_dir/install/studiodocs/ifcbase_javadocsEvent

install_dir/install/studiodocs/ifcbase_javadocsEventProcessor

install_dir/install/studiodocs/ifcbase_javadocsEventProcessorFactory

install_dir/install/studiodocs/ifcbase_javadocsIEventProcessor

install_dir/install/studiodocs/ifcbase_javadocsSemaphoreManager

install_dir/install/studiodocs/asi_javadocsLockManager

install_dir/install/studiodocs/asi_javadocsWorkFlowContext

install_dir/install/studiodocs/asi_javadocsWFCBase

install_dir/install/studiodocs/asi_javadocsInitialWorkFlowContext

install_dir/install/studiodocs/asi_javadocsDocument

install_dir/install/studiodocs/asi_javadocsServicesControllerImpl

install_dir/install/studiodocs/asi_javadocsActivityData

Add Custom Code to the FileRename Project

This task is done on your PC using Eclipse.

First, create the service parameters.

47© Copyright IBM Corp. 2012

1. Open the FileRename project in the MESA Studio SDK in Eclipse.

2. In the Package Explorer view, expand the project and double-click FileRenameImpl.java.

3. Locate the import statement import java.text.MessageFormat; and add the following import
statement below it: import java.io.File;

4. Locate the comment // TODO: Start here to implement the service logic: and add the
following lines below it:

String sourceFileName = wfc.getParm("sourceFile");
String destinationFileName = wfc.getParm("destinationFile");
boolean overwrite = true;
String overwriteStr = wfc.getParm ("overwrite");
if (overwriteStr!=null){
overwrite = overwriteStr.equalsIgnoreCase("true") ? true:false;
}
log.logDebug("File rename source file = " + sourceFileName);
log.logDebug("File rename destination file = " + destinationFileName);
log.logDebug("File rename overwrite flag = " + overwrite);

File sourceFile = new File(sourceFileName);
if(!sourceFile.isFile()) {
 throw new WorkFlowException("Source is not a file or accessible or does
not exist: " + sourceFileName);
}
File destinationFile = new File(destinationFileName);
if(destinationFile.isFile()) {
 if(!overwrite) {
 throw new WorkFlowException("Destination file exists and overwrite flag
 is set to false: " + destinationFile);
 } else {
 if(!destinationFile.delete()) {
 throw new WorkFlowException("Unable to overwrite destination file:
 " + destinationFile);
 }
 }
}

if(!sourceFile.renameTo(destinationFile)) {
 throw new WorkFlowException("File renaming failed. Source file = " +
sourceFileName + ", destination file = " + destinationFileName);
}
log.logDebug("File renamed successfully.");

5. Save the project by selecting File > Save.

If the following warning displays, you may ignore it:The method handleError(XLogger,
WorkFlowContext, String, Object[]) from the type FileRenameImpl is never used

locally.

MESA Developer Studio48

Create Parameters for the File Rename Service

This task is done on your PC using the MESA Studio SDK in Eclipse.

The FileRename service uses the java.io.File class renameTo() method to rename files. The service takes three
input parameters:

• sourceFile: Original and target file names (including full path)
• destinationFile: Original and target file names (including full path)
• overwrite: Boolean flag to indicate if overwriting target file

The service takes the following parameter types:

• The overwrite parameter is defined at the instance level; that is, it is configured using the Deployment >
Services > Configure option in the application. (BPML can overwrite this service instance configuration at
run time.)

• The parameters Source File and Destination File are defined at the workflow level; that is, their values need
to be passed in from BPML (message to service).

You will use the Service Definition Editor in the MESA Studio SDK to create the parameters.

There are two parts to the process of creating a new parameter: first, define the parameter at either the Instance
or Workflow level for an option group, vardef information such as label, HTML type (radio button, select, or
text) field length, and options. Second, define the parameter options. For this example, the overwrite flag will
have an option with true and false choices.

Service Definition Parameters for the File Rename Service

The following tables provide the Service Definition Editor entries required for the three parameters. For
parameter descriptions, see Adding Parameters to the Service Definition File.

Overwrite Flag Parameter

The Overwrite flag parameter is used to determine whether the file passed in to the service by the workflow
context should be renamed or left "as is."

ValueField

InstanceParameter Level

Overwrite flagGroup Title

select to overwrite existing filesGroup Instructions

Vardef Properties

overwriteName

StringType

radioHTML Type

FileRename.overwriteLabel

ALPHANUMERICValidator

49© Copyright IBM Corp. 2012

ValueField

5Size

5Max Size

overwriteFlagOptions

Options

overwriteFlagOption Properties - Name

Choice Element Properties

First element:

trueValue

trueDisplay name

Second element:

falseValue

falseDisplay name

Source File Parameters

The source file is passed into the service by the workflow context and renamed.

ValueField

WorkflowParameter Level

FileNamesGroup Title

original and new filenamesGroup Instructions

Vardef Properties

sourceFileName

StringType

textHTML Type

FileRename.OriginalFileLabel

ALPHANUMERICValidator

80Size

80Max Size

n/aOptions

n/aOptions

n/aOption Properties - Name

n/aChoice Element Properties

n/aValue

n/aDisplay Name

MESA Developer Studio50

Destination File Parameter

These are the parameters for the renamed file.

ValueField

WorkflowParameter Level

FileNamesGroup Title

original and new filenamesGroup Instructions

Vardef Properties

destinationFileName

StringType

textHTML Type

FileRename.TargetFileLabel

ALPHANUMERICValidator

80Size

80Max Size

n/aOptions

n/aOptions

n/aOption Properties - Name

n/aChoice Element Properties

n/aValue

n/aDisplay Name

Service Definition Parameter Field Reference

When you create a new parameter for a service definition, you must provide information about the type of
parameter, options, and so forth. For each service definition, you enter information for some or all of the
following:

Variables

You can define a service variable at one of three levels:

• Global – has a constant value for all instances of a service. That is, you can create multiple instances of the
service, but this variable will be the same in each.

• Instance – can have a different value for each instance of a service. That is, if you create multiple instances
of a service, this variable value can be changed for each, as needed.

• Workflow – can have a different value each time the service is called from a business process. That is, the
service gets the value for the variable from the current business process instance.

Options

Options are used with variables to provide a finite, reusable list of possible values. Examples: yes/no, true/false

51© Copyright IBM Corp. 2012

• Name – Required. Name of the parameter as it will appear to the user. System provided. Cannot contain
spaces. Use standard Java variable naming conventions.

• Type – Required. Java type of the parameter. Valid values: String (default), Boolean, integer.
• HTML Type – Required. HTML input type of the parameter. Valid values: Text, Select, and Radio. Default

is Text.
• Label – Required. Cannot contain spaces.
• Validator – Optional. Type of validator. Select from the list.
• Size – Optional. Number of characters for the parameter display size.
• Max Size – Optional. Maximum number of characters allowed for the parameter.
• Options – Optional. Reusable lists of values used by the parameter, such as true/false and yes/no.

Add the Overwrite Parameter

This task is done on your PC in Eclipse.

1. Open and expand the FileRename SDK project in the Package Explorer.

2. Expand the servicedefs node. Right-click FileRename.xml and select Open With > Service Definition
Editor.

3. In the service definition editor pane for FileRename.xml, expand the Services node and the FileRename
service.

4. Right-click Instance Variables and select New Group.

5. Type overwrite flag in the Group Title field and click OK.

The new overwrite flag group displays, preceded with the group designation G: G overwrite flag.

6. Select the overwrite flag group in the FileRename tree.

The Group Properties pane displays.

7. Type select to overwrite existing files in the Instructions field.

Next, add the option for the new variable definitions.

8. Right-click on the overwrite flag group and select New Vardef.

The New Vardef pane displays.

9. Type overwrite in the New vardef name? field and click OK.

The new field displays as V overwrite.

10. Select the overwrite flag variable and edit the values as shown:

MESA Developer Studio52

Finally, you will create the option that displays the user options for the overwrite flag on the UI.

11. Right-click on Options.

The New Option dialog displays.

12. In the New Option name? dialog box, enter overwriteFlag.

13. Right-click on the overwriteFlag option and select New Element.

14. In the New element value? field, enter true.

15. Create an additional new element with the value false.

16. Save your changes to the project by selecting File > Save.

You will resolve errors when you add language property file names.

Add the Source File and Destination File Parameters

This task is done on your PC in Eclipse.

1. Open and expand the FileRename SDK project in the Package Explorer.

2. Expand the servicedefs node. Right-click FileRename.xml and select Open With > Service Definition
Editor.

3. In the service definition editor pane for FileRename.xml, expand the Services node and the FileRename
service.

4. Right-click Workflow Variables and select New Group.

5. Type FileRename in the Group Title field and click OK.

6. Select the FileRename group in the FileRename tree.

The Group Properties pane displays.

7. Type original and new filenames in the Instructions field.

8. Right-click the FileRename group and select New Vardef.

9. Type sourceFile in the Name field and click OK.

10. Select the sourceFile vardef to display the properties pane. Type or select the value shown for each field
in the following example:

53© Copyright IBM Corp. 2012

11. Right-click the FileRename group and select New Vardef.

12. Type destinationFile in the Name field and click OK.

13. Select the destinationFile vardef to display the properties pane. Type or select the value shown for each
field in the following example:

14. Save your changes to the project by selecting File > Save.

You will resolve errors when you add language property file entries.

Add Language Property File Entries for the File Rename Service

This task is done on your PC in Eclipse after adding the Overwrite flag, Source File, and Destination File
parameters.

After creating the new parameters for the File Rename service, you should see error icons next to each of the
new parameters, as shown in the following example.

MESA Developer Studio54

The errors occur because the File Rename service language property file does not contain entries for these
parameters yet. Using the Quick Fix option in Eclipse, you will add the necessary entries to the property file.

Complete the following steps for each error associated with the File Rename service parameters (Overwrite
flag, Source File, and Destination File).

1. Open and expand the FileRename SDK project in the Package Explorer.

2. Expand the servicedefs node. Right-click FileRename.xml and select Open With > Service Definition
Editor.

3. Select Window > Show View > Problems.

An Error Log view (tab) displays.

Tip: If Problems is not visible, select Window > Other > General > Problems.

4. Right-click on the error message for one of the three parameters in the Problems view and select Quick
Fix.

5. Under Select a fix, ensure that Append a new property to the language property file is selected, and click
OK.

A new line for the parameter is added to the language property file for the FileRename service.

6. Repeat for the remaining errors.

7. Save your changes to the project by selecting File > Save.

The Problems view refreshes, removing the error entries.

Build the Service Package

This task is done on your PC using the MESA Studio SDK in Eclipse.

1. Open the FileRename SDK package in the Package Explorer.

2. Right-click on the name of the package and select Export.

3. In the Export window, expand the MESA Studio node, select Service Packages, and click Next.

4. In the Export Service Package window, type or browse to the location on your PC where the service package
should be created. Click Finish.

5. Open Windows Explorer and browse to the location to verify that the service package is there.

For this example, the path and filename are:

drive:\your_chosen_folder\FileRename\dist\FileRename_3000.0.0.jar

55© Copyright IBM Corp. 2012

Create the Text File to be Renamed

You must be able to connect to the server where the application resides.

This task is done on your PC and on the server where the application resides.

1. On your PC, use a text editor to create a simple text file. Save the file as test.class.

This is the file that will be renamed by your service.

2. Copy the text file to a location on the server where it is accessible to the application. Make note of the
location.

In a later task, you will create a business process that will use this file.

Install the File Rename Service into the Application

You must be able to connect to the server where the application resides.

This task is done using your PC and the server where the application resides.

After you create a service and package the source code, you must install the service package into the application.
This places the .jar file on the server where the application expects to find it, and expands it. The next time
the server is restarted, the service will be in effect.

Note: Before you install the service package into a production environment, install and test it in a test
environment.

1. Stop the application instance.

2. In Eclipse, open the MESA Studio perspective.

3. Select the application instance where the package should be installed.

4. With the instance selected, right-click and choose Install Service Package.

5. On the Install Service Package window, browse to the location of the FileRename package file and click
Open.

6. Click Finish to begin installing the service.

This may take several minutes, depending on your system and network load.

7. Once the service installation is complete, start the application instance.

8. Log in to the application and ensure that the service can be viewed and configured from the options on the
Deployment > Services > Configuration screen.

Configure the File Rename Service Instance

This task is done using the application.

Installing the service in the previous task created a FileRename service type. In this task, you create a new
instance of that service type.

MESA Developer Studio56

Tip: As a best practice, create and configure a new instance instead of editing the base configuration for your
new service type.

1. Log on to the application.

2. Select Deployment > Services > Configuration.

3. Click Go! for Create New Service.

4. Select FileRename as the Service Type to configure and click Next.

5. Type FileRename in the Service name field and enter a description for this instance.

Do not select a group.

6. Set the overwrite parameter to true.

7. Click Confirm to save the service configuration.

Create Test BPML

1. Using a text editor (or a BPML editor in your application), create and save a test file containing the following:

<process name="lzTest">
 <sequence name="main">
 <operation name="FileRename">
 <participant name="lzFileRename"/>
 <output message="fnoutput">
 <assign to="sourceFile">c:\temp\test.class</assign>
 <assign to="destinationFile">c:\temp\test_fn.class</assign>
 <assign to="." from="*"></assign>
 </output>
 <input message="input">
 <assign to="." from="*"></assign>
 </input>
 </operation>
 </sequence>
</process>

2. Accept defaults for any other editor parameters such as process levels or deadline settings.

3. Check the test file into the application.

Test the File Rename Service

Testing on custom services and adapters is generally done by encapsulating most processes in Java classes
and have the custom service or adapter call them.

For the file rename example, use the your test BPML and the text file you created earlier to test your service
in the application.

1. For the first test, execute the business process against the test file using the configuration you created.

Status should be Success and your c:\temp directory should contain the test_fn.class file.

2. Re-run the test.

57© Copyright IBM Corp. 2012

Status will be Error with the message Source is not a file or accessable or doesn't
exist: c:\temp\test.class. This indicates that, after the previous test, the test.class file no longer
exists after the first class and is not available to be renamed.

MESA Developer Studio58

Additional Examples

Example 1: Basic Adapter

This example shows basic adapter operation, including:

• An example of firing off a thread
• Sleeping
• Registering activity information to show engine taking workflow off queue while waiting for an activity to

be completed
• Updating activity signals to engine that activity is complete and can be put back in the queue

The files in this example can be substituted for the Java files in Eclipse.

TestAdapterImpl.java

This code invokes the desired methods of the test adapter interface and extends the generated service code by
adding business logic to the big A portion.

package com.mypackage;

import java.util.*;
import java.sql.*;
import javax.naming.*;
import java.rmi.RemoteException;

import com.sterlingcommerce.woodstock.services.*;
import com.sterlingcommerce.woodstock.workflow.*;
import com.sterlingcommerce.woodstock.services.controller.ServicesControllerImpl;
import com.sterlingcommerce.woodstock.util.frame.log.*;

public class TestAdapterImpl implements IService {

 public TestAdapterImpl() {}

 public WorkFlowContext processData(WorkFlowContext wfc)
 throws WorkFlowException , RemoteException{

59© Copyright IBM Corp. 2012

 boolean error = false;
 //Logger logger = LogService.getLogger("TestAdapterImpl");
 wfc.harnessRegister();
 wfc.setBasicStatus(WFCBase.SUCCESS);
 try {
 String tmp= wfc.getParm("SLEEP_INTERVAL");
 int sleep_interval = 1;
 if (tmp !=null) {
 try {
 sleep_interval=(new Integer(tmp)).intValue();
 } catch (Exception e) {
 //logger.logException(e);
 }
 }
 TestAdapterServer rmi = (TestAdapterServer) wfc.getAdapter
 (wfc.getServiceName(), wfc);
 rmi.sleepForAwhile(sleep_interval, wfc);
 wfc.setAdvancedStatus("rmi running "+tmp);
 wfc.setWFStatusRpt("Status_Report"," start rmi to sleep for
 " + sleep_interval + " seconds\n");
 } catch (InterruptedException ie) {
 error=true;
 //logger.logException(ie);
 throw new WorkFlowException(ie);
 } catch (Exception e) {
 error=true;
 //logger.logException(e);
 throw new WorkFlowException(e);
 } finally {
 if (!error) {
 wfc.setBasicStatus(WFCBase.WAITING_ON_IO);
 }
 if (error) {
 wfc.setBasicStatus(WFCBase.ERROR);
 }
 wfc.unregisterThread();
 }
 return wfc;
 }
}

TestAdapterServer.java

Method interfaces are declared here and follow a remote interface structure.

package com.mypackage;

import java.rmi.RemoteException;
import java.util.*;

import com.sterlingcommerce.woodstock.services.IAdapterRMI;
//import com.sterlingcommerce.woodstock.services.IAdapterImpl;
import com.sterlingcommerce.woodstock.workflow.*;
//import com.sterlingcommerce.woodstock.services.controller.*;

MESA Developer Studio60

/**
 * Remote interface of the TestAdapter.
 */
public interface TestAdapterServer extends IAdapterRMI{
 public void sleepForAwhile(int interval, WorkFlowContext wfc)
 throws InterruptedException ,WorkFlowException, RemoteException,Exception;

 public void refreshAdapter(Properties p) throws RemoteException;

 public String message(String msg) throws RemoteException;
}

TestAdapterServerImpl.java

TestAdapterServerImpl.java implements methods from TestAdapterServer.

package com.mypackage;

import java.rmi.RemoteException;
import java.util.*;

import com.sterlingcommerce.woodstock.util.frame.log.LogService;
import com.sterlingcommerce.woodstock.services.IAdapterRMI;
import com.sterlingcommerce.woodstock.services.IAdapterImpl;
import com.sterlingcommerce.woodstock.workflow.*;
import com.sterlingcommerce.woodstock.services.controller.*;

/*
 * The implementation class of the adapter
 */
public class TestAdapterServerImpl extends IAdapterImpl implements
 TestAdapterServer {

 private static final String CLASS_NAME = "TestAdapterServerImpl";

 public TestAdapterServerImpl() {}

 /**
 * Implementation from TestAdapterServer.
 *
 * @param int How long to sleep (millis).
 * @Exception Catch all for exceptions that may occur.
 * @return void
 */
 public void sleepForAwhile(int interval,
 WorkFlowContext wfc) throws Exception {
 /* If threading is not required or desirable, the contents of the run
 method of the TestAdapterThread can be inlined at this point.
 */
 TestAdapterThread testAdapterThread = new TestAdapterThread
 (interval, wfc);
 Thread thread = new Thread(testAdapterThread);

61© Copyright IBM Corp. 2012

 thread.start();
 }

 public void refreshAdapter(Properties adapterProperties) {
 /* A shutdown and startup can be called here if this adapter should
 support alterations of properties without requiring a restart.
 These two methods must be overloaded and implemented in this
 class to do the proper work.
 */
 }

 public String message(String msg) {
 return msg;
 }
}

TestAdapterThread.java

TestAdapterThread.java is added as another class to the package. It contains functionality for firing off a thread,
sleep, registering activity information to show the engine taken off queue while waiting for an activitiy to be
completed, and update activity that signals to engine that activity is complete and can be put back in the queue.

Tip: To add the class quickly, drop the file into your workspace folder and refresh the project with File >
Refresh (F5).

package com.mypackage;

import java.rmi.RemoteException;
import java.util.*;
import java.sql.*;

import com.sterlingcommerce.woodstock.workflow.*;
import com.sterlingcommerce.woodstock.util.frame.*;
import com.sterlingcommerce.woodstock.util.frame.jdbc.*;
import com.sterlingcommerce.woodstock.util.frame.log.*;
import com.sterlingcommerce.woodstock.services.controller.*;

public class TestAdapterThread implements Runnable {

 private int interval = 0;
 private WorkFlowContext wfc = null ;
 private Exception exception = null;

 public TestAdapterThread(int interval, WorkFlowContext wfc) {
 this.interval = interval;
 this.wfc = wfc;
 }

 public void run() {
 ActivityData activityData = null;
 //Logger logger = LogService.getLogger("TestAdapter");
 Thread.currentThread().setName("The TestAdapter little a");
 try {
 activityData = wfc.registerActivity(wfc.getServiceName(),
 "RMI is running",null,"going to sleep for a bit");

MESA Developer Studio62

 Thread.currentThread().sleep(interval);
 activityData.setProgressData
 ("RMI done sleeping for :" + interval + " seconds");
 activityData.setModTime(System.currentTimeMillis());
 wfc.updateActivity(activityData);
 } catch (Exception e) {
 //logger.logException(e);
 } finally {
 if(activityData != null) {
 wfc.unregisterActivity(activityData);
 }
 }
 }
}

Example 2: Bootstrap Adapter

This is example code that shows basic structure and functions for a bootstrap adapter (can launch a business
process).

TestBootstrapAdapter.java
package com.mypackage;

import java.util.*;
import java.sql.*;
import javax.naming.*;
import java.rmi.RemoteException;

import com.sterlingcommerce.woodstock.services.*;
import com.sterlingcommerce.woodstock.workflow.WorkFlowException;
import com.sterlingcommerce.woodstock.workflow.WorkFlowContext;
import com.sterlingcommerce.woodstock.workflow.*;
import com.sterlingcommerce.woodstock.util.frame.log.*;

/**
 * Since this TestBootstrapAdapter is a bootstrap adapter, it cannot be
 * invoked from a Business Process. Therefore it will throw an
 * exception if any BP makes this attempt.
 *
 * NOTE: This is a runtime restriction only and not something that is
 * constrained at the BPML validation level.
 */
public class TestBootstrapAdapter implements IService {
 private final static String errorMessage = "TestBootstrapAdapter:
 Should not call the TestBootstrapAdapter directly from
 Business Process";
 private static final Logger logger = LogService.getLogger
 ("TestBootstrapAdapterLogger");

 public TestBootstrapAdapter() {}

63© Copyright IBM Corp. 2012

 /**
 * This method is not implemented.
 * @param WorkFlowContext
 * @exception WorkFlowException if a Business Process tries to call
 * the TestBootstrapAdapter directly.
 */
 public WorkFlowContext processData(WorkFlowContext wfc)
 throws WorkFlowException , RemoteException {
 logger.logError(errorMessage);
 throw new WorkFlowException(errorMessage);
 }
}

TestBootstrapAdapterImpl.java

package com.mypackage;

import java.io.*;
import java.rmi.RemoteException;
import java.util.*;

import com.sterlingcommerce.woodstock.services.IAdapterRMI;
import com.sterlingcommerce.woodstock.services.IAdapterImpl;
import com.sterlingcommerce.woodstock.workflow.*;
import com.sterlingcommerce.woodstock.services.controller.*;
import com.sterlingcommerce.woodstock.util.frame.log.*;

/*
 * The implementation class of the adapter
 */
public class TestBootstrapAdapterImpl extends IAdapterImpl implements
 IAdapterRMI {

 private static final String CLASS_NAME = "TestBootstrapAdapterImpl";
 private final Logger logger = LogService.getLogger
 ("TestBootstrapAdapterLogger");

 /*
 Instance variables need to be used with care. In this example,
 the use of the stored FileWatcher means that this is a stateful adapter
 and the servicedef xml file must indicate this. Otherwise we will
 only have one instantiation of this object regardless
 of how many service instances exist.
 */
 private FileWatcher fw = null;
 private Thread thread = null;
 private int interval = 60;
 private Properties adapterProperties = null;

 public TestBootstrapAdapterImpl() {}

 public void refreshAdapter(Properties p) {
 shutdownAdapter();

MESA Developer Studio64

 startupAdapter(p);
 }

 public String message(String msg) {
 return msg;
 }

 /**
 * Start the TestBootstrapAdapter. This method is called by the
 * ServiceController before the adapter is put into the RMI
 * registry (or JNDI) tree for future RMI requests.
 *
 * @param Properties Adapter configurations
 * @return void
 */
 public void startupAdapter(Properties adapterProperties) {
 if (logger.debug) {
 logger.logDebug(CLASS_NAME + ".startupAdapter() - Starting
 [" + getName() + "]");
 }
 this.adapterProperties = adapterProperties;

 if (adapterProperties == null) {
 String errMsg = CLASS_NAME + ".startupAdapter() - The adapter
 [" + getName() + "] cannot be started up with null
 properties.";
 logger.logError(errMsg);
 throw new IllegalArgumentException(errMsg);
 }

 setStatus(STARTINGUP);

 try {
 interval = Integer.parseInt((String) adapterProperties.get
 ("interval"));
 fw = new FileWatcher((String) adapterProperties.get("directory"),
 interval, (String) adapterProperties.get("workflowName"),
 logger);
 thread = new Thread(fw);
 thread.start();
 setStatus(RUNNING);
 logger.logDebug(CLASS_NAME + ".startupAdapter() -
 [" + getName() + "] with configuration " + this +
 " was started up successfully and is now running.");
 } catch (Exception e) {
 logger.logException(CLASS_NAME + ".startupAdapter() -
 Unable to start the adapter [" + getName() + "] with
 configuration " + this + "] due to an exception:", e);
 setStatus(NOTAVAILABLE);
 }
 }

 /**
 * Shuts down the TestBootstrapAdapter.

65© Copyright IBM Corp. 2012

 *
 * @return void
 */
 public void shutdownAdapter() {
 String instanceName = this.getName();
 if (logger.debug) {
 logger.logDebug(CLASS_NAME + ".shutdownAdapter() - About to
 shutdown [" + instanceName + "]");
 }
 setStatus(SHUTTINGDOWN);

 try {
 //Do shutdown work specific to this adapter as applicable.
 fw.stop();
 //The join here is not ideal under all conditions, but suffices here.

 thread.join();
 setStatus(SHUTDOWN);
 logger.logDebug(CLASS_NAME + ".shutdownAdapter() -
 [" + instanceName + "] was shut down successfully.");
 } catch(Exception e) {
 logger.logException(CLASS_NAME + ".shutdownAdapter()
 - [" + instanceName + "] failed to shutdown:", e);
 setStatus(COULDNTSTOP);
 }
 }

 /**
 * Returns string describing configuration information if applicable.
 */
 public String toString() {
 return "no configuration information";
 }
}

class FileWatcher implements Runnable {

 private String directory = null;
 private int interval = 60;
 private String workflowName = null;
 private boolean keepRunning = true;
 private boolean stopped = false;
 private Logger logger = null;

 public FileWatcher(String directory, int interval, String workflowName,
 Logger logger) {
 /*
 A real implementation should verify that the directory exists
 and can be accessed.
 */
 this.directory = directory;
 this.interval = interval;
 this.workflowName = workflowName;
 this.logger = logger;

MESA Developer Studio66

 }

 public void stop() {
 keepRunning = false;
 }
 public boolean isStopped() {
 return stopped;
 }

 public void run() {
 /*
 Look to see if there are any files to collect. This is a
 simplistic example and not something that is robust
 enough for a production adapter. There is no duplicate detection
 nor does this example attempt to ensure the deletion is successful.
 The File.delete API is not guaranteed to work every time on all
 platforms. It is also missing simple validation
 checks and possible border conditions. This is OK since
 the intent it to show basic structure
 and operation only. Including everything required to make
 this production ready would distract from the main goal of
 this example.
 */

 File file = null;
 while(keepRunning) {
 try {
 /*
 Skipping the implementation of the directory listing,
 and reading in of one or more files.
 Assuming we have a payload of data at some point
 the next thing to do is to pass along the payload to
 a document and fire off a business process if
 that is the intent.
 */
 Document document = new Document();
 //Use the streaming APIs to write the payload.
 //Always close the stream.
 InitialWorkFlowContext iwfc = new InitialWorkFlowContext();
 iwfc.setWorkFlowName(workflowName);
 iwfc.putPrimaryDocument(document);
 iwfc.start();
 Thread.currentThread().sleep(interval * 1000);
 } catch(Exception e) {
 logger.logException(e);
 }
 }
 stopped = true;
 }
}

67© Copyright IBM Corp. 2012

Installing MESA Studio

Overview for Installing and Configuring MESA Developer Studio

MESA Developer Studio is an Integrated Development Environment (IDE) that uses Eclipse software plug-ins.
Use the MESA Developer Studio to connect with an instance of Sterling Integratorfor resource access and
control of operations of the application, change the template that the application uses, and develop custom
services - all from within a development environment.

In addition to MESA Developer Studio, the following plug-ins are available:

• MESA Developer Studio SDK – for developing and deploying custom services and adapters.
• MESA Developer Studio Skin Editor – for customizing the look and feel of the application interface.
• Reporting Services – a separately-licensed set of plug-ins used to create fact models and reports for Reporting

Services.

Assumptions and Prerequisites for MESA Developer Studio

Read the following assumptions and prerequisites prior to installing MESA Developer Studio on the client:

• Basic knowledge of the application and its architecture.
• Basic knowledge of Eclipse is assumed. For more information, see the Eclipse online help, or go to

http://eclipse.org.
• You have the required MESA Developer Studio (and if applicable, Reporting Services) product licenses.

Knowledge prerequisites for using MESA Studio Developer SDK are located in the Creating Custom Services
section.

Steps to Set Up MESA Developer Studio

Setting up MESA Developer Studio is a multi-step process which should be completed in the order described.
The following is a checklist for each stage in the process. The checklist provides an overview of the entire
process. Separate instructions for completing each step are included.

1. After you have installed and configured the application, download and install Eclipse version 3.3.x. For
more information, see http://eclipse.org/downloads/index.php.
Note: MESA Developer Studio requires specific plug-in versions. We recommend that you install an
instance of Eclipse for MESA Developer Studio development only. If you do use a single installation of

MESA Developer Studio68

Eclipse with both MESA Developer Studio projects and other development projects, disable plug-ins that
report conflicts.

2. Download and install Java 2 SDK Standard Edition 6.0 (JDK 1.6.0) on the same PC that you installed
Eclipse. It is important that you have the full JDK and not just the JRE. Refer to the System Requirements
documentation for the JDK level for your operating system.

After installation, additional configuration is required.

3. Verify that MESA Developer Studio uses the correct JRE in Eclipse.

4. Start the application WebDAV server (application installations on UNIX or iSeries only).

5. Install the MESA Developer Studio (and if purchased, Reporting Services) Plug-ins.

6. Set up your application instance in MESA Developer Studio.

7. Set up application resources to be used with MESA Developer Studio.

Eclipse Terms

The following Eclipse terms are used in this documentation to describe MESA Developer Studio components:

• Project - All the resources related to a particular implementation reside in a project. It can contain folders,
files, and other Eclipse objects.

• Workspace - directory where work is stored.
• Workbench - UI window that contains these elements:

• Perspective - group of views and editors in a Workbench window that correspond to a certain project.
• View - visual component within the Workbench and dependent on the perspective that was selected. Used

to navigate or display information such as properties or messages.
• Editors - visual component in the Workbench used to create, change, or browse a resource.

Configure the Java JDK on Your PC

In order for Eclipse to work correctly, you must have Java 2 SDK Standard Edition 6.0 (within 6.x) JDK
installed on the same PC where you installed Eclipse. You must have the full JDK installed; the JRE alone is
not enough. Ensure that Eclipse is closed when you download and install the JDK. The JDK is available for
download from the Oracle website.

After installing the JDK, you must configure your computer to use it.
To configure your PC for the new JDK:

1. From the Windows Start menu, select Settings > Control Panel > System.

2. Click the Advanced tab.

3. Click Environment Variables.

4. Under System Variables, click New.

5. Complete the following and click OK:

• Variable Name - Type JAVA_HOME.
• Variable Value - Type the directory path for the location where you installed the JDK.

6. Click OK to exit.

69© Copyright IBM Corp. 2012

Verify that MESA Developer Studio Uses the Correct JRE

In addition to adding a home directory on Windows for this JDK instance, you must also verify that MESA
Developer Studio uses the correct JRE.

To verify the MESA Developer Studio JRE:

1. Open Eclipse.

2. From the Window menu, select Preferences.

3. Expand the Java section and select Installed JREs. The Installed JREs window appears.

4. If jdk1.6.0_14 is not listed (version should be as listed or higher), click Add and go to next step.

If it is listed, ensure that it is selected and click OK. You are ready to use MESA Developer Studio.

5. Complete the following and click OK :

• JRE Type - leave at default.
• JRE Name - leave blank. This will be automatically populated once you select the JRE home directory.
• JRE home directory - Browse and select the path to the JDK home directory you defined in the Configuring

the Java JDK on Your PC section. For example, C:\Program Files\java\jdk1.6.0_14.
• Default VM Arguments - leave blank.
• JRE system libraries - this will be automatically populated once you select the JRE home directory.

6. Click OK to return to the Preferences window.

7. Select the checkbox for the JDK you just added. This ensures that its libraries are used for building projects.

8. Click OK to save your changes and exit the Preferences window.

Start the WebDAV Server

The application uses a WebDAV server to provide MESA Studio with access to the application resources,
including MESA Developer Studio plug-in updates. This WebDAV server is automatically installed with the
application for use with MESA Developer Studio.

While the WebDAV server starts automatically with the application on Windows, you must start the WebDAV
server manually for use with the application on UNIX and on iSeries.

Using the Application WebDAV Server on Windows

The WebDAV server that is used with MESA Developer Studio is implemented as a service, and starts
automatically when you start the application (startWindowsService.cmd). When the application is stopped
(stopWindowsService.cmd), the WebDAV server, and, if used, MySQL, remain running. This is necessary to
start and stop instances of the application from within Eclipse and MESA Developer Studio.

You can stop the WebDAV Server service using the stopWebdavWindowsService.cmd. Also, when the
application and WebDAV Server service are running and the WebDAV Server service gets stopped, the
application (and MySQL if used) will remain running. The logfilename of the WebDAV Server service is
dav.log.

MESA Developer Studio70

Start the Application WebDAV Server on UNIX

You do not need to have the application running to start the WebDAV server.

Note: You must start the WebDAV server on each application instance you want to work with in MESA
Developer Studio.

To start the WebDAV server:

1. Open a UNIX command window on the server where your application instance is installed.

2. Go to installDir/install/bin.

3. Start the WebDAV server by executing the runDAVServer.sh command.

4. You are asked to enter your installation password. This is the passphrase you enter when you start the
application. You must enter this information only once for each application installation because the password
is written permanently to the properties file. This step is optional. However, if you do not enter the password,
you will not be able to start and stop application instances from within MESA Developer Studio.

5. After the startup process is complete, the WebDAV port is listed. Make a note of this number.

Note: The default WebDAV port is the base install port + 46. This port is assigned when you install the
application and should not be changed. The WebDAV port number is used when downloading and installing
the plug-ins and when adding an application instance to MESA Developer Studio.

Start the Application WebDAV Server (iSeries)

You do not need to have the application running to start the WebDAV server.

Note: You must start the WebDAV server on each application instance you want to work with in MESA
Developer Studio.

1. Sign onto iSeries with your application user profile.

2. Submit a batch job by entering the following command:

SBMJOB CMD(QSH CMD('umask 002 ; cd <install_dir>/install/bin;
./runDAVServer.sh'))
JOB(SIDAV)

3. To reduce keying errors at startup, create a command language (CL) program similar to the following
example:

PGM
SBMJOB CMD(QSH CMD('umask 002 ; cd <install_dir>/install/bin ; +
./runDAVServer.sh'))
JOB(SIDAV)
ENDPGM

Note: Commands not supported on iSeries using the MESA Studio control editor are Start/Stop GIS, List
current processes, List disk usage, and Install 3rd party files. To use these commands, execute them on the
command line.

71© Copyright IBM Corp. 2012

Installing MESA Developer Studio Components

You must download and install MESA Developer Studio Eclipse plug-in components from your application
instance. Use this procedure to install Reporting Services plug-ins, as well. Before starting, ensure that:

• Your application instance is up and running.
• You have started the WebDAV server if the instance is on UNIX or iSeries. If your application instance is

on Windows, verify that the WebDAV server service is running.

Install New Features

To install MESA Developer Studio:

1. Open Eclipse.

2. Select a default workspace folder location. You can add additional workspace folder locations at any time.

3. From the Eclipse Help menu, select Software Updates > Find and install.

4. Select Search for new features to install.

5. Click Next.

6. Click New Remote Site.

7. Complete the following and click OK:

• Name - type a descriptive name for the remote application server.
• URL - type the server name or IP address, followed by a colon and the WebDAV port number, followed

by a slash (/) and the word "eclipse," in this format: new_serverWebDAVportnumber/eclipse

8. The Install Sites to Visit window displays. It includes all available sites for new plug-in files to install,
including the remote site just added. Select the checkbox to the left of the new site. Clear all other selected
checkboxes. Click Finish.

9. The system verifies the selected site and displays the results. On the search results page, expand the update
site node and select from the following plug-ins, according to your licenses:

• MESA Studio
• MESA Developer Studio SDK
• MESA Developer Studio Skin Editor
• Reporting Services (automatically selects all three Reporting Services plug-ins: Fact Model Editor, Report

Editor, and Report Format Editor)

Caution:

• Do not change the default installation path for the plug-ins.
• If you are selecting Reporting Services, you must also select the MESA Studio plug-in (unless you have

already installed it).

10. Click Next. Accept the terms of the license and click Next again.

11. Click Finish.

12. Click Install All to accept the feature verification.

You must restart Eclipse for the changes to take effect.

MESA Developer Studio72

Set Up an Application Instance

To connect to an application instance, you must create a new MESA Studio instance for it. You can use multiple
application instances, but each must be configured individually. To configure an application instance, complete
the following task.

Note: If you are installing Reporting Services, you must complete this task (either before or after installing
Reporting Services).

1. From the Window menu, select Open Perspective > Other.

2. Select MESA Studio and click OK.

A MESA Studio tab displays.

3. In the MESA Studio view in the upper left, right-click and select New instance.

4. Complete the following information and click Finish:

• Hostname - Type the name of the application server.
• Port - Type the WebDAV port number for the application server.
• Name - Type a descriptive name for this instance.
• User name - Type a valid application user name (for example, admin).
• Password - Type the password for the username entered.

MESA Studio attempts to establish a connection to the instance using the WebDAV server. The status of
the instance is displayed:

• Red – MESA Studio is unable to connect to the instance; it is possible that the instance has not been started
or the WebDAV Server is not running.

• Yellow – MESA Studio is attempting to connect to the instance. It is possible that the instance was started,
but is not yet up and running.

• Green – The instance is running and MESA Studio has connected to it.

Note: Refresh the workspace to see new instances or to see if a connection status has changed.

73© Copyright IBM Corp. 2012

Edit Connection Information

Once you have set up Application instance for use with MESA Developer Studio, you can edit the connection
information, view configuration details, test the connection, and refresh the connection.

To edit the connection information:

1. Right-click on the instance name.

2. Select Edit.

3. Edit the settings as needed.

4. Click Finish. MESA Developer Studio attempts to establish a connection to the instance using the new
information. The status is displayed (green, yellow, or red) according to the status of the instance.

View Configuration Details

To view configuration details:

1. Double-click on the instance name.

Note: The ports on the Overview window are static. Only the ports present at install are displayed. Any
changes or additions made after installation are not displayed.

2. Click the Log tab to view log information for your application. Log information is used with the File Search
Service.

Caution: If you do not first run the log filter on the server before clicking the Log tab, you will see the
following error message: Error accessing
/gisdav/<installDir>/searchResultsDir/searchResults.xml and the log page will be empty.

Refresh the Instance

Use Refresh if you have locked or unlocked business processes and maps through your application and you
want to see their current status in MESA Developer Studio.

To refresh an application instance connection:

1. Right-click on the instance name.

2. Select Refresh . The Progress Information window appears and closes automatically when the refresh
process is complete. The status is displayed (green, yellow, or red) according to the status of the instance.

Install Additional MESA Developer Studio Components and Updates

You can install additional MESA Developer Studio components not installed at the time of the original
installation at any time. To install additional components follow the steps listed in the section Installing MESA
Developer Studio Components. The system verifies that the license file has newly licensed components and
installs them.

MESA Developer Studio74

The system verifies that the additional components are licensed in your application. If not, you are asked to
provide new connection parameters to Application instance that has the appropriate license for the additional
MESA Developer Studio components. Once the license check is complete, the new components are activated.

If you are updating an existing component, restart Eclipse in order for the new component to be updated.

Install Reporting Services Plug-Ins

Reporting Services works with Application MESA Developer Studio, which is an Integrated Development
Environment (IDE) that uses Eclipse software plug-ins. The Reporting Services Fact Model Editor, Report
Editor, and Report Format Editor are all accessed as Eclipse plug-ins.

To set up the Reporting Services plug-ins:

1. Follow the procedures for the MESA Developer Studio configuration.

Note: When completing the procedure in Installing MESA Developer Studio Components, ensure that you
select both the Reporting Services plug-ins and the MESA Developer Studio plug-in for download and
installation in Eclipse.

Restriction: The MESA Developer Studio plug-in is a prerequisite for the Reporting Services plug-ins.
You must install it either with or prior to installing the Reporting Services plug-ins.

2. After installing the MESA Developer Studio and Reporting Services plug-ins, complete the following tasks:

a) Start the WebDAV server for your Application instance.
b) Start the Event Listeners.
c) Configure your Eclipse installation to point to Application WebDAV server.
d) Customize the Window Perspective in Eclipse to include Sterling Commerce Reporting Services. This

makes the Reporting Services options available directly from the Eclipse menus. In Eclipse, select
Window > Customize Perspective. In the Shortcuts pane on the left, select Sterling Commerce
Reporting Services and click OK.

75© Copyright IBM Corp. 2012

Copyright

Licensed Materials - Property of Sterling Commerce

© Copyright Sterling Commerce, an IBM Company 2000, 2012 All Rights Reserved.

US Government Users Restricted Rights - Use, duplication or disclosure restricted by contract with Sterling
Commerce

Additional copyright information is located on the Sterling Integrator 5.1 Documentation Library:

http://www.sterlingcommerce.com/Documentation/SI51/CopyrightPage.htm

MESA Developer Studio76

http://www.sterlingcommerce.com/Documentation/SI51/CopyrightPage.htm

Index

A

adapter
definition 24
definition of adapter 11
parts 34
stateful 33
stateless 33
terminology 10

adding BPML files 18
adding EJBs 18
adding maps 18
adding scripts 18
advanced status, reporting 37
API, workflow context 31

B

basic status, reporting 36
bootstrapping 25
business process

model 10
reuse 23
starting 25

Business Process Management Initiative (BPMI), www.bpmi.org
23
Business Process Modeling Language (BPML), definition 23
business-to-business (B2B) server 28

D

decision engines 23
Developer SDK

installing into product 21

E

EJB logging 42
ERP systems 23
error reporting 33
exception reporting 37

F

framework, service 24

H

harness model 24
hash table 32

I

invocation
successful 37
unsuccessful 37

J

Java code 23
Java Virtual Machine (JVM) 29

L

large file support 25
legacy programs 23
LogService logging methods 43

P

parameter group, creating 17
Perl scripts 23
persisted workflow context 24
persistent storage 24

R

Remote Method Invocation (RMI)
methods 35
part of adapter 34

Reporting Services
configuring 75
installing 75
WebDAV server 75

S

service
adapters 10
definition 23
framework 24
input parameters 32
installing into product 21
language-specific properties 38
status information 36
types 23

service adapter implementation 31
service groups 25
Service SDK

service directory structure 18
stateful adapter 33
stateless adapter 33

77© Copyright IBM Corp. 2012

status information
advanced 37
basic 36
exception 37

storage types 25

W

WebDAV server (using with Reporting Services) 75
workflow context

API 31

workflow context (continued)
components 32
definition 24

workflow context;
persisted 24

workflow document body 32

X

XLogger logging 41
XLogger logging methods 42

MESA Developer Studio78

	Contents
	Using MESA Developer Studio
	About MESA Developer Studio
	License Management Settings

	Create a MESA Developer Studio Project
	Managing Resources in MESA Developer Studio
	Working with Business Processes
	About Working with Schemas
	Working with Properties Files

	Using the MESA Skin Editor
	About the MESA Developer Studio Skin Editor
	Tips for Using the Skin Editor
	Using the Skin Editor to Edit a Application Template

	Creating Services Using the MESA SDK
	Creating Custom Services
	Knowledge Prerequisites for Creating Custom Services
	Classes Available in MESA Developer Studio SDK
	About MESA Developer Studio SDK
	Use the MESA Developer Studio SDK Cheat Sheet

	Steps to Create a Service Using MESA Developer Studio SDK
	Start MESA Developer Studio SDK
	Create a MESA Developer Studio SDK Project
	Add Business Logic to a Service
	Add Parameters to the Service Definition File
	Adding Resources to a Service
	Write Log Messages into a Message Log File
	Create a serviceinstances.xml File
	Example (Serviceinstances.xml)

	Change the SDK Library Version

	Export a Service for Deployment
	Install a Service into the Application
	Update a Service Definition

	Architecture
	Introduction to Application Architecture
	Components of a Service
	Relationship Between Business Processes and Services
	Service Harness Implementation and Service Adapter Implementation

	Developing a Service
	Adapter Architecture Summary
	About the Workflow Context Used by Adapters
	About the Service Controller Framework Used by Adapters
	Error and Status Reporting
	Setting Up User Prompts for Configuring a Service in the UI
	Setting Up Event Logging for a Service

	File Rename Service Example
	Example 1: Creating the File Rename Service
	Create the FileRename SDK Project
	About System Libraries
	Jar Files Available
	Add Custom Code to the FileRename Project
	Create Parameters for the File Rename Service
	Service Definition Parameters for the File Rename Service
	Service Definition Parameter Field Reference
	Add the Overwrite Parameter
	Add the Source File and Destination File Parameters
	Add Language Property File Entries for the File Rename Service
	Build the Service Package
	Create the Text File to be Renamed
	Install the File Rename Service into the Application
	Configure the File Rename Service Instance
	Create Test BPML
	Test the File Rename Service

	Additional Examples
	Example 1: Basic Adapter
	Example 2: Bootstrap Adapter

	Installing MESA Studio
	Overview for Installing and Configuring MESA Developer Studio
	Steps to Set Up MESA Developer Studio
	Eclipse Terms

	Configure the Java JDK on Your PC
	Verify that MESA Developer Studio Uses the Correct JRE
	Start the WebDAV Server
	Start the Application WebDAV Server on UNIX
	Start the Application WebDAV Server (iSeries)

	Installing MESA Developer Studio Components
	Install New Features

	Set Up an Application Instance
	Edit Connection Information
	View Configuration Details
	Refresh the Instance

	Install Additional MESA Developer Studio Components and Updates
	Install Reporting Services Plug-Ins

	Index

