
IBM Sterling B2B Integrator

BPML
Release 5.2

IBM

IBM Sterling B2B Integrator

BPML
Release 5.2

IBM

Note
Before using this information and the product it supports, read the information in “Notices” on page 29.

Copyright

This edition applies to Version 5 Release 2 of Sterling B2B Integrator and to all subsequent releases and
modifications until otherwise indicated in new editions.

© Copyright IBM Corporation 2000, 2011.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

IBM Sterling B2B Integrator and BPML . 1
Where to Find Industry Information 1
Business Process BPML Components 1

Process Element 2
What Is Process Data? 3

About Input and Output Messages and Process
Data 4
Tips For Accessing Content 8

XPath and Process Data 9
XPath and DocToDOM 9
DocToDOM function In an Assign Statement
Examples 11
DocToDOM Function 12
DOMToDoc Function 12
DOMToDoc Parameter Definitions. 12
DOMToDoc Examples 15
StringToDoc Parameter Definitions 15
StringToDoc Examples 17

Simple BPML Activities 18

Produce and Consume Activities 18
Operation Activity 18

Complex BPML Activities 20
Sequence Activity 21
Choice Activity 21
All Activity 23
Rule Element 23
Condition Element 23

Process Activities and Elements. 23
Input and Output Elements 23
Assign Activity 24
Repeat Activity 25
Join and Spawn Activities 25
onFault Element 26

Notices 29

Index 33

© Copyright IBM Corp. 2000, 2011 iii

iv IBM Sterling B2B Integrator: BPML

IBM Sterling B2B Integrator and BPML

A basic understanding of BPML fundamentals will enhance your understanding of
Sterling B2B Integrator and facilitate your monitoring, troubleshooting, business
process modeling, and process analysis activities.

Business Process Modeling Language (BPML) is an XML-based language used to
describe (model) and run business processes. Each business process is defined by a
single, unique BPML document known as a business process model (.bpml or .bp
file). Each business process model is the definition of the process as it will be run
in Sterling B2B Integrator.

This topic explains the basic components of BPML that make up your business
process models so that you can identify the components in your day-to-day
interaction with Sterling B2B Integrator operations.

Where to Find Industry Information
For comprehensive information about XML and BPML, and related topic, XPath,
visit the following Web sites:
v IBM® Support on Demand, at https://support.sterlingcommerce.com/user/

login.aspx
v The Business Process Management Initiative, at www.bpmi.org
v The World Wide Web Consortium, at www.w3c.org
v The United Nations Centre for Trade Facilitation and Electronic Business

(UN/UNECE and the Organization for the Advancement of Structured
Information Standards), at www.oasis-open.org

Business Process BPML Components
BPML code includes activities and elements. An activity is a step in a business
process, and may be comprised of multiple elements. Elements are defined
components of code that provide structure and instructions regarding the activity
they embody. BPML refers to entities outside of the business process as participants.
An example of a participant is an inventory system.
v A simple activity is a single step in a business process. For examples, see

“Simple BPML Activities” on page 18.
v A complex activity is an activity that comprises a set of steps in a business

process. For examples, see “Complex BPML Activities” on page 20.

Activities within BPML code correspond to the icons you include in your business
process models when you create them using the GPM. However, while an icon
displays as a single, contained, unit, viewing the related BPML code shows the
several elements that comprise the activity. You may refer to any service or other
business process model component as an activity, but in the context of BPML, an
activity may also be a BPML construct used to define the structure and progress of
a business process flow.

The operation activity is a good example of this difference. The operation activity is
the BPML component used to call a service within a business process.

© Copyright IBM Corp. 2000, 2011 1

Some BPML activities are represented by icons in the GPM (such as the Sequence
icons and choice icons), while others are included within the service icons you can
select in the GPM. For example, the operation activity is the BPML component
used to call a service within a business process. If you use a text editor to write a
business process model in BPML code, you include the operation activity, along
with related elements, to call a service. If you create a business process model
using the GPM, simply including the appropriate icon for a service automatically
builds the operation activity into the BPML source code for the process model.

For example, the following figure shows the BPML for a business process; within
it, the operation activity is

denoted by the <operation> name element:

The elements between <operation> and </operation> define the particulars of the
activity, including calling the EDI Overdue Acknowledgment Check service. The
</operation> element indicates the conclusion of the operation activity.

If you create business process models by direct-coding, you are responsible for
including all of the appropriate elements that make up activities. When you use
the GPM to create your process models, the icons you include automatically create
the required BPML element components (although you may also need to configure
service parameters).

You can relate the example in the first figure to the GPM display in the following
way:
v The Start icon provides the BPML code for the process name saved with the

business process model.
v The Sequence Start icon provides the BPML for the sequence element.
v The participant name, output message, assign, and input message elements are

provided by parameters associated with the EDI Overdue Acknowledgment
Check service.

Process Element
The process element defines an activity and is the root element of a business
process model.
v A process activity consists of exactly one simple or complex activity. The process

completes after this activity completes.
v A process element begins and ends every business process model and can

contain only one complex activity or one simple activity. The complex activity
must contain all other activities required for the business process model in
question. A process element uses the following syntax:

2 IBM Sterling B2B Integrator: BPML

<process name>
<rule name/>*
(simpleActivity | complexActivity)
</process>

v A process element has a name attribute to indicate the name of the business
process. The name attribute references any namespaces used in the business
process.
<process name="ProcessCustomerOrder">

.

.

.
</process>

What Is Process Data?
To configure business process models you need to understand process data and
associated concepts.

Process data is data related to a business process that accumulates, according to
configured instructions in the BPML, in an XML document during the life of the
process. Business process writers use process data to enable manipulation of pieces
of information that are crucial to completing the activities in the process, as
follows:
v The BPML structure of business process models always includes a placeholder

(root node) for process data.
v The creator of a business process model configures services and activities to put

information in process data, and also configures services to access and use that
data to complete the process activities. For example, a step in a process may pull
a routing number from the primary document and add it to the process data, to
be accessed by a subsequent step in the process that is configured to act using
that information (the primary document is the core document in a business
process, such as a purchase order).

v Exactly how these activities take place depends on the particulars of the
configuration.

v The data that processes through a service in a step is always a combination of
process data and the primary document.

The type of information a service places in process data is variable from service to
service according to the service configuration and the task being completed. And
some services operate solely on the primary document and never use process data
at all. Both the process data and primary document may change during processing
through a service.

Process data is likely to include:
v Information extracted from a document that is used for determining, from

multiple choices, what the next step will be
v Information assigned in a process' BPML configuration to be used by a service in

the business process, such as a map name or extract directory, which helps the
service do its job but is not part of the primary document

v Information about the document or the processing of the document, placed by a
service – such as a content type indicator or sender information, which helps a
service do its job and is specific to the document

Because process data is XML, you can use XPath in your process models to access
information within it. You can use an XPath statement to refer to primary

IBM Sterling B2B Integrator and BPML 3

document content even when the primary document is not in XML (see “XPath
and Process Data” on page 9). Another benefit is that you can represent complex
hierarchical data directly in the process data.

Ideally, services are configured to access the primary document, bypassing the
need for process data in a step, however, complex processes generally require the
use of process data to most efficiently obtain the desired results.

In your day-to-day monitoring activities, you can view process data for individual
steps in a process, should you need to check the particulars of how the step uses
process data. View the data through the Business Process Detail page (from the
Administration menu, select Business Processes > Current Processes > ID of the
selected process > info [in the Instance Data column for a step]).

If you need technical information about configuring business process models with
regard to process data, you may find the rest of this topic useful. It assumes basic
knowledge of BPML.

About Input and Output Messages and Process Data
Process data content is independent and is not directly available to services.
Therefore, to configure a service to use information placed in process data, the
process writer must configure the service to enable access to it.

The business process writer controls both the data that is sent to a service for a
step and what data from a service is put into process data, by configuring input
and output instructions in the process definition (BPML). The input and output
data for a service is referred to as input and output messages (you can see these
terms used in the Service Editor in the GPM and your service configurations in the
Sterling B2B Integrator interface).

The input and output instructions for the messages are BPML assign elements.
Assign elements set a value in the business process data that is equal to a fixed
value. Inside an input or output element, the assign element identifies a message it
should receive from a participant or identifies the contents of a message it should
send to a participant. Therefore, assign elements specify the message data, and
messages are the mechanism by which services get data from and return data to a
business process' process data. These messages are represented as XML (DOM)
documents.

Note: In the GPM service editor, the output message – data being passed into the
service – is referred to as the Message To Service, and the input message – data
being passed out of the service – is named the Message From Service.

The syntax used to encode input and output messages with respect to the business
process definition are as follows:
v The <output> tag specifies what data should be output from the business

process to the service (that is, copied from the process data).
v The <input> tag specifies what data in the output of a service should be used as

input to the business process (that is, copied to the process data).
v Not all services require input or produce output. Even if a service does produce

output, the business process writer is not required to use any or all of the data
returned by a service.

v Output assignments happen before the service executes. Input mappings happen
after the service has completed.

4 IBM Sterling B2B Integrator: BPML

v The ‘from' attribute of an assign statement can be any XPath expression and can
identify multiple nodes. The ‘to' attribute of an assign statement must point to
an individual node.

Note: Be sure to avoid the following possible problems when allowing a service
to read and write the process data area directly:
– A service can read data that you may not have intended to be read.
– A service can write data, or overwrite data, that you did not intend to be

written or overwritten.

Input and Output Examples

The following example illustrates output and input message configuration:

For this example, this is the process data:
<ProcessData>

<PO>
<CustomerNumber>12345</CustomerNumber>

</PO>
</ProcessData>

Before the service runs, the output assigns are used to move data from process
data to the input for the service. The message sent to GetCustomerData looks like:
<MessageToGet>

<ID>12345</ID>
</MessageToGet>

The message produced by GetCustomerData looks like:
<MessageFromGet>

<NAME>Bob Smith</NAME>
<EMAIL>bob_smith@sterlcomm.com</EMAIL>

</MessageFromGet>

After the service runs, the input assigns are used to move data from the output
produced by the service back into process data. After the input assignments are
applied, the process data looks like:
<ProcessData>

<PO>
<CustomerNumber>12345</CustomerNumber>

</PO>
<CustomerName>Bob Smith</CustomerName>
<CustomerEmail>bob_smith@sterlcomm.com</CustomerEmail>

</ProcessData>

IBM Sterling B2B Integrator and BPML 5

The CustomerName and CustomerEmail data is now available for subsequent
steps in the business process to use. Remember, the business process writer is not
required to use any or all of the data returned by a service.

The following illustration shows a simple process that has three services. The
triangles represent the XML documents (input and output messages) that contain
the actual data values obtained from evaluating the assignments defined in each of
the operations (services) in the process definition. The illustration provides a
graphic example of how the messages and services interact with process data in a
larger process.

Different Types of Assigns
The assign element is a BPML construct you can use to perform simple assignment
operations within a service call, as illustrated in the first example (see “Input and
Output Examples” on page 5). You can also use assign statements outside of any
operation, input, or output tags. Sometimes called top-level assignment, this method
enables you to manipulate the process data directly, outside the service call in a
process rather than within the service step.

Within Sterling B2B Integrator, the Assign service configuration is available for this
purpose, and in the GPM, it is represented as the Assign activity, available as an
icon from the BPML stencil. This topic discusses the assign element, not the service
or activity, but it is important to note that top-level assignments follow the same
conventions outlined here.

Note: If you are configuring a service in the GPM rather than by direct coding,
and you want to include an assign element in the service configuration, add it to
the parameters on the Message To Service or Message From Service tab, as
appropriate. To add the element, click Advanced.

6 IBM Sterling B2B Integrator: BPML

Using Assign Element To Copy All of Process Data Into the
Message
In addition to the explicit assignments described thus far, you can also use assign
elements within a service implicitly—that is, to copy all of process data into the
Message To Service (output message) so that a service can access it. To use this
method, code your assign element as follows:
assign from="*" to=".">

This instructs the service that all (*) of the process data document is available for
use. You can use this type of assignment separately for both input and output
messages. This is a catch-all construct used when a service may need access to all
of process data. Recommended practice is to use explicit assignments in the
messages. Explicit assigns, in which the process steps act on or pass on only the
useful and necessary pieces of information in process data, yield more efficient
overall processing that is less likely to negatively affect system performance.

In the following example, which is a fragment of a business process, the
GetCustomerData service executes, processes, and produces the same information
as in the first example (see “Input and Output Examples” on page 5). But, because
there are no explicit assign elements, all of the data must be in the correct place in
process data:
<operation name="GetCustomerData">

<output name="MessageToGet">
<assign from="*" to=".">

</output>
<input name="MessageFromGet">

<assign from="*" to=".">
</input>

</operation>

The following is process data:
<ProcessData>

<ID>12345</ID>
</ProcessData>

As the service runs, it writes data directly to process data. After the service
completes, the process data looks like the following:
<ProcessData>

<ID>12345</ID>
<NAME>Bob Smith</NAME>
<EMAIL>bob_smith@sterlcomm.com</EMAIL>
<ADDRESS>4600 Lakehurst Court, Dublin, OH, 43016</ADDRESS>
<PHONE>614-793-7000</PHONE>

</ProcessData>

Consider the Order In Which You Configure Assigns
Configuring your processes is likely to involve situations in which a service needs
to obtain parameters from both process data and messages. These kinds of
scenarios involve multiple assigns, possibly both implicit and explicit, and the
order in which the step processes the assigns is crucial to successful processing of
the step. Your process definition may need to indicate whether services first
request values from messages or process data.

Essentially, in cases where message data and process data are both involved in a
step, you need to ensure that the assignments happen in the appropriate order,
either by direct-coding them such that they process in the order you need, or by
setting the order in the GPM Service Editor. You can specify different settings for

IBM Sterling B2B Integrator and BPML 7

input and output messages within the same service. In the GPM, you can select the
following instructions for input and output messages:

Message To Service (Output Message) Message From Service (Input Message)

v Messages Only – No process data is
involved with this option.

v Allow Process Data write

v Obtain Message first, then Process Data –
Use this to provide overrides for
parameters. For example, if all but one
parameter is set in process data, the one
missing parameter could be put into the
message for the service to pick up.

v Allow message write

v Obtain Process Data first, then Messages –
In this scenario, when the service needs to
look up data, it first checks the process
data and then goes to the message. You
can use this setting to provide defaults for
parameters, such as when some parameters
are not specified in process data.

Specifying Constants (Literal Values) In Assign Elements
As well as obtaining runtime values from process data, you can also specify
constants (or literals) as parameters. For example, if some parameters may not be
specified in process data, defaults can be used.

Note: Because the BPML is represented as XML, literal values included in the
‘from’ attribute value must be enclosed in single quotes within the double quotes
(“' '”). For example <assign to=”foo” from=”'bar'”/>.

The following example illustrates the use of default parameters.
<operation name="GetCustomerData">

<output name="MessageToGet">
<assign to="ID">12345</assign>
<assign from="*" to=".">

</output>
<input name="MessageFromGet">

<assign from="NAME" to="CustomerName">
<assign from="EMAIL" to="CustomerEmail">

</input>
</operation>

In this example, the service configured with a setting of Obtain Message first, then
Process Data and has a constant assignment to the ID parameter.

Tips For Accessing Content
The following methods are two ways to configure a a process to obtain the
necessary data from the primary document and place it in process data:
v If the primary document is in XML format, use the DocTODOM XPath function.
v If the primary document is not in XML format, create a map for the XML

Encoder service that copies only the required information from the primary
document into process data.

8 IBM Sterling B2B Integrator: BPML

XPath and Process Data
Use XPath syntax in an assign element to work with the process data. In the assign
element, the two attributes from and to are XPath expressions. The from attribute
indicates the location in the source context from which the business process should
pull a value. The to attribute indicates the location in the target context in which
the process should place a value.

The source and target contexts for an assign element depend on whether the assign
element is in an output element, an input element, or an assign activity.
v In an output element, the target context is the message that the process sends to

a participant. The source context is the process data.
v In an input element, the target context is the process data and the source context

is the message the process receives from a participant.
v In an assign activity, the process data is both the source context and the target

context.

The numbered examples following this section are based on the following sample
process data:
<ProcessData>

<PurchaseOrder>
<LineItem>

<Price>12.34</Price>
</LineItem>

<LineItem>
<Price>95.61</Price>

</LineItem>

<LineItem>
<Price>34.52</Price>

</LineItem>
</PurchaseOrder>

</ProcessData>

Example 1

Count the number of line items and assign the count to a variable called LineItem.
<assign to="LineItem" from="count()"/>

Example 2

Calculate the sum of the line items in the purchase order and assign it to a variable
sum in the process data.
<assign to="sum" from="sum(PurchaseOrder/LineItem/Price)"/>

Example 3

Extract the first line item and save it to LineItem1 in the process data.
<assign to="LineItem1" from=" PurchaseOrder/LineItem[1]"/>

XPath and DocToDOM
The following function extracts the SCIObjectID attribute from the process data
DOM and loads the corresponding document into process data:
DocToDOM (xpath expression [, validate, loadDTD])

IBM Sterling B2B Integrator and BPML 9

The XPath expression is required to complete a query executes against the process
data DOM tree. The node returned must have an SCIObjectID attribute. This
enables the document to load by the ID and then parsed. You can add additional
XPath criteria following the function call to run an XPath query against the
document itself.

Additional functions shown in the previous example are:
v validate – Document validation value. Default value is true. Optional.
v loadDTD – Determines if the parser loads the DTD, as specified. Default value is

true. Optional.

This document shows the XML file used in the following examples:
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE document SYSTEM "examples.dtd">
<Testplan>
<Test1>
<Unit_Price>5.25</Unit_Price>

</Test1>
<Test2>
<Customer_ID>3</Customer_ID>
<Zip>43013</Zip>
<Entry_Date>2006-10-10</Entry_Date>

</Test2>
<Test3>
<Customer_ID>2</Customer_ID>
<Quantity>80000</Quantity>
<Entry_Date>11/2/2006</Entry_Date>

</Test3>
<Test4>
<Customer_ID>5</Customer_ID>
<SirName>Mr.</SirName>
<FirstName>Joe</FirstName>
<LastName>Smith</LastName>
<Address>555 Main St.</Address>
<City>Anywhere</City>
<State>OH</State>
<Zip>55555</Zip>
<Phone_Num>555-5632</Phone_Num>
<Orders_Placed>2</Orders_Placed>

</Test4>
<Test5>
<Customer_ID>5</Customer_ID>
<City>Columbus</City>
<Entry_Date>12/5/2006</Entry_Date>

</Test5>
<Test6>
<Customer_ID>5</Customer_ID>

</Test6>
<Test7>
<Unit_Price>43.25</Unit_Price>

</Test7>
<Test8>
<Customer_ID>3</Customer_ID>
<Zip>43013</Zip>
<Entry_Date>2006-10-10</Entry_Date>

</Test8>
<Test9>
<Customer_ID>2</Customer_ID>
<Quantity>80000</Quantity>

</Test9>
<Test10>

10 IBM Sterling B2B Integrator: BPML

<Customer_ID>1</Customer_ID>
<City>Columbus</City>

</Test10>
</Testplan>

DocToDOM function In an Assign Statement Examples
In the following example, the nodes returned are attached to process data at the
root node:
<assign to="." from="DocToDOM(PrimaryDocument)"></assign>

In the following example, additional XPath (Test1) executes against the document
to return only the nodes that exist under Test1. The result is then attached to
process data, under the message_test node:
<assign to="message_test" from=" DocToDOM(PrimaryDocument)/Test1"></assign>

In following example, validation is turned off and enables the DTD to load:
<assign to="." from="DocToDOM(PrimaryDocument, ’false’,’false’)"/>

The following BPML example shows the assign statement:
<process name="DocToDOM">

<sequence>
<assign to="." from="DocToDOM(PrimaryDocument)"></assign>
</sequence>

</process>

This function runs an XPath query against the process data DOM and saves the
node into a workflow document:
DOMToDoc(xpath expression [, document_name, standalone, root_name, encoding,
systemURL, dtdName, publicURL])

The following parameters are shown in the previous example:
v XPath expression – XPath query to execute against the process data DOM tree.

Required.
v documentName – Name of the workflow document. The default value is

Document. Optional.
v standAlone – Value indicating whether this document is a single document

(stands alone). Default value is no. Optional.
v rootName – Name of the document element that stores the result of the XPath

query. This entire node is written to the workflow document. If a name is not
provided, the document element stores the root node returning from the XPath
query. Optional.

v encoding – String value that builds the encoding section of the XML header and
specifies the encoding type of the workflow document. If an encoding is not
provided, the default parameter is UTF-8. Optional.

The next set of parameters rebuilds the DOCTYPE element that was lost after
executing the XPath query:
v systemURL – Value of the system URL. Optional.
v dtdName – Value of the DTD name. If a value for this parameter is specified,

the publicURL parameter is ignored. Optional.
v publicURL – Value of the public URL. If a value for this parameter is specified,

the DtdName parameter is ignored. Optional.

IBM Sterling B2B Integrator and BPML 11

The following example shows the use of the DOMToDoc function in an assign
statement:
<assign to="message_test" from="DOMToDoc(Testplan)"></assign>

The XPath specified in the following example identifies the nodes that exist below
the root node. Therefore, do not specify the root element in your XPath expression:
<Root>
<Testplan>
<Test1>some data</Test1>

</Testplan>
</Root>

If you want to return the text in the Test1 node then my XPath will be:
DOMToDoc(Testplan/Test1/text()) Correct.
DOMToDoc(//Root/Testplan/Test1/text()) Wrong. Don’t specify the root node in the
xpath query.

DocToDOM Function
The following example shows an XML document loading in to process data:
<process name = "DocToDOM_Example1">

<sequence>
<assign to="." from="DocToDOM(PrimaryDocument)" />

</sequence>
</process>

Load a portion of an XML document into process data. The XPath query does not
reference the document element following the DocToDOM call. The nodes returned
are stored under the Testpoint tag:
<process name = "DocToDOM_Example2">

<sequence>
<assign to="Testpoint" from="DocToDOM(PrimaryDocument)/Test4" />

</sequence>
</process>

DOMToDoc Function
The params in brackets “[]” are optional parameters.

DOMToDoc(XPath,[‘Document Name’],[‘stand alone?’],[‘root
name’],[‘encoding’],[‘system url’],[‘dtd name’],[‘public url’],[‘attribute quoting’])

DOMToDoc Parameter Definitions
XPath

The xpath parameter is the only required parameter. It is an xpath to the xml node
in the business process instance data (ProcessData) that you want extracted into
the document.

<assign to="." from="DOMToDoc(/ProcessData/beginningxmlnode)" />

Document Name

The document name value, if specified is the name the document in process data is
given, with the data from the xpath node specified. If none is specified the default
value of “Document” is used.

Usage Example:

12 IBM Sterling B2B Integrator: BPML

<assign to="." from="DOMToDoc(/ProcessData/
beginningxmlnode,’DOMToDoc_Document’)" />

Stand Alone

The values allowed for this option is “YES” or “NO”. It tells the function which
value to use in the xml declaration line of the document. (<?xml version="1.0"
encoding="UTF-8" standalone="YES or NO"?>) The default value is “no”.

Usage Example:

<assign to="." from="DOMToDoc(/ProcessData/beginningxmlnode,’’,’YES’)" />

Root Name

The root name sets the root xml element, to wrap the data specified by the XPath
in the xml document created, and will specify it in the DOCTYPE declaration. The
default value is null, which means the xml document will contain just the nodes
specified in the XPath without any root element wrapping that data.

Usage Example:

<assign to="." from="DOMToDoc(/ProcessData/beginningxmlnode,’’,’’,’docroot’)"
/>

Default Behavior with XPath = /ProcessData/test
<ProcessData>
<test>
<data>123</data>
</test>
</ProcessData>
Becomes....
<?xml version=”1.0” encoding=”UTF-8” standalone=”no”?>
<test>
<data>123</data>
</test>
Behavior when specified
<ProcessData>
<test>
<data>123</data>
</test>
</ProcessData>
Becomes....
<?xml version=”1.0” encoding=”UTF-8” standalone=”no”?>
<docroot>
<test>
<data>123</data>
</test>
</docroot>

Encoding

The encoding parameter sets the documents character encoding. This is a string
value, and will set the character encoding to any string passed, so it is important
that you pass a valid encoding. No validation is done against this parameter. The
default value is “UTF-8”.

Usage Example:

IBM Sterling B2B Integrator and BPML 13

<assign to="." from="DOMToDoc(/ProcessData/beginningxmlnode,’’,’’,’’,’UTF-16’)"
/>

System URL

Specifying this parameter will create a document type declaration in the xml
document and set it to SYSTEM with the url being the string specified. The default
is null, meaning no declaration of system will be done.

Usage Example:

<assign to="." from="DOMToDoc(/ProcessData/beginningxmlnode,’’,’’,’’,’’,’http://
stercomm.com/xml/example’)" />

This will result in the document having <!DOCTYPE SYSTEM
"http://stercomm.com/xml/example">

DTD Name

Specifying this parameter will create a document type declaration in the xml
document and set it to PUBLIC with the value being the dtd name specified in the
value of this parameter. The default is null, meaning no declaration of PUBLIC will
be done.

Usage Example:

<assign to="." from="DOMToDoc(/ProcessData/
beginningxmlnode,’’,’’,’’,’’,’’,’testdtd’)" />

This will result in the document having <!DOCTYPE PUBLIC "testdtd">

Public URL

Specifying this parameterwill create a document type declaration in the xml
document and set it to PUBLIC with the value being the dtd name specified in the
value of this parameter. The default is null, meaning no declaration of PUBLIC will
be done.

Usage Example:

<assign to="." from="DOMToDoc(/ProcessData/
beginningxmlnode,’’,’’,’’,’’,’’,’’,’publicurl’)" />

This will result in the document having <!DOCTYPE PUBLIC "publicurl">

Attribute Quoting

This parameter specifies whether to wrap xml attributes in single quotes or double
quotes. Both are completely valid xml. The parameter takes a value of “single” or
“double” with single quotes as the default behavior.

Usage Example:

<assign to="." from="DOMToDoc(/ProcessData/
beginningxmlnode,’’,’’,’’,’’,’’,’’,’’,’double’)" />

14 IBM Sterling B2B Integrator: BPML

This will result in the document having <test name=”testattribute”> instead of
<test name=’testattribute’>

DOMToDoc Examples
The following example shows the output of the process data tree in a document:
<process name = "DOMToDoc_Example1">

<sequence>
<assign to="." from="DocToDOM(PrimaryDocument)" />
<assign to="." from="DOMToDoc(//)" />

</sequence>
</process>

The following example shows the output of the document that loaded into process
data and back into a document. I nodes returned from the DocToDOM call were
placed into the Testpoint tag because the DOMToDoc call did not return the tag
specified in the XPath. This prevents the loss of the document element.
<process name = "DOMToDoc_Example1">

<sequence>
<assign to="Testpoint" from="DocToDOM(PrimaryDocument)" />
<assign to="." from="DOMToDoc(Testpoint)" />

</sequence>
</process>

StringToDoc Parameter Definitions
XPath

The xpath parameter is the only required parameter. It is an xpath to the xml node
in the business process instance data (ProcessData) that you want extracted into
the document.

<assign to="." from="StringToDoc(/ProcessData/beginningxmlnode)" />

Document Name

The document name value, if specified is the name the document in process data is
given, with the data from the xpath node specified. If none is specified the default
value of “Document” is used.

Usage Example:

<assign to="." from="StringToDoc(/ProcessData/
beginningxmlnode,’StringToDoc_Document’)" />

Stand Alone

The values allowed for this option is “YES” or “NO”. It tells the function which
value to use in the xml declaration line of the document. (<?xml version="1.0"
encoding="UTF-8" standalone="YES or NO"?>) The default value is “no”.

Usage Example:

<assign to="." from="StringToDoc(/ProcessData/beginningxmlnode,’’,’YES’)" />

IBM Sterling B2B Integrator and BPML 15

Root Name

The root name sets the root xml element, to wrap the data specified by the XPath
in the xml document created, and will specify it in the DOCTYPE declaration. The
default value is null, which means the xml document will contain just the nodes
specified in the XPath without any root element wrapping that data.

Usage Example:

<assign to="." from="StringToDoc(/ProcessData/beginningxmlnode,’’,’’,’docroot’)"
/>

Default Behavior with XPath = /ProcessData/test
<ProcessData>
<test>
<data>123</data>
</test>
</ProcessData>
Becomes....
<?xml version=”1.0” encoding=”UTF-8” standalone=”no”?>
<test>
<data>123</data>
</test>
Behavior when specified
<ProcessData>
<test>
<data>123</data>
</test>
</ProcessData>
Becomes....
<?xml version=”1.0” encoding=”UTF-8” standalone=”no”?>
<docroot>
<test>
<data>123</data>
</test>
</docroot>

Encoding

The encoding parameter sets the documents character encoding. This is a string
value, and will set the character encoding to any string passed, so it is important
that you pass a valid encoding. No validation is done against this parameter. The
default value is “UTF-8”.

Usage Example:

<assign to="." from="StringToDoc(/ProcessData/beginningxmlnode,’’,’’,’’,’UTF-16’)"
/>

System URL

Specifying this parameter will create a document type declaration in the xml
document and set it to SYSTEM with the url being the string specified. The default
is null, meaning no declaration of system will be done.

Usage Example:

<assign to="." from="StringToDoc(/ProcessData/beginningxmlnode,’’,’’,’’,’’,’http://
stercomm.com/xml/example’)" />

16 IBM Sterling B2B Integrator: BPML

This will result in the document having <!DOCTYPE SYSTEM
"http://stercomm.com/xml/example">

DTD Name

Specifying this parameter will create a document type declaration in the xml
document and set it to PUBLIC with the value being the dtd name specified in the
value of this parameter. The default is null, meaning no declaration of PUBLIC will
be done.

Usage Example:

<assign to="." from="StringToDoc(/ProcessData/
beginningxmlnode,’’,’’,’’,’’,’’,’testdtd’)" />

This will result in the document having <!DOCTYPE PUBLIC "testdtd">

Public URL

Specifying this parameter will create a document type declaration in the xml
document and set it to PUBLIC with the value being the DTD name specified in
the value of this parameter. The default is null, meaning no declaration of PUBLIC
will be done.

Usage Example:

<assign to="." from="StringToDoc(/ProcessData/
beginningxmlnode,’’,’’,’’,’’,’’,’’,’publicurl’)" />

This will result in the document having <!DOCTYPE PUBLIC "publicurl">

Attribute Quoting

This parameter specifies whether to wrap xml attributes in single quotes or double
quotes. Both are completely valid xml. The parameter takes a value of “single” or
“double” with single quotes as the default behavior.

Usage Example:

<assign to="." from="StringToDoc/ProcessData/
beginningxmlnode,’’,’’,’’,’’,’’,’’,’’,’double’)" />

This will result in the document having <test name=”testattribute”> instead of
<test name=’testattribute’>

StringToDoc Examples
The following examples show the output of a document loaded into a document
from process data

Example 1
<process name = "StringToDoc_Example1">

<sequence>
<assign to="Testpoint" from="StringToDoc(PrimaryDocument)" />
<assign to="." from="StringToDoc(Testpoint)" />

</sequence>
</process>

IBM Sterling B2B Integrator and BPML 17

Example 2
<process name="BS_Assign">

<sequence>
<assign to="Payload">StringValue</assign>
<assign to="." from="StringToDoc(Payload,’PrimaryDocument’)"/>
</sequence>

</process>

Simple BPML Activities
Simple BPML activities enable a business process to communicate with a
participant. There are three types of simple activities:
v Produce – Sends messages to participants asynchronously
v Consume – Receives messages from participants asynchronously
v Operation – Exchanges messages with participants synchronously

Produce and Consume Activities
The produce and consume activities enable business processes to communicate.
Produce and consume are used together.

Produce Activity
The produce activity sends a message to another business process.

In the following sample BPML code, a message called EmployeeDataMessage is
sent to a business process instance created by the spawn activity. The assign
elements write the name and social security number of an employee into the
message. Note the significance of the name of the message; the spawned instance
looks for a message with exactly that name.
<produce name='SendMessage'>

<participant name='AnotherProcess'/>
<output message='EmployeeDataMessage'>

assign to='EmployeeName'>David</assign>
assign to='SocialSecurityNumber'>123-45-6789</assign>

</output>
</produce>

Consume Activity
The consume activity reads in a message sent to it by another business process. A
consume element can contain a participant element. The participant element
indicates which business process instances are relevant to the consume activity.

The following sample BPML code represents the simplest form of the consume
activity. The activity reads in a message called EmployeeDataMessage, and then
stores the message in process data.
<consume name='ReceiveMessage'>

<input message='EmployeeDataMessage'>
</input>

</consume>

The consume activity can also indicate that it will read a message only from a
particular sending process, and store only parts of the received message in process
data.

Operation Activity
The operation activity invokes an action against a participant. Using an operation
activity is the only way that you can call a service.

18 IBM Sterling B2B Integrator: BPML

The following specifications apply to the operation activity:
v An operation involves a synchronous request/response message exchange with a

possible fault message.
v When an operation is invoked, it delivers a request message and waits for a

response message. If a fault is communicated, the operation faults.
v How the business process communicates with a participant is left to the

implementation. Use extension elements to provide implementation details.
v Use the operation element to invoke an operation on a service.
v The participant element must be used.
v The output element must precede the input element.

Participant Element
Use the participant element to define a participant in the business process, or to
reference a participant within a simple activity. The participant element is used in
the operation activity and with the produce and consume elements.

In the business process or a simple activity, the participant element defines a static
participant that must be named using the name attribute. The definition can
include annotations, metadata, and extension elements.

How the business process communicates with the participant and applies the
proper security restrictions is left to the implementation. Use extension elements to
provide implementation details.

The following sample operation refers to the online bookseller scenario example
discussed in the previous sections, where the bookseller Process Customer Book
Order process contacts the Inventory service to determine whether a book is in
stock.

The participant, output, and input elements are required and must be in the line
number order shown in the following example. Follow the specification for each
line in the example exactly.

1 <operation name='User Name'>

2 <participant name='InventoryService' />

3 <output message='checkStockRequest'>

4 <assign to='ISBN'>1-56592-488-6</assign>

5 </output>

6 <input message='checkStockResponse'>

7 <assign to='foundBook' from='InStock' />

8 </input>

9 </operation>

The following list describes the elements and activities of each line in the BPML:

1 Type of activity is an operation. Supplying a name for the operation
activity is optional.

Note: This name has no impact when running the business process, but
the GPM uses it as a label.

2 Operation activity communicates with a participant. The participant

IBM Sterling B2B Integrator and BPML 19

element in this line identifies the participant with which this operation is
associated. For Sterling B2B Integrator, the name attribute must match the
name of an installed service, service instance, or service configuration. In
this case, the name identifies the Inventory service.

3 Output element contains the information to send to the service. The
message attribute is required in BPML, because a participant can perform
different tasks, depending on the different messages it receives.

For example, when the inventory service receives a checksStockRequest
message, it determines an item is in stock. A restockItemRequest message
prompts the inventory system to restock the item.

4 An assign element within the output element provides the required
information for the output message.

For example, if the business process and participant communicate through
a message, the message attribute of the output element specifies the title,
checkStockRequest. The assign element on line no. 4 specifies the first line
of the message, ISBN = 1-56592-488-6. Each additional assign element in
that output element adds another line to the message.

5 Ends the output element.

6 Within an output element, an input element identifies the response the
process expects from the participant. When the participant receives the
message written by the process, the participant responds with a return
message that the input element reads. The message attribute of the input
element identifies the name and type of the return message expected from
the participant. Because a participant can send more than one type of
message, a message attribute is required for the input element. The
message attribute indicates which message is expected.

7 The assign attribute in an input element differs from the assign attribute in
the output element. In the input element, the assign attribute reads
information from the message and writes that information in the process
data.

For example, if the book for which the process performs a stock check is
available, the InventoryService response message contains a line similar to
InStock = true.

The assign element within the input element writes the value from the
InStock line to the process data. The InStock line includes an identifier
written to the process data.

In the bookseller example, the value from the InStock line is true, so the
line written to the process data would be similar to foundBook = true.

8 Ends the input element.

9 Ends the operation activity.

Complex BPML Activities
A complex activity is a combination of simple activities that are child activities to
the parent complex activity. The child activities can also be simple or complex.

A process element can contain only one parent complex activity. The parent
complex activity contains all of the simple and complex activities necessary to
complete the business process.

20 IBM Sterling B2B Integrator: BPML

There are three kinds of complex activities:
v Sequence (serial)
v Choice (conditional)
v All (parallel)

Sequence Activity
A sequence activity runs a series of child activities in the order in which it lists
them. When a process runs, all of the child activities are run. The sequence activity
finishes only after the last child activity is finished.

The following example shows a sequence activity that contains two child activities:
Check Inventory and Verify Credit Card. When the process runs, Sterling B2B
Integrator runs Check Inventory first and Verify Credit Card second because that is
the order in which the activities are listed in the sequence. The name attribute in
the sequence element is optional.
<process name="ProcessCustomerOrder">

<sequence>
<operation name=’Check Inventory’>

<participant name=’InventoryService’ />
<output message=’checkStockRequest’>

<assign to=’ISBN’>1-56592-488-6</assign>
</output>
<input message name=’checkStockResponse’>

<assign to=’foundBook’ from=’InStock’ />
</input>

</operation>
<operation name=’Verify Credit Card’> </operation>

</sequence>
</process>

Choice Activity
The Choice activity makes decisions in the business process model and runs only
one of the child activities it contains. Conditions determine which child activity
runs.

You define the rules for the choice conditions. The only child activity to run is the
one tied to the first case statement in the Choice activity that matches a rule. If
none of the case statements in the Choice activity match a rule, the process
continues to the next activity after the choice.

Branching
The choice activity makes it possible to model process branching. To model process
branching, the process must evaluate one or more rules to reach a decision, and
then specify which activity to run as a result of that decision.
v The choice activity must include the select element.
v The select element must include one or more case elements.
v Each case element links the outcome of a rule to a child activity. The activity

attribute in the case element identifies the child activity to run.
v Each case element has a ref attribute, which contains the name of a rule that is

defined at the top of the process. Case elements refer to rules instead of
conditions because:
– A rule can contain more than one condition. If a rule element contains more

than one condition, all the conditions in the rule must be true in order for the
rule to be true.

– A condition is a single entity within a rule.

IBM Sterling B2B Integrator and BPML 21

v If the rule is true, the activity runs.
v If the rule is false when the negative attribute is true, the activity runs.
v Multiple cases can reference the same activity. However, the activity runs only

once.
v If an activity is not referenced, it does not run.
v If no activity runs, the choice activity completes immediately.
v Use a choice element with a simple activity to model a deferred activity.
v Priorities and defaults are modeled through rule dependencies, not through the

order of the case elements.

When the business process runs the choice activity, Sterling B2B Integrator checks
the case statements in the order that they are listed in the select element. The first
case statement in the select element determines whether the rule is true. If the rule
is true, the activity named by the activity attribute is run immediately. When that
activity completes, the choice activity is finished. If the second case statement in
the select element refers to the same rule as the first but has a negative attribute
set to true, the case statement runs the named activity if the rule is false.

In the online bookseller example discussed in previous sections, the Process
Customer Book Order process verifies a customer's credit card only if the book the
customer selects to buy is in stock. The BookInStock rule is true if the book is in
stock and false if the book is out of stock.

If the inventory system determines that the book is in stock, the rule referred to in
the case statement is true and the proceed activity is run.
<process name="ProcessCustomerOrder">

<rule name="BookInStock">
<condition>foundBook = true </condition>

</rule>

<sequence>
<operation name=’Check Inventory’>

<participant name=’InventoryService’ />
<output message=’checkStockRequest’>

<assign to=’ISBN’>1-56592-488-6</assign>
</output>
<input message name=’checkStockResponse’>

<assign to=’foundBook’ from=’InStock’ />
</input>

</operation>

<choice>
<select>

<case ref="BookInStock" activity="proceed"/>
<case ref="BookInStock" negative="true" activity="stop"/>

</select>

<sequence name="proceed">
<operation name=’Verify Credit Card’> ... </operation>
...

</sequence>

<sequence name="stop">
<operation name=’Apologize to Customer’> ... </operation>

</sequence>
</choice>

<operation name=’Update customer on status’> ... </operation>
</sequence>

</process>

22 IBM Sterling B2B Integrator: BPML

All Activity
The all activity contains two or more complex child activities and runs all of them
simultaneously. The all activity finishes only after the child activities are finished.

The following example contains three child activity sequences: Seq_1, Seq_2, and
Seq_3. Sterling B2B Integrator begins these sequences at the same time—that is, the
first operations in the sequences (operations A, C, and E) start simultaneously. The
sequences continue to run independently until the last operation in each is
completed. The all activity finishes when all three child activity sequences finish.
<all>

<sequence name=’Seq_1’>
<operation name=’A’> ... </operation>
<operation name=’B’> ... </operation>

</sequence>

<sequence name=’Seq_2’>
<operation name=’C’> ... </operation>
<operation name=’D’> ... </operation>

</sequence>

<sequence name=’Seq_3’>
<operation name=’E’> ... </operation>
<operation name=’F’> ... </operation>
<operation name=’G’> ... </operation>

</sequence>
</all>

Rule Element
The rule element defines a rule, the conditions by which the rule is met, and
dependency on other rules.
v The condition element formulates an expression. The condition is met if the

expression evaluates to true, or if the expression evaluates to false when the
negative attribute is true.

v Multiple conditions inside a rule are listed in logical order.
v The rule element defines a rule that is referenced in a choice activity, used in an

input element, or dependent on another rule. Dependencies are not affected by
the order that rules are listed.

Condition Element
The contents of the condition element must correspond to an XPath expression.
Sterling B2B Integrator expects an XPath expression to evaluate a condition.

Process Activities and Elements
You can use several BPML activities and elements when creating business process
models.

Input and Output Elements
The input element accepts a message delivered to the process. The input element
has the following syntax:
<input message>

<assign/>*
</input>

v Use the input element in the operation activity to accept a message delivered
from a participant to the process (process input).

IBM Sterling B2B Integrator and BPML 23

v Use the message attribute to reference the relevant message definition.
v Use the assign element to perform assignment (move data) from the message

contents to the process data. Use multiple assignments for multi-part messages.

The output element constructs a message delivered by the process to a participant.
The output element has the following syntax:
<output message>

<assign/>
</output>

v The message attribute references the relevant message definition.
v Use the assign element to perform assignment (move data) from the process

data to the message contents. Use multiple assignments for multi-part messages.
No assignments are required for empty messages.

Assign Activity
The assign element performs assignment and is a process activity. When using
assign elements in an operation, you must know the appropriate service
parameters, such as the map name that the translator needs.

Some specifications for assign elements are:
v How the assign element is used determines what it uses as a data source

destination.
v In the output element, the assign element performs assignment from the process

data to the outgoing message. The to attribute corresponds to the path within
the outgoing message and is used to construct the message contents.

v In the input element, the assign element performs assignment from the incoming
message to the process data. The to attribute corresponds to a value within the
process data.

The following example uses the assign element as an activity within an operation:
<operation name='name'>

<participant name='name of specific service'/>
<output message='output message from service'/>
<input message='input message for service'>

<assign to='z' from ='x'/>
</input>

</operation>

Using Assign as an Independent Activity
The assign elements works the same as the assign activity inside an input or
output element, but it is not tied to a message. Used as an independent activity,
the assign element inserts fixed numeric values or fixed strings into the process
data. Sterling B2B Integrator accepts the assign element only when it sets
something in the process data equal to a fixed value.

When the assign element is used as an independent activity, it performs
assignment from a constant to the process data. The to attribute corresponds to a
path within the process data. The from attribute is used to extract information
from a previously assigned value.

In the following example, the value 7 is assigned to X:
<assign to=’X’>7</assign>

Assigns outside a service are visible to the whole process after the assign. Assigns
within the service are only visible to the service.

24 IBM Sterling B2B Integrator: BPML

Repeat Activity
The repeat activity repeats a complex activity without recursion. It directs Sterling
B2B Integrator to return to the beginning of a parent or child state, or to run an
activity again. The repeat activity can be used only as a child activity of the
complex activity that it references.

The repeat element accepts the ref attribute, which names the complex activity to
be repeated. The activity to be repeated must be a complex activity that contains
(directly or indirectly) the repeat activity.

In the following example, the repeat element is directly contained in the proceed
sequence, which is contained in the choice element. This means that the choice
sequence indirectly contains the repeat element.
<process name=’repeat’>

<rule name=’checkX’>
<condition>X true = </condition>

</rule>

<sequence>
<assign to=’X’>true</assign>

<choice name=’loop’>
<select>

<case ref="checkX" activity="proceed"/>
</select>

<sequence name="proceed">
<operation name=’...’> ... </operation>
...
<repeat ref=’loop’ />

</sequence>
</choice>

</sequence>
</process>

In this example, X is set to true. The choice element checks for the value X.
Because X is true, the activities that are part of the proceed sequence begin to run.
The last activity in the sequence is the repeat. The repeat activity refers to the
choice named loop, so the process tries to run the choice activity again. If X is still
true, the proceed sequence runs again. The sequence continues to repeat until X
changes and becomes false. If X does not change to false, the process runs
indefinitely, in an infinite loop.

Join and Spawn Activities
The join and spawn activities are used together. Use the join activity to wait for
subprocesses to be merged. The join waits only for the subprocesses initiated from
the same process in which the activity is run.

Use the spawn activity to start up a new process from within an existing process.
The syntax is simple:
<spawn ref=’another process’/>

The ref attribute must match the name of a process in Sterling B2B Integrator. After
this process is run, a new instance of a business process is created and run. The
child process starts off with a copy of process data from its parent. The two
processes are completely independent of one another—the original process will not
wait for the spawned process to complete unless you explicitly configure it to.

IBM Sterling B2B Integrator and BPML 25

The original and spawned processes can communicate using the produce and
consume activities.

onFault Element
The onFault element is used to handle errors. You can include onFault elements in
any complex activity for which it may be necessary to recover from faults so that
the process can continue. The onFault element contains a fault handling activity.
For information about using the onFault group in the GPM, refer to the GPM
documentation.

The following specifications apply to the onFault element:
v If the complex activity containing the onFault activity faults before the complex

activity is finished, the onFault activity runs.
v If the complex activity containing the onFault activity finishes successfully, the

onFault activity finishes successfully, too.
v Sterling B2B Integrator accepts multiple onFault elements within a single

complex activity, making it possible to handle different fault codes.
– Each set of onFault elements must use a unique fault code.
– Omit the code attribute for only one element when using multiple onFault

elements for a single complex activity. Here is the syntax:
<onFault code?>
activity+
</onFault>

v In BPML, each fault can be associated with a unique code attribute. If the code
attribute is provided, the associated onFault element is triggered only by a fault
that matches that code attribute. For example, the onFault element has a code
attribute set to SystemBusy. If the operation results in a fault associated with a
different code attribute, the SystemBusy onFault element does not run.

v You can force the process to run the onFault activity for any fault encountered,
by omitting a code attribute.

v If there are multiple layers of joins in BPML, each layer has onFault defined, an
error occurs in the branch, and the final join of the inner join layer carries the
error, the onFault of this layer is executed (even though the execution of the
onFault does not have an error) and the error in the inner final join is
propagated to the next layer of the join. This should not happen, because the
inner layer of the join went to the inner onFault route and the on fault
completes successfully. Avoid using complex multiple join layers in the BPML.
Use Invoke Service Sync Mode for the branches; this mode merges all data from
the subprocesses.

In the credit card example, the Verify Credit Card activity results in a SystemBusy
fault, causing the process to run the onFault element. When the onFault element
runs, the complex activity that it contains also runs. The onFault activity finishes
when the complex activity it contains finishes. The complex activity that contains
the onFault finishes at the same time, regardless of whether it was fully or partially
run. As a result, the Verify Sufficient Credit activity does not fully run.
<process name="ProcessCustomerOrder">

<rule name="BookInStock">
<condition>foundBook true = </condition>

</rule>

<sequence>
<operation name=’Check Inventory’>

<participant name=’InventoryService’ />
<output message=’checkStockRequest’>

26 IBM Sterling B2B Integrator: BPML

<assign to=’ISBN’>1-56592-488-6</assign>
</output>
<input message name=’checkStockResponse’>

<assign to=’foundBook’ from=’InStock’ />
</input>

</operation>

<choice>
<select>

<case ref="BookInStock" activity="proceed"/>
<case ref="BookInStock" negative="true" activity="stop"/>

</select>
<sequence name="proceed">

<sequence>
<operation name=’Verify Credit Card’> ... </operation>
<operation name=’Verify Sufficient Credit’>...</operation>
<onFault code=’SystemBusy’>

<sequence>
<!-- Logic to wait and retry -->

</sequence>
</onFault>

</sequence>
...

</sequence>

<sequence name="stop">
<operation name=’Apologize to Customer’> ... </operation>

</sequence>
</choice>

<operation name=’Update customer on status’> ... </operation>

<onFault>
<sequence>

<operation name=’Inform Customer of Error’> ... </operation>
<operation name=’Signal Operator’> ... </operation>

</sequence>
</onFault>

</sequence>
</process>

When Fault Code Does Not Match onFault Code
In a business process, a fault can occur in a complex activity that is not handled by
an onFault element at that level of the process. When the fault code does not
match the onFault element at a level, Sterling B2B Integrator begins to search for
the correct onFault element. When no code attribute exists and no match to a
defined attribute exists for an onFault element at a level, Sterling B2B Integrator
moves to a general onFault (no code attribute) element. If Sterling B2B Integrator
does not find a fault code, Sterling B2B Integrator halts the process.

In the credit card example, the Verify Credit Card activity results in a
NetworkDown fault because Sterling B2B Integrator first looked at the onFault
elements associated with that activity. Sterling B2B Integrator found only one
onFault element in this activity and the code specified was not NetworkDown.
Sterling B2B Integrator then looked for the correct onFault element in the next
activity up in the process. Eventually, Sterling B2B Integrator found a general
onFault element for which no code attribute exists at the highest level of the
process. When the fault handling activities finish, Sterling B2B Integrator runs the
next activity in the process until no other activities exist in the process.

IBM Sterling B2B Integrator and BPML 27

28 IBM Sterling B2B Integrator: BPML

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not grant you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte character set (DBCS) information,
contact the IBM Intellectual Property Department in your country or send
inquiries, in writing, to:

Intellectual Property Licensing

Legal and Intellectual Property Law

IBM Japan Ltd.

19-21, Nihonbashi-Hakozakicho, Chuo-ku

Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be

© Copyright IBM Corp. 2000, 2011 29

incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Corporation

J46A/G4

555 Bailey Avenue

San Jose, CA 95141-1003

U.S.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

All IBM prices shown are IBM's suggested retail prices, are current and are subject
to change without notice. Dealer prices may vary.

30 IBM Sterling B2B Integrator: BPML

This information is for planning purposes only. The information herein is subject to
change before the products described become available.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. The sample
programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work, must
include a copyright notice as follows:

© IBM 2015. Portions of this code are derived from IBM Corp. Sample Programs. ©
Copyright IBM Corp. 2015.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

Trademarks

IBM, the IBM logo, and ibm.com® are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the Web at “Copyright and
trademark information” at http://www.ibm.com/legal/copytrade.shtml.

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered
trademarks or trademarks of Adobe Systems Incorporated in the United States,
and/or other countries.

IT Infrastructure Library is a registered trademark of the Central Computer and
Telecommunications Agency which is now part of the Office of Government
Commerce.

Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo,
Celeron, Intel Xeon, Intel SpeedStep, Itanium, and Pentium are trademarks or
registered trademarks of Intel Corporation or its subsidiaries in the United States
and other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both.

Notices 31

http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

ITIL is a registered trademark, and a registered community trademark of the Office
of Government Commerce, and is registered in the U.S. Patent and Trademark
Office.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Java™ and all Java-based trademarks and logos are trademarks or registered
trademarks of Oracle and/or its affiliates.

Cell Broadband Engine is a trademark of Sony Computer Entertainment, Inc. in the
United States, other countries, or both and is used under license therefrom.

Linear Tape-Open, LTO, the LTO Logo, Ultrium and the Ultrium Logo are
trademarks of HP, IBM Corp. and Quantum in the U.S. and other countries.

Connect Control Center®, Connect:Direct®, Connect:Enterprise®, Gentran®,
Gentran®:Basic®, Gentran:Control®, Gentran:Director®, Gentran:Plus®,
Gentran:Realtime®, Gentran:Server®, Gentran:Viewpoint®, Sterling Commerce™,
Sterling Information Broker®, and Sterling Integrator® are trademarks or registered
trademarks of Sterling Commerce®, Inc., an IBM Company.

Other company, product, and service names may be trademarks or service marks
of others.

32 IBM Sterling B2B Integrator: BPML

Index

A
All activity 23
Assign activity 24
assign elements 4

B
BPML

All activity 23
Assign activity 24
basics 1
Choice activity 21
complex activities 1, 20
condition element 23
Consume activity 18
elements 23
Join activity 25
onFault element 26
Operation activity 18
Produce activity 18
Repeat activity 25
Sequence activity 21
simple activities 1, 18
Spawn activity 25

branching in process models 21
business process

All activity 23
Assign activity 24
branching 21
Choice activity 21
complex BPML activities 21
condition element 23
Consume activity 18
error handling 26
file type 1
Join activity 25
onFault element 26
Operation activity 18
participant 1
Produce activity 18
Repeat activity 25
Rule element 23
Sequence activity 21
Spawn activity 25

C
Choice activity 21
complex BPML activities

about 21
All activity 23
faults not handled by onFault 27

condition element, BPML 23
Consume activity 18

D
DocToDOM XPath 9

E
error handling 26

I
input message 4

J
Join activity 25

N
name attribute in process element,

BPML 3

O
onFault element 26
operation activity 1
Operation activity 18, 19
output message 4

P
primary document 3
process data 3

accessing content 8
XPath 9

process element 2
Produce activity 18

R
Repeat activity 25
Rule element 23

S
Sequence activity 21
service

input and output messages 4
Spawn activity 25

X
XML Path language (XPath)

condition element 23
DocToDOM 9
process data 9

© Copyright IBM Corp. 2000, 2011 33

34 IBM Sterling B2B Integrator: BPML

IBM®

Product Number:

Printed in USA

	Contents
	IBM Sterling B2B Integrator and BPML
	Where to Find Industry Information
	Business Process BPML Components
	Process Element

	What Is Process Data?
	About Input and Output Messages and Process Data
	Input and Output Examples
	Different Types of Assigns
	Using Assign Element To Copy All of Process Data Into the Message
	Consider the Order In Which You Configure Assigns
	Specifying Constants (Literal Values) In Assign Elements

	Tips For Accessing Content

	XPath and Process Data
	XPath and DocToDOM
	DocToDOM function In an Assign Statement Examples
	DocToDOM Function
	DOMToDoc Function
	DOMToDoc Parameter Definitions
	DOMToDoc Examples
	StringToDoc Parameter Definitions
	StringToDoc Examples

	Simple BPML Activities
	Produce and Consume Activities
	Produce Activity
	Consume Activity

	Operation Activity
	Participant Element

	Complex BPML Activities
	Sequence Activity
	Choice Activity
	Branching

	All Activity
	Rule Element
	Condition Element

	Process Activities and Elements
	Input and Output Elements
	Assign Activity
	Using Assign as an Independent Activity

	Repeat Activity
	Join and Spawn Activities
	onFault Element
	When Fault Code Does Not Match onFault Code

	Notices
	Index
	A
	B
	C
	D
	E
	I
	J
	N
	O
	P
	R
	S
	X

