
Sterling B2B Integrator

MESA Developer Studio
Version 5.2

IBM

Sterling B2B Integrator

MESA Developer Studio
Version 5.2

IBM

Note
Before using this information and the product it supports, read the information in “Notices” on page 73.

Copyright

This edition applies to Version 5 Release 2 of Sterling B2B Integrator and to all subsequent releases and
modifications until otherwise indicated in new editions.

© Copyright IBM Corporation 2000, 2015.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

MESA Developer Studio 1
Using MESA Developer Studio 1

About Sterling B2B Integrator MESA Developer
Studio SDK 1
Creating a MESA Developer Studio Project . . . 2
Managing Resources in MESA Developer Studio . 2

Using the MESA Skin Editor 4
About the MESA Developer Studio Skin Editor . . 4
Tips for Using the Skin Editor 5
Using the Skin Editor to Edit a Sterling B2B
Integrator Template 6

Creating Services Using the MESA SDK 7
Creating Custom Services 7
Knowledge Prerequisites for Creating Custom
Services 8
Classes Available in MESA Developer Studio SDK 8
About MESA Developer Studio SDK 11
Steps to Create a Service Using MESA Developer
Studio SDK 11
Export a Service for Deployment 18
Install a Service into Sterling B2B Integrator . . 18
Update a Service Definition 19

Architecture 19
Introduction to Sterling B2B Integrator
Architecture 19
Components of a Service 20
Relationship Between Business Processes and
Services 21
Service Harness Implementation and Service
Adapter Implementation 24

Developing a Service 27
Adapter Architecture Summary. 27
About the Workflow Context Used by Adapters 28
About the Service Controller Framework Used by
Adapters 30
Error and Status Reporting 33
Setting Up User Prompts for Configuring a
Service in the UI. 34
Setting Up Event Logging for a Service 37

File Rename Service Example 41
Example 1: Creating the File Rename Service . . 41
Create the FileRename SDK Project 42

About System Libraries 43
Jar Files Available 43
Add Custom Code to the FileRename Project . . 44
Create Parameters for the File Rename Service. . 45
Service Definition Parameters for the File
Rename Service 45
Service Definition Parameter Field Reference . . 47
Add the Overwrite Parameter 48
Add the Source File and Destination File
Parameters 49
Add Language Property File Entries for the File
Rename Service 50
Build the Service Package 51
Create the Text File to be Renamed 51
Install the File Rename Service into Sterling B2B
Integrator 51
Configure the File Rename Service Instance. . . 52
Create Test BPML 52
Test the File Rename Service. 53

Additional Examples 53
Example 1: Basic Adapter. 53
Example 2: Bootstrap Adapter 57
Example 3: Stateless/Stateful Adapter 60

Installing MESA Studio 63
Overview for Installing and Configuring MESA
Developer Studio 63
Configure the Java JDK on Your PC 65
Verify that MESA Developer Studio Uses the
Correct JRE 65
Start the WebDAV Server 66
Installing MESA Developer Studio Components 68
Set Up a Sterling B2B Integrator Instance . . . 69
Install Additional MESA Developer Studio
Components and Updates 71

Notices 73
Trademarks 75
Terms and conditions for product documentation. . 76

Index 77

© Copyright IBM Corp. 2000, 2015 iii

iv Sterling B2B Integrator: MESA Developer Studio

MESA Developer Studio

IBM® Sterling B2B Integrator MESA Developer Studio SDK is used to create and
edit service definitions (using the SDK), maps, and business processes.

You can also use MESA Developer Studio to remotely start and stop a Sterling B2B
Integrator instance, install third party files, list directory contents and current
processes, and display disk usage. For example, within Sterling B2B Integrator you
can only edit business processes using the Graphical Process Modeler (GPM) or a
text editor. Additionally, from MESA Developer Studio, you can edit business
processes using a code editor.

Using MESA Developer Studio

About Sterling B2B Integrator MESA Developer Studio SDK
MESA Developer Studio is designed to assist you with resource development.
Changes made with the MESA Developer Studio plug-ins should be thoroughly
tested in a development environment before moving them into production.

Note: Before you can being using MESA Developer Studio, you must first install it.
See Installing MESA Developer Studio and the Installation Guide for Sterling B2B
Integrator.

Using MESA Developer Studio to Manage Sterling B2B Integrator

Use MESA Developer Studio to:
v Edit property files
v Work with business processes
v Work with maps
v Work with service definitions
v Start and stop Sterling B2B Integrator instances
v Install third-party files
v Manage Sterling B2B Integrator resources
v List directory contents
v List current processes
v Display disk usage

Available MESA Developer Studio Editors

The following editors are available in MESA Developer Studio to assist you in
creating or editing properties, service definitions, and other code:
v Properties Editor
v JDBC Properties Editor
v Knowledgebase Properties Editor
v Service Definitions Editor
v BPML Editor

© Copyright IBM Corp. 2000, 2015 1

License Management Settings
Licenses provide you access to the different components offered by Sterling B2B
Integrator that you have purchased. Without the proper licenses, Sterling B2B
Integrator does not operate.

About this task

For example, after you purchase Sterling B2B Integrator, you can purchase new
components and open those components with a new license file. Occasionally, you
may need to update your license file for either administrative purposes, or when
your license file expires. You can view the component's license status and update
your license files through MESA Developer Studio.

To manage your license files:

Procedure
1. From the MESA Developer Studio perspective, double-click an instance. The

instance overview appears in the Control Editor.
2. Click the Settings tab at the bottom of the Control Editor pane.
3. Click Update Licenses.
4. Navigate to the appropriate license file. Click Open. The license file is

automatically updated.

Creating a MESA Developer Studio Project
Create a project in the Package Explorer to organize the files and resources you
will use on your local system.

About this task

To create a project:

Procedure
1. From the File menu, select New > Project.
2. Select Java > Project.
3. Click Next.

4. Type a name for the project.
5. Click Finish. A new project is added to the Package Explorer under the folder

name Other Projects.

Note: If no direct connection is possible between the host where Sterling B2B
Integrator is installed and the Windows PC where Eclipse is installed, and you
are using a proxy server, you must enable the HTTP proxy connection. From
the Window menu, select Preferences. On the left, select Install/Update. In the
Proxy settings section, add your proxy information and click Apply.

Managing Resources in MESA Developer Studio
Resources are files, templates, and documents that may be deployed in Sterling
B2B Integrator and that you can import and export from one system to another,
such as when you are migrating from a test to production environment.

You can check in, check out, lock, and unlock the following resources in MESA
Developer Studio:

2 Sterling B2B Integrator: MESA Developer Studio

v Business Processes – Business process model definitions and their associated
particulars

Note: In a cluster environment, business processes should be checked in from
the Sterling B2B Integrator UI, not from MESA Developer Studio. Currently,
MESA Developer Studio is not configured to set specific business processes.

v Maps - Translation maps used for converting file types including flat files, CSV,
EBCDIC, EDI, SWIFT, ACH, XML and others to different formats

v Property Files - The property files for Sterling B2B Integrator are available for
editing in MESA Developer Studio.
CAUTION:
We strongly recommend that you do not edit these files directly . Instead, use
MESA Developer Studio to view the property files, then create or edit a new
property file called "customer_overrides.properties" and add changes to
property files there. This ensures that your customizations for property files
are not lost or overwritten by a patch or upgrade. See the Property Files
documentation for more specific information about creating and using the
customer_overrides.properties file.

v XML schemas – Data that makes up XML schemas. In Sterling B2B Integrator,
XML schemas are used for several functions, including Reporting Services, Web
Services, translation maps, and reporting.

Working with Business Processes
Business processes may be created and edited in MESA Developer Studio using
either the BPML text editor or the GPM. Files with a .bp extension will by default
open the GPM; however, they may also be edited by using a option to open the
file with the BPML Editor.

About this task

Note: The default when you double-click a business process is for it to open in the
GPM. If you want to edit a business process using the BPML Editor, right-click on
the business process and select Open With > BPML Editor. MESA Developer
Studio remembers this setting so that the next time you double-click on that
business process, it will open in the BPML Editor.

The BPML Editor allows XML-like text editing of business processes along with
autofill of BPML activities. MESA Developer Studio allows you to start the GPM;
however, it runs independently of Eclipse.

To use MESA Developer Studio to edit business processes, you must set up the
GPM to be used in MESA Developer Studio. This enables you to launch the GPM
from within Eclipse when you double-click on a business process name, either in
your Package Explorer list of projects (local) or on your test server through a
configured instance. (Only files that have been checked out from the server are
displayed in that view.)

To set up the GPM:

Procedure
1. In Eclipse, from the Window menu, select Preferences.

2. On the left, select the Java > Installed JREs category.
3. In the Installed JREs section, click Add.

4. Enter the following information:

MESA Developer Studio 3

v JRE name - Type GBM JRE.
v JRE home directory - Click Browse to select the directory. You should use

JRE 6 with the GPM.
5. Click OK. You are now ready to edit business process files from within MESA

Developer Studio.

Note: The first time you start the GPM from Eclipse, your Sterling B2B
Integrator instance must be running.
For more information on managing business processes, see the business process
documentation.

About Working with Schemas
An XML schema is an XML document that specifies the structure of a valid XML
document. Comparable to a document template, an XML schema ensures that
every item is in the correct form.

An XML schema consists of the following components:
v XML declaration – defines the XML version that the schema uses
v Schema element – identifies the document as an XML schema
v Element declaration – defines the element
v Attribute declaration – defines the attribute

Schemas are used in Sterling B2B Integrator to validate translation data in the Map
Editor. When you submit an XML document using Sterling B2B Integrator, the
XML document is compared to the XML schema to ensure that the document is in
the appropriate format and is valid. For more information on managing schemas,
see the schema documentation.

Working with Properties Files
From MESA Developer Studio, you can add, edit, or delete properties within
existing files.

About this task

To open a property file:

Procedure
1. From the MESA Developer Studio perspective, expand the Properties Files

folder.
2. Double-click on the property file name you want to work with to open it in the

editor.
3. Do one of the following:
v Click Add to add a property. Type a name and value for the property.
v Select a property and click Delete to remove it.

Using the MESA Skin Editor

About the MESA Developer Studio Skin Editor
The MESA Developer Studio Skin Editor provides an interface where you can
quickly change the appearance or branding of Sterling B2B Integrator. This
includes basic page colors, images, and fonts.

4 Sterling B2B Integrator: MESA Developer Studio

The Skin Editor allows you to edit all of the main Sterling B2B Integrator
templates. You can change their properties so that they better reflect your
company's brand image. The templates (pages) you can edit include:
v AFT/myAFT
v Dashboard
v Login
v MBI (mailbox)
v Admin

Basic properties include page colors, images, and fonts. Advanced properties
include editable styles for Cascading Style Sheets (.css files). Changes are made
through the Skin Editor Plug-in in the Eclipse interface. You download a copy of
the current skin, make changes, then upload the revised skin to your Sterling B2B
Integrator installation. You can also save skin changes locally. You can revert to the
default skin at any time. Multiple skin versions can be saved for future use.

The css file is populated by the skins.properties_style_ext property file, which lists
all current skin-related values, like font and color. This file does not have an
initialization file and is generated during the installation. In the skin editor, when
you apply the default skin, the skins.properties_style_ext property file is
regenerated from the skins.properties.in file, which stores all default values.

Note: Sterling B2B Integrator must be running the first time the MESA Developer
Studio Skin Editor is used to verify the license and to download and deploy the
skin.

Tips for Using the Skin Editor
Depending on your task, there are a series of tips for using the Skin Editor.

When you open the Skin Editor, you must select a server from the Studio Tree
View.

Task Tip

Retrieve the current skin Before editing a template, you must retrieve
the current Sterling B2B Integrator page skin
from the instance of Sterling B2B Integrator.
From the toolbar at the top of the page,
select Skin > Download skin.
Note: If the current skin has not been
downloaded, you are prompted to retrieve
the skin from the instance.

Preview a skin In the skin editor, select a template to edit. A
preview window appears and you can see
changes you have made.
Note: When a template is edited, all other
pages sharing the same skin are updated.

Undo or redo skin changes Select Skin > Undo skin edit to undo the
last skin change. Select Skin > Redo skin
edit to redo the last skin change.

MESA Developer Studio 5

Task Tip

Open/save skin changes locally v Select Skin > Save skin locally to save
skin changes into a local file with the *.sty
file extension.

v Select Skin > Open skin to open a locally
saved skin file (*.sty) to continue skin
changes.

Restore the original (default) skin Select Skin > Apply default skin. The
original skin will be restored.

Deploy skin changes When the skin is ready to be deployed,
select Skin > Deploy changes. The changes
are saved to the remote instance of Sterling
B2B Integrator.

Using the Skin Editor to Edit a Sterling B2B Integrator
Template

Once the existing Sterling B2B Integrator skin is downloaded, you can use the Skin
Editor to make changes to an existing template.

About this task

The top left view provides a list of editable Sterling B2B Integrator pages. Click on
a page to open the property editor in the bottom left view, and open a preview
window on the right.

To edit a template:

Procedure
1. Open Eclipse and select the Skin Editor perspective.
2. Select the UI page type to be edited. The UI colors, image files, fonts, and

properties appropriate for that page type are displayed.
3. Make desired changes and click Save. The changes are displayed in a preview.

Note: You can refresh the view of the current skin at any time to see changes
applied.

4. Specify the instance to apply the changes.
5. Test the connection to your instance.
6. Update the configured instance with the new look and feel information. The

system confirms the update and displays a progress message.
7. You must restart/relaunch Sterling B2B Integrator for the changes to take effect.

What to do next

Use the advanced editing option in the Skin Editor to edit a Cascading Style Sheet
(.css file) to your skin. If your company uses an existing style sheet for other
applications, you can add it to the Skin Editor and use it to customize Sterling B2B
Integrator so that it will match your other applications.

You can also use advanced editing to view and make changes to either the default
UI settings, or the UI settings for the specified page type.

6 Sterling B2B Integrator: MESA Developer Studio

The skin editor will not update any css file. It saves the editable values in the
skins.properties_style_ext property file. The skins.properties_style_ext property file
is uploaded into the Sterling B2B Integrator instance and the new skin is affected
after restarting the instance.

The skins.properties_style_ext property file can also be manually copied to another
installation or upgrade installation of Sterling B2B Integrator. After copying the file,
you can apply the changes to the new Sterling B2B Integrator instance by running
setupfiles, running deployer.sh, and then restarting the instance. This skin update
can be used with both single node and cluster node installations and upgrade
installations.

Creating Services Using the MESA SDK

Creating Custom Services
Sterling B2B Integrator can perform most common tasks needed by a user, but
there are instances where functionality is needed that is not provided and an
existing service is not available.

This usually occurs in environments with legacy systems that do not use
standards-based methods for communication. There are several ways to interact
with these systems, including the Command Line Adapter 2 and the Script adapter,
but the capabilities of these adapters are limited.

MESA Developer Studio Software Development Kit (SDK) provides the tightest
integration with Sterling B2B Integrator and enables you to create complex and
complete services and adapters. These services use the same APIs as the services
included with Sterling B2B Integrator, so all of the benefits and infrastructure of
Sterling B2B Integrator are available. This flexibility and tight integration means
that creating a service is more advanced and requires good knowledge of Java™

development, Sterling B2B Integrator APIs, and the APIs of any system that will be
accessed by the service.

Note: Because all adapters are a type of service, this guide uses the term service for
both services and adapters. This guide uses the term adapter when the information
is unique to adapters.
CAUTION:
Creating a custom service will cause the loss of any customer-specific hot-fixes
installed on your system. If necessary reapply the hot-fixes afterwards.

What is a Service?

A service is a component that can be configured to carry out an activity in a
business process.

What is a Parameter?

Parameters can be configured to define and control your service. Any parameters
that you want to add to a service must be added to a parameter group.

MESA Developer Studio 7

What is a Parameter Group?

Parameter groups are logical groupings of similar parameters (for example, host
name and port). It is acceptable to have a parameter group with only one
parameter. There are three types of parameter groups, as described in the following
table:

Parameter Group Description Can be edited in this location:

Global Definition Widest scope. Applicable to all
services of this type. They have a
constant value for all instances of
a service.

Sterling B2B Integrator interface:
Deployment > Services >
Installation/Setup.

Instance Definition Specific to a single copy of a
service. Can have different values
for each instance of a business
process that calls the service
instance.

Page in a service configuration
wizard accessed through the
Sterling B2B Integrator interface,
Deployment > Services >
Configuration.

Workflow Definition Specific to a single invocation of a
service. Can have different values
every time the service is called.

Graphical Process Modeler.

What is an Adapter?

An adapter is a type of service that communicates with external systems to move
data in and out of Sterling B2B Integrator.

What is a Method?

A method is the Java equivalent of functions, subroutines, or procedures in other
programming languages.

Knowledge Prerequisites for Creating Custom Services
Creating custom services and adapters for use with Sterling B2B Integrator requires
specialized programming knowledge and skills, as well as a solid understanding of
Sterling B2B Integrator.

The following list includes the types of knowledge and experience necessary for
successfully creating custom services and adapters:
v Java (J2SE) programming knowledge
v General operational and architectural knowledge of Sterling B2B Integrator
v Eclipse programming experience

The following knowledge and experience are helpful, but not required:
v Multi-threaded programming experience in Java
v Ability to write custom APIs and user exits

Classes Available in MESA Developer Studio SDK
In MESA Developer Studio SDK, you have access to certain java classes for use in
creating custom services and adapters.

You can find detailed information about each class in the MESA Developer Studio
javadocs, which are located in the install_dir/install/studiodocs folder of your
Sterling B2B Integrator installation. The classes are grouped by functional area:

8 Sterling B2B Integrator: MESA Developer Studio

v ASI (Application Server Independence)
v IFC (Integration Framework Collection)
v AFC (Application Framework Collection)

The following tables describe the classes available for use with the MESA
Developer Studio SDK.

ASI Classes

“Application Server Independence” refers to the architecture used for the B2B
applications: no third party application server is needed. Javadocs for these classes
are located at install_dir/install/studiodocs/asi_javadocs.

ASI Class Description

ActivityData Used to store adapter-specific information about an active
adapter session. This information is formatted and
displayed as status information.

Document Represents incoming data (e.g., HTML or XML document)
to the Workflow system. Conceptually, it is the handle of
the persisted document in permanent storage (i.e., the
database), and provides the primary access to the
document's data.

IAdapterRMI Public interface for all adapters to implement method
names.

InitialWorkFlowContext Facilitates initiating and continuing workflows with or
without input data. It contains methods for supplying input
data to the workflow in the form of key, value pairs and as
a Document with supporting data that describes the
Document such as a Document Name, Document Subject,
Document Content Type, and so on. In addition there are
methods for specifying the workflow and version of the
workflow to be initiated or continued.

IService Service interface that will be implemented by the flat file
services.

LockManager The LockManager utility allows users to write classes that
use a common resource that should not be updated
concurrently by multiple classes. Classes can safely use
such a resource by first "locking" the resource using this
utility and then performing the desired operations on that
resource then "unlock" the resource for use by another
class. Classes that try to use a locked resource will receive
an exception that the resource is currently in use.

ServicesControllerImpl Implementation class of the ServicesController interface.
Used to manage and report on the status of different
adapters.

WFCBase Extends BaseWFCConstants. Implements
java.io.Serializable.

WorkFlowContext All-encompassing structure that contains all the information
regarding a workflow. All data members, get/set methods
should be in WFCBase.

WorkFlowException Thrown in response to events such as abnormal conditions
defined within a workflow, or run-time server exceptions.

MESA Developer Studio 9

IFC Classes

IFC classes are used to support the B2B application integration with other
applications. Javadocs for these classes are located at install_dir/install/studiodocs/
ifcbase_javadocs.

IFC Class Description

Event Represents an event that occurs in the system.

EventProcessor All generated events are sent here. Hands the event to all
the appropriate listeners for actual processing.

This singleton class provides a single, global point of entry
for all events generated in the system. However, to prevent
it from becoming a bottleneck, rather than have one
processor synchronized against all the threads in the
system, it is actually a threadlocal singleton. This means
that a new instance is created for every thread that asks for
one. This reduces the need for synchronization because
there will be an event processor per thread.

EventProcessorFactory Instantiates event processors.

IEventProcessor Event processor interface.

SemaphoreManager Uses an API generated by the Entity framework, and
allows users to share one single resource within the limit of
count. The resource can be a connection to extenal system
or simply a database connection.

AFC Classes

AFC classes include frameworks and classes that supply functions such as alert
management, monitoring, event management, UI frameworks, and reporting.
Javadocs for these classes are located at install_dir/install/studiodocs/afc_javadocs.

AFC Class Description

BaseDocument Extends java.lang.Object. Implements java.io.Serializable.

DocumentInputStream AppendCipherInputStream.java extends
DocumentInputStream and re-implements some of it
methods, which means that any public method added to
this class should be also added to
AppendCipherInputStream.java.

DocumentOutputStream DocumentCipherOutputStream.java extends
DocumentOutputStream and reimplements some of it
methods, which means that any public method added to
this class should be also added to
DocumentCipherOutputStream.java.

JDBCInputStreamWrapper Wrapper to an input stream for reading a blob from the
database.

JDBCOutputStreamWrapper Wrapper for writing the blob data to the database.

JDBCService A singleton class that provides access to one or many
connection pools defined in a property file.

Manager A management interface to the util.frame. Holds
configuration values and allows components to access
vendor specific configurations.

10 Sterling B2B Integrator: MESA Developer Studio

About MESA Developer Studio SDK
The MESA Developer Studio SDK helps you create and edit custom services and
adapters using the Eclipse development environment.

The MESA Developer Studio SDK is designed as an Eclipse plug-in and is installed
locally on your computer. Use the SDK to create a service, build and export a
service package within the Eclipse development environment, then install and test
it with Sterling B2B Integrator.

Like the MESA Developer Studio plug-in, the SDK plug-in runs independently
from Sterling B2B Integrator in the Eclipse IDE.

Upgrading from Previous Versions

MESA Developer Studio SDK is available for use with Sterling B2B Integrator. You
cannot open projects created with the deprecated Service SDK in MESA Developer
Studio SDK; however, you can import your existing java files from an old project
into a new SDK project. MESA Developer Studio SDK includes all of the
previously available Service SDK features, and includes new and enhanced features
such as code editors, validation, consistency check, and wizards that guide you
through specific tasks.

Use the MESA Developer Studio SDK Cheat Sheet
MESA Developer Studio SDK provides a cheat sheet to guide you through the
service development process. The SDK Cheat Sheet provides you with information
and step-by-step help to create a service by listing the sequence of steps required
to create and package a service.

About this task

As you progress from one step to the next, the cheat sheet automatically launches
the required tools for you. If there is a manual step in the process, the step will tell
you to perform the task and click a button in the cheat sheet to move on to the
next step. Relevant help information is also available to guide you.

To access the SDK Cheat Sheet:

Procedure
1. Open the MESA Developer Studio SDK perspective.
2. From the Help menu, select Cheat Sheets.
3. In the Cheat Sheet Selection window, expand the Application Studio folder and

select MESA Developer Studio SDK .
4. Click OK. The MESA Developer Studio SDK Cheat Sheet opens on the right.

Steps to Create a Service Using MESA Developer Studio SDK
You can create and install a service using MESA Developer Studio SDK in several
steps.

About this task

The process of creating and installing a service using MESA Developer Studio SDK
involves several steps. The following list provides a high-level overview of what is
required.

MESA Developer Studio 11

To create and install a service:

Procedure
1. Create a new SDK project.
2. Add business logic.
3. Add service parameters (optional).
4. Add any additional objects (optional).
5. Build a service package.
6. Install and run the service in a Sterling B2B Integrator test instance and verify

that the service works as expected.
7. Install the service in the Sterling B2B Integrator production environment.

Starting the MESA Developer Studio SDK
You can start the MESA Developer Studio SDK from your computer in Eclipse. The
SDK can run independently from Sterling B2B Integrator.

About this task

You do not have to be connected to the Sterling B2B Integrator instance in Eclipse
at all times. However, the WebDAV server must be running the first time you
launch the SDK and each time you want to deploy a service package to the
instance.

Note: If you are creating an adapter, verify that the third-party system you will
use the adapter to connect with is running and working correctly.

To start MESA Developer Studio SDK:

Procedure
1. Launch Eclipse.
2. From the Window menu, select Open Perspective > Other.
3. From the list, select MESA Developer Studio SDK.
4. If this is the first time you have launched SDK, you are asked to enter licensing

information.
5. Complete the following and click OK :
v Hostname - Type your application server name.
v Webdav Port - Type the WebDAV port number for your application server.
v Name - Type a descriptive name for this instance.
v Username - Type your Sterling B2B Integrator username.
v Password - Type the password for your username.

6. Click Finish.

Creating a MESA Developer Studio SDK Project
You can create a MESA Developer Studio SDK project using either the Cheat Sheet
or a series of steps.

About this task

Note: Services developed with the SDK should be tested and deployed in a test
environment before being deployed to a production instance.

You can either use the Cheat Sheet or follow these steps:

12 Sterling B2B Integrator: MESA Developer Studio

To create a project:

Procedure
1. From the File menu, select New > Project. The New Project dialog box appears.
2. Select MESA Developer Studio > MESA Developer Studio SDK Project and

click Next.
3. Type a unique project name (for example, the name of the service you are

creating) and click Next. Do not use spaces.
4. Complete the following Service Profile information and click Next:
v Service name – Unique name for the service, using Java naming standards.

Defaults to project name.
v Service package - Name of the Java package where the service should be

stored. Defaults to com.mypackage.
v Service label – Name of the service as it should appear in the Sterling B2B

Integrator UI. Defaults to project name. Make this name unique so that it can
be easily recognized in Sterling B2B Integrator.

v Service description – Meaningful description that will appear in the UI.
Defaults to starting with “This service implements...” but that can be
changed or removed.

v Service Version – Required for the service definition file. System created.

Note: Whenever you revise the service definition file, you must increase this
number (examples: 3 to 4, 3 to 3.1). When you reinstall the service and restart
Sterling B2B Integrator, the higher version will overwrite the previous
version in the database.

v Service type - Service or Adapter. If you select adapter, also select whether or
not it will be stateful.

5. Complete the Service build options and click Next.
v Document Storage Type Options – How the service stores documents when

running. This option is used in both Big A and Little a.
v Code Generation Options – If checked, the selected Document Storage Type

option will be used.
v Create Project Folder Options – Select the optional folders to be created for

the service project.
6. Select the SI Library version. The library version available depends on the

instance you are connecting to. You can load additional libraries.
7. Click Finish. The project is created. The system creates all required fields for a

deployable service. Edit the resource and Java files as needed to develop the
service.

Note: Saving the project regenerates the view of the project. The project should
be saved anytime a change is made that affects the navigation options for the
project. For example, adding a new file or folder creates a new navigation
object.

Add Business Logic to a Service
For a service to perform tasks, you add business logic.

About this task

In this step you extend the generated service code by adding your own business
logic to the Big A portion of the service using Java:

MESA Developer Studio 13

Procedure
1. From the Window menu, select Show View > Other > General > Tasks .
2. In the MESA Developer Studio SDK Package Explorer, find your new service

project. Expand the project so that you can see all components of the project.
3. Under src > com.mypackage, find the folder called yourservicenameImpl.java,

and double-click it.
4. The code for the project will be displayed in the Eclipse editor. Find the line //

TODO: Start here to implement the service logic.
5. Under that line, you can add logic that fits your service or adapter.
6. Save the project and regenerate the code.

Add Parameters to the Service Definition File
You can define service parameters that can be used to configure and control your
Service.

About this task

To add a parameter to a service:

Procedure
1. In the Package Explorer, expand the servicedefs node and right-click on

<service name>.xml.
2. Select Open With > Service Definition Editor. The service view opens with

the parameter group types displayed.
3. Right click on a parameter group type and select New Group.
4. Type a title for the new group and click OK.
5. Click the new group title to add instructions to the group properties.
6. Add parameters to the group. Right-click on the group title and select New

Vardef.
7. Type a name for the vardef (variable definition) and click OK.
8. Click the new vardef to add properties to this parameter.

9. Complete the following:

14 Sterling B2B Integrator: MESA Developer Studio

v Name – required. Name of the parameter as it will appear to the user.
System provided. Cannot contain spaces.

v Type – required. Java type of the parameter. Default value is string.
v HTML Type – required. HTML input type of the parameter. Valid values

are: Text, Select, and Radio. Default is Text
v Label – required. Cannot contain spaces.
v Validator – optional. Type of validator. Select from the list.
v Size – optional. Number of characters for the parameter display size.
v Max Size – optional. Maximum number of characters allowed for the

parameter.
v Options – optional.

10. Click File > Save project.
11. The Language property file (ui/properties/lang/en/service name_en.properties)

contains label/value pairs that allow to give labels (for example, variables) a
descriptive name in the user interface. If the language property file does not
contain a label for each corresponding entry you will receive an error message.
Right-click on the error message and select Quick Fix.

12. Select the desired fix and click OK. The language property file is updated
with the new label and an editor with the updated language property file
displays.

13. Save the language property file.

Note: Each time a Service Definition file or the language property file is
saved, a consistency check is performed between the files.

Adding Resources to a Service
Depending on the service you are creating, you may need to add third-party files
such as BPML, scripts, databases, properties, libraries, and .jar files.

About this task

In addition to adding these resources, you can also remove resources from the
project file (the original files are not deleted from their original location).
Additionally, you can create folders for any files you want to add to the service
project.

The Service SDK adds these files in the location you specify when you create the
service. If you add any of these resources, you must add the folders described in
the table of optional directories.

Write Log Messages into a Message Log File
MESA Developer Studio SDK supports the user in externalizing log messages
strings into separate message property files which can be used in the Java classes
of the service.

About this task

Service projects contain the following java classes for defining log messages:
v Message String Declaration File: service_nameMessages
v Message Property File : service_nameResources.properties

To write log messages:

MESA Developer Studio 15

Procedure
1. Edit the declaration file service_nameMessages. Declare a constant string variable

for each log message you want to use. The declaration has the following
syntax: public static String MessageID. It is helpful to start the message ID with
a component prefix. Example: public static String
ExampleImpl_NoTicketsAvail

2. Edit the resource file service_nameResources.properties. The log message entries
have following simple syntax: MessageID=Message_Text. Example:
ExampleImpl_NoTicketsAvail=No more tickets available

3. Use the log message in the Java Source Code Editor. To write an error message
with the XLogger log, the logError method is used. This takes a string
parameter as an argument. To pass the name of the message string, write
"ExampleMessages" then use the shortcut "ctrl-tab" to open the Eclipse Java
Editor auto-complete drop-down box, select the log message ID, and press
Enter. Example:
log.logError(ExampleMessages.ExampleImpl_NoTicketsAvail)

Create a serviceinstances.xml File
You can create a service instance under the New>File menu.

About this task

To create a service instance:

Procedure
1. Right-click on the project name and select New > File.
2. In the File Name field, type serviceinstances.xml.
3. Click Finish. A new file is created in the project.
4. Open the file serviceinstances.xml in an XML editor and define the instance.
5. If a serviceinstances.xml file already exists, you can import it into your project.

When you deploy the service package, the service instance is created
automatically.

Example (Serviceinstances.xml):

In this example of an serviceinstance.xml file, an Adapter instance MyExample is
created for the Adapter Example which is described in the service definition file
below.

The Adapter Example has only one instance variable, UserName. In the Adapter
Instance MyExample, the instance variable UserName is configured with the value
“Smith.”
<?xml version="1.0" encoding="UTF-8"?>
<services>
<service parentdefname="ExampleAdapter"
name="MyExample"

displayname="Example Adapter"
description="Test Instance of ExampleAdapter"

targetenv="all"
activestatus="1"
systemservice="0"
parentdefid="-1">
<parm name="UserName" value="Smith"/>
</service>
</services>

16 Sterling B2B Integrator: MESA Developer Studio

Service Definition File
<SERVICES>
<SERVICE name=" ExampleAdapter "

description="example.description"
label="example.label"
implementationType="CLASS"

JNDIName="com.mycompany.example.ExampleAdapter"
type="Adapter"
adapterType="STATEFUL"
adapterClass=" com.mycompany.example.ExampleAdapterImpl"
version="3.0"
SystemService="NO">

<VARS type="instance">
<GROUP title="example.group1.title"

instructions="example.group1.instructions">

<VARDEF varname="UserName" type="String" htmlType="text"
validator=" ALPHANUMERIC " size="20" maxsize="40"
label="example.username" />

</GROUP>
</VARS>

</SERVICE>
</SERVICES>

Change the SDK Library Version
If you need to use SDK Libraries other than those supplied with your version of
Sterling B2B Integrator (platform_library.jar and Studio-API.jar), you can switch to
a different (newer) SDK Library.

About this task

To change library versions:

Procedure
1. Download the required two jar files to the Windows machine where Eclipse

and MESA Developer Studio SDK are installed.
2. Navigate to the directory of your Eclipse installation to the

Eclipse-root\plugins\com.sterlingcommerce.mesa.servicesdk_3000.0.0\lib
directory. The subdirectory 3000 contains the two SDK Libraries (jar files)
delivered with this version.

3. On the same level, create a subdirectory containing the name of the additional
or new Sterling B2B Integrator version and copy the two jars from step 1 into
the new directory.

4. Navigate to the Eclipse-root\plugins\
com.sterlingcommerce.mesa.servicesdk_3000.0.0\res directory. The
subdirectory 3000 contains the file AntExport.xml which is used by the Export
Wizard.

5. In the Eclipse-root\plugins\com.sterlingcommerce.mesa.servicesdk_3000.0.0\res
directory, create a new subdirectory with the name of the new MESA
Developer Studio version (for example, 3000.0.1).

6. If you did not create a new AntExport.xml file, copy the existing file from the
res\3000 directory to the new directory. If you created a newer AntExport.xml
file, copy that one to the new directory instead.

7. Repeat steps 1 - 6 for all different versions of SDK Libraries you require in the
SDK.

8. Start Eclipse and switch the perspective to MESA Developer Studio SDK.

MESA Developer Studio 17

9. If you want to change the Sterling B2B Integrator version of a service that is
already created, select SDK Libraries [3000] from your project directory.

10. Right-click and select Configure.

11. From the list, select the SDK Libraries you added using steps 1 -6.
12. Click Finish. The new SDK library version is now available from the list in

the New Project Wizard.

Export a Service for Deployment
Once you have created a service you can package it for installation into Sterling
B2B Integrator. In this process, you bundle all of the required service resources
from your project in a package (Jar-archive) that can be deployed on your Sterling
B2B Integrator system.

About this task

To build a service package:

Procedure
1. In Eclipse, select the project you want to export in the Package Explorer. (You

can package more than one service at the same time by using the Ctrl key
when selecting.)

2. Right-click and select Export.

3. In the Export window, select Mesa Studio > Service Packages as the export
destination and click Next.

4. Browse to select the destination directory.
5. Click Finish. The service package service name_version.jar is built and placed in

the selected package folder/service name/dist/service name folder. You may be
prompted to save resources before the export is executed.

Note: The export process always exports the entire project even if you selected
only one or more of its subcomponents.
The export process writes to the AntExport.log file in the destination
directory/adaptername directory with the results of the packaging process. The
service is now ready to be installed into Sterling B2B Integrator.

Install a Service into Sterling B2B Integrator
After you create a service and package the source code, you must install the
service package into Sterling B2B Integrator.

About this task

Note: Before you install the service package into a production environment, you
should install and test it in a test environment.

To install a service package:

Procedure
1. From the MESA Developer Studio perspective, choose the Sterling B2B

Integrator instance where the service will be installed.
2. Right-click and choose Install Service Package.
3. Browse and select the package file. Click Open.

4. Click Finish to begin the installation of the service.

18 Sterling B2B Integrator: MESA Developer Studio

5. After the service package is installed, restart Sterling B2B Integrator.
6. Log in to Sterling B2B Integrator and ensure that the service definition can be

viewed and configured by using the options available from the Deployment >
Services > Configuration screen.

Update a Service Definition
Anytime a service definition is modified, the version must be changed in the
service definition (.xml extension) file.

About this task

When the updated service is exported to Sterling B2B Integrator, the version
numbers are compared. If the new version number is greater, the old service
definition is overwrtten in the database by the updated files.

To update a service definition:

Procedure
1. Make changes to files for your service as needed.
2. In the Package Explorer, expand your project and open the servicedefs folder.
3. Doubleclick the service definition (.xml extension) file. A service.xml tab

appears at the top.
4. Click the Design tab at the bottom and expand SERVICE to display the

attributes for your service.
5. Replace the value for the version attribute with the new version number.

Restriction: The new version number must be incremented by a whole number
or a decimal. Strings such as 2.1.1 cannot be used.
Note: Alternately, click the Source tab at the bottom and edit the .xml file
directly. Example:
name="FileRename" type="Service" version="3.1"

6. Save and close the service definition (.xml) file.
7. Rebuild (export) the service.
8. Reinstall the service into Sterling B2B Integrator. If asked whether previous files

should be overwritten, click Yes.

Architecture

Introduction to Sterling B2B Integrator Architecture
Sterling B2B Integrator executes customer-specific business processes. An
XML-based business process model directs the order of all processing activities in
Sterling B2B Integrator.

Business Process Definitions

Business process definitions are based on the draft Business Process Modeling
Language (BPML) specification from the Business Process Management Initiative
(www.bpmi.org). Business process definitions are stored in XML and can be
created in any editor that can export the XML format recognized by Sterling B2B
Integrator.

MESA Developer Studio 19

Services

Sterling B2B Integrator views every activity in a business process as a service. A
service can initiate:
v Legacy programs
v ERP systems
v Perl scripts
v Java code
v Decision engines
v Most computer programs

Sterling B2B Integrator supports the reuse of business processes, which allows
activities to be implemented as a service, a business process, or subprocess.

Reuse also enables business processes to be written with multiple reusable
components or as a single large service. For example, RosettaNet™ support can be
implemented as multiple activities strung together to form a business process or as
a single service.

There are several basic types of services, as described in the following table:

Type Description

Internal Services that are completely inside Sterling B2B Integrator.

Although internal services accept parameters and produce results,
they do not directly interact with external systems (systems
outside Sterling B2B Integrator).

Input Services that receive data from external systems.

Output Services that send data to external systems.

Transport Adapter Services that use communications protocols like FTP and HTTP to
move data into or out of Sterling B2B Integrator.

Application Adapter Services that interact with external application systems.

Adapters

Adapters are generally defined as services that interact with external systems. They
are special cases of services that interact with external systems, or that store or
manage state data outside of the workflow context.

Components of a Service
Every service accepts a business process state and produces a modified business
process state or workflow context (WFC). Every service also has a harness.

For the service, the harness performs the following functions:
1. Receives the input WFC
2. Extracts the information from it that the service needs
3. Runs the service
4. Places the results from the service in a new WFC or output for future steps in

the business process workflow

20 Sterling B2B Integrator: MESA Developer Studio

Example of a Service

A FileRename service uses the java.io.File class renameTo() method to rename files.
The service takes three input parameters: sourceFile, destinationFile, and overwrite,
a Boolean flag to indicate if the target file is being overwritten.

Workflow Context

The workflow context (WFC) object is the service's primary API to the engine. The
WFC represents the business process state after each service has run. The WFC
input to a service is written to a database. The service step is complete after the
new WFC is placed in persistent storage.

If Sterling B2B Integrator stops, it can be restarted from the persisted WFCs by
finding the most recent WFCs and sending those requests to the appropriate
services. Services can be restarted automatically. Adapters, which are put in a
halting state when Sterling B2B Integrator starts, require user intervention to restart
them.

Basic Service Framework

The basic service framework, or harness model, enables Sterling B2B Integrator to
view all services in the same way. For example, both the Translation service and
the File System adapter have harnesses. Although they are different services, they
support the same API, which is represented by the harnesses.

Some adapters, such as the SAP and BEA Tuxedo adapters, are used to harness a
system that is outside the control of Sterling B2B Integrator. Although these
adapters perform diffierent activities, each has a harness that presents a consistent
interface to the rest of the system. The harness is generic, but the adapter itself is
specific to the system it interacts with. Using the basic framework, you can start,
configure, and stop an adapter for an external system in the Sterling B2B Integrator
interface. The actual operations of the external system are separate.

The harness enhances system performance. For example, the harness wrapped
around the Translation service caches and reuses translation maps. The actual
Translation service is unaffected by this action. This independence is especially
important when the wrapped service is outside the control of Sterling B2B
Integrator.

Special Service Capabilities

Sterling B2B Integrator supports the following unique capabilities, which provide
flexibility in managing services:
v Large file support – The ability for services to handle files larger than available

memory. This can be an effective way to help manage load sharing.
v Service groups – The ability to group “like” services together and treat them as a

pool of services
v Storage types – The ability to select the document storage type for a service,

such as Database or File System

Relationship Between Business Processes and Services
Before you can run a business process definition, you must validate and compile it.

Validation looks for and reports certain known issues.

MESA Developer Studio 21

Compilation breaks the definition into smaller chunks: a header and entries. The
header specifies global properties of the business process definition. Each service
within the definition has an entry. The compiled information for each service
orchestrates coordination between that service and subsequent services and the
parameters that they require. This coordination information uses the status of a
service to determine the next step in the flow of execution from the service to the
engine.

Business Process Example

Service A is orchestrated in such a way that, if it returns success, it directs
processing to continue to Service B, but a failure directs processing to continue to
Service X.

Sterling B2B Integrator stores the compiled information for each service in the
compiled ActivityInfo. ActivityInfo contains an abstract description of the service,
such as "Translate the current document using map 5."

Compilation enables Sterling B2B Integrator to predetermine the start node of a
business process. This capability makes the business process easy to instantiate and
run and prevents Sterling B2B Integrator from repeatedly parsing XML.
Compilation also reduces the number of database queries because the next-step
pointer is stored in the current activity information.

Starting a Business Process

Sterling B2B Integrator supports dynamic selection (bootstrapping) of business
processes. To specify dynamic selection of a business process, configure an adapter
to select a business process definition by matching one or more adapter properties.

Input data enters Sterling B2B Integrator through an input adapter. An input
adapter performs the following functions:
v Receives data from an external system
v Puts the data and any metadata into an initial workflow context (IWFC)
v Calls the IWFC start method to start the business process, which causes a

business process definition to be found and instantiated for the input data

Sterling B2B Integrator starts a new process and the following steps are taken:
1. A new WFC is created.
2. The WFC is put in persistent storage.
3. Sterling B2B Integrator starts the associated business process.

Many-to-Many Relationship

The separation of business logic (BP) and the endpoint (adapter) allows for a
many-to-many relationship between adapters and business process definitions.
Using the metadata given to the IWFC, one adapter can start several business
processes.

Conversely, several adapters can start the same business process. A many-to-many
relationship between adapters and business process definitions enables Sterling
B2B Integrator to focus on business problems, not just on how data arrives.

22 Sterling B2B Integrator: MESA Developer Studio

Making an input adapter the first step in a business process impairs the
many-to-many relationship and keeps the business process from being reused as a
subprocess.

Business Process Definition Fails to Start

If an adapter tries to start a business process definition that does not exist or is
disabled, Sterling B2B Integrator saves the request to start the business process
definition and any related documents within Sterling B2B Integrator. The user can
use the business process monitor to view error messages for any business process
definitions that failed to execute.
v If the business process definition cannot be found, the user can do an advanced

restart and select a different business process definition, which uses the same
input data.

v If the business process definition is disabled, then when the user enables that
business process definition, Sterling B2B Integrator automatically resumes any
instances of that business process definition that stopped.

To ensure that an adapter catches the InitialWorkFlowContextException, code its
logic accordingly:
{

iwfc.start()
}

catch
(InitialWorkFlowContextException)
{
//do not delete our data here if this happens
//set the appropriate response to the user
}

To enable an adapter to start a business process with more than one document,
code the following commands:
//for a single document
Document doc = new Document();
etc.
iwfc.putDocument(doc)
//for more than one document
Document doc1 = new
Document();
etc.
Document doc2 = new Document();
etc.
iwfc.putDocument(name1, doc2);
iwfc.putDocument(name2, doc2);

name1 and name2 are unique keys for the document within Sterling B2B Integrator.
When there is only one document, Sterling B2B Integrator assigns the unique key
of PrimaryDocument.

If a service needs to write more than one document, the service calls:
wfc.putDocument(name,doc);

For a single document, the service calls:
wfc.putDocument(doc))

To get a specific document from a set, the service calls:
wfc.getDocument(name)

MESA Developer Studio 23

Running a Business Process

When a business process starts, the workflow engine (WFE) executes the services
defined in the business process definition and the WFE creates a workflow context
(WFC) from the initial workflow context (IWFC). The WFE uses the compiled
ActivityInfo to get information about the first service to call. Next, the WFE puts
the WFC on the ASI queue, so that the client initiating the business process does
not wait for it to complete.

The WFE analyzes the compiled information to determine the current activity
(service) that needs to be run. This information is stored in the compiled
ActivityInfo. The ActivityInfo contains an abstract description of the service.

The WFE determines, for example, how the Translation service has been configured
to run.

The following figure shows the execution cycle:

The ASI queue acts as a hand-off point. It does more than routing-it guarantees
that the Java thread of execution is not interrupted during the running of the
business process. The listener attached to the ASI queue is a lightweight activity
engine. The activity engine takes the WFC off the ASI queue and invokes the
service. Logically part of the workflow engine, the activity engine calls the service,
takes the results from the service, and immediately starts the next cycle,
determining the service that needs to be called and requesting that service on the
ASI queue.

The activity engine can determine the next service because the harness has
analyzed the service results and set the state values in the WFC. The activity
engine consults these values to determine the next activity. The activity engine uses
the return code from the current service to choose the next activity from a set of
potential activities listed in the current ActivityInfo.

Service Harness Implementation and Service Adapter
Implementation

For the development of adapters, the service architecture provides a clear
separation of concerns.

There are two parts to each adapter implementation:
v Service harness implementation is the part of the adapter inside the ASI

container. It provides interaction and interface with the workflow engine.
v Service adapter implementation is the part of the adapter outside the ASI

container. It provides the interface to the external system.

This allows the service adapter implementation to run independently of the
container if necessary, and gives more implementation options for the developer.
Services that do not to interface beyond the process boundary of Sterling B2B
Integrator do not need a service adapter implementation component .

24 Sterling B2B Integrator: MESA Developer Studio

The following figure shows an adapter implemented with a service harness
implementation and service adapter implementation.

The service harness implementation automatically scales and is portable across
clusters because it is instantiated from within the ASI container. The service
adapter implementation is tied to a specific computer. The service harness
implementation can move around from one call to the next. The service adapter
implementation, however, is fixed next to the resource it is accessing.

Example of Service Harness Implementation and Service Adapter
Implementation

A cluster of computers in a ASI environment has private disk space on one
computer. The service adapter implementation portion of the File System adapter
must be on the computer that can access the disk. The service harness
implementation portion of the File System adapter, however, can run in any
container on any computer.

In the following figure, the service harness implementation is moved to a different
container in a different Java VM:

MESA Developer Studio 25

B2B Server

Sterling B2B Integrator includes a business-to-business (B2B) server. The B2B server
can be viewed as an independent system.

The following figure shows a traditional model of B2B and enterprise application
integration (EAI):

However, within Sterling B2B Integrator, it is more appropriate to view the B2B
server as a complex adapter. The B2B server has a two-part service adapter
implementation. One part runs in the DMZ and one part runs in the ASI
environment.

The following figure shows a B2B server as a complex adapter:

Secure DMZ

The part of the B2B server that runs in the DMZ performs communications
activities only. It stores no data. Trading profiles are stored in the secure area
where Sterling B2B Integrator resides. The part of the B2B server in the DMZ can
run in a simple Java Virtual Machine (JVM) or a complete ASI environment.

The part of the B2B server in the DMZ and the part of the B2B server inside the
secure area communicate as if they were separate systems and not part of a single
ASI environment.

26 Sterling B2B Integrator: MESA Developer Studio

Service and Operations Controllers

Sterling B2B Integrator service and operations controllers monitor and manage
executing services and workflows within the Sterling B2B Integrator environment.
These controllers free system operators and business analysts from having to
attend to application-server details.

Service controllers provide a single place within a VM to manage, configure, query,
and cache all service-related information. They also enable Sterling B2B Integrator
to scale and manage the service adapter implementation parts of adapters. There is
one service controller per VM in the ASI Container.

Operations controllers manage resources across VM boundaries. You can have
multiple operations servers for redundancy and several embedded components,
one per VM. Operations servers provide a single point of contact for all
operational questions.

The following figure shows the service and operations controllers:

Developing a Service

Adapter Architecture Summary
An adapter interacts with external systems to get data in and out of them.
Typically, an adapter consists of a harness, a Remote Method Invocation (RMI),
and files that enable the adapter to be used in the Sterling B2B Integrator interface.

Harness

The harness part of the adapter must implement the processData() function, which
the activity engine calls whenever it has work for the adapter to perform. This
function can be called to push data out of the system or signal that data needs to
be collected.

MESA Developer Studio 27

RMI (Service Adapter Implementation)

Preferably, most of an adapter workload should reside in the Service Harness
Implementation. The service adapter implementation exists mainly to allow for a
separation of concerns from the harness.

Typically, adapters do some work that would be inefficient or hinder operation
completely within the ASI Container. For example, the service adapter
implementation can be set up to wait for data to arrive and to periodically poll the
external system for data.

Scalability

Services in Sterling B2B Integrator are scalable: for adapters, the service adapter
implementation creates a new thread to service each new request it receives. The
service adapter implementation is multi-threaded by default. You do not need to
write additional code.

About the Workflow Context Used by Adapters
The workflow context maintains the state of the business process from service to
service. It contains, among other things, the document being manipulated by the
business process. This is also where each service reports errors and status.

The workflow context API encapsulates a basic unit of work, including all
parameters required by the adapter to act on that unit of work.

The Sterling B2B Integrator infrastructure is designed to persist the workflow
context between steps.

The workflow context contains several components:
v Input Parameters – Retrieve parameters before beginning the operation
v Workflow Document Body – Set up the document body
v Error Reporting – Set up status and error reporting

Input Parameters

A service should have all of its parameters before doing any of its core logic. The
workflow context provides the getWFContent method to retrieve parameters:
getWFContent(String parmName);

The getWFContent method retrieves a named input parameter from the workflow
context. It gets global (service type), copy (service configuration), and WFD
(workflow definition or business process definition) level parameters.

WFD parameters override service configuration parameters, which override service
type parameters. If the workflow content message contains a string value with the
parmName requested in the getWFContent method call, then the value in the
workflow content hash table overrides all other values.

The hash table can contain any type of object. The getWFContent method enables a
parameter to override a higher-level parameter only if its value is stored as a string
in the hash table.

For example, the following string would retrieve an input parameter named URL:

28 Sterling B2B Integrator: MESA Developer Studio

String url = getWFContent("URL");

The service may need to get a parameter passed at run time by a previous service.
If the parameter is not a service type, service configuration, or WFD parameter
being overridden, then the service calls:
getWFContent(parmName);

Workflow Document Body

A typical service or adapter operates on a document contained within the
workflow context. The document contains the body of the document, information
about the name of the body, and metadata that describes the document.

To retrieve the document from the workflow context, use the streaming method:
InputStream inputStream = document.getInputStream();
byte[] body = new byte[102400];
int read = 0;
int position = 0;
while (inputStream.available() > 0) {

read = inputStream.read(body, position, 102400);
position += read;
//do something with the bytes read

}
inputStream.close()

After the document is retrieved, you can obtain the body of the document by using
streaming APIs. The following example shows a new document body inserted into
the workflow context:
OutputStream outputStream = null;
Document document = wfc.createDocument();
document.setBodyName("somename");
try {

outputStream = document.getOutputStream();
outputStream.write(someByteArray);
/*

A more likely scenario is a looping construct where we read
from one stream and write to another.

*/
} catch(Exception e) {

theAdapterLog.logError("Houston, we have a problem." e);
wfc.setBasicStatusError();
sci.unregisterThread();

} finally {
//Always make sure we close out document output streams.
try {

if (outputStream != null) {
outputStream.close();

}
}catch(Exception e) {

theAdapterLog.logError("Error closing document in adapter EXAMPLE." e);
}

}
wfc.putPrimaryDocument(document);

Error Reporting

Another important component of the workflow context is status and error
reporting. The workflow engine requires an adapter to return status information at
the completion of the requested activity. The requesting business process uses this
information to make decisions that control business process flow. Status is reported
within the workflow context.

MESA Developer Studio 29

About the Service Controller Framework Used by Adapters
The service controller is a unified framework that all adapters use to remove
application server dependencies. The service controller is also responsible for
starting and stopping the adapter.

Stateless and Stateful Adapters

Stateless and stateful adapters differ at the object level. For stateless adapters, the
service controller instantiates one object that services all configured copies of the
adapter. Each request to the service adapter implementation of the adapter must be
a complete request, because states cannot be maintained between requests. For
stateful adapters, the service controller instantiates one object for each configured
copy of the adapter.

Instance variables for RMI objects are not useful because multiple threads (or, in
the case of stateless adapters, multiple copies of the adapter) have access to the
same instance variables, as if they were class variables.

Method variables are unique to the invocation of the method, so they are
acceptable to use.

Service Controller Interface

An adapter is composed of two parts:
v A harness that is the interface to the workflow engine
v An RMI server that communicates with external systems

The code example below shows how the adapter processData method does the
following:
1. Registers with the service controller
2. Finds its RMI service
3. Invokes an RMI method
4. Unregisters with the service controller
5. Returns this code to the workflow engine:

String svcName = wfc.getServiceName;
ServicesControllerImpl sci = ServicesControllerImpl.getInstance();
sci.harnessRegister(new Integer(wfc.getWorkFlowId()).toString(),

svcName);
try{

rmi = (Yourserver)sci.getAdapter(svcName);
}catch(Exception e){

wfc.setBasicStatusError();
sci.unregisterThread();
return wfc;

}
if (rmi == null){

wfc.setBasicStatusError();
sci.unregisterThread();
return wfc;

}
try {
// request “Service Adapter Implementation” to do work
rmi.someRMIMethod(parms, xmlInBytes);
}
catch(Exception e) {

30 Sterling B2B Integrator: MESA Developer Studio

wfc.setBasicStatusError();
sci.unregisterThread();
return wfc;

}

This code example uses the following methods to accomplish its work:

Method
Description

harnessRegister(workflowID, serviceName)

Assists the service controller in its monitoring and control functions. The
harnessRegister should be called at the beginning of the processData
method.

Returns – None.

UnregisterThread()

Assists the service controller in its monitoring and control functions. It
should be called before the return of the processData method.

Returns – None.

Service Controller Interface – RMI

The IAdapterImpl class provides the following methods for use in the service
adapter implementation of the adapter:

Method
Description

startup()

The service controller calls startup() after a stateful adapter is created.
Startup() should perform all setup and initialization necessary for the
adapter to function correctly.

This method returns a Boolean value. A true return indicates that startup
was successful.

shutdown()

The service controller calls the shutdown() method when a stateful adapter
shutdown is required. shutdown() should perform all operations necessary
to shut down the adapter.

In the case of a multi-threaded adapter, shutdown() must ensure that all of
its threads are stopped before returning to the service controller.
shutdown() should wait for threads that are performing work directly for a
workflow to become quiescent. The adapter can stop threads that are
waiting for external input.

The IAdapterImpl base class provides the methods interruptThreads() and
stopThreads() to assist in shutting down errant threads.

As an additional assistance to the shutdown() method, the base class
provides a count of registered threads. This count can be found in the
invokes variable. The shutdown() method should poll this variable no
more than once a second, waiting for it to decrement to zero. Note that the
shutdown thread does not appear in this count.

MESA Developer Studio 31

If the adapter has threads that listen on sockets, the invokes count may
never go to zero. The shutdown() method will need to account for this
case.

The service controller will not wait indefinitely for shutdown() to fulfill its
responsibilities. The adapter can configure the time-out period by
overriding getShutdownTimeout(). The service controller enables
shutdown() for the amount of time returned from getShutdownTimeout(),
and then the shutdown thread is terminated.

This method returns a Boolean value. A true return indicates that the
shutdown() method completed successfully.

refresh()

The service controller calls refresh() when the configuration changes for a
stateful adapter. refresh() should perform all setup and initialization
necessary for the adapter to function correctly.

If an adapter maintains a connection or connections to an end system, and
the connectivity configuration changes, refresh() should return a false value
to the service controller. In this case, the service controller shuts down the
adapter and then restarts it. This action prevents workflows from trying to
invoke the adapter while connectivity changes are occurring.

This method returns a Boolean value. A true return indicates that refresh()
completed successfully. A false return indicates that the adapter did not
refresh, in which case the service controller shuts down the adapter and
then restarts it.

getShutdownTimeout()

The service controller calls getShutdownTimeout() to determine how long
to wait for shutdown to complete before terminating the adapter threads.

A default implementation provided in the base class returns 60 seconds.

This method returns the period for shutdown to complete, in milliseconds.

interruptThreads()

The interruptThreads method is provided in the base class to assist the
adapter shutdown() method in shutting down its active threads.
interruptThreads() calls the interrupt method on each active thread and
assists in a graceful shutdown where possible.

Returns – None.

stopThreads()

The stopThreads method is provided in the base class to assist the adapter
shutdown() method for active threads. stopThreads() terminates every
active thread.

Returns – None.

registerThread()

The registerThread method assists the service controller in its monitoring
and control functions. registerThread() should be called at the beginning of
each method called by the service harness implementation portion of the
adapter.

Returns – None.

unregisterThread()

32 Sterling B2B Integrator: MESA Developer Studio

The unregisterThread method assists the service controller in its
monitoring and control functions. unregisterThread() should be called at
the end of each method called by the service harness implementation
portion of the adapter.

Returns – None.

Error and Status Reporting
The workflow engine requires a service to return status information at the
completion of the requested activity. The requesting business process uses this
information to make decisions that control business process flow.

Three types of status information are returned to the workflow engine:
v Basic status
v Advanced status
v Exceptions

Basic Status

Basic status is the overall status of the work performed by the service.
wfc.setBasicStatus(status)

For example:
wfc.setBasicStatus(WorkFlowContext.ERROR);

Advanced Status

The advanced status is a modifier for the basic status. Reporting the advanced
status requires the service writer to analyze the service error categories. Business
analysts use the list of advanced errors to test for error conditions. The list should
be representative, but not long.

The workflow context provides the following method for setting advanced status:
wfc.setAdvancedStatus(StringadvancedStatus);

Exceptions

An exception indicates a possible failure condition. A service may need to generate
a workflow exception when a required input parameter is:
v Missing
v Invalid
v Disabled. For example, a map or a workflow definition is disabled.

Use the following syntax to construct an exception:
new
WorkFlowException(String errorText, int reasonCode)

Workflow exception reason codes are:
v public final static int GENERAL_PARM_ERROR = 0; (Default) Use this in

situations that require, for example, missing properties files.
v public final static int MANDATORY_PARM_MISSING = 1;
v public final static int INVALID_VALUE_FOR_PARM = 2;
v public final static int RESOURCE_DISABLED = 3;

MESA Developer Studio 33

v public final static int NO_DOCUMENT = 4

The workflow engine places the error text string for the workflow exception into
the status report.

Status Report

The service can add text describing the activity performed to the workflow context.
The workflow context uses the following method for this purpose:
setWFStatusRpt(“Status_Report”,statusReportText);

A status report is available to view if an Info icon appears in the Report column.
Click the icon to display the status report for that service. You can view the status
report text from the Sterling B2B Integrator interface.

Successful Invocation

Use the Sterling B2B Integrator interface to view the progress of a business
process as it executes; use the business process monitor to view details
after a business process has run. When a service is successfully invoked,
the Status column displays Success. This display is a result of calling the
setBasicStatusSuccess() method in the workflow context. In this case, the
advanced status does not need to be set.

Unsuccessful Invocation

An unsuccessful invocation of an adapter or service should result in the
Status column displaying Error. This display is a result of calling the
setBasicStatusFailure() method in the workflow context. The
setAdvancedStatus() method is also called to give additional information
about the failure condition.

Setting Up User Prompts for Configuring a Service in the UI
The console can be set up to prompt for configuration information specific to the
service being developed. Simple service configuration does not require you to
write any Java code. The only requirement is that the service XML file is set up to
specify the information to be collected.

To set up the console, use the following files:
v Language-specific properties files - Provides screen text in the language chosen

by the user
v Service XML file - Describes the information collected at configuration time

Language-Specific Properties Files

The language-specific files should exist for each service XML file. It is also
customary to pick a two- or three-character service abbreviation for the service and
prepend this abbreviation to each language-specific property name. For example,
for a file system, fs would indicate file system and look like fs.label or fs.description.
This convention helps to ensure that the language-specific property names are
unique.

Here is an example of a language-specific properties file:
fs.label = File System Adapter
fs.description = Collects and Extracts files from a file system.
fs.wfd.group1.title = Workflow Properties
fs.wfd.group1.instructions = Specify the appropriate workflow settings.

34 Sterling B2B Integrator: MESA Developer Studio

fs.instance.group1.title = Collection
fs.instance.group1.instructions = Specify the appropriate settings for collecting
data using the File System Adapter.
fs.action = Action
fs.cfolder = Collection Folder name
fs.efolder = Extraction Folder name
fs.pollinterval = Poll Interval (mins)

Service XML File

Here is an example of the service XML file:
SERVICE name="FileSystem"
description="fs.description"
label="fs.label"
implementationType="CLASS"
JNDIName="FileSystemEJBHome" type="Adapter"
adapterType="STATELESS"
adapterClass=
"com.sterlingcommerce.woodstock.services.filesystem.FileSystemServerImpl"
version="1.0" SystemService="NO">

A service XML file includes these variables:

Variable Description

name Descriptive name of the service

description Description in language-specific form

label Descriptive name in language-specific form

implementationType Either RMI or CLASS

JNDIName Lookup name of the service

type Adapter, basic, Advanced, Split, or Join

adapterType STATEFUL or STATELESS

adapterClass Class name of the Service Implementation of the adapter

version 1.0 - System-assigned value when the project is created.

If the service definition changes, the version number must be
incremented before the new definition is exported. See Update a
Service Definition.

systemService NO for adapters

<VARS> Tags

Inside the <Service> tag are <VARS> tags. The <VARS> tags contain definitions of
configuration items to collect from the user. Three types of <VARS> tags
correspond to the scope of the configuration:
v global - The widest possible scope, applicable to all adapters of this type.

Configuration parameters are displayed in the Deployment > Services >
Installation/Setup section.

v instance - Limited in scope to a single instance of an adapter. Configuration
parameters are displayed in the Deployment > Services > Configuration
section.

v wfd - Workflow definition configuration for use only by the Graphical Process
Modeler. The primary purpose of this tag type is to define the possible

MESA Developer Studio 35

configuration that can be made in the workflow definition. Because the
configuration is defined here, the Graphical Process Modeler can display the
possible configuration to the user.

<VARS> Tag Example

Following is a sample <VARS> tag:
<VARS type="instance">

<GROUP> Tags

Inside the <VARS> tags are <GROUP> tags. <GROUP> tags group configuration
information by page. The <GROUP> tag is part of the <VARS> tag and contains
title and instructions. Valid values are:
v title - title of the current page
v instructions - help describing what the user is supposed to do with the current

page.

The following is an example of a <Group> tag:
<GROUP title="fs.instance.group1.title"
instructions="fs.instance.group1.instructions">

<VARDEF> Tag

Inside the <GROUP> tag is the <VARDEF> tag.

The following table describes the <VARDEF> tag elements:

Tag Type Description

varname Name of the Java property that a service uses to retrieve data collected
from the user.

type Type of the input, normally String.

htmlType Type of input you are retrieving from the user. Valid values are:

v text - normal textual information

v radio - radio buttons

v Password - retrieve password information

v textarea - text area

v select - drop-down list

validator Validation types-for example, ALPHANUMERIC specifies that only
alphabetic and numeric characters are accepted as input. NUMBER and
NUMERIC specify only numeric validation.

label Description of the configuration to be entered by the user.

size Field size that displays to the user when collecting information.

maxsize Maximum number of characters the user can enter for this variable.

required=NO Specified only if the variable is not required.

defaultVal Default value that is useful only if the VARS type is wfd.

options Defines a variable for which the valid values are listed in the
<OPTION> tag.

36 Sterling B2B Integrator: MESA Developer Studio

<OPTION> tag

The <OPTION> tag defines the valid values for a given variable. The variable itself
is named in the <VARDEF> tag by using options.

The following is an example of an option defined in a <VARDEF> tag:

<VARDEF varname="MessagePriority" type="String" htmlType="select"
options="MsgPriorityMenu" size="30" maxsize="250" label="msmqMsgPriority"
required="NO"/>

The following is an example of valid variables defined by an <OPTION> tag:

<OPTION name="MsgPriorityMenu">

<ELE value="0" displayname="0" />

<ELE value="1" displayname="1" />

<ELE value="2" displayname="2" />

<ELE value="3" displayname="3" />

<ELE value="4" displayname="4" />

<ELE value="5" displayname="5" />

<ELE value="6" displayname="6" />

<ELE value="7" displayname="7" />

</OPTION>

Comprehensive example

The following example shows how all of the tags work together:
<VARS type="instance">

<GROUP title="fs.instance.group1.title"
instructions="fs.instance.group1.instructions">

<VARDEF varname="collectionFolder" type="String" htmlType="text"
validator="ALPHANUMERIC" size="30" maxsize="250" label="fs.cfolder" />

<VARDEF varname="useSubFolder" type="String" htmlType="radio"
validator="ALPHANUMERIC" options="radio2" label="fs.subfolders" />

</GROUP>
</VARS>

Setting Up Event Logging for a Service
This section provides general guidelines for logging from a service in the
framework. The Logging service is a unified framework for logging messages.

Because services may have different needs and functions, apply the following
guidelines only with a good understanding of the service logging output.

Logging Event Guidelines

The following table lists the guidelines for the types of events to log for each
logging method:

MESA Developer Studio 37

Method Guideline

Error Log any non-exception occurrence that would cause the intended operation of
the service to fail, such as:

v Communication failed to external system

v Invalid input data

Exception Log any checked exception that is the result of an error or fault, such as a
caught exception that is not handled by the adapter.
Note: Exceptions that are handled by the service should not be logged with
logException.

Warn Log any system disruption that is neither fatal nor a handled exception. Also log
any notifications of possible error conditions.

Examples:

v Connection to external resource is lost while no processing is occurring

v Disk space limits

v License file expirations

Debug Log anything that is useful information for development/debugging purposes,
including general processing information and functionally relevant occurrences.

Examples:

v Entering and exiting of major methods

v Method input parameters

v Method return values

v Parameter values (setting and getting)

v Initiation and completion of operations

Log Log anything that should always appear in the log file. This method sends
messages to the default log regardless of log level.

Examples:

v Adapter StartUp

v Adapter ShutDown

v Adapter Refresh

v Connection to external systems

XLogger Logging

The XLogger class provides a unified log output, which includes the following:
v Module name
v Thread ID
v Service name

This class can also be used in stateful RMI adapters (service adapter
implementations).

EJB Logging

In the service harness implementation of the adapter, the service name is available
in the workflow context and can be used in the constructor when creating an
XLogger copy.

For example, use this form of the constructor at the beginning of the processData
method:

38 Sterling B2B Integrator: MESA Developer Studio

adapterLogger = new XLogger(classsName, getServiceName());

The adapterLogger should be an instance variable of type XLogger.

RMI Logging

For the service adapter implementation of the adapter there are two approaches,
depending on whether the adapter is stateless or stateful.

For stateless adapters, there is only one object created for all copies of the adapter.
Therefore, instance variables are shared by all copies of the adapter.

The service name is not available to the service adapter implementation of a
stateless adapter from the infrastructure. The EJB must pass the service name to
the service adapter implementation of the adapter. The service name should not be
used in the constructor when creating an XLogger copy-for example,
adapterLogger = new XLogger(classsName). AdapterLogger should be a class
variable of type XLogger. In this case, use the logging method that includes the
service name.

For stateful adapters, there is an object created for each copy of the adapter, but all
the threads of that adapter copy share the same object. Therefore, all threads of an
adapter copy share instance variables.

The service name is available to the service adapter implementation of a stateful
adapter from the infrastructure by calling getServiceName().

The following is sample code:
adapterLogger = new XLogger(classsName, getServiceName());

The adapterLogger should be a class variable of type XLogger. The easiest way to
do this is to construct a new XLogger if one does not already exist.

XLogger Logging Methods

You can use the XLogger logging methods in the EJB and RMI parts of the adapter.
However, the availability of the service name varies.

Use the XLogger methods for logging from adapters. These methods format the
class name and the service name provided along with a thread identifier, and add
the message to be logged. The result is a log message that includes date/time, class
name, service name, thread ID, and message.

The following table describes the XLogger class methods and indicates where they
are used:

Method
Used by Stateful RMI and
EJBs Used by Stateless RMI

XLogger(String
ClassName)

Constructor

XLogger(String
ClassName, String
ServiceName)

Constructor

MESA Developer Studio 39

Method
Used by Stateful RMI and
EJBs Used by Stateless RMI

logError(String
ServiceName, String
message)

Logging errors

logError(String message) Logging errors

logException(String
ServiceName, String
message, Exception e)

Logging fault exceptions

logException(String
message, Exception e)

Logging fault exceptions

logWarn(String
ServiceName, String
message)

Logging warning messages

logWarn(String message) Logging warning messages

logDebug(String
ServiceName, String
message)

Logging debug messages

logDebug(String message) Logging debug messages

log(String ServiceName,
String message)

General logging

log(String message) General logging

LogService Logging Methods

The LogService class provides the following static logging methods. Use these
methods at any time in an EJB or RMI part of an adapter. Because each method
implies a different logging threshold, some general usage guidelines are provided.

Each log message generated through LogService has a timestamp and logging
level. You must supply the name of the originating class and a message.

The following sample code shows an example:
[2001-06-12 12:46:55.381] ALL [SiebelEJBBean] Hello World

Timestamp Logging Level Originating Class Message

[2001-06-12 12:46:55.381]ALL [SiebelEJBBean] Hello World

The following tables lists the log methods, general guidelines for their formatting,
and examples:

Note: For the BPML specifications that accepts, see the Business Process Guide.

Method Format Guideline

logError() [Class name] General business error. Specific Sterling B2B Integrator error.

logException() [Class name] General business error. Specific Sterling B2B Integrator error.

The logException() method requires both a message and an exception. This
method logs the exception name and stack trace.

logWarn() [Class name] General Warning. Expected results or recommended actions to
be taken.

40 Sterling B2B Integrator: MESA Developer Studio

Method Format Guideline

logDebug() [Class name] Debug message

log() [Class name] Log message

Method Example

logError() [SiebelEJBBean] Error: Adapter unable to
process request. Action parameter is null.

logException() [SiebelEJBBean] Exception: Adapter unable to
process Read request. Unable to connect to the file system server.

logWarn() [SiebelEJBBean] Warning: Available disk space
is less than 1 GB. Delete unnecessary files.

logDebug() [SiebelEJBBean] Entering ProcessData method.

log() [SiebelEJBBean] Adapter started.

File Rename Service Example

Example 1: Creating the File Rename Service
To learn about creating a simple service that has parameters, you can use this
step-by-step example to create a service called the FileRename service.

This example walks through the following tasks in the sequence shown in the
table. Note that some are done on your PC, using Eclipse or a text editor; others
are done on the server where your Sterling B2B Integrator instance is located.

Location where the
task is performed

Tool or software to
use for the task Task

On your PC Eclipse v Create the service using the MESA
Developer Studio SDK Wizard.

v Add custom code to the service in the
SDK.

v Verify, save, and compile the service.

v Export the service (createthe service
package file).

On your PC Text editor (NotePad,
WordPad, etc.)

Create a text file to use as input for a
business process you will build to test the
service. This is the file that will be
renamed by the service when the business
process runs.

MESA Developer Studio 41

Location where the
task is performed

Tool or software to
use for the task Task

On the server Operating system
commands, file
management utility,
or FTP

v Copy the text file from your local system
to the server. Note the location so that
you can find it when you are ready to
run the business process.

v Copy the service package file from your
local system to the server. Copy the
service to the bin directory of your
Sterling B2B Integrator installation.

v Stop Sterling B2B Integrator.

v Install the service in Sterling B2B
Integrator (run InstallService.sh/cmd on
the server while Sterling B2B Integrator
is down).

v Restart Sterling B2B Integrator.

- In Sterling B2B
Integrator

v Create a service configuration in Sterling
B2B Integrator.

v Add information to the service
configuration in the GPM.

v Create a business process to test the
service.

v Check in the business process.

v Run the business process.

v View the business process results to see
if the file was renamed correctly.

v Troubleshoot errors, repeating until
successful.

Create the FileRename SDK Project
Using Eclipse, you can create the FileRename SDK Project.

About this task

This task is done on your PC using Eclipse.

Procedure
1. Open the MESA Developer Studio SDK perspective in Eclipse.
2. Select File > New > Project.
3. Select MESA Developer Studio > MESA Developer Studio SDK Project.
4. Enter FileRename as the name for the project and click Next. The project name

is also the name for the service.
5. On the Service Profile screen, enter a description for the service: The service

renames a file passed in from the WFC. Click Next. You can also change the
label for the service from the Service Profile screen.

6. On the Service Build Options screen, leave all fields set to the defaults. Click
Next.

7. On the SI System Libraries screen, select 3000 as the SI library version. Click
Finish. The project is created for the new service.

8. If the current perspective selected in Eclipse is not MESA Developer Studio
SDK, an Open associated perspective? dialog displays. Click Yes.

42 Sterling B2B Integrator: MESA Developer Studio

9. Open the Package Explorer pane in Eclipse to see the project for the service.
The project displays as follows:

Tip: Click Window > Reset Perspective at any time if needed to refresh your
view in MESA Developer Studio SDK.

About System Libraries
The Sterling B2B Integrator system libraries includes collections of classes that you
can use in your custom services and adapters.

See the following directories:
v install/xapidocs/api_javadocs/index.html
v install/studiodocs/afc_javadocs
v install/studiodocs/asi_javadocs
v install/studiodocs/ifcbase_javadocs

Jar Files Available
In MESA Developer Studio SDK, you have access to a series of Java APIs. These
are the jars most often needed in custom service creation.

Detailed information about each API is available in the javadocs located in the
install_dir/install/studiodocs folder in your Sterling B2B Integrator installation.

Java objects in the SDK include:

Class or Subclass Pathname

Event install_dir/install/studiodocs/ifcbase_javadocs

EventProcessor install_dir/install/studiodocs/ifcbase_javadocs

EventProcessorFactory install_dir/install/studiodocs/ifcbase_javadocs

IEventProcessor install_dir/install/studiodocs/ifcbase_javadocs

SemaphoreManager install_dir/install/studiodocs/ifcbase_javadocs

LockManager install_dir/install/studiodocs/asi_javadocs

MESA Developer Studio 43

Class or Subclass Pathname

WorkFlowContext install_dir/install/studiodocs/asi_javadocs

WFCBase install_dir/install/studiodocs/asi_javadocs

InitialWorkFlowContext install_dir/install/studiodocs/asi_javadocs

Document install_dir/install/studiodocs/asi_javadocs

ServicesControllerImpl install_dir/install/studiodocs/asi_javadocs

ActivityData install_dir/install/studiodocs/asi_javadocs

Add Custom Code to the FileRename Project
You can add custom code to the FileRename Project after you create the service
parameters.

About this task

This task is done on your PC using Eclipse.

First, create the service parameters.

Procedure
1. Open the FileRename project in the MESA Developer Studio SDK in Eclipse.
2. In the Package Explorer view, expand the project and double-click

FileRenameImpl.java.
3. Locate the import statement import java.text.MessageFormat; and add the

following import statement below it: import java.io.File;
4. Locate the comment // TODO: Start here to implement the service logic:

and add the following lines below it:
String sourceFileName = wfc.getParm("sourceFile");
String destinationFileName = wfc.getParm("destinationFile");
boolean overwrite = true;
String overwriteStr = wfc.getParm ("overwrite");
if (overwriteStr!=null){
overwrite = overwriteStr.equalsIgnoreCase("true") ? true:false;
}
log.logDebug("File rename source file = " + sourceFileName);
log.logDebug("File rename destination file = " + destinationFileName);
log.logDebug("File rename overwrite flag = " + overwrite);

File sourceFile = new File(sourceFileName);
if(!sourceFile.isFile()) {

throw new WorkFlowException("Source is not a file or accessible or does not
exist: " + sourceFileName);

}
File destinationFile = new File(destinationFileName);
if(destinationFile.isFile()) {

if(!overwrite) {
throw new WorkFlowException("Destination file exists and overwrite flag is
set to false: " + destinationFile);

} else {
if(!destinationFile.delete()) {

throw new WorkFlowException("Unable to overwrite destination file: "
+ destinationFile);

}
}

}

if(!sourceFile.renameTo(destinationFile)) {

44 Sterling B2B Integrator: MESA Developer Studio

throw new WorkFlowException("File renaming failed. Source file = " +
sourceFileName + ", destination file = " + destinationFileName);

}
log.logDebug("File renamed successfully.");

5. Save the project by selecting File > Save. If the following warning displays,
you may ignore it:The method handleError(XLogger, WorkFlowContext,
String, Object[]) from the type FileRenameImpl is never used locally.

Create Parameters for the File Rename Service
Using the MESA Developer Studio SDK in Eclipse, you can create parameters for
the file rename service.

This task is done on your PC using the MESA Developer Studio SDK in Eclipse.

The FileRename service uses the java.io.File class renameTo() method to rename
files. The service takes three input parameters:
v sourceFile: Original and target file names (including full path)
v destinationFile: Original and target file names (including full path)
v overwrite: Boolean flag to indicate if overwriting target file

The service takes the following parameter types:
v The overwrite parameter is defined at the instance level; that is, it is configured

using the Deployment > Services > Configure option in Sterling B2B Integrator.
(BPML can overwrite this service instance configuration at run time.)

v The parameters Source File and Destination File are defined at the workflow
level; that is, their values need to be passed in from BPML (message to service).

You will use the Service Definition Editor in the MESA Developer Studio SDK to
create the parameters.

There are two parts to the process of creating a new parameter: first, define the
parameter at either the Instance or Workflow level for an option group, vardef
information such as label, HTML type (radio button, select, or text) field length,
and options. Second, define the parameter options. For this example, the overwrite
flag will have an option with true and false choices.

Service Definition Parameters for the File Rename Service
The Service Definition Editor requires entries for the Overwrite Flag Parameter,
Source File Parameter, and the Destination File Parameter.

The following tables provide the Service Definition Editor entries required for the
three parameters. For parameter descriptions, see Adding Parameters to the Service
Definition File.

Overwrite Flag Parameter

The Overwrite flag parameter is used to determine whether the file passed in to
the service by the workflow context should be renamed or left "as is."

Field Value

Parameter Level Instance

Group Title Overwrite flag

Group Instructions select to overwrite existing files

MESA Developer Studio 45

Field Value

Vardef Properties

Name overwrite

Type String

HTML Type radio

Label FileRename.overwrite

Validator ALPHANUMERIC

Size 5

Max Size 5

Options overwriteFlag

Options

Option Properties - Name overwriteFlag

Choice Element Properties

First element:

Value true

Display name true

Second element:

Value false

Display name false

Source File Parameters

The source file is passed into the service by the workflow context and renamed.

Field Value

Parameter Level Workflow

Group Title FileNames

Group Instructions original and new filenames

Vardef Properties

Name sourceFile

Type String

HTML Type text

Label FileRename.OriginalFile

Validator ALPHANUMERIC

Size 80

Max Size 80

Options n/a

Options n/a

Option Properties - Name n/a

Choice Element Properties n/a

Value n/a

Display Name n/a

46 Sterling B2B Integrator: MESA Developer Studio

Destination File Parameter

These are the parameters for the renamed file.

Field Value

Parameter Level Workflow

Group Title FileNames

Group Instructions original and new filenames

Vardef Properties

Name destinationFile

Type String

HTML Type text

Label FileRename.TargetFile

Validator ALPHANUMERIC

Size 80

Max Size 80

Options n/a

Options n/a

Option Properties - Name n/a

Choice Element Properties n/a

Value n/a

Display Name n/a

Service Definition Parameter Field Reference
When you create a new parameter for a service definition, you must provide
information about the type of parameter, options, and so forth. For each service
definition, you enter information for some or all of the following:

Variables

You can define a service variable at one of three levels:
v Global – has a constant value for all instances of a service. That is, you can

create multiple instances of the service, but this variable will be the same in
each.

v Instance – can have a different value for each instance of a service. That is, if
you create multiple instances of a service, this variable value can be changed for
each, as needed.

v Workflow – can have a different value each time the service is called from a
business process. That is, the service gets the value for the variable from the
current business process instance.

Options

Options are used with variables to provide a finite, reusable list of possible values.
Examples: yes/no, true/false
v Name – Required. Name of the parameter as it will appear to the user. System

provided. Cannot contain spaces. Use standard Java variable naming
conventions.

MESA Developer Studio 47

v Type – Required. Java type of the parameter. Valid values: String (default),
Boolean, integer.

v HTML Type – Required. HTML input type of the parameter. Valid values: Text,
Select, and Radio. Default is Text.

v Label – Required. Cannot contain spaces.
v Validator – Optional. Type of validator. Select from the list.
v Size – Optional. Number of characters for the parameter display size.
v Max Size – Optional. Maximum number of characters allowed for the parameter.
v Options – Optional. Reusable lists of values used by the parameter, such as

true/false and yes/no.

Add the Overwrite Parameter
Using Eclipse, you can add the overwrite parameter through the Package Explorer.

About this task

This task is done on your PC in Eclipse.

Procedure
1. Open and expand the FileRename SDK project in the Package Explorer.
2. Expand the servicedefs node. Right-click FileRename.xml and select Open

With > Service Definition Editor.
3. In the service definition editor pane for FileRename.xml, expand the Services

node and the FileRename service.
4. Right-click Instance Variables and select New Group.
5. Type overwrite flag in the Group Title field and click OK. The new

overwrite flag group displays, preceded with the group designation G: G
overwrite flag.

6. Select the overwrite flag group in the FileRename tree. The Group Properties
pane displays.

7. Type select to overwrite existing files in the Instructions field. Next, add
the option for the new variable definitions.

8. Right-click on the overwrite flag group and select New Vardef. The New
Vardef pane displays.

9. Type overwrite in the New vardef name? field and click OK. The new field
displays as V overwrite.

10. Select the overwrite flag variable and edit the values as shown:

48 Sterling B2B Integrator: MESA Developer Studio

Finally, you will create the option that displays the user options for the
overwrite flag on the UI.

11. Right-click on Options. The New Option dialog displays.
12. In the New Option name? dialog box, enter overwriteFlag.
13. Right-click on the overwriteFlag option and select New Element.
14. In the New element value? field, enter true.
15. Create an additional new element with the value false.
16. Save your changes to the project by selecting File > Save. You will resolve

errors when you add language property file names.

Add the Source File and Destination File Parameters
Using Eclipse, you can add the source file and destination file parameters through
the Package Explorer.

About this task

This task is done on your PC in Eclipse.

Procedure
1. Open and expand the FileRename SDK project in the Package Explorer.
2. Expand the servicedefs node. Right-click FileRename.xml and select Open

With > Service Definition Editor.
3. In the service definition editor pane for FileRename.xml, expand the Services

node and the FileRename service.
4. Right-click Workflow Variables and select New Group.
5. Type FileRename in the Group Title field and click OK.

6. Select the FileRename group in the FileRename tree. The Group Properties
pane displays.

7. Type original and new filenames in the Instructions field.
8. Right-click the FileRename group and select New Vardef.
9. Type sourceFile in the Name field and click OK.

10. Select the sourceFile vardef to display the properties pane. Type or select the
value shown for each field in the following example:

11. Right-click the FileRename group and select New Vardef.
12. Type destinationFile in the Name field and click OK.
13. Select the destinationFile vardef to display the properties pane. Type or select

the value shown for each field in the following example:

MESA Developer Studio 49

14. Save your changes to the project by selecting File > Save. You will resolve
errors when you add language property file entries.

Add Language Property File Entries for the File Rename
Service

You can add language property file entries for the file rename service in Eclipse
after adding the Overwrite flag, Source File, and Destination File parameters.

About this task

After creating the new parameters for the File Rename service, you should see
error icons next to each of the new parameters, as shown in the following example.

The errors occur because the File Rename service language property file does not
contain entries for these parameters yet. Using the Quick Fix option in Eclipse, you
will add the necessary entries to the property file.

Complete the following steps for each error associated with the File Rename
service parameters (Overwrite flag, Source File, and Destination File).

Procedure
1. Open and expand the FileRename SDK project in the Package Explorer.
2. Expand the servicedefs node. Right-click FileRename.xml and select Open

With > Service Definition Editor.
3. Select Window > Show View > Problems. An Error Log view (tab) displays.

Tip: If Problems is not visible, select Window > Other > General > Problems.
4. Right-click on the error message for one of the three parameters in the

Problems view and select Quick Fix.

50 Sterling B2B Integrator: MESA Developer Studio

5. Under Select a fix, ensure that Append a new property to the language
property file is selected, and click OK. A new line for the parameter is added to
the language property file for the FileRename service.

6. Repeat for the remaining errors.
7. Save your changes to the project by selecting File > Save. The Problems view

refreshes, removing the error entries.

Build the Service Package
You can build the service package using the MESA Developer Studio SDK in
Eclipse.

Procedure
1. Open the FileRename SDK package in the Package Explorer.
2. Right-click on the name of the package and select Export.
3. In the Export window, expand the MESA Developer Studio node, select Service

Packages, and click Next.
4. In the Export Service Package window, type or browse to the location on your

PC where the service package should be created. Click Finish.

5. Open Windows Explorer and browse to the location to verify that the service
package is there.
For this example, the path and filename are:
drive:\your_chosen_folder\FileRename\dist\FileRename_3000.0.0.jar

Create the Text File to be Renamed
You can use a text editor to create a simple text file.

Before you begin

You must be able to connect to the server where Sterling B2B Integrator resides.

About this task

This task is done on your PC and on the server where Sterling B2B Integrator
resides.

Procedure
1. On your PC, use a text editor to create a simple text file. Save the file as

test.class. This is the file that will be renamed by your service.
2. Copy the text file to a location on the server where it is accessible to Sterling

B2B Integrator. Make note of the location. In a later task, you will create a
business process that will use this file.

Install the File Rename Service into Sterling B2B Integrator
After you create a service and package the source code, you must install the
service package into Sterling B2B Integrator.

Before you begin

You must be able to connect to the server where Sterling B2B Integrator resides.

MESA Developer Studio 51

About this task

This task is done using your PC and the server where Sterling B2B Integrator
resides.

This places the .jar file on the server where Sterling B2B Integrator expects to find
it, and expands it. The next time the server is restarted, the service will be in effect.

Note: Before you install the service package into a production environment, install
and test it in a test environment.

Procedure
1. Stop the Sterling B2B Integrator instance.
2. In Eclipse, open the MESA Studio perspective.
3. Select the Sterling B2B Integrator instance where the package should be

installed.
4. With the instance selected, right-click and choose Install Service Package.
5. On the Install Service Package window, browse to the location of the

FileRename package file and click Open.
6. Click Finish to begin installing the service. This may take several minutes,

depending on your system and network load.
7. Once the service installation is complete, start the Sterling B2B Integrator

instance.
8. Log in to Sterling B2B Integrator and ensure that the service can be viewed and

configured from the options on the Deployment > Services > Configuration
screen.

Configure the File Rename Service Instance
Installing the service in the previous task created a FileRename service type. In this
task, you create a new instance of that service type.

About this task

This task is done using Sterling B2B Integrator.

Tip: As a best practice, create and configure a new instance instead of editing the
base configuration for your new service type.

Procedure
1. Log on to Sterling B2B Integrator.
2. Select Deployment > Services > Configuration.
3. Click Go! for Create New Service.
4. Select FileRename as the Service Type to configure and click Next.
5. Type FileRename in the Service name field and enter a description for this

instance. Do not select a group.
6. Set the overwrite parameter to true.
7. Click Confirm to save the service configuration.

Create Test BPML
You can create a test BPML using a text editor or a BPML editor in Sterling B2B
Integrator.

52 Sterling B2B Integrator: MESA Developer Studio

Procedure
1. Using a text editor (or a BPML editor in Sterling B2B Integrator), create and

save a test file containing the following:
<process name="lzTest">

<sequence name="main">
<operation name="FileRename">

<participant name="lzFileRename"/>
<output message="fnoutput">

<assign to="sourceFile">c:\temp\test.class</assign>
<assign to="destinationFile">c:\temp\test_fn.class</assign>
<assign to="." from="*"></assign>

</output>
<input message="input">

<assign to="." from="*"></assign>
</input>

</operation>
</sequence>

</process>

2. Accept defaults for any other editor parameters such as process levels or
deadline settings.

3. Check the test file into Sterling B2B Integrator.

Test the File Rename Service
Testing on custom services and adapters is generally done by encapsulating most
processes in Java classes and have the custom service or adapter call them.

About this task

For the file rename example, use the your test BPML and the text file you created
earlier to test your service in Sterling B2B Integrator.

Procedure
1. For the first test, execute the business process against the test file using the

configuration you created. Status should be Success and your c:\temp directory
should contain the test_fn.class file.

2. Re-run the test. Status will be Error with the message Source is not a file or
accessable or doesn't exist: c:\temp\test.class. This indicates that, after
the previous test, the test.class file no longer exists after the first class and is
not available to be renamed.

Additional Examples

Example 1: Basic Adapter
This example shows basic adapter operation, such as firing off a thread, sleeping,
registering activity information to show engine taking workflow off queue while
waiting for an activity to be completed, and updating activity signals to engine
that activity is complete and can be put back in the queue.

The files in this example can be substituted for the Java files in Eclipse.

TestAdapterImpl.java

This code invokes the desired methods of the test adapter interface and extends
the generated service code by adding business logic to the big A portion.

MESA Developer Studio 53

package com.mypackage;

import java.util.*;
import java.sql.*;
import javax.naming.*;
import java.rmi.RemoteException;

import com.sterlingcommerce.woodstock.services.*;
import com.sterlingcommerce.woodstock.workflow.*;
import com.sterlingcommerce.woodstock.services.controller.ServicesControllerImpl;
import com.sterlingcommerce.woodstock.util.frame.log.*;

public class TestAdapterImpl implements IService {

public TestAdapterImpl() {}

public WorkFlowContext processData(WorkFlowContext wfc)
throws WorkFlowException , RemoteException{

boolean error = false;
//Logger logger = LogService.getLogger("TestAdapterImpl");
wfc.harnessRegister();
wfc.setBasicStatus(WFCBase.SUCCESS);
try {

String tmp= wfc.getParm("SLEEP_INTERVAL");
int sleep_interval = 1;
if (tmp !=null) {

try {
sleep_interval=(new Integer(tmp)).intValue();

} catch (Exception e) {
//logger.logException(e);

}
}
TestAdapterServer rmi = (TestAdapterServer) wfc.getAdapter

(wfc.getServiceName(), wfc);
rmi.sleepForAwhile(sleep_interval, wfc);
wfc.setAdvancedStatus("rmi running "+tmp);
wfc.setWFStatusRpt("Status_Report"," start rmi to sleep for

" + sleep_interval + " seconds\n");
} catch (InterruptedException ie) {

error=true;
//logger.logException(ie);
throw new WorkFlowException(ie);

} catch (Exception e) {
error=true;
//logger.logException(e);
throw new WorkFlowException(e);

} finally {
if (!error) {

wfc.setBasicStatus(WFCBase.WAITING_ON_IO);
}
if (error) {

wfc.setBasicStatus(WFCBase.ERROR);
}
wfc.unregisterThread();

}
return wfc;

}
}

TestAdapterServer.java

Method interfaces are declared here and follow a remote interface structure.
package com.mypackage;

import java.rmi.RemoteException;

54 Sterling B2B Integrator: MESA Developer Studio

import java.util.*;

import com.sterlingcommerce.woodstock.services.IAdapterRMI;
//import com.sterlingcommerce.woodstock.services.IAdapterImpl;
import com.sterlingcommerce.woodstock.workflow.*;
//import com.sterlingcommerce.woodstock.services.controller.*;

/**
* Remote interface of the TestAdapter.
*/
public interface TestAdapterServer extends IAdapterRMI{

public void sleepForAwhile(int interval, WorkFlowContext wfc)
throws InterruptedException ,WorkFlowException, RemoteException,Exception;

public void refreshAdapter(Properties p) throws RemoteException;

public String message(String msg) throws RemoteException;
}

TestAdapterServerImpl.java

TestAdapterServerImpl.java implements methods from TestAdapterServer.
package com.mypackage;

import java.rmi.RemoteException;
import java.util.*;

import com.sterlingcommerce.woodstock.util.frame.log.LogService;
import com.sterlingcommerce.woodstock.services.IAdapterRMI;
import com.sterlingcommerce.woodstock.services.IAdapterImpl;
import com.sterlingcommerce.woodstock.workflow.*;
import com.sterlingcommerce.woodstock.services.controller.*;

/*
* The implementation class of the adapter
*/
public class TestAdapterServerImpl extends IAdapterImpl implements

TestAdapterServer {

private static final String CLASS_NAME = "TestAdapterServerImpl";

public TestAdapterServerImpl() {}

/**
* Implementation from TestAdapterServer.
*
* @param int How long to sleep (millis).
* @Exception Catch all for exceptions that may occur.
* @return void
*/

public void sleepForAwhile(int interval,
WorkFlowContext wfc) throws Exception {

/* If threading is not required or desirable, the contents of the run
method of the TestAdapterThread can be inlined at this point.

*/
TestAdapterThread testAdapterThread = new TestAdapterThread

(interval, wfc);
Thread thread = new Thread(testAdapterThread);
thread.start();

}

public void refreshAdapter(Properties adapterProperties) {
/* A shutdown and startup can be called here if this adapter should

support alterations of properties without requiring a restart.
These two methods must be overloaded and implemented in this
class to do the proper work.

MESA Developer Studio 55

*/
}

public String message(String msg) {
return msg;

}
}

TestAdapterThread.java

TestAdapterThread.java is added as another class to the package. It contains
functionality for firing off a thread, sleep, registering activity information to show
the engine taken off queue while waiting for an activitiy to be completed, and
update activity that signals to engine that activity is complete and can be put back
in the queue.

Tip: To add the class quickly, drop the file into your workspace folder and refresh
the project with File > Refresh (F5).
package com.mypackage;

import java.rmi.RemoteException;
import java.util.*;
import java.sql.*;

import com.sterlingcommerce.woodstock.workflow.*;
import com.sterlingcommerce.woodstock.util.frame.*;
import com.sterlingcommerce.woodstock.util.frame.jdbc.*;
import com.sterlingcommerce.woodstock.util.frame.log.*;
import com.sterlingcommerce.woodstock.services.controller.*;

public class TestAdapterThread implements Runnable {

private int interval = 0;
private WorkFlowContext wfc = null ;
private Exception exception = null;

public TestAdapterThread(int interval, WorkFlowContext wfc) {
this.interval = interval;
this.wfc = wfc;

}

public void run() {
ActivityData activityData = null;
//Logger logger = LogService.getLogger("TestAdapter");
Thread.currentThread().setName("The TestAdapter little a");
try {

activityData = wfc.registerActivity(wfc.getServiceName(),
"RMI is running",null,"going to sleep for a bit");

Thread.currentThread().sleep(interval);
activityData.setProgressData

("RMI done sleeping for :" + interval + " seconds");
activityData.setModTime(System.currentTimeMillis());
wfc.updateActivity(activityData);

} catch (Exception e) {
//logger.logException(e);

} finally {
if(activityData != null) {

wfc.unregisterActivity(activityData);
}

}
}

}

56 Sterling B2B Integrator: MESA Developer Studio

Example 2: Bootstrap Adapter
This is example code that shows basic structure and functions for a bootstrap
adapter (can launch a business process).

TestBootstrapAdapter.java
package com.mypackage;

import java.util.*;
import java.sql.*;
import javax.naming.*;
import java.rmi.RemoteException;

import com.sterlingcommerce.woodstock.services.*;
import com.sterlingcommerce.woodstock.workflow.WorkFlowException;
import com.sterlingcommerce.woodstock.workflow.WorkFlowContext;
import com.sterlingcommerce.woodstock.workflow.*;
import com.sterlingcommerce.woodstock.util.frame.log.*;

/**
* Since this TestBootstrapAdapter is a bootstrap adapter, it cannot be
* invoked from a Business Process. Therefore it will throw an
* exception if any BP makes this attempt.
*
* NOTE: This is a runtime restriction only and not something that is
* constrained at the BPML validation level.
*/
public class TestBootstrapAdapter implements IService {

private final static String errorMessage = "TestBootstrapAdapter:
Should not call the TestBootstrapAdapter directly from
Business Process";

private static final Logger logger = LogService.getLogger
("TestBootstrapAdapterLogger");

public TestBootstrapAdapter() {}

/**
* This method is not implemented.
* @param WorkFlowContext
* @exception WorkFlowException if a Business Process tries to call
* the TestBootstrapAdapter directly.
*/

public WorkFlowContext processData(WorkFlowContext wfc)
throws WorkFlowException , RemoteException {
logger.logError(errorMessage);
throw new WorkFlowException(errorMessage);

}
}

TestBootstrapAdapterImpl.java
package com.mypackage;

import java.io.*;
import java.rmi.RemoteException;
import java.util.*;

import com.sterlingcommerce.woodstock.services.IAdapterRMI;
import com.sterlingcommerce.woodstock.services.IAdapterImpl;
import com.sterlingcommerce.woodstock.workflow.*;
import com.sterlingcommerce.woodstock.services.controller.*;
import com.sterlingcommerce.woodstock.util.frame.log.*;

/*
* The implementation class of the adapter
*/

MESA Developer Studio 57

public class TestBootstrapAdapterImpl extends IAdapterImpl implements
IAdapterRMI {

private static final String CLASS_NAME = "TestBootstrapAdapterImpl";
private final Logger logger = LogService.getLogger

("TestBootstrapAdapterLogger");

/*
Instance variables need to be used with care. In this example,
the use of the stored FileWatcher means that this is a stateful adapter
and the servicedef xml file must indicate this. Otherwise we will
only have one instantiation of this object regardless
of how many service instances exist.
*/

private FileWatcher fw = null;
private Thread thread = null;
private int interval = 60;
private Properties adapterProperties = null;

public TestBootstrapAdapterImpl() {}

public void refreshAdapter(Properties p) {
shutdownAdapter();
startupAdapter(p);

}

public String message(String msg) {
return msg;

}

/**
* Start the TestBootstrapAdapter. This method is called by the
* ServiceController before the adapter is put into the RMI
* registry (or JNDI) tree for future RMI requests.
*
* @param Properties Adapter configurations
* @return void
*/

public void startupAdapter(Properties adapterProperties) {
if (logger.debug) {

logger.logDebug(CLASS_NAME + ".startupAdapter() - Starting
[" + getName() + "]");

}
this.adapterProperties = adapterProperties;

if (adapterProperties == null) {
String errMsg = CLASS_NAME + ".startupAdapter() - The adapter

[" + getName() + "] cannot be started up with null
properties.";

logger.logError(errMsg);
throw new IllegalArgumentException(errMsg);

}

setStatus(STARTINGUP);

try {
interval = Integer.parseInt((String) adapterProperties.get

("interval"));
fw = new FileWatcher((String) adapterProperties.get("directory"),

interval, (String) adapterProperties.get("workflowName"),
logger);

thread = new Thread(fw);
thread.start();
setStatus(RUNNING);
logger.logDebug(CLASS_NAME + ".startupAdapter() -

[" + getName() + "] with configuration " + this +
" was started up successfully and is now running.");

58 Sterling B2B Integrator: MESA Developer Studio

} catch (Exception e) {
logger.logException(CLASS_NAME + ".startupAdapter() -

Unable to start the adapter [" + getName() + "] with
configuration " + this + "] due to an exception:", e);

setStatus(NOTAVAILABLE);
}

}

/**
* Shuts down the TestBootstrapAdapter.
*
* @return void
*/

public void shutdownAdapter() {
String instanceName = this.getName();
if (logger.debug) {

logger.logDebug(CLASS_NAME + ".shutdownAdapter() - About to
shutdown [" + instanceName + "]");

}
setStatus(SHUTTINGDOWN);

try {
//Do shutdown work specific to this adapter as applicable.
fw.stop();
//The join here is not ideal under all conditions, but suffices here.
thread.join();
setStatus(SHUTDOWN);
logger.logDebug(CLASS_NAME + ".shutdownAdapter() -

[" + instanceName + "] was shut down successfully.");
} catch(Exception e) {

logger.logException(CLASS_NAME + ".shutdownAdapter()
- [" + instanceName + "] failed to shutdown:", e);

setStatus(COULDNTSTOP);
}

}

/**
* Returns string describing configuration information if applicable.
*/

public String toString() {
return "no configuration information";

}
}

class FileWatcher implements Runnable {

private String directory = null;
private int interval = 60;
private String workflowName = null;
private boolean keepRunning = true;
private boolean stopped = false;
private Logger logger = null;

public FileWatcher(String directory, int interval, String workflowName,
Logger logger) {

/*
A real implementation should verify that the directory exists
and can be accessed.
*/
this.directory = directory;
this.interval = interval;
this.workflowName = workflowName;
this.logger = logger;

}

public void stop() {
keepRunning = false;

MESA Developer Studio 59

}
public boolean isStopped() {

return stopped;
}

public void run() {
/*
Look to see if there are any files to collect. This is a
simplistic example and not something that is robust
enough for a production adapter. There is no duplicate detection
nor does this example attempt to ensure the deletion is successful.
The File.delete API is not guaranteed to work every time on all
platforms. It is also missing simple validation
checks and possible border conditions. This is OK since
the intent it to show basic structure
and operation only. Including everything required to make
this production ready would distract from the main goal of
this example.
*/

File file = null;
while(keepRunning) {

try {
/*
Skipping the implementation of the directory listing,
and reading in of one or more files.
Assuming we have a payload of data at some point
the next thing to do is to pass along the payload to
a document and fire off a business process if
that is the intent.
*/
Document document = new Document();
//Use the streaming APIs to write the payload.
//Always close the stream.
InitialWorkFlowContext iwfc = new InitialWorkFlowContext();
iwfc.setWorkFlowName(workflowName);
iwfc.putPrimaryDocument(document);
iwfc.start();
Thread.currentThread().sleep(interval * 1000);

} catch(Exception e) {
logger.logException(e);

}
}
stopped = true;

}
}

Example 3: Stateless/Stateful Adapter
About this task

A simple (or stateless) adapter writes data into a file. You can use MESA Developer
Studio SDK to define the file name, path in the BPML, and what data you would
like to write into the file in the BPML. The adapter writes the data into the specific
file.

The process of creating and installing a simple adapter using Mesa Developer
Studio SDK involves several steps. The following list provides a high-level
overview of what is required.

For a stateful adapter, the procedure is similar, but the adapter definition and Java
coding are different (steps 1 and 2).

60 Sterling B2B Integrator: MESA Developer Studio

Procedure
1. Define the adapter in XML.
2. Code the adapter in Java.
3. (Optional) Create an adapter instance in XML.
4. Package and deploy the adapter in the Sterling B2B Integrator production

environment.
5. Start using the adapter in the production environment.

Defining the Adapter in XML
This example of an adapter XML definition defines name, description, labelm
adapter type, JNDI name, version and implementation classes.

In this example, the adapter name is SimpleAdapter.
<SERVICES>

<SERVICE name="SimpleAdapter" description="SimpleAdapter"
label="SimpleAdapter" implementationType="CLASS"
JNDIName="com.sterlingcommerce.woodstock.services.simple.SimpleAdapterImpl"
type="Adapter" adapterType="STATELESS"
adapterClass="com.sterlingcommerce.woodstock.services.simple.SimpleAdapterRMIImpl"
version="1.0.0" SystemService="NO">

</SERVICE>

</SERVICES>

Use the MESA Developer Studio SDK to create this definition XML file in your
servicedefs directory.

Coding the Adapter in Java
Use the MESA Developer Studio SDK to write Java code for the adapter.

In the following example code, the implementation includes:
v The adapter big-A part SimpleAdapterImpl.java

{{{
package com.sterlingcommerce.woodstock.services.simple;
import java.io.*;
import java.rmi.*;
import javax.ejb.*;
import java.sql.Timestamp;
import java.sql.SQLException;
import java.sql.Connection;
import java.util.Properties;
import com.sterlingcommerce.woodstock.workflow.WorkFlowContext;
import com.sterlingcommerce.woodstock.workflow.WorkFlowException;
import com.sterlingcommerce.woodstock.services.IService;
public class SimpleAdapterImpl implements IService
{

/**
* Initializes a newly created SleepyService object and

* sets the sleepTime to 1 seconds.
*/
public SimpleAdapterImpl(){
}
public WorkFlowContext processData(WorkFlowContext wfc) throws WorkFlowException

{
wfc.harnessRegister();

wfc.setBasicStatus(WorkFlowContext.SUCCESS);
String svcName = wfc.getServiceName();

try {
SimpleAdapterRMI rmi = (SimpleAdapterRMI) wfc.getAdapter(svcName, wfc);

String fileName = wfc.getParm("FileName");

MESA Developer Studio 61

String path = wfc.getParm("Path");
String entry = wfc.getParm("Entry");

rmi.writeEntry (path, fileName, entry);
} catch (Exception ex) {
wfc.setBasicStatus(WorkFlowContext.ERROR);
wfc.setAdvancedStatus(ex.getMessage());
}

return wfc;
}
}
}}}

v The adapter little-a part SimpleAdapterRMI
package com.sterlingcommerce.woodstock.services.simple;
import java.rmi.RemoteException;
import java.util.*;
import com.sterlingcommerce.woodstock.services.IAdapterRMI;
import com.sterlingcommerce.woodstock.services.IAdapterImpl;
import com.sterlingcommerce.woodstock.workflow.*;
import com.sterlingcommerce.woodstock.services.controller.*;
/**
*/

public interface SimpleAdapterRMI extends IAdapterRMI {
public void refreshAdapter(Properties p) throws RemoteException;

public void writeEntry(String path, String fileName, String entry)
throws RemoteException;
}

v SimpleAdapterRMIImpl.java
package com.sterlingcommerce.woodstock.services.simple;
import java.io.*;
import java.util.*;
import java.rmi.RemoteException;
import com.sterlingcommerce.woodstock.services.IAdapterImpl;
public class SimpleAdapterRMIImpl extends IAdapterImpl implements SimpleAdapterRMI {

public SimpleAdapterRMIImpl() {
}
public void refreshAdapter(Properties p) {
}
public String message (String msg) {

return msg;
}
public synchronized void startupAdapter(Properties p) {
}
public boolean stopAdapter(){
super.stopAdapter();
return true;

}
public void writeEntry (String path, String fileName, String entry)
throws RemoteException try {

File f = new File (path + File.separator + fileName);
PrintWriter p = new PrintWriter(new FileWriter(f.getAbsolutePath(),f.exists()));

p.println(entry);
p.close();

} catch (Exception ex) {
throw new RemoteException (ex.getMessage());

}
}

}

Creating an Adapter Instance in XML
You can create a serviceinstances.xml file to create an adapter instance using MESA
Developer Studio SDK inside your service package.

This step is optional. You can also create an adapter instance through the Sterling
B2B Integrator admin UI.

62 Sterling B2B Integrator: MESA Developer Studio

<?xml version="1.0" encoding="UTF-8"?>
<services>
<service name="SimpleAdapter" parentdefname="SimpleAdapter" activestatus="1"
systemservice="0"
description="SimpleAdapter" displayname="Simple Adapter" targetenv="node1"
parentdefid="-1" parentdefversion="1.0.0">
</service>
</services>

Packaging and Deploying an Adapter
When packaging and deploying an adapter, refer to exporting a service for
deployment and installing a service into Sterling B2B Integrator.

To package and deploy an adapter into Sterling B2B Integrator, refer to the
following sections in the MESA Developer Studio documentation:
v Export a Service for Deployment
v Install a Service into Sterling B2B Integrator

Using an Adapter
Once an adapter is installed into Sterling B2B Integrator, you can start using the
adapter.

The following code is an example business process to use this adapter. This BP
writes out Testing SimpleAdapter into a file called simpleAdapter.dat in the
/home/temp/output directory. You should be able to run the BP successfully.
<process name="SimpleAdapterTest">
<sequence name="sleep">
<operation name="SimpleAdapter">
<participant name="SimpleAdapter"/>
<output message="Xout">

<assign to=’Path’>/home/temp/output</assign>
<assign to=’FileName’>simpleAdapter.dat</assign>
<assign to=’Entry’>Testing SimpleAdapter</assign>
<assign to="." from="*"></assign>

</output>
<input message="Xin">

<assign to="." from="*"></assign>
</input>

</operation>
</sequence>
</process>

Installing MESA Studio

Overview for Installing and Configuring MESA Developer
Studio

MESA Developer Studio is an Integrated Development Environment (IDE) that
uses Eclipse software plug-ins.

Use the MESA Developer Studio to do the following, all from within a
development environment:
v Connect with an instance of Sterling B2B Integrator for resource access and

control of operations of Sterling B2B Integrator.
v Change the template that Sterling B2B Integrator uses.
v Develop custom services.

In addition to MESA Developer Studio, the following plug-ins are available:

MESA Developer Studio 63

v MESA Developer Studio SDK – for developing and deploying custom services
and adapters.

v MESA Developer Studio Skin Editor – for customizing the look and feel of the
Sterling B2B Integrator interface.

v Reporting Services – for creating fact models and reports for Reporting Services.

Assumptions and Prerequisites for MESA Developer Studio

Read the following assumptions and prerequisites prior to installing MESA
Developer Studio on the client:
v Basic knowledge of Sterling B2B Integrator and its architecture.
v Basic knowledge of Eclipse is assumed. For more information, see the Eclipse

online help, or go to http://eclipse.org.

Knowledge prerequisites for using MESA Developer Studio SDK are located in the
Creating Custom Services section.

Steps to Set Up MESA Developer Studio
Setting up MESA Developer Studio is a multi-step process which should be
completed in order. The following is a checklist for each stage in the process.

About this task

The checklist provides an overview of the entire process. Separate instructions for
completing each step are included.

Procedure
1. After you have installed and configured Sterling B2B Integrator, download and

install Eclipse 3.3.x (also called Europa Winter) from the following page:
http://www.eclipse.org/downloads/packages/release/europa/winter. You
should use the Eclipse IDE for Java EE Developers, because that comes with
the full set of packages, as opposed to the Eclipse IDE for Java Developers,
which only contains a subset of the packages needed. MESA Developer Studio
requires specific plug-in versions. You should install an instance of Eclipse
specifically for MESA Developer Studio development. If you use a single
installation of Eclipse with both MESA Developer Studio projects and other
development projects, disable plug-ins that report conflicts.

2. Download JavaTM SE 6 (Java SE Development Kit 6u45) from the following
Oracle Java Archive page: http://www.oracle.com/technetwork/java/
javasebusiness/downloads/java-archive-downloads-javase6-419409.html. Install
it on the same PC where you installed Eclipse. It is important that you have the
full SDK and not just the JRETM. After installation, additional configuration is
required.

3. Verify that MESA Developer Studio uses the correct JRE in Eclipse.
4. Start the WebDAV server (UNIX or iSeries only).
5. Install the MESA Developer Studio plug-in.
6. Set up your Sterling B2B Integrator instance in MESA Developer Studio .
7. Set up Sterling B2B Integrator resources to be used with MESA Developer

Studio.

Eclipse Terms
You should be knowledgeable of Eclipse terms used to describe MESA Developer
Studio components.

64 Sterling B2B Integrator: MESA Developer Studio

http://www.eclipse.org/downloads/packages/release/europa/winter
http://www.oracle.com/technetwork/java/javasebusiness/downloads/java-archive-downloads-javase6-419409.html
http://www.oracle.com/technetwork/java/javasebusiness/downloads/java-archive-downloads-javase6-419409.html

The following Eclipse terms are used in this documentation to describe MESA
Developer Studio components:
v Project - All the resources related to a particular implementation reside in a

project. It can contain folders, files, and other Eclipse objects.
v Workspace - directory where work is stored.
v Workbench - UI window that contains these elements:

– Perspective - group of views and editors in a Workbench window that
correspond to a certain project.

– View - visual component within the Workbench and dependent on the
perspective that was selected. Used to navigate or display information such as
properties or messages.

– Editors - visual component in the Workbench used to create, change, or
browse a resource.

Configure the Java JDK on Your PC
After installing the JDK, you must configure your computer to use it.

About this task

In order for Eclipse to work correctly, you must have the correct JDK version
installed on the same PC where you installed Eclipse. For information on
downloading and installing the JDK, see the MESA Developer Studio
Implementation Checklist, or Installing MESA Studio.

To configure your PC for the new JDK:

Procedure
1. From the Windows Start menu, select Settings > Control Panel > System.
2. Click the Advanced tab.
3. Click Environment Variables.
4. Under System Variables, click New.
5. Complete the following and click OK:
v Variable Name - Type JAVA_HOME.
v Variable Value - Type the directory path for the location where you installed

the JDK.
6. Click OK to exit.

Verify that MESA Developer Studio Uses the Correct JRE
In addition to adding a home directory on Windows for this JDK instance, you
must also verify that MESA Developer Studio uses the correct JRE.

About this task

To verify the MESA Developer Studio JRE:

Procedure
1. Open Eclipse.
2. From the Window menu, select Preferences.
3. Expand the Java section and select Installed JREs. The Installed JREs window

appears.

MESA Developer Studio 65

4. If JDK 6 is not listed, click Add and go to next step. If it is listed, ensure that it
is selected and click OK. You are ready to use MESA Developer Studio.

5. Complete the following and click OK :
v JRE Type - leave at default.
v JRE Name - leave blank. This will be automatically populated once you

select the JRE home directory.
v JRE home directory - Browse and select the path to the JDK home directory

you defined in the Configuring the Java JDK on Your PC section.
v Default VM Arguments - leave blank.
v JRE system libraries - this will be automatically populated once you select

the JRE home directory.
6. Click OK to return to the Preferences window.
7. Select the checkbox for the JDK you just added. This ensures that its libraries

are used for building projects.
8. Click OK to save your changes and exit the Preferences window.

Start the WebDAV Server
Sterling B2B Integrator uses a WebDAV server to provide MESA Developer Studio
with access to the Sterling B2B Integrator resources, including MESA Developer
Studio plug-in updates.

This WebDAV server is automatically installed with Sterling B2B Integrator for use
with MESA Developer Studio.

On Windows, the WebDAV server starts automatically with Sterling B2B Integrator,
but on UNIX and on iSeries, you must start the WebDAV server manually for use
with Sterling B2B Integrator.

Using the WebDAV Server on Windows

The WebDAV server that is used with MESA Developer Studio is implemented as a
service, and starts automatically when you start Sterling B2B Integrator
(startWindowsService.cmd). When Sterling B2B Integrator is stopped
(stopWindowsService.cmd), the WebDAV server, and, if used, MySQL, remain
running. This is necessary to start and stop instances of Sterling B2B Integrator
from within Eclipse and MESA Developer Studio.

You can stop the WebDAV Server service using the
stopWebdavWindowsService.cmd. Also, when Sterling B2B Integrator and
WebDAV Server service are running and the WebDAV Server service gets stopped,
Sterling B2B Integrator (and MySQL if used) will remain running. The logfilename
of the WebDAV Server service is dav.log.

Start the Sterling B2B Integrator WebDAV Server on UNIX
You can start the WebDAV Server without Sterling B2B Integrator running, but you
must start it on each Sterling B2B Integrator instance you want to work with in
MESA Developer Studio.

About this task

You do not need to have Sterling B2B Integrator running to start the WebDAV
server.

66 Sterling B2B Integrator: MESA Developer Studio

Note: You must start the WebDAV server on each Sterling B2B Integrator instance
that you want to work with in MESA Developer Studio.

To start the WebDAV server:

Procedure
1. Open a UNIX command window on the server where your Sterling B2B

Integrator instance is installed.
2. Go to installDir/install/bin.
3. Start the WebDAV server by executing the runDAVServer.sh command.
4. You are asked to enter your installation password. This is the passphrase you

enter when you start Sterling B2B Integrator. You must enter this information
only once for each Sterling B2B Integrator installation because the password is
written permanently to the properties file. This step is optional. However, if
you do not enter the password, you will not be able to start and stop Sterling
B2B Integrator instances from within MESA Developer Studio.

5. After the startup process is complete, the WebDAV port is listed. Make a note
of this number.

Note: The default WebDAV port is the base install port + 46. This port is
assigned during installation and should not be changed. The WebDAV port
number is used when downloading and installing the plug-ins and when
adding a Sterling B2B Integrator instance to MESA Developer Studio.

Start the Sterling B2B Integrator WebDAV Server (iSeries)
You can start the WebDAV server without Sterling B2B Integrator running, but you
must start it on each Sterling B2B Integrator instance you want to work with in
MESA Developer Studio.

About this task

You do not need to have Sterling B2B Integrator running to start the WebDAV
server.

Note: You must start the WebDAV server on each Sterling B2B Integrator instance
you want to work with in MESA Developer Studio.

Procedure
1. Sign onto iSeries with your Sterling B2B Integrator user profile.
2. Submit a batch job by entering the following command:

SBMJOB CMD(QSH CMD(’umask 002 ; cd <install_dir>/install/bin; ./runDAVServer.sh’))
JOB(SIDAV)

3. To reduce keying errors at startup, create a command language (CL) program
similar to the following example:
PGM
SBMJOB CMD(QSH CMD(’umask 002 ; cd <install_dir>/install/bin ; + ./runDAVServer.sh’))
JOB(SIDAV)
ENDPGM

Note: Commands not supported on iSeries using the MESA Developer Studio
control editor are Start/Stop Server instance, List current processes, List disk
usage, and Install 3rd party files. To use these commands, execute them on the
command line.

MESA Developer Studio 67

Installing MESA Developer Studio Components
You must download and install MESA Developer Studio Eclipse plug-in
components from your Sterling B2B Integrator instance.

Use this procedure to install Reporting Services plug-ins, as well. Before starting,
ensure that:
v Your instance is up and running.
v You have started the WebDAV server if the instance is on UNIX or iSeries. If

your instance is on Windows, verify that the WebDAV server service is running.

Installing New Features
You can install MESA Developer Studio in Eclipse.

About this task

To install MESA Developer Studio:

Procedure
1. Open Eclipse.
2. Select a default workspace folder location. You can add additional workspace

folder locations at any time.
3. From the Eclipse Help menu, select Software Updates > Find and install.
4. Select Search for new features to install.
5. Click Next.
6. Click New Remote Site.
7. Complete the following and click OK:
v Name - type a descriptive name for the remote application server.
v URL - type the server name or IP address, followed by a colon and the

WebDAV port number, followed by a slash (/) and the word "eclipse," in
this format: new_serverWebDAVportnumber/eclipse

8. The Install Sites to Visit window displays. It includes all available sites for
new plug-in files to install, including the remote site just added. Select the
checkbox to the left of the new site. Clear all other selected checkboxes. Click
Finish.

9. The system verifies the selected site and displays the results. On the search
results page, expand the update site node and select from the following
plug-ins, according to your licenses:
v MESA Developer Studio
v MESA Developer Studio SDK
v MESA Developer Studio Skin Editor
v Reporting Services (automatically selects all three Reporting Services

plug-ins: Fact Model Editor, Report Editor, and Report Format Editor)

CAUTION:

v Do not change the default installation path for the plug-ins.

v If you are selecting Reporting Services, you must also select the MESA
Developer Studio plug-in (unless you have already installed it).

10. Click Next. Accept the terms of the license and click Next again.
11. Click Finish.
12. Click Install All to accept the feature verification.

68 Sterling B2B Integrator: MESA Developer Studio

You must restart Eclipse for the changes to take effect.

Set Up a Sterling B2B Integrator Instance
To connect to a Sterling B2B Integrator instance, you must create a new MESA
Developer Studio instance for it. You can use multiple application instances, but
each must be configured individually.

About this task

To configure a Sterling B2B Integrator instance, complete the following task.

Procedure
1. From the Window menu, select Open Perspective > Other.
2. Select MESA Developer Studio and click OK. A MESA Developer Studio tab

displays.

3. In the MESA Developer Studio view in the upper left, right-click and select
New instance.

4. Complete the following information and click Finish:
v Hostname - Type the name of the application server.
v Port - Type the WebDAV port number for the application server.
v Name - Type a descriptive name for this instance.
v User name - Type a valid Sterling B2B Integrator user name (for example,

admin).
v Password - Type the password for the username entered.
MESA Developer Studio attempts to establish a connection to the instance
using the WebDAV server. The status of the instance is displayed:
v Red – MESA Developer Studio is unable to connect to the instance; it is

possible that the instance has not been started or the WebDAV Server is not
running.

v Yellow – MESA Developer Studio is attempting to connect to the instance. It
is possible that the instance was started, but is not yet up and running.

v Green – The instance is running and MESA Developer Studio has connected
to it.

MESA Developer Studio 69

Note: Refresh the workspace to see new instances or to see if a connection
status has changed.

Edit Connection Information
Once you have set up a Sterling B2B Integrator instance for use with MESA
Developer Studio, you can edit the connection information, view configuration
details, test the connection, and refresh the connection.

About this task

To edit the connection information:

Procedure
1. Right-click on the instance name.
2. Select Edit.
3. Edit the settings as needed.
4. Click Finish. MESA Developer Studio attempts to establish a connection to the

instance using the new information. The status is displayed (green, yellow, or
red) according to the status of the instance.

View Configuration Details
You can view configuration details in the Log tab.

About this task

To view configuration details:

Procedure
1. Double-click on the instance name.

Note: The ports on the Overview window are static. Only the ports present at
install are displayed. Any changes or additions made after installation are not
displayed.

2. Click the Log tab to view log information for Sterling B2B Integrator. Log
information is used with the File Search Service.
CAUTION:
If you do not first run the log filter on the server before clicking the Log tab,
you will see the following error message: Error accessing
/gisdav/<installDir>/searchResultsDir/searchResults.xml and the log page
will be empty.

Refresh the Instance
Use Refresh if you have locked or unlocked business processes and maps through
Sterling B2B Integrator and you want to see their current status in MESA
Developer Studio.

About this task

To refresh a Sterling B2B Integrator instance connection:

Procedure
1. Right-click on the instance name.

70 Sterling B2B Integrator: MESA Developer Studio

2. Select Refresh. The Progress Information window appears and closes
automatically when the refresh process is complete. The status is displayed
(green, yellow, or red) according to the status of the instance.

Install Additional MESA Developer Studio Components and
Updates

You can install additional MESA Developer Studio components not installed at the
time of the original installation at any time.

About this task

To install additional components follow the steps listed in the section Installing
MESA Developer Studio Components.

If you are updating an existing component, restart Eclipse in order for the new
component to be updated.

Install Reporting Services Plug-Ins
Reporting Services works with Sterling B2B Integrator MESA Developer Studio,
which is an Integrated Development Environment (IDE) that uses Eclipse software
plug-ins. The Reporting Services Fact Model Editor, Report Editor, and Report
Format Editor are all accessed as Eclipse plug-ins.

About this task

To set up the Reporting Services plug-ins:

Procedure
1. Follow the procedures for the MESA Developer Studio configuration.

Note: When completing the procedure in Installing MESA Developer Studio
Components, ensure that you select both the Reporting Services plug-ins and the
MESA Developer Studio plug-in for download and installation in Eclipse.

Restriction: The MESA Developer Studio plug-in is a prerequisite for the
Reporting Services plug-ins. You must install it either with or prior to installing
the Reporting Services plug-ins.

2. After installing the MESA Developer Studio and Reporting Services plug-ins,
complete the following tasks:
a. Start the WebDAV server for your Sterling B2B Integrator instance.
b. Start the Event Listeners.
c. Configure your Eclipse installation to point to the WebDAV server.
d. Customize the Window Perspective in Eclipse to include Reporting Services.

This makes the Reporting Services options available directly from the
Eclipse menus. In Eclipse, select Window > Customize Perspective. In the
Shortcuts pane on the left, select Reporting Services and click OK.

MESA Developer Studio 71

72 Sterling B2B Integrator: MESA Developer Studio

Notices

This information was developed for products and services offered in the US. This
material might be available from IBM in other languages. However, you may be
required to own a copy of the product or product version in that language in order
to access it.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not grant you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
US

For license inquiries regarding double-byte character set (DBCS) information,
contact the IBM Intellectual Property Department in your country or send
inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement may
not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for
convenience only and do not in any manner serve as an endorsement of those

© Copyright IBM Corp. 2000, 2015 73

websites. The materials at those websites are not part of the materials for this IBM
product and use of those websites is at your own risk.

IBM may use or distribute any of the information you provide in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
US

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

The performance data and client examples cited are presented for illustrative
purposes only. Actual performance results may vary depending on specific
configurations and operating conditions.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBMproducts.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

Statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

All IBM prices shown are IBM's suggested retail prices, are current and are subject
to change without notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to
change before the products described become available.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to actual people or business enterprises is entirely
coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to

74 Sterling B2B Integrator: MESA Developer Studio

IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. The sample
programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work must
include a copyright notice as shown in the next column.

© 2015.
Portions of this code are derived from IBM Corp. Sample Programs.
© Copyright IBM Corp. 2015.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the web at "Copyright and
trademark information" at www.ibm.com/legal/copytrade.shtml.

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered
trademarks or trademarks of Adobe Systems Incorporated in the United States,
and/or other countries.

IT Infrastructure Library is a registered trademark of the Central Computer and
Telecommunications Agency which is now part of the Office of Government
Commerce.

Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo,
Celeron, Intel Xeon, Intel SpeedStep, Itanium, and Pentium are trademarks or
registered trademarks of Intel Corporation or its subsidiaries in the United States
and other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

ITIL is a registered trademark, and a registered community trademark of the Office
of Government Commerce, and is registered in the U.S. Patent and Trademark
Office.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Oracle and/or its affiliates.

Cell Broadband Engine is a trademark of Sony Computer Entertainment, Inc. in the
United States, other countries, or both and is used under license therefrom.

Notices 75

http://www.ibm.com/legal/us/en/copytrade.shtml

Linear Tape-Open, LTO, the LTO Logo, Ultrium and the Ultrium Logo are
trademarks of HP, IBM Corp. and Quantum in the U.S. and other countries.

Connect Control Center®, Connect:Direct®, Connect:Enterprise®, Gentran®,
Gentran®:Basic®, Gentran:Control®, Gentran:Director®, Gentran:Plus®,
Gentran:Realtime®, Gentran:Server®, Gentran:Viewpoint®, Sterling Commerce™,
Sterling Information Broker®, and Sterling Integrator® are trademarks or registered
trademarks of Sterling Commerce®, Inc., an IBM Company.

Other company, product, and service names may be trademarks or service marks
of others.

Terms and conditions for product documentation
Permissions for the use of these publications are granted subject to the following
terms and conditions.

Applicability

These terms and conditions are in addition to any terms of use for the IBM
website.

Personal use

You may reproduce these publications for your personal, noncommercial use
provided that all proprietary notices are preserved. You may not distribute, display
or make derivative work of these publications, or any portion thereof, without the
express consent of IBM.

Commercial use

You may reproduce, distribute and display these publications solely within your
enterprise provided that all proprietary notices are preserved. You may not make
derivative works of these publications, or reproduce, distribute or display these
publications or any portion thereof outside your enterprise, without the express
consent of IBM.

Rights

Except as expressly granted in this permission, no other permissions, licenses or
rights are granted, either express or implied, to the publications or any
information, data, software or other intellectual property contained therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its
discretion, the use of the publications is detrimental to its interest or, as
determined by IBM, the above instructions are not being properly followed.

You may not download, export or re-export this information except in full
compliance with all applicable laws and regulations, including all United States
export laws and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE
PUBLICATIONS. THE PUBLICATIONS ARE PROVIDED "AS-IS" AND WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING
BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY,
NON-INFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.

76 Sterling B2B Integrator: MESA Developer Studio

Index

A
adapter

definition 20
definition of adapter 8
parts 30
stateful 30
stateless 30
terminology 7

adding BPML files 15
adding EJBs 15
adding maps 15
adding scripts 15
advanced status, reporting 33
API, workflow context 28

B
basic status, reporting 33
bootstrapping 22
business process

model 7
reuse 20
starting 22

Business Process Management Initiative
(BPMI), www.bpmi.org 19

Business Process Modeling Language
(BPML), definition 19

business-to-business (B2B) server 26

D
decision engines 20
Developer SDK

installing into product 18

E
EJB logging 38
ERP systems 20
error reporting 29
exception reporting 33

F
framework, service 21

H
harness model 21
hash table 28

I
invocation

successful 34
unsuccessful 34

J
Java code 20
Java Virtual Machine (JVM) 26

L
large file support 21
legacy programs 20
LogService logging methods 40

P
Perl scripts 20
persisted workflow context 21
persistent storage 21

R
Remote Method Invocation (RMI)

methods 31
part of adapter 30

Reporting Services
configuring 71
installing 71

Reporting Services:WebDAV server 71

S
service

adapters 7
definition 20
framework 21
input parameters 28
installing into product 18
status information 33
types 20

service adapter implementation 28
service groups 21
Service SDK

service directory structure 15
service:language-specific properties 34
stateful adapter 30
stateless adapter 30
status information

advanced 33
basic 33
exception 33

storage types 21

W
WebDAV server (using with Reporting

Services) 71
workflow context

API 28
components 28
definition 21

workflow context;
persisted 21

workflow document body 29

X
XLogger logging 38
XLogger logging methods 39

© Copyright IBM Corp. 2000, 2015 77

78 Sterling B2B Integrator: MESA Developer Studio

IBM®

Product Number:

Printed in USA

	Contents
	MESA Developer Studio
	Using MESA Developer Studio
	About Sterling B2B Integrator MESA Developer Studio SDK
	License Management Settings

	Creating a MESA Developer Studio Project
	Managing Resources in MESA Developer Studio
	Working with Business Processes
	About Working with Schemas
	Working with Properties Files

	Using the MESA Skin Editor
	About the MESA Developer Studio Skin Editor
	Tips for Using the Skin Editor
	Using the Skin Editor to Edit a Sterling B2B Integrator Template

	Creating Services Using the MESA SDK
	Creating Custom Services
	Knowledge Prerequisites for Creating Custom Services
	Classes Available in MESA Developer Studio SDK
	About MESA Developer Studio SDK
	Use the MESA Developer Studio SDK Cheat Sheet

	Steps to Create a Service Using MESA Developer Studio SDK
	Starting the MESA Developer Studio SDK
	Creating a MESA Developer Studio SDK Project
	Add Business Logic to a Service
	Add Parameters to the Service Definition File
	Adding Resources to a Service
	Write Log Messages into a Message Log File
	Create a serviceinstances.xml File
	Change the SDK Library Version

	Export a Service for Deployment
	Install a Service into Sterling B2B Integrator
	Update a Service Definition

	Architecture
	Introduction to Sterling B2B Integrator Architecture
	Components of a Service
	Relationship Between Business Processes and Services
	Service Harness Implementation and Service Adapter Implementation

	Developing a Service
	Adapter Architecture Summary
	About the Workflow Context Used by Adapters
	About the Service Controller Framework Used by Adapters
	Error and Status Reporting
	Setting Up User Prompts for Configuring a Service in the UI
	Setting Up Event Logging for a Service

	File Rename Service Example
	Example 1: Creating the File Rename Service
	Create the FileRename SDK Project
	About System Libraries
	Jar Files Available
	Add Custom Code to the FileRename Project
	Create Parameters for the File Rename Service
	Service Definition Parameters for the File Rename Service
	Service Definition Parameter Field Reference
	Add the Overwrite Parameter
	Add the Source File and Destination File Parameters
	Add Language Property File Entries for the File Rename Service
	Build the Service Package
	Create the Text File to be Renamed
	Install the File Rename Service into Sterling B2B Integrator
	Configure the File Rename Service Instance
	Create Test BPML
	Test the File Rename Service

	Additional Examples
	Example 1: Basic Adapter
	Example 2: Bootstrap Adapter
	Example 3: Stateless/Stateful Adapter
	Defining the Adapter in XML
	Coding the Adapter in Java
	Creating an Adapter Instance in XML
	Packaging and Deploying an Adapter
	Using an Adapter

	Installing MESA Studio
	Overview for Installing and Configuring MESA Developer Studio
	Steps to Set Up MESA Developer Studio
	Eclipse Terms

	Configure the Java JDK on Your PC
	Verify that MESA Developer Studio Uses the Correct JRE
	Start the WebDAV Server
	Start the Sterling B2B Integrator WebDAV Server on UNIX
	Start the Sterling B2B Integrator WebDAV Server (iSeries)

	Installing MESA Developer Studio Components
	Installing New Features

	Set Up a Sterling B2B Integrator Instance
	Edit Connection Information
	View Configuration Details
	Refresh the Instance

	Install Additional MESA Developer Studio Components and Updates
	Install Reporting Services Plug-Ins

	Notices
	Trademarks
	Terms and conditions for product documentation

	Index
	A
	B
	D
	E
	F
	H
	I
	J
	L
	P
	R
	S
	W
	X

