
Selling and Fulfillment
Foundation: Customizing
APIs Guide

Release 8.5

Last updated in HF16

June 2010

Copyright Notice
Copyright © 1999 - 2010

Sterling Commerce, Inc.

ALL RIGHTS RESERVED

STERLING COMMERCE SOFTWARE

TRADE SECRET NOTICE

THE STERLING COMMERCE SOFTWARE DESCRIBED BY THIS DOCUMENTATION ("STERLING COMMERCE
SOFTWARE") IS THE CONFIDENTIAL AND TRADE SECRET PROPERTY OF STERLING COMMERCE, INC., ITS
AFFILIATED COMPANIES OR ITS OR THEIR LICENSORS, AND IS PROVIDED UNDER THE TERMS OF A
LICENSE AGREEMENT. NO DUPLICATION OR DISCLOSURE WITHOUT PRIOR WRITTEN PERMISSION.
RESTRICTED RIGHTS.

This documentation, the Sterling Commerce Software it describes, and the information and know-how
they contain constitute the proprietary, confidential and valuable trade secret information of Sterling
Commerce, Inc., its affiliated companies or its or their licensors, and may not be used for any
unauthorized purpose, or disclosed to others without the prior written permission of the applicable
Sterling Commerce entity. This documentation and the Sterling Commerce Software that it describes
have been provided pursuant to a license agreement that contains prohibitions against and/or
restrictions on their copying, modification and use. Duplication, in whole or in part, if and when
permitted, shall bear this notice and the Sterling Commerce, Inc. copyright notice. Commerce, Inc.
copyright notice.

U.S. GOVERNMENT RESTRICTED RIGHTS. This documentation and the Sterling Commerce Software it
describes are "commercial items" as defined in 48 C.F.R. 2.101. As and when provided to any agency or
instrumentality of the U.S. Government or to a U.S. Government prime contractor or a subcontractor at
any tier ("Government Licensee"), the terms and conditions of the customary Sterling Commerce
commercial license agreement are imposed on Government Licensees per 48 C.F.R. 12.212 or §
227.7202 through § 227.7202-4, as applicable, or through 48 C.F.R. § 52.244-6.

This Trade Secret Notice, including the terms of use herein is governed by the laws of the State of Ohio,
USA, without regard to its conflict of laws provisions. If you are accessing the Sterling Commerce
Software under an executed agreement, then nothing in these terms and conditions supersedes or
modifies the executed agreement.

Sterling Commerce, Inc.
4600 Lakehurst Court
Dublin, Ohio 43016-2000

Copyright © 1999 - 2010

Third-Party Software

Portions of the Sterling Commerce Software may include products, or may be distributed on the same
storage media with products, ("Third Party Software") offered by third parties ("Third Party Licensors").
Sterling Commerce Software may include Third Party Software covered by the following copyrights:
Copyright © 2006-2008 Andres Almiray. Copyright © 1999-2005 The Apache Software Foundation.
Copyright (c) 2008 Azer Koçulu http://azer.kodfabrik.com. Copyright © Einar Lielmanis,
einars@gmail.com. Copyright (c) 2006 John Reilly (www.inconspicuous.org) and Copyright (c) 2002
Douglas Crockford (www.crockford.com). Copyright (c) 2009 John Resig, http://jquery.com/. Copyright
© 2006-2008 Json-lib. Copyright © 2001 LOOX Software, Inc. Copyright © 2003-2008 Luck Consulting
Pty. Ltd. Copyright 2002-2004 © MetaStuff, Ltd. Copyright © 2009 Michael Mathews
micmath@gmail.com. Copyright © 1999-2005 Northwoods Software Corporation. Copyright (C)
Microsoft Corp. 1981-1998. Purple Technology, Inc. Copyright (c) 2004-2008 QOS.ch. Copyright © 2005
Sabre Airline Solutions. Copyright © 2004 SoftComplex, Inc. Copyright © 2000-2007 Sun
Microsystems, Inc. Copyright © 2001 VisualSoft Technologies Limited. Copyright © 2001 Zero G
Software, Inc. All rights reserved by all listed parties.

The Sterling Commerce Software is distributed on the same storage media as certain Third Party
Software covered by the following copyrights: Copyright © 1999-2006 The Apache Software Foundation.
Copyright (c) 2001-2003 Ant-Contrib project. Copyright © 1998-2007 Bela Ban. Copyright © 2005
Eclipse Foundation. Copyright © 2002-2006 Julian Hyde and others. Copyright © 1997 ICE Engineering,
Inc./Timothy Gerard Endres. Copyright 2000, 2006 IBM Corporation and others. Copyright © 1987-2006
ILOG, Inc. Copyright © 2000-2006 Infragistics. Copyright © 2002-2005 JBoss, Inc. Copyright
LuMriX.net GmbH, Switzerland. Copyright © 1998-2009 Mozilla.org. Copyright © 2003-2009 Mozdev
Group, Inc. Copyright © 1999-2002 JBoss.org. Copyright Raghu K, 2003. Copyright © 2004 David
Schweinsberg. Copyright © 2005-2006 Darren L. Spurgeon. Copyright © S.E. Morris (FISH) 2003-04.
Copyright © 2006 VisualSoft Technologies. Copyright © 2002-2009 Zipwise Software. All rights reserved
by all listed parties.

Certain components of the Sterling Commerce Software are distributed on the same storage media as
Third Party Software which are not listed above. Additional information for such Third Party Software
components of the Sterling Commerce Software is located at:
installdir/mesa/studio/plugins/SCI_Studio_License.txt.

Third Party Software which is included, or are distributed on the same storage media with, the Sterling
Commerce Software where use, duplication, or disclosure by the United States government or a
government contractor or subcontractor, are provided with RESTRICTED RIGHTS under Title 48 CFR
2.101, 12.212, 52.227-19, 227.7201 through 227.7202-4, DFAR 252.227-7013(c) (1) (ii) and (2), DFAR
252.227-7015(b)(6/95), DFAR 227.7202-3(a), FAR 52.227-14(g)(2)(6/87), and FAR 52.227-19(c)(2)
and (6/87) as applicable.

Additional information regarding certain Third Party Software is located at installdir/SCI_License.txt.

Some Third Party Licensors also provide license information and/or source code for their software via
their respective links set forth below:

http://danadler.com/jacob/

http://www.dom4j.org

This product includes software developed by the Apache Software Foundation (http://www.apache.org).
This product includes software developed by the Ant-Contrib project
(http://sourceforge.net/projects/ant-contrib). This product includes software developed by the JDOM
Project (http://www.jdom.org/). This product includes code licensed from RSA Data Security (via Sun
Microsystems, Inc.). Sun, Sun Microsystems, the Sun Logo, Java, JDK, the Java Coffee Cup logo,
JavaBeans , JDBC, JMX and all JMX based trademarks and logos are trademarks or registered trademarks
of Sun Microsystems, Inc. All other trademarks and logos are trademarks of their respective owners.

THE APACHE SOFTWARE FOUNDATION SOFTWARE

The Sterling Commerce Software is distributed with or on the same storage media as the following
software products (or components thereof) and java source code files: Xalan version 2.5.2,
 Cookie.java, Header.java, HeaderElement.java, HttpException.java, HttpState.java, NameValuePair.java,
CronTimeTrigger.java, DefaultTimeScheduler.java, PeriodicTimeTrigger.java, Target.java,

TimeScheduledEntry.java, TimeScheduler.java, TimeTrigger.java, Trigger.java, BinaryHeap.java,
PriorityQueue.java, SynchronizedPriorityQueue.java, GetOpt.java, GetOptsException.java,
IllegalArgumentException.java, MissingOptArgException.java (collectively, "Apache 1.1 Software").
Apache 1.1 Software is free software which is distributed under the terms of the following license:

License Version 1.1

Copyright 1999-2003 The Apache Software Foundation. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided
that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

2. Redistribution in binary form must reproduce the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other materials provided with the distribution.

3. The end-user documentation included with the redistribution, if any, must include the following
acknowledgement: "This product includes software developed by the Apache Software Foundation
(http://www.apache.org)." Alternatively, this acknowledgement may appear in the software itself, if and
whenever such third-party acknowledgements normally appear.

4. The names "Commons", "Jakarta", "The Jakarta Project", "HttpClient", "log4j", "Xerces "Xalan",
"Avalon", "Apache Avalon", "Avalon Cornerstone", "Avalon Framework", "Apache" and "Apache Software
Foundation" must not be used to endorse or promote products derived from this software without
specific prior written permission. For written permission, please contact apache@apache.org.

5. Products derived from this software may not be called "Apache", nor may "Apache" appear in their
name, without the prior written permission of the Apache Software Foundation.

THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESS OR IMIPLIED WARRANTIES, INCLUDING
ANY IMPLIED WARRANTY OF MERCHANTIBILITY, AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL APACHE SOFTWARE FOUNDATION OR ITS CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTIAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

This software consists of voluntary contributions made by many individuals on behalf of the Apache
Software Foundation. The GetOpt.java, GetOptsException.java, IlligalArgumentException.java and
MissingOptArgException.java software was originally based on software copyright (c) 2001, Sun
Microsystems., http://www.sun.com. For more information on the Apache Software Foundation, please
see <http://www.apache.org/>.

The preceding license only applies to the Apache 1.1 Software and does not apply to the Sterling
Commerce Software or to any other Third-Party Software.

The Sterling Commerce Software is also distributed with or on the same storage media as the following
software products (or components thereof): Ant, Antinstaller, Apache File Upload Package, Apache
Commons Beans, Apache Commons BetWixt, Apache Commons Collection, Apache Commons Digester,
Apache Commons IO, Apache Commons Lang., Apache Commons Logging, Apache Commons Net,
Apache Jakarta Commons Pool, Apache Jakarta ORO, Lucene, Xerces version 2.7, Apache Log4J,
Apache SOAP, Apache Struts and Apache Xalan 2.7.0, (collectively, "Apache 2.0 Software"). Apache
2.0 Software is free software which is distributed under the terms of the Apache License Version 2.0. A
copy of License Version 2.0 is found in the following directory files for the individual pieces of the Apache
2.0 Software: installdir/jar/commons_upload/1_0/ CommonsFileUpload_License.txt,
installdir/jar/jetspeed/1_4/RegExp_License.txt,
 installdir/ant/Ant_License.txt
<install>/jar/antInstaller/0_8/antinstaller_License.txt,
<install>/jar/commons_beanutils/1_7_0/commons-beanutils.jar (/META-INF/LICENSE.txt),
<install>/jar/commons_betwixt/0_8/commons-betwixt-0.8.jar (/META-INF/LICENSE.txt),

<install>/jar/commons_collections/3_2/LICENSE.txt,
<install>/jar/commons_digester/1_8/commons-digester-1.8.jar (/META-INF/LICENSE.txt),
<install>/jar/commons_io/1_4/LICENSE.txt,
<install>/jar/commons_lang/2_1/Commons_Lang_License.txt,
<install>/jar/commons_logging/1_0_4/commons-logging-1.0.4.jar (/META-INF/LICENSE.txt),
<install>/jar/commons_net/1_4_1/commons-net-1.4.1.jar (/META-INF/LICENSE.txt),
<install>/jar/smcfs/8.5/lucene-core-2.4.0.jar (/META-INF/LICENSE.txt),
<install>/jar/struts/2_0_11/struts2-core-2.0.11.jar (./LICENSE.txt),
<install>/jar/mesa/gisdav/WEB-INF/lib/Slide_License.txt,
<install>/mesa/studio/plugins/xerces_2.7_license.txt,
<install>/jar/commons_pool/1_2/Commons_License.txt,
<install>/jar/jakarta_oro/2_0_8/JakartaOro_License.txt,
<install>/jar/log4j/1_2_15/LOG4J_License.txt,
<install>/jar/xalan/2_7/Xalan_License.txt,
<install>/jar/soap/2_3_1/Apache_SOAP_License.txt

Unless otherwise stated in a specific directory, the Apache 2.0 Software was not modified. Neither the
Sterling Commerce Software, modifications, if any, to Apache 2.0 Software, nor other Third Party Code is
a Derivative Work or a Contribution as defined in License Version 2.0. License Version 2.0 applies only to
the Apache 2.0 Software which is the subject of the specific directory file and does not apply to the
Sterling Commerce Software or to any other Third Party Software. License Version 2.0 includes the
following provision:

"Unless required by applicable law or agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS
OF ANY KIND, either express or implied, including, without limitation, any warranties or conditions of
TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. You are
solely responsible for determining the appropriateness of using or redistributing the Work and assume
any risks associated with Your exercise of permissions under this License."

NOTICE file corresponding to the section 4 d of the Apache License, Version 2.0, in this case for the
Apache Ant distribution. Apache Ant Copyright 1999-2008 The Apache Software Foundation. This
product includes software developed by The Apache Software Foundation (http://www.apache.org/).
This product includes also software developed by :

 - the W3C consortium (http://www.w3c.org) ,

 - the SAX project (http://www.saxproject.org)

The <sync> task is based on code Copyright (c) 2002, Landmark Graphics Corp that has been kindly
donated to the Apache Software Foundation.

Portions of this software were originally based on the following:

 - software copyright (c) 1999, IBM Corporation., http://www.ibm.com.

 - software copyright (c) 1999, Sun Microsystems., http://www.sun.com.

 - voluntary contributions made by Paul Eng on behalf of the Apache Software Foundation that were
originally developed at iClick, Inc., software copyright (c) 1999.

NOTICE file corresponding to the section 4 d of the Apache License, Version 2.0, in this case for the
Apache Lucene distribution. Apache Lucene Copyright 2006 The Apache Software Foundation. This
product includes software developed by The Apache Software Foundation (http://www.apache.org/).
The snowball stemmers in contrib/snowball/src/java/net/sf/snowball were developed by Martin Porter
and Richard Boulton. The full snowball package is available from http://snowball.tartarus.org/

Ant-Contrib Software

The Sterling Commerce Software is distributed with or on the same storage media as the Anti-Contrib
software (Copyright (c) 2001-2003 Ant-Contrib project. All rights reserved.) (the "Ant-Contrib
Software"). The Ant-Contrib Software is free software which is distributed under the terms of the
following license:

The Apache Software License, Version 1.1

Copyright (c) 2001-2003 Ant-Contrib project. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided
that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and
the following disclaimer in the documentation and/or other materials provided with the distribution.

3. The end-user documentation included with the redistribution, if any, must include the following
acknowledgement:

"This product includes software developed by the Ant-Contrib project
(http://sourceforge.net/projects/ant-contrib)."

Alternately, this acknowledgement may appear in the software itself, if and wherever such third-party
acknowledgements normally appear.

 4. The name Ant-Contrib must not be used to endorse or promote products derived from this software
without prior written permission. For written permission, please contact
ant-contrib-developers@lists.sourceforge.net.

 5. Products derived from this software may not be called "Ant-Contrib" nor may "Ant-Contrib" appear in
their names without prior written permission of the Ant-Contrib project.

THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE ANT-CONTRIB PROJECT OR ITS
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. The preceding license only applies to the
Ant-Contrib Software and does not apply to the Sterling Commerce Software or to any other Third-Party
Software.

The preceding license only applies to the Ant-Contrib Software and does not apply to the Sterling
Commerce Software or to any other Third Party Software.

DOM4J Software

The Sterling Commerce Software is distributed with or on the same storage media as the Dom4h
Software which is free software distributed under the terms of the following license:

Redistribution and use of this software and associated documentation ("Software"), with or without
modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain copyright statements and notices. Redistributions must also
contain a copy of this document.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and
the following disclaimer in the documentation and/or other materials provided with the distribution.

3. The name "DOM4J" must not be used to endorse or promote products derived from this Software
without prior written permission of MetaStuff, Ltd. For written permission, please contact
dom4j-info@metastuff.com.

4. Products derived from this Software may not be called "DOM4J" nor may "DOM4J" appear in their
names without prior written permission of MetaStuff, Ltd. DOM4J is a registered trademark of MetaStuff,
Ltd.

5. Due credit should be given to the DOM4J Project - http://www.dom4j.org

THIS SOFTWARE IS PROVIDED BY METASTUFF, LTD. AND CONTRIBUTORS ``AS IS'' AND ANY
EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL METASTUFF, LTD. OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Copyright 2001-2004 (C) MetaStuff, Ltd. All Rights Reserved.

The preceding license only applies to the Dom4j Software and does not apply to the Sterling Commerce
Software, or any other Third-Party Software.

THE ECLIPSE SOFTWARE FOUNDATION

The Sterling Commerce Software is also distributed with or on the same storage media as the following
software:

com.ibm.icu.nl1_3.4.4.v200606220026.jar, org.eclipse.ant.core.nl1_3.1.100.v200606220026.jar,
org.eclipse.ant.ui.nl1_3.2.0.v200606220026.jar, org.eclipse.compare.nl1_3.2.0.v200606220026.jar,
org.eclipse.core.boot.nl1_3.1.100.v200606220026.jar,
org.eclipse.core.commands.nl1_3.2.0.v200606220026.jar,
org.eclipse.core.contenttype.nl1_3.2.0.v200606220026.jar,
org.eclipse.core.expressions.nl1_3.2.0.v200606220026.jar,
org.eclipse.core.filebuffers.nl1_3.2.0.v200606220026.jar,
org.eclipse.core.filesystem.nl1_1.0.0.v200606220026.jar,
org.eclipse.core.jobs.nl1_3.2.0.v200606220026.jar,
org.eclipse.core.resources.nl1_3.2.0.v200606220026.jar,
org.eclipse.core.runtime.compatibility.auth.nl1_3.2.0.v200606220026.jar,
org.eclipse.core.runtime.compatibility.nl1_3.1.100.v200606220026.jar,
org.eclipse.core.runtime.nl1_3.2.0.v200606220026.jar,
org.eclipse.core.variables.nl1_3.1.100.v200606220026.jar,
org.eclipse.debug.core.nl1_3.2.0.v200606220026.jar,
org.eclipse.debug.ui.nl1_3.2.0.v200606220026.jar,
org.eclipse.equinox.common.nl1_3.2.0.v200606220026.jar,
org.eclipse.equinox.preferences.nl1_3.2.0.v200606220026.jar,
org.eclipse.equinox.registry.nl1_3.2.0.v200606220026.jar,
org.eclipse.help.appserver.nl1_3.1.100.v200606220026.jar,
org.eclipse.help.base.nl1_3.2.0.v200606220026.jar, org.eclipse.help.nl1_3.2.0.v200606220026.jar,
org.eclipse.help.ui.nl1_3.2.0.v200606220026.jar, org.eclipse.jdt.apt.core.nl1_3.2.0.v200606220026.jar,
org.eclipse.jdt.apt.ui.nl1_3.2.0.v200606220026.jar,
org.eclipse.jdt.core.manipulation.nl1_1.0.0.v200606220026.jar,
org.eclipse.jdt.core.nl1_3.2.0.v200606220026.jar,
org.eclipse.jdt.debug.ui.nl1_3.2.0.v200606220026.jar,
org.eclipse.jdt.doc.isv.nl1_3.2.0.v200606220026.jar,
org.eclipse.jdt.doc.user.nl1_3.2.0.v200606220026.jar,
org.eclipse.jdt.junit4.runtime.nl1_1.0.0.v200606220026.jar,
org.eclipse.jdt.launching.nl1_3.2.0.v200606220026.jar, org.eclipse.jdt.nl1_3.2.0.v200606220026.jar,
org.eclipse.jdt.ui.nl1_3.2.0.v200606220026.jar,
org.eclipse.jface.databinding.nl1_1.0.0.v200606220026.jar,
org.eclipse.jface.nl1_3.2.0.v200606220026.jar, org.eclipse.jface.text.nl1_3.2.0.v200606220026.jar,
org.eclipse.ltk.core.refactoring.nl1_3.2.0.v200606220026.jar,
org.eclipse.ltk.ui.refactoring.nl1_3.2.0.v200606220026.jar,
org.eclipse.osgi.nl1_3.2.0.v200606220026.jar, org.eclipse.osgi.services.nl1_3.1.100.v200606220026.jar,
org.eclipse.osgi.util.nl1_3.1.100.v200606220026.jar, org.eclipse.pde.core.nl1_3.2.0.v200606220026.jar,
org.eclipse.pde.doc.user.nl1_3.2.0.v200606220026.jar,
org.eclipse.pde.junit.runtime.nl1_3.2.0.v200606220026.jar,
org.eclipse.pde.nl1_3.2.0.v200606220026.jar, org.eclipse.pde.runtime.nl1_3.2.0.v200606220026.jar,
org.eclipse.pde.ui.nl1_3.2.0.v200606220026.jar,
org.eclipse.platform.doc.isv.nl1_3.2.0.v200606220026.jar,
org.eclipse.platform.doc.user.nl1_3.2.0.v200606220026.jar,

org.eclipse.rcp.nl1_3.2.0.v200606220026.jar, org.eclipse.search.nl1_3.2.0.v200606220026.jar,
org.eclipse.swt.nl1_3.2.0.v200606220026.jar, org.eclipse.team.core.nl1_3.2.0.v200606220026.jar,
org.eclipse.team.cvs.core.nl1_3.2.0.v200606220026.jar,
org.eclipse.team.cvs.ssh.nl1_3.2.0.v200606220026.jar,
org.eclipse.team.cvs.ssh2.nl1_3.2.0.v200606220026.jar,
org.eclipse.team.cvs.ui.nl1_3.2.0.v200606220026.jar, org.eclipse.team.ui.nl1_3.2.0.v200606220026.jar,
org.eclipse.text.nl1_3.2.0.v200606220026.jar, org.eclipse.ui.browser.nl1_3.2.0.v200606220026.jar,
org.eclipse.ui.cheatsheets.nl1_3.2.0.v200606220026.jar,
org.eclipse.ui.console.nl1_3.1.100.v200606220026.jar,
org.eclipse.ui.editors.nl1_3.2.0.v200606220026.jar,
org.eclipse.ui.externaltools.nl1_3.1.100.v200606220026.jar,
org.eclipse.ui.forms.nl1_3.2.0.v200606220026.jar, org.eclipse.ui.ide.nl1_3.2.0.v200606220026.jar,
org.eclipse.ui.intro.nl1_3.2.0.v200606220026.jar, org.eclipse.ui.navigator.nl1_3.2.0.v200606220026.jar,
org.eclipse.ui.navigator.resources.nl1_3.2.0.v200606220026.jar,
org.eclipse.ui.nl1_3.2.0.v200606220026.jar,
org.eclipse.ui.presentations.r21.nl1_3.2.0.v200606220026.jar,
org.eclipse.ui.views.nl1_3.2.0.v200606220026.jar,
org.eclipse.ui.views.properties.tabbed.nl1_3.2.0.v200606220026.jar,
org.eclipse.ui.workbench.nl1_3.2.0.v200606220026.jar,
org.eclipse.ui.workbench.texteditor.nl1_3.2.0.v200606220026.jar,
org.eclipse.update.configurator.nl1_3.2.0.v200606220026.jar,
org.eclipse.update.core.nl1_3.2.0.v200606220026.jar,
org.eclipse.update.scheduler.nl1_3.2.0.v200606220026.jar,
org.eclipse.update.ui.nl1_3.2.0.v200606220026.jar,
com.ibm.icu_3.4.4.1.jar,
org.eclipse.core.commands_3.2.0.I20060605-1400.jar,
org.eclipse.core.contenttype_3.2.0.v20060603.jar,
org.eclipse.core.expressions_3.2.0.v20060605-1400.jar,
org.eclipse.core.filesystem.linux.x86_1.0.0.v20060603.jar,
org.eclipse.core.filesystem_1.0.0.v20060603.jar, org.eclipse.core.jobs_3.2.0.v20060603.jar,
org.eclipse.core.runtime.compatibility.auth_3.2.0.v20060601.jar,
org.eclipse.core.runtime_3.2.0.v20060603.jar, org.eclipse.equinox.common_3.2.0.v20060603.jar,
org.eclipse.equinox.preferences_3.2.0.v20060601.jar, org.eclipse.equinox.registry_3.2.0.v20060601.jar,
org.eclipse.help_3.2.0.v20060602.jar, org.eclipse.jface.text_3.2.0.v20060605-1400.jar,
org.eclipse.jface_3.2.0.I20060605-1400.jar, org.eclipse.osgi_3.2.0.v20060601.jar,
org.eclipse.swt.gtk.linux.x86_3.2.0.v3232m.jar, org.eclipse.swt_3.2.0.v3232o.jar,
org.eclipse.text_3.2.0.v20060605-1400.jar,
org.eclipse.ui.workbench.texteditor_3.2.0.v20060605-1400.jar,
org.eclipse.ui.workbench_3.2.0.I20060605-1400.jar, org.eclipse.ui_3.2.0.I20060605-1400.jar,
runtime_registry_compatibility.jar, eclipse.exe, eclipse.ini, and startup.jar
(collectively, "Eclipse Software").
All Eclipse Software is distributed under the terms and conditions of the Eclipse Foundation Software
User Agreement (EFSUA) and/or terms and conditions of the Eclipse Public License Version 1.0 (EPL) or
other license agreements, notices or terms and conditions referenced for the individual pieces of the
Eclipse Software, including without limitation "Abouts", "Feature Licenses", and "Feature Update
Licenses" as defined in the EFSUA .

A copy of the Eclipse Foundation Software User Agreement is found at
<install_dir>/SI/repository/rcp/rcpdependencies/windows/eclipse/notice.html,
<install_dir>/SI/repository/rcp/rcpdependencies/windows/eclipse/plugins/notice.html,
<install_dir>/SI/repository/rcp/rcpdependencies/gtk.linux_x86/eclipse/notice.html, and
<install_dir>/SI/repository/rcp/rcpdependencies/gtk.linux_x86/eclipse/plugins/notice.html.

A copy of the EPL is found at
<install_dir>/SI/repository/rcp/rcpdependencies/windows/eclipse/plugins/epl-v10.htm,
<install_dir>/SI/repository/rcp/rcpdependencies/windows/eclipse/epl-v10.htm,
<install_dir>/SI/repository/rcp/rcpdependencies/gtk.linux.x86/eclipse/plugins/epl-v10.html, and
<install_dir>/SI/repository/rcp/rcpdependencies/gtk.linux.x86/eclipse/epl-v10.html.

The reference to the license agreements, notices or terms and conditions governing each individual piece
of the Eclipse Software is found in the directory files for the individual pieces of the Eclipse Software as
described in the file identified as installdir/SCI_License.txt.

These licenses only apply to the Eclipse Software and do not apply to the Sterling Commerce Software,
or any other Third Party Software.

The Language Pack (NL Pack) piece of the Eclipse Software, is distributed in object code form. Source
code is available at
http://archive.eclipse.org/eclipse/downloads/drops/L-3.2_Language_Packs-200607121700/index.php.
In the event the source code is no longer available from the website referenced above, contact Sterling
Commerce at 978-513-6000 and ask for the Release Manager. A copy of this license is located at
<install_dir>/SI/repository/rcp/rcpdependencies/windows/eclipse/plugins/epl-v10.htm and

<install_dir>/SI/repository/rcp/rcpdependencies/gtk.linux.x86/eclipse/plugins/epl-v10.html.

The org.eclipse.core.runtime_3.2.0.v20060603.jar piece of the Eclipse Software was modified slightly in
order to remove classes containing encryption items. The org.eclipse.core.runtime_3.2.0.v20060603.jar
was modified to remove the Cipher, CipherInputStream and CipherOutputStream classes and rebuild the
org.eclipse.core.runtime_3.2.0.v20060603.jar.

Ehcache Software

The Sterling Commerce Software is also distributed with or on the same storage media as the ehache
v.1.5 software (Copyright © 2003-2008 Luck Consulting Pty. Ltd.) ("Ehache Software"). Ehcache
Software is free software which is distributed under the terms of the Apache License Version 2.0. A copy
of License Version 2.0 is found in <install>/jar/smcfs/8.5/ehcache-1.5.0.jar (./LICENSE.txt).

The Ehcache Software was not modified. Neither the Sterling Commerce Software, modifications, if any,
to the Ehcache Software, nor other Third Party Code is a Derivative Work or a Contribution as defined in
License Version 2.0. License Version 2.0 applies only to the Ehcache Software which is the subject of the
specific directory file and does not apply to the Sterling Commerce Software or to any other Third Party
Software. License Version 2.0 includes the following provision:

"Unless required by applicable law or agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS
OF ANY KIND, either express or implied, including, without limitation, any warranties or conditions of
TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. You are
solely responsible for determining the appropriateness of using or redistributing the Work and assume
any risks associated with Your exercise of permissions under this License."

EZMorph Software

The Sterling Commerce Software is also distributed with or on the same storage media as the EZMorph
v. 1.0.4 software (Copyright © 2006-2008 Andres Almiray) ("EZMorph Software"). EZMorph Software is
free software which is distributed under the terms of the Apache License Version 2.0. A copy of License
Version 2.0 is found in <install>/jar/ezmorph/1_0_4/ezmorph-1.0.4.jar (./LICENSE.txt).

The EZMorph Software was not modified. Neither the Sterling Commerce Software, modifications, if any,
to the EZMorph Software, nor other Third Party Code is a Derivative Work or a Contribution as defined in
License Version 2.0. License Version 2.0 applies only to the EZMorph Software which is the subject of
the specific directory file and does not apply to the Sterling Commerce Software or to any other Third
Party Software. License Version 2.0 includes the following provision:

"Unless required by applicable law or agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS
OF ANY KIND, either express or implied, including, without limitation, any warranties or conditions of
TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. You are
solely responsible for determining the appropriateness of using or redistributing the Work and assume
any risks associated with Your exercise of permissions under this License."

Firebug Lite Software

The Sterling Commerce Software is distributed with or on the same storage media as the Firebug Lite
Software which is free software distributed under the terms of the following license:

Copyright (c) 2008 Azer Koçulu http://azer.kodfabrik.com. All rights reserved.

Redistribution and use of this software in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

* Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

* Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other materials provided with the distribution.

* Neither the name of Azer Koçulu. nor the names of any other contributors may be used to endorse or
promote products derived from this software without specific prior written permission of Parakey Inc.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

ICE SOFTWARE

The Sterling Commerce Software is distributed on the same storage media as the ICE Software
(Copyright © 1997 ICE Engineering, Inc./Timothy Gerard Endres.) ("ICE Software"). The ICE Software is
independent from and not linked or compiled with the Sterling Commerce Software. The ICE Software is
a free software product which can be distributed and/or modified under the terms of the GNU General
Public License as published by the Free Software Foundation; either version 2 of the License or any later
version.

A copy of the GNU General Public License is provided at installdir/jar/jniregistry/1_2/ICE_License.txt.
This license only applies to the ICE Software and does not apply to the Sterling Commerce Software, or
any other Third Party Software.

The ICE Software was modified slightly in order to fix a problem discovered by Sterling Commerce
involving the RegistryKey class in the RegistryKey.java in the JNIRegistry.jar. The class was modified to
comment out the finalize () method and rebuild of the JNIRegistry.jar file.

Source code for the bug fix completed by Sterling Commerce on January 8, 2003 is located at:
installdir/jar/jniregistry/1_2/RegistryKey.java. Source code for all other components of the ICE Software
is located at http://www.trustice.com/java/jnireg/index.shtml.

The ICE Software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

JBOSS SOFTWARE

The Sterling Commerce Software is distributed on the same storage media as the JBoss Software
(Copyright © 1999-2002 JBoss.org) ("JBoss Software"). The JBoss Software is independent from and
not linked or compiled with the Sterling Commerce Software. The JBoss Software is a free software
product which can be distributed and/or modified under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either version 2.1 of the License or any later
version.

A copy of the GNU Lesser General Public License is provided at:
<install_dir>\jar\jboss\4_2_0\LICENSE.html

This license only applies to the JBoss Software and does not apply to the Sterling Commerce Software,
or any other Third Party Software.

The JBoss Software is not distributed by Sterling Commerce in its entirety. Rather, the distribution is
limited to the following jar files: el-api.jar, jasper-compiler-5.5.15.jar, jasper-el.jar, jasper.jar,
jboss-common-client.jar, jboss-j2ee.jar, jboss-jmx.jar, jboss-jsr77-client.jar, jbossmq-client.jar,

jnpserver.jar, jsp-api.jar, servlet-api.jar, tomcat-juli.jar.

The JBoss Software was modified slightly in order to allow the ClientSocketFactory to return a socket
connected to a particular host in order to control the host interfaces, regardless of whether the
ClientSocket Factory specified was custom or note. Changes were made to org.jnp..server.Main. Details
concerning this change can be found at
http://sourceforge.net/tracker/?func=detail&aid=1008902&group_id=22866&atid=376687.

Source code for the modifications completed by Sterling Commerce on August 13, 2004 is located at:
http://sourceforge.net/tracker/?func=detail&aid=1008902&group_id=22866&atid=376687. Source code
for all other components of the JBoss Software is located at http://www.jboss.org.

JGO SOFTWARE

The Sterling Commerce Software is distributed with, or on the same storage media, as certain
redistributable portions of the JGo Software provided by Northwoods Software Corporation under a
commercial license agreement (the "JGo Software"). The JGo Software is provided subject to the
disclaimers set forth above and the following notice:

U.S. Government Restricted Rights

The JGo Software and documentation are provided with RESTRICTED RIGHTS. Use, duplication, or
disclosure by the Government is subject to restrictions as set forth in subparagraph (C)(1)(ii) of the
Rights in Technical Data and Computer Software clause at DFARS 252.227-7013 or subparagraphs (C)(1)
and (2) of the Commercial Computer Software - Restricted Rights at 48 CFR 52.227-19, as applicable.
Contractor / manufacturer of the JGo Software is Northwoods Software Corporation, 142 Main St.,
Nashua, NH 03060.

JSLib Software

The Sterling Commerce Software is distributed with or on the same storage media as the JSLib software
product (Copyright (c) 2003-2009 Mozdev Group, Inc.) ("JSLib Software"). The JSLib Software is
distributed under the terms of the MOZILLA PUBLIC LICENSE Version 1.1. A copy of this license is
located at <install>\repository\eardata\platform_uifwk_ide\war\designer\MPL-1.1.txt. The JSLib
Software code is distributed in source form and is located at http://jslib.mozdev.org/installation.html.
Neither the Sterling Commerce Software nor any other Third-Party Code is a Modification or Contribution
subject to the Mozilla Public License. Pursuant to the terms of the Mozilla Public License, the following
notice applies only to the JSLib Software (and not to the Sterling Commerce Software or any other
Third-Party Software):

"The contents of the file located at http://www.mozdev.org/source/browse/jslib/ are subject to the
Mozilla Public License Version 1.1 (the "License"); you may not use this file except in compliance with the
License. You may obtain a copy of the License at http://www.mozilla.org/MPL/MPL-1.1.html.

Software distributed under the License is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
KIND, either express or implied. See the License for the specific language governing rights and
limitations under the License.

The Original Code is Mozdev Group, Inc. code. The Initial Developer of the Original Code is Mozdev
Group, Inc. Portions created by_Mozdev Group, Inc. are Copyright © 2003 Mozdev Group, Inc. All Rights
Reserved. Original Author: Pete Collins <pete@mozdev.org>one Contributor(s):_____none
listed________.

Alternatively, the contents of this file may be used under the terms of the ____ license (the "[___]
License"), in which case the provisions of [___] License are applicable instead of those above. If you
wish to allow use of your version of this file only under the terms of the [___] License and not allow
others to use your version of this file under the MPL, indicate your decision by deleting the provisions
above and replace them with the notice and other provisions required by the [___] License. If you do not
delete the provisions above, a recipient may use your version of this file under either the MPL or the
[___] License."

The preceding license only applies to the JSLib Software and does not apply to the Sterling Commerce
Software, or any other Third-Party Software.

Json Software

The Sterling Commerce Software is also distributed with or on the same storage media as the Json 2.2.2
software (Copyright © 2006-2008 Json-lib) ("Json Software"). Json Software is free software which is
distributed under the terms of the Apache License Version 2.0. A copy of License Version 2.0 is found in
<install>/jar/jsonlib/2_2_2/json-lib-2.2.2-jdk13.jar.

This product includes software developed by Douglas Crockford (http://www.crockford.com).

The Json Software was not modified. Neither the Sterling Commerce Software, modifications, if any, to
the Json Software, nor other Third Party Code is a Derivative Work or a Contribution as defined in
License Version 2.0. License Version 2.0 applies only to the Json Software which is the subject of the
specific directory file and does not apply to the Sterling Commerce Software or to any other Third Party
Software. License Version 2.0 includes the following provision:

"Unless required by applicable law or agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS
OF ANY KIND, either express or implied, including, without limitation, any warranties or conditions of
TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. You are
solely responsible for determining the appropriateness of using or redistributing the Work and assume
any risks associated with Your exercise of permissions under this License."

Purple Technology

The Sterling Commerce Software is distributed with or on the same storage media as the Purple
Technology Software (Copyright (c) 1995-1999 Purple Technology, Inc.) ("Purple Technology Software"),
which is subject to the following license:

Copyright (c) 1995-1999 Purple Technology, Inc. All rights reserved.

PLAIN LANGUAGE LICENSE: Do whatever you like with this code, free of charge, just give credit where
credit is due. If you improve it, please send your improvements to alex@purpletech.com. Check
http://www.purpletech.com/code/ for the latest version and news.

LEGAL LANGUAGE LICENSE: Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and
the following disclaimer in the documentation and/or other materials provided with the distribution.

3. The names of the authors and the names "Purple Technology," "Purple Server" and "Purple Chat" must
not be used to endorse or promote products derived from this software without prior written permission.
For written permission, please contact server@purpletech.com.

THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND PURPLE TECHNOLOGY "AS IS'' AND ANY
EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE AUTHORS OR PURPLE TECHNOLOGY BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

The preceding license only applies to the Purple Technology Software and does not apply to the Sterling
Commerce Software, or any other Third Party Software.

Rico Software

The Sterling Commerce Software is also distributed with or on the same storage media as the Rico.js
software (Copyright © 2005 Sabre Airline Solutions) ("Rico Software"). Rico Software is free software

which is distributed under the terms of the Apache License Version 2.0. A copy of License Version 2.0 is
found in <install>/repository/eardata/platform/war/ajax/scripts/Rico_License.txt.

The Rico Software was not modified. Neither the Sterling Commerce Software, modifications, if any, to
the Rico Software, nor other Third-Party Code is a Derivative Work or a Contribution as defined in
License Version 2.0. License Version 2.0 applies only to the Rico Software which is the subject of the
specific directory file and does not apply to the Sterling Commerce Software or to any other Third-Party
Software. License Version 2.0 includes the following provision:

"Unless required by applicable law or agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS
OF ANY KIND, either express or implied, including, without limitation, any warranties or conditions of
TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. You are
solely responsible for determining the appropriateness of using or redistributing the Work and assume
any risks associated with Your exercise of permissions under this License."

Rhino Software

The Sterling Commerce Software is distributed with or on the same storage media as the Rhino js.jar
(Copyright (c) 1998-2009 Mozilla.org.) ("Rhino Software"). A majority of the source code for the Rhino
Software is dual licensed under the terms of the MOZILLA PUBLIC LICENSE Version 1.1. or the GPL v.
2.0. Additionally, some files (at a minimum the contents of
toolsrc/org/Mozilla/javascript/toolsdebugger/treetable) are available under another license as set forth in
the directory file for the Rhino Software.

Sterling Commerce's use and distribution of the Rhino Software is under the Mozilla Public License. A
copy of this license is located at <install>/3rdParty/rico license.doc. The Rhino Software code is
distributed in source form and is located at http://mxr.mozilla.org/mozilla/source/js/rhino/src/. Neither
the Sterling Commerce Software nor any other Third-Party Code is a Modification or Contribution subject
to the Mozilla Public License. Pursuant to the terms of the Mozilla Public License, the following notice
applies only to the Rhino Software (and not to the Sterling Commerce Software or any other Third-Party
Software):

"The contents of the file located at <install>/jar/rhino/1_7R1/js.jar are subject to the Mozilla Public
License Version 1.1 (the "License"); you may not use this file except in compliance with the License. You
may obtain a copy of the License at http://www.mozilla.org/MPL/.

Software distributed under the License is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
KIND, either express or implied. See the License for the specific language governing rights and
limitations under the License.

The Original Code is Rhino code, released May 6, 1999. The Initial Developer is Netscape
Communications Corporation. Portions created by the Initial Developer are Copyright © 1997-1999. All
Rights Reserved. Contributor(s):_____none listed.

The preceding license only applies to the Rico Software and does not apply to the Sterling Commerce
Software, or any other Third-Party Software.

Sun Microsystems

The Sterling Commerce Software is distributed with or on the same storage media

as the following software products (or components thereof): Sun JMX, and Sun JavaMail (collectively,
"Sun Software"). Sun Software is free software which is distributed under the terms of the licenses
issued by Sun which are included in the directory files located at:

SUN COMM JAR - <install>/Applications/Foundation/lib

SUN ACTIVATION JAR - <install>/ Applications/Foundation/lib

SUN JavaMail - <install>/jar/javamail/1_4/LICENSE.txt

The Sterling Commerce Software is also distributed with or on the same storage media as the
Web-app_2_3.dtd software (Copyright © 2007 Sun Microsystems, Inc.) ("Web-App Software").
Web-App Software is free software which is distributed under the terms of the Common Development

and Distribution License ("CDDL"). A copy of the CDDL is found in
http://kenai.com/projects/javamail/sources/mercurial/show.

The source code for the Web-App Software may be found at:
<install>/3rdParty/sun/javamail-1.3.2/docs/JavaMail-1.2.pdf

Such licenses only apply to the Sun product which is the subject of such directory and does not apply to
the Sterling Commerce Software or to any other Third Party Software.

The Sterling Commerce Software is also distributed with or on the same storage media as the Sun
Microsystems, Inc. Java (TM) look and feel Graphics Repository ("Sun Graphics Artwork"), subject to the
following terms and conditions:

Copyright 2000 by Sun Microsystems, Inc. All Rights Reserved.

Sun grants you ("Licensee") a non-exclusive, royalty free, license to use, and redistribute this software
graphics artwork, as individual graphics or as a collection, as part of software code or programs that you
develop, provided that i) this copyright notice and license accompany the software graphics artwork; and
ii) you do not utilize the software graphics artwork in a manner which is disparaging to Sun. Unless
enforcement is prohibited by applicable law, you may not modify the graphics, and must use them true
to color and unmodified in every way.

This software graphics artwork is provided "AS IS," without a warranty of any kind. ALL EXPRESS OR
IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE HEREBY
EXCLUDED. SUN AND ITS LICENSORS SHALL NOT BE LIABLE FOR ANY DAMAGES SUFFERED BY
LICENSEE AS A RESULT OF USING, MODIFYING OR DISTRIBUTING THE SOFTWARE GRAPHICS
ARTWORK.

IN NO EVENT WILL SUN OR ITS LICENSORS BE LIABLE FOR ANY LOST REVENUE, PROFIT OR DATA, OR
FOR DIRECT, INDIRECT, SPECIAL, CONSEQUENTIAL, INCIDENTAL OR PUNITIVE DAMAGES, HOWEVER
CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF THE USE OF OR INABILITY
TO USE SOFTWARE GRAPHICS ARTWORK, EVEN IF SUN HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

If any of the above provisions are held to be in violation of applicable law, void, or unenforceable in any
jurisdiction, then such provisions are waived to the extent necessary for this Disclaimer to be otherwise
enforceable in such jurisdiction.

The preceding license only applies to the Sun Graphics Artwork and does not apply to the Sterling
Commerce Software, or any other Third Party Software.

WARRANTY DISCLAIMER

This documentation and the Sterling Commerce Software which it describes are licensed either "AS IS"
or with a limited warranty, as set forth in the Sterling Commerce license agreement. Other than any
limited warranties provided, NO OTHER WARRANTY IS EXPRESSED AND NONE SHALL BE IMPLIED,
INCLUDING THE WARRANTIES OF MERCHANTABILITY AND FITNESS FOR USE OR FOR A PARTICULAR
PURPOSE. The applicable Sterling Commerce entity reserves the right to revise this publication from time
to time and to make changes in the content hereof without the obligation to notify any person or entity
of such revisions or changes.

The Third Party Software is provided "AS IS" WITHOUT ANY WARRANTY AND ANY EXPRESSED OR
IMPLIED WARRANTIES, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. FURTHER, IF YOU
ARE LOCATED OR ACCESSING THIS SOFTWARE IN THE UNITED STATES, ANY EXPRESS OR IMPLIED
WARRANTY REGARDING TITLE OR NON-INFRINGEMENT ARE DISCLAIMED.

Without limiting the foregoing, the ICE Software and JBoss Software are distributed WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE.

 xvii

Contents

1 Checklist for Customization Projects

1.1 Customization Projects... 1

2 Extending Services

2.1 About Extending Services... 5
2.2 Invoking Services Synchronously or Asynchronously 6
2.2.1 Synchronously Invoked Services .. 6
2.2.2 Asynchronously Invoked Services ... 6
2.3 Business Functions To Use In Services ... 7
2.4 Message Size For Asynchronous Services.. 8
2.5 Exception Handling and Services ... 8

3 Understanding APIs

3.1 About APIs ..11
3.2 API Behavior ...11
3.3 Types of APIs ..12
3.3.1 Select APIs...12
3.3.2 List APIs ..13
3.3.3 Update APIs ...13
3.4 API Security ..14
3.5 Date and Time Handling by APIs ..17
3.5.1 Specifying Time Zones ...18
3.5.2 Using Date-Time Syntax...18

4 Input XML Files for APIs

4.1 About Input XML Files for APIs ...21
4.2 Guidelines for Forming API Input..23
4.2.1 Using Literals in Maps and XMLs..23
4.2.2 Using Special Characters ..24

xviii Customizing APIs Guide

4.2.3 XML-Based APIs ... 25
4.2.4 Support for CreateTS and ModifyTS in Input and Output XML Files 26
4.3 Forming Queries in the Input XML of List APIs 26
4.3.1 Setting Query Timeouts for XAPIs... 28
4.4 Sorting Through OrderBy Element in the Input XML of List APIs............... 29

5 Output XML Files for APIs

5.1 About Output XML Files and Templates for APIs..................................... 31
5.1.1 Output XML Templates .. 31
5.1.2 Document Types .. 32
5.1.3 Standard Output Template Behavior ... 32
5.2 Extending an Output XML Template ... 33
5.3 Best Practices for Creating Custom Output XML Templates...................... 33
5.3.1 Gather Information Relevant to the API ... 34
5.3.2 Gather Information Relevant to Your Business Needs 34
5.3.3 Choose an Appropriate Template Mechanism.................................... 34
5.3.4 Develop Useful Templates ... 38
5.3.5 Keep Performance Needs in Mind.. 38
5.4 Defining and Deploying a Static Template for Output XML....................... 38
5.5 Defining and Deploying a Dynamic Template for Output XML................... 39
5.6 Sequence of Precedence for Output XML Templates 41
5.6.1 API Templates ... 41
5.6.2 Event Templates .. 42

6 DTDs, XSDs, and Complex Queries

6.1 DTD and XSD Generator... 43
6.2 Defining Complex Queries .. 48

7 Creating Extended APIs

7.1 Invoking Extended APIs ... 53
7.2 Implementing the Error Sequence User Exit .. 55
7.3 Implementing the YIFExceptionGroupFinder Interface 56
7.4 Exception Handling in Extended APIs ... 56
7.5 Locking Records in Extended APIs ... 57

 xix

8 Invoking APIs and Services

8.1 Invoking APIs from the Client Environment..59
8.2 Invoking Services and Standard APIs Programmatically60
8.2.1 EJB ...61
8.2.2 HTTP ...62
8.2.3 LOCAL ...62
8.2.4 Web Services..62
8.2.5 COM+..62
8.2.6 Configuring Service Invocation..62
8.3 Directing API Calls to Specific Servers ...64

Index

xx Customizing APIs Guide

 xxi

Preface

This manual explains how to invoke standard APIs for displaying data in
the UI and customized APIs for executing your custom logic.

Intended Audience
This manual is intended for use by those who are responsible for
customizing Selling and Fulfillment Foundation.

Structure
This document contains the following chapters:

Chapter 1, "Checklist for Customization Projects"
This chapter describes a checklist of the tasks you need to perform to
customize the different components of Selling and Fulfillment Foundation.

Chapter 2, "Extending Services"
This chapter provides information about extending servies and
instructions on how to invoke extended services.

Chapter 3, "Understanding APIs"
This chapter describes the behavior of both Selling and Fulfillment
Foundationany extended (custom) APIs that you create.

Chapter 4, "Input XML Files for APIs"
This chapter provides information on how to modify the input XML for
APIs and guidelines for forming API input.

xxii Customizing APIs Guide

Chapter 5, "Output XML Files for APIs"
This chapter provides information on how to modify the output XML
template for APIs amd guidelines for creating custom output XML
templates.

Chapter 6, "DTDs, XSDs, and Complex Queries"
This chapter provides information on DTD and XSD Generator and how to
define complex queries.

Chapter 7, "Creating Extended APIs"
This chapter provides information on how to create and invoke extended
APIs.

Chapter 8, "Invoking APIs and Services"
This chapter provides information on how to invoke services and
standard APIs programmatically.

Selling and Fulfillment Foundation
Documentation

For more information about the Selling and Fulfillment Foundation

components, see the following manuals:

Selling and Fulfillment Foundation: Release Notes

Selling and Fulfillment Foundation: Installation Guide

Selling and Fulfillment Foundation: Upgrade Guide

Selling and Fulfillment Foundation: Configuration Deployment Tool
Guide

Selling and Fulfillment Foundation: Performance Management Guide

Selling and Fulfillment Foundation: High Availability Guide

Selling and Fulfillment Foundation: System Management Guide

Selling and Fulfillment Foundation: Localization Guide

Selling and Fulfillment Foundation: Customization Basics Guide

Selling and Fulfillment Foundation: Customizing APIs Guide

 xxiii

Selling and Fulfillment Foundation: Customizing Console JSP Interface
for End User Guide

Selling and Fulfillment Foundation: Customizing the RCP Interface
Guide

Selling and Fulfillment Foundation: Customizing User Interfaces for
Mobile Devices Guide

Selling and Fulfillment Foundation: Customizing Web UI Framework
Guide

Selling and Fulfillment Foundation: Customizing Swing Interface
Guide

Selling and Fulfillment Foundation: Extending the Condition Builder
Guide

Selling and Fulfillment Foundation: Extending the Database Guide

Selling and Fulfillment Foundation: Extending Transactions Guide

Selling and Fulfillment Foundation: Using Sterling RCP Extensibility
Tool Guide

Selling and Fulfillment Foundation: Integration Guide

Selling and Fulfillment Foundation: Product Concepts Guide

Sterling Warehouse ManagementTM System: Concepts Guide

Selling and Fulfillment Foundation: Application Platform Configuration
Guide

Sterling Distributed Order ManagementTM: Configuration Guide

Sterling Supply Collaboration: Configuration Guide

Sterling Global Inventory VisibilityTM: Configuration Guide

Catalog ManagementTM: Configuration Guide

Sterling Logistics Management: Configuration Guide

Sterling Reverse LogisticsTM: Configuration Guide

Sterling Warehouse Management System: Configuration Guide

Selling and Fulfillment Foundation: Application Platform User Guide

Sterling Distributed Order Management: User Guide

xxiv Customizing APIs Guide

Sterling Supply Collaboration: User Guide

Sterling Global Inventory Visibility: User Guide

Sterling Logistics Management: User Guide

Sterling Reverse Logistics: User Guide

Sterling Warehouse Management System: User Guide

Selling and Fulfillment Foundation: Mobile Application User Guide

Selling and Fulfillment Foundation: Business Intelligence Guide

Selling and Fulfillment Foundation: Javadocs

Sterling Selling and Fulfillment SuiteTM: Glossary

Parcel Carrier: Adapter Guide

Selling and Fulfillment Foundation: Multitenant Enterprise Guide

Selling and Fulfillment Foundation: Password Policy Management
Guide

Selling and Fulfillment Foundation: Properties Guide

Selling and Fulfillment Foundation: Catalog Management Concepts
Guide

Selling and Fulfillment Foundation: Pricing Concepts Guide

Business Center: Item Administration Guide

Business Center: Pricing Administration Guide

Business Center: Customization Guide

Business Center: Localization Guide

Conventions
In this manual, Windows refers to all supported Windows operating
systems.

The following conventions may be used in this manual:

Convention Meaning

. . . Ellipsis represents information that has been
omitted.

 xxv

< > Angle brackets indicate user-supplied input.

mono-spaced text Mono-spaced text indicates a file name, directory
path, attribute name, or an inline code example or
command.

/ or \ Slashes and backslashes are file separators for
Windows, UNIX, and Linux operating systems. The
file separator for the Windows operating system is
"\" and the file separator for UNIX and Linux
systems is "/". The UNIX convention is used unless
otherwise mentioned.

<INSTALL_DIR> User-supplied location of the Selling and Fulfillment
Foundation installation directory. This is only
applicable for Release 8.0 or later.

<INSTALL_DIR_OLD> User-supplied location of the Selling and Fulfillment
Foundation installation directory (for Release 8.0 or
later).

Note: This is applicable only for users upgrading
from Release 8.0 or later.

<YANTRA_HOME> User-supplied location of the Sterling Supply Chain
Applications installation directory. This is only
applicable for Releases 7.7, 7.9, and 7.11.

<YANTRA_HOME_OLD> User-supplied location of the Sterling Supply Chain
Applications installation directory (for Releases 7.7,
7.9, or 7.11).

Note: This is applicable only for users upgrading
from Releases 7.7, 7.9, or 7.11.

<YFS_HOME> For Releases 7.3, 7.5, and 7.5 SP1, this is the
user-supplied location of the Sterling Supply Chain
Applications installation directory.

For Releases 7.7, 7.9, and 7.11, this is the
user-supplied location of the <YANTRA_
HOME>/Runtime directory.

For Release 8.0 or above, the <YANTRA_
HOME>/Runtime directory is no longer used and this
is the same location as <INSTALL_DIR>.

Convention Meaning

xxvi Customizing APIs Guide

<YFS_HOME_OLD> This is the <YANTRA_HOME>/Runtime directory for
Releases 7.7, 7.9, or 7.11.

Note: This is only applicable for users upgrading
from Releases 7.7, 7.9, or 7.11.

<ANALYTICS_HOME> User-supplied location of the Sterling Analytics
installation directory.

Note: This convention is used only in the
Selling and Fulfillment Foundation: Business
Intelligence Guide.

<COGNOS_HOME> User-supplied location of the IBM Cognos 8
Business Intelligence installation directory.

Note: This convention is used only in the
Selling and Fulfillment Foundation: Business
Intelligence Guide.

<MQ_JAVA_INSTALL_
PATH>

User-supplied location of the IBM WebSphere®
MQ Java components installation directory.

Note: This convention is used only in the
Selling and Fulfillment Foundation: System
Manangement and Administration Guide.

<DB> Refers to Oracle®, IBM DB2®, or Microsoft SQL
Server® depending on the database server.

<DB_TYPE> Depending on the database used, considers the
value oracle, db2, or sqlserver.

Convention Meaning

 xxvii

Note: The Selling and Fulfillment Foundation documentation set uses the
following conventions in the context of the product name:

Yantra is used for Release 7.7 and earlier.

Sterling Supply Chain Applications is used for Releases 7.9 and 7.11.

Sterling Multi-Channel Fulfillment Solution is used for Releases 8.0
and 8.2.

Selling and Fulfillment Foundation is used for Release 8.5.

xxviii Customizing APIs Guide

Checklist for Customization Projects 5

1
Checklist for Customization Projects

This chapter provides a high-level checklist for the tasks involved in
customizing or extending Selling and Fulfillment Foundation.

1.1 Customization Projects
Projects to customize or extend Selling and Fulfillment Foundation vary
with the type of changes that are needed. However, most projects
involve an interconnected series of changes that are best carried out in a
particular order. The checklist identifies the most common order of
customization tasks and indicates which guide in the documentation set
provides details about each stage.

1. Prepare your development environment

Set up a development environment that mirrors your production
environment, including whether you deploy Selling and Fulfillment
Foundation on a WebLogic, WebSphere, or JBoss application server.
Doing so ensure that you can test your extensions in a real-time
environment.

You install and deploy Selling and Fulfillment Foundation in your
development environment following the same steps that you used to
install and deploy Selling and Fulfillment Foundation in your
production environment. Refer to Selling and Fulfillment Foundation
system requirements and installation documentation for details.

An option is to customize Selling and Fulfillment Foundation with
Microsoft COM+. Using COM+ provides you with advantages such as
increased security, better performance, increased manageability of
server applications, and support for clients of mixed environments. If

6 Customizing APIs Guide

Customization Projects

this is your choice, see the Selling and Fulfillment Foundation:
Customization Basics Guide about additional installation instructions.

2. Plan your customizations

Are you adding a new menu entry, customizing the Sign In screen
and logo, creating new themes, customizing views and wizards, or
adding new screens? Each type of customization varies in scope and
complexity. For background, see the Selling and Fulfillment
Foundation: Customization Basics Guide, which summarizes the types
of changes that you can make.

Important guidelines about file names, keywords, and other
conventions are found in the Selling and Fulfillment Foundation:
Customization Basics Guide.

3. Extend the Database

For many customization projects, the first task is to extend the
database so that it supports the other UI or API changes that you
make later. For instructions, see the Selling and Fulfillment
Foundation: Extending the Database Guide which include information
about the following topics:

Important guidelines about what you can and cannot change in
the database.

Information about modifying APIs. If you modify database tables
so that any APIs are impacted, you must extend the templates of
those APIs or you cannot store or retrieve data from the
database. This step is required if table modifications impact an
API.

How to generate audit references so that you improve record
management by tracking records at the entity level. This step is
optional.

4. Make other changes to APIs

Selling and Fulfillment Foundation can call or invoke standard APIs or
custom APIs. For background about APIs and the services
architecture in Selling and Fulfillment Foundation, including service
types, behavior, and security, see the Selling and Fulfillment
Foundation: Customizing APIs Guide. This guide includes information
about the following types of changes:

Customization Projects

Checklist for Customization Projects 7

How to invoke standard APIs for displaying data in the UI and also
how to save the changes made to the UI in the database.

Invoke customized APIs for executing your custom logic in the
extended service definitions and pipeline configurations.

APIs use input and output XML to store and retrieve data from the
database. If you don’t extend these API input and output XML
files, you may not get the results you want in the UI when your
business logic is executing.

Every API input and output XML file has a DTD and XSD
associated to it. Whenever you modify input and output XML, you
must generate the corresponding DTD and XSD to ensure data
integrity. If you don’t generate the DTD and XSD for extended
Application XMLs, you may get inconsistent data.

5. Customize the UI

Sterling Commerce applications support several UI frameworks.
Depending on your application and the customizations you want to
make, you may work in only one or in several of these frameworks.
Each framework has its own process for customizing components like
menu items, logos, themes, and etc. Depending on the framework
you want, consult one of the following guides:

Selling and Fulfillment Foundation: Customizing Console JSP
Interface for End User Guide

Selling and Fulfillment Foundation: Customizing the Swing
Interface Guide

Selling and Fulfillment Foundation: Customizing User Interfaces
for Mobile Devices Guide

Selling and Fulfillment Foundation: Customizing the RCP Interface
Guide and Selling and Fulfillment Foundation: Using the Sterling
RCP Extensibility Tool Guide

Customizing the Web UI Framework Guide

6. Extend Transactions

You can extend the standard Selling and Fulfillment Foundation to
enhance the functionality of your implementation of Selling and Fulfillment
Foundation and to integrate with external systems. For background about
transaction types, security, dynamic variables, and extending the

8 Customizing APIs Guide

Customization Projects

Condition Builder, see the Selling and Fulfillment Foundation:
Extending Transactions Guide Selling and Fulfillment Foundation:
Extending the Condition Builder Guide . These guides includes
information about the following types of changes:

How to extend Selling and Fulfillment Foundation Condition
Builder to define complex and dynamic conditions for executing
your custom business logic and using a static set of attributes.

How to define variables to dynamically configure properties
belonging to actions, agents, and services configurations.

How to set up transactional data security for controlling who has
access to what data, how much they can see, and what they can
do with it.

How to create custom time-triggered transactions. You can invoke
and schedule these custom time-triggered transactions in much
the same manner as you invoke and schedule Selling and
Fulfillment Foundation standard time-triggered transactions.
Finally, you can coordinate your custom, time-triggered
transactions with external transactions and run them either by
raising an event, calling a user exit, or invoking a custom API or
service.

7. Build and deploy your customizations or extensions

After performing the customizations that you want, you must build
and deploy your customizations or extensions. First, build and deploy
these customizations or extensions in the test environment for
verification. When you are ready, repeat the same process to build
and deploy your customizations and extensions in the production
environment. For instructions, see the Selling and Fulfillment
Foundation: Customization Basics Guide which includes information
about the following topics:

How to build and deploy standard resources, database, and other
extensions (such as templates, user exits, java interfaces).

How to build and deploy Enterprise-Level extensions.

Extending Services 5

2
Extending Services

2.1 About Extending Services
In the Selling and Fulfillment Foundation terminology, a service is core
business logic component that is stateless and does not contain
presentation logic. Each service (either provided out-of-the-box by
Selling and Fulfillment Foundation or those that are custom created using
the Service Definition Framework) represents a logical unit of processing
that can be independently performed without any loss of data integrity
and within one transaction boundary. Using the Service Definition
Framework, one or more services can be aggregated into larger
composite services which can in turn be used to create other services.
This provides a way to build small reusable components that can be
linked together to provide complex business processing.

All services within the Service Definition Framework can be invoked
bidirectionally either through internal Selling and Fulfillment Foundation
business processes or through external systems. Services deployed in
the Service Definition Framework are stateless, each having their own
transaction commitment boundaries.

A service can be invoked by Selling and Fulfillment Foundation by
associating the service with an event through an action. You can use a
standard interoperability event handler or implement your own custom
event handler. You can then configure Selling and Fulfillment Foundation
to invoke the event handlers when certain events are raised and
conditions are met. For more information about configuring events,
conditions, and actions, see the Selling and Fulfillment Foundation:
Application Platform Configuration Guide.

Selling and Fulfillment Foundation provides several user exits to extend
business logic. User exits invoked from within transactions can be
associated to a service when configuring transactions. Note that

6 Customizing APIs Guide

Invoking Services Synchronously or Asynchronously

templates are not supported for user exits. For more information on
configuring user exits, see the Selling and Fulfillment Foundation:
Application Platform Configuration Guide.

Once services have been configured, they can also be invoked
programmatically by a client.

The service invocation configuration depends on the location of the client
invoking the service in relation to the location of the Selling and
Fulfillment Foundation installation, as described in the following
situations:

If the invoking client do not have Selling and Fulfillment Foundation
installed - Configure for remote invocation.

If the invoking client do have Selling and Fulfillment Foundation
installed - Configure for local invocation.

2.2 Invoking Services Synchronously or
Asynchronously

Depending upon the mode of invocation, services can be classified into
two major categories:

Synchronously invoked services (on demand) - These services can
perform all their processing and return the result in single call.

Asynchronously invoked services (message driven)

2.2.1 Synchronously Invoked Services
These services can perform all their processing and return the result in a
single call, on demand.

2.2.2 Asynchronously Invoked Services
These services automatically perform all their processing whenever
triggered by a message from an external system or from within Selling
and Fulfillment Foundation. The trigger could be in the form of a file, a
database record or a message in a message queue depending upon the
mode of integration. These services do not return any value and are
purely used for background processing such as sending out emails or

Business Functions To Use In Services

Extending Services 7

automatically receiving updates from or sending updates to an external
system.

In general, asynchronous services provide a lower cost to performance
ratio than synchronous services and should be preferred wherever
possible. However, asynchronous services queue up and process
messages in the order they are received. The time to process a certain
transaction after it's been queued can vary widely depending upon peaks
in your processing cycle and a host of other factors. Therefore, they are
not suitable for certain specific scenarios where an SLA (service level
agreement) requires that a transaction has to be processed within a
specified short time frame. However, these scenarios are rare for most
businesses and business processes and asynchronous processing is
efficient enough for the majority of transactions at a significantly lower
cost while still providing a high service level.

2.3 Business Functions To Use In Services
A service typically consists of one or more messaging components (or
components that define how messages to and from the service are
handled), one or more utility components (such as email or alert
handlers) and one or more business processing components. For
information about the utility and messaging components available for
services defined in Selling and Fulfillment Foundation, see the Selling and
Fulfillment Foundation: Application Platform Configuration Guide. This
section describes how to work with service, customize and extending the
business processing components, and make them usable in services.

Selling and Fulfillment Foundation is shipped with an extensive
out-of-the-box business function library. Each function in this library is
known as a standard API. For detailed information on the input, output,
and behavior of each standard API, see the Selling and Fulfillment
Foundation: Javadocs.

This chapter discusses common programming, customization and
extensibility patterns that are applicable to large portions of the Selling
and Fulfillment Foundation business function library.

You can also write your own business functions and use them in services.
Each such function is known as an extended API.

While standard APIs can be aggregated and linked together to form more
complex services, for most cases the API provides all the functionality

8 Customizing APIs Guide

Exception Handling and Services

that is required for a business transaction and is therefore not required
to be linked together with other components or APIs. To ease working
with this most common scenario, all of the standard APIs are
automatically available for synchronous invocation without the need to
model each one as a service using the Service Definition Framework. You
can think of these APIs as "automatically defined" synchronous services.
However, extended APIs and asynchronous invocation of these APIs
requires that you explicitly model them as services first using the Service
Definition Framework.

2.4 Message Size For Asynchronous Services
If a database table reaches its maximum size and a send() function
attempts to insert a message in the table, the Service Definition
Framework throws an exception. See the size limitations noted in the
Table 2–1:

2.5 Exception Handling and Services
The Alert Console displays all exceptions logged by the Service Definition
Framework. It also enables you to reprocess exceptions that occur in
transactions configured to be asynchronous. When using a database or
queue, calls are asynchronous.

The Service Definition Framework uses the log4j utility for logging
exception information. The log4j utility writes both trace and debug
information to a log file. You can configure the logger to send different
categories of messages to different destinations. Categories are
organized hierarchically, which permits inheritance. Each category can be
configured with a priority indicating a severity level. If a category is not
configured with a priority, it inherits the priority of its closest ancestor
with an assigned priority.

Table 2–1 Message Size for Asychronous Transports

Mechanism Data Type Size

Database (Oracle) CLOB 4 GB

Database (Microsoft SQL Server) TEXT 4 GB

JMS Queue TextMessage 4 GB

MSMQ Queue Message 2 GB

Exception Handling and Services

Extending Services 9

All exceptions that occur during an API call or during use of an event
handler are logged.

10 Customizing APIs Guide

Exception Handling and Services

Understanding APIs 11

3
Understanding APIs

3.1 About APIs
You can use both standard APIs that are supplied by Selling and
Fulfillment Foundation and any extended (custom) APIs that you have
created. Selling and Fulfillment Foundation provide standard APIs to
handle the most common business scenarios. For example, there are
APIs that create an order, allocate an order, and report shipment
confirmation. Standard APIs can be invoked directly or aggregated into
more complex services.

3.2 API Behavior
Each API takes an XML document as input and returns another XML
document as output. The YFSEnvironment input parameter represents a
runtime state under which this API is being invoked. It is used by Selling
and Fulfillment Foundation for the following tasks:

Security audits and logging

Transaction control

Achieving invocation-specific API behavior

For an asynchronous service, Selling and Fulfillment Foundation
automatically creates an instance of this object and passes it to each API
part of the service. To programmatically invoke a synchronous service,
you have to create an instance of this environment by calling the
createEnvironment() API.

12 Customizing APIs Guide

Types of APIs

All APIs (whether standard or extended) have the same signature with
respect to input parameters and return values. This signature is of the
form

org.w3c.dom.Document APIName(YFSEnvironment env, org.w3c.dom.Document input);

In order for custom APIs to access custom values, the API should
implement the com.yantra.interop.japi.YIFCustomApi interface. If
entered, these name/value pairs are passed to the Custom API as a
Properties object. See the Selling and Fulfillment Foundation: Javadocs
for more information about the
com.yantra.interop.japi.YIFCustomApi interface.

3.3 Types of APIs
An API processes records based on key attribute values, processing
records with a primary key first. If the primary key is not found, the API
then searches for the logical keys and then processes those records. For
example, the ChangeOrder() API first looks for the OrderHeaderKey key
attribute and then for the combination of the OrderNo and
EnterpriseCode key attributes.

3.3.1 Select APIs
Typically prefixed with get, select APIs return one record for an entity
(for example, the getOrderDetails() API returns the details of one
order). They do not update the database.

Since select APIs return only one record, they require unique key
attributes to be passed in the input XML. If a unique key attribute is not
passed in the input XML, the API uses blanks for those attributes in the
criteria to select the record. There can be more than one unique key
combination, and in that combination you must pass any one of the
multiple combinations.

Note: In general, input to APIs should not contain any
"BLANK" elements or attributes. A blank element can be
defined as an element containing all the attributes with
blank values. If a blank element is passed, the API
behavior is unpredictable.

Types of APIs

Understanding APIs 13

For example, an order is uniquely identified either by the
OrderHeaderKey key attribute or by a combination of the OrderNo and
EnterpriseCode attributes. So, when calling the getOrderDetails()
API, you must pass either the OrderHeaderKey attribute or the
combination of the OrderNo, EnterpriseCode and DocumentType key
attributes. If you pass only OrderNo, the API returns the order that
matches OrderNo and has a blank enterprise code. In order to identify
the unique key combinations for each API, see the Selling and Fulfillment
Foundation: Javadocs.

However, getOrderDetails() API uses a select for update on YFS_
ORDER_HEADER so that its internal processes such as user exits, events,
etc., have a lock on the order elements while the thread working on it is
active. This enables to maintain a transaction cache until the final
commit. Hence, you need to avoid using nested transactions to overcome
the locking mechanism by performing:

1. Commit or rollback only once for all event of the order. Keep in mind,
that all the events are set to rollback if one of them fails.

2. Select the order for each event and process. Also keep in mind, that
if age of the orders having multiple events are higher it could have an
impact on the performance.

3.3.2 List APIs
Typically prefixed with get, list APIs return a list of records for an entity
that match the criteria specified through the input XML, for example, the
getOrderList() API returns a list of orders. For more information about
specifying the search criteria, see Section 4.3, "Forming Queries in the
Input XML of List APIs". If any attribute in the input XML has a blank
value, it is ignored. List APIs do not update the database. You can also
get the paginated data from a list API by calling the getPage API and
passing the list API as the input to the getPage API. For more information
about the getPage API, see the Selling and Fulfillment Foundation:
Javadocs.

3.3.3 Update APIs
Update APIs insert new records into the database. They also modify or
delete existing records in the database. Update APIs that modify or
delete existing records use the same logic as select APIs to identify which
record to update. If no record is found, update APIs throw an exception.

14 Customizing APIs Guide

API Security

3.4 API Security
When calling an API, you must pass through the following two levels of
security:

1. Authentication with a user ID, a certificate or both. The login API is
called before any other API is called.

2. Authorization, which verifies which API that you can access.

This security procedure is for every API call that is made through an
application server process. By default, agent and integration servers
always have full access to APIs.

Once you have passed the authentication check, an authorization check
determines what APIs and resources you can access. This authorization
check is in addition to the user interface (UI) security. For example, the
UI security might allow you access to a screen that lists users. To
generate a list of users at the screen, you might also have to pass an
authorization check for the getUserList API that lists the users.

Other examples of authorization checks include:

If you use the getCommonCodeList API for display purposes, you
should not be able to get user information that is explicitly restricted
from the output of the API.

If you call the getUserList API before assigning an alert, you should
not be able to get user passwords.

If you use the UserHierarchy API to change your password:

You should not be able to change your own IsSuperUser flag.

You should not be able to modify another user’s information.

You should no be able to subscribe to additional user groups,
which would give you more system access.

This security is implemented using the apisecurity specific template files.
These apisecurity template files are XML files that documents the input
and output elements to which (by default) all APIs are restricted. These
files are automatically generated during XAPI deployment, even when
document generation is turned off.

API Security

Understanding APIs 15

Templates are used for the input and output authorization checks. These
templates override the regular templates.

For example, an input template with the lines
OrganizationCode=#PROHIBITED# and IsSuperUser=#PROHIBITED#
would prevent you from subscribing to more user groups and gain more
permissions.

The output template supplements the filtering performed by the default
documentation-based template. If an element is restricted because it is
not configured in the apisecurity file, it will never be returned in the
output, even if present in the documentation-based template.

To include the apisecurity file in the documentation, and package it in the
EAR (enterprise archive) file, do the following:

1. Place the extensions in the <INSTALL_DIR>/xapidocs/extn/input
directory.

2. Rebuild the documentation (including the apisecurity files) by running
the following command:

deployer.sh -t xapideployer -l info [new target]

3. Build the EAR file. The apisecurity template files will be packaged
from:

<INSTALL>/repository/xapi/template/merged/apisecurity

Access to API security and the permission level are controlled in the
following properties in the yfs.properties file. All authorization failures are
logged to a logging category named sci.apisecurity.

api.security.enabled

Y (default)—Enable API security

Note: Services do not use the apisecurity file.

Note: At certain points in the input and output, APIs like
multiApi and getPage have authorization access for any
element. But other APIs that are called by these APIs must
go through the authorization check.

16 Customizing APIs Guide

API Security

N—Do not enable API security

api.security.mode

STRICT—If any validation fails, throw an exception. This is
appropriate for production systems, if all permissions are
configured properly.

LAX—Filter out and log invalid input, but continue processing. The
filtering allows the system to mostly work despite incorrect input
or output, while the logging helps to identify places that need
change.

DEBUG—Log invalid input and output, but do not filter anything or
throw exceptions. This is only appropriate during initial
development, to identify the permissions required by various
processes.

If you do not specify a security mode, there is no filtering, thrown
exceptions, or authorization checking. There is limited logging.

api.security.override.<apiName>.mode

Use this setting to override permissions on individual APIs. This
property uses the same values as api.security.mode.

api.security.smc.enabled

Y—Enable API security for the Applications Manager

N (default)—Do not enable API security for the Applications
Manager

api.security.console.enabled

Y—Enable API security for the Application Console

N (default)—Do not enable API security for the Application
Console

When upgrading, you should initially disable this feature and grant all
access through properties. In an upgraded system, you can phase in this
feature by enabling security one API at a time, as you define and test

Note: The system may still throw an exception when the
filtering produces an ambiguous behavior.

Date and Time Handling by APIs

Understanding APIs 17

permissions. If enabled, only the system user group has grant permission
to the APIs; for all other custom user groups, appropriate permission has
to be given. For information about user group permissions, see the
Selling and Fulfillment Foundation: Application Platform Configuration
Guide.

3.5 Date and Time Handling by APIs
Selling and Fulfillment Foundation handles values for both date-time and
date. Date-time refers to values that contains a date and time
component, where Date refers to values that contain only a date
component.

Date values can be made nullable by specifying Nullable="true" in the
entity XML. Thereby the Date values in the table is blanked out. The
expected behavior of a date column is marked as Y is described in
Table 3–1.

Table 3–1 Nullable Date Behavior

Action Description

Insert When the field is not populated in a database object (is
null), the database infrastructure automatically inserts
a null value into the column in the database.

Update When the application nulls out a date, it sets the
corresponding field to null value in the database.

Select or List When a column is defined as nullable and the date
from the database is returned as null, it is
automatically nulled out. So, the corresponding get
method returns a null.

Search by date Can pass null value as needed when specified to do so.

18 Customizing APIs Guide

Date and Time Handling by APIs

3.5.1 Specifying Time Zones
Dates and times are time zone aware. Time zones are relative to the
Coordinated Universal Time (UTC).

For example, if an order is created on the system on 06/15/2003 at
16:00:00 in New York, (USA/New York time zone) a user in Chicago who
examines that the order observes that the order creation date-time as
06/15/2003 at 15:00:00, (USA/Chicago time zone).

For a time published from Boston that is -5:00 hours from UTC, the
string literal "-5:00" is appended to the current date-time attribute
published from APIs. The input "2003-04-23T14:15:32-05:00" gives the
date, time, and time zone reference for a transaction.

The yfs.install.localecode parameter in the yfs.properties file
determines the Selling and Fulfillment Foundation time zone. For
example, yfs.install.localecode=en_US_EST

To configure the Selling and Fulfillment Foundation time zone, set the
yfs.install.localecode property to en_US_EST in the <INSTALL_
DIR>/properties/customer_overrides.properties file. For additional
information about modifying properties and the customer_
overrides.properties file, see the Selling and Fulfillment Foundation:
Installation Guide.

3.5.2 Using Date-Time Syntax
All APIs, user exits, and events that use date-time fields have a uniform
syntax (a combination of the basic and extended formats of the ISO
8601 specification). This syntax is the expected format for all input as
well as output.

Note: If you have specified the date value as 01/01/2400
in versions prior to Release 8.5, those values are now
treated as null. The dates with special significance are:

Null date - 01/01/2400

High date - 01/01/2500

Low date - 01/01/1900

Date and Time Handling by APIs

Understanding APIs 19

Date Only Syntax
YYYY-MM-DD

Date-Time Syntax
YYYY-MM-DDTHH:MI:SS+HH:MM

Values in bold are placeholders for literals. For example, the format for
March 5, 2003, 11:30:59 p.m. is 2003-03-05T23:30:59.

Syntax Parameters
YYYY - Required. Four-digit year. Used in both date-time and date fields.

MM - Required. Two-digit month. Used in both date-time and date fields.

DD - Required. Two-digit day of the month. Used in both date-time and
date fields.

T - Required. The literal value T, which separates the date and time
component. Used only in date-time fields.

HH - Required. Two-digit hour of the day. For example, 11 p.m. is
displayed as 23:00:00. Used only in date-time fields.

MI - Required. Two-digit minutes of the hour. For example, 59 minutes is
displayed as 00:59:00. Used only in date-time fields.

SS - Required. Two-digit seconds of the minute. For example, 21 seconds
is displayed as 00:00:21. Used only in date-time fields.

+HH:MI - Optional. Two-digit hours and minutes, separated by a colon
(":"). Indicates how many hours from UTC, using - to indicate earlier
than UTC and + to indicate later than UTC. If this value is not passed in
input, the time zone of Selling and Fulfillment Foundation are assumed.

Note: This syntax is an ISO Date-Time syntax and not the
database syntax. Using a syntax other than the ISO
Date-Time format may cause problems. For example, the
time element in the Date-Time syntax may be overlooked
or calculated incorrectly.

For example, if you provide the Date-Time input as
"2007-05-18-19.10.28.000000", the system may interpret
it as just "2007-05-18" because the T symbol is missing in
the input.

20 Customizing APIs Guide

Date and Time Handling by APIs

Input XML Files for APIs 21

4
Input XML Files for APIs

4.1 About Input XML Files for APIs
APIs retrieve data using input XML files that define which records need to
be selected or used. When extending the database to include additional
fields, you need to also extend the input XML to populate those fields.

Example 4–1 shows an input XML modification.

Example 4–1 Example of Input XML Modification

The following example modifies the input XML file for the YFS_
createOrder() API:

<Orders AuthenticationKey="">
 <Order EnterpriseCode="DEFAULT" OrderNo="DB04" OrderName="DB04"
OrderDate="20010803" OrderType="Phone" PriorityCode="1" PriorityNumber="1"
ReqDeliveryDate="20010810" ReqCancelDate="" ReqShipDate="20010810"
SCAC="FEDEX" CarrierServiceCode="Express Saver Pak"
CarrierAccountNo="112255" NotifyAfterShipmentFlag="N" NotificationType="FAX"
NotificationReference="" ShipCompleteFlag="N" EnteredBy="Iain "
ChargeActualFreightFlag="Y" AORFlag="Y" SearchCriteria1="Search"
SearchCriteria2="Search Again" >
 <OrderLines>
 <OrderLine PrimeLineNo="1" SubLineNo="1" OrderedQty="1"
ReqDeliveryDate="20010810" ReqCancelDate="20010810" ReqShipDate="20010810"
SCAC="FEDEX" CarrierServiceCode="Express Saver Pak" PickableFlag="Y"

Caution: Do not pass a blank element (an element
containing all the attributes with blank values) to an API.
Also, do not pass attributes that have leading or trailing
spaces. The result of either situation is not predictable.

22 Customizing APIs Guide

About Input XML Files for APIs

HoldFlag="N" CustomerPONo="11" >
 <Extn ExtnAcmeLineType="Type1"/>
 <Item ItemID="ITEM1" ProductClass="A" ItemWeight="1"
ItemDesc="paintball gun" ItemShortDesc="pball gun" UnitOfMeasure="EACH"
CustomerItem="Spectra Flex" CustomerItemDesc="GEGRG" SupplierItem="Spectra
Flex @ supplier" SupplierItemDesc="Spectra Flex Desc @ supplier"
UnitCost="15.99" CountryOfOrigin="CA"/>
 <PersonInfoShipTo Title="Mr" FirstName="Quigley" MiddleName="Al"
LastName="Johns" Company="Company" JobTitle="Project Clert"
AddressLine1="Address Line 1 -3 Main Street" AddressLine2="ShipTo Address
line 2" AddressLine3="ShipTo Address line 3" AddressLine4="ShipTo Address
line 4" AddressLine5="ShipTo Address line 5" AddressLine6="ShipTo Address
line 6" City="Acton" State="MA" ZipCode="01720" Country="US"
DayPhone="978-635-9242" EveningPhone="978-635-9252"
MobilePhone="978-888-8888" Beeper="" OtherPhone="other555-5555" DayFaxNo=""
EveningFaxNo="" EMailID="jquigley@maine.com"
AlternateEmailID="hfournier@ontario.com" ShipToID=""/>
 </OrderLine>
 <NumberOfOrderLines/>
 </OrderLines>
 <PersonInfoShipTo Title="MR" FirstName="s" MiddleName="X" LastName="T"
Suffix="T" Department="T" Company="SD" JobTitle="SS" AddressLine1="SS"
AddressLine2="SS" AddressLine3="SS" AddressLine4="SS" AddressLine5="SS"
AddressLine6="SS" City="REDWOOD" State="CA" ZipCode="01852" Country="USA"
DayPhone="3456789234" EveningPhone="3456789234" MobilePhone=""
EveningFaxNo="SS" />
 <PersonInfoBillTo Title="mj" FirstName="m" MiddleName="JJ"
LastName="KK" Suffix="lll" Department="l" Company="kj" JobTitle="k"
AddressLine1="HJHKK" AddressLine2="HJKHK" AddressLine3="HKHJ"
AddressLine4="" AddressLine5="" AddressLine6="" City="UUU" State="IUI"
ZipCode="78787" Country="USA" />
 </Order>
 <NumberOfOrders/>
</Orders>

Guidelines for Forming API Input

Input XML Files for APIs 23

The following example XML file adds a column to the YFS_ORDER_LINE
table:

<?xml version="1.0" encoding="UTF-8" ?>
<DBSchema>
<Entities>
<Entity TableName="YFS_ORDER_LINE">
<Attributes>
<Attribute ColumnName="EXTN_ACME_LINE_TYPE" DecimalDigits="" Default
Value="' '" Size="10" Type="CHAR" XMLGroup="Extn"
 XMLName="ExtnAcmeLineType"/>

</Attributes>
</Entity>

</Entities>
</DBSchema>

4.2 Guidelines for Forming API Input
When coding API input parameters, follow the guidelines in this section
for using literals and formatting API input.

Do not pass a blank element (an element containing all the attributes
with blank values) to an API. Also, do not pass attributes that have
leading or trailing spaces. The result of either situation is not predictable.

4.2.1 Using Literals in Maps and XMLs
Use literals in maps and XMLs. Using literals enables you to write code
with fewer bugs because the compiler catches the use of incorrect names
in the <name>=<value> pair. In addition, using literals simplifies the

Important: In order for the factory setup scripts to
operate properly, when you add a column to a database
table, be sure that the column is not null and that it has a
default value. If you need to make the column nullable, the
default value must not be present.

Also, when you are specifying XML Name and XML Group,
keep in mind that the values should be valid Document
Object Model (DOM) strings. (The values must not contain
spaces or special characters that are not supported by the
DOM specification.)

24 Customizing APIs Guide

Guidelines for Forming API Input

maintenance of your code; if you change the <name>, all you need to do
is recompile your code instead of editing one or more <name>s within it
first.

4.2.2 Using Special Characters
The fields that are a part of the logical key for any record in the Selling
and Fulfillment Foundation schema (such as OrganizationCode and
OrderNo) have some restrictions. For such fields, Selling and Fulfillment
Foundation does not support the use of special characters listed in
Table 4–1.

In addition, Sterling Commerce recommends against using third-party
vendors’ reserved special characters. For example, in certain situations,
data with underscore characters ("_") on an Oracle database could result
in unexpectedly slow query performance because the database deciphers
the underscore as a single character wild-card.

Table 4–1 Special Character Descriptions

Special Character Description

& Ampersand

> Greater Than

< Less Than

% Percent

" Quotation Mark

+ Plus sign

' Apostrophe

(Parenthesis

) Parenthesis

[Square Brackets

] Parenthesis

Note: You can use the plus (+) and ampersand (&) signs
only in the ItemID field.

Guidelines for Forming API Input

Input XML Files for APIs 25

The following fields have no restrictions and support all characters:

All description fields (for example, item description)

All name fields (for example, organization name)

All address fields (for example, billing address)

All instruction fields (for example, gift wrapping)

All text fields (for example, reasons and comments)

4.2.3 XML-Based APIs
The following table lists all of the following special characters that should
follow the XML escape format.

Note: However when creating address fields through the
UI, the information entered after the quotation mark (") is
truncated and appears as a new entry in YFS_PERSON_INFO
table. To work around this problem, use apostrophe (’)
instead of quotations.

Note: The Selling and Fulfillment Foundation Mobile
Device does not support the use of the ampersand (&)
character.

Table 4–2 Special Characters in Attributes of XML-Based APIs

For This Character Enter This Sequence

quotation mark (") "

single quotation (') '

greater than symbol (>) >

less than symbol (<) <

ampersand (&) &

26 Customizing APIs Guide

Forming Queries in the Input XML of List APIs

4.2.4 Support for CreateTS and ModifyTS in Input and
Output XML Files

CreateTS and ModifyTS can be used in getAPIs(input or output) if an
entity in the input or output XML file for which these attributes are
requested have corresponding tables. These attributes indicate when a
record was created or modified in the database.

4.3 Forming Queries in the Input XML of List APIs
The input XML of list APIs enable queries on conditions such as starts
with, contains, is greater than, and so forth. Example 4–2 shows a
fragment of the input XML that returns a list of items at a specific
shipping node that fall within a specific weight range and to be shipped
during a specific date range.

Example 4–2 getOrderList API Input XML with Query Type Values

<Order ReqShipDateQryType="DATERANGE" FromReqShipDate="20010113"
ToReqShipDate="20030113" /Order>
<OrderLine ShipNode="Atlantic" /OrderLine>
<Item ItemWeightQryType="BETWEEN" FromItemWeight="2" ToItemWeight="20"/>
<OrderRelease CarrierServiceCodeQryType="FLIKE" CarrierServiceCode="Priority" />
Note: Some APIs do not support QryType for an input attribute. These
APIs are:

getAssignedPricelistHeaderList

getCarrierServiceList

getNodeSCACAccountList

getOrderLineStatusList

getPaymentStatusList

getPriceListForOrdering

getQueryTypeList

getReceiptLinesForTransaction

getRegionList

getServerList

getShipmentListForOrder

Forming Queries in the Input XML of List APIs

Input XML Files for APIs 27

getSurroundingNodeList

getTaskQueueDataList

getTraceableComponentList

getTraceList

getZoneListForDiscount

To form queries:
1. Edit the custom input XML of any list API, and append QryType to any

attribute you want to query on. Any attribute that is not appended
with QryType can also be queried on, using the default query type
value EQ, as shown for ShipNode in Example 4–2.

2. For attributes appended with QryType, specify a query type value
from Table 4–3. This is case sensitive.

3. Specify the values that are applicable to your search criteria.

The values for the QryType attributes vary depending on the datatype of
the field. Table 4–3 lists the supported query type values for each
datatype.

Table 4–3 Query Type Values Used by List APIs

Field DataType Supported Query Type Values

Char/VarChar2 EQ - Equal to

FLIKE - Starts with

LIKE - Contains

GT - Greater than

LT - Less than

Number BETWEEN - Range of values

EQ - Equal to

GE - Greater than or equal to

GT - Greater than

LE - Less than or equal to

LT - Less than

NE - Not equal to

28 Customizing APIs Guide

Forming Queries in the Input XML of List APIs

4.3.1 Setting Query Timeouts for XAPIs
You can add individual query timeouts for APIs. To do this, specify the
query timeout value in seconds for the API in the in the API’s input XML.
For example:

<ApiInput QueryTimeout="10">

...

...

...

</ApiInput>

Date DATERANGE - Range of dates

EQ - Equals

GE - Greater than or equal to

GT - Greater than

LE - Less than or equal to

LT - Less than

NE - Not equal to

Date-Time BETWEEN - Range of dates

EQ - Equals

GE - Greater than or equal to

GT - Greater than

LE - Less than or equal to

LT - Less than

NE - Not equal to

Null ISNULL - Return records that are null.

NOTNULL - Return records that are not null.

Note: These two query types are used when the column or
attribute is set to Nullable in the entity XML.

Table 4–3 Query Type Values Used by List APIs

Field DataType Supported Query Type Values

Sorting Through OrderBy Element in the Input XML of List APIs

Input XML Files for APIs 29

4.4 Sorting Through OrderBy Element in the
Input XML of List APIs

The input XML of list APIs supports sorting based on the OrderBy
element. You can also do nested sorting using the OrderBy element. The
OrderBy element supports ordering of the attributes in both Ascending
and Descending order. By default the results are sorted in the Ascending
Order.

Example 4–3 shows a fragment of the input XML that returns a list of
organizations and results are sorted by the OrganizationName attribute.

Example 4–4 shows a fragment of the input XML that returns a list of
organizations and results are sorted by OrganizationName and
LocaleCode attributes.

Example 4–3 getOrganizationList API Input XML with OrderBy Element

<Organization IgnoreOrdering="N" MaximumRecords="5000">
<OrderBy>
<Attribute Name="OrganizationName"/>
</OrderBy>
</Organization>

Example 4–4 getOrganizationList API Input XML with Nested OrderBy
Element

<Organization IgnoreOrdering="N" MaximumRecords="5000">
<OrderBy>
<Attribute Name="OrganizationName"/>
<Attribute Name="LocaleCode"/>
</OrderBy>
</Organization>

Note: The value of the QueryTimeout attribute overrides
the value of the yfs.ui.queryTimeout property in the
yfs.properties file. But the value of this attribute is valid
only for a single API call. After the API execution is
complete, the query timeout is set to the old value based
on the value of the yfs.ui.queryTimeout property in the
yfs.properties file.

30 Customizing APIs Guide

Sorting Through OrderBy Element in the Input XML of List APIs

To form queries:
Edit the custom input XML of any list API, and add the OrderBy element.
Add the Attribute child element and in the Name attribute specify the
name of the field based on which you want to sort the results. You can
also perform nested sorting using the OrderBy element as shown in
Example 4–4.

By default, the results are sorted in the Ascending order. If you want to
sort the results in descending order add the Desc attribute to the
Attribute element and set it to Y.

Example 4–5 shows a fragment of the input XML that returns a list of
organizations and results are sorted by the OrganizationName attribute
in the descending order.

Example 4–5 getOrganizationList API Input XML with OrderBy Element
and Desc Attribute

<Organization IgnoreOrdering="N" MaximumRecords="5000">
<OrderBy>
<Attribute Name="OrganizationName" Desc="Y"/>
</OrderBy>
</Organization>

Output XML Files for APIs 31

5
Output XML Files for APIs

5.1 About Output XML Files and Templates for
APIs

APIs return data using two types of output XML files that define which
elements and attributes are required by an API.

Output XML File - Defines the outer limits of the data an API can
return. Do not modify output XML files.

Template XML File - Defines the data returned by an API for the
record specified in the input XML file and restricts the amount of data
to a subset of the output XML. You can modify this file to incorporate
a subset of the attributes and elements from the output XML.

5.1.1 Output XML Templates
Many APIs use a corresponding output template. The output template is
in XML format and is read in by an API in order to determine the
elements and attributes for which it should return. The standard output
template defines the elements and attributes returned for any specific
API. (To see the entire range of possible values an API can return, see its
output XML in Selling and Fulfillment Foundation: Javadocs.) The
standard template can be a subset of the entire range of values returned,
as determined by the output XML in the Selling and Fulfillment
Foundation: Javadocs.

32 Customizing APIs Guide

About Output XML Files and Templates for APIs

For example, the standard output template of the getOrderList() API
returns the header-level information of an order and the standard output
template of the getOrderDetails() API returns in depth information
about an order.

Besides the standard output XML template, you can create custom output
templates for APIs to use for your own business requirements, such as
different output for different document types.

5.1.2 Document Types
If you use a variety of business-related document types such as orders,
planned orders, purchase orders, and returns, you can use custom
templates that enable an API to return the values that pertain to each
unique document type.

For example, you can use one template with the getOrderDetails() API
to return information about Planned Orders and another template for the
getOrderDetails() API to return different information about Orders.

5.1.3 Standard Output Template Behavior
The set of values that the standard output template returns covers a
variety of business scenarios. With such a large range of possibilities, an
API using the standard output template may return much more data than
you need for your business purposes (and take much more time to
process than you prefer).

If you want to customize the information returned by an API, you can do
so by creating and using a custom template, using our guidelines and
procedures.

Note: Ensure that when adding elements and attributes
to the output template, use only those that are
documented in the Selling and Fulfillment Foundation:
Javadocs. While the APIs can output additional elements
and attributes, only those that are documented in the
Selling and Fulfillment Foundation: Javadocs are
supported.

Best Practices for Creating Custom Output XML Templates

Output XML Files for APIs 33

5.2 Extending an Output XML Template
Many APIs use an output XML template to define what is returned. Each
API has its own XML template, which is picked up from the <INSTALL_
DIR>/repository/xapi/template/merged/api/<apiName>.xml file. The
files in this directory are part of the product and should not be altered.
However, these templates can be overridden by implementing template
extensions.

To extend a template file:
1. Copy the template <INSTALL_

DIR>/repository/xapi/template/merged/api/<apiName>.xml file,
to <INSTALL_DIR>/extensions/global/template/api/ directory,
keeping the same file name.

2. Modify the copied file, as needed. To extend a template file, add the
Extn tag under the entity tag. For example, if you have added a
column EXTN_COLOR to YFS_ITEM table, you also must add the tag
Extn under the tag Item in the getItemDetails.xml file as follows:

<Item ItemKey=""....>
<PrimaryInfo MasterCatalogID="" .../>
...
<Extn ExtnColor=""/>

</Item>

5.3 Best Practices for Creating Custom Output
XML Templates

Whenever you call an API, you need to pass your own customized
template, not the sample provided by Selling and Fulfillment Foundation.
This section helps guide your decision-making processes in planning how
to design custom output templates.

Note: If you are extending an output XML template, place
your extended files in the <INSTALL_
DIR>/extensions/global/template/api directory (create
this directory structure if necessary).

But when providing the name of the template api file
during service definition, the path should be
/global/template/api/<CUSTOM-TEMPLATE-API>.

34 Customizing APIs Guide

Best Practices for Creating Custom Output XML Templates

In general, when you customize an output template, you do so by editing
a copy of the standard template. You cannot modify the standard output
template.

There are two ways of customizing and calling the output template.
Which function you choose depends on the size and type of the data set
you want returned by the API.

5.3.1 Gather Information Relevant to the API
Custom output templates provide the flexibility to return whatever data
you wish, so it is important to understand that it is possible to modify an
output template in such a way that it returns information that is not quite
relevant to the API.

For example, it is possible to modify the output template of the
getOrderList() API in such a way that it returns detailed information
about an order rather than just header-level information. You should
modify an output template in such a way that it takes advantage of the
unique aspects of its corresponding API. Keeping each template unique
to its API prevents any ambiguity about which API to use in any specific
situation.

5.3.2 Gather Information Relevant to Your Business Needs
Since the standard output template returns all attributes, even for empty
elements in the template, you might want to tailor information to your
specific business needs. If you don’t exclude the attributes you don’t
require, you receive more data than you need and the extra data may
slow the performance of the API.

For example, if you are using the getOrderDetails()API to return only
OrderLine attributes but your custom output template includes
Schedule attributes, all attributes for OrderLine and Schedule are
returned.

5.3.3 Choose an Appropriate Template Mechanism
In general, the format of any template should follow the same structure
as the standard template. Keeping this general rule in mind, there are
two ways to customize the standard template, differentiated by the
amount of data they return and how they can be called:

Best Practices for Creating Custom Output XML Templates

Output XML Files for APIs 35

Static templates

Dynamic templates

Static templates provide the ability to add new elements but not remove
any of the defaults. A static template is pervasive, as it is picked up by
default by an API whenever that API is invoked.

Dynamic templates provide the ability to add new elements and remove
any of the default elements from the standard template. A dynamic
template is an instance, as it is picked up only for a specific API call, such
as when configured to do so during user interface extensibility.

A comparison of the differences between the two types of template
mechanisms is summarized in Table 5–1.

Choose which of these mechanisms best fits your business needs and
adhere to it.

Remember that when you define a dynamic template, all possible values
are returned. In order to return the smallest amount of data for an
element, when you are pruning away elements you don’t need, you need
to include its parent with at least one of its attributes.

If you leave an element blank or include unwanted attributes in the
parent element all values are returned, as illustrated in Example 5–1.

Example 5–1 A Poorly Pruned Dynamic Template

<!-- getOrderDetails Output XML -->
<Order>

<OrderLines>
<!--1 or more order line-->

<OrderLine>

Table 5–1 Comparison of API Output Template Mechanisms

Template Types Allowed XML Elements Behavior

Static Template Default template elements
cannot be removed.

New elements can be added.

Pervasive. Picked up by
default by an API.

Dynamic
Template

Default template elements
can be removed.

New elements can be added.

Instance. Picked for a specific
API call, as configured during
user interface extensibility.

36 Customizing APIs Guide

Best Practices for Creating Custom Output XML Templates

<Item CountryOfOrigin="" ItemDesc="" ItemID=""/>
<Schedules>
<Schedule Attr1 />
</Schedules>

</OrderLine>
</OrderLines>

<Order>

Since Example 5–1 specifies all OrderLine attributes as well as a few
Item and Schedule attributes, the API returns values similar to those in
Example 5–2.

Example 5–2 Values Returned by a Poorly Pruned Dynamic Template

<OrderLine AllocationDate="03/28/2002" CarrierAccountNo="112233"
CarrierServiceCode="Next Day Air" Createprogid="SterlingTester"
Createts="03/28/2002" Createuserid="SterlingTester" CustomerLinePONo="999"
CustomerPONo="111" DeliveryCode="AIR" DepartmentCode="Clothing" ExtendedFlag=""
ExternalReference1="" ExternalReference2="" ExternalReference3=""
ExternalReference4="" ExternalReference5="" FreightTerms="Buyer" HoldFlag="N"
HoldReasonCode="HoldReas" ImportLicenseExpDate="08/08/2002"
ImportLicenseNo="225588" InternalReference1="" InternalReference2=""
InternalReference3="" InternalReference4="" InternalReference5="" KitCode=""
LineClass="" LineSeqNo="1.1" LineType="Single" Lockid="1" MarkForKey=""
Modifyprogid="SterlingTester" Modifyts="03/28/2002"
Modifyuserid="SterlingTester" OrderClass="NEW"
OrderHeaderKey="200203281036245174" OrderLineKey="200203281036245175"
OrderedQty="5.00" OrigOrderLineKey="" OriginalOrderedQty="5.00"
OtherCharges="0.00" OtherChargesPerLine="0.00" OtherChargesPerUnit="0.00"
PackListType="Bill" PersonalizeCode="PersCode" PersonalizeFlag=""
PickableFlag="Y" PricingDate="01/01/2500" PrimeLineNo="1" Purpose="Purpose"
ReceivingNode="B1N1" ReqCancelDate="01/01/2500" ReqDeliveryDate="04/04/2002"
ReqShipDate="03/30/2002" ReservationID="" ReservationPool="" SCAC="UPS"
ShipNode="E1N1" ShipToID="" ShipToKey="" ShipTogetherNo="Y" SplitQty="0.00"
SubLineNo="1" TotalDiscountAmount="0.00" TotalOtherCharges="0.00">
<Item CountryOfOrigin="" ItemDesc="" ItemID=""/>
<Schedules>
<Schedule ExpectedDeliveryDate="" ExpectedShipmentDate="" TagNumber=""
OrderHeaderKey="" OrderLineKey="" OrderLineScheduleKey="" ScheduleNo=""
ShipByDate="" Quantity="" PromisedApptStartDate="" PromisedApptEndDate=""/>
</Schedules>
</OrderLine>
</OrderLines>
</Order>

Best Practices for Creating Custom Output XML Templates

Output XML Files for APIs 37

In Example 5–3, the dynamic template has been trimmed down, keeping
in mind the following guidelines:

The structure of the custom output template mirrors the structure of
the standard output template.

Excess elements (regarding kits, schedules, addresses, and so forth)
are pruned away.

Parent elements are populated with one attribute in order to suppress
excess detail. For example, specifying the OrderNo attribute for the
Order element suppresses all of the other Order attributes.

Example 5–3 A Carefully Pruned Custom Output Template

<!-- getOrderDetails Output XML -->
<Order OrderNo=””>

<OrderLines>
<!--1 or more order line-->
<OrderLine PrimeLineNo="">

<Item CountryOfOrigin="" ItemDesc="" ItemID=""/>
</OrderLine>

</OrderLines>
</Order>

Since Example 5–3, "A Carefully Pruned Custom Output Template"
specifies only a few Item attributes, and only one attribute for its parent
element, the getOrderDetails() API returns only the values shown in
Example 5–4.

Example 5–4 Values Returned by a Carefully Pruned Output Template

<?xml version="1.0" encoding="UTF-8" ?>
<Order OrderNo=Y00000765>

<OrderLines>
<OrderLine PrimeLineNo="1">

<Item CountryOfOrigin="IN" Item Description" ItemDesc="Green Sari"
ItemID="GNSARI5LT" />

</OrderLine>
<OrderLine PrimeLineNo="3">

<Item CountryOfOrigin="CA" ItemDesc="Pink Scarf" ItemID="PKSCARF4LT"
/>

</OrderLine>
</OrderLines>

</Order>

38 Customizing APIs Guide

Defining and Deploying a Static Template for Output XML

This method of pruning the templates improves the performance as
database access to order schedules and other unwanted elements has
been prevented.

5.3.4 Develop Useful Templates
The supplied templates located in the <INSTALL_
DIR>/repository/xapi/template/merged/api/ directory are sample
guides. Use them to help you develop your own output XML templates.
Using your own customized templates gives you much more flexibility,
greater performance, and more assurance of appropriate data output.
You can either pass your template through the env or put it in the
extension folder.

5.3.5 Keep Performance Needs in Mind
Besides tailoring the templates to your business needs, it is important to
keep technological considerations in mind. For performance-related
information about using output, see the Selling and Fulfillment
Foundation: Performance Management Guide.

5.4 Defining and Deploying a Static Template for
Output XML

If you want to use a template that has more elements in addition to
those in the standard output template, create a static output template.
This function enables you to create a template that includes all of the
elements in the standard output template plus any new ones you add.
For example, you may need to add UI fields for any database columns
you have added. Note that if you use this function, you cannot remove
any elements that exist in the standard template.

To define and deploy a static template:
1. Copy the standard output template for the API that you want to

modify from the <INSTALL_
DIR>/repository/xapi/template/merged/api/<FileName>.xml file
to
<INSTALL_
DIR>/extensions/global/template/api/<FileName>[.<DocType>].
xml.

Defining and Deploying a Dynamic Template for Output XML

Output XML Files for APIs 39

Keep the file name of your new template the same as the
standard template.

The name of the output template corresponds with the name of
the API or event associated with it. For example, the
getOrderDetails() API takes the output template file
getOrderDetails.xml.

If the template references a document type, include the document
type code in the filename.

For example, to create an output template for the
getOrderDetails() API for an Order (0001) document type, the
name of the template XML is getOrderDetails.0001.xml.

2. Modify the copied template in the
/extensions/global/template/api/ directory as required, keeping
in mind the guidelines described in Section 5.3, "Best Practices for
Creating Custom Output XML Templates" on page 5-33

3. Call the API as typical and it automatically picks up the custom output
template from the directory containing the custom templates.

5.5 Defining and Deploying a Dynamic Template
for Output XML

If you want to use a template that contains a subset of the elements in
the standard output template, create a dynamic output template. If you
want the ability to remove some elements from the standard template
and perhaps add your own elements, you do that by passing your XML
data or a file name into the YFSEnvironment object.

To define and deploy a dynamic template:
1. Copy the standard output template for the API that you want to

modify from the <INSTALL_
DIR>/repository/xapi/template/merged/api/<FileName>.xml file
to

Note: You may add any elements you wish, but you
cannot remove any of the elements present in the
standard output template.

40 Customizing APIs Guide

Defining and Deploying a Dynamic Template for Output XML

<INSTALL_DIR>/extensions/global/template/api/extn_
<FileName>.xml.

When naming your new template file, use the same name as the
standard template and you must prefix it with extn_ to indicate that
it is an extension.

The name of the output template corresponds with the name of the
API or event associated with it. For example, the getOrderDetails()
API takes the output template file getOrderDetails.xml.

2. Modify the copied template in the
/extensions/global/template/api directory as required, keeping
in mind the guidelines described in Section 5.3, "Best Practices for
Creating Custom Output XML Templates" on page 5-33.

3. During user interface extensibility, call the setApiTemplate()
function on the YFSEnvironment object. This enables you to specify
an output template before calling an API, using one of the following
functions:

– XML data as a variable - as in the following example:

YFSEnvironment env = createEnv();
Document doc = getTemplateDocument();
env.setApiTemplate("getOrderDetails", doc);
private YFSEnvironment createEnv() {
//create new environment by passing the user id, program id, etc.
}
private Document getTemplateDocument() {
//create a Document object containing the desired template XML.
}

– XML file as a variable - as in the following example:

YFSEnvironment env = createEnv();
env.clearApiTemplates();
env.setApiTemplate("getOrderDetails", "extn_myOrderDetails");
private YFSEnvironment createEnv() {
//create new environment by passing the user id, program id, etc.
}

The API then uses the template passed in through YFSEnvironment to
produce the output XML document. For details about the YFSEnvironment
interface, see the Selling and Fulfillment Foundation: Javadocs.

Sequence of Precedence for Output XML Templates

Output XML Files for APIs 41

5.6 Sequence of Precedence for Output XML
Templates

Since Selling and Fulfillment Foundation enables you to define multiple
types of templates, in addition to the standard templates that you cannot
modify, it is important to understand the order of precedence in which
Selling and Fulfillment Foundation implements when reading the
templates. This section describes how Selling and Fulfillment Foundation
uses the API and event templates.

5.6.1 API Templates
Table 5–2, "Output Template Order of Precedence" shows the sequence
of precedence for determining which output template is used by an API.
Events use a similar sequence of precedence, using the directories
described in Section 5.6.2, "Event Templates" on page 5-42. Note that
templates are not supported for user exits.

Table 5–2 Output Template Order of Precedence

Priority Output Template Path and File Name

1 setApiTemplate(<file>|<xmlDocument>) to YFSEnvironment

When a file is specified, it is picked up from the <INSTALL_
DIR>/extensions/global/template/api directory.

2 <INSTALL_
DIR>/extensions/global/template/api/apiName.docType.
xml

3 <INSTALL_
DIR>/extensions/global/template/api/apiName.docType.
xml (Selling and Fulfillment Foundation sample template; not for
use in production.)

4 <INSTALL_
DIR>/extensions/global/template/api/apiName.xml

5 <INSTALL_
DIR>/extensions/global/template/api/apiName.xml
(Selling and Fulfillment Foundation sample template; not for use
in production.)

42 Customizing APIs Guide

Sequence of Precedence for Output XML Templates

5.6.2 Event Templates
Event templates help determine what elements and attributes should be
present in the output XML of an event. For events raised, see the
relevant transactions in the Selling and Fulfillment Foundation: Javadocs.

To see which events take output templates, see the files in the
<INSTALL_DIR>/repository/xapi/template/merged/event/ directory.
These templates can be overridden by files you place in the <INSTALL_
DIR>/extensions/global/template/event directory.

The naming convention for templates is BaseTxnName.eventName.xml.
For example, the on_success event of the createOrder() API uses the
ORDER_CREATE.ON_SUCCESS.xml event template.

Note that templates are not supported for user exits.

DTDs, XSDs, and Complex Queries 43

6
DTDs, XSDs, and Complex Queries

6.1 DTD and XSD Generator
Every Selling and Fulfillment Foundation API uses standard input, output,
and error XMLs. These XMLs conform to the related Document Type
Definition (DTD). For example, consider the following XML:

<?xml version="1.0" encoding="UTF-8">
<Order EnterpriseCode="DEFAULT" OrderNo="S100" />

The corresponding DTD for this XML is:

<!ELEMENT Order>
<!ATTLIST Order OrderNo CDATA #IMPLIED>
<!ATTLIST Order EnterpriseCode CDATA #REQUIRED>

To create such DTDs for the extended Selling and Fulfillment Foundation
XML, a tool called the xsdGenerator.xml is provided in the <INSTALL_
DIR>/bin directory. This tool converts a specially-formatted XML file into
a DTD and XML schema definition (XSD). The command for running the
tool is:

sci_ant.sh -f xsdGenerator.xml generate

You can also configure the following properties in the <INSTALL_
DIR>/properties/customer_overrides.properties file:

xsdgen.use.targetnamespace

xsdgen.use.datatypeimport

For additional information about modifying properties and the customer_
overrides.properties file, see the Selling and Fulfillment Foundation:
Properties Guide.

44 Customizing APIs Guide

DTD and XSD Generator

The input XML files should be placed in the <INSTALL_
DIR>/xapidocs/extn/input directory. The resulting DTD and XSD files
are placed in the <INSTALL_DIR>/xapidocs/extn/output/dtd and
<INSTALL_DIR>/xapidocs/extn/output/xsd directories respectively.

Consider the following sample XML that can be placed in the input
directory:

Example 6–1 Sample XML for Converting to an XSD and DTD

<Item yfc:DTDOccurrence="REQUIRED" ItemKey="" ItemID="REQUIRED"
OrganizationCode="REQUIRED" UnitOfMeasure="">

<PrimaryInformation Description="" ItemType="" />
<AdditionalAttributeList>

<AdditionalAttribute Name="" Value=""/>
</AdditionalAttributeList>
<Extn ExtnAttr1="" ExtnRefId="">

<CSTItemDataList yfc:DTDOccurrence="ZeroOrOne">
<CSTItemData yfc:DTDOccurrence="ZeroOrMany" ItemDataKey=""
Description="">
<CSTItemExtraData yfc:DTDOccurrence="ZeroOrOne" CodeType=""
DataType="" />
<YFSCommonCode yfc:DTDOccurrence="REQUIRED" CodeName="" CodeType=""
CodeValue="" />
</CSTItemData>

</CSTItemDataList>
</Extn>

</Item>

Table 6–1 XSD Generator Properties

Fields Description

xsdgen.use.targetnam
espace

Optional. The default value is Y. If set to Y, the XSD
files are generated with a defined target namespace.

xsdgen.use.datatypeim
port

Optional. The default value is Y. If set to Y, all the XSD
files reference a single common XSD file containing all
the common data type definitions. If set to N, each
XSD file is created with a copy of the database
definitions embedded within it.

DTD and XSD Generator

DTDs, XSDs, and Complex Queries 45

The attributes with values of REQUIRED are generated as required
attributes in the DTD and XSD. However, an existing required attribute
cannot be marked as optional.

The attribute values can also be specified to supply additional
constraints. A list of options is separated by a vertical bar (|). The value
of the attribute must be one of the given options. This is only supported

Table 6–2 Special Attributes in your XML

Fields Description

yfc:QryTypeSupported This attribute determines whether or not the query
type functionality is supported for the attributes in this
element. If set to Y, it takes effect for all the elements.

yfc:ComplexQuerySup
ported

This attribute specifies whether or not a complex
query type is supported. This attribute can only be
present in the root element.

yfc:XSDType The name of the type to use for the root element
schema definition.

yfc:DTDOccurrence This attribute can contain any of the following values:

REQUIRED - This element must be present if the
parent element is present.

ZeroOrOne - This element is optional, but may
occur only once.

ZeroOrMany - This element is optional, but may
occur multiple times.

OneOrMany - This element is required, and may
occur multiple times.

yfc:UseEntityOrdering This attribute determines whether or not all the
first-level children of an element are ordered in the
sequence they are found in the entity xmls. This
attribute can contain any of the following values:

true - All the first-level children of an element are
ordered in the sequence they are found in the
entity xmls.

false - The first-level children of an element are
not ordered in the sequence they are found in the
entity xmls.

xmlns The namespace to use for the targetNameSpace in the
output XSD. This attribute takes effect only if it is
present in the root element.

46 Customizing APIs Guide

DTD and XSD Generator

for data types based on the strings. The values are trimmed of the
whitespace character if the value itself is entirely spaces, in which case
the enumerated option remains unchanged.

For example, SomeAttr="A | B | C | |" results in valid options of "A", "B",
"C", " ", and "".

The default input and output XMLs that can act as a base for your custom
XML are located in the <INSTALL_DIR>/xapidocs/xmlstruct/ directory.
Also note that the DTDOccurrence and REQUIRED data provided for the
standard tables are inferred from the base file in the xmlstruct directory
and do not need to be supplied. If they are provided, the existing
information is overridden by any new information present in the custom
XMLs. Any required datatype and relationship information are obtained
from the entity XMLs.

Therefore, when the tool is run these base XML files serve as a default to
your custom XML files, which need only contain the changes made by
you such as the extended elements and attributes. This allows future
upgrades to safely modify the XML files in the xmlstruct directory.
Re-running the XSD generation tool automatically picks up these
updates.

The appropriate XML file in the xmlstruct directory associated with your
custom XML is identified by the file name. Your custom XML may start
with an optional prefix followed by an under-score and the base file
name. For example, a custom XML file named Custom_File_YFS_
getOrderDetails_input.xml refers to the YFS_getOrderDetails_
input.xml file in the xmlstruct directory.

However, the naming convention is optional. For example, you can also
name your custom XML sampleCustomApi.xml but no base file is used.

Note: The DTDs do not support enumerated values
containing only whitespace characters. Therefore,
restrictions of this type cannot be represented in the DTD.

Note: Do not put your custom XMLs in the xmlstruct
directory.

DTD and XSD Generator

DTDs, XSDs, and Complex Queries 47

In this case, the tool outputs an informational message to indicate that
no base XML is found.

The generated XSD specifies the target namespace as shown below:

<xsd:schema attributeFormDefault="unqualified"
elementFormDefault="qualified"
targetNamespace="http://www.yantra.com/documentation"
xmlns:xsd=http://www.w3.org/2001/XMLSchema
xmlns:yfc="http://www.yantra.com/documentation">

This namespace is picked up from the xmlns attribute on the root
element of the input XML and defaults to
http://www.yantra.com/documentation

The XSD and DTD files contain query type attributes used in list APIs
when QryTypeSupported="Y" is set in the root element of the input XML.
Similarly, the complex query types defined for getItemList() and
getOrganizationList() APIs are represented in the XSD and DTD files
when ComplexQuerySupported="Y" is set.

However, in APIs the following exceptions are exhibited in the DTDs since
these constraints cannot be represented in a pure DTD, XSD or both:

If an XML contains multiple Extn attributes, the generated DTD-only
(not generated XSD) defines a single Extn element which appears as
the union of all possible Extn elements.

Conditionally required attributes. For example, you need to specify a
group of attributes or another group of attributes such as
OrderHeaderKey or EnterpriseCode/OrderNo.

Mandatory condition of a node depends on some attribute value. For
example in the createOrder() API, the OrderLine node is required if
the DraftOrderFlag="N".

Note: If you want to use our base XML file for conversion,
the naming convention of your custom XML must be
suffixed appropriately. For example, Custom_File_YFS_
getOrderDetails_input.xml would use the base file
named YFS_getOrderDetails_input.xml.

48 Customizing APIs Guide

Defining Complex Queries

6.2 Defining Complex Queries
Complex queries help to narrow a detailed listing obtained as output
from an API. To generate the desired output, you can pass queries using
And or Or operators in the input XML of an API.

For example, you can query the getItemList API based on the unit of
measure, item group code or any parameters provided in the API
definition, using the complex query operators, And or Or.

Complex queries are supported for the following APIs:

deletePricelistAssignmentList

deletePricingRuleAssignmentList

getClassificationPurposeList

getCustomerContactList

getInventoryReservationList

getItemList

getOrderLineList

getOrderList

getOrganizationList

getSearchIndexTriggerList

getShipmentList

Consider the following scenario for adding complex queries to the
getItemList API.

Note: Only item, organization, order, order line, shipment
and shipment line entities are supported for performing
complex queries. The attributes for complex query must
map directly to valid database columns of these entities
and should be within the same XML element.

For more information about these APIs, see the Selling and
Fulfillment Foundation: Javadocs. For more information on
valid database columns, see the Selling and Fulfillment
Foundation ERDs.

Defining Complex Queries

DTDs, XSDs, and Complex Queries 49

The getItemList API returns a list of items based on the selection
criteria specified in the input XML such as item attributes, aliases,
category, and so on. You can create complex queries in the
getItemList input XML as shown in Example 6–2.

Example 6–2 Adding Complex Queries in getItemList API

<Item OrganizationCode="DEFAULT" ItemGroupCode="PS" >
<PrimaryInformation PricingQuantityStrategy="IQTY">
<ComplexQuery Operator="OR">

<And>
<Or>
<Exp Name="UnitOfMeasure" QryType="ISNULL"/>
<Exp Name="UnitOfMeasure" Value="HR"
QryType="FLIKE"/>
</Or>
<And>
<Exp Name="ManufacturerName" Value="STERLING"/>
</And>

</And>
</ComplexQuery>
</PrimaryInformation>

</Item>

The OrganizationCode and ItemGroupCode are the two attributes of
the <Item> element and PricingQuantityStrategy is the attribute
of the <PrimaryInformation> element considered in this example.
However you can include any or all of the attributes in the
getItemList API. All the attributes in the API are interpreted with an
implied And along with the complex query operator.

Apply the following rules when including complex queries:

You can define only one ComplexQuery under a single element.
For example, you cannot have two ComplexQuery operator under
an Item element.

You cannot add a single complex query against two different
tables. For example, in getShipmentList API you cannot use
ChainedFromOrderHeaderKey and ShipmentLineNo in the same
query, since the former belongs to YFS_ORDER_LINE table and the
latter is an attribute of the YFS_SHIPMENT_LINE table.

50 Customizing APIs Guide

Defining Complex Queries

The attribute with no value is not considered in the complex
query, like Attribute="".

For attributes appended with QryType, specify a query type value
from Table 6–3. This is case sensitive.

The values for the QryType attributes vary depending on the datatype of
the field. Table 6–3 lists the supported query type values for each
datatype.

Table 6–3 Query Type Values Used by List APIs

Field DataType Supported Query Type Values

Char/VarChar2 EQ - Equal to

FLIKE - Starts with

LIKE - Contains

GT - Greater than

LT - Less than

Number BETWEEN - Range of values

EQ - Equal to

GE - Greater than or equal to

GT - Greater than

LE - Less than or equal to

LT - Less than

NE - Not equal to

Date DATERANGE - Range of dates

EQ - Equals

GE - Greater than or equal to

GT - Greater than

LE - Less than or equal to

LT - Less than

NE - Not equal to

Defining Complex Queries

DTDs, XSDs, and Complex Queries 51

There can be only one element under the ComplexQuery namely,
And or Or.

And or Or elements can have one or many child elements as
required.

And or Or elements can have other And or Or expression elements
as child elements.

This example can be interpreted as the following logical expression:

(OrganizationCode="DEFAULT" AND ItemGroupCode="PS") AND
((PricingQuantityStrategy="IQTY") OR ((UnitOfMeasure =
"EACH" OR UnitOfMeasure="HR") AND (ManufacturerName =
"STERLING")))

Thus by following the above example you can include complex queries to
achieve desired results from your database using the above mentioned
APIs.

Date-Time BETWEEN - Range of dates

EQ - Equals

GE - Greater than or equal to

GT - Greater than

LE - Less than or equal to

LT - Less than

NE - Not equal to

Null ISNULL - Return records that are null.

NOTNULL - Return records that are not null.

Note: These two query types are used when the column or
attribute is set to Nullable in the entity XML.

Table 6–3 Query Type Values Used by List APIs

Field DataType Supported Query Type Values

52 Customizing APIs Guide

Defining Complex Queries

Creating Extended APIs 53

7
Creating Extended APIs

7.1 Invoking Extended APIs
Extended APIs are APIs that you provide; they are sometimes called
custom APIs. You can use an extended API to invoke a Selling and
Fulfillment Foundation API or third-party API, as well as to perform
custom processing through the Service Definition Framework.

To invoke an extended API:
1. Code a class.

2. Code a function that has exactly two parameters of types
YFSEnvironment and Document and ensure that the function returns
a document.

 public Document <method-name> (YFSEnvironment env, Document doc)

3. Configure a service that contains an API node. When configuring an
API node, use the properties described in Table 7–1.

Table 7–1 API Node Configuration Properties

Property Description

General Tab

Extended API Select this option if a custom API is to be invoked.

API Name Select or enter the API to be called.

Note: This field is for integration purposes only.

Class Name Specifies the class you coded in Step 1.

Method Name Specifies the function to be called as coded in Step
2.

54 Customizing APIs Guide

Invoking Extended APIs

When connecting the nodes within a service, keep in mind the API
node connection properties as listed in Table 7–2:

Arguments Tab

Argument Name You can pass name/value pairs to the API by
entering the values in the Arguments Tab.

In order for custom APIs to access custom values,
the API should implement the interface
com.yantra.interop.japi.YIFCustomApi.

If entered, these name/value pairs are passed to
the custom API as a properties object.

Argument Value Enter the argument value.

Template Tab

XML Template Select this radio button to construct the XML to be
used for the API output. Enter the template root
element name and click OK. You can then
construct the XML.

File Name Select this radio button to enter the filename of
the XML file to be used as the API output template.
This file should also exist in your CLASSPATH.

Facts Tab

You can configure the Fact Lookup for Database and custom APIs by using the
Facts tab. You can define Name-Value pairs for Fact lookup. The Value can be an
XML Path.

Fact Name Enter the fact name.

Fact Value Enter the fact value.

Table 7–2 API Node Connection Properties

Connection Node Connection Rules

Can be the first node
after the start node

Only for services invoked synchronously

Can be placed before Any transport node except FTP or File IO

Any other component node

Table 7–1 API Node Configuration Properties

Property Description

Implementing the Error Sequence User Exit

Creating Extended APIs 55

4. Make sure the class is in the CLASSPATH of the Service Definition
Framework.

5. Make sure that the class implements a method with a signature that
takes in exactly two parameters, a YFSEnvironment and a Document.

The following example shows how to implement a class:

import com.yantra.yfs.japi.YFSEnvironment;
import org.w3c.dom.Document;
public class Bar {

public Bar () {
}

public Document foo(YFSEnvironment env, Document doc)
{
//write your implementation code here
}

}

6. To access the extended API you created, invoke the service
containing your extended API.

For details and sample code that show how to access properties
specified when the custom API is configured, see the YIFCustomAPI
interface in the Selling and Fulfillment Foundation: Javadocs.

7.2 Implementing the Error Sequence User Exit
You can configure the Service Definition Framework to call a user exit
that checks for prior errors for the exception group to which the API
belongs. This user exit is called before any processing of the message
starts. A Java interface is supplied for its implementation. This interface
definition is in the com.yantra.interop.japi.YIFErrorSequenceUE
class. The user exit computes the Message Key based on user defined
custom code.

Can be placed after Start node

Any transport node except FTP or File IO

Any other component node

Passes data unchanged Yes

Table 7–2 API Node Connection Properties

Connection Node Connection Rules

56 Customizing APIs Guide

Exception Handling in Extended APIs

YIFErrorSequenceUE defines two functions. The function definitions are:

1) public Document getExceptionGroupReference(Document document, String apiName)
throws Exception
2) public void setExceptionGroupFinder (YIFExceptionGroupFinder finder)

The getExceptionGroupReference() function takes two parameters:

Document - The input XML document retrieved by the Integration
Adapter

String - The API for which the Integration Adapter retrieved the XML

The setExceptionGroupFinder() function sets the
YIFExceptionGroupFinder() interface. Use the implementation of this
interface to retrieve the exceptionGroupId if prior errors exist.

An example implementation of this function is:

public void setExceptionGroupFinder (YIFExceptionGroupFinder finder){
 this.finder = finder;
}

7.3 Implementing the YIFExceptionGroupFinder
Interface

This interface defines the findExistingError() function that takes in
Document as the input parameter.

For example, the input XML document that the user exit passes to the
findExistingError() function would contain:

<?xml version="1.0"?>
<ExceptionGroupReference messageKey="xyz"/>

7.4 Exception Handling in Extended APIs
The client always has the option of throwing an exception to the Service
Definition Framework instead of handling it when it occurs. Depending on
the configuration, the Service Definition Framework either sends the
exception to the Alert Console or logs the exception.

Locking Records in Extended APIs

Creating Extended APIs 57

7.5 Locking Records in Extended APIs
You can lock a record in a custom table when executing a custom entity
API in Service Definition Framework (SDF). To lock a record, you must
pass the SelectMethod attribute as part of the input XML to the custom
entity API. The locking happens within the transaction boundary of the
custom API call.

The value of the SelectMethod attribute will determine what (if any)
type of locking to be used. You can pass one of the following values for
the SelectMethod attribute:

WAIT—The record is locked for SELECT FOR UPDATE operation.

NO_WAIT—The record is locked for SELECT FOR UPDATE NOWAIT
operation.

NONE—Locking mechanism is not used.

Note: If you pass any other value for the SelectMethod
attribute, an error is thrown indicating that the
"SelectMethod" attribute value is not valid.

Note: If the SelectMethod attribute does not exist or if it
is set to NONE in the input XML, the locking mechanism is
not used.

58 Customizing APIs Guide

Locking Records in Extended APIs

Invoking APIs and Services 59

8
Invoking APIs and Services

8.1 Invoking APIs from the Client Environment
In order to call standard APIs from the client, ensure that the client
environment is set up correctly. The client environment must have
appropriate CLASSPATH settings and the JAR files as described in this
section.

The <INSTALL_DIR>/resources/ directory must contain the
yifclient.properties file.

If you are calling in local mode, the client CLASSPATH must contain all
JAR files referred to in the <INSTALL_
DIR>/properties/dynamicclasspath.cfg Selling and Fulfillment
Foundation file

When invoking APIs through EJB or HTTP in IBM WebSphere, the client
CLASSPATH must contain the following files in <WAS_
HOME>/AppClient/properties directory:

xapi.jar

log4j-1.2.15.jar

platform_afc.jar

Note: It is recommended that you do not invoke a local
API in the application JVM before the server initialization.
Also, if you are making a local API call, you must add the
following code after the local API invocation in the block
that has YIFClientFactoryImpl.getLocalApi and api.invoke:

YFCRemoteManager.setIsLocalInvocation(false);

60 Customizing APIs Guide

Invoking Services and Standard APIs Programmatically

xercesImpl.jar

xml-apis.jar

j2ee.jar

com.ibm.ws.ejb.thinclient_<version>.jar

com.ibm.ws.orb_7.0.0.jar

com.ibm.ws.sib.client.thin.jms_<version>.jar

ejbstubs.jar

The client CLASSPATH must also contain the following files from
<INSTALL_DIR>/jar/:

install_foundation.jar

smcfs/8.5/smcfsshared.jar

Use *ejb.jar available in the EAR file to retrieve the ejbstubs.jar.

When invoking APIs through EJB in BEA Weblogic, consult your
Application server documentation for CLASSPATH requirements:

wlclient.jar

wljmsclient.jar

8.2 Invoking Services and Standard APIs
Programmatically

Selling and Fulfillment Foundation provides sample code that
demonstrates how the Selling and Fulfillment Foundation standard APIs
and services can be invoked programmatically. See the sample files in
the <INSTALL_DIR>/xapidocs/code_examples/ directory.

API and service transactions that are outbound from Selling and
Fulfillment Foundation can be configured through the Service Builder, as
described in the Selling and Fulfillment Foundation: Application Platform
Configuration Guide.

Note: Use the executeFlow() method of the YIFApi
interface to run a service defined within the Service
Definition Framework.

Invoking Services and Standard APIs Programmatically

Invoking APIs and Services 61

API and service transactions that are inbound to Selling and Fulfillment
Foundation can be invoked through the following protocols:

EJB

HTTP and HTTPS

LOCAL

Web Services

COM+

8.2.1 EJB
Use EJB for server-side execution of the code. Java call. All the methods
in Selling and Fulfillment Foundation take a YFSEnvironment and a
document, and return a document. Since EJBs are designed to be called
remotely, each of these documents is serialized on one end and
unserialized on the other. However, Selling and Fulfillment Foundation
uses an EJB, where each API takes two string parameters and returns a
string. Thereby, forcing any document implementation to serialize and
unserialize using a standard well-defined interface.

For example, a new EJB is created with method signatures like:

String createOrder(String env, String inputXML) throws
YFSException, RemoteException;

where env is an XML that should be a valid input to createEnvironment
variable. The return value is the output XML.

When calling an API using
YIFClientFactory.getInstance().getApi(“EJB”) the call is made
using this String-based EJB. With this type of call you can pass a
YFSEnvironment and document, and get a document in return. The
Selling and Fulfillment Foundation code performs the conversion
transparently.

62 Customizing APIs Guide

Invoking Services and Standard APIs Programmatically

8.2.2 HTTP
Use HTTP for server side execution of code. Java call.

8.2.3 LOCAL
Use Local for client side execution of code. COM or Java call.

8.2.4 Web Services
Use Web Services for client side execution of code. COM or Java call.

8.2.5 COM+
Use COM for client side execution of VB or C++ code. COM or Java call.

Using COM requires setting up your server and runtime clients.

8.2.6 Configuring Service Invocation
To configure service invocation:

1. Rename the <INSTALL_DIR>/resources/yifclient.properties.in
file to <INSTALL_DIR>/resources/yifclient.properties.

2. Ensure that the CLASSPATH contains the following:

log4j-1.2.15.jar

xercesImpl.jar

install_foundation.jar

platform_afc.jar

Note: The DOM-based EJB is deprecated. Hence, moving
forward you need to use the String-based EJB for
server-side execution.

Note: Exceptions encountered when making synchronous
API calls through EJB, COM, or HTTP transport protocols
are not queued for reprocessing.

Invoking Services and Standard APIs Programmatically

Invoking APIs and Services 63

resources.jar

entities.jar

xapi.jar

JARs requried by your Application server

JARs required by user exits and custom APIs

3. Set your java command line property to
-Dlog4j.configuration=resources/log4jconfig.xml.

4. Make sure that the <INSTALL_DIR> directory is in your CLASSPATH.

5. Set the log4j properties in the log4jconfig.xml file to the
appropriate values for your environment. If these properties are not
specified correctly, the Service Definition Framework does not
initialize correctly.

– If you are using the EJB protocol and BEA WebLogic, make sure
that weblogic.jar is in your CLASSPATH environment variable. In
addition, xercesImpl.jar and xalan.jar must precede
weblogic.jar in your CLASSPATH.

– If you are using the EJB protocol and JBoss, make sure that
<JBOSS_HOME>/client/jbossall-client.jar is in your
CLASSPATH environment variable.

– If you are using the EJB protocol and IBM WebSphere, make sure
that the CLASSPATH environment variable contains the necessary
JAR files. For information about the WebSphere JAR files, see IBM
documentation. Make sure that the CLASSPATH environment
variable contains the appropriate properties directory.

64 Customizing APIs Guide

Directing API Calls to Specific Servers

– If you are configuring a COM+ protocol call, use one of the
following COM signatures that you need:

createEnvironment(VARIANT *lEnvHandle, BSTR sProgID, BSTR sUserID, int
*iRetval)

Signature for calling standard APIs:

<SterlingAPI>(VARIANT *lEnvHandle, BSTR inXML, VARIANT *outXML, VARIANT
*errXML, int *retval)

Signature for calling services:

executeFlow(VARIANT *lEnvHandle, BSTR flowName, BSTR flowMsg, VARIANT
*outXML, VARIANT *errXML, int *retval)

For examples of VB code, see the samples in the <INSTALL_
DIR>/xapidocs/code_examples/complus directory.

8.3 Directing API Calls to Specific Servers
The Application provides the ability to route custom API calls to a
particular server or servers when these APIs are invoked either remotely
or locally.

To enable this, the server and the protocol must be specified in the
yifclient.properties file and in the required APIs.

To direct API calls to a specific server, perform the following steps:

Note: If you are invoking the service or API from the
machine on which the server is running, make sure that
the CLASSPATH environment variable contains the <WAS_
HOME>/AppServer/properties/ directory.

If you are invoking the service or API from a different
machine, make sure that the CLASSPATH environment
variable contains the <WAS_
HOME>/AppClient/properties/ directory.

Directing API Calls to Specific Servers

Invoking APIs and Services 65

1. Specify the attribute, "endpoint" in the yifclient.properties file under
the directory /<INSTALL_DIR>/resources/. The "endpoint" is a
configured server or a protocol which is used for routing the API calls.
Modify the yifclient.properties file to include the declaration and
usage of endpoint in the following format:

endpoint.<Server_Name>.apifactory.protocol=HTTP
endpoint.<Server_Name>.httpapi.url=http://<server>:<port>/<context_
root>/interop/InteropHttpServlet

endpoint.<Server_Name> specifies a server with the name <Server_
Name>. For example, endpoint.INBOXSERVER creates an endpoint with
the name, "INBOXSERVER". You can assign properties to the endpoint
name, which takes precedence over any other assigned property.

The protocol configured for the endpoint is HTTP as specified in the line
endpoint.<Server_Name>.apifactory.protocol=HTTP

The settings specified in the second line, endpoint.<Server_Name>.httpapi.url
are used to connect to the server specified in the endpoint.

2. Configure a protocol to be used for connecting to the specified server.
The protocols such as HTTP, HTTPS, EJB, LOCAL, AUTO are reserved
endpoint names. If any of these are configured for the endpoint, the
system uses the default connection settings (as applicable) for
routing the API calls.

3. For each API, specify the endpoint (server) to be used as shown
below:

yfs.api.<apiname>.endpoint=<ENDPOINT>

The API then calls the server specified in the endpoint attribute.

Note: If an endpoint is not configured for an API, then it
uses the default (local) server or a general one configured
for all APIs. The property set at the API level takes
precedence over other common properties.

66 Customizing APIs Guide

Directing API Calls to Specific Servers

67

Index

A
ampersand character (&), 24, 29
API input

maps and XML, 23
special characters, 24

API service node
signature, 53

APIs
behavior, 11
example input XML, 21
programming with, 11
synchronous, exception reprocessing, 62

APIs, types of
list APIs, 13
select APIs, 12
update APIs, 13

apostrophe. See single quotation mark

B
best practices

API input XML, blank spaces, 21
API output templates, 33
database columns, 23
XML Group, 23
XML Name, 23

C
complex queries, 48

AND, 48
OR, 48

configuring
service invocation, remote, 62
yifclient.properties file, 62

custom APIs. See extended APIs
customization checklist, 1
customizing

dynamic API output templates, 39
static API output templates, 38

D
data types

query type values, 27, 50
database tables

maximum size, 8
Document Type Definition (DTD), 43
document types

output templates for, 32
DTD generator, 43

E
environment variable

INSTALL_DIR, xxv
INSTALL_DIR_OLD, xxv

error checking
user exits, 55

exception, 55
exceptions

behavior, 8
in synchronous API calls, 62

extended APIs
configuration properties, 53

68 Customizing APIs Guide

connection properties, 54
signature configuration, 53

F
file locations, 33

G
greater than symbol (>), 24

I
input XML

APIs usage, 21
example, 21

nested orderby element, 29
orderby element, 29
query type attributes, 26

query type values, 27, 50
unique key attributes used by select APIs, 12

input XML files, 33
input XML, blanks and spaces, 21
INSTALL_DIR, xxv
INSTALL_DIR_OLD, xxv
InvokeAPIsFromClientEnvironment, 59
InvokeServicesAndStandardAPIsProgram, 60

L
less than symbol (>), 24

N
nested orderby element example, 29

O
orderby element example, 29
output templates, 31, 33

behavior, 41
best practices when creating, 33
document types, 32
dynamic templates, 39

dynamic templates, customizing, 39
models, comparison between, 35
standard behavior, 32
static templates, 38
static templates, customizing, 38
two models, 34

P
parenthesis (()), 24
percent sign (%), 24
plus sign (+), 24

Q
query type attributes example, 26
query type values, 27, 50
quotation mark ("), 24

S
services

API node configuration properties, 53
API node connection properties, 54

signatures
API service node, 53

single quotation mark (’), 24
special characters

API input
maps and literals, 23
special characters, 24

not supported, 24
ampersand character (&), 24, 29
greater than symbol (>), 24
less than symbol (>), 24
parenthesis (()), 24
percent sign (%), 24
plus sign (+), 24
quotation mark ("), 24
single quotation mark (’), 24
underscore character (_), 24

third-party vendors, 24
square brackets (not supported), 24
standard APIs, 11

Index 69

synchronous API, 62

U
underscore character (_), 24
user exits

error checking, 55

X
XML Schema Definition (XSD), 43
XSD generator, 43
xsdGenerator.xml, 43

Y
yifclient.properties file

remote service invocation, 62

Z
" quotation mark (not supported), 24
% percent sign (not supported), 24
& ampersand character (not supported), 24, 29
() parenthesis (not supported), 24
), 24
+ plus sign (not supported), 24
> greater than symbol (not supported), 24
> less than symbol (not supported), 24
_ underscore character

Oracle, unpredictable results when used, 24
’ single quotation mark (not supported), 24

70 Customizing APIs Guide

	Contents
	Preface
	1 Checklist for Customization Projects
	1.1 Customization Projects

	2 Extending Services
	2.1 About Extending Services
	2.2 Invoking Services Synchronously or Asynchronously
	2.2.1 Synchronously Invoked Services
	2.2.2 Asynchronously Invoked Services

	2.3 Business Functions To Use In Services
	2.4 Message Size For Asynchronous Services
	2.5 Exception Handling and Services

	3 Understanding APIs
	3.1 About APIs
	3.2 API Behavior
	3.3 Types of APIs
	3.3.1 Select APIs
	3.3.2 List APIs
	3.3.3 Update APIs

	3.4 API Security
	3.5 Date and Time Handling by APIs
	3.5.1 Specifying Time Zones
	3.5.2 Using Date-Time Syntax

	4 Input XML Files for APIs
	4.1 About Input XML Files for APIs
	4.2 Guidelines for Forming API Input
	4.2.1 Using Literals in Maps and XMLs
	4.2.2 Using Special Characters
	4.2.3 XML-Based APIs
	4.2.4 Support for CreateTS and ModifyTS in Input and Output XML Files

	4.3 Forming Queries in the Input XML of List APIs
	4.3.1 Setting Query Timeouts for XAPIs

	4.4 Sorting Through OrderBy Element in the Input XML of List APIs

	5 Output XML Files for APIs
	5.1 About Output XML Files and Templates for APIs
	5.1.1 Output XML Templates
	5.1.2 Document Types
	5.1.3 Standard Output Template Behavior

	5.2 Extending an Output XML Template
	5.3 Best Practices for Creating Custom Output XML Templates
	5.3.1 Gather Information Relevant to the API
	5.3.2 Gather Information Relevant to Your Business Needs
	5.3.3 Choose an Appropriate Template Mechanism
	5.3.4 Develop Useful Templates
	5.3.5 Keep Performance Needs in Mind

	5.4 Defining and Deploying a Static Template for Output XML
	5.5 Defining and Deploying a Dynamic Template for Output XML
	5.6 Sequence of Precedence for Output XML Templates
	5.6.1 API Templates
	5.6.2 Event Templates

	6 DTDs, XSDs, and Complex Queries
	6.1 DTD and XSD Generator
	6.2 Defining Complex Queries

	7 Creating Extended APIs
	7.1 Invoking Extended APIs
	7.2 Implementing the Error Sequence User Exit
	7.3 Implementing the YIFExceptionGroupFinder Interface
	7.4 Exception Handling in Extended APIs
	7.5 Locking Records in Extended APIs

	8 Invoking APIs and Services
	8.1 Invoking APIs from the Client Environment
	8.2 Invoking Services and Standard APIs Programmatically
	8.2.1 EJB
	8.2.2 HTTP
	8.2.3 LOCAL
	8.2.4 Web Services
	8.2.5 COM+
	8.2.6 Configuring Service Invocation

	8.3 Directing API Calls to Specific Servers

	Index

