
Selling and Fulfillment
Foundation: Customizing
Console JSP Interface for
End-User Guide

Release 8.5

October 2009

Copyright Notice
Copyright © 1999 - 2009

Sterling Commerce, Inc.

ALL RIGHTS RESERVED

STERLING COMMERCE SOFTWARE

TRADE SECRET NOTICE

THE STERLING COMMERCE SOFTWARE DESCRIBED BY THIS DOCUMENTATION ("STERLING COMMERCE
SOFTWARE") IS THE CONFIDENTIAL AND TRADE SECRET PROPERTY OF STERLING COMMERCE, INC., ITS
AFFILIATED COMPANIES OR ITS OR THEIR LICENSORS, AND IS PROVIDED UNDER THE TERMS OF A
LICENSE AGREEMENT. NO DUPLICATION OR DISCLOSURE WITHOUT PRIOR WRITTEN PERMISSION.
RESTRICTED RIGHTS.

This documentation, the Sterling Commerce Software it describes, and the information and know-how
they contain constitute the proprietary, confidential and valuable trade secret information of Sterling
Commerce, Inc., its affiliated companies or its or their licensors, and may not be used for any
unauthorized purpose, or disclosed to others without the prior written permission of the applicable
Sterling Commerce entity. This documentation and the Sterling Commerce Software that it describes
have been provided pursuant to a license agreement that contains prohibitions against and/or
restrictions on their copying, modification and use. Duplication, in whole or in part, if and when
permitted, shall bear this notice and the Sterling Commerce, Inc. copyright notice. Commerce, Inc.
copyright notice.

U.S. GOVERNMENT RESTRICTED RIGHTS. This documentation and the Sterling Commerce Software it
describes are "commercial items" as defined in 48 C.F.R. 2.101. As and when provided to any agency or
instrumentality of the U.S. Government or to a U.S. Government prime contractor or a subcontractor at
any tier ("Government Licensee"), the terms and conditions of the customary Sterling Commerce
commercial license agreement are imposed on Government Licensees per 48 C.F.R. 12.212 or §
227.7202 through § 227.7202-4, as applicable, or through 48 C.F.R. § 52.244-6.

This Trade Secret Notice, including the terms of use herein is governed by the laws of the State of Ohio,
USA, without regard to its conflict of laws provisions. If you are accessing the Sterling Commerce
Software under an executed agreement, then nothing in these terms and conditions supersedes or
modifies the executed agreement.

Sterling Commerce, Inc.
4600 Lakehurst Court
Dublin, Ohio 43016-2000

Copyright © 1999 - 2009

Third-Party Software

Portions of the Sterling Commerce Software may include products, or may be distributed on the same
storage media with products, ("Third Party Software") offered by third parties ("Third Party Licensors").
Sterling Commerce Software may include Third Party Software covered by the following copyrights:
Copyright © 2006-2008 Andres Almiray. Copyright © 1999-2005 The Apache Software Foundation.
Copyright (c) 2008 Azer Koçulu http://azer.kodfabrik.com. Copyright © Einar Lielmanis,
einars@gmail.com. Copyright (c) 2006 John Reilly (www.inconspicuous.org) and Copyright (c) 2002
Douglas Crockford (www.crockford.com). Copyright (c) 2009 John Resig, http://jquery.com/. Copyright
© 2006-2008 Json-lib. Copyright © 2001 LOOX Software, Inc. Copyright © 2003-2008 Luck Consulting
Pty. Ltd. Copyright 2002-2004 © MetaStuff, Ltd. Copyright © 2009 Michael Mathews
micmath@gmail.com. Copyright © 1999-2005 Northwoods Software Corporation. Copyright (C)
Microsoft Corp. 1981-1998. Purple Technology, Inc. Copyright (c) 2004-2008 QOS.ch. Copyright © 2005
Sabre Airline Solutions. Copyright © 2004 SoftComplex, Inc. Copyright © 2000-2007 Sun
Microsystems, Inc. Copyright © 2001 VisualSoft Technologies Limited. Copyright © 2001 Zero G
Software, Inc. All rights reserved by all listed parties.

The Sterling Commerce Software is distributed on the same storage media as certain Third Party
Software covered by the following copyrights: Copyright © 1999-2006 The Apache Software Foundation.
Copyright (c) 2001-2003 Ant-Contrib project. Copyright © 1998-2007 Bela Ban. Copyright © 2005
Eclipse Foundation. Copyright © 2002-2006 Julian Hyde and others. Copyright © 1997 ICE Engineering,
Inc./Timothy Gerard Endres. Copyright 2000, 2006 IBM Corporation and others. Copyright © 1987-2006
ILOG, Inc. Copyright © 2000-2006 Infragistics. Copyright © 2002-2005 JBoss, Inc. Copyright
LuMriX.net GmbH, Switzerland. Copyright © 1998-2009 Mozilla.org. Copyright © 2003-2009 Mozdev
Group, Inc. Copyright © 1999-2002 JBoss.org. Copyright Raghu K, 2003. Copyright © 2004 David
Schweinsberg. Copyright © 2005-2006 Darren L. Spurgeon. Copyright © S.E. Morris (FISH) 2003-04.
Copyright © 2006 VisualSoft Technologies. Copyright © 2002-2009 Zipwise Software. All rights reserved
by all listed parties.

Certain components of the Sterling Commerce Software are distributed on the same storage media as
Third Party Software which are not listed above. Additional information for such Third Party Software
components of the Sterling Commerce Software is located at:
installdir/mesa/studio/plugins/SCI_Studio_License.txt.

Third Party Software which is included, or are distributed on the same storage media with, the Sterling
Commerce Software where use, duplication, or disclosure by the United States government or a
government contractor or subcontractor, are provided with RESTRICTED RIGHTS under Title 48 CFR
2.101, 12.212, 52.227-19, 227.7201 through 227.7202-4, DFAR 252.227-7013(c) (1) (ii) and (2), DFAR
252.227-7015(b)(6/95), DFAR 227.7202-3(a), FAR 52.227-14(g)(2)(6/87), and FAR 52.227-19(c)(2)
and (6/87) as applicable.

Additional information regarding certain Third Party Software is located at installdir/SCI_License.txt.

Some Third Party Licensors also provide license information and/or source code for their software via
their respective links set forth below:

http://danadler.com/jacob/

http://www.dom4j.org

This product includes software developed by the Apache Software Foundation (http://www.apache.org).
This product includes software developed by the Ant-Contrib project
(http://sourceforge.net/projects/ant-contrib). This product includes software developed by the JDOM
Project (http://www.jdom.org/). This product includes code licensed from RSA Data Security (via Sun
Microsystems, Inc.). Sun, Sun Microsystems, the Sun Logo, Java, JDK, the Java Coffee Cup logo,
JavaBeans , JDBC, JMX and all JMX based trademarks and logos are trademarks or registered trademarks
of Sun Microsystems, Inc. All other trademarks and logos are trademarks of their respective owners.

THE APACHE SOFTWARE FOUNDATION SOFTWARE

The Sterling Commerce Software is distributed with or on the same storage media as the following
software products (or components thereof) and java source code files: Xalan version 2.5.2,
 Cookie.java, Header.java, HeaderElement.java, HttpException.java, HttpState.java, NameValuePair.java,
CronTimeTrigger.java, DefaultTimeScheduler.java, PeriodicTimeTrigger.java, Target.java,

TimeScheduledEntry.java, TimeScheduler.java, TimeTrigger.java, Trigger.java, BinaryHeap.java,
PriorityQueue.java, SynchronizedPriorityQueue.java, GetOpt.java, GetOptsException.java,
IllegalArgumentException.java, MissingOptArgException.java (collectively, "Apache 1.1 Software").
Apache 1.1 Software is free software which is distributed under the terms of the following license:

License Version 1.1

Copyright 1999-2003 The Apache Software Foundation. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided
that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

2. Redistribution in binary form must reproduce the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other materials provided with the distribution.

3. The end-user documentation included with the redistribution, if any, must include the following
acknowledgement: "This product includes software developed by the Apache Software Foundation
(http://www.apache.org)." Alternatively, this acknowledgement may appear in the software itself, if and
whenever such third-party acknowledgements normally appear.

4. The names "Commons", "Jakarta", "The Jakarta Project", "HttpClient", "log4j", "Xerces "Xalan",
"Avalon", "Apache Avalon", "Avalon Cornerstone", "Avalon Framework", "Apache" and "Apache Software
Foundation" must not be used to endorse or promote products derived from this software without
specific prior written permission. For written permission, please contact apache@apache.org.

5. Products derived from this software may not be called "Apache", nor may "Apache" appear in their
name, without the prior written permission of the Apache Software Foundation.

THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESS OR IMIPLIED WARRANTIES, INCLUDING
ANY IMPLIED WARRANTY OF MERCHANTIBILITY, AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL APACHE SOFTWARE FOUNDATION OR ITS CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTIAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

This software consists of voluntary contributions made by many individuals on behalf of the Apache
Software Foundation. The GetOpt.java, GetOptsException.java, IlligalArgumentException.java and
MissingOptArgException.java software was originally based on software copyright (c) 2001, Sun
Microsystems., http://www.sun.com. For more information on the Apache Software Foundation, please
see <http://www.apache.org/>.

The preceding license only applies to the Apache 1.1 Software and does not apply to the Sterling
Commerce Software or to any other Third-Party Software.

The Sterling Commerce Software is also distributed with or on the same storage media as the following
software products (or components thereof): Ant, Antinstaller, Apache File Upload Package, Apache
Commons Beans, Apache Commons BetWixt, Apache Commons Collection, Apache Commons Digester,
Apache Commons IO, Apache Commons Lang., Apache Commons Logging, Apache Commons Net,
Apache Jakarta Commons Pool, Apache Jakarta ORO, Lucene, Xerces version 2.7, Apache Log4J,
Apache SOAP, Apache Struts and Apache Xalan 2.7.0, (collectively, "Apache 2.0 Software"). Apache
2.0 Software is free software which is distributed under the terms of the Apache License Version 2.0. A
copy of License Version 2.0 is found in the following directory files for the individual pieces of the Apache
2.0 Software: installdir/jar/commons_upload/1_0/ CommonsFileUpload_License.txt,
installdir/jar/jetspeed/1_4/RegExp_License.txt,
 installdir/ant/Ant_License.txt
<install>/jar/antInstaller/0_8/antinstaller_License.txt,
<install>/jar/commons_beanutils/1_7_0/commons-beanutils.jar (/META-INF/LICENSE.txt),
<install>/jar/commons_betwixt/0_8/commons-betwixt-0.8.jar (/META-INF/LICENSE.txt),

<install>/jar/commons_collections/3_2/LICENSE.txt,
<install>/jar/commons_digester/1_8/commons-digester-1.8.jar (/META-INF/LICENSE.txt),
<install>/jar/commons_io/1_4/LICENSE.txt,
<install>/jar/commons_lang/2_1/Commons_Lang_License.txt,
<install>/jar/commons_logging/1_0_4/commons-logging-1.0.4.jar (/META-INF/LICENSE.txt),
<install>/jar/commons_net/1_4_1/commons-net-1.4.1.jar (/META-INF/LICENSE.txt),
<install>/jar/smcfs/8.5/lucene-core-2.4.0.jar (/META-INF/LICENSE.txt),
<install>/jar/struts/2_0_11/struts2-core-2.0.11.jar (./LICENSE.txt),
<install>/jar/mesa/gisdav/WEB-INF/lib/Slide_License.txt,
<install>/mesa/studio/plugins/xerces_2.7_license.txt,
<install>/jar/commons_pool/1_2/Commons_License.txt,
<install>/jar/jakarta_oro/2_0_8/JakartaOro_License.txt,
<install>/jar/log4j/1_2_15/LOG4J_License.txt,
<install>/jar/xalan/2_7/Xalan_License.txt,
<install>/jar/soap/2_3_1/Apache_SOAP_License.txt

Unless otherwise stated in a specific directory, the Apache 2.0 Software was not modified. Neither the
Sterling Commerce Software, modifications, if any, to Apache 2.0 Software, nor other Third Party Code is
a Derivative Work or a Contribution as defined in License Version 2.0. License Version 2.0 applies only to
the Apache 2.0 Software which is the subject of the specific directory file and does not apply to the
Sterling Commerce Software or to any other Third Party Software. License Version 2.0 includes the
following provision:

"Unless required by applicable law or agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS
OF ANY KIND, either express or implied, including, without limitation, any warranties or conditions of
TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. You are
solely responsible for determining the appropriateness of using or redistributing the Work and assume
any risks associated with Your exercise of permissions under this License."

NOTICE file corresponding to the section 4 d of the Apache License, Version 2.0, in this case for the
Apache Ant distribution. Apache Ant Copyright 1999-2008 The Apache Software Foundation. This
product includes software developed by The Apache Software Foundation (http://www.apache.org/).
This product includes also software developed by :

 - the W3C consortium (http://www.w3c.org) ,

 - the SAX project (http://www.saxproject.org)

The <sync> task is based on code Copyright (c) 2002, Landmark Graphics Corp that has been kindly
donated to the Apache Software Foundation.

Portions of this software were originally based on the following:

 - software copyright (c) 1999, IBM Corporation., http://www.ibm.com.

 - software copyright (c) 1999, Sun Microsystems., http://www.sun.com.

 - voluntary contributions made by Paul Eng on behalf of the Apache Software Foundation that were
originally developed at iClick, Inc., software copyright (c) 1999.

NOTICE file corresponding to the section 4 d of the Apache License, Version 2.0, in this case for the
Apache Lucene distribution. Apache Lucene Copyright 2006 The Apache Software Foundation. This
product includes software developed by The Apache Software Foundation (http://www.apache.org/).
The snowball stemmers in contrib/snowball/src/java/net/sf/snowball were developed by Martin Porter
and Richard Boulton. The full snowball package is available from http://snowball.tartarus.org/

Ant-Contrib Software

The Sterling Commerce Software is distributed with or on the same storage media as the Anti-Contrib
software (Copyright (c) 2001-2003 Ant-Contrib project. All rights reserved.) (the "Ant-Contrib
Software"). The Ant-Contrib Software is free software which is distributed under the terms of the
following license:

The Apache Software License, Version 1.1

Copyright (c) 2001-2003 Ant-Contrib project. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided
that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and
the following disclaimer in the documentation and/or other materials provided with the distribution.

3. The end-user documentation included with the redistribution, if any, must include the following
acknowledgement:

"This product includes software developed by the Ant-Contrib project
(http://sourceforge.net/projects/ant-contrib)."

Alternately, this acknowledgement may appear in the software itself, if and wherever such third-party
acknowledgements normally appear.

 4. The name Ant-Contrib must not be used to endorse or promote products derived from this software
without prior written permission. For written permission, please contact
ant-contrib-developers@lists.sourceforge.net.

 5. Products derived from this software may not be called "Ant-Contrib" nor may "Ant-Contrib" appear in
their names without prior written permission of the Ant-Contrib project.

THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE ANT-CONTRIB PROJECT OR ITS
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. The preceding license only applies to the
Ant-Contrib Software and does not apply to the Sterling Commerce Software or to any other Third-Party
Software.

The preceding license only applies to the Ant-Contrib Software and does not apply to the Sterling
Commerce Software or to any other Third Party Software.

DOM4J Software

The Sterling Commerce Software is distributed with or on the same storage media as the Dom4h
Software which is free software distributed under the terms of the following license:

Redistribution and use of this software and associated documentation ("Software"), with or without
modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain copyright statements and notices. Redistributions must also
contain a copy of this document.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and
the following disclaimer in the documentation and/or other materials provided with the distribution.

3. The name "DOM4J" must not be used to endorse or promote products derived from this Software
without prior written permission of MetaStuff, Ltd. For written permission, please contact
dom4j-info@metastuff.com.

4. Products derived from this Software may not be called "DOM4J" nor may "DOM4J" appear in their
names without prior written permission of MetaStuff, Ltd. DOM4J is a registered trademark of MetaStuff,
Ltd.

5. Due credit should be given to the DOM4J Project - http://www.dom4j.org

THIS SOFTWARE IS PROVIDED BY METASTUFF, LTD. AND CONTRIBUTORS ``AS IS'' AND ANY
EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL METASTUFF, LTD. OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Copyright 2001-2004 (C) MetaStuff, Ltd. All Rights Reserved.

The preceding license only applies to the Dom4j Software and does not apply to the Sterling Commerce
Software, or any other Third-Party Software.

THE ECLIPSE SOFTWARE FOUNDATION

The Sterling Commerce Software is also distributed with or on the same storage media as the following
software:

com.ibm.icu.nl1_3.4.4.v200606220026.jar, org.eclipse.ant.core.nl1_3.1.100.v200606220026.jar,
org.eclipse.ant.ui.nl1_3.2.0.v200606220026.jar, org.eclipse.compare.nl1_3.2.0.v200606220026.jar,
org.eclipse.core.boot.nl1_3.1.100.v200606220026.jar,
org.eclipse.core.commands.nl1_3.2.0.v200606220026.jar,
org.eclipse.core.contenttype.nl1_3.2.0.v200606220026.jar,
org.eclipse.core.expressions.nl1_3.2.0.v200606220026.jar,
org.eclipse.core.filebuffers.nl1_3.2.0.v200606220026.jar,
org.eclipse.core.filesystem.nl1_1.0.0.v200606220026.jar,
org.eclipse.core.jobs.nl1_3.2.0.v200606220026.jar,
org.eclipse.core.resources.nl1_3.2.0.v200606220026.jar,
org.eclipse.core.runtime.compatibility.auth.nl1_3.2.0.v200606220026.jar,
org.eclipse.core.runtime.compatibility.nl1_3.1.100.v200606220026.jar,
org.eclipse.core.runtime.nl1_3.2.0.v200606220026.jar,
org.eclipse.core.variables.nl1_3.1.100.v200606220026.jar,
org.eclipse.debug.core.nl1_3.2.0.v200606220026.jar,
org.eclipse.debug.ui.nl1_3.2.0.v200606220026.jar,
org.eclipse.equinox.common.nl1_3.2.0.v200606220026.jar,
org.eclipse.equinox.preferences.nl1_3.2.0.v200606220026.jar,
org.eclipse.equinox.registry.nl1_3.2.0.v200606220026.jar,
org.eclipse.help.appserver.nl1_3.1.100.v200606220026.jar,
org.eclipse.help.base.nl1_3.2.0.v200606220026.jar, org.eclipse.help.nl1_3.2.0.v200606220026.jar,
org.eclipse.help.ui.nl1_3.2.0.v200606220026.jar, org.eclipse.jdt.apt.core.nl1_3.2.0.v200606220026.jar,
org.eclipse.jdt.apt.ui.nl1_3.2.0.v200606220026.jar,
org.eclipse.jdt.core.manipulation.nl1_1.0.0.v200606220026.jar,
org.eclipse.jdt.core.nl1_3.2.0.v200606220026.jar,
org.eclipse.jdt.debug.ui.nl1_3.2.0.v200606220026.jar,
org.eclipse.jdt.doc.isv.nl1_3.2.0.v200606220026.jar,
org.eclipse.jdt.doc.user.nl1_3.2.0.v200606220026.jar,
org.eclipse.jdt.junit4.runtime.nl1_1.0.0.v200606220026.jar,
org.eclipse.jdt.launching.nl1_3.2.0.v200606220026.jar, org.eclipse.jdt.nl1_3.2.0.v200606220026.jar,
org.eclipse.jdt.ui.nl1_3.2.0.v200606220026.jar,
org.eclipse.jface.databinding.nl1_1.0.0.v200606220026.jar,
org.eclipse.jface.nl1_3.2.0.v200606220026.jar, org.eclipse.jface.text.nl1_3.2.0.v200606220026.jar,
org.eclipse.ltk.core.refactoring.nl1_3.2.0.v200606220026.jar,
org.eclipse.ltk.ui.refactoring.nl1_3.2.0.v200606220026.jar,
org.eclipse.osgi.nl1_3.2.0.v200606220026.jar, org.eclipse.osgi.services.nl1_3.1.100.v200606220026.jar,
org.eclipse.osgi.util.nl1_3.1.100.v200606220026.jar, org.eclipse.pde.core.nl1_3.2.0.v200606220026.jar,
org.eclipse.pde.doc.user.nl1_3.2.0.v200606220026.jar,
org.eclipse.pde.junit.runtime.nl1_3.2.0.v200606220026.jar,
org.eclipse.pde.nl1_3.2.0.v200606220026.jar, org.eclipse.pde.runtime.nl1_3.2.0.v200606220026.jar,
org.eclipse.pde.ui.nl1_3.2.0.v200606220026.jar,
org.eclipse.platform.doc.isv.nl1_3.2.0.v200606220026.jar,
org.eclipse.platform.doc.user.nl1_3.2.0.v200606220026.jar,

org.eclipse.rcp.nl1_3.2.0.v200606220026.jar, org.eclipse.search.nl1_3.2.0.v200606220026.jar,
org.eclipse.swt.nl1_3.2.0.v200606220026.jar, org.eclipse.team.core.nl1_3.2.0.v200606220026.jar,
org.eclipse.team.cvs.core.nl1_3.2.0.v200606220026.jar,
org.eclipse.team.cvs.ssh.nl1_3.2.0.v200606220026.jar,
org.eclipse.team.cvs.ssh2.nl1_3.2.0.v200606220026.jar,
org.eclipse.team.cvs.ui.nl1_3.2.0.v200606220026.jar, org.eclipse.team.ui.nl1_3.2.0.v200606220026.jar,
org.eclipse.text.nl1_3.2.0.v200606220026.jar, org.eclipse.ui.browser.nl1_3.2.0.v200606220026.jar,
org.eclipse.ui.cheatsheets.nl1_3.2.0.v200606220026.jar,
org.eclipse.ui.console.nl1_3.1.100.v200606220026.jar,
org.eclipse.ui.editors.nl1_3.2.0.v200606220026.jar,
org.eclipse.ui.externaltools.nl1_3.1.100.v200606220026.jar,
org.eclipse.ui.forms.nl1_3.2.0.v200606220026.jar, org.eclipse.ui.ide.nl1_3.2.0.v200606220026.jar,
org.eclipse.ui.intro.nl1_3.2.0.v200606220026.jar, org.eclipse.ui.navigator.nl1_3.2.0.v200606220026.jar,
org.eclipse.ui.navigator.resources.nl1_3.2.0.v200606220026.jar,
org.eclipse.ui.nl1_3.2.0.v200606220026.jar,
org.eclipse.ui.presentations.r21.nl1_3.2.0.v200606220026.jar,
org.eclipse.ui.views.nl1_3.2.0.v200606220026.jar,
org.eclipse.ui.views.properties.tabbed.nl1_3.2.0.v200606220026.jar,
org.eclipse.ui.workbench.nl1_3.2.0.v200606220026.jar,
org.eclipse.ui.workbench.texteditor.nl1_3.2.0.v200606220026.jar,
org.eclipse.update.configurator.nl1_3.2.0.v200606220026.jar,
org.eclipse.update.core.nl1_3.2.0.v200606220026.jar,
org.eclipse.update.scheduler.nl1_3.2.0.v200606220026.jar,
org.eclipse.update.ui.nl1_3.2.0.v200606220026.jar,
com.ibm.icu_3.4.4.1.jar,
org.eclipse.core.commands_3.2.0.I20060605-1400.jar,
org.eclipse.core.contenttype_3.2.0.v20060603.jar,
org.eclipse.core.expressions_3.2.0.v20060605-1400.jar,
org.eclipse.core.filesystem.linux.x86_1.0.0.v20060603.jar,
org.eclipse.core.filesystem_1.0.0.v20060603.jar, org.eclipse.core.jobs_3.2.0.v20060603.jar,
org.eclipse.core.runtime.compatibility.auth_3.2.0.v20060601.jar,
org.eclipse.core.runtime_3.2.0.v20060603.jar, org.eclipse.equinox.common_3.2.0.v20060603.jar,
org.eclipse.equinox.preferences_3.2.0.v20060601.jar, org.eclipse.equinox.registry_3.2.0.v20060601.jar,
org.eclipse.help_3.2.0.v20060602.jar, org.eclipse.jface.text_3.2.0.v20060605-1400.jar,
org.eclipse.jface_3.2.0.I20060605-1400.jar, org.eclipse.osgi_3.2.0.v20060601.jar,
org.eclipse.swt.gtk.linux.x86_3.2.0.v3232m.jar, org.eclipse.swt_3.2.0.v3232o.jar,
org.eclipse.text_3.2.0.v20060605-1400.jar,
org.eclipse.ui.workbench.texteditor_3.2.0.v20060605-1400.jar,
org.eclipse.ui.workbench_3.2.0.I20060605-1400.jar, org.eclipse.ui_3.2.0.I20060605-1400.jar,
runtime_registry_compatibility.jar, eclipse.exe, eclipse.ini, and startup.jar
(collectively, "Eclipse Software").
All Eclipse Software is distributed under the terms and conditions of the Eclipse Foundation Software
User Agreement (EFSUA) and/or terms and conditions of the Eclipse Public License Version 1.0 (EPL) or
other license agreements, notices or terms and conditions referenced for the individual pieces of the
Eclipse Software, including without limitation "Abouts", "Feature Licenses", and "Feature Update
Licenses" as defined in the EFSUA .

A copy of the Eclipse Foundation Software User Agreement is found at
<install_dir>/SI/repository/rcp/rcpdependencies/windows/eclipse/notice.html,
<install_dir>/SI/repository/rcp/rcpdependencies/windows/eclipse/plugins/notice.html,
<install_dir>/SI/repository/rcp/rcpdependencies/gtk.linux_x86/eclipse/notice.html, and
<install_dir>/SI/repository/rcp/rcpdependencies/gtk.linux_x86/eclipse/plugins/notice.html.

A copy of the EPL is found at
<install_dir>/SI/repository/rcp/rcpdependencies/windows/eclipse/plugins/epl-v10.htm,
<install_dir>/SI/repository/rcp/rcpdependencies/windows/eclipse/epl-v10.htm,
<install_dir>/SI/repository/rcp/rcpdependencies/gtk.linux.x86/eclipse/plugins/epl-v10.html, and
<install_dir>/SI/repository/rcp/rcpdependencies/gtk.linux.x86/eclipse/epl-v10.html.

The reference to the license agreements, notices or terms and conditions governing each individual piece
of the Eclipse Software is found in the directory files for the individual pieces of the Eclipse Software as
described in the file identified as installdir/SCI_License.txt.

These licenses only apply to the Eclipse Software and do not apply to the Sterling Commerce Software,
or any other Third Party Software.

The Language Pack (NL Pack) piece of the Eclipse Software, is distributed in object code form. Source
code is available at
http://archive.eclipse.org/eclipse/downloads/drops/L-3.2_Language_Packs-200607121700/index.php.
In the event the source code is no longer available from the website referenced above, contact Sterling
Commerce at 978-513-6000 and ask for the Release Manager. A copy of this license is located at
<install_dir>/SI/repository/rcp/rcpdependencies/windows/eclipse/plugins/epl-v10.htm and

<install_dir>/SI/repository/rcp/rcpdependencies/gtk.linux.x86/eclipse/plugins/epl-v10.html.

The org.eclipse.core.runtime_3.2.0.v20060603.jar piece of the Eclipse Software was modified slightly in
order to remove classes containing encryption items. The org.eclipse.core.runtime_3.2.0.v20060603.jar
was modified to remove the Cipher, CipherInputStream and CipherOutputStream classes and rebuild the
org.eclipse.core.runtime_3.2.0.v20060603.jar.

Ehcache Software

The Sterling Commerce Software is also distributed with or on the same storage media as the ehache
v.1.5 software (Copyright © 2003-2008 Luck Consulting Pty. Ltd.) ("Ehache Software"). Ehcache
Software is free software which is distributed under the terms of the Apache License Version 2.0. A copy
of License Version 2.0 is found in <install>/jar/smcfs/8.5/ehcache-1.5.0.jar (./LICENSE.txt).

The Ehcache Software was not modified. Neither the Sterling Commerce Software, modifications, if any,
to the Ehcache Software, nor other Third Party Code is a Derivative Work or a Contribution as defined in
License Version 2.0. License Version 2.0 applies only to the Ehcache Software which is the subject of the
specific directory file and does not apply to the Sterling Commerce Software or to any other Third Party
Software. License Version 2.0 includes the following provision:

"Unless required by applicable law or agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS
OF ANY KIND, either express or implied, including, without limitation, any warranties or conditions of
TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. You are
solely responsible for determining the appropriateness of using or redistributing the Work and assume
any risks associated with Your exercise of permissions under this License."

EZMorph Software

The Sterling Commerce Software is also distributed with or on the same storage media as the EZMorph
v. 1.0.4 software (Copyright © 2006-2008 Andres Almiray) ("EZMorph Software"). EZMorph Software is
free software which is distributed under the terms of the Apache License Version 2.0. A copy of License
Version 2.0 is found in <install>/jar/ezmorph/1_0_4/ezmorph-1.0.4.jar (./LICENSE.txt).

The EZMorph Software was not modified. Neither the Sterling Commerce Software, modifications, if any,
to the EZMorph Software, nor other Third Party Code is a Derivative Work or a Contribution as defined in
License Version 2.0. License Version 2.0 applies only to the EZMorph Software which is the subject of
the specific directory file and does not apply to the Sterling Commerce Software or to any other Third
Party Software. License Version 2.0 includes the following provision:

"Unless required by applicable law or agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS
OF ANY KIND, either express or implied, including, without limitation, any warranties or conditions of
TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. You are
solely responsible for determining the appropriateness of using or redistributing the Work and assume
any risks associated with Your exercise of permissions under this License."

Firebug Lite Software

The Sterling Commerce Software is distributed with or on the same storage media as the Firebug Lite
Software which is free software distributed under the terms of the following license:

Copyright (c) 2008 Azer Koçulu http://azer.kodfabrik.com. All rights reserved.

Redistribution and use of this software in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

* Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

* Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other materials provided with the distribution.

* Neither the name of Azer Koçulu. nor the names of any other contributors may be used to endorse or
promote products derived from this software without specific prior written permission of Parakey Inc.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

ICE SOFTWARE

The Sterling Commerce Software is distributed on the same storage media as the ICE Software
(Copyright © 1997 ICE Engineering, Inc./Timothy Gerard Endres.) ("ICE Software"). The ICE Software is
independent from and not linked or compiled with the Sterling Commerce Software. The ICE Software is
a free software product which can be distributed and/or modified under the terms of the GNU General
Public License as published by the Free Software Foundation; either version 2 of the License or any later
version.

A copy of the GNU General Public License is provided at installdir/jar/jniregistry/1_2/ICE_License.txt.
This license only applies to the ICE Software and does not apply to the Sterling Commerce Software, or
any other Third Party Software.

The ICE Software was modified slightly in order to fix a problem discovered by Sterling Commerce
involving the RegistryKey class in the RegistryKey.java in the JNIRegistry.jar. The class was modified to
comment out the finalize () method and rebuild of the JNIRegistry.jar file.

Source code for the bug fix completed by Sterling Commerce on January 8, 2003 is located at:
installdir/jar/jniregistry/1_2/RegistryKey.java. Source code for all other components of the ICE Software
is located at http://www.trustice.com/java/jnireg/index.shtml.

The ICE Software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

JBOSS SOFTWARE

The Sterling Commerce Software is distributed on the same storage media as the JBoss Software
(Copyright © 1999-2002 JBoss.org) ("JBoss Software"). The JBoss Software is independent from and
not linked or compiled with the Sterling Commerce Software. The JBoss Software is a free software
product which can be distributed and/or modified under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either version 2.1 of the License or any later
version.

A copy of the GNU Lesser General Public License is provided at:
<install_dir>\jar\jboss\4_2_0\LICENSE.html

This license only applies to the JBoss Software and does not apply to the Sterling Commerce Software,
or any other Third Party Software.

The JBoss Software is not distributed by Sterling Commerce in its entirety. Rather, the distribution is
limited to the following jar files: el-api.jar, jasper-compiler-5.5.15.jar, jasper-el.jar, jasper.jar,
jboss-common-client.jar, jboss-j2ee.jar, jboss-jmx.jar, jboss-jsr77-client.jar, jbossmq-client.jar,

jnpserver.jar, jsp-api.jar, servlet-api.jar, tomcat-juli.jar.

The JBoss Software was modified slightly in order to allow the ClientSocketFactory to return a socket
connected to a particular host in order to control the host interfaces, regardless of whether the
ClientSocket Factory specified was custom or note. Changes were made to org.jnp..server.Main. Details
concerning this change can be found at
http://sourceforge.net/tracker/?func=detail&aid=1008902&group_id=22866&atid=376687.

Source code for the modifications completed by Sterling Commerce on August 13, 2004 is located at:
http://sourceforge.net/tracker/?func=detail&aid=1008902&group_id=22866&atid=376687. Source code
for all other components of the JBoss Software is located at http://www.jboss.org.

JGO SOFTWARE

The Sterling Commerce Software is distributed with, or on the same storage media, as certain
redistributable portions of the JGo Software provided by Northwoods Software Corporation under a
commercial license agreement (the "JGo Software"). The JGo Software is provided subject to the
disclaimers set forth above and the following notice:

U.S. Government Restricted Rights

The JGo Software and documentation are provided with RESTRICTED RIGHTS. Use, duplication, or
disclosure by the Government is subject to restrictions as set forth in subparagraph (C)(1)(ii) of the
Rights in Technical Data and Computer Software clause at DFARS 252.227-7013 or subparagraphs (C)(1)
and (2) of the Commercial Computer Software - Restricted Rights at 48 CFR 52.227-19, as applicable.
Contractor / manufacturer of the JGo Software is Northwoods Software Corporation, 142 Main St.,
Nashua, NH 03060.

JSLib Software

The Sterling Commerce Software is distributed with or on the same storage media as the JSLib software
product (Copyright (c) 2003-2009 Mozdev Group, Inc.) ("JSLib Software"). The JSLib Software is
distributed under the terms of the MOZILLA PUBLIC LICENSE Version 1.1. A copy of this license is
located at <install>\repository\eardata\platform_uifwk_ide\war\designer\MPL-1.1.txt. The JSLib
Software code is distributed in source form and is located at http://jslib.mozdev.org/installation.html.
Neither the Sterling Commerce Software nor any other Third-Party Code is a Modification or Contribution
subject to the Mozilla Public License. Pursuant to the terms of the Mozilla Public License, the following
notice applies only to the JSLib Software (and not to the Sterling Commerce Software or any other
Third-Party Software):

"The contents of the file located at http://www.mozdev.org/source/browse/jslib/ are subject to the
Mozilla Public License Version 1.1 (the "License"); you may not use this file except in compliance with the
License. You may obtain a copy of the License at http://www.mozilla.org/MPL/MPL-1.1.html.

Software distributed under the License is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
KIND, either express or implied. See the License for the specific language governing rights and
limitations under the License.

The Original Code is Mozdev Group, Inc. code. The Initial Developer of the Original Code is Mozdev
Group, Inc. Portions created by_Mozdev Group, Inc. are Copyright © 2003 Mozdev Group, Inc. All Rights
Reserved. Original Author: Pete Collins <pete@mozdev.org>one Contributor(s):_____none
listed________.

Alternatively, the contents of this file may be used under the terms of the ____ license (the "[___]
License"), in which case the provisions of [___] License are applicable instead of those above. If you
wish to allow use of your version of this file only under the terms of the [___] License and not allow
others to use your version of this file under the MPL, indicate your decision by deleting the provisions
above and replace them with the notice and other provisions required by the [___] License. If you do not
delete the provisions above, a recipient may use your version of this file under either the MPL or the
[___] License."

The preceding license only applies to the JSLib Software and does not apply to the Sterling Commerce
Software, or any other Third-Party Software.

Json Software

The Sterling Commerce Software is also distributed with or on the same storage media as the Json 2.2.2
software (Copyright © 2006-2008 Json-lib) ("Json Software"). Json Software is free software which is
distributed under the terms of the Apache License Version 2.0. A copy of License Version 2.0 is found in
<install>/jar/jsonlib/2_2_2/json-lib-2.2.2-jdk13.jar.

This product includes software developed by Douglas Crockford (http://www.crockford.com).

The Json Software was not modified. Neither the Sterling Commerce Software, modifications, if any, to
the Json Software, nor other Third Party Code is a Derivative Work or a Contribution as defined in
License Version 2.0. License Version 2.0 applies only to the Json Software which is the subject of the
specific directory file and does not apply to the Sterling Commerce Software or to any other Third Party
Software. License Version 2.0 includes the following provision:

"Unless required by applicable law or agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS
OF ANY KIND, either express or implied, including, without limitation, any warranties or conditions of
TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. You are
solely responsible for determining the appropriateness of using or redistributing the Work and assume
any risks associated with Your exercise of permissions under this License."

Purple Technology

The Sterling Commerce Software is distributed with or on the same storage media as the Purple
Technology Software (Copyright (c) 1995-1999 Purple Technology, Inc.) ("Purple Technology Software"),
which is subject to the following license:

Copyright (c) 1995-1999 Purple Technology, Inc. All rights reserved.

PLAIN LANGUAGE LICENSE: Do whatever you like with this code, free of charge, just give credit where
credit is due. If you improve it, please send your improvements to alex@purpletech.com. Check
http://www.purpletech.com/code/ for the latest version and news.

LEGAL LANGUAGE LICENSE: Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and
the following disclaimer in the documentation and/or other materials provided with the distribution.

3. The names of the authors and the names "Purple Technology," "Purple Server" and "Purple Chat" must
not be used to endorse or promote products derived from this software without prior written permission.
For written permission, please contact server@purpletech.com.

THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND PURPLE TECHNOLOGY "AS IS'' AND ANY
EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE AUTHORS OR PURPLE TECHNOLOGY BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

The preceding license only applies to the Purple Technology Software and does not apply to the Sterling
Commerce Software, or any other Third Party Software.

Rico Software

The Sterling Commerce Software is also distributed with or on the same storage media as the Rico.js
software (Copyright © 2005 Sabre Airline Solutions) ("Rico Software"). Rico Software is free software

which is distributed under the terms of the Apache License Version 2.0. A copy of License Version 2.0 is
found in <install>/repository/eardata/platform/war/ajax/scripts/Rico_License.txt.

The Rico Software was not modified. Neither the Sterling Commerce Software, modifications, if any, to
the Rico Software, nor other Third-Party Code is a Derivative Work or a Contribution as defined in
License Version 2.0. License Version 2.0 applies only to the Rico Software which is the subject of the
specific directory file and does not apply to the Sterling Commerce Software or to any other Third-Party
Software. License Version 2.0 includes the following provision:

"Unless required by applicable law or agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS
OF ANY KIND, either express or implied, including, without limitation, any warranties or conditions of
TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. You are
solely responsible for determining the appropriateness of using or redistributing the Work and assume
any risks associated with Your exercise of permissions under this License."

Rhino Software

The Sterling Commerce Software is distributed with or on the same storage media as the Rhino js.jar
(Copyright (c) 1998-2009 Mozilla.org.) ("Rhino Software"). A majority of the source code for the Rhino
Software is dual licensed under the terms of the MOZILLA PUBLIC LICENSE Version 1.1. or the GPL v.
2.0. Additionally, some files (at a minimum the contents of
toolsrc/org/Mozilla/javascript/toolsdebugger/treetable) are available under another license as set forth in
the directory file for the Rhino Software.

Sterling Commerce's use and distribution of the Rhino Software is under the Mozilla Public License. A
copy of this license is located at <install>/3rdParty/rico license.doc. The Rhino Software code is
distributed in source form and is located at http://mxr.mozilla.org/mozilla/source/js/rhino/src/. Neither
the Sterling Commerce Software nor any other Third-Party Code is a Modification or Contribution subject
to the Mozilla Public License. Pursuant to the terms of the Mozilla Public License, the following notice
applies only to the Rhino Software (and not to the Sterling Commerce Software or any other Third-Party
Software):

"The contents of the file located at <install>/jar/rhino/1_7R1/js.jar are subject to the Mozilla Public
License Version 1.1 (the "License"); you may not use this file except in compliance with the License. You
may obtain a copy of the License at http://www.mozilla.org/MPL/.

Software distributed under the License is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
KIND, either express or implied. See the License for the specific language governing rights and
limitations under the License.

The Original Code is Rhino code, released May 6, 1999. The Initial Developer is Netscape
Communications Corporation. Portions created by the Initial Developer are Copyright © 1997-1999. All
Rights Reserved. Contributor(s):_____none listed.

The preceding license only applies to the Rico Software and does not apply to the Sterling Commerce
Software, or any other Third-Party Software.

Sun Microsystems

The Sterling Commerce Software is distributed with or on the same storage media

as the following software products (or components thereof): Sun JMX, and Sun JavaMail (collectively,
"Sun Software"). Sun Software is free software which is distributed under the terms of the licenses
issued by Sun which are included in the directory files located at:

SUN COMM JAR - <install>/Applications/Foundation/lib

SUN ACTIVATION JAR - <install>/ Applications/Foundation/lib

SUN JavaMail - <install>/jar/javamail/1_4/LICENSE.txt

The Sterling Commerce Software is also distributed with or on the same storage media as the
Web-app_2_3.dtd software (Copyright © 2007 Sun Microsystems, Inc.) ("Web-App Software").
Web-App Software is free software which is distributed under the terms of the Common Development

and Distribution License ("CDDL"). A copy of the CDDL is found in
http://kenai.com/projects/javamail/sources/mercurial/show.

The source code for the Web-App Software may be found at:
<install>/3rdParty/sun/javamail-1.3.2/docs/JavaMail-1.2.pdf

Such licenses only apply to the Sun product which is the subject of such directory and does not apply to
the Sterling Commerce Software or to any other Third Party Software.

The Sterling Commerce Software is also distributed with or on the same storage media as the Sun
Microsystems, Inc. Java (TM) look and feel Graphics Repository ("Sun Graphics Artwork"), subject to the
following terms and conditions:

Copyright 2000 by Sun Microsystems, Inc. All Rights Reserved.

Sun grants you ("Licensee") a non-exclusive, royalty free, license to use, and redistribute this software
graphics artwork, as individual graphics or as a collection, as part of software code or programs that you
develop, provided that i) this copyright notice and license accompany the software graphics artwork; and
ii) you do not utilize the software graphics artwork in a manner which is disparaging to Sun. Unless
enforcement is prohibited by applicable law, you may not modify the graphics, and must use them true
to color and unmodified in every way.

This software graphics artwork is provided "AS IS," without a warranty of any kind. ALL EXPRESS OR
IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE HEREBY
EXCLUDED. SUN AND ITS LICENSORS SHALL NOT BE LIABLE FOR ANY DAMAGES SUFFERED BY
LICENSEE AS A RESULT OF USING, MODIFYING OR DISTRIBUTING THE SOFTWARE GRAPHICS
ARTWORK.

IN NO EVENT WILL SUN OR ITS LICENSORS BE LIABLE FOR ANY LOST REVENUE, PROFIT OR DATA, OR
FOR DIRECT, INDIRECT, SPECIAL, CONSEQUENTIAL, INCIDENTAL OR PUNITIVE DAMAGES, HOWEVER
CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF THE USE OF OR INABILITY
TO USE SOFTWARE GRAPHICS ARTWORK, EVEN IF SUN HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

If any of the above provisions are held to be in violation of applicable law, void, or unenforceable in any
jurisdiction, then such provisions are waived to the extent necessary for this Disclaimer to be otherwise
enforceable in such jurisdiction.

The preceding license only applies to the Sun Graphics Artwork and does not apply to the Sterling
Commerce Software, or any other Third Party Software.

WARRANTY DISCLAIMER

This documentation and the Sterling Commerce Software which it describes are licensed either "AS IS"
or with a limited warranty, as set forth in the Sterling Commerce license agreement. Other than any
limited warranties provided, NO OTHER WARRANTY IS EXPRESSED AND NONE SHALL BE IMPLIED,
INCLUDING THE WARRANTIES OF MERCHANTABILITY AND FITNESS FOR USE OR FOR A PARTICULAR
PURPOSE. The applicable Sterling Commerce entity reserves the right to revise this publication from time
to time and to make changes in the content hereof without the obligation to notify any person or entity
of such revisions or changes.

The Third Party Software is provided "AS IS" WITHOUT ANY WARRANTY AND ANY EXPRESSED OR
IMPLIED WARRANTIES, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. FURTHER, IF YOU
ARE LOCATED OR ACCESSING THIS SOFTWARE IN THE UNITED STATES, ANY EXPRESS OR IMPLIED
WARRANTY REGARDING TITLE OR NON-INFRINGEMENT ARE DISCLAIMED.

Without limiting the foregoing, the ICE Software and JBoss Software are distributed WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE.

xv

Contents

1 Checklist for Customization Projects

1.1 Customization Projects... 1

2 Before You Customize the JSP Console

2.1 About Console JSP User Interface .. 5
2.2 Guidelines for Customizing the Console JSP User Interface........................ 6
2.2.1 Compare JSPs.. 6
2.2.2 Prepare for Smooth Upgrades and Easy Maintainability........................ 7
2.2.3 Build in Usability .. 7
2.2.4 Prepare Your Development Environment.. 7
2.2.5 Understand How to Find Reference Materials...................................... 8

3 Request Handling and Themes in the JSP Console

3.1 About Request Handling and Themes in the JSP Console........................... 9
3.2 About Centralized Themes.. 9
3.3 Creating New Themes...11

4 Creating and Enabling New Plug-in Skins in the JSP Console

4.1 Creating New Skins ..13
4.1.1 Directory Structure for Skins ..13
4.1.2 Plug-in Points for Skins ..15
4.2 Enabling New Skins ..17

xvi Customizing Console JSP Interface for End-User Guide

5 Customizing the Sign In Screen for the JSP Console

5.1 About the Sign In Screen ... 19
5.2 Setting Up the Locale... 20
5.3 Configuring Logins for a Specific Locale .. 20
5.4 Configuring the User Sign In from an External Application....................... 21
5.5 Supporting External Authentication.. 22

6 Customizing Corporate Logos in the JSP Console

6.1 About Corporate Logos... 23
6.2 Customizing the Logo on the Sign In Screen ... 23
6.3 Customizing the Logo on the Menu Bar... 25
6.4 Customizing the Logo in the About Box .. 27

7 Screens in the JSP Console Interface

7.1 About JSP Console Screens... 31
7.2 Screen Layout in the JSP Console .. 32
7.3 Screen Navigation in the JSP Console... 33
7.4 Customizing Screen Navigation ... 34
7.5 Which Screens Can Be Extended? .. 34
7.6 Search View Screens in the JSP Console ... 37
7.7 List View Screens in the JSP Console.. 38
7.7.1 Regular List View.. 38
7.7.2 Advanced List View... 39
7.8 Detail View Screens in the JSP Console .. 39
7.9 Actions from List and Detail Views in the JSP Console............................. 41

8 Customizing Views and Wizards in the JSP Console

8.1 Creating a View without a Template in the JSP Console 43
8.2 Creating a View with a Template in the JSP Console 44
8.3 Customizing a Search View in the JSP Console 45
8.4 Customizing a Regular List View in the JSP Console................................ 46
8.5 Customizing an Advanced List View in the JSP Console 47
8.6 Maximum Records For List Views in the Console JSP 49

 xvii

8.7 Customizing Detail Views in the JSP Console ..49
8.7.1 Blocking Reason Code Pop-ups in Detail Views51

9 Customizing JSP Files in the JSP Console

9.1 About JSP Files in the JSP Console..53
9.1.1 JSP Files for Search Views ..53
9.1.2 JSP Files for List Views...53
9.1.3 JSP Files for Detail Views..54
9.2 A Sample JSP File in the JSP Console ..54
9.3 Common JSP For UI Views Across Document Types.................................57
9.3.1 Using the common_fields.jsp ..57
9.3.2 Screen Refreshing ...59
9.3.3 Other Common Field Features/Notes..60
9.4 Sample common_fields.jsp for a Search Screen......................................60
9.5 Creating Inner Panels for a Detail View ...62
9.5.1 About Inner panels..62
9.5.2 JSP:Param JSP Tag Parameters ...64
9.5.3 Steps To Create an Inner Panel ...64
9.6 Incorporating Customized Views Across the Application65

10 Other Customizations in the JSP Console

10.1 Customizing the Home Page ..67
10.2 Customizing Security Servlet Filter for Authenticated Access to URLs.........67
10.3 Creating a Custom Business Entity ...68
10.4 Using Extended Database Columns...70
10.5 Using the Override Entity Key Attribute ...71
10.6 Posting Data for Editable Lists..72
10.7 Retaining Unsaved Data in an Editable List ..73
10.7.1 order_detail_instructions_anchor.jsp..74
10.8 Adding a Lookup ..81
10.9 Creating a User-Sortable Table ..83
10.10 Adding Graphs and Pie Charts..84
10.10.1 Why FusionCharts ...85
10.11 Customizing the Menu Structure...85
10.11.1 Creating Custom Menus ...86

xviii Customizing Console JSP Interface for End-User Guide

10.11.2 Localizing the Menu Structure .. 86
10.12 Customizing Screen Navigation ... 87
10.12.1 Disabling Direct Navigation to Detail Screens 88

11 Customizing Event Handlers in the JSP Console

11.1 About Event Handlers in the JSP Console .. 89
11.2 Control-Level Event Handler ... 89
11.3 Screen-Level Event Handler .. 90
11.4 Creating Field-Level Validations... 91
11.5 Creating Screen-Level Validations.. 91

12 Working with Document Types and Demand Records

12.1 Working with Document Types .. 93
12.1.1 Creating New Set of Screens For New Document Type....................... 93
12.2 Working with Demand Records.. 95

13 Actions, XML Binding, APIs, Dynamic Namespaces, and Credit
Card Numbers

13.1 Configuring Actions and Enabling Custom Transactions........................... 97
13.2 XML Binding ... 98
13.2.1 XML Data Binding Syntax ...100
13.2.2 Special XML Binding Considerations ...101
13.2.3 XML Binding for Multiple Element Names ..101
13.3 Passing Data to APIs...102
13.3.1 Input Namespace ..102
13.3.2 Entity Key ..103
13.3.3 Dynamic Attributes..103
13.4 Available Dynamic Attribute Namespaces...105
13.5 Posting Data to an API ..106
13.5.1 Data Types...107
13.5.2 Abstract Data Type Mappings..107
13.5.3 Abstract Data Type Definitions ..108
13.5.4 Data Type Determination..108
13.5.5 Data Type Validation..109

 xix

13.6 Displaying Credit Card Numbers ...109
13.6.1 Displaying Multiple Credit Card Numbers ..111

14 User Interface Style Reference

14.1 Controls and Classes ..113
14.2 Page Layout ..116
14.3 Hypertext Links ...118

15 Programming Standards for the JSP Console Interface

15.1 Standards for Creating Well-Formed JSP Files119
15.2 Valid HTML Tags and Attributes..120
15.3 Conventions for Naming JSP Files and Directories122
15.4 Conventions for Naming Controls ...123
15.5 Internationalization ..123
15.6 Validating Your HTML and CCS Files..123

16 CSS Theme File Reference

16.1 CSS Themes for the JSP Console ..125

17 JSP Functions for the Console JSP Interface

17.1 changeSessionLocale ..131
17.2 equals ..131
17.3 getCheckBoxOptions...132
17.4 getColor..133
17.5 getComboOptions...133
17.6 getComboText ...134
17.7 getDateOrTimePart...135
17.8 getDateValue...135
17.9 getDBString ..137
17.10 getDetailHrefOptions ..137
17.11 getDetailHrefOptions (with additional parameter)139
17.12 getDoubleFromLocalizedString ...141
17.13 getElement ...141
17.14 getImageOptions ...143

xx Customizing Console JSP Interface for End-User Guide

17.15 getLocale ..143
17.16 getLocalizedStringFromDouble ...144
17.17 getLocalizedStringFromInt ...145
17.18 getLoopingElementList ..146
17.19 getNumericValue..147
17.20 getParameter...148
17.21 getRadioOptions...150
17.22 getRequestDOM ...150
17.23 getSearchCriteriaValueWithDefaulting ...152
17.24 getTextAreaOptions ..153
17.25 getTextOptions ..153
17.26 getUITableSize...155
17.27 getValue ...155
17.28 goToDetailView ..156
17.29 isModificationAllowed ..157
17.30 isPopupWindow..158
17.31 isTrue...158
17.32 isVoid ...159
17.33 resolveValue..160
17.34 showEncryptedCreditCardNo ..160
17.35 userHasOverridePermissions ..161
17.36 yfsGetCheckBoxOptions ..161
17.37 yfsGetComboOptions ..161
17.38 yfsGetImageOptions ...162
17.39 yfsGetTemplateRowOptions ...163
17.40 yfsGetTextAreaOptions ...166
17.41 yfsGetTextOptions..167

18 JSP TagLibrary for the Console JSP Interface

18.1 callApi ..169
18.2 callAPI (Alternative Method) ..170
18.3 getXMLValue ...172
18.4 getXMLValueI18NDB...172
18.5 hasXMLNode..173
18.6 i18n ...174

 xxi

18.7 i18ndb..174
18.8 loopOptions...175
18.9 loopXML..176
18.10 makeXMLInput ..178
18.11 makeXMLKey...179

19 JavaScript Functions

19.1 About JavaScript Functions for the Console JSP Interface.......................181
19.2 callLookup...183
19.3 doCheckAll ..183
19.4 doCheckFirstLevel ..185
19.5 expandCollapseDetails ..186
19.6 getAttributeNameFromBinding ...188
19.7 getCurrentSearchViewId ...189
19.8 getCurrentViewId...190
19.9 getObjectByAttrName ...190
19.10 getParentObject...192
19.11 goToURL ...192
19.12 ignoreChangeNames...193
19.13 invokeCalendar ..194
19.14 invokeTimeLookup ...195
19.15 showDetailFor..196
19.16 showDetailForViewGroupId..198
19.17 showHelp ..199
19.18 showPopupDetailFor ...200
19.19 validateControlValues ...202
19.20 yfcAllowSingleSelection...203
19.21 yfcBodyOnLoad..204
19.22 yfcChangeDetailView ..204
19.23 yfcChangeListView ...205
19.24 yfcDisplayOnlySelectedLines ..206
19.25 yfcDoNotPromptForChanges ..208
19.26 yfcDoNotPromptForChangesForActions ..209
19.27 yfcGetCurrentStyleSheet ...210
19.28 yfcGetSaveSearchHandle ..210

xxii Customizing Console JSP Interface for End-User Guide

19.29 yfcGetSearchHandle ...211
19.30 yfcHasControlChanged ..212
19.31 yfcMultiSelectToSingleAPIOnAction ...213
19.32 yfcSetControlAsUnchanged ..215
19.33 yfcShowDefaultDetailPopupForEntity ...216
19.34 yfcShowDetailPopup ...217
19.35 yfcShowDetailPopupWithDynamicKey..219
19.36 yfcShowDetailPopupWithKeys ..220
19.37 yfcShowDetailPopupWithParams...221
19.38 yfcShowDetailPopupWithKeysAndParams...223
19.39 yfcShowListPopupWithParams ..225
19.40 yfcShowSearchPopup..226
19.41 yfcSpecialChangeNames..228
19.42 yfcSplitLine ...228
19.43 yfcValidateMandatoryNodes ...232
19.44 yfcFindErrorsOnPage...233
19.45 setRetrievedRecordCount ..233

20 Data Type Reference

20.1 Data Type Reference for the Console JSP Interface235

Index

 xxiii

Preface

This manual describes how to customize the Application Console user
interface to suit your business needs.

Intended Audience
This manual is intended for use by those who are responsible for
customizing Selling and Fulfillment Foundation.

Structure
This document contains the following chapters:

Chapter 1, "Checklist for Customization Projects"
This chapter describes a checklist of the tasks you need to perform to
customize the different components of Selling and Fulfillment Foundation.

Chapter 2, "Before You Customize the JSP Console"
This manual describes how to customize the Application Console user
interface to suit your business needs.

Chapter 3, "Request Handling and Themes in the JSP Console"
This chapter describes the request handling and how to create new
themes for JSP console.

Chapter 4, "Creating and Enabling New Plug-in Skins in the JSP
Console"
This chapter describes how to create and enable new Plug-in skins in the
JSP Console.

xxiv Customizing Console JSP Interface for End-User Guide

Chapter 5, "Customizing the Sign In Screen for the JSP Console"
This chapter describes how to customize the Sign In screen for the JSP
console.

Chapter 6, "Customizing Corporate Logos in the JSP Console"
This chapter explains how to customize the corporate logos in the JSP
console.

Chapter 7, "Screens in the JSP Console Interface"
This chapter describes JSP console screen layout, navigation and
behavior.

Chapter 8, "Customizing Views and Wizards in the JSP Console"
This chapter explains how to create and customize views and wizards in
the JSP console.

Chapter 9, "Customizing JSP Files in the JSP Console"
This chapter explains how to customize the JSP files in the JSP console.

Chapter 10, "Other Customizations in the JSP Console"
This chapter explains how to perform miscellaneous customizations such
as customizing home page, security servlet filter in the JSP console.

Chapter 11, "Customizing Event Handlers in the JSP Console"
This chapter describes Control-Level and Screen-Level event handlers
and how to customize the event handlers in the JSP console.

Chapter 12, "Working with Document Types and Demand
Records"
This chapter describes hoe to work with document types and demand
records.

Chapter 13, "Actions, XML Binding, APIs, Dynamic Namespaces,
and Credit Card Numbers"
This chapter describes actions, XML bindings, APIs, dynamic
namespaces, and creadit card numbers. It also explains passing and
posting of data to APIs.

 xxv

Chapter 14, "User Interface Style Reference"
This chapter describes page layout, hypertext links, controls and classes.

Chapter 15, "Programming Standards for the JSP Console
Interface"
This chapter describes standards for creating well-formed JSP files,
conventions for naming JSP files and directories, and Internationalization.

Chapter 16, "CSS Theme File Reference"
This chapter describes CSS themes for the JSP Console.

Chapter 17, "JSP Functions for the Console JSP Interface"
This chapter describes list of JSP functions for the console JSP interface.

Chapter 18, "JSP TagLibrary for the Console JSP Interface"
This chapter describes list of JSP TagLibrary for the console JSP interface.

Chapter 19, "JavaScript Functions"
This chapter describes list of JavaScript functions for the console JSP
interface.

Chapter 20, "Data Type Reference"
This chapter describes list of datatype attributes for the console JSP
interface.

Selling and Fulfillment Foundation
Documentation

For more information about the Selling and Fulfillment Foundation

components, see the following manuals:

Selling and Fulfillment Foundation: Release Notes

Selling and Fulfillment Foundation: Installation Guide

Selling and Fulfillment Foundation: Upgrade Guide

Selling and Fulfillment Foundation: Configuration Deployment Tool
Guide

Selling and Fulfillment Foundation: Performance Management Guide

xxvi Customizing Console JSP Interface for End-User Guide

Selling and Fulfillment Foundation: High Availability Guide

Selling and Fulfillment Foundation: System Management Guide

Selling and Fulfillment Foundation: Localization Guide

Selling and Fulfillment Foundation: Customization Basics Guide

Selling and Fulfillment Foundation: Customizing APIs Guide

Selling and Fulfillment Foundation: Customizing Console JSP Interface
for End User Guide

Selling and Fulfillment Foundation: Customizing the RCP Interface
Guide

Selling and Fulfillment Foundation: Customizing User Interfaces for
Mobile Devices Guide

Selling and Fulfillment Foundation: Customizing Web UI Framework
Guide

Selling and Fulfillment Foundation: Customizing Swing Interface
Guide

Selling and Fulfillment Foundation: Extending the Condition Builder
Guide

Selling and Fulfillment Foundation: Extending the Database Guide

Selling and Fulfillment Foundation: Extending Transactions Guide

Selling and Fulfillment Foundation: Using Sterling RCP Extensibility
Tool Guide

Selling and Fulfillment Foundation: Integration Guide

Selling and Fulfillment Foundation: Product Concepts Guide

Sterling Warehouse ManagementTM System: Concepts Guide

Selling and Fulfillment Foundation: Application Platform Configuration
Guide

Sterling Distributed Order ManagementTM: Configuration Guide

Sterling Supply Collaboration: Configuration Guide

Sterling Global Inventory VisibilityTM: Configuration Guide

Catalog ManagementTM: Configuration Guide

 xxvii

Sterling Logistics Management: Configuration Guide

Sterling Reverse LogisticsTM: Configuration Guide

Sterling Warehouse Management System: Configuration Guide

Selling and Fulfillment Foundation: Application Platform User Guide

Sterling Distributed Order Management: User Guide

Sterling Supply Collaboration: User Guide

Sterling Global Inventory Visibility: User Guide

Sterling Logistics Management: User Guide

Sterling Reverse Logistics: User Guide

Sterling Warehouse Management System: User Guide

Selling and Fulfillment Foundation: Mobile Application User Guide

Selling and Fulfillment Foundation: Business Intelligence Guide

Selling and Fulfillment Foundation: Javadocs

Sterling Selling and Fulfillment SuiteTM: Glossary

Parcel Carrier: Adapter Guide

Selling and Fulfillment Foundation: Multitenant Enterprise Guide

Selling and Fulfillment Foundation: Password Policy Management
Guide

Selling and Fulfillment Foundation: Properties Guide

Selling and Fulfillment Foundation: Catalog Management Concepts
Guide

Selling and Fulfillment Foundation: Pricing Concepts Guide

Business Center: Item Administration Guide

Business Center: Pricing Administration Guide

Business Center: Customization Guide

Business Center: Localization Guide

xxviii Customizing Console JSP Interface for End-User Guide

Conventions
In this manual, Windows refers to all supported Windows operating
systems.

The following conventions may be used in this manual:

Convention Meaning

. . . Ellipsis represents information that has been
omitted.

< > Angle brackets indicate user-supplied input.

mono-spaced text Mono-spaced text indicates a file name, directory
path, attribute name, or an inline code example or
command.

/ or \ Slashes and backslashes are file separators for
Windows, UNIX, and Linux operating systems. The
file separator for the Windows operating system is
"\" and the file separator for UNIX and Linux
systems is "/". The UNIX convention is used unless
otherwise mentioned.

<INSTALL_DIR> User-supplied location of the Selling and Fulfillment
Foundation installation directory. This is only
applicable for Release 8.0 or later.

<INSTALL_DIR_OLD> User-supplied location of the Selling and Fulfillment
Foundation installation directory (for Release 8.0 or
later).

Note: This is applicable only for users upgrading
from Release 8.0 or later.

<YANTRA_HOME> User-supplied location of the Sterling Supply Chain
Applications installation directory. This is only
applicable for Releases 7.7, 7.9, and 7.11.

<YANTRA_HOME_OLD> User-supplied location of the Sterling Supply Chain
Applications installation directory (for Releases 7.7,
7.9, or 7.11).

Note: This is applicable only for users upgrading
from Releases 7.7, 7.9, or 7.11.

 xxix

<YFS_HOME> For Releases 7.3, 7.5, and 7.5 SP1, this is the
user-supplied location of the Sterling Supply Chain
Applications installation directory.

For Releases 7.7, 7.9, and 7.11, this is the
user-supplied location of the <YANTRA_
HOME>/Runtime directory.

For Release 8.0 or above, the <YANTRA_
HOME>/Runtime directory is no longer used and this
is the same location as <INSTALL_DIR>.

<YFS_HOME_OLD> This is the <YANTRA_HOME>/Runtime directory for
Releases 7.7, 7.9, or 7.11.

Note: This is only applicable for users upgrading
from Releases 7.7, 7.9, or 7.11.

<ANALYTICS_HOME> User-supplied location of the Sterling Analytics
installation directory.

Note: This convention is used only in the
Selling and Fulfillment Foundation: Business
Intelligence Guide.

<COGNOS_HOME> User-supplied location of the IBM Cognos 8
Business Intelligence installation directory.

Note: This convention is used only in the
Selling and Fulfillment Foundation: Business
Intelligence Guide.

<MQ_JAVA_INSTALL_
PATH>

User-supplied location of the IBM WebSphere®
MQ Java components installation directory.

Note: This convention is used only in the
Selling and Fulfillment Foundation: System
Manangement and Administration Guide.

<DB> Refers to Oracle®, IBM DB2®, or Microsoft SQL
Server® depending on the database server.

<DB_TYPE> Depending on the database used, considers the
value oracle, db2, or sqlserver.

Convention Meaning

xxx Customizing Console JSP Interface for End-User Guide

Note: The Selling and Fulfillment Foundation documentation set uses the
following conventions in the context of the product name:

Yantra is used for Release 7.7 and earlier.

Sterling Supply Chain Applications is used for Releases 7.9 and 7.11.

Sterling Multi-Channel Fulfillment Solution is used for Releases 8.0
and 8.2.

Selling and Fulfillment Foundation is used for Release 8.5.

Checklist for Customization Projects 1

1
Checklist for Customization Projects

This chapter provides a high-level checklist for the tasks involved in
customizing or extending Selling and Fulfillment Foundation.

1.1 Customization Projects
Projects to customize or extend Selling and Fulfillment Foundation vary
with the type of changes that are needed. However, most projects
involve an interconnected series of changes that are best carried out in a
particular order. The checklist identifies the most common order of
customization tasks and indicates which guide in the documentation set
provides details about each stage.

1. Prepare your development environment

Set up a development environment that mirrors your production
environment, including whether you deploy Selling and Fulfillment
Foundation on a WebLogic, WebSphere, or JBoss application server.
Doing so ensure that you can test your extensions in a real-time
environment.

You install and deploy Selling and Fulfillment Foundation in your
development environment following the same steps that you used to
install and deploy Selling and Fulfillment Foundation in your
production environment. Refer to Selling and Fulfillment Foundation
system requirements and installation documentation for details.

An option is to customize Selling and Fulfillment Foundation with
Microsoft COM+. Using COM+ provides you with advantages such as
increased security, better performance, increased manageability of
server applications, and support for clients of mixed environments. If

2 Customizing Console JSP Interface for End-User Guide

Customization Projects

this is your choice, see the Selling and Fulfillment Foundation:
Customization Basics Guide about additional installation instructions.

2. Plan your customizations

Are you adding a new menu entry, customizing the Sign In screen
and logo, creating new themes, customizing views and wizards, or
adding new screens? Each type of customization varies in scope and
complexity. For background, see the Selling and Fulfillment
Foundation: Customization Basics Guide, which summarizes the types
of changes that you can make.

Important guidelines about file names, keywords, and other
conventions are found in the Selling and Fulfillment Foundation:
Customization Basics Guide.

3. Extend the Database

For many customization projects, the first task is to extend the
database so that it supports the other UI or API changes that you
make later. For instructions, see the Selling and Fulfillment
Foundation: Extending the Database Guide which include information
about the following topics:

Important guidelines about what you can and cannot change in
the database.

Information about modifying APIs. If you modify database tables
so that any APIs are impacted, you must extend the templates of
those APIs or you cannot store or retrieve data from the
database. This step is required if table modifications impact an
API.

How to generate audit references so that you improve record
management by tracking records at the entity level. This step is
optional.

4. Make other changes to APIs

Selling and Fulfillment Foundation can call or invoke standard APIs or
custom APIs. For background about APIs and the services
architecture in Selling and Fulfillment Foundation, including service
types, behavior, and security, see the Selling and Fulfillment
Foundation: Customizing APIs Guide. This guide includes information
about the following types of changes:

Customization Projects

Checklist for Customization Projects 3

How to invoke standard APIs for displaying data in the UI and also
how to .save the changes made to the UI in the database.

Invoke customized APIs for executing your custom logic in the
extended service definitions and pipeline configurations.

APIs use input and output XML to store and retrieve data from the
database. If you don’t extend these API input and output XML
files, you may not get the results you want in the UI when your
business logic is executing.

Every API input and output XML file has a DTD and XSD
associated to it. Whenever you modify input and output XML, you
must generate the corresponding DTD and XSD to ensure data
integrity. If you don’t generate the DTD and XSD for extended
Application XMLs, you may get inconsistent data.

5. Customize the UI

Sterling Commerce applications support several UI frameworks.
Depending on your application and the customizations you want to
make, you may work in only one or in several of these frameworks.
Each framework has its own process for customizing components like
menu items, logos, themes, and etc. Depending on the framework
you want, consult one of the following guides:

Selling and Fulfillment Foundation: Customizing Console JSP
Interface for End User Guide

Selling and Fulfillment Foundation: Customizing the Swing
Interface Guide

Selling and Fulfillment Foundation: Customizing User Interfaces
for Mobile Devices Guide

Selling and Fulfillment Foundation: Customizing the RCP Interface
Guide and Selling and Fulfillment Foundation: Using the Sterling
RCP Extensibility Tool Guide

Customizing the Web UI Framework Guide

6. Extend Transactions

You can extend the standard Selling and Fulfillment Foundation to
enhance the functionality of your implementation of Selling and Fulfillment
Foundation and to integrate with external systems. For background about
transaction types, security, dynamic variables, and extending the

4 Customizing Console JSP Interface for End-User Guide

Customization Projects

Condition Builder, see the Selling and Fulfillment Foundation:
Extending Transactions Guide Selling and Fulfillment Foundation:
Extending the Condition Builder Guide . These guides includes
information about the following types of changes:

How to extend Selling and Fulfillment Foundation Condition
Builder to define complex and dynamic conditions for executing
your custom business logic and using a static set of attributes.

How to define variables to dynamically configure properties
belonging to actions, agents, and services configurations.

How to set up transactional data security for controlling who has
access to what data, how much they can see, and what they can
do with it.

How to create custom time-triggered transactions. You can invoke
and schedule these custom time-triggered transactions in much
the same manner as you invoke and schedule Selling and
Fulfillment Foundation standard time-triggered transactions.
Finally, you can coordinate your custom, time-triggered
transactions with external transactions and run them either by
raising an event, calling a user exit, or invoking a custom API or
service.

7. Build and deploy your customizations or extensions

After performing the customizations that you want, you must build
and deploy your customizations or extensions. First, build and deploy
these customizations or extensions in the test environment for
verification. When you are ready, repeat the same process to build
and deploy your customizations and extensions in the production
environment. For instructions, see the Selling and Fulfillment
Foundation: Customization Basics Guide which includes information
about the following topics:

How to build and deploy standard resources, database, and other
extensions (such as templates, user exits, java interfaces).

How to build and deploy Enterprise-Level extensions.

Before You Customize the JSP Console 5

2
Before You Customize the JSP Console

2.1 About Console JSP User Interface
The Presentation Framework enables you to change the way information
is rendered (or displayed) in the Application Consoles, without changing
the way it functions. Customizing the user interface requires writing
scripts that determine how the user interface renders the screen and
passes data.

This chapter describes how to customize the Application Console user
interface to suit your business needs. Each task is accomplished through
a combination of configuration through the Applications Manager user
interface and editing HTML code in the JSP files of the screens you want
to modify.

For information on using the Applications Manager, see the Selling and
Fulfillment Foundation: Application Platform Configuration Guide. For
information on functions used within the JSP files, see Chapter 17, "JSP
Functions for the Console JSP Interface".

Note: The HSDE (Execution Console Framework) screens
are not extensible.

Important: When customizing the interface, copy the
standard resources of Selling and Fulfillment Foundation
and then modify your copy. Do not modify the standard
resources of Selling and Fulfillment Foundation.

6 Customizing Console JSP Interface for End-User Guide

Guidelines for Customizing the Console JSP User Interface

The following applications are shipped with Selling and Fulfillment
Foundation:

Application Console - The standard UI for creating, tracking, and
viewing orders, item inventory, and returns

Applications Manager - The UI for configuring Selling and Fulfillment
Foundation.

2.2 Guidelines for Customizing the Console JSP
User Interface

Before you begin user interface extensibility, familiarize yourself with the
guidelines listed in this section in order to help ensure a successful
experience.

The HSDE screens are not extensible.

2.2.1 Compare JSPs
As part of the Selling and Fulfillment Foundation extensibility, you can
extend JSP files of the current release.

When Sterling Commerce releases service packs or major releases and,
in some cases, a user interface hot fix, you need to complete a JSP
comparison and reconciliation. During the JSP comparison process you
must compare the following files:

The original JSP shipped with your original Selling and Fulfillment
Foundation product version

The extended JSP for the same original JSP

The same Selling and Fulfillment Foundation JSP shipped as part of
the new release.

In order to facilitate the reconciliation process, Sterling Commerce
recommends that you consider purchasing a difference tool capable of
performing a three-way comparison. For example, an inexpensive tool is
Araxis. Please note that Sterling Commerce does not resell this difference
tool, nor do we warranty or guarantee it. It is merely provided as an
example of an inexpensive tool. You are advised to do your own research
on three-way comparison tools and choose the one appropriate for your
needs.

Guidelines for Customizing the Console JSP User Interface

Before You Customize the JSP Console 7

2.2.2 Prepare for Smooth Upgrades and Easy
Maintainability

Do not change the resource definitions of any of the resources
shipped as part of the standard default configuration. Always make a
copy through the Applications Manager and then change the copy.

Do not change any of the JSP files, JavaScript files, or icon JAR files
supplied with Selling and Fulfillment Foundation. If you do your
changes may be lost during upgrades.

When creating new views, consider issues regarding ease of
maintenance as well as ease of creation. When you create a new
view, inner panel, and so forth, it is possible to link to the JSPs
supplied by Selling and Fulfillment Foundation. But in future releases,
Sterling Commerce may add more resources to these JSPs, which
means you must monitor software changes and update your
configuration to account for the changes.

For example, if you create a new inner panel and link it to the Order
Detail Header JSP, (/om/order/detail/order_detail_header.jsp),
this JSP file expects specific APIs to be called. Specifically, it expects
the getOrderDetails() API to be called with certain fields in the
output template and the getScacAndServiceList() API to be called
for the SCAC And Service drop-down field.

If you use this inner panel, you must configure the two APIs with the
necessary fields in the output template. Then, if Sterling Commerce
adds fields to the JSP file in future releases, you may need to modify
your configuration to account for the changes.

2.2.3 Build in Usability
Any new views you develop should look and behave like the product
views, so before you begin developing, gain an understanding of how the
default views behave. For more information on the basic product look
and feel, see Chapter 7, "Screens in the JSP Console Interface".

2.2.4 Prepare Your Development Environment
To start the customization process, you must prepare the development
environment to accommodate for your changes.

8 Customizing Console JSP Interface for End-User Guide

Guidelines for Customizing the Console JSP User Interface

2.2.5 Understand How to Find Reference Materials
The Presentation Framework consists of several JSP, JavaScript, and class
files. These files contain several functions declared as public. However,
only some of these functions are exposed. While performing user
interface extensions, only the exposed functions should be used. See the
following locations to determine whether a function is exposed:

Java Classes - see the Selling and Fulfillment Foundation: Javadocs

JavaScript - see Chapter 19, "JavaScript Functions"

JSP - see Chapter 17, "JSP Functions for the Console JSP Interface"

JSP Tags - see Chapter 18, "JSP TagLibrary for the Console JSP
Interface"

Request Handling and Themes in the JSP Console 9

3
Request Handling and Themes in the JSP

Console

3.1 About Request Handling and Themes in the
JSP Console

In any Selling and Fulfillment Foundation user interface that involves
HTML forms, there is a possibility of duplicate requests being
unintentionally created by the browser. Problems can occur when
requests that result in updating some data are unintentionally submitted
multiple times. For example, a duplicate request may get generated
when the browser is manually refreshed by the user. The user intended
to perform the update only once; however, multiple requests for the
same update can be generated.

To avoid potential problems created by duplicate requests, the Selling
and Fulfillment Foundation infrastructure framework uses page tokens to
verify that only the original request is processed. When a user logs into
the Application Console, a unique identifier called a page token is
assigned to the screens that are opened. This page token is validated
every time an update request is sent by the browser. If the token does
not match the one assigned to the screens earlier, then the request is
ignored. This safeguard is built into the Selling and Fulfillment
Foundation infrastructure framework.

3.2 About Centralized Themes
When a user successfully signs in, the standard Selling and Fulfillment
Foundation Home Page is opened. The look and feel of the Home Page is
determined by the theme associated with the user’s ID. The theme

10 Customizing Console JSP Interface for End-User Guide

About Centralized Themes

determines the fonts and colors to use in rendering graphical user
interface elements such as screens, labels, and table headers.

Selling and Fulfillment Foundation supplies the following standard
themes:

Sapphire (default)

Earth

Jade

A theme is defined centrally through CSS and XML files, depending on
which application uses it. This means you should not hard-code colors
and fonts of the user interface controls to individual screens. Instead,
use the directions provided in this guide. Each theme is used throughout
the Application Consoles and Applications Manager. Ideally when defining
themes, you should create the same theme for both applications in order
to ensure a consistent user experience.

Do not modify any of the Selling and Fulfillment Foundation standard
themes. Create your own CSS and XML files. In order to determine the
classes used to define controls for each style, see Appendix 14.1,
"Controls and Classes".

If you need themes that are customized for different locales, you must
create a new file for each of the locale codes. This is because, for each
theme, users can switch locales. For more information on defining and
using locale codes, see Chapter 5, "Customizing the Sign In Screen for
the JSP Console".

Table 3–1 Theme File Types

Application Required Theme Files

Application Console CSS - for HTML pages

XML - for displaying the colors and fonts
used in graphs, charts, and maps.

_exui.xml - for displaying customized
themes in the execution UIs.

Applications Manager XML - throughout

Creating New Themes

Request Handling and Themes in the JSP Console 11

3.3 Creating New Themes
1. Copy the <INSTALL_

DIR>/repository/xapi/template/merged/resource/sapphire.xml
theme file to <INSTALL_
DIR>/extensions/global/template/resource/<theme>.xml

If the /extensions/global/template/resource/ directory structure
does not exist, create the required directory structure.

2. Edit your new XML file to define the values you want to use for colors
and fonts for each Color Name and Font Name element you want to
display within the Applications Manager and within any bar or pie
charts.

3. Copy the <INSTALL_
DIR>/repository/eardata/platform/war/css/sapphire.css theme
style sheet to <INSTALL_
DIR>/repository/eardata/platform/war/css/<theme>.css.

4. (Optional) Only if you have enabled skin, copy the <INSTALL_
DIR>/repository/eardata/platform/war/skins/<skin-name>/css/
<skin-name>_sapphire_mb.css theme style sheet to <INSTALL_
DIR>/repository/eardata/platform/war/skins/<skin-name>/css/
<skin-name>_<theme>_mb.css.

5. Edit your new style file to specify the new colors and fonts added in
the new theme file.

6. Copy the <INSTALL_
DIR>/repository/xapi/template/merged/resource/sapphire_
exui.xml file to <INSTALL_
DIR>/extensions/global/template/resource/<theme>_exui.xml.

7. Modify your new XML file to define the values you want to use for the
colors and fonts for each Color Name and Font Name elements that
you want to display within the Applications Manager and on any bar
or pie charts.

Note: The fonts defined in the new theme XML must exist
on the system you are using.

12 Customizing Console JSP Interface for End-User Guide

Creating New Themes

8. From the Applications Manager menu, configure a theme.

After creating a new theme, the user can select the appropriate theme
from the drop-down list on the Application Console user interface. For
information about defining themes, see the Selling and Fulfillment
Foundation: Application Platform User Guide.

Note: Be aware that modifying fonts may require you to
make other changes such as the size of fields or other UI
elements that use the font. For more information about
modifying fonts, see Chapter 16, "CSS Theme File
Reference".

Creating and Enabling New Plug-in Skins in the JSP Console 13

4
Creating and Enabling New Plug-in Skins in

the JSP Console

Selling and Fulfillment Foundation provides skinning support in HTML UI.
The Skinning provides a better look-n-feel to the UI. In order to use
Skinning, you must include the skin related UI files instead of default
files.

4.1 Creating New Skins
You must store all the skin related files with the skin name under the
<INSTALL_DIR>/repository/eardata/<application_name>/war/skins
directory. A skin must have its own container, innerpanel, menubar,
anchor JSPs and CSS files for all themes.

4.1.1 Directory Structure for Skins
When creating a new skin you should follow the following directory
structure:

14 Customizing Console JSP Interface for End-User Guide

Creating New Skins

Figure 4–1 Directory Structure for Skins

common—This directory should contain the skin-specific menubar_
anchor.jsp file and menubar_dropdown_multilevel.jsp file.

The menubar_dropdown_multilevel.jsp file is required if you want
to display submenus for a given menu item.

console/icons—This directory should contain the skin-specific
images. You can also store your localized images in this directory.

css—This directory should contain your skin-specific css files. These
css files are localizable. For example, <skin_name>_sapphire_
mb.css, <skin-name>_jade_mb.css, <skin-name>_earth_mb.css,
and so forth.

yfc—This directory should contain skin-specific container_mb.jsp
and innerpanel_mb.jsp files.

yfcicons—This directory should contain your localization images.

If the /yfcicons directory structure does not exist, create it.

Note: If you want to override the default images provided
in the /console/icons/ and /yfcicons directories, you
can copy the new images with the same name in the
/skins/<skin-name>/console/icons and/or
/skins/<skin-name>/yfcicons directories.

Creating New Skins

Creating and Enabling New Plug-in Skins in the JSP Console 15

4.1.2 Plug-in Points for Skins
From HTML UI point of view, Selling and Fulfillment Foundation provides
following four plug-in points where the skin-specific files should be
included:

/yfc/container_mb.jsp
The skin-specific container JSP file should handle the search-list
alignments which includes the list, or search, or detail JSP files and
breadcrumbs JSP file. For example, a skin-specific container JSP file will
look like this:

<jsp:include page="/skins/<skin-name>/yfc/search_mb.jsp flush="true"/>
<jsp:include page="/skins/<skin-name>/yfc/list_mb.jsp flush="true"/>
<jsp:include page="/skins/<skin-name>/yfc/detail_mb.jsp" flush="true"/>

The skin-specific search_mb.jsp, or list_mb.jsp, or yfc/detail_
mb.jsp files should include the skin related UI file and framework
provided functional files. For example, a skin-specific search JSP file will
look like this:

<jsp:include page="/yfc/search_functional_pre_mb.jsp" flush="true"/>
<jsp:include page="/<skin-name>/search_ui_mb.jsp" flush="true"/>
<jsp:include page="/yfc/search_functional_post_mb.jsp" flush="true"/>

When the skin is enabled, the framework provided /yfc/container_
mb.jsp file will include the skin-specific
/skins/<skin-name>/yfc/container_mb.jsp file.

/yfc/innerpanel_mb.jsp
The skin-specific inner panel JSP file should include the skin related UI
file and framework provided functional files. For example, a skin-specific
search JSP file will look like this:

<jsp:include page="/yfc/innerpanel_functional_pre_mb.jsp" flush="true"/>
<jsp:include page="/skins/<skin-name>/innerpanel_ui_mb.jsp" flush="true"/>
<jsp:include page="/yfc/innerpanel_functional_post_mb.jsp" flush="true"/>

When the skin is enabled, the framework provided /yfc/innerpanel_
mb.jsp file will include the skin-specific
/skins/<skin-name>/yfc/innerpanel_mb.jsp file

16 Customizing Console JSP Interface for End-User Guide

Creating New Skins

/common/menubar_mb.jsp
The skin-specific menu bar JSP files should define the layout and
rendering of the menu bar. The framework provided menu bar file can
also be included in this file (if required).

When the skin is enabled and no explicit context parameter is provided
for menubar anchor JSP file, the framework provided /common/menubar_
mb.jsp file will include skin-specific
/skins/<skin-name>/common/menubar_anchor.jsp file.

CSS Files
The skin-specific theme css files should refer to images as
'../../../console/icons/<img-name>' or
'../../../yfcicons/<img-name>' in order to support extensibility and
localization. For example,

.companyLogo{
float:right;
background: url(../../../console/icons/logo.gif) no-repeat;
height:42px;
width:151px;
margin-right:0;
cursor:pointer;
}

When the skin is enabled, the framework provided /yfc/container_
mb.jsp file will include the skin-specific localized css files such as
/skins/<skin-name>/css/<skin-name_<theme-name>_mb.css file.

Note: The skin-specific menubar_anchor.jsp and
menubar_dropdown_multilevel.jsp files are used only if
the framework provided common/menubar_mb.jsp file is
used and no explicit context parameter is provided for
menubar_anchor.jsp file.

Enabling New Skins

Creating and Enabling New Plug-in Skins in the JSP Console 17

4.2 Enabling New Skins
To enable a new skin, you must add the ‘yfc-ui-skin’ context parameter in
the <INSTALL_
DIR>/repository/eardata/platform/descriptors/weblogic/WAR/WEB-
INF/web.xml file. The name of the new skin should be specified as value
of this parameter. For example, the entry in the web.xml file will look like
this:

<context-param>
<param-name>yfc-ui-skin</param-name>
<param-value><skin_name></param-value>
</context-param>

Note: By default, the original css files such as
/css/<theme-name>.css will be included before the
skin-specific css files.

18 Customizing Console JSP Interface for End-User Guide

Enabling New Skins

Customizing the Sign In Screen for the JSP Console 19

5
Customizing the Sign In Screen for the JSP

Console

5.1 About the Sign In Screen
The Sign In screen is the first page that displays when you start Selling
and Fulfillment Foundation. The Sign In screen comprises the following
files:

start.jsp— opens login.jsp in a new browser window and removes the
browser tool bar.

login.jsp— includes logindetails.jsp

logindetails.jsp— is extensible

These files open in the order shown in Figure 5–1.

Figure 5–1 Sign In Screen Logic

The primary purpose of the Sign In screen is to enable authorized users
to log in to Selling and Fulfillment Foundation and establish their own
personalized session. When the user signs in, the following properties are
set up for a session:

Locale settings

start.jsp

login.jsp

logindetails.jsp Home Page

(extensible)

20 Customizing Console JSP Interface for End-User Guide

Configuring Logins for a Specific Locale

Security access controls

User properties such as preferred theme, organization, and so forth

5.2 Setting Up the Locale
The locale you set up determines the language in which on-screen literals
display. The start.jsp file displays the Sign In screen in the default
language. After a user logs in, the language displayed on-screen is
determined from the settings specified within your locale.

A multinational organization may want to localize several languages. For
example, the standard installation is in German and a user’s locale is
French. In such situations, the start.jsp and login.jsp files are
displayed in German and the user’s home page is displayed in French.
The language displayed within the login.jsp file is determined by the
resource bundle used.

The user’s entire session is displayed in the language specified in the
profile. The language displayed changes if the user selects a different
locale or the session terminates.

If the user selects a different locale, Selling and Fulfillment Foundation
dynamically changes all literals associated with the new locale.

The session terminates either when the user logs out or when a
connection times out. When the session terminates, the Sign In screen
displays the standard language.

5.3 Configuring Logins for a Specific Locale
If your user community is multilingual, Sterling Commerce recommends
to display the login page in all languages. This enables the user to select
the appropriate language from the Sign In screen.

To display an internationalized Sign In screen:

1. Create a corporate HTML page that contains hyperlinks corresponding
to each language that you want to display.

2. For each hyperlink, insert the <a href> tag to link to the
locale-specific page using the following syntax:

/smcfs/console/start.jsp?LocaleCode=<locale_code>

Configuring the User Sign In from an External Application

Customizing the Sign In Screen for the JSP Console 21

The <locale_code> value must match the entry specified in the
Locale Code field in the Applications Manager. For more information
about the Locale Code field and its suggested syntax, see the Selling
and Fulfillment Foundation: Application Platform Configuration Guide.

For example, if you want to open the Sign In screen in Canadian
French, use the following syntax:

/smcfs/console/start.jsp?LocaleCode=fr_CA

This displays the Sign In screen in the specified locale. After you log
in, the application opens in the user’s default locale.

5.4 Configuring the User Sign In from an External
Application

When integrating Selling and Fulfillment Foundation with external
applications, it may be necessary to enable a user to automatically log in
to Selling and Fulfillment Foundation from an external application. To
integrate the two applications, you must configure the link from your
external application’s portal that automatically connects to Selling and
Fulfillment Foundation.

When integrating two applications, consider the following scenarios:

Logging in a user and opening the user’s home page

Logging in a user and opening a specific view

To integrate Selling and Fulfillment Foundation with an external
application:

Based on your requirement, you can insert any one of the following URLs
within the portal of an external application:

If you want to launch Selling and Fulfillment Foundation and open the
user’s home page, log in as a Selling and Fulfillment Foundation user
and open the user’s home page by using the following syntax:

/smcfs/console/start.jsp?UserId=<LoginID>&Password=<PassPhrase>

If you want to launch Selling and Fulfillment Foundation and open a
specific view, log in as a Selling and Fulfillment Foundation user, and
open the view by using the following syntax (illustrates opening the
default order search view):

22 Customizing Console JSP Interface for End-User Guide

Supporting External Authentication

/smcfs/console/start.jsp?UserId=<LoginID>&Password=<PassPhrase>
&Redirect=/console/order.search

In either case, if login fails, the browser opens the Selling and Fulfillment
Foundation Sign In screen, which prompts the user to enter Login ID and
Password.

5.5 Supporting External Authentication
If users must log into Selling and Fulfillment Foundation transparently
using a domain password, Selling and Fulfillment Foundation supports
third-party single sign-on applications. In the event your environment
does not support a single sign-on application, Selling and Fulfillment
Foundation also supports external authentication and internal
authentication (by default). For information on using external
authentication, see the Selling and Fulfillment Foundation: Installation
Guide. For programming information on single sign-on, see the Selling
and Fulfillment Foundation: Javadocs.

Customizing Corporate Logos in the JSP Console 23

6
Customizing Corporate Logos in the JSP

Console

6.1 About Corporate Logos
The standard application conveys Selling and Fulfillment Foundation
branding logos throughout the application. You can change the branding
logos displayed on screen in the following locations:

Sign In screen

Menu Bar

About Box

Use a unique image in each instance, since they all use images of
different sizes.

For the Application Consoles, you must specify the relative URL of the
image including the path as it exists in the JAR file. For example, the
default icons used in the console are located in the yantraiconsbe.jar
file. The path inside the JAR file of many of the icons is console/icons.
Therefore, the image specified in the Resource Hierarchy tree for a
console resource is /smcfs/console/icons/consoleresource.gif.

6.2 Customizing the Logo on the Sign In Screen
The Sign In screen displays a corporate logo, which you may want to
customize.

24 Customizing Console JSP Interface for End-User Guide

Customizing the Logo on the Sign In Screen

Figure 6–1 Application Consoles Sign In Screen

To customize the logo on the Sign In screen:

1. Copy the <INSTALL_
DIR>/repository/eardata/platform/war/console/logindetails.j
sp file to <INSTALL_
DIR>/extensions/global/webpages/console/logindetails.jsp
file.

If the /global/webpages/console/ directory structure does not
exist, create the required directory structure.

2. Open the new logindetails.jsp file and do the following:

Search for YANTRA_LOGIN_RIGHT to find the tag referring
to the Sterling Commerce logo. Change the tag to point to
your corporate logo, specifying the path as ="../console/icons/
(for example, for MyLogo.gif you would use
smcfs/console/icons/MyLogo.gif).

Search for YANTRA_ICON to find the <link> tag referring to the
Sterling Commerce icon. Change the <link> tag to point to your

Customizing the Logo on the Menu Bar

Customizing Corporate Logos in the JSP Console 25

corporate icon, specifying the path as ="../console/icons/ (for
example, for MyIcon.gif you would use
smcfs/console/icons/MyIcon.gif).

3. Copy your image file to the <INSTALL_
DIR>/extensions/global/webpages/icons/console/icons/
directory.

If the /global/webpages/icons/console/icons/ directory structure
does not exist, create the required directory structure.

4. From the <INSTALL_DIR>/extensions/global/webpages/icons/
directory, archive the entire console directory into a
yantraiconsbe.jar file so that the path of the file inside the jar is
/console/icons.

5. Put the yantraiconsbe.jar file under the <INSTALL_
DIR>/extensions/global/webpages/icons/ directory.

6. In the web.xml (located inside your EARFILE/WARFILE/WEB-INF) file,
add the entry for both the image uris that you specified in Step 2 as

<config-param>
 <param-name>bypass.uri.extn1</param-name>
 <param-value>/console/icons/MyLogo.gif</param-value>
</config-param>
<config-param>
 <param-name>bypass.uri.extn2</param-name>
 <param-value>/console/icons/MyIcon.gif</param-value>
</config-param>

For more information about ByPass URIs, see Section 10.2,
"Customizing Security Servlet Filter for Authenticated Access to
URLs".

6.3 Customizing the Logo on the Menu Bar
The Menu Bar displays on every screen that is not a pop-up dialog box.

26 Customizing Console JSP Interface for End-User Guide

Customizing the Logo on the Menu Bar

Figure 6–2 Application Consoles Menu Bar

When a user logs in to Selling and Fulfillment Foundation, the
getMenuHierarchyForUser() API is called and the output is stored in the
session object. This reduces any overhead for building the menu for
each screen, and it enables the Menu Bar to be configurable at the user
level, (for information on configuring the Menu, see Section 10.11,
"Customizing the Menu Structure").

To customize the logo on the Menu Bar:

If you have not enabled the skins, perform the following tasks:

1. Copy the <INSTALL_
DIR>/repository/eardata/platform/war/common/menubar.jsp file
to <INSTALL_
DIR>/extensions/global/webpages/common/menubar.jsp.

If the /global/webpages/common/ directory structure does not exist,
create the required directory structure.

2. Open the new menubar.jsp file and search for YANTRA_LOGO to find
the tag referring to the Sterling Commerce logo. Change the
 tag to point to your corporate logo, specifying the path as
="../console/icons/ (for example, for MyLogo.gif you would use
../console/icons/MyLogo.gif).

3. Copy your image file to the <INSTALL_
DIR>/extensions/global/webpages/icons/console/icons/
directory.

If the /global/webpages/icons/console/icons/ directory structure
does not exist, create the required directory structure.

4. From the <INSTALL_DIR>/extensions/global/webpages/icons/
directory, archive the entire console directory into a
yantraiconsbe.jar file.

If you have enabled the skins, perform the following tasks:

1. Copy the <INSTALL_
DIR>/repository/eardata/platform/war/skins/<skin-name>/comm
on/menubar_anchor.jsp file to <INSTALL_

Customizing the Logo in the About Box

Customizing Corporate Logos in the JSP Console 27

DIR>/extensions/global/webpages/skins/<skin-name>/common/me
nubar_anchor.jsp.

If the /global/webpages/common/ directory structure does not exist,
create the required directory structure.

2. Open the new menubar_anchor.jsp file and do the following:

a. Search for logo.gif to find the tag referring to the Sterling
Commerce logo. Change the tag to point to your corporate
logo, specifying the path as ="../console/icons/ (for example,
for MyLogo.gif you would use ../console/icons/MyLogo.gif).

b. Modify the CSS class defined for the logo.gif tag as per
your requirement.

3. Copy your image file to the <INSTALL_
DIR>/extensions/global/webpages/icons/console/icons/
directory.

If the /global/webpages/icons/console/icons/ directory structure
does not exist, create the required directory structure.

4. From the <INSTALL_DIR>/extensions/global/webpages/icons/
directory, archive the entire console directory into a
yantraiconsbe.jar file.

6.4 Customizing the Logo in the About Box
The About Box indicates the version number of an application. Selling
and Fulfillment Foundation ships a standard About Box that a user can
access by clicking the logo displayed on the Menu Bar shown in
Figure 7–1. Figure 6–1 shows the Application Consoles About Box.

28 Customizing Console JSP Interface for End-User Guide

Customizing the Logo in the About Box

Figure 6–3 Application Consoles About Box

When displaying the About Box, the application reads the version number
based on predetermined logic. It is strongly advised that you retain the
logic of displaying the version number when customizing the logo.

If you have purchased any Packaged Composite Applications (PCA) from
Sterling Commerce, the version number of that product also appears in
the About Box.

If you want to add corporate branding information to the About Box, you
can customize the logo displayed.

To customize the logo on the About Box:

If you have not enabled the skins, perform the following tasks:

1. Copy the <INSTALL_
DIR>/repository/eardata/platform/war/console/about.jsp file
to <INSTALL_
DIR>/extensions/global/webpages/console/about.jsp.

2. Write your own HTML in your new about.jsp page.

Customizing the Logo in the About Box

Customizing Corporate Logos in the JSP Console 29

3. Change your copy of the menubar.jsp file so that the onclick event
of the tag calls your new about.jsp file.

If you have enabled the skins, perform the following tasks:

1. Copy the <INSTALL_
DIR>/repository/eardata/platform/war/console/about_mb.jsp
file to <INSTALL_
DIR>/extensions/global/webpages/console/about_mb.jsp.

2. Write your own HTML in your new about_mb.jsp page.

3. In order to change the size and positioning of the About Box pop-up
window, modify your copy of the menubar_anchor.jsp file and look
for the popupAboutBox_mb() function. Modify the properties such as
height, width, left, and top as per your needs.

Tip: In order for the About Box (and other pop-up
windows) to maintain an appearance and behavior that is
consistent with the rest of the application, use the
window.showModaldialog() function for displaying pop-up
windows.

30 Customizing Console JSP Interface for End-User Guide

Customizing the Logo in the About Box

Screens in the JSP Console Interface 31

7
Screens in the JSP Console Interface

7.1 About JSP Console Screens
In the Application Console, a screen is made up of a container page
which defines how the screen should display any inner panels it contains.
Within the Selling and Fulfillment Foundation, anchor pages, inner
panels, and the logic associated with them are referred to as views.
Figure 7–1 depicts the standard Home Page, which shows the
components used in a search view.

Figure 7–1 Standard Home Page View

The following types of views are available in the Application Console:

Search view

32 Customizing Console JSP Interface for End-User Guide

Screen Layout in the JSP Console

List view

Detail view

For detailed descriptions of these views, see Section 7.5, "Which Screens
Can Be Extended?", which describes them in detail.

7.2 Screen Layout in the JSP Console
All screens follow the same overall organizational pattern. In general,
Selling and Fulfillment Foundation are laid out with a Menu Bar at the top
and side-by-side search and list views below it. Figure 7–2 shows the
typical organization of a screen.

Screen Navigation in the JSP Console

Screens in the JSP Console Interface 33

Figure 7–2 Standard Screen Layout

7.3 Screen Navigation in the JSP Console
The Selling and Fulfillment Foundation screen navigation behavior follows
a standard, consistent pattern. Figure 7–3 shows the flow of navigation
logic from one inner panel to the next.

Note: Deviating from the standard organization of the
screen layout, such as placing the menu on the left side of
the screen, is not supported.

Search View
List View
or Detail View

Search View List View or Detail View

 Menu

34 Customizing Console JSP Interface for End-User Guide

Which Screens Can Be Extended?

Figure 7–3 Screen Navigation Behavior

The search view fills the left side of the screen.

The list view fills the right side of the same screen and displays the
search results. From there you can navigate to a Details Screen.

The detail view fills the entire screen, replacing both the Search and
list views. Links or icons in the detail view invoke a pop-up window.

Closing the pop-up window returns the focus to previous view.

7.4 Customizing Screen Navigation
By default, functions are exposed by the Presentation Framework to
provide hyperlinks. For a list of these functions, see Chapter 17, "JSP
Functions for the Console JSP Interface". Typically, the links are
sufficiently configurable that you can change the view that the link points
to without changing the code.

7.5 Which Screens Can Be Extended?
The screens contained within an inner panel all have business and
programmatic logic associated with them. You can extend the screens of
any type of entity. An entity is an associated group of UI displays and

Search
View

List
View Detail

View

pop-up
Window

1

2

3

4

Which Screens Can Be Extended?

Screens in the JSP Console Interface 35

program logic that pertain to specific business practices. In general, each
entity has a corresponding console. Selling and Fulfillment Foundation
contains the following high-level business entities for which you can
create views:

Alert Console

Adjust Inventory Console

Create Order Console

Create Picklist Console

Create Purchase Order Console

Create Return Console

Create Template Console

Exception Console

Inbound Shipment Console

Inventory Console

Manifest Console

Order Console

Outbound Shipment Console

Plan Console

Purchase Order Console

Return Console

System Management Console

Template Console

These business-related entities can be broken down into more granular
details. For example, Order Management can be broken down to more
granular entities, like order, shipment, and container. You can also create
your own entities.

The Resource Hierarchy tree enables you to customize and create entities
that suit your business needs. Figure 7–4 shows how entities appear in
the Resource Hierarchy tree. The hierarchical order is based on the
default order of navigation.

36 Customizing Console JSP Interface for End-User Guide

Which Screens Can Be Extended?

Figure 7–4 Entities Within the Resource Hierarchy Tree

Each entity has a default search view, list view, and detail view. A default
view is determined by the ordering of these views within the Resource
Hierarchy tree.

For example, if the Order entity has four search views, the default search
view is determined as the one with the lowest resource sequence number
among the four search views.

Under each entity resource, you can configure one detail API and one list
API. The detail API configured is automatically called when a detail view
of that entity is opened. The list API is called when a list view of that
entity is opened.

You can prevent this default API from being called for a specific view by
selecting the Ignore Default API parameter in the resource configuration
screen.

For more information about resource sequencing, see the Selling and
Fulfillment Foundation: Application Platform Configuration Guide.

Search View Screens in the JSP Console

Screens in the JSP Console Interface 37

7.6 Search View Screens in the JSP Console
A search view contains a list of criteria from which to query. Figure 7–5
shows a standard search view.

Figure 7–5 Search View

The search view is made of one or more of the following elements:

JSP pages - render the screen. For detailed information on JSPs, see
Chapter 17, "JSP Functions for the Console JSP Interface".

APIs - populate drop-down menus. For each API, you can specify
input parameters and an output template. For more information on

Note: Online help is not available for custom views. When
a custom view is created, the Help button is displayed with
a tool tip informing the users that help is not available. You
can suppress the help for custom screens by selecting the
SuppressHelp option when configuring the resources for
your screen.

38 Customizing Console JSP Interface for End-User Guide

List View Screens in the JSP Console

configuring API resources used by the Application Consoles, see the
Selling and Fulfillment Foundation: Application Platform Configuration
Guide.

7.7 List View Screens in the JSP Console
The results of a search are displayed in a list view. There are two types
of list views: regular list views and advanced list views.

7.7.1 Regular List View
Figure 7–6 shows a standard list view.

Figure 7–6 List View

A regular list view consists of a heading area (that permits view
switching) and an Action Bar that contains the Actions and the list body.
By default, the list body is set to display up to 30 records on the screen.
If users want to see more results displayed on the screen, they can
choose to display up to a maximum of 200 records. If you want to give
all users the ability to display more than 200 records, you can set a new
maximum number by editing the <INSTALL_
DIR>/properties/customer_overrides.properties file as described
within Section 8.6, "Maximum Records For List Views in the Console JSP".

A list view is made of one or more of the following elements:

JSP pages - render the body. It is the only part of the view that does
not belong to the Presentation Framework.

Additional APIs - are called for that list view.

Actions - See “Actions from List and Detail Views in the JSP Console”
on page 7-41.

Within an entity, all subordinate list views use the same list API defined
at the entity level. In addition to a list API at the entity level, you can
define additional APIs for each list view. It is possible to configure a list

Detail View Screens in the JSP Console

Screens in the JSP Console Interface 39

view that does not call the default list API. In such a case, the template
configured for the list view is not used (since the list API itself is not
called).

7.7.2 Advanced List View
If additional information needs to be listed, you can create an advanced
list view. To a user, an advanced list view looks similar to a regular list
view. However, the advanced list view is actually defined as a detail view
resource. This enables an advanced list view to have all of the same
features as a standard detail view.

Figure 7–7 shows an advanced list view. To a user, an advanced list view
looks and feels like a regular list view, but an advanced list view is
actually a detail view, composed of multiple inner panels, a save or
update feature, and an ability to provide custom hyperlinks, but without
the "Showing 1 of N" component.

Figure 7–7 Advanced List View

7.8 Detail View Screens in the JSP Console
A detail view shows more specific information about an entity. Figure 7–8
shows a standard detail view.

40 Customizing Console JSP Interface for End-User Guide

Detail View Screens in the JSP Console

Figure 7–8 Detail View

A detail view consists of one or more inner panels. An anchor page
defines the layout of these inner panels. For example, the Order Detail
anchor page includes all inner panels relevant to Order Detail and defines
how they should be laid out horizontally.

The anchor page is optional. If an anchor page is not specified, the inner
panels within the detail view are automatically laid out vertically one
after another.

Each inner panel consists of fields along with a title bar that contains
zero or more words (known as "actions") that enable the opening of a
new detail window, and zero or more icons (known as "views") that
enable the opening of a pop-up window. This inner panel title bar with
actions and views is described as the "Action bar."

A detail view makes use of multiple APIs. These APIs are considered as
follows:

You can define a detail API for each entity.

Each detail view can specify multiple APIs to call.

Each detail view consists of inner panels and each inner panel can
specify multiple APIs to call.

Additionally, you can configure a detail view so that it does not call the
default detail API. For more information about configuring details see the
Selling and Fulfillment Foundation: Application Platform Configuration
Guide.

A detail view consists of one or more of the following elements:

Inner panel—one or more.

Actions from List and Detail Views in the JSP Console

Screens in the JSP Console Interface 41

JSP page—anchor page defined by the view ID within the Resource
Hierarchy tree.

Save Action—one or more. See Section 7.9, "Actions from List and
Detail Views in the JSP Console" on page 7-41.

7.9 Actions from List and Detail Views in the JSP
Console

From the list views and the detail views, the following actions are
possible:

Go to another view—opens a view in a modal dialog

Call a script—calls the specified JavaScript

Call an API—calls the specified API

Call an API in rollback-only mode—calls the specified API in a
rollback-only mode. This action can be used in a "what if" kind of
scenario. For example, a customer service representative can check
the total price of an order by adding a line without committing the
transaction in the database. This option can be enabled in the
Resource Hierarchy tree. For more information on enabling this option
refer to the Selling and Fulfillment Foundation: Application Platform
Configuration Guide.

You can use each action by itself but they are more useful when
combined. For example, you can configure a JavaScript and an API for an
action. In this scenario, the specified API is invoked only when the
specified JavaScript returns true.

In another example, you can configure an API and a view for an action.
In this scenario, the API is invoked and, regardless of its success, the
configured view is invoked. This view opens within the same browser
window.

42 Customizing Console JSP Interface for End-User Guide

Actions from List and Detail Views in the JSP Console

If you want Selling and Fulfillment Foundation to open a view only when
an API returns success, you must configure that specifically as described
in this section.

To configure a view to open only on the success of an API:
1. Configure an action to call an API.

2. Configure your JSP to detect the specified attribute in the output XML
of the API and store that attribute in a specified custom attribute of
the HTML.

3. On the client side, write an onLoad function that searches for the
specified custom attribute and then uses the showDetailFor()
JavaScript function to switch to the screen you want.

Note: You can resize the pop-up browser window using
the JavaScript call window.dialogWidth,
window.dialogHeight and specifying the width and height
as required.

Note: You must define your action code with a certain
naming convention to avoid any discrepancy with the
Selling and Fulfillment Foundation default action codes. For
example, the custom action code can be prefixed with a
EXTN_.

Customizing Views and Wizards in the JSP Console 43

8
Customizing Views and Wizards in the JSP

Console

8.1 Creating a View without a Template in the
JSP Console

You can either create a new view on your own or use an existing view as
a template. Using a template is far easier. You may also choose to create
entirely new resources. This method is only recommended for advanced
users since it does not enable you to take advantage of the structure and
templates provided by existing resources.

To create a new resource:

1. From the Applications Manager menu select Application Platform >
Presentation > Resources. This displays the Resource Hierarchy tree.

2. Select Create New.

3. Customize your new resource, keeping in mind the following rules:

The highest level of resource you can create is an entity resource.

Under your custom entity, it is possible to create a complete
hierarchy of resources, which consists of views, inner panels, and
so forth.

Generally, an entity resource should contain a corresponding list
API and detail API.

Important: You must completely understand the
structure of resources before attempting to create new
ones.

44 Customizing Console JSP Interface for End-User Guide

Creating a View with a Template in the JSP Console

A detail view should contain at least one inner panel.

An action resource must fit one of the following conditions:

* have an API subresource

* be configured with a view ID

* be configured with a JavaScript to call

Alternatively, if you want an easier way to customize Selling and
Fulfillment Foundation, you can create new views, actions, or icons within
the entities available in the Application Console, using templates as
described in the following sections.

8.2 Creating a View with a Template in the JSP
Console

Creating a view from a template involves copying and modifying an
existing view. This is the easiest route, whether you just need a minor
change to a view, or an entirely new view, as it provides the following
benefits:

Reduces the amount of work you must do

Ensures a standard look and feel

Ensures proper execution of application logic

Customizing a Search View in the JSP Console

Customizing Views and Wizards in the JSP Console 45

8.3 Customizing a Search View in the JSP
Console

Customizing a search view involves minimal changes.

To customize a search view:

1. Navigate to the screen that you want to change, so you can
determine its view ID.

2. Hover your mouse pointer over the screen’s view title. The view title’s
tool tip indicates the view ID.

3. From the Resource Hierarchy tree, navigate to the view ID and copy
it, including the sub-resources when prompted.

4. Copy the JSP file for the original view into the <INSTALL_
DIR>/extensions/global/webpages/<PathOfOriginalJSP>/
directory.

Note: When customizing the views, use the <INSTALL_
DIR>/properties/customer_overrides.properties file
to set the yfs.uidev.refreshResources property to Y.
Ensure that you set the property before proceeding to click
the refresh icon.

For additional information about overriding properties
using the customer_overrides.properties file, see the
Selling and Fulfillment Foundation: Properties Guide.

Note: When creating new views, consider issues
regarding ease of maintenance as well as ease of creation.
For more information, see Chapter 2, "Before You
Customize the JSP Console".

46 Customizing Console JSP Interface for End-User Guide

Customizing a Regular List View in the JSP Console

5. From the Resource Hierarchy tree, navigate to your new view. Enter
the relative path to your JSP file in the JSP field. For example:

 /extensions/global/webpages/om/order/search/order_search_
bystatus.jsp

6. If you want your new search view to be the default view, resequence
the new view so that the sequence number is a lower number than
that of the original view.

7. Edit your JSP file as needed. See Chapter 9, "Customizing JSP Files in
the JSP Console".

8. Select the refresh cache icon that fits your needs as follows:

– If you want to update one entity and its child resources - Select
the specific entity and select the Refresh Entity Cache icon.

– If you want to update all resources - Select the Refresh Cache
icon.

9. Log in to Selling and Fulfillment Foundation again to test your
changes.

8.4 Customizing a Regular List View in the JSP
Console

Customizing a regular list view involves minimal changes. You can modify
the elements displayed or the maximum number of records displayed.

To customize a regular list view:

1. Navigate to the screen that you want to change to find out its view
ID.

2. Hover your mouse pointer over the screen’s view title. The view title’s
tool tip indicates the view ID.

Note: Customizing this view may require other files to be
copied into the /webpages folder. A list of these required
files can be seen by right-clicking on the entity and getting
a JSP List.

Customizing an Advanced List View in the JSP Console

Customizing Views and Wizards in the JSP Console 47

3. From the Resource Hierarchy tree, navigate to the view ID and copy
it, including its sub-resources when prompted.

4. Copy the JSP file for the original view into the <INSTALL_
DIR>/extensions/global/webpages/<PathOfOriginalJSP>/
directory.

5. From the Resource Hierarchy tree, navigate to your new view. Enter
the relative path to your JSP file in the JSP field. For example:

/extensions/global/webpages/om/order/list/order_list_
concise.jsp

6. If you want your new search view to be the default view, resequence
the new view such that the sequence number is a lower number than
that of the original view.

7. Edit your JSP file as needed. See Chapter 9, "Customizing JSP Files in
the JSP Console".

8. Select the refresh cache icon that fits your needs as follows:

– If you want to update one entity and its child resources - Select
the specific entity and select the Refresh Entity Cache icon.

– If you want to update all resources - Select the Refresh Cache
icon.

9. Log into Selling and Fulfillment Foundation again to test your
changes.

8.5 Customizing an Advanced List View in the JSP
Console

Customizing an advanced list view is similar to creating a custom detail
view. The advanced list can be displayed for any specific search view. For
search views that include an advanced list view, when a user chooses the

Note: Customizing this view may require other files to be
copied into the webpages folder. A list of these required
files can be seen by right-clicking on the entity and getting
a JSP List

48 Customizing Console JSP Interface for End-User Guide

Customizing an Advanced List View in the JSP Console

search button, the advanced list view of the entity opens instead of the
regular list view. For any other search views, the regular list view opens.

To customize an advanced list view:
1. From the Applications Manager, define a new search view with the

Show Detail flag checked.

When the user runs a search, the default detail view of the entity is
displayed (rather than the default list view for the typical search
screen).

2. Edit your JSP file as needed. See Chapter 9, "Customizing JSP Files in
the JSP Console".

When using the following controls, make sure to include the
corresponding JSP functions of Selling and Fulfillment Foundation
when binding the input fields on the search view to an XML. This
ensures that the input fields are available as input to the APIs called
within the advanced list screen in the yfcSearchCriteria namespace.

3. Create a custom detail JSP page as described in “Customizing Detail
Views in the JSP Console” on page 8-49. (This is used as the
advanced list view.)

4. Define all additional APIs needed to display the advanced list view.

Note: The standard JSPs used for search views may
include functions other than those listed. When
customizing an advanced list view, verify that the controls
use the functions listed here.

Table 8–1 Controls

Control Function

Textbox getTextOptions

Select dropdown getComboOptions

Radio button getRadioOptions

Check Box getCheckBoxOptions

Hidden Inputs getTextOptions

Customizing Detail Views in the JSP Console

Customizing Views and Wizards in the JSP Console 49

The yfcSearchCriteria namespace contains all the data needed for
additional APIs, and its xml:/SearchData/@MaxRecords attribute
specifies the Maximum Records value for the advanced list view.

5. Determine how the advanced list view should open.

8.6 Maximum Records For List Views in the
Console JSP

By default, Selling and Fulfillment Foundation displays a maximum of 30
records for the user. If the user wants to see more results displayed on
the screen, they can choose to display as many as 200 records
maximum.

If you want users to be able to display more than 200 records, you can
set a new maximum number of records by editing the customer_
overrides.properties file. Once you set a new upper limit in the
customer_overrides.properties file, this system-level setting applies
to all users.

The behavior of displaying 30 records by default cannot be modified.

To modify the maximum number of records displayed:
Configure the yfs.ui.MaxRecords property in the <INSTALL_
DIR>/properties/customer_overrides.properties file. For additional
information about overriding properties using the customer_
overrides.properties file, see the Selling and Fulfillment Foundation:
Properties Guide.

8.7 Customizing Detail Views in the JSP Console
A detail view shows more specific breakdown of information. It consists
of one or more inner panels within an anchor page. Each inner panel
consists of fields along with zero or more actions and zero or more icons.
A detail view can make use of multiple APIs.

Note: Increasing the upper limit to beyond 200 impacts
performance. It also requires increasing the application
server JVM heap.

50 Customizing Console JSP Interface for End-User Guide

Customizing Detail Views in the JSP Console

To customize a detail view:
1. Navigate to the screen that you want to change, so you can

determine its view ID.

2. Hover your mouse pointer over the screen’s view title. The view title’s
tool tip indicates the view ID.

3. From the Resource Hierarchy tree, navigate to the view ID and copy
it, including its sub-resources, when prompted.

4. Copy the JSP file for the original view into the <INSTALL_
DIR>/extensions/global/webpages/<PathOfOriginalJSP>/
directory.

5. If the original view uses an anchor page and you want to customize
it, use the Resource Hierarchy tree to navigate to your new view.
Enter the relative path of your JSP file into the JSP field.

6. Edit the anchor page JSP file as needed. See Chapter 9, "Customizing
JSP Files in the JSP Console".

7. For each inner panel you must customize, perform the following
steps:

a. Copy the JSP file for the original inner panel into the <INSTALL_
DIR>/extensions/global/webpages/<PathOfOriginalJSP>/
directory.

b. From the Resource Hierarchy tree, navigate to your new inner
panel. Enter the relative path to your JSP file in the JSP field. For
example:

Note: Customizing this view may require other files to be
copied into the extn folder. A list of these required files can
be seen by right-clicking on the entity and getting a JSP
List.

Note: Verify that the anchor page contains the Resource
IDs of all of the inner panels you want included. See the
Selling and Fulfillment Foundation: Application Platform
Configuration Guide.

Customizing Detail Views in the JSP Console

Customizing Views and Wizards in the JSP Console 51

/extensions/global/webpages/om/order/detail/order_
detail_header.jsp

c. Edit your inner panel JSP file as needed. See Chapter 9,
"Customizing JSP Files in the JSP Console".

8. If you want your new detail view to be the default view, resequence
the new view so that the sequence number is a lower number than
that of the original view.

9. In order to make all links point appropriately to your new view, follow
the steps in Section 9.6, "Incorporating Customized Views Across the
Application".

10. Select the refresh cache icon that fits your needs as follows:

– If you want to update one entity and its child resources - Select
the specific entity and select the Refresh Entity Cache icon.

– If you want to update all resources - Select the Refresh Cache
icon.

11. Log into Selling and Fulfillment Foundation again to test your
changes.

8.7.1 Blocking Reason Code Pop-ups in Detail Views
The SAVE action for the changes you make in the Detail Screen of Selling
and Fulfillment Foundation console results in a pop-up asking for the
Reason Code for the changes made. The Reason Code pop-up can be
blocked from appearing only for a custom screen.

52 Customizing Console JSP Interface for End-User Guide

Customizing Detail Views in the JSP Console

Figure 8–1 Reason Code Pop-up Window

To remove the appearance of a pop-up screen invoked by the 'SAVE'
action:

1. From the Applications Manager menu select Application Platform >
Presentation > Resources. This displays the Resource Hierarchy tree.

2. Select Entity > Detail View > Action that you want to edit. In this
case, SAVE is chosen as the action to be modified.

3. Remove the Java Script method that invokes the pop-up screen.

Note: Pop-up editing is possible only if the screen is a
custom screen. The default screens of Selling and
Fulfillment Foundation are not editable.

Customizing JSP Files in the JSP Console 53

9
Customizing JSP Files in the JSP Console

9.1 About JSP Files in the JSP Console
JSP files contain the syntax that enables your HTML pages to display
dynamically. The types of JSPs files correspond to search views, list
views, and detail views. The standards for each JSP file depend on the
type of screen that uses it.

9.1.1 JSP Files for Search Views
A JSP file for a search view typically contains tags that create input fields
which permit users to enter search criteria. A search JSP file usually
includes the following types of HTML controls:

Labels

Input fields

Combo boxes

Radio buttons

Checkboxes

9.1.2 JSP Files for List Views
A JSP file for a list view typically contains only an HTML table with
column headers and data cells. Most list views also contain checkboxes
for use with the actions that can be performed on the records in the list.
An XML key is usually constructed and associated with the checkboxes on
the table.

54 Customizing Console JSP Interface for End-User Guide

A Sample JSP File in the JSP Console

9.1.3 JSP Files for Detail Views
A JSP file for a detail view is typically the most complicated, since detail
views often require a wide variety of controls. Detail views usually
contain the same sort of HTML controls as a search view. In addition,
detail views may also contain the following controls:

Text areas

Tables

Graphs

9.2 A Sample JSP File in the JSP Console
The JSP files provided by Selling and Fulfillment Foundation cover every
typical use case scenario that you encounter, so they are useful
templates for developing your own JSP files. As you examine the JSP
files, note that they are modular, which enables you to quickly customize
a view by assembling units of code together. In addition to following the
JSP file template, when you need more technical details, see Chapter 14,
"User Interface Style Reference".

Example 9–1 shows some code from a typical order JSP file, which can
be used to render an Order list view.

Example 9–1 JSP File Contents

<%@taglib prefix="yfc" uri="/WEB-INF/yfc.tld" %>
<%@include file="/yfsjspcommon/yfsutil.jspf"%>
<%@include file="/console/jsp/currencyutils.jspf" %>
<%@ page import="com.yantra.yfs.ui.backend.*" %>
<%@ include file="/console/jsp/modificationutils.jspf" %>

<script language="javascript"
src="/smcfs/console/scripts/modificationreason.js"></script>

<table class="table" editable="false" width="100%" cellspacing="0">
 <thead>
 <tr>

Reminder: In order to maintain a consistent look and feel
throughout the product, use the same stylesheets (CSS
files) throughout all of the JSP files you customize.

A Sample JSP File in the JSP Console

Customizing JSP Files in the JSP Console 55

 <td sortable="no" class="checkboxheader">
 <input type="hidden" name="userHasOverridePermissions"
value='<%=userHasOverridePermissions()%>'/>
 <input type="hidden" name="xml:/Order/@Override" value="N"/>
 <input type="checkbox" name="checkbox" value="checkbox"
onclick="doCheckAll(this);"/>
 </td>
 <td class="tablecolumnheader"><yfc:i18n>Order_#</yfc:i18n></td>
 <td class="tablecolumnheader"><yfc:i18n>Status</yfc:i18n></td>
 <td class="tablecolumnheader"><yfc:i18n>Enterprise</yfc:i18n></td>
 <td class="tablecolumnheader"><yfc:i18n>Buyer</yfc:i18n></td>
 <td class="tablecolumnheader"><yfc:i18n>Order_Date</yfc:i18n></td>
 <td class="tablecolumnheader"><yfc:i18n>Total_Amount</yfc:i18n></td>
 </tr>
 </thead>
 <tbody>
 <yfc:loopXML binding="xml:/OrderList/@Order" id="Order">
 <tr>
 <yfc:makeXMLInput name="orderKey">
 <yfc:makeXMLKey binding="xml:/Order/@OrderHeaderKey"
value="xml:/Order/@OrderHeaderKey" />
 </yfc:makeXMLInput>
 <td class="checkboxcolumn">
 <input type="checkbox" value='<%=getParameter("orderKey")%>'
name="EntityKey"/>
 </td>
 <td class="tablecolumn">
<a href="javascript:showDetailFor('<%=getParameter("orderKey")%>');">
<yfc:getXMLValue binding="xml:/Order/@OrderNo"/>

 </td>
 <td class="tablecolumn">
 <% if (isVoid(getValue("Order", "xml:/Order/@Status"))) { %>
 [<yfc:i18n>Draft</yfc:i18n>]
 <% } else { %>
 <yfc:getXMLValue binding="xml:/Order/@Status"/>
 <% } %>
 <% if (equals("Y", getValue("Order",
"xml:/Order/@HoldFlag"))) { %>
 <img class="icon"
onmouseover="this.style.cursor='default'"
<%=getImageOptions(YFSUIBackendConsts.HELD_ORDER, "This_order_is_held")%>/>
 <% } %>
 </td>
 <td class="tablecolumn"><yfc:getXMLValue

56 Customizing Console JSP Interface for End-User Guide

A Sample JSP File in the JSP Console

binding="xml:/Order/@EnterpriseCode"/></td>
 <td class="tablecolumn"><yfc:getXMLValue
binding="xml:/Order/@BuyerOrganizationCode"/></td>
 <td class="tablecolumn"
sortValue="<%=getDateValue("xml:/Order/@OrderDate")%>"><yfc:getXMLValue
binding="xml:/Order/@OrderDate"/></td>
 <td class="numerictablecolumn"
sortValue="<%=getNumericValue("xml:/Order/PriceInfo/@TotalAmount")%>">
 <%=displayAmount(getValue("Order",
"xml:/Order/PriceInfo/@TotalAmount"), (YFCElement)
request.getAttribute("CurrencyList"), getValue("Order",
"xml:/Order/@RulesetKey"), getValue("Order",
"xml:/Order/PriceInfo/@Currency"))%>
 </td>
 </tr>
 </yfc:loopXML>
 </tbody>
</table>

This example shows include files at the top. In order to access most of
the common public JSP functions in the Presentation Framework, most
JSP files only require a reference to the <INSTALL_
DIR>/repository/eardata/platform/war/yfsjspcommon/yfsutil.jspf
file, as in the following example of an include statement:

<%@include file="/yfsjspcommon/yfsutil.jspf"%>

To access the yfsGet*Options() JSP functions, you must reference the
<INSTALL_
DIR>/repository/eardata/platform/war/console/jsp/modificationu
tils.jspf file, as in the following example:

<%@ include file="/console/jsp/modificationutils.jspf" %>

For more information on these functions, see Chapter 17, "JSP Functions
for the Console JSP Interface".

For JavaScript functions, all public functions are automatically available
to your JSP file.

Common JSP For UI Views Across Document Types

Customizing JSP Files in the JSP Console 57

9.3 Common JSP For UI Views Across Document
Types

Any console screen that is an entry point to a particular set of console
screens (like the order search or order create screens) may need to
include the common JSP used for implementing the user interface view
across document type feature. This feature allows existing console
screens to be used when viewing information for different document
types. This common JSP can be used when the entry point screens in
your entity's console require any of the following fields:

Document Type

Enterprise Code

Node (only for WMS screens where node is a primary important field)

9.3.1 Using the common_fields.jsp
The common_fields.jsp (located in the <INSTALL_
DIR>/repository/eardata/smcfs/war/yfsjspcommon directory)
provides many different features for displaying the commonly required
fields. The common_fields.jsp should be included in the top of your JSP.
JSP parameters should be passed to indicate what features you need for
the particular usage of the JSP. For example, if you want to show the
node field, then you pass the "ShowNode" parameter as "true". Table 9–1
indicates all of the valid parameters that can be passed to the common_
fields.jsp.

Table 9–1 Valid Parameters for Common_fields.jsp

Parameter Description

ShowDocumentType Indicates whether the document type field should be displayed or
not. Default: true.

ShowEnterpriseCode Indicates whether the enterprise code field should be displayed
or not. Default: true.

ShowNode Indicates whether the node field should be displayed or not.
Default: false.

DocumentTypeBinding Indicates the binding that should be set on the document type
field. Default: xml:/Order/@DocumentType.

EnterpriseCodeBinding Indicates the binding that should be set on the enterprise code
field. Default value: Xml:/Order/@EnterpriseCode.

58 Customizing Console JSP Interface for End-User Guide

Common JSP For UI Views Across Document Types

NodeBinding Indicates the binding that should be set on the node field.
Default value: xml:/Order/@ShipNode.

RefreshOnDocumentType Indicates whether the entire screen should refresh when a
document type is selected. For more information about screen
refreshing, see the Section 9.3.2, "Screen Refreshing". Default:
false.

RefreshOnEnterpriseCode Indicates whether the entire screen should refresh when an
enterprise is selected. (See the "Screen Refreshing" section in
this document for more information.) Default: false.

RefreshOnNode Indicates whether the entire screen should refresh when a node
is selected. (See the "Screen Refreshing" section in this
document for more information.) Default: false.

ScreenType Indicates the type of screen in which this JSP is being included.
This information is used to set the appropriate classes and
column layout of the fields inside the JSP. Valid values are
"search" and "detail." Default: search.

ColumnLayout Indicates the number of columns used to display the fields. The
only valid values allowed are 1 and 3. Default: If ScreenType is
"search" then the default column layout is 1. If ScreenType is
"detail" then the default column layout is 3.

NodeLabel Indicates what the screen label for the node field should be. Only
valid when "ShowNode" is passed as "true." Default: Node.

EnterpriseListForNodeField Indicates if the values that display in the enterprise code field
should be based on the selection within the node field. This is
used for WMS screens where the enterprise list must be a list of
organizations that participate in the node's organization. The
"RefreshOnNode" parameter should be passed as "true" when
this parameter is "true" to ensure that the enterprise list
refreshes when a node is selected. Only valid when "ShowNode"
and "ShowEnterpriseCode" are "true." Default: false.

Table 9–1 Valid Parameters for Common_fields.jsp

Parameter Description

Common JSP For UI Views Across Document Types

Customizing JSP Files in the JSP Console 59

9.3.2 Screen Refreshing
For fields that depend on document type, enterprise code, or node, use
the common JSP's screen refreshing features. For example, in the order
search by status screen, there is a "From Status" field that displays a list
of statuses by which you can search. This list of valid statuses is different
for different document types. Therefore, when the user selects a
particular document type, a different list of statuses must appear in the
field. Achieving this requires the following steps:

1. Include the common_fields.jsp at the top of the JSP. Pass the
"RefreshOnDocumentType" parameter as "true" as follows:

<jsp:include page="/yfsjspcommon/common_fields.jsp" flush="true">
 <jsp:param name="DocumentTypeBinding"
value="xml:/OrderRelease/Order/@DocumentType"/>
 <jsp:param name="EnterpriseCodeBinding"
value="xml:/OrderRelease/Order/@EnterpriseCode"/>
 <jsp:param name="RefreshOnDocumentType" value="true"/>
 </jsp:include>

2. In the application XML for your entity, define the getStatusList()
API under the view. Define the API so that it is not called by the
infrastructure layer when the view is displayed (set the "LoopAPI"
attribute to "Y"). Specify a dynamic attribute for the DocumentType
attribute so that it passes the document type selected in the field on
the screen as follows:

DocumentType="xml:CommonFields:/CommonFields/@DocumentType"

3. In the JSP of your screen, call the getStatusList() API using the
callAPI tag lib immediately after the common_fields.jsp is included.

Note: Any API called for fetching data for fields within
the common_fields.jsp is done by the common JSP itself.
There is no need to define resources in your screens for
these APIs. For example, if you are showing the enterprise
code field using the common JSP, there is no need to
define the getOrganizationList() API within your
screen's resources.

60 Customizing Console JSP Interface for End-User Guide

Sample common_fields.jsp for a Search Screen

9.3.3 Other Common Field Features/Notes
The other features and notes of Common Field JSP (common_fields.jsp)
are as following:

When a particular field is displayed using the common_fields.jsp,
the appearance of the field depends on the number of records that
the field needs to display. If there is only one record to display in the
field, then the field appears as a protected input that cannot be
modified by the user. If there are 2 to 20 records to display in the
field, then the field appears as a combo box. If there are more then
21 records to display, then the field appears as a protected text box
with a lookup icon next to it. In this case, the only way to change the
value of the field is through the lookup. The reason for this behavior
is so that the "screen refreshing" feature can work even when there
are too many records to show in a combo box.

If a user logged into the console is a node user, the node field
appears as a protected input that cannot be modified. Otherwise, the
node field displays all of the current logged-in organization’s owned
nodes.

9.4 Sample common_fields.jsp for a Search
Screen

The following example shows how this common JSP would be used within
a search screen where two fields on the search screen need to be
refreshed whenever the enterprise code field changes.

In the JSP of all entry point screens, the common_fields.jsp is included:

Note: You can refresh the entire screen using any of the
common fields (document type, enterprise code, or node).
There is a corresponding dynamic binding that must be
specified for each:
(xml:CommonFields:/CommonFields/@DocumentType,
xml:CommonFields:/CommonFields/@EnterpriseCode,
xml:CommonFields:/CommonFields/@Node) respectively

Sample common_fields.jsp for a Search Screen

Customizing JSP Files in the JSP Console 61

Example 9–2 Usage of JSP within a Search Screen

<table class="view">

 <jsp:include page="/yfsjspcommon/common_fields.jsp" flush="true">
 <jsp:param name="DocumentTypeBinding"
value="xml:/OrderRelease/Order/@DocumentType"/>
 <jsp:param name="EnterpriseCodeBinding"
value="xml:/OrderRelease/Order/@EnterpriseCode"/>
 <jsp:param name="ShowNode" value="true"/>
 <jsp:param name="NodeBinding" value="xml:/OrderRelease/Order/@Node"/>
 <jsp:param name="RefreshOnNode" value="true"/>
 <jsp:param name="RefreshOnEnterprise" value="true"/>
 <jsp:param name="EnterpriseListForNodeField" value="true"/>
 </jsp:include>
 <% // Now call the APIs that are dependent on the common fields (Doc Type,
Enterprise Code, and Node)
 // Product Classes and Unit of Measures are refreshed.
 %>
 <yfc:callAPI apiID="AP2"/>
 <yfc:callAPI apiID="AP3"/>

<tr>
 <td class="searchlabel"><yfc:i18n>field1</yfc:i18n></td>
</tr>
<tr>
 <td nowrap="true" class="searchcriteriacell">
 <select class="combobox" name="xml:/OrderRelease/@Field1QryType">
 <yfc:loopOptions
binding="xml:/QueryTypeList/StringQueryTypes/@QueryType" name="QueryTypeDesc"
value="QueryType" selected="xml:/OrderRelease/@Field1QryType "/>
 </select>
 <input type="text" class="unprotectedinput"
<%=getTextOptions("xml:/OrderRelease/@Field1")%> />
 </td>
</tr>

APIs are defined in the application XML:

<View ViewGroupID="YOMSXXX" Priority="3" Name="By_Item" ID="YOMSXXX"
JSP="/om/order/search/wms_by_item.jsp" OutputNode="Order">
 <APIList>
 <API Name="getQueryTypeList" OutputNode="QueryTypeList">
 <Input>
 <QueryType/>

62 Customizing Console JSP Interface for End-User Guide

Creating Inner Panels for a Detail View

 </Input>
 <Template>
 <QueryTypeList>
 <StringQueryTypes>
 <QueryType QueryType="" QueryTypeDesc=""/>
 </StringQueryTypes>
 </QueryTypeList>
 </Template>
 </API>
 <API Name="getCommonCodeList" OutputNode="ProductClassList"
LoopAPI="Y">
 <Input>
 <CommonCode CodeType="PRODUCT_CLASS"
CallingOrganizationCode="xml:CommonFields:/CommonFields/@EnterpriseCode"/>
 </Input>
 <Template>
 <CommonCodeList>
 <CommonCode CodeValue="" CodeShortDescription=""/>
 </CommonCodeList>
 </Template>
 </API>
 <API Name="getCommonCodeList" OutputNode="UnitOfMeasureList"
LoopAPI="Y">
 <Input>
 <CommonCode CodeType="UNIT_OF_MEASURE"
CallingOrganizationCode="xml:CommonFields:/CommonFields/@EnterpriseCode"/>
 </Input>
 <Template>
 <CommonCodeList>
 <CommonCode CodeValue="" CodeShortDescription=""/>
 </CommonCodeList>
 </Template>
 </API>
 </APIList>
 </View>

9.5 Creating Inner Panels for a Detail View

9.5.1 About Inner panels
Each inner panel comes from a separate JSP file and the anchor page JSP
includes these files through the jsp:include JSP tag. If you configure
more than one inner panel for a detail view, and if they must be simply

Creating Inner Panels for a Detail View

Customizing JSP Files in the JSP Console 63

laid out one below the other, the Presentation Framework provides a
default anchor page to do that. In such a case, you do not have to
configure any JSP for the detail view.

Example 9–3 shows the typical syntax for including inner panels in an
anchor page.

Example 9–3 Including Inner Panels in an Anchor Page

<table class="anchor" cellpadding="7px" cellSpacing="0">
<tr>
 <td colspan="2" >
 <jsp:include page="/yfc/innerpanel.jsp" flush="true" >
 <jsp:param name="CurrentInnerPanelID" value="I01"/>
 </jsp:include>
 </td>
</tr>
<tr>
 <td height="100%" width="75%">
 <jsp:include page="/yfc/innerpanel.jsp" flush="true" >
 <jsp:param name="CurrentInnerPanelID" value="I02"/>
 </jsp:include>
 </td>
 <td height="100%" width="25%" addressip="true" >
 <jsp:include page="/yfc/innerpanel.jsp" flush="true">
 <jsp:param name="CurrentInnerPanelID" value="I03"/>
 <jsp:param name="Path" value="xml:/OrderRelease/PersonInfoShipTo"/>
 <jsp:param name="DataXML" value="OrderRelease"/>
 <jsp:param name="AllowedModValue"
value='<%=getModificationAllowedValue("ShipToAddress",
"xml:/OrderRelease/AllowedModifications")%>'/>
 </jsp:include>
 </td>
</tr>
<tr>
 <td colspan="2" >
 <jsp:include page="/yfc/innerpanel.jsp" flush="true" >
 <jsp:param name="CurrentInnerPanelID" value="I04"/>
 </jsp:include>
 </td>
</tr>
</table>

The innerpanel.jsp file provided by Selling and Fulfillment Foundation
contains the title bar that needs to be displayed for each inner panel, and

64 Customizing Console JSP Interface for End-User Guide

Creating Inner Panels for a Detail View

stores the icons and action buttons available in the title bar of each inner
panel.

9.5.2 JSP:Param JSP Tag Parameters
You can specify the following parameters to innerpanel.jsp file through
the jsp:param JSP tag.

CurrentInnerPanelID - Suffix of the inner panel resource ID over the
resource ID of the detail view. For example, if the detail view's resource
ID is YOMD010, the inner panel's resource ID is YOMD010I01. In this
example, you pass the I01 suffix to this JSP tag.

Title - Replaces the description of the inner panel resource ID
configured.

IPHeight - Fixes the height of the inner panel. If the data grows beyond
this height, a scroll bar automatically displays.

IPWidth - Fixes the width of the inner panel. If the data grows beyond
this width, a scroll bar automatically displays.

Other than these attributes, the parameters you specify here are
automatically available to the JSP configured against the resource ID of
the inner panel being included.

9.5.3 Steps To Create an Inner Panel

To create an inner panel:
1. Customize the view to which you want to add the inner panel. For

details on customizing a detail view, see Section 8.7, "Customizing
Detail Views in the JSP Console".

2. Edit the anchor page JSP file to include the resource ID suffixes of
any other inner panels you want to include.

The syntax of inner panel resource IDs is <view ID's resource
ID><Suffix>. For example, I01.

You only need to refer to the suffix. The Presentation Framework
forms the complete inner panel resource ID and includes the
appropriate JSP.

Incorporating Customized Views Across the Application

Customizing JSP Files in the JSP Console 65

3. From the Applications Manager, create the inner panel resources
under the newly created view.

4. From the Applications Manager, create the actions and links as
necessary.

5. Create the inner panel's JSP file, using a standard detail inner panel
JSP as a template.

9.6 Incorporating Customized Views Across the
Application

When you are customizing an existing view and want your customized
view to replace the existing view across the application, you can do so
without modifying the links, actions, and icons that point to the existing
view.

The existing links, actions, and icons point to a view group ID. However,
they do not point to a specific view when a screen is navigated to using
these links, actions and icons. The screen is opened as the view that has
the lowest sequence number of all views with that view group ID.

Therefore, to replace an existing view across the application, ensures
that your customized view has the same group ID as the original view
and has a sequence number lower than the original view sequence
number.

For example, if you are replacing the standard order detail view with a
customized view, the customized view must have a view group ID of
YOMD010.

If your custom view is an additional screen that is not replacing an
existing view, you must add your own links, actions, or icons in the
appropriate places such that it can be used to navigate to your screen.

Your view should have a unique view group ID. The links, actions, or
icons you create should point to this view group ID.

66 Customizing Console JSP Interface for End-User Guide

Incorporating Customized Views Across the Application

Other Customizations in the JSP Console 67

10
Other Customizations in the JSP Console

10.1 Customizing the Home Page
The Home Page is the default detail view of the Home entity. The
standard Home Page has a menu view across the top, and three
side-by-side list views (User-specific Queues, Alert and Favorite
Searches) below it. Figure 7–1 shows the standard Home Page.

To customize the Home Page:
Follow either set of steps for customizing a detail view for the Home
entity:

Customizing Detail Views in the JSP Console

Creating Inner Panels for a Detail View

10.2 Customizing Security Servlet Filter for
Authenticated Access to URLs

The servlet filter defined for the context-root filters requests for all the
content present in the web root, except the login page or pages
mentioned in the web.xml file as "bypass.uri". When the servlet filter
receives the request for a resource, it validates the request session ID. If
the request session ID is valid, it redirects to the particular resource. If
the request session iD is invalid, it redirects to the login page. The
servlet filter definition is stored in the web.xml file and url-pattern
element contains all the URLs that need filter authentication.

68 Customizing Console JSP Interface for End-User Guide

Creating a Custom Business Entity

If you want to add certain URLs for which the filter authentication should
not be applied, add a config-param element for each such URL in the
web.xml (located inside your EARFILE/WARFILE/WEB-INF) file as follows:

<config-param>
 <param-name>bypass.uri.1</param-name>
 <param-value>/console/login.jsp</param-value>
</config-param>
<config-param>
 <param-name>bypass.uri.2</param-name>
 <param-value>/console/start.jsp</param-value>
</config-param>
<config-param>
 <param-name>bypass.uri.3</param-name>
 <param-value>/console/public/screens</param-value>
</config-param>

where param-value element contains the URI for which you do not
want filter authentication.

Also, if you want all the files in a particular folder to be bypassed
from filter authentication, specify the folder path from the context
root as the bypass URI in the param-value element.

10.3 Creating a Custom Business Entity
You can create a custom entity by copying a standard entity and its
sub-resources through the Resource Hierarchy tree.

Note: Make sure that the value of the param-name
element starts with "bypass.uri" string. Also, make sure
that the context root is not given in the property file. The
context root is dynamically assigned while building an EAR
file.

Creating a Custom Business Entity

Other Customizations in the JSP Console 69

For example, if you want to create a custom business entity called
Planned Order, you can use the following procedure:

To create a custom business entity:

1. From the Resource Hierarchy tree, navigate to an entity that you
want to use a template. Choose an entity whose resources and
sub-resources closely resemble the ones that you want to create.

2. Select Save As to create the new set of resources for an entity,
including sub-resources.

When you save the entity, give it a unique prefix that does not
conflict with any resource IDs that might ship with future releases.
Sterling Commerce recommends that you choose any prefix except
one that begins with the letter Y (which is reserved for use by Selling
and Fulfillment Foundation).

3. Modify the description of the new entity resource. Modify the
descriptions of any sub-resources. Note that the resource descriptions
appear in the console; therefore, they can be localized as needed. To
verify that literals can be localized, use the resource description
entered here as the resource bundle key in all of the appropriate
resource bundles.

Create entries for these newly created resource keys in the
<INSTALL_

Note: Selling and Fulfillment Foundation does not support
resources with the same view group ID across entities.
Hence, if you are copying entire entities for extending the
screens, you must modify the view group IDs for all views,
actions, links and icons for the new entities. This is to
make sure that they do not conflict with the original
entities you copied.

70 Customizing Console JSP Interface for End-User Guide

Using Extended Database Columns

DIR>/extensions/global/resources/extnbundle.properties file
and in the corresponding properties files for each locale.

4. Repeat Step 1 through Step 3 for the Related Entities of the entity
being copied.

5. Update the Related Entities Resources under the newly created entity
resources to point to the newly created resources.

6. In order to make all links point appropriately to your new view, follow
the steps in Section 9.6, "Incorporating Customized Views Across the
Application".

10.4 Using Extended Database Columns
You can customize views to incorporate any new columns added to the
database.

If you want to add a field to the user interface, follow the directions for
the view you want to change:

Search view - Section 8.3, "Customizing a Search View in the JSP
Console".

List view - Section 8.4, "Customizing a Regular List View in the JSP
Console" and Section 8.5, "Customizing an Advanced List View in the
JSP Console". After following the database extensibility rules, add the
field to the output template configured for the API through the
Resource Hierarchy tree.

Detail view - Section 8.7, "Customizing Detail Views in the JSP
Console". After following the database extensibility rules, add the
field to the output template configured for the API through the
Resource Hierarchy tree.

Note: Ensure that the following file does not exist:

<INSTALL_DIR>/resources/extn/extnbundle.properties

This file must be removed because it will conflict with the
extensions build process for bundle entries.

Using the Override Entity Key Attribute

Other Customizations in the JSP Console 71

10.5 Using the Override Entity Key Attribute
Often, optimal screen layout dictates the use of an editable list of
records. This table format usually maps to a list of XML elements in the
API that handles the update for the screen. For example, the editable list
of order lines on an Order Detail screen maps to the list of OrderLine
elements accepted by the getOrderDetails() API.

By default, any action that appears on a detail view uses the current
entity key as input to any API that is called for the action. For example,
the Hold action on the Order Detail screen by default passes the current
order header key to the changeOrder() API. You can override the entity
key used for a specific action using the Override Entity Key attribute on
an action resource. To construct an input (usually a hidden input or a
checkbox) on the JSP, give the input the value of an entity key
constructed using the makeXMLInput JSP tag, and specify the name of
that input as the Entity Key Name of the action. When that action is
invoked by the user, the new key is passed instead of the current entity
key.

This feature is useful when a detail view shows the details of one entity
and also contains an inner panel that displays a list of records for another
entity. For example, the Order Detail screen shows details for the Order
entity and also has an inner panel showing a list of order lines (which is a
separate entity). Any action that appears on the order lines inner panel
should not pass the order header key to the API. It should pass the order
line key of the selected order lines.

For example, the following code might appear in an inner panel that lists
order lines for an order:

Example 10–1 Inner Panel Listing of Order Lines

<yfc:makeXMLInput name="orderLineKey">
<yfc:makeXMLKey binding="xml:/OrderLineDetail/@OrderLineKey"
value="xml:/OrderLine/@OrderLineKey"/>
<yfc:makeXMLKey binding="xml:/OrderLineDetail/@OrderHeaderKey"
value="xml:/Order/@OrderHeaderKey"/>
</yfc:makeXMLInput>
<td class="checkboxcolumn" >
<input type="checkbox" value='<%=getParameter("orderLineKey")%>'
name="chkEntityKey" />
</td>

72 Customizing Console JSP Interface for End-User Guide

Posting Data for Editable Lists

This code creates a new entity key for the order line and associates this
key to a checkbox named chkEntityKey. This name can then be specified
in the action definition for any action appearing on the order lines inner
panel, for example, the View Details action.

Note that this attribute frequently is used in conjunction with the
Selection Key Name attribute that also can be defined for an action.

10.6 Posting Data for Editable Lists
APIs that take a list of elements in this way have different behavior
based on the functionality required from the API. This different behavior
must be handled by the user interface.

One way an API may handle a list of elements is to completely replace
the entire list each time the API is called. This means that the user
interface must pass all attributes of each item whenever the API is called.
This is accomplished by using the IgnoreChangeNames() JavaScript
function. Calling this function when a JSP loads ensures that each single
input on the screen is posted.

For example, edit your JSP file to contain the following code:

<script language="Javascript" >
IgnoreChangeNames();
</script>

In some cases an API might expect that a specific record be passed to
the API only when some attribute has changed. Since the Presentation
Framework does not automatically post any value that has not been
changed by the user, it is quite possible that the XML constructed by the
Service Definition Framework may contain an element with only the key
attributes of a specific record. This can happen because the key
attributes are usually hidden input objects in the JSP placed within each
row of the html table. Since they are hidden inputs, they are always
posted to the API. Therefore, if the user does not change any of the
attributes of a specific record in one row, only the key attributes are
passed to the API. Some APIs consider this to be invalid input.

A Presentation Framework JavaScript function can be used to verify that
records for which no change has been made are not posted to the API.
The yfcSpecialChangeNames() function should be called when the page
is unloaded.

Retaining Unsaved Data in an Editable List

Other Customizations in the JSP Console 73

For example, the following JSP code achieves this:

 <script language=jscript>
 window.document.body.attachEvent("onunload", processSaveRecordsForNotes)
 </script>

The JavaScript function used in this example is defined as:

function processSaveRecordsForNotes() {
 yfcSpecialChangeNames("Notes", true);
}

In this example, the ID of the HTML table in the corresponding JSP is set
to the literal Notes. The second parameter, true, must be passed only if
the ID Notes consists of a new blank row. The parameter should be set
to false if you want to modify an existing row.

10.7 Retaining Unsaved Data in an Editable List
Some screens contain editable tables into which the user can enter more
than one row of data. This data is typically saved once the user presses
the Save button and the save API is called. By default, if the save API
throws an exception, the screen refreshes and the data entered in the
editable table is not be retained. This section explains how you can retain
the unsaved data even when an API exception occurs.

The following example explains how this feature can be implemented into
an order instruction screen. The screen consists of two JSP files
customized to enable this functionality:

order_detail_instructions_anchor.jsp

order_detail_instructions.jsp

74 Customizing Console JSP Interface for End-User Guide

Retaining Unsaved Data in an Editable List

10.7.1 order_detail_instructions_anchor.jsp
<%@include file="/yfsjspcommon/yfsutil.jspf"%>
<%@include file="/console/jsp/order.jspf" %>

<% setHistoryFlags((YFCElement) request.getAttribute("Order")); %>

<table class="anchor" cellpadding="7px" cellSpacing="0" >
<tr>
 <td >
 <jsp:include page="/yfc/innerpanel.jsp" flush="true" >
 <jsp:param name="CurrentInnerPanelID" value="I02"/>
 <jsp:param name="getRequestDOM" value="Y"/>
 </jsp:include>
 </td>
</tr>
<tr>
 <td >
 <jsp:include page="/yfc/innerpanel.jsp" flush="true" >
 <jsp:param name="CurrentInnerPanelID" value="I01"/>
 <jsp:param name="ChildLoopXMLName" value="Instruction"/>
 <jsp:param name="ChildLoopXMLKeyName"
 value="InstructionDetailKey"/>
 </jsp:include>
 </td>

 </tr>

Notice that a JSP parameter called getRequestDOM is passed as "Y" to
the header JSP (in this case, order_detail_header.jsp). Any unsaved
rows are saved in the request object as an XML file. By passing this
parameter, the unsaved rows are retrieved from the request object and
merged with the API output that is used to load the screen initially. The
refreshed screen now contains the newly modified values that the user
entered.

For the merge logic to work properly, the following parameters have to
be passed to identify the elements and attribute on which to perform
the merge. Please refer to Table 10–1.

A

A

B

B

Retaining Unsaved Data in an Editable List

Other Customizations in the JSP Console 75

Table 10–1 Parameters to be Passed

The highlighted code indicates the changes that ensures that the data is
retained after an API exception:

Parameter Name Default Value Comments

RootNodeName Order The root node of the output XML
that has the newly entered values
merged into it.

ChildLoopXMLName OrderLine The XML element that represents
the repeating element name in the
editable list.

ChildLoopXMLKeyName OrderLineKey The key that uniquely identifies the
repeating XML elements. The
merging logic uses this key to
determine if the data for the
specified element has been
modified by the user.

<%@include file="/yfsjspcommon/yfsutil.jspf"%>
<%@ include file="/console/jsp/modificationutils.jspf" %>
<%@ include file="/yfsjspcommon/editable_util_lines.jspf" %>
<%@ page import="com.yantra.yfs.ui.backend.*" %>

<script language="javascript" src="../console/scripts/om.js"></script>

<% boolean isHistory=equals(resolveValue("xml:/Order/@isHistory"),"Y"); %>
<%

boolean bAppendOldValue = false;
if(!isVoid(errors) || equals(sOperation,"Y") ||

equals(sOperation,"DELETE"))
bAppendOldValue = true;

%>
<table class="table" width="100%" cellspacing="0" <%if
(isModificationAllowed("xml:/@AddInstruction","xml:/Order/AllowedModifications
")) {%> initialRows="3" <%}%>>
<thead>

<tr>
<td class="checkboxheader" sortable="no">

<%if(!isHistory) { /* Then checkboxes are useless, since the
only action has been removed */ %>

C

D

76 Customizing Console JSP Interface for End-User Guide

Retaining Unsaved Data in an Editable List

<input type="hidden" id="userOperation" name="userOperation" value="" />
<input type="hidden" id="numRowsToAdd" name="numRowsToAdd"

value="" />
<input type="checkbox" name="checkbox" value="checkbox"

onclick="doCheckAll(this);"/>
<%}else { %>

<%}%>

</td>
<td class="tablecolumnheader"

sortable="no"><yfc:i18n>Instruction_Type</yfc:i18n></td>
<td class="tablecolumnheader"

sortable="no"><yfc:i18n>Text</yfc:i18n></td>
</tr>

</thead>
<tbody>

<yfc:loopXML binding="xml:/Order/Instructions/@Instruction"
id="Instruction">
<%

if(bAppendOldValue) {
String sInstructionKey =

resolveValue("xml:Instruction:/Instruction/@InstructionDetailKey");
if(oMap.containsKey(sInstructionKey))

request.setAttribute("OrigAPIInstruction",(YFCElement)oMap.get
(sInstructionKey));

} else
request.setAttribute("OrigAPIInstruction",(YFCElement)pageContext.

getAttribute("Instruction"));
%>
<%

if(!isVoid(resolveValue("xml:/Instruction/@InstructionDetailKey"))){ %>
<tr>

<yfc:makeXMLInput name="InstructionKey">
<yfc:makeXMLKey binding="xml:/Instruction/@InstructionDetailKey"

value="xml:/Instruction/@InstructionDetailKey" />
<yfc:makeXMLKey binding="xml:/Instruction/@OrderHeaderKey"

value="xml:/Order/@OrderHeaderKey" />
</yfc:makeXMLInput>
<td class="checkboxcolumn">

<%if(!isHistory) {%>
 <input type="checkbox"

E

F

Retaining Unsaved Data in an Editable List

Other Customizations in the JSP Console 77

 value='<%=getParameter("InstructionKey")%>' name="chkEntityKey"/>
<%}else { %>

<%}%>

</td>
<td class="tablecolumn">

<% String instTargetBinding =
"xml:/Order/Instructions/Instruction_" + InstructionCounter +
"/@InstructionType"; %>

<select <%if(bAppendOldValue) {
%>OldValue="<%=resolveValue("xml:OrigAPIInstruction:/Instruction/@Instruction
Type")%>" <%}%>
<%=yfsGetComboOptions(instTargetBinding, "xml:/Instruction/@InstructionType",
"xml:/Order/AllowedModifications")%>>

 <yfc:loopOptions
binding="xml:InstructionTypeList:/CommonCodeList/@CommonCode"
name="CodeShortDescription" value="CodeValue"
selected="xml:/Instruction/@InstructionType" isLocalized="Y"
targetBinding="<%=instTargetBinding%>"/>

</select>
</td>
<td class="tablecolumn">

<table class="view" cellspacing="0" cellpadding="0">
<tr>

<td>
< textarea rows="3" cols="100

 <%if(bAppendOldValue) {
%>OldValue="<%=resolveValue("xml:OrigAPIInstruction:/Instruction/@Instruction
Text")%>" <%}%>
<%=yfsGetTextAreaOptions("xml:/Order/Instructions/Instruction_" +
InstructionCounter + "/@InstructionText","xml:/Instruction/@InstructionText",
"xml:/Order/AllowedModifications")%>><yfc:getXMLValue
binding="xml:/Instruction/@InstructionText"/></textarea>

</td>
 </tr>

<tr>
<td>

<img align="absmiddle"
<%=getImageOptions(YFSUIBackendConsts.INSTRUCTION_URL, "Instruction_URL")%>/>

<input type="text" <%if(bAppendOldValue) {
%>OldValue="<%=resolveValue("xml:OrigAPIInstruction:/Instruction/@Instruction
URL")%>" <%}%>

G

78 Customizing Console JSP Interface for End-User Guide

Retaining Unsaved Data in an Editable List

<%=yfsGetTextOptions("xml:/Order/Instructions/Instruction_" +
InstructionCounter + "/@InstructionURL",
"xml:/Instruction/@InstructionURL","xml:/Order/AllowedModifications")%>/>

<input type="button" class="button"
value="GO" onclick="javascript:goToURL('xml:/Order/Instructions/Instruction_
<%=InstructionCounter%>/@InstructionURL');"/>

</td>

<td>
<input type="hidden"

<%=getTextOptions("xml:/Order/Instructions/Instruction_" + InstructionCounter
+ "/@InstructionDetailKey", "xml:/Instruction/@InstructionDetailKey")%>/>

</td>
</tr>
<tr>

<td> </td>
<td> </td>
<td> </td>
<td> </td>

</tr>
</table>

</td>
</tr>

Retaining Unsaved Data in an Editable List

Other Customizations in the JSP Console 79

<%} else { %>
<tr DeleteRowIndex="<%=InstructionCounter%>">

<td class="checkboxcolumn">
<img class="icon"

onclick="setDeleteOperationForRow(this,'xml:/Order/Instructions/Instruction')"
<%=getImageOptions(YFSUIBackendConsts.DELETE_ICON, "Remove_Row")%>/>

</td>
<td class="tablecolumn">

<input type="hidden" OldValue=""
<%=getTextOptions("xml:/Order/Instructions/Instruction_
"+InstructionCounter+"/@Action", "xml:/Order/Instructions/Instruction_
"+InstructionCounter+"/@Action", "CREATE")%> />

<input type="hidden"
<%=getTextOptions("xml:/Order/Instructions/Instruction_
"+InstructionCounter+"/@DeleteRow", "")%> />

<select OldValue=""
<%=yfsGetTemplateRowOptions("xml:/Order/Instructions/Instruction_
"+InstructionCounter+"/@InstructionType", "xml:/Instruction/@InstructionType",
"xml:/Order/AllowedModifications", "ADD_INSTRUCTION", "combo")%>>

<yfc:loopOptions
binding="xml:InstructionTypeList:/CommonCodeList/@CommonCode"
name="CodeShortDescription" value="CodeValue" isLocalized="Y"
selected="xml:/Instruction/@InstructionType"/>

</select>
</td>
<td class="tablecolumn">

<table class="view" cellspacing="0" cellpadding="0">
<td>

 <textarea rows="3" cols="100" OldValue=""
<%=yfsGetTemplateRowOptions("xml:/Order/Instructions/Instruction_
"+InstructionCounter+"/@InstructionText", "xml:/Instruction/@InstructionText",
"xml:/Order/AllowedModifications", "ADD_INSTRUCTION",
"textarea")%>></textarea>

</td>
<tr>

<td>
 <img align="absmiddle"

<%=getImageOptions(YFSUIBackendConsts.INSTRUCTION_URL, "Instruction_URL")%>/>
<input type="text" OldValue=""
<%=yfsGetTemplateRowOptions("xml:/Order/Instructions/Instruction_
"+InstructionCounter+"/@InstructionURL", "xml:/Instruction/@InstructionURL",
"xml:/Order/AllowedModifications", "ADD_INSTRUCTION", "text")%>/>

H

80 Customizing Console JSP Interface for End-User Guide

Retaining Unsaved Data in an Editable List

</td>
</tr>
<tr>

<td> </td>
<td> </td>
<td> </td>
<td> </td>

</tr>
</table>

</td>
</tr>

<% } %>
</yfc:loopXML>

</tbody>
<tfoot>

<%if
(isModificationAllowed("xml:/@AddInstruction","xml:/Order/AllowedModifications
")) {%>

<tr>
<td nowrap="true" colspan="3">

<jsp:include page="/common/editabletbl.jsp" flush="true">
<jsp:param name="ReloadOnAddLine" value="Y"/>

</jsp:include>
</td>

</tr>
<%}%>

</tfoot>
</table>

I

Adding a Lookup

Other Customizations in the JSP Console 81

10.8 Adding a Lookup
Lookups enable users to select a list of options rather than typing in
data. Figure 10–1 shows the available lookup icons and the fields
associated with them.

Figure 10–1 Lookup Icon

The Presentation Framework supports the following types of lookups:

The /webpages/yfsjspcommon/editable_util_lines.jspf file has been
included in the list innerpanel.jsp. This file merges the user-modified
values and the original API output.

JSP code has been added to ensure that the deletion of a row is
handled properly.

Hidden inputs have been added for user operation and number of rows
to add.

A map of the unique keys of the original repeating XML elements has
been added.

The OldValue attribute of each editable field is set to the value of the
original API output using the map previously created. This ensures the
value modified by the user is posted to the save API.

A new row is created in the editable table for each repeating XML
element that does not contain a unique key attribute. This indicates
that the row has not yet been saved in the database and was entered
by the user before the API exception occurred.

To add a row dynamically when the user clicks on the plus icon under
the table, the /common/editabletbl.jsp file is included next. Pass "Y" for
the ReloadOnaddLine attributes to this JSP. Each time a new row is
added, the screen refreshes. Before these code changes, the new rows
are added dynamically without refreshing the screen.

C

D

E

F

G

H

I

Data Lookup

Calendar Lookup

82 Customizing Console JSP Interface for End-User Guide

Adding a Lookup

Single Field Lookup - Enables a user to search an entity for a specific
value, select that value, and insert it into the appropriate single input
field. Use the callLookup() JavaScript function. See Appendix 19.2,
"callLookup".

Calendar Lookup - Enables a user to select a date from a pop-up
calendar. Use the invokeCalendar() JavaScript function. See
Appendix 19.13, "invokeCalendar".

If you need a multiple field lookup, you can use the
yfcShowSearchPopup() JavaScript function. This example shows product
class, item ID, and unit of measure to be populated from an item lookup
using the yfcShowSearchPopup() JavaScript function.

//this function should be called from “onclick” event of the icon next to
//item id field.
function callItemLookup(sItemID,sProductClass,sUOM,entityname)
{
 var oItemID = document.all(sItemID);
 var oProductClass = document.all(sProductClass);
 var oUOM = document.all(sUOM);
 showItemLookupPopup(oItemID, oProductClass, oUOM, entityname);
}

function showItemLookupPopup(itemIDInput, pcInput, uomInput, entityname)
{
 var oObj = new Object();
 oObj.field1 = itemIDInput;
 oObj.field2 = pcInput;
 oObj.field3 = uomInput;
 yfcShowSearchPopup('','itemlookup',900,550,oObj,entityname);
}

And in the lookup list view, call the following function to populate the
field from which the pop-up was invoked:

function setItemLookupValue(sItemID,sProductClass,sUOM)
{
 var Obj = window.dialogArguments
 if(Obj != null)
 {
 Obj.field1.value = sItemID;
 Obj.field2.value = sProductClass;
 Obj.field3.value = sUOM;
 }

Creating a User-Sortable Table

Other Customizations in the JSP Console 83

 window.close();
}

Use Lookup icons only with modifiable fields. When you incorporate a
particular type of Lookup on field, place the appropriate icon directly to
the right of the Lookup.

10.9 Creating a User-Sortable Table
In any table, a user can click a column heading to sort the results. If a
user clicks the same column heading again the results will sort in reverse
order.

Table sorting does not create a new call to the API, it sorts the data that
is displayed in the selected column.

To create a user-sortable table:
1. Use table.htc in the style attribute for the table. If you are using

the default CSS files of Selling and Fulfillment Foundation, you can
use class=“table” for the <table> tag.

2. The table should have <tbody> and <thead> tags that include <td>
tags. If you specify sortable=“no” for any <td> tag in the <thead>
tag, the column is not sortable.

3. For Date and Number, provide a separate
sortValue=“<nonlocalized_value>” in the actual <tbody> tag so
that the data sorts properly.

Example 10–2 shows the tags needed for creating a user-sortable table.

Example 10–2 User-Sortable Table

<table class="table" editable="false" width="100%" cellspacing="0">
<thead>
<tr>
<td sortable="no" class="checkboxheader">
<input type="hidden" name="userHasOverridePermissions"
value='<%=userHasOverridePermissions()%>'/>
<input type="hidden" name="xml:/Order/@Override" value="N"/>
<input type="checkbox" name="checkbox" value="checkbox"
onclick="doCheckAll(this);"/>
 </td>
 <td class="tablecolumnheader"><yfc:i18n>Order_#</yfc:i18n></td>

84 Customizing Console JSP Interface for End-User Guide

Adding Graphs and Pie Charts

 <td class="tablecolumnheader"><yfc:i18n>Enterprise</yfc:i18n></td>
 <td class="tablecolumnheader"><yfc:i18n>Buyer</yfc:i18n></td>
 <td class="tablecolumnheader"><yfc:i18n>Order_Date</yfc:i18n></td>
 </tr>
 </thead>
 <tbody>
 <yfc:loopXML binding="xml:/OrderList/@Order" id="Order">
 <tr>
 <yfc:makeXMLInput name="orderKey">
 <yfc:makeXMLKey binding="xml:/Order/@OrderHeaderKey"
 value="xml:/Order/@OrderHeaderKey" />
 </yfc:makeXMLInput>
 <td class="checkboxcolumn">
 <input type="checkbox" value='<%=getParameter("orderKey")%>'
name="EntityKey"/>
 </td>
 <td class="tablecolumn"><a
href="javascript:showDetailFor('<%=getParameter("orderKey")%>');">
 <yfc:getXMLValue binding="xml:/Order/@OrderNo"/>
 </td>
 <td class="tablecolumn"><yfc:getXMLValue
binding="xml:/Order/@EnterpriseCode"/></td>
 <td class="tablecolumn"><yfc:getXMLValue
binding="xml:/Order/@BuyerOrganizationCode"/></td>
 <td class="tablecolumn"
sortValue="<%=getDateValue("xml:/Order/@OrderDate")%>"><yfc:getXMLValue
binding="xml:/Order/@OrderDate"/></td>
 </tr>
 </yfc:loopXML>
</tbody>
</table>

10.10 Adding Graphs and Pie Charts
Graphs and pie charts enable users to view a graphical representation of
data. Graphs and charts derive their look and feel (appearance of the
display colors and fonts) from the theme. For information about the
theme and detailed instructions on how to modify one, see Section 3.2,
"About Centralized Themes".

For displaying graphs of data, the Presentation Framework uses the
jbchartx.jar file from Visual JChart. Since the tool may change in a
future version, you should perform your own evaluation of which charting

Customizing the Menu Structure

Other Customizations in the JSP Console 85

tool to use. The Presentation Framework integrates with FusionCharts to
generate charts.

10.10.1 Why FusionCharts
There are various advantages to integrating with FusionCharts for
generating charts. Some of these are:

Renders animated and interactive charts, as opposed to static images
rendered by traditional charting components.

Uses XML data interface that makes it cross-browser and
cross-platform compatible. You can use it with any scripting language
and database.

Has a small size that makes it suitable for dynamic and interactive
charting, even on narrow bandwidth connections.

Leverages Macromedia Flash Player to make the thin client behave
thick.

Enables you to dynamically change chart types and data on the
client, without invoking any server requests.

10.11 Customizing the Menu Structure
When creating customized screens, verify that users can access them,
either through a menu structure or through navigation.

Customizing the menu requires first laying out the structure of the menu
through the Applications Manager graphical user interface, and then
specifying the literals in the resource bundle. A resource bundle is a file
that contains all of the on-screen literals and messages. Selling and
Fulfillment Foundation provides the following standard resource bundles:

ycpapibundle.properties - contains the literals used by the standard
menu and on-screen messages. It cannot be modified.

extnbundle.properties - contains the literals used by the custom
menus. It can be customized and localized as needed.

You can create custom resource bundles that contain the modifications
you make to the custom menu.

86 Customizing Console JSP Interface for End-User Guide

Customizing the Menu Structure

10.11.1 Creating Custom Menus

To create a custom menu:
1. Create a new menu using the graphical user interface described in

the Selling and Fulfillment Foundation: Application Platform
Configuration Guide.

2. Open the <INSTALL_
DIR>/extensions/global/resources/extnbundle.properties file
and add a key=Description mapping that uses an equal sign (=) to
join the Description added in Step 1 to a key. For example, Special_
Tasks=Special Tasks. The application reads the key in order to
determine what to display on the screen.

10.11.2 Localizing the Menu Structure
You can customize the resource bundles to enable a single installation to
support multiple languages. When localizing the Application Console,
prepend MENU_ to the menu keys you add to the resource bundle. For
more information on localization, see the Selling and Fulfillment
Foundation: Localization Guide.

Note: When customizing the menu, verify that the menu
description does not contain spaces or any other character
that cannot be a valid resource bundle key as defined by
java standards.

Note: Ensure that the following file does not exist:

<INSTALL_DIR>/resources/extn/extnbundle.properties

This file must be removed because it will conflict with the
extensions build process for bundle entries.

Customizing Screen Navigation

Other Customizations in the JSP Console 87

10.12 Customizing Screen Navigation
You can customize how users navigate from entity to entity by
configuring link or action resources. Links and actions can point to any
detail view of any entity. Often the entity that you are navigating to
requires a different entity key.

For example, the Order Detail screen has a list of order lines. Users can
navigate to the order line detail screen by clicking the Order Line #
hyperlink, or by selecting an order line and clicking the View Details
action on the order line’s inner panel. Since the order line detail screen
requires a different entity key than the Order Detail screen, it is
necessary to create another entity key in the order line’s JSP to be used
in the order line detail screen. Example 10–3 shows sample code for
specifying screen navigation behavior.

Example 10–3 Screen Navigation

<yfc:makeXMLInput name="orderLineKey">
 <yfc:makeXMLKey binding="xml:/OrderLineDetail/@OrderLineKey"
value="xml:/OrderLine/@OrderLineKey"/>
 <yfc:makeXMLKey binding="xml:/OrderLineDetail/@OrderHeaderKey"
value="xml:/Order/@OrderHeaderKey"/>
 </yfc:makeXMLInput>

The way this entity key is passed to the order line detail screen differs for
the hyperlink and action routes. For the hyperlink, this key is passed to
the getDetailHrefOptions() function in the following manner:

<a <%=getDetailHrefOptions("L03", getParameter("orderLineKey"), "")%>>
 <yfc:getXMLValue binding="xml:/OrderLine/@PrimeLineNo"/>

Sometimes you might want a detail view to behave differently based on
some input parameter. For example, you might want to hide or show a
field in a detail view based on the parameter which is invoking the detail
view.

Note: When localizing the menu, verify that the menu
description does not contain spaces or any other character
that cannot be a valid resource bundle key as defined by
java standards.

88 Customizing Console JSP Interface for End-User Guide

Customizing Screen Navigation

You can call the getDetailHrefOptions() JSP function, using extra
parameters that are passed to the target detail view. See the
Appendix 17.11, "getDetailHrefOptions (with additional parameter)". The
required format to pass these extra parameters should have name-value
pairs separated by an ampersand ("&"). This is the standard format for
passing parameters in a URL.

For the View Details action, the Selection Key Name must be set to the
name of the checkbox created in the JSP. For example, in the JSP, the
checkbox can be created as follows:

<input type="checkbox" value='<%=getParameter("orderLineKey")%>'
name="chkEntityKey"/>

The name of the checkbox is chkEntityKey. When configuring the action
in the Resource Hierarchy tree, the Selection Key Name should be set to
this to ensure the correct key is passed to the order line detail screen.

10.12.1 Disabling Direct Navigation to Detail Screens
From the Order, Purchase Order, or Return search screens provided by
Selling and Fulfillment Foundation, when a search results in only one
record, the user is directed to the default detail view of the single record.
This reduces the number of clicks required to get to the details of a
particular record.

For example, the Order Search provided by Selling and Fulfillment
Foundation navigates directly to the Order Detail Screen if you enter a
unique order number and press Search.

This type of navigation is controlled by the view definitions in the
Resource Hierarchy tree. Only certain user interface entities support this
type of navigation. Therefore, in the Resource Details of an entity
resource, there is a "Support Direct List To Detail Navigation with One
Record Returned" checkbox that indicates if a particular entity supports
this feature. If an entity does support this feature, then the list view
defined for that entity can turn this navigation on or off by enabling the
"Support Direct List To Detail Navigation with One Record Returned"
checkbox.

To disable this feature, create a copy of the existing list view, uncheck
the checkbox, and verify that the resource sequence is lower than the
existing list view.

Customizing Event Handlers in the JSP Console 89

11
Customizing Event Handlers in the JSP

Console

11.1 About Event Handlers in the JSP Console
You can create and plug in custom client-side validations to user interface
controls for the following events:

Events raised by Internet Explorer for that control or screen. For
example, onblur event for input or onunload event for the page.

Events raised by the Service Definition Framework for the page, for
example before saving the data in a detail view or before invoking
search in a search view.

11.2 Control-Level Event Handler
Each text box has a behavior class associated with it that dynamically
attaches a validation method to the onblur event (lost focus).

Each XML attribute must be tied to a data type and the infrastructure
determines the data type based upon the XML attribute to which a data
element is bound. The data type is used for data validations. For
example, numeric fields should only accept numeric entry.

It is recommended that you limit client-side field-level validations to a
minimum. You can directly use onblur="myValFun();" in your HTML
pages to perform custom validations. However, there is no guarantee
that your function is called before the Presentation Framework function.
Therefore, if you are using a numeric or date field, your function may
return invalid data. You must call the Presentation Framework JavaScript
utility functions to first validate the date and number before you proceed
with your validations.

90 Customizing Console JSP Interface for End-User Guide

Screen-Level Event Handler

11.3 Screen-Level Event Handler
The Presentation Framework uses the onload event on document.body.
All other events are available for your use. The Presentation Framework
uses the attachEvent() function to dynamically attach event handlers to
other events (for example, onblur on input). Therefore, in your JSP
code, you can use other functions. If you want to invoke your own
onload function, you can still use the attachEvent() function inside a
script tag in your JSP as follows:

<script language=jscript src="/extensions/global/webpages/scripts/om.js">
</script>
<script language=jscript>
window.document.body.attachEvent("onload", myFunc)
</script>

This causes the myFunc() function to run when the HTML is loaded. Note
that the body of the myFunc function must exist within the <INSTALL_
DIR>/extensions/global/webpages/scripts/om.js file.

The Presentation Framework calls the Save action for a detail view when
the Save icon is clicked. If you want to plug in your own custom event
handler for this event, configure the action to call your JavaScript
function. The function needs to be present in the <INSTALL_
DIR>/extensions/global/webpages/scripts/extn.js file.

The Presentation Framework invokes the list view when the Search icon
is clicked in a search view. If you want to plug in your own custom event
handler for this event, attach your JavaScript function to the onclick
event of the object returned by the yfcGetSearchHandle() JavaScript
API when the page is loaded. The example below shows how to do this:

<script language=jscript src="/extensions/global/webpages/scripts/om.js">
</script>
<script language=jscript>
//Get the handle to search button.
var oObj = yfcGetSearchHandle();

//The setParentKey function is defined inside om.js.
var sVal = oObj.attachEvent("onclick",setParentKey);
</script>

Creating Screen-Level Validations

Customizing Event Handlers in the JSP Console 91

11.4 Creating Field-Level Validations

To create field-level validations:
1. Customize the view. See Section 8.3, "Customizing a Search View in

the JSP Console" or Section 8.7, "Customizing Detail Views in the JSP
Console".

2. Modify the customized JSP to include an event handler for the onblur
event of the corresponding control.

3. Place the body of the JavaScript function in a separate JS file and
include the JS file in your JSP.

4. Select the refresh cache icon that fits your needs as follows:

– If you want to update one entity and its child resources - Select
the specific entity and select the Refresh Entity Cache icon.

– If you want to update all resources - Select the Refresh Cache
icon.

5. Log in to Selling and Fulfillment Foundation again to test your
changes.

11.5 Creating Screen-Level Validations

To create screen-level validations:
1. Customize the view where you want to plug in validations.

2. Modify the customized JSP to include the attachEvent.

3. Select the refresh cache icon that fits your needs as follows:

– If you want to update one entity and its child resources - Select
the specific entity and select the Refresh Entity Cache icon.

– If you want to update all resources - Select the Refresh Cache
icon.

4. Log in to Selling and Fulfillment Foundation again to test your
changes.

92 Customizing Console JSP Interface for End-User Guide

Creating Screen-Level Validations

Working with Document Types and Demand Records 93

12
Working with Document Types and Demand

Records

12.1 Working with Document Types
The default Order console uses the Order document type (0001). When
you create a new document type, you must also create a new entity with
views. For a resource of Resource Type Entity, you can specify the
document type.

Literals within the I18N tag resolve in a specific order. First, the key is
prefixed with the document type and is looked up in the resource bundle.
If no match is found, the key is looked up as is, or without a prefix.

For example, if there is a I18N literal called Order_# and the current
document type is Order (0001), Selling and Fulfillment Foundation first
tries to resolve the resource key from the resource bundle for any entry
for 0001_Order_#, and if not found, Order_#. This scheme enables you
to reuse a specific JSP while still being able to change the literals that
appear on the screen if they are specific to your document type.

12.1.1 Creating New Set of Screens For New Document
Type

To create a new set of screens for a new document type:
1. From the Resource Hierarchy tree, navigate to the Order entity

(resource ID order).

2. Select Save As to create the new set of resources from the Order
entity, including its sub-resources.

94 Customizing Console JSP Interface for End-User Guide

Working with Document Types

When you save the entity, give it a unique prefix that does not
conflict with any resource IDs that might ship with future releases.
Sterling Commerce recommends that you choose any prefix except
one that begins with the letter Y (which is reserved for use by Selling
and Fulfillment Foundation).

Note that when copying resources for a new document type, you
must copy all entities (including sub-resources) for the existing
document type.

a. Determine which resources to copy using the following SQL script:

select resource_id from yfs_resource
where resource_type=’ENTITY’ and document_type=’0001’

b. Change the view group IDs for any Icons, Actions, Links and
JavaScript functions that call the views. The view group ID should
be changed to the new entity prefix and the view group ID that
already exists.

3. Modify the description of the new entity resource to the description of
your new document type. For all the sub-resources also, make
appropriate modifications to the descriptions and create entries for
these newly created resource keys in the <INSTALL_
DIR>/extensions/global/resources/extnbundle.properties file,
and in the corresponding properties files for each locale.

4. Update the Selling and Fulfillment Foundation runtime. For more
information about updating the Selling and Fulfillment Foundation
runtime, see the Selling and Fulfillment Foundation: Installation
Guide.

5. Modify the Document Type for the new resources of resource type
entity to the new Document Type.

6. Update the Related Entities Resources under the newly created entity
resources to point to the newly created resources.

Note: Ensure that the following file does not exist:

<INSTALL_DIR>/resources/extn/extnbundle.properties

This file must be removed because it will conflict with the
extensions build process for bundle entries.

Working with Demand Records

Working with Document Types and Demand Records 95

7. In order to make all links point appropriately to your new view, follow
the steps in Section 9.6, "Incorporating Customized Views Across the
Application".

8. In Alert Console, if an alert is raised for an order when you are
viewing the alert details you can click on the order and view the
details. If you want that link to also point to the main detail view of
your document type, you must customize the Alert Details view.

To customize the Alert Details view:

a. Create a new Link ID under the new detail view of Alerts.

b. Point the new Link ID to go to the newly created view of your new
document type.

c. Customize the JSP of the new Alert detail view to call the
getDetailHrefOptions() JSP utility function with a Link ID
parameter of the new document type.

d. Change the sequence of the new Alert detail view so that the new
view becomes the default Alert detail view. For details, see the
Selling and Fulfillment Foundation: Application Platform
Configuration Guide.

e. In order to make all links point appropriately to your new view,
follow the steps in Section 9.6, "Incorporating Customized Views
Across the Application".

f. In order to retrieve the Document Type of the specific order
number, configure the Alert detail view to call another API (after
the exception detail API) to retrieve the order details. Configure
the API to ignore exceptions. The API is called for all exceptions
with the order number as a parameter, but the API throws an
error if the order number is void. Since the API is configured to
ignore the exception, it is not reported to the user.

12.2 Working with Demand Records
Some document types have associated views that enable you to view
demands created. Document types are not associated with creating
supply.

Selling and Fulfillment Foundation provides consoles for viewing the
demands stemming from Sales Orders, Returns, and Purchase Order

96 Customizing Console JSP Interface for End-User Guide

Working with Demand Records

(document type 0001, 0003, and 0005 respectively) detail view
document types from the Inventory Console. The Demand detail screen
contains hyperlinks to the documents that create the specified demand.
When creating a new document type (and appropriate document type UI)
that can create demand, you must extend the Demand list screen to add
a link resource that enables the user to navigate to the detail screen for
your new document type.

In order to view any custom document types that may cause demand
records, the Demand detail view must be extended to correctly display
the details of the demand. The Demand detail screen requires an
additional link resource for the new document type. After creating a new
UI for your document type, extend the view as described below.

To extended demand list view for document types:
1. Extend the detail view (YIMD215) by following the directions in

Section 8.7, "Customizing Detail Views in the JSP Console".

2. Add a link resource under the custom inner panel that was copied
from the YIMD215I01 inner panel. The link resource should have a
postfix value containing the document type code of your new
document type and it should point to the view ID of the detail view
for your new document type.

3. Set the Resource ID sequence so that the customized view is before
the view defined by Selling and Fulfillment Foundation.

Actions, XML Binding, APIs, Dynamic Namespaces, and Credit Card Numbers 97

13
Actions, XML Binding, APIs, Dynamic

Namespaces, and Credit Card Numbers

13.1 Configuring Actions and Enabling Custom
Transactions

Depending on your business processes, your pipeline may require an
additional step that results in a status change of an entity. For example,
you may want to add a security check to your order’s lifecycle so that a
customer service representative can manually authorize an order before
shipping it.

Any custom status change transaction configured within the Process
Modeling of the Applications Manager can be configured as an Action in
the detail view of an entity. You can configure the Action to invoke the
custom transaction directly, or you can invoke the custom transaction
through a new custom view that permits the user to manually confirm
individual transactions, as described below.

To create an action from an inner panel:
1. From the tree in the application rules side panel, choose Process

Modeling. Configure a new transaction in the pipeline, along with the
pickup and drop statuses that meet your requirements.

2. Under the inner panel of the custom detail view, create an Action
resource that calls the yfcShowDetailPopupWithParams() JavaScript
function. For more information on passing parameters to detail views,
see Appendix 19.37, "yfcShowDetailPopupWithParams".

3. Verify that the new transaction ID (created in Step 1) and the view
resource ID specified in Table 13–1 are passed as input to the
JavaScript function.

98 Customizing Console JSP Interface for End-User Guide

XML Binding

The figure shows the status change action for authorizing returns screen.

Figure 13–1 Status Change Action for Authorizing Returns Screen

13.2 XML Binding
The input and output of APIs is in the form of an XML document. Using
XML documents enables the Presentation Framework to provide an XML
binding mechanism where a developer can form the input necessary to
pass to an API and populate a screen with its output.

Table 13–1 Status Change Resource IDs

For This Entity... Use This Resource ID...

Shipment YOMD770

Load YDMD280

Order YOMD390

Purchase Order YOMD3390

Returns YOMD512

XML Binding

Actions, XML Binding, APIs, Dynamic Namespaces, and Credit Card Numbers 99

The binding logic is based on using the name attribute of input fields to
map onto an XML attribute. The actual HTML string that needs to be
formed is returned by various HTML tag-specific JSP functions and JSP
tags that have been provided for that purpose. The HTML that is
rendered contains the name attribute set to the appropriate XML path.
When data is posted to the server, the servlet provided by the Service
Definition Framework captures the request and forms an XML document
out of the data in the input and XML path contained in the name attribute.
The XML document is then passed as input to the API that has been
configured for the action being performed.

For example, you may bind an input box to the ShortDescription
attribute of the getItemList() API in an Item search view.

<tr>
 <td class="searchlabel" ><yfc:i18n>Short_Description</yfc:i18n></td>
</tr>
<tr>
 <td nowrap="true" class="searchcriteriacell" >
 <input type="text" class="unprotectedinput"
<%=getTextOptions("xml:/Item/PrimaryInformation/@ShortDescription") %> />
 </td>
</tr>

After the JSP functions and JSP tags are resolved, the HTML is formed as
follows:

<tr>
 <td class="searchlabel" >Short Description</td>
</tr>
<tr>
 <td nowrap="true" class="searchcriteriacell" >
 <input type="text" class="unprotectedinput"
name="xml:/Item/PrimaryInformation/@ShortDescription" value=""/>
 </td>
</tr>

Note that this example does not show all of the custom attributes
returned by the JSP functions. It only shows the ones relevant to this
topic.

In another example, the user enters Telephone in the input box. When
the data is posted to the server, the Presentation Framework forms the
following XML document based on the name and the value of the input
box.

100 Customizing Console JSP Interface for End-User Guide

XML Binding

<Item>
<PrimaryInformation ShortDescription="Telephone"/>
</Item>

Since the Presentation Framework parses the binding string to form the
XML, the binding string must follow the syntax below.

13.2.1 XML Data Binding Syntax
APIs are called with the input XML that is bound in the screen, and that
XML binding should match the output of the API.

XML Binding Syntax
xml:NameSpace:/Root/Child@Attribute

The following examples show correctly structured syntax:

xml:/Order/PersonInfoShipTo/@Name
xml:Order:/Order/PersonInfoShipTo/@Name

The following examples show incorrectly structured syntax:

xml:/@Name
xml:/Order
xml:Order:/Order

XML Binding Parameters
The various XML binding parameters used are as follows:

xml:—used literally

NameSpace—namespace containing the XML to which this binding
applies. If not specified, it is taken to be the root node of the path that
follows. Namespace should only be included when binding to common
codes.

:/Root/Child@Attribute—XML path of the attribute. If the attribute is
the root node itself, specify the syntax as /Root@Attribute. Root
represents the root node name in the XML to which the binding applies.
Child represents the child element node name. This rule applies to any
level of depth.

This function parses the binding string, searches for the at ("@")
character, and returns the string following the at ("@") character.

XML Binding

Actions, XML Binding, APIs, Dynamic Namespaces, and Credit Card Numbers 101

13.2.2 Special XML Binding Considerations
The XML binding for an input field on the screen enables you to uniquely
bind a field to a single attribute in the XML document. The XML binding is
used as the name of the HTML input object. A binding consists of the
complete XML path and attribute name of the target attribute. Given this
fact, it is not immediately obvious how to bind input boxes to XML
attributes that exist in an XML list. For example, given the following XML:

<Order>
<OrderLines>
<OrderLine OrderLineKey="1000001" ShipNode="ShipNode1"/>
<OrderLine OrderLineKey="1000002" ShipNode="ShipNode2"/>
</OrderLines>
</Order>

13.2.3 XML Binding for Multiple Element Names
The general rule for XML binding consists of using the full path and
attribute name. However, this may result in multiple input objects in the
JSP with the same name. Input objects with the same name are posted
as an array of objects and are not posted to the API.

To uniquely identify each input as part of a specific XML element, you can
add a postfix that contains an underscore ("_") plus a counter after the
repeating element name.

For example, the binding of each ship node field on the list of order lines
should be xml:/Order/OrderLines/OrderLine/@ShipNode. If you
require a screen that contains a list of order lines with ship node editable
on each line, you can use a special XML binding convention to handle this
scenario.

The repeating element is OrderLine. For each ship node input object, the
special postfix is added for each line. The result is two unique XML
bindings: xml:/Order/OrderLines/OrderLine_1/@ShipNode and
xml:/Order/OrderLines/OrderLine_2/@ShipNode. When this data is
posted, all XML bindings containing the same special postfix are
combined into the same XML element in the API input.

To make using this special postfix XML binding easier, the loopXML JSP
tag provides a JSP variable that contains a unique counter for each
individual loop. See Appendix 18.9, "loopXML". This JSP variable, that is
available inside the loopXML JSP tag, is the ID attribute specified in the

102 Customizing Console JSP Interface for End-User Guide

Passing Data to APIs

loopXML tag plus the literal Counter. For example, use the following
loopXML in your JSP:

<yfc:loopXML name="Order" binding="xml:/Order/OrderLines/@OrderLine"
id="OrderLine">

This makes the OrderLineCounter JSP variable available for use inside of
the input XML bindings. For example:

<input type="text" <%=yfsGetTextOptions("xml:/Order/OrderLines/OrderLine_" +
OrderLineCounter + "/@ShipNode", "xml:/OrderLine/@ShipNode",
"xml:/OrderLine/AllowedModifications")%>/>

13.3 Passing Data to APIs
When customizing the user interface, you must verify that the correct
input is passed to the APIs you use. The primary way to retrieve data or
perform updates in the user interface is through APIs. Making sure the
right input is passed to these APIs is an important task for user interface
customizations.

Selling and Fulfillment Foundation provides various mechanisms for
passing input to APIs through the user interface. Which mechanisms you
should use, and in what combination, depends on the type of screen and
type of API being called.

This section describes the features and advantages of the following
mechanisms for passing data to APIs:

Input namespace

Entity key

Dynamic attributes

13.3.1 Input Namespace
In many cases, data from fields on the UI must be passed directly to the
API. A simple example is any detail screen with editable input fields.
These fields must be passed to a save API in order to update the entered
data in the application's database. This save API takes a specific XML
structure as input. The fields on the detail screen should have XML
binding that matches the input to the API.

Passing Data to APIs

Actions, XML Binding, APIs, Dynamic Namespaces, and Credit Card Numbers 103

In the Resource Hierarchy tree, the Input Namespace field in the action
resource should be set appropriately to verify that the correct data from
the console is passed to the save API. See the Selling and Fulfillment
Foundation: Application Platform Configuration Guide.

Since all of the input fields on the screen have XML bindings for the input
to the same API, they all have the same XML root element name in the
binding. This root element name of the XML bindings is known as the
namespace of that input field. Therefore, when that save action is
invoked on the user interface, an XML is formed from all of the input
fields containing the namespace specified for that action in the Resource
Hierarchy tree. This XML is then passed to the API configured under that
save action. For more information on XML binding, see Section 13.2,
"XML Binding".

Another place where input namespace is frequently used is for user
interface screens that have search criteria. The search criteria is passed
to list APIs to fetch the data based on the search criteria entered. All the
search criteria fields should have XML binding matching the input to the
list API. The root element name of this XML is the namespace that should
be specified for the list view that is shown when the user runs the
search.

13.3.2 Entity Key
Frequently detail screens have API calling actions that only require the
primary key of the current entity to be passed as the input. When a
detail view is brought up in the user interface, there is always at least
one entity key passed to the detail view. This entity key consists of an
XML structure containing the attributes that uniquely identify that entity.
For example, the entity key of the order entity always contains an
attribute for order header key. This entity key is automatically passed to
the detail API of that entity. When this type of action is configured on a
detail view, no other steps are required to ensure the right input is
passed to the API.

13.3.3 Dynamic Attributes
Sometimes the input expected to be passed to an API is not available
through an input namespace or entity key. In these cases, using dynamic
attributes may be applicable. All API resources configured in the
Resource Hierarchy tree have an input field whose purpose is to provide

104 Customizing Console JSP Interface for End-User Guide

Passing Data to APIs

the ability to specify dynamic attributes. The value for this field should be
a valid XML structure using elements and attributes. The XML structure
specified here must match the exact input XML structure accepted by the
called API.

One of the most common examples of using dynamic attributes is when a
specific inner panel that must call multiple APIs to retrieve all the data
that it needs to display. For example, an inner panel of a detail view of
the order entity might require calling the getOrderDetails() (the
standard detail API), and the getCommonCodeList() API to retrieve data
for some combo box on the screen. Since common codes are stored at
the rule set level, it is mandatory to make sure the correct rule set for
that order is passed as input to the getCommonCodeList() API. The
getOrderDetails() API, given the correct output template, returns the
rule set key for the order. This rule set key can be passed to the
getCommonCodeList() API by referring to the output of the
getOrderDetails() API as a dynamic attribute in the input XML of the
getCommonCodeList()API.

For example, the getOrderDetails() API returns:

<Order OrderHeaderKey="…" OrderNo="…" RulesetKey="…"/>

The Input field of the API resource definition for getCommonCodeList(),
should be:

<CommonCode CodeType="ORDER_TYPE" RulesetKey="xml:/Order/@RulesetKey"/>

Notice that the value of the RulesetKey attribute is set to an XML binding
that refers to the output of the getOrderDetails() function. The exact
same rules of XML binding that apply when binding inputs inside of a JSP
also apply when using dynamic attributes. This example also shows
another way dynamic attributes can be used. The CodeType attribute is
also specified in the input field in the API resource definition. Here, the
value of the attribute is simply set to the static value "ORDER_TYPE".
This attribute and value are always passed to this API when it is called.
Non-changing input values can be specified in this way.

Another possible value that you can use for a dynamic attribute for an
API defined under a detail view is any attribute of the current entity key
XML. This is useful when the input to pass to an API does not have the
same XML structure of the entity key XML that has been formed in the
detail screen. The XML for the current entity is available in a special
namespace called SelectionKeyName.

Available Dynamic Attribute Namespaces

Actions, XML Binding, APIs, Dynamic Namespaces, and Credit Card Numbers 105

The different mechanisms for specifying API input can be combined. For
example, it may be necessary to pass the entity key and some dynamic
attribute to an API configured under a detail view action. Since passing
the entity key happens automatically, you can still specify an Input under
that API with the correct XML structure. Note that the XML structure of
the key should match the XML structure of the input field. There are
other special namespaces available for use in dynamic attributes. For
more information, see Section 13.4, "Available Dynamic Attribute
Namespaces".

13.4 Available Dynamic Attribute Namespaces
Selling and Fulfillment Foundation has the following special namespaces
available for use in dynamic attributes:

CommonFields - This namespace is only available when using the
common_fields JSP. The attributes that are available depend on how the
JSP is used.

CurrentUser - This namespace contains the details about the current
logged-in user using the getUserDetails() API. The exact XML available
is:

<User Activateflag="" BillingaddressKey="" BusinessKey="" ContactaddressKey=""
Createprogid="" Createts="" Createuserid="" CreatorOrganizationKey=""
Imagefile="" Localecode="" Loginid="" Longdesc="" MenuId="" Modifyprogid=""
Modifyts="" Modifyuserid="" NoteKey="" OrganizationKey="" ParentUserKey=""
Password="" PreferenceKey="" Pwdlastchangedon="" Theme="" UserKey=""
UsergroupKey="" Username="" Usertype=""/>

CurrentEnterprise - If the current user belongs to an organization that
is an enterprise, this namespace contains the details about that
enterprise. If the current user belongs to an organization that is not an
enterprise but participates in an enterprise, this namespace contains the
details about the primary enterprise of the current organization. The
details for the organization are retrieved from the
getOrganizationHierarchy() API. The exact XML available is:

<Organization AccountWithHub="" AuthorityType="" BillingAddressKey=""
CatalogOrganizationCode="" CollectExternalThroughAr="" ContactAddressKey=""
CorporateAddressKey="" Createprogid="" Createts="" Createuserid=""
CreatorOrganizationKey="" DefaultDistributionRuleId="" DefaultPaymentRuleId=""
DunsNumber="" InterfaceTime="" InventoryKeptExternally=""
InventoryOrganizationCode="" InventoryPublished="" IsHubOrganization=""

106 Customizing Console JSP Interface for End-User Guide

Posting Data to an API

IsSourcingKept="" IssuingAuthority="" ItemXrefRule="" LocaleCode=""
MerchantId="" Modifyprogid="" Modifyts="" Modifyuserid="" OrganizationCode=""
OrganizationKey="" OrganizationName="" ParentOrganizationCode=""
PaymentProcessingReqd="" PrimaryEnterpriseKey="" PrimarySicCode="" PrimaryUrl=""
RequiresChainedOrder="" RequiresChangeRequest="" RulesetKey="" TaxExemptFlag=""
TaxExemptionCertificate="" TaxJurisdiction="" TaxpayerId="" XrefAliasType=""
XrefOrganizationCode="">

CurrentOrganization - This namespace contains the details of the
organization of the current logged-in user using the
getOrganizationHierarchy() API. The exact XML available is the same
that is available under the CurrentEnterprise namespace.

SelectionKeyName - This namespace contains the XML that is bound to
the currently active key of the current entity. Typically a list screen forms
an XML key and associates that key to the checkbox (or hyperlink) which
is used to navigate to the detail screen. This key is known as the current
selected entity key. A detail view uses this key to call the detail API for
that entity. For more details on this namespace, see Section 13.3,
"Passing Data to APIs".

13.5 Posting Data to an API
By default, the data found in the editable components of a screen is not
sent automatically to a save API, even if the input fields are bound to
some XML. The data is only posted if the user has changed it on the
screen.

However, sometimes it is necessary to pass some or all of the data in
editable components, even if it did not change. For example, screens in
which you are defaulting the input boxes to some default value in the JSP
require all data to be posted.

If the user does not change the data in the input box, you still want the
value to be passed to the API. Therefore, there is a mechanism that
identifies that all data in the editable components is passed to the API for
the entire JSP regardless of what was actually changed in the user
interface. The following code example illustrates how to accomplish this.

 <script language="Javascript">
 IgnoreChangeNames();
 </script>

Posting Data to an API

Actions, XML Binding, APIs, Dynamic Namespaces, and Credit Card Numbers 107

Note that typically this code immediately follows the include statements
located at the beginning of a JSP.

13.5.1 Data Types
Input boxes on an HTML page must conform to specific constraints
regarding field size and data type. For example, the size of an input box
should correspond to the type of data being gathered. Likewise, each
input box requires validations that correspond to the type of data the
field is designed to gather (such as numeric, date, string, and so forth).
For example, string fields must prevent the user from entering data
longer than a specific length. The attribute used for binding a text box to
an API output also resolves the data type and related properties such as
size, decimal digits, and so forth.

The Presentation Framework has two APIs, getTextOptions() and
yfsGetTextOptions(), that permit you not to have to explicitly set these
attributes for each field. When you use these APIs for input boxes, they
automatically take care of the data type-related attributes and
validations.

These attribute definitions and mappings are contained in two files:

yfsdatatypemap.xml file—maps abstract data types to XML attribute
names.

datatypes.xml file—defines data types.

13.5.2 Abstract Data Type Mappings
XML attributes are mapped to abstract data types. The mappings are
contained in the <INSTALL_
DIR>/repository/xapi/template/merged/resource/yfsdatatypemap.x
ml file.

For example, if a Name attribute contains the XML attribute
TaxBreakupKey, and the DataType attribute contains the abstract data
type key, this is defined in the yfsdatatypemap.xml file as follows:

<Attribute Name="TaxBreakupKey" DataType="Key" />

108 Customizing Console JSP Interface for End-User Guide

Posting Data to an API

13.5.3 Abstract Data Type Definitions
The abstract data types define the database data type (DATE, VARCHAR2,
and so forth), the database size, and so forth. The abstract data types
are defined in the <INSTALL_
DIR>/repository/datatypes/datatypes.xml file.

Below are a few sample entries from the file:

<DataType Name='Address' Type='VARCHAR2' Size='70' >
<UIType Size="30" UITableSize="30"/>
</DataType>
<DataType Name='Count' Type='NUMBER' Size='5' NegativeAllowed="false"
ZeroAllowed="true">
<UIType Size="5" />
</DataType>
<DataType Name='TimeStamp' Type='DATETIME' Size='17' />
<DataType Name='Date' Type='DATE' Size='7'>
<UIType Size="12" UITableSize="15"/>
</DataType>
<DataType Name='Quantity' Type='NUMBER' Size='10' NegativeAllowed="false"
ZeroAllowed="true">
<XMLTypeType="QUANTITY"/>
</DataType>

For a definition of the standard Selling and Fulfillment Foundation
abstract data types, see the <INSTALL_
DIR>/repository/datatypes/datatypes.xml file.

For a list of attributes supported datatypes.xml, see Chapter 20, "Data
Type Reference".

13.5.4 Data Type Determination
Selling and Fulfillment Foundation uses the yfsdatatypemap.xml file for
data type determination. First Selling and Fulfillment Foundation
searches the file to find the string specified for binding (including the
xml: prefix). If the entire binding string is not found, Selling and
Fulfillment Foundation searches the file for only the attribute part of the
binding string.

The attribute must be able to be found in one of these two formats.

Displaying Credit Card Numbers

Actions, XML Binding, APIs, Dynamic Namespaces, and Credit Card Numbers 109

Then, using the definition in the datatypes.xml file, the Presentation
Framework API forms an appropriate HTML string with custom attributes
that are then used on the client side.

13.5.5 Data Type Validation
A JavaScript function on the client side runs when the page loads, then
reads the custom attributes and sizes the input boxes appropriately. A
validation function is attached to these input boxes through the
window.attachEvent() function. The validation function also uses the
custom attributes to perform data type validations.

13.6 Displaying Credit Card Numbers
Credit card number should be displayed only to users who have
permissions to see them. Therefore, when you build a custom screen to
display credit card number, use the following rules to ensure that this
security is maintained:

CurrentUser namespace contains the attribute ShowCreditCardInfo
under the User node. This attribute is true if the current login user
does have permission to see the credit card number and false if the
current login user does not have the necessary permissions.

APIs that return credit card number normally return the encrypted
credit card number. These APIs also return a DisplayCreditCardNo
attribute that contains the last four digits of the credit card.

Use the DisplayCreditCardNo attribute in conjunction with the
showEncryptedCreditCardNo() JSP function to initially show the
credit card number as asterisks (*) followed by the last four digits.
See Appendix 17.34, "showEncryptedCreditCardNo".

Form a hyperlink on the credit card number that displays only if the
logged in user has permission to see decrypted credit card numbers.
For example,

 <% if (userHasDecryptedCreditCardPermissions()) {%>
 <yfc:makeXMLInput name="encryptedCCNoKey">
 <yfc:makeXMLKey
binding="xml:/GetDecryptedCreditCardNumber/@EncryptedCCNo"
value="xml:/PaymentMethod/@CreditCardNo"/>
 </yfc:makeXMLInput>

110 Customizing Console JSP Interface for End-User Guide

Displaying Credit Card Numbers

 <td class="protectedtext">
 <a
<%=getDetailHrefOptions(decryptedCreditCardLink,
getParameter("encryptedCCNoKey"),"")%>>

<%=showEncryptedCreditCardNo(resolveValue("xml:/PaymentMeth
od/@DisplayCreditCardNo"))%>

 </td>
 <% } else { %>
 <td class="protectedtext">

<%=showEncryptedCreditCardNo(resolveValue("xml:/PaymentMeth
od/@DisplayCreditCardNo"))%>
 <yfc:getXMLValue
binding="xml:/PaymentMethod/@DisplayCreditCardNo"/>
 </td>
 <% } %>

Then create a pop-up window that opens when the hyperlink is
clicked.

Call getDecryptedCreditCardNumber() in the pop-up window to
decrypt the credit card, passing the DisplayFlag attribute as true if
the current login user has permissions and false if the current login
user does not have permissions.

Use the output of getDecryptedCreditCardNumber() to display the
decrypted credit card number on the screen.

When you configure the getDecryptedCreditCardNumber() API for your
screen through the Applications Manager, you must specify a dynamic
input so that the DisplayFlag attribute is passed to the API, based on
current user's permissions. Here is an example of how you could specify
the Input field in the Applications Manager:

<GetDecryptedCreditCardNumber
DisplayFlag="xml:CurrentUser:/User/@ShowCreditCardInfo"
EncryptedCCNo="xml:/Order/PaymentMethods/PaymentMethod/@CreditCardNo"/>

And specify the Template field according to the following example:

<GetDecryptedCreditCardNumber DecryptedCCNo=""/>

Displaying Credit Card Numbers

Actions, XML Binding, APIs, Dynamic Namespaces, and Credit Card Numbers 111

13.6.1 Displaying Multiple Credit Card Numbers
When displaying credit card numbers in a list, you might choose to
display the DisplayCreditCardNo attribute, which is returned by the APIs
that output CreditCardNo.

To append asterisks to the credit card number returned by the API, use
the DisplayCreditCardNo attribute and the
showEncryptedCreditCardNo() method.

Displaying a list of decrypted credit card numbers in a list involves calling
getDecryptedCreditCardNumber() in a loop for each row. This can be
an expensive operation, so you may want to display a list of encrypted
credit card numbers (shown as **********1234) by using the
DisplayCreditCardNo attribute. All APIs that output CreditCardNo return
this attribute. Then link the encrypted credit card numbers to a pop-up
window that displays a specified credit card number in a decrypted
format.

112 Customizing Console JSP Interface for End-User Guide

Displaying Credit Card Numbers

User Interface Style Reference 113

14
User Interface Style Reference

14.1 Controls and Classes
This section is a quick reference list of the most common types of HTML
controls and their corresponding CSS class tags. The typical controls and
the corresponding CSS classes used in a JSP file are listed in Table 0–1.

Table 0–1 Typical Controls and Tags

Control
and Tag Available Classes Description

Buttons button For all buttons.

Checkbo
xes

checkboxcolumn For checkboxes displayed in a
column of a table.

checkboxheader For checkboxes displayed in the
header of a table. Use this class at
the <td> cell level, not the <input>
tag level.

Combob
oxes/
Selects

combobox For all combo boxes.

Icons columnicon For icons in a table column.

icon For icons not in a table column.

lookupicon For lookup icons appearing to the
right of certain editable input texts.

Input
Boxes

dateinput For editable date input.

114 Customizing Console JSP Interface for End-User Guide

Controls and Classes

numericprotectedinput For non-editable numeric input.
Right-aligned. Surrounding <td>
tag should have
class="protectednumber".

numericunprotectedinp
ut

For editable numeric input.
Right-aligned.

protectedinput For non-editable input. Surrounding
<td> tag should have
class="protectedtext".

unprotectedinput For editable input.

Labels N/A Takes the same font as specified by
the table class in which it resides.
Use detail labels for a detail view
and search labels for a search view.

Radio
Buttons

radiobutton For all radio buttons.

Tables
(non-tab
ular
data)

view For detail views. This class is
attached to view.htc, which
dynamically sets column widths
when the HTML page loads.

Table 0–1 Typical Controls and Tags

Control
and Tag Available Classes Description

Controls and Classes

User Interface Style Reference 115

Tables
(tabular
data)

table For all tables of the tabular data
type. Specify the following
attributes for the table element:

editable="true"
deleteAllowed="true"
addAllowed="true"

The heading row must be included
in a <thead> tag. Heading cells
must be in <td> tag and not the
<th> tag.
The body rows must be included in
a <tbody> tag.
If the table is an editable list that
permits add, specify a template row
in a <tfoot> tag.
Specify the following attributes for
the template row <tr> tag:

"style="display:none"
TemplateRow="true"
ByPassRowColoring="true"

Text numerictablecolumn For displaying text in a table
column. Right-aligned.

protectednumber For displaying numeric data.
Right-aligned.

protectedtext For displaying text.

searchcriteriacell For the bottom <td> tag of each
search criteria. Note: all <td> tags
using class as searchcriteriacell
must specify nowrap="true". This
prevents the lookup icon from
wrapping to the next line when
used with text boxes, input boxes,
and query combo boxes.

tablecolumn For displaying non-editable text in a
table column.

Table 0–1 Typical Controls and Tags

Control
and Tag Available Classes Description

116 Customizing Console JSP Interface for End-User Guide

Page Layout

14.2 Page Layout
The following table describes the guidelines to follow when customizing
screens in the Application Console.

tablecolumnheader For displaying text in a table
column header.

Textarea textarea For keeping text areas consistent.
See also getTextAreaOptions().

Total
fields

totaltext Shows text in a different color to
identify a total field.

Table 0–1 Typical Controls and Tags

Control
and Tag Available Classes Description

Page Layout

User Interface Style Reference 117

Table 0–2 Page Layout Style Guidelines

Object Standards

Anchor
Page

Defines the layout of the inner panels to be included on a
screen. For example, the Order Detail anchor page includes
all inner panels relevant to Order Detail and defines how
they should be laid out. Each entity should have its own
anchor page.

Use the following standards when developing anchor pages:

Table tags - The outermost, or container, <table> tag
should contain cellspacing="0" and cellpadding="0"
attributes as the spacing is achieved through the classes
used for the inner panels themselves. If these attributes are
not set to "0" the amount of spacing and padding could
potentially be inconsistent.

Cell tags - <td> tags within the same <tr> tag should
contain height="100%" to ensure the horizontally aligned
cells are the same height.

Inner
Panel
Title-bars

Access to available pop-up windows granted through
left-aligned icons in the title-bar.

Available actions included in the right-aligned drop-down in
the title-bar.

Both of the above are achieved through the Service
Definition Framework.

Insets Should be laid out symmetrically and consistent with other
screens.

Should be spaced five pixels from each other and from the
edge of the main page. Apply this spacing to the inner
panels, starting with the top inner panel and working down
and to the right. For each individual inner panel, apply
spacing to the top, left side, right side and then the bottom.
Be careful not to add more spacing than necessary. For
example, if there are two inner panels horizontally aligned
and the left panel has been specific a right spacing of 5px,
the right panel does not require left spacing of 5px, as this
would result in total spacing of 10px.

118 Customizing Console JSP Interface for End-User Guide

Hypertext Links

14.3 Hypertext Links
When a screen has a field that is a logical reference to another entity,
hyperlink the data of that field to the entity to which it refers. For
example, hyperlink the Order# field on the Order Line Detail screen to
the Order screen.

Labels
and
Inputs

Specific names for labels on the screen should be the same
as the names used in the Applications Manager. If not used
in the Applications Manager, the labels should be the same
as console in previous releases.

Should be vertically spaced 5 pixels from one another.
There is no default value for padding or spacing.

List
Checkbox
es

Checkboxes that appear in lists to enable the user to select
specific rows. These should appear to the left of each row
and is coded within the JSP that displays them.

Lists All columns displaying numeric values should be right
aligned.

Menu Bar Should be displayed at the top of all pages that are not
pop-up windows.

Page
Title-bars

Should describe the current page and contain a list of
available views when there is more than one view available.

Search
Criteria

All available search criteria text inputs should be preceded
by a combobox. For text search fields, provide combobox
options for is, starts with, and contains. For numeric search
fields, provide combobox options for less than, greater
than, and equal to.

Lookups should be provided to the right of the text inputs.

Table 0–2 Page Layout Style Guidelines

Object Standards

Programming Standards for the JSP Console Interface 119

15
Programming Standards for the JSP

Console Interface

15.1 Standards for Creating Well-Formed JSP
Files

Although HTML code is embedded in Java Server Pages, strive to write
JSP code that is easily readable. If you require some special XML
manipulation that cannot be incorporated in the APIs, include a separate
JSP file, so that HTML tags and Java code do not become mixed together.

Use the following standards when writing JSP files:

Tab spacing - Set the editor tab spacing to 4.

JavaScript files - Do not include any JavaScript in the JSP file. Put all
JavaScript into a separate JS file.

HTML tags - Type all HTML tags and attributes in lowercase letters.

HTML attributes - Enclose all HTML element attribute values in double
quotes. Single quotes and no quotes may work, but the standard is to
use double quotes.

HTML tables - Minimize the number of tables in HTML pages.
Especially, reduce the number of nested tables (a table within another
table).

Tags - Close all tags, whether required or not.

Control elements - For each control element, add the get…Options
attribute as the last attribute for that control element.

Comments - Enclose all comments in the following manner:
<%/*……..*/%>

120 Customizing Console JSP Interface for End-User Guide

Valid HTML Tags and Attributes

15.2 Valid HTML Tags and Attributes
Follow this HTML reference material to help guide you in using the HTML
attributes as they are used by Selling and Fulfillment Foundation.

Table 0–3 lists the recommended standard HTML tags and their
attributes. For each HTML tag, use only the attributes listed in the Tag
Attribute column.

Tip: When finished coding a form, open it in any visual
HTML editor to validate that the HTML is well-formed.

Note: You can also use any other HTML attributes, as
long as you devise your own set of standards.

Table 0–3 Recommended Standard HTML Tags and Attributes

HTML Tag Tag Attributes

<% %> keep at the top of the JSP wherever possible

<a> href

<imp> alt

border

name

src

style

<input> class

maxlength

name

onblur

style

value

<option> binding

Valid HTML Tags and Attributes

Programming Standards for the JSP Console Interface 121

selected

type

value

<select> class

name

<table> editable

cellPadding

cellspacing

class

style

<tbody> N/A

<td> class

colspan

nowrap

onclick

rowspan

sortable

sortValue

style

<tfoot> N/A

<thead> N/A

<tr> style

templateRow (true/false)

Table 0–3 Recommended Standard HTML Tags and Attributes

HTML Tag Tag Attributes

122 Customizing Console JSP Interface for End-User Guide

Conventions for Naming JSP Files and Directories

15.3 Conventions for Naming JSP Files and
Directories

As you populate directories with JSP files, adhere to a consistent
hierarchical directory structure and a consistent file naming convention.

Use the following rules when choosing names for JSP files:

Do not use any capital letters.

Use underscores, not hyphens, to separate words.

If the JSP file is an anchor page, include the word anchor in the
name.

Directory and File Name Syntax
<module>/<entity>_<screen_type>_<viewdesc|"anchor">.jsp

Example
om/orderline/search/orderline_search_bydate.jsp

<module> represents a two-character module code. For example:

cm - Catalog Management

em - Alert Management

im - Inventory Management

om - Order Management

pm - Participant Management

<entity> represents the resource ID of the entity. For example:

order - Order entity

orderline - Order Line entity

orderrelease - Order Release entity

<screen_type> represents the resource type of the view. For example:

list - List views

detail - Detail views

search - Search views

Validating Your HTML and CCS Files

Programming Standards for the JSP Console Interface 123

<viewdesc> represents an abbreviated description of the view or the
inner panel. For example:

primaryinfo - Primary Information

paymentinfo - Payment Information

collectiondtl - Collection Details

15.4 Conventions for Naming Controls
When using the Presentation Framework function for XML binding input
controls in your JSP, do not set the name attribute for that control. In
other words, avoid naming each control. Instead, access the control
through the HTML object or DOM hierarchy. If you want to name a
control, ensure that the name is unique within each page.

15.5 Internationalization
The Presentation Framework provides the ability to write an
internationalized application. To enable this, it provides the following
features that can be customized to be locale-specific:

i18n JSP tag for literals

Graphics and images

Client-side error messages

Date and number validations

Themes (which includes fonts that support language character sets)

15.6 Validating Your HTML and CCS Files
You can validate both HTML and CSS files. You can use any commercial
software package or free online application, such as the following World
Wide Web Consortium (W3C) validators:

W3C CSS Validator at http://jigsaw.w3.org/css-validator/

W3C HTML Validator at http://validator.w3.org/

As an alterative, after you finish coding a form, you can open it in any
visual HTML editor to validate that the HTML is well-formed.

http://jigsaw.w3.org/css-validator/
http://validator.w3.org/

124 Customizing Console JSP Interface for End-User Guide

Validating Your HTML and CCS Files

CSS Theme File Reference 125

16
CSS Theme File Reference

16.1 CSS Themes for the JSP Console
The standard Selling and Fulfillment Foundation theme uses the Tahoma
font as specified within the CSS files. If you use a different sized font,
you may encounter display problems, such as truncation of the
drop-down list items. In such situations, you can edit the CSS file and
specify properties that enable the screen to display correctly. Use the
classes and properties described in Table 0–4.

126 Customizing Console JSP Interface for End-User Guide

CSS Themes for the JSP Console

Table 0–4 CSS Theme Classes

Class Description

favouritespopuprowhighlight Drop-down list items under the Favorite
folder icon to highlight during mouse
over actions. Has the following
properties:

charheight - vertical size of
character. Use the same value as
specified for the
favouritespopuprownormal class.
charwidth - horizontal size of
character. Use the same value as
specified for the
favouritespopuprownormal class.

favouritespopuprownormal Drop-down lists under the Favorite
folder icon. Has the following
properties:

charheight - vertical size of
character. Use the same value as
specified for the
favouritespopuprowhighlight class.
charwidth - horizontal size of
character. Use the same value as
specified for the
favouritespopuprowhighlight class.

ipactionspopuprowhighlight Drop-down list items on detail views to
highlight during mouse over actions.
Contains both header and line
information. Has the following
properties:

charheight - vertical size of
character. Use the same value as
specified for the
ipactionspopuprownormal class.
charwidth - horizontal size of
character. Use the same value as
specified for the
ipactionspopuprownormal class.

CSS Themes for the JSP Console

CSS Theme File Reference 127

ipactionspopuprownormal Drop-down list items on detail views.
Contains both header and line
information. Has the following
properties:

charheight - vertical size of
character. Use the same value as
specified for the
ipactionspopuprowhighlight class.
charwidth - horizontal size of
character. Use the same value as
specified for the
ipactionspopuprowhighlight class.

listactionspopuphighlight Drop-down list items on list views to
highlight during mouse over actions.
On list views. Has the following
properties:

charheight - vertical size of
character. Use the same value as
specified for the
listactionspopupnormal class.
charwidth - horizontal size of
character. Use the same value as
specified for the
listactionspopupnormal class.

listactionspopupnormal Drop-down list items on list views. Has
the following properties:

charheight - vertical size of
character. Use the same value as
specified for the
listactionspopuphighlight class.
charwidth - horizontal size of
character. Use the same value as
specified for the
listactionspopuphighlight class.

Table 0–4 CSS Theme Classes

Class Description

128 Customizing Console JSP Interface for End-User Guide

CSS Themes for the JSP Console

menuitempopuprowhighlight Drop-down list items on the menu bar
to highlight during mouse over actions.
Has the following properties:

charheight - vertical size of
character. Use the same value as
specified for the
menuitempopuprownormal class.
charwidth - horizontal size of
character. Use the same value as
specified for the
menuitempopuprownormal class.

menuitempopuprownormal Drop-down list items on the menu bar.
Has the following properties:

charheight - vertical size of
character. Use the same value as
specified for the
menuitempopuprowhighlight class.
charwidth - horizontal size of
character. Use the same value as
specified for the
menuitempopuprowhighlight class.

menulevel1hl Menu bar items to highlight during
mouse over actions. Has the following
properties:

height - background vertical size.

menulevel1norm Menu bar items. For example Order,
Supply, System Management, and so
forth: Has the following properties:

height - background vertical size.

Table 0–4 CSS Theme Classes

Class Description

CSS Themes for the JSP Console

CSS Theme File Reference 129

searchentitiespopuprowhighlig
ht

Drop-down list items (left side) on
search views to highlight during mouse
over actions. Has the following
properties:

charheight - vertical size of
character. Use the same value as
specified for the
searchentitiespopuprownormal
class.
charwidth - horizontal size of
character. Use the same value as
specified for the
searchentitiespopuprownormal
class.

searchentitiespopuprownormal Drop-down list items (left side) on
search views. Has the following
properties:

charheight - vertical size of
character. Use the same value as
specified for the
searchentitiespopuprowhighlight
class.
charwidth - horizontal size of
character. Use the same value as
specified for the
searchentitiespopuprowhighlight
class.

Table 0–4 CSS Theme Classes

Class Description

130 Customizing Console JSP Interface for End-User Guide

CSS Themes for the JSP Console

searchviewspopuprowhighlight Drop-down list items (right side) on
search views to highlight during mouse
over actions. Has the following
properties:

charheight - vertical size of
character. Use the same value as
specified for the
searchviewspopuprownormal class.
charwidth - horizontal size of
character. Use the same value as
specified for the
searchviewspopuprownormal class.

searchviewspopuprownormal Drop-down list items (right side) on
search views. Has the following
properties:

charheight - vertical size of
character. Use the same value as
specified for the
searchviewspopuprowhighlight
class.
charwidth - horizontal size of
character. Use the same value as
specified for the
searchviewspopuprowhighlight
class.

Table 0–4 CSS Theme Classes

Class Description

JSP Functions for the Console JSP Interface 131

17
JSP Functions for the Console JSP

Interface

17.1 changeSessionLocale
While locale is configured at the user level, you can also dynamically
switch to a specific locale by using the changeSessionLocale JSP function.

Syntax
void changeSessionLocale(String localecode)

Input Parameters
localecode - Locale you want to switch to.

17.2 equals
The equals JSP function is a cover over Java's equal function that handles
objects that are null, contain zero, or more white spaces. In such
situations, the two objects are considered equal.

Syntax
boolean equals(Object obj1, Object obj2)

Input Parameters
obj1, obj2 - Required. The two objects that must be compared.

Example
This example shows how this function makes string comparisons.

132 Customizing Console JSP Interface for End-User Guide

getCheckBoxOptions

<% String sAvailable="";
if(equals(resolveValue("xml:/InventoryInformation/Item/@TrackedEverywhere"),"N")
)
 sAvailable=getI18N("Available") + ": " + getI18N("INFINITE");
 else
 sAvailable=getI18N("Available") + ": "
+resolveValue("xml:/InventoryInformation/Item/@AvailableToSell");
%>

17.3 getCheckBoxOptions
This JSP function is a standard function to XML bind checkboxes when
modification rules need not be considered.

Syntax
String getCheckBoxOptions(String name)

String getCheckBoxOptions(String name,String a_checked, String a_
value)

Input Parameters
name - Required. Value of the name attribute for the checkbox input.
Can be a binding or a literal.

checked - Required. When the value of the value attribute is equal to
this value, the CHECKED attribute is set to true.

value - Required. Value of the value attribute for the checkbox input.
Can be a binding or a literal.

JSP Usage
<input type="checkbox"
<%=getCheckBoxOptions("xml:Order:/Order/Addlinfo/@Country" ,"IND",
"xml:Order:/Order/Addlinfo/@Country")%></yfc:i18n>India</yfc:i18n></input>

Resultant HTML
<input type="checkbox" name="xml:Order:/OrderAddlinfo/@Country"

Note: If only the name parameter is passed, value
defaults to the same value passed to the name parameter.

getComboOptions

JSP Functions for the Console JSP Interface 133

value="IND">India</input>

17.4 getColor
This JSP function returns the HTML color in hexidecimal code based on
the specific color object.

Syntax
public String getColor(java.awt.Color color)

Input Parameters
color - Required. Color object.

17.5 getComboOptions
This JSP function provides a standard function to XML bind combo boxes
when modification rules do not need to be considered.

Syntax
String getComboOptions(String name)

String getComboOptions(String name, String value)

Input Parameters
name - Required. Path in the target XML to which the value in the input
text is sent when the form is posted. Through the Presentation
Framework, the target XML is then passed to the appropriate API.

value - Required. Specifies the value to be selected in the combobox.
Can be a binding or a literal.

JSP Usage
This example shows how to render the enterprise code combobox in the
Order Entry screen. The API is used in conjunction with the loopOptions
JSP tag.

 <select class="combobox" onChange="updateCurrentView()"
<%=getComboOptions("xml:/Order/@EnterpriseCode",enterpriseCode)%>>
 <yfc:loopOptions binding="xml:/OrganizationList/@Organization"
name="OrganizationCode"

134 Customizing Console JSP Interface for End-User Guide

getComboText

 value="OrganizationCode" selected="xml:/Order/@EnterpriseCode"/>
 </select>

17.6 getComboText
This JSP function provides a standard function to get description from a
list of values.

Syntax
String getComboText(String binding, String name, String value, String
selected)

String getComboText(String binding, String name, String value, String
selected,boolean localized)

Input Parameters
binding - Required. Binding string that points to the repeating element
in the API output. The repeating element must be one fixed with the at
character ("@").

name - Required. Path in the target XML to which the value in the input
text is sent when the form is posted. Through the Presentation
Framework, the target XML is then passed to the appropriate API.

value - Required. Specifies the value to be selected in the combobox.
Can be a binding or a literal.

selected - Optional. Binding string that must be evaluated and set as
the default selected value. This is matched with the value attribute, not
the description attribute. Defaults to blanks, for example, space (" ").

localized - Optional. If passed as true, it fetches the localized
description to be displayed.

JSP Usage
This example shows how to render the enterprise code combobox in the
Order Entry screen. The API is used in conjunction with the loopOptions
JSP tag.

<%=getComboText("xml:TaxNameList:/CommonCodeList/@CommonCode","CodeShortDescript
ion","CodeValue","xml:/HeaderTax/@TaxName",true)%>

getDateValue

JSP Functions for the Console JSP Interface 135

17.7 getDateOrTimePart
This JSP function returns a string representing the date or time portion of
a timestamp value.

Syntax
String getDateOrTimePart(String type, String value);

Input Parameters
type - Required. Specifies whether to display the date or time. Pass
YFCDATE to return the date portion of the timestamp. Pass YFCTIME to
return the time portion of the timestamp.

value - Required. String containing a timestamp value in the current
login user’s locale’s timestamp format.

Output Parameters
A string representing the date or time portion of the timestamp attribute.

Example
This example uses the getDateOrTimePart() function to return the date
portion of the attribute referred to in the
xml:/OrderRelease/@HasDerivedParent binding.

getDateOrTimePart("YFCDATE",
resolveValue("xml:DeliveryPlan:/DeliveryPlan/@DeliveryPlanDate));

17.8 getDateValue
This JSP function retrieves the date from an XML in XML format, and not
in the format of current locale. This is typically used for storing a custom
sortValue attribute in a column for sorting a table.

Syntax
String getDateValue(String bindingStr);

Input Parameters
bindingStr - Required. Binding string that must be resolved into a date
string.

136 Customizing Console JSP Interface for End-User Guide

getDateValue

Output Parameters
Date string (YYYYMMDDHH24MISS structure), with the following values:

YYYY - Required. Four-digit display of year (for example, 2002).

MM - Required. Two-digit display of month (for example, 05 for May).

DD - Required. Two-digit display of date (for example, 05 for 5th).

HH24 - Required. Two-digit display of hour on a 24-hour scale (for
example, 16 for 4 PM).

MI - Required. Two-digit display of minutes.

SS - Required. Two-digit display of seconds.

Example
This example shows how the getDateValue() function stores the date in
this format for subsequent client-side sorting by the user on the list of
alerts for an order.

<table class="table" editable="false" width="100%" cellspacing="0">
 <thead>
 <tr>
 <td class="tablecolumnheader"><yfc:i18n>Alert_ID</yfc:i18n></td>
 <td class="tablecolumnheader"><yfc:i18n>Raised_On</yfc:i18n></td>
 </tr>
 </thead>
 <tbody>
 <yfc:loopXML binding="xml:/InboxList/@Inbox" id="Inbox">
 <tr>
 <td class="tablecolumn">
 <yfc:getXMLValue binding="xml:/Inbox/@InboxKey"/>
 </td>
 <td class="tablecolumn"
sortValue="<%=getDateValue("xml:Inbox:/Inbox/@GeneratedOn")%>">
<yfc:getXMLValue binding="xml:/Inbox/@GeneratedOn"/>
</td>
 </tr>
 </yfc:loopXML>
 </tbody>
</table>

getDetailHrefOptions

JSP Functions for the Console JSP Interface 137

17.9 getDBString
This JSP function returns a string representing the localized version of
the input string. The input to this method should be a data string that
has been translated in the YFS_LOCALIZED_STRINGS table.

Syntax
String getDBString(String inString)

Input Parameters
inString - Required. The string to be translated. This string should be
translated in the YFS_LOCALIZED_STRINGS table.

Example
This example shows how to display the translated version of the
Description attribute of the singleDocType element.

<%=getDBString(singleDocType.getAttribute("Description"))%>

17.10 getDetailHrefOptions
This JSP function is typically used to form a link in an inner panel that
opens another detail view. A link is modeled as a resource of type Link.
The resource can point to any other detail view, and you can configure
this through the Resource Hierarchy tree. Use this function inside an <a>
tag. This function can be used only in an inner panel (and therefore only
in a detail view).

Syntax
String getDetailHrefOptions(String linkIdSuffix, String entityKey, String
extraParams)

Input Parameters
linkIdSuffix - Required. Link ID suffix. A resource of type Link is named
as <current inner panel's Resource ID><suffix>. For instance, if the
current inner panel's Resource ID is YOMD010I01, a link ID is
YOMD010I01L01 and the suffix is L01. Pass only the suffix L01.

entityKey - Required. Key (formed through the makeXMLInput JSP tag)
that must be passed on to the view that is invoked by selecting this link.

138 Customizing Console JSP Interface for End-User Guide

getDetailHrefOptions

extraParams - Required. String containing extra parameters that are
appended to the URL that is formed for the <a href> tag. The String
should start with an ampersand ("&") and should contain name-value
pairs in the <name>=<value> format. Restrict the use of this parameter
only to cases where it is absolutely necessary because there is a size
limit of what can be passed in a URL. Typically, each view should only
take the key and retrieve other details from an API based on that key.

Output Parameters
A string containing href="" and onclick="" attributes must be plugged
into a <a> tag in HTML.

The resource of type link is not permission controlled. However, the view
to which a link points is permission controlled. Still, since this function is
called inside an <a> tag, the link is formed regardless of whether or not
the user has permissions for the view to which the link points. If the user
selects the link, the view that is displayed gives an Access Denied
message.

Example
This example shows how the getDetailHrefOptions() function forms a
hyperlink to the Alert Detail view from a list of alerts for an order.

<table class="table" editable="false" width="100%" cellspacing="0">
 <thead>
 <tr>
 <td sortable="no" class="checkboxheader">
 <input type="checkbox" name="checkbox" value="checkbox"
onclick="doCheckAll(this);"/>
 </td>
 <td class="tablecolumnheader"><yfc:i18n>Alert_ID</yfc:i18n></td>
 </tr>
 </thead>
 <tbody>
 <yfc:loopXML binding="xml:/InboxList/@Inbox" id="Inbox">
 <tr>
 <yfc:makeXMLInput name="inboxKey">
 <yfc:makeXMLKey binding="xml:/Inbox/@InboxKey"
value="xml:/Inbox/@InboxKey"/>
 </yfc:makeXMLInput>
 <td>
 <input type="checkbox" value='<%=getParameter("inboxKey")%>'
name="EntityKey"/>

getDetailHrefOptions (with additional parameter)

JSP Functions for the Console JSP Interface 139

 </td>
 <td class="tablecolumn">
 <a <%=getDetailHrefOptions("L01",
getParameter("inboxKey"),"")%> >
 <yfc:getXMLValue binding="xml:/Inbox/@InboxKey"/>

 </td>
 </tr>
 </yfc:loopXML>
 </tbody>
</table>

17.11 getDetailHrefOptions (with additional
parameter)

This JSP function is similar to the getDetailHrefOptions() function, except
that it takes an additional parameter. This additional parameter enables
you conditionally link to different views with the same hyperlink. First,
configure multiple link resources under the same inner panel that have
the same link ID except for a conditional suffix. For example, configure
one link with ID YOMD010I01L010001 that points to one view and
another link with ID YOMD010I01L010002 that points to a different view.
Then, in the JSP, you can use this function within an <a> tag to
conditionally link to different views by passing different values for the
conditionalLinkId parameter.

Syntax
getDetailHrefOptions(String linkIdSuffix, String conditionalLinkId, String
entityKey, String extraParams)

Input Parameters
linkIdSuffix - Required. Link ID suffix. A resource of type Link is named
as <current inner panel's Resource ID><suffix>. For instance, if the
current inner panel's Resource ID is YOMD010I01, a link ID is
YOMD010I01L01 and the suffix is L01. Pass only the suffix L01.

conditionalLinkId - Required. Portion of the suffix of the link ID. Used
to conditionally link to different views.

entityKey - Required. Key (formed through the makeXMLInput JSP tag)
that must be passed on to the view that is invoked by selecting this link.

140 Customizing Console JSP Interface for End-User Guide

getDetailHrefOptions (with additional parameter)

extraParams - Required. String containing extra parameters that are
appended to the URL that is formed for the <a href> tag. The string
should start with an ampersand (&) and contain name value pairs in the
syntax <name>=<value>. Because there is a size limit on what can be
passed in a URL, use this parameter only when absolutely necessary.
Typically, each view should only take the key and retrieve other details
from an API based on that key.

Output Parameters
A string containing href="" and onclick="" attributes that must be
plugged into a <a> tag in HTML.

The resource of type link is not permission controlled. However, the view
to which a link points is permission controlled. Still since this function is
called inside an <a> tag, the link is formed regardless of whether or not
the user has permissions for the view to which the link points. If the user
selects the link, the view that is displayed gives an Access Denied
message.

Example
This function is useful when a specific hyperlink on a screen must link
across document types. For example, a list of shipments on a Delivery
Plan screen could be shipments for different document types (order and
purchase order shipments). The detail view that must be shown for the
two types of shipments is different. The document type of the shipment
can be used as the conditionalLinkId.

<a <%=getDetailHrefOptions("L01", getValue("Shipment",
"xml:/Shipment/@DocumentType"), getParameter("shipmentKey"), "")%>>
<yfc:getXMLValue binding="xml:/Shipment/@ShipmentNo"/>

This example shows the call to the getValue() function returns the
document type of the shipment that is used as the conditionalLinkId. For
this example to work, the inner panel using this JSP should have to link
resources defined with the following properties:

Link 1: ID="YDMD100I02L010001" View ID="YOMD330"
Link 2: ID="YDMD100I02L010005" View ID="YOMD7330"
getDoubleFromLocalizedString -

getElement

JSP Functions for the Console JSP Interface 141

17.12 getDoubleFromLocalizedString
This JSP function returns a double value that is represented in a string
containing the number in the format used by a particular locale.

This function does the reverse of the getLocalizedStringFromDouble()
function. See “getLocalizedStringFromDouble” on page 17-144.

Syntax
double getDoubleFromLocalizedString(YFCLocale aLocale, String sVal)

Input Parameters
aLocale - Required. The YFCLocale object for which you want the
number formatted for a specific locale.

sVal - Required. The string containing the formatted representation of
the number.

Output Parameters
A double containing the unformatted number.

JSP Usage
This example shows how the string variable containing a formatted
double called sTotalInternalUnassignedDemand is compared to zero by
first converting it into the double value.

<% if ((getDoubleFromLocalizedString(getLocale(),
sTotalInternalUnassignedDemand)) > 0) {%>
 <table border="1" style="border-color:Black" cellspacing="2" cellpadding="2"
 bgcolor="<yfc:getXMLValue
 binding="xml:/InventoryInformation/Item/InventoryTotals/Demands/@Total
 InternalUnassignedDemand" />">
 <tr>
 <td style="height:10px;width:15px"></td>
 </tr>
 </table>
<%}%>

17.13 getElement
This JSP function gets the YFCElement object that resides in a specific
namespace. You can use this function to obtain a handle to the

142 Customizing Console JSP Interface for End-User Guide

getElement

YFCElement and subsequently manipulate the XML in the YFCElement
object.

YFCElement is a part of the Selling and Fulfillment Foundation DOM utility
package. To see the APIs available in this package, refer to the Selling
and Fulfillment Foundation: Javadocs.

Syntax
YFCElement getElement(String nameSpace)

Input Parameters
nameSpace - Required. Namespace that contains the YFCElement needs
to be returned.

Output Parameters
YFCElement - Required. YFCElement object that resides in the
namespace provided.

Example
This example shows how the Return detail view controls whether the
active or inactive state of the Schedule operation uses this function.

The Schedule operation is not valid for draft orders.

The getOrderDetail() API returns DraftOrderFlag attribute in the XML.

This flag is Y when the order is draft order, and N otherwise.

This must be converted into another flag that is opposite in meaning. As
a result, use an attribute called ConfirmedFlag, which is N when the
order is a draft order and Y when the order is no longer a draft order.

<%
 YFCElement elem=getElement("Order");
 if (elem != null) {
 //Flip the draft order flag into confirmed flag.
 elem.setAttribute("ConfirmedFlag",
!isTrue("xml:/Order/@DraftOrderFlag"));
 }
%>

getLocale

JSP Functions for the Console JSP Interface 143

17.14 getImageOptions
This is the JSP function used for building an image tag in HTML.

A Java constants file keeps the image path and icon centralized. If the
path starts with /smcfs/console/icons, the image file is first searched
for inside /extensions/global/webpages/icons/yantraiconsbe.jar
(or the localized icons JAR file) and then inside the
/webpages/yfscommon/
yantraiconsbe.jar (or the localized icons JAR file). The path to be
specified is the path of the image file inside the JAR file.

If the path does not start with /smcfs/console/icons, it retrieves the
file from the location specified in the EAR file. It is strongly advised that
you place your images under the /console/icons/ directory in the
custom icons JAR file (yantraiconsbe.jar).

The path to be specified is the path of the image file inside the JAR file.

If you want to use an image that may be hidden based on modification
rule considerations, use the yfsgetImageOptions() function. See
“yfsGetImageOptions” on page 17-162.

Syntax
getImageOptions(imgfilewithpath, alt)

Input Parameters
imgfilewithpath - Required. Full path to the file of the image.

alt - Required. String to use as the alt attribute for the image. This string
is displayed when the image cannot be rendered on screen.

JSP Usage
<img class="lookupicon" name="search"
<%=getImageOptions(“smcfs/console/icons/shipnode.gif” “Search_for_
Organization”) %> />

17.15 getLocale
This JSP function returns a YFCLocale object that represents the locale of
the user logged in to Selling and Fulfillment Foundation.

144 Customizing Console JSP Interface for End-User Guide

getLocalizedStringFromDouble

Syntax
YFCLocale getLocale()

Input Parameters
None.

Output Parameters
The YFCLocale object that represents the locale of the logged in user.

JSP Usage
This example shows how the getLocale function can be used in
conjunction with the getDoubleFromLocalizedString function. See
“getDoubleFromLocalizedString” on page 17-141.

<% if ((getDoubleFromLocalizedString(getLocale(),
sTotalInternalUnassignedDemand)) > 0) {%>
 <table border="1" style="border-color:Black" cellspacing="2" cellpadding="2"
 bgcolor="<yfc:getXMLValue
 binding="xml:/InventoryInformation/Item/InventoryTotals/Demands/@TotalInter
 nalUnassignedDemand" />">
 <tr>
 <td style="height:10px;width:15px"></td>
 </tr>
 </table>
<%}%>

17.16 getLocalizedStringFromDouble
This JSP function returns a representation of a string value and displays
it in the correct format for a specific locale.

Selling and Fulfillment Foundation always displays numeric data in the
format specific to the locale of the logged in user. If you have a decimal
value that you need to display to the user that is not formatted in any
locale, use this function to get a string representing the correctly
formatted representation of the decimal value.

This function does the reverse of the getDoubleFromLocalizedString()
function. See “getDoubleFromLocalizedString” on page 17-141.

getLocalizedStringFromInt

JSP Functions for the Console JSP Interface 145

Syntax
String getLocalizedStringFromDouble(YFCLocale aLocale, double aDblVal)

Input Parameters
aLocale - Required. The YFCLocale object for which you want the
number formatted for a specific locale.

aDblVal - Required. The number (which can include decimals) you want
formatted for a specific locale.

Output Parameters
A string containing the correctly formatted representation of the number.

JSP Usage
This example shows how to get the localized format of the number
2500.75. If the locale used is en_US, then the sBalance variable is
25,00.75.

String sBalance = getLocalizedStringFromDouble(locale, 2500.75);

17.17 getLocalizedStringFromInt
This JSP function returns a representation of an integer value and
displays it in the correct format for a specific locale.

Selling and Fulfillment Foundation always displays numeric data in the
format specific to the locale of the logged in user. If you have a decimal
value that you need to display to the user that is not formatted in any
locale, use this function to get a string representing the correctly
formatted representation of the integer value.

Syntax
String getLocalizedStringFromInt(YFCLocale aLocale, int intVal)

Input Parameters
aLocale - Required. The YFCLocale object for which you want the
number formatted for a specific locale.

intVal - Required. The integer you want formatted for a specific locale.

146 Customizing Console JSP Interface for End-User Guide

getLoopingElementList

Output Parameters
A string containing the correctly formatted representation of the number.

JSP Usage
This example shows to display an integer variable called quantity within
a <td> tag.

<td class="protectednumber">
 <%=getLocalizedStringFromInt(getLocale(), quantity)%>
</td>

17.18 getLoopingElementList
This JSP function can be used as an alternative to the loopXML JSP tag.
See Chapter 18.9, "loopXML".

If your application servers only supports up to JSP specification version
1.1, and you need to include another JSP (using jsp:include) within the
loop, use this function.

Syntax
ArrayList getLoopingElementList(String binding)

Input Parameters
binding - Required. The XML binding to the element within an XML that
you want to repeat.

Output Parameters
An ArrayList containing the list of elements that you can then use in a
loop.

JSP Usage
This example loops on the
xml:PromiseList:/Promise/Options/@Option element. For each
iteration of the loop, it includes the
/om/lineschedule/list/lineschedule_list_option.jsp JSP file.

Note that loop element is set into an attribute of the pageContext so that
it is be available within the included JSP.

<td colspan="6" style="border:1px ridge black">

getNumericValue

JSP Functions for the Console JSP Interface 147

 <% ArrayList optList =
getLoopingElementList("xml:PromiseList:/Promise/Options/@Option");
for (int OptionCounter = 0; OptionCounter < optList.size(); OptionCounter++) {

 YFCElement singleOpt = (YFCElement) optList.get(OptionCounter);
 pageContext.setAttribute("Option", singleOpt); %>

<% request.setAttribute("Option",
(YFCElement)pageContext.getAttribute("Option")); %>
<jsp:include page="/om/lineschedule/list/lineschedule_list_option.jsp"
flush="true">
</jsp:include>
 <% } %>
</td>

17.19 getNumericValue
This JSP function retrieves a number from an XML output in the original
XML format, and not in the format of current locale. This is typically used
for storing a custom sortValue attribute in a column for sorting a table.

Syntax
String getNumericValue(String bindingStr)

Input Parameters
bindingStr - Required. Binding string that must be resolved into a
number string.

Output Parameters
Number string in the Selling and Fulfillment Foundation XML format, with
decimals.

Example
This example shows how the getNumericValue() function is used to
store the priority in XML format for subsequent client-side sorting by user
on the list of alerts for an order.

<table class="table" editable="false" width="100%" cellspacing="0">
 <thead>
 <tr>
 <td sortable="no" class="checkboxheader">

148 Customizing Console JSP Interface for End-User Guide

getParameter

 <input type="checkbox" name="checkbox" value="checkbox"
onclick="doCheckAll(this);"/>
 </td>
 <td class="tablecolumnheader"><yfc:i18n>Alert_ID</yfc:i18n></td>
 <td class="tablecolumnheader"><yfc:i18n>Priority</yfc:i18n></td>
 </tr>
 </thead>
 <tbody>
 <yfc:loopXML binding="xml:/InboxList/@Inbox" id="Inbox">
 <tr>
 <yfc:makeXMLInput name="inboxKey">
 <yfc:makeXMLKey binding="xml:/Inbox/@InboxKey"
value="xml:/Inbox/@InboxKey"/>
 </yfc:makeXMLInput>
 <td>
 <input type="checkbox" value='<%=getParameter("inboxKey")%>'
name="EntityKey"/>
 </td>
 <td class="tablecolumn">
 <a <%=getDetailHrefOptions("L01",
getParameter("inboxKey"),"")%> >
 <yfc:getXMLValue binding="xml:/Inbox/@InboxKey"/>

 </td>
 <td class="tablecolumn"
sortValue="<%=getNumericValue("xml:Inbox:/Inbox/@Priority")%>"><yfc:getXMLValue
binding="xml:/Inbox/@Priority"/>
</td>
 </tr>
 </yfc:loopXML>
 </tbody>
</table>

17.20 getParameter
This JSP function obtains the value of the parameter requested from the
pageContext() function and requests in the following order:

pageContext.getAttribute() -> If not found -> request.getAttribute() ->
If not found ->request.getParameter().

This function is typically used to extract the parameters specified while
using various Presentation Framework JSP tags such as yfc:makeXMLKey
and yfc:loopXML.

getParameter

JSP Functions for the Console JSP Interface 149

Syntax
String getParameter(String paramName);

Input Parameters
paramName - Required. Name of the parameter whose value is
required.

Example
This example shows how an order list view shows a hyperlinked order
number that opens the default detail view. The yfc:makeXMLInput JSP
tag uses the keys specified to prepare and stores the XML. The XML can
be extracted using the getParameter() function.

<table class="table" editable="false" width="100%" cellspacing="0">
 <thead>
 <tr>
 <td sortable="no" class="checkboxheader">
 <input type="checkbox" name="checkbox" value="checkbox"
onclick="doCheckAll(this);"/>
 </td>
 <td class="tablecolumnheader"><yfc:i18n>Order_#</yfc:i18n></td>
 <td class="tablecolumnheader"><yfc:i18n>Enterprise</yfc:i18n></td>
 </tr>
 </thead>
 <tbody>
 <yfc:loopXML binding="xml:/OrderList/@Order" id="Order">
 <tr>
 <yfc:makeXMLInput name="orderKey">
 <yfc:makeXMLKey binding="xml:/Order/@OrderHeaderKey"
value="xml:/Order/@OrderHeaderKey" />
 </yfc:makeXMLInput>
 <td class="checkboxcolumn">
 <input type="checkbox" value='<%=getParameter("orderKey")%>'
name="EntityKey"/>
 </td>
 <td class="tablecolumn"><a
href="javascript:showDetailFor('<%=getParameter("orderKey")%>');">
 <yfc:getXMLValue binding="xml:/Order/@OrderNo"/>
 </td>
 <td class="tablecolumn"><yfc:getXMLValue
binding="xml:/Order/@EnterpriseCode"/></td>
 </tr>
 </yfc:loopXML>

150 Customizing Console JSP Interface for End-User Guide

getRequestDOM

 </tbody>
</table>

17.21 getRadioOptions
This JSP function XML binds radio buttons when modification rules do not
need to be considered.

Syntax
String getRadioOptions(String name)

String getRadioOptions(String name, String checked)

String getRadioOptions(String name, String a_checked, String a_value)

Input Parameters
name - Required. Value of the name attribute for the radio input. Can be
a binding or a literal.

checked - Required. Sets the checked attribute for the element with the
matching ID. Must be a literal.

value - Required. Value of the value attribute for the radio input. Can be
a binding or a literal.

JSP Usage
<input type="radio" <%=getRadioOptions("xml:Order:/OrderAddlinfo/@Country"
,"US", "xml:Order:/OrderAddlinfo/@Country")%>>United States</input>

Resultant HTML
<input type="radio" name="US" value="US" CHECKED>United States</input>

17.22 getRequestDOM
This JSP function constructs a YFCElement containing all of the XML
elements that could be created out of the request parameters that are

Note: If only the name parameter is passed, the value of
the value parameter defaults to the same value passed to
the name parameter.

getRequestDOM

JSP Functions for the Console JSP Interface 151

available when this function is called. When a particular screen is
"posted", the input fields on the screen that are bound to XML values can
be accessed via this function. The YFCElement that is constructed
contains the following structure:

<root>
 <namespace1 ... />
 <namespace2 ... />
 ...
</root>

This function is useful when you need to access the posted XML values in
the proper XML structure for some JSP processing.

Syntax
String getRequestDOM()

Input Parameters
None.

Output Parameters
A YFCElement containing all of the XMLs that could be created out of the
request parameters that were available when this function was called.

JSP Usage
The following example shows the output of getRequestDOM if the
following input fields are posted:

<input type="hidden" name="xml:/Order/@OrderNo" value="Order0001"/>
<input type="hidden" name="xml:/Order/@OrderType" value="Customer"/>
<input type="hidden" name="xml:/User/@UserName" value="user01"/>

Ouput of getRequestDOM is:

<root>
 <Order OrderNo="Order0001" OrderType="Customer"/>
 <User UserName="user01"/>
</root>

152 Customizing Console JSP Interface for End-User Guide

getSearchCriteriaValueWithDefaulting

17.23 getSearchCriteriaValueWithDefaulting
This JSP function handles the situation where you want to use a default
value in the search criteria fields. This special function is required
because it is necessary to distinguish between when the user has come
to a screen initially versus when a saved search has been loaded and this
attribute has specifically been saved as "blank" in the saved search. In
that this type of saved search is being loaded into the search view, then
the defaulting should not take place.

Syntax
String getSearchCriteriaValueWithDefaulting(String binding, String
defaultBinding)

Input Parameters
binding - Required. The target XML binding of the search criteria field
that needs to have its value defaulted accordingly.

defaultBinding - Required. The XML binding (or static value) from
where the default value should come from when the user is navigating to
that search screen for the first time.

Output Parameters
A string containing the value that is displayed in that search criteria field.

JSP Usage
This example shows how an "enterprise code" combo box on an order
search screen can be defaulted to the primary enterprise code of the
logged in user's organization.

<td class="<%=inputTdClass%>" nowrap="true">
 <select class="combobox" <%=getComboOptions(enterpriseCodeBinding)%>>
<yfc:loopOptions
binding="xml:CommonEnterpriseList:/OrganizationList/@Organization"
name="OrganizationCode"
value="OrganizationCode"
selected='<%=getSearchCriteriaValueWithDefaulting("xml:/Order/@EnterpriseCode",
"xml:CurrentOrganization:/Organization/@PrimaryEnterpriseKey")%>'/>
 </select>
</td>

getTextOptions

JSP Functions for the Console JSP Interface 153

17.24 getTextAreaOptions
This JSP function XML binds a text area when modification rules do not
need to be considered.

Syntax
getTextAreaOptions(String name)

Input Parameters
name - Required. Value of the name attribute for the Text Area Box input.
Can be a binding or a literal.

JSP Usage
<=%getTexAreaOptions("xml:/Order/Instructions/Instruction/@InstructionText")%>

17.25 getTextOptions
This JSP function XML binds text input fields when modification rules do
not need to be considered.

Syntax
String getTextOptions(String name)

String getTextOptions(String name, String value)

String getTextOptions(String name, String value, String defaultValue)

Inserting this function enables setting the value of a text input when it is
displayed and setting the path and attribute in an XML to where the
value should go when the form is posted.

If the value and default value are not given, the default value is blanks
and value defaults to name.

Input Parameters
name - Required. Path in the target XML to which the value in the input
text is sent when the form is posted. The target XML is then passed to
the appropriate API through the Service Definition Framework.

value - Required. Specifies what to display as the input text. Can be a
binding or a literal. Default is name.

154 Customizing Console JSP Interface for End-User Guide

getTextOptions

defaultValue - Required. This can be a binding or a literal that is
defaulted to in the case that the value binding returns nothing. Default is
blanks.

Example
This example results in a input text that displays the value of a bound
attribute and sets the value of a bound attribute when the form is
posted. This is the XML referenced by the bindings:

<Order>
 <addlInfo Country="US"></addlInfo>
</Order>

JSP Usage
<input type="text" <%=getTextOptions("xml:Order:/OrderAddlinfo/@Country"
,"xml:Order:/OrderAddlinfo/@Country", "USA")%> />

HTML Results
When the value binding is found:

<input type="text" name=" xml:Order:/OrderAddlinfo/@Country " value="US"
Datatype='' size="10" Decimal='' OldValue="United States"/>

When the name binding is not found:

<input type="text" name="US" value="USA" Datatype='' size="10" Decimal=''
OldValue="United States"/>

Using getTextOptions within an editable list:

An underscore ("_") and a counter must be appended to the first
parameter of getTextOptions.

The name of the counter is the value of the ID attribute specified in
the loopXML tag. Set the ID attribute to be the same as the name of
the child node on which you are looping.

Example
Inserting a Text Box.

<input type="text" class="unprotectedinput"
<%=getTextOptions("xml:/Order/OrderLines/OrderLine_" + OrderLineCounter +
"/@ShipNode", "xml:/OrderLine/@ShipNode")%>/>

getValue

JSP Functions for the Console JSP Interface 155

17.26 getUITableSize
This JSP function returns the UI width of the attribute passed as input.
This can be used to set the column width of tables within your screens to
achieve consistent sizing of the columns throughout the application. The
width that is used comes from the data type definition of the attribute.
See the extending datatypes.

Syntax
getUITableSize(String binding)

Parameters
Path to the current attribute in XML.

Note: this should be used in the style attribute of all <td> tags within
all <thead> tags of list tables.

JSP Usage
style="width:<%=getUITableSize("xml:/Order/@OrderDate")%>"

17.27 getValue
This JSP function gets the value of the binding string provided from the
XML namespace provided.

Syntax
String getValue(String xmlName,String binding)

Input Parameters
xmlName - Required. Namespace of the XML. Even if the binding string
contains the namespace, this must be provided.

binding - Required. Binding string.

Example
This example explains how the supply type is extracted from the output
of the API in the Inventory Adjustment screen.

156 Customizing Console JSP Interface for End-User Guide

goToDetailView

<%
 String
supplyType=getValue("Item","xml:/Item/Supplies/InventorySupply/@SupplyType");
%>

17.28 goToDetailView
This JSP function can be used to conditionally display different detail
views based on the logic specified within a JSP page. This function can
only be used in conjunction with detail views that have been defined as
"redirector views". This function is useful when you need to conditionally
navigation to a different detail view based on some logic (possibly
determined by the output of an API call). In the JSP anchor page of a
redirector view, use this function to ultimately navigate to the detail view
that is shown to the user.

Syntax
void goToDetailView(HttpServletResponseresponse, String viewGroupId)

Input Parameters
response - Required. The response object. Pass the "response" object as
is from your redirector JSP.

viewGroupId - Required. The view group ID that is shown to the end
user.

Output Parameters
None.

JSP Usage
This example shows the complete JSP that is the anchor page of the
shipment detail redirector view. If the shipment that is displayed is a
shipment for a provided service, then a different detail view is displayed.
Note that the output of the getShipmentDetails() API is used to
determine which view should be displayed.

<%@include file="/yfsjspcommon/yfsutil.jspf"%>
<%
 String sViewGrp = "YOMD710";
 if (isTrue("xml:/Shipment/@IsProvidedService")) {
 sViewGrp = "YOMD333";

isModificationAllowed

JSP Functions for the Console JSP Interface 157

 }
 goToDetailView(response, sViewGrp);
%>

17.29 isModificationAllowed
This JSP function is used to determine if modification is permitted for a
certain attribute for the current entity.

Syntax
boolean isModificationAllowed(String name, String allowModBinding)

Input Parameters
name - Required. Path in the target XML attribute. If this attribute is
modifiable for the current entity’s status, the function returns true. If it is
not modifiable, the function returns false.

allowModBinding - Required. Binding string that points to a set of
elements containing modification types that are permitted for the current
status.

JSP Usage
This example shows how the table footer containing the dynamic add
rows feature can be included in a page based on whether or not add rows
is permitted for the current order.

 <%if
(isModificationAllowed("xml:/@AddInstruction","xml:/Order/AllowedModifications")
) {%>
 <tr>
 <td nowrap="true" colspan="3">
 <jsp:include page="/common/editabletbl.jsp" >
 </jsp:include>
 </td>
 </tr>
 <%}%>

158 Customizing Console JSP Interface for End-User Guide

isTrue

17.30 isPopupWindow
This JSP function determines whether or not the current window is
displayed in a pop-up window. Use this function when the logic in your
screen must differ when it appears in a pop-up window.

Syntax
isPopupWindow()

Input Parameters
None.

Output Parameters
A boolean indicating whether or not the current window is displayed in a
pop-up window.

JSP Usage
In this example, the selected value that appears in the combobox is
different depending on whether this screen is being shown within a
pop-up window.

<select name="xml:/Shipment/@EnterpriseCode" class="combobox">
 <% if (isPopupWindow()) { %>
 <yfc:loopOptions
 binding="xml:EnterpriseList:/OrganizationList/@Organization"
 name="OrganizationCode"
 value="OrganizationCode" selected="xml:/Shipment/@EnterpriseCode" />
 <% } else { %>
 <yfc:loopOptions
 binding="xml:EnterpriseList:/OrganizationList/@Organization"
 name="OrganizationCode"
 value="OrganizationCode"
 selected='<%=getSelectedValue("xml:/Shipment/@EnterpriseCode")%>' />
 <% } %>
</select>

17.31 isTrue
This JSP function returns true if the attribute specified in the input
parameter has a value of Y, or true. Otherwise, it returns false. It is not
case sensitive.

isVoid

JSP Functions for the Console JSP Interface 159

Syntax
boolean isTrue(String bindingStr);

Input Parameters
bindingStr - Required. Binding string that specifies which attribute to
evaluate.

Output Parameters
A boolean indicating if the attribute being evaluated has a value of Y or
true.

Example
This example uses the isTrue() function to find out the value of the
attribute referred to in the xml:/OrderRelease/@HasDerivedParent
binding.

boolean isAgainstOrder=isTrue("xml:/OrderRelease/@HasDerivedParent");

17.32 isVoid
This JSP function determines whether the object passed is null or
contains only white spaces.

Syntax
boolean isVoid(Object obj)

Input Parameters
obj - Required. Object that must be checked for null or white spaces.

Example
This example shows how this function is used to check if a specific
attribute is void.

<% if (!isVoid(getParameter("ShowShipNode"))) {%>
<tr>
 <td class="detaillabel" ><yfc:i18n>Ship_Node</yfc:i18n></td>
 <td class="protectedtext"><yfc:getXMLValue
binding="xml:/InventoryInformation/Item/@ShipNode"
name="InventoryInformation"></yfc:getXMLValue></td>
</tr>

160 Customizing Console JSP Interface for End-User Guide

showEncryptedCreditCardNo

<%}%>

17.33 resolveValue
This JSP function gets the value of the binding string provided from the
YFCElement provided.

Syntax
String resolveValue(String binding)

Input Parameters
binding - Required. Binding string. Binding string can contain the
namespace.

Example
This example shows how this function is used to resolve the value
pointed to by a binding string.

<%
String reqshipdate=resolveValue("xml:OrderEntry:/Order/@ReqShipDate");
%>

17.34 showEncryptedCreditCardNo
This JSP function returns a value to the display that represents an
encrypted credit card number.

Syntax
showEncryptedCreditCardNo(String CreditCardNo)

Input Parameters
CreditCardNo - Required. String containing the last four digits of a
credit card number.

Example
<%=showEncryptedCreditCardNo(resolveValue("xml:/PaymentMethod/@Disp
layCreditCardNo"))%>

yfsGetComboOptions

JSP Functions for the Console JSP Interface 161

17.35 userHasOverridePermissions
This JSP function determines whether or not the current login user has
permission to override the modifications rules configuration.

Syntax

boolean userHasOverridePermissions()

17.36 yfsGetCheckBoxOptions
This JSP function XML binds checkboxes when modification rules need to
be considered.

Syntax
String yfsGetCheckBoxOptions(String name,String a_checked, String a_
value, String allowModBinding)

Input Parameters
name - Required. Path in the target XML to which the value in the input
text is sent when the form is posted. Through the Service Definition
Framework, the target XML is then passed to the appropriate API.

checked - Required. When the value of the value attribute is equal to
this value, the checked attribute is set to true.

value - Required. Value of the value attribute for the checkbox input.
Can be a binding or a literal.

allowModBinding - Required. Binding string that points to a set of
elements containing modification types that are permitted for the current
status.

JSP Usage
<input class="checkbox" type="checkbox"
<%=yfsGetCheckBoxOptions("xml:/Order/@ChargeActualFreightFlag","xml:/Order/@Char
geActualFreightFlag","Y","xml:/ Order/AllowedModifications")%>/>

17.37 yfsGetComboOptions
This JSP function XML binds combo boxes when modification rules need
to be considered.

162 Customizing Console JSP Interface for End-User Guide

yfsGetImageOptions

Syntax
String yfsGetComboOptions(String name, String allowModBinding)

String yfsGetComboOptions(String name, String value, String
allowModBinding)

Input Parameters
name - Required. Path in the target XML to which the value in the input
text is sent when the form is posted. Through the Service Definition
Framework, the target XML is then passed to the appropriate API.

value - Required. Specifies what to display as the input text. Can be a
binding or a literal.

allowModBinding - Required. Binding string that points to a set of
elements containing modification types that are permitted for the current
status.

JSP Usage
<select <% if (isVoid(modifyView)) {%> <%=getProtectedComboOptions()%> <%}%>
<%=yfsGetComboOptions("xml:/Order/@ScacAndServiceKey",
"xml:/Order/AllowedModifications")%>>
 <yfc:loopOptions binding="xml:/ScacAndServiceList/@ScacAndService"
name="ScacAndServiceDesc"
 value="ScacAndServiceKey" selected="xml:/Order/@ScacAndServiceKey"/>
</select>

17.38 yfsGetImageOptions
This JSP function builds an image tag in HTML. The image may be
hidden, based on whether the modification of the XML attribute passed
as a parameter is permitted or not, unlike the getImageOptions()
function. See “getImageOptions” on page 17-143.

A Java constants file keeps the image path and icon centralized. If the
path starts with /smcfs/console/icons, the image file is first searched
for inside /extensions/global/webpages/icons/yantraiconsbe.jar
(or the localized icons JAR file) and then inside the
/webpages/yfscommon/yantraiconsbe.jar (or the localized icons JAR
file). The path to be specified is the path of the image file inside the JAR
file.

yfsGetTemplateRowOptions

JSP Functions for the Console JSP Interface 163

If the path does not start with /smcfs/console/icons, it picks up the
file from the location in the EAR file. It is strongly advised that you place
your images under /console/icons in the custom icons JAR file
(yantraiconsbe.jar).

The path to be specified is the path of the image file inside the JAR file.

Syntax
String yfsGetImageOptions(String src, String alt, String name, String
allowModBinding)

Parameters
src - Required. Image file name, including the path, within the icons JAR
file.

alt - Required. Tooltip to use for the image.

name - Required. Path in the target XML attribute. This function shows
the image only when modification of this attribute is permitted based on
the status of the current entity.

allowModBinding - Required. Binding string that points to a set of
elements containing modification types that are permitted for the current
order status.

JSP Usage
<img class="lookupicon" name="search" onclick="invokeCalendar(this);return
false" <%=yfsGetImageOptions(YFSUIBackendConsts.DATE_LOOKUP_ICON, "Calendar",
"xml:/Order/@ReqShipDate", "xml:/Order/AllowedModifications")%>/>

17.39 yfsGetTemplateRowOptions
This JSP function XML binds input fields when the field appears within an
editable table’s template row. The template row appears when the plus
icon ("+") is selected in an editable table.

Syntax
String yfsGetTemplateRowOptions(String name, String allowModBinding,
String modType, String controlType)

164 Customizing Console JSP Interface for End-User Guide

yfsGetTemplateRowOptions

Input Parameters
name - Required. Value of the name attribute for the input. Can be a
binding or a literal.

allowModBinding - Required. Binding string that resolves to a list of
elements containing all modification types permitted for the current
status of the entity.

modType - Required. Modification type associated with the current
control.

controlType - Required. Type of control. Can be a textbox, checkbox or
textarea.

JSP Usage
<input type="text" <%=yfsGetTemplateRowOptions("xml:/Order/OrderLines/OrderLine_
/Item/@ItemID", "xml:/Order/AllowedModifications", "ADD_LINE", "text")%>/>

Example
This example shows how this function is used to store a template row in
the list of order lines for an order in the Order detail view.

 <tfoot>
 <tr style='display:none' TemplateRow="true">
 <td class="checkboxcolumn">
 <input type="hidden"
<%=getTextOptions("xml:/Order/OrderLines/OrderLine_/@Action", "", "CREATE")%>
/>
 </td>
 <td class="tablecolumn"> </td>
 <td class="tablecolumn"> </td>
 <td class="tablecolumn" nowrap="true">
 <input type="text"
<%=yfsGetTemplateRowOptions("xml:/Order/OrderLines/OrderLine_/Item/@ItemID",
"xml:/Order/AllowedModifications", "ADD_LINE", "text")%>/>
 <img class="lookupicon"
onclick="templateRowCallItemLookup(this,'ItemID','ProductClass','UnitOfMeasure',
'item')" <%=getImageOptions(YFSUIBackendConsts.LOOKUP_ICON, "Search_for_
Item")%>/>
 </td>
 <td class="tablecolumn">
 <select
<%=yfsGetTemplateRowOptions("xml:/Order/OrderLines/OrderLine_
/Item/@ProductClass", "xml:/Order/AllowedModifications", "ADD_LINE",

yfsGetTemplateRowOptions

JSP Functions for the Console JSP Interface 165

"combo")%>>
 <yfc:loopOptions
binding="xml:ProductClassList:/CommonCodeList/@CommonCode" name="CodeValue"
 value="CodeValue"
selected="xml:/Order/OrderLine/Item/@ProductClass"/>
 </select>
 </td>
 <td class="tablecolumn">
 <select
<%=yfsGetTemplateRowOptions("xml:/Order/OrderLines/OrderLine_
/Item/@UnitOfMeasure", "xml:/Order/AllowedModifications", "ADD_LINE",
"combo")%>>
 <yfc:loopOptions
binding="xml:UnitOfMeasureList:/CommonCodeList/@CommonCode" name="CodeValue"
 value="CodeValue"
selected="xml:/Order/OrderLine/Item/@UnitOfMeasure"/>
 </select>
 </td>
 <td class="tablecolumn"> </td>
 <td class="tablecolumn" nowrap="true">
 <input type="text"
<%=yfsGetTemplateRowOptions("xml:/Order/OrderLines/OrderLine_/@ReceivingNode",
"xml:/Order/AllowedModifications", "ADD_LINE", "text")%>/>
 <img class="lookupicon" onclick="callLookup(this,'shipnode')"
<%=getImageOptions(YFSUIBackendConsts.LOOKUP_ICON, "Search_for_Recieving_
Node")%>/>
 </td>
 <td class="tablecolumn" nowrap="true">
 <input type="text"
<%=yfsGetTemplateRowOptions("xml:/Order/OrderLines/OrderLine_/@ShipNode",
"xml:/Order/AllowedModifications", "ADD_LINE", "text")%>/>
 <img class="lookupicon" onclick="callLookup(this,'shipnode')"
<%=getImageOptions(YFSUIBackendConsts.LOOKUP_ICON, "Search_for_Ship_Node")%>/>
 </td>
 <td class="tablecolumn" nowrap="true">
 <input type="text"
<%=yfsGetTemplateRowOptions("xml:/Order/OrderLines/OrderLine_/@ReqShipDate",
"xml:/Order/AllowedModifications", "ADD_LINE", "text")%>/>
 <img class="lookupicon" onclick="invokeCalendar(this)"
<%=getImageOptions(YFSUIBackendConsts.DATE_LOOKUP_ICON, "Calendar")%>/>
 </td>
 <td class="numerictablecolumn">
 <input type="text"
<%=yfsGetTemplateRowOptions("xml:/Order/OrderLines/OrderLine_/@OrderedQty",
"xml:/Order/AllowedModifications", "ADD_LINE", "text")%>>

166 Customizing Console JSP Interface for End-User Guide

yfsGetTextAreaOptions

 </td>
 <td class="tablecolumn"> </td>
 <td class="tablecolumn"> </td>
 </tr>
<%if (isModificationAllowed("xml:/@AddLine","xml:/Order/AllowedModifications"))
{ %>
 <tr>
 <td nowrap="true" colspan="13">
 <jsp:include page="/common/editabletbl.jsp" >
 </jsp:include>
 </td>
 </tr>
 <%}%>
 </tfoot>

17.40 yfsGetTextAreaOptions
This JSP function XML binds text areas when modification rules need to
be considered.

Syntax
String yfsGetTextAreaOptions(String name, String a_value, String
allowModBinding)

String yfsGetTextAreaOptions(String name, String allowModBinding)

Parameters
name - Required. Path in the target XML to which the value in the input
text is sent when the form is posted. Through the Service Definition
Framework, the target XML is then passed to the appropriate API.

value - Required. Specifies what to display as the input text. Can be a
binding or a literal.

allowModBinding - Required. Binding string that points to a set of
elements containing modification types that are permitted for the current
status.

JSP Usage
<textarea class="unprotectedtextareainput" rows="3" cols="100"
<%=yfsGetTextAreaOptions("xml:/Order/Instructions/Instruction_" +
InstructionCounter + "/@InstructionText","xml:/Instruction/@InstructionText",

yfsGetTextOptions

JSP Functions for the Console JSP Interface 167

"xml:/Order/AllowedModifications")%>><yfc:getXMLValue
binding="xml:/Instruction/@InstructionText"/></textarea>

17.41 yfsGetTextOptions
This JSP function XML binds text input fields when modification rules
need to be considered.

Syntax
String yfsGetTextOptions(String name, String allowModBinding)

String yfsGetTextOptions(String name, String value, String
allowModBinding)

String yfsGetTextOptions(String name, String value, String defaultValue,
String allowModBinding)

Input Parameters
name - Required. Path in the target XML to which the value in the input
text is sent when the form is posted. Through the Service Definition
Framework, the target XML is then passed to the appropriate API.

value - Required. Specifies what to display as the input text. Can be a
binding or a literal.

defaultValue - Required. This can be a binding or a literal that is
defaulted to in the case that the value binding returns nothing.

allowModBinding - Required. This is a binding string that points to a
set of elements containing modification types that are permitted for the
current status.

JSP Usage
<input type="text" <%=yfsGetTextOptions("xml:/Order/@ReqShipDate",
"xml:/Order/AllowedModifications")%>/>

168 Customizing Console JSP Interface for End-User Guide

yfsGetTextOptions

JSP TagLibrary for the Console JSP Interface 169

18
JSP TagLibrary for the Console JSP

Interface

18.1 callApi
The callApi JSP tag calls an API from within the JSP file. In most cases, it
is not necessary to make an API call from inside a JSP file. However,
occasionally there is no other option. For example, when an API must be
called multiple times within a loop, use the callApi JSP tag.

When you use this JSP tag on a view, you may enable the Skip Automatic
Execution checkbox on the Resource configuration screen for the API
Resource that you intend to call. This prevents the API from being called
when the view is initially opened. This option is not available for API
resources that are created directly under an entity resource.

Attributes
apiID - Required. Postfix of the resource ID of the API to be called.
When an API resource is configured through the Resource Hierarchy tree,
a postfix must be supplied for the resource ID. This is the postfix value
that must be used.

Body
None.

Example
In this example, the callAPI is used to retrieve additional attributes about
an item using the getItemDetails() API defined in the API resource
containing the API in the ID. Note that the API input or template is not

170 Customizing Console JSP Interface for End-User Guide

callAPI (Alternative Method)

specified anywhere in the JSP. This is configured in the API resource
definition just like every other API.

<yfc:loopXML binding="xml:/OrderLineStatusList/@OrderStatus" id="OrderStatus">
 <tr>
 <yfc:makeXMLInput name="orderLineKey">
 <yfc:makeXMLKey binding="xml:/OrderLineDetail/@OrderLineKey"
value="xml:/OrderStatus/OrderLine/@OrderLineKey"/>
 <yfc:callAPI apiID='AP1'/>
 < ... >
 </tr>

After the callApi JSP tag is used in the JSP, the output is available in the
corresponding output namespace.

18.2 callAPI (Alternative Method)
The callAPI JSP tag also supports a way to call APIs within JSPs without
defining the API in the Resource Hierarchy tree. If called in this way,
different attributes needs to be passed as input to the tag. This
alternative method should be used when the input or template of an API
call needs to be dynamic based on some conditions within the JSP.
Additionally, this alternative method may be used if the input to the API
is complicated and cannot be formed using the traditional techniques.

Attributes
apiName - Optional. The name of the API that is called. When using this
alternative method of callAPI either apiName or serviceName is required.

serviceName - Optional. The name of the service (from Service
Definition Framework) that is called. Calling a service does not support
passing templates. When using this alternative method of callAPI, either
serviceName or apiName is required.

inputElement - Required when using this alternative method. A
YFCElement representing the input element that is to be passed to the
API.

templateElement - Conditionally required. A YFCElement representing
the output template expected for the API. When using this alternative
method, if the apiName attribute is used, then templateElement is
required. If serviceName is used, then templateElement is ignored.

callAPI (Alternative Method)

JSP TagLibrary for the Console JSP Interface 171

outputNamespace - Optional. The namespace under which the output
of the API is placed.

The output of the API is saved in this namespace. Namespace is optional,
but if it is not specified, it is defaulted to the root node name of the XML
under consideration. Therefore, while referring to the output of the API,
even if namespace is not specified here, it can be assumed to be the
same as the root node name of the output.

A namespace is a tag that can be used to identify a specific XML. The
Presentation Framework enables you to call multiple APIs and store the
outputs in different namespaces. In your JSP or in the input to an API,
you can refer to values from any namespace that is available at that
point.

inputNamespace - Optional. The input namespace is used to
dynamically resolve additional input to the API. For more information
about input namespace see Section 13.3, "Passing Data to APIs".

Body
None.

Example
The following example shows how the getOrderDetails() API can be
called from within a JSP without defining an API resource in the Resource
Hierarchy tree. Note how the input and template elements are formed in
the JSP before the callAPI tag is used. After the callAPI tag call, the
output of the getOrderDetails() API is available in the
RelatedFromOrderDetails namespace that can be used later on within
the JSP.

<%
 YFCDocument inputDoc = YFCDocument.parse("<Order
OrderHeaderKey=\"xml:/Document/@RelatedFromOrderHeaderKey\"/>");
YFCDocument templateDoc = YFCDocument.parse("<Order EnterpriseCode=\"\"
OrderHeaderKey=\"\" OrderNo=\"\"
 Status=\"\" BuyerOrganizationCode=\"\" SellerOrganizationCode=\"\"
OrderDate=\"\" RulesetKey=\"\" HoldFlag=\"\" DocumentType=\"\"
isHistory=\"\"/>");
%>
<yfc:callAPI apiName='getOrderDetails'
inputElement='<%=inputDoc.getDocumentElement()%>'
templateElement='<%=templateDoc.getDocumentElement()%>'

172 Customizing Console JSP Interface for End-User Guide

getXMLValueI18NDB

outputNamespace='RelatedFromOrderDetails'/>

18.3 getXMLValue
The getXMLValue JSP tag returns the value of an XML attribute specific to
an XML binding.

Attributes
name - Optional. String containing the namespace of the XML from
which a value must be obtained. If this parameter is not used, the value
is picked up from the binding. For example, if you specify
xml:/Menu/@MenuDescription as the binding, the value for name
defaults to Menu. Or in another example, if you specify
xml:/mymenu:/Menu/@MenuDescription as the binding, the name
defaults to mymenu.

binding - Required. String containing the XML path that points to the
attribute of the requested value.

Body
None.

Example
<td class="protectedtext"><yfc:getXMLValue binding="xml:/Category/@CategoryID"
name="Category" /></td>

18.4 getXMLValueI18NDB
The getXMLValueI18NDB JSP tag returns the localized value of an XML
attribute specific to an XML binding based on the user’s locale.

Attributes
name - Optional. String containing the namespace of the XML from
which a value must be obtained. If this parameter is not used, the value
is picked up from the binding. For example, if you specify
xml:/Menu/@MenuDescription as the binding, the value for name
defaults to Menu. Or in another example, if you specify
xml:/mymenu:/Menu/@MenuDescription as the binding, the name
defaults to mymenu.

hasXMLNode

JSP TagLibrary for the Console JSP Interface 173

binding - Required. String containing the XML path that points to the
attribute of the requested value.

Body
None.

Example
<td class="protectedtext"><yfc:getXMLValueI18NDB
binding="xml:/Category/@Description" name="Category" /></td>

18.5 hasXMLNode
The hasXMLNode JSP tag is used to determine if a specific XML element
or attribute is returned by the API.

Attributes
binding - Required. String containing the XML path of the element or
attribute to seek. If the binding string contains an attribute, this tag does
not permit its body to be processed if the attribute is void, even if the
element exists.

Body
Can contain HTML that is written only if the hasXMLNode evaluates to
true.

Example
This example shows how a kit icon is shown for those lines belonging to
an order release that contain kits.

<td class="tablecolumn" nowrap="true">
 <yfc:hasXMLNode binding="xml:/OrderLine/KitLines/KitLine">
 <a <%=getDetailHrefOptions("L03",
getParameter("orderLineKey"), "")%>>
 <img class="columnicon"
<%=getImageOptions(YFSUIBackendConsts.KIT_COMPONENTS_COLUMN, "Kit_
Components")%>>

 </yfc:hasXMLNode>
 </td>

174 Customizing Console JSP Interface for End-User Guide

i18ndb

This example shows how a parent kit line icon is shown for those lines that have
a parent kit line.

<yfc:hasXMLNode binding="xml:/OrderLine/@OrigOrderLineKey">
<a <%=getDetailHrefOptions("L05", getParameter("origOrderLineKey"), "")%>>
<img class="columnicon" <%=getImageOptions(YFSUIBackendConsts.DERIVED_
ORDERLINES_COLUMN, "Kit_Parent_Line")%>>

</yfc:hasXMLNode>

18.6 i18n
The i18n JSP tag retrieves the localized description of the key from the
resource bundles. Use this for all literals in the HTML.

Attributes
None.

Body
Key that must be resolved into the localized string. For more information
on how the system uses locale-specific resource bundles, see the Selling
and Fulfillment Foundation: Localization Guide.

Example
This example shows how query types (is, starts with, contains) are
shown in a select tag from the output of an API.

<tr>
 <td class="searchlabel" ><yfc:i18n>Product_Class</yfc:i18n></td>
</tr>

18.7 i18ndb
The i18ndb JSP tag retrieves the localized description of the value from
the YFS_LOCALIZED_STRING table based on the user’s locale. Use this to
get the localized database descriptions in the HTML.

Attributes
None.

loopOptions

JSP TagLibrary for the Console JSP Interface 175

Body
Key that must be resolved into the localized string. For more information
on how the system uses locale-specific resource bundles, see the Selling
and Fulfillment Foundation: Localization Guide.

Example
This example shows how query types (is, starts with, contains) are
shown in a select tag from the output of an API.

<tr>
<td>

<yfc:i18ndb><%=resolveValue("xml:/Shipment/Status/@StatusName")%>
</yfc:i18ndb>

</td>
</tr>

18.8 loopOptions
The loopOptions JSP tag builds the options belonging to the HTML select
tag.

Attributes
binding - Required. Binding string that points to the repeating element
in the API output. The repeating element must be one fixed with the at
character ("@").

name - Optional. Attribute name within the binding element to be used
for the description visible to the user in the option tag. If not passed,
defaults to name, which means that Selling and Fulfillment Foundation
searches for an attribute called name.

value - Optional. Attribute name within the binding element to be used
for the value attribute of the option tag. If not passed, it defaults to
value, which means that Selling and Fulfillment Foundation searches for
an attribute called value.

selected - Optional. Binding string that must be evaluated and set as
the default selected value. This is matched with the value attribute, not
the description attribute. Defaults to blanks, for example, space (" ").

isLocalized - Optional. If passed as "Y" it obtains the localized
description to be displayed based on the user’s locale from the YFS_
LOCALIZED_STRINGS table.

176 Customizing Console JSP Interface for End-User Guide

loopXML

targetBinding - Optional. If the target binding of the select is different
than the source binding, you must specify the target binding as input
when using loopOptions. This ensures that data entered by the end user
is not be lost even when an exception is generated in the API.

Body
None.

Examples
This example shows how query types (is, starts with, contains) are
shown in a select tag from the output of an API.

 <td nowrap="true" class="searchcriteriacell" >
 <select name="xml:/Item/@ItemIDQryType" class="combobox" >
 <yfc:loopOptions
binding="xml:/QueryTypeList/StringQueryTypes/@QueryType"
 name="QueryTypeDesc" value="QueryType"
selected="xml:/Item/@ItemIDQryType"/>
 </select>
 <input type="text" class="unprotectedinput"
<%=getTextOptions("xml:/Item/@ItemID") %> />
 </td>

This example uses combo boxes within an editable list:

An underscore character ("_") and a counter must be appended to
the name attribute of the select element.

The name of the counter is the value of the ID attribute specified in
the loopXML tag. The ID attribute should always be set to the same
as the child node name on which you are looping.

<select name="xml:/Order/Instructions/Instruction_
<%=InstructionCounter%>/@InstructionType" class="combobox">
<yfc:loopOptions binding="xml:InstructionTypeList:/CommonCodeList/@CommonCode"
name="CodeShortDescription"
 value="CodeValue" selected="xml:/Instruction/@InstructionType"/>
</select>

18.9 loopXML
The loopXML JSP tag loops through a specific repeating element in a
source XML.

loopXML

JSP TagLibrary for the Console JSP Interface 177

Attributes
binding - Required. Path to the element through which you want to loop
within the source XML. The repeating element must be one fixed with the
at character ("@").

name - Optional. Name of the source XML. If this parameter is not used,
the value is picked up from the binding. For example, if you specify
xml:/Menu/@MenuDescription as the binding, the value for name
defaults to Menu. Or in another example, if you specify
xml:/mymenu:/Menu/@MenuDescription as the binding, the name
defaults to mymenu.

id - Optional. Name of the created YFCElement that holds the element
resolved from the binding. If not specified, the Element NodeName
pointed to by the binding parameter is used. For example, if the binding
is xml:/ItemList/@Item and is not passed, the value for id defaults to
Item.

Body
Can contain HTML that is written for each iteration in the loop.

Example
This example shows how the loopXML JSP tag is used to display the list
of items in item lookup.

<tbody>
 <yfc:loopXML name="ItemList" binding="xml:/ItemList/@Item" id="item">
 <tr>
 <td class="tablecolumn">
 <img class="icon"

Note: If your application server only supports up to JSP
specification version 1.1, it does not support using
jsp:include within a custom JSP tag that contains a body
tag. Using the loopXML tag results in a run-time JSP error
that indicates "Illegal to flush within a custom tag".

To avoid this run-time error, use the
getLoopingElementList() function instead of the
loopXML tag. See Chapter 17, "JSP Functions for the
Console JSP Interface".

178 Customizing Console JSP Interface for End-User Guide

makeXMLInput

onclick="setItemLookupValue('<%=resolveValue("xml:item:/Item/@ItemID")%>','<%=re
solveValue("xml:item:/Item/Prim
aryInformation/@DefaultProductClass")%>','<%=resolveValue("xml:item:/Item/@UnitO
fMeasure")%>')" value="<%=resolveValue("xml:item:/Item/@ItemID")%>"
<%=getImageOptions(YFSUIBackendConsts.GO_ICON,"Click_to_select")%> />
 </td>
 <td class="tablecolumn"><yfc:getXMLValue name="item"
binding="xml:/Item/@ItemID"/></td>
 <td class="tablecolumn"><yfc:getXMLValue name="item"
binding="xml:/Item/PrimaryInformation/@DefaultProductClass"/></td>
 <td class="tablecolumn"><yfc:getXMLValue name="item"
binding="xml:/Item/@UnitOfMeasure"/></td>
 <td class="tablecolumn"><yfc:getXMLValue name="item"
binding="xml:/Item/PrimaryInformation/@ShortDescription"/></td>
 <td class="tablecolumn"><yfc:getXMLValue name="item"
binding="xml:/Item/PrimaryInformation/@MasterCatalogID"/></td>
 <td class="tablecolumn"><yfc:getXMLValue name="item"
binding="xml:/Item/@OrganizationCode"/></td>
 </tr>
 </yfc:loopXML>
</tbody>

18.10 makeXMLInput
The makeXMLInput JSP tag is used in conjunction with makeXMLKey to
form a hidden key that is used to pass data from list to detail screens.

Attributes
name - Required. The name of the hidden input HTML tag that gets
formed as a result of this JSP tag.

Body
Can contain multiple makeXMLKey JSP tags. The output of the makeXMLKey
JSP tags are concatenated into a single hidden input.

Example
This example shows how this JSP tag is used in conjunction with the
makeXMLKey JSP tag to form a hidden input to pass inventory key data
from the Inventory list view to the Inventory detail view.

<tbody>
 <yfc:loopXML name="InventoryList"

makeXMLKey

JSP TagLibrary for the Console JSP Interface 179

binding="xml:/InventoryList/@InventoryItem" id="InventoryItem"
keyName="InventoryItemKey" >
 <tr>
 <yfc:makeXMLInput name="inventoryItemKey">
 <yfc:makeXMLKey binding="xml:/InventoryItem/@ItemID"
value="xml:/InventoryItem/@ItemID" />
 <yfc:makeXMLKey binding="xml:/InventoryItem/@UnitOfMeasure"
value="xml:/InventoryItem/@UnitOfMeasure" />
 <yfc:makeXMLKey binding="xml:/InventoryItem/@ProductClass"
value="xml:/InventoryItem/@ProductClass" />
 <yfc:makeXMLKey binding="xml:/InventoryItem/@OrganizationCode"
value="xml:InventoryList:/InventoryList/@OrganizationCode" />
 </yfc:makeXMLInput>
 <td class="checkboxcolumn">
 <input type="checkbox" value='<%=getParameter("inventoryItemKey")%>'
name="EntityKey"/>
 </td>
 <td class="tablecolumn">
 <a
href="javascript:showDetailFor('<%=getParameter("inventoryItemKey")%>');"><yfc:g
etXMLValue name="InventoryItem" binding="xml:/InventoryItem/@ItemID"/>
 </td>
 <td class="tablecolumn"><yfc:getXMLValue name="InventoryItem"
binding="xml:/InventoryItem/@ProductClass"/></td>
 <td class="tablecolumn"><yfc:getXMLValue name="InventoryItem"
binding="xml:/InventoryItem/@UnitOfMeasure"/></td>
 <td class="tablecolumn"><yfc:getXMLValue name="InventoryItem"
binding="xml:/InventoryItem/Item/PrimaryInformation/@Description"/></td>
 </tr>
 </yfc:loopXML>
</tbody>

18.11 makeXMLKey
The makeXMLKey JSP tag is used in conjunction with makeXMLInput to
form a hidden key that is used to pass data from list to detail screens.

Attributes
binding - Required. The binding string that must be resolved and stored
in the hidden input to be passed on to the detail screen.

Body
None.

180 Customizing Console JSP Interface for End-User Guide

makeXMLKey

Example
Refer to the example in “makeXMLInput” on page 18-178.

JavaScript Functions 181

19
JavaScript Functions

19.1 About JavaScript Functions for the Console
JSP Interface

The Selling and Fulfillment Foundation UI uses JavaScript functions to
perform client-side operations such as opening pop-up windows,
switching views, validating user input, and so forth. Most of the
JavaScripts used in the UI are provided by the UI infrastructure layer. You
can use the same functions while performing your UI extensions. This
section describes the JavaScript functions supplied by the Selling and
Fulfillment Foundation’s UI layer.

Note that Selling and Fulfillment Foundation also uses JavaScript
functions that are not supplied by the UI infrastructure. These functions
usually perform some specific action for some specific screen and are not
required to be used during your UI extensions.

In addition, if you require additional logic for your screen for which the
Selling and Fulfillment Foundation UI infrastructure does not provide
JavaScript functions, you can write and use your own as needed.

Lookup
callLookup - see page 183. Uses [GET]
invokeCalendar - see page 194. Uses [GET]
yfcShowSearchPopup - see page 226. Uses [GET]

Control Name
ignoreChangeNames - see page 193
yfcDoNotPromptForChanges - see page 208
yfcDoNotPromptForChangesForActions - see page 209

182 Customizing Console JSP Interface for End-User Guide

About JavaScript Functions for the Console JSP Interface

yfcHasControlChanged - see page 212
yfcSetControlAsUnchanged - see page 215
yfcSpecialChangeNames - see page 228

Event Handler
validateControlValues - see page 202
yfcBodyOnLoad - see page 204
yfcGetSaveSearchHandle - see page 210
yfcGetSearchHandle - see page 211
yfcValidateMandatoryNodes - see page 232

Show Detail
showDetailFor - see page 196. Uses [GET]
showPopupDetailFor - see page 200. Uses [GET]
yfcChangeDetailView - see page 204. Uses [POST]
yfcShowDefaultDetailPopupForEntity - see page 216. Uses [GET]
yfcShowDetailPopupWithDynamicKey - see page 219
yfcShowDetailPopupWithKeys - see page 220. Uses [GET]
yfcShowDetailPopupWithParams - see page 221

Show List Pop-up
yfcShowListPopupWithParams - see page 225. Uses [GET]

Other
doCheckAll - see page 183
doCheckFirstLevel on page 185
expandCollapseDetails - see page 186
getAttributeNameFromBinding - see page 188
getCurrentSearchViewId on page 189
getCurrentViewId - see page 190
getObjectByAttrName - see page 190
goToURL - see page 192
showHelp - see page 199. Uses [GET]
yfcAllowSingleSelection - see page 203
yfcDisplayOnlySelectedLines - see page 206
setRetrievedRecordCount - see page 233

doCheckAll

JavaScript Functions 183

19.2 callLookup
This JavaScript function displays a lookup screen that enables the user to
search for and select a record to use in the current screen. For example,
an organization lookup on the order entry screen enables the user to
select a buyer organization. Typically, you should attach this function to
the onclick event of an image within your JSP page.

Syntax
callLookup(obj,entityname,extraParams)

Input Parameters
entityname - Optional. Entity to search for in the lookup screen. If not
passed, defaults to the name of the current entity.

obj - Required. Handle to the image being selected.

extraParams - Optional. Passes extra parameters to the lookup screen.
The format of the parameter is name/value pairs in URL format. If
passed, the parameters are passed to the lookup screen.

Output Parameters
None.

Example
This example shows how to show an organization lookup that defaults
the display of the seller role in the buyer Role field on the lookup:

<img class="lookupicon"
onclick="callLookup(this,'organization','xml:/Organization/OrgRoleList/OrgRole/@
RoleKey=BUYER')" name="search" <%=getImageOptions(YFSUIBackendConsts.LOOKUP_
ICON, "Search_for_Buyer") %> />

19.3 doCheckAll
This JavaScript function toggles the state of all the checkboxes in a table,
using the following assumptions:

The table must have separate head and body sections.

184 Customizing Console JSP Interface for End-User Guide

doCheckAll

Checkboxes within the body section must have the same column
index as the specified checkbox object. Cells containing multiple
checkboxes are all toggled.

Syntax
doCheckAll(obj)

Input Parameters
obj - Optional. Handle to the checkbox object (in HTML object hierarchy)
on a table header. If the object is not passed, the function just returns.

Return Values
None.

Example
This example shows how an order list view showing order number and
enterprise would handle the check all and uncheck all option in the table
header row.

<table class="table" editable="false" width="100%" cellspacing="0">
<thead>
<tr>
<td sortable="no" class="checkboxheader">
<input type="checkbox" name="checkbox" value="checkbox"
onclick="doCheckAll(this);"/>
</td>
<td class="tablecolumnheader"><yfc:i18n>Order_#</yfc:i18n></td>
<td class="tablecolumnheader"><yfc:i18n>Enterprise</yfc:i18n></td>
</tr>
</thead>
<tbody>
<yfc:loopXML binding="xml:/OrderList/@Order" id="Order">
<tr>
<yfc:makeXMLInput name="orderKey">
<yfc:makeXMLKey binding="xml:/Order/@OrderHeaderKey"
value="xml:/Order/@OrderHeaderKey" />
</yfc:makeXMLInput>
 <td class="checkboxcolumn">
<input type="checkbox" value='<%=getParameter("orderKey")%>' name="EntityKey"/>
</td>
<td class="tablecolumn"><a
href="javascript:showDetailFor('<%=getParameter("orderKey")%>');">

doCheckFirstLevel

JavaScript Functions 185

<yfc:getXMLValue binding="xml:/Order/@OrderNo"/>
</td>
<td class="tablecolumn"><yfc:getXMLValue
binding="xml:/Order/@EnterpriseCode"/></td>
</tr>
</yfc:loopXML>
</tbody>
</table>

19.4 doCheckFirstLevel
This JavaScript function is used on the onclick event of a checkbox in
the table column header. The function checks or unchecks all checkboxes
in the first level of checkboxes in the table. This function is very similar
to the doCheckAll JavaScript function, except that doCheckAll checks or
unchecks all checkboxes within the specified HTML table.

Use this function for HTML tables the require this "(un)check all"
functionality and also have one or more unrelated checkboxes inside the
table that should not be affected by the selection checkboxes.

Syntax
doCheckFirstLevel(obj)

Input Parameters
obj - Optional. Handle to the checkbox object (in HTML object hierarchy)
on a table header. If the object is not passed, the function does nothing.

Output Parameters
None.

Example
This example shows the table header definition for a list of items
containing a checkbox where the user can select one or more items in
the table. The header row of the table contains a checkbox. When this
checkbox is selected, all of the first level check boxes within the HTML
table are checked or unchecked.

<table class="table" cellspacing="0" width="100%">
 <thead>
 <tr>

186 Customizing Console JSP Interface for End-User Guide

expandCollapseDetails

 <td class="checkboxheader" sortable="no" style="width:10px">
 <input type="checkbox" value="checkbox" name="checkbox"
onclick="doCheckFirstLevel(this);"/>
 </td>
 <td class="tablecolumnheader"
style="width:30px"><yfc:i18n>Options</yfc:i18n></td>
 <td class="tablecolumnheader"
style="width:<%=getUITableSize("xml:AdditionalServiceItem:/OrderLine/AdditionalS
erviceItems/Item/@ItemID")%>"><yfc:i18n>Item_ID</yfc:i18n></td>
 <td class="tablecolumnheader"
style="width:<%=getUITableSize("xml:AdditionalServiceItem:/OrderLine/AdditionalS
erviceItems/Item/@UnitOfMeasure")%>"><yfc:i18n>UOM</yfc:i18n></td>
 <td class="tablecolumnheader"
style="width:<%=getUITableSize("xml:AdditionalServiceItem:/OrderLine/AdditionalS
erviceItems/Item/PrimaryInformation/@Description")%>"><yfc:i18n>Item_
Description</yfc:i18n></td>
 <td class="tablecolumnheader"
style="width:<%=getUITableSize("xml:AdditionalServiceItem:/OrderLine/AdditionalS
erviceItems/Item/@Price")%>"><yfc:i18n>Price</yfc:i18n></td>
 </tr>
 </thead>

19.5 expandCollapseDetails
This JavaScript function toggles the display state of the specified tags
that have expanded and collapsed views.

Syntax
expandCollapseDetails(div_id, expandAlt, collapseAlt, expandgif,
collapsegif)

Input Parameters
div_id - Required. Identifier of the object to expand or collapse.

expandAlt - Required. Tooltip to show for expanding a selection. This
tooltip shows when the object is in a collapsed state.

collapseAlt - Required. Tooltip to show for collapsing a selection.
Available when the object is an expanded state.

expandgif - Required. Image to show when the selection is in a
collapsed state.

expandCollapseDetails

JavaScript Functions 187

collapsegif - Required. Image to show when the selection is in an
expanded state.

Return Value
None.

Example
This example shows how the expandCollapseDetails() function can be
used in a table to hide some advanced information that the user can
retrieve by selecting a special icon at line level. The example shows how
payment collection details, such as credit card number, can be viewed by
selecting the plus (+) icon. The example also shows div, which enables
you to specify whether to hide or show information. By default, the div is
hidden (display:none).

<tbody>
<yfc:loopXML
binding="xml:/Order/ChargeTransactionDetails/@ChargeTransactionDetail"
id="ChargeTransactionDetail">
<%request.setAttribute("ChargeTransactionDetail",
(YFCElement)pageContext.getAttribute("ChargeTransactionDetail"));%>
 <yfc:makeXMLInput name="InvoiceKey">
 <yfc:makeXMLKey binding="xml:/GetOrderInvoiceDetails/@InvoiceKey"
value="xml:/ChargeTransactionDetail/@OrderInvoiceKey" />
 </yfc:makeXMLInput>
 <tr>
 <td class="tablecolumn"
sortValue="<%=getDateValue("xml:ChargeTransactionDetail:/ChargeTransactionDetail
/@Createts")%>">
 <yfc:getXMLValue
binding="xml:/ChargeTransactionDetail/@Createts"/>
 </td>
 <td class="tablecolumn">
 <yfc:getXMLValue
binding="xml:/ChargeTransactionDetail/@ChargeType"/>
 <% if
(equals("AUTHORIZATION",getValue("ChargeTransactionDetail","xml:/ChargeTransacti
onDetail/@ChargeType")) ||
equals("CHARGE",getValue("ChargeTransactionDetail","xml:/ChargeTransactionDetail
/@ChargeType"))) {%>
 <% String divToDisplay="yfsPaymentInfo_" +
ChargeTransactionDetailCounter; %>
 <img

188 Customizing Console JSP Interface for End-User Guide

getAttributeNameFromBinding

onclick="expandCollapseDetails('<%=divToDisplay%>','<%=getI18N("Click_To_See_
Payment_Info")%>','<%=getI18N("Click_To_Hide_Payment_
Info")%>','<%=YFSUIBackendConsts.FOLDER_
COLLAPSE%>','<%=YFSUIBackendConsts.FOLDER_EXPAND%>')" style="cursor:hand"
<%=getImageOptions(YFSUIBackendConsts.FOLDER,"Click_To_See_Payment_Info")%> />
 <div id=<%=divToDisplay%>
style="display:none;padding-top:5px">
 <table width="100%" class="view">
 <tr>
 <td height="100%">
 <jsp:include page="/om/Orderdetail/order_
detail_paymenttype_collections.jsp">
 <jsp:param name="PrePathId"
value="ChargeTransactionDetail"/>
 <jsp:param name="ShowAdditionalParams"
value="Y"/>
 <jsp:param
name="DecryptedCreditCardLink" value="L02"/>
 </jsp:include>
 </td>
 </tr>
 </table>
 </div>
 <%}%>
 </td>
 <td class="numerictablecolumn"
sortValue="<%=getNumericValue("xml:ChargeTransactionDetail:/ChargeTransactionDet
ail/@CreditAmount")%>">
 <yfc:getXMLValue
binding="xml:/ChargeTransactionDetail/@CreditAmount"/>
 </td>
 </tr>
 </yfc:loopXML>
</tbody>

19.6 getAttributeNameFromBinding
This JavaScript function parses the binding string passed as input and
returns the attribute from the string.

Syntax
getAttributeNameFromBinding(str)

getCurrentSearchViewId

JavaScript Functions 189

Input Parameters
str - Optional. String containing the binding string. If not passed, the
function returns null.

Return Value
Attribute portion of the binding string.

19.7 getCurrentSearchViewId
This JavaScript function retrieves the Resource ID of the current search
view. This function can be used only for search views. To get the
Resource ID of the current detail view, use the getCurrentViewId
JavaScript function on the detail view JSP page. See "getCurrentViewId"
on page 19-190.

Syntax
getCurrentSearchViewId()

Input Parameters
None.

Return Value
Resource ID of the current search view.

Example
This example shows how to refresh the current search view when a value
is selected from a combo box by obtaining the current View ID.

<select class="combobox" onChange="changeSearchView(getCurrentSearchViewId())"
<%=getComboOptions(documentTypeBinding)%>>
 <yfc:loopOptions
binding="xml:CommonDocumentTypeList:/DocumentParamsList/@DocumentParams"
name="Description"
 value="DocumentType" selected="<%=selectedDocumentType%>"/>
</select>

190 Customizing Console JSP Interface for End-User Guide

getObjectByAttrName

19.8 getCurrentViewId
This JavaScript function retrieves the Resource ID of the current detail
view.

Syntax
getCurrentViewId()

Input Parameters
None.

Return Value
Resource ID of the current detail view.

Example
This example shows how to refresh the current view by obtaining the
current View ID.

<td class="detaillabel" ><yfc:i18n>Horizon_End_Date</yfc:i18n></td>
<td class="protectedtext" nowrap="true">
 <input type="text" class="dateinput" onkeydown="return checkKeyPress(event)"
<%=getTextOptions("xml:/InventoryInformation/Item/@EndDate","xml:/InventoryInfor
mation/Item/@EndDate","")%> />
 <img class="lookupicon" onclick="invokeCalendar(this);return false"
<%=getImageOptions(YFSUIBackendConsts.DATE_LOOKUP_ICON,"View_Calendar")%> />
 <input type="button" class="button" value="GO"
onclick="if(validateControlValues())changeDetailView(getCurrentViewId())"/>
</td>

19.9 getObjectByAttrName
This JavaScript function returns the object that is bound to the specified
attribute.

Binding is achieved through the use of a JSP function such as
getTextOptions or getComboOptions. For more information on binding
JSP functions, see Section 17.41, "yfsGetTextOptions" or Section 17.37,
"yfsGetComboOptions".

Once a field is bound, the name attribute of that field contains the
binding XML path. This JavaScript function searches for all input and

getObjectByAttrName

JavaScript Functions 191

combo boxes and text areas within the specified HTML tag, and matches
the attribute portion of the name attribute. The first match is returned.

The attribute portion is separated from the rest of the name attribute by
the at (@) separator. For example, if the name is
xml:/Order/@ChargeNameKey, the attribute portion is ChargeNameKey.

Syntax
getObjectByAttrName(obj, attributeName)

Input Parameters
obj - Required. Handle to the HTML object under which the search is to
be conducted.

attributeName - Optional. Attribute name for search to be conducted
under the object specified. If not passed, the function returns null.

Return Value
Handle to the object that is bound to the attribute specified. If no such
object is found, null is returned.

Example
This example shows how to enable and disable the charge name field on
line taxes, based on the checking of a checkbox.

function setAsPriceCharge(thisCheckbox) {
 var checkboxName=thisCheckbox.name
 var trNode=getParentObject(thisCheckbox, "TR");
 var sel=getObjectByAttrName(trNode, "ChargeNameKey");

 if (sel != null) {
 if (thisCheckbox.checked) {
 sel.disabled=true;
 sel.value="";
 } else {
 sel.disabled=false;
 }
 }
}

192 Customizing Console JSP Interface for End-User Guide

goToURL

19.10 getParentObject
This JavaScript function gets the first occurrence of the tag specified in
the HTML ancestry of the passed object.

Syntax
getParentObject(obj, tag)

Input Parameters
obj - Required. Handle to an object in HTML object hierarchy.

tag - Optional. String containing the name of the ancestor node used in
a search. If not passed, the function returns null.

Return Values
The first occurrence of the tag specified in the HTML ancestry of the
passed object.

Example
This example shows how to code a client-side deletion to run when the
user selects a Delete icon in a table row. In this example, element refers
to the object that the user selects.

function deleteRow(element) {
var row=getParentObject(element, "TR");

oTable=getParentObject(row, "TABLE");

row.parentNode.deleteRow(row.rowIndex - 1);

fireRowsChanged(oTable);

 return false;
}

19.11 goToURL
This JavaScript function opens a specified URL in a new window.

Syntax
goToURL(URLInput)

ignoreChangeNames

JavaScript Functions 193

Input Parameters
URLInputObj - Optional. Name of the input tag that contains the URL
specified by the user. If not passed, the function just returns.

Return Value
None.

Example
This example shows how the goToUrl() function opens the order
instruction screen in a new window.

<td>
 <input type="text"
<%=yfsGetTextOptions("xml:/Order/Instructions/Instruction_" + InstructionCounter
+ "/@InstructionURL",
"xml:/Instruction/@InstructionURL","xml:/Order/AllowedModifications")%>/>
 <input type="button" class="button" value="GO"
onclick="javascript:goToURL('xml:/Order/Instructions/Instruction_
<%=InstructionCounter%>/@InstructionURL');"/>
</td>

19.12 ignoreChangeNames
Whenever any detail view is posted, the Presentation Framework checks
for data changed through the screen controls. For controls that have no
changes, the name attribute is changed to "old" + [current name]. By
doing this, the data in these controls does not make it to the APIs. This
results in improved performance, since unchanged data does not need to
be updated. However, some APIs are designed to work in replace mode.
They take a complete snapshot of information (including unchanged part)
and replace the all of it in the database. For such APIs, all data from the
screen must be passed as input.

To achieve this, this function can be called in the onload event. This
function sets a custom property in the window object. When the screen is
posted, the Presentation Framework checks for this custom property. If
the property is set, the automatic name changing does not happen.

The Presentation Framework helps the user remember to save data they
have input. When a user has changed some data and begins to navigate
away from a page, the Presentation Framework detects the changed data
and prompts the user to save their work. This function does not change

194 Customizing Console JSP Interface for End-User Guide

invokeCalendar

the behavior of this feature in any way. It simply makes sure that the
name property of the controls that have no changes are retained. In this
way, this function differs from yfcDoNotPromptForChanges(). See
“yfcDoNotPromptForChanges” on page 19-208.

Syntax
ignoreChangeNames()

Input Parameters
None.

Return Value
None.

Example
The example attaches this function to the onload event.

<script language="javascript">
window.attachEvent("onload", IgnoreChangeNames);
</script>

19.13 invokeCalendar
This JavaScript function invokes the calendar lookup. This function
assumes that the previous object to the one passed (in the DOM
hierarchy of the HTML) is the one that must be populated with the date
selected in the lookup.

Syntax
invokeCalendar(obj)

Input Parameters
obj - Required. Handle to the image object that was selected to invoke
the calendar.

Output Parameters
None.

invokeTimeLookup

JavaScript Functions 195

Example
This example shows how the Calendar Lookup is invoked from the
Horizon End Date field in the Inventory detail view.

 <td class="detaillabel" ><yfc:i18n>Horizon_End_Date</yfc:i18n></td>
 <td class="protectedtext" nowrap="true">
 <input type="text" class="dateinput" onkeydown="return
checkKeyPress(event)"
<%=getTextOptions("xml:/InventoryInformation/Item/@EndDate","xml:/InventoryInfor
mation/Item/@EndDate","")%> />
 <img class="lookupicon" onclick="invokeCalendar(this);return false"
<%=getImageOptions(YFSUIBackendConsts.DATE_LOOKUP_ICON,"View_Calendar")%> />
 <input type="button" class="button" value="GO"
onclick="if(validateControlValues())changeDetailView(getCurrentViewId())"/>
 </td>

19.14 invokeTimeLookup
This JavaScript function invokes the time lookup. The function assumes
that the previous object to the one passed (in the DOM hierarchy of the
HTML) is the one that must be populated with the date selected in the
lookup.

Syntax
invokeTimeLookup(obj)

Input Parameters
obj - handle to the image object that was clicked to invoke the calendar.

Output Parameters
None.

Example
This example shows how the time lookup is used in a date and time
search criteria field.

<tr>
 <td nowrap="true">
 <input class="dateinput" type="text"
<%=getTextOptions("xml:/Shipment/@FromExpectedShipmentDate_YFCDATE")%>/>
 <img class="lookupicon" name="search" onclick="invokeCalendar(this);return

196 Customizing Console JSP Interface for End-User Guide

showDetailFor

false" <%=getImageOptions(YFSUIBackendConsts.DATE_LOOKUP_ICON, "Calendar") %> />
 <input class="dateinput" type="text"
<%=getTextOptions("xml:/Shipment/@FromExpectedShipmentDate_YFCTIME")%>/>
 <img class="lookupicon" name="search"
onclick="invokeTimeLookup(this);return false"
<%=getImageOptions(YFSUIBackendConsts.TIME_LOOKUP_ICON, "Time_Lookup") %> />
 <yfc:i18n>To</yfc:i18n>
 </td>
</tr>
<tr>
 <td>
 <input class="dateinput" type="text"
<%=getTextOptions("xml:/Shipment/@ToExpectedShipmentDate_YFCDATE")%>/>
 <img class="lookupicon" name="search" onclick="invokeCalendar(this);return
false" <%=getImageOptions(YFSUIBackendConsts.DATE_LOOKUP_ICON, "Calendar") %> />
 <input class="dateinput" type="text"
<%=getTextOptions("xml:/Shipment/@ToExpectedShipmentDate_YFCTIME")%>/>
 <img class="lookupicon" name="search"
onclick="invokeTimeLookup(this);return false"
 <%=getImageOptions(YFSUIBackendConsts.TIME_LOOKUP_ICON, "Time_Lookup") %>/>
 </td>
</tr>

19.15 showDetailFor
This JavaScript function changes the current page to show the default
view of the current entity. The resulting screen opens in the same
browser window, not in a new window. You typically use the
showDetailFor() function to move from the list view to the detail view.
Then after the detail view opens, this function is not used, because
subsequent views are typically invoked as pop-up windows and this
function does not do that.

If you do choose to use this function in a detail screen, the following
behavior must be kept in mind. This function does a [get] and not a
[post]. Therefore, if you see the Next or Previous icons on your screen
and you use this function to switch to the default view, the icons are lost.
The icons disappear because the hidden input in the current page that
contain information regarding the Next or Previous views are lost when
this function does a [get].

In a list screen, this function is used in conjunction with the
yfc:makeXMLInput JSP tag. The makeXMLInput JSP tag prepares an XML

showDetailFor

JavaScript Functions 197

containing the key attributes. That XML must be passed to the default
detail view.

Syntax
showDetailFor(entityKey)

Input Parameters
entityKey - Required. String containing a URL-encoded XML that
contains the key attributes required by the detail view.

Output Parameters
None.

Example
This example shows an Order list view that contains two columns: Order
Number and Enterprise Code. Order Number is hyperlinked to open the
default detail view of Order. Notice that yfc:makeXMLInput prepares an
XML that is later used as the input parameter to the showDetailFor()
function by using the getParameter() JSP function.

<table class="table" editable="false" width="100%" cellspacing="0">
 <thead>
 <tr>
 <td sortable="no" class="checkboxheader">
 <input type="checkbox" name="checkbox" value="checkbox"
onclick="doCheckAll(this);"/>
 </td>
 <td class="tablecolumnheader"><yfc:i18n>Order_#</yfc:i18n></td>
 <td class="tablecolumnheader"><yfc:i18n>Enterprise</yfc:i18n></td>
 </tr>
 </thead>
 <tbody>
 <yfc:loopXML binding="xml:/OrderList/@Order" id="Order">
 <tr>
 <yfc:makeXMLInput name="orderKey">
 <yfc:makeXMLKey binding="xml:/Order/@OrderHeaderKey"
value="xml:/Order/@OrderHeaderKey" />
 </yfc:makeXMLInput>
 <td class="checkboxcolumn">
 <input type="checkbox" value='<%=getParameter("orderKey")%>'
name="EntityKey"/>
 </td>

198 Customizing Console JSP Interface for End-User Guide

showDetailForViewGroupId

 <td class="tablecolumn"><a
href="javascript:showDetailFor('<%=getParameter("orderKey")%>');">
 <yfc:getXMLValue binding="xml:/Order/@OrderNo"/>
 </td>
 <td class="tablecolumn"><yfc:getXMLValue
binding="xml:/Order/@EnterpriseCode"/></td>
 </tr>
 </yfc:loopXML>
 </tbody>
</table>

19.16 showDetailForViewGroupId
This JavaScript function changes the current page to show the default
view of the given View Group ID (The View ID with the least Resource
Sequence number is the default view for a particular View Group Id). The
resulting screen opens in the same browser window. Use the
showDetailForViewGroupId()function to move from the list view to
the detail view. When the detail view opens, this function is not used,
because subsequent views are invoked as pop-up windows and this
function does not do that.

In the list screen, this function is used in conjunction with the
yfc:makeXMLInput JSP tag. The makeXMLInput JSP tag creates an XML
containing the key attributes. That XML must be passed to the default
detail view.

Syntax
showDetailForViewGroupId (entityname, viewGroupId, entityKey,
extraParameters)

Input Parameters
entityName - Required. Entity to search in the detail screen.

viewGroupId - Required. The view group ID shown to the user.

entityKey - Required. String containing a URL-encoded XML that
contains key attributes required by the detail view.

Output Parameters
None.

showHelp

JavaScript Functions 199

Example
<td class="tablecolumn">
 <a href = "javascript:showDetailForViewGroupId
('load','YDMD200','<%=getParameter("loadKey")%>');"> <yfc:getXMLValue
binding="xml:/Load/@LoadNo"/>

</td>

19.17 showHelp
This JavaScript function invokes online help in a new window.

Online help can be internationalized.

Syntax
showHelp()

Input Parameters
None.

Returns
None.

Examples
The following example shows how online help is invoked when the help
icon is selected from the menu bar and it opens to the table of contents.

<img alt="<%=getI18N("Help")%>" src="<%=YFSUIBackendConsts.YANTRA_HELP%>"
onclick='showHelp();'/>

200 Customizing Console JSP Interface for End-User Guide

showPopupDetailFor

19.18 showPopupDetailFor
This JavaScript function shows the default view of the current entity in a
pop-up window (modal dialog). It is a blocking call. It does not return
until the modal dialog is closed.

Syntax
showPopupDetailFor(key, name, width, height, argument)

Input Parameters
key - Required. Entity key that is required by the detail view. If not
passed, the current entity's key is automatically passed to the pop-up
window.

name - Required. Pass as blank space (" "). Not used.

width - Required. Horizontal size of the pop-up window. Measured in
pixels. If passed as 0, a certain default width is used.

height - Required. Vertical size of the pop-up window. Measured in
pixels. If passed as 0, a certain default height is used.

argument - Required. Anything passed in this field is available in the
modal dialog through the window.dialogArguments attribute.

Returns
None.

Example
This example shows how the inventory audit detail is invoked from the
inventory audit list screen.

Note: The screen-level Help is available only for
system-defined search, list, and detail views. The
functionality for custom views is provided through a
different internal javascript function. This showHelp
function is exposed mainly for use from the menu bar,
which is customizable. From the menu, you typically want
only the overall system help and not the screen-level
context sensitive help.

showPopupDetailFor

JavaScript Functions 201

The same list screen is used in a list view, as well as in a detail pop-up
window. When you select the transaction date, if the current screen is a
pop-up window, another pop-up window is invoked with the audit details.
If the current view is list view, the audit detail screen comes up in the
same window.

<tbody>
 <yfc:loopXML name="InventoryAudits"
binding="xml:/InventoryAudits/@InventoryAudit" id="InventoryAudit">
 <tr>
 <yfc:makeXMLInput name="inventoryAuditKey">
 <yfc:makeXMLKey binding="xml:/InventoryAudit/@InventoryAuditKey"
value="xml:/InventoryAudit/@InventoryAuditKey" />
 <yfc:makeXMLKey binding="xml:/InventoryAudit/@OrganizationCode"
value="xml:/InventoryAudit/@InventoryOrganizationCode" />
 </yfc:makeXMLInput>
 <td class="checkboxcolumn">
 <input type="checkbox"
value='<%=getParameter("inventoryAuditKey")%>' name="EntityKey"/>
 </td>
 <td class="tablecolumn"
sortValue="<%=getDateValue("xml:/InventoryAudit/@Modifyts")%>">
 <%if ("Y".equals(request.getParameter(YFCUIBackendConsts.YFC_IN_
POPUP))) {%>
 <a href=""
onClick="showPopupDetailFor('<%=getParameter("inventoryAuditKey")%>',
'','900','550',window.dialogArguments);return false;" >
 <yfc:getXMLValue name="InventoryAudit"
binding="xml:/InventoryAudit/@Modifyts"/>

 <%} else {%>
 <a
href="javascript:showDetailFor('<%=getParameter("inventoryAuditKey")%>');">
 <yfc:getXMLValue name="InventoryAudit"
binding="xml:/InventoryAudit/@Modifyts"/>

 <%}%>
 </td>
 <td class="tablecolumn">
 <yfc:getXMLValue name="InventoryAudit"
binding="xml:/InventoryAudit/@ItemID"/>
 </td>
 <td class="tablecolumn">
 <yfc:getXMLValue name="InventoryAudit"
binding="xml:/InventoryAudit/@ProductClass"/>

202 Customizing Console JSP Interface for End-User Guide

validateControlValues

 </td>
 <td class="tablecolumn">
 <yfc:getXMLValue name="InventoryAudit"
binding="xml:/InventoryAudit/@UnitOfMeasure"/>
 </td>
 <td class="tablecolumn">
 <yfc:getXMLValue name="InventoryAudit"
binding="xml:/InventoryAudit/@TransactionType"/>
 </td>
 <td class="tablecolumn">
 <yfc:getXMLValue name="InventoryAudit"
binding="xml:/InventoryAudit/@ShipNode"/>
 </td>
 </tr>
 </yfc:loopXML>
</tbody>

19.19 validateControlValues
This JavaScript function checks for client-side validation errors. When the
user enters invalid data in an input field, the Presentation Framework flags
the field as in error. When the user submits data in the page, this
function should be called to make sure that invalid data is not posted.

Syntax
validateControlValues()

Input Parameters
None.

Return Values
true - No errors were found.

false - One or more errors were found.

Example
This example shows how to check for errors before you submit the
current page.

<td class="detaillabel" ><yfc:i18n>Horizon_End_Date</yfc:i18n></td>
<td class="protectedtext" nowrap="true">

yfcAllowSingleSelection

JavaScript Functions 203

 <input type="text" class="dateinput" onkeydown="return checkKeyPress(event)"
<%=getTextOptions("xml:/InventoryInformation/Item/@EndDate","xml:/InventoryInfor
mation/Item/@EndDate","")%> />
 <img class="lookupicon" onclick="invokeCalendar(this);return false"
<%=getImageOptions(YFSUIBackendConsts.DATE_LOOKUP_ICON,"View_Calendar")%> />
 <input type="button" class="button" value="GO"
onclick="if(validateControlValues())changeDetailView(getCurrentViewId())"/>
</td>

19.20 yfcAllowSingleSelection
Some operations can be performed on only one record at a time.
However, the user interface typically permits multiple options to be
checked before an operation is selected. Therefore, the operations that
do not support multiple selections must themselves validate that not
more than one record has been selected for processing. This function
does that validation.

Syntax
yfcAllowSingleSelection(chkName)

Input Parameters
chkName - Optional. Name of the set of checkbox controls, one of which
must be checked before an operation is performed. If the value is not
passed or is blanks, it defaults to EntityKey.

Output Parameters
true - Zero or one record was selected.

false - More than one record was selected.

Examples
Receiving intransit updates can only be done one stop at a time.
Therefore, the operation for receiving intransit updates is configured to
first call the JavaScript function yfcAllowSingleSelection() and then
to invoke the receiveIntransitUpdates() API.

This example performs an action if one, and only one, selection was
made for checkboxes that have the name set to the value passed in the
sKeyName variable.

204 Customizing Console JSP Interface for End-User Guide

yfcChangeDetailView

function goToOrderLineSchedules(sSearchViewID, sKeyName, bPopup)
{
 if(yfcAllowSingleSelection(sKeyName))
 {
 …
 }
 }

19.21 yfcBodyOnLoad
This JavaScript function is called whenever any page is loaded. Typically,
it is automatically called when the page is loaded. However, if your page
must do something special on the onload event, you can call this
function first and then call your own window.onload() function.

Syntax
yfcBodyOnLoad()

Input Parameters
None.

Return Value
None.

Example
This example shows how the onload event can be taken by your custom
JSP rather than let the Presentation Framework take it.

function window.onload(){
 if (!yfcBodyOnLoad() && (!document.all('YFCDetailError'))) {
 return;
 }

//Do your special processing here
}

19.22 yfcChangeDetailView
This JavaScript function switches to a specific detail view. This function
uses the POST function to switch the view.

yfcChangeListView

JavaScript Functions 205

Syntax
yfcChangeDetailView(viewID)

Input Parameters
viewID - Required. Resource ID of the detail view to which you wish to
switch.

Return Values
None.

Example
This example shows how to use the yfcChangeDetailView() function in
order charges and the taxes summary in order to refresh the page to the
current view when a combobox value is changed.

<select name="chargeType" class="combobox"
onchange="yfcChangeDetailView(getCurrentViewId());">
 <option value="Overall" <%if (equals(chargeType,"Overall")) {%> selected
<%}%>><yfc:i18n>Ordered</yfc:i18n></option>
 <option value="Remaining" <%if (equals(chargeType,"Remaining")) {%> selected
<%}%>><yfc:i18n>Open</yfc:i18n></option>
 <option value="Invoiced" <%if (equals(chargeType,"Invoiced")) {%> selected
<%}%>><yfc:i18n>Invoiced</yfc:i18n></option>
</select>

19.23 yfcChangeListView
This JavaScript function switches the current view to a list view. The list
view is expected to have a pre-determined filter criteria, since this
function does not accept any additional filter criteria.

Syntax
function yfcChangeListView(entity, searchViewId,maxrecords)

Input Parameters
entity - Required. Entity to which the searchViewId belongs.

searchViewId - Required. Identifier of the search view to which you
wish to switch.

206 Customizing Console JSP Interface for End-User Guide

yfcDisplayOnlySelectedLines

maxrecords - Optional. Maximum number of records to display in the
list view. To enhance performance, use this parameter. If this is not
passed, it defaults to the value specified in the yfs.properties file.

Output Parameters
None.

Example
The home page shows a list of alerts, up to a certain number, that has
been set as the maximum number to display. To see a complete list of all
alerts, the user can select the More Alerts operation. This operation is
configured to call the yfcChangeListView() JavaScript function.

19.24 yfcDisplayOnlySelectedLines
This JavaScript function is for situations when the user needs to select
multiple records from a list in screen A and those records must be passed
on to screen B. In screen B, the selected records are displayed, possibly
with additional information for each record. In such cases, the logic is
that the same set of APIs that were used to build screen A could be
called to also build screen B, and on the client side, a filtration process
limits the display to only those selected in screen A.

This function requires that each row in the table that is under
consideration must have an attribute called yfcSelectionKey set to the
URL encoded XML (formed using yfc:makeXMLInput JSP tag).

Syntax
yfcDisplayOnlySelectedLines(tableId)

Note: Use the the <INSTALL_
DIR>/properties/customer_overrides.properties file
to set the yfs.ui.MaxRecords property. For additional
information about overriding properties using the
customer_overrides.properties file, see the Selling and
Fulfillment Foundation: Properties Guide.

yfcDisplayOnlySelectedLines

JavaScript Functions 207

Input Parameters
tableId - Required. Identifier attribute of the table whose content must
be limited to that selected from the previous screen.

Output Parameters
None.

Example
The following example shows how the create order line dependency
screen limits the results in the order lines list to the specific lines that are
selected in the order detail screen. First, this function must be called in
the onload event.

<script language="javascript">
 function window.onload() {
 if (!yfcBodyOnLoad() && (!document.all('YFCDetailError'))) {
 return;
 }
 yfcDisplayOnlySelectedLines("DependentLines");
 }
</script>

Second, each <tr> tag must contain the yfcSelectionKey attribute.

 <tbody>
 <yfc:loopXML name="Order"
binding="xml:/Order/OrderLines/@OrderLine" id="OrderLine">
 <yfc:makeXMLInput name="orderLineKey">
 <yfc:makeXMLKey
binding="xml:/OrderLineDetail/@OrderLineKey"
value="xml:/OrderLine/@OrderLineKey"/>
 <yfc:makeXMLKey
binding="xml:/OrderLineDetail/@OrderHeaderKey"
value="xml:/Order/@OrderHeaderKey"/>
 </yfc:makeXMLInput>
 <tr yfcSelectionKey="<%=getParameter("orderLineKey")%>">
 <td class="tablecolumn"><yfc:getXMLValue
binding="xml:/OrderLine/Item/@ItemID"/></td>
 <td class="tablecolumn"><yfc:getXMLValue
binding="xml:/OrderLine/Item/@ProductClass"/></td>
 <td class="tablecolumn"><yfc:getXMLValue
binding="xml:/OrderLine/Item/@UnitOfMeasure"/></td>
 <td class="tablecolumn"><yfc:getXMLValue
binding="xml:/OrderLine/Item/@ItemDesc"/></td>

208 Customizing Console JSP Interface for End-User Guide

yfcDoNotPromptForChanges

 </tr>
 </yfc:loopXML>
 </tbody>
 </table>

19.25 yfcDoNotPromptForChanges
This JavaScript function turns off the automatic prompts that remind the
user to save changes to their data. By default on any screen, if a user
enters data and then starts to navigate away without saving the data,
the Presentation Framework catches this and alerts the user to save their
data.

When you call this function it sets a parameter on the window object.
This parameter is checked during the onunload event and if the
parameter is set through this function, the user is not warned.

When you call this function to turn off prompting, all data in the screen is
passed to the API during save.

This JavaScript function does not turn off the prompts that remind a user
to save changes to their data when executing inner panel actions.

If you call an API on an inner panel and do not want the user to be
prompted to save changes, you must also use either the
yfcSetControlAsUnchanged or the yfcDoNotPromptForChangesForActions
function. See yfcSetControlAsUnchanged on page 19-215 or
yfcDoNotPromptForChangesForActions on page 19-209.

Syntax
yfcDoNotPromptForChanges(value)

Input Parameters
value - Required. Determines whether or not the user should be
prompted to save any new data they have input that has not yet been
saved. Valid values are true and false. If specified as true, the user is not
prompted to save. If specified as false, the user is prompted to save the
data.

Return Value
None.

yfcDoNotPromptForChangesForActions

JavaScript Functions 209

Example
This example shows how this function turns off the automatic prompts
for the manifest detail screen.

<script language="javascript">
yfcDoNotPromptForChanges(true);
</script>

19.26 yfcDoNotPromptForChangesForActions
This JavaScript function can be used when you want to skip the "Changes
made to the current screen will be lost" validation that is done when the
user clicks actions on an inner panel. Normally, inner panel actions in the
Application Console are not used with the editable fields on a screen.
Therefore, when the user changes an input field and clicks an action, the
warning message is displayed by default. Call this javascript method to
avoid this validation. You can call this method for all actions on a view by
calling it in your JSP in a script tag. Alternatively, you can call this
method for a specific action by calling it as part of the javascript property
of the action resource.

Syntax
yfcDoNotPromptForChangesForActions(value)

Input Parameters
value - Required. Pass 'true' to skip the "changes made" validation. Pass
'false' to turn the validation on. By default, the validation is on.

Return Value
None.

Example
This example shows how to call the
yfcDoNotPromptForChangesForActions function from a JSP to turn the
"changes made" validation off for all actions on the view:

<script language="Javascript" >
yfcDoNotPromptForChangesForActions(true);

</script>

210 Customizing Console JSP Interface for End-User Guide

yfcGetSaveSearchHandle

19.27 yfcGetCurrentStyleSheet
This JavaScript function retrieves name of the style sheet for the current
window.

Syntax
yfcGetCurrentStyleSheet()

Input Parameters
None.

Output Parameters
currentStyleSheet - The name of the style sheet for the current
window. The full name of the style sheet is returned, including the file
extension (for example, sapphire.css).

Example
This example shows how to get the current style sheet of the window.

var currentStyleSheet = yfcGetCurrentStyleSheet();

19.28 yfcGetSaveSearchHandle
This JavaScript function provides a handle to the Save Search icon on the
search view. This handle then can be used for attaching events to
achieve custom behavior. To change the behavior associated with the
Search icon, see “yfcGetSearchHandle” on page 19-211.

Syntax
var oObj=yfcGetSaveSearchHandle();

Input Parameters
None.

Output Parameters
var - Handle to the Save Search icon on the search view.

yfcGetSearchHandle

JavaScript Functions 211

Example
This example shows how to have the application perform custom
processing when the user selects the Save Search icon.

<script language="javascript">
function attachBehaviorFn()
{
 ...
var oObj1=yfcGetSaveSearchHandle();
var sVal1=oObj1.attachEvent("onclick",fixDerivedFromReturnSearch);
}
 window.attachEvent("onload",attachBehaviourFn);
...

19.29 yfcGetSearchHandle
This JavaScript function provides a handle to the Search icon on a search
view. This handle then can be used for attaching events in order to
achieve custom behavior. To affect the behavior associated with the Save
Search icon, see “yfcGetSaveSearchHandle” on page 19-210.

Syntax
var oObj=yfcGetSearchHandle();

Input Parameters
None.

Output Parameters
var - Handle to the Search icon on the search view.

Example
This example shows how to have the application perform custom
processing when the user selects the Search icon.

<script language="javascript">
function attachBehaviourFn()
{
var oObj=yfcGetSearchHandle();
var sVal=oObj.attachEvent("onclick",fixDerivedFromReturnSearch);
 ...
}

212 Customizing Console JSP Interface for End-User Guide

yfcHasControlChanged

 window.attachEvent("onload",attachBehaviourFn);
...

19.30 yfcHasControlChanged
This JavaScript function determines if the contents of a specific control
have been modified by the user since the page loaded.

This is accomplished by comparing the current value of a specific control
with the custom attribute OldValue stored in the control when the page
is loaded.

In the case of checkboxes and radio buttons, the custom attribute is
oldchecked.

Syntax
yfcHasControlChanged(ctrl)

Input Parameters
ctrl - Required. Object in the HTML object hierarchy.

Return Values
true - Value of the specified control is different from when the page was
first loaded.

false - Value of the specified control is the same as when the page was
first loaded.

Example
This example shows how the Order Modification Reasons pop-up window
uses this function to set the Override Flag in a hidden field.

The hidden field is passed to the changeOrder() API only when a specific
field (for example, requested ship date) that is permitted to be changed
only by users with special override permissions is changed by the user.
This function detects if any of the input in the screen has changed.

function setOverrideFlag(overrideFlagBinding) {

 var overrideFlagInput=document.all(overrideFlagBinding);

 var docInputs=document.getElementsByTagName("input");

yfcMultiSelectToSingleAPIOnAction

JavaScript Functions 213

 for (var i=0;i<docInputs.length;i++) {
 var docInput=docInputs.item(i);
 if (docInput.getAttribute("yfsoverride") == "true") {
 if (yfcHasControlChanged(docInput)) {
 overrideFlagInput.value="Y";
 return;
 }
 }
 }

 var docSelects=document.getElementsByTagName("select");
 for (var i=0;i<docSelects.length;i++) {
 var docSelect=docSelects.item(i);
 if (docSelect.getAttribute("yfsoverride") == "true") {
 if (yfcHasControlChanged(docSelect)) {
 overrideFlagInput.value="Y";
 return;
 }
 }
 }
}

19.31 yfcMultiSelectToSingleAPIOnAction
This JavaScript function replaces the yfcMultiSelectToSingleAPI()
JavaScript function, which was deprecated in Release 5.0 SP1.

This function makes a single API call using multiple selections in a list. By
default, when an action that calls an API on a list screen is run while
multiple selections have been made by the user, the API runs once for
each selected record. This function enables you to configure an action
that calls an API that runs only once for all selected records.

Attach this function to the action resource. This function creates hidden
inputs on the list screen for each record that the user selects. Assuming
that the input namespace of the action has been defined correctly, the
API is called once and all selected records are passed.

Syntax
yfcMultiSelectToSingleAPIOnAction(checkBoxName, counterAttrName,
valueAttrName, keyAttributeName, parentNodePrefix, parentNodePostfix)

214 Customizing Console JSP Interface for End-User Guide

yfcMultiSelectToSingleAPIOnAction

Input Parameters
checkBoxName - Required. Name of the checkbox object within the JSP
where the action is defined.

counterAttrName - Required. Name of the HTML attribute on the
checkbox object that contains the counter value that uniquely identifies
this row within the table. It is recommended that you always use the
string yfcMultiSelectCounter for this parameter.

valueAttrName - Required. Name of the HTML attribute on the
checkbox object that contains the value that should be set into the
attribute passed in the keyAttributeName parameter. It is recommended
that you prefix the value with the yfcMultiSelectValue string. For more
details, see the example.

keyAttributeName - Required. Name of the attribute that should be
passed to the API.

parentNodePrefix - Required. The portion of the XML binding up to and
including the repeating XML element that is to be passed as input to the
API.

parentNodePostfix - Optional. The portion of the XML binding between
the repeating XML element of the API input up to the final element in
which the attribute specified in the keyAttributeName parameter is to be
passed.

Output Parameters
None.

Example
This example shows a Create Shipment action that has been defined on a
Order Release list view. The following shows how the checkbox object is
created within the JSP:

<td class="checkboxcolumn"><input type="checkbox"
value='<%=getParameter("orderReleaseKey")%>' name="EntityKey"
yfcMultiSelectCounter='<%=OrderReleaseCounter%>'
yfcMultiSelectValue1='<%=getValue("OrderRelease",
"xml:/OrderRelease/@OrderReleaseKey")%>'
yfcMultiSelectValue2='Add'/>
</td>

yfcSetControlAsUnchanged

JavaScript Functions 215

Additionally, the Create Shipment action has the JavaScript field set to
the following:

yfcMultiSelectToSingleAPIOnAction('EntityKey', 'yfcMultiSelectCounter',
'yfcMultiSelectValue1', 'OrderReleaseKey',
'xml:/Shipment/OrderReleases/OrderRelease',
null);yfcMultiSelectToSingleAPIOnAction('EntityKey', 'yfcMultiSelectCounter',
'yfcMultiSelectValue2', 'AssociationAction',
'xml:/Shipment/OrderReleases/OrderRelease', null);

Note that the yfcMultiSelectToSingleAPIOnAction function is called
twice to create two hidden inputs required by the API.

19.32 yfcSetControlAsUnchanged
This JavaScript function eliminates prompting the user to save data.
when controls are placed on an inner panel. Achieves this by setting
controls as "not changed." The something function sets the prompt
"Changes made to the data on screen will be lost" from appearing. For
more information on users’ changes to controls, see
“ignoreChangeNames” on page 19-193.

After configuring all controls on a page to use this function, call this
function for each control on a page before invoking an action.

If an inner panel uses an Action and has modifiable controls that take
input required for the Action, you can use this function to prevent the
"Changes made to the data on screen will be lost" message.

When using this function, you must also call the
yfcDoNotPromptForChanges() function in the JSP containing the Action.
For more information about user prompts, see
“yfcDoNotPromptForChanges” on page 19-208.

Syntax
yfcSetControlAsUnchanged (control)

Input Parameters
control - Required. Object in the HTML object hierarchy.

Return Value
None.

216 Customizing Console JSP Interface for End-User Guide

yfcShowDefaultDetailPopupForEntity

Example
This example shows how to call the CallSetControl() function from
Action:

<script language="javascript"> yfcDoNotPromptForChanges(true) </script>
<script language="javascript">
function CallSetControl() {
 var myControl=document.all("xml:/InventoryItem/SKU/@OldSKU");
 var myControl_1=document.all("xml:/InventoryItem/SKU/@NewSKU");
 var myControl_2=document.all("xml:/InventoryItem/@EMailID");

 yfcSetControlAsUnchanged(myControl);
 yfcSetControlAsUnchanged(myControl_1);
 yfcSetControlAsUnchanged(myControl_2);
 return(true);
 }
 </script>

19.33 yfcShowDefaultDetailPopupForEntity
This JavaScript function shows the default detail view of an entity in a
pop-up window (modal dialog). The entity for which the view is displayed
must be specified in the yfsTargetEntity attribute of the checkbox object
whose name is passed as input. It is a blocking call. It does not return
until the modal dialog is closed.

Syntax
yfcShowDefaultDetailPopupForEntity(checkBoxName)

Input Parameters
checkBoxName – Required. Name of one or more checkbox objects
with the yfsTargetEntity attribute containing the ID of the entity for which
the default detail view is to be displayed.

Return Values
None.

yfcShowDetailPopup

JavaScript Functions 217

Example
This example shows how a view details action on an Order List screen
could use this function to bring up the default detail view of the order
entity.

JSP code for the checkbox:

<td class="checkboxcolumn">
<input type="checkbox" value='<%=getParameter("orderKey")%>'
name="chkRelatedKey" yfsTargetEntity="order"/>
</td>

The view details action should be defined with these properties:

ID=“<Some ID>”
Name="View_Details"
Javascript="showDefaultDetailPopupForEntity('chkRelatedKey')"
Selection Key Name="chkRelatedKey"

19.34 yfcShowDetailPopup
This JavaScript function shows a specific view ID in a pop-up window,
which is modal. It is a blocking call; it does not return until the modal
dialog box is closed.

Syntax
yfcShowDetailPopup(viewID, name, width, height, argument, entity, key)

Input Parameters
viewID - Required. Resource ID of the detail view to be shown as a
pop-up window. If passed as an empty string, the pop-up window
displays the default detail view of the entity specified in the entity
parameter.

name - Required. Pass as blank space (" "). Not used.

width - Required. Horizontal size of the pop-up window. Measured in
pixels. If passed as 0, a certain default width is used.

height - Required. Vertical size of the pop-up window. Measured in
pixels. If passed as 0, a certain default height is used.

argument - Required. Anything passed in this field is available in the
modal dialog through the window.dialogArguments attribute.

218 Customizing Console JSP Interface for End-User Guide

yfcShowDetailPopup

entity - Optional. The entity of the detail view that is to be opened. If
not passed, defaults to the same entity of the view that is currently being
displayed.

key - Optional. Entity key that is required by the detail view. If not
passed, the key of the current entity is passed to pop-up window.

Return Values
None.

Example
This example shows how the Modification Reason Code pop-up window
displays when Save is selected on the Order Detail screen.

function enterActionModificationReason(modReasonViewID, modReasonCodeBinding,
modReasonTextBinding) {

 var myObject=new Object();
 myObject.currentWindow=window;
 myObject.reasonCodeInput=document.all(modReasonCodeBinding);
 myObject.reasonTextInput=document.all(modReasonTextBinding);

 // If the current screen has a hidden input for draft order flag
 // and the value of the input is "Y", don't show the modification
 // reason window.
 var draftOrderInput=document.all("hiddenDraftOrderFlag");
 if (draftOrderInput != null) {
 if ("Y" == draftOrderInput.value) {
 return (true);
 }
 }

 yfcShowDetailPopup(modReasonViewID, "", "550", "255", myObject);

 if (getOKClickedAttribute() == "true") {
 window.document.documentElement.setAttribute("OKClicked", "false");
 return (true);
 }
 else {
 window.document.documentElement.setAttribute("OKClicked", "false");
 return (false);
 }
}

yfcShowDetailPopupWithDynamicKey

JavaScript Functions 219

19.35 yfcShowDetailPopupWithDynamicKey
When called with a specific object (in the HTML object hierarchy this
JavaScript function prepares a URL-encoded XML containing all the values
under the object (recursively). Only the values to be posted are
considered. The XML then is passed on to a pop-up window as a
parameter to show the specified view.

Syntax
yfcShowDetailPopupWithDynamicKey(obj, view, entity, inputNodeName,
winObj)

Input Parameters
obj - Required. Handle to the object based on which the key is
dynamically prepared. For the specific object, this function traverses up
the HTML hierarchy to find the nearest <table> tag. From that <table>
tag, this function then searches for all input and checkboxes. Based on
the binding for these controls, a URL encoded XML is formed which is
then passed as the entity key to the detail view being invoked.

viewID - Required. Resource ID of the detail view to be shown as a
pop-up window. If passed as an empty string, the default detail view of
the specified entity is shown in the pop-up window.

entity - Optional. Resource ID of the entity of the detail view to be
shown. If not passed, defaults to the current entity.

inputNodeName - Required. Root node name of the XML to be prepared
to be passed to the detail view.

winObj - Optional. Anything passed in this field becomes available in the
modal dialog through the window.dialogArguments attribute. If this
parameter is not passed, an empty object is passed to the pop-up
window.

Return Value
None.

Example
This example shows how to use this function to invoke list of order lines
that can be added to a return. The list of order lines requires an order
number to be specified, but this number is editable by the user. Hence,

220 Customizing Console JSP Interface for End-User Guide

yfcShowDetailPopupWithKeys

the input cannot be formed on the server side through a makeXMLInput
JSP tag. Therefore, the input is prepared on the client side using this
function. The following example contains a doClick() function that must
be configured to be called when you select a Proceed icon as
doClick(this);. This way, the button object itself is passed as a
parameter to the doClick() function. For this to work, the button object
must be in the same <table> tag that contains the order number input
box.

function okClick(obj) {
 yfcShowDetailPopupWithDynamicKey(obj, 'YOMD2002', 'return', 'Order',new
Object());
}

19.36 yfcShowDetailPopupWithKeys
This JavaScript functions shows a specific view ID in a pop-up window
(modal dialog). It is a blocking call. It does not return until the modal
dialog is closed.

Use this function in situations where the default key generated by the
Presentation Framework to be passed on the detail view is not accepted by
the detail view being invoked.

Syntax
yfcShowDetailPopupWithKeys(viewID, name, width, height, argument,
keyName, entity, selectionKeyName)

Input Parameters
viewID - Required. Resource ID of the detail view to be shown as a
pop-up window. If passed as an empty string, the default detail view of
the specified entity is displayed.

name - Required. Pass as blank space (" "). Not used.

width - Required. Horizontal size of the pop-up window. Measured in
pixels. If passed as 0, a certain default width is used.

height - Required. Vertical size of the pop-up window. Measured in
pixels. If passed as 0, a certain default height is used.

argument - Optional. Passed as the argument parameter to the
showModalDialog() function that is used to show the pop-up window.

yfcShowDetailPopupWithParams

JavaScript Functions 221

This then becomes available in the modal dialog through the
window.dialogArguments attribute. If not passed, a new Object is
created and passed to the pop-up window.

keyName - Required. Name attribute of a control that contains the
Entity Key that is required by the detail view. If it is not passed, defaults
to the value EntityKey.

entity - Optional. Resource ID for the detail view being shown. If not
passed, defaults to the current entity.

selectionKeyName - Optional. Name of the checkbox control that must
be checked by the user before the pop-up window is invoked. If this
name is not passed (or is passed as null), the check is not performed,
and the pop-up window is invoked immediately.

Return Value
None.

Example
This example shows how to invoke the modify address dialog from an
inner panel that specifies its own entity key.

function doModifyAddressDialogWithKeys(source, viewID, entityKeyName){
 var myObject=new Object();
 myObject.currentwindow=window;
 myObject.currentsource=source;

 if(viewID == null) {
 viewID="YADD001";
 }
 if (entityKeyName == null) {
 entityKeyName="EntityKey";
 }
 yfcShowDetailPopupWithKeys(viewID, "", "600", "425", myObject,
entityKeyName);
}

19.37 yfcShowDetailPopupWithParams
This JavaScript function invokes a specified detail view within a modal
dialog. You can pass parameters to the detail view by forming a string in

222 Customizing Console JSP Interface for End-User Guide

yfcShowDetailPopupWithParams

the format of name1=value1&name2=value2 and passing this string as a
parameter to this function.

This function appends the passed string to the URL that is used to invoke
the view. Thus, the passed parameters are available in the request object
to the called view.

Syntax
yfcShowDetailPopupWithParams(viewID,name,width,height,params,entity
,key, argument)

Input Parameters
viewID - Required. Resource ID of the detail view to be shown as a
pop-up window. If passed as empty string, the default detail view of the
specified entity is displayed.

name - Required. Not used. However an empty string must be passed.

width - Required. Horizontal size of the pop-up window. Measured in
pixels. If passed as 0, a certain default width is used.

height - Required. Vertical size of the pop-up window. Measured in
pixels. If passed as 0, a certain default width is used.

params - Required. String containing parameters to be passed to the
detail view being invoked. Use the syntax
"name1=value1&name2=value2". This appends the string to the URL
invoking the detail view which enables the parameters to be available to
the detail view of the requested object.

entity - Optional. Resource ID corresponding the detail view. If not
passed, defaults to the current entity.

key - Optional. Value of the key to be passed as a parameter to the
detail view. If not passed, the current view's key is passed to the detail
view being invoked.

argument - Optional. Passed as the argument parameter to the
showModalDialog() function that is used to show the pop-up window.
This then becomes available in the modal dialog through the
window.dialogArguments attribute. If this is not passed, an empty
object is passed to the modal dialog.

yfcShowDetailPopupWithKeysAndParams

JavaScript Functions 223

Return Value
None.

Example
This example shows how the notes pop-up window is displayed using this
function. The notes pop-up window detail view requires certain
parameters to be passed to it. For instance, an XML binding pointing to
attributes that control if notes are editable for the current order status or
not. To accomplish this, the following example forms a string containing
these parameters and invokes this JavaScript function.

var
extraParams="allowedBinding=xml:/Order/AllowedModification&getBinding=xml:/Order
&saveBinding=xml:/Order";
yfcShowDetailPopupWithParams('YOMD020', '', "800", "600", extraParams);

19.38 yfcShowDetailPopupWithKeysAndParams
This JavaScript function invokes a specified detail view within a modal
dialog. You can pass parameters to the detail view by forming a string in
the format of name1=value1&name2=value2 and passing this string as a
parameter to this function.

This function appends the passed string to the URL that is used to invoke
the view. Thus, the passed parameters are available in the request object
to the called view.

Use this function in situations where the default key generated by the
Presentation Framework to be passed on the detail view is not accepted
by the detail view being invoked.

Syntax
yfcShowDetailPopupWithKeysAndParams(viewID, name, width, height,
argument,keyName, entity, selectionKeyName, params)

Input Parameters
viewID - Required. Resource ID of the detail view to be shown as a
pop-up window. If passed as an empty string, the default detail view of
the specified entity is displayed.

name - Required. Pass as blank space (" "). Not used.

224 Customizing Console JSP Interface for End-User Guide

yfcShowDetailPopupWithKeysAndParams

width - Required. Horizontal size of the pop-up window. Measured in
pixels. If passed as 0, a certain default width is used.

height - Required. Vertical size of the pop-up window. Measured in
pixels. If passed as 0, a certain default height is used.

argument - Optional. Passed as the argument parameter to the
showModalDialog() function that is used to show the pop-up window.
This then becomes available in the modal dialog through the
window.dialogArguments attribute. If not passed, a new Object is
created and passed to the pop-up window.

keyName - Required. Name attribute of a control that contains the
Entity Key that is required by the detail view. If it is not passed, defaults
to the value EntityKey.

entity - Optional. Resource ID for the detail view being shown. If not
passed, defaults to the current entity.

selectionKeyName - Optional. Name of the checkbox control that must
be checked by the user before the pop-up window is invoked. If this
name is not passed (or is passed as null), the check is not performed,
and the pop-up window is invoked immediately.

params - Required. String containing parameters to be passed to the
detail view being invoked. Use the syntax name1=value1&name2=value2.
This appends the string to the URL invoking the detail view which enables
the parameters to be available to the detail view of the requested object.

Return Value
None.

Example
This example opens a custom detail page and passes some custom
parameters to it.

yfcShowDetailPopupWithKeysAndParams('CSTOrder012','',800,600,new
Object(),'EntityKey','order','EntityKey','CustParam1=xml:/Order&CustParam2=proce
ss')

yfcShowListPopupWithParams

JavaScript Functions 225

19.39 yfcShowListPopupWithParams
This JavaScript function shows a specified list view in a pop-up window
(modal dialog). This is a blocking call. The function does not return until
the window is closed.

Syntax
yfcShowListPopupWithParams(viewID, name, width, height, argument,
entity, params)

Input Parameters
viewID - Required. Resource ID of the list view to be shown as a pop-up
window. If passed as an empty string, the default list view of the
specified entity is displayed.

name - Required. Pass as a blank space (" "). Not used.

width - Required. Horizontal size of the pop-up window. Measured in
pixels. If passed as 0, a certain default width is used.

height - Required. Vertical size of the pop-up window. Measured in
pixels. If passed as 0, a certain default height is used.

argument - Required. Value passed as the argument parameter to
showModalDialog() function that is used to show the pop-up window.
This then becomes available in the modal dialog through the
window.dialogArguments attribute.

entity - Optional. Resource ID for the detail view being shown. If not
passed, defaults to the current entity.

params - Optional. String starting with an ampersand (&) and
containing any extra parameters based on which the search is to be
performed. The parameters passed become available to the list view
being invoked as request parameters.

Return Value
None.

Example
This example shows how an inventory audit list is invoked directly from
the Inventory Summary screen for a specified Organization, Item, UOM
and Product Class.

226 Customizing Console JSP Interface for End-User Guide

yfcShowSearchPopup

function showInvAuditSearch(sViewID,sItemID,sUOM,sProductClass,sOrgCode)
{
 var ItemID=document.all(sItemID).value;
 var UOM=document.all(sUOM).value;
 var PC=document.all(sProductClass).value;
 var Org=document.all(sOrgCode).value;
 var entity="inventoryaudit";
 var
sAddnParams="&xml:/InventoryAudit/@ItemID="+ItemID+"&xml:/InventoryAudit/@UnitOf
Measure="+UOM;
 sAddnParams=sAddnParams +
"&xml:/InventoryAudit/@ProductClass="+PC+"&xml:/InventoryAudit/@OrganizationCode
="+Org;

 yfcShowListPopupWithParams(sViewID,"",'900', '500','',entity,
sAddnParams);
}

19.40 yfcShowSearchPopup
This function invokes the specified search view in a pop-up window. This
function can be used to display lookup results.

Syntax
yfcShowSearchPopup(viewID, name, width, height, argument, entity)

Input Parameters
viewID - Required. Resource ID of the search view to be shown as a
pop-up window. If passed as an empty string, the default detail view of
the specified entity is displayed.

name - Required. Pass as a blank space (" "). Not used.

width - Required. Horizontal size of the pop-up window. Measured in
pixels. If passed as 0, a certain default width is used.

height - Required. Vertical size of the pop-up window. Measured in
pixels. If passed as 0, a certain default height is used.

argument - Required. Value passed as the argument parameter to the
showModalDialog() function that is used to show the pop-up window.
This then becomes available in the modal dialog through the
window.dialogArguments attribute.

yfcShowSearchPopup

JavaScript Functions 227

entity - Optional. Resource ID corresponding to the entity being
searched for. If not passed, defaults to the name of the current entity.

Return Value
None.

Example
This example shows how to invoke a single field lookup. The
callLookup() function invokes a search pop-up window.

From the search pop-up window, when the user selects a row, the
setLookupValue()function is called with the selected value as a
parameter.

The setLookupValue() function populates the value in the text field and
closes the lookup search window.

function setLookupValue(sVal)
{
 var Obj=window.dialogArguments
 if(Obj != null)
 Obj.field1.value=sVal;
 window.close();
}

//obj is to be passed as "this",
// which would be the icon that was selected for lookup.
//This function assumes that the lookup icon is placed
// immediately after the text field on which lookup is requested.
//entityname is the entity name of the search view
// that needs to be shown in the lookup.
function callLookup(obj,entityname)
{
var oObj=new Object();
var oField=obj.previousSibling;
while(oField != null && oField.type != "text" && oField.type != "TEXT")
{
oField=oField.previousSibling;
}
oObj.field1=oField;
yfcShowSearchPopup('','lookup',900,550,oObj,entityname);
}

228 Customizing Console JSP Interface for End-User Guide

yfcSplitLine

19.41 yfcSpecialChangeNames
This JavaScript function must be called when an API requires that the
entire row is passed if the key is passed.

Syntax
yfcSpecialChangeNames(id, checkOnlyBlankRow)

Input Parameters
id - Required. ID of the HTML tag under which the name changing must
be performed.

checkOnlyBlankRow - Optional. If this is passed as true, only new
blank rows (where all inputs and selects are void) are considered for
changing names. If this is passed as false, then all the existing rows
under the object whose ID is passed are considered. If not passed, the
value defaults to false.

Return Value
None.

19.42 yfcSplitLine
This JavaScript function splits a specific row into two rows.

Syntax
yfcSplitLine(imageNode)

Input Parameters
imageNode - Required. Object pointer to the image that is selected in
response to which this function is called.

Output Parameters
None.

Table 0–5 lists the attributes to use at each cell level for determining the
behavior of the newly created rows.

yfcSplitLine

JavaScript Functions 229

Table 0–5 Cell Attributes

Attribute Behavior

ShouldCopy Determines whether or not to copy the contents of
the cell, including child cells. If specified as true, the
contents are copied. If specified as false, the
contents are not copied and an empty cell is
created. Defaults to false.

NewName Determines whether a new cell acquires an
automatically generated name. The generated name
is derived from the name and row count of the
current object being copied. If specified as true, the
new cell acquires a new name. If specified as false,
no name is generated. Defaults to false.

The name generating logic requires that the original
name contain an "_<integer>" at the spot where
the row count must be inserted. For example, if the
original name is
xml:/InspectOrder/ReceiptLines/FromReceiptLi
ne_1/@ReceiptLineNo, the new row has an object
with the name as
xml:/InspectOrder/ReceiptLines/FromReceiptLi
ne_2/@ReceiptLineNo.

NewClassName Class of the new copy of the object. For example, if
the class of the original object is unprotectedinput,
but if you want the new copy to be protected,
specify the new class as protectedinput. If not used,
the class of the original object is used in the copy.

NewDisabled Determines whether or not controls are created in a
disabled state. For some HTML controls (such as
 tags), this means disabling all actions on the
control. If specified as true, the property named
disabled is set to true. If specified as false, the
disabled property is not be set. Defaults to false.

NewResetValue Determines the state of the value attribute for the
new object. If this is set to true, the new object's
value attribute is voided. For most HTML controls,
this results in the contents of the control being
blanked out. If specified as false, the value of the
original control is set in the copy. Defaults to false.

230 Customizing Console JSP Interface for End-User Guide

yfcSplitLine

Example
This example shows how you can split a line on the client side during
returns inspection so that a specific receipt line can be given multiple
dispositions.

<yfc:loopXML binding="xml:/ReceiptLines/@ReceiptLine" id="ReceiptLine">
<tr>
 <yfc:makeXMLInput name="receiptLineKey">
 <yfc:makeXMLKey binding="xml:/ReceiptLine/@ReceiptLineKey"
value="xml:/ReceiptLine/@ReceiptLineKey"/>
 </yfc:makeXMLInput>

 <td class="checkboxcolumn" ShouldCopy="false" nowrap="true">
 <input type="checkbox" value='<%=getParameter("receiptLineKey")%>'
name="chkEntityKey"/>
 </td>
 <td class="checkboxcolumn" nowrap="true" ShouldCopy="false" >
 <img class="columnicon" <%=getImageOptions(YFSUIBackendConsts.RECEIPT_

NewContentEdita
ble

Optional. Determines whether or not the new object
inherits the ContentEditable property of the
current object. If this is specified, the
ContentEditable property of the current object
also becomes the new object's ContentEditable
property. For some HTML controls (such as text
box), this property controls whether or not the
control is editable. The value you specify becomes
the value set in the ContentEditable attribute in the
copy. If this is not specified, the new object inherits
the current object's ContentEditable property.

NewTRClassNam
e

Optional. Specify the class of a new row that is
formed after a line split. If this attribute is not
passed, the default behavior is seen.

For example, if a TR had classname="oddrow"
specified as the class and you want to retain the
same class in the new row after a line split, then
instead of <tr classname="oddrow" > the JSP
should contain <tr classname="oddrow"
NewTRClassName = "oddrow">.

Table 0–5 Cell Attributes

Attribute Behavior

yfcSplitLine

JavaScript Functions 231

LINE_HISTORY, "Disposition_History")%>>
 </td>
 <td class="tablecolumn" nowrap="true" ShouldCopy="false" ><yfc:getXMLValue
binding="xml:/ReceiptLine/@SerialNo"/></td>
 <td class="tablecolumn" nowrap="true" ShouldCopy="false" ><yfc:getXMLValue
binding="xml:/ReceiptLine/@LotNumber"/></td>
 <td class="tablecolumn" nowrap="true" ShouldCopy="false" ><yfc:getXMLValue
binding="xml:/ReceiptLine/@ShipByDate"/></td>
 <td class="numerictablecolumn" nowrap="true" ShouldCopy="false"
><yfc:getXMLValue binding="xml:/ReceiptLine/@AvailableForTranQuantity"/></td>
 <td class="tablecolumn" nowrap="true" ShouldCopy="false" ><yfc:getXMLValue
binding="xml:/ReceiptLine/@DispositionCode"/></td></td>
 <td class="tablecolumn" ShouldCopy="false" >
 <yfc:getXMLValue binding="xml:/ReceiptLine/@InspectionComments"/>
 </td>
 <td class="tablecolumn" nowrap="true" ShouldCopy="true" >
 <img IconName="addSplitLine" src="../console/icons/add.gif"
 <% if
(getNumericValue("xml:/ReceiptLine/@AvailableForTranQuantity") > 1) { %>
 class="lookupicon" onclick="yfcSplitLine(this)"
 <%} else {%>

style="filter:progid:DXImageTransform.Microsoft.BasicImage(grayScale=1)"
 <%}%>
 />
 <input type="hidden"
<%=getTextOptions("xml:/InspectOrder/ReceiptLines/FromReceiptLine_" +
ReceiptLineCounter + "/@ReceiptHeaderKey",
"xml:/ReceiptLine/@ReceiptHeaderKey")%>/>
 <input type="hidden"
<%=getTextOptions("xml:/InspectOrder/ReceiptLines/FromReceiptLine_" +
ReceiptLineCounter + "/@ReceiptLineNo", "xml:/ReceiptLine/@ReceiptLineNo")%>/>
 <select NewName="true" NewClassName="unprotectedinput"
NewContentEditable="true" NewResetValue="true"
 class="combobox"
<%=getComboOptions("xml:/InspectOrder/ReceiptLines/FromReceiptLine_" +
ReceiptLineCounter + "/ToReceiptLines/ToReceiptLine_1/@DispositionCode")%>>
 <yfc:loopOptions binding="xml:/ReturnDispositionList/@ReturnDisposition"
name="Description"
 value="DispositionCode"
selected="xml:/ReceiptLine/@DispositionCode"/>
 </select>
 </td>
 <td class="tablecolumn" nowrap="true" ShouldCopy="true" >
 <input type="text" NewName="true" NewClassName="numericunprotectedinput"

232 Customizing Console JSP Interface for End-User Guide

yfcValidateMandatoryNodes

NewContentEditable="true" NewResetValue="true"
 class="numericunprotectedinput"
<%=getTextOptions("xml:/InspectOrder/ReceiptLines/FromReceiptLine_" +
ReceiptLineCounter + "/ToReceiptLines/ToReceiptLine_1/@Quantity", "")%>/>
 </td>
 <td class="tablecolumn" nowrap="true" ShouldCopy="true" >
 <input type="text" NewName="true" NewClassName="unprotectedinput"
NewContentEditable="true" NewResetValue="true"
 class="unprotectedinput"
<%=getTextOptions("xml:/InspectOrder/ReceiptLines/FromReceiptLine_" +
ReceiptLineCounter + "/ToReceiptLines/ToReceiptLine_1/@InspectionComments",
"")%>/>
 </td>
</tr>
</yfc:loopXML>
</tbody>

19.43 yfcValidateMandatoryNodes
This JavaScript function validates mandatory sections of a screen. The
function parses through all the TABLE elements in a page, and for each of
the tables, looks for the presence of the yfcMandatoryMessage attribute.
If this attribute is found, the function looks into the contents of the table.
If the contents have not changed, the function alerts the message set
within the yfcMandatoryMessage attribute for the corresponding <table>
tag.

Syntax
yfcValidateMandatoryNodes()

Input Parameters
None.

Output Parameters
None.

Example
The following example shows how mandatory validation is performed
before Save in the case of return receiving. First, the Save Operation is
configured to call the yfcValidateMandatoryNodes() function.

setRetrievedRecordCount

JavaScript Functions 233

Second, in the inner panel JSP, the following attribute is set for the table
that requires a validation check:

<table class="table" ID="ReceiveLines" width="100%" editable="true"
 yfcMandatoryMessage="<yfc:i18n>Receipt_information_must_be_entered</yfc:i18n>">

19.44 yfcFindErrorsOnPage
This JavaScript function can be used within JSPs. This function is used to
find errors on a page. On finding an error, this function raises an
appropriate alert message.

Syntax
yfcFindErrorsOnPage()

Input Parameters
None.

Return Value
None.

Example
This example shows how to call the yfcFindErrorsOnPage() function from
a JSP. While adding a dynamic row inside a JSP, this function checks if
the JSP has any errors on a page. On finding an error, an appropriate
alert message is displayed:

function addRows(element) {

if(yfcFindErrorsOnPage())
return;
}

19.45 setRetrievedRecordCount
This JavaScript function can be used within JSPs created for list views. All
list view screens typically have a message next to the title of the screen
that indicates how many records were retrieved. For example, the
message displays "Retrieved 2 record(s)" when the list view shows 2
records. You can use this javascript to set the count within this message

234 Customizing Console JSP Interface for End-User Guide

setRetrievedRecordCount

dynamically. Typically, the UI infrastructure automatically displays the
correct message based on the output of the "List" API defined under the
entity resource for this list view.

However, in some instances the "List" API cannot be used for a specific
list view. In these cases, the list view as been set to ignore the default
list API, and instead, calls its own API either by defining a different API
under the list view resource or within its own JSP through the callAPI
taglib. In this case, the UI infrastructure cannot automatically display the
correct message.

Syntax
setRetrievedRecordCount (recordCount)

Input Parameters
recordCount - Required. The correct record count to display in the
"Retrieved X record(s)" message.

Return Value
None.

Example
This example shows how to call the setRetrievedRecordCount() function
from a JSP defined for a list view. The correct count is computed as JSP
code. Then, this result is passed to the setRetrievedRecordCount method
which is called inside a script tag:

<%
 YFCElement root = (YFCElement)request.getAttribute("OrganizationList");
 int countElem = countChildElements(root);
%>
<script language="javascript">
 setRetrievedRecordCount(<%=countElem%>);
</script>

Data Type Reference 235

20
Data Type Reference

20.1 Data Type Reference for the Console JSP
Interface

The DataType node contains UIType and XMLType nodes. For the
Presentation Framework, the attributes specified in UIType override those
specified in XMLType, which in turn override those specified in DataType.

Table 0–6 lists which nodes are supported by specific datatype attributes.

236 Customizing Console JSP Interface for End-User Guide

Data Type Reference for the Console JSP Interface

Table 0–6 Nodes Supporting DataType Attributes

Attribute Description

Nodes
Supported
In

Name Unique identifier of the abstract data type. DataType

Type

Type Can take values NUMBER, VARCHAR2,
DATE, DATETIME, QUANTITY.

If Type is selected as QUANTITY, it may or
may not take decimal values, based on the
default value specified in the
yfs.install.displaydoublequantity
property in the yfs.properties file.

Note: To modify this property, add an
entry for it in the <INSTALL_
DIR>/properties/customer_
overrides.properties file. For additional
information about modifying properties and
the customer_overrides.properties file,
see the Selling and Fulfillment Foundation:
Properties Guide.

DataType

XMLType

UIType

Size If specified in the DataType node, it is
taken as the maximum number of
characters that can be entered in the input
boxes.

If specified the UIType node it is multiplied
by 5, and the result is taken as the number
of pixels to use for as the length of the
input box.

DataType

XMLType

UIType

Data Type Reference for the Console JSP Interface

Data Type Reference 237

PpcSize If specified in the DataType node, it is
taken as the maximum number of
characters that can be entered in the input
boxes in the RF UI screens.

If specified the UIType node it is multiplied
by 5, and the result is taken as the number
of pixels to use for as the length of the
input box in the RF UI screens.

In instances where the PpcSize attribute is
not specified, the Size attribute is
considered.

DataType

XMLType

UIType

ZeroAllowed Used only for numeric fields. DataType

XMLType

UIType

UITableSize The value specified here is multiplied by 5
and the result is used as the width in
pixels. This specific attribute is available
only upon special request. Use the
getUITableSize() JSP function to

eve this value.

UIType

NegativeAllow
ed

Used only for numeric fields. DataType

XMLType

UIType

Table 0–6 Nodes Supporting DataType Attributes

Attribute Description

Nodes
Supported
In

238 Customizing Console JSP Interface for End-User Guide

Data Type Reference for the Console JSP Interface

239

Index

A
about box

customizing the logo, 28
illustration, 27
logo, 27

abstract data types
definitions, 108
mapping, 107

adding
graphs, 84
logos, 23
pie charts, 84
themes, 9

API input
entity keys, 103
input namespace, 102
screen controls, 98

APIs
passing data from UI, 106

B
best practices

colors, 10, 12
do consider ease of maintenance, 7
do emulate the look and feel of Selling and

Fulfillment Foundation, 7
do follow page layout guidelines, 116
do modify your own copy, 5
don’t modify any script or archive files, 7
don’t modify Selling and Fulfillment Foundation

standard resources, 7

fonts, 10, 12
JSP file names, 122
JSP file names and directory structure, 122
JSP files, naming controls, 123
lookup icon usage and placement, 83
pop-up windows, 29
screen organization, 33

C
calendar lookup, 82
callApi JSP tag, 169
callApi (alternative method) JSP tag, 170
callLookup JavaScript function, 183
changeSessionLocale JSP function, 131
changing

number of records displayed on list view, 49
client-side validations, 89
colors

best practices, 10, 12
themes, used in, 9

container pages, 31
creating

custom business entity, 69
new resource, 43
themes, 11

CreatingFieldLevelValidations, 91
CreatingScreenLevelValidations, 91
credit card numbers

displaying multiple, 111
CustLogoInAboutBox, 27
CustLogoOnMenuBar, 25
customer_overrides.properties file

240 Customizing Console JSP Interface for End-User Guide

maximum number of records to display, 38
customization checklist, 1
customizing

about box logo, 28
action from inner panel

actions, 97
API action to open new view, 42
APIs called by default, 36
demand list view, 95, 96
detail view, 50
document type screens, 93
event handlers, 89
field-level validation, 91
home page, 67
inner panels, 64
international Sign In screen, 20
JSP files, 54
list view, 46, 48
list view records displayed, 49
locale, 20
menu, 86
menu bar logo, 26
navigation, 87
override entity key attribute, 71
posting data for editable lists, 72
screen-level validation, 91
search views, 45
Sign In screen logo, 24
status change transaction, 97
themes, 9
user-sortable tables, 83

D
data type attributes, 235
data types

validations, 109
datatypes.xml file, 108
demand

customizing list view, 96
records, 95

detail view components
actions, 41
anchor pages, 40
inner panels, 62

creating, 64
detail views, 39

components, 40
customizing, 50
illustration, 39
JSP files, 54
showing details of one entity and lists of

another, 71
development environment

preparing, 7
displaying

fields, 88
graphs, pie charts, and maps, 10, 84
maximum records, 49
multiple credit card numbers, 111

doCheckAll JavaScript function, 184
doCheckFirstLevel JavaScript function, 185
document types, 93

customizing screens, 93
demand records, and, 95

dynamic attributes
namespaces, 105

dynamic input
credit card, 110

E
editable lists, 72
entities, 34

customizing, 69
entity keys

API input, 103
environment variable

INSTALL_DIR, xxviii
INSTALL_DIR_OLD, xxviii

equal sign (=) used in resource bundle
mapping, 86

equals JSP function, 131
event handlers

browser, 89
field-level, 89
screen-level, 90
Service Definition Framework, 89

expandCollapseDetails JavaScript function, 186
extensible

241

business-related entities, 35
extensible files

customer_overrides.properties, 38, 49
datatypes.xml, 108
extnibundle.properties, 85
innerpanel.jsp, 63
.jar files, 23
logindetails.jsp, 19
theme CSS files, 10
theme XML files, 10
yfsdatatypemap.xml, 107

extnbundle.properties file, 85

F
fields

custom validation, 89, 91
hiding, 88
hiding and displaying, 88
lookup, 82

figures
about box, 27
calendar lookup, 81
data lookup, 81
entities within the Resource Hierarchy tree, 35
lookup icons, 81
Sign In screen logic, 19
standard detail view, 39
standard home page, 31, 67
standard list view, 38
standard screen layout, 32
standard screen navigation behavior, 33
standard search view, 37

file names
JSP files, best practices, 122

fonts
best practices, 10, 12
themes, used in, 9

G
getAttributeNameFromBinding JavaScript

function, 188
getCheckBoxOptions JSP function, 132
getColor JSP function, 133

getComboOptions JSP function, 133
getComboText JSP function, 134
getCurrentSearchViewId JavaScript function, 189
getCurrentViewId JavaScript function, 190
getDateOrTimePart JSP function, 135
getDateValue JSP function, 135
getDetailHrefOptions JSP function, 137, 139

hiding and displaying fields, 88
getDoubleFromLocalizedString JSP function, 141
getElement JSP function, 142
getImageOptions JSP function, 143
getLocale JSP function, 144
getLocalizedStringFromDouble JSP function, 145
getLocalizedStringFromInt JSP function, 145
getLoopingElementList JSP function, 146
getNumericValue JSP function, 147
getObjectByAttrName JavaScript function, 191
getParameter JSP function, 149
getParentObject JavaScript function, 192
getRadioOptions JSP function, 150
getRequestDOM JSP function, 151
getTextAreaOptions JSP function, 153
getTextOptions JSP function, 153
getUITableSize JSP function, 155
getValue JSP function, 155
getXMLValue JSP tag, 172
getXMLValueI18NDB JSP tag, 172
goToDetailView JSP function, 156
goToURL JavaScript function, 192
graphs, 84
graphs and pie charts

jbchartx.jar files, 84
XML theme files, 10

H
hasXMLNode JSP tag, 173
home page, 9

customizing, 67

I
ignoreChangeNames JavaScript function, 72, 194
images

.jar file, 23

242 Customizing Console JSP Interface for End-User Guide

include
files, 56
JSP tag, 62

inner panel
customizing, 64
customizing actions, 97

inner panels, 31
JSP files, 62
JSP tag library, 62

innerpanel.jsp file, 63
input boxes

data type, 107
field size, 107
getGetTextOptions API, 107
getTextOptions, 107
validation, 107

input namespaces
API input, 102

INSTALL_DIR, xxviii
INSTALL_DIR_OLD, xxviii
integrating

sign in from external application, 21
sign in, automatic, 21
single signon, 22
with external applications, 21

invokeCalendar JavaScript function, 194
invokeTimeLookup JavaScript function, 195
isModificationAllowed JSP function, 157
isPopupWindow JSP function, 158
isTrue JSP function, 159
isVoid JSP function, 159
i18n

JSP tag, 174
XML tag, 93

i18ndb
JSP tag, 174

J
JavaScript functions

callLookup, 183
doCheckAll, 184
doCheckFirstLevel, 185
expandCollapseDetails, 186
getAttributeNameFromBinding, 188

getCurrentSearchViewId, 189
getCurrentViewId, 190
getObjectByAttrName, 191
getParentObject, 192
goToURL, 192
ignoreChangeNames, 194
invokeCalendar, 194
invokeTimeLookup, 195
showDetailFor, 197
showDetailForViewGroupId, 198
showHelp, 199
showPopupDetailFor, 200
validateControlValues, 202
yfcAllowSingleSelection, 203
yfcBodyOnLoad, 204
yfcChangeDetailView, 205
yfcChangeListView, 205
yfcDisplayOnlySelectedLines, 206
yfcDoNotPromptForChanges, 208
yfcGetCurrentStyleSheet(), 210
yfcGetSaveSearchHandle, 210
yfcGetSearchHandle, 211
yfcHasControlChanged, 212
yfcSetControlAsUnchanged, 215
yfcShowDefaultDetailPopupForEntity, 216
yfcShowDetailPopup, 217
yfcShowDetailPopupWithDynamicKey, 219
yfcShowDetailPopupWithKeys, 220
yfcShowDetailPopupWithKeysAndParams, 223
yfcShowDetailPopupWithParams, 222
yfcShowListPopupWithParams, 225
yfcShowSearchPopup, 226
yfcSpecialChangeNames, 228
yfcSplitLine, 228
yfcValidateMandatoryNodes, 232

JavaScript UI functions, 181
JSP files

detail view, 54
inner panels, 62
list view, 53
naming controls, 123
search views, 53
syntax and directory structure, 122

JSP functions, 131
changeSessionLocale, 131

243

equals, 131
getCheckBoxOptions, 132
getColor, 133
getComboOptions, 133
getComboText, 134
getDateOrTimePart, 135
getDateValue, 135
getDetailHrefOptions, 137, 139
getDoubleFromLocalizedString, 141
getElement, 142
getImageOptions, 143
getLocale, 144
getLocalizedStringFromDouble, 145
getLocalizedStringFromInt, 145
getLoopingElementList, 146
getNumericValue, 147
getParameter, 149
getRadioOptions, 150
getRequestDOM, 151
getTextAreaOptions, 153
getTextOptions, 153
getUITableSize, 155
getValue, 155
goToDetailView, 156
isModificationAllowed, 157
isPopupWindow, 158
isTrue, 159
isVoid, 159
resolveValue, 160
showEncryptedCreditCardNo, 160
userHasOverridePermissions, 161
yfsGetCheckBoxOptions, 161
yfsGetComboOptions, 162
yfsGetImageOptions, 163
yfsGetTemplateRowOptions, 163
yfsGetTextAreaOptions, 166
yfsGetTextOptions, 167

JSP tag library
callApi, 169
callApi (alternative method), 170
getXMLValue, 172
getXMLValueI18NDB, 172
hasXMLNode, 173
include tag, 62
i18n, 174

i18ndb, 174
loopOptions, 175
loopXML, 101, 176
makeXMLInput, 178
makeXMLKey, 179

L
language

configuring default, 20
languages

configuring multiple, 20
list view

components, 38
customizing, 46, 48
JSP files, 53
number of records to display, 38

list view components
actions, 41

lists
XML binding, 101

locale
customizing, 20

localization
themes, 10

login screen. See Sign In screen.
logo

about box, 27
menu bar, 25
Sign In screen, 23

lookup fields
icons, 81

lookups
calendar, 82
multiple field, 82
single field, 82

loopOptions JSP tag, 175
loopXML JSP tag, 176
loopXML tag

XML binding, 101

M
makeXMLInput JSP tag, 178
makeXMLKey JSP tag, 179

244 Customizing Console JSP Interface for End-User Guide

maps
XML theme files, 10

maximum records
displaying, 49

menu
language, 86

menu bars
customizing logo, 26
logo, 25

menus
customizing, 86

modifying
number of records to display, 38

multiple field lookup, 82
multiple input objects

XML binding, 101

N
navigation

customizing, 87
navigation behavior

APIs called, 36
nonextensible files

login.jsp, 19
start.jsp, 19
ycpapibundle.properties, 85

P
pie charts, 84
pop-up windows

showModalDialog function, 29
Presentation Framework extensibility reference

materials
JavaScript functions, 181
JSP functions, 131
JSP tag library, 169
overview, 8

R
resolveValue JSP function, 160
resource bundle

extensible files, 85
mapping, 86
nonextensible files, 85

resource IDs
status change, 97

S
saving data

ignoreChangeNames, 106
input from UI, 106

screen colors, 12
screen fonts, 12
screen layout, 31
screen navigation behavior, 33

standard
screen layout, 31

screen-level validation, 90, 91
screens

colors used in, 9
fonts used in, 9
Sign In, 19

search views
customizing, 45
illustration of, 37
JSP files, 53

showDetailFor JavaScript function, 197
opening screens, 42

showDetailForViewGroupId JavaScript
function, 198

showEncryptedCreditCardNo JSP function, 160
showHelp JavaScript function, 199
showPopupDetailFor JavaScript function, 200
sign in

from external application, 21
Sign In screen, 19

components, 19
customizing logo, 24
default language, 20
international, 20
logo, 23

single field lookup, 82
single signon, 22
smcfs.ear file, 7
standard

245

business-related entities, 35
screen layout, 32
screen navigation behavior, 31, 33

status changes
resource IDs, 97
transaction, 97

T
tables

sortable, 83
themes, 9

colors and fonts used in, 9
creating and modifying, 11
CSS files, 10
localizing, 10
standard defaults supplied, 10
XML files, 10

U
underscore character (_)

repeating elements, used in, 176
user interface components

Applications Manager, 6
Sterling Selling and Fulfillment Suite

Application Console, 6
userHasOverridePermissions JSP function, 161
user-sortable tables

creating, 83

V
validateControlValues JavaScript function, 202
validation

data types, 109
field-level, 89, 91
screen-level, 90, 91

view, 31

W
window.showModalDialog function, 29

X
XML binding, 98

lists, 101
loopXML tag, 101
multiple input objects, 101
parameters, 100
syntax, 100

example, 100
XML files

graphs, pie charts, and maps, 10

Y
ycpapibundle.properties file, 85
yfcAllowSingleSelection JavaScript function, 203
yfcBodyOnLoad JavaScript function, 204
yfcChangeDetailView JavaScript function, 205
yfcChangeListView JavaScript function, 205
yfcDisplayOnlySelectedLines JavaScript

function, 206
yfcDoNotPromptForChanges JavaScript

function, 208
yfcGetCurrentStyleSheet() JavaScript function, 210
yfcGetSaveSearchHandle JavaScript function, 210
yfcGetSearchHandle JavaScript function, 211
yfcHasControlChanged JavaScript function, 212
yfcSetControlAsUnchanged, 215
yfcShowDefaultDetailPopupForEntity JavaScript

function, 216
yfcShowDetailPopup JavaScript function, 217
yfcShowDetailPopupWithDynamicKey JavaScript

function, 219
yfcShowDetailPopupWithKeys JavaScript

function, 220
yfcShowDetailPopupWithKeysAndParams

JavaScript function, 223
yfcShowDetailPopupWithParams JavaScript

function, 222
yfcShowListPopupWithParams JavaScript

function, 225
yfcShowSearchPopup JavaScript function, 226
yfcSpecialChangeNames JavaScript function, 228
yfcSplitLine JavaScript function, 228
yfcValidateMandatoryNodes JavaScript

246 Customizing Console JSP Interface for End-User Guide

function, 232
yfsdatatypemap.xml file, 107

behavior, 108
yfsGetCheckBoxOptions JSP function, 161
yfsGetComboOptions JSP function, 162
yfsGetImageOptions JSP function, 163
yfsGetTemplateRowOptions JSP function, 163
yfsGetTextAreaOptions JSP function, 166
yfsGetTextOptions JSP function, 167
yfs.properties file

MaxRecords, 49

Z
@ at symbol in XML binding

loopOptions tag in repeating elements, 175
loopXML tag in repeating elements, 177
typical usage, 100

_ underscore character
repeating elements, used in, 176

	Contents
	Preface
	1 Checklist for Customization Projects
	1.1 Customization Projects

	2 Before You Customize the JSP Console
	2.1 About Console JSP User Interface
	2.2 Guidelines for Customizing the Console JSP User Interface
	2.2.1 Compare JSPs
	2.2.2 Prepare for Smooth Upgrades and Easy Maintainability
	2.2.3 Build in Usability
	2.2.4 Prepare Your Development Environment
	2.2.5 Understand How to Find Reference Materials

	3 Request Handling and Themes in the JSP Console
	3.1 About Request Handling and Themes in the JSP Console
	3.2 About Centralized Themes
	3.3 Creating New Themes

	4 Creating and Enabling New Plug-in Skins in the JSP Console
	4.1 Creating New Skins
	4.1.1 Directory Structure for Skins
	4.1.2 Plug-in Points for Skins

	4.2 Enabling New Skins

	5 Customizing the Sign In Screen for the JSP Console
	5.1 About the Sign In Screen
	5.2 Setting Up the Locale
	5.3 Configuring Logins for a Specific Locale
	5.4 Configuring the User Sign In from an External Application
	5.5 Supporting External Authentication

	6 Customizing Corporate Logos in the JSP Console
	6.1 About Corporate Logos
	6.2 Customizing the Logo on the Sign In Screen
	6.3 Customizing the Logo on the Menu Bar
	6.4 Customizing the Logo in the About Box

	7 Screens in the JSP Console Interface
	7.1 About JSP Console Screens
	7.2 Screen Layout in the JSP Console
	7.3 Screen Navigation in the JSP Console
	7.4 Customizing Screen Navigation
	7.5 Which Screens Can Be Extended?
	7.6 Search View Screens in the JSP Console
	7.7 List View Screens in the JSP Console
	7.7.1 Regular List View
	7.7.2 Advanced List View

	7.8 Detail View Screens in the JSP Console
	7.9 Actions from List and Detail Views in the JSP Console

	8 Customizing Views and Wizards in the JSP Console
	8.1 Creating a View without a Template in the JSP Console
	8.2 Creating a View with a Template in the JSP Console
	8.3 Customizing a Search View in the JSP Console
	8.4 Customizing a Regular List View in the JSP Console
	8.5 Customizing an Advanced List View in the JSP Console
	8.6 Maximum Records For List Views in the Console JSP
	8.7 Customizing Detail Views in the JSP Console
	8.7.1 Blocking Reason Code Pop-ups in Detail Views

	9 Customizing JSP Files in the JSP Console
	9.1 About JSP Files in the JSP Console
	9.1.1 JSP Files for Search Views
	9.1.2 JSP Files for List Views
	9.1.3 JSP Files for Detail Views

	9.2 A Sample JSP File in the JSP Console
	9.3 Common JSP For UI Views Across Document Types
	9.3.1 Using the common_fields.jsp
	9.3.2 Screen Refreshing
	9.3.3 Other Common Field Features/Notes

	9.4 Sample common_fields.jsp for a Search Screen
	9.5 Creating Inner Panels for a Detail View
	9.5.1 About Inner panels
	9.5.2 JSP:Param JSP Tag Parameters
	9.5.3 Steps To Create an Inner Panel

	9.6 Incorporating Customized Views Across the Application

	10 Other Customizations in the JSP Console
	10.1 Customizing the Home Page
	10.2 Customizing Security Servlet Filter for Authenticated Access to URLs
	10.3 Creating a Custom Business Entity
	10.4 Using Extended Database Columns
	10.5 Using the Override Entity Key Attribute
	10.6 Posting Data for Editable Lists
	10.7 Retaining Unsaved Data in an Editable List
	10.7.1 order_detail_instructions_anchor.jsp

	10.8 Adding a Lookup
	10.9 Creating a User-Sortable Table
	10.10 Adding Graphs and Pie Charts
	10.10.1 Why FusionCharts

	10.11 Customizing the Menu Structure
	10.11.1 Creating Custom Menus
	10.11.2 Localizing the Menu Structure

	10.12 Customizing Screen Navigation
	10.12.1 Disabling Direct Navigation to Detail Screens

	11 Customizing Event Handlers in the JSP Console
	11.1 About Event Handlers in the JSP Console
	11.2 Control-Level Event Handler
	11.3 Screen-Level Event Handler
	11.4 Creating Field-Level Validations
	11.5 Creating Screen-Level Validations

	12 Working with Document Types and Demand Records
	12.1 Working with Document Types
	12.1.1 Creating New Set of Screens For New Document Type

	12.2 Working with Demand Records

	13 Actions, XML Binding, APIs, Dynamic Namespaces, and Credit Card Numbers
	13.1 Configuring Actions and Enabling Custom Transactions
	13.2 XML Binding
	13.2.1 XML Data Binding Syntax
	13.2.2 Special XML Binding Considerations
	13.2.3 XML Binding for Multiple Element Names

	13.3 Passing Data to APIs
	13.3.1 Input Namespace
	13.3.2 Entity Key
	13.3.3 Dynamic Attributes

	13.4 Available Dynamic Attribute Namespaces
	13.5 Posting Data to an API
	13.5.1 Data Types
	13.5.2 Abstract Data Type Mappings
	13.5.3 Abstract Data Type Definitions
	13.5.4 Data Type Determination
	13.5.5 Data Type Validation

	13.6 Displaying Credit Card Numbers
	13.6.1 Displaying Multiple Credit Card Numbers

	14 User Interface Style Reference
	14.1 Controls and Classes
	14.2 Page Layout
	14.3 Hypertext Links

	15 Programming Standards for the JSP Console Interface
	15.1 Standards for Creating Well-Formed JSP Files
	15.2 Valid HTML Tags and Attributes
	15.3 Conventions for Naming JSP Files and Directories
	15.4 Conventions for Naming Controls
	15.5 Internationalization
	15.6 Validating Your HTML and CCS Files

	16 CSS Theme File Reference
	16.1 CSS Themes for the JSP Console

	17 JSP Functions for the Console JSP Interface
	17.1 changeSessionLocale
	17.2 equals
	17.3 getCheckBoxOptions
	17.4 getColor
	17.5 getComboOptions
	17.6 getComboText
	17.7 getDateOrTimePart
	17.8 getDateValue
	17.9 getDBString
	17.10 getDetailHrefOptions
	17.11 getDetailHrefOptions (with additional parameter)
	17.12 getDoubleFromLocalizedString
	17.13 getElement
	17.14 getImageOptions
	17.15 getLocale
	17.16 getLocalizedStringFromDouble
	17.17 getLocalizedStringFromInt
	17.18 getLoopingElementList
	17.19 getNumericValue
	17.20 getParameter
	17.21 getRadioOptions
	17.22 getRequestDOM
	17.23 getSearchCriteriaValueWithDefaulting
	17.24 getTextAreaOptions
	17.25 getTextOptions
	17.26 getUITableSize
	17.27 getValue
	17.28 goToDetailView
	17.29 isModificationAllowed
	17.30 isPopupWindow
	17.31 isTrue
	17.32 isVoid
	17.33 resolveValue
	17.34 showEncryptedCreditCardNo
	17.35 userHasOverridePermissions
	17.36 yfsGetCheckBoxOptions
	17.37 yfsGetComboOptions
	17.38 yfsGetImageOptions
	17.39 yfsGetTemplateRowOptions
	17.40 yfsGetTextAreaOptions
	17.41 yfsGetTextOptions

	18 JSP TagLibrary for the Console JSP Interface
	18.1 callApi
	18.2 callAPI (Alternative Method)
	18.3 getXMLValue
	18.4 getXMLValueI18NDB
	18.5 hasXMLNode
	18.6 i18n
	18.7 i18ndb
	18.8 loopOptions
	18.9 loopXML
	18.10 makeXMLInput
	18.11 makeXMLKey

	19 JavaScript Functions
	19.1 About JavaScript Functions for the Console JSP Interface
	19.2 callLookup
	19.3 doCheckAll
	19.4 doCheckFirstLevel
	19.5 expandCollapseDetails
	19.6 getAttributeNameFromBinding
	19.7 getCurrentSearchViewId
	19.8 getCurrentViewId
	19.9 getObjectByAttrName
	19.10 getParentObject
	19.11 goToURL
	19.12 ignoreChangeNames
	19.13 invokeCalendar
	19.14 invokeTimeLookup
	19.15 showDetailFor
	19.16 showDetailForViewGroupId
	19.17 showHelp
	19.18 showPopupDetailFor
	19.19 validateControlValues
	19.20 yfcAllowSingleSelection
	19.21 yfcBodyOnLoad
	19.22 yfcChangeDetailView
	19.23 yfcChangeListView
	19.24 yfcDisplayOnlySelectedLines
	19.25 yfcDoNotPromptForChanges
	19.26 yfcDoNotPromptForChangesForActions
	19.27 yfcGetCurrentStyleSheet
	19.28 yfcGetSaveSearchHandle
	19.29 yfcGetSearchHandle
	19.30 yfcHasControlChanged
	19.31 yfcMultiSelectToSingleAPIOnAction
	19.32 yfcSetControlAsUnchanged
	19.33 yfcShowDefaultDetailPopupForEntity
	19.34 yfcShowDetailPopup
	19.35 yfcShowDetailPopupWithDynamicKey
	19.36 yfcShowDetailPopupWithKeys
	19.37 yfcShowDetailPopupWithParams
	19.38 yfcShowDetailPopupWithKeysAndParams
	19.39 yfcShowListPopupWithParams
	19.40 yfcShowSearchPopup
	19.41 yfcSpecialChangeNames
	19.42 yfcSplitLine
	19.43 yfcValidateMandatoryNodes
	19.44 yfcFindErrorsOnPage
	19.45 setRetrievedRecordCount

	20 Data Type Reference
	20.1 Data Type Reference for the Console JSP Interface

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	P
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

