
Selling and Fulfillment
Foundation: Customizing
the Rich Client Platform
Interface Guide

Release 8.5

Last updated in HF20

August 2010

Copyright Notice
Copyright © 1999 - 2010

Sterling Commerce, Inc.

ALL RIGHTS RESERVED

STERLING COMMERCE SOFTWARE

TRADE SECRET NOTICE

THE STERLING COMMERCE SOFTWARE DESCRIBED BY THIS DOCUMENTATION ("STERLING COMMERCE
SOFTWARE") IS THE CONFIDENTIAL AND TRADE SECRET PROPERTY OF STERLING COMMERCE, INC., ITS
AFFILIATED COMPANIES OR ITS OR THEIR LICENSORS, AND IS PROVIDED UNDER THE TERMS OF A
LICENSE AGREEMENT. NO DUPLICATION OR DISCLOSURE WITHOUT PRIOR WRITTEN PERMISSION.
RESTRICTED RIGHTS.

This documentation, the Sterling Commerce Software it describes, and the information and know-how
they contain constitute the proprietary, confidential and valuable trade secret information of Sterling
Commerce, Inc., its affiliated companies or its or their licensors, and may not be used for any
unauthorized purpose, or disclosed to others without the prior written permission of the applicable
Sterling Commerce entity. This documentation and the Sterling Commerce Software that it describes
have been provided pursuant to a license agreement that contains prohibitions against and/or
restrictions on their copying, modification and use. Duplication, in whole or in part, if and when
permitted, shall bear this notice and the Sterling Commerce, Inc. copyright notice. Commerce, Inc.
copyright notice.

U.S. GOVERNMENT RESTRICTED RIGHTS. This documentation and the Sterling Commerce Software it
describes are "commercial items" as defined in 48 C.F.R. 2.101. As and when provided to any agency or
instrumentality of the U.S. Government or to a U.S. Government prime contractor or a subcontractor at
any tier ("Government Licensee"), the terms and conditions of the customary Sterling Commerce
commercial license agreement are imposed on Government Licensees per 48 C.F.R. 12.212 or §
227.7202 through § 227.7202-4, as applicable, or through 48 C.F.R. § 52.244-6.

This Trade Secret Notice, including the terms of use herein is governed by the laws of the State of Ohio,
USA, without regard to its conflict of laws provisions. If you are accessing the Sterling Commerce
Software under an executed agreement, then nothing in these terms and conditions supersedes or
modifies the executed agreement.

Sterling Commerce, Inc.
4600 Lakehurst Court
Dublin, Ohio 43016-2000

Copyright © 1999 - 2010

Third-Party Software

Portions of the Sterling Commerce Software may include products, or may be distributed on the same
storage media with products, ("Third Party Software") offered by third parties ("Third Party Licensors").
Sterling Commerce Software may include Third Party Software covered by the following copyrights:
Copyright © 2006-2008 Andres Almiray. Copyright © 1999-2005 The Apache Software Foundation.
Copyright (c) 2008 Azer Koçulu http://azer.kodfabrik.com. Copyright © Einar Lielmanis,
einars@gmail.com. Copyright (c) 2006 John Reilly (www.inconspicuous.org) and Copyright (c) 2002
Douglas Crockford (www.crockford.com). Copyright (c) 2009 John Resig, http://jquery.com/. Copyright
© 2006-2008 Json-lib. Copyright © 2001 LOOX Software, Inc. Copyright © 2003-2008 Luck Consulting
Pty. Ltd. Copyright 2002-2004 © MetaStuff, Ltd. Copyright © 2009 Michael Mathews
micmath@gmail.com. Copyright © 1999-2005 Northwoods Software Corporation. Copyright (C)
Microsoft Corp. 1981-1998. Purple Technology, Inc. Copyright (c) 2004-2008 QOS.ch. Copyright © 2005
Sabre Airline Solutions. Copyright © 2004 SoftComplex, Inc. Copyright © 2000-2007 Sun
Microsystems, Inc. Copyright © 2001 VisualSoft Technologies Limited. Copyright © 2001 Zero G
Software, Inc. All rights reserved by all listed parties.

The Sterling Commerce Software is distributed on the same storage media as certain Third Party
Software covered by the following copyrights: Copyright © 1999-2006 The Apache Software Foundation.
Copyright (c) 2001-2003 Ant-Contrib project. Copyright © 1998-2007 Bela Ban. Copyright © 2005
Eclipse Foundation. Copyright © 2002-2006 Julian Hyde and others. Copyright © 1997 ICE Engineering,
Inc./Timothy Gerard Endres. Copyright 2000, 2006 IBM Corporation and others. Copyright © 1987-2006
ILOG, Inc. Copyright © 2000-2006 Infragistics. Copyright © 2002-2005 JBoss, Inc. Copyright
LuMriX.net GmbH, Switzerland. Copyright © 1998-2009 Mozilla.org. Copyright © 2003-2009 Mozdev
Group, Inc. Copyright © 1999-2002 JBoss.org. Copyright Raghu K, 2003. Copyright © 2004 David
Schweinsberg. Copyright © 2005-2006 Darren L. Spurgeon. Copyright © S.E. Morris (FISH) 2003-04.
Copyright © 2006 VisualSoft Technologies. Copyright © 2002-2009 Zipwise Software. All rights reserved
by all listed parties.

Certain components of the Sterling Commerce Software are distributed on the same storage media as
Third Party Software which are not listed above. Additional information for such Third Party Software
components of the Sterling Commerce Software is located at:
installdir/mesa/studio/plugins/SCI_Studio_License.txt.

Third Party Software which is included, or are distributed on the same storage media with, the Sterling
Commerce Software where use, duplication, or disclosure by the United States government or a
government contractor or subcontractor, are provided with RESTRICTED RIGHTS under Title 48 CFR
2.101, 12.212, 52.227-19, 227.7201 through 227.7202-4, DFAR 252.227-7013(c) (1) (ii) and (2), DFAR
252.227-7015(b)(6/95), DFAR 227.7202-3(a), FAR 52.227-14(g)(2)(6/87), and FAR 52.227-19(c)(2)
and (6/87) as applicable.

Additional information regarding certain Third Party Software is located at installdir/SCI_License.txt.

Some Third Party Licensors also provide license information and/or source code for their software via
their respective links set forth below:

http://danadler.com/jacob/

http://www.dom4j.org

This product includes software developed by the Apache Software Foundation (http://www.apache.org).
This product includes software developed by the Ant-Contrib project
(http://sourceforge.net/projects/ant-contrib). This product includes software developed by the JDOM
Project (http://www.jdom.org/). This product includes code licensed from RSA Data Security (via Sun
Microsystems, Inc.). Sun, Sun Microsystems, the Sun Logo, Java, JDK, the Java Coffee Cup logo,
JavaBeans , JDBC, JMX and all JMX based trademarks and logos are trademarks or registered trademarks
of Sun Microsystems, Inc. All other trademarks and logos are trademarks of their respective owners.

THE APACHE SOFTWARE FOUNDATION SOFTWARE

The Sterling Commerce Software is distributed with or on the same storage media as the following
software products (or components thereof) and java source code files: Xalan version 2.5.2,
 Cookie.java, Header.java, HeaderElement.java, HttpException.java, HttpState.java, NameValuePair.java,
CronTimeTrigger.java, DefaultTimeScheduler.java, PeriodicTimeTrigger.java, Target.java,

TimeScheduledEntry.java, TimeScheduler.java, TimeTrigger.java, Trigger.java, BinaryHeap.java,
PriorityQueue.java, SynchronizedPriorityQueue.java, GetOpt.java, GetOptsException.java,
IllegalArgumentException.java, MissingOptArgException.java (collectively, "Apache 1.1 Software").
Apache 1.1 Software is free software which is distributed under the terms of the following license:

License Version 1.1

Copyright 1999-2003 The Apache Software Foundation. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided
that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

2. Redistribution in binary form must reproduce the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other materials provided with the distribution.

3. The end-user documentation included with the redistribution, if any, must include the following
acknowledgement: "This product includes software developed by the Apache Software Foundation
(http://www.apache.org)." Alternatively, this acknowledgement may appear in the software itself, if and
whenever such third-party acknowledgements normally appear.

4. The names "Commons", "Jakarta", "The Jakarta Project", "HttpClient", "log4j", "Xerces "Xalan",
"Avalon", "Apache Avalon", "Avalon Cornerstone", "Avalon Framework", "Apache" and "Apache Software
Foundation" must not be used to endorse or promote products derived from this software without
specific prior written permission. For written permission, please contact apache@apache.org.

5. Products derived from this software may not be called "Apache", nor may "Apache" appear in their
name, without the prior written permission of the Apache Software Foundation.

THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESS OR IMIPLIED WARRANTIES, INCLUDING
ANY IMPLIED WARRANTY OF MERCHANTIBILITY, AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL APACHE SOFTWARE FOUNDATION OR ITS CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTIAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

This software consists of voluntary contributions made by many individuals on behalf of the Apache
Software Foundation. The GetOpt.java, GetOptsException.java, IlligalArgumentException.java and
MissingOptArgException.java software was originally based on software copyright (c) 2001, Sun
Microsystems., http://www.sun.com. For more information on the Apache Software Foundation, please
see <http://www.apache.org/>.

The preceding license only applies to the Apache 1.1 Software and does not apply to the Sterling
Commerce Software or to any other Third-Party Software.

The Sterling Commerce Software is also distributed with or on the same storage media as the following
software products (or components thereof): Ant, Antinstaller, Apache File Upload Package, Apache
Commons Beans, Apache Commons BetWixt, Apache Commons Collection, Apache Commons Digester,
Apache Commons IO, Apache Commons Lang., Apache Commons Logging, Apache Commons Net,
Apache Jakarta Commons Pool, Apache Jakarta ORO, Lucene, Xerces version 2.7, Apache Log4J,
Apache SOAP, Apache Struts and Apache Xalan 2.7.0, (collectively, "Apache 2.0 Software"). Apache
2.0 Software is free software which is distributed under the terms of the Apache License Version 2.0. A
copy of License Version 2.0 is found in the following directory files for the individual pieces of the Apache
2.0 Software: installdir/jar/commons_upload/1_0/ CommonsFileUpload_License.txt,
installdir/jar/jetspeed/1_4/RegExp_License.txt,
 installdir/ant/Ant_License.txt
<install>/jar/antInstaller/0_8/antinstaller_License.txt,
<install>/jar/commons_beanutils/1_7_0/commons-beanutils.jar (/META-INF/LICENSE.txt),
<install>/jar/commons_betwixt/0_8/commons-betwixt-0.8.jar (/META-INF/LICENSE.txt),

<install>/jar/commons_collections/3_2/LICENSE.txt,
<install>/jar/commons_digester/1_8/commons-digester-1.8.jar (/META-INF/LICENSE.txt),
<install>/jar/commons_io/1_4/LICENSE.txt,
<install>/jar/commons_lang/2_1/Commons_Lang_License.txt,
<install>/jar/commons_logging/1_0_4/commons-logging-1.0.4.jar (/META-INF/LICENSE.txt),
<install>/jar/commons_net/1_4_1/commons-net-1.4.1.jar (/META-INF/LICENSE.txt),
<install>/jar/smcfs/8.5/lucene-core-2.4.0.jar (/META-INF/LICENSE.txt),
<install>/jar/struts/2_0_11/struts2-core-2.0.11.jar (./LICENSE.txt),
<install>/jar/mesa/gisdav/WEB-INF/lib/Slide_License.txt,
<install>/mesa/studio/plugins/xerces_2.7_license.txt,
<install>/jar/commons_pool/1_2/Commons_License.txt,
<install>/jar/jakarta_oro/2_0_8/JakartaOro_License.txt,
<install>/jar/log4j/1_2_15/LOG4J_License.txt,
<install>/jar/xalan/2_7/Xalan_License.txt,
<install>/jar/soap/2_3_1/Apache_SOAP_License.txt

Unless otherwise stated in a specific directory, the Apache 2.0 Software was not modified. Neither the
Sterling Commerce Software, modifications, if any, to Apache 2.0 Software, nor other Third Party Code is
a Derivative Work or a Contribution as defined in License Version 2.0. License Version 2.0 applies only to
the Apache 2.0 Software which is the subject of the specific directory file and does not apply to the
Sterling Commerce Software or to any other Third Party Software. License Version 2.0 includes the
following provision:

"Unless required by applicable law or agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS
OF ANY KIND, either express or implied, including, without limitation, any warranties or conditions of
TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. You are
solely responsible for determining the appropriateness of using or redistributing the Work and assume
any risks associated with Your exercise of permissions under this License."

NOTICE file corresponding to the section 4 d of the Apache License, Version 2.0, in this case for the
Apache Ant distribution. Apache Ant Copyright 1999-2008 The Apache Software Foundation. This
product includes software developed by The Apache Software Foundation (http://www.apache.org/).
This product includes also software developed by :

 - the W3C consortium (http://www.w3c.org) ,

 - the SAX project (http://www.saxproject.org)

The <sync> task is based on code Copyright (c) 2002, Landmark Graphics Corp that has been kindly
donated to the Apache Software Foundation.

Portions of this software were originally based on the following:

 - software copyright (c) 1999, IBM Corporation., http://www.ibm.com.

 - software copyright (c) 1999, Sun Microsystems., http://www.sun.com.

 - voluntary contributions made by Paul Eng on behalf of the Apache Software Foundation that were
originally developed at iClick, Inc., software copyright (c) 1999.

NOTICE file corresponding to the section 4 d of the Apache License, Version 2.0, in this case for the
Apache Lucene distribution. Apache Lucene Copyright 2006 The Apache Software Foundation. This
product includes software developed by The Apache Software Foundation (http://www.apache.org/).
The snowball stemmers in contrib/snowball/src/java/net/sf/snowball were developed by Martin Porter
and Richard Boulton. The full snowball package is available from http://snowball.tartarus.org/

Ant-Contrib Software

The Sterling Commerce Software is distributed with or on the same storage media as the Anti-Contrib
software (Copyright (c) 2001-2003 Ant-Contrib project. All rights reserved.) (the "Ant-Contrib
Software"). The Ant-Contrib Software is free software which is distributed under the terms of the
following license:

The Apache Software License, Version 1.1

Copyright (c) 2001-2003 Ant-Contrib project. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided
that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and
the following disclaimer in the documentation and/or other materials provided with the distribution.

3. The end-user documentation included with the redistribution, if any, must include the following
acknowledgement:

"This product includes software developed by the Ant-Contrib project
(http://sourceforge.net/projects/ant-contrib)."

Alternately, this acknowledgement may appear in the software itself, if and wherever such third-party
acknowledgements normally appear.

 4. The name Ant-Contrib must not be used to endorse or promote products derived from this software
without prior written permission. For written permission, please contact
ant-contrib-developers@lists.sourceforge.net.

 5. Products derived from this software may not be called "Ant-Contrib" nor may "Ant-Contrib" appear in
their names without prior written permission of the Ant-Contrib project.

THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE ANT-CONTRIB PROJECT OR ITS
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. The preceding license only applies to the
Ant-Contrib Software and does not apply to the Sterling Commerce Software or to any other Third-Party
Software.

The preceding license only applies to the Ant-Contrib Software and does not apply to the Sterling
Commerce Software or to any other Third Party Software.

DOM4J Software

The Sterling Commerce Software is distributed with or on the same storage media as the Dom4h
Software which is free software distributed under the terms of the following license:

Redistribution and use of this software and associated documentation ("Software"), with or without
modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain copyright statements and notices. Redistributions must also
contain a copy of this document.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and
the following disclaimer in the documentation and/or other materials provided with the distribution.

3. The name "DOM4J" must not be used to endorse or promote products derived from this Software
without prior written permission of MetaStuff, Ltd. For written permission, please contact
dom4j-info@metastuff.com.

4. Products derived from this Software may not be called "DOM4J" nor may "DOM4J" appear in their
names without prior written permission of MetaStuff, Ltd. DOM4J is a registered trademark of MetaStuff,
Ltd.

5. Due credit should be given to the DOM4J Project - http://www.dom4j.org

THIS SOFTWARE IS PROVIDED BY METASTUFF, LTD. AND CONTRIBUTORS ``AS IS'' AND ANY
EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL METASTUFF, LTD. OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Copyright 2001-2004 (C) MetaStuff, Ltd. All Rights Reserved.

The preceding license only applies to the Dom4j Software and does not apply to the Sterling Commerce
Software, or any other Third-Party Software.

THE ECLIPSE SOFTWARE FOUNDATION

The Sterling Commerce Software is also distributed with or on the same storage media as the following
software:

com.ibm.icu.nl1_3.4.4.v200606220026.jar, org.eclipse.ant.core.nl1_3.1.100.v200606220026.jar,
org.eclipse.ant.ui.nl1_3.2.0.v200606220026.jar, org.eclipse.compare.nl1_3.2.0.v200606220026.jar,
org.eclipse.core.boot.nl1_3.1.100.v200606220026.jar,
org.eclipse.core.commands.nl1_3.2.0.v200606220026.jar,
org.eclipse.core.contenttype.nl1_3.2.0.v200606220026.jar,
org.eclipse.core.expressions.nl1_3.2.0.v200606220026.jar,
org.eclipse.core.filebuffers.nl1_3.2.0.v200606220026.jar,
org.eclipse.core.filesystem.nl1_1.0.0.v200606220026.jar,
org.eclipse.core.jobs.nl1_3.2.0.v200606220026.jar,
org.eclipse.core.resources.nl1_3.2.0.v200606220026.jar,
org.eclipse.core.runtime.compatibility.auth.nl1_3.2.0.v200606220026.jar,
org.eclipse.core.runtime.compatibility.nl1_3.1.100.v200606220026.jar,
org.eclipse.core.runtime.nl1_3.2.0.v200606220026.jar,
org.eclipse.core.variables.nl1_3.1.100.v200606220026.jar,
org.eclipse.debug.core.nl1_3.2.0.v200606220026.jar,
org.eclipse.debug.ui.nl1_3.2.0.v200606220026.jar,
org.eclipse.equinox.common.nl1_3.2.0.v200606220026.jar,
org.eclipse.equinox.preferences.nl1_3.2.0.v200606220026.jar,
org.eclipse.equinox.registry.nl1_3.2.0.v200606220026.jar,
org.eclipse.help.appserver.nl1_3.1.100.v200606220026.jar,
org.eclipse.help.base.nl1_3.2.0.v200606220026.jar, org.eclipse.help.nl1_3.2.0.v200606220026.jar,
org.eclipse.help.ui.nl1_3.2.0.v200606220026.jar, org.eclipse.jdt.apt.core.nl1_3.2.0.v200606220026.jar,
org.eclipse.jdt.apt.ui.nl1_3.2.0.v200606220026.jar,
org.eclipse.jdt.core.manipulation.nl1_1.0.0.v200606220026.jar,
org.eclipse.jdt.core.nl1_3.2.0.v200606220026.jar,
org.eclipse.jdt.debug.ui.nl1_3.2.0.v200606220026.jar,
org.eclipse.jdt.doc.isv.nl1_3.2.0.v200606220026.jar,
org.eclipse.jdt.doc.user.nl1_3.2.0.v200606220026.jar,
org.eclipse.jdt.junit4.runtime.nl1_1.0.0.v200606220026.jar,
org.eclipse.jdt.launching.nl1_3.2.0.v200606220026.jar, org.eclipse.jdt.nl1_3.2.0.v200606220026.jar,
org.eclipse.jdt.ui.nl1_3.2.0.v200606220026.jar,
org.eclipse.jface.databinding.nl1_1.0.0.v200606220026.jar,
org.eclipse.jface.nl1_3.2.0.v200606220026.jar, org.eclipse.jface.text.nl1_3.2.0.v200606220026.jar,
org.eclipse.ltk.core.refactoring.nl1_3.2.0.v200606220026.jar,
org.eclipse.ltk.ui.refactoring.nl1_3.2.0.v200606220026.jar,
org.eclipse.osgi.nl1_3.2.0.v200606220026.jar, org.eclipse.osgi.services.nl1_3.1.100.v200606220026.jar,
org.eclipse.osgi.util.nl1_3.1.100.v200606220026.jar, org.eclipse.pde.core.nl1_3.2.0.v200606220026.jar,
org.eclipse.pde.doc.user.nl1_3.2.0.v200606220026.jar,
org.eclipse.pde.junit.runtime.nl1_3.2.0.v200606220026.jar,
org.eclipse.pde.nl1_3.2.0.v200606220026.jar, org.eclipse.pde.runtime.nl1_3.2.0.v200606220026.jar,
org.eclipse.pde.ui.nl1_3.2.0.v200606220026.jar,
org.eclipse.platform.doc.isv.nl1_3.2.0.v200606220026.jar,
org.eclipse.platform.doc.user.nl1_3.2.0.v200606220026.jar,

org.eclipse.rcp.nl1_3.2.0.v200606220026.jar, org.eclipse.search.nl1_3.2.0.v200606220026.jar,
org.eclipse.swt.nl1_3.2.0.v200606220026.jar, org.eclipse.team.core.nl1_3.2.0.v200606220026.jar,
org.eclipse.team.cvs.core.nl1_3.2.0.v200606220026.jar,
org.eclipse.team.cvs.ssh.nl1_3.2.0.v200606220026.jar,
org.eclipse.team.cvs.ssh2.nl1_3.2.0.v200606220026.jar,
org.eclipse.team.cvs.ui.nl1_3.2.0.v200606220026.jar, org.eclipse.team.ui.nl1_3.2.0.v200606220026.jar,
org.eclipse.text.nl1_3.2.0.v200606220026.jar, org.eclipse.ui.browser.nl1_3.2.0.v200606220026.jar,
org.eclipse.ui.cheatsheets.nl1_3.2.0.v200606220026.jar,
org.eclipse.ui.console.nl1_3.1.100.v200606220026.jar,
org.eclipse.ui.editors.nl1_3.2.0.v200606220026.jar,
org.eclipse.ui.externaltools.nl1_3.1.100.v200606220026.jar,
org.eclipse.ui.forms.nl1_3.2.0.v200606220026.jar, org.eclipse.ui.ide.nl1_3.2.0.v200606220026.jar,
org.eclipse.ui.intro.nl1_3.2.0.v200606220026.jar, org.eclipse.ui.navigator.nl1_3.2.0.v200606220026.jar,
org.eclipse.ui.navigator.resources.nl1_3.2.0.v200606220026.jar,
org.eclipse.ui.nl1_3.2.0.v200606220026.jar,
org.eclipse.ui.presentations.r21.nl1_3.2.0.v200606220026.jar,
org.eclipse.ui.views.nl1_3.2.0.v200606220026.jar,
org.eclipse.ui.views.properties.tabbed.nl1_3.2.0.v200606220026.jar,
org.eclipse.ui.workbench.nl1_3.2.0.v200606220026.jar,
org.eclipse.ui.workbench.texteditor.nl1_3.2.0.v200606220026.jar,
org.eclipse.update.configurator.nl1_3.2.0.v200606220026.jar,
org.eclipse.update.core.nl1_3.2.0.v200606220026.jar,
org.eclipse.update.scheduler.nl1_3.2.0.v200606220026.jar,
org.eclipse.update.ui.nl1_3.2.0.v200606220026.jar,
com.ibm.icu_3.4.4.1.jar,
org.eclipse.core.commands_3.2.0.I20060605-1400.jar,
org.eclipse.core.contenttype_3.2.0.v20060603.jar,
org.eclipse.core.expressions_3.2.0.v20060605-1400.jar,
org.eclipse.core.filesystem.linux.x86_1.0.0.v20060603.jar,
org.eclipse.core.filesystem_1.0.0.v20060603.jar, org.eclipse.core.jobs_3.2.0.v20060603.jar,
org.eclipse.core.runtime.compatibility.auth_3.2.0.v20060601.jar,
org.eclipse.core.runtime_3.2.0.v20060603.jar, org.eclipse.equinox.common_3.2.0.v20060603.jar,
org.eclipse.equinox.preferences_3.2.0.v20060601.jar, org.eclipse.equinox.registry_3.2.0.v20060601.jar,
org.eclipse.help_3.2.0.v20060602.jar, org.eclipse.jface.text_3.2.0.v20060605-1400.jar,
org.eclipse.jface_3.2.0.I20060605-1400.jar, org.eclipse.osgi_3.2.0.v20060601.jar,
org.eclipse.swt.gtk.linux.x86_3.2.0.v3232m.jar, org.eclipse.swt_3.2.0.v3232o.jar,
org.eclipse.text_3.2.0.v20060605-1400.jar,
org.eclipse.ui.workbench.texteditor_3.2.0.v20060605-1400.jar,
org.eclipse.ui.workbench_3.2.0.I20060605-1400.jar, org.eclipse.ui_3.2.0.I20060605-1400.jar,
runtime_registry_compatibility.jar, eclipse.exe, eclipse.ini, and startup.jar
(collectively, "Eclipse Software").
All Eclipse Software is distributed under the terms and conditions of the Eclipse Foundation Software
User Agreement (EFSUA) and/or terms and conditions of the Eclipse Public License Version 1.0 (EPL) or
other license agreements, notices or terms and conditions referenced for the individual pieces of the
Eclipse Software, including without limitation "Abouts", "Feature Licenses", and "Feature Update
Licenses" as defined in the EFSUA .

A copy of the Eclipse Foundation Software User Agreement is found at
<install_dir>/SI/repository/rcp/rcpdependencies/windows/eclipse/notice.html,
<install_dir>/SI/repository/rcp/rcpdependencies/windows/eclipse/plugins/notice.html,
<install_dir>/SI/repository/rcp/rcpdependencies/gtk.linux_x86/eclipse/notice.html, and
<install_dir>/SI/repository/rcp/rcpdependencies/gtk.linux_x86/eclipse/plugins/notice.html.

A copy of the EPL is found at
<install_dir>/SI/repository/rcp/rcpdependencies/windows/eclipse/plugins/epl-v10.htm,
<install_dir>/SI/repository/rcp/rcpdependencies/windows/eclipse/epl-v10.htm,
<install_dir>/SI/repository/rcp/rcpdependencies/gtk.linux.x86/eclipse/plugins/epl-v10.html, and
<install_dir>/SI/repository/rcp/rcpdependencies/gtk.linux.x86/eclipse/epl-v10.html.

The reference to the license agreements, notices or terms and conditions governing each individual piece
of the Eclipse Software is found in the directory files for the individual pieces of the Eclipse Software as
described in the file identified as installdir/SCI_License.txt.

These licenses only apply to the Eclipse Software and do not apply to the Sterling Commerce Software,
or any other Third Party Software.

The Language Pack (NL Pack) piece of the Eclipse Software, is distributed in object code form. Source
code is available at
http://archive.eclipse.org/eclipse/downloads/drops/L-3.2_Language_Packs-200607121700/index.php.
In the event the source code is no longer available from the website referenced above, contact Sterling
Commerce at 978-513-6000 and ask for the Release Manager. A copy of this license is located at
<install_dir>/SI/repository/rcp/rcpdependencies/windows/eclipse/plugins/epl-v10.htm and

<install_dir>/SI/repository/rcp/rcpdependencies/gtk.linux.x86/eclipse/plugins/epl-v10.html.

The org.eclipse.core.runtime_3.2.0.v20060603.jar piece of the Eclipse Software was modified slightly in
order to remove classes containing encryption items. The org.eclipse.core.runtime_3.2.0.v20060603.jar
was modified to remove the Cipher, CipherInputStream and CipherOutputStream classes and rebuild the
org.eclipse.core.runtime_3.2.0.v20060603.jar.

Ehcache Software

The Sterling Commerce Software is also distributed with or on the same storage media as the ehache
v.1.5 software (Copyright © 2003-2008 Luck Consulting Pty. Ltd.) ("Ehache Software"). Ehcache
Software is free software which is distributed under the terms of the Apache License Version 2.0. A copy
of License Version 2.0 is found in <install>/jar/smcfs/8.5/ehcache-1.5.0.jar (./LICENSE.txt).

The Ehcache Software was not modified. Neither the Sterling Commerce Software, modifications, if any,
to the Ehcache Software, nor other Third Party Code is a Derivative Work or a Contribution as defined in
License Version 2.0. License Version 2.0 applies only to the Ehcache Software which is the subject of the
specific directory file and does not apply to the Sterling Commerce Software or to any other Third Party
Software. License Version 2.0 includes the following provision:

"Unless required by applicable law or agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS
OF ANY KIND, either express or implied, including, without limitation, any warranties or conditions of
TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. You are
solely responsible for determining the appropriateness of using or redistributing the Work and assume
any risks associated with Your exercise of permissions under this License."

EZMorph Software

The Sterling Commerce Software is also distributed with or on the same storage media as the EZMorph
v. 1.0.4 software (Copyright © 2006-2008 Andres Almiray) ("EZMorph Software"). EZMorph Software is
free software which is distributed under the terms of the Apache License Version 2.0. A copy of License
Version 2.0 is found in <install>/jar/ezmorph/1_0_4/ezmorph-1.0.4.jar (./LICENSE.txt).

The EZMorph Software was not modified. Neither the Sterling Commerce Software, modifications, if any,
to the EZMorph Software, nor other Third Party Code is a Derivative Work or a Contribution as defined in
License Version 2.0. License Version 2.0 applies only to the EZMorph Software which is the subject of
the specific directory file and does not apply to the Sterling Commerce Software or to any other Third
Party Software. License Version 2.0 includes the following provision:

"Unless required by applicable law or agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS
OF ANY KIND, either express or implied, including, without limitation, any warranties or conditions of
TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. You are
solely responsible for determining the appropriateness of using or redistributing the Work and assume
any risks associated with Your exercise of permissions under this License."

Firebug Lite Software

The Sterling Commerce Software is distributed with or on the same storage media as the Firebug Lite
Software which is free software distributed under the terms of the following license:

Copyright (c) 2008 Azer Koçulu http://azer.kodfabrik.com. All rights reserved.

Redistribution and use of this software in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

* Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

* Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other materials provided with the distribution.

* Neither the name of Azer Koçulu. nor the names of any other contributors may be used to endorse or
promote products derived from this software without specific prior written permission of Parakey Inc.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

ICE SOFTWARE

The Sterling Commerce Software is distributed on the same storage media as the ICE Software
(Copyright © 1997 ICE Engineering, Inc./Timothy Gerard Endres.) ("ICE Software"). The ICE Software is
independent from and not linked or compiled with the Sterling Commerce Software. The ICE Software is
a free software product which can be distributed and/or modified under the terms of the GNU General
Public License as published by the Free Software Foundation; either version 2 of the License or any later
version.

A copy of the GNU General Public License is provided at installdir/jar/jniregistry/1_2/ICE_License.txt.
This license only applies to the ICE Software and does not apply to the Sterling Commerce Software, or
any other Third Party Software.

The ICE Software was modified slightly in order to fix a problem discovered by Sterling Commerce
involving the RegistryKey class in the RegistryKey.java in the JNIRegistry.jar. The class was modified to
comment out the finalize () method and rebuild of the JNIRegistry.jar file.

Source code for the bug fix completed by Sterling Commerce on January 8, 2003 is located at:
installdir/jar/jniregistry/1_2/RegistryKey.java. Source code for all other components of the ICE Software
is located at http://www.trustice.com/java/jnireg/index.shtml.

The ICE Software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

JBOSS SOFTWARE

The Sterling Commerce Software is distributed on the same storage media as the JBoss Software
(Copyright © 1999-2002 JBoss.org) ("JBoss Software"). The JBoss Software is independent from and
not linked or compiled with the Sterling Commerce Software. The JBoss Software is a free software
product which can be distributed and/or modified under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either version 2.1 of the License or any later
version.

A copy of the GNU Lesser General Public License is provided at:
<install_dir>\jar\jboss\4_2_0\LICENSE.html

This license only applies to the JBoss Software and does not apply to the Sterling Commerce Software,
or any other Third Party Software.

The JBoss Software is not distributed by Sterling Commerce in its entirety. Rather, the distribution is
limited to the following jar files: el-api.jar, jasper-compiler-5.5.15.jar, jasper-el.jar, jasper.jar,
jboss-common-client.jar, jboss-j2ee.jar, jboss-jmx.jar, jboss-jsr77-client.jar, jbossmq-client.jar,

jnpserver.jar, jsp-api.jar, servlet-api.jar, tomcat-juli.jar.

The JBoss Software was modified slightly in order to allow the ClientSocketFactory to return a socket
connected to a particular host in order to control the host interfaces, regardless of whether the
ClientSocket Factory specified was custom or note. Changes were made to org.jnp..server.Main. Details
concerning this change can be found at
http://sourceforge.net/tracker/?func=detail&aid=1008902&group_id=22866&atid=376687.

Source code for the modifications completed by Sterling Commerce on August 13, 2004 is located at:
http://sourceforge.net/tracker/?func=detail&aid=1008902&group_id=22866&atid=376687. Source code
for all other components of the JBoss Software is located at http://www.jboss.org.

JGO SOFTWARE

The Sterling Commerce Software is distributed with, or on the same storage media, as certain
redistributable portions of the JGo Software provided by Northwoods Software Corporation under a
commercial license agreement (the "JGo Software"). The JGo Software is provided subject to the
disclaimers set forth above and the following notice:

U.S. Government Restricted Rights

The JGo Software and documentation are provided with RESTRICTED RIGHTS. Use, duplication, or
disclosure by the Government is subject to restrictions as set forth in subparagraph (C)(1)(ii) of the
Rights in Technical Data and Computer Software clause at DFARS 252.227-7013 or subparagraphs (C)(1)
and (2) of the Commercial Computer Software - Restricted Rights at 48 CFR 52.227-19, as applicable.
Contractor / manufacturer of the JGo Software is Northwoods Software Corporation, 142 Main St.,
Nashua, NH 03060.

JSLib Software

The Sterling Commerce Software is distributed with or on the same storage media as the JSLib software
product (Copyright (c) 2003-2009 Mozdev Group, Inc.) ("JSLib Software"). The JSLib Software is
distributed under the terms of the MOZILLA PUBLIC LICENSE Version 1.1. A copy of this license is
located at <install>\repository\eardata\platform_uifwk_ide\war\designer\MPL-1.1.txt. The JSLib
Software code is distributed in source form and is located at http://jslib.mozdev.org/installation.html.
Neither the Sterling Commerce Software nor any other Third-Party Code is a Modification or Contribution
subject to the Mozilla Public License. Pursuant to the terms of the Mozilla Public License, the following
notice applies only to the JSLib Software (and not to the Sterling Commerce Software or any other
Third-Party Software):

"The contents of the file located at http://www.mozdev.org/source/browse/jslib/ are subject to the
Mozilla Public License Version 1.1 (the "License"); you may not use this file except in compliance with the
License. You may obtain a copy of the License at http://www.mozilla.org/MPL/MPL-1.1.html.

Software distributed under the License is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
KIND, either express or implied. See the License for the specific language governing rights and
limitations under the License.

The Original Code is Mozdev Group, Inc. code. The Initial Developer of the Original Code is Mozdev
Group, Inc. Portions created by_Mozdev Group, Inc. are Copyright © 2003 Mozdev Group, Inc. All Rights
Reserved. Original Author: Pete Collins <pete@mozdev.org>one Contributor(s):_____none
listed________.

Alternatively, the contents of this file may be used under the terms of the ____ license (the "[___]
License"), in which case the provisions of [___] License are applicable instead of those above. If you
wish to allow use of your version of this file only under the terms of the [___] License and not allow
others to use your version of this file under the MPL, indicate your decision by deleting the provisions
above and replace them with the notice and other provisions required by the [___] License. If you do not
delete the provisions above, a recipient may use your version of this file under either the MPL or the
[___] License."

The preceding license only applies to the JSLib Software and does not apply to the Sterling Commerce
Software, or any other Third-Party Software.

Json Software

The Sterling Commerce Software is also distributed with or on the same storage media as the Json 2.2.2
software (Copyright © 2006-2008 Json-lib) ("Json Software"). Json Software is free software which is
distributed under the terms of the Apache License Version 2.0. A copy of License Version 2.0 is found in
<install>/jar/jsonlib/2_2_2/json-lib-2.2.2-jdk13.jar.

This product includes software developed by Douglas Crockford (http://www.crockford.com).

The Json Software was not modified. Neither the Sterling Commerce Software, modifications, if any, to
the Json Software, nor other Third Party Code is a Derivative Work or a Contribution as defined in
License Version 2.0. License Version 2.0 applies only to the Json Software which is the subject of the
specific directory file and does not apply to the Sterling Commerce Software or to any other Third Party
Software. License Version 2.0 includes the following provision:

"Unless required by applicable law or agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS
OF ANY KIND, either express or implied, including, without limitation, any warranties or conditions of
TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. You are
solely responsible for determining the appropriateness of using or redistributing the Work and assume
any risks associated with Your exercise of permissions under this License."

Purple Technology

The Sterling Commerce Software is distributed with or on the same storage media as the Purple
Technology Software (Copyright (c) 1995-1999 Purple Technology, Inc.) ("Purple Technology Software"),
which is subject to the following license:

Copyright (c) 1995-1999 Purple Technology, Inc. All rights reserved.

PLAIN LANGUAGE LICENSE: Do whatever you like with this code, free of charge, just give credit where
credit is due. If you improve it, please send your improvements to alex@purpletech.com. Check
http://www.purpletech.com/code/ for the latest version and news.

LEGAL LANGUAGE LICENSE: Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and
the following disclaimer in the documentation and/or other materials provided with the distribution.

3. The names of the authors and the names "Purple Technology," "Purple Server" and "Purple Chat" must
not be used to endorse or promote products derived from this software without prior written permission.
For written permission, please contact server@purpletech.com.

THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND PURPLE TECHNOLOGY "AS IS'' AND ANY
EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE AUTHORS OR PURPLE TECHNOLOGY BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

The preceding license only applies to the Purple Technology Software and does not apply to the Sterling
Commerce Software, or any other Third Party Software.

Rico Software

The Sterling Commerce Software is also distributed with or on the same storage media as the Rico.js
software (Copyright © 2005 Sabre Airline Solutions) ("Rico Software"). Rico Software is free software

which is distributed under the terms of the Apache License Version 2.0. A copy of License Version 2.0 is
found in <install>/repository/eardata/platform/war/ajax/scripts/Rico_License.txt.

The Rico Software was not modified. Neither the Sterling Commerce Software, modifications, if any, to
the Rico Software, nor other Third-Party Code is a Derivative Work or a Contribution as defined in
License Version 2.0. License Version 2.0 applies only to the Rico Software which is the subject of the
specific directory file and does not apply to the Sterling Commerce Software or to any other Third-Party
Software. License Version 2.0 includes the following provision:

"Unless required by applicable law or agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS
OF ANY KIND, either express or implied, including, without limitation, any warranties or conditions of
TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. You are
solely responsible for determining the appropriateness of using or redistributing the Work and assume
any risks associated with Your exercise of permissions under this License."

Rhino Software

The Sterling Commerce Software is distributed with or on the same storage media as the Rhino js.jar
(Copyright (c) 1998-2009 Mozilla.org.) ("Rhino Software"). A majority of the source code for the Rhino
Software is dual licensed under the terms of the MOZILLA PUBLIC LICENSE Version 1.1. or the GPL v.
2.0. Additionally, some files (at a minimum the contents of
toolsrc/org/Mozilla/javascript/toolsdebugger/treetable) are available under another license as set forth in
the directory file for the Rhino Software.

Sterling Commerce's use and distribution of the Rhino Software is under the Mozilla Public License. A
copy of this license is located at <install>/3rdParty/rico license.doc. The Rhino Software code is
distributed in source form and is located at http://mxr.mozilla.org/mozilla/source/js/rhino/src/. Neither
the Sterling Commerce Software nor any other Third-Party Code is a Modification or Contribution subject
to the Mozilla Public License. Pursuant to the terms of the Mozilla Public License, the following notice
applies only to the Rhino Software (and not to the Sterling Commerce Software or any other Third-Party
Software):

"The contents of the file located at <install>/jar/rhino/1_7R1/js.jar are subject to the Mozilla Public
License Version 1.1 (the "License"); you may not use this file except in compliance with the License. You
may obtain a copy of the License at http://www.mozilla.org/MPL/.

Software distributed under the License is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
KIND, either express or implied. See the License for the specific language governing rights and
limitations under the License.

The Original Code is Rhino code, released May 6, 1999. The Initial Developer is Netscape
Communications Corporation. Portions created by the Initial Developer are Copyright © 1997-1999. All
Rights Reserved. Contributor(s):_____none listed.

The preceding license only applies to the Rico Software and does not apply to the Sterling Commerce
Software, or any other Third-Party Software.

Sun Microsystems

The Sterling Commerce Software is distributed with or on the same storage media

as the following software products (or components thereof): Sun JMX, and Sun JavaMail (collectively,
"Sun Software"). Sun Software is free software which is distributed under the terms of the licenses
issued by Sun which are included in the directory files located at:

SUN COMM JAR - <install>/Applications/Foundation/lib

SUN ACTIVATION JAR - <install>/ Applications/Foundation/lib

SUN JavaMail - <install>/jar/javamail/1_4/LICENSE.txt

The Sterling Commerce Software is also distributed with or on the same storage media as the
Web-app_2_3.dtd software (Copyright © 2007 Sun Microsystems, Inc.) ("Web-App Software").
Web-App Software is free software which is distributed under the terms of the Common Development

and Distribution License ("CDDL"). A copy of the CDDL is found in
http://kenai.com/projects/javamail/sources/mercurial/show.

The source code for the Web-App Software may be found at:
<install>/3rdParty/sun/javamail-1.3.2/docs/JavaMail-1.2.pdf

Such licenses only apply to the Sun product which is the subject of such directory and does not apply to
the Sterling Commerce Software or to any other Third Party Software.

The Sterling Commerce Software is also distributed with or on the same storage media as the Sun
Microsystems, Inc. Java (TM) look and feel Graphics Repository ("Sun Graphics Artwork"), subject to the
following terms and conditions:

Copyright 2000 by Sun Microsystems, Inc. All Rights Reserved.

Sun grants you ("Licensee") a non-exclusive, royalty free, license to use, and redistribute this software
graphics artwork, as individual graphics or as a collection, as part of software code or programs that you
develop, provided that i) this copyright notice and license accompany the software graphics artwork; and
ii) you do not utilize the software graphics artwork in a manner which is disparaging to Sun. Unless
enforcement is prohibited by applicable law, you may not modify the graphics, and must use them true
to color and unmodified in every way.

This software graphics artwork is provided "AS IS," without a warranty of any kind. ALL EXPRESS OR
IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE HEREBY
EXCLUDED. SUN AND ITS LICENSORS SHALL NOT BE LIABLE FOR ANY DAMAGES SUFFERED BY
LICENSEE AS A RESULT OF USING, MODIFYING OR DISTRIBUTING THE SOFTWARE GRAPHICS
ARTWORK.

IN NO EVENT WILL SUN OR ITS LICENSORS BE LIABLE FOR ANY LOST REVENUE, PROFIT OR DATA, OR
FOR DIRECT, INDIRECT, SPECIAL, CONSEQUENTIAL, INCIDENTAL OR PUNITIVE DAMAGES, HOWEVER
CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF THE USE OF OR INABILITY
TO USE SOFTWARE GRAPHICS ARTWORK, EVEN IF SUN HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

If any of the above provisions are held to be in violation of applicable law, void, or unenforceable in any
jurisdiction, then such provisions are waived to the extent necessary for this Disclaimer to be otherwise
enforceable in such jurisdiction.

The preceding license only applies to the Sun Graphics Artwork and does not apply to the Sterling
Commerce Software, or any other Third Party Software.

WARRANTY DISCLAIMER

This documentation and the Sterling Commerce Software which it describes are licensed either "AS IS"
or with a limited warranty, as set forth in the Sterling Commerce license agreement. Other than any
limited warranties provided, NO OTHER WARRANTY IS EXPRESSED AND NONE SHALL BE IMPLIED,
INCLUDING THE WARRANTIES OF MERCHANTABILITY AND FITNESS FOR USE OR FOR A PARTICULAR
PURPOSE. The applicable Sterling Commerce entity reserves the right to revise this publication from time
to time and to make changes in the content hereof without the obligation to notify any person or entity
of such revisions or changes.

The Third Party Software is provided "AS IS" WITHOUT ANY WARRANTY AND ANY EXPRESSED OR
IMPLIED WARRANTIES, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. FURTHER, IF YOU
ARE LOCATED OR ACCESSING THIS SOFTWARE IN THE UNITED STATES, ANY EXPRESS OR IMPLIED
WARRANTY REGARDING TITLE OR NON-INFRINGEMENT ARE DISCLAIMED.

Without limiting the foregoing, the ICE Software and JBoss Software are distributed WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE.

xv

Contents

1 Checklist for Customization Projects

1.1 Customization Projects... 1

2 Rich Client Platform

2.1 About Customizing the Rich Client Platform Interface 5
2.1.1 Rich Client Platform Concepts .. 5
2.1.2 Extensibility Capability Summary.. 5
2.1.3 Guidelines for Smooth Updates and Easy Maintenance 5
2.1.4 Setting Up the Development Environment ... 6
2.1.5 Extending Rich Client Platform Applications.. 6
2.2 Rich Client Platform Architecture ... 7
2.3 Benefits of Using the Rich Client Platform Interface.................................. 8
2.4 Rich Client Platform and Desktop Applications ..10
2.5 XML Binding for Rich Client Platform Applications....................................10
2.6 Localizing Rich Client Platform Applications ..11
2.6.1 Database Localization ..11
2.7 Themes for Rich Client Platform Applications...11
2.8 Related Tasks for Rich Client Platform Applications12
2.9 Shared Tasks for Rich Client Platform Applications12
2.10 Wizards for Rich Client Platform Applications...13
2.11 Hot Keys for Rich Client Platform Applications ..17
2.12 Debug Mode for Rich Client Platform Applications18
2.12.1 Running Rich Client Platform Applications in Debug Mode19
2.12.2 Running the Standalone Rich Client Platform Application in Debug Mode ..

19

xvi Customizing the Rich Client Platform Interface Guide

2.12.3 Running the Rich Client Platform Application in Eclipse in Debug Mode. 20
2.13 Prototype Mode for Rich Client Platform Applications 20
2.13.1 Running Rich Client Platform Applications in Prototype Mode 20
2.13.2 Running Standalone Rich Client Platform Applications in Prototype Mode.

20
2.13.3 Running Rich Client Platform Applications in Eclipse in Prototype Mode 21
2.14 Tracing a Rich Client Platform Application .. 22
2.14.1 Tracing a Standalone Rich Client Platform Application........................ 22
2.14.2 Masking Sensitive Information in Logs During Trace.......................... 24
2.14.3 Tracing a Rich Client Platform Application in Eclipse 24
2.15 Capitalizing the Text Entered in Rich Client Platform Applications 25
2.16 Fetching Images for Rich Client Platform Applications............................. 25
2.17 Security Handling for Rich Client Platform Applications 26
2.18 Output Templates for Rich Client Platform Applications 26
2.19 Commands for Rich Client Platform Applications 27
2.20 Log Files for Rich Client Platform Applications.. 27
2.20.1 Clearing Data Cache ... 28
2.21 Table Filtering for Rich Client Platform Applications 28
2.21.1 Clearing the Sort Order in a Table .. 29
2.22 Scheduling Jobs for Rich Client Platform Applications.............................. 29
2.22.1 Scheduling a Generic Job... 29
2.22.2 Scheduling an Alert-Related Job ... 30
2.22.3 Preventing the Deactivation of Alert Notification 31
2.23 Low Resolution Display for Rich Client Platform Applications 32
2.24 Displaying Panel Tasks on the Menu Bar for Rich Client Platform Applications

34
2.25 Switching Locale for Rich Client Platform Applications............................. 35
2.26 Using a VM Login for Rich Client Platform Applications 35
2.27 Using a VM JRE for Rich Client Platform Applications 36
2.28 Supervisory Overrides for Rich Client Platform Applications 37
2.28.1 Using the Pop-Up Method .. 37
2.28.2 Starting a Supervisory Transaction ... 38
2.29 Running Rich Client Platform Applications in POS Mode........................... 38
2.30 Version-Based Communication between Client and Server 40
2.30.1 Client Component... 42

 xvii

2.30.2 Server Component ..42
2.31 Integrating Web Applications with Rich Client Platform43

3 The Development Environment for Rich Client Platform
Applications

3.1 Installing Prerequisite Software Components..47
3.1.1 Installing the Rich Client Platform Plug-In...48
3.1.2 Installing the Rich Client Platform Tools Plug-In.................................49
3.1.3 Rich Client Platform Tools...49
3.2 Creating and Configuring Locations...52
3.3 Creating a Plug-In Project ...53
3.4 Running the Rich Client Platform Plug-In Wizard.....................................56
3.5 Launching the Rich Client Platform Application in Eclipse60

4 Customizing Rich Client Platform Application

4.1 Overview of Customizing Rich Client Platform Applications65
4.1.1 Localizing Rich Client Platform Applications65
4.1.2 Defining Themes for Rich Client Platform Applications65
4.1.3 Extending Rich Client Platform Applications.......................................66
4.1.3.1 Modifying Existing Screens ..66
4.1.3.2 Modifying Existing Wizards ..67
4.1.3.3 Creating and Adding New Screens ..67
4.2 Building and Deploying Extended Rich Client Platform Applications............67
4.2.1 Building Rich Client Platform Extensions ...67
4.2.2 Deploying Rich Client Platform Extensions ..69

5 Customizing the About Box

5.1 Customizing the About Box..71

6 Modifying the Existing Rich Client Platform Screens and
Wizards

6.1 Modifying Existing Rich Client Platform Screens73
6.1.1 Starting the Rich Client Platform Extensibility Tool73
6.1.2 Customizing the User Interface ...73

xviii Customizing the Rich Client Platform Interface Guide

6.1.3 Synchronizing Differences ... 73
6.1.4 Building and Deploying Extensions.. 73
6.2 Validating or Capturing Data During API or Service Calls......................... 74
6.3 Modifying Existing Rich Client Platform Wizards 75
6.4 Creating an Extended Wizard Definition.. 78
6.5 Registering the Wizard Extension File... 79
6.6 Creating the Wizard Entity.. 80
6.7 Modifying the Wizard Extension Behavior.. 80

7 Creating and Adding Screens to Rich Client Platform
Applications

7.1 About Creating a Rich Client Platform Composite 83
7.2 Creating a Rich Client Platform Composite Using the Rich Client Platform

Search List Composite Wizard ... 84
7.3 Creating a Rich Client Platform Composite Using the Rich Client Platform

Composite Wizard ... 93
7.4 About Designing a Rich Client Platform Composite 95
7.5 Creating the Search Criteria Panel for a Rich Client Platform Composite 97
7.6 Adding Controls to the Search Criteria Panel for a Rich Client Platform

Composite.. 99
7.7 Creating the Search Result Panel for a Rich Client Platform Composite.....102
7.8 Displaying Paginated Results in a Rich Client Platform Composite............103
7.8.1 Page Size ...104
7.8.2 YRCPaginatedData...105
7.8.3 YRCPaginationException ...105
7.8.4 IYRCPageNavigator..105
7.8.5 Server-Side Sorting ...106
7.9 Creating Tables for Rich Client Platform Screens...................................106
7.9.1 Creating Standard Tables ...106
7.9.2 Adding Columns to the Standard Table...107
7.9.3 Creating Editable Tables...107
7.10 Naming Controls for Rich Client Platform Screens108
7.10.1 Creating a Binding Object ...108
7.10.2 Naming a Control ..109
7.11 Binding Controls and Classes for Rich Client Platform Screens109

 xix

7.11.1 Binding Classes...110
7.11.2 Types of Bindings Required for Controls on Rich Client Platform Screens ..

110
7.12 Source Binding for Controls on Rich Client Platform Screens...................111
7.12.1 Multiple Source Bindings ..111
7.13 Target Binding for Controls on Rich Client Platform Screens112
7.13.1 Multiple Target Bindings...113
7.14 Checked Binding for Controls on Rich Client Platform Screens.................114
7.15 Unchecked Binding for Controls on Rich Client Platform Screens115
7.16 List Binding for Controls on Rich Client Platform Screens115
7.17 Code Binding for Controls on Rich Client Platform Screens116
7.18 Description Binding for Controls on Rich Client Platform Screens.............117
7.19 Attribute Binding for Controls on Rich Client Platform Screens117
7.19.1 Multiple Attribute Bindings..118
7.20 Key Binding for Controls on Rich Client Platform Screens119
7.21 Binding Input to Custom Controls on Rich Client Platform Screens119
7.22 About Setting Bindings for Controls on Rich Client Platform Screens........120
7.22.1 Input XML Model ...120
7.22.2 Target XML Model..121
7.23 Setting Bindings for Labels ..121
7.23.1 Creating a Binding Object...121
7.23.2 Steps to Bind a Label ...122
7.24 Setting Bindings for Text Boxes..123
7.24.1 Creating a Binding Object...123
7.24.2 Steps to Bind a Text Box ..123
7.25 Setting Bindings for StyledText Components ..125
7.25.1 Creating a Binding Object...125
7.25.2 Steps to Bind a StyledText Component...125
7.26 Setting Bindings for Combo Boxes ..127
7.26.1 Creating a Binding Object...127
7.26.2 Steps to Bind a Combo Box ..127
7.26.3 Populating Version-Specific Data in Combo Boxes129
7.27 Setting Bindings for List Boxes ...130
7.27.1 Creating a Binding Object...130
7.27.2 Steps to Bind a List Box ...131
7.28 Setting Bindings for Checkboxes ..132

xx Customizing the Rich Client Platform Interface Guide

7.28.1 Creating a Binding Object ...132
7.28.2 Steps to Bind a Check Box..133
7.29 Setting Bindings for Radio Buttons..134
7.29.1 Creating a Binding Object ...134
7.29.2 Steps to Bind a Radio Button ..134
7.30 Setting Bindings for Links ..136
7.30.1 Creating a Binding Object ...136
7.30.2 Steps to Bind a Link...136
7.31 Setting Bindings for Standard Tables...137
7.31.1 Creating a Binding Object for a Standard Table137
7.31.2 Creating a Binding Object for a Column ..137
7.31.3 Steps to Bind a Standard Table and Column....................................138
7.32 Setting Bindings for an Editable Table ...142
7.32.1 Binding Combo Box Cell Editors...143
7.33 Setting Bindings for an Extended Table ...144
7.33.1 Creating a Binding Object for an Extended Table145
7.33.2 Create a Map of the Advanced Column Binding Data145
7.33.3 Steps to Bind an Extended Table and Advanced Column146
7.34 Setting Bindings for Extended Editable Tables150
7.34.1 Binding Combo Box Cell Editors...151
7.35 Localizing Controls and Defining Themes for Rich Client Platform

Applications...152
7.35.1 Defining Themes for Controls ...153
7.36 Calling APIs and Services for Rich Client Platform Applications................153
7.36.1 Calling the Same API/Service Multiple Times155
7.36.2 Calling Multiple APIs/Services ...156
7.37 Adding New Rich Client Platform Screens as Pop-ups.............................158
7.38 Adding New Rich Client Platform Screens to Menu Commands159
7.39 Displaying New Rich Client Platform Screens in an Editor160

8 Creating and Adding Wizards to Rich Client Platform
Applications

8.1 Phase 1: Create Wizard Definitions ...165
8.1.1 Creating a Wizard Definition ...165
8.2 Creating a Wizard Definition with the Rich Client Platform Wizard Editor ..166

 xxi

8.3 Adding a Rule to a Wizard Definition ..166
8.4 Adding a Page to a Wizard Definition ..168
8.5 Adding a Sub-task to a Wizard Definition...169
8.6 Adding a Transition to a Wizard Definition ...170
8.7 Phase 2: Create Components to Implement a Wizard Definition..............171
8.8 Creating Wizard Components ...171
8.8.1 Creating Wizard Class ..171
8.8.2 Creating Wizard Behavior Class ...175
8.9 Creating Wizard Page Components ...178
8.9.1 Creating Wizard Page Class ..178
8.9.2 Creating Wizard Page Behavior Class ...182
8.10 Creating Wizard Rule Components..184
8.10.1 Registering the Wizard Command File ..188
8.11 Adding Wizards as Pop-ups in Rich Client Platform Applications188
8.12 Adding Wizards to Menu Commands in Rich Client Platform Applications .189
8.13 Adding Wizards to Editors in Rich Client Platform Applications190

9 Creating Related Tasks for Rich Client Platform Applications

9.1 About Related Tasks ...195
9.2 Extending the YRCRelatedTasks Extension Point195
9.3 Extending the YRCRelatedTaskCategories Extension Point......................199
9.4 Extending the YRCRelatedTaskGroups Extension Point...........................201
9.5 Extending the YRCRelatedTasksDisplayer Extension Point202
9.6 Extending the YRCRelatedTasksExtensionContributor Extension Point204
9.7 Enabling Custom Dialog Boxes Through an Extension Point for Rich Client

Platform Applications ..206

10 Creating Commands for Rich Client Platform Applications

10.1 About Commands...209
10.2 Defining Namespaces ...212
10.3 Overriding Commands ..214

xxii Customizing the Rich Client Platform Interface Guide

11 Defining and Overriding Hot Keys in Rich Client Platform
Applications

11.1 Phase 1: Defining a Hot Key Command ...215
11.2 Phase 2: Defining a Hot Key Binding ...216
11.3 Phase 3: Defining a Hot Key Action...218
11.4 Overriding Hot Keys ...219
11.4.1 Disabling Related Task Hot Keys..221

12 Merging Templates for Rich Client Platform Applications

12.1 Merging Input and Output Templates ..223

13 Related and Shared Tasks in Rich Client Platform
Applications

13.1 Adding New Related Tasks...227
13.2 Hiding Existing Related Tasks...227
13.3 Registering Shared Tasks ..227
13.4 Using Shared Tasks ..230

14 Defining Themes for Rich Client Platform Applications

14.1 Defining New Themes ...233
14.2 Defining Themes for Controls ...235
14.2.1 Applying Themes to Non-editable Text Boxes236

15 Menus and Custom Controls for Rich Client Platform
Applications

15.1 Adding and Removing Menus in Rich Client Platform Applications239
15.2 Customizing the Menu View Through the YRCMenuDisplayer Extension Point .

239

16 Setting the Extension Model, Configuring SSL and SSO for
Rich Client Platform Applications

16.1 Setting the Extension Model for Rich Client Platform Applications241
16.2 Configuring SSL for Rich Client Platform Applications.............................242

 xxiii

16.3 Configuring SSO for Rich Client Platform Applications............................243
16.3.1 Client Settings for SSO Configuration...244
16.3.2 Server Settings for SSO Configuration..245

17 Rich Client Platform General Concepts Reference

17.1 Rich Client Platform Architecture ..247
17.2 Eclipse and its Rich Client Platform ...249
17.3 Workbench..250
17.4 Plug-In Manifest Editor..250
17.4.1 Overview ...251
17.4.2 Dependencies ...251
17.4.3 Runtime...251
17.4.4 Extensions ...251
17.4.5 Extension Points..251
17.4.6 Build ...251
17.4.7 Manifest.mf ..252
17.4.8 Plugin.xml..252
17.4.9 Build.properties ..252
17.5 YRCPluginAutoLoader Extension Point ...252
17.6 YRCApplicationInitializer Extension Point ...253
17.7 YRCContainerToolbar Extension Point..254
17.8 YRCPostWindowOpenInitializer Extension Point256
17.9 YRCJasperReport Extension Point ...257
17.10 YRCContainerTitleProvider Extension Point..258
17.11 YRCMessageDisplayer Extension Point...259
17.12 Creating New Actions..261
17.13 Registering a Plug-In ..264
17.14 Registering Plug-In Files..265
17.14.1 Registering Bundle File...265
17.14.2 Registering Theme File...266
17.14.3 Registering Configuration File ...267
17.14.4 Registering Commands File...267
17.14.5 Registering Extension File...268
17.14.6 Registering a Message Filter ...269
17.15 Validating Controls ...269

xxiv Customizing the Rich Client Platform Interface Guide

17.16 Custom Data Formatting ...270
17.17 Siblings...273
17.18 Rich Client Platform Utilities...274
17.18.1 Viewing Screen Models...274
17.18.1.1 Saving Models as Templates ..275

Index

 xxvii

Preface

This manual provides a brief glimpse into the Rich Client Platform and
explains how to customize the different components of a Rich Client
Platform application.

Intended Audience
This manual is intended for use by those who are responsible for
customizing Selling and Fulfillment Foundation.

Structure
This document contains the following chapters:

Chapter 1, "Checklist for Customization Projects"
This chapter describes a checklist of the tasks you need to perform to
customize the different components of Selling and Fulfillment Foundation.

Chapter 2, "Rich Client Platform"
This chapter explains the prerequisites for customizing the Rich Client
Platform application UIs easily, quickly, and with fewer errors.

Chapter 3, "The Development Environment for Rich Client
Platform Applications"
This chapter describes the various software components required to
customize the Rich Client Platform application.

xxviii Customizing the Rich Client Platform Interface Guide

Chapter 4, "Customizing Rich Client Platform Application"
This chapter describes various ways of customizing a Rich Client Platform
application.

Chapter 5, "Customizing the About Box"
This chapter describes how to customize the About Box of a Rich Client
Platform application.

Chapter 6, "Modifying the Existing Rich Client Platform Screens
and Wizards"
This chapter explains how to modify the existing screens of a Rich Client
Platform application.

Chapter 7, "Creating and Adding Screens to Rich Client Platform
Applications"
This chapter explains how to create Rich Client Platform screens.

Chapter 8, "Creating and Adding Wizards to Rich Client Platform
Applications"
This chapter explains how to create and add wizards to Rich Client
Platform applications.

Chapter 9, "Creating Related Tasks for Rich Client Platform
Applications"
This chapter explains how to create related tasks for Rich Client Platform
applications.

Chapter 10, "Creating Commands for Rich Client Platform
Applications"
This chapter explains how to create commands to call APIs or services to
retrieve data.

Chapter 11, "Defining and Overriding Hot Keys in Rich Client
Platform Applications"
This chapter explains how to define new hot keys for new screens, and
override the hot keys defined for the existing screens.

 xxix

Chapter 12, "Merging Templates for Rich Client Platform
Applications"
This chapter explains how to merge the input and output templates to
get additional data from an API or Service.

Chapter 13, "Related and Shared Tasks in Rich Client Platform
Applications"
This chapter explains how to add new related tasks and shared tasks to
the Rich Client Platform application.

Chapter 14, "Defining Themes for Rich Client Platform
Applications"
This chapter explains how to define a new theme for theming the Rich
Client Platform application.

Chapter 15, "Menus and Custom Controls for Rich Client Platform
Applications"
This chapter explains how to add menus and custom controls for Rich
Client Platform applications.

Chapter 16, "Setting the Extension Model, Configuring SSL and
SSO for Rich Client Platform Applications"
This chapter explains how to set the extension model to populate the
newly added fields on the form with the required data. It also describes
how to configure SSL for Rich Client Platform applications.

Chapter 17, "Rich Client Platform General Concepts Reference"
This chapter provides information about general Rich Client Platform
concepts.

Selling and Fulfillment Foundation
Documentation

For more information about the Selling and Fulfillment Foundation

components, see the following manuals:

Selling and Fulfillment Foundation: Release Notes

Selling and Fulfillment Foundation: Installation Guide

Selling and Fulfillment Foundation: Upgrade Guide

xxx Customizing the Rich Client Platform Interface Guide

Selling and Fulfillment Foundation: Configuration Deployment Tool
Guide

Selling and Fulfillment Foundation: Performance Management Guide

Selling and Fulfillment Foundation: High Availability Guide

Selling and Fulfillment Foundation: System Management Guide

Selling and Fulfillment Foundation: Localization Guide

Selling and Fulfillment Foundation: Customization Basics Guide

Selling and Fulfillment Foundation: Customizing APIs Guide

Selling and Fulfillment Foundation: Customizing Console JSP Interface
for End User Guide

Selling and Fulfillment Foundation: Customizing the RCP Interface
Guide

Selling and Fulfillment Foundation: Customizing User Interfaces for
Mobile Devices Guide

Selling and Fulfillment Foundation: Customizing Web UI Framework
Guide

Selling and Fulfillment Foundation: Customizing Swing Interface
Guide

Selling and Fulfillment Foundation: Extending the Condition Builder
Guide

Selling and Fulfillment Foundation: Extending the Database Guide

Selling and Fulfillment Foundation: Extending Transactions Guide

Selling and Fulfillment Foundation: Using Sterling RCP Extensibility
Tool Guide

Selling and Fulfillment Foundation: Integration Guide

Selling and Fulfillment Foundation: Product Concepts Guide

Sterling Warehouse ManagementTM System: Concepts Guide

Selling and Fulfillment Foundation: Application Platform Configuration
Guide

Sterling Distributed Order ManagementTM: Configuration Guide

 xxxi

Sterling Supply Collaboration: Configuration Guide

Sterling Global Inventory VisibilityTM: Configuration Guide

Catalog ManagementTM: Configuration Guide

Sterling Logistics Management: Configuration Guide

Sterling Reverse LogisticsTM: Configuration Guide

Sterling Warehouse Management System: Configuration Guide

Selling and Fulfillment Foundation: Application Platform User Guide

Sterling Distributed Order Management: User Guide

Sterling Supply Collaboration: User Guide

Sterling Global Inventory Visibility: User Guide

Sterling Logistics Management: User Guide

Sterling Reverse Logistics: User Guide

Sterling Warehouse Management System: User Guide

Selling and Fulfillment Foundation: Mobile Application User Guide

Selling and Fulfillment Foundation: Business Intelligence Guide

Selling and Fulfillment Foundation: Javadocs

Sterling Selling and Fulfillment SuiteTM: Glossary

Parcel Carrier: Adapter Guide

Selling and Fulfillment Foundation: Multitenant Enterprise Guide

Selling and Fulfillment Foundation: Password Policy Management
Guide

Selling and Fulfillment Foundation: Properties Guide

Selling and Fulfillment Foundation: Catalog Management Concepts
Guide

Selling and Fulfillment Foundation: Pricing Concepts Guide

Business Center: Item Administration Guide

Business Center: Pricing Administration Guide

Business Center: Customization Guide

xxxii Customizing the Rich Client Platform Interface Guide

Business Center: Localization Guide

Conventions
In this manual, Windows refers to all supported Windows operating
systems.

The following conventions may be used in this manual:

Convention Meaning

. . . Ellipsis represents information that has been
omitted.

< > Angle brackets indicate user-supplied input.

mono-spaced text Mono-spaced text indicates a file name, directory
path, attribute name, or an inline code example or
command.

/ or \ Slashes and backslashes are file separators for
Windows, UNIX, and Linux operating systems. The
file separator for the Windows operating system is
"\" and the file separator for UNIX and Linux
systems is "/". The UNIX convention is used unless
otherwise mentioned.

<INSTALL_DIR> User-supplied location of the Selling and Fulfillment
Foundation installation directory. This is only
applicable for Release 8.0 or later.

<INSTALL_DIR_OLD> User-supplied location of the Selling and Fulfillment
Foundation installation directory (for Release 8.0 or
later).

Note: This is applicable only for users upgrading
from Release 8.0 or later.

<YANTRA_HOME> User-supplied location of the Sterling Supply Chain
Applications installation directory. This is only
applicable for Releases 7.7, 7.9, and 7.11.

<YANTRA_HOME_OLD> User-supplied location of the Sterling Supply Chain
Applications installation directory (for Releases 7.7,
7.9, or 7.11).

Note: This is applicable only for users upgrading
from Releases 7.7, 7.9, or 7.11.

 xxxiii

<YFS_HOME> For Releases 7.3, 7.5, and 7.5 SP1, this is the
user-supplied location of the Sterling Supply Chain
Applications installation directory.

For Releases 7.7, 7.9, and 7.11, this is the
user-supplied location of the <YANTRA_
HOME>/Runtime directory.

For Release 8.0 or above, the <YANTRA_
HOME>/Runtime directory is no longer used and this
is the same location as <INSTALL_DIR>.

<YFS_HOME_OLD> This is the <YANTRA_HOME>/Runtime directory for
Releases 7.7, 7.9, or 7.11.

Note: This is only applicable for users upgrading
from Releases 7.7, 7.9, or 7.11.

<ANALYTICS_HOME> User-supplied location of the Sterling Analytics
installation directory.

Note: This convention is used only in the
Selling and Fulfillment Foundation: Business
Intelligence Guide.

<COGNOS_HOME> User-supplied location of the IBM Cognos 8
Business Intelligence installation directory.

Note: This convention is used only in the
Selling and Fulfillment Foundation: Business
Intelligence Guide.

<MQ_JAVA_INSTALL_
PATH>

User-supplied location of the IBM WebSphere®
MQ Java components installation directory.

Note: This convention is used only in the
Selling and Fulfillment Foundation: System
Manangement and Administration Guide.

<DB> Refers to Oracle®, IBM DB2®, or Microsoft SQL
Server® depending on the database server.

<DB_TYPE> Depending on the database used, considers the
value oracle, db2, or sqlserver.

Convention Meaning

xxxiv Customizing the Rich Client Platform Interface Guide

Note: The Selling and Fulfillment Foundation documentation set uses the
following conventions in the context of the product name:

Yantra is used for Release 7.7 and earlier.

Sterling Supply Chain Applications is used for Releases 7.9 and 7.11.

Sterling Multi-Channel Fulfillment Solution is used for Releases 8.0
and 8.2.

Selling and Fulfillment Foundation is used for Release 8.5.

Checklist for Customization Projects 5

1
Checklist for Customization Projects

This chapter provides a high-level checklist for the tasks involved in
customizing or extending Selling and Fulfillment Foundation.

1.1 Customization Projects
Projects to customize or extend Selling and Fulfillment Foundation vary
with the type of changes that are needed. However, most projects
involve an interconnected series of changes that are best carried out in a
particular order. The checklist identifies the most common order of
customization tasks and indicates which guide in the documentation set
provides details about each stage.

1. Prepare your development environment

Set up a development environment that mirrors your production
environment, including whether you deploy Selling and Fulfillment
Foundation on a WebLogic, WebSphere, or JBoss application server.
Doing so ensure that you can test your extensions in a real-time
environment.

You install and deploy Selling and Fulfillment Foundation in your
development environment following the same steps that you used to
install and deploy Selling and Fulfillment Foundation in your
production environment. Refer to Selling and Fulfillment Foundation
system requirements and installation documentation for details.

An option is to customize Selling and Fulfillment Foundation with
Microsoft COM+. Using COM+ provides you with advantages such as
increased security, better performance, increased manageability of
server applications, and support for clients of mixed environments. If

6 Customizing the Rich Client Platform Interface Guide

Customization Projects

this is your choice, see the Selling and Fulfillment Foundation:
Customization Basics Guide about additional installation instructions.

2. Plan your customizations

Are you adding a new menu entry, customizing the Sign In screen
and logo, creating new themes, customizing views and wizards, or
adding new screens? Each type of customization varies in scope and
complexity. For background, see the Selling and Fulfillment
Foundation: Customization Basics Guide, which summarizes the types
of changes that you can make.

Important guidelines about file names, keywords, and other
conventions are found in the Selling and Fulfillment Foundation:
Customization Basics Guide.

3. Extend the Database

For many customization projects, the first task is to extend the
database so that it supports the other UI or API changes that you
make later. For instructions, see the Selling and Fulfillment
Foundation: Extending the Database Guide which include information
about the following topics:

Important guidelines about what you can and cannot change in
the database.

Information about modifying APIs. If you modify database tables
so that any APIs are impacted, you must extend the templates of
those APIs or you cannot store or retrieve data from the
database. This step is required if table modifications impact an
API.

How to generate audit references so that you improve record
management by tracking records at the entity level. This step is
optional.

4. Make other changes to APIs

Selling and Fulfillment Foundation can call or invoke standard APIs or
custom APIs. For background about APIs and the services
architecture in Selling and Fulfillment Foundation, including service
types, behavior, and security, see the Selling and Fulfillment
Foundation: Customizing APIs Guide. This guide includes information
about the following types of changes:

Customization Projects

Checklist for Customization Projects 7

How to invoke standard APIs for displaying data in the UI and also
how to save the changes made to the UI in the database.

Invoke customized APIs for executing your custom logic in the
extended service definitions and pipeline configurations.

APIs use input and output XML to store and retrieve data from the
database. If you don’t extend these API input and output XML
files, you may not get the results you want in the UI when your
business logic is executing.

Every API input and output XML file has a DTD and XSD
associated to it. Whenever you modify input and output XML, you
must generate the corresponding DTD and XSD to ensure data
integrity. If you don’t generate the DTD and XSD for extended
Application XMLs, you may get inconsistent data.

5. Customize the UI

Sterling Commerce applications support several UI frameworks.
Depending on your application and the customizations you want to
make, you may work in only one or in several of these frameworks.
Each framework has its own process for customizing components like
menu items, logos, themes, and etc. Depending on the framework
you want, consult one of the following guides:

Selling and Fulfillment Foundation: Customizing Console JSP
Interface for End User Guide

Selling and Fulfillment Foundation: Customizing the Swing
Interface Guide

Selling and Fulfillment Foundation: Customizing User Interfaces
for Mobile Devices Guide

Selling and Fulfillment Foundation: Customizing the RCP Interface
Guide and Selling and Fulfillment Foundation: Using the Sterling
RCP Extensibility Tool Guide

Customizing the Web UI Framework Guide

6. Extend Transactions

You can extend the standard Selling and Fulfillment Foundation to
enhance the functionality of your implementation of Selling and Fulfillment
Foundation and to integrate with external systems. For background about
transaction types, security, dynamic variables, and extending the

8 Customizing the Rich Client Platform Interface Guide

Customization Projects

Condition Builder, see the Selling and Fulfillment Foundation:
Extending Transactions Guide Selling and Fulfillment Foundation:
Extending the Condition Builder Guide . These guides includes
information about the following types of changes:

How to extend Selling and Fulfillment Foundation Condition
Builder to define complex and dynamic conditions for executing
your custom business logic and using a static set of attributes.

How to define variables to dynamically configure properties
belonging to actions, agents, and services configurations.

How to set up transactional data security for controlling who has
access to what data, how much they can see, and what they can
do with it.

How to create custom time-triggered transactions. You can invoke
and schedule these custom time-triggered transactions in much
the same manner as you invoke and schedule Selling and
Fulfillment Foundation standard time-triggered transactions.
Finally, you can coordinate your custom, time-triggered
transactions with external transactions and run them either by
raising an event, calling a user exit, or invoking a custom API or
service.

7. Build and deploy your customizations or extensions

After performing the customizations that you want, you must build
and deploy your customizations or extensions. First, build and deploy
these customizations or extensions in the test environment for
verification. When you are ready, repeat the same process to build
and deploy your customizations and extensions in the production
environment. For instructions, see the Selling and Fulfillment
Foundation: Customization Basics Guide which includes information
about the following topics:

How to build and deploy standard resources, database, and other
extensions (such as templates, user exits, java interfaces).

How to build and deploy Enterprise-Level extensions.

Rich Client Platform 5

2
Rich Client Platform

2.1 About Customizing the Rich Client Platform
Interface

This section explains the prerequisites for customizing the Rich Client
Platform application UIs easily, quickly, and with fewer errors.

2.1.1 Rich Client Platform Concepts
Before customizing the Rich Client Platform application UIs, it is
important that you understand the various concepts of the Rich Client
Platform.

2.1.2 Extensibility Capability Summary
Before extending any Rich Client Platform application UI, it is necessary
to understand the extensibility capabilities provided by the Rich Client
Platform. For more information about extensibility capabilities, see
Section 2.1.5, "Extending Rich Client Platform Applications".

2.1.3 Guidelines for Smooth Updates and Easy
Maintenance

When customizing applications that use the Rich Client Platform UI, do
not modify:

Plug-in files

Selling and Fulfillment Foundation-related resource files

JAR files

6 Customizing the Rich Client Platform Interface Guide

About Customizing the Rich Client Platform Interface

These files are shipped as part of the standard default configuration. You
can, however, create new files or copy the existing files and modify them.

2.1.4 Setting Up the Development Environment
To customize applications, set up the development environment to
accommodate modifications that you make to the Rich Client Platform
application UI. For more information about setting up the development
environment, see Chapter 3, "The Development Environment for Rich
Client Platform Applications".

2.1.5 Extending Rich Client Platform Applications
The Rich Client Platform provides various extension points that you can
implement to extend the Rich Client Platform application as needed.
Using features such as Localization and Theming, you can further extend
the Rich Client Platform application. The Rich Client Platform also
provides a Rich Client Platform Extensibility tool with which you can
extend the Rich Client Platform application’s UI.

You can extend the Rich Client Platform application by:

Adding or Removing Menus—You can add or remove menus from the
Rich Client Platform screens by defining a new resource in the
resources of Selling and Fulfillment Foundation. For more information
about adding or removing menus, see Chapter 15, "Menus and
Custom Controls for Rich Client Platform Applications".

Creating and Adding New Screens—You can create new Rich Client
Platform screens for a Rich Client Platform application. You can also
add the newly created Rich Client Platform screens to a Rich Client
Platform application. For more information about creating and adding
new screens, see Section 4.1.3.3, "Creating and Adding New
Screens".

Adding New Related Tasks and Hiding Existing Related Tasks—You can
add new related tasks and hide existing related tasks from the Rich
Client Platform applications. For more information about adding and
hiding related tasks, see Chapter 9, "Creating Related Tasks for Rich
Client Platform Applications".

Modifying Existing Screens—You can modify existing screens of a Rich
Client Platform application using the Rich Client Platform Extensibility

Rich Client Platform Architecture

Rich Client Platform 7

Tool. For information about modifying existing screens, see
Chapter 6, "Modifying the Existing Rich Client Platform Screens and
Wizards".

Modifying Existing Wizards—You can modify the existing wizards of a
Rich Client Platform application. For more information about
modifying the existing wizards, see Section 6.3, "Modifying Existing
Rich Client Platform Wizards".

Localizing—You can localize the Rich Client Platform application for
different languages based on the user’s locale. The user can localize
the Rich Client Platform application by defining locale-specific entries
and translating the text. For more information about localizing the
Rich Client Platform application, see Chapter 4, "Customizing Rich
Client Platform Application".

Theming—You can customize the Rich Client Platform application by
using custom themes. You can change the font type and color scheme
for controls, graphical text, messages, and so forth. For more
information about theming, see Chapter 14, "Defining Themes for
Rich Client Platform Applications".

2.2 Rich Client Platform Architecture
The Rich Client Platform provides a highly interactive Rich Client
Platform, which can be remotely deployed, updated, and easily managed.
A Rich Client Platform is a client that processes the bulk of data
operations without depending on the server to which it is connected.
However, it is dependent on the server, primarily for data storage. The
Rich Client Platform is rich in features and functionality and has complete
access to the programming functions of the operating system.

Rich Clients are designed in such a way that you can work over low
bandwidth network connections and still efficiently utilize the client-side
capabilities to avoid costly round trips to the central server. You can also
work offline.

The Rich Client Platform is built on the Eclipse Rich Client Platform. The
Rich Client Platform has extended the Eclipse Rich Client Platform to
provide additional features and functionality. In addition to the features
provided by the Eclipse Rich Client Platform, the Rich Client Platform
provides features such as localizing, theming, binding, and so forth. The
UIs for the Selling and Fulfillment Foundation Package Composite

8 Customizing the Rich Client Platform Interface Guide

Benefits of Using the Rich Client Platform Interface

Applications (PCAs), such as Selling and Fulfillment Foundation Store
Operations (SOP) and Selling and Fulfillment Foundation Sterling Call
Center and Sterling Store (SCCS), are developed using the Rich Client
Platform. Figure 2–1 depicts the Rich Client Platform architecture.

Figure 2–1 Rich Client Platform Architecture

2.3 Benefits of Using the Rich Client Platform
Interface

The benefits of using the Rich Client Platform are:

Rich User Experience

– High responsiveness during information retrieval. This does not
work in a "page-at-a-time" paradigm of Hyper Text Markup
Language (HTML).

– Ability to validate client side data, if needed.

– Highly interactive and graphical user interface.

– Provides visibility to multiple pages on the screen without
refreshing any page.

Benefits of Using the Rich Client Platform Interface

Rich Client Platform 9

– Ability to locally store data in memory.

– Batch server operations.

– Ability to interact with other Desktop applications such as e-mail
and spreadsheets.

Lower Total Cost of Ownership (TCO)

– Ability to automatically update the Rich Client Platform
applications to remote clients based on the server-side update
information.

– Centralized administration, setup, and client updates.

– Ability to work across Wide Area Network (WAN) through multiple
security infrastructures such as proxies, Firewalls, and so forth.

– Built-in support for data compression and batch command
processing results in optimal network utilization.

– Ability to work with standard protocols such as Hyper Text
Transfer Protocol (HTTP) and Hyper Text Transfer Protocol Secure
(HTTPS).

Deployment Strategy

– Rich Client Platform applications are self contained Desktop
applications, and depend on the Java Runtime Environments
(JREs). The Rich Client Platform applications can be copied to the
Selling and Fulfillment Foundation directory and point them to the
specific JRE. This provides a reliable and coexisting application
deployment strategy without disrupting other existing Java
installations. For information about JRE versions that the Rich
Client Platform supports, see the Selling and Fulfillment
Foundation: Installation Guide.

– Subsequent upgrades can be automated with the Selling and
Fulfillment Foundation auto-update feature, which checks and
updates the existing configuration on a server. If you do not want
to use the auto-update feature, you can turn it off and remotely
perform a manual file copy based update.

– Since basic installation and upgrade involves a "file copy"
operation, administration and maintenance can be done locally or
remotely.

10 Customizing the Rich Client Platform Interface Guide

XML Binding for Rich Client Platform Applications

– Rich Clients support standard input devices such as keyboard,
mouse, stylus, barcode scanner, and so forth. Rich Clients also
support standard printers within the supported operating systems.

– Since Rich Client Platform is a Desktop application, any standard
mechanism such as desktop shortcut or program file links can be
used to launch the application.

2.4 Rich Client Platform and Desktop Applications
The Rich Client Platform supports desktop applications. A desktop
application or Multiple Document Interface (MDI) application contains
standard menus, views, editors, and so forth. You can work with multiple
views and editors simultaneously. You can switch from one editor to
another without closing any editor that is already open. You can use any
standard mechanism (such as desktop shortcut or program file links) to
launch the desktop application. A desktop application allows you to open
one or more documents at the same time and displays each document in
a separate window. The menu bar for a desktop application is displayed
on the application frame. Some examples of desktop applications include
Sterling COM PCA and Sterling SOP PCA, which are developed using the
Rich Client Platform.

2.5 XML Binding for Rich Client Platform
Applications

To easily create UIs, the core classes in the Rich Client Platform support
XML Binding for different types of controls to an XML Distributed Object
Model (DOM). This allows the UI developer to bind different controls on a
form to various parts of the DOM. The advantage of using XML Binding is
that the developer has to write limited code for displaying or retrieving
data from a specific field in any screen or both. The developer has to only
set and get the model of a screen to set and get the data for the entire
screen.

The XML Binding is performed to map the input XML to the screen and
back from the screen to an output XML. XML Binding in the Rich Client
Platform is XML driven. A binding definition is an XPath (XML Path),
which defines the rules for retrieving data from one XML and sending it

Themes for Rich Client Platform Applications

Rich Client Platform 11

to another XML. You can set the XML Bindings for various controls such
as text boxes, combo boxes, buttons, tables, and so forth. The XML
Bindings are specified to associate controls on the screen with a model
(an XML document that stores information). To associate the controls to
a model, XML Bindings are specified. Usually, it is an XPath specifying the
attribute or an element in the document. The XML Binding used depends
on the type of control that is used. The Rich Client Platform provides
various XML Binding data classes for different controls. For more
information about XML binding classes, see Section 7.11.1, "Binding
Classes".

2.6 Localizing Rich Client Platform Applications
The Rich Client Platform applications are all internationalized. This means
they can handle multiple languages and cultural conventions
transparently. The Rich Client Platform enables you to customize the Rich
Client Platform applications in such a way that the extensions are also
internationalized. The user can localize all the graphical text and
messages. You can localize the Rich Client Platform application by
defining locale-specific entries in the bundle file. For more information
about localizing the Rich Client Platform application, see the Selling and
Fulfillment Foundation: Localization Guide.

2.6.1 Database Localization
In addition to storing the transaction data, the database also stores
configuration data, such as error codes and item descriptions of various
attributes. This means that the database may need to store values in a
language-specific format. If these database literals are not localized,
screen literals displays inconsistently, with some displaying in the
localized language and others displaying in English. You can store item
descriptions in your database in multiple languages. If localizing Rich
Client Platform application UIs, you may want to localize the factory
setup. For more information about database localization, see the Selling
and Fulfillment Foundation: Localization Guide.

2.7 Themes for Rich Client Platform Applications
The theming feature enables users to define different fonts, colors used
within the applications by creating a custom theme. For more information

12 Customizing the Rich Client Platform Interface Guide

Shared Tasks for Rich Client Platform Applications

about theming controls, see Chapter 14, "Defining Themes for Rich Client
Platform Applications".

2.8 Related Tasks for Rich Client Platform
Applications

This feature allows you to extend the Rich Client Platform applications by
adding (or hiding) end user tasks in the UI. These tasks are available to
the end user through a common related tasks view. Related Tasks
feature enables you to perform the tasks that are related to a particular
operation. You can group a set of related tasks by associated them with a
group. You can also define a category, which can contain multiple tasks
from multiple groups. For example, if you are viewing the details of an
order, then all the related tasks for this operation such as Cancel Order,
Add Order Line, and so forth are displayed in the Related Tasks view
under the Order group. You can provide the implementation for
displaying these related tasks on the screen. You can also provide the
implementation for opening extensible related tasks in Selling and
Fulfillment Foundation-provided editor or in your own custom editor. For
creating the related tasks you need to extend the following extension
points:

YRCRelatedTasks extension point

YRCRelatedTaskCategories extension point

YRCRelatedTaskGroups extension point

YRCRelatedTasksDisplayer extension point

YRCRelatedTasksExtensionContributor extension point

For more information about adding new related tasks and hiding existing
related tasks, see Chapter 13, "Related and Shared Tasks in Rich Client
Platform Applications".

2.9 Shared Tasks for Rich Client Platform
Applications

Rich Client Platform-based applications such as Sterling COM PCA may
contain some reusable UI components such as lookup screens. In such
cases, the other Rich Client Platform-based applications or extension

Wizards for Rich Client Platform Applications

Rich Client Platform 13

plug-ins do not have to recreate the same UI components. Instead, they
can use the available UI components as a shared task.

To maintain the backward compatibility and to avoid multiple plug-in
dependencies, the shared tasks are registered with the Rich Client
Platform plug-in. The other Rich Client Platform-based applications or
extension plug-ins can directly invoke these shared tasks using the utility
methods provided by the Rich Client Platform plug-in.

You can register the shared tasks through the YRCSharedTasks extension
point defined in the Rich Client Platform plug-in. To use these registered
shared tasks in your application, invoke them by clicking a button or
menu item. For more information about registering and using shared
tasks, see Section 13.3, "Registering Shared Tasks" and Section 13.4,
"Using Shared Tasks".

2.10 Wizards for Rich Client Platform
Applications

A wizard definition defines the flow of a wizard. You can define new
wizard rules to control the flow of a wizard. The flow of a wizard depends
on the output value of a wizard rule. The output of a wizard rule is
compared with a transition value. Transition lines are used to transfer
control from one wizard entity to another wizard entity.

A wizard definition contains:

Wizard Entity—There are three types of wizard entities:

– Wizard Page - A wizard page takes care of the UI in order to take
inputs from a user.

– Wizard Rule - A wizard rule is a logical step that performs
computations to evaluate different output values. Based on these
output values, wizard transitions are defined to decide the flow of
the wizard.

– Sub-task - This is a separate individual task that can be
embedded into a wizard. A sub-task can be utilized in the wizard
flow. When the execution of a sub-task is complete, the control
moves to the next defined wizard entity in the wizard flow. For
example, a sub-task can be a wizard that can be inserted between
two wizard entities, or it can be the last entity in the wizard flow.
If a sub-task is inserted between two wizard entities, the sub-task

14 Customizing the Rich Client Platform Interface Guide

Wizards for Rich Client Platform Applications

should display the Next button for navigation to the next wizard
entity. If the sub-task is the last entity in the wizard flow, it
should display the Finish button to end the wizard. This
information must be passed to the context object, which is used
to control the flow of data between the parent wizard and the
sub-task, and contains the input to the sub-task. If there is an
output of the sub-task, it can be set in the context and passed
back to the parent wizard. The context object utility methods will
display the appropriate buttons for navigation. However, the
context object utility must have its position information in the
parent wizard to display the correct navigation buttons.

Wizard Transition—This is used to transfer control from one wizard
entity to another wizard entity. Wizard transition connects wizard
entity sequences with each other.

You can start your wizard with any wizard entity (a wizard rule or a
wizard page or a sub-task).

For the wizard entity from where the wizard definition starts, the Starting
property should be set to "true". For the wizard entity at which the
wizard definition ends, the isLast property should be set to "true".

You can add transition lines to transfer the control from one wizard entity
to another wizard entity based on the output values of the wizard rule.
The transitions originating from a wizard page can have only one target.
Transitions starting from a wizard rule can have multiple targets based
on the rule output. The output of a wizard rule is compared with the
transition values defined for a rule. Based on this value, control is
transferred to the appropriate wizard entity.

All the new wizard definitions are created in the <Plug-in_id>_<wizard_
name>.ycml file.

Note: Use a separate <Plug-in_id>_<wizard_
name>.ycml file for each wizard definition.

Wizards for Rich Client Platform Applications

Rich Client Platform 15

Consider, for example, that you have a wizard definition for the following
wizard flow:

Figure 2–2 Sample Wizard Flow

In this case, the wizard starts from the wizard rule (Rule1). From the
wizard rule (Rule1), the wizard transitions either to a wizard page
(Page1) or a sub-task (Task1) based on the output values of the wizard
rule (Rule1).

Depending on the transition of the wizard from the wizard rule (Rule1),
the wizard ends at two different wizard pages (Page2 or Page3). For the
wizard entity from where the wizard definition started, the start property
must be set to "true". For the wizard entity at which the wizard definition
ends, the isLast property must be set to "true".

The Rich Client Platform supports three types of wizard entities:

A wizard rule (Rule1) contains a wizard rule identifier (ID),
implementation class (Impl), namespace definition for the rule
(Namespace), and the list of output values, one of which is the output
of the wizard rule.

Note: Multiple transitions can take place from a wizard
rule. Therefore, a wizard rule can return multiple output
values, one value for each transition that starts from the
wizard rule.

16 Customizing the Rich Client Platform Interface Guide

Wizards for Rich Client Platform Applications

A sub-task (SubTask) contains a sub-task identifier (ID),
implementation class (Impl), namespace definition for the sub-task
(Namespace), and the flags isLast and Starting, to indicate whether
the sub-task is the starting entity or the last entity in the wizard flow.

A wizard page (Page1) contains a wizard page identifier (ID) and
implementation class (Impl).

Selling and Fulfillment Foundation supports three types of transitions:

Transition from a wizard rule—You can have multiple transitions from
a wizard rule. The wizard transition that starts from a wizard rule
contains a wizard transition identifier (ID), source wizard entity
(source), multiple target wizard entities (target), and the output
value of the wizard rule for which the transition occurs. The source
contains the identifier of the wizard entity from where the transition
starts. The target contains the identifier of the wizard entity at which
the transition ends.

For example, in the wizard flow illustrated earlier, two transitions start
from a wizard rule (Rule1). These two transitions end at two different
wizard entities, such as wizard page (Page1) and sub-task (SubTask),
based on the output value returned by the wizard rule (Rule1).

Note: A sub-task cannot have multiple transitions. You
can have only one transition starting from a sub-task and
ending at another wizard entity.

Note: A wizard page cannot have multiple transitions. You
can have only one transition starting from a wizard page
and ending at another wizard entity.

Hot Keys for Rich Client Platform Applications

Rich Client Platform 17

om a wizardFor example, in the wizard flow illustrated earlier, the transition starts from a wizard page (Page1) and ends in a wizard page (Page3).

For example, in the wizard flow illustrated earlier, the transition starts
from a wizard page (Page1) and ends in a wizard page (Page3).

Transition from a wizard page—You can have only a single transition
from a wizard page. The wizard transition that starts from a wizard
page contains a wizard transition identifier (ID), source wizard entity
(source), and target wizard entity (target). The source contains the
identifier of the wizard entity from where the transition starts. The
target contains the identifier of the wizard entity at which the
transition ends.

For example, in the wizard flow illustrated earlier, the transition starts
from a wizard page (Page1) and ends in a wizard page (Page3).

Transition from a sub-task—You can have only a single transition from
a sub-task. A wizard transition that starts from a sub-task contains a
wizard transition identifier (ID), source wizard entity (source), and
target wizard entity (target). The source contains the identifier of the
wizard entity from where the transition starts. The target contains the
identifier of the wizard entity at which the transition ends.

For example, in the wizard flow illustrated earlier, the transition starts
from a sub-task (SubTask) and ends in a wizard page (Page2).

2.11 Hot Keys for Rich Client Platform
Applications

Hot keys are keyboard shortcuts that perform a predefined function. For
example, if you want to perform an operation, you can either click the
Search button or press F7. The Rich Client Platform enables you to

Note: Because a wizard rule can have multiple
transitions, when a transition starts from a wizard rule,
you can define multiple targets, with values associated
with each target.

Note: The transition identifier (ID) for all the transitions
that start from a wizard rule are the same. The transition
occurs based on the value defined for a given transition.

18 Customizing the Rich Client Platform Interface Guide

Debug Mode for Rich Client Platform Applications

define hot keys for the new screens you create for Rich Client Platform
applications. The Rich Client Platform also enables you to override the
hot keys defined for the existing screens.

For more information about defining new hot keys and overriding existing
hot keys, see Chapter 11, "Defining and Overriding Hot Keys in Rich
Client Platform Applications".

2.12 Debug Mode for Rich Client Platform
Applications

Rich Client Platform enables you to run a Rich Client Platform application
in the debug mode and performs additional validations on the Rich Client
Platform application to reduce the number of errors created when
performing extensions. Also, when you run an application in debug
mode, the Rich Client Platform provides a comprehensive visibility to
information about errors and missing parameters.

The Rich Client Platform performs the following validations in debug
mode:

Control Name Validation—The Rich Client Platform checks whether or
not a unique control name has been specified for each control in the
Rich Client Platform application. If this is not specified, when you
move the cursor on that control, the tool tip displays "Specify the
name of the control". Additionally, the control is displayed with a red
background. This is useful in extending a Rich Client Platform
application. You can easily extend a screen if you know the name of
all controls on the screen.

Bundle Entry Validation—The Rich Client Platform checks whether you
have specified the bundle entry in the *bundle.properties file for
each string in the Rich Client Platform application. If you do not
specify the bundle entry for a string, it is considered as a
non-localized string. Such non-localized strings always displays within
the exclamation marks (!). For example, if you do not specify the
bundle entry for the "Order No" string, the string display as !Order

Note: If you do not specify the control name for a control,
the background of that particular control is highlighted in
red color, when the application is run in debug mode.

Debug Mode for Rich Client Platform Applications

Rich Client Platform 19

No!. This bundle entry validation helps the developers to understand
whether the strings on the UI are localized or non-localized.

2.12.1 Running Rich Client Platform Applications in Debug
Mode

You can run the Rich Client Platform application in debug mode in order
to perform some extra validations and traces. Additionally, debug mode
provides much more visual information to tell you what is wrong and
where. You can run both a standalone application and an application
within Eclipse in the debug mode. This section explains the following:

Running the Standalone Rich Client Platform Application in Debug
Mode

Running the Rich Client Platform Application in Eclipse in Debug Mode

2.12.2 Running the Standalone Rich Client Platform
Application in Debug Mode

You can run the standalone Rich Client Platform application in debug
mode. The standalone application can be a shipped application or an
extended application.

To run the standalone Rich Client Platform application in debug mode:

1. Modify the Rich Client Platform application’s *.ini file to provide the
appropriate VM arguments to run the application in debug mode. You
can find the *.ini file for the Rich Client Platform application in the
<INSTALL_DIR>/repository/rcpdrop/<OPERATING_SYSTEM>/<PCA_
DIR>/ directory.

For example, to run the Sterling COM PCA in debug mode, edit the
<INSTALL_DIR>/repository/rcpdrop/<OPERATING_
SYSTEM>/com/com.ini file.

2. In the *.ini file, add the following VM arguments:

-vmargs

Note: The localized strings are sometimes displayed
within the exclamation marks.

20 Customizing the Rich Client Platform Interface Guide

Prototype Mode for Rich Client Platform Applications

-Ddebugmode=true

3. Run the EXE file of the Rich Client Platform application.

2.12.3 Running the Rich Client Platform Application in
Eclipse in Debug Mode

When launching the Rich Client Platform application in Eclipse, in the VM
Arguments field, enter the following arguments:

-Ddebugmode=true

For more information about launching the Rich Client Platform application
in Eclipse, see Section 3.5, "Launching the Rich Client Platform
Application in Eclipse".

2.13 Prototype Mode for Rich Client Platform
Applications

The advantage of running a Rich Client Platform application in the
prototype mode enables you to quickly test UIs that you develop, without
having to communicate with the server for APIs or services output.
During an API or service call, the Rich Client Platform application uses
the sample output XML files that are located in the prototype directory.
The output of the sample output XML file is hard-coded and does not
reflect any real-time data.

2.13.1 Running Rich Client Platform Applications in
Prototype Mode

You can run the Rich Client Platform application in the prototype mode to
test UIs. The Rich Client Platform enables you to run any standalone
application or applications within Eclipse in prototype mode.

2.13.2 Running Standalone Rich Client Platform
Applications in Prototype Mode

You can run the standalone Rich Client Platform application in prototype
mode. The standalone application can be an extended application or any
application that is already shipped.

Prototype Mode for Rich Client Platform Applications

Rich Client Platform 21

To run the standalone Rich Client Platform application in prototype mode:

1. Modify the Rich Client Platform application’s *.ini file stored in the
<INSTALL_DIR>/repository/rcpdrop/<OPERATING_SYSTEM>/<PCA_
DIR>/ directory to provide appropriate VM arguments.

For example, to run the Sterling COM PCA in the prototype mode,
modify the <INSTALL_DIR>/repository/rcpdrop/<OPERATING_
SYSTEM>/com/com.ini file.

2. In the *.ini file, add the following VM arguments:

-vmargs
-DProtoTypeDir=C:/EclipseInfrastructure/com.yantra.yfc.rcp.ri/prototype

where ProtoTypeDir property refers to the prototype directory that
contains the sample output XML files.

3. Verify that the name of all sample output XML files stored in the
prototype directory are same as the command name for which they
are used. For example, if the command name is getOrderDetails, the
sample output XML file used for this command must be named as
getOrderDetails.xml.

4. To run a command in the prototype mode, in the commands file, set
the value of the prototype attribute for that particular command to
"true". For more information about creating commands, see
Chapter 10, "Creating Commands for Rich Client Platform
Applications".

5. Run the EXE file of the appropriate Rich Client Platform application.

2.13.3 Running Rich Client Platform Applications in Eclipse
in Prototype Mode

When launching the Rich Client Platform application in Eclipse, in the VM
Arguments field, enter the following argument:

-DProtoTypeDir=C:/EclipseInfrastructure/com.yantra.yfc.rcp.ri/prototype

Note: The prototype mode is always set at the command
level. It is important that you set the value of the
prototype attribute to "true". This invokes the API or
service in prototype mode.

22 Customizing the Rich Client Platform Interface Guide

Tracing a Rich Client Platform Application

Where ProtoTypeDir property refers to the prototype directory that
contains the sample output XML files.

2.14 Tracing a Rich Client Platform Application
The Rich Client Platform enables you to trace a specific Rich Client
Platform application. This is useful in checking operations such as API or
service calls, warning or error messages (if any), bindings, and so forth.
When you start tracing an application, the system writes all the
information in the log file.

Selling and Fulfillment Foundation: Javadocs
You can trace both the standalone application and any application within
Eclipse.

2.14.1 Tracing a Standalone Rich Client Platform
Application

You can set the trace on for a standalone Rich Client Platform application.
The standalone application can be any application that is shipped or an
extended application.

To start tracing a standalone Rich Client Platform application:

1. Locate the <application_id>.ini file of the Rich Client Platform
application stored in the <INSTALL_
DIR>/repository/rcpdrop/<OPERATING_SYSTEM>/<PCA_DIR>/
directory to add the appropriate VM arguments.

For example, to trace the Sterling COM PCA, locate the <INSTALL_
DIR>/repository/rcpdrop/<OPERATING_SYSTEM>/com/com.ini file.

Note: Make sure that the name of all sample output XML
files stored in the prototype directory are same as the
command name for which they are used. For example, if
the command name is getOrderDetails, the sample output
XML file used for this command must be named as
getOrderDetails.xml.

Tracing a Rich Client Platform Application

Rich Client Platform 23

2. Edit the <application_id>.ini file, add the following parameter to
the list of VM arguments:

-vmargs
-Ddebugfile=C:/debug.log

where debugfile property refers to the directory in which the log file
is created.

3. Run the EXE file of the appropriate Rich Client Platform application.

4. After you successfully log in to the application, the application window
displays. To start or stop tracing the application, press Ctrl+F2.

Figure 2–3 Application Title Bar

Note: If the -vmargs parameter already exists in the file,
add the -Ddebugfile parameter anywhere after the
-vmargs parameter. Do not add another -vmargs
parameter.

Note: When you press Ctrl+F2 to start the trace, the
information that is present in the log file is deleted. In the
title bar of the application "Trace is On" displays.

Note: If you want the trace to be ON by default for an
application, set the trace property to "true" in the *.ini
file. For example, -Dtrace=true

To stop tracing the application, press Ctrl+F2.

Sterling Commerce recommends not to set the trace ON as
the default option. Instead, use the Ctrl+F2 key
combination to turn the trace ON, if needed.

24 Customizing the Rich Client Platform Interface Guide

Tracing a Rich Client Platform Application

2.14.2 Masking Sensitive Information in Logs During Trace
You can mask sensitive information such as credit card information, CVV
numbers and passwords in the generated log files by using the message
filters provided by the Application Platform. The message filters are used
before logging.

You can substitute messages in the log files to protect sensitive
information by using the message filters. To use the message filters, you
must first register them during plugin initialization. For information on
registering message filters, refer to the Section 17.14.6, "Registering a
Message Filter" .

To hide sensitive information by using message filters, do the following:

1. The Application Platform provides a new interface
IYRCTraceMessageFilter for filtering sensitive information.

2. You must implement the IYRCTraceMessageFilter interface to provide
message filters as required for hiding sensitive information, before
writing them to the log files.

3. The IYRCTraceMessageFilter interface returns a message string which
is written to the log file. For more information on message filters and
the IYRCTraceMessageFilter interface, refer to the Javadocs.

2.14.3 Tracing a Rich Client Platform Application in Eclipse
When launching the Rich Client Platform application in Eclipse, in the VM
Arguments field, enter the following argument:

-Ddebugfile=C:/debug.log

where debugfile property refers to the directory in which the log file is
created.

Note: Hiding sensitive information using the message
filters is applicable only for the debug file, not for the timer
file.

Fetching Images for Rich Client Platform Applications

Rich Client Platform 25

2.15 Capitalizing the Text Entered in Rich Client
Platform Applications

You can force all capital letters in text fields for a Rich Client Platform
application. When you enable capital letters for text fields, the value in
the text field is automatically converted to capital letters even if the
value entered is in lowercase letters.

To enable capital letters in Text Fields:

1. Locate the <application_id>.ini file of the Rich Client Platform
application stored in the <INSTALL_
DIR>/repository/rcpdrop/<OPERATING_SYSTEM>/<PCA_DIR>/
directory to add the appropriate VM arguments.

For example, to enable capital letters in text fields for Sterling COM
PCA, locate the <INSTALL_DIR>/repository/rcpdrop/<OPERATING_
SYSTEM>/com/com.ini file.

2. Edit the <application_id>.ini file, add the following parameter to
the list of VM arguments:

-vmargs
-Denablecapsintextboxes=true

2.16 Fetching Images for Rich Client Platform
Applications

The Rich Client Platform allows you to fetch images from the server to
the labels and table columns. To fetch images from the server, define a
Config element in the location.ycfg file and set the connection settings
for fetching images. You can define multiple Config elements to fetch
images of different formats. The Rich Client Platform supports various
image formats such as GIF, BMP, ICO, JPEG, PNG, and TIFF. For
information about configuring the connection settings for fetching images
from the server, see the Selling and Fulfillment Foundation: Installation
Guide.

26 Customizing the Rich Client Platform Interface Guide

Output Templates for Rich Client Platform Applications

2.17 Security Handling for Rich Client Platform
Applications

The Rich Client Platform enables you to securely communicate with the
servers. It allows you to connect to servers using the HTTPS protocol.
This provides an authenticated and encrypted way of running the
resources from the server on the client machine. The authentication and
encryption is handled using certificates, which help you run the
authorized resources on client machines. These certificates must be
stored in the truststore folder of the Rich Client Platform plug-in.

By default, during handshake, if there is a mismatch between the URL's
host name and the server's identification host name, the Rich Client
Platform allows the HTTPS connection.

You can add your own custom verification logic by extending the
YRCHostNameVerifier extension point.

To connect to the server using the HTTPS protocol, specify the protocol
as HTTPS and also specify the port number for the HTTPS connection in
the configuration file. For more information about configuring the
connection settings for HTTPS connection, see the Selling and Fulfillment
Foundation: Installation Guide.

2.18 Output Templates for Rich Client Platform
Applications

Output templates are used during an API call or service to ensure that
the data is retrieved in the desired format (for example, if you want to
display few attributes in a particular order.)

Note: You can fetch images from the server only for
labels and table columns.

Note: You must provide your own custom verification
logic by adding the host name verifier.

Log Files for Rich Client Platform Applications

Rich Client Platform 27

You can also merge output templates to retrieve the additional data from
an API or service. For more information about template merging, see
Chapter 12, "Merging Templates for Rich Client Platform Applications".

2.19 Commands for Rich Client Platform
Applications

The Rich Client Platform has modeled API calls as commands. Commands
are defined to call APIs or services to retrieve data in the desired format.
Whenever you call an API, specify the name of the command associated
with the API. The Rich Client Platform supports the creation of commands
at a form level. You can also override commands if necessary. This is
useful when you want to call a custom API for a particular form. For more
information about creating commands, see Chapter 10, "Creating
Commands for Rich Client Platform Applications".

2.20 Log Files for Rich Client Platform
Applications

Log files contain information such as warnings and errors (if any). When
you run a Rich Client Platform application, the following log files get
generated:

Eclipse log file—Whenever you run a Rich Client Platform application,
the Eclipse automatically creates a log file. This log file contains
high-level error messages and/or warnings logged by Eclipse.

Using the osgi.instance.area.default property, you can configure
the location to store this log file in the <INSTALL_
DIR>/repository/rcpdrop/<OPERATING_SYSTEM>/<PCA_
DIR>/configuration/config.ini file. By default, this log file is
stored in the @user.home/<application_workspace> directory. The
Rich Client Platform does not allow you to rename the log file.

For example, if you run the Sterling COM PCA, the config.ini file is
stored in the <INSTALL_DIR>/repository/rcpdrop/<OPERATING_
SYSTEM>/COM/configuration directory.

In the config.ini file, the osgi.instance.area.default property is
set to:

osgi.instance.area.default=@user.home/comworkspace

28 Customizing the Rich Client Platform Interface Guide

Table Filtering for Rich Client Platform Applications

Here, @user.home refers to a user’s home directory. You can only
change the directory where the log file gets created. You cannot
change the name of the file.

Rich Client Platform Infrastructure log file—Whenever you run a Rich
Client Platform application for which the tracing is turned ON, the
Rich Client Platform plug-in creates a log file. This log file provides
information about API or service calls, warning or error messages (if
any), bindings, and so forth. You can specify the location in the *.ini
file of the appropriate application that you want to trace. The *.ini
file is located in the <INSTALL_
DIR>/repository/rcpdrop/<OPERATING_SYSTEM>/<PCA_DIR>/
directory.

For more information about tracing an application, see Section 2.14,
"Tracing a Rich Client Platform Application".

2.20.1 Clearing Data Cache
You can clear all the existing cache for a particular plug-in by calling the
clearCache() method of the YRCCacheManager class. This method
accepts the plug-in identifier as input argument. In the pluginId (String)
argument, pass the identifier of the plug-in for which you want to clear
all the existing cache.You can also clear the entire existing cache for all
the plug-ins at the same time by calling the clearAllCache() method of
the YRCCacheManager class.

2.21 Table Filtering for Rich Client Platform
Applications

The Rich Client Platform enables you to filter the records in a table based
on custom criteria. For example, if a table contains 100 records, you may
want to filter the records in the table based on some value for one or

Note: Make sure that the tracing is turned ON in the
application for the information to be written in the log file.

Scheduling Jobs for Rich Client Platform Applications

Rich Client Platform 29

more columns. You can achieve this by using the Table Filter
functionality.

To filter records in a table:

1. Right-click the table and select Filter from the pop-up menu.
Depending on the table you are filtering, the filtering options provided
in the Filter pop-up window vary for each table column.

2. Enter the criteria for one or more columns based on how you want to
filter table records.

3. Click OK.

2.21.1 Clearing the Sort Order in a Table
The Rich Client Platform enables you to clear the existing sort order in a
table when necessary. For example, you may want clear the default sort
order.

To clear the sort order, call the clearSort(String tableName) method of
the YRCBehavior class and pass the table name for which you want to
clear the sort order. For example,

btnReset.clearSort("tblSearchCriteria");

where tblSearchCriteria is the table name.

2.22 Scheduling Jobs for Rich Client Platform
Applications

Jobs are reusable units of work that can be scheduled to run with the Job
Manager. When a job is completed, it can be scheduled to run again. The
Rich Client Platform supports scheduling of:

Generic jobs

Alert-related jobs

2.22.1 Scheduling a Generic Job
The Rich Client Platform enables you to schedule a job by registering all
the generic jobs.

To create and register a generic job:

30 Customizing the Rich Client Platform Interface Guide

Scheduling Jobs for Rich Client Platform Applications

1. Create a new object of the YRCJobData class. This class accepts the
following arguments as input:

proceedEvenIfIdle (Boolean)—This flag indicates whether the job
should be suspended or run if the application is idle.

scheduleIntervalInMinutes (int)—Contains the time interval (in
minutes) after which you need to reschedule the job.

2. Create a new job. This job must extend the YRCJob class. The YRCJob
class accepts the following arguments as input:

name (String)—Contains the name of the job.

YRCJobData (Object)—Job data object, which contains the
configuration of the job.

3. Override the execute() method to write the code to perform the
appropriate operation when the job is scheduled.

4. Register the job you created with the Rich Client Platform using the
registerJob (YRCJob job) method.

2.22.2 Scheduling an Alert-Related Job
The Rich Client Platform enables you to schedule alert-related jobs. You
can configure the alert-related jobs to run at a desired time interval. For
example, you may want a message to pop up in a panel every two
minutes when an alert is assigned to the user who has logged in.

Figure 2–4 Alert Pop-up Window

Note: You can set the idle time (in minutes) for the job
by providing the VM arguments. For example:

-Dideltime=3

By default, idle time is set to 5 minutes.

Scheduling Jobs for Rich Client Platform Applications

Rich Client Platform 31

You can register such alert-related jobs with the Rich Client Platform,
which in turn schedules the jobs at the desired interval.

To create and register an alert-related job:

1. Create a new object of the YRCJobData class. This class accepts the
following arguments as input:

proceedEvenIfIdle (Boolean)—A boolean flag that indicates
whether the job has to run even if the application is idle.

scheduleIntervalInMinutes (int)—Contains the time interval (in
minutes) after which the job must be rescheduled.

2. Register the job you created with the Rich Client Platform using the
registerAlertJob() method. This method accepts the following
parameters:

IYRCAlertPopUpHandler—This interface provides visibility to alert
details when you click the alert message hyperlink. This is an
optional parameter. If this parameter is passed as "null", the alert
message displays as a label instead of a hyperlink.

YRCJobData—Job data object that contains the job configuration.

2.22.3 Preventing the Deactivation of Alert Notification
Alert related jobs configure alerts to pop up at scheduled intervals. Users
can turn off notification of alerts by selecting the "Do Not Notify" check
box in the Alert Notification Panel. However, this may not be desired for
certain alerts, which have to be mandatorily run and displayed.

To prevent disabling of such alerts, the system provides a method to hide
the "Do Not Notify" check box.

To hide the "Do Not Notify" check box:

Note: You can set the idle time (in minutes) for the job
by providing the VM arguments. For example:

-Dideltime=3

By default, idle time is set to 5 minutes.

32 Customizing the Rich Client Platform Interface Guide

Low Resolution Display for Rich Client Platform Applications

1. A static utility method is added in the YRCAlertMessageController
class with the following format:

 public static void hideDoNotNotifyCheckbox(true)

2. Set the flag to true to hide the check box.

This method must be called before registering the Alert job. Based on the
flag set in the utility method, the "Do Not Notify" check box is hidden or
displayed. By default, the check box is displayed.

2.23 Low Resolution Display for Rich Client
Platform Applications

Figure 2–5 depicts one of the Rich Client Platform PCA applications that
displays on a screen for which the system resolution is set to greater
than 800 X 600 pixels.

Low Resolution Display for Rich Client Platform Applications

Rich Client Platform 33

Figure 2–5 High Resolution Display

If you set the screen resolution to less than or equal to 800 X 600 pixels
and relaunch the application, the left panel (Navigator and Tasks panel)
will not visible and the menu items are placed in the menu bar. The font
size in the theme entries defined for a particular screen also reduces by
one point. Figure 2–6 depicts one of the Rich Client Platform PCA
applications that displays on a screen whose system resolution is set to
less than or equal to 800 X 600 pixels.

Navigator and Task View

34 Customizing the Rich Client Platform Interface Guide

Displaying Panel Tasks on the Menu Bar for Rich Client Platform Applications

Figure 2–6 Low Resolution Display

2.24 Displaying Panel Tasks on the Menu Bar for
Rich Client Platform Applications

In high resolution, the Navigator tasks are displayed in a panel on the
the left side. You can display these Navigation panel tasks as menu bar
entries in the Rich Client Platform application.

To display the Navigation panel tasks as menu bar entries:

1. Modify the Rich Client Platform application’s *.ini file to provide the
appropriate VM argument. You can find the *.ini file for the Rich
Client Platform application in the <INSTALL_
DIR>/repository/rcpdrop/<OPERATING_SYSTEM>/<PCA_DIR>/
directory.

For example, to run the Sterling COM PCA in debug mode, edit the
<INSTALL_DIR>/repository/rcpdrop/<OPERATING_
SYSTEM>/com/com.ini file.

Using a VM Login for Rich Client Platform Applications

Rich Client Platform 35

2. In the *.ini file, add the following VM argument:

-vmargs
--Dshownavigatorasmenu=true

3. Run the *.exe file of the Rich Client Platform application.

2.25 Switching Locale for Rich Client Platform
Applications

The Rich Client Platform application must enable users to switch locales
based on the locale configuration.

To switch the locale, you need to pass the locale code as
-Dlocalecode=<LOCALE_CODE>.

2.26 Using a VM Login for Rich Client Platform
Applications

The Rich Client Platform enables you to log in to a Rich Client Platform
application by passing the location name, user ID, and password as VM
arguments.

You can pass "location" as a VM argument to log in to a Rich Client
Platform application. For example, if you want to log in to a Rich Client
Platform application using "DEFAULT" as the location, pass the following
VM argument:

-Dlocation=DEFAULT

Note: If the passed locale is not defined on the server, in
such case the system locale is used.

Note: You can pass the appropriate VM arguments in the
*.ini file of a Rich Client Platform application. You can
find the *.ini files in the <INSTALL_
DIR>/repository/rcpdrop/<OPERATING_SYSTEM>/<PCA_
DIR>/ directory.

36 Customizing the Rich Client Platform Interface Guide

Using a VM JRE for Rich Client Platform Applications

You can pass "userid" and "password" as VM arguments to log in to a
Rich Client Platform application. For example, to log in to a Rich Client
Platform application using "storeop" as the user ID and "admin" as the
password, pass the following VM arguments:

-Duserid=storeop
-Dpassword=admin

2.27 Using a VM JRE for Rich Client Platform
Applications

In case multiple Java Runtime Environments (JREs) are installed on the
system, the Rich Client Platform enables you to specify which Java
Runtime Environment (JRE) to use to launch the Rich Client Application
by passing the Path as VM argument.

You can pass the VM arguments in the *.ini file of a Rich Client
Platform application. You can find the *.ini files in the <INSTALL_
DIR>/repository/rcpdrop/<OPERATING_SYSTEM>/<PCA_DIR>/ directory.

For example, you can find the com.ini file for Sterling COM PCA in the
<INSTALL_DIR>/repository/rcpdrop/<OPERATING_
SYSTEM>/com/com.ini file.

Edit the <application_id>.ini file, and add the following parameter to
the list of VM arguments:

-vmargs
<path_to_the_JRE>

Note: If you pass "location" as a VM argument, the
Location Preference pop-up window does not display.

Note: If you pass "userid" and "password" as VM
arguments, the Log In pop-up window does not display.

Supervisory Overrides for Rich Client Platform Applications

Rich Client Platform 37

2.28 Supervisory Overrides for Rich Client
Platform Applications

The Supervisory Override functionality of the Rich Client Platform enables
a user with no permissions to perform a particular task or operation. For
example, if a user logs in to a Rich Client Platform application to modify
the value of a field, the user must have permission to perform this task.
Otherwise, you can perform supervisory overrides to allow the user to
modify the field value.

2.28.1 Using the Pop-Up Method
This section explains how to use the pop-up method to perform
supervisory overrides for the currently logged in user. The advantage of
using this method is that the user does not need to manually log out of
the application after performing the task. As soon as the user closes the
pop-up window, the system automatically logs the user out of the
application.

To perform supervisory overrides using the pop-up method:

Call the openSupervisorShell() utility method in the YRCPlatformUI class.
This method considers the following input arguments:

pnlRoot (Composite)—Specifies the screen to display as a pop-up
window.

permissionID (String)—Specifies the resource identifier of the task or
operation for which the user must have permission.

titleKey (String)—Specifies the title of the pop-up window.

iconTheme (String)—Specifies the theme entry of the image to
display in the pop-up window.

width (int)—Specifies the default width of the pop-up window.

height (int)—Specifies the default height of the pop-up window.

When the openSupervisorShell() method is called, the Rich Client
Platform performs the following actions:

1. The Login pop-up window displays.

2. After successfully logging in to a Rich Client Platform application, the
system verifies whether the user has permission to perform the task.

38 Customizing the Rich Client Platform Interface Guide

Running Rich Client Platform Applications in POS Mode

3. The appropriate screen opens in a pop-up window.

4. When the user closes the pop-up window, the system automatically
logs the user out of the application.

2.28.2 Starting a Supervisory Transaction
Another method of performing supervisory overrides is to start a
supervisory transaction. However, if you use this method, the user must
manually log out off the application after performing a task or operation.

To perform supervisory overrides by starting a supervisory transaction:

1. Call the handleSupervisorTransaction() utility method in the
YRCPlatformUI class. This method considers the following input
arguments:

permissionID (String)—Specifies the resource identifier of the task
or operation for which the user must have permission.

actionID (String)—Specifies the identifier of the action to invoke.

When the handleSupervisorTransaction() method is called, Rich Client
Platform performs the following actions:

a. The Login pop-up window displays.

b. After the user successfully logs in to a Rich Client Platform
application, the system verifies whether the user has permission
to perform the task.

c. Rich Client Platform invokes the task.

2. Call the logoffSupervisor() method to log the user out of the
application.

2.29 Running Rich Client Platform Applications in
POS Mode

The Rich Client Platform enables you to run the Rich Client Platform
application in Point of Sales (POS) mode. When you run the Rich Client
Platform application in POS mode, the title bar of the application window
is removed.

Running Rich Client Platform Applications in POS Mode

Rich Client Platform 39

To run a Rich Client Platform application in POS mode, set the value of
the posmode parameter to "true" by passing -Dposmode=true as the VM
argument.

Figure 2–7 depicts the application layout in POS mode.

Figure 2–7 POS Mode Layout

40 Customizing the Rich Client Platform Interface Guide

Version-Based Communication between Client and Server

2.30 Version-Based Communication between
Client and Server

When server components are migrated from an older version to a later
version, all the server components are deployed in the server in a single
exercise. Similarly, the Rich Client Platform client is also updated with the
latest version. The old Rich Client Platform client must have the
functionality to communicate with the migrated or the new application
server.

Figure 6–5 depicts the layout of version-based communication between
client and server.

Version-Based Communication between Client and Server

Rich Client Platform 41

Figure 2–8 Layout of the client-server communication process

The Rich Client Platform application is built using the Rich Client
Platform plug-in, the PCA plug-in and a custom extension plug-in.

A client.properties file is provided in resources.jar
(com.yantra.yfc.rcp plug-in), which is modified by a PCA for
PCA-specific properties. The client.properties file contains the
version information and other details as key-value pairs, which are
available at the server in an environment object.

You can add your own properties in another client.properties file
in the extn directory (in the resources.jar file).

To change any of the existing properties, add the new value (for the
property key) in the same client.properties file mentioned in the

42 Customizing the Rich Client Platform Interface Guide

Version-Based Communication between Client and Server

previous step. Note: Custom properties override the Rich Client
Platform or PCA properties.

All the PCA-specific keys should start with their respective module
code. For example, the version key for COM PCA entry should be
com_Version=8.0.

When creating an HTTP connection from the Rich Client Platform
application to an application server, all the keys are set into the
request header.

In the server, the Rich Client Platform Servlet reads the request
header and sets them into the YFSEnvironment.

The environment object is passed as input to all the services and
APIs. A Java HashMap of client properties can be obtained from this
YFSEnvironment object, which contains the value of a key pertaining
to the client version. This value can be used appropriately on the
server.

2.30.1 Client Component
The following methods are provided in the YRCClientPropertiesManager:

void setClientProperty(String key, String value, boolean
overrideIfExists)sets additional properties dynamically.

Properties getClientProperties ()returns all the client property
registered through the client.properties file dynamically using the
void setClientProperty method.

2.30.2 Server Component
A new ClientVersionSupport interface has been added to enable
version-based communication between client and server. This interface is
implemented by the out-of-the-box YCPContext and the InteropEnvStub.

Note: Custom properties override the Rich Client Platform
or PCA properties.

Integrating Web Applications with Rich Client Platform

Rich Client Platform 43

Any class implementing YFSEnvironment should also implement the
ClientVersionSupport interface. From the YFSEnvironment, you can get
the value for a specific key from the hashmap.

The sample code for server class is shown here:

If (env instanceof ClientVersionSupport)
 {
ClientVersionSupport clientVersionSupport = (ClientVersionSupport) env;
HashMap map = clientVersionSupport.getClientProperties();
If(map != null) {
String value = (String)map.get(key);
}
}

To enable multiple Rich Client Platform clients for communicating with
the corresponding server components, multiple commands.ycml files are
supported, one for each Platform version of the client connecting to it:

A utility class file YRCCommandsMergeUtils.java is added to
Platform.

Use this utility java class in build scripts for merging all
commands into one single file named Commands_VERSION.ycml.
The version information is read from the client.properties file.

2.31 Integrating Web Applications with Rich
Client Platform

The Rich Client Platform provides a mechanism to integrate multiple Web
applications based on different domains, which enables applications on
Rich Client Platform to seamlessly connect to one or more Sterling Web
applications without actually logging into the other application.

To integrate other Web applications with Rich Client Platform, an
extension point YRCWebAppIntegrator and an interface
IYRCWebAppHandler are added to Rich Client Platform and a number of
utilities are exposed in the class YRCWebAppUtils.

The required configuration details (used for logging in to the Web
application) must be provided in the locations.ycfg file by specifying a
config element (name, appication ID, protocol etc) for each application
that must be integrated with Rich Client Platform, as follows. Each config

44 Customizing the Rich Client Platform Interface Guide

Integrating Web Applications with Rich Client Platform

element name, which identifies the Web application to connect to, must
be unique. The ApplicationID is the Web Application ID.

<Config Name=WebApp1
ApplicationID=""
Protocol="http"
BaseUrl="10.11.26.99"
PortNumber="7007"
WebAppContext="/smcfs"
NoUILoginURL="/NoUILoginServlet">
</Config>

Note: Include a config element for each Web application to be
integrated. The attributes, Protocol, BaseUrl, NoUILoginServlet and
ApplicationID are mandatory. The system creates the URL by
concatenating the following values provided under each config element:

Protocol + :// + BaseUrl + : PortNumber + WebAppContext +
NoUILoginServlet
To create an extension:

1. Each extension has a number of elements, corresponding to the
number of Web applications that Rich Client Platform wants to
connect to.

2. Each extension element must contain the following mandatory
attributes:

id -This ID should correspond to the config element name that
contains the configuration details required for a particular Web
application.

classToLoad - Specifies the class to be loaded to implement the
interface IYRCWebAppHandler.

The IYRCWebAppHandler has the following format:

public interface IYRCWebAppHandler {
 /**
 * This method implementation will have to store the browser
configuration details
 * so that the application implementation can access the same
when required.

 *
 * @param configElement is the config element which provides

Integrating Web Applications with Rich Client Platform

Rich Client Platform 45

browser configuration details for the web application
 * which the Rich Client Platform Application intends to switch.
 */
 public void init(Element configElement);

 /**
 * This method implementation will have to handle login to the
application, Rich Client Platform application intends to connect to.
 * Add any listeners that need to be added to the browser
including the one to handle session timeout .
 *
 * @param browser is the browser instance provided by the
application
 * @param handler has to provide implementation as to what data
has to posted.
 */
 public void handleBrowser(Browser browser,IYRCBrowserHandler
handler);

 /**
 * This method implementation will have to store the login
information of the user who has logged in to the application.
 *
 * @param info provides information about the current user
userid and session information
 */
 public void setUserInfo(YRCLoginInfo info);

3. The following utilities related to the Web application integration are
exposed in the class YRCWebAppUtils:

setUpBrowser - Must be called when a Web application has to be
integrated with Rich Client Platform.

public static void setupBrowser(String configName, Browser browser,
IYRCBrowserHandler handler)

loginToWebApp - Must be called when a Rich Client Platform
application that is already launched needs to log the user in to
another application by using the session ID.

public static YRCWebAppLoginInfo loginToWebApp(String
configName,YRCLoginInfo info,HashMap<String, String> paramsMap)

46 Customizing the Rich Client Platform Interface Guide

Integrating Web Applications with Rich Client Platform

addCookiesToBrowserSynchronously - Must be called to set
cookies to the Web browser synchronously.

public static YRCWebAppStatus addCookiesToBrowserSynchronously(String
webAppconfigName, final Browser browser)

addCookiesToBrowserAsynchronously - Must be called to set
cookies to the Web browser asynchronously.

public static void addCookiesToBrowserAsynchronously(final String
webAppConfigName,final Browser browser,final YRCWebAppLoginInfo
webAppLoginInfo,final IYRCBrowserHandler handler)

formNoUILoginURL - Must be called to create an URL from the
Web application config element.

public static String formNoUILoginURL(Element webAppConfigElement)

The Development Environment for Rich Client Platform Applications 47

3
The Development Environment for Rich

Client Platform Applications

3.1 Installing Prerequisite Software Components
This section describes the various software components required to
customize the Rich Client Platform application. Before deploying the Rich
Client Platform application, make sure that you have already installed the
following software components:

Eclipse SDK

Install the Eclipse SDK version that the Rich Client Platform supports.
For more information about the Eclipse SDK version, see the Selling
and Fulfillment Foundation: Installation Guide.

Eclipse-related Plug-ins

Install the following Eclipse-related plug-ins that the Rich Client
Platform supports. For more information about the Eclipse plug-in
versions, see the Selling and Fulfillment Foundation: Installation
Guide.

– VE (Visual Editor) plug-in

– GEF (Graphical Editor Framework) plug-in

– EMF (Eclipse Modelling Framework) plug-in

Java Development Kit (JDK)

Install the JDK version that the Rich Client Platform supports. For
more information about the JDK version, see the Selling and
Fulfillment Foundation: Installation Guide.

Rich Client Platform plug-ins

48 Customizing the Rich Client Platform Interface Guide

Installing Prerequisite Software Components

Install the following Rich Client Platform plug-ins that the Rich Client
Platform supports. For more information about the Rich Client
Platform plug-ins version, see the Selling and Fulfillment Foundation:
Installation Guide.

– Rich Client Platform plug-in

– Rich Client Platform Tools plug-in

These plug-ins are shipped along with Selling and Fulfillment
Foundation and are located in the following directory:

<INSTALL_DIR>/rcpclient

3.1.1 Installing the Rich Client Platform Plug-In
To install the Rich Client Platform plug-ins:

Copy the contents of the folder <INSTALL_DIR>/rcpclient to the
<ECLIPSE_HOME>/plugins folder. <ECLIPSE_HOME> refers to the Eclipse
SDK installation directory.

The rcpclient folder contains the following plug-ins:

com.yantra.ide.rcptools.core_1.1.0 - This plug-in is used to enable
the Rich Client Platform extensibility tool.

Note: If you are installing a new version of the Rich Client
Platform plug-ins or updating the earlier versions you must
clean the cached build information in Eclipse.

To clean this information, start the Eclipse SDK with the
"-clean" option:

1. Right-click the Eclipse’s shortcut and
select Properties from the pop-menu.
The Properties window displays.

2. In Target, enter the command-line
argument "-clean" at the end. For
example, "C:\Eclipse
3.2\eclipse\eclipse.exe" -clean.

3. Start the Eclipse SDK.

Installing Prerequisite Software Components

The Development Environment for Rich Client Platform Applications 49

com.yantra.ide.rcptools.rcpextn_1.1.0 - This plug-in is used to enable
the Rich Client Platform extensibility tool.

com.yantra.ide.rcptools.uieditor_1.1.0 - This plug-in is used to enable
the Rich Client Platform UI Editor for creating Rich Client Platform
Composite, Rich Client Platform plug-in, and Rich Client Platform
Search List Composite. For details, see Section 3.1.3, "Rich Client
Platform Tools" .

com.yantra.yfc.rcp.common_1.0.0 - This is the base plug-in and is
common for all applications of Rich Client Platform. This plug-in is
required.

com.yantra.yfc.rcp.libs - This is the base plug-in of Rich Client
Platform libraries and is common for all applications of Rich Client
Platform.

com.yantra.yfc.rcp_1.0.0 - This is the base plug-in and is common
for all applications of Rich Client Platform. This plug-in is required.

3.1.2 Installing the Rich Client Platform Tools Plug-In

To install the Rich Client Platform Tools plug-in:

Copy the contents of the folder <INSTALL_DIR>/rcpclient to the
<ECLIPSE_HOME>/plugins folder.

<ECLIPSE_HOME> refers to the Eclipse SDK installation directory.

3.1.3 Rich Client Platform Tools
The Rich Client Platform Tools plug-in contains the following tools:

Rich Client Platform Command XML Editor—The Rich Client Platform
Command XML Editor provides a way to conveniently edit the

Note: You must first copy the required plug-ins in the
<ECLIPSE_HOME>/plugins folder and then the
application-specific plug-ins. Extensibility plug-ins can be
included for application extensibility, if required. For more
information on Extensibility tool plug-ins, refer to the
section Section 3.5, "Launching the Rich Client Platform
Application in Eclipse".

50 Customizing the Rich Client Platform Interface Guide

Installing Prerequisite Software Components

<Plug-in_id>_commands.ycml file. The Commands XML file is used
to create or modify commands and namespaces.

Rich Client Platform Config XML Editor—The Rich Client Platform
Config XML Editor tool provides a way to conveniently edit the
locations.ycfg file. The locations.ycfg file contains configuration
information for the Rich Client Platform applications. A location
configuration and server configuration must be defined to connect the
Rich Client Platform application to the server.

Rich Client Platform Theme Editor—The Rich Client Platform Theme
Editor tool provides a convenient way to edit the <Plug-in_id>_
<theme name>.ythm file. The theme file is used to define theme
entries for a particular theme.

Rich Client Platform Wizard Editor—Rich Client Platform Wizard Editor
tool is used to conveniently edit the <Plug-in_id>_commands.ycml
for creating or modifying the wizard definition. The wizard definition
specifies the flow of a wizard.

Rich Client Platform UI Wizards—The Rich Client Platform UI Editor is
a plug-in that includes several development time database utilities for
the Rich Client Platform application. The Rich Client Platform UI Editor
provides various wizards for creating these utilities, such as:

Note: To understand how to use Rich Client Platform tools
such as the Rich Client Platform Command XML Editor, Rich
Client Platform Config XML Editor, and so forth in Eclipse,
see the cheat sheets provided by the Rich Client Platform.

To view the cheat sheets in Eclipse, follow these steps:

1. Start the Eclipse SDK.

2. From the menu bar select Help > Cheat
Sheets. The Cheat Sheet Selection
window displays.

3. Expand "Rich Client Platform: UI Editor"
from the list and open the appropriate
cheat sheet.

Installing Prerequisite Software Components

The Development Environment for Rich Client Platform Applications 51

– Rich Client Platform Composite—The Rich Client Platform
Composite wizard is used to create standalone Rich Client
Platform screens for the Rich Client Platform application.

– Rich Client Platform Plug-in—The Rich Client Platform Plug-in
wizard is used to extend an Eclipse plug-in so that it can be
recognized by the Rich Client Platform. The Rich Client Platform
Plug-in wizard includes a plug-in file and various Selling and
Fulfillment Foundation-specific resource files such as theme file,
configuration file, command file, bundle file, and extension file.
The plug-in Java file is used to register the Eclipse plug-in and the
Rich Client Platform-specific resource files with the Rich Client
Platform. Whenever you run the Rich Client Platform Plug-in
wizard on top of an Eclipse plug-in, the newly created bundle
activator gets updated. Also, the bundle activator for the plug-in
file is placed in the plugin.xml file.

– Rich Client Platform Search List Composite—The Rich Client
Platform Search List Composite wizard is used to create the
sample Search and List screen for the Rich Client Platform
application. The Rich Client Platform Search and List screens are
divided into two panels: Search panel and List panel. The Search
screen accepts the search criteria entered by a user and performs
the search operation. The List screen displays the results of the
search operation.

– Rich Client Platform Extensibility Tool—The Rich Client Platform
Extensibility Tool is used to modify the existing screens of a Rich

Note: To open the UI wizards:

1. Launch the Rich Client Platform
application in Eclipse. For more
information, see Section 3.5,
"Launching the Rich Client Platform
Application in Eclipse".

2. Press Ctrl+N.

3. Expand Rich Client Platform Wizards
from the list of wizards and open the
appropriate wizard.

52 Customizing the Rich Client Platform Interface Guide

Creating and Configuring Locations

Client Platform application. Using this tool you can add new
controls, modify existing controls, and so forth.

Rich Client Platform Application Plug-in—Unzip the Rich Client
Platform application zip file that you want to customize to any
directory. You can find the zip file for a PCA in the following directory:

<INSTALL_DIR>/rcp/<PCA_DIR>/rcpclient/

Here, <PCA_NAME> refers to the PCA installation directory.

For example, if you want to customize the Sterling COM PCA, unzip
the <INSTALL_DIR>/rcp/COM/rcpclient/com.zip file to any
directory.

After you extract all files, copy the content of the Rich Client Platform
Application’s plug-in folder to the <ECLIPSE_HOME>/plugins folder.

For example, if you want to customize the Sterling COM PCA, copy
the: <TEMP_UNZIP_DIR>/plugins/com.yantra.pca.ycd.rcp_
<version> to the <ECLIPSE_HOME>/plugins folder.

where <TEMP_UNZIP_DIR> is the name of the directory where you
have extracted the com.zip files. <ECLIPSE_HOME> refers to the
directory where you have installed Eclipse SDK.

3.2 Creating and Configuring Locations
To configure locations, ensure that you create the locations.ycfg XML
file.

To configure a location, follow these steps:

1. In the locations.ycfg XML file, define a Locations root element.

2. Under the Locations root element, define the Location element. In the
id attribute of the Location element, specify the location identifier
such as DEFAULT, LOCAL, REMOTE, and so forth.

3. Configure the proxy server and application server URL settings for the
location. For more information about location configuration settings,
see the Selling and Fulfillment Foundation: Installation Guide.

Creating a Plug-In Project

The Development Environment for Rich Client Platform Applications 53

4. Add locations.ycfg XML file to resources.jar file.

5. Copy the resources.jar file to the <ECLIPSE_
HOME>/plugins/com.yantra.yfc.rcp_<version> directory

where <ECLIPSE_HOME> refers to the Eclipse SDK installation
directory.

3.3 Creating a Plug-In Project
This section explains how to create a plug-in project.

To create a plug-in project:

1. Start the Eclipse SDK.

2. From the menu bar, select Window > Open Perspective > Other....
The Select Perspective window displays.

Note: You must have one Location element with id
attribute value of "DEFAULT" and this Location element
must have a Config element whose Name attribute is
"DEFAULT".

When you log in to a Rich Client Platform application using
a particular location, the system checks whether or not the
loaded location has a "DEFAULT" Config element defined
for it. If the selected location has "DEFAULT" Config
element, the system loads the that configuration.
Otherwise the system loads the "DEFAULT" configuration
defined in the "DEFAULT" location.

54 Customizing the Rich Client Platform Interface Guide

Creating a Plug-In Project

Figure 3–1 Select Perspective Window

3. From the list of wizards, select Plug-in Development.

4. Click OK. The Eclipse Workbench opens in Java perspective. For more
information about the Eclipse workbench, see Appendix 17.3,
"Workbench".

5. From the menu bar, select File > New > Project.... The New Project
window displays.

6. From the list of wizards, under Plug-in Development category, select
the Plug-in Project.

7. Click Next. The New Plug-in Project window displays.

Creating a Plug-In Project

The Development Environment for Rich Client Platform Applications 55

Figure 3–2 New Plug-in Project Window

Table 3–1 New Plug-in Project Window

Field Description

Project name: Enter the name of the new plug-in project.

Use default location Uncheck this box if you want to specify the path
where you want to store the new plug-in project.
By default, this box is always checked.

Sterling Commerce recommends that you use the
default directory to store the new plug-in project.

Project Settings

Make sure that the Source folder: and Output folder: text boxes are
empty.

56 Customizing the Rich Client Platform Interface Guide

Running the Rich Client Platform Plug-In Wizard

8. Click Next. The Plug-in Content page displays.

9. Click Next. The Templates page displays.

10. Click Finish. The new plug-in project gets created.

3.4 Running the Rich Client Platform Plug-In
Wizard

After creating the new plug-in project, run the Rich Client Platform
Plug-in wizard on top of the new plug-in project that you created. The
Rich Client Platform Plug-in wizard enables you to extend an Eclipse
plug-in so that it is easily understood by the Rich Client Platform. The
Rich Client Platform Plug-in wizard creates a plug-in Java file and the
following Rich Client Platform-specific resource files:

Bundle files such as *bundle.properties—Used to define bundle
entries for internationalizing a Rich Client Platform application.

Command files such as *commands.ycml—Used to define commands
for calling APIs or services to get the required data.

Theme files such as *theme.ythm—Used to define theme entries for
theming a Rich Client Platform application.

Extension files such as *extn.yuix—Used to store all the extensions
made to a Rich Client Platform application.

These resource files allow you to extend the UI and control the behavior
of a Rich Client Platform application. The plug-in Java file is used to
register the Eclipse plug-in and the Rich Client Platform-specific resource
files with the Rich Client Platform.

To run the Rich Client Platform Plug-in wizard:

1. Start the Eclipse SDK.

Target Platform

Eclipse version: Select 3.2 from the drop-down list.

Table 3–1 New Plug-in Project Window

Field Description

Running the Rich Client Platform Plug-In Wizard

The Development Environment for Rich Client Platform Applications 57

2. From the menu, select Window > Show View > Navigator. The plug-in
project is displayed in the Navigator view.

3. Expand the plug-in project that you created. For more information
about creating a plug-in project, see Section 3.3, "Creating a Plug-In
Project".

4. Right-click the source folder where you want to store the Rich Client
Platform extension plug-in Java file and select New > Other from the
pop-up menu. The New window displays.

5. From the list of wizards, select Rich Client Platform Wizards > Rich
Client Platform Plug-in.

6. Click Next. The New Plug-in to Rich Client Platform UI window
displays.

58 Customizing the Rich Client Platform Interface Guide

Running the Rich Client Platform Plug-In Wizard

Figure 3–3 New Plugin to Rich Client Platform UI Window

Table 3–2 New Plugin to Rich Client Platform UI Window

Field Description

Source Folder: The folder path that you selected displays. Click
Browse to browse to the source folder where you
want to store the plug-in java file, if necessary.

Plugin Id The identifier of the plug-in project which
contains the source folder displays.

Running the Rich Client Platform Plug-In Wizard

The Development Environment for Rich Client Platform Applications 59

7. Click Finish.

After you run the Rich Client Platform Plugin wizard on top of a plug-in
project, the Rich Client Platform performs the following tasks:

Loads the dependent plug-ins. The dependent plug-ins are the
plug-ins whose extension points are extended by another plug-in to
extend the functionality provided by the Eclipse platform.

Implements the YRCPluginAutoLoader extension point. The
YRCPluginAutoLoader extension point is provided by the Rich Client
Platform, which defines the order in which plug-ins need to be
loaded. The YRCPluginAutoLoader extension point automatically loads
the classes within a plug-in during startup in the specified order. All
classes that need to be automatically loaded are sorted in ascending
order and loaded one at a time. For more information about the
YRCPluginAutoLoader extension point, see Appendix 17.5,
"YRCPluginAutoLoader Extension Point".

Creates the plug-in Java file. The plug-in Java file is stored in the
folder you specified. This file is used to register the plug-in you
created and the Rich Client Platform-specific resource files.

Creates the following Rich Client Platform-specific resource files:

Package: The package name displays. If this field is empty,
the system considers the source folder as the
default package.

Note: It is recommended that you do not use a
default package with this wizard. The plug-in name is
created and prefixed with a dot or period. Therefore,
you will encounter an error when you run the
application within Eclipse.

Plugin File Name By default, the NewPlugin.java plugin file name
displays. Enter a new plug-in file name, if necessary.
This plug-in file registers your resource files such
as bundles, themes, commands, and extension
files.

Application File Name Enter the name of an application file name, if
necessary.

Table 3–2 New Plugin to Rich Client Platform UI Window

Field Description

60 Customizing the Rich Client Platform Interface Guide

Launching the Rich Client Platform Application in Eclipse

– Bundle file of format *bundle.properties

– Commands file of format *commands.ycml

– Theme file of format *theme.ythm

– Extension file of format *extn.yuix

Figure 3–4 illustrates a typical folder structure that has both the plug-in
Java file and the Rich Client Platform-specific resource files stored under
the package that you specified.

Figure 3–4 Typical Folder Structure in Eclipse

3.5 Launching the Rich Client Platform
Application in Eclipse

After you run the Rich Client Platform Plugin wizard on the plug-in
project, launch the Rich Client Platform application that you want to
customize within Eclipse.

To launch the Rich Client Platform application in Eclipse:

1. Start the Eclipse SDK. In the Package Explorer view, you can see the
plug-in project that you created.

2. From the menu bar, select Run -> Run... The Run window displays.

Plugin Project
Source Folder
Plugin Java File

Rich Client Plat-
form-specific

Launching the Rich Client Platform Application in Eclipse

The Development Environment for Rich Client Platform Applications 61

Figure 3–5 Run Window

3. In the left panel, right-click and select New_configuration from the
pop-up menu.

4. In Name, enter the name for the new run configuration. For example,
Call Center Application.

5. In the Workspace Data panel, in Location, enter the location where
you want to create the runtime workspace. Click File System... to
browse to the directory where you want to create the runtime
workspace.

6. In the Program to Run panel, select Run a product: and from the
drop-down list select the product identifier of the application you
want to customize. For example, if you want to customize the Sterling
COM PCA, select the product identifier of the Sterling COM PCA. For
more information about the product identifier for each PCA, see the
respective PCA Installation Guide.

7. In the Plug-ins tab, choose Choose plug-ins and fragments to launch
from the list.

62 Customizing the Rich Client Platform Interface Guide

Launching the Rich Client Platform Application in Eclipse

8. Click Deselect All.

9. From the list of plug-ins, expand Workspace Plug-ins and select the
plug-in project that you created.

10. Expand Target Platform. Select the Rich Client Platform application
plug-in that you want to customize.

11. Select the com.yantra.ide.rcptools.rcpextn plug-in.

12. Click Add Required Plug-ins.

13. Click Validate plug-in Set. If you have correctly performed all steps,
the Plug-in Validation window displays the message "No problems
were detected in the selected set of plug-ins."

14. Click OK.

15. Select Configuration tab and check the "Clear the configuration area
before launching" box. This clears the cached configuration data
saved by Eclipse.

16. Click Apply.

17. Click Run. The Rich Client Platform application that you selected in
Step 6 now runs.

Note: Ensure you select the plug-in is the same as the
Rich Client Platform application whose ID you selected in
Step 6.

Launching the Rich Client Platform Application in Eclipse

The Development Environment for Rich Client Platform Applications 63

Note: The Rich Client Platform Extensibility tool plug-in
depends on some of the Eclipse plug-ins. When you add
the Rich Client Platform extensibility tool plug-in, these
dependent Eclipse plug-ins are automatically added.
Therefore, when you launch a Rich Client Platform
application such as Sterling COM PCA within Eclipse, the
system throws the following error messages:

Invalid Menu Extension (Path is invalid):
org.eclipse.ui.actions.showKeyAssistHandler.

Invalid Menu Extension (Path is invalid):
org.eclipse.update.ui.updateMenu.

Invalid Menu Extension (Path is invalid):
org.eclipse.update.ui.configManager.

Invalid Menu Extension (Path is invalid):
org.eclipse.update.ui.newUpdates.

These are known issues and have no bearing on the
functioning of an application.

64 Customizing the Rich Client Platform Interface Guide

Launching the Rich Client Platform Application in Eclipse

Customizing Rich Client Platform Application 65

4
Customizing Rich Client Platform

Application

4.1 Overview of Customizing Rich Client Platform
Applications

The Rich Client Platform supports various ways of customizing a Rich
Client Platform application.

When customizing the Rich Client Platform application, copy the standard
Rich Client Platform-specific resource files and modify them or create
new resource files. Do not modify the Selling and Fulfillment
Foundation-specific resource files that are shipped with Selling and
Fulfillment Foundation.

4.1.1 Localizing Rich Client Platform Applications
You can localize a Rich Client Platform application’s locale-specific files
based on the user’s locale. The Rich Client Platform supports bundle and
theme locale-specific files. The Rich Client Platform application plug-ins
contain bundle file such as <Plug-in_id>_<name>.properties and
theme file such as <Plug-in_ id>_<theme_name>.ythm. For more
information about localizing bundle and theme files, see the Selling and
Fulfillment Foundation: Localization Guide.

4.1.2 Defining Themes for Rich Client Platform
Applications

You can theme the Rich Client Platform application based on the custom
theme. To theme your application, at the plug-in level, define new theme
entries for controls, text, strings, images, and so forth in the <Plug-in_

66 Customizing the Rich Client Platform Interface Guide

Overview of Customizing Rich Client Platform Applications

id>_<theme name>.ythm file. For more information about theming the
Rich Client Platform application, see Chapter 14, "Defining Themes for
Rich Client Platform Applications".

4.1.3 Extending Rich Client Platform Applications
You can extend the Rich Client Platform application’s UI to address
specific needs of your business. Extending the Rich Client Platform
application can be as simple as defining some additional fields or as
advanced as defining an entire new plug-in.

Sterling Commerce recommends that you extend the Rich Client Platform
application by modifying existing screens.

Before you can start extending the Rich Client Platform application using
any one of the given ways, make sure that you set up the development
environment for performing customizations. For more information about
setting up development environment, see Chapter 3, "The Development
Environment for Rich Client Platform Applications".

4.1.3.1 Modifying Existing Screens
Use the Rich Client Platform Extensibility Tool to modify or extend
existing screens of the Rich Client Platform application. This tool allows
you to modify existing screens by adding or removing text boxes, labels,
combo boxes, buttons, table columns, and so forth from the existing
forms. You can also add or modify composites and groups. For more
information about modifying existing screens, see Chapter 6, "Modifying
the Existing Rich Client Platform Screens and Wizards".

Note: In some screens or editors, the layout of a screen
or editor may have changed because of a HF or upgrade.
For example, new controls being added, existing controls
being hidden, and so forth. To ensure that your extensions
are applied on such screens or editors, you will have to
rework on positioning these new custom controls, for
example, labels, text boxes, radio buttons, and so forth (if
necessary).

Building and Deploying Extended Rich Client Platform Applications

Customizing Rich Client Platform Application 67

4.1.3.2 Modifying Existing Wizards
You can modify the wizard definition XML of the existing wizards by
adding new wizard entities (wizard page, wizard rule, or sub-task). You
can also modify the flow of a wizard by adding new transitions or
overriding the existing transitions. A wizard rule is used to control the
flow of a wizard based on certain criteria. The flow of a wizard depends
on the output value of a wizard rule. Use the transition lines to transfer
control from one wizard page or rule to another wizard page or rule. The
system compares the output of the wizard rule with the transition value.
Based on the transition value, the system transfers the control to the
appropriate wizard page or rule. The sub-task is used to perform a
separate sub-task within the wizard flow. For example, you can add a
sub-task to the wizard flow. That sub-task can be a separate wizard
within the existing wizard. For more information about modifying an
existing wizard, see Section 6.3, "Modifying Existing Rich Client Platform
Wizards".

4.1.3.3 Creating and Adding New Screens
You can create new Rich Client Platform screens for a Rich Client Platform
application in Eclipse using the Visual Editor (VE). For more information
about creating new screens, see Section 7, "Creating and Adding Screens
to Rich Client Platform Applications".

After creating new screens, you can add these to the Rich Client Platform
application. For more information about adding new screens to a Rich
Client Platform application, see Chapter 7, "Creating and Adding Screens
to Rich Client Platform Applications".

4.2 Building and Deploying Extended Rich Client
Platform Applications

After making extensions to a Rich Client Platform application, make sure
that you build and deploy the new extensions. You should build and
deploy the Rich Client Platform application with all the new plug-ins that
you created, resource files that you synchronized, and SSL certificates.

4.2.1 Building Rich Client Platform Extensions
Building the Rich Client Platform extensions is as follows:

1. Start the Eclipse SDK.

68 Customizing the Rich Client Platform Interface Guide

Building and Deploying Extended Rich Client Platform Applications

2. From the menu bar, select Window > Show View > Navigator. The
plug-in project is displayed in the Navigator view.

3. Right-click on the plug-in project that you want to build and deploy.
For more information about creating a plug-in project, see
Section 3.3, "Creating a Plug-In Project".

4. Select Export... from the pop-up menu. The Export window displays.

Figure 4–1 Export Window

5. From the list of export destinations, under Plug-in Deployment, select
Deployable plug-ins and fragments.

6. Click Next.

Building and Deploying Extended Rich Client Platform Applications

Customizing Rich Client Platform Application 69

Figure 4–2 Available Plug-ins Window

7. In the Destination tab, Choose Archive file:.

8. Click Browse and browse to the folder where you want to store the
exported plug-in zip file.

9. In the Options tab, make sure that the Package plug-ins as individual
JAR archives box is checked.

10. Click Finish. The plug-in jar is generated and stored in the plugins
folder in the zip file as specified in Step 8.

4.2.2 Deploying Rich Client Platform Extensions
After you build the Rich Client Platform extensions plugin jar, you must
deploy this plug-in.

To deploy the Rich Client Platform extensions:

70 Customizing the Rich Client Platform Interface Guide

Building and Deploying Extended Rich Client Platform Applications

Copy the plugin jar that you built to the plugins directory of the <RCP_
EXTN_FOLDER> folder and follow the steps as described in the "Deploying
and Updating Rich Client Platform Application" chapter of the Selling and
Fulfillment Foundation: Installation Guide.

Customizing the About Box 69

5
Customizing the About Box

5.1 Customizing the About Box
The About Box of a Rich Client Platform application indicates the name of
the application and also the version number of the application.

To customize the About Box:
1. Create a custom about.properties file in the <INSTALL_

DIR>/extensions/plugins/<plug-in-id>/ directory.

2. Edit the about.properties file and all your custom entries in the
<name>=<value> pair format.

Note: Your custom about.properties file must contain
the following entries:

Name

Version

Build

For example, if you are customizing Sterling Call Center
and Sterling Store About Box, the custom
about.properties file will look like this:

Name=Sterling Call Center and Sterling Store

Version=8.5

Build=1201

70 Customizing the Rich Client Platform Interface Guide

Customizing the About Box

3. Register your custom about.properties file with your plug-in. To
register your about.properties file, call the
registerAboutPluginProperties() method within the plug-in’s
constructor. For example,

YRCPlatformUI.registerAboutPluginProperties("about",plugin_ID);

where plugin_ID is a unique identifier of the plug-in that registers
this about.properties file.

Note: Before calling the registerAboutPluginProperties()
method, the plug-in must be registered using the
registerPlugin() method of the YRCPlatformUI class. For
more information on how to register a plug-in, see
Appendix 17.13, "Registering a Plug-In".

Modifying the Existing Rich Client Platform Screens and Wizards 71

6
Modifying the Existing Rich Client Platform

Screens and Wizards

6.1 Modifying Existing Rich Client Platform
Screens

This section explains how to modify the existing screens of a Rich Client
Platform application.

6.1.1 Starting the Rich Client Platform Extensibility Tool
After you set up the development environment, start the Rich Client
Platform Extensibility Tool.

6.1.2 Customizing the User Interface
After you start the Rich Client Platform Extensibility Tool, you can
customize the existing screen by adding or removing text boxes, labels,
combo boxes, buttons, table columns, and so forth. You can also add
composites and groups to the screen.

6.1.3 Synchronizing Differences
Whenever you customize an existing screen, you must synchronize the
resource files. .

6.1.4 Building and Deploying Extensions
After you extend the existing screens, make sure that you build and
deploy the new extensions. .

72 Customizing the Rich Client Platform Interface Guide

Validating or Capturing Data During API or Service Calls

6.2 Validating or Capturing Data During API or
Service Calls

You can validate or capture additional data during API or Service calls by
overriding the preCommand() method of the YRC ExtensionBehavior
class. You can also ensure the receipt of notification upon completion of
an API or Service call by overriding the preCommand() method of the
YRC ExtensionBehavior class.

preCommand(YRCApiContext apiContext)—To validate the data or
capture additional data before calling an API or Service or both,
override the preCommand(YRCApiContext apiContext) method in the
behavior class. The preCommand(YRCApiContext apiContext) method
returns a boolean value. The valid values are "true" or "false". If the
value returned is "false", the Rich Client Platform terminates the API
or Service call. For example:

public boolean preCommand(YRCApiContext apiContext) {
 if("getOrderDetails".equals(apiContext.getApiName())) {
 return false;
 } else {
 return true;
 }
 }

postCommand(YRCApiContext apiContext)—To ensure the receipt of
notification upon completion of an API or Service call, override the
postCommand(YRCApiContext apiContext) method in the behavior
class. Using postCommand() method you can store the API or Service
call output and use it at later point in time for incorporating
customizations on the screen. For example:

public void postCommand(YRCApiContext apiContext) {
 System.out.println("Finished api call:"+apiContext.getApiName());
 }

Modifying Existing Rich Client Platform Wizards

Modifying the Existing Rich Client Platform Screens and Wizards 73

6.3 Modifying Existing Rich Client Platform
Wizards

You can modify the existing wizards by creating new wizard entities such
as wizard page, wizard rule, or sub-task in the new wizard definition.
Define the new wizard definitions in the plug-in project by creating the
<Plug-in_id>_<wizard_name>.ywx file.

Before modifying an existing wizard:

You must know the form identifier of the wizard you want to extend.
After you have identified the form identifier, define the same form
identifier in the extended wizard definition using the id attribute of
the wizard element.

To add new wizard rules, you must know the namespace for defining
new rules and their values. After you have identified the namespace,
define the new rules and their values in the <Plug-in_id>_<wizard_
name>.ywx file.

To add new sub-tasks, you must know the namespace for defining
new sub-tasks. After you have identified the namespace, define the
new sub-tasks in the <Plug-in_id>_<wizard_name>.ywx file.

To get the wizard and namespace information:

1. In the Rich Client Platform application, navigate to the wizard you
want to extend.

2. In the Rich Client Platform Extensibility Tool, view the screen
information. The wizard and namespace information is displayed in
the screen information window.

An example of how to extend an existing wizard is described here.

Let us consider that in the <Plug-in_id>_<wizard_name>.ycml file, you
have an existing wizard definition defined for the following wizard flow:

Note: The postCommand() method does not prevent the
default handling of the API output on the screen.

74 Customizing the Rich Client Platform Interface Guide

Modifying Existing Rich Client Platform Wizards

Figure 6–1 Sample Wizard Flow

In this wizard flow, the wizard starts from a wizard page (Page1) and
transitions to a wizard rule (Rule1). The wizard rule (Rule1) computes
some values and returns these values, based on which the control is
transferred to two different wizard pages (Page2 and Page3). For Value1,
the wizard transitions from Rule1 to Page2, and for Value2, the wizard
transitions from Rule1 to Page3.

The sample <Plug-in_id>_<wizard_name>.ycml XML for the existing
wizard definition is as follows:

<forms>
<form Id="com.yantra.pca.ycd.rcp.alert.wizard.YCDAlertWizard">
 <namespaces>
 <namespace type="input" name="Rule" templateName="getRule"/>
 <namespaces>
<Wizard>
 <WizardEntities>
 <WizardEntity id="Page1">
 impl="java:com.yantra.yfc.rcp.wizard.pages.AlertWizPage1"
 type="PAGE" xPos="340" yPos="200" start="true">
 </WizardEntity>
 <WizardEntity id="Rule1">

impl="java:com.yantra.yfc.rcp.wizard.rules.AlertWizRule1"
 type="RULE" xPos="40" yPos="200">
 <Namespace name="Rule"/>
 <Output value="value1"/>

<Output value="value2"/>
 </WizardEntity>
 <WizardEntity id="Page2">

Modifying Existing Rich Client Platform Wizards

Modifying the Existing Rich Client Platform Screens and Wizards 75

 impl="java:com.yantra.yfc.rcp.wizard.pages.AlertWizPage2"
 type="PAGE" xPos="140" yPos="200" last="true">
 </WizardEntity>
 <WizardEntity id="Page3">
 impl="java:com.yantra.yfc.rcp.wizard.pages.AlertWizPage3"
 type="PAGE" xPos="140" yPos="200" last="true">
 </WizardEntity>
 </WizardEntities>
 <WizardTransitions>
 <WizardTransition id="Trxn1" source="Page1" target="Rule1"/>
 <WizardTransition id="Trxn2" source="Rule1">
 <Output target="Page2" value="value1">
 </WizardTransition>
 <WizardTransition id="Trxn2" source="Rule1">
 <Output target="Page3" value="value2">
 </WizardTransition>
 <WizardTransitions>
<Wizard>
</form>
</forms>

To extend the existing wizard flow, for Value1, replace the existing
transition from Rule1 to Page2 with the transition from Rule1 to
SubTask1 as follows:

Figure 6–2 Sample Wizard Flow

Create the extended wizard definition in the <Plug-in_id>_<wizard_
name>.ywx file.

76 Customizing the Rich Client Platform Interface Guide

Creating an Extended Wizard Definition

6.4 Creating an Extended Wizard Definition
This section explains how to create an extended wizard definition in a
Rich Client Platform application.

To create an extended wizard definition:

1. Create a new *.ywx XML file and save it in the plug-in project that
you created when setting up the development environment, for
example, <Plug-in_id><wizard_name>.ywx.

For more information about creating a plug-in project, see
Section 3.3, "Creating a Plug-In Project".

2. Start the Eclipse SDK.

3. In the Navigator view, expand the plug-in project that you created.

4. Right-click the newly created *.ywx file and select Open With > Text
Editor from the pop-up menu.

5. Create the Wizards root element.

6. In the applicationId attribute, specify the application identifier of
the Rich Client Platform application whose wizard you want to extend.

For more information about the application IDs of a Rich Client
Platform application, see the corresponding Rich Client Platform
application documentation.

7. Create the Wizard element under the Wizards root element.

8. In the id attribute, specify the form identifier of the wizard you are
extending.

9. Create the WizardEntities element under the Wizard element.

10. Create the required new wizard entities, such as wizard rule, wizard
page, or sub-task under the WizardEntities element. For example,
create a new sub-task (SubTask1).

11. Create and override the required wizard transitions under the
WizardEntities element. For example, override the existing transition,
Trxn2, with Value1 for transition from Rule1 to SubTask1.

12. Close the Wizard element.

13. Close the Wizards root element.

Registering the Wizard Extension File

Modifying the Existing Rich Client Platform Screens and Wizards 77

The sample <Plug-in_id>_<wizard_name>.ywx XML file for the
extended wizard definition is as follows:

<Wizards applicationId="YFSSYS00011">
 <Wizard id="com.yantra.pca.ycd.rcp.alert.wizard.YCDAlertWizard">
 <WizardEntities>
 <WizardEntity id="SubTask1">
 impl="com.yantra.yfc.rcp.wizard.subtasks.AlertSubTask1"
 type="WIZARD" xPos="340" yPos="200" last="true"/>
 </WizardEntities>
 <WizardTransitions>
 <WizardTransition id="Trxn2" source="Rule1">
 <Output target="SubTask1" value="value1">
 <WizardTransitions>
 </Wizard>
</Wizards>

The id attribute of the wizard entity contains the form identifier of the
wizard that you extended. For the new sub-task (SubTask1), a new
WizardEntity element in the WizardEntities element is created.

In the existing wizard definition, the Trxn2 with value1 defines the
transition from Rule1 to Page2. In the new wizard definition, override this
transition with the new target, which is SubTask1.

6.5 Registering the Wizard Extension File
After creating the extended wizard definition in the newly created
<Plug-in_id>_<wizard_name>.ywx file, you must register this file with
your plug-in. To register your *.ywx file, call the
registerWizardExtensions() method within the plug-in’s constructor. For
example,

YRCPlatformUI.registerWizardExtensions("<Plug-in_id>_<wizard_name>", ID)

where <Plug-in_id>_<wizard_name> is the name of your wizard
extension file without the ".ywx" extension. ID is a unique identifier of
the plug-in that registers this wizard extension file.

78 Customizing the Rich Client Platform Interface Guide

Modifying the Wizard Extension Behavior

6.6 Creating the Wizard Entity
You must create the implementation Java class for the new wizard entity
that you add to the extended wizard definition. This can be a wizard rule,
a wizard page, or a sub-task. This implementation class is specified in
the wizard extension file using the impl attribute of the WizardEntity
element.

If you are adding a new wizard page, you must create the
implementation Java class for the wizard page. For more information
about creating a new wizard page class, see Section 8.4, "Adding a
Page to a Wizard Definition".

If you are adding a new wizard rule, you must create the
implementation Java class for the wizard rule. For more information
about creating a new wizard rule, see Section 8.3, "Adding a Rule to
a Wizard Definition".

If you are adding a sub-task, the implementation class specified in
the Impl property of the sub-task should point to a separate subtask
that can be run independently as a task.

6.7 Modifying the Wizard Extension Behavior
If you have already created the wizard extension behavior class, do the
following:

If you are adding a new wizard page, return an instance of the new
wizard page in the createPage(String pageIdToBeShown, Composite
pnlRoot) method of the wizard extension behavior class. For example:

public IYRCComposite createPage(String pageIdToBeShown) {
IYRCComposite page=null;
If(pageIdToBeShown.equalsIgnoreCase(AlertWizPage2.FORM_ID)) { AlertWizPage2
temp = new AlertWizPage2(new Shell(Display.getDefault(), SWT.NONE);

Note: Before calling the registerWizardExtensions()
method, the plug-in must be registered using the
registerPlugin() method of the YRCPlatformUI class. For
more information about registering a plug-in, see
Appendix 17.13, "Registering a Plug-In".

Modifying the Wizard Extension Behavior

Modifying the Existing Rich Client Platform Screens and Wizards 79

 page = temp;
}
 return page;
}

If you are adding a new sub-task, return an instance of the new
sub-task in the createChildWizard(String wizardPageFormId,
Composite pnlRoot, YRCWizardContext wizardContext) method of the
wizard extension behavior class.

A sub-task can be a wizard that can either be inserted between two
wizard entities or the last entity in the wizard flow. If a sub-task is
inserted between two wizard entities, the sub-task should display the
Next button for navigation to the next wizard entity. If the sub-task
is the last entity in the wizard flow, the sub-task should display the
Finish button to end the wizard. This information must be passed to
the context object (YRCWizardContext). A context object is used to
control the flow of data between the parent wizard and the sub-task,
and contains the input to the sub-task. If there is an output to the
sub-task, it can be set in context and passed back to the parent
wizard. Because the context object utility methods display the
appropriate buttons for navigation, these methods must have the
position information in the parent wizard to display the proper
navigation buttons. For example:

public YRCWizard createChildWizard(String wizardPageFormId, Composite
pnlRoot, YRCWizardContext wizardContext){
return null;
}

80 Customizing the Rich Client Platform Interface Guide

Modifying the Wizard Extension Behavior

Creating and Adding Screens to Rich Client Platform Applications 81

7
Creating and Adding Screens to Rich Client

Platform Applications

7.1 About Creating a Rich Client Platform
Composite

After you set up the development environment, start creating the new
Rich Client Platform screen. The Rich Client Platform provides features
that enable you to create Rich Client Platform screens.

The Rich Client Platform composite consists of:

1. Composite File—The composite java file handles the UI. In the
composite java file, write the code for naming, binding, localizing,
and theming controls.

2. Behavior File—The behavior java file handles the functionality or
behavior of the screen. In the behavior java file, write the code for
calling APIs or services and getting or setting the XML model for
populating the bound controls.

The Rich Client Platform provides the following wizards for creating the
Rich Client Platform composite:

Rich Client Platform Search List Composite Wizard—The Rich Client
Platform Search List Composite wizard creates a sample search and
list screen. Multiple pages of the wizard allows you to name, bind,
localize, and theme the controls separately for the search panel and
list panel.

Rich Client Platform Composite Wizard—The Rich Client Platform
Composite wizard creates an empty composite. You need to design
the composite by adding appropriate controls as needed. After

82 Customizing the Rich Client Platform Interface Guide

Creating a Rich Client Platform Composite Using the Rich Client Platform Search List

designing the composite, name, bind, localize, and theme controls
that you add to the composite.

7.2 Creating a Rich Client Platform Composite
Using the Rich Client Platform Search List
Composite Wizard

The Rich Client Platform Search List Composite wizard automatically
creates the composite Java file and the behavior Java file.

To call your own API or service instead of the Rich Client Platform-specific
API or service, see Section 7.36, "Calling APIs and Services for Rich
Client Platform Applications".

To create a Rich Client Platform composite using the Rich Client Platform
Search List Composite wizard:

1. Start the Eclipse SDK.

2. In the navigator view, expand the plug-in project that you created
when setting up the development environment. For more information
about creating a plug-in project, see Section 3.3, "Creating a Plug-In
Project".

3. To store or create the sample search and list screen, right-click on the
folder.

4. Select New > Other... from the pop-up menu. The New window
displays.

5. From the list of wizards, select Rich Client Platform Wizards > Rich
Client Platform Search List Composite.

6. Click Next. The Search List Screen Preferences window displays.

Note: All new commands that you create are stored in
the <Plug-in_id>_commands.ycml file. All new theme
entries that you define are stored in the <Plug-in_id>_
<theme_name>.ythm file. All new bundle entries that you
define are stored in the <Plug-in_id>_
bundle.properties file.

Creating a Rich Client Platform Composite Using the Rich Client Platform Search List

Creating and Adding Screens to Rich Client Platform Applications 83

Figure 7–1 Search List Screen Preferences Window

Table 7–1 Search List Screen Preferences Window

Field Description

Source Folder The path of the selected folder automatically displays.
You can browse to the folder where you want to store
the sample search list screen files.

Package The name of the package automatically displays.

84 Customizing the Rich Client Platform Interface Guide

Creating a Rich Client Platform Composite Using the Rich Client Platform Search List

7. Click Next. The Search Screen Input window displays.

Class Name By default, the NewSearchListPanel.java class
file name displays. Enter a new class file name, if
necessary.

Resource Bundle The path of the bundle file that exists in the plug-in
project automatically displays, if any. You can browse
to the <Plug-in_id>_bundle.properties
bundle file in which new bundle entries for the
search list screen are added.

Commands File The path of the commands file that exists in the
plug-in project automatically displays, if any. You can
browse to the <Plug-in_id>_commands.ycml
commands file in which new commands for the
search list screen are added.

Theme File The path of the theme file that exists in the plug-in
project automatically displays, if any. You can browse
to the <Plug-in_id>_<theme_name>.ythm theme
file in which new theme entries for the search list
screen are added.

Datatypes Map Browse to the yfsdatatypemap.xml file in which the
new data types are stored. This file is stored in the
following location:

<INSTALL_
DIR>/repository/xapi/template/merged/reso
urce/yfsdatatypemap.xml

Table 7–1 Search List Screen Preferences Window

Field Description

Creating a Rich Client Platform Composite Using the Rich Client Platform Search List

Creating and Adding Screens to Rich Client Platform Applications 85

Figure 7–2 Search Screen Input Window

86 Customizing the Rich Client Platform Interface Guide

Creating a Rich Client Platform Composite Using the Rich Client Platform Search List

8. Click Next. The XML Attribute Selection window displays.

Table 7–2 Search Screen Input Window

Field Description

Input XML Select the XML file, which is passed as input to a
command or API to populate the search screen.

Search Template Select the search template file, which is passed as
output template to a command or API to populate
the list screen.

Search Command Enter the name of the command that is called during
the search operation. Depending on the commands
in the <Plug-in_id>_commands.ycml commands
file, you can select the command on which you want
the search to be based. You can also create a new
command, if needed. If this command is not in the
file, entry for the command is created in the
command file when the wizard completes.

Group Name Enter the name of the group that encloses the
search screen, if applicable. All controls are
positioned in a group box. You can name the group
box by entering the name in "Group Name" text box.

Creating a Rich Client Platform Composite Using the Rich Client Platform Search List

Creating and Adding Screens to Rich Client Platform Applications 87

Figure 7–3 XML Attribute Selection Window

9. Select the XML attributes from the input XML, based on which the
search screen is created. The search screen contains fields based on
which the search operation is performed. The screen fields are
created based on the selected attributes. The Element List panel
displays the hierarchy of elements and their attributes for the
specified input XML file. The Available Attribute panel displays the list
of attributes corresponding to the element selected in the Element
List panel.

88 Customizing the Rich Client Platform Interface Guide

Creating a Rich Client Platform Composite Using the Rich Client Platform Search List

10. Click Next. The Configure Individual Fields window displays.

Figure 7–4 Configure Individual Fields Window

11. Configure the Search screen fields selected in the previous page.
Specify the Name, Widget Type, Data Type, Theme, Span, and Input
Binding to use on each individual control. You can change the physical
ordering of the Search screen controls by clicking the Move Up or

Creating a Rich Client Platform Composite Using the Rich Client Platform Search List

Creating and Adding Screens to Rich Client Platform Applications 89

Move Down button. This screen also provides visibility to the Search
screen fields.

12. Click Next. The XML Attribute Selection window displays. Figure 7–3
illustrates XML Attribute Selection window.

13. Select the XML attributes from the input XML. Based on these XML
attribute values, the fields in the List screen gets populated. The list
screen has a table and all attributes displays in the appropriate
columns. The Element List panel displays the hierarchy of elements
and their attributes for the specified output template. The Available
Attribute panel displays a list of attributes corresponding to the
element selected in the Element List panel.

14. Click Next. The List Screen Fields window displays.

Note: By default, a label is associated with each control
unless the control itself is a label.

90 Customizing the Rich Client Platform Interface Guide

Creating a Rich Client Platform Composite Using the Rich Client Platform Search List

Figure 7–5 List Screen Fields Window

15. Configure the List screen fields selected in the previous page. In List
Screen Title, enter the title of the List screen. Specify the
AttributeBinding, ColumnBinding, ColumnHeader, and width to use on
each field. You can change the physical ordering of the List screen
controls by clicking the Move Up or Move Down button.

16. Click Next. The Select Template window displays.

Creating a Rich Client Platform Composite Using the Rich Client Platform Composite

Creating and Adding Screens to Rich Client Platform Applications 91

17. From the Generator Template combo box, select the template. Based
on the template, the Search List screen is created. Each template
supports certain configurable attributes. The template is inbuilt with
the default layout colspan, width, columnheader, and so forth. To
change the configurable attribute, click Configure.

18. Click Finish. The system automatically creates the composite java file
such as NewSearchListPanel.java and behavior java file such as
NewSearchListPanelBehavior.java in the specified source folder.
These files are stored under the specified package.

7.3 Creating a Rich Client Platform Composite
Using the Rich Client Platform Composite Wizard

To create a Rich Client Platform composite using the Rich Client Platform
Composite wizard:

1. Start the Eclipse SDK.

2. In the navigator view, expand the plug-in project that you created
when setting up the development environment. For more information
about creating a plug-in project, see Section 3.3, "Creating a Plug-In
Project".

3. To store the screens, right-click on the folder.

4. Select New > Other... from the pop-up menu. The New window
displays.

5. From the list of wizards, select Rich Client Platform Wizards category
> UI Wizards > Rich Client Platform Composite.

6. Click Next. The New Rich Client Platform Composite window displays.

92 Customizing the Rich Client Platform Interface Guide

Creating a Rich Client Platform Composite Using the Rich Client Platform Composite

Figure 7–6 New Rich Client Platform Composite Window

About Designing a Rich Client Platform Composite

Creating and Adding Screens to Rich Client Platform Applications 93

7. Click Finish. The system creates a composite file and behavior file in
the specified source folder. These files are stored in the package that
you specified. Figure 7–7 illustrates a typical folder structure that has
both Java files stored under the package name.

Figure 7–7 Typical Folder Structure in Eclipse

7.4 About Designing a Rich Client Platform
Composite

You can customize the layout and alignment of your screen as needed. In
Visual Editor (Eclipse plug-in), use the Standard Widget Toolkit (SWT) to
design UIs.

The Visual Editor enables you to work with layout managers and easily
design your screen. This section explains how to create a simple Search
and List screen with an example. Figure 7–8 depicts a sample Search and
List screen.

Table 7–3 New Rich Client Platform Composite Window

Field Description

Source Folder: The path of the folder that you selected
automatically displays. Click Browse to browse to
the source folder where you want to store the
composite and behavior java files.

Package: Enter the name of the package in which you
want to store the composite and behavior java
files (if necessary). This helps you to easily
manage the directory structure of your plug-in
project. If not specified, the system
automatically creates the composite java file with
the default package name.

Composite File Name: By default, the NewPanel.java composite file name
displays. Enter a new composite file name, if
necessary.

Composite file
Behavior file

Package name

94 Customizing the Rich Client Platform Interface Guide

About Designing a Rich Client Platform Composite

Figure 7–8 Search and List Screen

You can divide the Search and List screen into the following panels:

Search Criteria panel—This panel contains controls that are used to
get input from the user. This may include text boxes, combo boxes,
radio buttons, checkboxes, and so forth. When you click the search
button, the appropriate API is called with contents in the controls as
input to the API. The API output is displayed in the Search Results
panel.

For more information about creating the search criteria panel, see
Section 7.5, "Creating the Search Criteria Panel for a Rich Client
Platform Composite".

Search
Criteria
Panel

Search
Results
Panel

Creating the Search Criteria Panel for a Rich Client Platform Composite

Creating and Adding Screens to Rich Client Platform Applications 95

Search Results panel—This panel displays the search results. If the
results returns multiple items, you can show the items in a table.
Otherwise, you can display data using suitable controls.

For more information about creating the search results panel, see
Section 7.7, "Creating the Search Result Panel for a Rich Client
Platform Composite".

7.5 Creating the Search Criteria Panel for a Rich
Client Platform Composite

To create the Search Criteria panel for the Search and List screen:

1. Start the Eclipse SDK.

2. In the navigator window, expand the plug-in project that you created.

3. Expand the folder where you have stored the Rich Client Platform
composite file. For more information about creating the Rich Client
Platform composite, see Section 7.3, "Creating a Rich Client Platform
Composite Using the Rich Client Platform Composite Wizard".

4. Right-click the Rich Client Platform composite file and select Open
With > Visual Editor from the pop-up menu. The composite file opens
in the Visual Editor UI. The Java Beans view automatically opens on
the left-hand side of the Eclipse workbench along with other views.
Otherwise, manually open the Java Beans View by selecting Window
> Show View > Other.... From the list of views under Java, select
Java Beans.

In the Java Beans view, you can view the hierarchy of SWT containers
and controls.

In the Properties view, you can view properties and values of the
selected containers (composite and group) and controls (labels, text
boxes, combo boxes, and so forth).

You can select containers or controls from the Visual Editor UI or Java
Beans View.

5. From the Java Beans view, select "this" composite.

6. From the Properties view, in the layout property, select FillLayout
from the drop-down list.

7. From the Java Beans view, select "pnlRoot" composite.

96 Customizing the Rich Client Platform Interface Guide

Creating the Search Criteria Panel for a Rich Client Platform Composite

8. From the Properties view, select the GridLayout value from the
drop-down list for the layout property.

9. From the Palette, click SWT Containers.

10. Select Composite and place it in the pnlRoot composite. The Name
pop-up window displays.

11. Enter the name for the Composite. For example, cmpSearchCriteria.

12. From the Properties view, select the GridLayout value from the
drop-down list for the layout property.

13. Right-click the cmpSearchCriteria composite, and select the
Customize Layout... from the pop-up menu. The Customize Layout
pop-up window displays.

Figure 7–9 Customize Layout

14. In the Grid Columns panel, in Number of columns:, enter 4.

15. Select the Component tab. In the Fill panel, click to fill the excess
horizontal space.

16. In the Grab Excess panel, click to grab the excess horizontal
space.

17. Now add various controls to the cmpSearchCriteria composite. For
more information about adding controls to the cmpSearchCriteria
composite, see Section 7.6, "Adding Controls to the Search Criteria
Panel for a Rich Client Platform Composite".

Adding Controls to the Search Criteria Panel for a Rich Client Platform Composite

Creating and Adding Screens to Rich Client Platform Applications 97

18. Bind the controls to display the required data. For more information
about binding controls, see Section 7.11, "Binding Controls and
Classes for Rich Client Platform Screens".

7.6 Adding Controls to the Search Criteria Panel
for a Rich Client Platform Composite

To add various controls to the composite follow these steps:

1. From the Palette, click SWT Controls.

2. Select Label and place it in the cmpSearchCriteria composite. The
Name pop-up window displays.

3. Enter the name of the Label. For example, lblOrderNo.

4. In the Properties view, enter the text property value as OrderNo.

5. Right-click the lblOrderNo label and select Customize Layout... from
the pop-up menu. The Customize Layout pop-up window displays as
shown in Figure 7–9.

6. Select the Component tab. In the Fill panel, click to fill the excess
horizontal space. Click .

7. From SWT Controls, select Text and place it after the lblOrderNo
label. The Name pop-up window displays.

8. Enter the name for the Text. For example, txtOrderNo.

9. Right-click the txtOrderNo text box and select Customize Layout...
from the pop-up menu. The Customize Layout pop-up window
displays as shown in Figure 7–9.

10. Select the Component tab. In Span panel, in Horizontal, enter 3.

11. In the Fill panel, click to fill the excess horizontal space and click
.

12. From SWT Controls, select Label and place it after the txtOrderNo
text box. The Name pop-up window displays.

13. Enter the name for the Label. For example, lblStatus.

14. In the Properties view, enter the text property value as Status.

98 Customizing the Rich Client Platform Interface Guide

Adding Controls to the Search Criteria Panel for a Rich Client Platform Composite

15. Right-click the lblStatus label and select Customize Layout... from the
pop-up menu. The Customize Layout pop-up window displays as
shown in Figure 7–9.

16. Select the Component tab. In the Fill panel, click to fill the excess
horizontal space and click .

17. From SWT Controls, select Combo and place it after the lblStatus
label. The Name pop-up window displays.

18. Enter the name for the Combo. For example, cmbStatus.

19. Right-click the cmbStatus composite, and select the Customize
Layout... from the pop-up menu. The Customize Layout pop-up
window displays as shown in Figure 7–9.

20. Select the Component tab. In Grab Excess panel, click to grab the
excess horizontal space.

21. In the Fill panel, click to fill the excess horizontal space. Click .

22. From SWT Controls, select CheckBox and place it after the cmbStatus
combo box. The Name pop-up window displays.

23. Enter the name of the CheckBox. For example, chkAcrossEnterprise.

24. In the Properties view, enter the text property value as Across
Enterprise.

25. Select the Component tab. In the Fill panel, click to fill the excess
horizontal space. Click .

26. From SWT Controls, select Button and place it after the
chkAcrossEnterprise check box. The Name pop-up window displays.

27. Enter the name of the Button. For example, btnSearch.

28. In the Properties view, enter the text property value as Search.

29. Right-click the btnSearch button and select Customize Layout... from
the pop-up menu. The Customize Layout pop-up window displays as
shown in Figure 7–9.

30. Select the Component tab. In the Alignment panel, click to right
align the btnSearch button.

31. In the Grab Excess panel, click to grab the excess horizontal
space.

Adding Controls to the Search Criteria Panel for a Rich Client Platform Composite

Creating and Adding Screens to Rich Client Platform Applications 99

32. From SWT Containers, select Group and place it after the btnSearch
command button. The Name pop-up window displays.

33. Enter the name of the Group. For example, grpPaymentType.

34. In the Properties view, select the GridLayout value from the
drop-down list for the layout property.

35. Enter the text property value as Payment Type.

36. Right-click the grpPaymentType group and select Customize Layout...
from the pop-up menu. The Customize Layout pop-up window
displays as shown in Figure 7–9.

37. In the Grid Columns panel, in Number of columns:, enter 2.

38. Select the Component tab. In Span panel, in Horizontal, enter 4.

39. From SWT Containers, select RadioButton and place it inside the
grpPaymentType group. The Name pop-up window displays.

40. Enter the name for the RadioButton. For example, rdbtnCheck.

41. In the Properties view, enter the text property value as Check.

42. Add another radio button and enter the name for the RadioButton.
For example, rdbtnCreditCard.

43. In the Properties view, enter the text property value as Credit Card.

44. Click . The Search Criteria panel gets created as shown:

100 Customizing the Rich Client Platform Interface Guide

Creating the Search Result Panel for a Rich Client Platform Composite

Figure 7–10 Search Criteria Panel

7.7 Creating the Search Result Panel for a Rich
Client Platform Composite

To create the Search Results panel for the Search and List screen:

1. From the Palette, click SWT Containers.

2. Select Composite and place it under the pnlRoot composite. The
Name pop-up window displays.

3. Enter the name for the Composite. For example, cmpSearchResult.

4. From the Properties view, select the GridLayout value from the
drop-down list for the cmpSearchResult composite.

5. Right-click the cmpSearchResult composite, and select the Customize
Layout... from the pop-up menu. The Customize Layout pop-up
window displays as shown in Figure 7–9.

6. Select the Layout tab. In Grid Columns panel, in Number of columns,
enter 1.

7. Select the Component tab. In Fill panel:

Click to fill the excess horizontal space.

Click to fill the excess vertical space.

8. In Grab Excess panel:

Click to grab the excess horizontal space.

Click to grab the excess vertical space.

Click .

Displaying Paginated Results in a Rich Client Platform Composite

Creating and Adding Screens to Rich Client Platform Applications 101

9. Create a standard table in the cmpSearchResult composite. For more
information about creating standard tables, see Section 7.9.1,
"Creating Standard Tables".

10. Click . The following Search Results panel is created:

Figure 7–11 Search Results Panel

11. Bind the table and table columns with the required data. For more
information about binding tables, see Section 7.31, "Setting Bindings
for Standard Tables".

7.8 Displaying Paginated Results in a Rich Client
Platform Composite

You can display paginated results in a Search and List composite. The
Search and List composite that wants to display the paginated results
must implement the IYRCPaginatedSearchAndListComposite interface
and return an instance of the YRCPaginationData object. This
YRCPaginationData object should contain the pagination strategy that
you want to use, along with the name of the table in which you want to
display the paginated results. The YRCPaginatedData is internally used by

102 Customizing the Rich Client Platform Interface Guide

Displaying Paginated Results in a Rich Client Platform Composite

the system to make a pagination call to the getPage API in order to get
the pagination results. Use one of the following pagination strategies to
get the paginated results:

GENERIC

ROWNUM

RESULTSET

NEXTPAGE

By default, the GENERIC pagination strategy is used to get the paginated
results.

For more information about the getPage API and various pagination
strategies, see the Selling and Fulfillment Foundation: Javadocs.

7.8.1 Page Size
To configure the page size for displaying the paginated data, use the
<INSTALL_DIR>/properties/customer_overrides.properties file to
set the yfc.ui.ListPageSize property. For additional information about
overriding properties using the customer_overrides.properties file,
see the Selling and Fulfillment Foundation: Properties Guide.

You can also set this property during application initialization by calling
the setpageSize() of the YRCPaginationData class.

Note: Screens that make pagination calls should set the
YRCApiContext.setPaginationRequired property to "true". If
not set to "true", a normal API call is performed.

Note: If you try to use a feature that is not supported in
a particular pagination strategy, the system throws an
YRCPaginationException exception.

Note: If in the customer_overrides.properties file, the
yfc.ui.ListPageSize attribute is not set. The system
defaults the page size to 50.

Displaying Paginated Results in a Rich Client Platform Composite

Creating and Adding Screens to Rich Client Platform Applications 103

7.8.2 YRCPaginatedData
Return an instance of the YRCPaginationData class with the following
parameters:

paginationStrategy(int)—The pagination strategy that you want to
use to get the paginated results.

resultsTable(Table)—The name of the table in which you want to
display the paginated results.

7.8.3 YRCPaginationException
Return an instance of the YRCPaginationException class to throw an
exception to indicate that a particular pagination strategy does not
support this feature. The exception is thrown when the system attempts
to call the getPage API, and either the pagination is not supported for
that particular screen or composite, or the pagination data is null.

7.8.4 IYRCPageNavigator
To get a handle for the various navigation operations for paginated
results, call the getPageNavigator() method available in the behavior
class. This method returns the IYRCPageNavigator interface, which can
be used to handle the following navigation options for the paginated
result set:

Next Page—To navigate to the next page in the paginated result set,
use the showNextPage() method of the YRCPaginationNavigator class.
Pass the pagination data to this method.

Previous Page—To navigate to the previous page in the paginated
result set, use the showPreviousPage() method of the
YRCPaginationNavigator class. Pass the pagination data to this
method.

Goto Page—To navigate to a particular page in the paginated result
set, use the gotoPage() method of the YRCPaginationNavigator class.
Pass the pagination data and the page number to this method.

104 Customizing the Rich Client Platform Interface Guide

Creating Tables for Rich Client Platform Screens

7.8.5 Server-Side Sorting
You can perform server-side sorting for a table by calling the
performSort() method of the IYRCPageNavigator interface. Pass the
pagination data to this method.

You can also perform server-side sorting for a table by right-clicking the
Table column and selecting Sort from the pop-up menu.

7.9 Creating Tables for Rich Client Platform
Screens

The Rich Client Platform supports two types of tables, standard tables
and editable tables. As the name suggests, you can modify the data in an
editable table, but not in a standard table.

7.9.1 Creating Standard Tables
You can create a standard table and add columns to this table.

To create a standard table:

1. From the Palette, click SWT Controls.

2. Select Table and place it in a composite. The Name pop-up window
displays.

3. Enter the name for the Table. For example, tblSearchResults.

4. Right-click the tblSearchResults table, and select the Customize
Layout... from the pop-up menu. The Customize Layout pop-up
window displays as shown in Figure 7–9.

5. Set the layout properties such as Fill, Grab Access, and so forth as
needed.

Note: To get the pop-up menu for server side sorting, you
must call the setServerSortBinding() method of the
YRCTblClmBindingData class and pass the XPath of the
attribute (on which you want perform the sort operation)
to the method.

Creating Tables for Rich Client Platform Screens

Creating and Adding Screens to Rich Client Platform Applications 105

7.9.2 Adding Columns to the Standard Table
To add columns to a table:

1. From the Palette, click SWT Controls.

2. Select TableColumn and place it in a table. The Name pop-up window
displays. You can add as many columns as you want in a table.

3. Enter the name for each TableColumn that you add to a table. For
example, tblcolOrderNo.

4. Bind the table and table columns with the data. For more information
about binding a standard table, see Section 7.31, "Setting Bindings
for Standard Tables".

7.9.3 Creating Editable Tables
To create an editable table:

1. Create a standard table. For more information about creating a
standard table, see Section 7.9.1, "Creating Standard Tables".

2. To change the standard table to an editable table, associate each
table column to a specific cell editor.

Create an array of cell editors[] of size that is equal to number of
columns. For example:

String[] editors = new String[noOfColumns];

The Rich Client Platform supports the following cell editors that are
defined in YRCInternalConstants class:

YRCInternalConstants.YRCComboBoxCellEditor

YRCInternalConstants.YRCTextCellEditor

YRCInternalConstants.YRCCheckBoxCellEditor

3. Create a cell editor and associate with a column. This column acts as
an editable cell. For example:

editors[columnIndex1] = YRCConstants.YRC_COMBO_BOX_CELL_EDITOR;

Note: You must write the code for creating an editable
table in the Rich Client Platform composite class.

106 Customizing the Rich Client Platform Interface Guide

Naming Controls for Rich Client Platform Screens

editors[columnIndex2] = YRCConstants.YRC_TEXT_BOX_CELL_EDITOR;

4. After creating all cell editors, set the CellTypes for the table with the
cell editor array as the input argument. For example:

tableBindingData.setCellTypes(editors);

5. Bind the table and table columns with the required data. For more
information about binding an editable table, see Section 7.32,
"Setting Bindings for an Editable Table".

7.10 Naming Controls for Rich Client Platform
Screens

To name a control, invoke the setName() method on the binding object of
that particular control. You must always set a unique name for each
control on the screen so that it is easy to refer this control in other files.

To name a control, you must create a binding object.

7.10.1 Creating a Binding Object
To create a binding object for naming a control:

Create a new instance of binding class for a specific control. For example,
to name a text box, create the following:

YRCTextBindingData oData = new YRCTextBindingData();

where YRCTextBindingData is the class to set bindings for the text box
and oData is the binding object.

Note: When creating a combo box cell editor you must
create a YRCComboBindingData binding object and set the
appropriate bindings. For more information about binding a
combo box cell editor, see Section 7.32.1, "Binding Combo
Box Cell Editors".

Binding Controls and Classes for Rich Client Platform Screens

Creating and Adding Screens to Rich Client Platform Applications 107

7.10.2 Naming a Control
Use the binding object that you created to name the control. For more
information about creating binding objects, see Section 7.10.1, "Creating
a Binding Object".

To name a control:

1. Set the name of the control as follows:

oData.setName("txtOrderNo");

where txtOrderNo is the name of the text box.

2. Set the binding data for the control by associating the binding object
to the key for that control. For example:

txtOrderNo.setData(YRCConstants.YRC_TEXT_BINDING_DEFINATION,oData);

where txtOrderNo is the reference variable name of the text box,
which you specified in the visual editor and YRCConstants.YRC_TEXT_
BINDING_DEFINATION is the key used for identifying the text box
binding object.

If the binding object for a control such as composite or group does not
exist, or if you want to name a control without creating the binding
object, you can directly set the name for that control using the setData()
method. For example,

grpSearchCriteria.setData(YRCConstants.YRC_CONTROL_NAME, "grpSearchCriteria");

where grpSearchCriteria is the reference variable name of the group,
which you specified in the visual editor.

7.11 Binding Controls and Classes for Rich Client
Platform Screens

Bindings are defined to map an input XML model to the screen and back
from the screen to an target XML model.

Note: Sterling Commerce recommends that you do not
use the same binding object for multiple controls.

108 Customizing the Rich Client Platform Interface Guide

Binding Controls and Classes for Rich Client Platform Screens

7.11.1 Binding Classes
The Rich Client Platform allows you to create binding objects of the
following class types for different controls:

YRCLabelBindingData class for binding labels.

YRCTextBindingData class for binding text boxes.

YRCStyledTextBindingData class for binding styledtext components.

YRCComboBindingData class for binding combo boxes.

YRCListBindingData class for binding list boxes.

YRCButtonBindingData class for binding checkboxes and radio
buttons.

YRCLinkBindingData class for binding links.

YRCTableBindingData class for binding tables.

YRCTblClmBindingData class for binding table columns.

7.11.2 Types of Bindings Required for Controls on Rich
Client Platform Screens

Each control is associated with a set of bindings. The Rich Client Platform
supports the following types of bindings for the control types:

Label

Check Box

Radio Button

Text Box, StyledText component, and Link

Combo Box and List Box

Table

Table Column—For Table columns, set the Attribute Binding.

Source Binding for Controls on Rich Client Platform Screens

Creating and Adding Screens to Rich Client Platform Applications 109

7.12 Source Binding for Controls on Rich Client
Platform Screens

Source binding displays XML data in the screen returned by an API by
mapping the XML attributes to the screen components. Use the source
binding to specify the XML path of an attribute whose value you want to
get from an XML model and display in a control. For example, consider
the following XML model:

<OrderList>
 <Order OrderNo="Y00102495" Status="Accepted">
</OrderList>

If you want to get the value of the OrderNo attribute from the XML model
and display in a text box, set the source binding for the text box as:

txtBindingData.setSourceBinding("OrderDetails:OrderList/Order/@OrderNo")

where txtBindingData is the text box binding object and
OrderDetails is the namespace of the XML model.

When you set the source binding for a table, specify only the repeating
element of the XML model. For example, consider the following XML
model:

<OrderList>
 <Order OrderNo="Y00102495" Status="Accepted">
 <Order OrderNo="Y00992495" Status="Scheduled">
 <Order OrderNo="Y00990195" Status="Shipped">
</OrderList>

Now, set the source binding for the table as:

tblBindingData.setSourceBinding("Results:Orderlist/Order")

where tblBindingData is the table binding object, Results is the
namespace of the XML model, and Order is the repeating element in the
XML model.

7.12.1 Multiple Source Bindings
The Rich Client Platform supports multiple source bindings that allow you
to display the values of multiple attributes in the same control. You can
separate multiple source bindings by a semicolon. Using the key binding,
you can change the format of the multiple source-binding values.

110 Customizing the Rich Client Platform Interface Guide

Target Binding for Controls on Rich Client Platform Screens

The Rich Client Platform allows you to set multiple source bindings for a
control. However, the XML model should have the same namespace for
multiple binding attributes.

For example, consider the XML model as specified in Section 7.12,
"Source Binding for Controls on Rich Client Platform Screens". To display
the values of both OrderNo and OrderDate attributes of the XML model
in a text box, do the following:

1. Set the multiple source bindings for the text box as:

txtBindingData.setSourceBinding("OrderDetails:OrderList/Order/@OrderNo;Order
Details:OrderList/Order/@Status")

where txtBindingData is the text box binding object and
OrderDetails is the namespace of the XML model.

2. Set the key binding for the text box as:

txtBindingData.setKey("orderno_and_status_description")

where orderno_and_status_description is the key.

For more information about the key binding, see Section 7.20, "Key
Binding for Controls on Rich Client Platform Screens".

3. In the <Plug-in id>_bundle.properties file, enter the key value
pair (<key> = <value>) bundle entry for the multiple source binding
as:

orderno_and_status_description = The Order No. {0} was booked on {1}

where orderno_and_status_description is the key. {0} and {1}
are the positions of the binding attributes in the XML path.

The value in the text box displays as: The Order No. Y00102495 was
booked on 2005-04-07.

7.13 Target Binding for Controls on Rich Client
Platform Screens

Target binding allows you to create an input XML for an API that contains
data entered on the screen. You can use the target binding to specify the
XML path of an attribute whose value you want to get from a control and
set in an XML model. For example, consider the following XML model:

Target Binding for Controls on Rich Client Platform Screens

Creating and Adding Screens to Rich Client Platform Applications 111

<OrderList>
 <Order OrderNo="Y00102495" Status="Accepted">
</OrderList>

If you want to set the value entered in the text box for the OrderNo
attribute in the XML model, set the target binding for the text box as:

txtBindingData.setTargetBinding("OrderDetails:OrderList/Order/@OrderNo")

where txtBindingData is the text box binding object and OrderDetails
is the namespace of the XML model.

When you set the target binding for a table, specify only the repeating
element of the XML model. For example, consider the following XML
model:

<OrderList>
 <Order OrderNo="Y00102495" Status="Accepted">
 <Order OrderNo="Y00992495" Status="Scheduled">
 <Order OrderNo="Y00990195" Status="Shipped">
</OrderList>

Now, set the target binding for the table as:

tblBindingData.setTargetBinding("Results:Orderlist/Order")

where tblBindingData is the table binding object, Results is the
namespace of the XML model, and Order is the repeating element in the
XML model.

7.13.1 Multiple Target Bindings
The Rich Client Platform supports multiple target bindings, allowing you
to set the value of the attributes at multiple locations in the XML models.
This is useful when you want to pass the value of a single control on the
screen as an input to multiple APIs. You can also specify multiple target
bindings for a control by separating them by a semicolon. For example,
consider the following XML models:

OrderListDetails is the namespace of the following model.

<OrderList OrderNo="Y00102495" OrderDate="2005-04-07">
 <Order OrderNo="Y00102495" Status="Accepted">
</OrderList>

112 Customizing the Rich Client Platform Interface Guide

Checked Binding for Controls on Rich Client Platform Screens

OrderLineDetails is the namespace of the following model.

<OrderLine>
 <OrderLineList>
 <Order OrderNo="Y00102495" ItemID="MOUSE"/>
 </OrderLineList>
</OrderLine>

If you want to set the value entered in the text box for the OrderNo
attribute in the XML models, set the target binding for the text box as:

txtBindingData.setTargetBinding("OrderListDetails:OrderList/@OrderNo;OrderListDe
tails:OrderList/Order/@OrderNo;OrderLineDetails:OrderLine/OrderLineList/Order/@O
rderNo")

where txtBindingData is the text box binding object.
OrderListDetails and OrderLineDetails are the namespaces of the
XML models.

7.14 Checked Binding for Controls on Rich Client
Platform Screens

Checked binding is used only for checkboxes and radio buttons. Checked
binding is used to specify the value based on which radio button gets
selected or check box gets checked or unchecked. Use the checked
binding to specify a string to get and set the value of an attribute in an
XML model.

When getting the attribute value, the system compares the string value
with the attribute value in the XML model. If the value matches, the
check box of the corresponding attribute is automatically checked.

When you check a box, the system sets the string value specified in the
Checked binding as the attribute value in the XML model.

For example, consider the following XML model:

<OrderList>
 <Order OrderNo="Y001" Status="Accepted"
 IsAccrossEnterprise="Y" FromHistory="N"/>
</OrderList>

List Binding for Controls on Rich Client Platform Screens

Creating and Adding Screens to Rich Client Platform Applications 113

For example, to get and set the value of the IsAccrossEnterprise
attribute value as "Y", set the checked binding as follows:

btnBindingData.setCheckedBinding("Y")

where btnBindingData is the button binding object.

7.15 Unchecked Binding for Controls on Rich
Client Platform Screens

The unchecked binding is used to specify a string to get and set the value
of an attribute in an XML model.

When comparing the value of an attribute, the value of the specified
string is compared with the attribute value. If the value matches, the
check box of the corresponding attribute gets automatically unchecked.

When setting the value of an attribute, the system sets the string value
as the attribute value in the XML model when you uncheck the box.

For example, consider the XML model as specified in Section 7.14,
"Checked Binding for Controls on Rich Client Platform Screens". If you
want to get and set the value of the IsAccrossEnterprise attribute as
"N", set the unchecked binding as:

btnBindingData.setUnCheckedBinding("N")

where btnBindingData is the button binding object.

7.16 List Binding for Controls on Rich Client
Platform Screens

Use the list binding to specify the XML path of the repeating element to
populate the list box or combo box with a list of attribute values.

For example, consider the following XML model:

<Order>
 <OrderStatusList>

114 Customizing the Rich Client Platform Interface Guide

Code Binding for Controls on Rich Client Platform Screens

 <OrderStatus Status="1001" StatusDesc="Created"/>
 <OrderStatus Status="1002" StatusDesc="Packed"/>
 <OrderStatus Status="1003" StatusDesc="Released"/>
 <OrderStatus Status="1004" StatusDesc="Shipped"/>
 </OrderStatusList>
</Order>

If you want to populate the list box or combo box with the StatusDesc
attribute values, set the list binding as:

cmbBindingData.setListBinding("OrderStatusDetails:Order/OrderStatusList/OrderSta
tus")

where cmbBindingData is the combo binding object,
OrderStatusDetails is the namespace of the XML model, and
OrderStatus is the repeating element in the XML model.

7.17 Code Binding for Controls on Rich Client
Platform Screens

Use the code binding to specify the XML path of an attribute. The value
assigned to the code binding attribute is based on the value selected
from the list box or combo box.

For example, consider the XML model as specified in Section 7.16, "List
Binding for Controls on Rich Client Platform Screens". To get the value of
the Status attribute based on the value selected for the StatusDesc
attribute, set the code binding as:

cmbBindingData.setCodeBinding("Status")

where Status is the attribute whose value is picked from the XML model
based on the value of the StatusDesc attribute, which is specified in the
Section 7.18, "Description Binding for Controls on Rich Client Platform
Screens".

Note: You must not specify an XML attribute in the list
binding.

Attribute Binding for Controls on Rich Client Platform Screens

Creating and Adding Screens to Rich Client Platform Applications 115

7.18 Description Binding for Controls on Rich
Client Platform Screens

Use the description binding for displaying the attribute’s value on the
screen. To display the attribute value, specify the attribute corresponding
to the repeating element that you specified in the list binding.

For example, consider the XML model as specified in Section 7.16, "List
Binding for Controls on Rich Client Platform Screens". If you want to
display the value of StatusDesc attribute, then set the Description
Binding as:

cmbBindingData.setDescriptionBinding("StatusDesc")

where cmbBindingData is the combo binding object and StatusDesc is
the attribute corresponding to the repeating element specified in the List
Binding for Controls on Rich Client Platform Screens.

7.19 Attribute Binding for Controls on Rich Client
Platform Screens

Use the attribute binding to specify the XML path of the attribute whose
value you want to display in a table column. For example, consider the
following XML model:

<OrderList>
 <Order ItemID="MOUSE" ItemDesc="Pointing device"/>
 <Order ItemID="KEYBOARD" ItemDesc="Keyboard Device"/>
 <Order ItemID="PENCIL" ItemDesc="7HB Bold Pencil"/>
 <Order ItemID="PEN" ItemDesc="Super Pen"/>
</OrderList>

To display the value of ItemID attribute in the table column:

Set the source binding for the table as:

ItemDetails:OrderList/Order

where Order is the repeating element in the XML model.

Specify the attribute binding as: ItemID.

116 Customizing the Rich Client Platform Interface Guide

Attribute Binding for Controls on Rich Client Platform Screens

where ItemID is the attribute corresponding to the repeating
element as specified in source binding.

7.19.1 Multiple Attribute Bindings
The Rich Client Platform supports multiple attribute bindings, allowing
you to display the values of multiple attributes in a table column. You can
separate multiple attribute bindings by a semicolon. Using the key
binding, you can change the format of the multiple attribute-binding
values.

The Rich Client Platform allows you to set multiple attribute bindings for
a control. But the XML model must have the same namespace for
multiple binding attributes.

For example, to display the values of ItemID and ItemDesc attributes in
a table column:

Set the attribute binding for the table column as:

ItemID;ItemDesc

Set the key binding for the table column as:

item_description

where item_description is the key.

For more information about key binding, see Section 7.20, "Key
Binding for Controls on Rich Client Platform Screens".

In the bundle file, enter the <key> = <value> pair bundle entry for
the previously specified source binding as:

item_description = {0} : {1}

where item_description is the key. {0} and {1} is the position of
the binding attributes in the XML path as specified in the source
binding. For more information about source binding, see
Section 7.12, "Source Binding for Controls on Rich Client Platform
Screens".

As a result, the table column displays the value as: MOUSE : Pointing
Device.

Binding Input to Custom Controls on Rich Client Platform Screens

Creating and Adding Screens to Rich Client Platform Applications 117

7.20 Key Binding for Controls on Rich Client
Platform Screens

Use the key binding to specify a resource bundle key, which you want to
use to format and display the XML data within a localizable sentence or
combined with another XML data attribute. The key binding is used in
conjunction with the source binding or attribute binding as described in
the previous sections. For example, consider the following XML model:

<OrderList>
 <Order ItemID="MOUSE" ItemDesc="Pointing device"/>
</OrderList>
To format the value of the ItemID attribute:

Specify the source binding as:

ItemDetails:OrderList/Order/@ItemID

Specify the key binding as: item_description

The bundle file contains the following <key>=<value> pair bundle entry
for the previously specified key:

item_description= The item ordered is : {0}

where item_description is the key. {0} is the position of the binding
attributes in the XML path.

The value displayed is: The item ordered is MOUSE.

7.21 Binding Input to Custom Controls on Rich
Client Platform Screens

Custom Control Input binding allows you to configure following
parameters for a custom control:

BorderRequiredOnInputControls—Whether you want to have
borderaround the custom control or not.

Editable—Whether you want to make the custom control editable or
not.

118 Customizing the Rich Client Platform Interface Guide

About Setting Bindings for Controls on Rich Client Platform Screens

NoOfColumns—Number of columns you want to have in the custom
control.

Style(int)—Style you want to have for the custom control. For
example, SWT.LEFT, SWT.WRAP, and so forth.

For example, you can set the Custom Control Input Binding for a custom
control following:

1. Set the border for the custom control as:

cstmCtrlInputBindingData.setBorderRequiredOnInputControls(true);

where cstmCtrlInputBindingData is the custom control input binding
object.

2. To make the custom control editable, set the editable parameter as:

cstmCtrlInputBindingData.setEditable(false);

3. To define multiple columns for a custom control, set the NoOfColumns
parameter as:

cstmCtrlInputBindingData.NoOfColumns (3);

where (3} is the number of columns you want to have in the custom
control.

4. Set the custom control style as:

cstmCtrlInputBindingData.setStyle(SWT.LEFT);

7.22 About Setting Bindings for Controls on Rich
Client Platform Screens

Consider the following input and target XML models for specifying the
different bindings for controls:

7.22.1 Input XML Model
<Order OrderNo="Y001" Status="Included In Shipment"
 IsAccrossEnterprise="Y" FromHistory="N" Link
 Binding="A Link Binding Example : Click Me">
 <OrderLineList>
 <OrderLine ItemID="MOUSE" CodeDescription="First

Setting Bindings for Labels

Creating and Adding Screens to Rich Client Platform Applications 119

 Class" Code="A"/>
 <OrderLine ItemID="PEN" CodeDescription="Second
 Class" Code="B"/>
 <OrderLine ItemID="PENCIL" CodeDescription="First
 Class" Code="A"/>
 </OrderLineList>
</Order>

7.22.2 Target XML Model
<OrderList>
 <Order OrderNo="Y001" Status="Accepted"
 CodeDescription="First Class" Code="A"
 IsAccrossEnterprise="Y" FromHistory="N"/>
 <Order OrderNo="Y002" Status="Released"
 CodeDescription="Second Class" Code="B"
 IsAccrossEnterprise="N" FromHistory="Y"/>
 <Order OrderNo="Y003" Status="Shipped"
 CodeDescription="Third Class" Code="C"
 IsAccrossEnterprise="Y" FromHistory="Y"/>
</OrderList>
<OrderStatus>
 <Order OrderNo="Y001" Status="Accepted"/>
 <Order OrderNo="Y002" Status="Released"/>
 <Order OrderNo="Y003" Status="Shipped"/>
</OrderStatus>

7.23 Setting Bindings for Labels

To set bindings for a label, create a binding object for the label

7.23.1 Creating a Binding Object

To create a binding object for a label:

Create a new instance of the YRCLabelBindingData binding class. For
example:

YRCLabelBindingData lblBindingData = new YRCLabelBindingData();

120 Customizing the Rich Client Platform Interface Guide

Setting Bindings for Labels

where YRCLabelBindingData is the class to set bindings for the label and
lblBindingData is the binding object.

7.23.2 Steps to Bind a Label

1. Set the name of the label using the binding object that you created.
For example:

lblBindingData.setName("lblOrderNo");

where lblOrderNo is the name of the text box and lblBindingData
is the binding object.

2. Set the source binding for the label. For example:

lblBindingData.setSourceBinding("OrderDetails:Order/@OrderNo");

where OrderDetails is the namespace of the model.

For more information about source binding, see Section 7.12, "Source
Binding for Controls on Rich Client Platform Screens".

3. (Optional) Set the multiple source binding for the label. For example:

lblBindingData.setSourceBinding("OrderDetails:Order/@OrderNo;Order/@Status")
;
where OrderDetails is the namespace of the model.

For more information about multiple source binding, see Multiple
Source Bindings.

4. (Optional) Set the key binding for the label. For example:

lblBindingData.setKey("order_details");

where order_details is the key.

For more information about key binding, see Section 7.20, "Key
Binding for Controls on Rich Client Platform Screens".

Note: If you are specifying multiple source binding for the
label, this step is mandatory.

Setting Bindings for Text Boxes

Creating and Adding Screens to Rich Client Platform Applications 121

5. (Optional) If you want to display an image for this label, set the
server image configuration for the label to display the image from the
server. For example:

lblBindingData.setServerImageConfiguration(YRCConstants.IMAGE_SMALL);

where IMAGE_SMALL is the value of the Name attribute of the Config
element, which is defined in the configuration file. For more
information about configuring server images, see the Selling and
Fulfillment Foundation: Installation Guide.

6. Set the binding data for the label by associating the binding object to
the key. For example:

lblOrderNo.setData(YRCConstants.YRC_LABEL_BINDING_DEFINITION,
lblBindingData);

where lblOrderNo is the reference variable name of the label that
you specified in the visual editor and YRCConstants.YRC_LABEL_
BINDING_DEFINATION is the key used for identifying the label binding
object.

7.24 Setting Bindings for Text Boxes

To set bindings for a text box, you must create a binding object for the
text box.

7.24.1 Creating a Binding Object
To create a binding object for a text box:

Create a new instance of the YRCTextBindingData binding class. For
example:

YRCTextBindingData txtBindingData = new YRCTextBindingData();

where YRCTextBindingData is the class to set bindings for the text box
and txtBindingData is the binding object.

7.24.2 Steps to Bind a Text Box
1. Set the name of the text box by using the binding object that you

created. For example:

122 Customizing the Rich Client Platform Interface Guide

Setting Bindings for Text Boxes

txtBindingData.setName("txtOrderNo");

where txtOrderNo is the name of the text box and txtBindingData
is the binding object.

2. Set the source binding for the text box. For example:

txtBindingData.setSourceBinding("OrderDetails:Order/@OrderNo");

where OrderDetails is the namespace of the model.

For more information about source binding, see Section 7.12, "Source
Binding for Controls on Rich Client Platform Screens".

3. (Optional) Set the multiple source binding for the text box. For
example:

txtBindingData.setSourceBinding("OrderDetails:Order/@OrderNo;Order/@Status")
;
where OrderDetails is the namespace of the model.

For more information about multiple source binding, see Multiple
Source Bindings.

4. (Optional) Set the key binding for the text box. For example:

txtBindingData.setKey("order_details");

where order_details is the key.

For more information about key binding, see Section 7.20, "Key
Binding for Controls on Rich Client Platform Screens".

5. Set the target binding for the text box. For example:

txtBindingData.setTargetBinding("OrderListDetails:OrderList/Order/@OrderNo")
;

where OrderListDetails is the namespace of the model.

For more information about target binding, see Section 7.13, "Target
Binding for Controls on Rich Client Platform Screens".

Note: If you are specifying multiple source binding for the
text box, this step is mandatory.

Setting Bindings for StyledText Components

Creating and Adding Screens to Rich Client Platform Applications 123

6. (Optional) Set the multiple target binding for the text box. For
example:

txtBindingData.setTargetBinding("OrderDetails:Order/@OrderNo;OrderStatus/Ord
er/@Status");

where OrderDetails is the namespace of the model.

For more information about multiple target binding, see Multiple
Target Bindings.

7. Set the binding data for the text box by associating the binding object
to the key. For example:

txtOrderNo.setData(YRCConstants.YRC_TEXT_BINDING_DEFINATION,txtBindingData);

where txtOrderNo is the reference variable name of the text box,
which you specified in the visual editor and YRCConstants.YRC_TEXT_
BINDING_DEFINATION is the key used for identifying the text box
binding object.

7.25 Setting Bindings for StyledText Components
To set bindings for a styledtext component, create a binding object for
the styledtext component.

7.25.1 Creating a Binding Object
To create a binding object for a styledtext component:

Create a new instance of the YRCStyledTextBindingData binding class.
For example:

YRCStyledTextBindingData styledTextBindingData = new YRCStyledTextBindingData();

where YRCStyledTextBindingData is the class to set bindings for the
text box and styledTextBindingData is the binding object.

7.25.2 Steps to Bind a StyledText Component
1. Set the name of the styledtext component using the binding object

that you created. For example:

styledTextBindingData.setName("styledTextOrderNo");

124 Customizing the Rich Client Platform Interface Guide

Setting Bindings for StyledText Components

where styledTextOrderNo is the name of the text box and
styledTextBindingData is the binding object.

2. Set the source binding for the styledtext component. For example:

styledTextBindingData.setSourceBinding("OrderDetails:Order/@OrderNo");

where OrderDetails is the namespace of the model.

For more information about source binding, see Section Section 7.12,
"Source Binding for Controls on Rich Client Platform Screens".

3. (Optional) Set the multiple source binding for the styledtext
component. For example:

styledTextBindingData.setSourceBinding("OrderDetails:Order/@OrderNo;Order/@S
tatus");

where OrderDetails is the namespace of the model.

For more information about multiple source binding, see Multiple
Source Bindings.

4. (Optional) Set the key binding for the styledtext component. For
example:

txtBindingData.setKey("order_details");

where order_details is the key.

For more information about key binding, see Section 7.20, "Key
Binding for Controls on Rich Client Platform Screens".

5. Set the target binding for the styledtext component. For example:

styledTextBindingData.setTargetBinding("OrderListDetails:OrderList/Order/@Or
derNo");

where OrderListDetails is the namespace of the model.

For more information about target binding, see Section 7.13, "Target
Binding for Controls on Rich Client Platform Screens".

Note: If you are specifying multiple source binding for the
styledtext component, this step is mandatory.

Setting Bindings for Combo Boxes

Creating and Adding Screens to Rich Client Platform Applications 125

6. (Optional) Set the multiple target binding for the styledtext
component. For example:

styledTextBindingData.setTargetBinding("OrderDetails:Order/@OrderNo;OrderSta
tus/Order/@Status");

where OrderDetails is the namespace of the model.

For more information about multiple target binding, see Multiple
Target Bindings.

7. Set the binding data for the styledtext component by associating the
binding object to the key. For example:

styledTextOrderNo.setData(YRCConstants.YRC_STYLED_TEXT_BINDING_
DEFINATION,styledTextBindingData);

where styledTextOrderNo is the reference variable name of the
styledText component, which you specified in the visual editor and
YRCConstants.YRC_STYLED_TEXT_BINDING_DEFINATION is the key
used for identifying the styledtext component binding object.

7.26 Setting Bindings for Combo Boxes

To set bindings for a combo box, create a binding object for the combo
box.

7.26.1 Creating a Binding Object
To create a binding object for a combo box:

Create a new instance of the YRCComboBindingData binding class. For
example:

YRCComboBindingData cmbBindingData = new YRCComboBindingData();

where YRCComboBindingData is the class to set bindings for the combo
box and cmbBindingData is a binding object.

7.26.2 Steps to Bind a Combo Box
1. Set the name of the combo box using the binding object that you

created. For example:

126 Customizing the Rich Client Platform Interface Guide

Setting Bindings for Combo Boxes

cmbBindingData.setName("cmbCode");

where cmbCode is the name of the combo box and cmbBindingData is
the binding object.

2. Set the source binding for the combo box. For example:

cmbBindingData.setSourceBinding("OrderDetails:Order/OrderLineList/OrderLine/
@Code");

where OrderDetails is the namespace of the model.

For more information about source binding, see Section 7.12, "Source
Binding for Controls on Rich Client Platform Screens".

3. Set the list binding for the combo box. For example:

cmbBindingData.setListBinding("OrderListDetails:OrderList/Order");

where OrderListDetails is the namespace of the model.

For more information about list binding, see Section 7.16, "List
Binding for Controls on Rich Client Platform Screens".

4. Set the description binding for the combo box. For example:

 cmbBindingData.setDescriptionBinding("CodeDescription");

For more information about description binding, see Section 7.18,
"Description Binding for Controls on Rich Client Platform Screens".

5. Set the code binding for the combo box. For example:

cmbBindingData.setCodeBinding("Code");

For more information about code binding, see Section 7.17, "Code
Binding for Controls on Rich Client Platform Screens".

6. Set the target binding for the combo box. For example:

Note: For combo box, source binding is used to specify
the default value that should get selected in the combo
box. The value of the source binding attribute is compared
with the code binding attribute and the corresponding
value of the description binding attribute gets selected in
the combo box.

Setting Bindings for Combo Boxes

Creating and Adding Screens to Rich Client Platform Applications 127

cmbBindingData.setTargetBinding("OrderListDetails:OrderList/Order/@Code");

where OrderListDetails is the namespace of the model.

For more information about target binding, see Section 7.13, "Target
Binding for Controls on Rich Client Platform Screens".

7. Set the binding data for the combo box by associating the binding
object with the key. For example:

cmbCommonCode.setData(YRCConstants.YRC_COMBO_BINDING_
DEFINATION,cmbBindingData);

where cmbCommonCode is the reference variable name of the combo
box, which you specified in the visual editor and YRCConstants.YRC_
COMBO_BINDING_DEFINATION is the key used for identifying the combo
box binding object.

7.26.3 Populating Version-Specific Data in Combo Boxes
The Rich Client Platform supports multiple versions of Rich Client
Platform clients on a single server. In such a scenario, data populated in
combo boxes such as common codes vary between versions and do not
correspond to the version of the client launched. To overcome this
problem, combo binding is enabled for version awareness.

The getCommonCodeList API and YRCComboBindingData are enhanced
to include additional parameteres. The method
comboBindingData.setApplicationVersionSpecific(true)is called for
displaying version-specific data in select combo boxes for the required
application.

To populate the combo boxes with version-specific data:

1. The method setApplicationVersionSpecific is added to the
YRCComboBindingData to specify version-specific information in a
combo box, in the following format:

Note: For combo box, target binding is used to specify
the attribute whose value is set in the target XML model
when user selects a value from the combo box. The value
of the code binding attribute is set as the value of the
target binding attribute in the target XML model.

128 Customizing the Rich Client Platform Interface Guide

Setting Bindings for List Boxes

 public void setApplicationVersionSpecific(boolean versionSpecific)

2. Set versionSpecific to ''true''. If this is set to "true", the combo
boxes are populated with version-specific information such as
common codes. Only data pertaining to the version of the client
launched is populated in the combo box.

3. Combo boxes which are populated with version-specific data bear a
different theme, versionedComboTheme. Applications can override
this theme, if required. The Control Info Panel is updated to include
the version specific information as well as the theme applied for a
combo box as follows:

Is Application Version Specific: true

Theme Name: VersionedComboTheme

4. If data selected in the combo box is not compatible with the version
of the client launched, a default key DifferentVersionPreffix =
{0} is added to the Application Platform Bundle, where {0}
represents incompatible data. For example, if status information
"Chained Order Created" in a combo box is selected, but does not
correspond to the version of the client launched, it is displayed in the
following format:

 Chained Order created.

 The application can override this key.

7.27 Setting Bindings for List Boxes
To set bindings for a list box, create a binding object for the list box.

7.27.1 Creating a Binding Object
To create a binding object for a list box:

Create a new instance of the YRCListBindingData binding class. For
example:

YRCListBindingData lstBindingData = new YRCListBindingData();

where YRCListBindingData is the class to set bindings for the list box
and lstBindingData is a binding object.

Setting Bindings for List Boxes

Creating and Adding Screens to Rich Client Platform Applications 129

7.27.2 Steps to Bind a List Box
1. Set the name of the list box using the binding object that you

created. For example:

lstBindingData.setName("lstCommonCode");

where lstCommonCode is the name of the list box and
lstBindingData is the binding object.

2. Set the source binding for the list box. For example:

lstBindingData.setSourceBinding("OrderDetails:Order/OrderLineList/OrderLine/
@Code");

where OrderDetails is the namespace of the model.

For more information about source binding, see Section 7.12, "Source
Binding for Controls on Rich Client Platform Screens".

3. Set the list binding for the list box. For example:

lstBindingData.setListBinding("OrderListDetails:OrderList/Order");

where OrderListDetails is the namespace of the model.

For more information about list binding, see Section 7.16, "List
Binding for Controls on Rich Client Platform Screens".

4. Set the description binding for the list box. For example:

lstBindingData.setDescriptionBinding("CodeDescription");

For more information about description binding, see Section 7.18,
"Description Binding for Controls on Rich Client Platform Screens".

5. Set the code binding for the list box. For example:

lstBindingData.setCodeBinding("Code");

Note: For list box, source binding is used to specify the
default value that should get selected in the list box. The
value of the source binding attribute is compared with the
code binding attribute and the corresponding value of the
description binding attribute gets selected in the list box.

130 Customizing the Rich Client Platform Interface Guide

Setting Bindings for Checkboxes

For more information about code binding, see Section 7.17, "Code
Binding for Controls on Rich Client Platform Screens".

6. Set the target binding for the list box. For example:

lstBindingData.setTargetBinding("OrderListDetails:OrderList/Order/@Code");

where OrderListDetails is the namespace of the model.

For more information about target binding, see Section 7.13, "Target
Binding for Controls on Rich Client Platform Screens".

7. Set the binding data for the list box by associating the binding object
with the key. For example:

lstCommonCode.setData(YRCConstants.YRC_LIST_BINDING_
DEFINITION,lstBindingData);

where lstCommonCode is the reference variable name of the list box,
which you specified in the visual editor and YRCConstants.YRC_LIST_
BINDING_DEFINITION is the key used for identifying the combo box
binding object.

7.28 Setting Bindings for Checkboxes

To set bindings for a check box, create a binding object for the check
box.

7.28.1 Creating a Binding Object
To create a binding object for a check box:

Create a new instance of the YRCButtonBindingData binding class. For
example:

YRCButtonBindingData chkBindingData = new YRCButtonBindingData();

Note: For list box, target binding is used to specify the
attribute whose value is set in the target XML model when
user selects a value from the list box. The value of the
code binding attribute is set as the value of the target
binding attribute in the target XML model.

Setting Bindings for Checkboxes

Creating and Adding Screens to Rich Client Platform Applications 131

where YRCButtonBindingData is the class to set bindings for the check
box and chkBindingData is a binding object.

7.28.2 Steps to Bind a Check Box
1. Set the name of the check box using the binding object that you

created. For example:

chkBindingData.setName("chkAcrossEnterprice");

where chkAccrossEnterprice is the name of the check box and
chkBindingData is the binding object.

2. Set the source binding for the check box. For example:

chkBindingData.setSourceBinding("OrderDetails:Order/@IsAccrossEnterprice");

where OrderDetails is the namespace of the model.

For more information about source binding, see Section 7.12, "Source
Binding for Controls on Rich Client Platform Screens".

3. Set the target binding for the check box. For example:

chkBindingData.setTargetBinding("OrderDetails:Order/@IsAccrossEnterprice");

where OrderDetails is the namespace of the model.

For more information about target binding, see Section 7.13, "Target
Binding for Controls on Rich Client Platform Screens".

4. Set the checked binding for the check box. For example:

chkBindingData.setCheckedBinding("Y");

When getting the IsAcrossEnterprise field value from the input XML
model, the string "Y" is compared with the IsAcrossEnterprise field
value in the input XML model. If the value matches, the check box is
automatically checked. When setting the field value in the target XML
model, the string "Y" is set as the value for IsAcrossEnterprise field
when you check the box.

For more information about checked binding, see Section 7.14,
"Checked Binding for Controls on Rich Client Platform Screens".

5. Set the unchecked binding for the check box. For example:

132 Customizing the Rich Client Platform Interface Guide

Setting Bindings for Radio Buttons

chkBindingData.setUnCheckedBinding("N");

When getting the IsAcrossEnterprise field value from the input XML
model, the string "N" is compared with the IsAcrossEnterprise field
value in the input XML model. If the value matches, the check box is
automatically unchecked. When setting the field value in the target
XML model, the string "N" is set as the value for
IsAcrossEnterprise field when you uncheck the box.

For more information about unchecked binding, see Section 7.15,
"Unchecked Binding for Controls on Rich Client Platform Screens".

6. Set the binding data for the check box by associating the binding
object to the key. For example:

chkAcrossEnterprice.setData(YRCConstants.YRC_BUTTON_BINDING_
DEFINATION,chkBindingData);

where chkAcrossEnterprice is the reference variable name of the
check box, which you specified in the visual editor and
YRCConstants.YRC_BUTTON_BINDING_DEFINATION is the key used for
identifying the check box binding object.

7.29 Setting Bindings for Radio Buttons
To set bindings for a radio button, create a binding object for the radio
button.

7.29.1 Creating a Binding Object
To create a binding object for a radio button:

Create a new instance of the YRCButtonBindingData binding class. For
example:

YRCButtonBindingData rdBindingData = new YRCButtonBindingData();

where YRCButtonBindingData is the class to set bindings for the radio
button and rdBindingData is a binding object.

7.29.2 Steps to Bind a Radio Button
1. Set the name of the radio button using the binding object that you

created. For example:

Setting Bindings for Radio Buttons

Creating and Adding Screens to Rich Client Platform Applications 133

rdBindingData.setName("rdOpen");

where rdOpen is the name of the radio button and rdBindingData is
the binding object.

2. Set the source binding for the radio button. For example:

rdBindingData.setSourceBinding("OrderDetails:Order/@FromHistory");

where OrderDetails is the namespace of the model.

For more information about source binding, see Section 7.12, "Source
Binding for Controls on Rich Client Platform Screens".

3. Set the target binding for the radio button. For example:

rdBindingData.setTargetBinding("OrderDetails:Order/@FromHistory");

where OrderDetails is the namespace of the model.

For more information about target binding, see Section 7.13, "Target
Binding for Controls on Rich Client Platform Screens".

4. Set the checked binding for the radio button to specify the value used
to get the FromHistory field value from the input XML model. Set the
specified value for the FromHistory field in the target XML model. For
example:

rdBindingData.setCheckedBinding("S001");

where S001 is the value of the rdOpen radio button.

For example, if there are three radio buttons, create binding for each
of the radio buttons. Set name, source binding and target binding for
each radio button. Set the checked binding for each radio button with
different values such as S001, S002, and S003. Therefore, when
getting the value for a particular field from the input XML model, the
value "S001" is compared with the value of that field in the input XML
model. If the value matches, then the radio button corresponding to
that field is automatically selected. When setting the value in the
target XML model, the value "S001" is set as the value for that field
in the target XML model when you select the radio button
corresponding to that field.

For more information about checked binding, see Section 7.14,
"Checked Binding for Controls on Rich Client Platform Screens".

134 Customizing the Rich Client Platform Interface Guide

Setting Bindings for Links

5. Set the binding data for the radio button by associating the binding
object to the key. For example:

rdOpen.setData(YRCConstants.YRC_BUTTON_BINDING_DEFINATION,rdBindingData);

where rdOpen is the reference variable name of the radio button,
which you specified in the visual editor and YRCConstants.YRC_
BUTTON_BINDING_DEFINATION is the key used for identifying the
check box binding object.

7.30 Setting Bindings for Links

To set bindings for a link, you must create a binding object for the link.

7.30.1 Creating a Binding Object
To create a binding object for a link:

Create a new instance of the YRCLinkBindingData binding class. For
example:

YRCLinkBindingData linkBindingData = new YRCLinkBindingData();

where YRCLinkBindingData is the class to set bindings for the link and
linkBindingData is the binding object.

7.30.2 Steps to Bind a Link

1. Set the name of the link using the binding object that you created.
For example:

linkBindingData.setName("lnkClickHere");

where lnkClickHere is the name of the link and linkBindingData is
the binding object.

2. Set the source binding for the link. For example:

linkBindingData.setSourceBinding("OrderDetails:Order/@Binding");

where OrderDetails is the namespace of the model.

Setting Bindings for Standard Tables

Creating and Adding Screens to Rich Client Platform Applications 135

For more information about source binding, see Section 7.12, "Source
Binding for Controls on Rich Client Platform Screens".

3. Set the binding data for the link by associating the binding object to
the key. For example:

lnkClickHere.setData(YRCConstants.YRC_LINK_BINDING_
DEFINATION,linkBindingData);

where lnkClickHere is the reference variable name of the link, which
you specified in the visual editor and YRCConstants.YRC_LINK_
BINDING_DEFINATION is the key used for identifying the link binding
object.

7.31 Setting Bindings for Standard Tables

To set bindings for a standard table, you must create a binding object for
the standard table. Also, you must create a binding object for a column.

7.31.1 Creating a Binding Object for a Standard Table

To create a binding object for a standard table:

Create a new instance of YRCTableBindingData binding class. For
example:

YRCTableBindingData tblBindingData = new YRCTableBindingData();

where YRCTableBindingData is the class to set bindings for the standard
table and tblBindingData is a binding object.

7.31.2 Creating a Binding Object for a Column

To create a binding object for a column:

Create an array of YRCTblClmBindingData[] with an array size equal to
the number of columns in the table. For example:

136 Customizing the Rich Client Platform Interface Guide

Setting Bindings for Standard Tables

YRCTblClmBindingData clmBindingData[] = new YRCTblClmBindingData[no. of columns
in the table];

7.31.3 Steps to Bind a Standard Table and Column

1. Set the name of the table using the table binding object that you
created. For example:

tblbBindingData.setName("tblSearchResults");

where tblSearchResults is the name of the table and
tblbBindingData is the binding object.

2. Set the name of the table column using the table column binding
object that you created. For example:

clmBindingData[0].setName("clmItemID");

where tblSearchResults is the name of the table column and
clmBindingData is the binding object.

3. Associate the YRCTblClmBindingData() attribute to each column. For
example:

clmBindingData[0] = new YRCTblClmBindingData();

4. Set the attribute binding for the column. For example:

clmBindingData[0].setAttributeBinding("ItemID");

For more information about attribute binding, see Section 7.19,
"Attribute Binding for Controls on Rich Client Platform Screens".

5. (Optional) Set the multiple attribute binding for the column. For
example:

clmBindingData[0].setAttributeBinding("ItemID;Code");

where OrderDetails is the namespace of the model.

For more information about multiple target binding, see Multiple
Attribute Bindings.

6. (Optional) Set the key binding for the column. For example:

clmBindingData[0].setKey("item_details");

Setting Bindings for Standard Tables

Creating and Adding Screens to Rich Client Platform Applications 137

where item_details is the key.

For more information about key binding, see Section 7.20, "Key
Binding for Controls on Rich Client Platform Screens".

7. Set the title of the table column. For example:

clmBindingData[0].setColumnBinding("item_id");

8. Set the server image configuration for the column to display the
image from the server. For example,

clmBindingData[0].setServerImageConfiguration(YRCConstants.IMAGE_SMALL);

where IMAGE_SMALL is the value of the Name attribute of the Config
element, which is defined in the configuration file. For more
information about configuring server images, see the Selling and
Fulfillment Foundation: Installation Guide.

9. To sort a column, set the SortReqd attribute value to "true". For
example:

clmBindingData[0].setSortReqd(true);

10. To make a column data localized, set the DbLocaliseReqd attribute
value to "true". For example:

clmBindingData[0].setDbLocaliseReqd(true);

For more information localizing the database, see Section 2.6.1,
"Database Localization".

11. Repeat Step 2 to Step 10 to set bindings for all columns in the table.

12. To allow navigation through the keys in a table, set the
KeyNavigationRequired attribute value to "true". For example:

tblBindingData.setKeyNavigationRequired(true);

13. To sort a table, set the SortReqd attribute value to "true". For
example:

Note: If you are specifying multiple attribute binding for
the column, this step is mandatory.

138 Customizing the Rich Client Platform Interface Guide

Setting Bindings for Standard Tables

tblBindingData.setSortRequired(true);

14. To filter the table based on some value, set the FilterReqd attribute
value to "true". For example:

tblBindingData.setFilterRequired(true);

15. Set the source binding for the column. For example:

tblBindingData.setSourceBinding("Results:/OrderLineList/OrderLine");

where Results is the namespace for this model.

For more information about source binding, see Section 7.12, "Source
Binding for Controls on Rich Client Platform Screens".

16. Set the column binding data on the table binding data using the
setTblClmBindings() method. For example:

tblBindingData.setTblClmBindings(clmBindingData);

17. (Optional) Use the setLinkProvider() method to create links in the
table. The setLinkProvider() method takes the IYRCTableLinkProvider
interface as input, which contains two methods getLinkTheme() and
linkSelected(). You must implement these methods to create links in
the table. The linkSelected() method is called when you select any
link in the column. For example:

tblBindingData.setLinkProvider(new IYRCTableLinkProvider() {
public String getLinkTheme(Object element, int columnIndex) {
return "TableLink"; }
public void linkSelected(Object element, int columnIndex) {
}});

In the getLinkTheme() method, add the logic to set themes for links
in a column. This method returns the name of the link theme. If it
returns null it is assumed that a link is not required.

In the linkSelected() method, add the logic to perform the required
operation, when the link on the table column cell gets selected.

Setting Bindings for Standard Tables

Creating and Adding Screens to Rich Client Platform Applications 139

18. (Optional) Use the setImageProvider() method to add images for a
table column. The setImageProvider() method takes the
IYRCTableImageProvider interface as input, which contains
getImageThemeForColumn() method. You must implement this
method to add images in columns. For example:

tblBindingData.setImageProvider(new IYRCTableImageProvider() {
public String getImageThemeForColumn(Object element, int columnIndex) {
return null;
}});

In the getImageThemeForColumn() method, add the logic for setting
a unique image theme for the table column cell based on some
condition. This method returns the unique image theme set. If it
returns null, the default image theme is applied.

19. (Optional) Use the setColorProvider() method to set different colors
for the table columns. The setColorProvider() method takes the
IYRCTableColorProvider interface as input, which contains
getColorTheme() method. You must implement this method to
provide different colors for the table columns. For example:

tblBindingData.setColorProvider(new IYRCTableColorProvider() {
public String getColorTheme(Object element, int columnIndex) {
return null;
}});

In the getColorTheme() method, add the logic for setting different
colors for the table column cells based on some condition. For
example, you may want to set different color for non-editable cells
that displays data for the status field, and different color for editable
cells that displays data for the amount field. This method returns the
name of the color theme. If it returns null, the default color theme is
applied.

Note: To create links in your table, set the LinkRequired
flag of the table column binding object to "true". For
example:

clmBindingData[0].setLinkReqd(true);

where clmBindingData is the object of
YRCTblClmBindingData class and 0 is the column index.

140 Customizing the Rich Client Platform Interface Guide

Setting Bindings for an Editable Table

20. (Optional) Use the setFontProvider() method to set different font
types for the table columns. The setFontProvider() method takes the
IYRCTableFontProvider interface as input, which contains
getFontTheme() method. You must implement this method to provide
different colors for the table columns. For example:

tblBindingData.setFontProvider(new IYRCTableFontProvider() {
public String getFontTheme(Object element, int columnIndex) {
return null;
}});

In the getFontTheme() method, add the logic for setting different font
types for the table column cells based on some condition. For
example, you may want to set different font type for non-editable
cells that displays data for the status field and different font type for
editable cells that displays data for the amount field. This method
returns the name of the font theme. If it returns null, the default font
theme is applied.

21. After setting the binding properties for the YRCTableBindingData
object, set the binding data for the table by associating the binding
object to the key. For example:

tblSearchResult.setData(YRCConstants.YRC_TABLE_BINDING_DEFINATION,
tblBindingData);

where YRCConstants.YRC_BUTTON_BINDING_DEFINATION is the key
used for the table binding object.

7.32 Setting Bindings for an Editable Table
Binding editable tables is same as binding standard tables except that
when you bind editable tables, you must handle the editable table
columns. Therefore, to bind an editable table, follow the steps as
described in Section 7.31, "Setting Bindings for Standard Tables".

To handle the editable table columns, use the setCellModifier() method.
The setCellModifier() method takes the IYRCCellModifier interface as
input, which contains three methods allowModifiedValue(), allowModify()
and getModifiedValue(). You must implement these methods to control
editable features of different columns in the table. For example:

tblBindingData.setCellModifier(new IYRCCellModifier() {
protected boolean allowModify(String property, String value, Element element) {

Setting Bindings for an Editable Table

Creating and Adding Screens to Rich Client Platform Applications 141

return true;
}
protected int allowModifiedValue(String property, String value, Element element)
{
return 0;
}
protected String getModifiedValue(String property, String value, Element
element) {
return value;
}});

In the allowModify() method, add the logic to check whether you want to
allow modifications in an editable cell of a table column. For example,
you may want to allow modifications for an editable cell, which displays
data for the discount field. This method returns a boolean value, "true"
or "false". If the method returns a "false" value, it indicates that
modifications are not allowed for that cell.

In the allowModifiedValue() method, add the logic for adding further
validation constraints to check whether the new value entered is valid or
not. This method returns an integer value. If it returns "0", then the
existing value is not replaced with the new value.

In the getModifiedValue() method, add the logic to set the modified value
for a cell of a table column that you are currently editing. You can use
this method to update some other property based on the current one or
to change the format of the property.

7.32.1 Binding Combo Box Cell Editors
Binding combo box cell editors means binding a combo box inside an
editable table. To set bindings for a combo box cell editor, do the
following:

1. Create a binding object for the combo box. For more information
about creating a binding object, see Section 7.26.1, "Creating a
Binding Object".

2. Set the list binding, description binding, and code binding for the
combo box. For more information about setting these bindings, see
Section 7.26, "Setting Bindings for Combo Boxes".

142 Customizing the Rich Client Platform Interface Guide

Setting Bindings for an Extended Table

3. Set the binding data of the table column with the
YRCComboBindingData binding object as an argument. For example:

clmBindingData[columnIndex].setBindingData(cmbBindingData);

where cmbCommonCode is the reference variable name of the combo
box, which you specified in the visual editor and YRCConstants.YRC_
COMBO_BINDING_DEFINATION is the key used for identifying the combo
box binding object.

7.33 Setting Bindings for an Extended Table
To set bindings for an extended table, you must create a binding object
for the extended table.

Note: Only set the list binding, description binding, and
code binding for the combo box.

Setting Bindings for an Extended Table

Creating and Adding Screens to Rich Client Platform Applications 143

7.33.1 Creating a Binding Object for an Extended Table

To create a binding object for an extended table:

Create a new instance of YRCExtendedTableBindingData binding class.
For example:

YRCExtendedTableBindingData extntblBindingData = new
YRCExtendedTableBindingData();

where YRCExtendedTableBindingData is the class to set bindings for the
extended table and extntblBindingData is a binding object.

7.33.2 Create a Map of the Advanced Column Binding Data
To create a map of the binding data for the advanced column that you
added using the Rich Client Platform Extensibility Tool:

Note: Make sure that you write the code for binding
extended tables in the extension behavior class that you
created. In the extension behavior class, override the
getExtendedTableBindingData() method. In this method
create and return the extended table binding object. For
example:

YRCExtendedTableBindingData extntblBindingData = new
YRCExtendedTableBindingData("tableSearch");

// Create and get the advanced column binding map for the
extended table.

HashMap advclmBindingData = getTableColumnBindingData
("tableSearch");

extntblBindingData.setTableColumnBindingsMap
("advclmBindingData");

.

. //Set Bindings for Extended Table and Advanced Columns

.

return extntblBindingData;

where tableSearch is the name of the extended table.

144 Customizing the Rich Client Platform Interface Guide

Setting Bindings for an Extended Table

Create a new instance of HashMap binding class. For example:

HashMap bindingDataMap = new HashMap();

where HashMap is the class to create a map of the advanced column
binding data and bindingDataMap is the hash map. The HashMap
contains the name of the advanced column as the key and the
corresponding binding data as the value.

7.33.3 Steps to Bind an Extended Table and Advanced
Column

1. Create a binding object for an advanced column by creating a new
instance of the YRCTblClmBindingData binding class. For example:

YRCTblClmBindingData advclmBindingData = new YRCTblClmBindingData();

where YRCTblClmBindingData is the class to set bindings for the
advanced column and advclmBindingData is a binding object.

2. Set the attribute binding for the advanced column. For example:

advclmBindingData.setAttributeBinding("ItemID");

For more information about attribute binding, see Section 7.19,
"Attribute Binding for Controls on Rich Client Platform Screens".

3. (Optional) Set multiple attribute binding for the advanced column. For
example:

advclmBindingData.setAttributeBinding("ItemID;Code");

where OrderDetails is the namespace of the model.

For more information about multiple target binding, see
Section 7.19.1, "Multiple Attribute Bindings".

Note: Only if you have added an advanced column
through extensibility, you need to create the binding object
and set bindings for that advanced column.

Setting Bindings for an Extended Table

Creating and Adding Screens to Rich Client Platform Applications 145

4. (Optional) Set the key binding for the advanced column. For
example:

advclmBindingData.setKey("item_details");

where item_details is the key.

For more information about key binding, see Section 7.20, "Key
Binding for Controls on Rich Client Platform Screens".

5. Set the server image configuration for the advanced column to
display the image from the server. For example,

advclmBindingData.setServerImageConfiguration(YRCConstants.IMAGE_SMALL);

where IMAGE_SMALL is the value of the Name attribute of the Config
element, which is defined in the configuration file. For more
information about configuring server images, see the Selling and
Fulfillment Foundation: Installation Guide.

6. To sort the advanced column, set the SortReqd attribute value to
"true". For example:

advclmBindingData.setSortReqd(true);

7. To localize the advanced column data, set the DbLocaliseReqd
attribute value to "true". For example:

advclmBindingData.setDbLocaliseReqd(true);

For more information about localizing the database, see
Section 2.6.1, "Database Localization".

8. To filter an advanced column based on some value, set the
FilterReqd attribute value to "true". For example:

advclmBindingData.setFilterRequired(true);

9. Add the advanced column binding data object to the data map object.
For example:

bindingDataMap.put("extn_AdvClm1", advclmBindingData);

Note: If you specify multiple attribute binding for the
column, step is mandatory.

146 Customizing the Rich Client Platform Interface Guide

Setting Bindings for an Extended Table

where bindingDataMap is the hash map binding object, extn_AdvCml
is the name of the advanced column added using the Rich Client
Platform Extensibility Tool, and advclmBindingData is the advanced
column binding object.

10. Repeat Step 1 through Step 9 to set bindings for all advanced
columns that you add to the extended table using the Rich Client
Platform Extensibility Tool.

11. (Optional) To sort an extended table, set the SortReqd attribute value
to "true". For example:

extntblBindingData.setSortRequired(true);

12. (Optional) To filter an extended table based on some value, set the
FilterReqd attribute value to "true". For example:

extntblBindingData.setFilterRequired(true);

13. Set the source binding for the table. For example:

extntblBindingData.setSourceBinding("Results:/OrderLineList/OrderLine");

where Results is the namespace for this model.

For more information about source binding, see Section 7.12, "Source
Binding for Controls on Rich Client Platform Screens".

14. (Optional) Use the setLinkProvider() method to create links in the
advanced columns that you added using the Rich Client Platform
Extensibility Tool. The setLinkProvider() method takes the
YRCExtendedTableLinkProvider class as input, which contains two
methods getLinkTheme() and linkSelected(). You must implement
these methods to create links in the advanced columns of an
extended table. The linkSelected() method is called when you select
any link in the column. For example:

YRCExtendedTableLinkProvider extntblLinkProvider = new
YRCExtendedTableLinkProvider() {
public String getLinkTheme(Object element, String property) {
return "TableLink"; }
public void linkSelected(Object element, String property) {
}};
extntblBindingData.setLinkProvider(extntblLinkProvider);

Setting Bindings for an Extended Table

Creating and Adding Screens to Rich Client Platform Applications 147

In the getLinkTheme() method, add the logic to set themes for links
in a column. This method returns the name of the link theme. If it
returns null it is assumed that a link is not required.

In the linkSelected() method, add the logic to perform the required
operation, when you click the link in the advanced column cell.

15. (Optional) Use the setImageProvider() method to add images for an
advanced column. The setImageProvider() method takes the
YRCExtendedTableImageProvider class as input, which contains
getImageThemeForColumn() method. You must implement this
method to add images in advanced columns. For example:

YRCExtendedTableImageProvider extntblImageProvider = new
YRCExtendedTableImageProvider() {
public String getImageThemeForColumn(Object element, String property) {
 if (property.equals("@ItemID")) {
 Element e = (Element)element;
 String strImageTheme = e.getAttribute("TableFilter");
 return strImageTheme;
 } return null;
}};
extntblBindingData.setImageProvider (extntblImageProvider);

In the getImageThemeForColumn() method, add the logic for setting
a unique image theme for the advanced column cell based on some
condition. This method returns the unique image theme set. If it
returns null, the default image theme is applied.

16. (Optional) Use the setColorProvider() method to set different colors
for the advanced columns. The setColorProvider() method takes the
YRCExtendedTableColorProvider class as input, which contains
getColorTheme() method. You must implement this method to
provide different colors for the advanced columns. For example:

Note: To create links in your extended table, set the
LinkRequired flag of the advanced column binding object to
"true". For example:

advclmBindingData.setLinkReqd(true);

where advclmBindingData is the advanced column binding
object.

148 Customizing the Rich Client Platform Interface Guide

Setting Bindings for Extended Editable Tables

YRCExtendedTableColorProvider extntblColorProvider = new
YRCExtendedTableColorProvider() {
public String getColorTheme(Object element, String property) {
 if (property.equals("@Price")) {
 Element e = (Element)element;
 int price = YRCXmlUtils.getIntAttribute(e,"Price");
 If (price < 50) {
 return "ValidationOK";
 else {
 return "ValidationERROR";
 }
 } return null;
}};
extntblBindingData.setColorProvider (extntblColorProvider);

In the getColorTheme() method, add the logic for setting different
colors for the advanced column cells based on some condition. For
example, you may want to apply a different color for non-editable
cells that displays data for the status field, and a different color for
editable cells that displays data for the amount field. This method
returns the name of the color theme. If it returns null, the default
color theme is applied.

7.34 Setting Bindings for Extended Editable
Tables

Binding extended editable tables is same as binding extended tables. The
only difference is that when you bind extended editable tables, you must
handle the editable advanced columns. Therefore, to bind an extended
editable table, follow the steps as described in Setting Bindings for an
Extended Table.

To handle the editable advanced columns, use the setCellModifier()
method. The setCellModifier() method takes the YRCExtendedCellModifier
class as input, which contains three methods allowModifiedValue(),
allowModify(), and getModifiedValue(). You must implement these
methods to control editable features of different columns in the table. For
example:

YRCExtendedCellModifier extntblCellModifier = new YRCExtendedCellModifier() {
public boolean allowModify(String property, String value, Element element) {
return true;
}

Setting Bindings for Extended Editable Tables

Creating and Adding Screens to Rich Client Platform Applications 149

public YRCValidationResponse validateModifiedValue(String property, String
value, Element element) {
return new YRCValidationResponse(YRCValidationResponse.YRC_VALIDATION_OK,"Status
message");
}
public String getModifiedValue(String property, String value, Element element) {
return value;
}});
extntblBindingData.setCellModifier (extntblCellModifier);
In the allowModify() method, add the logic to check whether you want to
allow modifications in an editable cell of an advanced column. For
example, you may want to allow modifications for an editable cell, which
displays data for the discount field. This method returns a boolean value,
"true" or "false". If the method returns a "false" value, it indicates that
modifications are not allowed for that cell.

In the validateModifiedValue() method, add the logic for adding further
validation constraints to check whether the new value entered is valid or
not. This method returns an instance of YRCValidationResponse object
with an appropriate status code and status message. The status code can
be one of the following:

YRCValidationResponse.YRC_VALIDATION_OK

YRCValidationResponse.YRC_VALIDATION_WARNING

YRCValidationResponse.YRC_VALIDATION_ERROR

In the getModifiedValue() method, add the logic to set the modified value
for a cell of an advanced column that you are currently editing. You can
use this method to update some other property based on the current one
or to change the format of the property.

7.34.1 Binding Combo Box Cell Editors

Binding combo box cell editors indicates binding a combo box inside an
editable extended table. To set bindings for a combo box cell editor:

1. Create a binding object for the combo box. For more information
about creating a binding object, see Section 7.26.1, "Creating a
Binding Object".

150 Customizing the Rich Client Platform Interface Guide

Localizing Controls and Defining Themes for Rich Client Platform Applications

2. Set the list binding, description binding, and code binding for the
combo box. For more information about setting these bindings, see
Section 7.26, "Setting Bindings for Combo Boxes".

3. Set the binding data of the advanced column with the
YRCComboBindingData binding object as an argument. For example:

advclmBindingData.setBindingData(cmbBindingData);

where cmbBindingData is the combo box binding object and
YRCConstants.YRC_COMBO_BINDING_DEFINATION is the key used
for identifying the combo box binding object.

4. Add the advanced column binding data object to the advanced
column data map object. For example:

bindingDataMap.put("extn_AdvClm1", advclmBindingData);
where bindingDataMap is the hash map binding object, extn_AdvCml
is the name of the advanced column that you added using the Rich
Client Platform Extensibility Tool, and advclmBindingData is the
advanced column binding object.

7.35 Localizing Controls and Defining Themes for
Rich Client Platform Applications

This Section explains how to localize controls, text, or strings.

To localize controls, text, or strings:

1. Specify the <key>=<value> pair in your <Plug-in id>_
bundle.properties file at the plug-in level. Here, key is the resource
key and value is the literal displayed for the corresponding locale.

2. Replace <value> with the translated value.

For example, to localize a label:

1. Set the key value pair bundle file for the label. For example:

Customer_Address=Customer Address

Note: Only set the list binding, description binding, and
code binding for the combo box.

Calling APIs and Services for Rich Client Platform Applications

Creating and Adding Screens to Rich Client Platform Applications 151

where Customer_Address is the key and Customer Address is the
value for the key.

2. Set the text of the label with the key as the input argument. For
example:

lblCustAdd.setText("Customer_Address");

where lblCustAdd is the reference variable name of the label, which
you specified in the visual editor.

7.35.1 Defining Themes for Controls
For theming controls, define the new theme entries in the <Plug-in_
id>_<theme_name>.ythm file.

7.36 Calling APIs and Services for Rich Client
Platform Applications

Calling an API or service is as follows:

1. Create a command in the <Plug-in id>_commands.ycml file and
associate the API or services to be called with the command. Make
sure that the code used for calling an API or service is written in the
behavior class. For example, to call the getOrderList API, you must
create a command with the name as getOrderList and in the
APIName attribute enter getOrderList. For more information about
creating commands, see Chapter 10, "Creating Commands for Rich
Client Platform Applications".

2. Create a YRCApiContext class object. For example:

YRCApiContext context = new YRCApiContext();

3. Set the command name for the context. For example:

context.setApiName("getOrderList");

Note: The Rich Client Platform automatically localizes
labels, buttons, group headers, tab folder items, and table
column headers. Therefore, the literals used in the binding
object must be resource bundle keys if they need to be
translated to different languages.

152 Customizing the Rich Client Platform Interface Guide

Calling APIs and Services for Rich Client Platform Applications

where getOrderList is the command name that you created in the
<Plug-in id>_commands.ycml file.

4. Set the form id for the context. For example,

context.setFormId(getFormId());

5. Set the input XML document that is passed to an API or service. For
example:

context.setInputXml(getTargetModel("Order").getOwnerDocument());

where Order is the namespace of the XML model.

6. (Optional) Set the key for the context that you created. For example:

context.setUserData("InitialData","1");

where InitialData is the key and 1 is the value for this key. The
value of the key is used to uniquely identify the context. This step is
mandatory, if you are calling the same API multiple times. For more
information about calling same API multiple times, see
Section 7.36.1, "Calling the Same API/Service Multiple Times".

7. Call the API or service. For example,

callApi(context);

8. After the API or service call is complete, the Rich Client Platform calls
the handleApiCompletion() method of behavior class to validate the
output and process it. Therefore, you can write the API completion
logic in this method. For example:

public void handleApiCompletion (YRCApiContext context) {
 if(context.getInvokeAPIStatus() < 0) {
 // Add logic for the failure condition
 }
 else {
 if(YRCPlatformUI.equals(context.getApiName(),"getOrderList")) {
setOrderList(context); }
 }
}

Calling APIs and Services for Rich Client Platform Applications

Creating and Adding Screens to Rich Client Platform Applications 153

7.36.1 Calling the Same API/Service Multiple Times
The Rich Client Platform enables you to call the same API or service
multiple tiles. For example, if you want to call the getOrderList API three
times with a different input XML model as input to the API:

1. Create three objects of the YRCApiContext class. For example,

YRCApiContext context1 = new YRCApiContext();
YRCApiContext context2 = new YRCApiContext();
YRCApiContext context3 = new YRCApiContext();

2. Set the same command name for each context. For example,

context1.setApiName("getOrderList");
context2.setApiName("getOrderList");
context3.setApiName("getOrderList");

3. Set the form id for each context. For example,

context1.setFormId(getFormId());
context2.setFormId(getFormId());
context3.setFormId(getFormId());

4. Set the different input XML document for each context.

context1.setInputXml(getTargetModel("Order").getOwnerDocument());
context2.setInputXml(getTargetModel("OrderDetail").getOwnerDocument());
context3.setInputXml(getTargetModel("OrderList").getOwnerDocument());

where Order, OrderDetail, and OrderList are the namespaces of
the different XML model.

5. Set the key for each context using the UserData key.

context1.setUserData("InitialData","1");
context2.setUserData("InitialData","2");
context3.setUserData("InitialData","3");

Note: If an API or service call fails, the Rich Client
Platform throws an exception.

154 Customizing the Rich Client Platform Interface Guide

Calling APIs and Services for Rich Client Platform Applications

where InitialData is the key and 1,2,and 3 are the values for this
key based on the each context. The value of the key is used to
uniquely identify each context.

6. Call the API for each context.

callApi(context1);
callApi(context2);
callApi(context3);

7. In the handleApiCompletion() method, get the context.getUserData()
to identify each context. Then, validate and process the output at
each API level. For example,

public void handleApiCompletion(YRCApiContext context) {
 if(YRCPLatformUI.equals(context.getUserData("InitialData"),"1")) {
//Add your own logic for validating and processing the //output at each API
level.
 }
else if(YRCPLatformUI.equals(context.getUserData("InitialData"),"2")) {
//Add your own logic for validating and processing the //output at each API
level.
 }
else if(YRCPLatformUi.equals(context.getUserData("InitialData"),"3")) {
//Add your own logic for validating and processing the //output at each API
level.
}

7.36.2 Calling Multiple APIs/Services
The Rich Client Platform enables you to call multiple APIs. To call multiple
APIs, define multiple commands in the <Plug-in id>_commands.ycml
file.

For example, if there are three combo boxes: cmbStatus, cmbEnterprise,
and cmbCountry, you must call APIs or services to display a list of values
for these combo boxes. For instance, the values displayed for the
cmbStatus combo box depends on the output of the getOrderList API.
The values displayed for the cmbEnterprise combo box depends on the
output of the getShipNodeList API. The values displayed for the

Note: Sterling Commerce recommends that you call all
APIs at the same time to reduce the network traffic.

Calling APIs and Services for Rich Client Platform Applications

Creating and Adding Screens to Rich Client Platform Applications 155

cmbCountry combo box depends on the output of the
getCommonCodeList API output.

Therefore, to call multiple APIs or services:

1. In the <Plug-in id>_commands.ycml file, define three commands
with names as getOrderList, getShipNodeList, and
getCommonCodeList. Associate an API or service with each of these
commands using the APIName attribute. Make sure that the code
used for calling an API or service is written in the behavior class.

For more information about creating commands, see Chapter 10,
"Creating Commands for Rich Client Platform Applications".

2. Create a YRCApiContext class object. For example:

YRCApiContext context = new YRCApiContext();

3. To call multiple APIs, set the command names for the commands that
you created in the <Plug-in id>_commands.ycml file. For example:

context.setApiNames(new
String[]{"getOrderStatusList","getShipNodeList","getCommonCodeList"});

4. Set the form id for the context. For example,

context.setFormId(getFormId());

5. Set input XMLs for multiple APIs. For example:

context.setInputXmls(new
Document[]{"getOrderStatusList","getShipNodeList","getCommonCodeList"});

6. (Optional) Set Unique key for multiple commands. For example:

context.setUserData("InitialData","1");

7. Call the API or service. For example:

callApi(context);

8. Invoke the handleApiCompletion() method to validate and process
the output at each API level. You must call this method after
executing the callApi() method. For example:

public void handleApiCompletion(YRCApiContext context) {

String[] sAPINames = context.getApiNames();

156 Customizing the Rich Client Platform Interface Guide

Adding New Rich Client Platform Screens as Pop-ups

if(YRCPlatform.equals(sAPINames[0],"getOrderStatusList")) {
setOrderList(context); }
else if(YRCPlatform.equals(sAPINames[1],"getShipNodeList")) {
setShipNodeList(context); } else
if(YRCPlatform.equals(sAPINames[2],"getCommonCodeList")) {
setCommonCodeList(context); }}

7.37 Adding New Rich Client Platform Screens as
Pop-ups

You can display the new screen as a pop-up screen, when you click on a
button. You need to associate the new screen with the button. To display
a new screen as a pop-up screen:

1. Add a new button to an existing screen.

2. Synchronize the extension behavior for the screen.

3. In the navigator view, expand the plug-in project that you created
when setting up the development environment.

4. Expand the package and open the extension behavior class, which
you specified in Step 2.

5. In the validateButtonClick() method, add the logic to display the new
screen in a pop-up window or dialog window, when you click on the
newly added button. For example,

ViewOrderDetails screen = new ViewOrderDetails(new
Shell(Display.getDefault()), SWT.NONE, bindingData, filterObjectList);

YRCDialog oDialog = new YRCDialog(screen,400,400,"OrderDetails",null);
oDialog.open();

where ViewOrderDetails is the class name of the screen and
OrderDetails is the title of the dialog window that displays this
screen.

Note: When adding the new button, make sure that you
check the "Validation Required?" box.

Adding New Rich Client Platform Screens to Menu Commands

Creating and Adding Screens to Rich Client Platform Applications 157

7.38 Adding New Rich Client Platform Screens to
Menu Commands

You can display the new screen as a menu item. The menu items are
connected to the actions by specifying the action identifier for a specific
menu item. Configure the action which gets invoked, when you click on
the menu item or a related task. To add new screens to a Rich Client
Platform application menu, define screens in the resources. All the
resources of Selling and Fulfillment Foundation have a set of primary
properties that are common to all types of resources. For example, all
resources have a Resource ID. These resources are used to define
screens. In addition to primary properties, each type of resource has a
set of unique properties that is specific to a particular type of resource.

For adding new screens to an application in the resources, define the
Resource ID, URL, and Resource Type. The Resource ID is a unique
identifier for each resource. The URL contains the Rich Client Platform
ActionId of the class that invokes the screen, which is defined in the
plugin.xml file.

The class that invokes the newly created screen must be created by
extending the YRCAction class. In the YRCAction class, the execute()
method invokes the action configured by you when you click on a menu
item. In the execute() method you can write a code to open the new
screen either in a pop-up window or an editor. For more information
about opening a screen using a pop-up windows, see Section 7.37,
"Adding New Rich Client Platform Screens as Pop-ups". For information
on how to open a screen in an editor, see Section 7.39, "Displaying New
Rich Client Platform Screens in an Editor".

For more information about defining resources, see the Selling and
Fulfillment Foundation: Application Platform Configuration Guide.

Note: The action identifiers are not specific to menus. The
Related Tasks can also invoke these actions. For more
information about Rich Client Platform actions, see
Appendix 17.12, "Creating New Actions".

158 Customizing the Rich Client Platform Interface Guide

Displaying New Rich Client Platform Screens in an Editor

7.39 Displaying New Rich Client Platform Screens
in an Editor

You can display the new screen in an editor when you click on a button or
a menu item or a related task. To display a new screen in an editor:

1. Start the Eclipse SDK.

2. In the navigator view, expand the plug-in project that you created
when setting up the development environment.

For more information about creating a plug-in project, see
Section 3.3, "Creating a Plug-In Project".

3. To open the plugin.xml file in the Plug-in Manifest Editor, do any of
the following:

Double-click on plugin.xml file.

Right-click on plugin.xml file and select Open With > Plug-in
Manifest Editor.

4. Select the Extensions tab.

5. Click Add. From the New Extension window, select
org.eclipse.ui.editors extension point from the list.

6. Click Finish.

7. Select the org.eclipse.ui.editors extension point. The Extension
Details panel displays.

8. In the Extension Details panel, enter the properties of
org.eclipse.ui.editors extension point.

9. Right-click on org.eclipse.ui.editors extension and select New >
editor. The editor extension element gets created.

10. Select the editor extension element. The Extension Element Details
panel displays.

11. Enter the properties of the editor extension element.

12. In id*, enter the identifier for the editor.

13. In icon, browse to the path of the icon that you want to associate
with this editor.

14. In class, to specify the implementation class, do any of the following:

Displaying New Rich Client Platform Screens in an Editor

Creating and Adding Screens to Rich Client Platform Applications 159

Click Browse. The Select Type pop-up window displays. Select the
class that extends the YRCEditorPart class.

Click on the class: hyperlink. The Java Attribute Editor window
displays.

160 Customizing the Rich Client Platform Interface Guide

Displaying New Rich Client Platform Screens in an Editor

Figure 7–12 Java Attribute Editor Window

Table 7–4 Java Attribute Editor Window

Field Description

Source folder: The name of the source folder that you selected
to store the editor class automatically displays.
Click Browse to browse to the folder that you
want to specify as the source folder.

Package: The name of the package that you selected to
store the editor class automatically displays.
Click Browse to browse to the package where
you want to store the editor class.

Name Enter the name of the editor class.

Displaying New Rich Client Platform Screens in an Editor

Creating and Adding Screens to Rich Client Platform Applications 161

15. To open the new screen in the specified editor using the menu item,
define a new resource in the resources for the new menu item. For
more information about opening new screens using menu, see
Section 7.38, "Adding New Rich Client Platform Screens to Menu
Commands".

16. In the execute() method of the action set that you associated with
the menu item in the previous step do the following:

Create a new input element to pass to the YRCEditorInput object.

Create a new input object to pass to the YRCEditorInput object, if
required.

Create a new YRCEditorInput object. Pass the input element and
the input object that you created (if required). Also pass the array
of strings, which contains the attribute of the input element, and
the related task.

Open the editor that you created for the new screen by passing
the Id of the editor to the YRCPlatformUI.openEditor() method.

Superclass: Click Browse, the Superclass Selection window
displays. In Choose a type, enter YRCEditorPart
and click OK.

Constructors from
superclass

Check this box. The system automatically creates
the constructor for the YRCEditorPart superclass.

Inherited abstract
methods

Check this box. The system automatically adds
the abstract methods inherited by the
YRCEditorPart superclass.

Finish When you click on this button, the system creates
the new editor class in the selected folder or
package.

Table 7–4 Java Attribute Editor Window

Field Description

162 Customizing the Rich Client Platform Interface Guide

Displaying New Rich Client Platform Screens in an Editor

For example,

Element inputElement = YRCXmlUtils.createFromString("<Order
OrderNo=\"YCD001\" />").getDocumentElement();
Object inputObject = new String("");
YRCEditorInput editorInput = new YRCEditorInput(inputElement, inputObject,
new String[]{"OrderNo"}, "YCD_TASK_QUICK_ACCESS");
YRCPlatformUI.openEditor("com.yantra.qa.editors.QAEdito", editorInput);

Note: Make sure that the editor identifier that you pass to
the YRCPlatformUI.openEditor() method is same as
specified in Step 12.

Creating and Adding Wizards to Rich Client Platform Applications 163

8
Creating and Adding Wizards to Rich Client

Platform Applications

8.1 Phase 1: Create Wizard Definitions
A wizard is used for any task consisting of many steps, which must be
completed in a specific order. A wizard acts as an interface to lead a user
through a complex task, using step-by-step pages. It can also be used
for the execution of any task involving a sequential series of steps.

Wizard behavior means that each wizard page in a sequence contains a
"Next" button, which the user clicks to move to the next wizard page
after entering data or configuring information in the current wizard page.
If the user decides to go back and change any information entered in a
previous wizard page, each wizard page contains a "Previous" button that
the user clicks to go back. At the end of the wizard sequence, the user
clicks a Finish button to begin the particular process.

8.1.1 Creating a Wizard Definition
You can create a new or modify an existing wizard definition by adding
wizard entities and wizard transitions. The flow of the wizard depends on
the output value of a wizard rule. The wizard definition is created in the
<Plug-in_id>_commands.ycml file.

Note: Before you can start creating wizards, you must set
up the development environment. For more information
about setting up development environment, see Chapter 3,
"The Development Environment for Rich Client Platform
Applications".

164 Customizing the Rich Client Platform Interface Guide

Adding a Rule to a Wizard Definition

8.2 Creating a Wizard Definition with the Rich
Client Platform Wizard Editor

The Rich Client Platform Wizard Editor is used for creating or modifying
the wizard definition. To open the <Plug-in_id>_commands.ycml file in
the Rich Client Platform Wizard Editor:

1. Start the Eclipse SDK.

2. From the menu bar, select Window > Show View > Navigator. The
plug-in project is displayed in the Navigator view.

3. In the navigator window, expand the plug-in project that you created
when setting up the development environment. For more information
about creating a plug-in project, see Section 3.3, "Creating a Plug-In
Project".

4. Right-click the <Plug-in_id>_<wizard_name>.ycml file, select Open
With > Rich Client Platform Wizard Editor from the pop-up menu.

5. The Rich Client Platform Wizard Editor displays. A Palette is available
on the right-hand side, containing a list of tools that can be used to
create or modify wizard definition, for example, Marquee, Transition,
Rule, Page, and ChildWizard.

6. In the Properties view, in Wizard Description, enter the description for
the new wizard.

8.3 Adding a Rule to a Wizard Definition
To add a new wizard rule:

1. Open the <Plug-in_id>_<wizard_name>.ycml file using the Rich
Client Platform Wizard Editor. For more information about opening the
Rich Client Platform Wizard Editor, see Section 8.2, "Creating a
Wizard Definition with the Rich Client Platform Wizard Editor".

2. From the Palette, click Rule and select Rule.

Note: You must use a separate <Plug-in_id>_<wizard_
name>.ycml file for each wizard definition you create.

Adding a Rule to a Wizard Definition

Creating and Adding Wizards to Rich Client Platform Applications 165

3. Place the Rule in the Wizard Definition editor where you want to add
it.

4. In the Properties view, in Description, enter the description for the
new wizard rule.

5. In the Properties view, in Id, enter the unique identifier for the wizard
rule.

6. In Impl, enter the fully qualified path of the implementation class for
this wizard rule. For example:

java:com.yantra.pca.ycd.rcp.wizard.rules.NewWizardRule1

Here, com.yantra.pca.ycd.rcp.wizard.rules is the package name
and NewWizardRule1 is the wizard rule class name that provides the
implementation for this wizard rule.

In a wizard rule, you can also specify a Greex rule you want to
evaluate. To specify the Greex rule, in Impl, enter the relative path of
the *.greex file, which contains the Greex rule you want to evaluate.
For example:

greex:greexRules/test1.greex

Here, test1.greex is the name of the Greex file. greexRules is the
directory in your plug-in project containing the *.greex file.

For more information about Greex rule or an advanced XML condition,
see the Selling and Fulfillment Foundation: Extending the Condition
Builder Guide .

7. In isLast, enter "true" if the wizard rule is the last entity in the wizard
flow.

8. In Namespaces, enter the namespaces of the XML model based on
which the output of a rule is computed. You can enter more than one
namespace for a rule by separating them with a semi-colon. These
namespaces are defined in the <Plug-in_id>_command.ycml file. For
more information about defining namespaces, see Section 10.2,
"Defining Namespaces".

Note: You can use only those Greex rules whose return
type is either string or boolean.

166 Customizing the Rich Client Platform Interface Guide

Adding a Page to a Wizard Definition

9. In Outputs, enter one or more output values that will be returned by
the wizard rule. Based on the output values returned by the wizard
rule, the control is transferred to a wizard entity. You can define more
than one output value for a wizard rule by separating them with
semi-colon.

10. In Starting, enter "true" if the wizard rule is the starting entity in the
wizard flow.

11. In X and Y, enter the X and Y co-ordinates for this wizard rule. These
co-ordinates are relative to the (0,0) co-ordinates of the top-left
corner.

8.4 Adding a Page to a Wizard Definition
To add a new wizard page:

1. Open the <Plug-in_id>_<wizard_name>.ycml file using the Rich
Client Platform Wizard Editor. For more information about opening the
Rich Client Platform Wizard Editor, see Section 8.2, "Creating a
Wizard Definition with the Rich Client Platform Wizard Editor".

2. From the Palette, click Page and select Page.

3. Place the page in the Wizard Definition editor where you want to add
it.

4. In the Properties view, in Description, enter the description for the
new wizard page.

5. In the Properties view, in Id, enter the unique identifier for the wizard
page.

6. In Can Be Hidden, enter "true" if you want to hide the wizard page in
the wizard flow.

7. In Impl, enter the fully qualified path of the implementation class for
the wizard page that you created. For example:

com.yantra.pca.ycd.rcp.wizard.pages.NewWizardPage1

Here, com.yantra.pca.ycd.rcp.wizard.pages is the package name
and NewWizardPage1 is the wizard page class name that provides the
implementation for this wizard page.

8. In isLast, enter "true" if the wizard page is the last entity in the
wizard flow.

Adding a Sub-task to a Wizard Definition

Creating and Adding Wizards to Rich Client Platform Applications 167

9. In isLast, enter "true" if the wizard page is the starting entity in the
wizard flow.

10. In X and Y, enter the X and Y co-ordinates for this page. These
co-ordinates are relative to the (0,0) co-ordinates of the top-left
corner.

8.5 Adding a Sub-task to a Wizard Definition
To add a new sub-task:

1. Open the <Plug-in_id>_<wizard_name>.ycml file using the Rich
Client Platform Wizard Editor. For more information about opening the
Rich Client Platform Wizard Editor, see Section 8.2, "Creating a
Wizard Definition with the Rich Client Platform Wizard Editor".

2. From the Palette, click ChildWizard and select ChildWizard.

3. Place the ChildWizard in the Wizard Definition editor where you want
to add it.

4. In the Properties view, in Description, enter the description for the
new sub-task.

5. In the Properties view, in the Id field, enter the unique identifier for
the sub-task.

6. In Impl, enter the fully qualified path of the implementation class for
this sub-task. For example:

java:com.yantra.pca.ycd.rcp.wizard.subtasks.NewSubTask1

Here, the com.yantra.pca.ycd.rcp.wizard.subtasks is the
package name and NewSubTask1 is the sub-task class name that
provides the implementation for this sub-task.

7. In isLast, enter "true" if the sub-task is the last entity in the wizard
flow.

8. In Namespaces, enter the namespaces of the XML model that will be
used for the sub-task. You can enter more than one namespace for a
sub-task by separating them with a semi-colon. These namespaces
are defined in the <Plug-in_id>_command.ycml file. For more
information about defining namespaces, see Section 10.2, "Defining
Namespaces".

168 Customizing the Rich Client Platform Interface Guide

Adding a Transition to a Wizard Definition

9. In Starting, enter "true" if the sub-task is the starting entity in the
wizard flow.

10. In X and Y, enter the X and Y co-ordinates for this sub-task. These
co-ordinates are relative to the (0,0) co-ordinates of the top-left
corner.

8.6 Adding a Transition to a Wizard Definition
Wizard transition is used to transfer control from one wizard entity to
another wizard entity. The wizard transition value is compared with the
output of the wizard rule, and based on this value, the control is
transferred to the next wizard entity. You can define same wizard
transition identifier for multiple wizard transitions. However, they must
have different values associated with them.

To add a new wizard transition:

1. Open the <Plug-in_id>_commands.ycml file using the Rich Client
Platform Wizard Editor. For more information about opening the Rich
Client Platform Wizard Editor, see Section 8.2, "Creating a Wizard
Definition with the Rich Client Platform Wizard Editor".

2. From the Palette, select Transition.

3. Click the wizard entity from which you want to transfer the control
and then click the wizard entity to which you want to transfer the
control.

4. In the Properties view, in Transition Id, enter the identifier for this
wizard transition.

5. In Value, enter the value for which this transition is to be performed.
This value is compared with the output value returned by a wizard
rule, and depending on this value, the control is transferred to the
appropriate wizard entity.

Note: Multiple wizard transitions originating from a wizard
rule must have same wizard Transition ID. There can only
be one transition from a wizard page.

Creating Wizard Components

Creating and Adding Wizards to Rich Client Platform Applications 169

8.7 Phase 2: Create Components to Implement a
Wizard Definition

After creating the new wizard definition, you need to create the individual
wizard components that provide implementation for the new wizard.

8.8 Creating Wizard Components
A wizard contains a wizard class and a wizard behavior class.

Wizard Class—The container class that controls the UI of the wizard.

Wizard Behavior Class—The container class that controls the behavior
of the wizard. Primary function of this class is to display the
appropriate wizard pages in a wizard.

This section explains the following:

Creating Wizard Class

Creating Wizard Behavior Class

8.8.1 Creating Wizard Class

To create a wizard class:

1. Start the Eclipse SDK.

2. From the menu bar, select Window > Show View > Navigator. The
plug-in project is displayed in the Navigator view.

3. In the navigator window, expand the plug-in project that you created
when setting up the development environment.

For more information about creating a plug-in project, see
Section 3.3, "Creating a Plug-In Project".

Note: Each Transition ID should have a unique value
associated with it.

170 Customizing the Rich Client Platform Interface Guide

Creating Wizard Components

4. To store the wizard class, right-click on a folder or package and select
New > Class from the pop-up menu. The New Java Class window
displays.

Creating Wizard Components

Creating and Adding Wizards to Rich Client Platform Applications 171

Figure 8–1 New Java Class window

172 Customizing the Rich Client Platform Interface Guide

Creating Wizard Components

5. Click Finish. The system creates the new wizard class in the folder or
package selected by you.

6. Open the newly created wizard class in the Java Editor.

7. Right-click in the editor window, select Source > Override/Implement
Methods... option from the pop-up menu. The Override/Implement
Methods window displays.

8. Select getFormId(), getHelpId(), and createBehavior() methods from
the list of methods provided in the YRCWizard class and click OK.

9. Create the field FORM_ID and specify the identifier of the wizard in
this field. For example,

public static final String FORM_ID =
"com.yantra.pca.ycd.rcp.wizard.NewWizard";

Override the getFormId() method and return this form id field.

Table 8–1 New Java Class Window

Field Description

Source folder: The name of the source folder that you selected
to store the wizard class automatically displays.
Click Browse to browse to the folder that you
want to specify as the source folder.

Package: The name of the package that you selected to
store the wizard class automatically displays.
Click Browse to browse to the package where
you want to store the wizard class.

Name Enter the name of the wizard class.

Superclass: Click Browse, the Superclass Selection window
displays. In Choose a type, enter YRCWizard and
click OK.

Constructors from
superclass

Check this box. The system automatically creates
the constructor for the YRCWizard superclass.

Inherited abstract
methods

Check this box. The system automatically adds
the abstract methods inherited by the YRCWizard
superclass.

Creating Wizard Components

Creating and Adding Wizards to Rich Client Platform Applications 173

10. In the wizard class constructor initialize the wizard by calling the
initializeWizard() method. For example,

public NewWizard(String wizardId, Composite parent, Object wizardInput, int
style) {
 super(wizardId, parent, wizardInput, style);
 initializeWizard();
 }

11. Override the createBehavior() method. Create and return an instance
of the wizard behavior class. For example,

protected YRCWizardBehavior createBehavior() {
myBehavior = new RCPRIWizardBehavior(this, FORM_ID);
return myBehavior;
}

For more information about creating wizard behavior class, see
Section 8.8.2, "Creating Wizard Behavior Class".

8.8.2 Creating Wizard Behavior Class

To create a wizard behavior class:

1. Start the Eclipse SDK.

2. From the menu bar, select Window > Show View > Navigator. The
plug-in project is displayed in the Navigator view.

3. In the navigator window, expand the plug-in project that you created
when setting up the development environment.

For more information about creating a plug-in project, see
Section 3.3, "Creating a Plug-In Project".

4. To store the wizard behavior class, right-click on a folder or package
and select New > Class from the pop-up menu. The New Java Class
window displays.

Note: The identifier specified in the FORM_ID field should
be the same form id that you specified in the wizard
definition.

174 Customizing the Rich Client Platform Interface Guide

Creating Wizard Components

Figure 8–2 New Java Class Window

Creating Wizard Components

Creating and Adding Wizards to Rich Client Platform Applications 175

5. Click Finish. The system creates the new wizard behavior class in the
folder or package selected by you.

6. Open the newly created wizard behavior class in the Java Editor.

7. Right-click in the editor window, select Source > Override/Implement
Methods... option from the pop-up menu. The Override/Implement
Methods window displays.

8. Select initPage(String) method from the list of methods provided in
the YRCWizardBehavior class and click OK.

9. In the initPage(String) method, write the code for performing wizard
page specific operations. For example, setting the model, calling API
or service, and so forth.

10. In the createPage(String pageIdToBeShown, Composite pnlRoot)
method, return an instance of a wizard page corresponding to the
pageId. This method is called internally.

Table 8–2 New Java Class Window

Field Description

Source folder: The name of the source folder that you selected
to store the wizard behavior class automatically
displays. Click Browse to browse to the folder
that you want to specify as the source folder.

Package: The name of the package that you selected to
store the wizard behavior class automatically
displays. Click Browse to browse to the package
where you want to store the wizard behavior
class.

Name Enter the name of the wizard behavior class.

Superclass: Click Browse, the Superclass Selection window
displays. In Choose a type, enter
YRCWizardBehavior and click OK.

Constructors from
superclass

Check this box. The system automatically creates
the constructor for the YRCWizardBehavior
superclass.

Inherited abstract
methods

Check this box. The system automatically adds
the abstract methods inherited by the
YRCWizardBehavior superclass.

176 Customizing the Rich Client Platform Interface Guide

Creating Wizard Page Components

public IYRCComposite createPage(String pageIdToBeShown, Composite pnlRoot) {
IYRCComposite page=null;
If(pageIdToBeShown.equalsIgnoreCase(NewWizardPage1.FORM_ID)) {
NewWizardPage1 temp = new NewWizardPage1(pnlRoot, SWT.NONE);
 page = temp;
} else if(pageIdToBeShown.equalsIgnoreCase(NewWizardPage2.FORM_ID))
{NewWizardPage2 temp = new NewWizardPage2(pnlRoot, SWT.NONE);
 page = temp;
}
return page;
}

For more information about creating wizard page class, see
Section 8.9.1, "Creating Wizard Page Class".

8.9 Creating Wizard Page Components
A wizard page contains a wizard page class and a wizard page behavior
class.

Wizard Page Class—The container class that controls the UI of the
wizard page to take inputs from the user. In addition, this class takes
care of binding controls, and so forth.

Wizard Page Behavior Class—The container class that controls the
behavior of the wizard page.

8.9.1 Creating Wizard Page Class

To create a wizard page class:

1. Start the Eclipse SDK.

2. From the menu bar, select Window > Show View > Navigator. The
plug-in project is displayed in the Navigator view.

3. In the navigator window, expand the plug-in project that you created
when setting up the development environment.

For more information about creating a plug-in project, see
Section 3.3, "Creating a Plug-In Project".

Creating Wizard Page Components

Creating and Adding Wizards to Rich Client Platform Applications 177

4. To store the wizard page class, right-click on a folder or package and
select New > Class from the pop-up menu. The New Java Class
window displays.

178 Customizing the Rich Client Platform Interface Guide

Creating Wizard Page Components

Figure 8–3 New Java Class Window

Creating Wizard Page Components

Creating and Adding Wizards to Rich Client Platform Applications 179

5. Click Finish. The system creates the new wizard page class in the
folder or package selected by you.

6. Open the wizard page java class in the java editor and design the UI
to take the inputs from the user as per the requirements. For more
information about designing a Rich Client Platform composite, see
Section 7.4, "About Designing a Rich Client Platform Composite".

7. In the getFormId() method return the unique FORM_ID of this wizard
page.

Table 8–3 New Java Class Window

Field Description

Source folder: The name of the source folder that you selected
to store the wizard page class automatically
displays. Click Browse to browse to the folder
that you want to specify as the source folder.

Package: The name of the package that you selected to
store the wizard page class automatically
displays. Click Browse to browse to the package
where you want to store the wizard page class.

Name Enter the name of the wizard page class.

Superclass: Click Browse, the Superclass Selection window
displays. In Choose a type, enter Composite and
click OK.

Interfaces: Click Add, the Implemented Interfaces Selection
window displays. In Choose a type, enter
IYRCComposite and click OK.

Constructors from
superclass

Check this box. The system automatically creates
the constructor for the Composite superclass.

Inherited abstract
methods

Check this box. The system automatically adds
the abstract methods inherited by the Composite
superclass.

180 Customizing the Rich Client Platform Interface Guide

Creating Wizard Page Components

8. In the constructor of the wizard page class, create an instance of
wizard page behavior class and store is as a field. For example,

public NewWizardPage1(Composite parent, int style) {
super(parent, style);
this.setData("FORMID", FORM_ID);
myBehavior = new NewWizardPage1Behavior(this);
}

For more information about creating wizard page behavior class, see
Section 8.9.2, "Creating Wizard Page Behavior Class".

8.9.2 Creating Wizard Page Behavior Class

To create a wizard page behavior class:

1. Start the Eclipse SDK.

2. From the menu bar, select Window > Show View > Navigator. The
plug-in project is displayed in the Navigator view.

3. In the navigator window, expand the plug-in project that you created.
For more information about creating a plug-in project, see
Section 3.3, "Creating a Plug-In Project".

4. To store the wizard page behavior class, right-click on a folder or
package and select New > Class from the pop-up menu. The New
Java Class window displays.

Note: The string identifier specified in the FORM_ID field
should be the same form id that you specified for the
wizard page in the wizard definition.

Creating Wizard Page Components

Creating and Adding Wizards to Rich Client Platform Applications 181

Figure 8–4 New Java Class Window

182 Customizing the Rich Client Platform Interface Guide

Creating Wizard Rule Components

5. Click Finish. The system creates the new wizard page behavior class
in the folder or package selected by you.

6. In the initPage(String) method, write the code for performing wizard
page specific operations. For example, setting the model, calling API
or service, and so forth.

8.10 Creating Wizard Rule Components
A wizard rule contains a wizard rule class. This class performs logical
computations to evaluate various output values. Based on these output
values flow of the wizard is decided.

To add a new wizard rule:

Table 8–4 New Java Class Window

Field Description

Source folder: The name of the source folder that you selected
to store the wizard page behavior class
automatically displays. Click Browse to browse to
the folder that you want to specify as the source
folder.

Package: The name of the package that you selected to
store the wizard page behavior class
automatically displays. Click Browse to browse to
the package where you want to store the wizard
page behavior class.

Name Enter the name of the wizard page behavior
class.

Superclass: Click Browse, the Superclass Selection window
displays. In Choose a type, enter
YRCWizardPageBehavior and click OK.

Constructors from
superclass

Check this box. The system automatically creates
the constructor for the YRCWizardPageBehavior
superclass.

Inherited abstract
methods

Check this box. The system automatically adds
the abstract methods inherited by the
YRCWizardPageBehavior superclass.

Creating Wizard Rule Components

Creating and Adding Wizards to Rich Client Platform Applications 183

1. Start the Eclipse SDK.

2. From the menu bar, select Window > Show View > Navigator. The
plug-in project is displayed in the Navigator view.

3. In the navigator window, expand the plug-in project that you created
when setting up the development environment. For more information
about creating a plug-in project, see Section 3.3, "Creating a Plug-In
Project".

4. To store the wizard rule class, right-click on a folder or package and
select New > Class from the pop-up menu. The New Java Class
window displays.

184 Customizing the Rich Client Platform Interface Guide

Creating Wizard Rule Components

Figure 8–5 New Java Class Window

Creating Wizard Rule Components

Creating and Adding Wizards to Rich Client Platform Applications 185

5. Click Finish. The system creates the new wizard rule class in the
folder or package selected by you.

6. In the execute(HashMap namespaceModelMap) method, write the
logic for computing the output value using the model that is passed in
the namespaceModelMap parameter and return the output value of
the rule. This method is called when the wizard flow needs the output
value of this rule. Wizard flow is based on the output of this rule, as
defined in the wizard definition. The HashMap contains a list of all
namespaces and the corresponding models. These namespaces are
defined in the <Plug-in_Id>_<wizard_name>.ycml file. For more
information about defining namespaces, see Section 10.2, "Defining
Namespaces".

Table 8–5 New Java Class Window

Field Description

Source folder: The name of the source folder that you selected
to store the wizard rule class automatically
displays. Click Browse to browse to the folder
that you want to specify as the source folder.

Package: The name of the package that you selected to
store the wizard rule class automatically
displays. Click Browse to browse to the package
where you want to store the wizard rule class.

Name Enter the name of the wizard rule class.

Superclass: Click Browse, the Superclass Selection window
displays. In Choose a type, enter Object and
click OK.

Interfaces: Click Add, the Implemented Interfaces Selection
window displays. In Choose a type, enter
IYRCWizardRule and click OK.

Constructors from
superclass

Check this box. The system automatically creates
the constructor for the superclass.

Inherited abstract
methods

Check this box. The system automatically adds
the abstract methods inherited by the
superclass.

186 Customizing the Rich Client Platform Interface Guide

Adding Wizards as Pop-ups in Rich Client Platform Applications

8.10.1 Registering the Wizard Command File
After you create the wizard definition in the <Plug-in_id>_<wizard_
name>.ycml commands file, you must register this command file with the
plug-in project that you created, if required. This is required in order to
make your new wizard work according to the flow that you have defined
in the commands file. For more information about registering commands
file, see Appendix 17.14.4, "Registering Commands File".

8.11 Adding Wizards as Pop-ups in Rich Client
Platform Applications

You can display the new wizards as a pop-up screen, when you click on a
button. You need to associate the new wizard with the button. To display
a new wizard as a pop-up screen:

1. Add a new button to an existing screen.

2. Synchronize the extension behavior for the screen.

3. In the navigator view, expand the plug-in project that you created
when setting up the development environment.

4. Expand the package and open the extension behavior class, which
you specified in Step 2.

5. In the validateButtonClick() method, add the logic to display the new
screen in a pop-up window or dialog window, when you click on the
newly added button. For example,

Object WizardInput = YRCXmlUtils.createfromString("<WizardInput/>");
NewWizard wizard = new NewWizard(NewWizard.FORM_ID,
Shell(Display.getDefault()), WizardInput, SWT.NONE);
wizard.start();
YRCDialog oDialog = new YRCDialog(wizard,400,400,"AddLine",null);
oDialog.open();

Note: When adding the new button, make sure that you
check the "Validation Required?" box.

Adding Wizards to Menu Commands in Rich Client Platform Applications

Creating and Adding Wizards to Rich Client Platform Applications 187

8.12 Adding Wizards to Menu Commands in Rich
Client Platform Applications

You can display the new wizard as a menu item. The menu items are
connected to the actions by specifying the action identifier for a specific
menu item. Configure the action which gets invoked, when you click on
the menu item or a related task. To add new wizards to a Rich Client
Platform application menu, define wizards in the Selling and Fulfillment
Foundation Resources. All the Selling and Fulfillment Foundation
resources have a set of primary properties that are common to all types
of resources. For example, all resources have a Resource ID. These
resources are used to define wizards. In addition to primary properties,
each type of resource has a set of unique properties that is specific to a
particular type of resource.

For adding new wizards to an application in the Selling and Fulfillment
Foundation Resources, define the Resource ID, URL, and Resource Type.
The Resource ID is a unique identifier for each resource. The URL
contains the Rich Client Platform ActionId of the class that invokes the
wizard, which is defined in the plugin.xml file.

The class that invokes the newly created wizard must be created by
extending the YRCAction class. In the YRCAction class, the execute()
method invokes the action configured by you when you click on a menu
item. In the execute() method you can write a code to open the new
wizard either in a pop-up window or an editor. For more information
about opening a wizard in a pop-up window, see Section 8.11, "Adding
Wizards as Pop-ups in Rich Client Platform Applications". For information
about opening a wizard in an editor, see Section 8.13, "Adding Wizards to
Editors in Rich Client Platform Applications".

For more information about defining resources, see the Selling and
Fulfillment Foundation: Application Platform Configuration Guide.

Note: The action identifiers are not specific to menus. The
Related Tasks can also invoke these actions. For more
information about Rich Client Platform actions, see
Appendix 17.12, "Creating New Actions".

188 Customizing the Rich Client Platform Interface Guide

Adding Wizards to Editors in Rich Client Platform Applications

8.13 Adding Wizards to Editors in Rich Client
Platform Applications

You can display the new wizard in an editor when you click on a button or
a menu item or a related task. To display a new wizard in an editor:

1. Start the Eclipse SDK.

2. In the navigator view, expand the plug-in project that you created
when setting up the development environment.

For more information about creating a plug-in project, see
Section 3.3, "Creating a Plug-In Project".

3. To open the plugin.xml file in the Plug-in Manifest Editor, do any of
the following:

Double-click on plugin.xml file.

Right-click on plugin.xml file and select Open With > Plug-in
Manifest Editor.

4. Select the Extensions tab.

5. Click Add. From the New Extension window, select
org.eclipse.ui.editors extension point from the list.

6. Click Finish.

7. Select the org.eclipse.ui.editors extension point. The Extension
Details panel displays.

8. In the Extension Details panel, enter the properties of
org.eclipse.ui.editors extension point.

9. Right-click on org.eclipse.ui.editors extension and select New >
editor. The editor extension element gets created.

10. Select the editor extension element. The Extension Element Details
panel displays.

11. Enter the properties of the editor extension element.

12. In id*, enter the identifier for the editor.

13. In icon, browse to the path of the icon that you want to associate
with this editor.

14. In class, to specify the implementation class, do any of the following:

Adding Wizards to Editors in Rich Client Platform Applications

Creating and Adding Wizards to Rich Client Platform Applications 189

Click Browse. The Select Type pop-up window displays. Select the
class that extends the YRCEditorPart class.

Click on the class: hyperlink. The Java Attribute Editor window
displays.

190 Customizing the Rich Client Platform Interface Guide

Adding Wizards to Editors in Rich Client Platform Applications

Figure 8–6 Java Attribute Editor Window

Table 8–6 Java Attribute Editor Window

Field Description

Source folder: The name of the source folder that you selected
to store the editor class automatically displays.
Click Browse to browse to the folder that you
want to specify as the source folder.

Package: The name of the package that you selected to
store the editor class automatically displays.
Click Browse to browse to the package where
you want to store the editor class.

Name Enter the name of the editor class.

Adding Wizards to Editors in Rich Client Platform Applications

Creating and Adding Wizards to Rich Client Platform Applications 191

15. Open the newly created editor class in the Java Editor.

16. In the createPartControl() method create and return the instance of
the new wizard that you created. For example,

public Composite createPartControl(Composite parent, String task) {
Object WizardInput = YRCXmlUtils.createfromString("<WizardInput/>");
NewWizard wizard = new NewWizard(NewWizard.FORM_ID, parent, WizardInput,
SWT.NONE);
wizard.start();
return wizard;
}

17. To open the new wizard in the specified editor using the menu item,
define a new resource in the Selling and Fulfillment Foundation
Resources for the new menu item. For more information about
opening new wizards using menu, see Section 8.12, "Adding Wizards
to Menu Commands in Rich Client Platform Applications".

18. In the execute() method of the action set that you associated with
the menu item in the previous step do the following:

Create a new input element to pass to the YRCEditorInput object.

Create a new input object to pass to the YRCEditorInput object, if
required.

Create a new YRCEditorInput object. Pass the input element and
the input object that you created (if required). Also pass the array

Superclass: Click Browse, the Superclass Selection window
displays. In Choose a type, enter YRCEditorPart
and click OK.

Constructors from
superclass

Check this box. The system automatically creates
the constructor for the YRCEditorPart superclass.

Inherited abstract
methods

Check this box. The system automatically adds
the abstract methods inherited by the
YRCEditorPart superclass.

Finish When you click on this button, the system creates
the new editor class in the selected folder or
package.

Table 8–6 Java Attribute Editor Window

Field Description

192 Customizing the Rich Client Platform Interface Guide

Adding Wizards to Editors in Rich Client Platform Applications

of strings, which contains the attribute of the input element, and
the related task.

Open the editor that you created for the new screen by passing
the Id of the editor to the YRCPlatformUI.openEditor() method.

For example,

Element inputElement = YRCXmlUtils.createFromString("<Order
OrderNo=\"YCD001\" />").getDocumentElement();
Object inputObject = new String("");
YRCEditorInput editorInput = new YRCEditorInput(inputElement,
inputObject, new String[]{"OrderNo"}, "YCD_TASK_QUICK_ACCESS");
YRCPlatformUI.openEditor("com.yantra.qa.editors.QAEdito", editorInput);

Note: Make sure that the editor identifier that you pass to
the YRCPlatformUI.openEditor() method is same as
specified in Step 12.

Creating Related Tasks for Rich Client Platform Applications 193

9
Creating Related Tasks for Rich Client

Platform Applications

9.1 About Related Tasks
The Rich Client Platform provides the ability to create related tasks by
grouping a set of appropriate tasks based on the functionality. You must
define the group and category for each related task. All related tasks can
belong to multiple categories, but limited to one group. For more
information about the YRCRelatedTasks extension point, see Section 2.8,
"Related Tasks for Rich Client Platform Applications".

9.2 Extending the YRCRelatedTasks Extension
Point

The Rich Client Platform provides the YRCRelatedTasks extension point
for defining related tasks. This extension point needs to be used when
you want to display a new Related task on the Related tasks view.

Each related task is associated with a group. You can also define multiple
categories for each related task. This extension point is defined in the
com.yantra.yfc.rcp plug-in. Any plug-in that is dependent on the
com.yantra.yfc.rcp plug-in can extend this extension point to define its
own related tasks. The YRCRelatedTasks extension has an extension
element called tasks. The tasks extension element also has an extension
element called task.

Prior to implementing this extension point the following information is
required:

Category Information—When a new related task is being associated
to the active task running in the current editor, you need to know the

194 Customizing the Rich Client Platform Interface Guide

Extending the YRCRelatedTasks Extension Point

categories which the active task is interested in, so that the new
related task can be shown on the Related tasks view. Once you have
identified the category id to which the new related task should belong
to, you must define the same category definition using the
YRCRelatedTaskCategories extension point. Also, make sure that the
new related task is defined in the previously mentioned category.

Group Information—To display a new related task, you can either use
an existing group or create a new group.

To get the category and the group information for adding the new
related task to a existing task:

1. In the Rich Client Platform application, navigate to the task you want
to extend.

2. Through the Rich Client Platform Extensibility Tool, view the screen
information. The category and group information is displayed in the
screen information window.

To extend the YRCRelatedTasks extension point:

1. Start the Eclipse SDK.

2. In the navigator view, expand the plug-in project that you created.

For more information about creating a plug-in project, see
Section 3.3, "Creating a Plug-In Project".

3. To open the plugin.xml file in the Plug-in Manifest Editor, do any of
the following:

Double-click on plugin.xml file.

Right-click on plugin.xml file and select Open With > Plug-in
Manifest Editor.

4. Select the Extensions tab.

Note: You can only add new related task to an existing
category.

You must define this category in your plugin.xml file, and
make sure that the new related task is defined under this
category.

Extending the YRCRelatedTasks Extension Point

Creating Related Tasks for Rich Client Platform Applications 195

5. Click Add. From the New Extension window, select
com.yantra.yfc.rcp.YRCRelatedTasks extension point from the list.

6. Click Finish.

7. Select the com.yantra.yfc.rcp.YRCRelatedTasks extension point. The
Extension Details panel displays.

8. In the Extension Details panel, enter the properties of
YRCRelatedTasks extension point.

9. Right-click on com.yantra.yfc.rcp.YRCRelatedTasks extension and
select New > tasks. The tasks extension element gets created.

10. Select the tasks extension element. The Extension Element Details
panel displays.

11. In the Extension Element Details panel, enter the properties of the
tasks extension element.

12. To create a new task extension element, right-click on tasks
extension you created and select New > task. The task extension
element gets created. You can create multiple task elements under
the tasks extension element.

13. In the Extension Details panel, enter the properties of the task
extension element.

14. In permissionId, enter the resource identifier from the Selling and
Fulfillment Foundation Resources that provide implementation for
checking permissions to perform the related task. For example, a
customer support representative may not have permissions to change
the price of an item.

15. In actionId, enter the identifier of the action that gets invoked when
you click on the related task. The action class of the actionId that you
specified should extend the YRCRelatedTaskAction class.

16. In groupId, enter the identifier of the group to which the related task
belongs to. The groups are defined by extending the
YRCRelatedTaskGroups extension point. For more information about
extending the YRCRelatedTaskGroups extension point, see
Section 9.4, "Extending the YRCRelatedTaskGroups Extension Point".

17. Set the isExtension property to "true" if you want to mark the
related task as a extended related task.

196 Customizing the Rich Client Platform Interface Guide

Extending the YRCRelatedTasks Extension Point

18. Set the filterRequired property to "true", if you want to filter
related tasks based on custom criteria. For example, the Cancel Order
related task should not be displayed after you ship an order.

19. To create a new categories extension element, right-click on the
related task for which you want to define the category and select New
> categories. The categories extension element gets created.

20. Select the categories extension element. The Extension Element
Details panel displays.

21. In the Extension Element Details panel, enter the properties of the
categories extension element.

22. To create a new category extension element, right-click the
categories extension element that you created and select New >
category. The category extension element gets created. Just as the
Rich Client Platform supports the definition of multiple categories for
each related task, you can define multiple category extension
elements under the category extension element.

23. In the Extension Details panel, enter the properties of the category
extension element.

24. In id, enter the identifier of the category to which the related task
belongs to. These categories are defined by extending the
YRCRelatedTaskCategories extension point. For more information
about extending the YRCRelatedTaskCategories extension point, see
Section 9.3, "Extending the YRCRelatedTaskCategories Extension
Point".

Note: Whenever you set the value of the isExtension
property to "true" for a related task, it indicates that you
want to open the extended related task in an existing
editor. Therefore, you must define an extension contributor
to open the extended related task in an existing editor. For
more information about extending the
YRCRelatedTaskExtensionContributor extension point, see
Section 9.6, "Extending the
YRCRelatedTasksExtensionContributor Extension Point".

Extending the YRCRelatedTaskCategories Extension Point

Creating Related Tasks for Rich Client Platform Applications 197

9.3 Extending the YRCRelatedTaskCategories
Extension Point

The Rich Client Platform provides the YRCRelatedTaskCategories
extension point for defining categories, which can contain multiple
related tasks from multiple groups. This extension point is defined in the
com.yantra.yfc.rcp plug-in. Any plug-in that is dependent on the
com.yantra.yfc.rcp plug-in can extend this extension point to define its
own categories for the related tasks. The YRCRelatedTaskCategories
extension has an extension element called categories. The categories
extension element also has an extension element called category.

To extend the YRCRelatedTaskCategories extension point:

1. Start the Eclipse SDK.

2. In the navigator view, expand the plug-in project that you created
when setting up the development environment.

For more information about creating a plug-in project, see
Section 3.3, "Creating a Plug-In Project".

3. To open the plugin.xml file in the Plug-in Manifest Editor, do any of
the following:

Double-click on plugin.xml file.

Right-click on plugin.xml file, and select Open With > Plug-in
Manifest Editor.

4. Select the Extensions tab.

5. Click Add. From the New Extension window, select
com.yantra.yfc.rcp.YRCRelatedTaskCategories extension point from
the list.

6. Click Finish.

7. Select the com.yantra.yfc.rcp.YRCRelatedTaskCategories extension
point. The Extension Details panel displays.

8. In the Extension Details panel, enter the properties of the
YRCRelatedTaskCategories extension point.

9. To create a new categories extension element, right-click on
com.yantra.yfc.rcp.YRCRelatedTaskCategories extension and select
New > categories. The categories extension element gets created.

198 Customizing the Rich Client Platform Interface Guide

Extending the YRCRelatedTaskCategories Extension Point

10. Select the categories extension element. The Extension Element
Details panel displays.

11. In the Extension Element Details panel, enter the properties of the
categories extension element.

12. To create a new category extension element, right-click on categories
extension element that you created in the previous step and select
New > category. The category extension element gets created. You
can create multiple category elements under the categories extension
element.

13. In the Extension Details panel, enter the properties of the category
extension element.

14. To create a new tasks extension element, right-click on category
extension element that you created and select New > tasks. The
tasks extension element gets created.

15. Select the tasks extension element. The Extension Element Details
panel displays.

16. In the Extension Element Details panel, enter the properties of the
tasks extension element.

17. To create a new task extension element, right-click on tasks
extension that you created in the previous step and select New >
task. The task extension element gets created. You can create
multiple task elements under the tasks extension element. You can
associate multiple related tasks to the same category.

18. In the Extension Details panel, enter the properties of the task
extension element.

19. In id, enter the id of the related task that you want to have in this
particular category. These categories are defined by extending the
YRCRelatedTaskCategories extension point. For more information
about extending the YRCRelatedTaskCategories extension point, see
Section 9.3, "Extending the YRCRelatedTaskCategories Extension
Point".

Extending the YRCRelatedTaskGroups Extension Point

Creating Related Tasks for Rich Client Platform Applications 199

9.4 Extending the YRCRelatedTaskGroups
Extension Point

The Rich Client Platform provides the YRCRelatedTaskGroups extension
point for defining group for a set of related tasks. This extension point is
defined in the com.yantra.yfc.rcp plug-in. Any plug-in that is dependent
on the com.yantra.yfc.rcp plug-in can extend this extension point to
define its own groups for the related tasks. The YRCRelatedTaskGroups
extension has an extension element called groups. The groups extension
element also has a extension element called group.

To extend the YRCRelatedTaskGroups extension point:

1. Start the Eclipse SDK.

2. In the navigator view, expand the plug-in project that you created
when setting up the development environment.

For more information about creating a plug-in project, see
Section 3.3, "Creating a Plug-In Project".

3. To open the plugin.xml file in the Plug-in Manifest Editor, do any of
the following:

Double-click on plugin.xml file.

Right-click on plugin.xml file, and select Open With > Plug-in
Manifest Editor.

4. Select the Extensions tab.

5. Click Add. From the New Extension window, select
com.yantra.yfc.rcp.YRCRelatedTaskGroups extension point from the
list.

6. Click Finish.

7. Select the com.yantra.yfc.rcp.YRCRelatedTaskGroups extension point.
The Extension Details panel displays.

8. In the Extension Details panel, enter the properties of the
YRCRelatedTaskGroups extension point.

9. To create a new group extension element, right-click on
com.yantra.yfc.rcp.YRCRelatedTaskGroups extension and select New
> groups. The groups extension element gets created.

200 Customizing the Rich Client Platform Interface Guide

Extending the YRCRelatedTasksDisplayer Extension Point

10. Select the groups extension element. The Extension Element Details
panel displays.

11. In the Extension Element Details panel, enter the properties of the
groups extension element.

12. To create a new group extension element, right-click on groups
extension element that you created and select New > group. The
group extension element gets created. You can create multiple group
elements under the groups extension element.

13. In the Extension Details panel, enter the properties of the group
extension element.

14. In sequence, enter the number to indicate that the groups should
display in the ascending order of the sequence number in the Related
Tasks view. The groups are displayed in the ascending order of their
sequence number.

9.5 Extending the YRCRelatedTasksDisplayer
Extension Point

The Rich Client Platform provides the YRCRelatedTasksDisplayer
extension point for specifying the class that implements the
com.yantra.yfc.rcp.IYRCRelatedTasksDisplayer interface.

This extension point is used to display the Related tasks view, implement
this extension point only if you need to override the way the current view
is displayed.

This extension point is defined in the com.yantra.yfc.rcp plug-in. Any
plug-in that is dependent on the com.yantra.yfc.rcp plug-in can extend
this extension point to provide its own implementation. The
YRCRelatedTasks element has an extension element called
relatedTasksDisplayer.

To extend the YRCRelatedTasksDisplayer extension point:

1. Start the Eclipse SDK.

2. In the navigator view, expand the plug-in project that you created
when setting up the development environment.

For more information about creating a plug-in project, see
Section 3.3, "Creating a Plug-In Project".

Extending the YRCRelatedTasksDisplayer Extension Point

Creating Related Tasks for Rich Client Platform Applications 201

3. To open the plugin.xml file in the Plug-in Manifest Editor, do any of
the following:

Double-click on plugin.xml file.

Right-click on plugin.xml file, and select Open With > Plug-in
Manifest Editor.

4. Select the Extensions tab.

5. Click Add. From the New Extension window, select
com.yantra.yfc.rcp.YRCRelatedTasksDisplayer extension point from
the list.

6. Click Finish.

7. Select the com.yantra.yfc.rcp.YRCRelatedTasksDisplayer extension
point. The Extension Details panel displays.

8. In the Extension Details panel, enter the properties of the
YRCRelatedTasksDisplayer extension point.

9. To create a new relatedTasksDisplayer extension element, right-click
on com.yantra.yfc.rcp.YRCRelatedTasksDisplayer extension and select
New > relatedTasksDisplayer. The relatedTasksDisplayer extension
element gets created.

10. Select the relatedTasksDisplayer extension element. The Extension
Element Details panel displays.

11. To specify the implementation class, do any of the following

a. Click Browse. The Select Type pop-up window displays. Select the
class that implements the
com.yantra.yfc.rcp.IYRCRelatedTasksDisplayer interface. The
specified class must return the list of all the related tasks that you
want to display in a panel as ArrayList.

b. Click on the class* hyperlink. The Java Attribute Editor window
displays.

– Enter the name of the class that implements the
com.yantra.yfc.rcp.IYRCRelatedTasksDisplayer interface.

– Click Finish. The new class gets automatically created.

202 Customizing the Rich Client Platform Interface Guide

Extending the YRCRelatedTasksExtensionContributor Extension Point

9.6 Extending the
YRCRelatedTasksExtensionContributor Extension
Point

The Rich Client Platform provides the
YRCRelatedTasksExtensionContributor extension point for specifying the
class that implements the
com.yantra.yfc.rcp.IYRCRelatedTasksExtensionContributor interface. Use
this extension point only when you want to open a newly created related
task within an application shipped editor. This extension contributor is
called when a extended related task needs to be invoked in an
application shipped editor.

Prior to implementing this extension point the following information is
required:

Editor Information—To open the newly created related task within an
application shipped editor, you need to know the identifier of that
particular editor.

To get the editor information for opening the new related task in the
application shipped editor:

1. Navigate to the task you want to extend, in the Rich Client Platform
application.

2. Through the Rich Client Platform Extensibility Tool view the screen
information. The editor information is displayed in the screen
information window.

This extension point is defined in the com.yantra.yfc.rcp plug-in. Any
plug-in that is dependent on the com.yantra.yfc.rcp plug-in can extend
this extension point to provide its own implementation for extended
related tasks. The YRCRelatedTasksExtensionContributor element has an
extension element called relatedTasksExtensionContributor.

To extend the YRCRelatedTasksExtensionContributor extension point:

1. Start the Eclipse SDK.

2. In the navigator view, expand the plug-in project that you created.

For more information about creating a plug-in project, see
Section 3.3, "Creating a Plug-In Project".

Extending the YRCRelatedTasksExtensionContributor Extension Point

Creating Related Tasks for Rich Client Platform Applications 203

3. To open the plugin.xml file in the Plug-in Manifest Editor, do any of
the following:

Double-click on plugin.xml file.

Right-click on plugin.xml file, and select Open With > Plug-in
Manifest Editor.

4. Select the Extensions tab.

5. Click Add. From the New Extension window, select
com.yantra.yfc.rcp.YRCRelatedTasksExtensionContributor extension
point from the list.

6. Click Finish.

7. Select the com.yantra.yfc.rcp.YRCRelatedTasksExtensionContributor
extension point. The Extension Details panel displays.

8. In the Extension Details panel, enter the properties of the
YRCRelatedTasksExtensionContributor extension point.

9. To create a new relatedTasksExtensionContributor extension element,
right-click on
com.yantra.yfc.rcp.YRCRelatedTasksExtensionContributor extension
and select New > relatedTasksExtensionContributor. The
relatedTasksExtensionContributor extension element gets created.
You can create multiple relatedTasksExtensionContributor elements
but make sure that for one relatedTasksExtensionContributor
extension element you specify a unique editor. Otherwise, the system
randomly selects an extension contributor from the specified
extension contributors.

10. Select the relatedTasksExtensionContributor extension element. The
Extension Element Details panel displays.

11. In editorId, specify the Id of the editor in which the extensible related
tasks need to be opened. You can use the Rich Client
Platform-provided editor or your own custom editor to open the
related task. For one relatedTasksExtensionContributor elements, you
can specify only one editor Id.

12. To specify the implementation class, do any of the following

Click Browse. The Select Type pop-up window displays. Select the
class that implements the

204 Customizing the Rich Client Platform Interface Guide

Enabling Custom Dialog Boxes Through an Extension Point for Rich Client Platform

com.yantra.yfc.rcp.IYRCRelatedTasksExtensionContributor
interface.

Click on the class* hyperlink. The Java Attribute Editor window
displays.

– Enter the name of the class, that implements the
com.yantra.yfc.rcp.IYRCRelatedTasksExtensionContributor
interface.

– Click Finish. The new class gets automatically created.

13. Override the createPartControl(Composite parent, YRCEditorInput
editorInput, YRCRelatedTask currentTask) and return the panel to
open the current editor. For example,

public Composite createPartControl(Composite parent, YRCEditorInput
editorInput, YRCRelatedTask currentTask) {
YCDAlertScreen NewScreen = new YCDAlertScreen(parent, SWT.NONE);
 return NewScreen;
}

9.7 Enabling Custom Dialog Boxes Through an
Extension Point for Rich Client Platform
Applications

The Rich Client Platform provides four types of dialog boxes, namely,
Error, Warning, Information and Confirmation, which have default and
standard theme (font, size, background color and foreground color)
settings. To use different settings for dialog boxes, an application can
create its own custom dialog boxes with suitable themes and/or other
parameters, as required.

To enable an application to create its own custom dialog boxes, an
extension point YRCMessageDialog and an interface IYRCMessageDialog
to implement the class are added to com.yantra.yfc.rcp plug-in.

An application can extend all or any of the message dialog boxes using
the interface. If the extension is not specified, default settings are
applied to the dialog boxes.

Enabling Custom Dialog Boxes Through an Extension Point for Rich Client Platform

Creating Related Tasks for Rich Client Platform Applications 205

To create an extension:

1. Use the extension point YRCMessageDialog for implementation.

2. Select this extension point and provide the following details in the
Extension Elements Detail panel as explained subsequently:

Each extension element consists of one or more Message Dialog
elements, each with a mandatory attribute, ModuleID. The
ModuleID must correspond to the application’s ModuleID to
identify the application, for which, the dialog box changes are
required.

Each Message Dialog element may contain one or more Dialog
elements. For each Dialog element, provide the following
mandatory attributes:

– type - Indicates the type of dialog box to be extended [Error,
Warning, Information, Confirmation or API Error].

– classToLoad - Specifies the class to be loaded for
implementing the interface IYRCMessageDialog.

– The IYRCMessageDialog interface is defined in the following
format:

 public interface IYRCMessageDialog {
 Object show(Object ... objects);
 }

Apart from the four dialog boxes, Applications can also extend dialog
boxes used for displaying errors encountered during an API execution.
The API error message displays error code and error description.
Applications can extend this message box by using the error document
provided by Rich Client Platform.

Note: The application must handle the entire creation and
rendering of custom dialog boxes. However, required
information for a dialog box such as a suitable title and
message are provided by Rich Client Platform.

206 Customizing the Rich Client Platform Interface Guide

Enabling Custom Dialog Boxes Through an Extension Point for Rich Client Platform

Creating Commands for Rich Client Platform Applications 209

10
Creating Commands for Rich Client

Platform Applications

10.1 About Commands
You can create commands to call APIs or services to retrieve data in the
required format. To create commands at the form level, use the
<Plug-in id>_commands.ycml command file. Each form is a
self-contained panel in itself. A self-contained panel has its own behavior
class that extends the YRCBehavior class. Therefore, you must specify
the identifier of the form in the Id attribute of the form element.

The various attributes of command element are:

Note: In case of wizards, although wizard page has its
own behavior, it is not a self-contained panel. This is
because the wizard page behavior is internally dependent
on the wizard behavior. Therefore, to create commands for
a wizard page, you must create commands at the wizard
level. You must specify the identifier of the wizard in the Id
attribute of the form element.

210 Customizing the Rich Client Platform Interface Guide

About Commands

Table 10–1 Command Element’s Attribute List

Field Description

Name Specify a unique name for the command.
Command names are unique across the system
and redefining a command with the same name
overrides an existing definition. For more
information about overriding commands, see
Section 10.3, "Overriding Commands".

APIName Specify the name of an API or service. Associate
each command you create with an API or service
name.

APIType Specify the API type. The valid values are "API"
and "SERVICE".

outputNamespace Specify the namespace of the output template.
This namespace is defined in the namespaces
element. For more information about defining
namespaces, see Section 10.2, "Defining
Namespaces".

inputNamespace Specify the namespace of the input XML model.

NOTE: If a Rich Client Platform application does not
set the input namespace programmatically when
calling a command, the system will, by default, create
the input namespace in the following manner:

1. The target XML model for the screen is retrieved.

2. The input namespace attributes are then retrieved from
the target XML model.

However, if the Rich Client Platform application sets
the input namespace programmatically when calling a
command, the input namespace specified is ignored.

The latter is the more commonly used approach in
Rich Client Platform applications.

About Commands

Creating Commands for Rich Client Platform Applications 211

The following code is from a typical *.ycml file that is used to create
commands:

<forms>
 <form Id = "com.yantra.order.capture.ui.screens.OrderSearchandList">
 <commands>
 <command Name="getOrderDetails"
 APIName="getOrderDetails"
 APIType="API"
 outputNamespace="OrderDetails"
 inputNamespace=""
 URL="LOCAL"
 prototype="true"
 version=""/>
 <command Name = "getOrderList"
 APIName = "getOrderList"
 APIType="API"

URL If you want to invoke your own API instead of
APIs or services of the Selling and Fulfillment
Foundation, specify the URL path of the server in
the URL attribute. This URL must contain the
value of the Name attribute of the Config
element from the *.ycfg file. The complete path
of the URL is defined in *.ycfg file. For more
information about defining server URL in the
*.ycfg file, see the Selling and Fulfillment
Foundation: Installation Guide.

prototype Set the value of prototype attribute equal to
"true" to run the commands in prototype mode.
In prototype mode, the application uses XMLs
stored in the prototype folder on the client
machine as an output of an API. For more
information about prototype mode, see
Section 2.13, "Prototype Mode for Rich Client
Platform Applications".

version The Rich Client Platform also supports versioning
of APIs to ensure backward compatibility. Specify
the version of the API that you want to call in the
version attribute.

Table 10–1 Command Element’s Attribute List

Field Description

212 Customizing the Rich Client Platform Interface Guide

Defining Namespaces

 outputNamespace="OrderList"
 inputNamespace=""
 URL=""
 prototype=""
 version=""/>
 </commands>
 </form>
</forms>

Every plug-in must invoke the command files during plug-in initialization
to register its own set of commands. For more information about
registering a commands file, see Appendix 17.14.4, "Registering
Commands File".

10.2 Defining Namespaces
Namespaces are defined to uniquely identify an XML model. Use the
<Plug-in id>_commands.ycml file to define namespaces. You can define
namespaces at the form level. Specify the unique identifier of the form in
the Id attribute of the form element. The various attributes of namespace
element are:

Note: Sterling Commerce recommends that you do not
make changes to the configuration file shipped with Selling
and Fulfillment Foundation. Always create your own
configuration file or use the default configuration file that
gets created whenever you create a new Rich Client
Platform plug-in.

Defining Namespaces

Creating Commands for Rich Client Platform Applications 213

The following code is from a typical *.ycml file that is used to define
namespaces:

<forms>
 <form Id = "com.yantra.order.capture.ui.screens.OrderSearchandList">
 <commands>
 <command Name="getOrderDetails"
 APIName="getOrderDetails"
 APIType="API"
 Namespace="OrderDetails"
 URL=""
 prototype=""
 version=""/>
 </commands>
 <namespaces>
 <namespace name="OrderDetails"
 type="output"

Table 10–2 Namespace Element’s Attribute List

Field Description

name Specify a unique name for the namespace.

type Specify the type of namespace, depending on
whether the template is to be used as input or
output. For example, "input" or "output".

Note: If you are creating the namespaces for the
wizard rules:

Specify type attribute as "input" if you want
to take inputs from the user as the target
model of the screen.

Specify type attribute as "output" if you want
to populate the controls with the values from
an existing model.

templateName Specify the name of the XML file that is to be
picked from the server. For example,
getOrderDetails. The system searches for this file
on the server in the template/<Plug-in_
id>/<form_id>/namespaces directory.

Note: <Plug-in_id> is the ID of the plug-in
which will register the ycml file.

214 Customizing the Rich Client Platform Interface Guide

Overriding Commands

 templateName="getOrderDetails"/>
 <namespace name="OrderList"
 type="output"
 templateName="getOrderList"/>
 </namespaces>
 </form>
</forms>

10.3 Overriding Commands
The Overriding Commands feature enables a user to call its custom API
instead of APIs provided by Selling and Fulfillment Foundation for a
particular form. To override a command, you must enter your own
custom API name and use the same form Id and command name. For
example, on OrderSearchandList form you want to call your own custom
customGetOrderDetails API instead of the getOrderDetails API provided
by Selling and Fulfillment Foundation.

The sample code from the *.ycml file to override commands:

<forms>
 <form Id = "com.yantra.order.capture.ui.screens.OrderSearchandList">
 <commands>
 <command Name="getOrderDetails"
 APIName="customGetOrderDetails"
 APIType="SERVICE"
 outputNamespace="custOrderDetails"
 inputNamespace="custOrderDetails"
 URL="LOCAL"
 prototype=""
 version=""/>
 </commands>
 </form>
</forms>

Defining and Overriding Hot Keys in Rich Client Platform Applications 213

11
Defining and Overriding Hot Keys in Rich

Client Platform Applications

11.1 Phase 1: Defining a Hot Key Command
The Rich Client Platform enables you to define new hot keys for new
screens, and override the hot keys defined for the existing screens

To define a new command:

1. Start the Eclipse SDK.

2. In the navigator view, expand the plug-in project that you created
when setting up the development environment.

For more information about creating a plug-in project, see
Section 3.3, "Creating a Plug-In Project".

3. To open the plugin.xml file in the Plug-in Manifest Editor, do any of
the following:

Double-click on plugin.xml file.

Right-click on plugin.xml file, and select Open With > Plug-in
Manifest Editor.

4. Select the Extensions tab.

5. Click Add. From the New Extension window, select
org.eclipse.ui.commands extension point from the list.

6. Click Finish.

7. Select the org.eclipse.ui.commands extension point. The Extension
Details panel displays.

214 Customizing the Rich Client Platform Interface Guide

Phase 2: Defining a Hot Key Binding

8. In the Extension Details panel, set the properties of the
org.eclipse.ui.commands extension point.

9. Create the category extension element, if applicable. The category
element is used to logically group a set of commands. To create a
new category extension element, right-click on
org.eclipse.ui.commands extension point and select New > category.
The category extension element is created.

10. Select the category extension element. The Extension Element Details
panel displays.

11. In id*, enter the unique identifier of the category.

12. In name*, enter the name of the category.

13. Create a new command extension element, right-click on
org.eclipse.ui.commands extension point and select New > command.
The command extension element is created.

14. Select the command extension element. The Extension Element
Details panel displays.

15. In id*, enter the unique identifier of the command.

16. In name*, enter the name of the command.

17. In categoryId, enter the identifier of the category to which the
command belongs, if applicable.

18. Click to save the changes.

11.2 Phase 2: Defining a Hot Key Binding
To define a new key binding for the category that you created in the
org.eclipse.ui.commands extension point:

1. Start the Eclipse SDK.

2. In the navigator view, expand the plug-in project that you created
when setting up the development environment.

For more information about creating a plug-in project, see
Section 3.3, "Creating a Plug-In Project".

3. To open the plugin.xml file in the Plug-in Manifest Editor, do any of
the following:

Phase 2: Defining a Hot Key Binding

Defining and Overriding Hot Keys in Rich Client Platform Applications 215

Double-click on plugin.xml file.

Right-click on plugin.xml file, and select Open With > Plug-in
Manifest Editor.

4. Select the Extensions tab.

5. Click Add. From the New Extension window, select
org.eclipse.ui.bindings extension point from the list.

6. Click Finish.

7. Select the org.eclipse.ui.bindings extension point. The Extension
Details panel displays.

8. In the Extension Details panel, set the properties of the
org.eclipse.ui.bindings extension point.

9. Create a new key extension element, right-click on
org.eclipse.ui.bindings extension point and select New > key. The key
extension element is created.

10. Select the key extension element. The Extension Element Details
panel displays.

11. In sequence*, enter a valid key sequence of the hot key for the
command.

Use M1 to specify the Ctrl key

Use M2 to specify the Shift key

Use M3 to specify the Alt key

To specify a combination of keys use the "+" operator. For example,
to specify the hot key for a control as "Ctrl+Alt+K, enter the key
sequence as "M1+M3+K".

12. In schemeId*, enter defaultYantraKeyConfigurations.

13. Set the context for the hot key either as local or global. In a local
context, you can use the hot key for a specific screen in the
application. In a global context, you can use the hot key for any
screen in the application.

If you want to set the context of the hot key as local, in
contextId, enter the identifier of the form used to identify the
screen.

216 Customizing the Rich Client Platform Interface Guide

Phase 3: Defining a Hot Key Action

To retrieve information for a specific screen, in a Rich Client
Platform application, navigate to the screen for which you are
defining the new hot keys. Using the Rich Client Platform
Extensibility Tool, you can view the screen information.

If you want to set the context of the hot key as global, in
contextId, enter the global context identifier of the Rich Client
Platform. This context identifier is defined in the plugin.xml file
of Rich Client Platform plug-in, for example,
com.yantra.rcp.contexts.global.

14. In commandId, enter the identifier of the command that you defined.
For information about defining commands, see Section 11.2, "Phase
2: Defining a Hot Key Binding".

15. Click to save the changes.

11.3 Phase 3: Defining a Hot Key Action
After defining the command and hot key binding, define the action to
invoke when you press the hot key. For more information about defining
or creating new actions, see Appendix 17.12, "Creating New Actions".

After defining the command, key binding, and action, the structure of the
plugin.xml file of the plug-in project is shown in Figure 11–1.

Note: In the definitionId field, enter the identifier of the
command that you created. For more information about
defining commands, see Section 11.2, "Phase 2: Defining a
Hot Key Binding".

Overriding Hot Keys

Defining and Overriding Hot Keys in Rich Client Platform Applications 217

Figure 11–1 Plugin.xml File

11.4 Overriding Hot Keys
You can override the hot key bindings defined for existing screens. To
override an existing hot key, you need to know the identifier of the
command.

To override a hot key:

1. Start the Eclipse SDK.

2. In the navigator view, expand the plug-in project that you created
when setting up the development environment.

For more information about creating a plug-in project, see
Section 3.3, "Creating a Plug-In Project".

3. To open the plugin.xml file in the Plug-in Manifest Editor, do any of
the following:

Double-click on plugin.xml file.

Right-click on plugin.xml file, and select Open With > Plug-in
Manifest Editor.

4. Select the Extensions tab.

5. Click Add. From the New Extension window, select
org.eclipse.ui.bindings extension point from the list.

6. Click Finish.

7. Select the org.eclipse.ui.bindings extension point. The Extension
Details panel displays.

Defining Command

Defining Key Binding

Defining Action

218 Customizing the Rich Client Platform Interface Guide

Overriding Hot Keys

8. In the Extension Details panel, set the properties of the
org.eclipse.ui.bindings extension point.

9. Create a new key extension element, right-click on
org.eclipse.ui.bindings extension point, and select New > key. The
key extension element is created.

10. Select the key extension element. The Extension Element Details
panel displays.

11. In sequence*, enter the new valid key sequence of the hot key that
you want to override.

Use M1 to specify the Ctrl key

Use M2 to specify the Shift key

Use M3 to specify the Alt key

To specify a combination of keys use the "+" operator. For example,
to specify the hot key for a control as "Ctrl+Alt+K, enter the key
sequence as "M1+M3+K".

12. In schemeId*, enter defaultYantraKeyConfigurations.

13. Set the context for the hot key. You can either set the context as local
or global. Local context means that the hot key can be used only for
a particular screen in the application. Global context means that the
hot key can be used for any screen in the application.

If you want to set the context of the hot key as local—In
contextId, enter the identifier of the form that is used to identify the
screen. To get the information about a particular screen:

– In the Rich Client Platform application, navigate to the screen
for which you are defining the new hot keys.

– Through the Rich Client Platform Extensibility Tool view the
screen information.

If you want to set the context of the hot key as global—In
contextId, enter the global context identifier of the Rich Client
Platform. This context identifier is defined in the plugin.xml file of the
Rich Client Platform plug-in. For example,
com.yantra.rcp.contexts.global.

14. In commandId, enter the identifier of the command whose hot key
you want to override.

Overriding Hot Keys

Defining and Overriding Hot Keys in Rich Client Platform Applications 219

15. Click to save the changes.

11.4.1 Disabling Related Task Hot Keys
By default, the hot keys defined for related tasks are always enabled.
You can globally disable hot keys defined for the related tasks in a Rich
Client Platform application.

To disable the related task hot keys, call the
enableRelatedTasksHotKeys() utility method of the
YRCAppShellConfiguration class and pass "false" as the input argument.
For example,

YRCAppShellConfiguration.enableRelatedTasksHotKeys(false);

Note: You can disable the hot key for a particular related
task by changing the hot key configurations using the Rich
Client Platform Extensibility Tool.

220 Customizing the Rich Client Platform Interface Guide

Overriding Hot Keys

Merging Templates for Rich Client Platform Applications 221

12
Merging Templates for Rich Client Platform

Applications

12.1 Merging Input and Output Templates
The Rich Client Platform allows you to merge the input and output
templates as per your needs. Template merging can be used to get
additional data from an API or Service. For example, you may want to
get the values of additional attributes from an API or service. All the
templates that are shipped with Selling and Fulfillment Foundation are
stored on the server in the namespaces folder of the Rich Client Platform
plug-in and PCA plug-in directories.

The PCA templates are located at:

<INSTALL_DIR>/repository/xapi/merged/<PCA_plug-in_id>/<form_
id>/namespaces

To extend the PCA templates, place the extended templates for the PCA
in:

<INSTALL_DIR>/extensions/global/template/<plug-in-id>/<form_
id>namespaces

The Rich Client Platform templates are located at:

<INSTALL_
DIR>/repository/xapi/template/merged/com.yantra.yfc.rcp/namesp
aces

222 Customizing the Rich Client Platform Interface Guide

Merging Input and Output Templates

For APIs or services for which no form identifier is specified, the output
templates are stored in the following folder of the Rich Client Platform
plug-in:

<INSTALL_
DIR>/repository/xapi/template/merged/template/<Plug-in_
id>/namespaces

You can create new output templates and store them in the following
folder of the Rich Client Platform plug-in:

<INSTALL_DIR>/extensions/global/template/<plug-in-id>/<form_
id>namespaces

As an example, let us consider the following getOrderLineDetails
output template:

<OrderLine>
 <OrderLineList>
 <Order OrderNo="Y00102495" ItemID="MOUSE"/>
 </OrderLineList>
</OrderLine>

To add a new attribute called Status to the OrderNo element in this
output template:

1. Create the XML file with the same name as the existing output
template and store it in the
/extensions/global/template/<Plug-in_id>/<form_
id>/namespaces folder of the Selling and Fulfillment Foundation PCA
plug-in. For example, getOrderLineDetails.xml.

2. Add a new attribute called Status in the Order element. Add only the
additional attributes that you require. The new output template looks
as follows:

<OrderLine>
 <OrderLineList>
 <Order Status=" "/>
 </OrderLineList>
</OrderLine>

Note: You cannot extend the Rich Client Platform
templates.

Merging Input and Output Templates

Merging Templates for Rich Client Platform Applications 223

The new getOrderLineDetails output template looks as follows:

<OrderLine>
 <OrderLineList>
 <Order OrderNo="Y00102495" ItemID="MOUSE" Status=" "/>
 </OrderLineList>
</OrderLine>

224 Customizing the Rich Client Platform Interface Guide

Merging Input and Output Templates

Related and Shared Tasks in Rich Client Platform Applications 225

13
Related and Shared Tasks in Rich Client

Platform Applications

13.1 Adding New Related Tasks
You can add new related tasks to the Rich Client Platform application by
extending the following extension points provided by the Rich Client
Platform.

YRCRelatedTasks

YRCRelatedTaskCategories

YRCRelatedTaskGroups

YRCRelatedTasksDisplayer

YRCRelatedTasksExtensionContributor

For more information about creating related tasks, see Chapter 9,
"Creating Related Tasks for Rich Client Platform Applications".

13.2 Hiding Existing Related Tasks
You can hide the related tasks on the screen by removing the related
tasks from the list specified in the YRCRelatedTasksDisplayer extension
point. For more information about the YRCRelatedTasksDisplayer
extension point, see Section 9.5, "Extending the
YRCRelatedTasksDisplayer Extension Point".

13.3 Registering Shared Tasks
You can register the new shared tasks with the Rich Client Platform
plug-in using the YRCSharedTasks extension point.

226 Customizing the Rich Client Platform Interface Guide

Registering Shared Tasks

To register the new shared tasks:

1. Start the Eclipse SDK.

2. In the navigator view, expand the plug-in project that you created
when setting up the development environment.

For more information about creating a plug-in project, see
Section 3.3, "Creating a Plug-In Project".

3. To open the plugin.xml file in the Plug-in Manifest Editor, do any of
the following:

Double-click on plugin.xml file.

Right-click on plugin.xml file, and select Open With > Plug-in
Manifest Editor.

4. Click the Extensions tab.

5. Click Add. From the New Extension window, select
com.yantra.yfc.rcp.YRCSharedTasks extension point from the list.

6. Click Finish.

7. Select the com.yantra.yfc.rcp.YRCSharedTasks extension point. The
Extension Details panel displays.

8. In the Extension Details panel, enter the properties of the
YRCSharedTasks extension point.

9. In id*, enter the unique identifier for the shared task. This shared
task identifier should be unique across all the applications and
plug-ins.

10. In name*, enter the name for the shared task.

11. In description*, enter the description of the shared task.

12. In class*, specify the implementation class for the shared task.

To specify the implementation class, do any of the following:

Click Browse. The Select Type pop-up window displays. Select the
class to use to extend the YRCSharedTask class.

Click the class* hyperlink. The Java Attribute Editor window
displays.

Registering Shared Tasks

Related and Shared Tasks in Rich Client Platform Applications 227

Figure 13–1 Java Attribute Editor Window

Table 13–1 Java Attribute Editor Window

Field Description

Source folder: The name of the source folder that you selected to
store the shared task class automatically displays.
Click Browse to browse to the folder that you want to
specify as the source folder.

Package: The name of the package that you selected to
store the shared task class automatically
displays. Click Browse to browse to the package
where you want to store the shared task class.

Name Enter the name of the shared task class.

228 Customizing the Rich Client Platform Interface Guide

Using Shared Tasks

13. Open the newly created editor class in the Java Editor and implement
the abstract methods of the YRCSharedTask class.

13.4 Using Shared Tasks
You can invoke a shared task by clicking a button, menu item, and so
forth. You can also invoke a shared task by calling the
launchSharedTask(String taskId, Element input) method provided by the
YRCPlatformUI utility class of the Rich Client Platform.

To invoke a shared task within an application, you must know the
complete details of the shared task, such the identifier of the shared
task, structure of the input XML template, and structure of the output
XML template.

To view the shared task information:

1. Navigate to the Rich Client Platform application.

2. In the Rich Client Platform Extensibility Tool, view the shared task
information.

Superclass: Click Browse, the Superclass Selection window
displays. In Choose a type, enter YRCSharedTask
and click OK.

Constructors from
superclass

Check this box. The system automatically creates
the constructor for the YRCSharedTask
superclass.

Inherited abstract
methods

Check this box. The system automatically adds
the abstract methods inherited by the
YRCSharedTask superclass.

Finish When you click on this button, the system creates
the new shared task class in the selected folder
or package.

Table 13–1 Java Attribute Editor Window

Field Description

Using Shared Tasks

Related and Shared Tasks in Rich Client Platform Applications 229

After getting the required information invoke the shared task by calling
the launchSharedTask(String taskId, Element input) method. For
example:

YRCPlatformUI.launchSharedTask("com.yantra.rcp.SharedTask1",input);

where com.yantra.rcp.SharedTask1 is the identifier of the shared task
that you want to invoke and input is an input XML element that exist in
the input XML to the shared task.

The YRCPlatformUI class provides more methods, which you can call to
invoke a particular shared task. For example, launchSharedTask(String
taskId), launchSharedTask(Composite parent, String taskId), and so
forth.

230 Customizing the Rich Client Platform Interface Guide

Using Shared Tasks

Defining Themes for Rich Client Platform Applications 231

14
Defining Themes for Rich Client Platform

Applications

14.1 Defining New Themes
For theming the Rich Client Platform application, define the new theme
entries in the <Plug-in_id>_<theme_name>.ythm theme file. After you
register the theme file, it is loaded using the user-defined locale. For
more information about registering the theme file, see Appendix 17.14.2,
"Registering Theme File". The system loads all theme entries into a
common repository and automatically applies them to the controls on the
UI. The last theme definition that is loaded overrides the previous theme
definitions.

To define the new theme entries for theming the Rich Client Platform
application:

1. Before you can start theming your Rich Client Platform application,
you must set up the development environment. For more information
about setting up the development environment, see Chapter 3, "The
Development Environment for Rich Client Platform Applications".

2. In the navigator window, expand the plug-in project that you created.

3. Open the *.ythm file in the text editor.

4. Create the root element Theme.

5. In the id attribute, specify the unique identifier for the theme.

6. Create ThemeEntry element under the Theme element.

7. In the Name attribute specify the unique name for this theme entry.

8. Create the Font element under ThemeEntry and set the its attributes.
For Font element attribute list, see Table 14–1.

232 Customizing the Rich Client Platform Interface Guide

Defining New Themes

9. Create the BackgroundColor element under ThemeEntry and set the
its attributes. For BackgroundColor element attribute list, see
Table 14–2.

10. Create the ForegroundColor element under ThemeEntry and set the
its attributes. For ForegroundColor element attribute list, see
Table 14–2.

11. Create the Image element under the ThemeEntry element, if
applicable.

12. In the Path attribute, specify the path of the image you want to
display.

13. Rename the *.ythm file to: <file_name>_<theme_name>.ythm. For
example, comapp_jade.ythm.

Table 14–1 Font Element Attribute List

Attribute Description

Name Specify the name of the font you want to use. For
example, Tahoma, Courier, Arial, and so forth.

Height Specify the height of the font.

Style Specify the font style that you want to use. For
example, NORMAL, BOLD, ITALIC, and so forth.

Table 14–2 BackgroundColor Element Attribute List

Attribute Description

Red Specify the decimal color code for the red color. Valid
values range from 0 to 255.

Green Specify the decimal color code for the green color.
Valid values range from 0 to 255.

Blue Specify the decimal color code for the blue color. Valid
values range from 0 to 255.

Note: You can create multiple ThemeEntry elements to
define themes for various resources such as control text,
user info, error text, error icons, logos, and so forth.

Defining Themes for Controls

Defining Themes for Rich Client Platform Applications 233

where comapp is the <file_name> and jade is the <theme_name>.

14. Register the theme file in the plugin java file of the plug-in project
using the registerTheme() method. For example,

YRCPlatformUI.registerTheme("<file_name>_<themename>", ID);

The sample theme entries from the *.ythm file is as follows:

<Theme id="jade">
 <ThemeEntry Name="Label">

 <ForegroundColor Red="0" Green="0" Blue="0"/>
 <BackgroundColor Red="245" Green="245" Blue="245"/>
 </ThemeEntry>
 <ThemeEntry Name="Text">

 <ForegroundColor Red="0" Green="0" Blue="0"/>
 <BackgroundColor Red="255" Green="255" Blue="255"/>
 </ThemeEntry>
 <ThemeEntry Name="Table">

 <BackgroundColor Red="245" Green="245" Blue="245"/>
 <ForegroundColor Red="0" Green="0" Blue="0"/>
 </ThemeEntry>
 <ThemeEntry Name="ErrorColor">

 <ForegroundColor Red="255" Green="0" Blue="0"/>
 <BackgroundColor Red="245" Green="245" Blue="245"/>
 </ThemeEntry>
 <ThemeEntry Name="ErrorIcon">
 <Image Path="/icons/error.gif"/>
 </ThemeEntry>
 <ThemeEntry Name="HeaderLogo">
 <Image Path="/icons/yantra_header.jpg"/>
 </ThemeEntry>
</Theme>

14.2 Defining Themes for Controls
For theming controls, define the theme entries in the <Plug-in_id>_
<theme_name>.ythm file at the plug-in level. For example, let us consider
that you have created a new label and you want to have a specific font
and color for that label. To set a theme for the label:

234 Customizing the Rich Client Platform Interface Guide

Defining Themes for Controls

1. Define entries in the theme file for the label. For example:

<Theme id="sapphire">
 <ThemeEntry Name="MyLabel">

 <ForegroundColor Blue="0" Green="0" Red="0"/>
 <BackgroundColor Blue="245" Green="245" Red="245"/>
 </ThemeEntry>
</Theme>

where id attribute is the unique identifier for the <Plug-in_id>_
<theme_name>.ythm file. The Name attribute indicates the name of the
theme entry, which is used for theming controls.

2. Set the binding data for the control by associating the binding object
with the key. For example,

lblDate.setData(YRCConstants.YRC_CONTROL_CUSTOMTYPE,"MyLabel");

where lblDate is the reference variable name of the label, which you
specified in the visual editor, YRCConstants.YRC_CONTROL_
CUSTOMTYPE is the key used for identifying the custom theme entry,
and MyLabel is the name of the ThemeEntry element in the theme
file.

14.2.1 Applying Themes to Non-editable Text Boxes
Labels do not support text edits and cannot display lengthy text. To
overcome this problem, non-editable text boxes are used (without the
border). Such non-editable text boxes do not have any theme set and
are indistinguishable from labels.

Note: The theme file corresponding to the theme
specified within the user configuration is loaded. For
example, if you log on to the Rich Client Platform
application as user that is configured to use the theme
with id as "sapphire", then the theme file with id
"sapphire" gets loaded.

Therefore, if you are creating new screens and adding new
entries for the "sapphire" theme, the Id attribute of this
extension theme file should be "sapphire".

Defining Themes for Controls

Defining Themes for Rich Client Platform Applications 235

To distinguish between labels and non-editable text boxes, a new theme
NoneditableTextboxTheme as the ThemeEntry Name is included in the
*.ythm files, by default. The Rich Client Platform applies this default
theme to all non-editable text boxes that do not already have a theme.

To override the default settings:

Add a theme entry with the same name, NoneditableTextboxTheme, in
the Application plugins, *.ycml file as follows:

 <ThemeEntry Name="NoneditableTextboxTheme">

 <ForegroundColor Blue="0" Green="179" Red="0"/>
 <BackgroundColor Blue="255" Green="255" Red="255"/>
 </ThemeEntry>

Note: This theme cannot be applied to text boxes that
are made non-editable dynamically.

236 Customizing the Rich Client Platform Interface Guide

Defining Themes for Controls

Menus and Custom Controls for Rich Client Platform Applications 237

15
Menus and Custom Controls for Rich Client

Platform Applications

15.1 Adding and Removing Menus in Rich Client
Platform Applications

Menu configuration contains the standard Selling and Fulfillment
Foundation resources and also the extended resources that you define
when configuring resources.

All menus are grouped into a menu group. The default menu group
contains the standard menu configuration of the Application Console,
which is linked to the default Administrator user. When creating your own
users, you can reuse this menu group or create a new menu group. The
custom menus may contain different menu items.

For more information about adding or removing menus from the screen,
see the Selling and Fulfillment Foundation: Application Platform
Configuration Guide.

15.2 Customizing the Menu View Through the
YRCMenuDisplayer Extension Point

The Rich Client Platform enables you to extend the menu view for specific
modules in Rich Client Platform applications through an extension point,
YRCMenuDisplayer. This extension point is provided in the
com.yantra.yfc.rcp plugin. An interface IYRCMenuDisplayer is also
provided, which must be implemented by the class specified in the
extension.

To customize the menu view for specific modules that contain a menu
view in Rich Client Platform applications, perform the following steps:

238 Customizing the Rich Client Platform Interface Guide

Customizing the Menu View Through the YRCMenuDisplayer Extension Point

1. Start the Eclipse SDK.

2. In the navigator view, expand the plug-in project that you created.
For more information about creating a plug-in project, see
Section 3.3, "Creating a Plug-In Project".

3. To open the plugin.xml file in the Plug-in Manifest editor, do any of
the following:

Double-click on plugin.xml file.

Right-click on plugin.xml file and select Open With > Plug-in
Manifest Editor.

4. Select the Extensions tab.

5. Click Add. From the New Extension window, select YRCMenuDisplayer
extension point from the list.

6. Click Finish.

7. Select the com.yantra.yfc.rcp.YRCMenuDisplayer extension point. The
Extension Details panel is displayed.

8. In the Extension Details panel, enter the properties of
YRCMenuDisplayer extension.

9. The extension point has a defined sequence, which consists of the
following attributes:

id: The extension is identified by a unique ID which must be
specified.

name: This is the name given to the extension. The name is optional.
For example, mymenu.

MenuDisplayer: The MenuDisplayer element defines the class to be
loaded for customizing the menu view on the workbench window.
This extension point consists of the following mandatory attributes:

class: Specify a fully qualified path to the Java class that must
implement the IYRCMenuDisplayer interface.

moduleId: Specify the module ID of the application for which the
menu view must be customized. For example, ycd (for Sterling
Call Center and Sterling Store).

Customizing the Menu View Through the YRCMenuDisplayer Extension Point

Menus and Custom Controls for Rich Client Platform Applications 239

240 Customizing the Rich Client Platform Interface Guide

Customizing the Menu View Through the YRCMenuDisplayer Extension Point

Customizing the Menu View Through the YRCMenuDisplayer Extension Point

Menus and Custom Controls for Rich Client Platform Applications 241

242 Customizing the Rich Client Platform Interface Guide

Customizing the Menu View Through the YRCMenuDisplayer Extension Point

Setting the Extension Model, Configuring SSL and SSO for Rich Client Platform Applications 241

16
Setting the Extension Model, Configuring

SSL and SSO for Rich Client Platform
Applications

16.1 Setting the Extension Model for Rich Client
Platform Applications

Extension model is set to populate the newly added fields on the form
with the required data. Extension model must be used in case you are
not getting the required data from the existing model or existing APIs or
services called on the screen.

Before you set the extension model, do the following:

Creating Commands—In the <Plug-in_id>_commands.ycml file,
create new commands for calling an API or service for a screen. For
more information, about creating commands, see Chapter 10,
"Creating Commands for Rich Client Platform Applications".

Defining Namespaces—In the <Plug-in_id>_commands.ycml file,
define the new namespaces for a screen. For more information about
defining namespaces, see Section 10.2, "Defining Namespaces".

After creating new commands and namespaces for a screen, call an API
or service. After API or service call completes, call the
setExtensionModel() method to populate the newly added fields on the

Note: All the new namespaces that you define must start
with "Extn_".

242 Customizing the Rich Client Platform Interface Guide

Configuring SSL for Rich Client Platform Applications

screen. You must pass the namespace of the model and the target
element as arguments to the setExtensionModel() method.

16.2 Configuring SSL for Rich Client Platform
Applications

The Rich Client Platform allows you to connect to servers using the
HTTPS protocol.

You can add your own custom hostname verification logic by adding the
hostname verifier. To add the hostname verifier, you must extend the
YRCHostNameVerifier extension point.

To extend the YRCHostNameVerifier extension point:

1. Start the Eclipse SDK.

2. In the navigator view, expand the plug-in project that you created
when setting up the development environment.

For more information about creating a plug-in project, see
Section 3.3, "Creating a Plug-In Project".

3. To open the plugin.xml file in the Plug-in Manifest Editor, do any of
the following:

Double-click on plugin.xml file.

Right-click on plugin.xml file and select Open With > Plug-in
Manifest Editor.

4. Select the Extensions tab.

5. Click Add. From the New Extension window, select
com.yantra.yfc.rcp.YRCHostNameVerifier extension point from the
list.

6. Click Finish.

Note: Use the setExtensionModel() method only if the a
specific API is not returning the required data for the newly
added field and hence you want to call your own API.

Configuring SSO for Rich Client Platform Applications

Setting the Extension Model, Configuring SSL and SSO for Rich Client Platform Applications 243

7. Select the com.yantra.yfc.rcp.YRCHostNameVerifier extension point.
The Extension Details panel displays.

8. In the Extension Details panel, enter the properties of the
YRCHostNameVerifier extension point.

9. To create a new hostNameVerifier extension element, right-click on
com.yantra.yfc.rcp.YRCHostNameVerifier extension and select New >
hostNameVerifier. The hostNameVerifier extension element gets
created.

10. Select the hostNameVerifier extension element. The Extension
Element Details panel displays.

11. To specify the implementation class, do any of the following

Click Browse. The Select Type pop-up window displays. Select the
class that implements the javax.net.ssl.HostnameVerifier
interface.

Click the class* hyperlink. The Java Attribute Editor window
displays.

– Enter the name of the class that implements the
javax.net.ssl.HostnameVerifier interface.

– Click Finish. The new class gets created.

12. Implement the verify (String hostName, SSLSession session) method
and return the value "true" if the host name is acceptable. Otherwise,
return the value "false".

16.3 Configuring SSO for Rich Client Platform
Applications

Single Sign-on (SSO) enables a user to perform an authentication once
and gain access to the of multiple applications’ resources without having
to login to the applications again and again. To set up an SSO for a Rich
Client Platform application, you need to configure both client-side and
server side settings.

244 Customizing the Rich Client Platform Interface Guide

Configuring SSO for Rich Client Platform Applications

16.3.1 Client Settings for SSO Configuration
Perform the following steps:

1. Create a new plug-in for SSO authentication. For more information
about creating a plug-in project, see Section 3.3, "Creating a Plug-In
Project".

2. Start the Eclipse SDK.

3. In the navigator view, expand the plug-in project that you created.

4. To open the plugin.xml file in the Plug-in Manifest Editor, perform
one of the following tasks:

Double-click the plugin.xml file.

Right-click the plugin.xml file and select Open With > Plug-in
Manifest Editor.

5. Select the Extensions tab.

6. Click Add.

7. From the New Extension window, select
com.yantra.yfc.rcp.YRCSSOAuthenticator extension point from
the list.

8. Click Finish.

9. Select the com.yantra.yfc.rcp.YRCSSOAuthenticator extension
point. The Extension Details panel is displayed.

10. In the Extension Details panel, enter the properties of the
com.yantra.yfc.rcp.YRCSSOAuthenticator extension point.

11. To specify the implementation class, perform one of the following
tasks:

Click Browse. In the Select Type pop-up window that is displayed,
select the class that implements the
com.yantra.yfc.rcp.YRCSSOAuthenticator interface.

Note: SSO must be implemented as a separate plug-in. If
not implemented as a separate plug-in, the out-of-the-box
<key>=<value> bindings will be ignored.

Configuring SSO for Rich Client Platform Applications

Setting the Extension Model, Configuring SSL and SSO for Rich Client Platform Applications 245

Click the class* hyperlink. The Java Attribute Editor window is
displayed.

– – Enter the name of the class that implements the
com.yantra.yfc.rcp.YRCSSOAuthenticator interface.

– Click Finish. The new class is automatically created.

12. Implement the isAuthTokenAvailable() method. If the SSO
Authentication is available in the Rich Client Platform Application, the
isAuthTokenAvailable() method should return True. Otherwise, it
should return False.

13. Implement the setAuthToken(URLConnection connection) method and
return the <key> and <value> pairs of the connection request
property. Following is an example of this:

public void setAuthToken(URLConnection connection) {
connection.setRequestProperty(key,value);
}

14. Override the getBrowserAuthParams() method and return the map of
the connection request parameters. The map should contain the
string objects as <key> and <value> pairs. Following is an example
of this:

public Map getBrowserAuthParams() {
Map map = new HashMap();
map.put(key, value);
return map;
}

15. Edit the Rich Client Platform application’s *.ini file and add the
following VM arguments:

-vmargs
-Dssomode=Y

16.3.2 Server Settings for SSO Configuration
1. Open the <INSTALL_

DIR>/repository/eardata/platform/descriptors/weblogic/WAR/W
EB-INF/web.xml file and search for the <servlet-name> tag.

2. Inside the RcpSSOServlet <servlet-name> tag, add the following init
parameter entry:

246 Customizing the Rich Client Platform Interface Guide

Configuring SSO for Rich Client Platform Applications

<init-param>
 <param-name>rcpssomanager</param-name>
 <param-value>com.yantra.SsoManager</param-value>
</init-param>

Note: To use SSO, the client should be configured to SSO
and should have the authentication token. The
rcpssomanger init parameter set on the server is used to
validate the user session.

Rich Client Platform General Concepts Reference 247

17
Rich Client Platform General Concepts

Reference

17.1 Rich Client Platform Architecture
Rich Internet Clients have advantages of both Client-Server and
thin-client applications. Rich Internet Client applications are developed
on open standards and have strong integration with the Desktop
Operating System (OS), resulting in rich interaction. Rich Internet Client
applications provide immediate feedback to users when they interact with
the application. Rich Internet Client applications use modern UI controls,
such as tree controls or tabbed panels. Also, Rich Internet Client
applications allow users to perform interactive operations such as drag
and drop.

User Interfaces (UI) have been an integral part of any software
application. For the last few decades, a wide range of architectures and
technologies have been used to deliver user interfaces. The Total Cost of
Ownership (TCO) and Usability, Responsiveness, and Performance (URP)
have been the two balancing factors for choice of technologies.

TCO covers all the upfront and ongoing costs of an application, which
includes: purchase price, equipment, installation, training, and ongoing
maintenance.

URP measures the performance of an application, its usability, and user’s
productivity.

The ideal application would be one with a low TCO and a high URP.

UI architectures can be classified as:

Green screen (or Character User Interfaces (CUI))

Client-Server

248 Customizing the Rich Client Platform Interface Guide

Rich Client Platform Architecture

Browser based

Rich Internet Client

The CUI provided users with basic user interfaces. CUI did not have the
capability of displaying information such as product images due to lack of
graphic capabilities. With the advent of Graphical User Interfaces (GUI)
and operating systems such as Windows, applications can support more
sophisticated user interfaces along with alternate input devices. For
example, mouse.

The GUI applications developed using Client-Server technologies resulted
in Dynamic Link Library (DLL) conflicts and heavy network usage with
respect to TCO.

In mid-90's, internet technologies such as Hyper Text Markup Language
(HTML) started emerging very fast. Due to its simplicity and very low
TCO, internet technologies had tremendous impact in the way business
applications were delivered. Initially, HTML was only used for displaying
information. However, its potential for applications was soon exploited.

HTMLs performance in an interactive mode is highly limited, with high
number of trips required back and forth from the server. In addition,
standard HTML was never intended to produce the high-quality and
high-performance user interfaces that excelled under the Client-Server
model.

The reduction in TCO of these browser-based applications was at the
expense of the users, as the URP was severely reduced.

Figure 0–1 illustrates the Rich Client Platform Architecture.

Eclipse and its Rich Client Platform

Rich Client Platform General Concepts Reference 249

Figure 0–1 Rich Client Platform Architecture

Today, technologies exists to create what is commonly known as Rich
Internet Clients that have advantages of a Client-Server model in terms
of URP and thin-client applications in terms of TCO. Rich Internet Client
applications are developed on open standards and have strong
integration with the desktop Operating System (OS), which results in
highly rich interaction. Rich Internet Client applications are also designed
to provide server-based updates and are designed to work with low
bandwidth networks and standard security protocols.

17.2 Eclipse and its Rich Client Platform
Eclipse is an open source software development environment dedicated
to provide a robust, full-featured, and commercial-quality industry
platform for the development of highly integrated tools. The Eclipse
Platform is designed for building Integrated Development Environments
(IDEs) that are used to create diverse applications.

Eclipse Rich Client Platform helps in building java applications that are
Application Platform independent. Eclipse Rich Client Platform can also be

250 Customizing the Rich Client Platform Interface Guide

Plug-In Manifest Editor

used for building non-IDE applications. Eclipse Rich Client Platform
provides a general UI, which can be extended by developers to suit their
business needs.

www.eclipse.org is an association of software development tool vendors.
The Eclipse community was formed in order to create better development
environments and product integration. The community shares an interest
in creating products that are easily interoperable, because they are
based on plug-in technology and a common platform.

The Eclipse platform, which is a part of the Eclipse project, is an open
extensible Integrated Development Environment (IDE). The Eclipse
platform provides building blocks and a foundation for constructing and
running integrated software development tools. Primarily, Eclipse
platform is driven by International Business Machines (IBM). Eclipse
technology is widely accepted within the Java community.

The Eclipse Rich Client Platform addresses the need for a single
cross-platform environment to create highly-interactive business
applications. Essentially, Rich Client Platform provides a generic Eclipse
workbench that developers can extend to construct their own
applications. Eclipse Rich Client Platform is a part of Eclipse 3.2 release.
Eclipse Rich Client Platform enables application developers to deliver rich
internet applications that run on platforms such as Windows, Linux, and
so forth.

17.3 Workbench
Workbench refers to the desktop development environment. Workbench
window contains one or more perspectives. A perspective defines the
initial set and layout of views in the Workbench window. Perspectives
contain views, editors, menus, and tool bars. You can customize a
perspective by defining a set of actions. More than one Workbench
window can exist on the desktop at any given time.

17.4 Plug-In Manifest Editor
The Plug-in Manifest Editor provides a single UI for editing the manifest
and other plug-in related files. The Plug-in Manifest Editor contains
following sections:

http://www.eclipse.org

Plug-In Manifest Editor

Rich Client Platform General Concepts Reference 251

17.4.1 Overview
The Overview section provides plug-in details such as plug-in identifier,
version, and so forth. It also specifies the class that is called when the
user runs a plug-in.

17.4.2 Dependencies
The Dependencies section provides a list of dependant plugins required
by the plug-in to compile its code. If a plug-in is using the extension
points of some other plugins, then the plug-in must list those plugins as
dependant plugins.

17.4.3 Runtime
The Runtime section provides a list of libraries in which the plug-in code
is packaged. For example, sop.jar. The class loader searches these
libraries during runtime to load the plug-in’s classes. You can set the
library’s type, visibility, and content in the runtime section.

17.4.4 Extensions
The Extensions section describes the functionality that a plug-in
contributes to the Eclipse platform by extending other plugins extension
points. The extension declaration must adhere to the schema defined by
the extension point it extends. You can add new menus and menu items
along with toolbar by extending the org.eclipse.ui.actionSets extension
point.

17.4.5 Extension Points
The Extension Points section provides a list of new extension points that
are defined by a plug-in, which can be extended by other plugins to add
the new functionality. For example, the Rich Client Platform plug-in
provides a YRCPluginAutoLoader extension point which other plugins can
extend to load their plug-in.

17.4.6 Build
The Build section provides a list of libraries that are required at the
runtime. It also lists the source folder where these libraries are located.

252 Customizing the Rich Client Platform Interface Guide

YRCPluginAutoLoader Extension Point

You can select the folders and/or files you want to include in the source
build and binary build.

17.4.7 Manifest.mf
The manifest.mf file contains a list of plugins that are loaded
dynamically. The Bundle-Activator entry specifies the name of the
plug-in. For example, com.yantra.yfc.rcp.

17.4.8 Plugin.xml
The plugin.xml file contains all information that is required to run a
plug-in. The plugin.xml file is used for defining Eclipse extension points,
and other dependent plug-in’s extension points. However, if you are not
using any extension points, you can exclude this file.

17.4.9 Build.properties
The build.properties file contains all files and directories that are
required by a plug-in at the runtime.

17.5 YRCPluginAutoLoader Extension Point
The Rich Client Platform provides "YRCPluginAutoLoader" extension point,
which defines the order in which the plugins needs to be loaded. The
"YRCPluginAutoLoader" is an extension point, which is defined in the
"com.yantra.yfc.rcp" plug-in. Any plug-in that is dependent on the
"com.yantra.yfc.rcp plug-in" can extend this extension point to
automatically load a class in the specified order when starting the Rich
Client Platform application. The "YRCPluginAutoLoader" automatically
loads the classes within a plug-in during startup in a specified order. All
classes that need to be automatically loaded are sorted in ascending
order and loaded one at a time. The "YRCPluginAutoLoader" has a
extension element called AutoLoad, which has two properties
"ClassToLoad" and "LoadOrder".

YRCApplicationInitializer Extension Point

Rich Client Platform General Concepts Reference 253

17.6 YRCApplicationInitializer Extension Point
The Rich Client Platform provides an extension point,
YRCApplicationInitializer, and an interface, IYRCApplicationInitializer,
which can be used to define the classes that are initialized and invoked
during application startup. These classes are called after login but before
the application workbench window is created or opened.

The YRCApplicationInitializer extension point is defined in the
com.yantra.yfc.rcp plug-in and must implement the
IYRCApplicationInitializer interface.

To define the initialization class, perform the following steps:

1. Start the Eclipse SDK.

2. In the navigator view, expand the plug-in project that you created.
For more information about creating a plug-in project, see
Section 3.3, "Creating a Plug-In Project".

3. To open the plugin.xml file in the Plug-in Manifest editor, do any of
the following:

Double-click on plugin.xml file.

Right-click on plugin.xml file and select Open With > Plug-in
Manifest Editor.

4. Select the Extensions tab.

5. Click Add. From the New Extension window, select
YRCApplicationInitializer extension point from the list.

6. Click Finish.

7. Select the com.yantra.yfc.rcp.YRCApplicationInitializer extension
point. The Extension Details panel is displayed.

8. In the Extension Details panel, enter the properties of
YRCApplicationInitializer extension.

Note: Loading a class within a plug-in may load the
plug-in itself, resulting in initialization of the class used for
registering plug-in and other resource files. Therefore, the
"YRCPluginAutoLoader" extension point is used for
initialization purposes.

254 Customizing the Rich Client Platform Interface Guide

YRCContainerToolbar Extension Point

9. The extension point has a defined sequence, which consists of the
following attributes:

id: The extension is identified by a unique ID which must be
specified.

name: This is the name given to the extension. The name is
optional. For example, myappinitializer.

Initializer: The Initializer element defines the initializer class to be
loaded before the workbench window is created or opened. This
consists of the following mandatory attribute that must be
defined:

– class: Specify a fully classified path to a Java class that must
implement the IYRCApplicationInitializer interface.

17.7 YRCContainerToolbar Extension Point
YRCContainerToolbar extension point is a resource provider extension
point for PCAs, provided by the Rich Client Platform in the
com.yantra.yfc.rcp plugin. An interface IYRCContainerToolbarProvider is
provided, which must be implemented by the class specified in the
extension.

The YRCContainerToolbar extension point can be used to display a
toolbar or customize the existing toolbar on the application workbench
window.

By default, the application container layout consists of the following
elements:

Container Header

Container Toolbar

Related Task/menu

Main Editor

You can use this extension point to customize the toolbar on the
container layout.

To display or customize the toolbar, perform the following steps:

1. Start the Eclipse SDK.

YRCContainerToolbar Extension Point

Rich Client Platform General Concepts Reference 255

2. In the navigator view, expand the plug-in project that you created.
For more information about creating a plug-in project, see
Section 3.3, "Creating a Plug-In Project".

3. To open the plugin.xml file in the Plug-in Manifest editor, do any of
the following:

Double-click on plugin.xml file.

Right-click on plugin.xml file and select Open With > Plug-in
Manifest Editor.

4. Select the Extensions tab.

5. Click Add. From the New Extension window, select
YRCContainerToolbar extension point from the list.

6. Click Finish.

7. Select the com.yantra.yfc.rcp.YRCContainerToolbar extension point.
The Extension Details panel is displayed.

8. In the Extension Details panel, enter the properties of
YRCContainerToolbar extension.

9. The extension point has a defined sequence, which consists of the
following attributes:

id: The extension is identified by a unique ID which must be
specified.

name: This is the name given to the extension point. The name is
optional. For example, mycontainertitle.

ApplicationToolbarProvider: This element defines the class to be
loaded before the workbench window is created or opened. This
consists of the following mandatory attributes:

moduleId: Specify the module ID of the PCA for which you want
to display or customize the toolbar. For example, ycd (for Sterling
Call Center and Sterling Store)

– class: Specify fully classified path to a Java class that must
implement the interface IYRCContainerToolbarProvider
interface.

256 Customizing the Rich Client Platform Interface Guide

YRCPostWindowOpenInitializer Extension Point

17.8 YRCPostWindowOpenInitializer Extension
Point

The YRCPostWindowOpenInitializer extension point is provided in the
com.yantra.yfc.rcp plug-in for initialization operations. The extension
point can be used to open the required editors and menus after the
application workbench window is open. The
YRCPostWindowOpenInitializer extension point can also be used to
display or hide views.

An interface IYRCPostWindowOpenInitializer is provided, which must be
implemented by the class specified in the extension.

To create an extension for YRCPostWindowOpenInitializer, perform the
following steps:

1. Start the Eclipse SDK.

2. In the navigator view, expand the plug-in project that you created.
For more information about creating a plug-in project, see
Section 3.3, "Creating a Plug-In Project".

3. To open the plugin.xml file in the Plug-in Manifest editor, do any of
the following:

Double-click on plugin.xml file.

Right-click on plugin.xml file and select Open With > Plug-in
Manifest Editor.

4. Select the Extensions tab.

5. Click Add. From the New Extension window, select
YRCPostWindowOpenInitializer extension point from the list.

6. Click Finish.

7. Select the com.yantra.yfc.rcp.YRCPostWindowOpenInitializer
extension point. The Extension Details panel is displayed.

8. In the Extension Details panel, enter the properties of
YRCPostWindowOpenInitializer extension.

9. The extension point has a defined sequence, which consists of the
following attributes:

id: The extension is identified by a unique ID which must be
specified.

YRCJasperReport Extension Point

Rich Client Platform General Concepts Reference 257

name: This is the name given to the extension point. The name is
optional. For example, mywindowinitializer.

Initializer: This element defines the class to be loaded after the
workbench window is created or opened, for post-window
initialization. This consists of the following mandatory attribute:

– class: Specify a fully classified path to a Java class that must
be called after the workbench window is opened. This class
must implement the IYRCPostWindowOpenInitializer interface.

17.9 YRCJasperReport Extension Point
The YRCJasperReport extension point is a report definition extension
point provided in the com.yantra.yfc.rcp plug-in to define or register
definitions of Jasper reports. Application plugins can use this extension
point to override the default report definitions.

To register your own Jasper report definitions, perform the following
steps:

1. Start the Eclipse SDK.

2. In the navigator view, expand the plug-in project that you created.
For more information about creating a plug-in project, see
Section 3.3, "Creating a Plug-In Project".

3. To open the plugin.xml file in the Plug-in Manifest editor, do any of
the following:

Double-click on plugin.xml file.

Right-click on plugin.xml file and select Open With > Plug-in
Manifest Editor.

4. Select the Extensions tab.

5. Click Add. From the New Extension window, select YRCJasperReport
extension point from the list.

6. Click Finish.

7. Select the com.yantra.yfc.rcp.YRCJasperReport extension point. The
Extension Details panel is displayed.

8. In the Extension Details panel, enter the properties of
YRCJasperReport extension.

258 Customizing the Rich Client Platform Interface Guide

YRCContainerTitleProvider Extension Point

9. The extension point has a defined sequence, consisting of one or
more elements called JasperReport, for registering or defining each
report:

id: The extension is identified by a unique report ID which must
be specified. Based on this report ID, applications can override or
execute Jasper reports.

description: Specify the report description, which is required.

permissionId: Permission ID is the permission given to a user for
launching reports. This is optional.

file: Specify the path and the file name of the Jasper report for
which you want to register the definitions. Only files with the
extension, .jasper, must be specified.

17.10 YRCContainerTitleProvider Extension Point
YRCContainerTitleProvider is a resource provider extension point for
PCAs, provided in the com.yantra.yfc.rcp plug-in. This extension point
can be used to create and display a title header on the application
workbench window.

An interface IYRCContainerTitleHeader, is provided which must be
implemented by the Java class specified in the extension point.

To display the title header, perform the following steps:

1. Start the Eclipse SDK.

2. In the navigator view, expand the plug-in project that you created.
For more information about creating a plug-in project, see
Section 3.3, "Creating a Plug-In Project".

3. To open the plugin.xml file in the Plug-in Manifest editor, do any of
the following:

Double-click on plugin.xml file.

Right-click on plugin.xml file and select Open With > Plug-in
Manifest Editor.

4. Select the Extensions tab.

5. Click Add. From the New Extension window, select
YRCContainerTitleProvider extension point from the list.

YRCMessageDisplayer Extension Point

Rich Client Platform General Concepts Reference 259

6. Click Finish.

7. Select the com.yantra.yfc.rcp.YRCContainerTitleProvider extension
point. The Extension Details panel is displayed.

8. In the Extension Details panel, enter the properties of
YRCContainerTitleProvider extension.

9. The extension point has a defined sequence, which consists of the
following attributes:

id: The extension is identified by a unique ID which must be
specified.

name: This is the name given to the extension. The name is
optional. For example, containertitle.

ApplicationTitleProvider: This element defines the class to be
loaded for displaying the title header on the workbench window.
This consists of the following mandatory attributes:

– class: Specify a fully classified path to a Java class that must
implement the interface IYRCContainerProvider. This class
must create the title control, set user and title information for
the title header that must be displayed on the application
workbench window.

– moduleId: Specify the module ID of the PCA for which you
want to display the title header. For example, sop.

17.11 YRCMessageDisplayer Extension Point
The YRCMessageDisplayer extension point is a resource provider
extension point for PCAs, provided in the com.yantra.yfc.rcp plug-in. The
extension point can be used to customize the message view on the
application workbench window of the PCAs. An interface,
IYRCMessageDisplayer is provided which must be implemented by the
class specified in the extension.

The standard message view contains the following:

Customer name

Customer message

Status or error message

260 Customizing the Rich Client Platform Interface Guide

YRCMessageDisplayer Extension Point

You can add or modify messages on the message view by using this
extension point.

To customize the message view, perform the following steps:

1. Start the Eclipse SDK.

2. In the navigator view, expand the plug-in project that you created.
For more information about creating a plug-in project, see
Section 3.3, "Creating a Plug-In Project".

3. To open the plugin.xml file in the Plug-in Manifest editor, do any of
the following:

Double-click on plugin.xml file.

Right-click on plugin.xml file and select Open With > Plug-in
Manifest Editor.

4. Select the Extensions tab.

5. Click Add. From the New Extension window, select
YRCMessageDisplayer extension point from the list.

6. Click Finish.

7. Select the com.yantra.yfc.rcp.YRCMessageDisplayer extension point.
The Extension Details panel is displayed.

8. In the Extension Details panel, enter the properties of
YRCMessageDisplayer extension.

9. The extension point has a defined sequence, which consists of the
following attributes:

id: The extension is identified by a unique ID which must be
specified.

MessageDisplayerList: The MessageDisplayerList group element
consists of one or more MessageDisplayer elements, each
corresponding to the module ID of an application. For example,
MessageDisplayerList1 can contain one or more MessageDisplayer
elements corresponding to different module IDs of applications
such as COM,SOM, or SOP.

name: This is the name given to the extension. The name is
optional. For example, mymessageDisplayer.

Creating New Actions

Rich Client Platform General Concepts Reference 261

10. MessageDisplayer element: Each MessageDisplayer element belongs
to the MessageDisplayerList element and consists of the following
mandatory attributes:

moduleId: Specify the module ID of the PCA for which you want
to customize the message view. For example, ycd (for Sterling
Call Center and Sterling Store).

class: Specify the Java class that must implement the interface
IYRCMessageDisplayer interface.

17.12 Creating New Actions
This section explains how to create new actions and invoke them on
clicking of a menu item or button in a Rich Client Platform application.

To create a new action:

1. Start the Eclipse SDK.

2. In the navigator view, expand the plug-in project that you created.

For more information on how to create a plug-in project, see
Section 3.3, "Creating a Plug-In Project".

3. To open the plugin.xml file in the Plug-in Manifest Editor, do any of
the following:

Double-click on plugin.xml file.

Right-click on plugin.xml file and select Open With > Plugin
Manifest Editor.

4. Select the Extensions tab.

5. Click Add. From the New Extension window, select
org.eclipse.ui.actionSets extension point from the list.

6. Click Finish.

7. Select the org.eclipse.ui.actionSets extension point. The
Extension Details panel displays.

8. In the Extension Details panel, enter the properties of
org.eclipse.ui.actionSets extension point.

9. Right-click on org.eclipse.ui.actionSets extension and select New
> actionSet. The "actionSet" extension element gets created.

262 Customizing the Rich Client Platform Interface Guide

Creating New Actions

10. Select the "actionSet" extension element. The Extension Element
Details panel displays.

11. In the Extension Details panel, enter the properties of the actionSet
extension element.

12. In the visible, select "true" from the drop-down menu to make the
actions defined in this action set visible.

13. To create a new action extension element, right-click on actionSet
extension element and select New > action. The action extension
element gets created.

14. Select the action extension element. The Extension Element Details
panel displays.

15. In id*, enter a unique identifier for the action. This action identifier
corresponds to the identifier of the action that gets invoked when you
click on a menu item or related task. This action identifier also
corresponds to the action identifier specified in the URL field, which is
defined within a resource.

16. In class, to specify the implementation class, do any of the following:

Click Browse. The Select Type pop-up window displays. Select the
class that extends the YRCAction class or YRCRelatedTaskAction
class.

Click on the class* hyperlink. The Java Attribute Editor window
displays.

– In Source Folder, the name of the source folder that you
selected to store the action class automatically displays. You
can also browse to the folder that you want to specify as the
source folder.

Note: This implementation class can extend either
YRCAction class or YRCRelatedTaskAction class. If you
are creating an normal action, which is used for menu
items then extend the YRCAction class and if you want to
create an related task action, which is used for related
tasks then extend the YRCRelatedTaskAction class.

Creating New Actions

Rich Client Platform General Concepts Reference 263

– In Package, the name of the package that you selected to
store the action class automatically displays. This helps you to
easily manage your directory structure.

– In Name, enter the name of the action class.

– In Superclass, click Browse, the Superclass Selection window
displays.

– Select the YRCAction class or YRCRelatedTaskAction class from
the list and click OK.

– Check the Constructors from superclass box. The system
automatically creates the constructor for the superclass that
you specified.

– Check the Inherited abstract methods box. The system
automatically adds the abstract methods inherited by the
superclass that you specified.

– Click Finish. The system creates the new action class in the
folder or package selected by you.

17. Open the newly created action class in the Java Editor.

18. Depending on the action class that you are extending, write the code
to perform the required operation in the inherited abstract execute()
method. For example,

If you are extending the YRCAction class then write the code for
performing the required operation in the execute() method. The
execute() method internally checks if the action can be run or not.
This check criteria depends on the following criteria:

– Whether or not the current editor has errors.

– Whether or not the current editor has been modified.

Therefore, following methods must be overridden in the class
which is extending the YRCAction class:

– checkForErrors()—This method is used to check if the current
editor has errors or not. If you want to skip this check, then
return false.

– checkForModifications()—This method is used to check if the
current editor has been modified or not. If you want to skip
this check, then return false.

264 Customizing the Rich Client Platform Interface Guide

Registering a Plug-In

If you are extending theYRCRelatedTaskAction class then write the
code for performing the required operation in the executeTask()
method.

17.13 Registering a Plug-In
Every plug-in that is a part of the Rich Client Platform application must
be registered. Various features of Selling and Fulfillment Foundation such
as localization, theming, configuration, UI extension, and so forth depend
on a plug-in being registered. To register a plug-in in the Rich Client
Platform application, you must invoke the registerPlugin() method of the
YRCPlatformUI class.

A sample code for registering a plug-in is as follows:

public class TestPlugin extends AbstractUIPlugin {

 private static TestPlugin plugin;
 public static final String ID="com.mycompany.test.rcp";

 public TestPlugin() {
 super();
 plugin=this;
 try {
 YRCPlatformUI.registerPlugin(ID, this);
 } catch (Exception ex) {
 YRCPlatformUI.trace(ex);
 }
 }
}

Note: When you create a Rich Client Platform plug-in
using the Rich Client Platform Wizards > UI wizards > Rich
Client Platform Plug-in, the class for registering a plug-in
and other Rich Client Platform-specific resource files is
automatically created. Therefore, you need not explicitly
register the plug-in and other Rich Client Platform-specific
resource files. For more information about creating Rich
Client Platform plug-in, see Section 3.4, "Running the Rich
Client Platform Plug-In Wizard".

Registering Plug-In Files

Rich Client Platform General Concepts Reference 265

17.14 Registering Plug-In Files
Every plug-in that wants to use its own resource files such as bundle,
theme, configuration files, and so forth must register these files with Rich
Client Platform application. You can register all resource files together
within the plug-in constructor.

A sample code that can be used to register a plug-in and all its resource
files is as follows:

public class TestPlugin extends AbstractUIPlugin {

 private static TestPlugin plugin;
 public static final String ID="com.mycompany.test.rcp";

 public TestPlugin() {
 super();
 plugin=this;
 try {
YRCPlatformUI.registerPlugin(ID, this);
YRCPlatformUI.registerConfiguration("com.mycompany.test.rcp_
config", ID);
YRCPlatformUI.registerBundle("com.mycompany.test.rcp_bundle",
ID);
YRCPlatformUI.registerCommands("com.mycompany.test.rcp_
commands", ID);
YRCPlatformUI.registerExtensions("com.mycompany.test.rcp_
extn", ID);
YRCPlatformUI.registerTheme("com.mycompany.test.rcp_sapphire",
ID);
 } catch (Exception ex) {
 YRCPlatformUI.trace(ex);
 }
}

17.14.1 Registering Bundle File
The bundle file is used for localizing Rich Client Platform applications.
Every plug-in that requires its own bundle file should invoke the
registerBundle() method of the YRCPlatformUI class during plug-in
initialization, preferably within the plug-in constructor to register its

266 Customizing the Rich Client Platform Interface Guide

Registering Plug-In Files

bundle file. After the bundle file is registered, it gets loaded using the
users current locale. The bundle file must have "properties" extension.

To register the bundle file within the plug-in constructor, for example:

YRCPlatformUI.registerBundle("com.yantra.pca.ycd_bundle", ID)

where com.yantra.pca.ycd_bundle is the name of the bundle file
without ".properties" extension. ID is a unique identifier of the plug-in
that registers this bundle file.

17.14.2 Registering Theme File
The theme file is used for setting the color scheme and font properties of
Rich Client Platform applications. Every plug-in that requires its own
theme file should invoke the registerTheme() method of the
YRCPlatformUI class during plug-in initialization, preferably within the
plug-in constructor to register its theme file.

To register the theme file within the plug-in constructor, for example:

YRCPlatformUI.registerTheme("com.mycompany.test.rcp_skyblue",
ID)

where com.mycompany.test.rcp_skyblue is the name of the your theme
file without ".ythm" extension. ID is a unique identifier of the plug-in that
registers this theme file.

Note: Before calling the registerBundle() method, the
plug-in must be registered using the registerPlugin()
method of the YRCPlatformUI class. For more information
on how to register a plug-in, see Appendix 17.13,
"Registering a Plug-In".

Registering Plug-In Files

Rich Client Platform General Concepts Reference 267

17.14.3 Registering Configuration File
The configuration file is used to set the URL path parameters for
connecting Rich Client Platform applications to the server. Every plug-in
that requires its own configuration file should invoke the
registerConfiguration() method of the YRCPlatformUI class during plug-in
initialization, preferably within the plug-in constructor to register its
configuration file. Configuration file must have extension "ycfg". Plugins
can use any custom XML configuration file.

To register your configuration file within the plug-in constructor, for
example:

YRCPlatformUI.registerConfiguraton("com.mycompany.test.rcp_
config", ID)

where com.mycompany.test.rcp_config is the name of the your
configuration file without ".ycfg" extension. ID is a unique identifier of
the plug-in that registers this configuration file.

17.14.4 Registering Commands File
The commands file is used to create commands to call different APIs or
services. Every plug-in that requires its own set of commands should
invoke the registerCommands() method of the YRCPlatformUI class
during plug-in initialization, preferably within the plug-in constructor to
register its commands file. Commands file must have extension "ycml".
The command names are unique, and reusing a command name

Note: Before calling the registerTheme() method, the
plug-in must be registered using the registerPlugin()
method of the YRCPlatformUI class. For more information
on how to register a plug-in, see Appendix 17.13,
"Registering a Plug-In".

Note: Before calling the registerConfiguration() method,
the plug-in must be registered using the registerPlugin()
method of the YRCPlatformUI class. For more information
on how to register a plug-in, see Appendix 17.13,
"Registering a Plug-In".

268 Customizing the Rich Client Platform Interface Guide

Registering Plug-In Files

overrides an existing definition. To register your commands file within the
plug-in constructor:

YRCPlatformUI.registerCommands("com.mycompany.test.rcp_
commands", ID)

where com.mycompany.test.rcp_commands is the name of the your
commands file without ".ycml" extension. ID is a unique identifier of the
plug-in that registers this commands file.

17.14.5 Registering Extension File
The extension file is used to store information about Rich Client Platform
applications UI extensibility such as addition of new fields, modification of
existing fields, and so forth. Every plug-in that requires its own extension
file should invoke the registerExtensions() method of the YRCPlatformUI
class during plug-in initialization, preferably within the plug-in
constructor to register its extension file. The extension file must have
"yuix" extension. To register your extension file within the plug-in
constructor:

YRCPlatformUI.registerExtensions("com.yantra.order.capture_
extn.yuix",ID)

where com.yantra.order.capture_extn.yuix is the name of the your
extension file with ".extn" extension. ID is a unique identifier of the
plug-in that registers this extension file.

Note: Before calling the registerCommands() method, the
plug-in must be registered using the registerPlugin()
method of the YRCPlatformUI class. For more information
on how to register a plug-in, see Appendix 17.13,
"Registering a Plug-In".

Validating Controls

Rich Client Platform General Concepts Reference 269

17.14.6 Registering a Message Filter
The message filters are used to hide or filter sensitive information such
as credit card information, passwords or CVV numbers in the log files. A
new method addTraceMessageFilter is added in the YRCPlatformUI class.
To register your message filter file use the addTraceMessageFilter method
within the plugin constructor. For more information on registering the
message filter, refer to the Javadocs.

17.15 Validating Controls
The Rich Client Platform provides methods to validate various controls.
When the controls have target binding, the associated data type is
retrieved and appropriate validation is performed at the infrastructure
level. You can validate the data entered in the controls such as text box,
combo box, button, and so forth by implementing the appropriate
validate method. The data type validation can be performed for the value
entered by the user. Validations can also be performed for custom
criteria. If the data type validation for a control fails, the validate method
for that control is not called and an error message is displayed.

The methods for validating the following controls are:

Text Control—When the text control loses focus, the data type
validation and other mandatory validations are performed first. If the
validation succeeds, the control is passed to the validateTextField()
method.

Note: Before calling the registerExtensions() method, the
plug-in must be registered using the registerPlugin()
method of the YRCPlatformUI class. For more information
on how to register a plug-in, see Appendix 17.13,
"Registering a Plug-In".

Note: Before calling the addTraceMessageFilter() method,
the plugin must be registered using the registerPlugin()
method of the YRCPlatformUI class. For more information
on how to register a plugin, see Section 17.13,
"Registering a Plug-In" .

270 Customizing the Rich Client Platform Interface Guide

Custom Data Formatting

Combo Control—When a different item is selected from the combo
control, the data type validation and other mandatory validations are
performed first. If the validation succeeds, the control is passed to
the validateComboField() method.

Button Control—When the controls such as button, check box, radio
button whether selected or unselected, the validateButtonClick()
method is invoked.

You can extend the default validations using the previously mentioned
methods and define custom validations in your action classes. However,
the default validations will always be performed after the custom
validations and the default validations cannot be suppressed.

If you want to suppress the default validations, hide the control
associated with the action that is performing the validation. Add a
custom control and define a new action for the custom control with the
custom validations that are required. However, ensure that the new
action contains the code which performs the same logic as the default
validations in addition to the custom validations.

17.16 Custom Data Formatting
Rich Client Platform enables you to perform custom data formatting.

For example, let us consider that in the Phone Number field, the user
enters the number as 6175677890 and presses the Tab key. You want to
format this number and display as 617-567-7890.

To display the formatted value, you must associate the formatted logic
with the Phone Number field. You can perform custom formatting for a
field by extending the YRCDataFormatter extension point.

To extend the YRCDataFormatter extension point:

1. Start the Eclipse SDK.

2. In the navigator view, expand the plug-in project that you created.

For more information about creating a plug-in project, see
Section 3.3, "Creating a Plug-In Project".

Note: Rich Client Platform supports custom data
formatting for label, text, and styled text controls.

Custom Data Formatting

Rich Client Platform General Concepts Reference 271

3. To open the plugin.xml file in the Plug-in Manifest editor, do any of
the following:

Double-click on plugin.xml file.

Right-click on plugin.xml file and select Open With > Plug-in
Manifest Editor.

4. Select the Extensions tab.

5. Click Add. From the New Extension window, select
com.yantra.yfc.rcp.YRCDataFormatter extension point from the list.

6. Click Finish.

7. Select the com.yantra.yfc.rcp.YRCDataFormatter extension point. The
Extension Details panel displays.

8. In the Extension Details panel, enter the properties of the
com.yantra.yfc.rcp.YRCDataFormatter extension point.

9. In ID, enter a unique identifier for the
com.yantra.yfc.rcp.YRCDataFormatter extension point. This is a
mandatory field.

10. To create a new dataFormatter extension element, right-click on
com.yantra.yfc.rcp.YRCDataFormatter and select New >
dataFormatter. The dataFormatter extension element is created.

11. Select the dataFormatter extension element. The Extension Element
Details panel displays.

12. In the Extension Details panel, enter the properties of the
dataFormatter extension element.

13. In attributeBinding*, enter the name of the XPath attribute whose
value you want to custom format. For example, the attribute binding
mentioned in Example can be set as DayPhone.

14. In class, specify the implementation class by doing any of the
following:

Click Browse. The Select Type pop-up window displays. Select the
implementation class that contains the formatting logic for the
field.

Click on the class* hyperlink. The Java Attribute Editor window
displays.

272 Customizing the Rich Client Platform Interface Guide

Custom Data Formatting

– In Source Folder, the name of the source folder that you
selected to store the implementation class displays. You can
also browse to the folder that you want to specify as the
source folder.

– In Package, the name of the package that you selected to
store the implementation class displays. This enables you to
easily manage your directory structure.

– In Name, enter the name of the implementation class.

– In Superclass, click Browse. The Superclass Selection window
displays.

– Enter the YRCDataFormatter class and click OK.

– Check the Constructors from superclass box. The system
creates the constructor for the superclass that you specified.

– Check the Inherited abstract methods box. The system
automatically adds the abstract methods inherited by the
superclass that you specified.

– Click Finish. The system creates the new implementation class
in the folder or package selected by you.

15. Open the newly created implementation class in the Java editor.

16. Override the inherited abstract getFormattedValue() method. Write
the formatting code for displaying the field value and return the
formatted value. For example, the formatting logic as explained in
Example can be:

public YRCFormatResponse getFormattedValue(String attributBinding, String
value) {
 YRCFormatResponse response = null;
//validForDataType(String)mehtod can be used to do custom validation on the
//value of the field. Based on the validation we can set the response.
if(validForDataType(value)) {
 String retVal = value.substring(0, 3)+"-"+value.substring(3,
6)+ "-"+ value.substring(6);
 response = new YRCFormatResponse(YRCFormatResponse.YRC_
VALIDATION_OK, "Valid Format", retVal);
 } else {
 response = new YRCFormatResponse(YRCFormatResponse.YRC_
VALIDATION_ERROR, "InValid Format", null);
 }

Siblings

Rich Client Platform General Concepts Reference 273

 return response;
}

If you want to perform some custom validation on the field value, you
can write your own logic to validate the value. For example, in the
following code the validForDataType(String) method is used to
perform custom validation on the field value.

private boolean validForDataType(String value) {
 if(value.length()==10){
 return true;
 }
 return false;
}

17. Override the inherited abstract getDeformattedValue() method. Write
the deformatted value of the field you want to store in the XML and
return the deformatted value. For example, the deformatting logic as
explained in Example can be:

public String getDeformattedValue(String attributBinding, String value) {
 String retVal=null;
 String [] retValArray = value.split("-");
 for(int i=0;i<retValArray.length;i++){
 if (i==0) {
 retVal = retValArray[i];
 }else {
 retVal = retVal+retValArray[i];
 }
 }
 return retVal;
}

17.17 Siblings
Siblings are the first level children of the parent. For example, let us
consider the following scenario:

274 Customizing the Rich Client Platform Interface Guide

Rich Client Platform Utilities

Figure 17–1 Sample Siblings

Here, the siblings of the OrderNo label are text box (Y001), button
(Search), and Group2, which are the first level children of Group1.
Similarly, the sibling of ItemID label is the text box (SKU-1001).

17.18 Rich Client Platform Utilities
Rich Client Platform provides a utility tool using which you can gather
information for a particular UI or form such as form id, models used, and
so forth.

17.18.1 Viewing Screen Models
By using the Screen Model utility tool, you can view the form identifier
and all models used in any UI, along with the various elements and
attributes used in a model. You can also save all screen models as
templates.

To view a screen model:

1. Run the appropriate Rich Client Platform application.

2. After you successfully log in to the application, the application window
displays.

3. Open the screen for which you want to view models.

4. Press CTRL+SHIFT+M to view screen model. The Screen Models
window displays as shown in Figure 0–2.

Rich Client Platform Utilities

Rich Client Platform General Concepts Reference 275

Figure 0–2 The Screen Models Window

In the formId field, the identifier of the form displays, which is used to
identify the screen.

The left-hand side panel displays a list of models used in the screen as a
tree structure with root being the form identifier of the screen. After you
select a specific model, you can view a list of elements and attributes
defined in the model on the right-hand side panel. If a screen contains
embedded screens in it, then you can view a list of models used for each
screen.

17.18.1.1 Saving Models as Templates
To save existing models as templates:

1. Click the button next to the Templates Directory field. The Choose
Directory pop-up window displays.

2. Select the directory where you want to store the models of the screen
as templates, and click OK.

276 Customizing the Rich Client Platform Interface Guide

Rich Client Platform Utilities

Click Save. The system stores the models of each screen as templates in
their respective folders.

277

Index

A
about box

customizing the logo, 69
logo, 69

AbtCommands, 207

B
Binding

combo box cell editors, 128
combo boxes, 125
labels, 119
links, 134
list boxes, 128
radio buttons, 132
styledText components, 123
tables, 135

binding, 10
Binding Object

creating, 106

C
calling APIs and Services, 151
calling APIs and Services. See Also calling multiple

APIs
Character User Interfaces (CUI), 247
Controls

localizing, 150
naming. See Also creating a binding object
theming, 151

CustAboutBox, 69

customization checklist, 1
customizing

about box logo, 69

D
Dynamic Link Library (DLL), 248

E
Editable Tables

binding. See Also binding standard tables, 140
creating. See Also creating standard tables, 105

environment variable
INSTALL_DIR, xxxii
INSTALL_DIR_OLD, xxxii

Extension Points, 251
YRCPluginAutoLoader, 10

extension points, 251
extensions, 251

G
Graphical User Interfaces (GUI), 248

H
Hyper Text Transfer Protocol Secure (HTTPS), 9
Hyper Text Transfer Protocol (HTTP), 9

278 Customizing the Rich Client Platform Interface Guide

I
INSTALL_DIR, xxxii
INSTALL_DIR_OLD, xxxii
Integrated Development Environment (IDE), 250
Integrated Development Environments (IDEs), 249
International Business Machines (IBM), 250

J
Java Runtime Environment (JRE), 9

L
logo

about box, 69

M
multiple document interface (MDI), 10

O
Operating System (OS), 247, 249
overriding commands, 212

P
plugin manifest editor, 250

R
resource files, 54
Rich Client Platform (RCP) Composite

creating, 81
Rich Internet Client

applications, 247
rich internet client, 247

S
Search Criteria Panel

creating, 95
Search Results Panel

creating, 100
Standard Table

adding columns, 105
Standard Tables

creating, 104
Store Operations (SOP), 8

T
Total Cost of Ownership (TCO), 247

U
Usability, Responsiveness, and Performance

(URP), 247
User Interfaces (UI), 247

W
what is binding, 10
what is localization, 11
Wide Area Network (WAN), 9

X
XPath (xml path), 10

Y
YRCPluginAutoLoader, 10
YRCPluginAutoLoader extension point, 10

	Contents
	Preface
	1 Checklist for Customization Projects
	1.1 Customization Projects

	2 Rich Client Platform
	2.1 About Customizing the Rich Client Platform Interface
	2.1.1 Rich Client Platform Concepts
	2.1.2 Extensibility Capability Summary
	2.1.3 Guidelines for Smooth Updates and Easy Maintenance
	2.1.4 Setting Up the Development Environment
	2.1.5 Extending Rich Client Platform Applications

	2.2 Rich Client Platform Architecture
	2.3 Benefits of Using the Rich Client Platform Interface
	2.4 Rich Client Platform and Desktop Applications
	2.5 XML Binding for Rich Client Platform Applications
	2.6 Localizing Rich Client Platform Applications
	2.6.1 Database Localization

	2.7 Themes for Rich Client Platform Applications
	2.8 Related Tasks for Rich Client Platform Applications
	2.9 Shared Tasks for Rich Client Platform Applications
	2.10 Wizards for Rich Client Platform Applications
	2.11 Hot Keys for Rich Client Platform Applications
	2.12 Debug Mode for Rich Client Platform Applications
	2.12.1 Running Rich Client Platform Applications in Debug Mode
	2.12.2 Running the Standalone Rich Client Platform Application in Debug Mode
	2.12.3 Running the Rich Client Platform Application in Eclipse in Debug Mode

	2.13 Prototype Mode for Rich Client Platform Applications
	2.13.1 Running Rich Client Platform Applications in Prototype Mode
	2.13.2 Running Standalone Rich Client Platform Applications in Prototype Mode
	2.13.3 Running Rich Client Platform Applications in Eclipse in Prototype Mode

	2.14 Tracing a Rich Client Platform Application
	2.14.1 Tracing a Standalone Rich Client Platform Application
	2.14.2 Masking Sensitive Information in Logs During Trace
	2.14.3 Tracing a Rich Client Platform Application in Eclipse

	2.15 Capitalizing the Text Entered in Rich Client Platform Applications
	2.16 Fetching Images for Rich Client Platform Applications
	2.17 Security Handling for Rich Client Platform Applications
	2.18 Output Templates for Rich Client Platform Applications
	2.19 Commands for Rich Client Platform Applications
	2.20 Log Files for Rich Client Platform Applications
	2.20.1 Clearing Data Cache

	2.21 Table Filtering for Rich Client Platform Applications
	2.21.1 Clearing the Sort Order in a Table

	2.22 Scheduling Jobs for Rich Client Platform Applications
	2.22.1 Scheduling a Generic Job
	2.22.2 Scheduling an Alert-Related Job
	2.22.3 Preventing the Deactivation of Alert Notification

	2.23 Low Resolution Display for Rich Client Platform Applications
	2.24 Displaying Panel Tasks on the Menu Bar for Rich Client Platform Applications
	2.25 Switching Locale for Rich Client Platform Applications
	2.26 Using a VM Login for Rich Client Platform Applications
	2.27 Using a VM JRE for Rich Client Platform Applications
	2.28 Supervisory Overrides for Rich Client Platform Applications
	2.28.1 Using the Pop-Up Method
	2.28.2 Starting a Supervisory Transaction

	2.29 Running Rich Client Platform Applications in POS Mode
	2.30 Version-Based Communication between Client and Server
	2.30.1 Client Component
	2.30.2 Server Component

	2.31 Integrating Web Applications with Rich Client Platform

	3 The Development Environment for Rich Client Platform Applications
	3.1 Installing Prerequisite Software Components
	3.1.1 Installing the Rich Client Platform Plug-In
	3.1.2 Installing the Rich Client Platform Tools Plug-In
	3.1.3 Rich Client Platform Tools

	3.2 Creating and Configuring Locations
	3.3 Creating a Plug-In Project
	3.4 Running the Rich Client Platform Plug-In Wizard
	3.5 Launching the Rich Client Platform Application in Eclipse

	4 Customizing Rich Client Platform Application
	4.1 Overview of Customizing Rich Client Platform Applications
	4.1.1 Localizing Rich Client Platform Applications
	4.1.2 Defining Themes for Rich Client Platform Applications
	4.1.3 Extending Rich Client Platform Applications
	4.1.3.1 Modifying Existing Screens
	4.1.3.2 Modifying Existing Wizards
	4.1.3.3 Creating and Adding New Screens

	4.2 Building and Deploying Extended Rich Client Platform Applications
	4.2.1 Building Rich Client Platform Extensions
	4.2.2 Deploying Rich Client Platform Extensions

	5 Customizing the About Box
	5.1 Customizing the About Box

	6 Modifying the Existing Rich Client Platform Screens and Wizards
	6.1 Modifying Existing Rich Client Platform Screens
	6.1.1 Starting the Rich Client Platform Extensibility Tool
	6.1.2 Customizing the User Interface
	6.1.3 Synchronizing Differences
	6.1.4 Building and Deploying Extensions

	6.2 Validating or Capturing Data During API or Service Calls
	6.3 Modifying Existing Rich Client Platform Wizards
	6.4 Creating an Extended Wizard Definition
	6.5 Registering the Wizard Extension File
	6.6 Creating the Wizard Entity
	6.7 Modifying the Wizard Extension Behavior

	7 Creating and Adding Screens to Rich Client Platform Applications
	7.1 About Creating a Rich Client Platform Composite
	7.2 Creating a Rich Client Platform Composite Using the Rich Client Platform Search List Composite Wizard
	7.3 Creating a Rich Client Platform Composite Using the Rich Client Platform Composite Wizard
	7.4 About Designing a Rich Client Platform Composite
	7.5 Creating the Search Criteria Panel for a Rich Client Platform Composite
	7.6 Adding Controls to the Search Criteria Panel for a Rich Client Platform Composite
	7.7 Creating the Search Result Panel for a Rich Client Platform Composite
	7.8 Displaying Paginated Results in a Rich Client Platform Composite
	7.8.1 Page Size
	7.8.2 YRCPaginatedData
	7.8.3 YRCPaginationException
	7.8.4 IYRCPageNavigator
	7.8.5 Server-Side Sorting

	7.9 Creating Tables for Rich Client Platform Screens
	7.9.1 Creating Standard Tables
	7.9.2 Adding Columns to the Standard Table
	7.9.3 Creating Editable Tables

	7.10 Naming Controls for Rich Client Platform Screens
	7.10.1 Creating a Binding Object
	7.10.2 Naming a Control

	7.11 Binding Controls and Classes for Rich Client Platform Screens
	7.11.1 Binding Classes
	7.11.2 Types of Bindings Required for Controls on Rich Client Platform Screens

	7.12 Source Binding for Controls on Rich Client Platform Screens
	7.12.1 Multiple Source Bindings

	7.13 Target Binding for Controls on Rich Client Platform Screens
	7.13.1 Multiple Target Bindings

	7.14 Checked Binding for Controls on Rich Client Platform Screens
	7.15 Unchecked Binding for Controls on Rich Client Platform Screens
	7.16 List Binding for Controls on Rich Client Platform Screens
	7.17 Code Binding for Controls on Rich Client Platform Screens
	7.18 Description Binding for Controls on Rich Client Platform Screens
	7.19 Attribute Binding for Controls on Rich Client Platform Screens
	7.19.1 Multiple Attribute Bindings

	7.20 Key Binding for Controls on Rich Client Platform Screens
	7.21 Binding Input to Custom Controls on Rich Client Platform Screens
	7.22 About Setting Bindings for Controls on Rich Client Platform Screens
	7.22.1 Input XML Model
	7.22.2 Target XML Model

	7.23 Setting Bindings for Labels
	7.23.1 Creating a Binding Object
	7.23.2 Steps to Bind a Label

	7.24 Setting Bindings for Text Boxes
	7.24.1 Creating a Binding Object
	7.24.2 Steps to Bind a Text Box

	7.25 Setting Bindings for StyledText Components
	7.25.1 Creating a Binding Object
	7.25.2 Steps to Bind a StyledText Component

	7.26 Setting Bindings for Combo Boxes
	7.26.1 Creating a Binding Object
	7.26.2 Steps to Bind a Combo Box
	7.26.3 Populating Version-Specific Data in Combo Boxes

	7.27 Setting Bindings for List Boxes
	7.27.1 Creating a Binding Object
	7.27.2 Steps to Bind a List Box

	7.28 Setting Bindings for Checkboxes
	7.28.1 Creating a Binding Object
	7.28.2 Steps to Bind a Check Box

	7.29 Setting Bindings for Radio Buttons
	7.29.1 Creating a Binding Object
	7.29.2 Steps to Bind a Radio Button

	7.30 Setting Bindings for Links
	7.30.1 Creating a Binding Object
	7.30.2 Steps to Bind a Link

	7.31 Setting Bindings for Standard Tables
	7.31.1 Creating a Binding Object for a Standard Table
	7.31.2 Creating a Binding Object for a Column
	7.31.3 Steps to Bind a Standard Table and Column

	7.32 Setting Bindings for an Editable Table
	7.32.1 Binding Combo Box Cell Editors

	7.33 Setting Bindings for an Extended Table
	7.33.1 Creating a Binding Object for an Extended Table
	7.33.2 Create a Map of the Advanced Column Binding Data
	7.33.3 Steps to Bind an Extended Table and Advanced Column

	7.34 Setting Bindings for Extended Editable Tables
	7.34.1 Binding Combo Box Cell Editors

	7.35 Localizing Controls and Defining Themes for Rich Client Platform Applications
	7.35.1 Defining Themes for Controls

	7.36 Calling APIs and Services for Rich Client Platform Applications
	7.36.1 Calling the Same API/Service Multiple Times
	7.36.2 Calling Multiple APIs/Services

	7.37 Adding New Rich Client Platform Screens as Pop-ups
	7.38 Adding New Rich Client Platform Screens to Menu Commands
	7.39 Displaying New Rich Client Platform Screens in an Editor

	8 Creating and Adding Wizards to Rich Client Platform Applications
	8.1 Phase 1: Create Wizard Definitions
	8.1.1 Creating a Wizard Definition

	8.2 Creating a Wizard Definition with the Rich Client Platform Wizard Editor
	8.3 Adding a Rule to a Wizard Definition
	8.4 Adding a Page to a Wizard Definition
	8.5 Adding a Sub-task to a Wizard Definition
	8.6 Adding a Transition to a Wizard Definition
	8.7 Phase 2: Create Components to Implement a Wizard Definition
	8.8 Creating Wizard Components
	8.8.1 Creating Wizard Class
	8.8.2 Creating Wizard Behavior Class

	8.9 Creating Wizard Page Components
	8.9.1 Creating Wizard Page Class
	8.9.2 Creating Wizard Page Behavior Class

	8.10 Creating Wizard Rule Components
	8.10.1 Registering the Wizard Command File

	8.11 Adding Wizards as Pop-ups in Rich Client Platform Applications
	8.12 Adding Wizards to Menu Commands in Rich Client Platform Applications
	8.13 Adding Wizards to Editors in Rich Client Platform Applications

	9 Creating Related Tasks for Rich Client Platform Applications
	9.1 About Related Tasks
	9.2 Extending the YRCRelatedTasks Extension Point
	9.3 Extending the YRCRelatedTaskCategories Extension Point
	9.4 Extending the YRCRelatedTaskGroups Extension Point
	9.5 Extending the YRCRelatedTasksDisplayer Extension Point
	9.6 Extending the YRCRelatedTasksExtensionContributor Extension Point
	9.7 Enabling Custom Dialog Boxes Through an Extension Point for Rich Client Platform Applications

	10 Creating Commands for Rich Client Platform Applications
	10.1 About Commands
	10.2 Defining Namespaces
	10.3 Overriding Commands

	11 Defining and Overriding Hot Keys in Rich Client Platform Applications
	11.1 Phase 1: Defining a Hot Key Command
	11.2 Phase 2: Defining a Hot Key Binding
	11.3 Phase 3: Defining a Hot Key Action
	11.4 Overriding Hot Keys
	11.4.1 Disabling Related Task Hot Keys

	12 Merging Templates for Rich Client Platform Applications
	12.1 Merging Input and Output Templates

	13 Related and Shared Tasks in Rich Client Platform Applications
	13.1 Adding New Related Tasks
	13.2 Hiding Existing Related Tasks
	13.3 Registering Shared Tasks
	13.4 Using Shared Tasks

	14 Defining Themes for Rich Client Platform Applications
	14.1 Defining New Themes
	14.2 Defining Themes for Controls
	14.2.1 Applying Themes to Non-editable Text Boxes

	15 Menus and Custom Controls for Rich Client Platform Applications
	15.1 Adding and Removing Menus in Rich Client Platform Applications
	15.2 Customizing the Menu View Through the YRCMenuDisplayer Extension Point

	16 Setting the Extension Model, Configuring SSL and SSO for Rich Client Platform Applications
	16.1 Setting the Extension Model for Rich Client Platform Applications
	16.2 Configuring SSL for Rich Client Platform Applications
	16.3 Configuring SSO for Rich Client Platform Applications
	16.3.1 Client Settings for SSO Configuration
	16.3.2 Server Settings for SSO Configuration

	17 Rich Client Platform General Concepts Reference
	17.1 Rich Client Platform Architecture
	17.2 Eclipse and its Rich Client Platform
	17.3 Workbench
	17.4 Plug-In Manifest Editor
	17.4.1 Overview
	17.4.2 Dependencies
	17.4.3 Runtime
	17.4.4 Extensions
	17.4.5 Extension Points
	17.4.6 Build
	17.4.7 Manifest.mf
	17.4.8 Plugin.xml
	17.4.9 Build.properties

	17.5 YRCPluginAutoLoader Extension Point
	17.6 YRCApplicationInitializer Extension Point
	17.7 YRCContainerToolbar Extension Point
	17.8 YRCPostWindowOpenInitializer Extension Point
	17.9 YRCJasperReport Extension Point
	17.10 YRCContainerTitleProvider Extension Point
	17.11 YRCMessageDisplayer Extension Point
	17.12 Creating New Actions
	17.13 Registering a Plug-In
	17.14 Registering Plug-In Files
	17.14.1 Registering Bundle File
	17.14.2 Registering Theme File
	17.14.3 Registering Configuration File
	17.14.4 Registering Commands File
	17.14.5 Registering Extension File
	17.14.6 Registering a Message Filter

	17.15 Validating Controls
	17.16 Custom Data Formatting
	17.17 Siblings
	17.18 Rich Client Platform Utilities
	17.18.1 Viewing Screen Models
	17.18.1.1 Saving Models as Templates

	Index

