
Customizing the Web UI Framework
 Release 8.5

Selling and Fulfillment Foundation

Last Updated in HF15

June 2010

Contents

Extensibility (Web UI Framework)..5
Extensibility in the Web UI Framework (Custom Developers)...5

Differential Extensibility in the Web UI Framework..6
Override Extensibility in the Web UI Framework...7
Differential Extensibility Versus Override Extensibility in the Web UI Framework ...7
What Can Be Customized and Extended with the Web UI Framework..8
Customizing with the Web UI Framework..9
Extending Versus Customizing an Ext JS Widget/Component with the Web UI Framework...9
Extensibility Workbench Versus Designer Workbench (Web UI Framework)..9

Extensibility Workbench of the Web UI Framework (Custom Developers)...11
Configuring the Web UI Framework Extensibility Workbench..14
Using the Web UI Framework Extensibility Workbench to Modify a Widget..14
Extensibility Workbench Tools (Web UI Framework)..17

Designer Workbench of the Web UI Framework for Custom Developers..18
Creating New UI Screens Using the Designer Workbench (Web UI Framework)..19
Using the Web UI Framework Designer Workbench from the Extensibility Workbench to Create New Screens (Custom Developers).20
Designer Workbench Tools (Web UI Framework)..22

Mashup Layer of the Web UI Framework...23
Interface Contracts of the Web UI Framework - Mashup Layer...24
Mashup Layer Classes of the Web UI Framework..24
Mashup XML Metadata of the Web UI Framework..24
Extending Mashups in the Web UI Framework...26
Configuring Mashups in Web UI Framework...27
Specifying Multiple XAPI Calls with the Web UI Framework...27
How the Mashup Layer Handles Authorization and Transaction Management in the Web UI Framework.......................29

Creating and Extending a Struts XML File (Web UI Framework)...30
Creating a Menu Entry for a New Web UI Framework Screen...31
Deploying Web UI Framework Extensions...33

Deploying Extensions Created by the Web UI Framework Extensibility Workbench and Designer Workbench Using a Java Server Page.33
Deploying Extensions Created by the Extensibility Workbench Using a JavaScript Builder File......................................35
Compiling and Minifying JavaScript Files in the Web UI Framework...37

Customizing web.xml in the Web UI Framework...38
Changing Bundle Files in the Web UI Framework..39

Building and Customizing Pages/Controls (Web UI Framework)..40
Widgets (Web UI Framework)...40
Working with Widgets (Web UI Framework)..43
Adding a Widget to a Screen with the Web UI Framework..43
Customizing Widgets in an Existing Installation (Web UI Framework)...44
Hiding Fields with the Web UI Framework...45
Accessing the Working Files of the Web UI Framework..45
Viewing Screen Objects in the Outline or Tree View of the Web UI Framework...46
Configuring Properties for Screens, Widgets, and Other Items (Web UI Framework)...47
Wizards of the Web UI Framework...49

Creating a Wizard with the Web UI Framework...50

Customizing the Web UI Frameworkii

Wizard Page Attributes in the Web UI Framework...50
Wizard Rule Attributes in the Web UI Framework..51
Wizard Transition Attributes in the Web UI Framework...51
Wizard Flow Controller Attributes in the Web UI Framework..52
Wizard Breadcrumb Attributes in the Web UI Framework...52
Sample XML Flow Definition for Wizards in the Web UI Framework..53

Preset Properties (Web UI Framework)...53
Creating Preset Properties (Web UI Framework)..54
Applying Preset Properties with the Web UI Framework...56

Enabling a Child Screen to Access a Parent Screen with the Web UI Framework...57
Menu Customizations (Web UI Framework)..57
Creating Smart Tags with the Web UI Framework..58
Debugging Tools (Web UI Framework)..59
State Management in the Web UI Framework...61

Implementing State Management with the Web UI Framework...62
Interface Contracts of the Web UI Framework - State Management (Client Side and Server Side)...................................62

Transaction Management in the Web UI Framework..63
Implementing Transaction Management with the Web UI Framework..64
Interface Contracts of the Web UI Framework - Transaction Management..64

Look and Feel (Web UI Framework)...67
UI Branding in the Web UI Framework..67
Specifying a Home Page when Building Screens with the Web UI Framework...70
Adding Keyboard Shortcuts with the Web UI Framework..71
Supporting Multiple Browsers with the Web UI Framework..73
Indicating Mandatory UI Fields with the Web UI Framework..73
Adding Support for Custom Themes with the Web UI Framework..73

Security (Web UI Framework)...76
Web UI Framework Security - Authentication..76

Web UI Framework Security - Implementing Authentication...77
Interface Contracts of the Web UI Framework - Authentication...78
Interface Contracts of the Web UI Framework - Post Authentication...79
Web UI Framework Security - Bypassing Authentication for a URI..80

Web UI Framework Security - Authorization..80
Web UI Framework Security - Implementing Authorization..81
Interface Contracts of the Web UI Framework - Authorization..82

Web UI Framework Security - Adding Login Pages...83
Web UI Framework Security - Supporting Multiple Guest Users...84
Web UI Framework Security - Adding Request Validators...85
Web UI Framework Security - Cross-Site Request Forgery..86
Web UI Framework Security - Protecting Against CSRF Attacks..87

Data Handling (Web UI Framework)..90
Data Type Handling in the Web UI Framework..90

Interface Contracts of the Web UI Framework - Data Type Handling..92
Assigning Data Types to a Grid Column with the Web UI Framework..92

Supporting Item Quantity Decimal Handling in the Web UI Framework...93
Validating Fields with the Web UI Framework...94
Disabling All UI Fields at One Time with the Web UI Framework..94
Checking for Screen Changes in the Web UI Framework...95

iii

Contents

Configuring a Data Source with the Web UI Framework...95
Adding a Data Source with the Web UI Framework...96

Customizing the Web UI Frameworkiv

Extensibility (Web UI Framework)

Extensibility in the Web UI Framework (Custom Developers)

Extensibility allows you to customize the user interface of an existing out-of-the-box installation of the
application using the Extensibility Workbench. It allows you to customize the existing installation at runtime
without recompiling or changing the original source code.

Web UI Framework extensibility also allows you to modify the Struts, non-XAPI mashup, and XAPI mashup
layers. If you do not use the Web UI Framework, the XAPI mashup layer is not available.

Note: When customizing the interface, copy the standard resources of the application and then modify your
copy. Do not modify the standard resources of the application.

With extensibility, you can open an existing screen and bring up the same user interface tools that were used
by application developers to build the screen. You can add controls (like buttons, labels, and grid columns),
panels, data sources, and other items. The Extensibility Workbench allows you to personalize and localize the
application. It helps you display more relevant and organized data.

Controls and panels are also known as widgets. The Extensibility Workbench allows you to add new widgets
to a UI screen, override default field labels, and customize themes. For more information about widget properties,
refer to the Ext JS framework documentation at (2.2.1) http://www.extjs.com/deploy/ext-2.2.1/docs/ or (3.0)
http://www.extjs.com/deploy/dev/docs/.

The Extensibility Workbench allows you to remove widgets that were added through extensibility. However,
you cannot remove any widgets that were present in the base/original screen. Also, you can hide (not remove)
an existing widget.

The Extensibility Workbench also allows you to change the properties of widgets. However, property changes
are limited to a particular set of properties. This ensures that arbitrary properties are not allowed to change,
resulting in upgrade issues.

Use the Extensibility Workbench to make changes to parts of a screen. If you want to customize an existing
installation with new screens, use the Designer Workbench, which you access from a link in the Extensibility
Workbench. These workbenches let you work with the two kinds of extensibility:

5Sterling Commerce, Inc.

• Differential extensibility, where you use extensions to add overlays onto a base screen. The addition is the
difference between the final screen (after adding the extensions) and the out-of-the-box screen (without the
extensions). Also, you can use differential extensibility to re-arrange the components of a screen.

You can use the Extensibility Workbench for differential extensibility.

• Override extensibility, where you replace the out-of-the-box screens with new screens.

You can use the Designer Workbench for override extensibility.

Differential Extensibility in the Web UI Framework

With differential extensibility, you can customize parts of a screen. Changes are overlaid on top of the base
screen. Differential extensibility contrasts with override extensibility, where the entire screen is replaced.

In differential extensibility, the extensions are stored in a file that is separate from the file of the screen being
viewed or edited. During runtime of the application, the extensions are applied to the functionality of the
application. This kind of extensibility gives you flexibility with upgrades.

In differential extensibility, in general, you can do the following:

• Add new UI components to an out-of-the-box screen.
• Change an existing component such as styles, labels, and layout parameters.
• Hide a component present in an out-of-the-box screen.
• Remove a component that was added via extensibility.

Note: None of the out-of-the-box components or component properties can be deleted.

• Respond to events.

The following images show an example of an out-of-the-box screen and an extended screen. Differential
extensibility was used to add a search button and a Before Date field.

Out-of-the-box screen (without extensions):

Extended screen:

Sterling Commerce, Inc.6

Override Extensibility in the Web UI Framework

With override extensibility, you can customize a screen by completely replacing it. Override extensibility
contrasts with differential extensibility, in which only parts of the screen are replaced. Use the Designer
Workbench to apply override extensibility.

Note: Although you can apply override extensibility using the Designer Workbench, you are limited in the
changes that you can make. Please contact Sterling Commerce Customer Support for assistance when applying
override extensibility using the Designer Workbench.

Differential Extensibility Versus Override Extensibility in the Web UI Framework

Override ExtensibilityDifferential ExtensibilityArea

Entire screen.Individual screen components.Scope of Changes

Replace entire screen.Screen Actions • Add component

• Change component

• Hide a component present in an out-of-the-box
screen

• Remove a component or a component property
added using the Extensibility Workbench

• Override default field labels

• Customize theme

When screen requires complex enhancements,
such as removing controls or changed business
use cases.

When screen requires minor enhancements with
little behavioral change.

Recommended Usage

After an upgrade, if you are not interested in the
enhancements in an out-of-the-box screen, this
method is recommended.

Designer WorkbenchExtensibility WorkbenchTool

Functionality that is extended is completely
replaced. Both the functionality and the UI layout
and/or appearance are replaced (if required).

Extensions are applied to the functionality of the
application.

Runtime Application

7Sterling Commerce, Inc.

Override ExtensibilityDifferential ExtensibilityArea

Might increase upgrade time, especially if there
are upgrade-related source code changes in the
application that relate to overridden screen.

Increases upgrade flexibility, because original
screen does not change, making individual
extensions to the screen easier to apply. An
extensible screen adheres to the extensibility

Upgrade Issues

The added code for XAPI mashups that are
used for a new screen (if any) would be affected

guidelines, such as unique IDs. These IDs
should not be absent from the upgraded
screens. with the changes in the database tables or

source code.

Extensible Layers • Presentation layer (UI)• Presentation layer (UI)

• •XAPI mashup layer XAPI mashup layer

• Non-XAPI mashup layer

• Struts layer

Screen files are completely replaced.Extensions are stored in a different file from the
files of the screen being extended.This different

Screen File
Management

New Java Server Page (JSP) files override base
JSP files. These JSP files can be designed in

file must be a new JavaScript file that must be
created by the user. This new JavaScript file

the Designer Workbench or from another
source.

must be included in the application using JSB
definitions.

• Base screens extend the
sc.plat.ui.ExtensibleScreen class.

These screen definitions have an identifier that
is unique across the application.

• Screen extensions extend the
sc.plat.ui.Extension class.

These extensions are registered with the Web
UI Framework extension registry for the base
screen’s identifier.

What Can Be Customized and Extended with the Web UI Framework

You can use the Web UI Framework to customize and extend any screen of the application that also follows
these guidelines:

• Any extensible UI content is served to the client using a JSP (Java Server page).
• A unique identifier must be created for every screen class (the className property) and screen component

(the sciId property).

If this guideline is not followed, a console warning will alert you that more than one screen or screen component
has the same ID. You can still launch and deploy the application out-of-the-box with duplicate IDs for screen
or screen components, but duplicate IDs are likely to cause problems when you try to extend.

• In differential extensibility (where only parts of the screen change), the extensions are defined in an extension
file which must be included with the out-of-the-box screen.

• It uses the Ext JS JavaScript framework.
• The screen class must extend from the class sc.plat.ui.ExtensibleScreen.

Sterling Commerce, Inc.8

• It does not add controls dynamically. These controls cannot be changed by screen extensions. Also, all layouts
do not support the addition of dynamic controls.

You can extend screens that were not originally created using the Web UI Framework tools (for example,
hand-coded screens). However, if a screen was designed using the Web UI Framework tools, it can be easily
extended because it conforms to the Web UI Framework standards.

Customizing with the Web UI Framework

The Web UI Framework allows you to plug in customizations of tasks like authentication and authorization.
When you customize the application, you need to write special program code that works with the interface
contracts of the default installation of the application.

You can use interface contracts to customize the following tasks:

• Authentication
• Post authentication
• Authorization
• Mashup layer
• Transaction management
• State management
• Localization
• Data type handling

Customizations also use the web.xml file and the install3rdParty tool.

Extending Versus Customizing an Ext JS Widget/Component with the Web UI
Framework

Extending and customizing are very similar. Both involve changes to the default, out-of-the-box version of
the application.

Extending is a type of customization that involves creating changes in a separate file that are applied to the
application, making these changes easy to identify and easy to remove.

Customization can also involve more direct changes to the application that change (and do not preserve) the
original configuration of the application.

Extensibility Workbench Versus Designer Workbench (Web UI Framework)

The Extensibility Workbench is used to modify the UI while the application is live and running online. The
changes can be saved and later applied to the application EAR, if required. Use the Extensibility Workbench
to make changes to part of the UI. To create new screens while working in the Extensibility Workbench, access
the Designer Workbench through the Design new screens link at the bottom of the Extensibility Workbench.

9Sterling Commerce, Inc.

The Designer Workbench is also used by application developers to first create offline the screens that you can
modify using the Extensibility Workbench.

Sterling Commerce, Inc.10

Extensibility Workbench of the Web UI Framework (Custom Developers)

The Extensibility Workbench allows you to use WYSIWYG tools in an existing application to put overlays
on a screen’s user interface configuration.

The Extensibility Workbench allows the editing of out-of-the-box components on an existing screen.

The Extensibility Workbench includes the following components:

• Extensibility Workbench

Used to extend an out-of-the-box screen. Access this tool from within the application by clicking Shift +
space bar. You can also turn off the Extensibility Workbench by clicking Shift + space bar.

• Designer Workbench

Used to design new screens. Access this tool from within the Extensibility Workbench by clicking the Design
new screens link.

After you access the Designer Workbench from the Extensibility Workbench, you can use the Back button
to return to the application. However, you will need to re-activate the Extensibility Workbench.

Screens designed in Designer Workbench have to be deployed and run in an existing installation of the
application to see the functional behavior. In the Extensibility Workbench, extensions are added to a screen
in a live application. If a change is made to a screen, the changes can be viewed instantly. To extend a screen
using the Extensibility Workbench, you have to navigate to the corresponding screen and then start extending
it.

Application without Extensibility Workbench:

11Sterling Commerce, Inc.

Application with Extensibility Workbench after clicking Shift + space bar (tabs and link at bottom of screen):

Sterling Commerce, Inc.12

Application after maximizing Extensibility Workbench views by clicking plus (+) sign at bottom of screen:

13Sterling Commerce, Inc.

Configuring the Web UI Framework Extensibility Workbench

If you are using Mozilla Firefox and the Mapping Preferences dialog box appears when you open the
Extensibility Workbench, you need to configure the application to access the supporting files for the Extensibility
Workbench. In your browser, access the add-ons menu (usually under the Tools menu) and enable the Sterling
Designer extension. A popup dialog box opens, asking you to install two add-ons (jsLib and the Sterling
Designer extension). Make sure that you install both of the add-ons, and then enable them.

This option to install the add-ons is only available in Mozilla Firefox. Internet Explorer, the other browser
supported by the Extensibility Workbench, uses ActiveX for reading and writing files. In IE, make sure that
the ActiveX settings are correctly enabled.

When logging in to the application console from IE, if you get the Could not use ActiveX for file IO warning,
then the IE settings for ActiveX must be checked to ensure that all relevant settings are enabled. If these settings
are not enabled, you will not be able to view any folder displayed in the Mapping Preferences dialog box while
setting the workspace directory for the Extensibility Workbench.

Make sure that the server/site which is hosting the application is added under the secured/trusted sites list in
IE.

Using the Web UI Framework Extensibility Workbench to Modify a Widget

1. In the application, open the screen that you want to change.

2. Click Shift + space bar.

3. Review and accept the following terms and conditions:

Sterling Commerce, Inc.14

The Extensibility Workbench launches if you accept the terms and conditions (provided you have also
completed the Directory to URL Mapping and you have associated a file for the screen). Any subsequent
use of the Shift + space bar hot key hides and then re-launches the workbench until the browser is refreshed
or a new screen is opened, in which case the Terms and Conditions window re-appears.

If you decline the terms and conditions, the workbench does not launch.

The tools of the Extensibility Workbench appear in different views.You might have to click the plus sign
button on the Extensibility Workbench toolbar to display all of the views.

4. Click the plus sign button to show all views or the minus button to minimize all views. When all of the
views are minimized, you can click the tab of a view to display just that view. When a view is displayed,
you can minimize the view by clicking the minus sign in the upper right hand corner of the view.

5. Before you can work with a widget on a screen, you need to select or associate the extension file for the
screen. The extension file stores the extensions (changes) to the screen. The Add extension file for screen
dialog box appears when you first try to work on a widget.

The extension file contains metadata about your changes. Extension files are saved in your current working
directory. They can be viewed in the Files tab of the Palette & Files view.

15Sterling Commerce, Inc.

When the Extensibility Workbench is launched for the first time, the current working directory is defaulted
to the directory entered during mapping. You can later change this in the Files tab.

a) In the Add extension file for screen dialog box, specify the extension file by either using the browse
button to select an existing file, or by typing the name of the file in the Extension file field.

Type the name of the file if you want to associate/create a new file. If you have already extended the
screen and have an extension file for the screen, you can browse for the file.

b) Click the OK button.

If a dialog box appears that includes the message Selected file contains source that does not match with
the current screen., click OK to overwrite the file or Cancel to choose another file. This message usually
means that you have chosen the wrong metadata file.

After you have saved the extensions to a screen and deployed those changes in the application, you do not
have to add the extension file to make further changes to the screen. The extension file will be automatically
loaded with the screen.

After you select this extension file, the following view actions occur:

• The Outline view populates with information about the widgets on the screen.
• The Screen Details View populates with information about the extension file.

The Extension Class Name field displays the name of the generated extension class. You can change this
name.

• The Properties view displays the original properties of the widget.

6. To add a widget to the screen, select the widget on the Palette tab. Right-click or left-click at the place on
the screen where you want the widget to appear.

When you add a new widget, the sciId property of the widget must include the default extn_ prefix. This
differentiates an extended component from an out-of-the-box component.

7. To change a widget, select it on the screen or in the Outline view.

8. To change or create a widget property, do the following. For more information about widget properties,
refer to the Ext JS framework documentation at http://www.extjs.com.

• If you want to change the properties of an item, click the Refresh instances button in the Screen Details
view to make those property changes active.

If you want to change the properties of an existing item, a separate grid titled “Original Properties” appears
that displays the original property values of that item.

The “Original Properties” grid is not shown for any new component added through extensibility. Any
new properties added through extensibility are listed in a separate grid above the "Original Properties"
grid (if the component is present in the base screen).

You cannot change a property listed under “Original Properties”. However, you can override an existing
property or add new properties to an out-of-the-box component.

• To create a new property for an item, click the Add button in the Properties view. Before clicking the
Add button, the desired property should be selected from the dropdown list of available properties.

9. To save your changes in your project directory (but not deploy them), click the Save button in the Screen
Details view.

Sterling Commerce, Inc.16

10. To work on another screen, go to the other screen and then re-activate the Extensibility Workbench by
clicking Shift + space bar.

11. After you have saved all of your screen extensions, you must deploy the changes for them to take effect in
the application. For more information, refer to the documentation on deployment.

Extensibility Workbench Tools (Web UI Framework)

The following table shows the tools to use for the different tasks that you can perform using the Extensibility
Workbench:

For more information about widget properties, refer to the Ext JS framework documentation at
http://www.extjs.com.

Use this tool...If you want to...

Palette & Files view (Palette
tab)

Add widgets to a screen.

Palette & Files view (Data
tab)

Create input and output data sources for mashup layer files.

Palette & Files view (Files
tab)

Access the local file system.

Outline View (Components
tab)

View a directory-type listing of all the widgets on the screen.

The view populates after you specify an extension file and select or add an item.

Outline View (Components
tab)

Re-arrange UI components in a directory-type listing.

Outline View (Overlays tab)
Show overlays applicable for the screen.

This shows all of the changes made with the workbench. It helps you view changes and
(if necessary) remove them.

The Click to View Overlays button displays overlays.

Collapse the Outline view to show just the top screen item (screen).

Expand the Outline view to show all of the screen items.

Properties viewView a list of the properties of the screen and any widget that is selected.

Properties view (Add tab)Add a property to a widget.

Screen Details viewShow the name of the screen that is being modified.

Screen Details view (Save
button)

Save an updated screen.

Screen Details view (Refresh
instances button)

Activate changes to the properties of a widget.

Screen Details view (Localize
button)

Access bundle files for localization.

17Sterling Commerce, Inc.

Use this tool...If you want to...

Start or stop extensibility.

You can change screens (by selecting the appropriate menu option) without having to use
this button.

Display all views.

Minimize all views.

Design new screens linkLink to the Designer Workbench.

Designer Workbench of the Web UI Framework for Custom Developers

The Designer Workbench allows you to use WYSIWYG tools to build new screens for the application. It has
tools similar to the Extensibility Workbench, which is used to change the screens of an out-of-the-box installation
of the application.

Custom developers access the Designer Workbench by clicking the Design new screens link in the Extensibility
Workbench.

Note: Although you can access the Designer Workbench from an out-of-the-box installation of the application,
you are limited in the changes that you can make. Please contact Sterling Commerce Customer Support when
changing an out-of-the-box installation using the Designer Workbench.

Sterling Commerce, Inc.18

Creating New UI Screens Using the Designer Workbench (Web UI Framework)

Use the canvas in the Designer Workbench to create the actual user interface that will be used by an application.
Work with the canvas by dropping (adding) widgets from the Palette view of the workbench. You cannot use
the Extensibility Workbench to create new screens.

Use the buttons in the upper left hand corner of the Designer Workbench to do the following:

• New

Create a new screen.

• Save

Save the changes on a screen.

• Undo

Undo screen changes that you have not saved yet.

• Redo

Redo changes that you have undone using the Undo button.

Follow these guidelines when dropping widgets:

• Make sure that the widget is selected in the Palette view before you drop it.
• Make sure your cursor is over the canvas before you drop the widget on the canvas.
• Use the canvas tooltips to decide when to drop and how to drop the widget. You cannot drag and drop a

widget from the Palette view to the canvas.

For example, if your screen includes a panel, and you want to add a button to the panel, make sure:

• Your cursor is over the panel.
• The tooltip reads click to add button in panel and not click to add button in screen or click to add button

before panel.

19Sterling Commerce, Inc.

• Use the Tree View to delete or re-arrange the widgets. To delete a widget, you must first right-click the widget
and select the delete option.

• Use the widget names in the Palette view to create preset properties, but right-click the widget in the canvas
to apply a preset property.

Using the Web UI Framework Designer Workbench from the Extensibility Workbench
to Create New Screens (Custom Developers)

1. Access the Designer Workbench from the Extensibility Workbench by clicking the Design new screens
link in the lower right hand corner of the Extensibility Workbench.

Sterling Commerce, Inc.20

2. In the Designer Workbench, click the New button to create a new screen.

3. Perform one or more of the following tasks:

• To add a widget, click on the Palette tab. Select a widget. On the canvas, right-click or left-click where
you want the widget to appear. You can later use the Tree View to rearrange the order of the widgets.

• Use the Tree View to see a directory-style overview of how widgets are arranged on the canvas. Also use
the Tree View to delete items or rearrange items (for example, move a column from one grid to another
grid, or move a button from one panel to another panel).

• Use the Properties view to add or change any widget properties. For more information about widget
properties, refer to the Ext JS framework documentation at http://www.extjs.com.

• (Optional) To create a mashup, click the Data tab. Configure an output data source. Then, click the
Mashups button to create the mashup xml file, which will include a reference to the output data source.

4. To specify the project that will use the screens that you are creating and modifying, click the Files tab.

a) Check the Notify project checkbox.
b) Click the Options button.

The Configure Project Directory dialog box appears.

c) Configure your project directory and click OK.

5. To save the new screen, click the Save button. The changes immediately appear in the project file.

6. To return to the Extensibility Workbench, use the Back button of your browser. You will have to re-activate
the Extensibility Workbench by clicking Shift + space bar.

7. After you create all of your new screens, you must deploy them as an extension to the application. For more
information, refer to the documentation on deployment.

21Sterling Commerce, Inc.

Designer Workbench Tools (Web UI Framework)

The following table shows the tools to use for the different tasks that you can perform using the Designer
Workbench:

For more information about widget properties, refer to the Ext JS framework documentation at
http://www.extjs.com.

Use this tool...If you want to...

New buttonCreate a new screen.

Save buttonSave a new screen.

Undo buttonUndo changes that you made to the screen.

Redo buttonRedoes changes to the canvas that you just undid.

Palette tabAdd widgets to a screen.

Data tabCreate data sources for sending data to input and output XML files. Mashup layer files use these
data sources.

Files tabAdd file access to a control.

Files tab (Options
button)

Configure the directory path to the project that will use the changes from the Designer Workbench.

Files tab (Notify project
checkbox)

immediately update your main project with changes that you make using the Designer Workbench.

CanvasView the workspace for the screen that you are creating by adding widgets.

Tree ViewView a directory-type listing of all the widgets on the canvas (screen).

Collapse the Tree View to show just the top screen item (screen).

Expand the Tree View to show all of the screen items.

Properties viewView a list the properties of the screen and any widget that is selected.

Properties view (Add
tab)

Add a property to a widget.

Diagnostics button
Check if a screen has any errors or warnings and see if a fix is available, using the Check results
dialog box.

For example, if you have not localized all of the controls in the current screen, the Check results
dialog box displays a list of controls that have not been localized. To resolve this, click the icon
under the Fix? column, which directs you to the Localization Panel, where you can localize the
controls.

Mashups button
Create mashup layer files.

This button displays the Configure Mashups dialog box.

More button (View
Source menu option)

Display JavaScript source code for the screen.

Sterling Commerce, Inc.22

Use this tool...If you want to...

More button (Export
Preferences menu
option)

View an encoded string of user preferences that are stored as cookies (like the project directory
and data source directory). This string can be copied and added to your JavaScript bookmarks.

If you clear all of your browser cookies, you can use this user preference information to restore
your original preferences.

More button (Localize
Screen menu option)

Localize widgets.

This button displays the Localization panel dialog box.

You must first save the screen before you can localize any widgets.

More button (Manage
Libraries menu option)

Load libraries into the Designer Workbench. To do this, you must add an include file.

Mashup Layer of the Web UI Framework

The mashup layer of the Web UI Framework connects end user actions at the front end of an application with
business logic at the back end of an application. The mashup layer handles authorization (permission control)
and transaction management tasks. You can configure the mashup layer in the Designer Workbench. The
mashup layer allows business calls for data handling to be used in more than one place (like a backend server
and a database) without being repeated.

The mashup layer is a core logic service layer that acts as an intermediate service layer to which both action
classes and JSON (JavaScript Object Notation) endpoints delegate. Examples include the Struts action classes
in the UI backend and the Ext JS JSON in the presentation layer. The action classes and the JSON endpoints
act as types of adapters, with the core logic contained in the service layer.

The mashup layer of the Web UI Framework is used to invoke business calls (XAPI calls) for data handling
to the backend server. Each XAPI call and multiple XAPI call are always called under one transaction. Each
multiple XAPI is under one transaction. The mashup layer is a mixture of XAPIs and other mashups.

Sterling Commerce recommends that you use the mashup layer of the Web UI Framework. If you do not use
the Web UI Framework, a mashup layer exists, but it does not support XAPI calls to the backend server.

The mashup layer does not contain business logic. Its main purpose is to call different APIs and create data
that is user interface-specific. You can access the mashup layer from the user interface back end with different
development tools (Struts, DWR, custom servlet, etc.).

The mashup layer can do the following:

• Handle calls to the business logic layer to get or modify data.
• Take responsibility for bean creation and then invoke the business logic layer.
• Take responsibility for managing data transformation so that the output data is ready for use in the presentation

layer.

If errors occur in the following situations, check your mashup setup:

• If the mashup metadata is not found for a given mashup ID.
• If mashup metadata is not extensible, but an attempt is made to extend it.

23Sterling Commerce, Inc.

Interface Contracts of the Web UI Framework - Mashup Layer

For more information, refer to the Java API documentation in your installation directory
(<INSTALL_DIR>/xapidocs/core_javadocs).

MethodsDescriptionInterface Contract

Includes the business logic of an application. If
transactional is set, then all of the business logic
in one mashup will be under one transaction.

ISCUIMashup • execute

Takes in SCUIContext, input object, and XML
in the form of metadata as an SCUIMetaData
object.A custom mashup implementation is plugged in

using an <app>_mashup.xml file. Any XAPI
service calls that an application might need for
its business logic will be included in the <API>
element of the <app>_mashup.xml file.

Mashup Layer Classes of the Web UI Framework

MethodsDescriptionClass

Helps load mashup during initial setup.
SCUIMashupRegistry • loadMashup

Loads all the XML files under the
/mashupxmls/<applicationId> directory in the
context root.

Reads all of the mashup XML files and creates
SCUIMashupMetaData objects per mashup ID.
It maintains this registry for all of the mashup
IDs according to whether a mashup is
extensible.

• loadExtnMashup

Loads all the XML files under the
/mashupxmls/<applicationId>/extn directory in
the context root.

Called by a Struts action to load / fetch
mashups.

SCUIMashupHelper • invokeMashup(String mashupId, SCUIContext
uiContext Object input)

If resourceId is given, calls the authorization
layer.

If transactional is set to true, sets the
transaction context.

Instantiates the mashup implementation given
by the class name in the mashup.xml file.

• loadMashupXML

Called by the startup servlet.

Mashup XML Metadata of the Web UI Framework

A mashup configuration is an XML file that you create in the Designer Workbench. This XML file includes
the following items:

Sterling Commerce, Inc.24

DescriptionType of ItemXML Item

Encloses all of the details of a mashup.
Elementmashups

Contains the definition of one or more individual mashups in an element
mashup.

Unique identifier of the mashup.Attribute (mashup tag)id

Indicates if the mashup is transactional in nature (true if transactional).
Used for the transaction management task. For all out XAPI calls, this
must be set to true.

Attribute (mashup tag)transactional

Describes the mashup.Attribute (mashup tag)description

Unique identifier of the resource which needs to be authorized. Used for
the authorization task.

Attribute (mashup tag)resourceId

If resourceId is not specified, authorization does not take place and the
mashup gets the permission by default.

Create resources in the Applications Manager. If a mashup is given
access to all resources, the resourceId is not needed.

If a resourceId does not have permissions for a mashup, it cannot view
the results of that mashup. This will result in the message Mashup
invocation failed.

If two mashups have the same ID and namespace names, the mashup
is invoked only once. If two mashups have the same ID, but different
namespace names, the mashup is invoked two times.

If the permission for one tag of a mashup is revoked, the mashup cannot
be invoked.

Indicates if the mashup can be extended.Attribute (mashup tag)extensible

Has the following values:
Attribute (mashup tag)mashuptype

• XAPI (for XAPI calls)

• AggregateXAPI (for multiple mashups)

Includes a name attribute, which is the fully qualified class name of the
mashup implementation.

Tag (within mashup
tag)

classInformation

Indicates each XAPI within a multiple XAPI call in a mashup. Includes
an id attribute and a namespace tag (APINamespace).

Tag (within mashup
tag)

mashupRef

Defines namespace for each XAPI in a multiple XAPI call. Includes the
following attributes:

Tag (within mashupRef
tag)

APINamespace

• inputNS - input namespace

• outputNS - output namespace

The following are examples of mashup XML files:

<mashups>
 <mashup id ='m0001'
 transactional='true'

25Sterling Commerce, Inc.

 resourceId='SC02187'
 extensible='true'
 mashuptype='XAPI'>
 <classInformation
name="com.sterlingcommerce.ui.web.framework.mashup.impl.SCUIMashupImplementer"
/>
 </mashup>
 <mashup ...
 />
 <mashup ...
 />
</mashups>

<mashups>
 <mashup id='STK-getAllFlightInfo' transactional='true'
 description="Flight, Flight Trips, Flight servicesmashup"
 mashuptype='AggregateXAPI'>
 <classInformation
name="com.sterlingcommerce.ui.web.platform.mashup.SCUIXAPIAggregatorMashup" />
 <mashupRef id="demoapp-stk-getFlightList">
 <APINamespace inputNS='flight'
 outputNS='flightOutput' />
 </mashupRef>
 <mashupRef id="demoapp-stk-getFlightServiceList">
 <APINamespace inputNS='flightService'
 outputNS='flightServiceOutput' />
 </mashupRef>
 <mashupRef id="STK-aggFlightTrip">
 <APINamespace inputNS='flightTrip'
 outputNS='flightTripOutput' />
 </mashupRef>
 </mashup>
</mashups>

Extending Mashups in the Web UI Framework

You can extend mashups using both differential and override extensibility. A mashup is extended on the basis
of the <mashup id> tag specified in the XML file. A XAPI mashup can be extended irrespective of the screen
being extended.

Extending Mashups Using Override Extensibility (Web UI Framework)

You can extend a mashup using override extensibility both automatically and manually.

1. To automatically override a mashup, do the following:

a) Identify a mashup to be extended.
b) Go to the <INSTALL_DIR>/extensions/<app_dir>/webpages directory. This directory path is not part

of the out-of-the-box installation, and must be created by the user within the <INSTALL_DIR>/extensions
directory.

c) Replicate the relative folder structure (relative with regard to deployment) of the mashup XML file
containing the mashups to be created. The original mashup XML file is located in the
<INSTALL_DIR>/repository/eardata/<app_dir>/war/mashupxmls/<app_dir> directory.

Sterling Commerce, Inc.26

d) Create a new XML file with the same name as the base file. Any mashup in this XML file that has the
same ID as the base file would override the base file mashup.

2. To manually override a mashup, do the following:

a) Create a new mashup XML file with entries for the mashup file to be overridden. This file can have any
name and does not need to replicate the relative directory structure of the XML file containing the
mashup to be extended.

b) Add this XML file to the <INSTALL_DIR>/extensions/<app_dir>/webpages directory.

If you have created a servlet class to register a JSB (JavaScript Builder), the code to include this mashup
XML file also can be written in the same servlet class. Else, you should create a servlet class to register
this mashup XML file. Use the method loadOverrideMashupXml in the SCUIMashupHelper class. For
more information, refer to the documentation on deploying extensions using JavaScript Builder files.

Extending Mashups Using Differential Extensibility in the Web UI Framework

To extend a mashup using differential extensibility, do the following:

1. Create a new mashup XML file with entries for the mashup file to be overridden. This file can have any
name and does not need to replicate the relative directory structure of the XML file containing the mashup
to be extended.

2. Add this XML file to the <INSTALL_DIR>/extensions/<app_dir>/webpages directory. This directory path
is not part of the out-of-the-box installation, and must be created by the user within the
<INSTALL_DIR>/extensions directory. The original mashup XML file is located in the
<INSTALL_DIR>/repository/eardata/<app_dir>/war/mashupxmls/<app_dir> directory.

If you have created a servlet class to register a JSB (JavaScript Builder), the code to include this mashup
XML file also can be written in the same servlet class. Else, you should create a servlet class to register
this mashup XML file. Use the method loadIncrementalMashupXml in the SCUIMashupHelper class. For
more information, refer to the documentation on deploying extensions using JavaScript Builder files.

The new file’s contents are added to the respective mashups in the base screen based on the <mashup id>.

Configuring Mashups in Web UI Framework

1. Open the Designer Workbench.

2. Click the Data tab.

3. Configure an output data source.

4. Click the Mashup button to create the mashup XML file, which will include a reference to the output data
source.

Specifying Multiple XAPI Calls with the Web UI Framework

With the Web UI Framework, you can specify more than one XAPI call under one transaction, using the
mashup layer. When you do this, you create mashups within other mashups. Sterling Commerce recommends
that you use multiple XAPI mashup configurations only for fetch operations, and not for save operations.

1. Open the Designer Workbench.

27Sterling Commerce, Inc.

2. Click the Mashups button to create or open a mashup.xml file.

3. For each XAPI, create mashups within the main mashup. Each of these mashups has an id as an attribute
to uniquely identify the mashup definition in the XML file. Each mashup also has a resourceId as an optional
attribute which is used for authorization and takes precedence over individual resource permission defined
under the main mashup element.

Also, these mashups contain one or more mashupRef elements, which are used to reference other mashups.
The mashup id referenced in the mashupRef element must be defined in the mashup.xml file before the
reference.

The mashupRef element can also have an endpoint as an attribute that will take precedence over endpoint
attribute in the mashup element. The endpoint attribute in the mashup element will in turn take precedence
over the one defined in the XAPI layer.

4. In each mashupRef tag within each XAPI mashup, use the APINamespace element to define the input
namespace and the output namespace for each API in the mashup. If this element is not given, the input
namespace defaults to the element name that serves as the input XML and the output namespace defaults
to the element name in the output XML.

If there are two mashups with the same id values and same namespaces, the calls are merged to only one
XAPI under the multiple XAPI call. If the namespaces are different, they are treated as separate XAPIs
under the multiple XAPI call.

Example of mashup.xml File with Multiple XAPI Calls in the Web UI Framework

<mashups>
 <mashup id ='m0001'
 resourceId='SC02187' extensible='true'
 endpoint='myHttpEndpoint'
 mashupType='XAPI'>
 <classInformation
 name="com.sterlingcommerce.ui.web.framework.mashup.impl.SCUIXAPIMashup"/>
 <API Name="getFlightList">
 <input>
 ...
 </input>
 <template>
 ...
 </template>
 </API>
 <APINamespace inputNS='inputServiceKeys'
 outPutNS='outputServiceList' />
 </mashup>
 <mashup id= 'm0002'...
 />
 <mashup id= 'm0003'...
 />
 <mashup id='mm001' resourceId='SC05457' mashupType='AggregateXAPI'>
 <mashupRef id = 'mm001'>
 <APINamespace inputNS='inputServiceKeys'
 outPutNS='outputServiceList' />
 </mashupRef>
 <mashupRef id = 'm0002'/>

Sterling Commerce, Inc.28

 </mashup>
 <mashup id='mm002' mashupType='AggregateXAPI'>
 <mashupRef id = 'mm001'>
 <APINamespace inputNS='inputServiceId'
 outPutNS='outputServiceListForId' />
 </mashupRef>
 <mashupRef id = 'mm001' />
 </mashup>
</mashups>

How the Mashup Layer Handles Authorization and Transaction Management in the
Web UI Framework

The mashup layer acts as a single point where authorization and transaction management are handled in a
consistent way, no matter what development tool you use to access it (Struts, DWR, custom servlet, etc.).

If a resource ID is not passed for authorization or if the request is not transactional, the request is not stopped.
Instead, it continues through to the mashup and business logic layers.

Each invocation of a mashup is considered to be part of a transaction.

The following graphic shows how the mashup layer handles authorization and transaction management, using
the Struts development tool as an example:

29Sterling Commerce, Inc.

Creating and Extending a Struts XML File (Web UI Framework)

1. Run the buildear or buildwar utility to create the EAR/WAR file.

2. Copy the struts.xml.sample and struts.properties.sample files from the
<INSTALL_DIR>/repository/eardata/<package>/extn directory to the same directory with the file names
"struts.properties" and "struts.xml".

Sterling Commerce, Inc.30

3. Modify the newly constructed struts.xml files to include the new Struts config file path.

<WebComponents Package="<required-package>.extn">
 <wuf>
 <struts-property>
 </struts-property>
 <struts-property>
 <property-name>struts-custom-config-1.xml</property-name>

<property-value>struts-custom-config-2.xml</property-value>
 </struts-property>
 </wuf>
 <web-app>
 </web-app>
<WebComponents>

4. Package the new Struts config files (struts-custom-config.1.xml and struts-custom-config.1.xml from the
above example) in a jar file and run the <INSTALL_DIR>/bin/install3rdParty.sh script to include this jar
file in a classpath.

5. Modify the newly created struts properties files, if needed.

6. Run the buildear or buildwar utility to create the EAR/WAR file.

Creating a Menu Entry for a New Web UI Framework Screen

A new menu entry for a new screen requires the creation of the following items:

• Resource
• Menu
• User permissions
• Struts xml file

To create a menu entry for a new screen that you created using the Designer Workbench, do the following:

1. Launch the application.

2. Launch the Applications Manager.

3. Click Applications > Platform.

4. Create a new resource by doing the following:

a) Double-click the Presentation item.
b) Double-click the Resources item.

The Resource Hierarchy appears.

c) Select the Sterling_Supply_Chain_Applications_Console item.
d) Click the Create New button (the green plus sign).

The Resource Details screen appears.

e) Type information for all the tags.

31Sterling Commerce, Inc.

The Resource ID tag associates menus and resources. For the URL tag, type <package namespace in
your struts.xml file>/<action name>. For the Resource Type tag, select StrutsAction from the dropdown
list.

Note: The URL package name and the action name in the struts.xml file should be the same.

f) Click the Save button in the upper right corner of the Resource Details screen.

5. Create the new screen using the Designer Workbench.

6. Copy all of the generated files of the new screen to a new folder in the <app_dir>/webpages directory.
These files include the <newscreen>.json, <newscreen>.js, <newscreen>_config.js, and
<newscreen>.js.sample files.

7. Create a new menu by doing the following:

a) Double-click the Presentation item.
b) Double-click the Menu item.

The Menu Hierarchy appears.

c) Double-click the option for the menu where the new screen will be accessed.

For example, you would double-click the <application>_Admin_Menu option to create a menu under
the top menu or under an existing submenu like AdminPage.

d) Click the parent menu for the new menu entry.
e) Click the Create New Menu Item button (it includes a green plus sign).

The Menu Item Details screen appears.

f) Type information for all the tags.

For the Resource ID tag, select the resource with which this menu should be associated.

8. Give user permissions by doing the following:

a) Double-click the Security item.
b) Double-click the Users item.

The User Search screen appears.

c) Select a user and subscribe to a group. For example, you could select <application>admin and subscribe
to the SYSTEM group.

d) Under the Security item, double-click the Groups item.

The Groups screen appears.

e) Edit the details for the user’s default group. For <application>admin, the default group is
<application>admingroup.

f) Double-click the default group name to display the Group Details screen.
g) Click the Permissions button for the Cross Application option.
h) Allow the user access to the new Struts action.
i) Save the changes and revert the group subscriptions to the default values.

9. Define the Struts action in a Struts config file which serves the page that is linked to where you click on
the menu. The resourceId should be the same as the resourceId defined in the Applications Manager.

For more information on how to include this file entry in the struts.xml file, refer to the information on
creating and extending Struts XML files.

Sterling Commerce, Inc.32

The jar file for the install3rdParty.sh command should also contain the java class file for this Struts action.

<struts>
 <package name="<package-name>" namespace=/<namepsace>""
extends="struts-default">
 <action name="home" class="<struts-action-class>">
 <param name="RessourceId"><resourceId></param>
 <result name="success"><result-1></result>
 </action>
 </package>
</struts>

Deploying Web UI Framework Extensions

After you customize an existing screen using the Extensibility Workbench or create a new screen using the
Designer Workbench, you must deploy your changes in the application. You can use either Java Server pages
(JSP) or JavaScript Builder (JSB) files to deploy Extensibility Workbench changes. To deploy Designer
Workbench changes, you must use a Java Server page.

A JavaScript Builder file contains JavaScript library/package definitions. The Web UI Framework provides
programmatic control over this library with differential extensibility.

For more information about deploying the extensions of the application, refer to the Customization Basics
documentation.

Deploying Extensions Created by the Web UI Framework Extensibility Workbench
and Designer Workbench Using a Java Server Page

Do the following to use a Java Server page (JSP) to deploy differential extensions (modified with the
Extensibility Workbench) or override extensions (created using the Designer Workbench):

Note: UNIX/Linux file paths are used in the following procedure.

1. Install the application and build a WAR file for it.

a) Deploy the WAR file on the server in the exploded format.
b) After the deployment finishes, start the application server.

2. Make sure that the changes made using the Extensibility Workbench or the new screen created using the
Designer Workbench have all the relevant JSON and JavaScript files generated and saved.

3. In the <INSTALL_DIR>/extensions folder, create the following subdirectory:

<application package name>/webpages

4. In the webpages subdirectory, replicate the directory structure of the screen that you want to extend (relative
to your deployment) and copy in all of the script files generated by the workbench.

For example, if you extend the Manage Flight Route screen (which uses the file path <application package
name>/flightRoute), you would copy all of the extension script files into the
<INSTALL_DIR>/extensions/<application package name>/webpages/<application package
name>/flightRoute directory.

33Sterling Commerce, Inc.

5. Create a new JSP file with the same name as the base JSP file to launch these newly generated files in the
same folder.

Sample code for the original JSP:

<%@ taglib uri="/WEB-INF/scui.tld" prefix="scuitag" %>
<jsp:include page="/stk/include.jsp">
 <jsp:param name="title" value="manage flight route" />
</jsp:include>
<script>
 Ext.ns("sc.stk");
 sc.stk.fn = function() {
 var fr = new sc.stk.flightRoute();
 sc.plat.ScreenTitle.setText(fr.Header, null, "sc-panel-belowmenu-text");

 sc.plat.ScreenTitle.setText(fr.Header, null, "sc-panel-belowmenu-desc");

 fr.render("mainBodyPanel");
 }
<scuitag:includeJS
name="['/stk/flightRoute/flightRouteList_config.js','/stk/flightRoute/flightRouteList.js',
'/stk/flightRoute/flightRouteList_bundle.js']"
callBack="sc.stk.fn"/>
</script>
<jsp:include page="/stk/footer.jsp">

Sample code for the new JSP (differential extensibility):

<%@ taglib uri="/WEB-INF/scui.tld" prefix="scuitag" %>
<jsp:include page="/stk/include.jsp">
 <jsp:param name="title" value="manage flight route" />
</jsp:include>
<script>
 Ext.ns("sc.stk");
 sc.stk.fn = function() {
 var fr = new sc.stk.flightRoute();
 sc.plat.ScreenTitle.setText(fr.Header, null, "sc-panel-belowmenu-text");

 sc.plat.ScreenTitle.setDescription(fr.Header, null,
"sc-panel-belowmenu-desc");
 fr.render("mainBodyPanel");
 }
<scuitag:includeJS
name="['/stk/flightRoute/flightRouteList_config.js','/stk/flightRoute/flightRouteList.js',
'/stk/flightRoute/flightRouteList_bundle.js','/stk/flightRoute/test_overlays.js'
,'/stk/flightRoute/test.js']"
callBack="sc.stk.fn"/>
//The new JSP also includes the newly generated files: test_overlays.js and
test.js
</script>
<jsp:include page="/stk/footer.jsp">

Sample code for the new JSP (override extensibility):

<%@ taglib uri="/WEB-INF/scui.tld" prefix="scuitag" %>
<jsp:include page="/stk/include.jsp">

Sterling Commerce, Inc.34

 <jsp:param name="title" value="Custom Screen" />
</jsp:include>
<script>
 Ext.ns("sc.stk");
 sc.stk.fn = function() {
 var fr = new sc.stk.flightRoute();
/*
sc.extn.CustomScreen is the className for the new screen. It is available
as a property for a screen in the designer and defaulted to
sc.module.ClassName. The user can change it.
*/
 sc.plat.ScreenTitle.setText(fr.Header, null, "sc-panel-belowmenu-text");
/*
Here, the setText(arg1, arg2, arg3) method has been used to set arg1 as
title for a page as arg3="sc-panel-belowmenu-text". Here, a bundle entry in
the file: newScreen_bundle.js corresponding to Header would be picked up.
*/
 sc.plat.ScreenTitle.setDescription(" ", null, "sc-panel-belowmenu-desc");

 fr.render("mainBodyPanel");
 };
<scuitag:includeJS
name="['/extn/stk/flightRoute/newScreen_config.js',
'/extn/stk/flightRoute/newScreen.js', '/stk/flightRoute/newScreen_bundle.js']"
callBack="sc.stk.fn"/>
//This JSP includes the files generated through the designer:
newScreen_config.js, newScreen.js and the localization file:
newScreen_bundle.js
</script>
<jsp:include page="/stk/footer.jsp">

6. Rebuild the WAR file.

The contents of the <INSTALL_DIR>/extensions/<application package name>/webpages directory are
copied to the following directory:

<INSTALL_DIR>/external_deployments/<application package name>/extn

This directory structure exists only if a WAR file is created and then exploded in the same
<INSTALL_DIR>/external_deployments directory.

Any JSP file within this directory that has the same name and at the same relative directory structure as the
base JSP would override the out-of-the-box JSP file.

7. Relaunch the application to display the extended changes.

Deploying Extensions Created by the Extensibility Workbench Using a JavaScript
Builder File

Do the following to use a JavaScript Builder file to deploy differential extensions created using the Extensibility
Workbench. You cannot use this procedure to deploy override extensions created using the Designer Workbench.

Also, a JSB can be used if the base screen is launched through a JSB or through a JSB that uses a JavaScript
library to render screens.

35Sterling Commerce, Inc.

Note: UNIX/Linux file paths are used in the following procedure.

1. Install the application and build a WAR file for it.

a) Deploy the WAR file on the server in the exploded format.
b) Start the application server by passing the following argument:

-Dwufdevmode=true

2. Make sure that the changes made using the Extensibility Workbench have all the Java files generated and
saved.

3. In the <INSTALL_DIR>/extensions folder of your installation directory, create the following subdirectory:

<application package name>/webpages

4. In the webpages subdirectory, replicate the directory structure of the screen that you want to extend (relative
to your deployment) and copy in all of the script files generated by the Extensibility Workbench.

For example, if you extend the Manage Flight Route screen (which uses the file path <application package
name>/flightRoute), you would copy all of the extension Java files into the
<INSTALL_DIR>/extensions/<application package name>/webpages/<application package
name>/flightRoute directory.

5. Create a new JSB file in the same folder to launch these newly generated files. The
<ExtensionJSFile>_overlays.js files should be included before the corresponding <ExtensionJSFile>.js
files

Sample code for JSB:

<?xml version="1.0" encoding="utf-8"?>
<project output=""
 name="scuiIDE"
 author="Sterling Commerce Pvt.Ltd">
 <target name="flight_route"
<!-- The name attribute in <target> is used to uniquely identify
this JSB in the application. It serves as its identifier.-->
 file="/extn/stk/flightRoute/test-all.js"
 loadAfter="flightService"
<!-- The loadAfter attribute in <target> is used to specify the
javascript library after which the current JSB should be rendered.-->
 allowDynamicLoad="true"
 debug="True"
 shorthand="False"
 shorthand-list="">
 <include name="/extn/stk/flightRoute/test_overlays.js"/>
 <include name="/extn/stk/flightRoute/test.js"/>
 </target>
</project>

6. Create a new servlet to register the new JSB file. The extn folder should be prefixed for LoadJSLibraryXml
and loadIncrementalMashupExtnXml calls.

Sample code for creating the servlet:

package jsbCreator;
import javax.servlet.ServletConfig;
import javax.servlet.ServletException;

Sterling Commerce, Inc.36

import javax.servlet.http.HttpServlet;
import
com.sterlingcommerce.ui.web.framework.helpers.SCUIJSLibraryHelper;
import
com.sterlingcommerce.ui.web.framework.helpers.SCUIMashupHelper;
public class CreateServlet extends HttpServlet {
 private static final long serialVersionUID =
4693417985837892469L;
 public synchronized void init(final ServletConfig config)
throws ServletException {
 //loads the JSB specified at the path
 SCUIJSLibraryHelper.loadJSLibraryXml
("extn/stk/flightRoute/test.jsb", config.getServletContext());
 //loads the mashup XML specified at the path
 SCUIMashupHelper.loadIncrementalMashupExtnXml
("/extn/stk/flightRoute/test_mashup.xml", config.getServletContext());
 }
}

7. Package the servlet into a jar file.

8. Update the web.xml file with your customizations. For information on this task, refer to the documentation
on customizing the web.xml file.

9. Relaunch the application to display the extended changes.

The changes will appear overlaid on the base screen.

Compiling and Minifying JavaScript Files in the Web UI Framework

1. Run the jscompile command to get possible JavaScript compilation warnings using the sci_ant.sh command
from the <Install>/bin directory. This command works with the jsUtil.xml file in the same directory. This
command can include the following properties:

Note: This is an optional step and not a requirement for minification.

• gis.install: Installation directory path.

• srcDir: Source directory.

• errorOnly: Indicates whether to check for all warnings and errors (false) or for errors only (true). Defaults
to false.

• format: Output format - (h) for html/(t) for text. Defaults to t. If errorOnly is set to true, only html (h) is
the valid option.

• outputFile: Output file path. If file path is not provided or file doesn't exist. all warnings will be directed
to standard output.

• warningOptions: Warning options (comma separated). Default options: [onevar, undef, forin, debug,
browser, eqeqeq, newcap, evil]. For all warning options, see http://www.jslint.com/

For example:

./sci_ant.sh â€“f jsUtil.xml jscompile â€“Dgis.install=<Install Dir>
â€“DsrcDir=<Install Dir>/repository/eardata/platform_uifwk/war/platform

37Sterling Commerce, Inc.

Note: If you are using sci_ant.sh, then gis.install becomes optional.

2. Combine your files into one file by minifying the files using the sci_ant.sh command from the <Install>/bin
directory. This command works with the jsUtil.xml file in the same directory. This command can include
the following properties:

• gis.install: Installation directory path.
• jsbDir: JSB directory path (mandatory).

• minify: Indicates whether files should be minified (true/false). Defaults to true (minify files). Optional.

• srcDir: Source directory. Will be used if input attribute is not specified in JSB. Optional.

• destDir: Destination directory. Will be used if input attribute is not specified in JSB. Optional.

• createIndividualFile: Indicates whether to create individual files (true/false). Defaults to false (do not
create individual files). Optional.

• jscompile: Indicates whether to get JavaScript warning/errors (true/false). Defaults to true (get errors).

For example:

./sci_ant.sh â€“f jsUtil.xml minify-js â€“Dgis.install=<Install Dir>
â€“DsrcDir=<Install Dir>/repository/eardata/platform_uifwk/war
â€“DjsbDir=<Install Dir>/repository/eardata/platform_uifwk/war/builder
â€“DdestDir=<Install Dir>/repository/eardata/platform_uifwk/war

Note: If you are using sci_ant.sh, then gis.install becomes optional.

If minification is required for extended JavaScript files, you should create an extn folder within the directory
where overlays/extensions are added (<install-dir>/extensions/<application name>/webpages). Copy all
of the files to be minified to that directory. You must follow the process of creating the same relative
directory structure for extensibility. You can then run the minification script successfully because the
minified file path in the JSB file does exist.

When you run the buildear/buildwar script, the following happens:

1. First, all contents of the overlays/extensions directory except the extn directory are copied to the
<application war>/extn directory.

2. Then, the contents of the extn directory in the overlays/extensions directory get copied to the <application
war>/extn directory. As the contents of this directory are copied last, it would override the contents
contributed by overlays/extensions directory in case of a conflict (same directory structure).

Customizing web.xml in the Web UI Framework

1. Run the buildear or buildwar utility to create the EAR/WAR file.

2. Copy the web.xml.sample file from the <INSTALL_DIR>/repository/eardata/<package-name>/extn directory
to the same directory with the file name "web.xml".

3. Modify the newly created web.xml files as needed.

4. If you need to add a new servlet or filter, package it in a jar file and run the
<INSTALL_DIR>/bin/install3rdParty.sh script to include this jar file in a classpath.

5. Run the buildear or buildwar utility to create the EAR/WAR file.

Sterling Commerce, Inc.38

Changing Bundle Files in the Web UI Framework

You can change bundle files in one of two ways:

• Through localization.
• Through extensibility.

1. If you are changing a bundle file through localization, you must replicate the folder structure of your current
bundle file in the localization folder of the application.

For example, if your bundle file is at /folder1/folder2/x-bundle.js and you are localizing or replacing a
bundle entry for the fr-FR locale, then you should create a bundle file with the new values for the bundles
that you want to change and retain all existing values at /localization/fr/FR/folder1/folder2/x-bundle.js.

2. If you are changing a bundle file through extensibility, do the following:

a) Create your bundle files which only have the bundle entries that you want to replace.
b) Identify the target name of the JSB that is being used to render the screen whose bundles should be

replaced. The name should be entered in the loadAfter attribute of your JSB.
c) Specify only the path and name of your bundle-js file in the extn directory in the tag <include name>.

For example:

<?xml version="1.0" encoding="utf-8"?>
<project name="scuiIDE"
 author="Sterling Commerce Pvt.Ltd">
 <target name="flight_route"
<!-- The name attribute in <target> is used to uniquely identify this JSB in
 the
application. It serves as its identifier.-->
 file="/extn/stk/flightRoute/test-all.js"
 loadAfter="flightService"
<!-- The loadAfter attribute in <target> is used to specify the javascript
library
after which the current JSB should be rendered.-->
 allowDynamicLoad="true"
 debug="True"
 shorthand="False"
 shorthand-list="">
 <include name="/extn/stk/flightRoute/flightRouteList_bundle.js"/>
 </target>
</project>

39Sterling Commerce, Inc.

Building and Customizing Pages/Controls
(Web UI Framework)

Widgets (Web UI Framework)

The following tables describe the widgets that are available in the Palette view of the Designer Workbench
and the Extensibility Workbench. For more information about widget properties, refer to the Ext JS framework
documentation at http://www.extjs.com.

The following items cannot be created with widgets:

• Menus. Work with the Ext.menu.Menu class of Ext JS.
• Wizards. Wizards must be defined using an XML file.
• Repeating panels with radio buttons. Work with the Ext.form.Radio class of Ext JS.

Sterling Commerce, Inc.40

Controls

DescriptionControl

Text that can identify other controls.Label

Text for input and display.Text

Date and time values.Date Time

Number values.Number

Multiple lines of text.TextArea

41Sterling Commerce, Inc.

DescriptionControl

Provides default event handling, sizing, value handling, and other functionality.Field

Hides values in forms that need to be passed when you submit a form.Hidden

Connects outside of current screen (for example, a URL).Link

When clicked, causes an action.Button

Button that cycles through menus as you click it. Down arrow displays items for each menu.Cycle Button

Single box that flags a value as true or false.Checkbox

A type of checkbox that can be grouped with other radio controls and allows only one
control in a group to be checked.

Radio

A type of text field that includes a clickable trigger button.TriggerField

A type of text field that includes a list of values from which you can select.ComboBox

Time input field with a time dropdown tool and automatic time validation.Time

Date input field with a date picker tool and automatic time validation.Date

Shows progress of an operation.ProgressBar

Supports vertical or horizontal orientation, keyboard adjustments, configurable snapping,
axis clicking, and animation.

Slider

Shows columns in grid panels.Column

Panels

DescriptionPanel

Container that can include:
Panel

• Bottom and top toolbars

• Separate header, footer and body sections

• Built-in expandable and collapsible behavior

• Prebuilt tool buttons that can be customized

Tree-structured representation of hierarchically organized data.Tree Panel

Groups form fields.Field Set

Groups tabs which can respond in unique ways to being activated and de-activated.TabPanel

Panel that includes table-like columns and rows.Grid

A type of grid that allows cell editing on selected columns.EditableGrid

Others

Use the Custom Components option in the Others section to add, to the screen, a component that you have
created (like another screen developed using the Designer Workbench). The Custom Components option gives
one screen access to a second screen whose components include that first screen (child-to-parent screen access).
Use the preset properties to specify this access.

Sterling Commerce, Inc.42

Working with Widgets (Web UI Framework)

Use the Outline View (Extensibility Workbench) or the Tree View (Designer Workbench) to do the following
when you are working with widgets:

• Re-arrange widgets

Different rules apply to how you can re-arrange widgets. For example, you cannot move a button from a
standard panel to a standard grid. The Designer Workbench has built-in safeguards against the improper
re-arrangement of widgets. An error message appears if you try to move a button from a standard panel to a
standard grid. These safeguards help you organize your screen in the most functional way.

You can re-arrange widgets in the following ways:

• Change the order of widgets. For example, you can place a text field between two buttons.
• Move a widget from the main screen to a panel, or from one panel to another panel. For example, you can

move a button from a standard panel to a field set. Or you can move a column from a standard grid to an
editable grid.

• Move one standard panel onto another standard panel.

If a screen uses a special tab sequence, re-arranging widgets might affect your intended sequence of actions
when you tab from one widget to another.

• Delete widgets

You cannot delete a widget from the base/out-of-the-box screen. You can only delete widgets that were added
using the Extensibility Workbench. If you delete a widget that was used to work with data (like a text box
or combo box), you will have to find another way to work with that data.

• Select a widget so that you can view or change its properties in the Properties view. If you are unsure of what
widget is being shown in the Outline or Tree View, click the widget on the screen, and a horizontal blue line
will show the location of the widget in the view.

You can always use the canvas to select a widget, but it is not as precise as using the Outline View or Tree
View. On the canvas, it might take you several clicks to select the right widget.

For more information about widget properties, refer to the Ext JS framework documentation at
http://www.extjs.com.

Adding a Widget to a Screen with the Web UI Framework

1. Make sure the Palette tab is showing on the Extensibility Workbench or the Designer Workbench, and not
the Data or Files tab.

2. Click on a widget.

3. (Required only if a preset is required) Click the checkbox for the preset.

4. (Required only if a preset is required) Make any changes to the default properties of the widget by creating
a preset property.

5. Move your cursor to the screen and right-click or left-click to add the widget to the screen. A tooltip will
help confirm when you can add the widget.

43Sterling Commerce, Inc.

In the Designer Workbench, the widget appears in two places:

• On the canvas, in the most upper left hand location.

For example, if you add a button to a blank canvas, it appears in the upper left hand corner of the canvas.
If you add a second button, it appears directly beneath the first button.

• In the Tree View, in a hierarchical pattern under the screen object.

In the Extensibility Workbench, the widget appears in two places:

• On the screen, in the location where you clicked.
• In the Outline view, in a hierarchical pattern under the screen object.

Customizing Widgets in an Existing Installation (Web UI Framework)

1. Open an existing installation of the application.

2. Click Shift + space bar to bring up the Extensibility Workbench.

3. Select the widget that you want to modify. In the following example, the tooltip shows that you can select
the Delete button.

4. Make any changes to the widget, using the tools of the Extensibility Workbench. In the following example,
you can add a property to the Delete button using the Properties view.

Sterling Commerce, Inc.44

5. Save your changes.

Hiding Fields with the Web UI Framework

1. In the Designer Workbench or the Extensibility Workbench, add a panel to the screen.

2. Set the hidden property of the panel to true.

3. Add to the panel the field that you want to hide.

4. Save the screen.

Accessing the Working Files of the Web UI Framework

Access the working files in your project (*.json screen files) using the Files tab.

The Files tab includes the following tools:

• The Options button enables you to specify the project directory where you store the project files.
• The button with three dots near the top of the tab enables you to display the contents of a different directory.
• The Notify project checkbox near the bottom of the tab enables you to immediately update your main project

with changes that you make using the Designer Workbench.

45Sterling Commerce, Inc.

Viewing Screen Objects in the Outline or Tree View of the Web UI
Framework

Use the Outline view (Extensibility Workbench) or the Tree View (Designer Workbench) to collapse and
expand all or part of your list of screen objects. Collapsing and expanding the list does not affect the screen.

You can do the following:

• Collapse the list so that only the screen object appears.

If you collapse the list, and then click on the plus sign for the screen object, only the first level of widgets
appear. This gives you a more general view of the screen.

• Expand the list to show all of the widgets.

If you are unsure of what widget is being shown in the Outline or Tree View, click the widget on the screen,
and a horizontal blue line will show the location of the widget in the view.

Outline view (example for a Search button):

Sterling Commerce, Inc.46

Tree View (draft screen with panel, buttons, and field):

Configuring Properties for Screens, Widgets, and Other Items (Web UI
Framework)

Use the Properties view in the Designer Workbench to work with the properties of the canvas widgets. The
Properties view settings work in conjunction with the settings in the Configure Properties dialog box.

For more information about widget properties, refer to the Ext JS framework documentation at
http://www.extjs.com.

1. Select that widget in the Tree View.

2. Make sure that the tab for that widget is showing in the foreground of the Properties view, and not the tab
for the screen (which always shows in either the foreground or the background).

For example, if you select a trigger widget in the Tree View, tabs will show for both the screen and the
widget.

47Sterling Commerce, Inc.

3. To change the type or value of an existing property, click in the Type or Value field for that property, and
make your change.

For example, for a text field, you could change the Type from string to an expression (expr), and then
enter an expression in the Value field.

4. Add a property.

a) Use the down arrow by the Add button to select a new property. The dropdown list shows all of the
available properties for that widget that are not default properties.

b) Click the Add button.

The property appears with the other properties. The default type for that property appears in the Type
field.

c) If necessary, change the default type to an expression (expr).
d) Enter a value for the property.
e) Change the property name to a unique name.

Sterling Commerce, Inc.48

For example, for a button, you could add an enableToggle property, leave its type as boolean, and set its
value to true.

5. Continue working with the screen.

Wizards of the Web UI Framework

Wizards guide users through the steps of a task in a specific sequence. Wizards are required for complex or
infrequently performed tasks where the user is unfamiliar with the steps involved.

You must use an XML file to create the flow definition of your wizard. You cannot use widgets on the Palette
tab of the Designer Workbench to create wizards. Also, you cannot use the Extensibility Designer to customize
wizards. After you create a flow definition, you must register it.

Once a wizard is created, all client/server communication must be Ajax-based.

The wizard flow definition includes the following items:

• Page

The visible part of the wizard. Each page must have a unique ID within the wizard.

• Rule

Determines the flow of the wizard. A rule can lead to:

• The next page in the wizard flow.
• Another rule.

• Transition

A connector which connects the wizard flow together. A transition can happen from page-to-page, page-to-rule,
rule-to-page, or rule-to-rule.

• Flow controller

The flow controller drives the wizard flow, and does the following:

• Determines the next wizard entity that is shown or evaluated, based on the current activity entity.
• Provides basic navigation capabilities like showNextPage and showPreviousPage.
• Tracks data to be remembered in a session when a page transition occurs.

Any wizard controller has to extend ISCUIWizardFlowController. The default wizard controller class is
com.sterlingcommerce.ui.web.platform.wizard.SCUIDefaultWizardController.

The wizard flow controller utility class orchestrates the flow based on the definition. You can plug in your
own flow controller or use the default flow controller.

• Breadcrumbs

Multiple pages can be grouped into the same category, which allows for the logical grouping of pages and
the reduction of steps shown in the breadcrumb.

You can add your own breadcrumbs to the application using utilities provided on the front end. The
sc.plat.ui.Wizard class contains all the utilities.

49Sterling Commerce, Inc.

Creating a Wizard with the Web UI Framework

Do the following in the flow definition XML file:

1. Specify the following attributes in the wizardEntities tag:

• Page
• Rule
• Transition

2. Specify the flow controller attributes in the wizard tag.

If you leave it blank or undefined,
com.sterlingcommerce.ui.web.platform.wizard.SCUIDefaultWizardController will be used as a controller.

3. Specify the breadcrumbs attributes in the categories tag.

4. Specify the Web UI Framework front end of the wizard.

On the UI, a wizard should be extended from the sc.plat.ui.Wizard class. A Wizard is a container with
specific functionalities related to wizards. A Wizard can contain wizard pages (instances of
sc.plat.ui.WizardPage or sc.plat.ui.ExtensibleWizardPage). With its card layout. a Wizard can switch
between multiple wizard pages.

The sc.plat.ui.Wizard class extends the sc.plat.ui.Screen class, which adds data binding capabilities to it.

The doAction method, doBreadcrumbAction method, and other methods have been provided in the class
for navigation.

This class also fires various events which can be used to redraw a breadcrumb panel or a navigation panel.

For more information refer to the JavaScript documentation for these classes.

Wizard Page Attributes in the Web UI Framework

The following table shows the page attributes to specify in the wizardEntities tag of your XML file when you
create a wizard:

ConstraintsDescriptionAttribute

Should be unique within the
wizard.

The ID of the wizard page.id

MandatoryThe JSP/Struts action which renders the page.impl

MandatoryIndicates the type of entity (PAGE or RULE).type

Only one PAGE or RULE
should be marked as true.

Indicates if this page is the starting entity of the wizard.start

Only one PAGE or RULE
should be marked as true.

Indicates if this page is the last entity of the wizard.last

Indicates the category of this page. Used for breadcrumbs.category

The namespace for which data would be sent out of this
page. If a rule originates from this page, the namespaces

namespace/name

Sterling Commerce, Inc.50

ConstraintsDescriptionAttribute

should be a superset of the defined namespaces for that
rule. There can be many such namespaces.

Wizard Rule Attributes in the Web UI Framework

The following table shows the rule attributes to specify in the wizardEntities tag of your XML file when you
create a wizard:

ConstraintsDescriptionAttribute

Should be unique within the wizard.The ID of the wizard rule.id

The rule implementation:
impl

• Java class

Implements a predefined interface.

• greex

Returns a string output.

MandatoryIndicates the type of entity (PAGE or RULE).type

Only one PAGE or RULE should be marked as
true.

Indicates if this page is the starting entity of the
wizard.

start

Only one PAGE or RULE should be marked as
true.

Indicates if this page is the last entity of the
wizard.

last

The allowed output from the rule. There can be
many such outputs.

output/value

The namespace for which data would be sent
to the rule. If this rule originates from a page,

namespace/name

the namespaces should be a superset of the
defined namespaces for that page. There can
be many such namespaces.

Wizard Transition Attributes in the Web UI Framework

The following table shows the transition attributes to specify in the wizardTransition tag of your XML file
when you create a wizard:

ConstraintsDescriptionAttribute

Should be unique within the
wizard.

The ID of the transition.id

Value should be same as ID
of one of the defined PAGE
or RULE types.

The ID of the source entity from which this transition
originates.

source

51Sterling Commerce, Inc.

ConstraintsDescriptionAttribute

Value should be the same as
the ID of one of the defined
PAGE or RULE types.

The ID of the destination entity at which this transition ends.target

Required when the originator of this transition is a rule. The
target is chosen based on the output which the rule
calculates.

output

The output of the rule.output/value

Value should be same as ID
of one of the defined PAGE
or RULE types.

The ID of the destination entity.output/target

Wizard Flow Controller Attributes in the Web UI Framework

The following table shows the flow controller attributes to specify in the wizard tag of your XML file when
you create a wizard:

ConstraintsDescriptionAttribute

Should be unique within the webapp.The ID of the transition.id

If the attribute is empty or does not exist, the
controller provided by the framework will be
defaulted.

The fully qualified class name of the flow
controller.

flowController

Defaults to false.
Indicates if the wizard pages are independent
of each other (true or false).

independentPages

If this is set to false, when a previous page is
shown, all pages until the requested page are
discarded. Data for the discarded pages is lost.
However, you can set up an event that saves
the discarded pages.

A URL which handles the wizard’s save action.finishImpl

Wizard Breadcrumb Attributes in the Web UI Framework

The following table shows the breadcrumb attributes to specify in the categories tag of your XML file when
you create a wizard:

ConstraintsDescriptionAttribute

Should be unique within the flow.The ID of the category.category.id

MandatoryThe resource bundle key.category.description

OptionalThe css class that needs to be applied to the
breadcrumb.

category.style

Sterling Commerce, Inc.52

Sample XML Flow Definition for Wizards in the Web UI Framework

Each page of a wizard needs to specify namespaces it can allow as output from that page. If a rule is invoked
after a page, these namespaces should be a superset of the namespaces defined for that rule.

<wizard id="<application>.sampleWizrd"
flowController="com.sterlingcommerce.ui.web.platform.wizard.SCUIDefaultWizardController"
independentPages="false">
<wizardEntities>
 <wizardEntity id="Page0"
 impl="/<app_dir>/wizard/wizardpage1.jsp" last="false" start="true"
 type="PAGE" category="SampleWizard.category0">
 <namespace name="ns1">
 <namespace name="ns2">
 <namespace name="ns3">
 </wizardEntity>
</wizardEntities>
 <wizardTransitions>
 <wizardTransition id="NewTransitionId6" source="Page0" target="Rule"/>
 <wizardTransition id="NewTransitionId9" source="Page1" target="Page3"/>
 <wizardTransition id="NewTransitionId10" source="Page2" target="Page3"/>
 <wizardTransition id="NewTransitionId7" source="Rule">
 <output target="Page1" value="1"/>
 <output target="Page2" value="2"/>
 </wizardTransition>
 </wizardTransitions>
 <categories>
 <category id="SampleWizard.category0"
description="category0" style="simple"/>
 <category id="SampleWizard.category1"
description="category1" style="simple"/>
 <category id="SampleWizard.category2"
description="category2" style="simple"/>
 </categories>
</wizard>

Preset Properties (Web UI Framework)

You can configure the properties of a Web UI Framework widget so that it has preset properties whenever you
create a new instance of it. This feature overrides the default properties of the widget.

For more information about widget properties, refer to the Ext JS framework documentation at
http://www.extjs.com.

The Designer Workbench includes two types of presets:

• Out-of-the-box presets

These presets are shipped along with the Designer Workbench and are provided for a few widgets. They are
not editable.

53Sterling Commerce, Inc.

Although out-of-the-box presets are read-only, their contents can be copied, and used to create new editable
presets.

• Custom (user-defined) presets

You can define any number of custom presets for every widget, provided each one has a unique name. These
presets are stored in your project directory in the designer-metadata folder.

You can also work with presets in the Extensibility Workbench, but you have fewer options than you have
with the Designer Workbench.

With the Designer Workbench, you can work with presets in the canvas and in the following views:

• Palette
• Data
• Tree

In the Palette and Data views, the presets selected for a widget serve as the default preset until the browser is
refreshed or any other preset is selected from the list. Any widget dropped on the canvas is initialized with the
properties of the selected preset.

In the Tree View and on the canvas, selecting a preset for a widget results in the addition of the properties of
the preset to that widget. When applying a preset to a widget, no existing properties are deleted. Any new
properties from the preset are added to the widget. Preset properties that already exist in the widget are updated.

With the Extensibility Workbench, you can do the following with preset properties:

• Right-click on a widget in the Palette & Files View and select a preset to apply.
• Create new presets.

With the Extensibility Workbench, you cannot do the following with preset properties:

• Apply a preset to a control using the Outline View.
• Apply a preset to a control by right-clicking on the screen.

Creating Preset Properties (Web UI Framework)

1. Open the Designer Workbench.

2. In the Palette or Data Sources view, right-click any item and select the Configure Presets option.

The Configure Presets dialog box appears, with any preset properties for all of the widgets.

You can work with the presets of any customizable widget, and not just the widget that you right-clicked
in the Designer Workbench to display the Configure Presets dialog box.

Sterling Commerce, Inc.54

The Controls Tree view on the left side contains the widgets that have:

• Out-of-the-box properties that you cannot change, but which you can copy to make a new widget.
• Properties that can be customized with new presets.

When you work with new preset properties, you can save individual presets by clicking the Save button.
You can save all of the presets at once by clicking the OK button, which also closes the Configure Presets
dialog box.

3. To create brand new presets for a widget, do the following:

a) Right-click a widget in the Controls Tree view.
b) Choose the create new preset option.

A default name for the preset appears.

c) Select the new preset.
d) In the Preset Properties view, use the default name or type a new name for the preset in the Preset Name

field. Click the Save button to save a new name in the Controls Tree view.
e) To create a brand new property for a preset, type the name of the new property in the combo box adjacent

to the Add button, and click the Add button. A line for this property appears in the Preset Properties
view. In the Type field, you can make this new property a string value or an expression. In the Value
field, enter the string value or expression. Click the Save button to immediately save this new property,
or click the OK button to save all custom properties at the same time and also close the dialog box.

f) To create a property that is based on an existing property (like maxlength or labelStyle), select that
property from the combo box adjacent to the Add button, and click the Add button. A line for this

55Sterling Commerce, Inc.

property appears in the Preset Properties view. In the Type field, you can make this new property a value
of its default data type (number, boolean, etc.) or an expression. In the Value field, enter a value or
expression. Click the Save button to immediately save this new property, or click the OK button to save
unsaved presets and their properties at the same time and also close the dialog box.

4. To create a preset for a widget that is based on another preset of that widget, do the following:

a) Right-click a preset in the Controls Tree view.
b) Choose the create from selected option.

A copy of that preset is created.

c) In the Preset Properties view, type a new name for the new preset property in the Preset Name field.
Click the Save button to save the name in the Controls Tree view.

d) To create a preset property for a brand new property, type the name of the new property in the text box
with the down arrow, and click the Add button. A line for this property appears in the Preset Properties
view. In the Type field, you can make this new property a string value or an expression. In the Value
field, enter the string value or expression. Click the Save button to immediately save this new property,
or click the OK button to save all custom properties at the same time and also close the dialog box.

e) To create a property that is based on an existing property (like maxlength or labelStyle), select that
property from the combo box adjacent to the Add button, and click the Add button. A line for this
property appears in the Preset Properties view. In the Type field, you can make this new property a
value of its default data type (number, boolean, etc.) or an expression. In the Value field, enter a value
or expression. Click the Save button to immediately save this new property, or click the OK button to
save all custom properties at the same time and also close the dialog box.

5. When you are finished, and you have not closed the Configure Presets dialog box, do one of the following
to save preset changes.

A preset can contain a number of preset properties. A preset is a holder for all the properties that a user
enters. When you click the Save button, a preset is saved.

• Click the Close button. Only presets that you have saved using the Save button will be kept.
• Click the OK button. Any preset changes will be kept.

Applying Preset Properties with the Web UI Framework

1. Right-click on an existing or newly created widget on the canvas or in the Tree View.

The Apply Preset menu appears.

2. Move your mouse over the Apply Preset menu to display your preset options (you do not have to click). If
preset properties are configured for that widget, you will see the Default Properties option, an out-of-the-box
preset (if provided), and at least one preset option. If no preset option appears, you will need to create one.

3. To apply a preset option, select that option. To display the properties for that option in the Properties view,
re-click on that widget to refresh the Properties View with the new set of properties.

4. If you want to go back to the default properties for that widget, right-click the widget and select the Default
Properties option.

Sterling Commerce, Inc.56

Enabling a Child Screen to Access a Parent Screen with the Web UI
Framework

A screen can contain another screen within it. If the child screen requires access to the parent screen, you can
use a property in the child screen to access any component or property in the parent screen.

1. Click on the Palette tab in the Designer Workbench.

2. Right-click on the Custom Components option in the Others category.

3. Check the box by Parent Handle, which is an out-of-the-box preset provided with the Designer Workbench.

4. Move your cursor over the canvas until you see the tool tip Click to add customct in screen.

5. Right-click or left-click where you want to add this access handle.

6. Make any property adjustments to the handle. You cannot change the default property values of either
scOwnerScr (this) or xtype (panel) in the Configure Presets View. These default properties indicate a
handle from a child screen to a parent screen.

You can create other presets for this control.

Once you select this preset for a Custom Component and add the widget to the screen, you can view these
two properties in the Properties View below the Tree View. You can modify the property values or add
new properties, since you are now working on an instance of a Custom Component that was added to the
screen (and not on the preset) and that was initialized with your values.

Menu Customizations (Web UI Framework)

Menu customizations must be made using the Ext.menu.Menu class of the Ext JS JavaScript framework. The
Designer Workbench does not have a widget for creating menus.

In Web UI Framework, to show a menu in a screen, you have to get menu data from the server and render it
on the browser.

In the default implementation, the tag includeMenu is provided, which can be called from JSP as:

<scuiimpltag:includeMenu></scuiimpltag:includeMenu>

This returns all of the menus configured for the logged-in user for which the user has permissions.

This tag returns menu data as JSON data (which can have text), a URL, JavaScript, or an image.

{
 text: 'First Menu',
 subMenu: [{
 text: 'First SubMenu',
 url: '/<app_dir>/<app_dir>/editRule.do'
 js: 'openpopup()',
 img: 'my-cls-img'
}

57Sterling Commerce, Inc.

To render this data, the default implementation is provided as a JavaScript file. To use this file, include the
following code in the JSP:

<script type="text/javascript"
src="<%=request.getContextPath()%>/platform/scripts/menuPaint.js"></script>

Use the following guidelines for menu customization:

• To change the UI look and feel of the menu, has to use its own implementation instead of the application
menuPaint.js.

• To get menu data with more information, has to use its own implementation instead of the application using
includeMenu tag.

Creating Smart Tags with the Web UI Framework

Smart tags are used to recognize certain types of data. For example, when you hover your cursor over a
component which has a smart tag, a list of actions that can be performed are displayed. The following graphic
shows an example of a smart tag:

To use a smart tag with a component, do the following:

1. Register the smart tag actions for a component. Use the class sc.plat.SmartTagActionRegistry to add action
providers to the registry, using the following methods:

• registerActionProvider(obj, boolOverride)

Sterling Commerce, Inc.58

A valid action provider object must contain a getActions method that accepts a reference of the type
Ext.Component. It must also contain an “id” property that is the unique ID of this action provider object.
The getActions method must return an array of objects that can have the following properties:

• categoryid: The unique ID of the category object.
• sequenceid: Sequence number which helps in sorting.
• item: Config of Ext.menu.Item

The following is an example of an object that can be returned by the getActions method. This example
uses the default ID category (DEFAULT).

{
 categoryid: 'DEFAULT',
 sequenceid: 1
 item: {
 text: 'Show a Ext.Window',
 handler: function(){
 new Ext.Window({
 width: 600,
 height: 500
 }).show();
 }
 }
}

• registerActionType(name, id)

Registers the type with the action provider object corresponding to the ID passed. Before doing this, you
must first register an action provider object with that ID using the registerActionProvider method.

The default UI displays the actions returned. You can use the default UI or override it by registering your
own UI provider.

2. Set the scSmartTag property for that component to one of the following values:

• true

The default implementation of the application gets the attribute in the source binding data. Objects that
are registered with a key equal to the attribute in the source binding data are fetched.

• A value such as the attribute in sourceBinding or targetBinding.

Objects that are registered with a key equal to the scSmartTag property are fetched.

Debugging Tools (Web UI Framework)

• Console

This appears at the bottom of the screen after you log in to the application. It includes the following features:

• Debug Console tab

This shows the actions that you ran while tracing actions using the Start Trace button (for more information,
see next bullet).

59Sterling Commerce, Inc.

It also includes a panel for your test scripts. You can trap errors using these scripts.

• DOM Inspector

This shows the paths for files used on the screen (JavaScript, css, and other files).

• Start Trace button

When you click this button, all of the actions that you take are recorded until you click the Stop Trace button.
The button toggles between the Start Trace and Stop Trace labels. Your actions are recorded on the Debug
Console tab of the Console.

To display this button, click Ctrl + F2.

• View Screen Model button

Clicking this button displays the Screen Model dialog box, which shows the following information:

• Ext JS-based screen information.
• The namespaces that are bound to this screen.
• The data for these namespaces.

You can view this information in one of the following ways:

• Text View

Shows the data in the JSON format.

• Tree View

Shows property information about the object in a directory view.

To display this button, click Ctrl + F2.

For an example of this button, do the following:

1. Click Admin Page > Manage Airport
2. Click the Search button.

Search results appear.

3. Click Ctrl + F2.
4. Click the View Screen Model button.

The Screen Model dialog box appears.

Sterling Commerce, Inc.60

5. In the Screens panel, click down the tree through sc.[application].airport and Source Namespace and select
the getAirportList namespace.

6. In the Model panel, click on the Text View and the Tree View to see different views of the data for the
getAirportList namespace.

State Management in the Web UI Framework

The Web UI Framework provides a mechanism for state management, which enables the application to
remember a user interface state and apply it across user sessions. You can implement state management with
either the default implementation of the Web UI Framework or with a pluggable custom implementation. You
can also customize the default implementation of the Web UI Framework.

The default Web UI Framework implementation of state management has the following features:

• The state is saved and restored from the database, where the PLT_USER_UI_STATE table contains the state
information.

• The UI state is stored on a periodic basis. The time period is configurable.

Note: Saving the UI state on every change is performance-intensive.

• You can control the list of components whose state is stored/restored.
• State changes are remembered/cached. If there are no state changes, then the state is not saved.
• Utility methods are provided on both the client side and the server side to synchronously fetch the state. The

UI state is cached on the client side once it has been accessed, to avoid multiple round trips to the server.
• If a particular user is deleted, the state for that user is automatically deleted from the PLT_USER_UI_STATE

table.

61Sterling Commerce, Inc.

Implementing State Management with the Web UI Framework

When you install the application that uses the Web UI Framework, a default implementation of state management
is provided.

In the Ext JS JavaScript framework, Ext.state.Provider is the abstract base class for state provider
implementations. This class provides methods for encoding and decoding typed variables, including dates and
definitions of the Provider interface.

If you want to provide your own implementation of state management, the Ext.state.CookieProvider class has
an example of this implementation.

The state is saved periodically by posting the data to a servlet, which in turn delegates the task to a class that
is specified in the web.xml file. The UI framework defines an interface which the class in the web.xml file
needs to implement.

<context-param>
 <param-name>scui-uistate-provider</param-name>
 <param-value>
 com.sterlingcommerce.ui.web.platform.state.SCUIStateProvider
 </param-value>
</context-param>

The default state provider works along with the Ext library in the following manner:

• Local caching of component states, for faster retrieval on subsequent actions.

Note: This might not be useful for multiple page applications.

• Saves the available/changed state into the database on page unload. This assumes that the session timeout
has not occurred.

• The Ext library automatically calls the get state method for all components which are state-aware.
• The Ext library automatically calls the set state method whenever the state changes for a component.

By default, the state management implementation is not registered with the Ext JS library. The implementation
needs to be registered by the application. This provides flexibility if the application does not require the UI
state to be persisted.

Interface Contracts of the Web UI Framework - State Management (Client Side and
Server Side)

The state management task has interface contracts on both the client side (JavaScript) and the server side (Java).

For more information, refer to:

• The Ext JS framework documentation at http://www.extjs.com.
• The Java API documentation in your installation directory (<INSTALL_DIR>/xapidocs/core_javadocs).

MethodsDescriptionInterface Contract

Includes the following utility methods:Implements the Ext.state.Provider base
class for state provider
implementations.

SC.platform.state.StateProvider (client
side)

• Retrieves the state from the database,
given the ScreenName and the
ComponentName.

Sterling Commerce, Inc.62

MethodsDescriptionInterface Contract

Ext.state.Provider has the following
methods:

• Retrieves a list of all component states
from a database, given a
ScreenName.• get

Returns the current value for a key.
• Persists a state to a database, given

a ScreenName and a
ComponentName.• clear

Clears a value from the state. • Clears a state, given a ScreenName
and a ComponentName.

• set

Sets the value for a key.

An example of a custom implementation
of state management is in the
Ext.state.CookieProvider class.

Manages the saving and retrieving of
the UI state.

ISCUIStateProvider (server side) • getUIState(userId, componentId,
screenId, applicationId, uiContext)

Retrieves the state of the given
component.

Use one of the following methods to
implement this contract:

• getListOfUIStatesForScreen(userId,
screenId, applicationId, uiContext)

Retrieves the full list of state
information for all components
belonging to the specified screen.

• Make the following web.xml context
parameter entry:

<param-name>

scui-uistate-provider

</param-name>
• init(servletContext)

Performs initialization. Called only
once in the life cycle.

<param-value>

(Fully qualified class name of the
implementation)

</param-value> • saveUIState(uiState, uiContext)

Saves/persists the provided state
object.

• Call the setUIStateProvider utility
method of the SCUIStateHelper class.

• saveUIStatesList(uiStateList,
uiContext)

Saves/persists the provided list of
state objects.

Transaction Management in the Web UI Framework

The Web UI Framework provides tools for transaction management. This helps you decide how to start, end,
commit, and roll back transactions, which ensures data integrity.

You can implement transaction management with either the default implementation of the Web UI Framework
or with a pluggable custom implementation. You can customize the Web UI Framework implementation of
transaction management. All customizations involve changes to the web.xml file and to the transaction
management interface contract of the Base UI Framework.

63Sterling Commerce, Inc.

Transaction management is handled in the mashup layer of the Web UI Framework. The mashup layer also
handles authorization and connects the user interface of the application with the business logic (data layer).
More than one mashup can be defined within the mashup layer, and one mashup is one transaction. If one
mashup is nested within another mashup, the beginning and end of the parent mashup is one transaction.

Implementing Transaction Management with the Web UI Framework

You can implement transaction management in one of the following two ways:

• A custom implementation of transaction management that uses the interface classes of the Web UI Framework.

Applications need to register their implementation for the ISCUITransactionContextFactory class either as
a context parameter or by making a Java call to the method
SCUITransactionContextHelper.setTransactionContextFactory.

Registering can be done by either of the following methods:

• Calling the static setter method SCUITransactionContextHelper.setTransactionContextFactory
• Adding a context parameter scui-transaction-context-factory with the value as the implementation class

name. In this case, the helper class will instantiate the context factory.

<context-param>
 <param-name>scui-transaction-context-factory</param-name>
 <param-value>
 com.sterlingcommerce.app.TransactionContextFactory
 </param-value>
</context-param>

In both methods, the Web UI Framework will call the init method of the ISCUITransactionContextFactory
class just after registering it. Applications can use this method do some initializations for the factory.

Errors might occur if a factory class is not provided or if a class registered using the context parameter does
not implement the interface ISCUITransactionContextFactory. In either of these situations, if a transaction
context is requested, Web UI Framework will throw a SCUIException with the proper error message.

• The default implementation of the Web UI Framework. You can customize this implementation. Use the
following interface classes:

• YFSContext
• YCPUIAPIManager

The Web UI Framework provides the same transaction management functionalities as the previous version
of the application.

Interface Contracts of the Web UI Framework - Transaction Management

For more information, refer to the Java API documentation in your installation directory
(<INSTALL_DIR>/xapidocs/core_javadocs).

MethodsDescriptionInterface Contract

ISCUITransactionContext defines the
behavior expected in any implementation of
transaction context in an application.

ISCUITransactionContext • begin

Sterling Commerce, Inc.64

MethodsDescriptionInterface Contract

Called on the beginning of the current
transaction. Can be used to prepare
connections to data sources.

• commit

Commits all of the changes for the current
transaction. Called after the successful
execution of all of the tasks for the current
transaction.

• rollback

Called if any of the tasks for the current
transaction fails.You can roll back all of the
changes made during that transaction.

• end

Called when the current transaction ends.
You can use this method to close all of the
connections made to the data sources for
that transaction.

• addTransactionObject

Adds multiple connections to a transaction
context.

• removeTransactionObject

Removes connections to a transaction
context.

• getTransactionObject

Fetches an already-added transaction
object from the transaction context.

Defines the behavior expected in any
implementation of a Transaction Context
Factory in an application.

ISCUITransactionContextFactory • createTransactionContext

Creates a Transaction Context for a
transaction.You can either create a new
Transaction Context for fetch it from a
Transaction Context pool and return it.

• releaseTransactionContext

Called when a transaction finishes. This
method can either destroy a Transaction
Context or return it to the pool.

• init

Instantiates a class when the first call for a
Transaction Context is made. This method
is called once for a Transaction Factory
during instantiation.

• sessionDestroyed

65Sterling Commerce, Inc.

MethodsDescriptionInterface Contract

Called when a session is destroyed.You
can choose to perform an action based on
the session destroyed.

The ISCUITransactionContextFactory class
extends the ISCUISessionAware class,
which is a marker class that helps the
ISCUITransactionContextFactory class
register itself to the HttpSessionListener
implementation class.

Transaction management also includes the following helper class which an application needs for transaction
management-related tasks.

MethodsDescriptionClass Name

Acts as a controller for transaction
management.

SCUITransactionContextHelper • setTransactionContextFactory

Registers the transaction context factory of an
application.You can use this method to
initialize and register a factory during the start
of a web application.

For any transaction context request, the
SCUITransactionContextHelper class first looks
to see if a factory is set. If not, the class tries
to instantiate a factory using a context
parameter. If a parameter is not found, an error
is thrown. Once instantiated, the same instance
is used for further references unless another
context is set using the
setTransactionContextFactory method.

• getTransactionContextFactory

Returns the Current Transaction Context
Factory for an application. Returns null if no
Factory is set or loaded.

Sterling Commerce, Inc.66

Look and Feel (Web UI Framework)

UI Branding in the Web UI Framework

The Web UI Framework allows you to change the UI branding to your own brand name, including company
logos. You can also change the theme and other items. A sample application can be divided into the following
two parts:

• Themes
• Layout

Themes

All of the themes used in the Web UI Framework use CSS files that can be overridden by:

• Putting the overridden entries in a directory. A custom CSS file can be placed anywhere.
• Using the post authentication implementation (ISCUIPostAuthenticationProvider).

Layout

This is a sample layout that can be used as a starting point by an application. You can choose to design your
own custom layout but Sterling Commerce recommends that you follow this type of layout structure.

The screen layout can be divided into five different parts as shown below:

67Sterling Commerce, Inc.

A—Header
B—Menu
C—Page Header
D—Page or Screen
E—Footer

• Header—Consists of application name, company logo, static links, logged-in user's information, and a
background image.

Sample Header Layout with Spacing and Text Information:

• Menu—The Web UI Framework provides the capability to include menu in a screen. Users can call a JavaScript
function by passing the ID of the HTML element where the menu should be rendered. The menu entries are
fetched from getUserHeirarchy API for the logged-in user.

Sample Menu Layout with Spacing and Text Information:

Sterling Commerce, Inc.68

• Page Header—Consists of page title and one or more panels.

Sample Page Header Layout with Spacing and Text Information:

• Page or Screen—Consists of one or more panels.

Sample Page or Screen Layout with Spacing and Text Information:

69Sterling Commerce, Inc.

• Footer—Consists of static links and copyright information.

Sample Footer Layout with Spacing and Text Information:

Specifying a Home Page when Building Screens with the Web UI
Framework

During login, the authentication provider fetches the home page to be displayed in the following manner:

Sterling Commerce, Inc.70

1. It first looks for the home page entry in the forward URL which is fetched from the request parameter’s
scui-login-page-referrer attribute.

If the user is logging in for the first time, this attribute is set to null and the authentication provider looks
for the custom Home Page Provider class entry. Only if the user is logging again after browsing through
some pages, the authentication provider will first look for the home page to be displayed in the referral
URL. For example, after logging in, the user has browsed through some pages and then for checkout he is
again asked to re-enter the login information. Now, when the same user again tries to log in, the authentication
provider will first look for the page to be displayed in the referral URL.

2. If the forwarded URL is not defined, it looks for the custom Home Page Provider class context param
(scui-loginhomepage-provider) in the web.xml file.

If you have some custom logic on how to display the home page based on some validations, then you will
need to add this custom logic and validation in your Home Page Provider class. This class should implement
the ISCUIHomePageProvider interface. You will return the URI for home page in the
getHomePagePath(SCUIContext ctx) method.

Using this custom home page provider, you can specify multiple home pages.

You should add the context param entry for your custom Home Page Provider class in the web.xml file as
shown below:

<context-param>
 <param-name>scui-loginhomepage-provider</param-name>
 <param-value>com.sc.cp.MyHomePageProvider</param-value>
</context-param>

3. If the Home Page Provider class entry is not defined, it looks for the Default Home Page context param
(scui-loginhomepage-default) in the web.xml file.

If you do not have any custom logic or validations for displaying the home page, you can provide a default
home page to go to when the user is logged in. You should add a context param entry for the default home
page in the web.xml file as shown below. The <Web_Context_Root> variable is the context root of your
web application.

<context-param>
 <param-name>scui-loginhomepage-default</param-name>
 <param-value>/<Web_Context_Root>/home.do</param-value>
</context-param>

4. If the Default Home Page entry is not defined, it will go to the home.detail page.

Adding Keyboard Shortcuts with the Web UI Framework

The Web UI Framework allows to you add keyboard shortcuts on the UI components. For example, you can
add a keyboard shortcut like CTRL+ALT+s for the Search button in the Search panel.

Trigger keys are case insensitive. Pressing CTRl+ALT+S is the same as pressing CTRL+ALT+s.

To add a keyboard shortcut, you need to add the triggers config option when you are defining the config for
that particular Ext component. The triggers config parameter contains the following properties:

• triggerKey

71Sterling Commerce, Inc.

Sequence of keys that forms the shortcut key.

• triggerFn

Actions that need to be performed when shortcut key is pressed on that component. For example, use doSearch
when you want the shortcut key to trigger a search.

• triggerFnScope (Optional)

Defines the scope in which the trigger function should be called. By default, the scope is the current component
(this).

• triggerKeySeparator (Optional)

separator key to be used for separating the sequence if keys defined for the shortcut key. By default, “+” is
used as the separator key.

For example, if you want to enable the CTRL + ALT + S shortcut key for the Search button in the Search
panel. The config for the Search panel will look like this:

items: [{
 xtype: "panel",
 . . .
 . . .
 . . .
 },
 buttons: [{
 . . .
 . . .
 . . .
 handler: this.doSearch,
 scope: this
 }]
 triggers: [{
 triggerkey: "Ctrl + Alt + s",
 triggerFn: this.doSearch,
 triggerFnScope: this,
 triggerKeySeparator: "+"
 }]
 }]

The triggers config parameter can contain an array of objects. For example, in the above example, if you want
to define keyboard shortcut for the Reset button in the Search panel, the triggers config parameter will look
like this:

triggers: [{
 triggerkey: "Ctrl + Alt + s",
 triggerFn: this.doSearch,
 triggerFnScope: this,
 triggerKeySeparator: "+"
 },
 {
 triggerkey: "Ctrl + Alt + r",
 triggerFn: this.doReset,
 triggerFnScope: this,
 triggerKeySeparator: "+"
 }]

Sterling Commerce, Inc.72

Supporting Multiple Browsers with the Web UI Framework

All of the browsers that Ext JS JavaScript framework supports by default are supported in an application. You
can add or delete certain browsers from this list.

Ext JS supports the following web browsers:

• Internet Explorer 6+
• FireFox 1.5+
• Opera 9+
• Safari 3+

Indicating Mandatory UI Fields with the Web UI Framework

The Web UI Framework provides a CSS class which allows an application to indicate a field as mandatory in
the Web UI Framework screens. The mandatory fields in the UI will be indicated or marked using an asterisk
symbol (*).

To indicate a field as mandatory, use the sc-mandatory class on the label config. The sc-mandatory class is
defined in the platform.css file located at: INSTALL_DIR/repository/eardata/platform_uifwk/war/platform/css
directory.

Sample Ext JS config for a label:

{
 xtype: "label",
 sciId: "lblClosedOn",
 text: "Closed On",
 cls: "sc-mandatory"
}

Adding Support for Custom Themes with the Web UI Framework

The Web UI Framework allows you to define your own custom themes. For example, you can have different
themes based on organization. If the organization key (OrganizationKey) for user x is xyz, then you can define
a new CSS file for this user as xyz.css. If that theme file exists, and the user is authenticated, the theme file
will be loaded. If it does not exist, the application will look for xyz's primary organization (PrimaryOrganization)
and load that organization's CSS file.

You can also add or modify these custom themes based on custom logic in the post authentication
implementation.

For more information, refer to the Java API documentation for the ISCUIPostAuthenticationProvider interface
in your installation directory.

The following chart shows how the theme file is determined:

73Sterling Commerce, Inc.

To add support for custom theme files:

1. Set up your list of themes in an arrayList which will be added to the SCUITheme class. You can modify
this arrayList if you have access to the SCUIContext class. The arrayList is created from the custom CSS
file. For example:

private ArrayList customThemesList = new ArrayList();
public ArrayList getCustomThemesList() {

Sterling Commerce, Inc.74

 return customThemesList;
}
public void addCustomThemes(String customTheme) {
 customThemesList.add(customTheme);
}

Include a reference to your arrayList in an implementation of the ISCUIPostAuthenticationProvider interface.
All of the custom themes can be added using the addCustomThemes method. For example:

public class SCUIPostAuthenticationProviderImpl implements
 ISCUIPostAuthenticationProvider {
 public SCUISecurityResponse postAuthenticate(SCUIContext uiContext) {
 ArrayList
list = uiContext.getUserPreferences().getTheme().addCustomThemes(<CUSTOM_THEME>);

 return new SCUISecurityResponse();
 }
}

The custom CSS file name, along with the full path of the file, should be passed as the argument to the
addCustomThemes method.

2. Implement the interface and the array list as a third party jar file to the application, using the install3rdparty.sh
script.

3. Define the CSS by either creating a new CSS or by overriding the existing CSS.

75Sterling Commerce, Inc.

Security (Web UI Framework)

Web UI Framework Security - Authentication

Authentication identifies users who have access to the application. It is the first step in the login process. It
occurs before you are authorized for resources in the application. Use the Applications Manager to specify
user IDs and passwords.

All requests are authenticated unless the URI (universal resource indicator) is in the bypass list. This is sometimes
done for graphic files, cascading style sheets (css), and other items that support information that is already
protected by authentication.

With the Web UI Framework, you have the following options for implementing authentication:

• The default implementation, which includes support for single sign on (SSO).

If you are currently using the default implementation of authentication, and want to continue using that
implementation, you must use this option. The default implementation supports all existing authentication
features.

• A custom implementation where you plug in your own authentication implementation and do not use the
default implementation. A customized implementation can have additional authentication processes, such as
single sign on (SSO). You also can customize the post authentication mechanism.

You must use either the default authentication implementation or a customized authentication implementation,
but if you do not use the default post authentication implementation, you are not required to provide a
customized post authentication implementation.

• A custom implementation where you customize the default implementation.

With all options, the implementation is plugged into interface contracts, which have definitions of the behavior
expected with any authentication mechanism that can plug in to it. This ensures a consistent mechanism for
authentication, no matter how you are implementing it (custom or default). The interface contracts also have
definitions of the behavior expected with any post-authentication mechanism, which is called if the authentication
mechanism succeeds.

Authentication can be invoked in different ways:

• LDAP
• Database table

Sterling Commerce, Inc.76

The following picture shows the flow of authentication:

Web UI Framework Security - Implementing Authentication

When you implement authentication, you must first decide if you want to customize or use the default
implementation of authentication provided by the application. You have the following options:

77Sterling Commerce, Inc.

• The default implementation.

To use this implementation, just install the application.

• A customized implementation where you plug in your own authentication implementation and do not use
the default implementation.

• A customized implementation where you customize the default implementation.

Customizing Authentication

The custom authentication mechanism for the application consists of the AuthenticationProvider class that
implements the ISCUIAuthenticationProvider interface. AuthenticationProvider is plugged in using the context
parameter in web.xml as shown in the following example:

<context-param>
 <param-name>scui-authentication-provider</param-name>
 <param-value>com.app.MyAppAuthenticationProvider</param-value>
 </context-param>

The following shows an example of a custom AuthenticationProvider that uses the provider specified in the
web.xml example:

public class MyAppAuthenticationProvider
implements ISCUIAuthenticationProvider
 {
 public SCUISecurityResponse authenticate(SCUIContext uiContext)
 {
 //authenticate the user
 //set the SCUISecurityContext in uiContext
 //set the SCUIUserPreferences in uiContext

 }

 public void init()
 {
 //initialize the authentication mechanism.
 ...
 }

 public void sessionDestroyed(HttpSessionEvent sessionEvent)
 {
 //close the connection and release it back into the pool
 ...
 }
 }

Interface Contracts of the Web UI Framework - Authentication

For more information, refer to the Java API documentation in your installation directory
(<INSTALL_DIR>/xapidocs/core_javadocs).

Sterling Commerce, Inc.78

MethodsDescriptionInterface Contract

Defines the behavior expected in any
implementation of authentication in an
application.

ISCUIAuthenticationProvider • authenticate

Takes in the SCUIContext. The expected
response is in the form of the

AuthenticationProvider is plugged in to an
application using the context parameter in
web.xml:

SCUISecurityResponse object that
encapsulates the return status, the URL of
the page, exception, and error message.

The AuthenticationProvider class needs to
set SCUISecurityContext and

• <param-name>

scui-authentication-provider
SCUIUserPreferences in SCUIContext if
the user is authenticated.• <param-value>

com.app.MyAppAuthenticationProvider • init

Handles initialization, like loading the
security information or caching it. This

The ISCUIAuthenticationProvider class
extends the ISCUISessionAware class, which

method is called once, when
AuthenticationProvider is first set.

is a marker class that helps the
ISCUIAuthenticationProvider class register
itself to the HttpSessionListener
implementation class.

• sessionDestroyed

Closes all opened session-specific handles.

Interface Contracts of the Web UI Framework - Post Authentication

For more information, refer to the Java API documentation in your installation directory
(<INSTALL_DIR>/xapidocs/core_javadocs).

MethodsDescriptionInterface Contract

Defines the behavior expected in any
implementation of authentication in an
application.

ISCUIPostAuthenticationProvider • postAuthenticate

Takes in the SCUIContext. The expected
response (after post authentication) is an

AuthenticationProvider is plugged in to an
application using the context parameter in
the web.xml file:

SCUISecurityResponse object that
encapsulates the return status, the URL of
the page, exception, and error message.

• <param-name>

scui-post-authentication-provider

• init

Handles initialization, like loading the
security information or caching it. This• <param-value>

com.app.MyAppPostAuthenticationProvider
method is called once, when
PostAuthenticationProvider is first set.

Multiple PostAuthenticationProviders can be
set using the web.xml file. No order is

• sessionDestroyed

Closes all opened session-specific handles.maintained but if one PostAuthentication

The ISCUIAuthenticationProvider class
extends the ISCUISessionAware class,

fails, the request is redirected to the URL in
the forwarded page with the error.

which is a marker class that helps theMultiple PostAuthenticationProviders are set
using the web.xml param-name
scui-post-authentication-provider.

ISCUIAuthenticationProvider class register
itself to the HttpSessionListener
implementation class.

79Sterling Commerce, Inc.

MethodsDescriptionInterface Contract

When a session is invalidated or destroyed,
the sessionDestroyedmethod is called by
the listener to close the handles opened
during initialization.

Web UI Framework Security - Bypassing Authentication for a URI

You can set up the application to bypass authentication for URIs (universal resource indicators) that point to
graphic files, cascading style sheets (css), and other items that support information that is already protected
by authentication.

1. Open the web.xml file.

2. Add one or more parameters to the <context-param> tag:

• bypass.uri.endswith

Allows any URI ending with the specified text to be bypassed. You can use this parameter with js, css,
and gif files.

In the following example, any URI that ends with “.gif” would be bypassed:

<context-param>
 <param-name>bypass.uri.endswith.<application>.3</param-name>
 <param-value>.gif</param-value>
</context-param>

• bypass.uri.regex

Allows any URI that includes the specified wild card characters to be bypassed.

In the following example, any URI that includes “<app_dir>”, “/”, and at least one uppercase letter would
be bypassed:

<context-param>
 <param-name>bypass.uri.regex.<application>.1</param-name>
 <param-value>.*<app_dir>/[A-Z]+.*</param-value>
</context-param>

Web UI Framework Security - Authorization

Authorization enables you to grant permissions to a user for different resources. It occurs after you are
authenticated in an application.

With the Web UI Framework, you have the following options for implementing authorization:

• The default implementation.

If you are currently using the default implementation of authorization, and want to continue using that
implementation, you must use this option. The default implementation supports all existing authorization
features.

Sterling Commerce, Inc.80

• A customized implementation without the default implementation.
• A customized implementation of the default implementation.

With all options, the implementation is plugged into interface contracts, which have definitions of the behavior
expected with any authorization mechanism that can plug into it. This ensures a consistent mechanism for
authorization, no matter how you are implementing it (custom or default).

If you do not use the Web UI Framework default implementation of authorization, and no custom implementation
is provided, by default the user will have access to all resources.

Authorization uses a resource ID to see if a user has permission to use a resource. Resource IDs control access
to the Extensibility Workbench and Designer Workbench.

Authorization can be invoked in different ways:

• LDAP
• Database table
• A resource ID in the metadata of a mashup

To use a mashup, you must define a resource ID for the mashup to control the access of the mashup and give
it to the mashup.xml.

Web UI Framework Security - Implementing Authorization

When you implement authorization, you must first decide if you want to customize or use the default
implementation of authorization provided by the application. You have the following options:

• The default implementation.

To use this implementation, just install the application.

• A customized implementation without the default implementation.
• A customized implementation of the default implementation.

Sterling Commerce recommends that permissions for users be cached.

Customizing Authorization

The custom authorization mechanism for the application consists of the AuthorizationProvider class that
implements the ISCUIAuthorizationProvider interface and ResourcePermission that implements the
ISCUIResourcePermission interface. ResourcePermission is returned by the AuthorizationProvider class after
the authorization. AuthorizationProvider is plugged in using the context parameter in web.xml as shown in
the following example:

<context-param>
 <param-name>scui-authorization-provider</param-name>
 <param-value>com.app.MyAppAuthorizationProvider</param-value>
</context-param>

The following shows an example of a custom AuthorizationProvider that uses the provider specified in the
web.xml example:

public class MyAppAuthorizationProvider implements
ISCUIAuthorizationProvider
{

 public boolean hasPermission(SCUIContext uiContext, String resourceId)

81Sterling Commerce, Inc.

 {
 ISCUIResourcePermission getPermission(uiContext, resourceId);

 }
 public ISCUIResourcePermission getPermission(SCUIContext uiContext,
String resourceId)
 {
 //authorize the user from the SCUISecurityContext
 ...
 }
 public void init()
 {
 // initialize the authorization mechanism.
 ...
 }
 public void sessionDestroyed(HttpSessionEvent sessionEvent)
 {
 //close the connection and release it back into the pool ...
 }
}

Interface Contracts of the Web UI Framework - Authorization

For more information, refer to the Java API documentation in your installation directory
(<INSTALL_DIR>/xapidocs/core_javadocs).

MethodsDescriptionInterface Contract

Defines the behavior expected in any
implementation of authorization in an
application.

ISCUIAuthorizationProvider • hasPermission

Takes in SCUIContext and resourceId.
Returns true if the user in the

ISCUIAuthorizationProvider is plugged in to
an application using the context parameter
in web.xml:

SecurityContext has any permission to the
resource given by the resourceId.
Otherwise, it returns false.

• getPermission

Takes in SCUIContext and resourceId.
Returns an implementation of

• <param-name>

scui-authorization-provider

• <param-value>

com.app.MyAppAuthorizationProvider
ISCUIResourcePermission that contains
the permission for the given resourceId.

• init

Handles initialization, like loading the
security information or caching it. This
method is called once, when
ISCUIAuthorizationProvider is first set.

• sessionDestroyed

Closes all opened session-specific handles.

The ISCUIAuthorizationProvider class
extends the ISCUISessionAware class,
which is a marker class that helps the

Sterling Commerce, Inc.82

MethodsDescriptionInterface Contract

ISCUIAuthorizationProvider class register
itself to the HttpSessionListener
implementation class.

When a session is invalidated or destroyed,
the sessionDestroyedmethod is called by
the listener to close the handles opened
during initialization.

Defines the behavior expected in any
implementation of authorization for a given
resource ID in an application.

ISCUIResourcePermission • canRead

Returns true if the user has permission to
read for a given ResourceId. Otherwise, it
returns false.ISCUIResourcePermission is returned by

ISCUIAuthorizationProvider after the
authorization.

• canEdit

Returns true if the user has permission to
edit for a given ResourceId. Otherwise, it
returns false.

• canExecute

Returns true if the user has permission to
execute for a given ResourceId. Otherwise,
it returns false.

This could be the permission control that is
used for executing the mashup class.

Web UI Framework Security - Adding Login Pages

The Web UI Framework enables you to set up more than one login page. Login pages can be used for different
organizations or other groupings of users. You also can set up a customized implementation of multiple login
pages.

1. Install the application with the Web UI Framework.

2. Decide how you want to implement multiple login pages, using one of the following ways:

• The default implementation provided in the Web UI Framework.

If no customized login page provider is given, the default implementation reads the following web.xml
file <context-param> parameters:

<param-name>scui-login-page</param-name>
<param-value>/myapp/console/login.jsp</param-value>

• A customized implementation that is plugged into the Web UI Framework.

3. For a customized implementation, specify your custom login page provider in web.xml using the
scui-login-page-provider parameter.

83Sterling Commerce, Inc.

Example:

<context-param>
 <param-name>scui-login-page-provider</param-name>
 <param-value>com.app.MyLoginPageProvider</param-value>
</context-param>

This provider will be accessed by the getLoginPage() method of ISCUILoginPageProvider. The custom
implementation must use the interface contract defined in the ISCUILoginPageProvider class.

To implement the customized Java code, build a jar file that contains the Java class, and then install the jar
file using the install3rdparty.sh script. To implement this customization, rebuild the EAR or WAR file as
you did during the installation, and then deploy the application on the application server.

Web UI Framework Security - Supporting Multiple Guest Users

With the Web UI Framework, your authentication process can include the authentication of one or more guest
users for a particular URL of the application. If the application is not configured for multiple guest users, the
default implementation allows only one guest user (if it is set up). If the application is not configured for
multiple guest users or for the default implementation of only one guest user, the guest can be specified using
web.xml parameters:

<context-param>
 <param-name>scui-guest-user</param-name>
 <param-value>myAppGuest</param-value>
</context-param>

To support multiple guest users, you must use the default implementation of the Web UI Framework. You can
customize this default implementation.

1. Install the application with the default implementation of the Web UI Framework.

2. Specify your custom guest user provider in web.xml using the scui-guest-user-provider parameter.

Example:

<context-param>
 <param-name>scui-guest-user-provider</param-name>
 <param-value>com.app.MyGuestUserProvider</param-value>
</context-param>

This provider will be accessed by the getGuestUser() method of ISCUIGuestUserProvider. For all guest
users, the password is the same as the user name. The custom implementation must use the interface contract
defined in ISCUIGuestUserProvider.

To implement the customized Java code, build a jar file that contains the Java class, and then install the jar
file using the install3rdparty.sh script. To implement this customization, rebuild the EAR or WAR file as
you did during the installation, and then deploy the application on the application server.

Sterling Commerce, Inc.84

Web UI Framework Security - Adding Request Validators

The Web UI Framework allows you to set up more than one validation for a request. This validation process
requires additional authentication of a user after that user has initially logged in. It allows that user to continue
a login session.

For more information, refer to the Java API documentation in your installation directory
(<INSTALL_DIR>/xapidocs/core_javadocs).

1. Install the application with the default implementation of the Web UI Framework.

2. Create your implementation of multiple validations, which you will plug into the Web UI Framework. The
Web UI Framework does not have a default implementation of multiple validations. If no implementation
is provided, the request is not further validated after the initial authentication.

The request validations are done for every request, so you need to optimize this feature based on your needs.
The implementation of request validators must use the contract defined in ISCUIRequestValidator.

3. The SCUISecurityResponse class is returned by the request validator’s validate method. If the validation
fails, the request is redirected to the URL specified in the SCUISecurityResponse class. Also, include
settings for the return status, exception, and error message. This information is used by the validate method
of the ISCUIRequestValidator in the Web UI Framework.

The ISCUIRequestValidator interface defines what the Web UI Framework expects in any request validation
implementation. This interface uses the following methods:

• validate

Takes in SCUIContext. The response is an SCUISecurityResponse object that encapsulates the return
status, the URL of the page, exception, and error message. This method executes the business logic needed
by the application.

• init

Handles initialization.

• sessionDestroyed

Closes all opened session-specific handles. The ISCUIValidator extends the ISCUISessionAware interface,
a marker interface that will facilitate ISCUIValidator to register itself to the HttpSessionListener
implementation class. When the session is invalidated or destroyed, the sessionDestroyed method is called
by the listener to close the session-specific handles opened during initialization.

The following shows an example of an ISCUIRequestValidator interface:

public interface ISCUIRequestValidator extends ISCUISessionAware
{
 public SCUISecurityResponse validate(SCUIContext uiContext);
 public void init();
 public void sessionDestroyed();
}

The request validation consists of one or more instances of RequestValidator that implements the
ISCUIRequestValidator interface class. Multiple request validators can be set, but their order is not

85Sterling Commerce, Inc.

guaranteed. RequestValidator is plugged in using the context parameter in web.xml as shown in the following
example:

<context-param>
 <param-name>scui-request-validator1</param-name>
 <param-value>com.app.MyURLValidator</param-value>
</context-param>
<context-param>
 <param-name>scui-request-validator2</param-name>
 <param-value>com.app.MyAdminValidator</param-value>
</context-param>

All of the validation implementation or validators given in the context parameter in web.xml are called (in
no particular order) for supporting additional validation.

4. To implement the customized Java code, build a jar file that contains the Java class, and then install the jar
file using the install3rdparty.sh script. To implement this customization, rebuild the EAR or WAR file as
you did during the installation, and then deploy the application on the application server.

Web UI Framework Security - Cross-Site Request Forgery

The Web UI Framework provides protection for the application against cross-site request forgery (CSRF),
which maliciously exploits a web site where unauthorized commands are transmitted from a user that the web
site trusts. CSRF (also called XSRF) is different from cross-site scripting (CSS or XSS), which exploits the
trust a user has for a particular site. CSRF is also known as one-click attack, sidejacking, or session riding.

CSRF works by including a link or script in a page that accesses a site to which the user is known (or is
supposed) to have authenticated. For example, User A might be browsing a forum where User B has posted a
message. With CSRF, User B might create the following HTML image element that, instead of being an image
file, references a script on the web site of User A’s bank and requests a withdrawal of $1,000,000:

If User A’s bank keeps their authentication information in a cookie, and if the cookie hasn’t expired, then the
attempt by User A’s browser to load the image will submit the withdrawal form with the authentication cookie,
and authorize a transaction without User A’s approval.

In this scenario, the problem can be summed up in the following three points:

• Because of the browser’s policy, the authentication cookies are sent to the bank server even though the request
originated from a different web site.

• User A’s bank stores authentication information in a cookie and completely relies on the cookies for
authentication purposes.

• User A’s bank does not differentiate between GET and POST requests.

The CSRF protection in the Web UI Framework does not apply to the first point, since it is a browser policy.
But it does apply to the second and third points by using both a cookie and an additional token for authentication.
CSRF attacks are usually prevented by always checking for a unique token in each request that hits the server.
In the Web UI Framework, the token is used in the following manner:

1. When login finishes, a newly created token is set for the session (for validation purposes). This token is
available on the client side of the application.

2. The token is used in the following ways:

Sterling Commerce, Inc.86

This token is used for all AJAX requests and within the Web UI Framework utilities.•
• When a POST or GET request is made to the server, the application automatically validates that the CSRF

token is available in the request.

Web UI Framework Security - Protecting Against CSRF Attacks

1. Open the web.xml file.

2. To validate the token that is used to protect against CSRF attacks, create a request validator that will be
registered in the application (if the validator is not already present in the web.xml file).

Example:

<context-param>
 <param-name>scui-request-validator-10</param-name>
 <param-value>
com.sterlingcommerce.ui.web.platform.security.SCUICSRFTokenValidator
 </param-value>
</context-param>

3. Set up the modes in which the validator can operate:

• ALL (default) - Both POST and GET requests will be validated for the CSRF token.
• POST - Only POST requests will be validated for the CSRF token.
• NONE - The validator will not validate any request for the CSRF token.

You can specify the validator mode in the context parameter of either the config.xml file or the web.xml
file (if the validator mode is not already present in the web.xml file).

The mode defaults to ALL if the mode is not specified or if a context parameter is not specified for the
validate mode.

Example:

<context-param>
 <param-name>scui-csrf-validator-request-method</param-name>
 <param-value>ALL</param-value>
</context-param>

4. If necessary, set up URI inclusion and exclusion lists for the validator, using the following guidelines:

• If a URI is on the exclusion list, it will not be validated for the CSRF token.
• If a URI (universal resource indicator) is on the inclusion list, and not on the exclusion list, it will be

validated for the CSRF token.
• If a URI is not on the exclusion list and is in the inclusion list, it will be validated for the CSRF token.

Use the following context parameters in the web.xml file to create inclusion and exclusion lists. Any number
of parameters can be provided.

• csrf-include-uri

Any request with a URI that is the same as the value is validated for the CSRF token.

87Sterling Commerce, Inc.

Example (for web.xml):

<context-param>
 <param-name>csrf.include.uri.endswith.stk.1</param-name>
 <param-value>.do</param-value>
</context-param>

• csrf-include-uri-endswith

Any request with a URI that ends with the value is validated for the CSRF token.

Example (for web.xml):

<context-param>
 <param-name>csrf.include.uri.endswith.stk.2</param-name>
 <param-value>.xml</param-value>
</context-param>

• csrf-include-uri-regex

Any request with a URI that matches the regex (provided as a value for the parameter) is validated for
the CSRF token.

Example (for web.xml):

<context-param>
 <param-name>csrf.include.uri.stk.1</param-name>
 <param-value>/stk/home.jsp</param-value>
</context-param>

• csrf-bypass-uri

Any request with a URI that matches the value is bypassed and not checked for the CSRF token.

Example (for web.xml):

<context-param>
 <param-name>csrf.bypass.uri.stk.1</param-name>
 <param-value>/console/login.jsp</param-value>
</context-param>

• csrf-bypass-uri-endswith

Any request with a URI that ends with the value is bypassed

Example (for web.xml):

<context-param>
 <param-name>csrf.bypass.uri.endswith.stk.1</param-name>
 <param-value>.js</param-value>
</context-param>

• csrf-bypass-uri-regex

Any request with a URI that matches the regex (provided as a value for the parameter) is not checked for
the CSRF token.

Example (for web.xml):

<context-param>
 <param-name>csrf.bypass.uri.regex.stk.1</param-name>

Sterling Commerce, Inc.88

 <param-value>[a-zA-Z0-0]*servlet/param-value>
</context-param>

By default, all URIs are in the inclusion list, even if a csrf-include parameter is not provided. You must
explicitly specify that a URI is in the exclusion list. If no inclusion list is provided, by default all URIs are
considered to be in the inclusion list. Specific URIs can be added to an inclusion list by the application to
avoid all URIs being validated for the CSRF token.

By default, the framework provides an exclusion list to bypass CSRF validation for requests for gif, png,
css, or js-type files.

5. Most CSRF attacks work just by replicating POST requests into its GET equivalent. Because most
applications do not differentiate between POST and GET requests, the attacks usually work. To differentiate
between GET and POST requests, in your Struts action definitions, set up the modes in which the validator
can operate, using the requestMethodSupported parameter of the action:

• POST - (default) Only POST requests are allowed.

If requestMethodSupported is not set or is an unknown value, then it defaults to POST.

• ALL - Both GET and POST requests are allowed.

Example:

<action name="accountTransfer" class="com.AccountTransfer">
 <param name="requestMethodSupported">POST</param>
 <param name="resourceId">AccountTransfer_Action002</param>
</action>

89Sterling Commerce, Inc.

Data Handling (Web UI Framework)

Data Type Handling in the Web UI Framework

A consistent method of data type handling is required to validate input boxes on the UI, for defining their entity
XML files, and for other tasks. A data type is a data attribute that helps you set constraints on the data, such
as acceptable values and what operations may be performed on that data.

The data type is required on the client side of the application for:

• UI field validation (length, size, etc.)

When you add fields to the screen using the Extensibility Designer, the data types of the new fields help
determine the display of the screen.

• UI component display (size, etc.)

Validation can be set up for user events like clicking a button or changing the cursor focus.

With the Web UI Framework, you have the following options for data type handling:

• The default implementation, which lets you continue using the data type handling implementation of the
Console JSP, Swing, or RCP UI implementations. Those implementations use the following data type definition
files:

• datatypes.xml (located at <INSTALL_DIR>/repository/datatypes)
• yfsdatatypemap.xml (located at <INSTALL_DIR>/repository/xapi/template/merged/resource)

You can customize this default implementation.

• Register the customized implementation of data handling. You can use the web.xml file for this registration.

The following shows the out-of-the box configuration of the data type-related parameters in the web.xml
file. To customize data type handling, you must replace the <param-value> entry with the classpath to the
custom Java class, based on its location and package name.

<context-param>
 <param-name>scui-datatype-provider</param-name>
 <param-value>
 com.sterlingcommerce.ui.web.platform.dataType.SCUIDataTypeProvider
 </param-value>
</context-param>

Sterling Commerce, Inc.90

You can also register the customized implementation by making a Java call to the method
SCUIDataTypeHelper.setDataTypeProvider.

The following shows an example of a package for a customized implementation:

package com.sterlingcommerce.ui.dataType;
import java.util.Map;
public interface ISCUIDataTypeProvider{
 public Map getDataTypes();
 public SCUIDataType getDataType(StringdataTypeName);
 public SCUIValidationResponse validate(StringdataTypeName, Stringvalue);

 publicbooleanisValid(StringdataTypeName,Stringvalue);
 publicvoidinit();

For more information about these packages, refer to the documentation on the interface contracts for data
type handling.

The following shows the guidelines for creating a data type using the SCUIDataType class that is used in the
above package:

package com.sterlingcommerce.ui.dataType;
public class SCUIDataType {

 /** Holds value of property name. */
 private String name;
 /** Holds value of property type. */
 private String type;
 /** Holds value of property size. */
 private Integer size;
 /** Holds value of property decimalDigits. */
 private Integer decimalDigits;
 /** Holds value of property negativeAllowed. */
 private Boolean negativeAllowed;

 public void setName(String name) {
 this.name = name;
 }
 public void setType(String type){
 this.type = type;
 }
 public void setSize(int size){
 this.size = new Integer(size);
 }
 public void setDecimalDigits(int decimalDigits) {
 this.decimalDigits = new Integer(decimalDigits);
 }
 public void setNegativeAllowed(boolean negativeAllowed){
 this.negativeAllowed = new Boolean(negativeAllowed);
 }

 public String getType(){
 return this.type;

91Sterling Commerce, Inc.

 }

 public boolean isNumeric() {
 return ("NUMBER".equalsIgnoreCase(getType()));
 }

}

To implement the customized Java code, build a jar file that contains the Java class, and then install the jar
file using the install3rdparty.sh script.

To implement this customization, rebuild the EAR or WAR file as you did during the installation, and then
deploy the application on the application server.

Interface Contracts of the Web UI Framework - Data Type Handling

For more information, refer to the Java API documentation in your installation directory
(<INSTALL_DIR>/xapidocs/core_javadocs).

MethodsDescriptionInterface Contract

Implements the ISCUIDataProvider interface,
which defines the behavior expected in any

DataTypeProvider • getDataTypes

Returns a map of data types through the
merged map of DataType.xml and
DataTypeMap.xml.

implementation of data type handling in an
application.

DataTypeProvider is plugged in to an
application using the context parameter in
web.xml:

• getDataType(String dataType)

Takes the name of the data type and
returns the data type object.

• <param-name>

scui-datatype-provider
• validate(String dataTypeName, String

value)

Validates the value passed against the data
type and returns the
SCUIvalidationReponse.

• <param-value>

com.application.ApplicationDataTypeProvider

• isValid(String dataTypeName, String value)

Validates the value passed and returns true
or false based on the success of the
validation.

• init

Handles initialization.

Assigning Data Types to a Grid Column with the Web UI Framework

You can use the Ext JS JavaScript framework to control the data type of a grid column, instead of using the
Properties view of the Designer Workbench. You can program a column data type to depend on the data type
of data in corresponding columns of the grid. The data type can be used to determine the column’s alignment
and sorting behavior.

Sterling Commerce, Inc.92

To define a data type for a grid column, use one of the following config options for the column definition.
Work through the order of the list when deciding which config option to use.

1. scuiDataType

The data type name. If this option is present, the other two config options (bindingData.sFieldConfig.mapping
and bindingData.tAttrBinding) are not used.

2. bindingData.sFieldConfig.mapping

The source binding for the column. An attempt will be made by the application to determine the value of
the config. If no data type is found for that value, bindingData.tAttrBinding is used to determine the data
type.

3. bindingData.tAttrBinding

The target binding for the grid column. An attempt will be made by the application to determine the data
type for the value of the config.

Once the data type is determined, the following column properties will be defaulted, based on the data type:

• Alignment

Numbers are right-justified, and dates are middle-justified.

• The type for the store field. The sorting of grid columns is based on the type attribute of the store field config.

The following list shows the default data types for different data types. For example, if you encounter a
number with no decimal digits, it will be stored in the store field as an integer (int).

• NUMBER (with no decimal digits) - int
• NUMBER (with decimal digits) - float
• DATE - date
• TIME - date
• DATETIME - date

• renderer

A renderer is a JavaScript function that can be used to change the text and the look and feel of the application.

• DATE - sc.plat.DateFormatter.getDefaultRenderer('DATE')

This JavaScript API returns the renderer which would display the date in the format specified for that user.

• TIME - sc.plat.DateFormatter.getDefaultRenderer('TIME')

This JavaScript API returns the renderer which would display the time in the format specified for that user.

• DATETIME - sc.plat.DateFormatter.getDefaultRenderer('DATETIME')

This JavaScript API returns the renderer which would display the timestamp in the format specified for that
user.

Supporting Item Quantity Decimal Handling in the Web UI Framework

You can use the Web UI Framework to specify decimal numbers for item quantities. The
yfs.install.displaydoublequantity property of yfs.properties indicates whether to support fractional quantities
for attributes which belong to the QUANTITY data type. If yfs.install.displaydoublequantity is set to Y (the
default value), then you can specify decimal numbers for item quantities.

93Sterling Commerce, Inc.

Validating Fields with the Web UI Framework

You can validate fields against certain standards, using the default validation system or your own validation
system.

The Web UI Framework provides validation for the following three types of information in the en_US locale:

• E-mail address (using the international accepted standard)
• Telephone number format (locale-specific)
• Credit card number (using the Luhn algorithm)

To validate items, do the following:

1. Register the field attributes that you will be using for validation by implementing the
registerFieldAttributes(validationType, attribute) function, using the following arguments:

• validationType (required)

Validation type. By default, the application includes validation types for e-mail address, telephone number
format, and credit card number.

• attribute

XML attributes for validations. An attribute can be registered for multiple validation types.

Use this function to implement customized validators that you want to plug in to the application.

2. Implement the registerValidators(validationType, validator) function, using the following arguments:

• validationType (required)

Validation type.

• validator (required)

Validator function for validation type.

The following is an example of how to add validation for a last name:

sc.plat.ValidateUtils.registerValidator('LastName', function (value){
 if (value == null || value.length<2) {
 return {status: 2,message: "Last name needs at least two characters" };
 }
 return {status: 1};
});

Disabling All UI Fields at One Time with the Web UI Framework

You can use the Web UI Framework to disable all of the screen fields at once, without having to individually
disable any field. When you disable a field, you cannot change the data that is in that field. The field becomes
read-only. After disabling all of the fields, you can still cut and paste information from those fields, but you
cannot submit information from form fields that have been disabled. You cannot disable all of the fields only
for look-and-feel purposes.

Sterling Commerce, Inc.94

To disable all of the screen fields at once, use the Ext JS JavaScript method disableFields. A function created
from this method has the following properties:

• disable

Boolean property that determines if all fields on the screen are disabled.

• deep

Boolean property that determines whether the disable property applies to the immediate children fields of
the screen. If this is set to true, the disable property applies to all children fields. If this is set to false, the
disable property applies only to immediate children fields.

• allowCopy

Boolean property that determines whether a disable method is called for all fields. If this is set to true, fields
will be marked read-only with an opacity of 0.6. If this is set to false, a disable method will be called for all
fields.

• disableCSS

String property that shows the custom css that will be applied if allowCopy is set to true.

If the scIgnoreDisable property in a field is set to true, that field will ignore the disableFields method.

Checking for Screen Changes in the Web UI Framework

In screens created using the Web UI Framework, the application can take actions that are based on whether a
screen field changed. For example, if you open a screen to modify a field, and you end up not modifying that
field, you could program the application not to submit information from that screen to a server when you close
the screen.

The isDirty method checks all of the fields of a screen to see if they have changed. Each editable field also
has an isDirty method, so you can program the application to take actions based on whether a particular field
changed.

Screen changes are also monitored using a dirtystatechange event. Whenever a field is modified on a screen,
the dirtystatechange event is fired on the screen. In the following example, the Save button is enabled whenever
a field on a screen is modified:

Screen.addListener('dirtystatechange',function(scr, isDirty)
 {
 savBtn.disable(!isDirty);
 },
this);

Configuring a Data Source with the Web UI Framework

To work with a data source, you must first configure it using the Configure Data Sources dialog box.

The Web UI Framework does not use XML binding. The Configure Data Sources dialog box works with only
JSON data sources.

1. Make sure the Data tab is showing, and not the Palette or Files tab.

95Sterling Commerce, Inc.

2. Click the button that is just to the right of the dropdown arrow.

The Configure Data Sources dialog box appears.

3. Configure the following items:

• Type of data source (input or output)
• Data source

The data source directory is the directory containing JSON data source files, which can be provided to
application developers. With the Web UI Framework, a tool is provided for generating JSON data sources
from XAPI XML and XSD definitions.

• Path to data source directory
• Namespace, elements, and attributes

4. Click the Finish button.

The data source is configured. This initializes the bindingData property of the widget that is using the data
source. You can also specify binding by creating or editing this property in the Properties view.

Adding a Data Source with the Web UI Framework

To work with a data source, you must first configure it using the Configure Data Sources dialog box.

1. Make sure the Data tab is showing, and not the Palette or Files tab.

2. Make sure that you are on the screen where you want to add a data source.

3. Click on the down arrow to select a data source.

4. Add the data source to the screen.

Sterling Commerce, Inc.96

	Contents
	Extensibility (Web UI Framework)
	Extensibility in the Web UI Framework (Custom Developers)
	Differential Extensibility in the Web UI Framework
	Override Extensibility in the Web UI Framework
	Differential Extensibility Versus Override Extensibility in the Web UI Framework
	What Can Be Customized and Extended with the Web UI Framework
	Customizing with the Web UI Framework
	Extending Versus Customizing an Ext JS Widget/Component with the Web UI Framework
	Extensibility Workbench Versus Designer Workbench (Web UI Framework)

	Extensibility Workbench of the Web UI Framework (Custom Developers)
	Configuring the Web UI Framework Extensibility Workbench
	Using the Web UI Framework Extensibility Workbench to Modify a Widget
	Extensibility Workbench Tools (Web UI Framework)

	Designer Workbench of the Web UI Framework for Custom Developers
	Creating New UI Screens Using the Designer Workbench (Web UI Framework)
	Using the Web UI Framework Designer Workbench from the Extensibility Workbench to Create New Screens (Custom Developers)
	Designer Workbench Tools (Web UI Framework)

	Mashup Layer of the Web UI Framework
	Interface Contracts of the Web UI Framework - Mashup Layer
	Mashup Layer Classes of the Web UI Framework
	Mashup XML Metadata of the Web UI Framework
	Extending Mashups in the Web UI Framework
	Extending Mashups Using Override Extensibility (Web UI Framework)
	Extending Mashups Using Differential Extensibility in the Web UI Framework

	Configuring Mashups in Web UI Framework
	Specifying Multiple XAPI Calls with the Web UI Framework
	Example of mashup.xml File with Multiple XAPI Calls in the Web UI Framework

	How the Mashup Layer Handles Authorization and Transaction Management in the Web UI Framework

	Creating and Extending a Struts XML File (Web UI Framework)
	Creating a Menu Entry for a New Web UI Framework Screen
	Deploying Web UI Framework Extensions
	Deploying Extensions Created by the Web UI Framework Extensibility Workbench and Designer Workbench Using a Java Server Page
	Deploying Extensions Created by the Extensibility Workbench Using a JavaScript Builder File
	Compiling and Minifying JavaScript Files in the Web UI Framework

	Customizing web.xml in the Web UI Framework
	Changing Bundle Files in the Web UI Framework

	Building and Customizing Pages/Controls (Web UI Framework)
	Widgets (Web UI Framework)
	Working with Widgets (Web UI Framework)
	Adding a Widget to a Screen with the Web UI Framework
	Customizing Widgets in an Existing Installation (Web UI Framework)
	Hiding Fields with the Web UI Framework
	Accessing the Working Files of the Web UI Framework
	Viewing Screen Objects in the Outline or Tree View of the Web UI Framework
	Configuring Properties for Screens, Widgets, and Other Items (Web UI Framework)
	Wizards of the Web UI Framework
	Creating a Wizard with the Web UI Framework
	Wizard Page Attributes in the Web UI Framework
	Wizard Rule Attributes in the Web UI Framework
	Wizard Transition Attributes in the Web UI Framework
	Wizard Flow Controller Attributes in the Web UI Framework
	Wizard Breadcrumb Attributes in the Web UI Framework
	Sample XML Flow Definition for Wizards in the Web UI Framework

	Preset Properties (Web UI Framework)
	Creating Preset Properties (Web UI Framework)
	Applying Preset Properties with the Web UI Framework

	Enabling a Child Screen to Access a Parent Screen with the Web UI Framework
	Menu Customizations (Web UI Framework)
	Creating Smart Tags with the Web UI Framework
	Debugging Tools (Web UI Framework)
	State Management in the Web UI Framework
	Implementing State Management with the Web UI Framework
	Interface Contracts of the Web UI Framework - State Management (Client Side and Server Side)

	Transaction Management in the Web UI Framework
	Implementing Transaction Management with the Web UI Framework
	Interface Contracts of the Web UI Framework - Transaction Management

	Look and Feel (Web UI Framework)
	UI Branding in the Web UI Framework
	Specifying a Home Page when Building Screens with the Web UI Framework
	Adding Keyboard Shortcuts with the Web UI Framework
	Supporting Multiple Browsers with the Web UI Framework
	Indicating Mandatory UI Fields with the Web UI Framework
	Adding Support for Custom Themes with the Web UI Framework

	Security (Web UI Framework)
	Web UI Framework Security - Authentication
	Web UI Framework Security - Implementing Authentication
	Interface Contracts of the Web UI Framework - Authentication
	Interface Contracts of the Web UI Framework - Post Authentication
	Web UI Framework Security - Bypassing Authentication for a URI

	Web UI Framework Security - Authorization
	Web UI Framework Security - Implementing Authorization
	Interface Contracts of the Web UI Framework - Authorization

	Web UI Framework Security - Adding Login Pages
	Web UI Framework Security - Supporting Multiple Guest Users
	Web UI Framework Security - Adding Request Validators
	Web UI Framework Security - Cross-Site Request Forgery
	Web UI Framework Security - Protecting Against CSRF Attacks

	Data Handling (Web UI Framework)
	Data Type Handling in the Web UI Framework
	Interface Contracts of the Web UI Framework - Data Type Handling
	Assigning Data Types to a Grid Column with the Web UI Framework

	Supporting Item Quantity Decimal Handling in the Web UI Framework
	Validating Fields with the Web UI Framework
	Disabling All UI Fields at One Time with the Web UI Framework
	Checking for Screen Changes in the Web UI Framework
	Configuring a Data Source with the Web UI Framework
	Adding a Data Source with the Web UI Framework

