
Selling and Fulfillment
Foundation: Integration
Guide

Release 8.5

October 2009

Copyright Notice
Copyright © 1999 - 2009

Sterling Commerce, Inc.

ALL RIGHTS RESERVED

STERLING COMMERCE SOFTWARE

TRADE SECRET NOTICE

THE STERLING COMMERCE SOFTWARE DESCRIBED BY THIS DOCUMENTATION ("STERLING COMMERCE
SOFTWARE") IS THE CONFIDENTIAL AND TRADE SECRET PROPERTY OF STERLING COMMERCE, INC., ITS
AFFILIATED COMPANIES OR ITS OR THEIR LICENSORS, AND IS PROVIDED UNDER THE TERMS OF A
LICENSE AGREEMENT. NO DUPLICATION OR DISCLOSURE WITHOUT PRIOR WRITTEN PERMISSION.
RESTRICTED RIGHTS.

This documentation, the Sterling Commerce Software it describes, and the information and know-how
they contain constitute the proprietary, confidential and valuable trade secret information of Sterling
Commerce, Inc., its affiliated companies or its or their licensors, and may not be used for any
unauthorized purpose, or disclosed to others without the prior written permission of the applicable
Sterling Commerce entity. This documentation and the Sterling Commerce Software that it describes
have been provided pursuant to a license agreement that contains prohibitions against and/or
restrictions on their copying, modification and use. Duplication, in whole or in part, if and when
permitted, shall bear this notice and the Sterling Commerce, Inc. copyright notice. Commerce, Inc.
copyright notice.

U.S. GOVERNMENT RESTRICTED RIGHTS. This documentation and the Sterling Commerce Software it
describes are "commercial items" as defined in 48 C.F.R. 2.101. As and when provided to any agency or
instrumentality of the U.S. Government or to a U.S. Government prime contractor or a subcontractor at
any tier ("Government Licensee"), the terms and conditions of the customary Sterling Commerce
commercial license agreement are imposed on Government Licensees per 48 C.F.R. 12.212 or §
227.7202 through § 227.7202-4, as applicable, or through 48 C.F.R. § 52.244-6.

This Trade Secret Notice, including the terms of use herein is governed by the laws of the State of Ohio,
USA, without regard to its conflict of laws provisions. If you are accessing the Sterling Commerce
Software under an executed agreement, then nothing in these terms and conditions supersedes or
modifies the executed agreement.

Sterling Commerce, Inc.
4600 Lakehurst Court
Dublin, Ohio 43016-2000

Copyright © 1999 - 2009

Third-Party Software

Portions of the Sterling Commerce Software may include products, or may be distributed on the same
storage media with products, ("Third Party Software") offered by third parties ("Third Party Licensors").
Sterling Commerce Software may include Third Party Software covered by the following copyrights:
Copyright © 2006-2008 Andres Almiray. Copyright © 1999-2005 The Apache Software Foundation.
Copyright (c) 2008 Azer Koçulu http://azer.kodfabrik.com. Copyright © Einar Lielmanis,
einars@gmail.com. Copyright (c) 2006 John Reilly (www.inconspicuous.org) and Copyright (c) 2002
Douglas Crockford (www.crockford.com). Copyright (c) 2009 John Resig, http://jquery.com/. Copyright
© 2006-2008 Json-lib. Copyright © 2001 LOOX Software, Inc. Copyright © 2003-2008 Luck Consulting
Pty. Ltd. Copyright 2002-2004 © MetaStuff, Ltd. Copyright © 2009 Michael Mathews
micmath@gmail.com. Copyright © 1999-2005 Northwoods Software Corporation. Copyright (C)
Microsoft Corp. 1981-1998. Purple Technology, Inc. Copyright (c) 2004-2008 QOS.ch. Copyright © 2005
Sabre Airline Solutions. Copyright © 2004 SoftComplex, Inc. Copyright © 2000-2007 Sun
Microsystems, Inc. Copyright © 2001 VisualSoft Technologies Limited. Copyright © 2001 Zero G
Software, Inc. All rights reserved by all listed parties.

The Sterling Commerce Software is distributed on the same storage media as certain Third Party
Software covered by the following copyrights: Copyright © 1999-2006 The Apache Software Foundation.
Copyright (c) 2001-2003 Ant-Contrib project. Copyright © 1998-2007 Bela Ban. Copyright © 2005
Eclipse Foundation. Copyright © 2002-2006 Julian Hyde and others. Copyright © 1997 ICE Engineering,
Inc./Timothy Gerard Endres. Copyright 2000, 2006 IBM Corporation and others. Copyright © 1987-2006
ILOG, Inc. Copyright © 2000-2006 Infragistics. Copyright © 2002-2005 JBoss, Inc. Copyright
LuMriX.net GmbH, Switzerland. Copyright © 1998-2009 Mozilla.org. Copyright © 2003-2009 Mozdev
Group, Inc. Copyright © 1999-2002 JBoss.org. Copyright Raghu K, 2003. Copyright © 2004 David
Schweinsberg. Copyright © 2005-2006 Darren L. Spurgeon. Copyright © S.E. Morris (FISH) 2003-04.
Copyright © 2006 VisualSoft Technologies. Copyright © 2002-2009 Zipwise Software. All rights reserved
by all listed parties.

Certain components of the Sterling Commerce Software are distributed on the same storage media as
Third Party Software which are not listed above. Additional information for such Third Party Software
components of the Sterling Commerce Software is located at:
installdir/mesa/studio/plugins/SCI_Studio_License.txt.

Third Party Software which is included, or are distributed on the same storage media with, the Sterling
Commerce Software where use, duplication, or disclosure by the United States government or a
government contractor or subcontractor, are provided with RESTRICTED RIGHTS under Title 48 CFR
2.101, 12.212, 52.227-19, 227.7201 through 227.7202-4, DFAR 252.227-7013(c) (1) (ii) and (2), DFAR
252.227-7015(b)(6/95), DFAR 227.7202-3(a), FAR 52.227-14(g)(2)(6/87), and FAR 52.227-19(c)(2)
and (6/87) as applicable.

Additional information regarding certain Third Party Software is located at installdir/SCI_License.txt.

Some Third Party Licensors also provide license information and/or source code for their software via
their respective links set forth below:

http://danadler.com/jacob/

http://www.dom4j.org

This product includes software developed by the Apache Software Foundation (http://www.apache.org).
This product includes software developed by the Ant-Contrib project
(http://sourceforge.net/projects/ant-contrib). This product includes software developed by the JDOM
Project (http://www.jdom.org/). This product includes code licensed from RSA Data Security (via Sun
Microsystems, Inc.). Sun, Sun Microsystems, the Sun Logo, Java, JDK, the Java Coffee Cup logo,
JavaBeans , JDBC, JMX and all JMX based trademarks and logos are trademarks or registered trademarks
of Sun Microsystems, Inc. All other trademarks and logos are trademarks of their respective owners.

THE APACHE SOFTWARE FOUNDATION SOFTWARE

The Sterling Commerce Software is distributed with or on the same storage media as the following
software products (or components thereof) and java source code files: Xalan version 2.5.2,
 Cookie.java, Header.java, HeaderElement.java, HttpException.java, HttpState.java, NameValuePair.java,
CronTimeTrigger.java, DefaultTimeScheduler.java, PeriodicTimeTrigger.java, Target.java,

TimeScheduledEntry.java, TimeScheduler.java, TimeTrigger.java, Trigger.java, BinaryHeap.java,
PriorityQueue.java, SynchronizedPriorityQueue.java, GetOpt.java, GetOptsException.java,
IllegalArgumentException.java, MissingOptArgException.java (collectively, "Apache 1.1 Software").
Apache 1.1 Software is free software which is distributed under the terms of the following license:

License Version 1.1

Copyright 1999-2003 The Apache Software Foundation. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided
that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

2. Redistribution in binary form must reproduce the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other materials provided with the distribution.

3. The end-user documentation included with the redistribution, if any, must include the following
acknowledgement: "This product includes software developed by the Apache Software Foundation
(http://www.apache.org)." Alternatively, this acknowledgement may appear in the software itself, if and
whenever such third-party acknowledgements normally appear.

4. The names "Commons", "Jakarta", "The Jakarta Project", "HttpClient", "log4j", "Xerces "Xalan",
"Avalon", "Apache Avalon", "Avalon Cornerstone", "Avalon Framework", "Apache" and "Apache Software
Foundation" must not be used to endorse or promote products derived from this software without
specific prior written permission. For written permission, please contact apache@apache.org.

5. Products derived from this software may not be called "Apache", nor may "Apache" appear in their
name, without the prior written permission of the Apache Software Foundation.

THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESS OR IMIPLIED WARRANTIES, INCLUDING
ANY IMPLIED WARRANTY OF MERCHANTIBILITY, AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL APACHE SOFTWARE FOUNDATION OR ITS CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTIAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

This software consists of voluntary contributions made by many individuals on behalf of the Apache
Software Foundation. The GetOpt.java, GetOptsException.java, IlligalArgumentException.java and
MissingOptArgException.java software was originally based on software copyright (c) 2001, Sun
Microsystems., http://www.sun.com. For more information on the Apache Software Foundation, please
see <http://www.apache.org/>.

The preceding license only applies to the Apache 1.1 Software and does not apply to the Sterling
Commerce Software or to any other Third-Party Software.

The Sterling Commerce Software is also distributed with or on the same storage media as the following
software products (or components thereof): Ant, Antinstaller, Apache File Upload Package, Apache
Commons Beans, Apache Commons BetWixt, Apache Commons Collection, Apache Commons Digester,
Apache Commons IO, Apache Commons Lang., Apache Commons Logging, Apache Commons Net,
Apache Jakarta Commons Pool, Apache Jakarta ORO, Lucene, Xerces version 2.7, Apache Log4J,
Apache SOAP, Apache Struts and Apache Xalan 2.7.0, (collectively, "Apache 2.0 Software"). Apache
2.0 Software is free software which is distributed under the terms of the Apache License Version 2.0. A
copy of License Version 2.0 is found in the following directory files for the individual pieces of the Apache
2.0 Software: installdir/jar/commons_upload/1_0/ CommonsFileUpload_License.txt,
installdir/jar/jetspeed/1_4/RegExp_License.txt,
 installdir/ant/Ant_License.txt
<install>/jar/antInstaller/0_8/antinstaller_License.txt,
<install>/jar/commons_beanutils/1_7_0/commons-beanutils.jar (/META-INF/LICENSE.txt),
<install>/jar/commons_betwixt/0_8/commons-betwixt-0.8.jar (/META-INF/LICENSE.txt),

<install>/jar/commons_collections/3_2/LICENSE.txt,
<install>/jar/commons_digester/1_8/commons-digester-1.8.jar (/META-INF/LICENSE.txt),
<install>/jar/commons_io/1_4/LICENSE.txt,
<install>/jar/commons_lang/2_1/Commons_Lang_License.txt,
<install>/jar/commons_logging/1_0_4/commons-logging-1.0.4.jar (/META-INF/LICENSE.txt),
<install>/jar/commons_net/1_4_1/commons-net-1.4.1.jar (/META-INF/LICENSE.txt),
<install>/jar/smcfs/8.5/lucene-core-2.4.0.jar (/META-INF/LICENSE.txt),
<install>/jar/struts/2_0_11/struts2-core-2.0.11.jar (./LICENSE.txt),
<install>/jar/mesa/gisdav/WEB-INF/lib/Slide_License.txt,
<install>/mesa/studio/plugins/xerces_2.7_license.txt,
<install>/jar/commons_pool/1_2/Commons_License.txt,
<install>/jar/jakarta_oro/2_0_8/JakartaOro_License.txt,
<install>/jar/log4j/1_2_15/LOG4J_License.txt,
<install>/jar/xalan/2_7/Xalan_License.txt,
<install>/jar/soap/2_3_1/Apache_SOAP_License.txt

Unless otherwise stated in a specific directory, the Apache 2.0 Software was not modified. Neither the
Sterling Commerce Software, modifications, if any, to Apache 2.0 Software, nor other Third Party Code is
a Derivative Work or a Contribution as defined in License Version 2.0. License Version 2.0 applies only to
the Apache 2.0 Software which is the subject of the specific directory file and does not apply to the
Sterling Commerce Software or to any other Third Party Software. License Version 2.0 includes the
following provision:

"Unless required by applicable law or agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS
OF ANY KIND, either express or implied, including, without limitation, any warranties or conditions of
TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. You are
solely responsible for determining the appropriateness of using or redistributing the Work and assume
any risks associated with Your exercise of permissions under this License."

NOTICE file corresponding to the section 4 d of the Apache License, Version 2.0, in this case for the
Apache Ant distribution. Apache Ant Copyright 1999-2008 The Apache Software Foundation. This
product includes software developed by The Apache Software Foundation (http://www.apache.org/).
This product includes also software developed by :

 - the W3C consortium (http://www.w3c.org) ,

 - the SAX project (http://www.saxproject.org)

The <sync> task is based on code Copyright (c) 2002, Landmark Graphics Corp that has been kindly
donated to the Apache Software Foundation.

Portions of this software were originally based on the following:

 - software copyright (c) 1999, IBM Corporation., http://www.ibm.com.

 - software copyright (c) 1999, Sun Microsystems., http://www.sun.com.

 - voluntary contributions made by Paul Eng on behalf of the Apache Software Foundation that were
originally developed at iClick, Inc., software copyright (c) 1999.

NOTICE file corresponding to the section 4 d of the Apache License, Version 2.0, in this case for the
Apache Lucene distribution. Apache Lucene Copyright 2006 The Apache Software Foundation. This
product includes software developed by The Apache Software Foundation (http://www.apache.org/).
The snowball stemmers in contrib/snowball/src/java/net/sf/snowball were developed by Martin Porter
and Richard Boulton. The full snowball package is available from http://snowball.tartarus.org/

Ant-Contrib Software

The Sterling Commerce Software is distributed with or on the same storage media as the Anti-Contrib
software (Copyright (c) 2001-2003 Ant-Contrib project. All rights reserved.) (the "Ant-Contrib
Software"). The Ant-Contrib Software is free software which is distributed under the terms of the
following license:

The Apache Software License, Version 1.1

Copyright (c) 2001-2003 Ant-Contrib project. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided
that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and
the following disclaimer in the documentation and/or other materials provided with the distribution.

3. The end-user documentation included with the redistribution, if any, must include the following
acknowledgement:

"This product includes software developed by the Ant-Contrib project
(http://sourceforge.net/projects/ant-contrib)."

Alternately, this acknowledgement may appear in the software itself, if and wherever such third-party
acknowledgements normally appear.

 4. The name Ant-Contrib must not be used to endorse or promote products derived from this software
without prior written permission. For written permission, please contact
ant-contrib-developers@lists.sourceforge.net.

 5. Products derived from this software may not be called "Ant-Contrib" nor may "Ant-Contrib" appear in
their names without prior written permission of the Ant-Contrib project.

THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE ANT-CONTRIB PROJECT OR ITS
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. The preceding license only applies to the
Ant-Contrib Software and does not apply to the Sterling Commerce Software or to any other Third-Party
Software.

The preceding license only applies to the Ant-Contrib Software and does not apply to the Sterling
Commerce Software or to any other Third Party Software.

DOM4J Software

The Sterling Commerce Software is distributed with or on the same storage media as the Dom4h
Software which is free software distributed under the terms of the following license:

Redistribution and use of this software and associated documentation ("Software"), with or without
modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain copyright statements and notices. Redistributions must also
contain a copy of this document.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and
the following disclaimer in the documentation and/or other materials provided with the distribution.

3. The name "DOM4J" must not be used to endorse or promote products derived from this Software
without prior written permission of MetaStuff, Ltd. For written permission, please contact
dom4j-info@metastuff.com.

4. Products derived from this Software may not be called "DOM4J" nor may "DOM4J" appear in their
names without prior written permission of MetaStuff, Ltd. DOM4J is a registered trademark of MetaStuff,
Ltd.

5. Due credit should be given to the DOM4J Project - http://www.dom4j.org

THIS SOFTWARE IS PROVIDED BY METASTUFF, LTD. AND CONTRIBUTORS ``AS IS'' AND ANY
EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL METASTUFF, LTD. OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Copyright 2001-2004 (C) MetaStuff, Ltd. All Rights Reserved.

The preceding license only applies to the Dom4j Software and does not apply to the Sterling Commerce
Software, or any other Third-Party Software.

THE ECLIPSE SOFTWARE FOUNDATION

The Sterling Commerce Software is also distributed with or on the same storage media as the following
software:

com.ibm.icu.nl1_3.4.4.v200606220026.jar, org.eclipse.ant.core.nl1_3.1.100.v200606220026.jar,
org.eclipse.ant.ui.nl1_3.2.0.v200606220026.jar, org.eclipse.compare.nl1_3.2.0.v200606220026.jar,
org.eclipse.core.boot.nl1_3.1.100.v200606220026.jar,
org.eclipse.core.commands.nl1_3.2.0.v200606220026.jar,
org.eclipse.core.contenttype.nl1_3.2.0.v200606220026.jar,
org.eclipse.core.expressions.nl1_3.2.0.v200606220026.jar,
org.eclipse.core.filebuffers.nl1_3.2.0.v200606220026.jar,
org.eclipse.core.filesystem.nl1_1.0.0.v200606220026.jar,
org.eclipse.core.jobs.nl1_3.2.0.v200606220026.jar,
org.eclipse.core.resources.nl1_3.2.0.v200606220026.jar,
org.eclipse.core.runtime.compatibility.auth.nl1_3.2.0.v200606220026.jar,
org.eclipse.core.runtime.compatibility.nl1_3.1.100.v200606220026.jar,
org.eclipse.core.runtime.nl1_3.2.0.v200606220026.jar,
org.eclipse.core.variables.nl1_3.1.100.v200606220026.jar,
org.eclipse.debug.core.nl1_3.2.0.v200606220026.jar,
org.eclipse.debug.ui.nl1_3.2.0.v200606220026.jar,
org.eclipse.equinox.common.nl1_3.2.0.v200606220026.jar,
org.eclipse.equinox.preferences.nl1_3.2.0.v200606220026.jar,
org.eclipse.equinox.registry.nl1_3.2.0.v200606220026.jar,
org.eclipse.help.appserver.nl1_3.1.100.v200606220026.jar,
org.eclipse.help.base.nl1_3.2.0.v200606220026.jar, org.eclipse.help.nl1_3.2.0.v200606220026.jar,
org.eclipse.help.ui.nl1_3.2.0.v200606220026.jar, org.eclipse.jdt.apt.core.nl1_3.2.0.v200606220026.jar,
org.eclipse.jdt.apt.ui.nl1_3.2.0.v200606220026.jar,
org.eclipse.jdt.core.manipulation.nl1_1.0.0.v200606220026.jar,
org.eclipse.jdt.core.nl1_3.2.0.v200606220026.jar,
org.eclipse.jdt.debug.ui.nl1_3.2.0.v200606220026.jar,
org.eclipse.jdt.doc.isv.nl1_3.2.0.v200606220026.jar,
org.eclipse.jdt.doc.user.nl1_3.2.0.v200606220026.jar,
org.eclipse.jdt.junit4.runtime.nl1_1.0.0.v200606220026.jar,
org.eclipse.jdt.launching.nl1_3.2.0.v200606220026.jar, org.eclipse.jdt.nl1_3.2.0.v200606220026.jar,
org.eclipse.jdt.ui.nl1_3.2.0.v200606220026.jar,
org.eclipse.jface.databinding.nl1_1.0.0.v200606220026.jar,
org.eclipse.jface.nl1_3.2.0.v200606220026.jar, org.eclipse.jface.text.nl1_3.2.0.v200606220026.jar,
org.eclipse.ltk.core.refactoring.nl1_3.2.0.v200606220026.jar,
org.eclipse.ltk.ui.refactoring.nl1_3.2.0.v200606220026.jar,
org.eclipse.osgi.nl1_3.2.0.v200606220026.jar, org.eclipse.osgi.services.nl1_3.1.100.v200606220026.jar,
org.eclipse.osgi.util.nl1_3.1.100.v200606220026.jar, org.eclipse.pde.core.nl1_3.2.0.v200606220026.jar,
org.eclipse.pde.doc.user.nl1_3.2.0.v200606220026.jar,
org.eclipse.pde.junit.runtime.nl1_3.2.0.v200606220026.jar,
org.eclipse.pde.nl1_3.2.0.v200606220026.jar, org.eclipse.pde.runtime.nl1_3.2.0.v200606220026.jar,
org.eclipse.pde.ui.nl1_3.2.0.v200606220026.jar,
org.eclipse.platform.doc.isv.nl1_3.2.0.v200606220026.jar,
org.eclipse.platform.doc.user.nl1_3.2.0.v200606220026.jar,

org.eclipse.rcp.nl1_3.2.0.v200606220026.jar, org.eclipse.search.nl1_3.2.0.v200606220026.jar,
org.eclipse.swt.nl1_3.2.0.v200606220026.jar, org.eclipse.team.core.nl1_3.2.0.v200606220026.jar,
org.eclipse.team.cvs.core.nl1_3.2.0.v200606220026.jar,
org.eclipse.team.cvs.ssh.nl1_3.2.0.v200606220026.jar,
org.eclipse.team.cvs.ssh2.nl1_3.2.0.v200606220026.jar,
org.eclipse.team.cvs.ui.nl1_3.2.0.v200606220026.jar, org.eclipse.team.ui.nl1_3.2.0.v200606220026.jar,
org.eclipse.text.nl1_3.2.0.v200606220026.jar, org.eclipse.ui.browser.nl1_3.2.0.v200606220026.jar,
org.eclipse.ui.cheatsheets.nl1_3.2.0.v200606220026.jar,
org.eclipse.ui.console.nl1_3.1.100.v200606220026.jar,
org.eclipse.ui.editors.nl1_3.2.0.v200606220026.jar,
org.eclipse.ui.externaltools.nl1_3.1.100.v200606220026.jar,
org.eclipse.ui.forms.nl1_3.2.0.v200606220026.jar, org.eclipse.ui.ide.nl1_3.2.0.v200606220026.jar,
org.eclipse.ui.intro.nl1_3.2.0.v200606220026.jar, org.eclipse.ui.navigator.nl1_3.2.0.v200606220026.jar,
org.eclipse.ui.navigator.resources.nl1_3.2.0.v200606220026.jar,
org.eclipse.ui.nl1_3.2.0.v200606220026.jar,
org.eclipse.ui.presentations.r21.nl1_3.2.0.v200606220026.jar,
org.eclipse.ui.views.nl1_3.2.0.v200606220026.jar,
org.eclipse.ui.views.properties.tabbed.nl1_3.2.0.v200606220026.jar,
org.eclipse.ui.workbench.nl1_3.2.0.v200606220026.jar,
org.eclipse.ui.workbench.texteditor.nl1_3.2.0.v200606220026.jar,
org.eclipse.update.configurator.nl1_3.2.0.v200606220026.jar,
org.eclipse.update.core.nl1_3.2.0.v200606220026.jar,
org.eclipse.update.scheduler.nl1_3.2.0.v200606220026.jar,
org.eclipse.update.ui.nl1_3.2.0.v200606220026.jar,
com.ibm.icu_3.4.4.1.jar,
org.eclipse.core.commands_3.2.0.I20060605-1400.jar,
org.eclipse.core.contenttype_3.2.0.v20060603.jar,
org.eclipse.core.expressions_3.2.0.v20060605-1400.jar,
org.eclipse.core.filesystem.linux.x86_1.0.0.v20060603.jar,
org.eclipse.core.filesystem_1.0.0.v20060603.jar, org.eclipse.core.jobs_3.2.0.v20060603.jar,
org.eclipse.core.runtime.compatibility.auth_3.2.0.v20060601.jar,
org.eclipse.core.runtime_3.2.0.v20060603.jar, org.eclipse.equinox.common_3.2.0.v20060603.jar,
org.eclipse.equinox.preferences_3.2.0.v20060601.jar, org.eclipse.equinox.registry_3.2.0.v20060601.jar,
org.eclipse.help_3.2.0.v20060602.jar, org.eclipse.jface.text_3.2.0.v20060605-1400.jar,
org.eclipse.jface_3.2.0.I20060605-1400.jar, org.eclipse.osgi_3.2.0.v20060601.jar,
org.eclipse.swt.gtk.linux.x86_3.2.0.v3232m.jar, org.eclipse.swt_3.2.0.v3232o.jar,
org.eclipse.text_3.2.0.v20060605-1400.jar,
org.eclipse.ui.workbench.texteditor_3.2.0.v20060605-1400.jar,
org.eclipse.ui.workbench_3.2.0.I20060605-1400.jar, org.eclipse.ui_3.2.0.I20060605-1400.jar,
runtime_registry_compatibility.jar, eclipse.exe, eclipse.ini, and startup.jar
(collectively, "Eclipse Software").
All Eclipse Software is distributed under the terms and conditions of the Eclipse Foundation Software
User Agreement (EFSUA) and/or terms and conditions of the Eclipse Public License Version 1.0 (EPL) or
other license agreements, notices or terms and conditions referenced for the individual pieces of the
Eclipse Software, including without limitation "Abouts", "Feature Licenses", and "Feature Update
Licenses" as defined in the EFSUA .

A copy of the Eclipse Foundation Software User Agreement is found at
<install_dir>/SI/repository/rcp/rcpdependencies/windows/eclipse/notice.html,
<install_dir>/SI/repository/rcp/rcpdependencies/windows/eclipse/plugins/notice.html,
<install_dir>/SI/repository/rcp/rcpdependencies/gtk.linux_x86/eclipse/notice.html, and
<install_dir>/SI/repository/rcp/rcpdependencies/gtk.linux_x86/eclipse/plugins/notice.html.

A copy of the EPL is found at
<install_dir>/SI/repository/rcp/rcpdependencies/windows/eclipse/plugins/epl-v10.htm,
<install_dir>/SI/repository/rcp/rcpdependencies/windows/eclipse/epl-v10.htm,
<install_dir>/SI/repository/rcp/rcpdependencies/gtk.linux.x86/eclipse/plugins/epl-v10.html, and
<install_dir>/SI/repository/rcp/rcpdependencies/gtk.linux.x86/eclipse/epl-v10.html.

The reference to the license agreements, notices or terms and conditions governing each individual piece
of the Eclipse Software is found in the directory files for the individual pieces of the Eclipse Software as
described in the file identified as installdir/SCI_License.txt.

These licenses only apply to the Eclipse Software and do not apply to the Sterling Commerce Software,
or any other Third Party Software.

The Language Pack (NL Pack) piece of the Eclipse Software, is distributed in object code form. Source
code is available at
http://archive.eclipse.org/eclipse/downloads/drops/L-3.2_Language_Packs-200607121700/index.php.
In the event the source code is no longer available from the website referenced above, contact Sterling
Commerce at 978-513-6000 and ask for the Release Manager. A copy of this license is located at
<install_dir>/SI/repository/rcp/rcpdependencies/windows/eclipse/plugins/epl-v10.htm and

<install_dir>/SI/repository/rcp/rcpdependencies/gtk.linux.x86/eclipse/plugins/epl-v10.html.

The org.eclipse.core.runtime_3.2.0.v20060603.jar piece of the Eclipse Software was modified slightly in
order to remove classes containing encryption items. The org.eclipse.core.runtime_3.2.0.v20060603.jar
was modified to remove the Cipher, CipherInputStream and CipherOutputStream classes and rebuild the
org.eclipse.core.runtime_3.2.0.v20060603.jar.

Ehcache Software

The Sterling Commerce Software is also distributed with or on the same storage media as the ehache
v.1.5 software (Copyright © 2003-2008 Luck Consulting Pty. Ltd.) ("Ehache Software"). Ehcache
Software is free software which is distributed under the terms of the Apache License Version 2.0. A copy
of License Version 2.0 is found in <install>/jar/smcfs/8.5/ehcache-1.5.0.jar (./LICENSE.txt).

The Ehcache Software was not modified. Neither the Sterling Commerce Software, modifications, if any,
to the Ehcache Software, nor other Third Party Code is a Derivative Work or a Contribution as defined in
License Version 2.0. License Version 2.0 applies only to the Ehcache Software which is the subject of the
specific directory file and does not apply to the Sterling Commerce Software or to any other Third Party
Software. License Version 2.0 includes the following provision:

"Unless required by applicable law or agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS
OF ANY KIND, either express or implied, including, without limitation, any warranties or conditions of
TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. You are
solely responsible for determining the appropriateness of using or redistributing the Work and assume
any risks associated with Your exercise of permissions under this License."

EZMorph Software

The Sterling Commerce Software is also distributed with or on the same storage media as the EZMorph
v. 1.0.4 software (Copyright © 2006-2008 Andres Almiray) ("EZMorph Software"). EZMorph Software is
free software which is distributed under the terms of the Apache License Version 2.0. A copy of License
Version 2.0 is found in <install>/jar/ezmorph/1_0_4/ezmorph-1.0.4.jar (./LICENSE.txt).

The EZMorph Software was not modified. Neither the Sterling Commerce Software, modifications, if any,
to the EZMorph Software, nor other Third Party Code is a Derivative Work or a Contribution as defined in
License Version 2.0. License Version 2.0 applies only to the EZMorph Software which is the subject of
the specific directory file and does not apply to the Sterling Commerce Software or to any other Third
Party Software. License Version 2.0 includes the following provision:

"Unless required by applicable law or agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS
OF ANY KIND, either express or implied, including, without limitation, any warranties or conditions of
TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. You are
solely responsible for determining the appropriateness of using or redistributing the Work and assume
any risks associated with Your exercise of permissions under this License."

Firebug Lite Software

The Sterling Commerce Software is distributed with or on the same storage media as the Firebug Lite
Software which is free software distributed under the terms of the following license:

Copyright (c) 2008 Azer Koçulu http://azer.kodfabrik.com. All rights reserved.

Redistribution and use of this software in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

* Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

* Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other materials provided with the distribution.

* Neither the name of Azer Koçulu. nor the names of any other contributors may be used to endorse or
promote products derived from this software without specific prior written permission of Parakey Inc.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

ICE SOFTWARE

The Sterling Commerce Software is distributed on the same storage media as the ICE Software
(Copyright © 1997 ICE Engineering, Inc./Timothy Gerard Endres.) ("ICE Software"). The ICE Software is
independent from and not linked or compiled with the Sterling Commerce Software. The ICE Software is
a free software product which can be distributed and/or modified under the terms of the GNU General
Public License as published by the Free Software Foundation; either version 2 of the License or any later
version.

A copy of the GNU General Public License is provided at installdir/jar/jniregistry/1_2/ICE_License.txt.
This license only applies to the ICE Software and does not apply to the Sterling Commerce Software, or
any other Third Party Software.

The ICE Software was modified slightly in order to fix a problem discovered by Sterling Commerce
involving the RegistryKey class in the RegistryKey.java in the JNIRegistry.jar. The class was modified to
comment out the finalize () method and rebuild of the JNIRegistry.jar file.

Source code for the bug fix completed by Sterling Commerce on January 8, 2003 is located at:
installdir/jar/jniregistry/1_2/RegistryKey.java. Source code for all other components of the ICE Software
is located at http://www.trustice.com/java/jnireg/index.shtml.

The ICE Software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

JBOSS SOFTWARE

The Sterling Commerce Software is distributed on the same storage media as the JBoss Software
(Copyright © 1999-2002 JBoss.org) ("JBoss Software"). The JBoss Software is independent from and
not linked or compiled with the Sterling Commerce Software. The JBoss Software is a free software
product which can be distributed and/or modified under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either version 2.1 of the License or any later
version.

A copy of the GNU Lesser General Public License is provided at:
<install_dir>\jar\jboss\4_2_0\LICENSE.html

This license only applies to the JBoss Software and does not apply to the Sterling Commerce Software,
or any other Third Party Software.

The JBoss Software is not distributed by Sterling Commerce in its entirety. Rather, the distribution is
limited to the following jar files: el-api.jar, jasper-compiler-5.5.15.jar, jasper-el.jar, jasper.jar,
jboss-common-client.jar, jboss-j2ee.jar, jboss-jmx.jar, jboss-jsr77-client.jar, jbossmq-client.jar,

jnpserver.jar, jsp-api.jar, servlet-api.jar, tomcat-juli.jar.

The JBoss Software was modified slightly in order to allow the ClientSocketFactory to return a socket
connected to a particular host in order to control the host interfaces, regardless of whether the
ClientSocket Factory specified was custom or note. Changes were made to org.jnp..server.Main. Details
concerning this change can be found at
http://sourceforge.net/tracker/?func=detail&aid=1008902&group_id=22866&atid=376687.

Source code for the modifications completed by Sterling Commerce on August 13, 2004 is located at:
http://sourceforge.net/tracker/?func=detail&aid=1008902&group_id=22866&atid=376687. Source code
for all other components of the JBoss Software is located at http://www.jboss.org.

JGO SOFTWARE

The Sterling Commerce Software is distributed with, or on the same storage media, as certain
redistributable portions of the JGo Software provided by Northwoods Software Corporation under a
commercial license agreement (the "JGo Software"). The JGo Software is provided subject to the
disclaimers set forth above and the following notice:

U.S. Government Restricted Rights

The JGo Software and documentation are provided with RESTRICTED RIGHTS. Use, duplication, or
disclosure by the Government is subject to restrictions as set forth in subparagraph (C)(1)(ii) of the
Rights in Technical Data and Computer Software clause at DFARS 252.227-7013 or subparagraphs (C)(1)
and (2) of the Commercial Computer Software - Restricted Rights at 48 CFR 52.227-19, as applicable.
Contractor / manufacturer of the JGo Software is Northwoods Software Corporation, 142 Main St.,
Nashua, NH 03060.

JSLib Software

The Sterling Commerce Software is distributed with or on the same storage media as the JSLib software
product (Copyright (c) 2003-2009 Mozdev Group, Inc.) ("JSLib Software"). The JSLib Software is
distributed under the terms of the MOZILLA PUBLIC LICENSE Version 1.1. A copy of this license is
located at <install>\repository\eardata\platform_uifwk_ide\war\designer\MPL-1.1.txt. The JSLib
Software code is distributed in source form and is located at http://jslib.mozdev.org/installation.html.
Neither the Sterling Commerce Software nor any other Third-Party Code is a Modification or Contribution
subject to the Mozilla Public License. Pursuant to the terms of the Mozilla Public License, the following
notice applies only to the JSLib Software (and not to the Sterling Commerce Software or any other
Third-Party Software):

"The contents of the file located at http://www.mozdev.org/source/browse/jslib/ are subject to the
Mozilla Public License Version 1.1 (the "License"); you may not use this file except in compliance with the
License. You may obtain a copy of the License at http://www.mozilla.org/MPL/MPL-1.1.html.

Software distributed under the License is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
KIND, either express or implied. See the License for the specific language governing rights and
limitations under the License.

The Original Code is Mozdev Group, Inc. code. The Initial Developer of the Original Code is Mozdev
Group, Inc. Portions created by_Mozdev Group, Inc. are Copyright © 2003 Mozdev Group, Inc. All Rights
Reserved. Original Author: Pete Collins <pete@mozdev.org>one Contributor(s):_____none
listed________.

Alternatively, the contents of this file may be used under the terms of the ____ license (the "[___]
License"), in which case the provisions of [___] License are applicable instead of those above. If you
wish to allow use of your version of this file only under the terms of the [___] License and not allow
others to use your version of this file under the MPL, indicate your decision by deleting the provisions
above and replace them with the notice and other provisions required by the [___] License. If you do not
delete the provisions above, a recipient may use your version of this file under either the MPL or the
[___] License."

The preceding license only applies to the JSLib Software and does not apply to the Sterling Commerce
Software, or any other Third-Party Software.

Json Software

The Sterling Commerce Software is also distributed with or on the same storage media as the Json 2.2.2
software (Copyright © 2006-2008 Json-lib) ("Json Software"). Json Software is free software which is
distributed under the terms of the Apache License Version 2.0. A copy of License Version 2.0 is found in
<install>/jar/jsonlib/2_2_2/json-lib-2.2.2-jdk13.jar.

This product includes software developed by Douglas Crockford (http://www.crockford.com).

The Json Software was not modified. Neither the Sterling Commerce Software, modifications, if any, to
the Json Software, nor other Third Party Code is a Derivative Work or a Contribution as defined in
License Version 2.0. License Version 2.0 applies only to the Json Software which is the subject of the
specific directory file and does not apply to the Sterling Commerce Software or to any other Third Party
Software. License Version 2.0 includes the following provision:

"Unless required by applicable law or agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS
OF ANY KIND, either express or implied, including, without limitation, any warranties or conditions of
TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. You are
solely responsible for determining the appropriateness of using or redistributing the Work and assume
any risks associated with Your exercise of permissions under this License."

Purple Technology

The Sterling Commerce Software is distributed with or on the same storage media as the Purple
Technology Software (Copyright (c) 1995-1999 Purple Technology, Inc.) ("Purple Technology Software"),
which is subject to the following license:

Copyright (c) 1995-1999 Purple Technology, Inc. All rights reserved.

PLAIN LANGUAGE LICENSE: Do whatever you like with this code, free of charge, just give credit where
credit is due. If you improve it, please send your improvements to alex@purpletech.com. Check
http://www.purpletech.com/code/ for the latest version and news.

LEGAL LANGUAGE LICENSE: Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and
the following disclaimer in the documentation and/or other materials provided with the distribution.

3. The names of the authors and the names "Purple Technology," "Purple Server" and "Purple Chat" must
not be used to endorse or promote products derived from this software without prior written permission.
For written permission, please contact server@purpletech.com.

THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND PURPLE TECHNOLOGY "AS IS'' AND ANY
EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE AUTHORS OR PURPLE TECHNOLOGY BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

The preceding license only applies to the Purple Technology Software and does not apply to the Sterling
Commerce Software, or any other Third Party Software.

Rico Software

The Sterling Commerce Software is also distributed with or on the same storage media as the Rico.js
software (Copyright © 2005 Sabre Airline Solutions) ("Rico Software"). Rico Software is free software

which is distributed under the terms of the Apache License Version 2.0. A copy of License Version 2.0 is
found in <install>/repository/eardata/platform/war/ajax/scripts/Rico_License.txt.

The Rico Software was not modified. Neither the Sterling Commerce Software, modifications, if any, to
the Rico Software, nor other Third-Party Code is a Derivative Work or a Contribution as defined in
License Version 2.0. License Version 2.0 applies only to the Rico Software which is the subject of the
specific directory file and does not apply to the Sterling Commerce Software or to any other Third-Party
Software. License Version 2.0 includes the following provision:

"Unless required by applicable law or agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS
OF ANY KIND, either express or implied, including, without limitation, any warranties or conditions of
TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. You are
solely responsible for determining the appropriateness of using or redistributing the Work and assume
any risks associated with Your exercise of permissions under this License."

Rhino Software

The Sterling Commerce Software is distributed with or on the same storage media as the Rhino js.jar
(Copyright (c) 1998-2009 Mozilla.org.) ("Rhino Software"). A majority of the source code for the Rhino
Software is dual licensed under the terms of the MOZILLA PUBLIC LICENSE Version 1.1. or the GPL v.
2.0. Additionally, some files (at a minimum the contents of
toolsrc/org/Mozilla/javascript/toolsdebugger/treetable) are available under another license as set forth in
the directory file for the Rhino Software.

Sterling Commerce's use and distribution of the Rhino Software is under the Mozilla Public License. A
copy of this license is located at <install>/3rdParty/rico license.doc. The Rhino Software code is
distributed in source form and is located at http://mxr.mozilla.org/mozilla/source/js/rhino/src/. Neither
the Sterling Commerce Software nor any other Third-Party Code is a Modification or Contribution subject
to the Mozilla Public License. Pursuant to the terms of the Mozilla Public License, the following notice
applies only to the Rhino Software (and not to the Sterling Commerce Software or any other Third-Party
Software):

"The contents of the file located at <install>/jar/rhino/1_7R1/js.jar are subject to the Mozilla Public
License Version 1.1 (the "License"); you may not use this file except in compliance with the License. You
may obtain a copy of the License at http://www.mozilla.org/MPL/.

Software distributed under the License is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
KIND, either express or implied. See the License for the specific language governing rights and
limitations under the License.

The Original Code is Rhino code, released May 6, 1999. The Initial Developer is Netscape
Communications Corporation. Portions created by the Initial Developer are Copyright © 1997-1999. All
Rights Reserved. Contributor(s):_____none listed.

The preceding license only applies to the Rico Software and does not apply to the Sterling Commerce
Software, or any other Third-Party Software.

Sun Microsystems

The Sterling Commerce Software is distributed with or on the same storage media

as the following software products (or components thereof): Sun JMX, and Sun JavaMail (collectively,
"Sun Software"). Sun Software is free software which is distributed under the terms of the licenses
issued by Sun which are included in the directory files located at:

SUN COMM JAR - <install>/Applications/Foundation/lib

SUN ACTIVATION JAR - <install>/ Applications/Foundation/lib

SUN JavaMail - <install>/jar/javamail/1_4/LICENSE.txt

The Sterling Commerce Software is also distributed with or on the same storage media as the
Web-app_2_3.dtd software (Copyright © 2007 Sun Microsystems, Inc.) ("Web-App Software").
Web-App Software is free software which is distributed under the terms of the Common Development

and Distribution License ("CDDL"). A copy of the CDDL is found in
http://kenai.com/projects/javamail/sources/mercurial/show.

The source code for the Web-App Software may be found at:
<install>/3rdParty/sun/javamail-1.3.2/docs/JavaMail-1.2.pdf

Such licenses only apply to the Sun product which is the subject of such directory and does not apply to
the Sterling Commerce Software or to any other Third Party Software.

The Sterling Commerce Software is also distributed with or on the same storage media as the Sun
Microsystems, Inc. Java (TM) look and feel Graphics Repository ("Sun Graphics Artwork"), subject to the
following terms and conditions:

Copyright 2000 by Sun Microsystems, Inc. All Rights Reserved.

Sun grants you ("Licensee") a non-exclusive, royalty free, license to use, and redistribute this software
graphics artwork, as individual graphics or as a collection, as part of software code or programs that you
develop, provided that i) this copyright notice and license accompany the software graphics artwork; and
ii) you do not utilize the software graphics artwork in a manner which is disparaging to Sun. Unless
enforcement is prohibited by applicable law, you may not modify the graphics, and must use them true
to color and unmodified in every way.

This software graphics artwork is provided "AS IS," without a warranty of any kind. ALL EXPRESS OR
IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE HEREBY
EXCLUDED. SUN AND ITS LICENSORS SHALL NOT BE LIABLE FOR ANY DAMAGES SUFFERED BY
LICENSEE AS A RESULT OF USING, MODIFYING OR DISTRIBUTING THE SOFTWARE GRAPHICS
ARTWORK.

IN NO EVENT WILL SUN OR ITS LICENSORS BE LIABLE FOR ANY LOST REVENUE, PROFIT OR DATA, OR
FOR DIRECT, INDIRECT, SPECIAL, CONSEQUENTIAL, INCIDENTAL OR PUNITIVE DAMAGES, HOWEVER
CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF THE USE OF OR INABILITY
TO USE SOFTWARE GRAPHICS ARTWORK, EVEN IF SUN HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

If any of the above provisions are held to be in violation of applicable law, void, or unenforceable in any
jurisdiction, then such provisions are waived to the extent necessary for this Disclaimer to be otherwise
enforceable in such jurisdiction.

The preceding license only applies to the Sun Graphics Artwork and does not apply to the Sterling
Commerce Software, or any other Third Party Software.

WARRANTY DISCLAIMER

This documentation and the Sterling Commerce Software which it describes are licensed either "AS IS"
or with a limited warranty, as set forth in the Sterling Commerce license agreement. Other than any
limited warranties provided, NO OTHER WARRANTY IS EXPRESSED AND NONE SHALL BE IMPLIED,
INCLUDING THE WARRANTIES OF MERCHANTABILITY AND FITNESS FOR USE OR FOR A PARTICULAR
PURPOSE. The applicable Sterling Commerce entity reserves the right to revise this publication from time
to time and to make changes in the content hereof without the obligation to notify any person or entity
of such revisions or changes.

The Third Party Software is provided "AS IS" WITHOUT ANY WARRANTY AND ANY EXPRESSED OR
IMPLIED WARRANTIES, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. FURTHER, IF YOU
ARE LOCATED OR ACCESSING THIS SOFTWARE IN THE UNITED STATES, ANY EXPRESS OR IMPLIED
WARRANTY REGARDING TITLE OR NON-INFRINGEMENT ARE DISCLAIMED.

Without limiting the foregoing, the ICE Software and JBoss Software are distributed WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE.

xv

Contents

Preface

Intended Audience ...xxiii
Structure ..xxiii
Selling and Fulfillment Foundation Documentation .. xxv
Conventions ...xxvii

1 Introduction

1.1 Application Integration Architecture ... 2
1.2 Integration with Warehouse Management Systems 3
1.3 Integration with the Parcel Carrier Adapters.. 4
1.4 Integration with the Loftware Print Server and Label Manager 4
1.5 Integration with Material Handling Equipment ... 4
1.6 Integration with Enterprise Resource Planning Systems............................ 5
1.7 Integration with Point of Sale Systems... 5
1.8 Integration with JMS Systems... 5
1.9 Integration with Financial Systems .. 5
1.10 Rapid Deployment Features .. 6

2 Integrating with the Distribution Center System

2.1 DCS Purchase Order Interface... 8
2.1.1 Purchase Order Workflow .. 8
2.1.2 Understanding Purchase Order Transactions10
2.1.3 Configuring the Purchase Order Time-Triggered Transactions13
2.1.4 Configuring the Purchase Order Pipeline ...14

xvi Integration Guide

2.1.5 DCS Purchase Order Interface.. 15
2.1.5.1 POHDR - Purchase Order Download Header................................. 15
2.1.5.2 PODTL - Purchase Order Download Detail 16
2.1.5.3 Sample Receive Order Output XML .. 17
2.1.5.4 RCPHDR - Purchase Order Receipt Header 17
2.1.5.5 RCPDTL - Purchase Order Receipt Detail 18
2.1.5.6 Receive Order Input XML Mapping ... 18
2.2 DCS Shipment Interface... 20
2.2.1 Understanding the Order Transactions... 20
2.2.2 Configuring DCS Shipment Time-Triggered Transactions.................... 21
2.2.3 DCS Order Release Interface.. 23
2.2.3.1 ORDHDR – Order Release Order Header 23
2.2.3.2 ORDDTL – Order Release Order Detail .. 25
2.2.3.3 ORDADR – Order Release Order Address 27
2.2.3.4 ORDINS – Order Release Order Instruction 28
2.2.3.5 ORDBOM – Order Release Order Bill of Materials.......................... 28
2.2.3.6 ORDNAM – Order Release Order Name 29
2.2.4 DCS Shipment Confirmation .. 32
2.2.4.1 PCKHDR – Shipment Confirmation Pickticket Header 32
2.2.4.2 CARHDR – Shipment Confirmation Carton Header 34
2.2.4.3 PCKINF – Shipment Confirmation Pick Information....................... 35
2.2.4.4 CNCDTL – Shipment Confirmation Cancel Detail 35
2.2.4.5 SRLDTL - Pick Ticket Serial Record... 36
2.3 DCS Inventory Interface... 38
2.3.1 DCS Inventory Upload... 38
2.3.1.1 TRNDTL – Inventory Change Upload Record 39
2.3.2 DCS Inventory Download .. 40
2.3.2.1 INVCHG - Inventory Change Download Record 42
2.4 DCS Returns Interface ... 43
2.4.1 Return Order Integration Workflow ... 43
2.4.2 Determining the Enterprise Code for Blind Return during Upload......... 45
2.4.3 Configuring Return Order Integration with DCS 46
2.4.3.1 Configuring return release download to DCS 46
2.4.3.2 Configuration for Receiving Blind RMA .. 47
2.4.4 Return Order Interface Data Mapping.. 49

 xvii

2.4.4.1 Return Order Release Download Data Mapping49
2.4.4.1.1 RMAHDR - Return Release Download Header...........................49
2.4.4.1.2 RMADTL - Return Release Download Detail52
2.4.4.1.3 RMACMT- Return Release Download Comments53
2.4.4.2 Return Receipt Upload Data Mapping ..54
2.4.4.2.1 Data mapping to create Return Order for blind return...............54
2.4.4.2.2 Data mapping to record return receipts56
2.4.5 Assumptions and Limitations...57

3 Integrating with Stand-Alone Sterling WMS

3.1 Installing Integration Pack for Receipt and Inventory Change Upload
Interfaces on a WMS Instance..61

3.2 Installing Integration Pack for Receipt and Inventory Change Upload
Interfaces on a DOM Instance..62

3.3 Uploading Receipts ...63
3.3.1 Uploading the Receipt Information...63
3.3.1.1 The ReceiptUpload-751 Service ..63
3.3.1.2 Configuring the ReceiptUpload-751 Service..................................64
3.3.2 Uploading the Receipt Adjustment Information..................................66
3.3.2.1 The AdjustReceiptUpload-751 Service ...66
3.3.2.2 Configuring the Updated Receipt Adjustment Information from a Node

66
3.3.3 Loading the Receipt Information from a Node....................................68
3.3.3.1 The LoadReceiptInfo-751 service..69
3.3.4 Loading the Receipt Adjustment Information from a Node...................70
3.3.4.1 The LoadReceiptAdjustments-751 service71
3.4 Uploading Inventory Changes at a Node ..72
3.4.1 Uploading the Updated Inventory Information72
3.4.1.1 The InventoryChangeUpload-751 Service72
3.4.1.2 Configuring the Updated Inventory Information from a Node..........73
3.4.2 Loading Inventory Information from a Node......................................75
3.4.2.1 The LoadWMSInventoryChangeInfo-751 service76
3.5 Uploading the Inventory Snapshot...77
3.5.1 Generating Inventory Snapshot Files..77

xviii Integration Guide

4 Integrating with Third-Party Warehouse Management Systems

4.1 Third-Party Warehouse Management Systems....................................... 81
4.1.1 Third-Party Shipment Advice.. 82
4.1.2 Third-Party Inventory Change .. 82

5 Integrating with the Loftware Print Server and Label Manager

5.1 Designing Custom Labels.. 86
5.2 Defining Custom Print Services ... 92

6 Integrating with the Parcel Carrier Adapters

6.1 APIs Invoked During the Parcel Carrier Adapters Integration103
6.2 Integration Dependencies..122

7 Integrating with Material Handling Equipment

7.1 Integration Overview ..123
7.2 Integrating with Pick-to-Light System ...124
7.3 Integrating with Put-to-Light System ..125
7.4 Integrating with Carousel or Automated Storage and Retrieval System....127
7.4.1 Integration When a Product is Being Put Away128
7.4.2 Integration When a Product is Being Retrieved129
7.4.3 Integration When a Product is Being Counted..................................130
7.5 Integrating with Automatic Guided Vehicle...131
7.6 Integrating with Inbound Sorter ...132
7.7 Integrating with Pack Sorter ..133
7.8 Integrating with Shipping Sorter...134
7.9 Integrating with Cube-a-Scan ..135
7.10 Integrating with Weighing Scale ...136
7.10.1 Integrating with Mettler Toledo Weighing Scales136
7.10.2 Integrating with Other Weighing Scales ..136

8 Integrating with Enterprise Resource Planning Systems

8.1 Integration Overview ..140
8.2 Integration Data Flow Diagram...140

 xix

8.3 Integration Protocol..141
8.3.1 Data exchange from an ERP System to the Sterling WMS141
8.3.2 Data exchange from the Sterling WMS to an ERP System141
8.4 Integration Specification Details ...141
8.4.1 ERP Integration – Order Management ..141
8.4.1.1 Customer Download from an ERP System to the Sterling WMS142
8.4.1.2 Shipment/Order Release Download from an ERP System to the

Sterling WMS...142
8.4.1.3 Shipment Confirmation Upload from the Sterling WMS to an ERP

System...142
8.4.2 ERP Integration – Purchasing..143
8.4.2.1 Vendor Download from an ERP System to the Sterling WMS.........143
8.4.2.2 Purchase Order Download from an ERP System to

the Sterling WMS ...143
8.4.2.3 Purchase Order Closure Download from an ERP System to

the Sterling WMS ...144
8.4.2.4 ASN Download from an ERP System to the Sterling WMS.............144
8.4.2.5 Receipt Upload from the Sterling WMS to an ERP System.............144
8.4.3 ERP Integration - Inventory ..145
8.4.3.1 Item Download from an ERP System to the Sterling WMS145
8.4.3.2 Item Attributes Upload from the Sterling WMS to an ERP System..146
8.4.3.3 Inventory Change Upload from the Sterling WMS to an

ERP System...146
8.4.3.4 Inventory Snapshot Upload from the Sterling WMS to an

ERP System...147
8.4.4 ERP System Integration - WIP...147
8.4.4.1 BOM Download from an ERP System to the Sterling WMS147
8.4.4.2 Work Order Download from an ERP System to the Sterling WMS...148
8.4.4.3 Work Order Demand Upload for Manually Created Work Orders from

the Sterling WMS to ERP ...148
8.4.4.4 Work Order Confirmation Upload from the Sterling WMS to an ERP

System...149
8.4.4.5 Close Work Order from the Sterling WMS to an ERP System.........149
8.4.5 ERP Integration – Returns ..150
8.4.5.1 Return Order Download from ERP to the Sterling WMS150
8.4.5.2 Return Order Closure Download from an ERP System to the Sterling

WMS ..150

xx Integration Guide

8.4.5.3 Receipt Upload from the Sterling WMS to an ERP System.............151

9 Integrating with Point of Sale Systems

9.1 API Invoked During Point of Sale Integration..153

10 Integrating User and Item Data with External Systems

10.1 Order Management...158
10.1.1 APIs Invoked During Order Management Integration158
10.2 User and Item Synchronization ..158
10.2.1 Item Synchronization Services in Selling and Fulfillment Foundation...159
10.2.1.1 SendItemChanges Service ...159
10.2.1.2 ReceiveItemChanges Service ...160
10.2.2 Customer Synchronization Services in Selling and Fulfillment Foundation .

161
10.2.2.1 The SendCustomerChanges Service ..162
10.2.2.2 The ReceiveCustomerChanges Service163
10.3 Customer Event Templates ..164
10.4 Data Mapping ..165
10.4.1 Customer Data Mapping ...165
10.4.2 Item Data Mapping..167

11 Integrating with JMS Systems

11.1 BEA WebLogic JMS ...171
11.1.1 Configuring WebLogic JMS ..171
11.1.2 WebLogic Time-Out Considerations for Transacted Sessions173
11.2 IBM WebSphere MQ..174
11.2.1 Creating the Queue Manager and Queues174
11.2.2 Configuring a Queue Manager to Client Connection175
11.2.3 Configuring Selling and Fulfillment Foundation to Use WebSphere MQ

Queues ..177
11.2.4 Accessing WebSphere MQ Using WebSphere’s JNDI Namespace.........177
11.2.5 Before You Begin...178
11.2.5.1 Inside the Applications Manager ...179
11.2.5.2 Inside the WebSphere Admin Console179

 xxi

11.3 IBM WebSphere Default Messaging...180
11.3.1 Configuring Selling and Fulfillment Foundation to Use WebSphere Default

Messaging..180
11.3.2 Before you Begin...180
11.4 JBoss Messaging JMS..181
11.4.1 Creating Queues ...182
11.4.2 Configuring Selling and Fulfillment Foundation to Use JBoss Messaging

Queues ..183
11.5 TIBCO JMS ..184
11.5.1 TIBCO JMS Attributes ..184
11.5.2 Configuring Selling and Fulfillment Foundation to use TIBCO Messaging

Queues ..186

12 Integrating with Financial Systems

12.1 Load Initial Inventory Cost Data...189
12.2 Configure Process-Specific Events ..190
12.2.1 Receipt Process...190
12.2.1.1 INVENTORY_COST_CHANGE ..190
12.2.1.2 INVENTORY_COST_WRITEOFF ...191
12.2.2 Sales Order Creation Process ..191
12.2.3 Shipment Confirmation Process ...192
12.2.3.1 INVENTORY_VALUE_CHANGE...192
12.2.4 Invoice Process...192
12.2.4.1 ON_INVOICE_CREATION ...192
12.2.5 Work Order Confirmation Process ..193
12.2.5.1 INVENTORY_COST_CHANGE ..193
12.2.5.2 INVENTORY_COST_WRITEOFF ...193
12.2.5.3 INVENTORY_VALUE_CHANGE...194
12.2.6 Inventory Adjustment Process ..194
12.2.6.1 INVENTORY_VALUE_CHANGE...194
12.2.7 Return Order Process...194
12.2.7.1 INVENTORY_VALUE_CHANGE...195
12.2.8 Callback from Financial System for Inventory Value Adjustment195
12.2.8.1 COULD_NOT_APPLY_INV_VALUE_CHANGE.................................196

xxii Integration Guide

13 Rapid Deployment Features

13.1 Interface Field Mapping Documents ..197
13.1.1 Generating Interface Field Mapping Template Documents198
13.1.1.1 Generating Interface Field Mapping Template Documents Using the

Generation Tool ...198
13.1.1.2 Using Interface Field Mapping Template Documents199
13.2 Initial Data Loading ..199
13.2.1 Initial Data-Loading Services ..200
13.2.1.1 Item Configuration Data-Loading..202
13.2.1.2 Shipping Carton Data-Loading..205
13.2.1.3 Location Data-Loading ..206
13.2.1.4 SKU Dedication Data-Loading...210
13.2.1.5 Location Inventory Data-Loading ..212
13.2.1.6 Hazmat Data-Loading ...214
13.2.1.6.1 Initially Loading the Hazmat Data ..215
13.2.1.6.2 Maintaining the Hazmat Data ..215

Index

 xxiii

Preface

This manual describes how Selling and Fulfillment Foundation integrates
with other Sterling Commerce offerings, such as Distributed Center
Solution and third-party applications.

Intended Audience
This manual is intended for use by those who are responsible for
integrating Selling and Fulfillment Foundation with other applications.

Structure
This manual contains the following sections:

Chapter 1, "Introduction"
This chapter discusses integration in general terms and provides an
overview of the application integration architecture.

Chapter 2, "Integrating with the Distribution Center System"
This chapter describes how to integrate Selling and Fulfillment
Foundation with the Distribution Center System (DCS), Sterling
Commerce’s previously released Distribution Center Solution.

Chapter 3, "Integrating with Stand-Alone Sterling WMS"
This chapter describes how to integrate Selling and Fulfillment
Foundation with a stand-alone Sterling Warehouse Management System.

xxiv Integration Guide

Chapter 4, "Integrating with Third-Party Warehouse
Management Systems"
This chapter describes how to integrate Selling and Fulfillment
Foundation with third-party warehouse management systems.

Chapter 5, "Integrating with the Loftware Print Server and
Label Manager"
This chapter explains how to integrate the Sterling Warehouse
Management System with the Loftware Print Server and Loftware Label
Manager.

Chapter 6, "Integrating with the Parcel Carrier Adapters"
This chapter explains how to integrate the Sterling Warehouse
Management System with the Parcel Carrier Adapters (Carrier Adapter).

Chapter 7, "Integrating with Material Handling Equipment"
This chapter explains how to integrate the Sterling Warehouse
Management System with various material handling equipment (MHE),
including the Mettler Toledo Weighing Scale.

Chapter 8, "Integrating with Enterprise Resource Planning
Systems"
This chapter explains how to integrate the Sterling Warehouse
Management System with Enterprise Resource Planning (ERP) systems to
utilize any additional functions that are available in the existing
environment.

Chapter 9, "Integrating with Point of Sale Systems"
This chapter explains how to integrate the Sterling Warehouse
Management System with point-of-sale systems in stores.

Chapter 10, "Integrating User and Item Data with External
Systems"
This chapter explains how Selling and Fulfillment Foundation enables you
to integrate with external systems used to sell products, through multiple
channels.

 xxv

Chapter 11, "Integrating with JMS Systems"
This chapter explains how to configure third-party message queueing
applications for BEA WebLogic JMS and IBM WebSphere MQ JMS.

Chapter 12, "Integrating with Financial Systems"
This chapter explains how to integrate the Selling and Fulfillment
Foundation inventory cost management interfaces with your financial
system.

Chapter 13, "Rapid Deployment Features"
This chapter explains the rapid deployment features in the Sterling
Warehouse Management System and how to utilize these for rapid
deployment of Selling and Fulfillment Foundation.

Selling and Fulfillment Foundation
Documentation

For more information about the Selling and Fulfillment Foundation

components, see the following manuals:

Selling and Fulfillment Foundation: Release Notes

Selling and Fulfillment Foundation: Installation Guide

Selling and Fulfillment Foundation: Upgrade Guide

Selling and Fulfillment Foundation: Configuration Deployment Tool
Guide

Selling and Fulfillment Foundation: Performance Management Guide

Selling and Fulfillment Foundation: High Availability Guide

Selling and Fulfillment Foundation: System Management Guide

Selling and Fulfillment Foundation: Localization Guide

Selling and Fulfillment Foundation: Customization Basics Guide

Selling and Fulfillment Foundation: Customizing APIs Guide

Selling and Fulfillment Foundation: Customizing Console JSP Interface
for End User Guide

Selling and Fulfillment Foundation: Customizing the RCP Interface
Guide

xxvi Integration Guide

Selling and Fulfillment Foundation: Customizing User Interfaces for
Mobile Devices Guide

Selling and Fulfillment Foundation: Customizing Web UI Framework
Guide

Selling and Fulfillment Foundation: Customizing Swing Interface
Guide

Selling and Fulfillment Foundation: Extending the Condition Builder
Guide

Selling and Fulfillment Foundation: Extending the Database Guide

Selling and Fulfillment Foundation: Extending Transactions Guide

Selling and Fulfillment Foundation: Using Sterling RCP Extensibility
Tool Guide

Selling and Fulfillment Foundation: Integration Guide

Selling and Fulfillment Foundation: Product Concepts Guide

Sterling Warehouse ManagementTM System: Concepts Guide

Selling and Fulfillment Foundation: Application Platform Configuration
Guide

Sterling Distributed Order ManagementTM: Configuration Guide

Sterling Supply Collaboration: Configuration Guide

Sterling Global Inventory VisibilityTM: Configuration Guide

Catalog ManagementTM: Configuration Guide

Sterling Logistics Management: Configuration Guide

Sterling Reverse LogisticsTM: Configuration Guide

Sterling Warehouse Management System: Configuration Guide

Selling and Fulfillment Foundation: Application Platform User Guide

Sterling Distributed Order Management: User Guide

Sterling Supply Collaboration: User Guide

Sterling Global Inventory Visibility: User Guide

Sterling Logistics Management: User Guide

 xxvii

Sterling Reverse Logistics: User Guide

Sterling Warehouse Management System: User Guide

Selling and Fulfillment Foundation: Mobile Application User Guide

Selling and Fulfillment Foundation: Business Intelligence Guide

Selling and Fulfillment Foundation: Javadocs

Sterling Selling and Fulfillment SuiteTM: Glossary

Parcel Carrier: Adapter Guide

Selling and Fulfillment Foundation: Multitenant Enterprise Guide

Selling and Fulfillment Foundation: Password Policy Management
Guide

Selling and Fulfillment Foundation: Properties Guide

Selling and Fulfillment Foundation: Catalog Management Concepts
Guide

Selling and Fulfillment Foundation: Pricing Concepts Guide

Business Center: Item Administration Guide

Business Center: Pricing Administration Guide

Business Center: Customization Guide

Business Center: Localization Guide

Conventions
The following conventions may be used in this manual:

Convention Meaning

. . . Ellipsis represents information that has been
omitted.

< > Angle brackets indicate user-supplied input.

mono-spaced text Mono-spaced text indicates a file name, directory
path, attribute name, or an inline code example or
command.

xxviii Integration Guide

/ or \ Slashes and backslashes are file separators for
Windows, UNIX, and Linux operating systems. The
file separator for the Windows operating system is
"\" and the file separator for UNIX and Linux
systems is "/". The UNIX convention is used unless
otherwise mentioned.

<INSTALL_DIR> User-supplied location of the Selling and Fulfillment
Foundation installation directory. This is only
applicable for Release 8.0 or later.

<INSTALL_DIR_OLD> User-supplied location of the Selling and Fulfillment
Foundation installation directory (for Release 8.0 or
later).

Note: This is applicable only for users upgrading
from Release 8.0 or later.

<YANTRA_HOME> User-supplied location of the Sterling Supply Chain
Applications installation directory. This is only
applicable for Releases 7.7, 7.9, and 7.11.

<YANTRA_HOME_OLD> User-supplied location of the Sterling Supply Chain
Applications installation directory (for Releases 7.7,
7.9, or 7.11).

Note: This is applicable only for users upgrading
from Releases 7.7, 7.9, or 7.11.

<YFS_HOME> For Releases 7.3, 7.5, and 7.5 SP1, this is the
user-supplied location of the Sterling Supply Chain
Applications installation directory.

For Releases 7.7, 7.9, and 7.11, this is the
user-supplied location of the <YANTRA_
HOME>/Runtime directory.

For Release 8.0 or above, the <YANTRA_
HOME>/Runtime directory is no longer used and this
is the same location as <INSTALL_DIR>.

<YFS_HOME_OLD> This is the <YANTRA_HOME>/Runtime directory for
Releases 7.7, 7.9, or 7.11.

Note: This is only applicable for users upgrading
from Releases 7.7, 7.9, or 7.11.

Convention Meaning

 xxix

<ANALYTICS_HOME> User-supplied location of the Sterling Analytics
installation directory.

Note: This convention is used only in the
Selling and Fulfillment Foundation: Business
Intelligence Guide.

<COGNOS_HOME> User-supplied location of the IBM Cognos 8
Business Intelligence installation directory.

Note: This convention is used only in the
Selling and Fulfillment Foundation: Business
Intelligence Guide.

<MQ_JAVA_INSTALL_
PATH>

User-supplied location of the IBM WebSphere®
MQ Java components installation directory.

Note: This convention is used only in the
Selling and Fulfillment Foundation: System
Manangement and Administration Guide.

<DB> Refers to Oracle®, IBM DB2®, or Microsoft SQL
Server® depending on the database server.

<DB_TYPE> Depending on the database used, considers the
value oracle, db2, or sqlserver.

Convention Meaning

xxx Integration Guide

Note: The Selling and Fulfillment Foundation documentation set uses the
following conventions in the context of the product name:

Yantra is used for Release 7.7 and earlier.

Sterling Supply Chain Applications is used for Releases 7.9 and 7.11.

Sterling Multi-Channel Fulfillment Solution is used for Releases 8.0
and 8.2.

Selling and Fulfillment Foundation is used for Release 8.5.

Introduction 1

1
Introduction

This guide describes how to integrate Selling and Fulfillment Foundation
with other Sterling Commerce offerings, such as the Distributed Center
Solution and third-party applications through the services defined using
the Service Definition Framework. For more information about defining
specific services, see the Selling and Fulfillment Foundation: Application
Platform Configuration Guide.

Selling and Fulfillment Foundation provides integration with:

The Distribution Center System

Third-Party Warehouse Management System

The Parcel Carrier Adapters

Loftware Print Server and Label Manager

Material Handling Equipment

Enterprise Resource Planning Systems

Point of Sale Systems

JMS Systems

Financial Systems

Interface Field Mapping Documents

2 Integration Guide

Application Integration Architecture

1.1 Application Integration Architecture
Adapters connect to external systems through the Service Definition
Framework for data transformation.

Figure 1–1, "Integration Architecture" shows how the Service Definition
Framework fits into the applications integration architecture of Selling
and Fulfillment Foundation, the various adapters that perform data
transformation, and the goals of the transformations. For more
information about the adapter used within Selling and Fulfillment
Foundation, see the Selling and Fulfillment Foundation: Application
Platform Configuration Guide.

Note: If you try to configure more than one action serially
using the Service Definition Framework, the Applications
Manager throws an error message, "A continue link must
be attached to the next condition or action."

Therefore, Sterling Commerce recommends you to group
these actions and replace them with one service.

Integration with Warehouse Management Systems

Introduction 3

Figure 1–1 Integration Architecture

1.2 Integration with Warehouse Management
Systems

Selling and Fulfillment Foundation provides real-time integration with the
Sterling Warehouse Management System (Sterling WMS).

Selling and Fulfillment Foundation supports integration with the
Distribution Center System (DCS). The DCS application supports
warehouse inventory, distribution, returns and activities. Typically, it is
used in distribution centers for fulfilling large numbers of orders, with
items required in quantities of a case or less. For information about
integrating Selling and Fulfillment Foundation with the Distribution Center
System (DCS), see Chapter 2, "Integrating with the Distribution Center
System".

Selling and Fulfillment Foundation also supports integration with
third-party warehouse management systems. For information about
integrating Selling and Fulfillment Foundation with third-party warehouse
management systems, see Chapter 4, "Integrating with Third-Party
Warehouse Management Systems".

4 Integration Guide

Integration with Material Handling Equipment

1.3 Integration with the Parcel Carrier Adapters
Selling and Fulfillment Foundation provides integration with the Parcel
Carrier Adapters (Carrier Adapter), which manages all the
carrier-integration related functions of Selling and Fulfillment Foundation.
Selling and Fulfillment Foundation interfaces with the Carrier Adapter to
use its carrier-integration functions.

The Carrier Adapter is regularly updated with the latest carrier data, such
as rates and special services, and hence can act as a centralized
carrier-integration database and business rules manager. The Carrier
Adapter helps companies to quickly meet the changing requirements
initiated by both carriers and customers, in the most efficient way.

The Carrier Adapter has a data driven design. The functionality is defined
in terms of the relation between data elements stored in the database.
Carriers having similar functionality can be incorporated into an
installation with minimal engineering effort.

The Carrier Adapter is now integrated into Selling and Fulfillment
Foundation. For more information about the Carrier Adapter and how to
configure it, see the Parcel Carrier: Adapter Guide.

1.4 Integration with the Loftware Print Server
and Label Manager

Selling and Fulfillment Foundation provides integration with the Loftware
Print Server and Loftware Label Manager for printing reports and
designing custom labels. You can also design custom print services using
the Service Definition Framework. For more information about the print
server and label manager, see Chapter 5, "Integrating with the Loftware
Print Server and Label Manager".

1.5 Integration with Material Handling
Equipment

Selling and Fulfillment Foundation provides integration with various
material handling equipment (MHE). The automation enabled through the
integration enables increased efficiency in various processes of a
warehouse. For information about integrating Selling and Fulfillment

Integration with Financial Systems

Introduction 5

Foundation with MHE, see Chapter 7, "Integrating with Material Handling
Equipment".

1.6 Integration with Enterprise Resource
Planning Systems

Selling and Fulfillment Foundation provides integration with the
Enterprise Resource Planning (ERP) systems. An ERP system is a
packaged business software system that allows a company to automate
and integrate the majority of its business processes. For information
about integrating Selling and Fulfillment Foundation with ERP Systems,
see Chapter 8, "Integrating with Enterprise Resource Planning Systems".

1.7 Integration with Point of Sale Systems
Selling and Fulfillment Foundation provides integration with the
point-of-sale systems used in stores for product check-outs and returns
from customers. For information about integrating Selling and Fulfillment
Foundation with point-of-sale systems, see Chapter 9, "Integrating with
Point of Sale Systems".

1.8 Integration with JMS Systems
In order for some service nodes to communicate with external
applications, external message queueing software must be configured.
For information about configuring the third-party message queueing
applications, see Chapter 11, "Integrating with JMS Systems".

1.9 Integration with Financial Systems
To use the data captured using the Selling and Fulfillment Foundation
Inventory Cost Management feature with your financial system, you must
load the Initial Inventory Cost Data and configure process-specific
events.

For information about integrating Selling and Fulfillment Foundation with
financial systems, see Chapter 12, "Integrating with Financial Systems".

6 Integration Guide

Rapid Deployment Features

1.10 Rapid Deployment Features
This chapter explains the Selling and Fulfillment Foundation Rapid
Deployment Features, and how to utilize these for the rapid deployment
of Selling and Fulfillment Foundation. For information about Rapid
Deployment Features, see Chapter 13, "Rapid Deployment Features".

Integrating with the Distribution Center System 7

2
Integrating with the Distribution Center

System

The Distribution Center System (DCS) is a previously released product
that supports warehouse activities such as the inventory of items and the
distribution of packages. Typically, DCS operates in distribution centers
fulfilling large numbers of orders for items required in quantities of a
case or less. It supports both real-time radio frequency (RF) transactions
and paper-based transactions.

Selling and Fulfillment Foundation provides an interface-based
integration with DCS Release 6.2 SP2 for the following operations:

DCS Purchase Order Interface

DCS Order Release Interface

DCS Inventory Interface

Note: For the Selling and Fulfillment Foundation Release
8.5, the integration described in this chapter has been
deprecated.

8 Integration Guide

DCS Purchase Order Interface

2.1 DCS Purchase Order Interface
When a Purchase Order is created on Selling and Fulfillment Foundation
(either by importing Purchase Orders created by external order
management systems or by using the Application Console), DCS
integration enables you to publish that data to the DCS. The integration
interface uses the Purchase Order Download and Upload time-triggered
transactions. For more information about these transactions, see the
Selling and Fulfillment Foundation: Application Platform Configuration
Guide.

2.1.1 Purchase Order Workflow
Figure 2–1 illustrates the workflow for the Purchase Order Download and
Purchase Order Upload time-triggered transactions that send Purchase
Order data between an external system and the DCS using the Selling
and Fulfillment Foundation.

For step-by-step procedures, see "Configuring the Purchase Order
Time-Triggered Transactions".

Important: Selling and Fulfillment Foundation and
Distribution Center System integration requires that the
DCS interface format conforms to the field size and start
positions at each of the integration points as detailed in
the tables in this chapter. For information about
configuring DCS, see the DCS 6.2 documentation. In
addition, you must configure Selling and Fulfillment
Foundation as described in this chapter.

Note: Selling and Fulfillment Foundation is certified for
DCS 6.2 Service Pack 3 Hot Fix 13 and above.

DCS Purchase Order Interface

Integrating with the Distribution Center System 9

Figure 2–1 Workflow for Purchase Order Transactions

1. An external Purchase Order system invokes Selling and Fulfillment
Foundation createOrder() API to create a Purchase Order for a DCS
receiving node. A Purchase Order is created and the order status
becomes Created (1100).

Any future modifications to the original Purchase Order by an external
system are made by invoking the changeOrder() API.

2. The ON_SUCCESS event of the createOrder() or changeOrder() API
invokes an action, which in turn invokes a service called
YantraWMSPODownloadService. This service publishes data into the
YFS_EXPORT table with YantraWMSPODownloadService as the flow
name.

3. The Purchase Order Download time-triggered transaction takes the
record from the YFS_EXPORT table and inserts it into the DCS
interface INFC_DNLD_TAB_1 table. Before downloading to the DCS,
the transaction verifies that the ship node assigned to the Purchase

External System

Selling

1

2

3

4

5

INFC_DNLD_TAB_1

INFC_UPLD_TAB_1

createOrder()
changeOrder()

PO ReceiptUpload
PO

Download
YFS_EXPORT

DCS

10 Integration Guide

DCS Purchase Order Interface

Order line is a DCS ship node. If the ship node is not a DCS ship
node, the transaction marks the record as processed and takes no
further action.

4. The vendor sends an advance shipment notice (ASN) to the DCS for
shipping the items on the Purchase Order. When items are received at
the receiving node, the DCS uploads Purchase Order Receipt records
to the DCS interface table.

The Purchase Order Receipt Upload time-triggered transaction picks
up the Purchase Order Receipt records from the DCS upload interface
table and calls the receiveOrder() API with the Receive Purchase
Order transaction. The status of items received is changed to
Received (3900).

If the Purchase Order is to be downloaded to Selling and Fulfillment
Foundation from an external system, the ON_SUCCESS event of the
Receive Purchase Order transaction can be configured to invoke an
action to publish the Purchase Order Receipt data to the YFS_EXPORT
table.

The data is then uploaded back to the external Purchase Order
system.

2.1.2 Understanding Purchase Order Transactions
When deciding how to implement the DCS Purchase Order functionality,
keep in mind the expected behaviors associated with the Purchase Order
transactions when used in the following situations:

Supply Type Behavior
When the Purchase Order Status is Created (1100), the quantity in the
YFS_INVENTORY_SUPPLY table is added to the PO_PLACED supply type.

When the Purchase Order Status is moved to Order Received (3900),
the quantity in the YFS_INVENTORY_SUPPLY table moves from supply
type PLANNED_PO to supply type ONHAND. This is the default behavior and
can be reconfigured as needed.

Creating a Purchase Order
Selling and Fulfillment Foundation requires the Purchase Order number it
passes to the DCS to be unique across all Enterprises. While Selling and
Fulfillment Foundation permits the length of the Order number to be up

DCS Purchase Order Interface

Integrating with the Distribution Center System 11

to 40 characters, the DCS limits the length of both the Order and the
Purchase Order number to a maximum of 13 characters. In addition, to
comply with the DCS requirements, Purchase Order numbers may
contain any combination of numbers and upper-case alphabetic
characters; lower-case alphabetic characters are not permitted.

All Purchase Order lines must use consecutive prime line numbers, with
all subline numbers as = 1. The PODTL Record Type does not take in
subline numbers. For more information see Section 2.1.5.2, "PODTL -
Purchase Order Download Detail".

When integrating with the DCS, all the advance shipment notifications
(Purchase Order Receipt) created and uploaded to the DCS interface
table are only for the Purchase Orders that were initially downloaded
from Selling and Fulfillment Foundation.

When passing parameters to the DCS interface table, be sure that the
length does not exceed that which is enabled by the DCS Purchase Order
header and detail records.

Parameters are passed to the DCS when Selling and Fulfillment
Foundation downloads Purchase Orders from an external system.

Note that the date for the Estimated Time of Arrival in the DCS is the
Requested Delivery Date at the time of the Purchase Order creation on
Selling and Fulfillment Foundation.

Modifying a Purchase Order
Only the following modifications to a Purchase Order are permitted:

Changing the quantity

Changing the requested delivery date

Adding one or more lines

Splitting a Purchase Order
A Purchase Order cannot be split across receiving nodes, even for the
same DCS. One Purchase Order is created for only one installation of the
DCS and only one of its receiving nodes. All Purchase Order lines must
have the same receiving node.

12 Integration Guide

DCS Purchase Order Interface

Canceling a Purchase Order or Line
While it is not possible to explicitly cancel a Purchase Order or Purchase
Order line, if the quantity zero (0) is passed from Selling and Fulfillment
Foundation, the Purchase Order modification time-triggered transaction
interprets it as closing the order line on the DCS. For the DCS, the
results of canceling a line is the same as closing a line. If the ordered
quantity becomes zero, Selling and Fulfillment Foundation does not
permit any further changes to the line.

If Selling and Fulfillment Foundation receives a Purchase Order receipt
from the DCS on a line that has been cancelled by the external Purchase
OrderPurchase Order system (due to interface timing issues), it raises an
exception in Selling and Fulfillment Foundation.

Receiving Goods into Inventory
The warehouse receiving the goods is identified as the Receiving Ship
Node on the Purchase Order.

The specific goods that a node receives must match the description of
the line items on the original Purchase Order.

Receipt overage is controlled by the DCS by setting up an overage
receipt percentage based on your receiving preferences for each line type
downloaded. Configure the overage receipt percentage in the
Applications Manager by navigating to Applications > Supply
Collaboration > Document Specific > Purchase Order > Receipt >
Receiving Preference. On the Search Results panel choose .

The overage percentage is controlled in the DCS. The Selling and
Fulfillment Foundation percentage is applied during receipt. This means
that the receiving node for the DCS cannot receive quantity in excess of
the overage percentage specified. Also, by the same logic, Selling and
Fulfillment Foundation does not permit new order quantities to be
modified to be below the quantity already received for that Purchase
Order line.

Be sure to configure the received quantity so that Selling and Fulfillment
Foundation and all the DCS work together. For example, if received
quantity is configured as ONHAND in Selling and Fulfillment Foundation, it
should be configured as Allocatable in all the DCS installations.

DCS Purchase Order Interface

Integrating with the Distribution Center System 13

In addition, a node cannot receive goods against a cancelled or closed
line.

Inventory is increased in the onhand supply when Selling and Fulfillment
Foundation receives and processes the Purchase Order Receipt Upload
transaction from the DCS, which must not be configured to upload
separate inventory transactions for receipts.

For more information about configuring DCS Inventory Updates, see the
DCS documentation.

2.1.3 Configuring the Purchase Order Time-Triggered
Transactions

Setting up a Purchase Order involves configuring and scheduling time-
triggered transactions and configuring the pipeline that the Purchase
Order should use. You also should check your Oracle database
configuration.

To configure the Purchase Order time-triggered transactions:
1. Check that Oracle database links are created for each DCS receiving

node for which you want to create a Purchase Order. Selling and
Fulfillment Foundation maintains the links and views to the DCS
interface table for each receiving node in the DCS system.

2. Configure the Purchase Order Download and Purchase Order Receipt
Upload time-triggered transactions. For detailed information about
configuring these transactions, see the Selling and Fulfillment
Foundation: Application Platform Configuration Guide.

Table 2–1 Selling and Fulfillment Foundation and DCS Received
Quantity Mapping

Quantity Description

Selling and
Fulfillment
Foundation DCS

Available items ONHAND Allocatable

Items kept in reserve HELD Non Allocatable

14 Integration Guide

DCS Purchase Order Interface

3. Configure the pipeline using the directions in Section 2.1.4,
"Configuring the Purchase Order Pipeline".

4. Schedule the time intervals for running the Purchase Order
time-triggered transactions, as described in the Selling and
Fulfillment Foundation: Application Platform Configuration Guide.

The Purchase Order Download transaction writes the POHDR and
PODTL records into the DCS download interface table.

The Purchase Order Receipt Upload transaction reads the RCPHDR
and RCPDTL records from the DCS upload interface table.

2.1.4 Configuring the Purchase Order Pipeline
The Purchase Order time-triggered transactions require a Purchase Order
pipeline. If you need additional information about configuring pipelines,
see the Selling and Fulfillment Foundation: Application Platform
Configuration Guide.

To configure the Purchase Order pipeline:
1. From the Applications Manager menu, choose Business Process >

Process Modeling.

2. Verify that the Purchase Order pipeline is configured with the
following transactions:

Note: While the WMS Purchase Order Download
time-triggered transaction does not require a ship node to
be configured for downloading, you do need to configure
agent criteria for each ship node from which a WMS
Purchase Order Receipt Upload is to be processed.

DCS Purchase Order Interface

Integrating with the Distribution Center System 15

3. At the bottom of the left pane, click the Services tab to open the
Services tree.

4. Create a new service named YantraWMSPODownloadService that is
invoked synchronously, does not provide real time response, and
contains the following sequence of nodes:

a. Start node

b. Database node: specify the table name property as YFS_EXPORT

c. End node

5. Create an action. Click the Invoked Services tab and add the service
YantraWMSPODownloadService you created in Step 4.

6. Attach this action to the ON_SUCCESS events of the Create Order
and Change Order transactions in the Purchase Order Execution
repository. If necessary, add a condition to call this action only if the
receiving node is the WMS Node.

2.1.5 DCS Purchase Order Interface
This section provides the lists of header information for purchase order
download header, download detail, receipt header, receive order sample
output example and input XML mapping with order header, shipment and
order line records.

2.1.5.1 POHDR - Purchase Order Download Header
Table 2–2, "POHDR Record Type - Purchase Order Download Header
Interface Format" lists the header information required by the Purchase
Order Download time-triggered transaction.

Table 2–2 POHDR Record Type - Purchase Order Download Header Interface Format

DCS Parameter
Selling and Fulfillment Foundation
Parameter

Field
Size

Start
Position

whse OrderLine.ReceivingNode in CreateOrder
XML

5 1

record_type ‘POHDR’ 6 6

action_code Always ‘CH’ 2 12

recv_order_type ‘VN’ 2 14

16 Integration Guide

DCS Purchase Order Interface

2.1.5.2 PODTL - Purchase Order Download Detail
Table 2–3, "PODTL Record Type - Purchase Order Download Detail
Interface Format" lists the detail, or line information, required by the
Purchase Order Download time-triggered transaction.

recv_order_no Order.OrderNo in CreateOrder XML
(Alphabetic characters must be upper-case)

13 16

recv_order_release_no ‘1’ 3 29

source Order.SellerOrganizationCode in
CreateOrder XML

10 32

Table 2–3 PODTL Record Type - Purchase Order Download Detail Interface Format

DCS Parameter
Selling and Fulfillment Foundation
Parameter

Field
Size

Start
Position

whse OrderLine.ReceivingNode in CreateOrder XML 5 1

record_type ‘PODTL’ 6 6

action_code ‘CL’ Only for PO Line Close. (This happens when
the line ordered quantity is reduced to zero.)

‘CH’ for all other modifications, such as changing
the quantity (to nonzero), ETA, or adding lines.

2 12

recv_order_type ‘VN’ 2 14

recv_order_no Order.OrderNo in CreateOrder XML
(Alphabetic characters must be upper-case)

13 16

recv_order_release_no ‘1’ 3 29

recv_order_line_no OrderLine.PrimeLineNo in CreateOrder XML 5 32

item_id OrderLine.Item.ItemID in CreateOrder XML 24 37

product_class OrderLine.Item.ProductClass in CreateOrder XML 6 61

pack_type Always blank 4 67

order_qty OrderLine.OrderedQty in CreateOrder XML 9 71

pre_production Always blank 1 80

Table 2–2 POHDR Record Type - Purchase Order Download Header Interface Format

DCS Parameter
Selling and Fulfillment Foundation
Parameter

Field
Size

Start
Position

DCS Purchase Order Interface

Integrating with the Distribution Center System 17

2.1.5.3 Sample Receive Order Output XML
Example 2–1, "Sample Receive Order Output XML" shows a sample of
the XML published by the ON_SUCCESS event of the Receive Order
transaction.

Example 2–1 Sample Receive Order Output XML

<?xml version="1.0" encoding="UTF-8"?>
<Receipt EnterpriseCode="E1" OrderNo="BB_11" ReceiptNo="AMAR88891">
 <ReceiptLines>
 <ReceiptLine PrimeLineNo="2" Quantity="1.0" ReceiptHeaderKey=""
 SubLineNo="1"/>
 </ReceiptLines>
</Receipt>

2.1.5.4 RCPHDR - Purchase Order Receipt Header
Table 2–4, "RCPHDR Record Type - Purchase Order Receipt Header
Interface Format" lists the header information required by the Purchase
Order Receipt time-triggered transaction.

x_doc_recv_order Always blank 1 81

eta_date OrderLine.ReqShipDate in CreateOrder XML 8 82

unit_price OrderLine.LinePriceInfo.UnitPrice in CreateOrder
XML

11 90

country_of_origin OrderLine.Item.CountryOfOrigin in CreateOrder
XML

5 101

reference_1 Always blank 20 106

reference_2 Always blank 20 126

reference_3 Always blank 20 146

Table 2–3 PODTL Record Type - Purchase Order Download Detail Interface Format

DCS Parameter
Selling and Fulfillment Foundation
Parameter

Field
Size

Start
Position

18 Integration Guide

DCS Purchase Order Interface

2.1.5.5 RCPDTL - Purchase Order Receipt Detail
Table 2–5, "RCPDTL Record Type - Purchase Order Receipt Detail
Interface Format" lists the detail, or line information, required by the
Purchase Order Receipt time-triggered transaction.

2.1.5.6 Receive Order Input XML Mapping
The receiveOrder() API input XML maps to DCS tables at the order
header level and at the order line level as described in this section.

Table 2–4 RCPHDR Record Type - Purchase Order Receipt Header Interface Format

DCS Parameter
Selling and Fulfillment Foundation
Parameter

Field
Size

Start
Position

whse OrderLine.ReceivingNode in CreateOrder XML 5 1

record_type ‘RCPHDR’ 6 6

action_code Always ‘AD’ 2 12

asn_no Advance Shipment Notice number 20 14

asn_type Advance Shipment Notice type 2 34

reference_1 Reference number 30 191

Table 2–5 RCPDTL Record Type - Purchase Order Receipt Detail Interface Format

DCS Parameter
Selling and Fulfillment Foundation
Parameter

Field
Size

Start
Position

whse OrderLine.ReceivingNode in CreateOrder XML 5 1

record_type ‘RCPDTL’ 6 6

action_code Always ‘AD’ 2 12

asn_no Advance Shipment Notice number 20 14

asn_type Advance Shipment Notice type 2 34

recv_order_no Order.OrderNo in CreateOrder XML
(Alphabetic characters must be upper-case)

13 66

recv_order_line_no OrderLine.PrimeLineNo in CreateOrder XML 5 82

received_qty Quantity received in ASN against order line
number

7 119

DCS Purchase Order Interface

Integrating with the Distribution Center System 19

Order Header Records
The receiveOrder() API input XML and the DCS Order Header map as
shown in Table 2–6, "Selling and Fulfillment Foundation and DCS Order
Header Mapping".

Shipment Records
The receiveOrder() API input XML and the DCS Order map as shown in
Table 2–7, "Selling and Fulfillment Foundation Shipment and DCS Order
Mapping".

Order Line Records
The receiveOrder() API input XML and the DCS Order Line map as
shown in Table 2–8, "Selling and Fulfillment Foundation and DCS Order
Line Mapping".

Table 2–6 Selling and Fulfillment Foundation and DCS Order Header
Mapping

Selling and Fulfillment Foundation
XML Parameter DCS Parameter

orderheaderkey Always blank

orderreleasekey Always blank

receiptheaderkey Always blank

receiptno HEADER.ASN_NO

releaseno Always blank

Table 2–7 Selling and Fulfillment Foundation Shipment and DCS Order
Mapping

Selling and Fulfillment Foundation
XML Parameter DCS Parameter

enterprisecode EnterpriseCode

orderno DETAIL.RECV_ORDER_NO

20 Integration Guide

DCS Shipment Interface

2.2 DCS Shipment Interface
The DCS integrates with the Sterling Distributed Order Management
interface of Selling and Fulfillment Foundation. This integration enables
shipment-related information to be passed between applications.

2.2.1 Understanding the Order Transactions
Before implementing the upload and download functionality, you should
understand the following default behaviors:

Modifications to an Order or Order Release in Selling and Fulfillment
Foundation after download to DCS are not transmitted to DCS.

Table 2–8 Selling and Fulfillment Foundation and DCS Order Line
Mapping

DCS Parameter
Selling and Fulfillment Foundation
Parameter

BreakIntoComponents Always blank

DispositionCode Always blank

InspectedBy Always blank

InspectionComments Always blank

InspectionDate Always blank

LotNumber Always blank

OrderLineKey Always blank

PrimeLineNo DETAIL.RECV_ORDER_LINE_NO

SubLineNo 1

Quantity DETAIL.RECEIVED_QTY

ReceiptLineNo Always blank

SerialNo Always blank

ShipByDate Always blank

<KitLines> Not used

DCS Shipment Interface

Integrating with the Distribution Center System 21

Inventory is reduced from the onhand supply when Selling and
Fulfillment Foundation receives and processes the shipment
confirmation transaction from DCS. DCS must not be configured to
upload separate inventory transactions for shipments.

The SCAC and Service Code used by the Selling and Fulfillment
Foundation input XML corresponds to the SCAC field in the DCS
interface. Map each carrier defined in DCS to those in Selling and
Fulfillment Foundation by creating an identical configuration in the
Applications Manager > Application Platform > Participant Modeling.
For example, if DCS uses UPSG as the SCAC Code for United Parcel
Ground Service, in Selling and Fulfillment Foundation for the
participant called UPS, set the SCAC and Service Code as UPSG, and
specify the Service as Ground.

DCS should disable cancellation from transaction 02012 (Order
Release list). Selling and Fulfillment Foundation only recognizes
cancellations with return ownership = Y when done from DCS
transaction 02013 (load/shipper list).

The Order No for Shipment Advice can be a maximum length of 13
bytes and must be upper-case characters and numbers or just
numbers (lower-case characters are not allowed).

2.2.2 Configuring DCS Shipment Time-Triggered
Transactions

Setting up a sales order involves configuring and scheduling the Send
Release and WMS Shipment Confirmation time-triggered transactions and
configuring the pipeline a sales order should use. You also should check
your Oracle database configuration.

To configure the Send Release and WMS Shipment Confirmation
time-triggered transactions:
1. Check your Oracle database to ensure that links are created for each

DCS ship node for which you create a Release. Selling and Fulfillment
Foundation maintains links and views to the DCS interface tables for
each node.

22 Integration Guide

DCS Shipment Interface

2. Configure the Send Release and Ship Confirm time-triggered
transactions:

If you want to configure the Send Release transaction, from the
Applications Manager Applications menu, choose Application
Platform > Process Modelling > Order > Sales Order > Order
Fulfillment > Transaction Repository Send Release.

If you want to configure the Ship Confirm transaction, from the
Applications Manager Applications menu, choose Application
Platform > Process Modelling > General > General > Transaction
Repository > Ship Confirm.

3. Configure the Sales Order Fulfillment Pipeline to download ship advice
to DCS and receive shipment confirmation from DCS.

The repository has a default pipeline configured to download
shipment advice to DCS and receive shipment confirmation. When
modifying the pipeline, first copy the default pipeline and then modify
that copy to suit your needs. For more information about configuring
a pipeline, see the Selling and Fulfillment Foundation: Application
Platform Configuration Guide.

While configuring the pipeline, keep in mind the following
characteristics of the DCS shipment-related integration:

Order Releases to be downloaded to DCS are staged with the
status Awaiting WMS Interface (3200.02). The Send Release
transaction in the pipeline is configured to pick up these Order
Releases and download them to DCS.

After the download completes, the Order Release status moves to
Sent to Node (3300).

The Shipment Confirmation transaction uploads the shipment
from the DCS interface table and moves the status of the Order to
Shipped (3700).

Note: While the Send Release time-triggered transaction
does not require a ship node to be configured for
downloading, you do need to configure agent criteria for
each ship node from which a WMS shipment confirmation
is to be processed.

DCS Shipment Interface

Integrating with the Distribution Center System 23

4. Schedule the time intervals for running the Send Release and WMS
Shipment Confirmation time-triggered transactions from DCS, as
described in the Selling and Fulfillment Foundation: Application
Platform Configuration Guide.

2.2.3 DCS Order Release Interface
When Order Releases are going to the DCS interface, the Send Release
transaction dispatches the Order Release information to DCS in open
interface format if the ship node’s interface is set to DCS in Selling and
Fulfillment Foundation.

To set the ship node as a WMS ship node:
From the Applications Manager Applications menu, choose Application
Platform > Participant Modeling > Organization Details > Roles &
Participation Tab > Node Attributes/Primary Info Tab (on the right) >
Execution In Node Using and choose the WMS 6.2.

This section details only those records and attributes that are supported
by Selling and Fulfillment Foundation. These record types are written by
the Send Release transaction into the DCS download interface table.
Selling and Fulfillment Foundation supports the following record types:

ORDHDR – Order Release Order Header

ORDDTL – Order Release Order Detail

ORDADR – Order Release Order Address

ORDINS – Order Release Order Instruction

ORDBOM – Order Release Order Bill of Materials

ORDNAM – Order Release Order Name

Only the action code Add (AD) is supported by Selling and Fulfillment
Foundation.

The following tables list the field information for each record type that
the Send Release time-triggered transaction can output.

2.2.3.1 ORDHDR – Order Release Order Header
Table 2–9, "ORDHDR Record Type - Order Header Interface Format" lists
the Order Release header information mapped to DCS.

24 Integration Guide

DCS Shipment Interface

Table 2–9 ORDHDR Record Type - Order Header Interface Format

DCS Parameter Selling and Fulfillment Foundation Parameter
Field
Size

Start
Position

whse ShipNode 5 1

record_type Always ‘ORDHDR’ 6 6

action_code Always ‘AD’ 2 12

order_no Order Number
(Alphabetic characters must be upper-case)

13 14

order_rel_no Order Release Number 3 27

ship_to_cust_id PersonInfoShipTo PersonID in CreateOrder XML 35 30

bill_cust_id PersonInfoBillTo PersonID in CreateOrder XML 35 65

forward_to_cust_id PersonInfoMarkFor PersonID in CreateOrder XML 35 100

pack_hold_flag Always ‘N’ 1 135

order_type OrderType in CreateOrder XML 1 136

order_cancel_date ReqCancelDate in Order Release being downloaded 8 147

order_due_date ReqDeliveryDate in CreateOrder XML 8 155

terms_code TermsCode in CreateOrder XML 8 163

carrier_code SCAC 4 173

priority_code PriorityCode in CreateOrder XML 2 177

consol_rule Always blank 2 179

cartonization_rule Always blank 2 181

cust_order CustomerPONo in CreateOrder XML 25 183

pack_list_type PackList Type in ShipAdvice XML 2 208

spc_ticket_req PersonalizeCode in CreateOrder XML 2 210

asn_flag NotifyAfterShipmentFlag in CreateOrder XML 1 212

delivery_date ReqDeliveryDate in Order Release being downloaded 8 216

orig_ship_date ReqShipDate in Order Release being downloaded 8 224

samples_flag Always blank 1 234

ship_to_customer_ name PersonInfoShipTo FirstName and LastName in
CreateOrder XML

35 235

DCS Shipment Interface

Integrating with the Distribution Center System 25

2.2.3.2 ORDDTL – Order Release Order Detail
Table 2–10, "ORDDTL Record Type - Order Detail Interface Format" lists
the Order Release detail information mapped to DCS.

ship_to_addr1 PersonInfoShipTo AddressLine1 in CreateOrder XML 35 270

ship_to_addr2 PersonInfoShipTo AddressLine2 in CreateOrder XML 35 305

ship_to_addr3 PersonInfoShipTo AddressLine3 in CreateOrder XML 35 340

ship_to_add4 PersonInfoShipTo AddressLine4 in CreateOrder XML 35 375

ship_to_city PersonInfoShipTo City in CreateOrder XML 30 410

ship_to_state PersonInfoShipTo State in CreateOrder XML 2 440

ship_to_zip_code PersonInfoShipTo Zip Code in CreateOrder XML 9 442

ship_to_country_ code PersonInfoShipTo Country in CreateOrder XML 5 451

cross_dock_flag Always blank 2 456

split_flag ShipCompleteFlag in CreateOrder XML 1 488

consol_flag Always blank 1 489

shippable_order Always ‘Y’ 1 490

delivery_code DeliveryCode in CreateOrder XML 1 517

back_order_ authorized_
ind

Always ‘01’ 2 526

cal_check_req_ind Always ‘N’ 1 541

inbound_flag Always ‘N’ 1 550

order_create_date OrderDate in CreateOrder XML 8 564

carrier_service Carrier Service Code in CreateOrder XML 10 572

cust_carrier_charge_
account_no

Carrier Account Number in CreateOrder XML 35 582

enterprise_code Enterprise Code 24 639

Table 2–9 ORDHDR Record Type - Order Header Interface Format

DCS Parameter Selling and Fulfillment Foundation Parameter
Field
Size

Start
Position

26 Integration Guide

DCS Shipment Interface

Table 2–10 ORDDTL Record Type - Order Detail Interface Format

DCS Parameter Selling and Fulfillment Foundation Parameter
Field
Size

Start
Position

whse ShipNode 5 1

record_type Always ‘ORDDTL’ 6 6

action_code Always ‘AD’ 2 12

order_no Order Number
(Alphabetic characters must be upper-case)

13 14

order_rel_no Order Release Number 3 27

order_prime_line Order Prime Line Number 5 30

order_sub_line Order Sub Line Number 5 35

mark_for PersonInfoMarkFor PersonID in CreateOrder XML 35 40

item_id ItemID in CreateOrder XML 24 75

product_class ProductClass in CreateOrder XML 6 99

quality_status Always blank 2 105

department_code DepartmentCode in CreateOrder XML 6 107

hazard_flag Always ‘N’ 1 119

qty_ordered OrderedQty in CreateOrder XML 9 120

shippable_qty Total Quantity to be shipped 9 129

nonshippable_qty Always ‘0’ 9 138

pack_type Always ‘EACH’ 4 147

ship_together_code ShipTogetherNo in CreateOrder XML 5 151

line_price Unit Price from LinePriceInfo in CreateOrder XML 11 156

spl_processing_code1 Always blank 4 167

orig_req_ship_date ReqShipDate in CreateOrder XML 8 249

act_req_ship_date ReqShipDate in CreateOrder XML 8 257

customer_po_no CustomerPONo in CreateOrder XML 25 269

ship_sure_model_ind Always ‘Y’ 1 294

order_line_point Always blank 5 295

DCS Shipment Interface

Integrating with the Distribution Center System 27

2.2.3.3 ORDADR – Order Release Order Address
Table 2–11, "ORDADR Record Type - Order Address Interface Format"
lists the Order Release address information mapped to DCS.

line_type Always blank 4 300

carrier_code Always blank 4 304

samples_flag Always ‘N’ 1 308

customer_po_line_no CustomerLinePONo in CreateOrder XML 13 335

customer_sku CustomerItem in CreateOrder XML 40 386

kit_code KitCode in CreateOrder XML 2 466

Table 2–11 ORDADR Record Type - Order Address Interface Format

DCS Parameter
Selling and Fulfillment Foundation
Parameter

Field
Size

Start
Position

whse ShipNode 5 1

record_type Always ‘ORDADR’ 6 6

action_code Always ‘AD’ 2 12

order_no Order Number
(Alphabetic characters must be upper-case)

13 14

order_rel_no Order Release Number 3 27

address_type ‘FT’ or ‘BT’ 2 30

customer_name FirstName and LastName in CreateOrder
XML

35 32

addr1 AddressLine1 in CreateOrder XML 35 67

addr2 AddressLine2 in CreateOrder XML 35 102

addr3 AddressLine3 in CreateOrder XML 35 137

addr4 AddressLine4 in CreateOrder XML 35 172

city City in CreateOrder XML 30 207

state State in CreateOrder XML 2 237

Table 2–10 ORDDTL Record Type - Order Detail Interface Format

DCS Parameter Selling and Fulfillment Foundation Parameter
Field
Size

Start
Position

28 Integration Guide

DCS Shipment Interface

2.2.3.4 ORDINS – Order Release Order Instruction
Table 2–12, "ORDINS Record Type - Order Instruction Interface Format"
lists the Order Release instruction information mapped to DCS.

2.2.3.5 ORDBOM – Order Release Order Bill of Materials
Table 2–13, "ORDBOM Record Type - Order Bill of Materials Interface
Format" lists the Order Release Bill of Materials information mapped to
DCS.

zip_code Zip Code in CreateOrder XML 9 239

country_code Country in CreateOrder XML 5 248

wms_buffer Always blank 30 253

Table 2–12 ORDINS Record Type - Order Instruction Interface Format

DCS Parameter
Selling and Fulfillment Foundation
Parameter

Field
Size

Start
Position

whse ShipNode 5 1

record_type Always 'ORDINS' 6 6

action_code Always 'AD' 2 12

order_no Order Number
(Alphabetic characters must be upper-case)

13 14

order_rel_no Order Release Number 3 27

order_prime_line Order Prime Line Number 5 30

order_sub_line Order Sub Line Number 5 35

instruction_type InstructionType in CreateOrder XML 3 40

seq_no Sequence Number of instructions 3 43

usage_type Instruction usage 2 46

instructions_text InstructionText in CreateOrder XML 80 48

wms_buffer Always blank 30 128

Table 2–11 ORDADR Record Type - Order Address Interface Format

DCS Parameter
Selling and Fulfillment Foundation
Parameter

Field
Size

Start
Position

DCS Shipment Interface

Integrating with the Distribution Center System 29

2.2.3.6 ORDNAM – Order Release Order Name
This interface format is used to send orders having the following
information:

COD - This record is sent for orders having PaymentType as COD.

Table 2–13 ORDBOM Record Type - Order Bill of Materials Interface Format

DCS Parameter
Selling and Fulfillment Foundation
Parameter

Field
Size

Start
Position

whse ShipNode 5 1

record_type Always 'ORDBOM' 6 6

action_code Always 'AD' 2 12

order_no Order Number
(Alphabetic characters must be upper-case)

13 14

order_rel_no Order Release Number 3 27

order_prime_line Order Prime Line Number 5 30

order_sub_line Order Sub Line Number 5 35

item_id ItemID in CreateOrder XML 24 40

product_class ProductClass in CreateOrder XML 6 64

quality_status Always blank 2 70

pack_type Always 'EACH' 4 72

bom_qty KitQty in CreateOrder XML 9 76

pick_slip_number Always blank 13 85

picking_line_detail_id Always blank 13 98

scrap_factor Always '0000000' 7 111

reference_field1 Always blank 40 118

reference_field2 Always blank 40 158

reference_field3 Always blank 40 198

reference_field4 Always blank 40 238

reference_field5 Always blank 40 278

wms_buffer Always blank 30 318

30 Integration Guide

DCS Shipment Interface

Customer Phone Number - This record is sent only if the ShipTo
Customer Day Phone Number is not blank.

Importer information - This record is sent for international shipments
only. This information is not sent if country code in any address (ship
node or ship-to address) is blank.

YFS accepts Import License ID and Import License Expiration Date at
Order line level, whereas DCS accepts it at Order header level.

Exporter Information - This record is sent for international shipments
only.

The ship node address country code and ship-to address country code
should not be blank.

Table 2–14, "ORDNAM Record Type - Order Name Interface Format" lists
the Order Release name information mapped to DCS.

Table 2–14 ORDNAM Record Type - Order Name Interface Format

DCS Parameter Selling and Fulfillment Foundation Parameter
Field
Size

Start
Position

whse ShipNode 5 1

record_type Always 'ORDNAM' 6 6

action_code Always 'AD' 2 12

order_no Order Number
(Alphabetic characters must be upper-case)

13 14

order_rel_no Order Release Number 3 27

name For COD- '100'

For Customer Phone Number - '300'

For Importer Information - '400'1

For Exporter Information - '400'

3 30

value For COD- '103'

For Customer Phone Number - '301'

For Importer Information - '402'1

For Exporter Information - '401'

3 33

DCS Shipment Interface

Integrating with the Distribution Center System 31

reference_field1 For COD - 'COD'

For Customer Phone Number - PersonInfoShipTo
DayPhone in CreateOrder XML

For Importer information - TaxPayerId in
CreateOrder XML1

For Exporter Information - ExportTaxPayerId of the
ShipNode

40 36

reference_field2 For COD - Always blank

For Customer Phone Number - Always blank

For Importer Information - ImportLicenseNo in
CreateOrder XML1

For Exporter Information - ExportLicenseNo of the
ShipNode

40 76

reference_field3 For COD - Always blank

For Customer Phone Number - Always blank

For Importer information - ImportLicenseExpDate in
CreateOrder XML1

For Exporter Information - ExportLicenseExpDate of
the ShipNode

40 116

reference_field4 Always blank 40 156

reference_field5 Always blank 40 196

wms_buffer Always blank 30 236

Note: When Selling and Fulfillment Foundation sends Order Release information to DCS, it sends
only the Import License ID and Import License Expiration Date from the first order line and
ignores information from the other lines. As a result, if you need to track all license information,
group items by license type in separate orders. For example, put all materials that require the
same type of license for hazardous material on one order and items that require the same type
of license for nonhazardous chemicals on another.

Table 2–14 ORDNAM Record Type - Order Name Interface Format

DCS Parameter Selling and Fulfillment Foundation Parameter
Field
Size

Start
Position

32 Integration Guide

DCS Shipment Interface

2.2.4 DCS Shipment Confirmation
Selling and Fulfillment Foundation picks up the shipment confirmations
posted by DCS in the open interface tables. The WMS Shipment
Confirmation time-triggered transaction performs shipment confirmation.

This section details only those records and attributes that are supported
by Selling and Fulfillment Foundation. The WMS Shipment Confirmation
transaction reads only the following record types from the DCS upload
interface table:

PCKHDR – Shipment Confirmation Pickticket Header

CARHDR – Shipment Confirmation Carton Header

PCKINF – Shipment Confirmation Pick Information

CNCDTL – Shipment Confirmation Cancel Detail

SRLDTL - Pick Ticket Serial Record

Only action codes Cancel (CA) and Ship (SH) are picked up by Selling
and Fulfillment Foundation.

This section describes the interface formats for the different shipment
confirmation record types that Selling and Fulfillment Foundation
supports.

2.2.4.1 PCKHDR – Shipment Confirmation Pickticket Header
Table 2–15, "PCKHDR Record Type - Pickticket Header Interface Format"
lists the shipment confirmation pickticket header information mapped to
DCS.

Table 2–15 PCKHDR Record Type - Pickticket Header Interface Format

DCS Parameter
Selling and Fulfillment Foundation
Parameter

Field
Size

Start
Position

whse ShipNode 5 1

record_type Always 'PCKHDR' 6 6

action_code Always 'CA' or 'SH' 2 12

pickticket_no PickTicketNo in confirmShipment XML 20 14

ship_type Ship Mode in confirmShipment XML 4 80

actual_ship_date ShipDate in confirmShipment XML 8 92

DCS Shipment Interface

Integrating with the Distribution Center System 33

carrier_code SCAC and Service Code in confirmShipment
XML

4 107

trailer_no TrailerNo in confirmShipment XML 20 111

freight_charges FreightCharge in confirmShipment XML 13 131

manifest_no ManifestNo in confirmShipment XML 20 144

bol_no BOL Number 20 164

pro_no ProNo in confirmShipment XML 20 184

master_bol_no Parent Shipment Key 20 204

total_weight TotalWeight in confirmShipment XML 13 224

seal_no Seal Number 20 250

total_volume TotalVolume in confirmShipment XML 7 296

it_number IT number 20 303

it_date IT Date 8 323

from_appointment_date From appointment date 8 331

to_appointment_date To appointment date 8 339

appointment_number Appointment number 40 363

ship_to_addr1 ToAddress AddressLine1 in confirmShipment
XML

35 483

ship_to_addr2 ToAddress AddressLine2 in confirmShipment
XML

35 518

ship_to_addr3 ToAddress AddressLine3 in confirmShipment
XML

35 553

ship_to_addr4 ToAddress AddressLine4 in confirmShipment
XML

35 588

ship_to_city ToAddress City in confirmShipment XML 30 623

ship_to_state ToAddress State in confirmShipment XML 2 653

ship_to_zip ToAddress Zip Code in confirmShipment
XML

9 655

ship_to_country ToAddress Country in confirmShipment XML 5 664

Table 2–15 PCKHDR Record Type - Pickticket Header Interface Format

DCS Parameter
Selling and Fulfillment Foundation
Parameter

Field
Size

Start
Position

34 Integration Guide

DCS Shipment Interface

2.2.4.2 CARHDR – Shipment Confirmation Carton Header
Table 2–16, "CARHDR Record Type - Carton Header Interface Format"
lists the carton header information mapped to DCS.

Table 2–16 CARHDR Record Type - Carton Header Interface Format

DCS Parameter
Selling and Fulfillment Foundation
Parameter

Field
Size

Start
Position

whse ShipNode 5 1

record_type Always 'CARHDR’ '6 6

action_code 'CA' or 'SH’ '2 12

pickticket_no Not used 20 14

carton_no Container number 11 34

weight Used for containers other than pallets. Used
as Container Gross Weight and Container
Net Weight.

13 59

tracking_number Tracking number 20 72

ucc128_code If the third character is not '1', this is used
as Container SCM.

30 92

manifest_no Manifest number 10 122

pallet_scm If the third character of ucc128_code is '1',
this is used as Container SCM.

30 132

package_type Container type 2 162

pallet_length Used if the container is pallet. Specifies the
pallet length.

9 164

pallet_width Used if the container is pallet. Specifies the
pallet length.

9 173

pallet_height Used if the container is pallet. Specifies the
pallet height.

9 182

pallet_gross_weight Used if the container is pallet. Specifies the
pallet gross weight.

9 191

pallet_net_weight Used if the container is pallet. Specifies the
pallet net weight.

9 200

carton_length Used for containers other than pallet.
Specifies the container length.

9 209

DCS Shipment Interface

Integrating with the Distribution Center System 35

2.2.4.3 PCKINF – Shipment Confirmation Pick Information
Table 2–17, "PCKINF Record Type-Pick Information Interface Format" lists
the shipment confirmation pick information mapped to DCS.

2.2.4.4 CNCDTL – Shipment Confirmation Cancel Detail
Table 2–18, "CNCDTL Record Type-Cancel Detail Interface Format" lists
the cancel detail information mapped to DCS.

carton_width Used for containers other than pallet.
Specifies the container width.

9 218

carton_height Used for containers other than pallet.
Specifies the container height.

9 227

freight_charge Freight Charge 7 238

Table 2–17 PCKINF Record Type-Pick Information Interface Format

DCS Parameter
Selling and Fulfillment Foundation
Parameter

Field
Size

Start
Position

whse ShipNode 5 1

record_type Always 'PCKINF' 6 6

action_code Always 'CA' or 'SH' 2 12

pickticket_no PickTicketNo in confirmShipment XML 20 14

carton_no Container No 11 34

item_id Item ID 24 45

product_class Product Class 2 69

picked_qty Shipped Qty 9 80

order_no Order No 13 89

order_release_no Release Number 3 102

order_line_no Prime Line No 4 105

sub_line_no Sub Line No 5 109

Table 2–16 CARHDR Record Type - Carton Header Interface Format

DCS Parameter
Selling and Fulfillment Foundation
Parameter

Field
Size

Start
Position

36 Integration Guide

DCS Shipment Interface

The CNCDTL record is created only when Orders or Shipments are
cancelled or backordered from the DCS Load/Shipper screen (02013),
not the Order Release List screen (02012).

2.2.4.5 SRLDTL - Pick Ticket Serial Record
Selling and Fulfillment Foundation can accept serial numbers when an
item has been configured in DCS as Serialized and the Selling and
Fulfillment Foundation WMS Ship Confirmation agent is used. When an
item is configured as Serialized in DCS and is shipped from DCS, DCS
publishes SRLDTL records into the interface tables.

The WMS Ship Confirm Upload agent reads the interface records
published by DCS and forms an input XML for the confirmShipment()
API.

The SRLDTL records published by DCS are across order lines. These
records do not contain line information. Selling and Fulfillment
Foundation retrieves the serial records corresponding to each shipment
line by matching the following attributes from the SRLDTL record with
the shipment line, and making a subset of serial records for each
shipment line:

Table 2–18 CNCDTL Record Type-Cancel Detail Interface Format

DCS Parameter
Selling and Fulfillment Foundation
Parameter

Field
Size

Start
Position

whse ShipNode 5 1

record_type Always 'CNCDTL' 6 6

action_code Always 'CA' or 'SH' 2 12

order_no Order No 13 34

order_release_no Order Release No 3 47

order_line_no Prime Line No 5 50

sub_line_no Sub Line No 5 55

item_id Item ID 24 60

product_class Product Class 2 84

cancel_quantity BackOrder Qty 9 92

DCS Shipment Interface

Integrating with the Distribution Center System 37

Item ID of SRLDTL with item id of Shipment line,

Product Class of SRLDTL with product class of Shipment line,

Pallet SCM of SRLDTL with pallet SCM on the container for the
shipment line.

Carton SCM: Based on setup in DCS, this field can have either carton
SCM or container number. If the attribute length is 20, it is mapped
to the Carton SCM of the shipment line. Otherwise, it is mapped to
the Container Number of the shipment line.

Once a subset of the SRLDTL records is formed, Selling and Fulfillment
Foundation adds a ShipmentLine element for each SRLDTL record in the
XML and reduces the quantity from the already existing ShipmentLine
element.

For example, Not Used if a shipment line has five units and there are five
SRLDTL records for each unit, Selling and Fulfillment Foundation adds
five ShipmentLine elements to the input XML and reduces the quantity of
the original element to zero (0).

Note that the YFS_Container_Details table should have a serial number
for each unit shipped.

Table 2–19, "SRLDTL Record Type - PickTicket Serial Record Interface
Format" lists the pickticket serial record information mapped to DCS.

Table 2–19 SRLDTL Record Type - PickTicket Serial Record Interface Format

DCS Parameter
Selling and Fulfillment Foundation
Parameter

Field
Size

Start
Position

whse ShipNode (Not used) 5 1

record_type SRLDTL 6 6

action_code Not used 2 12

pickticket_no Not used 20 14

item_id Shipment line's item ID 24 34

product_class Shipment line's product class 2 58

item_pseudo_no Not used 12 60

item_serial_no Serial number (Passed to the API) 20 72

component_item_id Not used 24 92

38 Integration Guide

DCS Inventory Interface

2.3 DCS Inventory Interface
The DCS inventory interface can download inventory changes due to
Returns in Selling and Fulfillment Foundation to DCS. It can also read the
uploads of inventory changes from DCS to Selling and Fulfillment
Foundation.

2.3.1 DCS Inventory Upload
The Selling and Fulfillment Foundation inventory upload picks up
inventory change information from DCS and uploads the information to
Selling and Fulfillment Foundation. The WMS Inventory Upload
time-triggered transaction, scheduled through yfs.wms.inventory,
performs inventory change uploading which is read by the WMS
Inventory Upload transaction.

component_product_class Not used 2 116

component_pseudo_no Not used 12 118

component_serial_no Not used 20 130

quantity Quantity 9 150

country_of_origin Not used 5 159

customer_po_number Not used 25 164

pallet_scm CARHDR's pallet SCM. 20 189

carton_scm If the attribute length is 20, it is mapped to
the Carton SCM of the shipment line.
Otherwise, it is mapped to the Container
Number of the shipment line.

20 209

upc_code Not used 12 229

upc_case_code_scanned Not used 14 241

upc_case_code_number_of_
boxes

Not used 7 255

Table 2–19 SRLDTL Record Type - PickTicket Serial Record Interface Format

DCS Parameter
Selling and Fulfillment Foundation
Parameter

Field
Size

Start
Position

DCS Inventory Interface

Integrating with the Distribution Center System 39

DCS passes only one record type, TRNDTL, for an item and product class
combination.

2.3.1.1 TRNDTL – Inventory Change Upload Record
Table 2–20, "TRNDTL Record Type-Inventory Change Upload Interface
Format" lists the inventory change upload information mapped to DCS.

Table 2–20 TRNDTL Record Type-Inventory Change Upload Interface Format

DCS Parameter
Selling and Fulfillment Foundation
Parameter

Field
Size

Start
Position

whse ShipNode 5 1

record_type Always ‘TRNDTL’ 6 6

action_code Always ‘AD’ 2 12

tran_code ReferenceField4 5 31

tran_reason_code ReasonCode 4 41

item_id Item ID 24 45

product_class Product Class 2 69

pack_type UOM 4 71

unavailable_quantity HeldQty 8 77

available_quantity OnHandQty 8 85

held_quantity HeldQty 8 93

order_release_no ReferenceField2 3 203

order_line_no ReferenceField3 5 206

to_location ReferenceField5 12 284

reference_field_1 ReferenceField1 30 296

reference_field_2 ReasonText 30 326

Note: Reference Fields 1-5 map to the reference field in
the YFS_Inventory_Audit table.

40 Integration Guide

DCS Inventory Interface

For more information about the Inventory Upload transaction, see the
Selling and Fulfillment Foundation: Application Platform Configuration
Guide.

2.3.2 DCS Inventory Download
When a Return is recorded in the Selling and Fulfillment Foundation,
inventory adjustments may take place depending on the configuration of
Status and Supply Type. When inventory adjustments take place on ship
nodes specified as InterfaceType DCS, the inventory changes are
published to the WMS interface tables, if a service is configured to do so.

To configure an inventory download service:
1. From the Applications Manager menu, choose Business Process >

Process Modeling. Open the General tab and choose the Details of the
General process type.

2. Create a new service that is invoked synchronously, does not provide
real time response, and contains the following sequence of nodes:

a. Start node.

b. API node. Choose Extended API node and configure it as follows:

* Specify any name for API name.

* Specify Class Name as com.yantra.inv.business.
inventory.YFSInventoryDownload

* Specify Method Name as downloadInventory

c. End node.

Note: For Work Orders, DCS sets the value of the Reference_
Field4 Selling and Fulfillment Foundation Parameter to KITD
for use by inventory costing.

Caution: Do not configure multiple Supply Types to be
downloaded to DCS. Doing so downloads duplicate records
to the INFC_DNLD_TAB_1 interface table.

DCS Inventory Interface

Integrating with the Distribution Center System 41

3. Create an action. Choose the Invoked Services tab and add the
service you created in Step 2.

4. Enable the INVENTORY_CHANGE event raised by the INVENTORY_
CHANGE transaction.

5. Attach the action created in Step 3 to the INVENTORY_CHANGE event
of the INVENTORY_CHANGE transaction.

6. If necessary, add a Condition node to call the action only if
AdjustmentType is RETURN. The AdjustmentType is RETURN when
inventory adjustments take place due to Returns.

Input XML Format
The following input XML is passed to the service by the event:

<?xml version="1.0" encoding="UTF-8"?>
<YantraXML> <XML AccountNo="" AdjustmentType=" "
 CostCurrency="" EnterpriseCode=" " ItemID=" "
 ItemKey="" Organization=" "
 ProductClass="" Quantity="" ReasonCode="" ReasonText=""
 Reference_1=""
 Reference_2="" Reference_3="" Reference_4=""
 Reference_5="" ShipByDate="" ShipNode=""
 SupplyReference=" " SupplyReferenceType=""
 SupplyType=" " UnitCost="" UnitOfMeasure=" "/> </YantraXML>

The downloadInventory() method publishes inventory to WMS only if
the 'AdjustmentType' in the XML is 'RETURN' and the ship node's
interface type is 'WMS_YANTRA'. This method converts the XML into a
WMS format string. A record is inserted into the 'Infc_Dnld_Tab_1' table
in the WMS database with interface type as 'INVD'.

Adding Location and Reference Fields
The default XML (published by the event) does not contain location.
Either Sterling WMS can be configured to have a default location or this
XML can be modified (to add the 'WarehouseLocation' attribute) in the

Note: Even if a service is configured unconditionally, the
ship node must be specified as InterfaceType DCS and
AdjustmentType is RETURN in order for the data to be
written to the interface tables.

42 Integration Guide

DCS Inventory Interface

service before passing it to this method. If the XML contains the
'WarehouseLocation' attribute, it is passed to Sterling WMS as the
location. Similarly, the 'WMSReferenceField1' and 'WMSReferenceField2'
attributes can be added to the XML for Sterling WMS fields
'ReferenceField1' and 'ReferenceField2'.

2.3.2.1 INVCHG - Inventory Change Download Record
Table 2–21, "INVCHG Record Type - Inventory Change Download
Interface Format" lists the inventory change download information
mapped to DCS.

Table 2–21 INVCHG Record Type - Inventory Change Download Interface Format

DCS Parameter Selling and Fulfillment Foundation Parameter
Field
Size

Start
Position

whse /YantraXML/XML/ShipNode 5 1

record_type INVCHG 6 6

action_code AD 2 12

tran_date Transaction date in 'CCYYMMDD' format 8 14

tran_time Transaction time in 'HHMMSS' format 6 22

tran_seq_no 001 3 28

tran_code WIMT 5 31

tran_type Always blank 5 36

tran_reason_code Always blank 4 41

item_id /YantraXML/XML/ItemID 40 45

product_class /YantraXML/XML/ProductClass 6 85

pack_type EACH 4 91

quality_status Always blank 2 95

unavailable_quantity 0 7 97

available_quantity /YantraXML/XML/Quantity 7 104

held_quantity 0 7 111

location /YantraXML/XML/WarehouseLocation 20 118

user_id User ID from the context 8 138

DCS Returns Interface

Integrating with the Distribution Center System 43

2.4 DCS Returns Interface
The integration of Selling and Fulfillment Foundation with DCS enables
information related to Return Order release to pass between the two
applications.

The integration provides an API (sendReturnReleaseToDCS) to send the
Return Order release to DCS, and a time triggered transaction (DCS
Return Receipt Upload Agent) to get the return release receipt
information from DCS. Additionally, this integration supports receipts
against blind returns that were created on DCS.

2.4.1 Return Order Integration Workflow
Figure 2–2 illustrates the workflow for the Return Order integration.

reference_field_1 Data maps to
/YantraXML/XML/WMSReferenceField1. No data is
passed, it maps to
/YantraXML/XML/SupplyReference.

Note: OrderNo is passed in
/YantraXML/XML/SupplyReference by the event.

30 146

reference_field_2 Data maps to
/YantraXML/XML/WMSReferenceField2. No data is
passed, it maps to /YantraXML/XML/SupplyType.

30 176

wms_buffer Always blank 30 206

Table 2–21 INVCHG Record Type - Inventory Change Download Interface Format

DCS Parameter Selling and Fulfillment Foundation Parameter
Field
Size

Start
Position

44 Integration Guide

DCS Returns Interface

Figure 2–2 Workflow for Return Order Integration

1. An external Return Order system invokes the createOrder() API on
Selling and Fulfillment Foundation to create a Return Order for a DCS

DCS Returns Interface

Integrating with the Distribution Center System 45

receiving node. A Return Order is created and the order status
becomes Created (1100).

2. When the Return Order is released, the ON_RELEASE_CREATION_
OR_CHANGE event of the releaseOrder API can be configured to
invoke the service YantraSendReturnReleaseToDCSService, which
inserts a message containing the return release key into the JMS
Queue. For more information about configuring Return Order
integration with DCS, see Section 2.4.3, "Configuring Return Order
Integration with DCS".

The return release is modified by invoking the changeRelease API.
After the return release modification, if the ON_SUCCESS event is
configured to invoke YantraSendReturnReleaseToDCSService, a
message containing the release key is inserted into the JMS queue.

3. The sendReturnReleaseToDCS API picks up the return release key
from the JMS Queue, fetches the release details, and inserts a
message containing the release details into the DCS interface table
INFC_DNLD_TAB_1.

4. An agent on DCS picks up the return release data from INFC_DNLD_
TAB_1 and creates a return on DCS.

5. Alternatively, a blind return can be directly created on DCS using the
DCS user interface.

6. Once the return is received, DCS agents insert the receipt details into
the interface table INFC_UPLD_TAB_1.

7. The DCS Return Receipt Upload Agent picks up the receipt details
from the interface table INFC_UPLD_TAB_1 and calls the receiveOrder
API to mark the Return Order as received.

For blind returns, before calling the receiveOrder API, the DCS Return
Receipt Upload Agent first calls the createOrder API to create a
Return Order, or the changeOrder API to change the order that
already exists for this blind return on Selling and Fulfillment
Foundation.

2.4.2 Determining the Enterprise Code for Blind Return
during Upload

For blind RMA the system determines the enterprise code as follows:

46 Integration Guide

DCS Returns Interface

1. If the value of RARHDR.REFERENCE-1 is blank, the primary
organization of the owner of the ship node is taken as the enterprise
code.

2. If the value of RARHDR.REFERENCE-1 is not blank, the system checks
the value of RARHDR.REFERENCE-1.

If the value of RARHDR.REFERENCE-1 is a valid organization with
an Enterprise role, the system uses the value of
RARHDR.REFERENCE-1 as the enterprise Code.

If the value of RARHDR.REFERENCE-1 is not a valid organization
with an Enterprise role, the system throws an error.

2.4.3 Configuring Return Order Integration with DCS
This section describes the various configurations for Return Order
Integration with DCS.

2.4.3.1 Configuring return release download to DCS
Configuring return release download to DCS involves creating a new JMS
Queue, service, and action.

To configure return release download to DCS:

1. Create a synchronous service, say
YantraSendReturnReleaseToDCSService under Reverse Logistics
Services. This service puts the Return Order release key into a JMS
queue, say RMADownloadQueue, if the ship node is a DCS node.

Note1: The setup for the Disposition Code should be
identical in both Selling and Fulfillment Foundation and
DCS.

Note2: Inventory updates during return receipt upload
should be turned off. Inventory adjustments for return
receipts should be done through the inventory adjustment
interface with DCS. Whenever inventory is updated in DCS,
inventory is updated in Selling and Fulfillment Foundation
too through this interface.

DCS Returns Interface

Integrating with the Distribution Center System 47

For the API component in the service,

Choose the General tab.

Select the Selling and Fulfillment Foundation Standard API option
button.

From the API Name drop-down list, select
sendReturnReleaseToDCS.

When the integration server configured in the JMS receiver runs, the
sendReturnReleaseToDCS API picks up the order release key from
the JMS queue and inserts the return release details in the DCS
interface table.

2. Navigate to ReverseLogistics Repository > Actions and create an
action, say SendReturnReleaseToDCS. This action should invoke
YantraSendReturnReleaseToDCSService. Configure ON_RELEASE_
CREATION_OR_CHANGE event of the SCHEDULE RETURN transaction
and ON_SUCCESS event of the changeRelease API to invoke this
action (in the case of Reverse Logistics, the SCHEDULE RETURN
transaction also does the release).

2.4.3.2 Configuration for Receiving Blind RMA
Return Receipts for Blind RMAs created at the warehouse and the receipt
details are uploaded as regular return receipts. The receipt upload agent

Note: The "Condition" mentioned in the figure should be
configured with ship node interface type = ‘WMS_YANTRA’.

48 Integration Guide

DCS Returns Interface

creates the Return Order with a ‘03’ order type in Selling and Fulfillment
Foundation.

Based on the pipeline determination condition given below, the Blind RMA
Pipeline is used for Blind RMA Return Order fulfillment.

Return releases are not created for these return orders. However, a
receipt is recorded against the Return Order.

The Blind RMA Pipeline should be configured according to the following
pipeline:

Note: The condition "Is Blind RMA" mentioned in the
figure is configured as OrderType=‘03’.

DCS Returns Interface

Integrating with the Distribution Center System 49

2.4.4 Return Order Interface Data Mapping
This section describes the Return Order Interface Data Mapping.

2.4.4.1 Return Order Release Download Data Mapping
The Return Order Release Download Data Mapping are listed in this
section.

2.4.4.1.1 RMAHDR - Return Release Download Header
Table 2–22, "RMAHDR Record Type - Return Release Download Header
Interface Mapping" lists the header information required by the Return
Release Download API.

50 Integration Guide

DCS Returns Interface

Table 2–22 RMAHDR Record Type - Return Release Download Header Interface
Mapping

DCS Parameter
Selling and Fulfillment Foundation
Parameter

Field
Size

Start
Position

WHSE OrderRelease/@ReceivingNode 5 1

RECORD-TYPE “RMAHDR” 6 6

ACTION-CODE “CH” or “CL” based on modification or
closure

2 12

RMA-NUMBER OrderRelease/Order/@OrderNo 15 14

RMA-RELEASE-NO OrderRelease/@ReleaseNo 3 29

RMA-TYPE OrderRelease/Order/@OrderType 2 32

EXPECTED-NO-OF-CASES N/A 5 34

EXPECTED-NUMBER-OF-PALLETS N/A 5 39

EXPECTED-NUMBER-OF-UNITS N/A 7 44

TRAILER-NO N/A 20 51

FREIGHT-COLLECT-FLAG OrderRelease/Order/@TermsCode 1 71

EXPECTED-DATE OrderRelease/Order/@OrderDate 8 72

CARRIER-CODE OrderRelease/Order/@SCAC 4 80

INVOICE-NUMBER N/A 20 84

SHIP-TO-CUST-ID OrderRelease/OrderLine/@ShipToID 10 104

BILL-TO-CUST-ID OrderRelease/Order/@BillToID 10 114

ENTRY-DATE OrderRelease/Order/@OrderDate 8 124

SHIP-TO-NAME OrderRelease/PersonInfoShipTo/

@FirstName + @LastName

25 132

BILL-TO-SHORT-NAME OrderRelease/Order/PersonInfoBillTo/@Fi
rstName + @LastName

12 157

SHIP-TO-ADDR-1 OrderRelease/PersonInfoShipTo/

@AddressLine1

30 169

SHIP-TO-ADDR-2 OrderRelease/PersonInfoShipTo/

@AddressLine2

30 199

DCS Returns Interface

Integrating with the Distribution Center System 51

SHIP-TO-ADDR-3 OrderRelease/PersonInfoShipTo/

@AddressLine3

30 229

SHIP-TO-CITY OrderRelease/PersonInfoShipTo/

@City

30 259

SHIP-TO-STATE-CODE OrderRelease/PersonInfoShipTo/

@State

2 289

SHIP-TO-ZIP OrderRelease/PersonInfoShipTo/

@ZipCode

9 291

SHIP-TO-COUNTRY-CODE OrderRelease/PersonInfoShipTo/

@Country

5 300

CLAIM-NO N/A 20 305

PICKTICKET-NO N/A 20 325

REASON-CODE N/A 4 345

PRO-NUMBER N/A 20 349

REFERENCE-FIELD-1 OrderRelease/Order/

@EnterpriseCode

20 369

REFERENCE-FIELD-2 N/A 20 389

REFERENCE-FIELD-3 N/A 20 409

REFERENCE-FIELD-4 N/A 20 429

REFERENCE-FIELD-5 N/A 20 449

REFERENCE-FIELD-6 N/A 20 469

REFERENCE-FLAG-1 N/A 1 489

REFERENCE-FLAG-2 N/A 1 490

REFERENCE-FLAG-3 N/A 1 491

REFERENCE-FLAG-4 N/A 1 492

Table 2–22 RMAHDR Record Type - Return Release Download Header Interface
Mapping

DCS Parameter
Selling and Fulfillment Foundation
Parameter

Field
Size

Start
Position

52 Integration Guide

DCS Returns Interface

2.4.4.1.2 RMADTL - Return Release Download Detail

Table 2–23, "RMADTL Record Type - Return Release Download Detail
Interface Mapping" lists the detail or line information required by the
Return Release Download API.

REFERENCE-FLAG-5 N/A 1 493

REFERENCE-FLAG-6 N/A 1 494

WMS-BUFFER Defaulted with blank spaces 30 495

Table 2–23 RMADTL Record Type - Return Release Download Detail Interface Mapping

DCS Parameter Selling and Fulfillment Foundation Parameter
Field
Size

Start
Position

WHSE OrderRelease/@Receiving Node 5 1

RECORD-TYPE “RMADTL” 6 6

ACTION-CODE “CH” or “CL” based on modification or closure 2 12

RMA-NUMBER OrderRelease/Order/@OrderNo 15 14

RMA-RELEASE-NO OrderRelease/@ReleaseNo 3 29

RMA-LINE-NO OrderRelease/OrderLine/@PrimeLineNo 5 32

RMA-SUB-NO Default value ‘0’ 5 37

ITEM-ID OrderRelease/OrderLine/Item/@ItemID 24 42

PRODUCT-CLASS OrderRelease/OrderLine/Item/@ProductClass 2 66

QUALITY-STATUS Defaulted in INTERFACE_DEFAULTS 2 68

PACK-TYPE Defaulted in INTERFACE_DEFAULTS 4 70

EXPECTED-QUANTITY OrderRelease/OrderLine/OrderStatuses/OrderStatus/@
StatusQuantity

9 74

RMA-REASON-CODE OrderRelease/OrderLine/@ReturnReason 4 83

DISPOSITION-CODE N/A 2 87

CREDIT-FLAG OrderRelease/Order/@TermsCode 1 89

Table 2–22 RMAHDR Record Type - Return Release Download Header Interface
Mapping

DCS Parameter
Selling and Fulfillment Foundation
Parameter

Field
Size

Start
Position

DCS Returns Interface

Integrating with the Distribution Center System 53

2.4.4.1.3 RMACMT- Return Release Download Comments
Table 2–24, "RMACMT Record Type - Return Release Download
Comments Interface Mapping" lists the comment information required by
the Return Release Download API.

PSEUDO-SERIAL-NUMBER N/A 20 90

INVOICE-NUMBER N/A 20 110

PICKTICKET-NO N/A 20 130

Table 2–24 RMACMT Record Type - Return Release Download Comments Interface
Mapping

DCS Parameter Release 5.0 Parameter
Field
Size

Start
Position

WHSE OrderRelease/@Receiving Node 5 1

RECORD-TYPE “RMACMT” 6 6

ACTION-CODE “CH” or “CL” based on modification or closure 2 12

RMA-NUMBER OrderRelease/Order/@OrderNo 15 14

RMA-RELEASE-NO OrderRelease/@ReleaseNo 3 29

RMA-LINE-NO OrderRelease/OrderLine/@PrimeLineNo or ‘0’ for
header level comment

5 32

RMA-SUB-NO Default value ‘0’ 5 37

COMMENT-SEQ-NO OrderRelease/Order/Instructions/

Instruction/@SequenceNo

OR

OrderRelease/Orderline/Instructions/

Instruction/@SequenceNo

5 42

COMMENT-TYPE Maps to appropriate DCS Comment Type 2 47

COMMENT-TEXT OrderLine-> InstructionText

OR

Order -> InstructionText– ‘0’ as return line
number

80 49

Table 2–23 RMADTL Record Type - Return Release Download Detail Interface Mapping

DCS Parameter Selling and Fulfillment Foundation Parameter
Field
Size

Start
Position

54 Integration Guide

DCS Returns Interface

2.4.4.2 Return Receipt Upload Data Mapping
The Return Receipt Upload Data Mapping are listed in this section.

2.4.4.2.1 Data mapping to create Return Order for blind return

Table 2–25, "Return Receipt Upload Interface mapping for input XML to
createOrder API for blind return" lists the interface attribute mapping to
create return orders if they do not exist in Selling and Fulfillment
Foundation.

Table 2–25 Return Receipt Upload Interface mapping for input XML to
createOrder API for blind return

Selling and Fulfillment
Foundation DCS

Order/DocumentType Default value for Return Document ‘0003’

Order/OrderDate RARHDR.RECEIVED-DATE

Order/OrderNo RARHDR.RMA_NUMBER

Order/OrderType Default Value ‘03’

Order/SCAC RARHDR. CARRIER-CODE

Order/TermsCode RARHDR. FREIGHT-COLLECT

Order/PersonInfoShipTo/
FirstName

RARHDR. CUSTOMER-NAME

Order/PersonInfoShipTo/

AddressLine1

RARHDR. ADDRESS-1

Order/PersonInfoShipTo/

AddressLine2

RARHDR. ADDRESS-2

Order/PersonInfoShipTo/

AddressLine3

RARHDR. ADDRESS-3

Order/PersonInfoShipTo/

City

RARHDR. CITY

Order/PersonInfoShipTo/

State

RARHDR. STATE

DCS Returns Interface

Integrating with the Distribution Center System 55

Order/PersonInfoShipTo/

ZipCode

RARHDR. ZIP

Order/PersonInfoShipTo/

Country

RARHDR. COUNTRY-CODE

Order/PersonInfoBillTo/ FirstName RARHDR. CUSTOMER-NAME

Order/PersonInfoBillTo/

AddressLine1

RARHDR. ADDRESS-1

Order/PersonInfoBillTo/

AddressLine2

RARHDR. ADDRESS-2

Order/PersonInfoBillTo/

AddressLine3

RARHDR. ADDRESS-3

Order/PersonInfoBillTo/

City

RARHDR. CITY

Order/PersonInfoBillTo/

State

RARHDR. STATE

Order/PersonInfoBillTo/

ZipCode

RARHDR. ZIP

Order/PersonInfoBillTo/

Country

RARHDR. COUNTRY-CODE

Order/EnterpriseCode RARHDR.REFERENCE-1, if the value of
RARHDR.REFERENCE-1 is a valid
Organization with Enterprise role.

If the value of RARHDR.REFERENCE-1 is
blank, this becomes the primary enterprise
of the receiving node’s organization.

If the value of RARHDR.REFERENCE-1 is
not a valid enterprise code, the system
throws an error.

OrderLine/ReceivingNode RARHDR.WHSE

Table 2–25 Return Receipt Upload Interface mapping for input XML to
createOrder API for blind return

Selling and Fulfillment
Foundation DCS

56 Integration Guide

DCS Returns Interface

2.4.4.2.2 Data mapping to record return receipts

Table 2–26, "Return Receipt Upload Interface mapping for input XML to
receiveOrder API for return receipt" lists the interface attribute mapping
to record return receipts on Selling and Fulfillment Foundation.

Order/Instructions/

InstructionText

RARCMT.COMMENT-TEXT (if
RARCMT.RMA-LINE-NO=0)

Order/Instructions/

InstructionType

RARCMT.COMMENT-TYPE (if
RARCMT.RMA-LINE-NO=0)

Order/Instructions/

SequenceNo

RARCMT.SEQ_NUMBER (if
RARCMT.RMA-LINE-NO=0)

OrderLine/PrimeLineNo RARDTL.RMA-LINE-NO

OrderLine/OrderedQuantity RARDTL.QUANTITY

OrderLine/Item/ItemID RARDTL.ITEM_ID

OrderLine/Item/ProductClass RARDTL.PRODUCT_CLASS

OrderLine/SubLineNo Default Value ‘0’

OrderLine/Item/UnitofMeasure Default Value ‘EACH’

OrderLine/ReturnReason RARDTL.RMA-REASON-CODE

OrderLine/Instructions/Instruction
/InstructionText

RARCMT.COMMENT-TEXT

OrderLine/Instructions/Instruction
/InstructionType

RARCMT.COMMENT-TEXT

OrderLine/Instructions/Instruction
/SequenceNo

RARCMT.SEQ-NUMBER

Table 2–25 Return Receipt Upload Interface mapping for input XML to
createOrder API for blind return

Selling and Fulfillment
Foundation DCS

DCS Returns Interface

Integrating with the Distribution Center System 57

2.4.5 Assumptions and Limitations
The assumptions and limitations in the integration of Selling and
Fulfillment Foundation with DCS for returns interface are listed below:

The integration to DCS is at return release rather than return
creation. This is done to support returns that may require a manual
credit check or approval before it is accepted (released).

To send a return order to DCS whenever a return is created, you can
model a service to call Return Release upon creation, based on a
return type.

The Return Order number in Selling and Fulfillment Foundation is
unique across all enterprises.

Table 2–26 Return Receipt Upload Interface mapping for input XML to
receiveOrder API for return receipt

Selling and Fulfillment Foundation DCS

Receipt/ReceiptNo RARHDR.WORKSHEET-NO

Receipt/EnterpriseCode RARHDR.REFERENCE-1 if the receipt
is not against a blind RMA. Otherwise
the enterprise code is same as that of
the blind RMA.

Receipt/ReleaseNo RARHDR.RMA-RELEASE-NO

ReceiptLine/InspectedBy RARDTL.USERID

ReceiptLine/InspectionComments RARDTL.RMA-REASON-CODE

ReceiptLine/DispositionCode RARDTL.DISPOSITION-CODE

ReceiptLine/InspectionDate RARHDR.RECEIVED-DATE

Receipt/OrderNo RARDTL.RMA-NUMBER

ReceiptLine/PrimeLineNo RARDTL.RMA-LINE-NO

ReceiptLine/Quantity RARDTL.QUANTITY

ReceiptLine/SerialNo RARDTL.SERIAL-NO

ReceiptLine/SubLineNo Default Value ‘1’

58 Integration Guide

DCS Returns Interface

All Return Order lines must use consecutive prime line numbers, with
all sub line numbers as ‘0’. The RMADTL record always sets the RMA_
SUB_NO as ‘0’.

Only one release is supported for each receiving node of the Return
Order. To apply this, enable the document type level rule ‘Consolidate
New Releases’ for the ‘Reverse Logistics’ document type. This allows
the new lines added to the Return Order to be included in the existing
release.

Receipt is allowed only for items included in the Return Order. To
receive an item that is not in the return, a line with that item should
be added into the return release and downloaded into DCS again.

Inventory updates during return receipt upload should be turned off.
Inventory adjustments for return receipts should be done through the
inventory adjustment interface with DCS. Whenever inventory is
updated in DCS, the inventory is updated in Selling and Fulfillment
Foundation too through this interface.

The following modifications are allowed on a Return Order:

Order Level

– ADD_LINE: A new line can be added to the Return Order. This
line is added in the created status. Based on the ‘Consolidate
New Releases’ setting in the ‘Reverse Logistics’ document type
level, this new line is added into the existing release during
the release process and the entire release is downloaded to
DCS.

Order Line Level

– Modifications are not allowed in the Return Order line level.

Order Release Level

– ADD_LINE: A new release line can be added.

– CANCEL: Sterling Commerce recommends that you disallow
cancellation once the return release is sent to DCS. This is
because the return receipt upload agent throws an exception if
the return is being received or has already been received in
DCS while it is getting cancelled on Selling and Fulfillment
Foundation.

– ADD_QUANTITY: A release line quantity can be added.

DCS Returns Interface

Integrating with the Distribution Center System 59

– The other modifications allowed are Add Note, Change BillTo,
Change Carrier, Change Carrier Account No, Change Carrier
Service Code, Change Freight Terms, Change Delivery Code,
Change MarkFor, Change ReqShipDate, and Change ShipTo.

Receipt overage is not allowed in DCS. A new return line must be
created on Selling and Fulfillment Foundation and downloaded to DCS
upon release.

Return Orders with Kit items should be created as blind returns on
DCS. They cannot be created for sales orders in Selling and
Fulfillment Foundation.

Return Orders with Kit items should contain return lines for kit
components.

Return Orders can be created for multiple sales orders and can be
received in DCS.

The return receipt upload agent does not upload instructions to
Selling and Fulfillment Foundation if the instruction text is blank.

The configuration assumptions for DCS are:

The creation of a return in DCS is enabled only for blind returns.

For blind returns on DCS, a new function should be configured to
"Create Blind RMA" with RMA_Type='03' defaulted and
protected.This ensures that blind RMAs are always created with
RMA_Type = '03'.

The ability to receive an overage item or a different item on a
return is disabled.

For more information about configuring DCS Inventory updates, see the
Yantra 5x Configuration Guide.

60 Integration Guide

DCS Returns Interface

Integrating with Stand-Alone Sterling WMS 61

3
Integrating with Stand-Alone Sterling WMS

3.1 Installing Integration Pack for Receipt and
Inventory Change Upload Interfaces on a WMS
Instance

To install the receipt and inventory change upload components on the
WMS instance:

1. Set the environment variable INSTALL_DIR to point to the Selling and
Fulfillment Foundation installation directory.

2. Change the directory to <INSTALL_DIR>/bin, and run the following
command for UNIX or Linux:

sci_ant.sh -f wms_integration_pack_installer.xml (or sci_
ant.cmd for Windows).

3. After you run the above command, check the contents of the wms_
integration_pack_fc_installer.xml.restart file located in the
<INSTALL_DIR>/database/FactorySetup/install/ directory. In the
wms_integration_pack_fc_installer.xml.restart file make sure
that the "Completed" attribute of the TaskInfo element is set to "Y". If
this is set to "N", fix the integration pack installation problems, and
repeat Step 2.

Note: The services described in this chapter are not
supported in a multischema environment.

62 Integration Guide

Installing Integration Pack for Receipt and Inventory Change Upload Interfaces on a

3.2 Installing Integration Pack for Receipt and
Inventory Change Upload Interfaces on a DOM
Instance

To install the receipt and inventory change upload components on the
DOM instance:

1. Set the environment variable INSTALL_DIR to point to the Selling and
Fulfillment Foundation installation directory.

2. Change the directory to <INSTALL_DIR>/bin, and run the following
command for UNIX or Linux:

sci_ant.sh -f omp_integration_pack_installer.xml (or sci_
ant.cmd for Windows).

3. After you run the above command, check the contents of the omp_
integration_pack_fc_installer.xml.restart file located in the
<INSTALL_DIR>/database/FactorySetup/install/ directory. In the
omp_integration_pack_fc_installer.xml.restart file make sure
that the "Completed" attribute of the TaskInfo element is set to "Y". If
this is set to "N", fix the integration pack installation problems, and
repeat Step 2.

Note: If your DOM instance is on a release that is prior to
Release 8.5, you must copy the following files located in
the runtime directory of the WMS instance to the runtime
directory of the DOM instance.

<INSTALL_DIR>/bin/omp_integration_pack_
installer.xml

<INSTALL_
DIR>/database/FactorySetup/install/omp_
integration_pack_fc_installer.xml

<INSTALL_
DIR>/database/FactorySetup/IntegrationPack/IP_
OMP_*.xml

Uploading Receipts

Integrating with Stand-Alone Sterling WMS 63

3.3 Uploading Receipts
Selling and Fulfillment Foundation supports integration between DOM and
WMS for uploading receipts and receipt adjustments. To integrate DOM
and WMS, you must configure a common JMS queue. You must also
model the node on both instances. For the DOM instance, model the
node as a non-WMS integrated node.

Uploading receipt has the following integration touch points:

WMS Components

– Uploading the Receipt Information

– Uploading the Receipt Adjustment Information

DOM Components

– Loading the Receipt Information from a Node

– Loading the Receipt Adjustment Information from a Node

3.3.1 Uploading the Receipt Information
To upload the receipt details from WMS to DOM, use the
ReceiptUpload-751 service.

3.3.1.1 The ReceiptUpload-751 Service
This service is invoked from the WMS instance.

The receiveOrder API is invoked during the receiving process. When the
receiving process for a case or pallet is complete, and the user closes the
case or pallet, or when receiving for a loose SKU is complete, one of the
ON_CASE_RECEIPT, ON_PALLET_RECEIPT, and ON_SKU_RECEIPT events
of the RECEIVE_RECEIPT transaction is raised. To invoke the
ReceiptiUpload-751 service, ensure that the UploadReceipt action, under
Order>PO Order Receipt>Actions>Receipt Upload, is configured on these
events.

The ReceiptUpload-751 service then translates the API output and serves
as an input to the receiveOrder API. This is published as a message to
the JMS queue of the web server of the DOM instance.

This service invokes the getReceiptLinesList API. The getReceiptLinesList
API has been modified to use an additional flag called
RelevantItemLinesOnly. If this flag is set to "Y", the API returns the

64 Integration Guide

Uploading Receipts

relevant lines exploding the hierarchical information of LPNs as
necessary, satisfying the input criteria.

This flag is relevant if:

Either the case identifier or pallet identifier is passed as input.

The case identifier or pallet identifier passed is not shipped out of the
warehouse.

3.3.1.2 Configuring the ReceiptUpload-751 Service
To configure the ReceiptUpload-751 service:

1. From the Applications menu of the Applications Manager, select
Application Platform.

2. From the tree in the application rules side panel, double-click Process
Modeling.

3. Click the Order tab. In the Process Types swimlane, right-click the
Purchase Order Receipt process type and click Model Process. The
Repository Details window and work area are displayed for the Order
process type.

4. Click the Service Definitions tab.

5. Expand the DefaultGroup branch.

6. Right-click ReceiptUpload-751 and select Details. The Service Detail
window appears in the work area.

Uploading Receipts

Integrating with Stand-Alone Sterling WMS 65

7. Click the green connector that connects the XSL Translator and the
WebLogic JMS. The JMS Sender properties displays as shown.

8. In the Runtime tab, make sure that the "Commit of this message
depends on parent transaction" box is checked.

66 Integration Guide

Uploading Receipts

For field value descriptions, refer to the Service Builder Nodes and
Parameters appendix of the Selling and Fulfillment Foundation:
Application Platform Configuration Guide.

3.3.2 Uploading the Receipt Adjustment Information
To upload receipt adjustment details from WMS to DOM, use the
AdjustReceiptUpload-751 service.

3.3.2.1 The AdjustReceiptUpload-751 Service
This service is invoked from the WMS instance.

The unreceiveOrder API is invoked during the unreceiving process. When
the unreceiving process is complete, the ON_SUCCESS event of the
UNRECEIVE_RECEIPT transaction is raised. To invoke the
AdjustReceiptUpload-751 service, ensure that the adjustReceiptUpload
action, under Order>PO Order Receipt>Actions>Receipt Upload, is
configured on the ON_SUCCESS event.

The AdjustReceiptUpload-751 service then translates the API output and
serves as an input to the unreceiveOrder AP1. This is published as a
message in the JMS queue of the web server of the DOM instance.

3.3.2.2 Configuring the Updated Receipt Adjustment Information
from a Node
To configure the AdjustReceiptUpload-751 service:

1. From the Applications menu of the Applications Manager, select
Application Platform.

2. From the tree in the application rules side panel, double-click Process
Modeling.

3. Click the Order tab. In the Process Types swimlane, right-click the
Purchase Order Receipt process type and click Model Process. The
Repository Details window and work area are displayed for the Order
process type.

4. Click the Service Definitions tab.

5. Expand the DefaultGroup branch.

6. Right-click AdjustReceiptUpload-751 and select Details. The Service
Detail window appears in the work area.

Uploading Receipts

Integrating with Stand-Alone Sterling WMS 67

7. Click the green connector that connects the XSL Translator and the
WebLogic JMS. The JMS Sender properties displays as shown.

8. In the Runtime tab, make sure that the "Commit of this message
depends on parent transaction" box is checked.

68 Integration Guide

Uploading Receipts

For field value descriptions, refer to the Service Builder Nodes and
Parameters appendix of the Selling and Fulfillment Foundation:
Application Platform Configuration Guide.

3.3.3 Loading the Receipt Information from a Node
The LoadReceiptInfo-751 service is used at the DOM instance to retrieve
receipt details from the node.

To retrieve receipt details, set up the LoadReceiptInfo-751 service for
DOM instance.

1. From the Applications menu of the Applications Manager, select
Application Platform.

2. From the tree in the application rules side panel, double-click Process
Modeling.

3. Click the Order tab. In the Process Types swimlane, right-click the
Purchase Order Receipt process type and click Model Process. The
Repository Details window and work area are displayed for the Order
process type.

4. Click the Service Definitions tab.

5. Expand the DefaultGroup branch.

6. Right-click LoadReceiptInfo-751 and select Details. The Service Detail
window appears in the work area.

Uploading Receipts

Integrating with Stand-Alone Sterling WMS 69

3.3.3.1 The LoadReceiptInfo-751 service
This service is invoked from the DOM instance.

From WebLogic JMS to API
The LoadReceiptInfo-751 service reads the message from the JMS queue
and invokes the receiveOrder API.

Note: Although we have used Weblogic JMS as an
example, the Selling and Fulfillment Foundation also
supports the use of IBM WebSphere and JBoss Messaging
JMS.

70 Integration Guide

Uploading Receipts

To configure the service:

1. In the Service Detail: LoadReceiptInfo-751 window, click the green
connector that connects the WebLogic JMS and the API. The JMS
Receiver properties displays as shown.

For field value descriptions of the fields, refer to the Service Builder
Nodes and Parameters appendix of the Selling and Fulfillment
Foundation: Application Platform Configuration Guide.

3.3.4 Loading the Receipt Adjustment Information from a
Node

The LoadReceiptAdjustments-751 service is used at the DOM instance to
retrieve receipt details from the node.

To retrieve receipt details, set up the LoadReceiptAdjustments-751
service for the DOM instance.

1. From the Applications menu of the Applications Manager, select
Application Platform.

2. From the tree in the application rules side panel, double-click Process
Modeling.

3. Click the Order tab. In the Process Types swimlane, right-click the
Purchase Order Receipt process type and click Model Process. The
Repository Details window and work area are displayed for the Order
process type.

4. Click the Service Definitions tab.

5. Expand the DefaultGroup branch.

Uploading Receipts

Integrating with Stand-Alone Sterling WMS 71

6. Right-click LoadReceiptAdjustments-751 and select Details. The
Service Detail window appears in the work area.

3.3.4.1 The LoadReceiptAdjustments-751 service
This service is invoked from the DOM instance.

From WebLogic JMS to API
The LoadReceiptAdjustments-751 service reads the message from the
JMS queue and invokes the unreceiveOrder API.

Note: Although we have used WebLogic JMS as an
example, Selling and Fulfillment Foundation supports the
use of IBM WebSphere and JBoss Messaging JMS.

72 Integration Guide

Uploading Inventory Changes at a Node

To configure the service:

1. In the Service Detail: LoadReceiptAdjustments-751 window, click the
green connector that connects the WebLogic JMS and the API. The
JMS Receiver properties displays as shown.

For field value descriptions, refer to the Service Builder Nodes and
Parameters appendix of the Selling and Fulfillment Foundation:
Application Platform Configuration Guide.

3.4 Uploading Inventory Changes at a Node
Selling and Fulfillment Foundation provides inventory integration between
DOM and WMS that are running on two different instances. To
synchronize inventory between separate DOM and WMS instances, you
must configure a common JMS queue. You must also model the node on
both instances. For a DOM instance, model the node as a non-WMS
integrated node.

The uploading process is performed in two phases:

Uploading the Updated Inventory Information

Loading Inventory Information from a Node

3.4.1 Uploading the Updated Inventory Information
To keep inventory information between DOM and WMS instances in
synchronization, use the InventoryChangeUpload-751 service.

3.4.1.1 The InventoryChangeUpload-751 Service
Inventory information needs to be transmitted to the DOM instance for
all adjustment types other than RECEIPT, RETURN, and SHIPMENT.

Uploading Inventory Changes at a Node

Integrating with Stand-Alone Sterling WMS 73

(Inventory for these adjustment types would typically be transmitted by
means of receipt or shipping interfaces). The
InventoryChangeUpload-751 service is invoked from the WMS instance
on the SUPPLY_CHANGE event of the INVENTORY_CHANGE transaction,
which is raised whenever inventory changes at a node. To invoke the
InventoryChangeUpload-751 service, ensure that the
UploadInventoryChange action, under
General>General>Actions>Inventory Synchronization, is configured on
the SUPPLY_CHANGE event.

This service then translates the output of the SUPPLY_CHANGE event and
creates an input XML for the adjustInventory API. This input XML is
published as a message to the JMS queue of the web server of the DOM
instance.

The new "doesAdjustmentTypeRequiresTransmission" condition is used to
determine which inventory changes require transmission. This condition
returns true if the adjustment type is any value other than RECEIPT,
RETURN, and SHIPMENT.

3.4.1.2 Configuring the Updated Inventory Information from a
Node
To configure the service:

1. From the Applications menu of the Applications Manager, select
Application Platform.

2. From the tree in the application rules side panel, double-click Process
Modeling.

3. Click the General tab. In the Process Types swimlane, right-click the
General process type and select Model Process. The Repository
Details window and work area displays for the General process type.

4. Click the Service Definitions tab.

5. Expand the InventorySynchronization branch.

6. Right-click InventoryChangeUpload-751 and select Details. The
Service Detail window appears in the work area.

74 Integration Guide

Uploading Inventory Changes at a Node

7. Click the green connector that connects the XSL Translator and the
WebLogic JMS. The JMS Sender properties displays as shown.

Uploading Inventory Changes at a Node

Integrating with Stand-Alone Sterling WMS 75

8. In the Runtime tab, make sure that the "Commit of this message
depends on parent transaction" box is checked.

For field value descriptions, refer to the Service Builder Nodes and
Parameters appendix of the Selling and Fulfillment Foundation:
Application Platform Configuration Guide.

3.4.2 Loading Inventory Information from a Node
In order to reconcile the inventory picture between DOM and WMS, the
inventory picture at the WMS instance must be loaded to the DOM
instance.

To reconcile the inventory picture, set up the
LoadWMSInventoryChangeInfo-751 service for the DOM instance.

1. From the Applications menu of the Applications Manager, select
Application Platform.

2. From the tree in the application rules side panel, double-click Process
Modeling.

3. Click the General tab. In the Process Types swimlane, right-click the
General process type and select Model Process. The Repository
Details window and work area displays for the General process type.

4. Click the Service Definitions tab.

5. Expand the InventorySynchronization branch.

6. Right-click LoadWMSInventoryChangeInfo-751 and select details. The
Service Detail window appears in the work area.

76 Integration Guide

Uploading Inventory Changes at a Node

3.4.2.1 The LoadWMSInventoryChangeInfo-751 service
This service is invoked from the DOM instance.

From WebLogic JMS to API
The LoadWMSInventoryChangeInfo-751 service reads the message from
the JMS queue and invokes the adjustInventory API.

Note: Although we have used WebLogic JMS as an
example, Selling and Fulfillment Foundation also supports
the use of IBM WebSphere and JBoss Messaging JMS.

Uploading the Inventory Snapshot

Integrating with Stand-Alone Sterling WMS 77

To configure the service:

1. In the Service Detail: LoadWMSInventoryChangeInfo-751 window,
click the green connector that connects the WebLogic JMS and API.
The JMS Receiver properties displays as shown.

For field value descriptions, refer to the Service Builder Nodes and
Parameters appendix of the Selling and Fulfillment Foundation:
Application Platform Configuration Guide.

3.5 Uploading the Inventory Snapshot
Selling and Fulfillment Foundation provides the ability to upload inventory
snapshots for integrating WMS and DOM that are running on different
instances. This involves loading the inventory picture from a WMS
instance to a DOM instance.

3.5.1 Generating Inventory Snapshot Files
A single XML file is generated by running the inventory snapshot
component at a WMS instance where data is fetched from the YFS_Inv_
SnapShot_VW view. This view is derived from the following tables:

YFS_INVENTORY_ITEM

YFS_INVENTORY_SUPPLY

YFS_INVENTORY_TAG

To run the inventory snapshot component on a WMS instance:

1. Go to the <INSTALL_DIR>/bin directory.

78 Integration Guide

Uploading the Inventory Snapshot

2. For UNIX or Linux, run this command:

sci_ant.sh -f runInventorySnapShot.xml
-DFilePath=<FilePath> -DShipNode=<ShipNode>
-DReasonCode=<ReasonCode> -DReasonText=<ReasonText>
-DItemsPerGroup=<ItemsPerGroup>

For Windows, run this command:

sci_ant.cmd -f runInventorySnapShot.xml
-DFilePath=<FilePath> -DShipNode=<ShipNode>
-DReasonCode=<ReasonCode> -DReasonText=<ReasonText>
-DItemsPerGroup=<ItemsPerGroup>

These generated XML files can be shared by both WMS and DOM
instances through NFS mounts or can also be transferred through FTP to
the DOM instance.

Table 3–1 Parameters Passed for Inventory Snapshot

Field Description

FilePath The absolute path of the directory where the
generated XML file is stored.

ShipNode The ship node for which the XML file is generated.

ReasonCode The reason code that is defined by the user.

Reason Text The reason code text that is that is defined by the
user.

ItemsPerGroup The number of item tags in the items tag element. The
recommended value is 100. However, you could
specify any value from 1 to 100.

Note: The time taken to generate an XML file on a WMS
instance is not more than 3 minutes when the number of
records in the YFS_INVENTORY_SUPPLY table are 430,000
and 512 M heap is used.

Uploading the Inventory Snapshot

Integrating with Stand-Alone Sterling WMS 79

For more information about uploading inventory snapshot components on
a DOM instance, refer to the Sterling Global Inventory Visibility:
Configuration Guide.

80 Integration Guide

Uploading the Inventory Snapshot

Integrating with Third-Party Warehouse Management Systems 81

4
Integrating with Third-Party Warehouse

Management Systems

Selling and Fulfillment Foundation enables you to integrate with external
third-party warehouse management systems in order to identify external
ship nodes, manage external inventory and distribution of items, and
coordinate external warehouse activities.

The Selling and Fulfillment Foundation, Release 8.5 provides complete
functionality for Distributed Order Management and Warehouse
Management systems without the need for integration. For more
information about the Sterling Warehouse Management System, see the
Sterling Warehouse Management System: Concepts Guide.

This chapter describes how Selling and Fulfillment Foundation provides
integration with software that controls inventory and directs activities
from shipping to receiving for third-party warehouse management
systems.

4.1 Third-Party Warehouse Management Systems
Selling and Fulfillment Foundation provides XML-based integration to
third-party warehouse management systems (WMS). To integrate Selling
and Fulfillment Foundation with third-party warehouse management
systems, configure them using services, as indicated in the Selling and
Fulfillment Foundation: Application Platform Configuration Guide. In
addition, use the following APIs when necessary:

getUnprocessedImportDataEx() – Retrieves unprocessed data from
import tables.

82 Integration Guide

Third-Party Warehouse Management Systems

4.1.1 Third-Party Shipment Advice
When creating shipment advice data for third-party software, use
services to stage your data. For more information about using services,
see the Selling and Fulfillment Foundation: Application Platform
Configuration Guide.

4.1.2 Third-Party Inventory Change
Selling and Fulfillment Foundation enables XML-based integration with
third-party warehouse management inventory control systems through
services or though system APIs. The following APIs enable integration
with third-party systems for inventory change:

getInventorySnapShot – Obtains total number of items in inventory
at all ship nodes.

getInventoryMismatch – Detects or corrects mismatches between the
global inventory picture on Selling and Fulfillment Foundation and the
global inventory picture on the external system.

adjustInventory – Applies corrections to the global inventory picture
in Selling and Fulfillment Foundation. This could also be used to
correct a mismatch when the getInventoryMismatch API is used to
detect the mismatches.

Integrating with the Loftware Print Server and Label Manager 83

5
Integrating with the Loftware Print Server

and Label Manager

This chapter deals with the specific settings required for a successful
integration of the Sterling WMS with the Loftware Print Server (LPS) and
Loftware Label Manager (LLM), and the configuration of custom prints
using the same.

For more information about installing and configuring the Loftware Print
Server, see the Selling and Fulfillment Foundation: Installation Guide.

For more information about server requirements and installation
guidelines of Loftware Label Manager, see the Loftware Print Server
User's Guide and Loftware Label Manager User's Guide.

For more information about configuring printers, see the Sterling
Warehouse Management System: Configuration Guide.

The Sterling WMS provides the following Standard Labels:

UCC 128 Container Shipping Label

VICS Bill Of Lading

Packing Slip

Batch Sheets

Item Pick Batch Sheet

Cart Manifest Batch sheet

Count Sheet

UPS Carrier Label

UPS Pickup Summary

84 Integration Guide

To print these standard labels, the Sterling WMS provides services
associated with events. By default, the events are disabled. Enable the
events if you want to print the standard labels. Refer to Table 5–1
"Services provided in the Sterling WMS" for a list of services provided in
the Sterling WMS.

Important: The factory shipped Cart Manifest Print is
based on the following assumptions:
1. Each cart location is assumed to have 1 slot, when the
number of locations in the cart is greater than 8,
2. Each cart location is assumed to have 2 slots, when the
number of locations in the cart is less than or equal to 8.

For example, if the cart locations in the cart are named as
A, B, C, ... H, then the Cart Manifest Print has locations
such as A1, A2, B1, B2, C1, C2, ... H1, H2.

Thus, the task type "Number of containers allowed per
location in the equipment" should always be set at 1 or 2.

For other configurations of the Cart, the Print has to be
customized.

Table 5–1 Services provided in the Sterling WMS

Service Name Event Description

PrintShippingLabel ADD_TO_CONTAINER.ON_
CONTAINER_PACK_
COMPLETE

Prints a UCC-128
Shipping Label for a
container

PrintShipmentContainerLa
bels

Reprint Request from
console

Prints UCC-128
Container Labels for
Containers in the
Shipment

PrintShipmentBOL CONFIRM_SHIPMENT.ON_
SUCCESS

Print a VICS BOL for
Shipment

Integrating with the Loftware Print Server and Label Manager 85

PrintTaskList Reprint Request from
console

Prints a BatchSheet
(CartManifest or
ItemPickBatch Sheet)
or a CountSheet, based
on the ActivityGroup
for the Batch. If the
Batch belongs to the
ActivityGroup COUNT,
the CountSheet is
printed.

PrintLoadBOL RECEIVE_IN_TRANSIT_
UPDATES.ON_SUCCESS

Prints a VICS BOL for
Load

PrintWave PRINT_WAVE.ON_
SUCCESS

Prints PickList
(BatchSheets),
Container Labels and
pre-generates
PackLists for
Shipments in the Wave

PrintPackList ADD_TO_CONTAINER.ON_
SHIPMENT_PACK_
COMPLETE

Prints a PackList

PickListPrint PRINT_PICKLIST.ON_
SUCCESS

Prints PackLists for
Shipments in the
PickList

PrintTaskSheets COMPLETE_TASK.TASK_
COMPLETED

Creates a Batch for
successor Tasks of the
completed task and
Prints a BatchSheet for
the same

PrintMoveTickets RELEASE_MOVE_
REQUEST.ON_SUCCESS

Creates a Batch for the
MoveRequest and
prints a BatchSheet for
the same

PrintPostPickContainers POST_PICK_
CONTAINERIZATION.ON_
SUCCESS

Prints UCC-128
Shipping Labels for
containers created as
part of Post Pick
Containerization

Table 5–1 Services provided in the Sterling WMS

Service Name Event Description

86 Integration Guide

Designing Custom Labels

5.1 Designing Custom Labels
Use Loftware Label Manager to design a label (creates an .lwl file). For
more information about creating new labels using Loftware Label
Manager, see Loftware Label Manager User's Guide.

The Loftware Label Manager, used for designing labels, may be installed
on any compatible PC. For more information about server requirements
and installation guidelines, see Loftware Print Server User's Guide.

Displaying Page Numbers
To display Page Numbers and Total Number of Pages in the print output,
the following fields need to be added to the Label (.lwl file):

PageNo

TotalPages

This ensures that the page numbers are displayed in the format Page X
of N.

File Naming Convention
The Sterling WMS requires the following naming convention be followed
while creating labels (.lwl files) using Loftware Label Manager:

The first page of the label file created should be named in the format
<filename>.lwl

The middle page of the label file created should be named in the
format <filename>_Mid.lwl

Note: The Sterling WMS requires the repeating fields in a
label to have names in the format of <fieldname>_
<integer>. The integer in the field name takes values like
1, 2, 3.

Note: While designing a custom label, it is recommended
that you use the ‘.LST’ file in order to maintain uniformity
in label field names across different labels. For more
information about LST file(s), see Loftware Label Manager
User's Guide.

Designing Custom Labels

Integrating with the Loftware Print Server and Label Manager 87

The last page of the label file created should be named in the format
<filename>_Last.lwl

The first page of the label and the last page of the label are always single
pages. The middle page, on the other hand, is used n number of times in
accordance with the total number of label pages to be printed.

For example, if a label print is six pages, the first page and last page
make two pages, and the middle page (<filename>_Mid.lwl) is
repeated four times.

You can print a label in single-page or multi-page format depending on
the number of lines in the label. If the number of lines can be
accommodated on the first page itself, you can print the label in
single-page format. For this, you must create a new label format
(<filename>_SinglePage.lwl). For more information about creating a
label format, see the Selling and Fulfillment Foundation: Application
Platform Configuration Guide. After you create the new label format, the
print service calls the xsl file to check the number of lines in the label.
Depending on the number of lines, a single-page or multi-page label is
printed. For example, the LTL Manifest Label can be printed in
single-page or multi-page format.

After you create the custom label, copy it to Runtime > Template > Label
> Extn directory.

Creation of Mapping XML File
The GenLabelMappingXML.java tool is used to generate Mapping XML for
a label designed using Loftware Label Manager. The output XML contains
all the field names of the label. XPath bindings for the label fields have to
be specified.

To generate a Mapping XML for a label, use the command given below to
invoke the GenLabelMappingXML tool:

java -classpath <classpath>
com.yantra.tools.labelxmlmapping.GenLabelMappingXML
<parameter1> <parameter2>

Ensure that the classpath has the following jar files:

platform_afc.jar

log4j-1.2.12.jar

xercesImpl.jar

88 Integration Guide

Designing Custom Labels

<parameter1>
This should be the file name of the .tab file generated when the label
(.lwl) file is saved in Loftware Label Manager.

The full path, excluding the extension should be specified.

<parameter2>

This should be the file name of the XML file generated by the tool.

The full path, excluding the extension should be specified.

For example, to generate a Mapping XML for the label BOL.lwl, the .tab
file name is BOL.tab

In this example, the command used to invoke the tool is:

java -classpath platform_
afc.jar;log4j-1.2.12.jar;xercesImpl.jar
com.yantra.tools.labelxmlmapping.GenLabelMappingXML
<path-of-the-file>/BOL <path-of-file>/BOLMap

XML File Settings
In the Mapping XML file generated using the
GenLabelMappingXML.java tool:

Each Label Field has a corresponding LabelField element

Label Fields which are repeating are present in the RepeatingField
element.

Each of the Repeating Fields has a MaxFirstPage, MaxMidPage, and
MaxLastPage, which denote the number of times the field is repeated
in the First page, Middle Pages, and Last Page respectively.

To repeat the same set of values of the field in all the pages, the
RepeatValuesOnEachPage attribute should be set to "Y" in the
RepeatingField element.

The following is an example of a Mapping XML file:

Example 5–1 Illustration of a Mapping XML

<?xml version="1.0" encoding="UTF-8"?>
<LabelFieldMap>
 <LabelField
Binding="/Shipment/SellerOrganization/CorporatePersonInfo/@AddressLine1"
LabelFieldName="FromAddressLine1" RepeatingElement=""/>

Designing Custom Labels

Integrating with the Loftware Print Server and Label Manager 89

 <LabelField
Binding="/Shipment/SellerOrganization/CorporatePersonInfo/@AddressLine2"
LabelFieldName="FromAddressLine2" RepeatingElement=""/>
 <LabelField
Binding="concat(/Shipment/SellerOrganization/CorporatePersonInfo/@FirstName,
' ',/Shipment/SellerOrganization/CorporatePersonInfo/@LastName)"
LabelFieldName="FromName" RepeatingElement="" DataType="Text"/>
 <LabelField
Binding="/Shipment/SellerOrganization/CorporatePersonInfo/@City"
LabelFieldName="FromCity" RepeatingElement="" DataType="Text"/>
 <LabelField
Binding="/Shipment/SellerOrganization/CorporatePersonInfo/@State"
LabelFieldName="FromState" RepeatingElement="" DataType="Text"/>
 <LabelField
Binding="/Shipment/SellerOrganization/CorporatePersonInfo/@Country"
LabelFieldName="FromCountry" RepeatingElement="" DataType="Text"/>
 <LabelField
Binding="/Shipment/SellerOrganization/CorporatePersonInfo/@ZipCode"
LabelFieldName="FromZip" RepeatingElement="" DataType="Text"/>
 <LabelField Binding="/Shipment/@ShipmentNo" LabelFieldName="ShipmentNo"
RepeatingElement="" DataType="Text"/>
 <LabelField Binding="/Shipment/@ActualShipmentDate"
LabelFieldName="ShipmentDate" RepeatingElement="" DataType="Date"/>
 <LabelField Binding="concat(/Shipment/ToAddress/@FirstName,'
',/Shipment/ToAddress/@LastName)" LabelFieldName="ToName"
RepeatingElement="" DataType="Text"/>
 <LabelField Binding="/Shipment/ToAddress/@AddressLine1"
LabelFieldName="ToAddressLine1" RepeatingElement="" DataType="Text"/>
 <LabelField Binding="/Shipment/ToAddress/@AddressLine2"
LabelFieldName="ToAddressLine2" RepeatingElement="" DataType="Text"/>
 <LabelField Binding="/Shipment/ToAddress/@City" LabelFieldName="ToCity"
RepeatingElement="" DataType="Text"/>
 <LabelField Binding="/Shipment/ToAddress/@State"
LabelFieldName="ToState" RepeatingElement="" DataType="Text"/>
 <LabelField Binding="/Shipment/ToAddress/@ZipCode"
LabelFieldName="ToZip" RepeatingElement="" DataType="Text"/>
 <LabelField Binding="/Shipment/ToAddress/@Country"
LabelFieldName="ToCountry" RepeatingElement="" DataType="Text"/>
 <LabelField
Binding="concat(/Shipment/BillingInformation/AlternateParty/@FirstName,'
',/Shipment/BillingInformation/AlternateParty/@LastName)"
LabelFieldName="BillToName" RepeatingElement="" DataType="Text"/>
 <LabelField
Binding="/Shipment/BillingInformation/AlternateParty/@AddressLine1"
LabelFieldName="BillToAddressLine1" RepeatingElement="" DataType="Text"/>

90 Integration Guide

Designing Custom Labels

 <LabelField
Binding="/Shipment/BillingInformation/AlternateParty/@AddressLine2"
LabelFieldName="BillToAddressLine2" RepeatingElement="" DataType="Text"/>
 <LabelField Binding="/Shipment/BillingInformation/AlternateParty/@City"
LabelFieldName="BillToCity" RepeatingElement="" DataType="Text"/>
 <LabelField Binding="/Shipment/BillingInformation/AlternateParty/@State"
LabelFieldName="BillToState" RepeatingElement="" DataType="Text"/>
 <LabelField
Binding="/Shipment/BillingInformation/AlternateParty/@ZipCode"
LabelFieldName="BillToZip" RepeatingElement="" DataType="Text"/>
 <LabelField
Binding="/Shipment/BillingInformation/AlternateParty/@Country"
LabelFieldName="BillToCountry" RepeatingElement="" DataType="Text"/>
 <LabelField Binding="/Shipment/Carrier/@ScacDesc" LabelFieldName="SCAC"
RepeatingElement="" DataType="Text"/>
 <LabelField Binding="/Shipment/BillingInformation/@ShipmentChargeType"
LabelFieldName="FreightTerms" RepeatingElement="" DataType="Text"/>
 <LabelField Binding="concat(/Shipment/MarkForAddress/@FirstName,'
',/Shipment/MarkForAddress/@LastName)" LabelFieldName="MarkFor"
RepeatingElement="" DataType="Text"/>
 <LabelField
Binding="/Shipment/Instructions/Instruction[@InstructionType='SHIP']/@Instru
ctionText" LabelFieldName="SpecialInstruction" RepeatingElement=""
DataType="Text"/>
 <LabelField
Binding="/Shipment/ShipmentLines/ShipmentLine/OrderLine/@CustomerPONo"
LabelFieldName="CustomerPONo" RepeatingElement="ShipmentLine"
DataType="Text"/>
 <LabelField Binding="/Shipment/ShipmentLines/ShipmentLine/@ItemID"
LabelFieldName="ItemId" RepeatingElement="" DataType="Text"/>
 <LabelField
Binding="/Shipment/ShipmentLines/ShipmentLine/OrderLine/Item/@CustomerItem"
LabelFieldName="CustItemId" RepeatingElement="ShipmentLine"
DataType="Text"/>
 <LabelField
Binding="/Shipment/ShipmentLines/ShipmentLine/OrderLine/Item/@ItemDesc"
LabelFieldName="ItemDesc" RepeatingElement="ShipmentLine" DataType="Text"/>
 <LabelField
Binding="/Shipment/ShipmentLines/ShipmentLine/@UnitOfMeasure"
LabelFieldName="UOM" RepeatingElement="ShipmentLine" DataType="Text"/>
 <LabelField Binding="/Shipment/ShipmentLines/ShipmentLine/@OrderedQty"
LabelFieldName="OrdQty" RepeatingElement="ShipmentLine" DataType="Text"/>
 <LabelField Binding="/Shipment/ShipmentLines/ShipmentLine/@Quantity"
LabelFieldName="Quantity" RepeatingElement="ShipmentLine" DataType="Text"/>
 <LabelField

Designing Custom Labels

Integrating with the Loftware Print Server and Label Manager 91

Binding="/Shipment/ShipmentLines/ShipmentLine/@BackOrderedQty"
LabelFieldName="BOQty" RepeatingElement="ShipmentLine" DataType="Text"/>
 <LabelField Binding="" LabelFieldName="Line" RepeatingElement=""
Sequence="Y" DataType="Text"/>
 <RepeatingFields>
 <RepeatingField LabelFieldName="CustomerPONo" MaxFirstPage="12"
 MaxLastPage="12" MaxMidPage="12"/>
 <RepeatingField LabelFieldName="ItemId" MaxFirstPage="12"
 MaxLastPage="12" MaxMidPage="12"/>
 <RepeatingField LabelFieldName="CustItemId" MaxFirstPage="12"
 MaxLastPage="12" MaxMidPage="12"/>
 <RepeatingField LabelFieldName="ItemDesc" MaxFirstPage="12"
 MaxLastPage="12" MaxMidPage="12"/>
 <RepeatingField LabelFieldName="UOM" MaxFirstPage="12"
 MaxLastPage="12" MaxMidPage="12"/>
 <RepeatingField LabelFieldName="OrdQty" MaxFirstPage="12"
 MaxLastPage="12" MaxMidPage="12"/>
 <RepeatingField LabelFieldName="Quantity" MaxFirstPage="12"
 MaxLastPage="12" MaxMidPage="12"/>
 <RepeatingField LabelFieldName="BOQty" MaxFirstPage="12"
 MaxLastPage="12" MaxMidPage="12"/>
 <RepeatingField LabelFieldName="Line" MaxFirstPage="12"
 MaxLastPage="12" MaxMidPage="12"/>
 </RepeatingFields>
</LabelFieldMap>

The map file (XML) generated for a label (LWL) must be edited to
associate the XML data to the fields required on the label.
Binding:Each LabelField has to be associated with a XPath Binding. This Binding denotes the address of a part of an XML document.

3. Sequence:
Sequence="Y" setting is to be used in instances where a labelfield
represents a sequence of numbers. For example, serial numbers in a
table.

4. DataType:
Set up the relevant DataType for the LabelField. Valid values are
Text, Date, and DateTime.

Note: XPath Functions can be used in the binding,
provided the XPath Binding for a RepeatingField
represents a Nodeset.

92 Integration Guide

Defining Custom Print Services

5. Repeating Element:
Specify the RepeatingElement for the XPath Binding.

If no Repeating Element is specified, the element containing the
attribute is used as the RepeatingElement by default.

In this example, the ShipmentLine is the RepeatingElement:
<LabelField
Binding="/Shipment/ShipmentLines/ShipmentLine/OrderLine/Ite
m/@ItemDesc" LabelFieldName="ItemDesc"
RepeatingElement="ShipmentLine" DataType="Text"/>

Relocation of XML Mapping File
The edited XML map file needs to be copied over into the Selling and
Fulfillment Foundation Runtime Template folder:

1. Copy the relevant XML Mapping File from the folder where it has been
generated.

2. Paste the copied XML Mapping File to Runtime > Template > Label >
Extn directory.

5.2 Defining Custom Print Services
This section illustrates the services required for printing a Pack List. The
services explained herein are supplied by default within the Selling and
Fulfillment Foundation framework. The examples provided here may be
used as a reference point to create custom Prints.

Creating Service Definitions
Prints are required to be configured as services to be invoked from an
event or the console (UI).

To configure a Print Pack List service:

1. From the Application Platform tree, choose Process Modeling >
Container > Pack Process. The Pack Process window is displayed.

2. Choose Actions tab. From Pack Process Repository > Prints, choose
PrintPackList.

3. The Service Detail: PrintPackList (Pack Process) window is displayed.

Defining Custom Print Services

Integrating with the Loftware Print Server and Label Manager 93

For more information about configuring Service Details, see the Selling
and Fulfillment Foundation: Application Platform Configuration Guide.

The Input XML to the service definition is transformed into the input of
the PrintDocumentSet() API using an XSL Translator.

For more information about the input to PrintDocumentSet() API and
the description of the XML attributes, refer to the JavaDocs.

The following is an example of a typical XSL that generates the input to
the PrintDocumentSet() API:

94 Integration Guide

Defining Custom Print Services

Example 5–2 XSL Translator Input to PrintDocumentSet() API

<?xml version = "1.0" encoding = "UTF-8"?>
<xsl:stylesheet xmlns:xsl = "http://www.w3.org/1999/XSL/Transform" version =
"1.0">
<xsl:output indent="yes"/>
<xsl:template match="Print | Shipment">
<PrintDocuments>
<xsl:attribute name="PrintName">
<xsl:text>packList</xsl:text>
</xsl:attribute>
<xsl:attribute name="FlushToPrinter">
<xsl:text>Y</xsl:text>
</xsl:attribute>
<PrintDocument>
<xsl:attribute name="BeforeChildrenPrintDocumentId">
<xsl:text>PACKLIST</xsl:text>
</xsl:attribute>
<xsl:attribute name="DataElementPath">
<xsl:text>xml:/Shipment</xsl:text>
</xsl:attribute>
<xsl:choose>
<xsl:when test="name()="Print"">
<xsl:copy-of select="PrinterPreference"/>
<xsl:copy-of select="LabelPreference"/>
</xsl:when>
<xsl:when test="name()="Shipment"">
<PrinterPreference>
<xsl:attribute name="PrinterId"/>
<xsl:attribute name="UsergroupId"/>
<xsl:attribute
name="UserId"><xsl:text>xml:/Shipment/@Modifyuserid</xsl:text></xsl:attribut
e>
<xsl:attribute name="WorkStationId"/>
<xsl:attribute
name="OrganizationCode"><xsl:text>xml:/Shipment/ShipNode/@NodeOrgCode</xsl:t
ext></xsl:attribute>
</PrinterPreference>
<LabelPreference>
<xsl:attribute name="EnterpriseCode">
<xsl:text>xml:/Shipment/@EnterpriseCode</xsl:text>
</xsl:attribute>
<xsl:attribute name="BuyerOrganizationCode">
<xsl:text>xml:/Shipment/@BuyerOrganizationCode</xsl:text>
</xsl:attribute>

Defining Custom Print Services

Integrating with the Loftware Print Server and Label Manager 95

<xsl:attribute name="SellerOrganizationCode">
<xsl:text>xml:/Shipment/@SellerOrganizationCode</xsl:text>
</xsl:attribute>
</LabelPreference>
</xsl:when>
</xsl:choose>
<KeyAttributes>
<KeyAttribute>
<xsl:attribute name="Name"><xsl:text>ShipmentKey</xsl:text></xsl:attribute>
</KeyAttribute>
</KeyAttributes>
<InputData>
<xsl:attribute name="FlowName">
<xsl:text>GetPackListData</xsl:text>
</xsl:attribute>
<Shipment>
<xsl:choose>
<xsl:when test="name()="Print"">
<xsl:copy-of select="Shipment/@*" />
</xsl:when>
<xsl:when test="name()="Shipment"">
<xsl:copy-of select="@*" />
</xsl:when>
</xsl:choose>
</Shipment>
<Template>
<Api Name="getShipmentDetails">
<Template>
<Shipment>
<SellerOrganization>
<CorporatePersonInfo/>
</SellerOrganization>
<Carrier/>
<MarkForAddress/>
<BillingInformation>
<AlternateParty/>
</BillingInformation>
<Instructions>
<Instruction/>
</Instructions>
<FromAddress/>
<ToAddress/>
<ShipmentLines>
<ShipmentLine CountryOfOrigin="" FifoNo="" ItemDesc="" ItemID=""
OrderHeaderKey="" OrderLineKey="" OrderNo="" OrderReleaseKey=""

96 Integration Guide

Defining Custom Print Services

PrimeLineNo="" ProductClass="" Quantity="" ReleaseNo="" Segment=""
SegmentType="" ShipmentKey="" ShipmentLineKey="" ShipmentLineNo=""
SubLineNo="" UnitOfMeasure="" BackOrderedQty="" ShipmentSubLineNo="">
<Order/>
<OrderLine>
<Item/>
<OrderStatuses>
<OrderStatus OrderHeaderKey="" OrderLineKey="" OrderLineScheduleKey=""
OrderReleaseKey="" OrderReleaseStatusKey="" PipelineKey="" ReceivingNode=""
ShipNode="" Status="" StatusDate="" StatusDescription="" StatusQty=""
StatusReason="" TotalQuantity="">
<OrderStatusTranQuantity StatusQty="" TotalQuantity="" TransactionalUOM=""
/>
<Details ExpectedDeliveryDate="" ExpectedShipmentDate="" ShipByDate=""
TagNumber="">
</Details>
</OrderStatus>
</OrderStatuses>
</OrderLine>
</ShipmentLine>
</ShipmentLines>
<Containers>
<Container>
<ContainerDetails>
<ContainerDetail>
<ShipmentLine>
<OrderLine>
<Item/>
</OrderLine>
</ShipmentLine>
</ContainerDetail>
</ContainerDetails>
</Container>
</Containers>
<ShipNode>
<ShipNodePersonInfo/>
</ShipNode>
</Shipment>
</Template>
</Api>
</Template>
</InputData>
</PrintDocument>
</PrintDocuments>
</xsl:template>

Defining Custom Print Services

Integrating with the Loftware Print Server and Label Manager 97

</xsl:stylesheet>

The Input XML to the above XSL translator should belong to either of the
following formats:

<Shipment ShipmentKey=""/>

OR

<Print><Shipment ShipmentKey=""/><LabelPreference
EnterpriseCode=""/><PrinterPreference UserId=""
UsergroupId=""/></Print>

The former input XML is passed when the service is invoked from an
event, while the latter is passed when the service is invoked from the
console (UI).

The following is an example of the XML generated after the XSL
Translation using the above mentioned XSL:

Example 5–3 XML Generated After XSL Translation

<?xml version = "1.0" encoding = "UTF-8"?>
<PrintDocuments PrintName="packList" FlushToPrinter="Y">
<PrintDocument Localecode="xml:/Shipment/ShipNode/@Localecode">
<InputData APIName="getShipmentDetails">
<Shipment ShipmentKey="">
</Shipment>
<Template>
<Shipment>
<ShipNode>
<ShipNodePersonInfo/>
</ShipNode>
</Shipment>
</Template>
</InputData>
</PrintDocument>
<PrintDocument BeforeChildrenPrintDocumentId="PACKLIST"
DataElementPath="xml:/Shipment">
<PrinterPreference PrinterId="" UserId="xml:/Shipment/@Modifyuserid"
UsergroupId="" WorkStationId=""
OrganizationCode="xml:/Shipment/ShipNode/@NodeOrgCode"/>
<LabelPreference EnterpriseCode="xml:/Shipment/@EnterpriseCode"
BuyerOrganizationCode="xml:/Shipment/@BuyerOrganizationCode"
SellerOrganizationCode="xml:/Shipment/@SellerOrganizationCode" />
<KeyAttributes>

98 Integration Guide

Defining Custom Print Services

<KeyAttribute Name="ShipmentKey"/>
</KeyAttributes>
<InputData FlowName="GetPackListData">
<Shipment ShipmentKey=""/>
<Template>
<Api Name="getShipmentDetails">
<Template>
<Shipment ShipmentKey="" ShipmentNo="" ActualShipmentDate=""
ExpectedShipmentDate="">
<SellerOrganization OrganizationCode="">
<CorporatePersonInfo AddressLine1="" AddressLine2="" FirstName=""
MiddleName="" LastName="" City="" State="" Country="" ZipCode="" />
</SellerOrganization>
<Carrier Scac="" ScacDesc=""/>
<MarkForAddress/>
<BillingInformation ShipmentChargeType=""/>
<Instructions>
<Instruction InstructionType="" InstructionText=""/>
</Instructions>
<ToAddress/>
<ShipmentLines>
<ShipmentLine ItemDesc="" ItemID="" OrderHeaderKey="" OrderLineKey=""
OrderNo="" OrderReleaseKey="" PrimeLineNo="" Quantity="" ReleaseNo=""
ShipmentKey="" ShipmentLineKey="" ShipmentLineNo="" SubLineNo=""
UnitOfMeasure="" BackOrderedQty="" ShipmentSubLineNo="">
<Order OrderHeaderKey="" OrderNo="">
<PersonInfoBillTo AddressLine1="" AddressLine2="" FirstName="" MiddleName=""
LastName="" City="" State="" Country="" ZipCode="" />
</Order>
<OrderLine CustomerPONo="" OrderLineKey="" OrderedQty=""
OriginalOrderedQty="" Status="" StatusQuantity="" SubLineNo="" >
<Item CustomerItem=""/>
<OrderStatuses>
<OrderStatus OrderLineKey="" OrderReleaseStatusKey="" Status=""
StatusQty="" TotalQuantity=""/>
</OrderStatuses>
</OrderLine>
</ShipmentLine>
</ShipmentLines>
<ShipNode NodeOrgCode=""/>
</Shipment>
</Template>
</Api>
</Template>
</InputData>

Defining Custom Print Services

Integrating with the Loftware Print Server and Label Manager 99

</PrintDocument>
</PrintDocuments>

This XML prints a Packing Slip (PACKLIST) as specified by the
BeforeChildrenPrintDocumentId attribute in the PrintDocument node.

The data required to print the packlist is obtained by invoking the
GetPackListData service as specified by the FlowName attribute in the
InputData node.

To configure the GetPackListData service definition:

1. From the Application Platform tree, choose Process Modeling >
Container > Pack Process. The Pack Process window is displayed.

2. Choose Service Definitions Tab. From Pack Process Repository >
Prints, choose GetPackListData.

3. The Service Details: GetPackListData (Pack Process) window is
displayed.

100 Integration Guide

Defining Custom Print Services

For more information about configuring Service Details, see the Selling
and Fulfillment Foundation: Application Platform Configuration Guide.

The GetPackListData service calls the GetShipmentDetails() API and
the output is transformed using the XSL Translator.

The XSL translator (as reproduced below) calculates the backordered
quantity for the shipment lines returned by the GetShipmentDetails()
API:

Defining Custom Print Services

Integrating with the Loftware Print Server and Label Manager 101

Example 5–4 XSL Translator Output from GetShipmentDetails() API

<?xml version = "1.0" encoding = "UTF-8"?>
<xsl:stylesheet xmlns:xsl = "http://www.w3.org/1999/XSL/Transform" version =
"1.0">
<xsl:output indent="yes"/>
<xsl:template match="/Shipment">
<Shipment>
<xsl:choose>
<xsl:when test="not(@ActualShipmentDate) or
(@ActualShipmentDate="")">
<xsl:attribute name="ActualShipmentDate"><xsl:value-of
select="@ExpectedShipmentDate"/></xsl:attribute>
</xsl:when>
<xsl:otherwise>
<xsl:attribute name="ActualShipmentDate"><xsl:value-of
select="@ActualShipmentDate"/></xsl:attribute>
</xsl:otherwise>
</xsl:choose>
<xsl:message>ActualShipmentDate<xsl:value-of
select="@ActualShipmentDate"/></xsl:message>
<xsl:for-each select="@*">
<xsl:if test="not(name()= "ActualShipmentDate")">
 <xsl:attribute name="{name()}"><xsl:value-of select="."/></xsl:attribute>
</xsl:if>
</xsl:for-each>
<xsl:copy-of select="SellerOrganization"/>
<xsl:copy-of select="Carrier"/>
<xsl:copy-of select="ShipNode"/>
<xsl:copy-of select="ToAddress"/>
<xsl:copy-of select="MarkForAddress"/>
<xsl:copy-of select="BillingInformation"/>
<xsl:copy-of select="Instructions"/>
<xsl:copy-of select="Containers"/>
<ShipmentLines>
<xsl:for-each select="ShipmentLines/ShipmentLine[@ShipmentSubLineNo='0']">
<ShipmentLine>
<xsl:variable name="qty"
select="sum(OrderLine/OrderStatuses/OrderStatus[@OrderLineKey=current()/@Ord
erLineKey and substring(@Status,1,4)='1300']/@StatusQty)"/>
<xsl:attribute name="OrderedQty">
<xsl:value-of
select="sum(OrderLine/OrderStatuses/OrderStatus[@OrderLineKey=current()/@Ord
erLineKey and not(substring(@Status,1,4)='1400')]/@StatusQty)"/>
</xsl:attribute>
<xsl:attribute name="BackOrderedQty">

102 Integration Guide

Defining Custom Print Services

<xsl:value-of select="$qty"/>
</xsl:attribute>
<xsl:copy-of select="@*"/>
<xsl:copy-of select="OrderLine"/>
</ShipmentLine>
</xsl:for-each>
</ShipmentLines>
</Shipment>
</xsl:template>
</xsl:stylesheet>

Associating Services to Events
Once a service has been created for a print, it should be associated to an
appropriate event. For more information about Service Association, see
the Sterling Warehouse Management System: Configuration Guide.

Integrating with the Parcel Carrier Adapters 103

6
Integrating with the Parcel Carrier Adapters

The Parcel Carrier Adapters (Carrier Adapter) manages all the carrier
integration-related functions of Selling and Fulfillment Foundation. Selling
and Fulfillment Foundation interfaces with the Carrier Adapter to use its
carrier-integration functions.

The Carrier Adapter is regularly updated with the latest carrier data, such
as rates and special services, and can act as a centralized
carrier-integration database and business rules manager. The Carrier
Adapter helps you to quickly meet the changing requirements initiated by
both carriers and customers, in the most efficient way.

The Carrier Adapter has a data-driven design. The functionality is defined
in terms of the relations between data elements stored in the database.
Carriers having similar functionality can be incorporated into an
installation with minimal engineering effort.

The Carrier Adapter is now integrated into Selling and Fulfillment
Foundation. For more information about the Carrier Adapter and how to
configure it, see the Parcel Carrier: Adapter Guide.

6.1 APIs Invoked During the Parcel Carrier
Adapters Integration

The APIs invoked during the Sterling WMS integration with the Carrier
Adapter are:

APIs Invoked During the Carrier Adapter Integration with
UPSN

openManifest API

shipCarton API

104 Integration Guide

APIs Invoked During the Parcel Carrier Adapters Integration

deleteCarton API

closeManifest API

APIs Invoked During the Carrier Adapter Integration with
FedEx

openManifest API

shipCarton API

deleteCarton API

closeManifest API

The Sterling WMS integrates with the Carrier Adapter using the following
APIs:

openManifest API: The openManifest API is used to open a manifest
for a carrier server. This API calls the openManifest API in the Carrier
Adapter. For field level mapping details between these APIs, see the
section "Field-Level Mapping Between the openManifest API on the
Sterling WMS and the openManifest API on the Carrier Adapter (Input
XML)".

addContainertToManifest API: The addContainerToManifest API is
used to add a container to a manifest. This API calls the shipCarton
API in the Carrier Adapter. For field level mapping details between
these APIs, see the sections "Field-Level Mapping Between the
addContainerToManifest API on Sterling WMS and the shipCarton API
on the Carrier Adapter (Input XML)" and "Field-Level Mapping
Between the addContainerToManifest API on the Sterling WMS and
the shipCarton API on the Carrier Adapter (Output XML)".

removeContainerFromManifest API: The
removeContainerFromManifest API is used to delete a carton from a
manifest. This API calls the deleteCarton API on the Carrier Adapter.
For field level mapping details between these APIs, see the section
"Field-Level Mapping Between the removeContainerFromManifest API
on the Sterling WMS and the deleteCarton API on the Carrier Adapter
(Input XML)".

closeManifest API: The closeManifest API is used to close a
manifest. This API calls the closeManifest API on the Carrier Adapter.
For field level mapping details between these APIs, see the section

APIs Invoked During the Parcel Carrier Adapters Integration

Integrating with the Parcel Carrier Adapters 105

"Field-Level Mapping Between the closeManifest API on the Sterling
WMS and the closeManifest API on the Carrier Adapter (Input XML)".

Field-Level Mapping Between the openManifest API on the
Sterling WMS and the openManifest API on the Carrier Adapter
(Input XML)

No output XML is generated for the openManifest API. A confirmation
message is displayed on success, while an error message is displayed in
the event of a failure.

Note: For the FedEx carrier, the Carrier Adapter supports
label prints when a container is added to a manifest if the
FedEx Printer is configured on the FedEx Carrier Server.

For the UPSN carrier, the Carrier Adapter supports label
prints when a container is added to a manifest or a
manifest is closed.

For more information about Label Prints, see the Sterling
Warehouse Management System: User Guide.

Table 6–1 Mapping to the Carrier Adapter openManifest API

Field Name Comments Platform

Carrier Required YFS_Manifest.SCAC

ManifestNumber Required YFS_MANIFEST.manifest_no
(as entered by the user. If not
entered, posted with one
upsequence number
generated)

PickupSummaryNumber Required for
UPSN

YFS_MANIFEST.pickup_
summary_no (as entered by
the user)

ShipperAccountNumber Required YFS_MANIFEST.shipper_
account_no(as entered by the
user)

PickupDate Required YFS_MANIFEST.manifest_date
(as entered by the user)

106 Integration Guide

APIs Invoked During the Parcel Carrier Adapters Integration

Field-Level Mapping Between the addContainerToManifest API on
Sterling WMS and the shipCarton API on the Carrier Adapter
(Input XML)

Table 6–2 Mapping to the Carrier Adapter shipCarton API (Input XML)

Field Name Comments Platform

UPSPLD

Carrier Required YFS_SHIPMENT.scac

PackageLevelDetail The Package Level Detail Record (0100) -
is written for every package shipped. This
is a mandatory record for both domestic
and international shipments.

ManifestNumber Required YFS_MANIFEST.manifest_no
(open manifest as obtained
by packShipment API for a
given shipnode and carrier)

ShipId Required YFS_SHIPMENT_
CONTAINER.container_no.

PickupDate Required YFS_MANIFEST.manifest_date

ShipperAccountNumber Required YFS_MANIFEST.shipper_
account_no

BookNumber Required YFS_MANIFEST.pickup_
summary_no (substring 0-7)

PageNumber Required YFS_MANIFEST.pickup_
summary_no (substring
8-10)

ShipmentNumber Required YFS_SHIPMENT.shipment_no

PackageTrackingNumber Required <spaces>

SPFVersion Required Default 0505

Acctnumber Conditional Computed based on YFS_
FREIGTH_TERMS.charges_
paid_by. It can be YFS_
SHIPMENT.Custcarrier_
Account_No/YFS_SCAC_
Ex.account1.

APIs Invoked During the Parcel Carrier Adapters Integration

Integrating with the Parcel Carrier Adapters 107

CompanyName Required YFS_PERSON_INFO.company
corresponding to YFS_
SHIPMENT.to_address_key.

ConsigneeAttn Conditional YFS_PERSON_INFO.first_
name + YFS_PERSON_
INFO.middle_name + YFS_
PERSON_INFO.last_name
corresponding to YFS_
SHIPMENT.to_address_key.

CAddr1 Required YFS_PERSON_INFO.address_
line1 corresponding to YFS_
SHIPMENT.to_address_key.

CAddr2 Optional YFS_PERSON_INFO.address_
line2 corresponding to YFS_
SHIPMENT.to_address_key.

CAddr3 Optional YFS_PERSON_INFO.address_
line3 corresponding to YFS_
SHIPMENT.to_address_key.

CCity Required YFS_PERSON_INFO.city
corresponding to YFS_
SHIPMENT.to_address_key.

CStateProv Conditional YFS_PERSON_INFO.state
corresponding to YFS_
SHIPMENT.to_address_key.

CPostalCode Conditional YFS_PERSON_INFO.zip_code
corresponding to YFS_
SHIPMENT.to_address_key.

CPhone Conditional YFS_PERSON_INFO.day_
phone corresponding to YFS_
SHIPMENT.to_address_key.

ShipmentChgType Required Computed based on YFS_
FREIGHT_TERMS.charges_
paid_by and corresponding
YFS_SCAC_Ex entry. Possible
values are COL,TPB, PRE.

CWTInd Conditional Set to '0' (zero) to indicate
Not HunderedWeight.

Table 6–2 Mapping to the Carrier Adapter shipCarton API (Input XML)

Field Name Comments Platform

108 Integration Guide

APIs Invoked During the Parcel Carrier Adapters Integration

ServiceType Required YFS_SCAC_AND_
SERVICE.electronic_code
corresponding to YFS_
SHIPMENT.scac and YFS_
SHIPMENT.carrier_service_
code.

Packagetype Required "02" to indicate Package.

DeliveryZone Optional <spaces>

Actualweight Required YFS_SHIPMENT_
CONTAINER.container_gross_
weight after applying the
carrier locale weight UOM.

PkgpublishedDimWt Required Computed

UOMWeight Optional Weight UOM of the Ship Node

UOMDim UOM Dim Dimension UOM of the Ship
Node

CODAmount Required 0

CODFundsInd Conditional <spaces>

Currencycode Required YFS_SHIPMENT.currency.

CallTag_ARSInd Required 0 - to indicate no call tag.

Calltag_ARSSchedulePickDate Optional <spaces>

MerchandiseDescription Conditional <spaces>

SatDeliveryInd Required "0" for not opting for this
service.

SaturdayPickupInd Required "0" for not opting for this
service.

OversizePackageInd Required YFS_SHIPMENT_
CONTAINER.oversized_flag is
Y, then indicator is passed as
1, or else 0.

DeclaredValueInsurance Required YFS_SHIPMENT_
CONTAINER.declared_value

Table 6–2 Mapping to the Carrier Adapter shipCarton API (Input XML)

Field Name Comments Platform

APIs Invoked During the Parcel Carrier Adapters Integration

Integrating with the Parcel Carrier Adapters 109

ResInd Required YFS_PERSON_INFO.company
corresponding to YFS_
SHIPMENT.to_address_key is
nonblanks, it is assumed to
be 0 to indicate commercial
or else 1 for residential.

DCISType Conditional <spaces>

CustomerRefNumberType1 Optional <spaces>

CustomerRefNumber1 Optional <spaces>

CustomerRefNumberType2 Optional <spaces>

CustomerRefNumber2 Optional <spaces>

ShipmentReferenceNoType1 Optional <spaces>

ShipmentReferenceNo1 Optional <spaces>

ShipmentReferenceNoType2 Optional <spaces>

ShipmentReferenceNo2 Optional <spaces>

CODControlNumber Optional <spaces>

CallTag_ARSNumber Optional <spaces>

CODInd Required <spaces>

CODCurrencycode Conditional <spaces>

IncrementalPldInd Required <spaces>

DocInd Required Default to ‘3’ to indicate non
document/package.

ShipperEIN Optional <spaces>

ShipperCountry Required YFS_PERSON_INFO.country
corresponding to YFS_
SHIPMENT.shipnode_key's
YFS_SHIP_NODE.shipnode_
address_key.

SenderName Optional <spaces>

ConsigneeTagID Optional <spaces>

Table 6–2 Mapping to the Carrier Adapter shipCarton API (Input XML)

Field Name Comments Platform

110 Integration Guide

APIs Invoked During the Parcel Carrier Adapters Integration

ConsigneeCountry Required YFS_PERSON_INFO.country
corresponding to YFS_
SHIPMENT.to_address_key.

CalculatedRatesInd Required <spaces>

SourceTypeCode Required Default to ‘20’ to indicate
host access.

AccessorialRecord AccessorialRecord (0200) is valid for both
domestic and international shipments. This
record is written only when UPS special
services are used.

ShipperCreditCardNo Required <spaces>

ShipperCreditCardExpDate Required <spaces>

AdditionalHandlingInd Required Default to ‘0'.

ExtendedDestInd Required <spaces>

HazMat Required YFS_SHIPMENT.hazardous
material is Y, then indicator is
1, else 0.

HoldForPickupInd Required Default to '0' (do not hold for
pickup).

ModifyInd Required Default to ‘0’.

OCAIndicator Required Default to ‘0’.

VoidInd Required 0

PackageLength Required YFS_SHIPMENT_
CONTAINER.container_length

PackageWidth Required YFS_SHIPMENT_
CONTAINER.container_width

PackageHeight Required YFS_SHIPMENT_
CONTAINER.container_height

SpecialInstructions Optional <spaces>

Table 6–2 Mapping to the Carrier Adapter shipCarton API (Input XML)

Field Name Comments Platform

APIs Invoked During the Parcel Carrier Adapters Integration

Integrating with the Parcel Carrier Adapters 111

VerbalConfirmationName Conditional YFS_PERSON_INFO.first_
name + YFS_PERSON_
INFO.middle_name + YFS_
PERSON_INFO.last_name
corresponding to YFS_
SHIPMENT.to_address_key.

VerbalConfirmationPhone Conditional YFS_PERSON_INFO.day_
phone corresponding to YFS_
SHIPMENT.to_address_key.

EarliestDeliveryTime Optional <spaces>

ShipmentCreditCardNumber Conditional <spaces>

ShipmentCreditCardExpDate Conditional <spaces>

ConsigneeNumber Optional <spaces>

ConsigneeCreditCardNo Required <spaces>

ConsigneeCreditCardExpDate Required <spaces>

DCISNumber Optional <spaces>

ConsigneeFaxDestinationInd Optional <spaces>

ConsigneeFax Optional <spaces>

ExperssCODTrackingNumber Required <spaces>

CustomerReferenceNumberTy
pe3

Optional <spaces>

CustomerReferenceNumber3 Optional <spaces>

CustomerReferenceNumberTy
pe4

Optional <spaces>

CustomerReferenceNumber4 Optional <spaces>

CustomerReferenceNumberTy
pe5

Optional <spaces>

CustomerReferenceNumber5 Optional <spaces>

PackageTrackingNumber Required YFS_Shipment_
Container.Tracking_No

Table 6–2 Mapping to the Carrier Adapter shipCarton API (Input XML)

Field Name Comments Platform

112 Integration Guide

APIs Invoked During the Parcel Carrier Adapters Integration

AlternatePartyRecord AlternateParty Record (0300) is valid for
both domestic and international
shipments. For domestic, this record is
written only when freight term is 'Third
Party Billing'. For International shipments,
this record is written for Importer and
Exporter Address.

AlternatePartyType Required For domestic shipments: This
field is set to '03'/'04'.

For international shipments:
This field is set to '02' always.

ID_AcctNumber Conditional YFS_SCAC_EX.account1

PODReplyType Conditional <spaces>

APCompanyName Required YFS_PERSON_INFO.company
corresponding to YFS_
SHIPMENT.enterprise_code's
billing_address_key.

APAttention Conditional YFS_PERSON_INFO.first_
name + YFS_PERSON_
INFO.last_name
corresponding to YFS_
SHIPMENT.enterprise_code's
billing_address_key.

APAddr1 Required YFS_PERSON_INFO.address_
line1 corresponding to YFS_
SHIPMENT.enterprise_code's
billing_address_key.

APAddr2 Optional YFS_PERSON_INFO.address_
line2 corresponding to YFS_
SHIPMENT.enterprise_code's
billing_address_key.

APAddr3 Optional YFS_PERSON_INFO.address_
line3 corresponding to YFS_
SHIPMENT.enterprise_code's
billing_address_key.

APCity Required YFS_PERSON_INFO.city
corresponding to YFS_
SHIPMENT.enterprise_code's
billing_address_key.

Table 6–2 Mapping to the Carrier Adapter shipCarton API (Input XML)

Field Name Comments Platform

APIs Invoked During the Parcel Carrier Adapters Integration

Integrating with the Parcel Carrier Adapters 113

APStateProv Conditional YFS_PERSON_INFO.state
corresponding to YFS_
SHIPMENT.enterprise_code's
billing_address_key.

Note: This field value can
only contain a maximum of 5
characters.

APPostalCode Conditional YFS_PERSON_INFO.zip_code
corresponding to YFS_
SHIPMENT.enterprise_code's
billing_address_key.

APcountry Required YFS_PERSON_INFO.country
corresponding to YFS_
SHIPMENT.enterprise_code's
billing_address_key. If
International it is hardcoded
to 'US'.

Filler1 Required

APPhone Conditional YFS_PERSON_INFO.day_
phone_no corresponding to
YFS_SHIPMENT.enterprise_
code's billing_address_key

APFaxDestInd Conditional <spaces>

APFax Optional <spaces>

LangCode Optional <spaces>

CreditCardNo Required <spaces>

CreditCardExpDate Required <spaces>

TaxId Optional <spaces>

AddrType Required <spaces>

PackageTrackingNumber Required YFS_Shipment_
Container.Tracking_No

AdvisoryInformationRecor
d

AdvisoryInformationRecord (0400) is
required for E-mail or Fax Shipment
Notification.

AdvisoryInfoLevel Required Default to 'P'.

Table 6–2 Mapping to the Carrier Adapter shipCarton API (Input XML)

Field Name Comments Platform

114 Integration Guide

APIs Invoked During the Parcel Carrier Adapters Integration

SNFaxDestInd1 Conditional If YFS_PERSON_INFO.day_
fax_no != "" set this field to
0. US, PR, CA, and VI
Fax/Phone only 1 Fax/Phone
to all other countries.

SNFaxNumber1 Conditional YFS_PERSON_INFO.day_fax_
no corresponding to YFS_
SHIPMENT.to_address_key.

SNLangCode Optional <spaces>

SNCompName1 Optional YFS_PERSON_INFO.company
corresponding to YFS_
SHIPMENT.to_address_key.

SNAttnName1 Conditional YFS_PERSON_INFO.first_
name + YFS_PERSON_
INFO.middle_name + YFS_
PERSON_INFO.last_name
corresponding to YFS_
SHIPMENT.to_address_key.

SNContactPhone1 Conditional YFS_PERSON_INFO.day_
phone corresponding to YFS_
SHIPMENT.to_address_key.

SNFaxDestInd2 Conditional <spaces>

SNFaxNumber2 Conditional <spaces>

SNLangCode2 Optional <spaces>

SNCompanyName2 Optional <spaces>

SNAttnName2 Conditional <spaces>

SNContactPhone2 Conditional <spaces>

AltrofileAccessNumber Required <spaces>

SNTypeDestination1 Required <spaces>

SNEmailAddrDest1 Conditional YFS_PERSON_INFO.email_id
corresponding to YFS_
SHIPMENT.to_address_key.

SNTypeDestination2 Required Set to ‘0’

SNEmailAddrDest2 Conditional <spaces>

Table 6–2 Mapping to the Carrier Adapter shipCarton API (Input XML)

Field Name Comments Platform

APIs Invoked During the Parcel Carrier Adapters Integration

Integrating with the Parcel Carrier Adapters 115

SNMemo Optional <spaces>

PackageTrackingNumber Required YFS_Shipment_
Container.Tracking_No

InternationalRecord InternationalRecord (0500) is required if
Importer, Exporter, Shipper To Consignee,
or Commodity information is provided and
whenever shipper and consignee countries
are not the same. This record is written
once for one shipment. If a shipper has 3
packages, only one 0500 record is written,
whereas three 0100 records are written.

RecordType Required 0500

InvoiceDate Optional YFS_MANIFEST.manifest_date
(manifest no from YFS_
SHIPMENT).

WaybillPrintInd Conditional 0

InvoiceLineTotals Required YFS_CONTAINER_
DETAILS.quantity * YFS_
ORDER_LINE * unit_price (for
all lines in the container).

InvoiceCurrencyCode Conditional YFS_SHIPMENT.currency

ShipmentInsuranceDeclaredVa
lue

Required YFS_MANIFEST.manifest_date
(manifest no from YFS_
SHIPMENT).

ConsolidatedClearQty Required 0

UltimateDestCountry Conditional YFS_PERSON_INFO.country
corresponding to YFS_
SHIPMENT.to_address_key.

Filler <spaces>

SEDCode Optional <spaces>

ShipmentSEDCASNum Optional <spaces>

InvoiceNumber Optional YFS_SHIPMENT.shipment_no

PONumber Optional <spaces>

Table 6–2 Mapping to the Carrier Adapter shipCarton API (Input XML)

Field Name Comments Platform

116 Integration Guide

APIs Invoked During the Parcel Carrier Adapters Integration

DescriptionOfGoods Required YFS_ITEM.nmfc_code. Item_
Id taken from CONTAINER_
DETAILS.item_id with YFS_
SHIPMENT_
CONTAINER.container_no
(leadpackage) as criteria.

SpecialInstructions Optional <spaces>

PartiesToTrans Conditional <spaces>

TermsOfShipment Optional <spaces>

PaymentTerms Optional <spaces>

Filler <spaces>

FreightCharges Required 0

InsuranceCharges< Required 0

DiscountRebate Required 0

OtherCharges Required 0

WaybillNumber/BrokerageID Conditional YFS_SHIPMENT.shipment_no

COCode Optional <spaces>

OtherDocCode Optional <spaces>

ReasonForExport Optional <spaces>

InvoiceSubTotal Required <spaces>

TotalInvoiceAmount Required <spaces>

BrokerCode Optional <spaces>

DestinationControl Conditional <spaces>

ShipmentCommodityOrigin Conditional <spaces>

Filler3 Required

PackageTrackingNumber Required <spaces>

Table 6–2 Mapping to the Carrier Adapter shipCarton API (Input XML)

Field Name Comments Platform

APIs Invoked During the Parcel Carrier Adapters Integration

Integrating with the Parcel Carrier Adapters 117

CommodityRecord CommodityRecord (0600) contains
commodity information that is used for
rating and customs clearance purposes. It
is required if the shipment travels within
the European Union and contains “Goods
Not in Free Circulation”. One 0600 record
is written for each line in the shipper. If a
shipper on the Sterling WMS has 4 records
in the YFS_SHIPMENT_DTL table, four
0600 records are written.

RecordType Required 0600

InvoiceLineNumber Required YFS_SHIPMENT_LINE.prime_
line_no for the corresponding
YFS_CONTAINER_DETAILS
record.

CommodityCode Optional YFS_ITEM.harmonized_code
of YFS_CONTAINER_
DETAILS.item_id (catalog org
and uom).

PartNumber Optional YFS_ITEM.item_id of YFS_
CONTAINER_DETAILS.item_id
(catalog org and uom).

LineOriginCountry Required YFS_ITEM.country_of_origin
of YFS_CONTAINER_
DETAILS.item_id (catalog org
and uom).

LineCurrencyCode Optional YFS_SHIPMENT.currency

ECCN Optional YFS_ITEM.eccn_no of YFS_
CONTAINER_DETAILS.item_id
(catalog org and uom).

LineUnitAmtPrice Required YFS_ORDER_LINE.line_price
of YFS_CONTAINER_
DETAILS.order_line_key *
YFS_CONTAINER_
DETAILS.quantity. If its
shipment container, we
compute by getting item
object from shipment and
shipment container.

Table 6–2 Mapping to the Carrier Adapter shipCarton API (Input XML)

Field Name Comments Platform

118 Integration Guide

APIs Invoked During the Parcel Carrier Adapters Integration

LineQuantity Required sum(YFS_CONTAINER_
DETAIL.quantity) for every
unique item.

LineQtyUOM Required YFS_CONTAINER_
DETAILS.uom

LineLicenseInfo Conditional YFS_SHIPMENT_
CONTAINER.export_license_
no

LineLicenseExpDate Conditional YFS_SHIPMENT_
CONTAINER.export_license_
exp_date

LineMerchDesc1 Required YFS_ITEM.item_desc of YFS_
CONTAINER_DETAILS.item_id
(catalog org and uom).

LineMerchDesc2 Optional <spaces>

LineMerchDesc3 Optional <spaces>

CertOfOriginNo Optional YFS_SHIPMENT.shipment_no

CertOfOriginCode Conditional <spaces>

AgreementType Optional <spaces>

CommodityRemarks Optional <spaces>

QuantityScheduledUnits Conditional YFS_CONTAINER_
DETAIL.quantity

Marks&Numbers Optional <spaces>

CommodityWeight Required YFS_ORDER_LINE.item_
weight of YFS_CONTAINER_
DETAILS.order_line_key *
YFS_CONTAINER_
DETAILS.quantity. If its
shipment conatainer, we
compute by getting the item
object from shipment and
shipment container.

NumberOfPackagesPerCmmdt
y

Conditional <spaces>

Table 6–2 Mapping to the Carrier Adapter shipCarton API (Input XML)

Field Name Comments Platform

APIs Invoked During the Parcel Carrier Adapters Integration

Integrating with the Parcel Carrier Adapters 119

SEDLineAmt Required YFS_ORDER_LINE.line_price
of YFS_CONTAINER_
DETAILS.order_line_key *
YFS_CONTAINER_
DETAILS.quantity. If its
shipment conatainer, we
compute by getting the item
object from shipment and
shipment container.

COType Required Defaulted to 0.

SEDInd Required Defaulted to 0.

LineExtendedAmt Required YFS_ORDER_LINE.line_price
of YFS_CONTAINER_
DETAILS.order_line_key *
YFS_CONTAINER_
DETAILS.quantity. If its
shipment conatainer, we
compute by getting the item
object from shipment and
shipment container.

Filler <spaces>

PackageTrackingNumber Required YFS_Shipment_
Container.Tracking_No

AdditionalCommentsRecord AdditionalCommentsRecord (0700) contains
additional statements and information for
an international shipment.

RecordType Required 0700

DeclarationStatement Optional <spaces>

AdditionalComments Optional <spaces>

Filler1 <spaces>

PackageTrackingNumber Required <spaces>

SpecialServicesRecord SpecialServicesRecord contains
SpecialService child elements for each of
the special service the shipment/order
have.

Service Optional YFS_SPECIAL_SERVICE_
REF.service_code

Table 6–2 Mapping to the Carrier Adapter shipCarton API (Input XML)

Field Name Comments Platform

120 Integration Guide

APIs Invoked During the Parcel Carrier Adapters Integration

Field-Level Mapping Between the addContainerToManifest API on
the Sterling WMS and the shipCarton API on the Carrier Adapter
(Output XML)

ExtraFieldsRecord ExtraFieldsRecord contains statements and
information extra fields.

LableFormatValue Optional <spaces>

ReferenceNotes Optional YFS_SHIPMENT.shipment_
no+YFS_SHIPMENT_
CONTAINER.container_Scm.

SunDeliveryInd Optional <spaces>

ThermalLabelPrinterID Optional Determined by calling
getPrinterId.

Table 6–3 Mapping to the Carrier Adapter shipCarton API (Output XML)

Field Name Platform

TotalErrors The total number of errors returned by the
Carrier Server

ErrorCode The error code returned by the Carrier Server

ErrorDescription The description of the error code returned by
the Carrier Server.

CODReturnTrackingNo YFS_SHIPMENT_CONTAINER.COD_Return_
tracking_No

TrackingNumber YFS_SHIPMENT_CONTAINER.tracking_no

TotalSurchargeAmt YFS_SHIPMENT_CONTAINER.special_services_
surcharge

NetCharge YFS_SHIPMENT_CONTAINER.actual_freight_
charge

BilledWeight YFS_SHIPMENT_CONTAINER.applied_weight

PrintBuffer The print buffer returned by the Carrier Server.

DeliveryDay YFS_SHIPMENT_CONTAINER.delivery_day

Table 6–2 Mapping to the Carrier Adapter shipCarton API (Input XML)

Field Name Comments Platform

APIs Invoked During the Parcel Carrier Adapters Integration

Integrating with the Parcel Carrier Adapters 121

Field-Level Mapping Between the removeContainerFromManifest
API on the Sterling WMS and the deleteCarton API on the Carrier
Adapter (Input XML)

No output XML is generated for the removeContainerFromManifest API. A
confirmation message is displayed on success, while an error message is
displayed in the event of a failure.

Field-Level Mapping Between the closeManifest API on the
Sterling WMS and the closeManifest API on the Carrier Adapter
(Input XML)

UPS_Routing_Code YFS_SHIPMENT_CONTAINER.UPS_Routing_
Code

Table 6–4 Mapping to the Carrier Adapter DeleteCarton API

Field Name Comments Platform

Carrier Required YFS_SHIPMENT.scac

MeterNo Required only
for FedEx

YFS_SCACEx.portal_account_
2

TrackingNumber Required YFS_SHIPMENT_
CONTAINER.tracking_no of
the package that is being
unpacked or removed from
the manifest.

Table 6–5 Mapping to closeManifestAPI

Field Name Comments Platform

Carrier Required YFS_SHIPMENT.scac

ManifestNumber Required YFS_MANIFEST.manifest_no
(as generated on the
platform for the ship node
and carrier combination)

Table 6–3 Mapping to the Carrier Adapter shipCarton API (Output XML)

Field Name Platform

122 Integration Guide

Integration Dependencies

No output XML is generated for the closeManifest API. A confirmation
message is displayed on success, while an error message is displayed in
the event of a failure.

6.2 Integration Dependencies
Sterling WMS integration with the Carrier Adapter is dependent on the
following:

Carrier Adapter APIs are called only if SCAC Integration is required
for the Shipment. This is set up at Node/SCAC level.

PickupSummaryNumber Required for
UPSN

YFS_MANIFEST.pickup_
summary_no (as keyed in
from the user)

ShipperAccountNumber Required YFS_MANIFEST.shipper_
account_no

Table 6–5 Mapping to closeManifestAPI

Field Name Comments Platform

Integrating with Material Handling Equipment 123

7
Integrating with Material Handling

Equipment

The Sterling WMS can integrate with various material handling
equipment (MHE).

The automation enabled through the integration enables increased
efficiency in various processes of a warehouse, like Receiving, Picking,
Packing, Putaway or Replenishment, Outbound QC, VAS, Manifesting,
Weighing, Item Measurements, and Trailer Loading.

7.1 Integration Overview
The material handling equipments that the Sterling WMS can integrate
with include:

Pick-to-Light

Put-to-Light

Carousels or Automated Storage & Retrieval System (ASRS)

Automatic Guided Vehicle (AGV)

Inbound Sorter

Pack Sorter

Shipping Sorter

Cube-a-Scan

Weighing Scale

124 Integration Guide

Integrating with Pick-to-Light System

7.2 Integrating with Pick-to-Light System
The Sterling WMS integrates with the pick-to-light systems after the
Sterling WMS allocates and creates pick/move tasks.

1. For tasks that are in the pick-to-light zone, details regarding
shipment/batch/carton (reference tag) level that indicate item and
quantity to pick are sent to the system.

APIs Involved
createTask()

changeTask()

createBatch()

getTaskList()

cancelTask()

Events Raised
The following event is raised by the createTask() API:

CREATE_TASK.TASK_CREATED

The following events are raised by the changeTask() API:

CHANGE_TASK.TASK_CHANGED

CHANGE_TASK.TASK_PUT_ON_HOLD

CHANGE_TASK.TASK_RELEASED_FROM_HOLD

The following event is raised by the createBatch() API:

CREATE_BATCH.BATCH_CREATED

The following event is raised by the cancelTask() API:

CANCEL_TASK.TASK_CANCELED

For more information about the APIs, see the Selling and Fulfillment
Foundation: Javadocs.

2. References are scanned in the pick-to-light system and appropriate
slots are lit indicating quantity to pick.

3. Upon pick completion, status information is sent from the
pick-to-light system to the Sterling WMS. All serial/tag number level

Integrating with Put-to-Light System

Integrating with Material Handling Equipment 125

information required for pick completion is also passed back to the
Sterling WMS.

APIs Involved
registerTaskCompletion()

registerBatchCompletion()

changeTask()

Events Raised
The following events are raised by the registerTaskCompletion() and
registerBatchCompletion() APIs:

COMPLETE_TASK.TASK_COMPLETED

COMPLETE_BATCH.BATCH_COMPLETED

The following events are raised by the changeTask() API:

CHANGE_TASK.TASK_CHANGED

CHANGE_TASK.TASK_PUT_ON_HOLD

CHANGE_TASK.TASK_RELEASED_FROM_HOLD

For more information about the APIs, see the Selling and Fulfillment
Foundation: Javadocs.

7.3 Integrating with Put-to-Light System
The Sterling WMS integrates with the put-to-light systems after the
Sterling WMS allocates and creates pick/move tasks after wave release.

1. For tasks that are in the put-to-light zone, details regarding
shipment/order level that indicate item and quantity to pick are sent
to the system. The Sterling WMS is configured to create the required
number of shipments in a wave, to match the number of slots.

APIs Involved
getShipmentDetails()

createTask()

changeTask()

126 Integration Guide

Integrating with Put-to-Light System

createBatch()

getTaskList()

cancelTask()

Events Raised
The following event is raised by the createTask() API:

CREATE_TASK.TASK_CREATED

The following events are raised by the changeTask() API:

CHANGE_TASK.TASK_CHANGED

CHANGE_TASK.TASK_PUT_ON_HOLD

CHANGE_TASK.TASK_RELEASED_FROM_HOLD

The following event is raised by the createBatch() API:

CREATE_BATCH.BATCH_CREATED

The following event is raised by the cancelTask() API:

CANCEL_TASK.TASK_CANCELED

For more information about the APIs, see the Selling and Fulfillment
Foundation: Javadocs.

2. Item Ids are scanned in the put-to-light system, and appropriate slots
are lit indicating quantity to be placed.

3. Container numbers are associated to each slot, and the container is
closed. This information is sent back to the Sterling WMS.

APIs Involved
registerTaskCompletion()

registerBatchCompletion()

addToContainer()

changeTask()

Integrating with Carousel or Automated Storage and Retrieval System

Integrating with Material Handling Equipment 127

Events Raised
The following events are raised by the registerTaskCompletion() and
registerBatchCompletion() APIs:

COMPLETE_TASK.TASK_COMPLETED

COMPLETE_BATCH.BATCH_COMPLETED

The following events are raised by the addToContainer() API:

CREATE_CONTAINER.ON_SUCCESS

ADD_TO_CONTAINER.ON_SUCCESS

ADD_TO_CONTAINER.ON_CONTAINER_PACK_COMPLETE

ADD_TO_CONTAINER.ON_CONTAINER_PACK_PROCESS_COMPLETE

ADD_TO_CONTAINER.ON_SHIPMENT_PACK_COMPLETE

ADD_TO_CONTAINER.ON_SHIPMENT_PACK_PROCESS_COMPLETE

The following events are raised by the changeTask() API:

CHANGE_TASK.TASK_CHANGED

CHANGE_TASK.TASK_PUT_ON_HOLD

CHANGE_TASK.TASK_RELEASED_FROM_HOLD

For more information about the APIs, see the Selling and Fulfillment
Foundation: Javadocs.

4. Quantities at the shipment level (each slot) are taken to appropriate
packing locations to complete packing steps.

7.4 Integrating with Carousel or Automated
Storage and Retrieval System

The Sterling WMS can integrate with Carousels or Automated Storage
and Retrieval Systems (ASRS) during these instances:

Integration When a Product is Being Put Away

Integration When a Product is Being Retrieved

Integration When a Product is Being Counted

128 Integration Guide

Integrating with Carousel or Automated Storage and Retrieval System

7.4.1 Integration When a Product is Being Put Away
When a product is being put away, the Sterling WMS integrates with
Carousels or Automated Storage and Retrieval Systems (ASRS) as
follows:

1. The first step task brings the product to the drop-off location
attached to the carousel/ASRS location. Upon completion of this task
secondary step tasks are created. These secondary tasks based on
task type and zone are sent to the carousel system.

APIs Involved
createTask()

createBatch()

Events Raised
The following event is raised by the createTask() API:

CREATE_TASK.TASK_CREATED

The following event is raised by the createBatch() API:

CREATE_BATCH.BATCH_CREATED

For more information about the APIs, see the Selling and Fulfillment
Foundation: Javadocs.

2. User scans item for putaway into carousel system, which retrieves
appropriate location/bin to the user station. Product is placed in the
bin.

3. Upon the location/bin being placed in appropriate slot, the task
completion information is sent to WMS. All serial/tag number level
information required for pack completion is also passed back to WMS

APIs Involved
registerTaskCompletion()

registerBatchCompletion()

changeTask()

Integrating with Carousel or Automated Storage and Retrieval System

Integrating with Material Handling Equipment 129

Events Raised
The following events are raised by the registerTaskCompletion() and
registerBatchCompletion() APIs:

COMPLETE_TASK.TASK_COMPLETED

COMPLETE_BATCH.BATCH_COMPLETED

The following events are raised by the changeTask() API:

CHANGE_TASK.TASK_CHANGED

CHANGE_TASK.TASK_PUT_ON_HOLD

CHANGE_TASK.TASK_RELEASED_FROM_HOLD

For more information about the APIs, see the Selling and Fulfillment
Foundation: Javadocs.

7.4.2 Integration When a Product is Being Retrieved
When a product is being retrieved, the Sterling WMS integrates with
Carousels or Automated Storage and Retrieval Systems (ASRS) as
follows:

1. Tasks created to retrieve product from the carousel/ASRS are sent
from the Sterling WMS.

APIs Involved
createTask()

createBatch()

Events Raised
The following event is raised by the createTask() API:

CREATE_TASK.TASK_CREATED

The following event is raised by the createBatch() API:

CREATE_BATCH.BATCH_CREATED

For more information about the APIs, see the Selling and Fulfillment
Foundation: Javadocs.

130 Integration Guide

Integrating with Carousel or Automated Storage and Retrieval System

2. User initiates retrieval on carousel system and selects task for
retrieval. On retrieval, system sends completion of task from
bin/location to drop-off location at user station.

APIs Involved
registerTaskCompletion()

registerBatchCompletion()

changeTask()

Events Raised
The following events are raised by the registerTaskCompletion() and
registerBatchCompletion() APIs:

COMPLETE_TASK.TASK_COMPLETED

COMPLETE_BATCH.BATCH_COMPLETED

The following events are raised by the changeTask() API:

CHANGE_TASK.TASK_CHANGED

CHANGE_TASK.TASK_PUT_ON_HOLD

CHANGE_TASK.TASK_RELEASED_FROM_HOLD

For more information about the APIs, see the Selling and Fulfillment
Foundation: Javadocs.

3. Secondary step tasks are automatically created by the Sterling WMS
to putaway quantity to final destination location.

7.4.3 Integration When a Product is Being Counted
When a product is being counted, the Sterling WMS integrates with
Carousels or Automated Storage and Retrieval Systems (ASRS) as
follows:

User on the Sterling WMS is given location to count.

This is entered on carousel system for location retrieval.

Count is completed on the Sterling WMS.

Integrating with Automatic Guided Vehicle

Integrating with Material Handling Equipment 131

7.5 Integrating with Automatic Guided Vehicle
The Sterling WMS integrates with Automatic Guided Vehicles (AGV) to
complete putaway or pick. These interfaces are task-based integrations.

APIs Involved
createTask()

changeTask()

createBatch()

getTaskList()

cancelTask()

Events Raised
The following event is raised by the createTask() API:

CREATE_TASK.TASK_CREATED

The following events are raised by the changeTask() API:

CHANGE_TASK.TASK_CHANGED

CHANGE_TASK.TASK_PUT_ON_HOLD

CHANGE_TASK.TASK_RELEASED_FROM_HOLD

The following event is raised by the createBatch() API:

CREATE_BATCH.BATCH_CREATED

The following event is raised by the cancelTask() API:

CANCEL_TASK.TASK_CANCELED

For more information about the APIs, see the Selling and Fulfillment
Foundation: Javadocs.

Upon completion of task the confirmation is sent back to the Sterling
WMS.

APIs Involved
registerTaskCompletion()

registerBatchCompletion()

changeTask()

132 Integration Guide

Integrating with Inbound Sorter

Events Raised
The following events are raised by the registerTaskCompletion() and
registerBatchCompletion() APIs:

COMPLETE_TASK.TASK_COMPLETED

COMPLETE_BATCH.BATCH_COMPLETED

The following events are raised by the changeTask() API:

CHANGE_TASK.TASK_CHANGED

CHANGE_TASK.TASK_PUT_ON_HOLD

CHANGE_TASK.TASK_RELEASED_FROM_HOLD

For more information about the APIs, see the Selling and Fulfillment
Foundation: Javadocs.

7.6 Integrating with Inbound Sorter
Inbound Sorters are typically used when expected LPN information is
available on WMS.

The Sterling WMS integrates with the inbound sorters as follows:

1. A shipment/ASN captures expected quantities. User indicates start of
receipt of the ASN when container/truck pulls into the dock door.
Information for the ASN is sent to sorter system along with lane
sorting information, if applicable.

APIs Involved
startReceipt()

getShipmentDetails()

getActivityDemand()

Events Raised
The following event is raised by the startReceipt() API:

START_RECEIPT.ON_START_RECEIPT

For more information about the APIs, see the Selling and Fulfillment
Foundation: Javadocs.

Integrating with Pack Sorter

Integrating with Material Handling Equipment 133

2. LPNs are sorted to respective destination zones based on QC profiling
and product characteristics.

3. The Sterling WMS is notified when LPN reaches destination.

APIs Involved
receiveOrder()

Events Raised
The following events are raised by the receiveOrder() API:

RECEIVE_RECEIPT.ON_SUCCESS

RECEIVE_RECEIPT.ON_SKU_RECEIPT

RECEIVE_RECEIPT.ON_CASE_RECEIPT

RECEIVE_RECEIPT.ON_PALLET_RECEIPT

RECEIVE_ORDER.INVENTORY_COST_CHANGE

RECEIVE_ORDER.INVENTORY_COST_WRITEOFF

RECEIVE_ORDER.INVENTORY_VALUE_CHANGE

For more information about the APIs, see the Selling and Fulfillment
Foundation: Javadocs.

4. Putaway task is automatically generated on the Sterling WMS.

7.7 Integrating with Pack Sorter
Pack sorters are used when loose items are picked and need to be sent
to pack stations.

The Sterling WMS integrates with pack sorters as follows:

1. A tag indicating the shipment is associated with the pick before
placing on the conveyor system.

2. Data is published to sorter on wave release with association of
shipment to a pack location.

APIs Involved
releaseWave()

getShipmentDetails()

134 Integration Guide

Integrating with Shipping Sorter

Events Raised
The following events are raised by the releaseWave() API:

RELEASE_WAVE.ON_SUCCESS

RELEASE_WAVE.SHORTAGES_DETECTED

For more information about the APIs, see the Selling and Fulfillment
Foundation: Javadocs.

3. Information from outbound sorter regarding cartons diverted or
quantity diverted can update a status value in the pipeline.

APIs Involved
changeShipmentContainer()

changeShipmentStatus()

Events Raised
The following events are raised by the changeShipmentContainer() API:

CHANGE_CONTAINER.ON_SUCCESS

CHANGE_CONTAINER_STATUS.ON_SUCCESS

The following event is raised by the changeShipmentStatus() API:

CHANGE_SHIPMENT_STATUS.ON_SUCCESS

For more information about the APIs, see the Selling and Fulfillment
Foundation: Javadocs.

7.8 Integrating with Shipping Sorter
Outbound Sorters are typically used during high volume pick, pack ship
operations.

The Sterling WMS integrates with outbound sorters as follows:

1. For pre-pick containerization, carton level information is sent after
wave release. For loose items, data interfaced after post-pick
containerization is completed.

2. Wave release level information is sent to sorter containing lane
information.

Integrating with Cube-a-Scan

Integrating with Material Handling Equipment 135

APIs Involved
releaseWave()

getShipmentDetails()

Events Raised
The following events are raised by the releaseWave() API:

RELEASE_WAVE.ON_SUCCESS

RELEASE_WAVE.SHORTAGES_DETECTED

For more information about the APIs, see the Selling and Fulfillment
Foundation: Javadocs.

3. Information from outbound sorter regarding cartons diverted or
quantity diverted can update a status value in the pipeline.

APIs Involved
changeShipmentContainer()

Events Raised
The following events are raised by the changeShipmentContainer() API:

CHANGE_CONTAINER.ON_SUCCESS

CHANGE_CONTAINER_STATUS.ON_SUCCESS

For more information about the APIs, see the Selling and Fulfillment
Foundation: Javadocs.

7.9 Integrating with Cube-a-Scan
Cube-a-scan is typically used during inbound operations to determine the
dimensions or properties of an item/SKU.

The Sterling WMS integrates with cube-a-scan by updating the item
details in the Sterling WMS.

APIs Involved
manageItem()

136 Integration Guide

Integrating with Weighing Scale

Events Raised
The following events are raised by the manageItem() API:

ITEM_DEFINITION.AFTER_MODIFY_ITEM

ITEM_DEFINITION.AFTER_DELETE_ITEM

For more information about the APIs, see the Selling and Fulfillment
Foundation: Javadocs.

7.10 Integrating with Weighing Scale
A Weighing Scale is an equipment that returns the weight of a container
placed on it. Weighing scales are typically used in manifest stations for
parcel shipments. For more information about setting up a weighing
scale, see the Sterling Warehouse Management System: Configuration
Guide.

7.10.1 Integrating with Mettler Toledo Weighing Scales
The Sterling WMS supports out-of-the-box integration with the Mettler
Toledo PS Weighing Scale, which is compatible with various shipping
systems including UPS, and FedEx.

For more information about installing the Mettler Toledo Weighing Scale,
see the Selling and Fulfillment Foundation: Installation Guide.

For more information about configuring the Mettler Toledo Weighing
Scale on the Sterling WMS, see the Sterling Warehouse Management
System: Configuration Guide.

7.10.2 Integrating with Other Weighing Scales
Additional weighing scale connectors can be built by implementing the
YCPWeighingScaleConnector interface available in the package
com.yantra.ycp.ui.io in the Java Archive File platform_afc.jar.

The following is a sample code for implementing the
YCPWeighingScaleConnector interface:

Integrating with Weighing Scale

Integrating with Material Handling Equipment 137

Example 7–1 Sample Code for Implementing YCPWeighingScale
Interface

public class CustomScaleConnector implements YCPWeighingScaleConnector {

private YFCSerialIO sio;
/* This assumes that the weighing scale is connected through serial port.
You will need to write custom code to support other ports such as USB.*/
private YFCPortConfig config;

public CustomScaleConnector() {
}

public void init(YFCElement configEle) {
sio = new YFCSerialIO();
String portId = configEle.getAttribute("PortId");
config = new YFCPortConfig(PortId);

}

public double getWeight() {
sio.openConnection(config);
sio.write("W"); // command to get weight from the scale
sio.waitForResponse(20, 1000); // sleep 20ms. every time and timeout out
after 1 sec.
String response = sio.read();
return processResponse(response);

}

private double processResponse(String response) {
double weight = -1;
// process the response appropriately
return weight;

}

public void resetScale() {
// send reset command if required

}
}

During initialization, the init method is called once by the
YCPWeighingFactory interface.

At init time, a config XML is passed to the CustomScaleConnector. This
XML is stored in the Selling and Fulfillment Foundation config database
(in Device Configuration) with the class name CustomScaleConnector.

138 Integration Guide

Integrating with Weighing Scale

The config XML format used for the Mettler Toledo Weighing Scale is as
follows:

<DeviceParamsXML>
 <Attributes>
 <Attribute Name="ClassName" Value="" />
 <Attribute Name="PortId" Value="" />
 <Attribute Name="BaudRate" Value="" />
 <Attribute Name="DataBits" Value="" />
 <Attribute Name="StopBits" Value="" />
 <Attribute Name="Parity" Value="" />
 <Attribute Name="FlowIn" Value="" />
 <Attribute Name="FlowOut" Value="" />
 <!-- other extended attributes specific to weighing scale
connector implementations -->
 <Attribute Name="" Value="" />
 </Attributes>
 </DeviceParamsXML>

The config XML can be configured using the Device Configuration of Type
‘Weighing Scale’ in the Applications Manager. For more information see
the Sterling Warehouse Management System: Configuration Guide.

NOTE: The implementation of the YCPWeighingFactory interface must
ensure that an instance can be reused across invocations. The
YCPWeighingFactory interface calls init once during initialization, and
subsequently reuses the initialized instance.

For more details about integrating the Sterling WMS with other weighing
scales, see Java Doc referring to the com.yantra.ycp.ui.io package.

Integrating with Enterprise Resource Planning Systems 139

8
Integrating with Enterprise Resource

Planning Systems

An Enterprise Resource Planning (ERP) system is a packaged business
software system that allows a company to automate and integrate the
majority of its business processes. This enables the company to share
common data and practices across the entire enterprise, and to produce
and access information in a real-time environment.

The Sterling WMS can integrate with an ERP system to utilize any
additional functions that are available in the existing environment.

For example, the Sterling WMS can integrate with an ERP system to
enable users to:

Enter information in one system and ensure the accessibility and
accuracy of the same information across the other application, if
necessary, without duplication of data entry.

Maintain the data entry and ownership at one point, the source
module. Synchronize reference (common) data based on the static or
dynamic nature of the data, and/or, as deemed necessary in a
business environment.

Perform the necessary business functions involving data sharing and
transfer without having to be aware of the system links, the transfer
mechanism and the programming details.

Define and maintain the implementation setup of the integration to
suit specific business needs. Typically, the user-definable parameters
correspond to the modules installed, the active interfaces, frequency
of data synchronization and real time or batch data transfer options.

140 Integration Guide

Integration Data Flow Diagram

8.1 Integration Overview
The Sterling WMS can be integrated with one or more of the following
components of an ERP system:

Order Management

Purchasing

Inventory

WIP

Returns

8.2 Integration Data Flow Diagram

Integration Specification Details

Integrating with Enterprise Resource Planning Systems 141

8.3 Integration Protocol

8.3.1 Data exchange from an ERP System to the Sterling
WMS

Selling and Fulfillment Foundation provides APIs to integrate the Sterling
WMS with ERP applications, and transfer data from an ERP system to the
Sterling WMS. These APIs can be invoked from the Service Definition
Framework.

Data exchange from an ERP application to the Sterling WMS can be
carried out using the Service Definition Framework in two modes:

Asynchronous Mode (DB, JMS, MSMQ)

Synchronous Mode (HTTP, EJB, LOCAL)

For more information about configuring these modes to facilitate
integration, see the Programming Transactions chapter in the Selling and
Fulfillment Foundation: Extending Transactions Guide .

8.3.2 Data exchange from the Sterling WMS to an ERP
System

The Selling and Fulfillment Foundation APIs raise Events, which can be
configured to transfer data from the Sterling WMS to an ERP application.

For more information about configuring Events, see the Programming
Transactions chapter in the Selling and Fulfillment Foundation: Extending
Transactions Guide .

8.4 Integration Specification Details

8.4.1 ERP Integration – Order Management
The Sterling WMS can be integrated with an ERP system to exchange the
following information:

Customer profile from an ERP system to the Sterling WMS

Shipment or order release from an ERP system to the Sterling WMS

Shipment confirmation back to an ERP system from the Sterling WMS

142 Integration Guide

Integration Specification Details

8.4.1.1 Customer Download from an ERP System to the Sterling
WMS
Vendor information is downloaded from an ERP system to the Sterling
WMS.

APIs Involved
manageCustomer()

For more information about APIs, see the Selling and Fulfillment
Foundation: Javadocs.

8.4.1.2 Shipment/Order Release Download from an ERP System to
the Sterling WMS
Order releases or Shipment requests are downloaded from an ERP
system to the Sterling WMS.

APIs Involved
createShipment()

consolidateToShipment()

For more information about APIs, see the Selling and Fulfillment
Foundation: Javadocs.

8.4.1.3 Shipment Confirmation Upload from the Sterling WMS to
an ERP System
Order releases or Shipment requests are uploaded from the Sterling
WMS to an ERP system.

APIs Involved
confirmShipment()

Events Raised
The following events are raised by the confirmShipment() API:

CONFIRM_SHIPMENT.ON_SUCCESS

CREATE_CONFIRM_SHIPMENT.ON_SUCCESS

SHIP_SHIPMENT.ON_SHIP_CONFIRM_POST_VOID

Integration Specification Details

Integrating with Enterprise Resource Planning Systems 143

SHIP_ORDER.ON_SHIP_CONFIRM_POST_VOID

INVENTORY_CHANGE.ON_CHANGE

INVENTORY_COST_CHANGE.INVENTORY_VALUE_CHANGE

For more information about the APIs, see the Selling and Fulfillment
Foundation: Javadocs.

8.4.2 ERP Integration – Purchasing
The Sterling WMS can be integrated with an ERP system to exchange the
following information:

Vendor profile from an ERP system to the Sterling WMS

Purchase Order information from an ERP system to the Sterling WMS

Purchase Order closure information from an ERP system to the
Sterling WMS

ASN information from an ERP system to the Sterling WMS

Receipt information sent back from the Sterling WMS to an ERP
system

8.4.2.1 Vendor Download from an ERP System to the Sterling
WMS
Vendor information is downloaded from an ERP system to the Sterling
WMS.

APIs Involved
manageVendor()

For more information about the APIs, see the Selling and Fulfillment
Foundation: Javadocs.

8.4.2.2 Purchase Order Download from an ERP System to
the Sterling WMS
Purchase Orders are created on an ERP system and downloaded to the
Sterling WMS. PO modifications are also downloaded to the Sterling
WMS.

144 Integration Guide

Integration Specification Details

APIs Involved
createOrder()

changeOrder()

For more information about the APIs, see the Selling and Fulfillment
Foundation: Javadocs.

8.4.2.3 Purchase Order Closure Download from an ERP System to
the Sterling WMS
When a PO or PO line is closed on an ERP system, it is downloaded to the
Sterling WMS.

APIs Involved
shortOrder()

For more information about the APIs, see the Selling and Fulfillment
Foundation: Javadocs.

8.4.2.4 ASN Download from an ERP System to the Sterling WMS
When an ASN is created on an an ERP system, it can be downloaded to
the Sterling WMS.

APIs Involved
confirmShipment()

For more information about the APIs, see the Selling and Fulfillment
Foundation: Javadocs.

8.4.2.5 Receipt Upload from the Sterling WMS to an ERP System
Receipt information can be uploaded as and when a receipt is made or
when a receipt is closed.

APIs Involved
closeReceipt() or

receiveOrder()

Integration Specification Details

Integrating with Enterprise Resource Planning Systems 145

Events Raised
The following events are raised by the closeReceipt() API:

RECEIPT_COMPLETE.ON_RECEIPT_COMPLETE

The following events are raised by the receiveOrder() API:

RECEIVE_RECEIPT.ON_SUCCESS

RECEIVE_RECEIPT.ON_SKU_RECEIPT

RECEIVE_RECEIPT.ON_CASE_RECEIPT

RECEIVE_RECEIPT.ON_PALLET_RECEIPT

INVENTORY_COST_CHANGE.INVENTORY_COST_CHANGE

RECEIVE_ORDER.INVENTORY_COST_WRITEOFF

RECEIVE_ORDER.INVENTORY_VALUE_CHANGE

For more information about the APIs, see the Selling and Fulfillment
Foundation: Javadocs.

8.4.3 ERP Integration - Inventory
The Sterling WMS can be integrated with an ERP system to exchange the
following information:

Item information from an ERP system to the Sterling WMS

Item information sent from the Sterling WMS to an ERP system

Inventory modification information sent from the Sterling WMS to an
ERP system

Inventory snapshot information sent from the Sterling WMS to an ERP
system

8.4.3.1 Item Download from an ERP System to the Sterling WMS
New items are created on an ERP system and then downloaded to the
Sterling WMS. Typically, the ERP system is the master. However, several
attributes of items required for warehouse operations are maintained in
the WMS after the download of item information from the ERP system.

APIs Involved
manageItem()

146 Integration Guide

Integration Specification Details

For more information about the APIs, see the Selling and Fulfillment
Foundation: Javadocs.

8.4.3.2 Item Attributes Upload from the Sterling WMS to an ERP
System
Some of the item attributes, such as item dimensions and weight, can be
maintained in the Sterling WMS and then uploaded to an ERP system.

APIs Involved
manageItem()

Events Raised
The following events are raised by the manageItem() API:

ITEM_DEFINITION.AFTER_MODIFY_ITEM

ITEM_DEFINITION.AFTER_DELETE_ITEM

For more information about the APIs, see the Selling and Fulfillment
Foundation: Javadocs.

8.4.3.3 Inventory Change Upload from the Sterling WMS to an
ERP System
Inventory changes from the Sterling WMS are uploaded to an ERP
system.

APIs Involved
adjustInventory()

Events Raised
The following events are raised by the adjustInventory() API:

INVENTORY_CHANGE.INVENTORY_CHANGE

INVENTORY_CHANGE.SUPPLY_CHANGE

INVENTORY_COST_CHANGE.INVENTORY_VALUE_CHANGE

For more information about the APIs, see the Selling and Fulfillment
Foundation: Javadocs.

Integration Specification Details

Integrating with Enterprise Resource Planning Systems 147

8.4.3.4 Inventory Snapshot Upload from the Sterling WMS to an
ERP System
Inventory snapshot information may need to be uploaded from the
Sterling WMS to an ERP system.

APIs Involved
getInventoryMismatch()

getInventorySnapshot()

For more information about the APIs, see the Selling and Fulfillment
Foundation: Javadocs.

8.4.4 ERP System Integration - WIP
The Sterling WMS can be integrated with an ERP system to exchange the
following information:

Bill of Materials (BOM) information from an ERP system to the
Sterling WMS

Work Order information from an ERP system to the Sterling WMS

Manually created work order information sent from the Sterling WMS
to an ERP system

Work Order confirmation information sent from the Sterling WMS to
an ERP system

Work Order closure information sent from the Sterling WMS to an ERP
system

8.4.4.1 BOM Download from an ERP System to the Sterling WMS
Bill of Materials (BOM) information can be maintained on an ERP system
and downloaded to the Sterling WMS.

APIs Involved
manageItem()

For more information about the APIs, see the Selling and Fulfillment
Foundation: Javadocs.

148 Integration Guide

Integration Specification Details

8.4.4.2 Work Order Download from an ERP System to the Sterling
WMS
Work Orders can be downloaded from an ERP system to the Sterling
WMS for execution.

APIs Involved
createWorkOrder()

For more information about the APIs, see the Selling and Fulfillment
Foundation: Javadocs.

8.4.4.3 Work Order Demand Upload for Manually Created Work
Orders from the Sterling WMS to ERP
When work orders are created manually in the Sterling WMS, work order
information needs to be uploaded to an ERP system so that component
items are allocated on the ERP system.

APIs Involved
createWorkOrder()

cancelWorkOrder()

modifyWorkOrder()

Events Raised
The following events are raised by the createWorkOrder() API:

CREATE_WORK_ORDER.ON_SUCCESS

The following events are raised by the cancelWorkOrder() API:

CANCEL_WORK_ORDER.ON_SUCCESS

CANCEL_WORK_ORDER.WORK_ORDER_ACTIVITIES_COMPLETED

The following events are raised by the modifyWorkOrder() API:

MODIFY_WORK_ORDER.ON_SUCCESS

For more information about the APIs, see the Selling and Fulfillment
Foundation: Javadocs.

Integration Specification Details

Integrating with Enterprise Resource Planning Systems 149

8.4.4.4 Work Order Confirmation Upload from the Sterling WMS to
an ERP System
When a Work Order is confirmed, information needs to be uploaded to
the ERP system indicating quantity of work order confirmed or built.

With some ERP systems, this data may not be uploaded as and when
quantity built. Instead, only work order closure is uploaded to the ERP
system, indicating total quantity built for the work order.

APIs Involved
confirmWorkOrderActivity()

Events Raised
The following events are raised by the confirmWorkOrderActivity() API:

CONFIRM_WORK_ORDER.ON_SUCCESS

CONFIRM_WORK_ORDER.WORK_ORDER_ACTIVITIES_COMPLETED

CONFIRM_WORK_ORDER.LPN_ACTIVITIES_COMPLETED

CONFIRM_WORK_ORDER.SKU_ACTIVITIES_COMPLETED

CONFIRM_WORK_ORDER.SNO_ACTIVITIES_COMPLETED

For more information about the APIs, see the Selling and Fulfillment
Foundation: Javadocs.

8.4.4.5 Close Work Order from the Sterling WMS to an ERP
System
When all quantities for a work order is completed or the remaining
quantity is canceled, data needs to be published to the ERP system
indicating that work order is complete.

APIs Involved
changeWorkOrderStatus()

Events Raised
The following events are raised by the changeWorkOrderStatus() API:

CHANGE_WORK_ORDER_STATUS.ON_SUCCESS

150 Integration Guide

Integration Specification Details

For more information about the APIs, see the Selling and Fulfillment
Foundation: Javadocs.

8.4.5 ERP Integration – Returns
The Sterling WMS can be integrated with an ERP system to exchange the
following information:

Return Order information from an ERP system to the Sterling WMS

Return Order closure information from an ERP system to the Sterling
WMS

Receipt information sent back from the Sterling WMS to an ERP
system

8.4.5.1 Return Order Download from ERP to the Sterling WMS
Return Orders are created on an ERP system and downloaded to the
Sterling WMS. Return Order modifications are also downloaded to the
Sterling WMS.

APIs Involved
createOrder()

changeOrder()

For more information about the APIs, see the Selling and Fulfillment
Foundation: Javadocs.

8.4.5.2 Return Order Closure Download from an ERP System to
the Sterling WMS
When a return is closed on the host system, it is downloaded to the
Sterling WMS. Typically, one return is one receipt. Hence, when a receipt
is closed, return may be marked as Closed without a separate integration
from host system.

APIs Involved
shortOrder()

For more information about the APIs, see the Selling and Fulfillment
Foundation: Javadocs.

Integration Specification Details

Integrating with Enterprise Resource Planning Systems 151

8.4.5.3 Receipt Upload from the Sterling WMS to an ERP System
Typically, return information is uploaded only when receipt is closed.

APIs Involved
closeReceipt() or

receiveOrder()

Events Raised
The following events are raised by the closeReceipt() API:

RECEIPT_COMPLETE.ON_RECEIPT_COMPLETE

The following events are raised by the receiveOrder() API:

RECEIVE_RECEIPT.ON_SUCCESS

RECEIVE_RECEIPT.ON_SKU_RECEIPT

RECEIVE_RECEIPT.ON_CASE_RECEIPT

RECEIVE_RECEIPT.ON_PALLET_RECEIPT

RECEIVE_ORDER.INVENTORY_COST_CHANGE

RECEIVE_ORDER.INVENTORY_COST_WRITEOFF

RECEIVE_ORDER.INVENTORY_VALUE_CHANGE

152 Integration Guide

Integration Specification Details

Integrating with Point of Sale Systems 153

9
Integrating with Point of Sale Systems

Selling and Fulfillment Foundation enables you to integrate with point of
sale systems used in stores for product check-outs and returns from
customers. When a sales transaction is posted to the Sterling WMS from
a point of sale (POS), the location from which inventory has to be
deducted may not be known, and hence not passed. Under such
circumstances, the Sterling WMS deducts the inventory from one or more
locations that are configured for the purpose of adjustment (that is, for
an Adjustment Reason Code). Depending on the availability at each
location, the location is appropriately adjusted and then the next location
is considered, if required. If a virtual location is one of the locations in
the sequence, the inventory availability at the location is not checked and
such a location is allowed to go negative.

For more information about the Sterling Warehouse Management
System, see the Sterling Warehouse Management System: Concepts
Guide.

This chapter describes how Selling and Fulfillment Foundation provides
integration with the point-of-sale systems.

9.1 API Invoked During Point of Sale Integration
The API invoked during the integration of the Sterling WMS with Point Of
Sale Systems is adjustLocationInventory().

This API adjusts location inventory. In point of sale systems, it is typically
called with an inventory reason code associated with an adjustment
sequence, without a Location ID. It can also be called with both the
Location ID and the inventory reason code associated with an adjustment
sequence. The transaction does not go through if the Location ID is not

154 Integration Guide

API Invoked During Point of Sale Integration

passed and the inventory reason code passed does not have an
adjustment sequence associated with it.

If the adjustLocationInventory API is called with an inventory reason
code associated with an adjustment sequence and the Location ID is not
passed:

Inventory is deducted consecutively from the locations or zones
specified in the adjustment sequence.

Within a zone, inventory is deducted according to the pick sequence
of the locations in the zone. For locations having the same pick
sequence number, inventory is deducted in the alphabetical order of
the Location ID.

Inventory in non-virtual locations is deducted only to the extent of
the available quantity of loose SKU (inventory in LPN is not
considered). Available inventory is deducted consecutively from the
configured locations until a virtual location, if configured in the
adjustment sequence, is reached. The balance of the demanded
quantity is then adjusted from this virtual location. If any other
locations have been configured in the adjustment sequence after the
virtual location, they are ignored.

The transaction does not go through if there is insufficient inventory
in the locations or zones specified in the adjustment sequence and a
virtual location has not been configured in the adjustment sequence.

When the adjustLocationInventory API is called with a Location ID and an
inventory reason code associated with an adjustment sequence, the
inventory is adjusted in the specified location and the adjustment
sequence is ignored. The transaction does not go through if there is
insufficient inventory at the specified location.

When the adjustLocationInventory API is called for serialized items, the
location sequence associated with an inventory reason code is always
ignored.

If the adjustLocationInventory API is called with a Location ID,
inventory is deducted from that location. The transaction does not go
through if the serial number is not found in the specified location.

If the adjustLocationInventory API is called without a Location ID,
inventory is deducted from any location where the serial number is

API Invoked During Point of Sale Integration

Integrating with Point of Sale Systems 155

found. The transaction does not go through if the specified serial
number is not found in any location of the node.

156 Integration Guide

API Invoked During Point of Sale Integration

Integrating User and Item Data with External Systems 157

10
Integrating User and Item Data with External

Systems

Selling and Fulfillment Foundation enables you to integrate with external
systems used to sell products, through multiple channels. This
integration enables information on orders, availability, products, and
customers to be passed between the external system and Selling and
Fulfillment Foundation.

You can trigger synchronization of this data three ways: near real-time,
on-demand, and batch. For more information about triggering methods
for data synchronization, see Table 10–1, "Methods of Triggering Data
Synchronization".

Table 10–1 Methods of Triggering Data Synchronization

Method Description

Near real-time Changes are communicated to the
appropriate system as soon as they are
processed.

Note: This is applicable to both user and
product synchronization.

On-demand Occurs as a result of a customer manually
triggering the synchronization from an
external system.

Batch Occurs at a specified time and automatically
determines which items or customers need to
be synchronized.

158 Integration Guide

User and Item Synchronization

10.1 Order Management
This section describes how Selling and Fulfillment Foundation order
management integrates with external systems.

This integration enables the following:

Order integration — Orders placed in the external system can be
tracked and maintained in Selling and Fulfillment Foundation.

Order details — When order details are viewed in the external
system, they are retrieved in real time from Selling and Fulfillment
Foundation.

Order change and cancellation - Details about order changes or
cancellations are communicated between systems.

10.1.1 APIs Invoked During Order Management
Integration

The following APIs are invoked during order management integration:

createOrder()

changeOrder()

getSalesOrderDetails()

For more information about these APIs, see the Selling and Fulfillment
Foundation: Javadocs.

10.2 User and Item Synchronization
This section describes how Selling and Fulfillment Foundation
synchronizes user and item data with an external system.

This synchronization enables you to integrate the following:

Users - User synchronization involves synchronizing a defined set of
users, including details such as address and payment information.

Items - Item synchronization involves synchronizing all the relevant
item information.

For both users and items, services are provided to send and receive
changes. These services are:

User and Item Synchronization

Integrating User and Item Data with External Systems 159

SendItemChanges

ReceiveItemChanges

SendCustomerChanges

ReceiveCustomerChanges

These services function by either placing or retrieving information from a
JMS queue, and then passing this information to an internal or external
API or service.

10.2.1 Item Synchronization Services in Selling and
Fulfillment Foundation

Selling and Fulfillment Foundation has two main services for the
synchronization of items. These services leverage APIs as well as other
services in order to send or receive changes to items.

10.2.1.1 SendItemChanges Service
The sendItemChanges service is used to relay changes made to items in
Selling and Fulfillment Foundation to the external system. This service is
triggered as soon as an update or change to an item is made. For more
information about the process flow of the sendItemChanges service, see
Figure 10–1.

Figure 10–1 The SendItemChanges Service

160 Integration Guide

User and Item Synchronization

Table 10–2 The SendItemChanges Service

10.2.1.2 ReceiveItemChanges Service
The receiveItemChanges service accepts changes made to items in the
external system and commits them to Selling and Fulfillment Foundation,
if running in near-real-time mode. If batch mode is used, the service is
called after the item synchronization cron job is run. For more

Step Description

Is the item valid for
synching?

If the item is valid for synchronization, the service continues; if it is not,
the service ends. Items are deemed valid for synchronization if the
ItemGroupCode is equal to PROD and the item is not a dynamic
physical kit or a logical kit.

Generic JMS queue
The Generic JMS queue stores messages until they can continue
through the service.

Note: When configuring the SendItemChanges service, the Provider
URL for both the JMS Sender and JMS Receiver must be manually
configured. The queue name for both must also be set to
ItemSyncQueue. For more information about configuring services, see
the Selling and Fulfillment Foundation: Application Platform
Configuration Guide.

sendItemChangesT
OExternalSystem

This service contains modules that provide an XSL translation to create
a common XML file for the item, and send the XML to the external
system. For more information about the common XML file, see
Section 10.3.

Note: The Java class name for the external client must be specified in
the sendItemChangesTOExternalSystem service’s API component.

Is the action a
delete?

If the change being made to the item is deletion, the service ends. If it
is not, the service continues.

Make manageItem
input to SyncTS

An XSL translation takes place which adds a timestamp for when the
synchronization took place.

Note: SyncTS is the only column change that can occur in this XSL.

manageItem API
The item XML is passed to the manageItem API which commits the
changes to Selling and Fulfillment Foundation.

Note: For more information about the SendItemChanges
service, see the Selling and Fulfillment Foundation:
Application Platform Configuration Guide.

User and Item Synchronization

Integrating User and Item Data with External Systems 161

information about the process flow of the receiveItemChanges service,
see Figure 10–2.

Figure 10–2 The receiveItemChanges Service

10.2.2 Customer Synchronization Services in Selling and
Fulfillment Foundation

Selling and Fulfillment Foundation has two main services for the
synchronization of customers. These services leverage APIs as well as
other services in order to send or receive changes to customers.

Table 10–3 The ReceiveItemChanges Service Explained

Step Description

Generic JMS queue
The Generic JMS queue stores messages until they can continue
through the service.

Note: When configuring the ReceiveItemChanges service, the Provider
URL for the JMS Receiver must be manually configured. The queue
name must also be set to ItemSyncReceiveItemChangesQueue.
For more information about configuring services, see the Selling and
Fulfillment Foundation: Application Platform Configuration Guide.

Make
receiveItemChanges
input from common XML

The XSL translation takes the common XML from the external system
and removes all synchronization related data as well as transforms the
XML into a format that can be read by Selling and Fulfillment
Foundation.

Note: By default, items are deleted from Selling and Fulfillment
Foundation when a message for deletion is received from the external
system. This can be avoided by modifying the XSL translator in this
step by changing Action="Delete" to Action="Modify" and
placing the item into a custom status.

receiveItemChanges
API

The receiveItemChanges API accepts the item XML from the external
system and invokes the functionality of the manageItem API.

162 Integration Guide

User and Item Synchronization

10.2.2.1 The SendCustomerChanges Service
The sendCustomerChanges service communicates changes made to
customers in Selling and Fulfillment Foundation to the external system.
For more information about the process flow of the
sendCustomerChanges service, see Figure 10–3.

Figure 10–3 The SendCustomerChanges Service

User and Item Synchronization

Integrating User and Item Data with External Systems 163

10.2.2.2 The ReceiveCustomerChanges Service
The receiveCustomerChanges service accepts changes made to
customers in the external system and commits them to Selling and

Table 10–4 The SendCustomerChanges Service Explained

Step Description

Is the customer
valid for synching?

If the customer is valid for synchronization, the service continues; if it
is not, the service ends. Customers are deemed valid for
synchronization if they are a consumer, have a user ID that is not
blank, and have an IsSyncRequired flag set to ’Y’.

Generic JMS queue
The Generic JMS queue stores messages until they can continue
through the service.

Note: When configuring the sendCustomerChanges service, the URL for
both the JMS Sender and JMS Receiver must be manually configured.
The queue name for both must also be set to CustomerSyncQueue. For
more information about configuring services, see the Selling and
Fulfillment Foundation: Application Platform Configuration Guide.

sendCustomerChan
gesTOExternalSystem

This service contains modules that provide an XSL translation to create
a common XML file for the customer, and send the XML to the external
system.

Note: The Java class name for the external client must be specified in
the sendCustomerChangesTOExternalSystem service’s API component.

Is the operation a
delete?

If the change being made to the customer is deletion, the service ends.
If it is not, the service continues.

Make
manageCustomer input
to SyncTS

An XSL translation takes place which adds a timestamp for when the
synchronization took place.

Note: SyncTS is the only column change that can occur in this XSL.

manageCustomer
API

The customer XML is passed to the manageCustomer API, which
commits the changes to Selling and Fulfillment Foundation.

Note: For more information about the
SendCustomerChanges service, see the Selling and
Fulfillment Foundation: Application Platform Configuration
Guide.

164 Integration Guide

Customer Event Templates

Fulfillment Foundation. This service is triggered as soon as an update or
change to an customer is made. For more information about the process
flow of the receiveCustomerChanges service, see Figure 10–4.

Figure 10–4 The ReceiveCustomerChanges Service

10.3 Customer Event Templates
Manual changes to the customer event template XML files are required to
enable customer synchronization. To modify the customer event template
XML files:

1. Navigate to the <OF_INSTALL_
DIR>/repository/xapi/template/merged/event/ directory.

Table 10–5 The ReceiveCustomerChanges Service Explained

Step Description

Generic JMS queue
The Generic JMS queue stores messages until they can continue
through the service.

Note: When configuring the sendCustomerChanges service, the URL for
both the JMS Sender and JMS Receiver must be manually configured.
The queue name for both must also be set to CustomerSyncQueue. For
more information about configuring services, see the Selling and
Fulfillment Foundation: Application Platform Configuration Guide.

Make
receiveCustomerChang
es input from common
XML

The XSL translation takes the common XML from the external system
and removes all synchronization related data as well as transforms the
XML into a format that can be read by Selling and Fulfillment
Foundation.

receiveCustomerCh
anges API

The receiveCustomerChanges API accepts the item XML from the
external system and invokes the functionality of the manageItem API.

Data Mapping

Integrating User and Item Data with External Systems 165

2. Locate the CUSTOMER_DEFINITION.AFTER_CREATE_CUSTOMER.xml,
CUSTOMER_DEFINITION.AFTER_DELETE_CUSTOMER.xml, and
CUSTOMER_DEFINITION.AFTER_MODIFY_CUSTOMER.xml files.

3. Copy the files mentioned in Step 2 to the <OF_INSTALL_
DIR>/extensions/global/template/event directory.

4. Modify the customer event templates listed in Step 2 to match the
common XML provided in Section 10.4.1, "Customer Data Mapping".

5. Add the following attributes to the <Customer> element in the files
mentioned in Step 2.

IsSyncRequired=""

MaxModifyTS=""

SyncTS=""

For more information about modifying template XML files, see the Selling
and Fulfillment Foundation: Customizing APIs Guide.

10.4 Data Mapping
This section describes the mapping that takes place during the
synchronization of items and customers between an external system and
Selling and Fulfillment Foundation.

10.4.1 Customer Data Mapping
Table 10–6 provides mapping for the attributes related to customer
synchronization from the external system and Selling and Fulfillment
Foundation.

The following common XML is used to communicate with external
systems:

<Customer OrganizationCode="" Operation="" CustomerType="">
 <CustomerContactList >
 <CustomerContact DayFaxNo="" DayPhone="" EmailID=""
EveningFaxNo=""
EveningPhone="" FirstName="" LastName="" MobilePhone=""
Title="" UserID="">
 <CustomerAdditionalAddressList Reset="y" >
 <CustomerAdditionalAddress
CustomerAdditionalAddressID="" IsShipTo=""

166 Integration Guide

Data Mapping

IsBillTo="" IsSoldTo="" IsDefaultShipTo="" IsDefaultBillTo=""
IsDefaultSoldTo="">
 <PersonInfo AddressLine1="" AddressLine2=""
AddressLine3="" City="" Country=""
State="" ZipCode="" />
 </CustomerAdditionalAddress>
 </CustomerAdditionalAddressList>
 <CustomerPaymentMethodList Reset="Y">
 <CustomerPaymentMethod CreditCardExpDate=""
FirstName=""
MiddleName="" LastName="" CreditCardNo="" CreditCardType=""
PaymentType="" IsDefaultMethod="" />
 </CustomerPaymentMethodList>
 </CustomerContact>
 </CustomerContactList>
</Customer>

Table 10–6 Customer Data Mapping

Selling and Fulfillment Foundation Database Fields

YFS_CUSTOMER_CONTACT.USER_ID

YFS_CUSTOMER_CONTACT.LAST_NAME

YFS_CUSTOMER_CONTACT.FIRST_NAME

YFS_CUSTOMER_CONTACT.TITLE

YFS_CUSTOMER_CONTACT.EMAILID

YFS_CUSTOMER_PAYMENT_METHOD.PAYMENT_TYPE

YFS_CUSTOMER_PAYMENT_METHOD.CREDIT_CARD_NO

YFS_CUSTOMER_PAYMENT_METHOD.CREDIT_CARD_EXP_DATE

YFS_CUSTOMER_PAYMENT_METHOD.CREDIT_CARD_TYPE

YFS_CUSTOMER_PAYMENT_METHOD.FIRST_NAME

YFS_CUSTOMER_PAYMENT_METHOD.MIDDLE_NAME

YFS_CUSTOMER_PAYMENT_METHOD.LAST_NAME

YFS_CUSTOMER.ORGANIZATION_CODE

YFS_PERSON_INFO.ADDRESS_LINE1

YFS_PERSON_INFO.ADDRESS_LINE2

YFS_PERSON_INFO.ADDRESS_LINE3

Data Mapping

Integrating User and Item Data with External Systems 167

10.4.2 Item Data Mapping
Table 10–7 provides the mapping for elements and attributes related to
item synchronization from the external system and Selling and
Fulfillment Foundation.

The following common XML is used to communicate with external
systems:

<Item Action="Create/Modify/Delete" ItemID="" UnitOfMeasure=""
OrganizationCode="" ShortDescription="" ExtendedDescription=""
BundleFulfillmentMode="" LeadTime="" MinOrderQuantity="" IsModelItem="" Model=""
ModelItemUnitOfMeasure="" KitCode="" ConfiguredModelKey="" IsConfigurable=""
IsPreConfigured="">
 <ItemInstructionList Reset="">
 <ItemInstruction InstructionText="" SeqNo=""
InstructionType="ORDERING"/>
 </ItemInstructionList>
 <Components Reset="">
<Component ComponentItemID="" ComponentOrganizationCode=""

YFS_PERSON_INFO.CITY

YFS_PERSON_INFO.ZIP_CODE

YFS_PERSON_INFO.STATE

YFS_PERSON_INFO.COUNTRY

YFS_CUSTOMER_ADDNL_ADDRESS.IS_SOLD_TO

YFS_CUSTOMER_ADDNL_ADDRESS.IS_SHIP_TO

YFS_CUSTOMER_ADDNL_ADDRESS.IS_BILL_TO

YFS_CUSTOMER_ADDNL_ADDRESS.IS_DEFAULT_SOLD_TO

YFS_CUSTOMER_ADDNL_ADDRESS.IS_DEFAULT_SHIP_TO

YFS_CUSTOMER_ADDNL_ADDRESS.IS_DEFAULT_BILL_TO

YFS_CUSTOMER_CONTACT.<table_name>
Note: The <table_name> column is determined by the value of the CMGT_PHONES.PHONE_TYPE_CODE column. The
customer phone number is then stored in this column.

Note: Extended attributes can be provided under the
/Item/@Extn element.

Selling and Fulfillment Foundation Database Fields

168 Integration Guide

Data Mapping

ComponentUnitOfMeasure="" KitQuantity=" "/>
 </Components>
</Item>

Table 10–7 Item Data Mapping

Attribute
Order Fulfillment Database
Field Comment

Item

ItemID YFS_ITEM.ITEM_ID

UnitOfMeasure YFS_ITEM.UOM Note: The values in this field must be manually
kept in synch between the two applications.

OrganizationCode YFS_ITEM.ORGANIZATION_CODE Assume that the catalog is maintained at the
hub level.

ShortDescription YFS_ITEM.SHORT_DESCRIPTION This field is required to avoid errors.

Extended Description YFS_ITEM.EXTENDED_DESCRIPTION

BundleFulfillmentMode YFS_ITEM.BUNDLE_FULFILLMENT_
MODE

This value should be based on the following:
n "01" for ShipTogether when the

configurable item is a non-container only
item.

n "02" for Ship Independently when the
configurable item is a container only item.

LeadTime YFS_ITEM.LEAD_TIME

MinOrderQuantity YFS_ITEM.MIN_ORDER_QUANTITY

Model YFS_ITEM.MODEL The existing MODEL field is used to store the
parent SKU to represent the aggregate item. Do
not confuse with CONFIGURED_MODEL_KEY
of the configurable item.

ModelItemUnitOfMeasure YFS_ITEM.MODEL_ITEM_UOM This field stores the unit of measure of the
parent SKU.

IsModelItem YFS_ITEM.IS_MODEL_ITEM The value stored in this field should be "Y" if the
product is of the type "Aggregate".

Data Mapping

Integrating User and Item Data with External Systems 169

KitCode YFS_ITEM.KIT_CODE The value for this field is based on the
following:
n "PK" if the product is of the type

"ASSEMBLY" and the CMGT_
PRODUCT.COMPONENT_SUB_TYPE
field indicates that the product is a
physical kit.

n "BUNDLE" if the product is of the type
"ASSEMBLY" and the CMGT_
PRODUCT.COMPONENT_SUB_TYPE
field indicates that the product is a bundle.

n "BUNDLE" if product is of the type
"CONFIGURABLE"

ConfiguredModelKey YFS_ITEM.CONFIGURED_MODEL_KEY

IsConfigurable YFS_ITEM.IS_CONFIGURABLE The value of this field should be "Y" if the
product is of the type "CONFIGURABLE".

IsPreConfigured YFS_ITEM.IS_PRE_CONFIGURED

ItemInstructionList/ItemInstruction

InstructionText YFS_ITEM_
INSTRUCTION.INSTRUCTION_TEXT

InstructionType YFS_ITEM_
INSTRUCTION.INSTRUCTION_TYPE

SeqNo YFS_ITEM_INSTRUCTION.SEQ_NO

Components/Component

ComponentItemID YFS_KIT_ITEM.COMPONENT_ITEM_
KEY
Based on
ComponentItemID,ComponentOrganizatio
nCode, and ComponentUnitOfMeasure.

ComponentOrganizationCode YFS_KIT_ITEM.COMPONENT_IT
Based on ComponentItemID,
ComponentOrganizationCode,
ComponentUnitOfMeasure

Assume that the catalog is maintained at the
hub level.

ComponentUnitOfMeasure YFS_KIT_ITEM.COMPONENT_ITEM_
KEY
Based on ComponentItemID,
ComponentOrganizationCode,
ComponentUnitOfMeasure

Unit of measure of the config line (configurable)
or part (assembly)

KitQuantity YFS_KIT_ITEM.KIT_QUANTITY

Attribute
Order Fulfillment Database
Field Comment

170 Integration Guide

Data Mapping

Note: Extended attributes can be provided under the
/Item/@Extn element.

Note: Product item statuses must be manually kept in
sync between the external system and Selling and
Fulfillment Foundation.

There are two scenarios in which statuses are updated
during product item synchronization:

A new product item is added to either the external
system or Selling and Fulfillment Foundation. During
synchronization, the product item is added, and the
status updated to Held in Selling and Fulfillment
Foundation or In Creation in the external system.

If a product item is deleted in Selling and Fulfillment
Foundation, the status in the external system is
updated to Blocked. In addition, when that product
item is retrieved in the UI of the external system, text
is displayed in the UI to indicate that this product has
been deleted in Selling and Fulfillment Foundation.

If a product is deleted from the external system, a
message is sent to Selling and Fulfillment Foundation. By
default, items are removed from the database. This can
be avoided by modifying the XSL translator in this step
by changing Action="Delete" to Action="Modify"
and placing the item into a custom status.

Integrating with JMS Systems 171

11
Integrating with JMS Systems

In order for some service nodes to communicate with external
applications, external message queueing software must be configured.
This appendix explains how to configure the following third-party
message queueing applications:

BEA WebLogic JMS

IBM WebSphere MQ

IBM WebSphere Default Messaging

JBoss Messaging JMS

TIBCO JMS

11.1 BEA WebLogic JMS
This section explains how to configure BEA WebLogic JMS as the
messaging system for Selling and Fulfillment Foundation. For information
specific to using WebLogic, see the documentation provided by BEA.

11.1.1 Configuring WebLogic JMS

To configure WebLogic JMS:
1. Invoke the WebLogic console by entering the URL for Application

Consoles. For example, http://<IP address of machine where
weblogic is installed>:<port>/console.

2. Log in as Administrator.

3. In the left-hand panel, click Services > JDBC > Connection Pools.

172 Integration Guide

BEA WebLogic JMS

4. If message persistence or paging is required, right-click Connection
Pools and choose configure a new JDBCConnectionPool.

5. Configure the new JDBC pool with the following values:

Name - Any name, for example, MyJDBCPool

URL - jdbc:oracle:thin:@<IPAddress>:1521:<SID>

DriverClassName - oracle.jdbc.OracleDriver

Properties -

* user=<username>

* password=<password>

6. Select the Targets tab. In the left-hand panel, select one or more
servers. (Several choices may appear if your server is in a clustered
environment.) Then click the right arrow button to move the servers
you have selected to the panel on the right.

7. In the left-hand panel, right-click JMS > ConnectionFactories to
configure a new Connection Factory.

The JNDIName must match the QCFlookup value in the Applications
Manager for the WebLogic JMS Transport Type.

8. Select the Targets tab. In the left-hand panel, select one or more
servers. (Several choices may appear if your server is in a clustered
environment.) Then click the right arrow button to move the selected
server to the window on the right.

9. If message persistence or paging is required, right-click Stores, and
configure a new JMSJDBCStore or Filestore.

a. If you choose JDBCStore, using the Connection Pool drop-down
list, select your connection pool.

b. Right-click Servers and configure a new JMS server.

c. Select the store from the drop-down list.

10. Select the Targets tab. In the left-hand window, select one server.
(Several choices may appear if your server is in a clustered
environment; you can select only one of them.). Then click the right
arrow button to move the selected server to the window on the right.

BEA WebLogic JMS

Integrating with JMS Systems 173

11. Within the newly configured JMS server, click Destinations and
configure all required JMS Queues. Now all of the JMS queues are
configured.

When configuring services that use WebLogic JMS, use the JNDI
Name value from the WLS configuration as the message queue name.

12. Restart the WebLogic server for these new settings to take effect.

13. Launch the integration server by running
startIntegrationServer.sh (or cmd) in <INSTALL_DIR>/bin.

14. If you need to run multiple servers, repeat Step 13 for each
additional server.

11.1.2 WebLogic Time-Out Considerations for Transacted
Sessions

When using WebLogic JMS as a messaging system to receive messages
in transactional mode and no messages are received for a period of time
equal to the WebLogic transaction time-out value (defaults to 3600
seconds), the following error message appears in the integration server.
After this error message appears, no messages can be processed and
you must relaunch the adapter in order to process any messages that
recently arrived.

<date-time> [Thread-6] ERROR services.jms.JMSConsumer -Could not successfully
process message
weblogic.jms.common.TransactionRolledBackException:
 at weblogic.rmi.internal.BasicOutboundRequest.sendReceive
 (BasicOutboundRequest.java:85)
 at weblogic.rmi.internal.BasicRemoteRef.invoke(BasicRemoteRef.java:135)
 at weblogic.rmi.internal.ProxyStub.invoke(ProxyStub.java:35)
 at $Proxy2.dispatchSyncNoTranFuture(Unknown Source)
 at weblogic.jms.dispatcher.DispatcherWrapperState.dispatchSyncNoTran
 (DispatcherWrapperState.java:341)
 at weblogic.jms.client.JMSSession.receiveMessage(JMSSession.java:347)
 at weblogic.jms.client.JMSConsumer.receive(JMSConsumer.java:333)
 at weblogic.jms.client.JMSConsumer.receive(JMSConsumer.java:279)
 at com.yantra.interop.services.jms.JMSConsumer.run(JMSConsumer.java:204)
 at java.lang.Thread.run(Thread.java:512)

For help with choosing an appropriate transaction time-out value for your
system, see your WebLogic documentation.

174 Integration Guide

IBM WebSphere MQ

11.2 IBM WebSphere MQ
This section explains how to configure a service for Selling and
Fulfillment Foundation using IBM WebSphere MQ as the transport. For
information specific to using WebSphere MQ, see the documentation
provided by IBM.

These directions assume that the following have been successfully
installed:

WebSphere MQ software

WebSphere MQ Java classes

WebSphere MQ JMS support pack

11.2.1 Creating the Queue Manager and Queues

To create the Queue Manager and Queues:
1. Log in as the WebSphere MQ user or as a user belonging to the mqm

user group.

2. Navigate to the directory where WebSphere MQ has been installed.
Typically the location is as follows:

– If you are using UNIX - /opt/mqm/bin

– If you are using Windows - <WebSphere MQ Install
Directory>\bin

3. Run the dspmq command to find out which queue managers, if any,
exist.

– If a suitable queue manager exists, start it using the strmqm
<qmgr> command. The queue manager can be stopped by using
the endmqm <qmgr> command.

– If no queue manager exists, use the crtmqm <MYQMGR>
command to create one.

4. Run the runmqsc command to send commands for creating queues.
For examples of these commands, see below:

runmqsc MYQMGR
DEFINE QLOCAL ('getATP');

IBM WebSphere MQ

Integrating with JMS Systems 175

DEFINE QLOCAL ('createOrder');
END

11.2.2 Configuring a Queue Manager to Client Connection
In order to send messages to a WebSphere MQ queue on another
computer, the QManager must be configured for the server and the client
computer.

When a new queue is created in WebSphere MQ, the following default
values are assigned to it:

MAXDEPTH - Maximum number of messages that a queue can hold.
Defaults to 5000.

MAXMSGL - Maximum size of a message. Defaults to 4 MB.

These settings may need to be adjusted depending on the load and
speed of the third-party application that submits the messages, as
opposed to the third-party application that retrieves the messages.

To create JMS bindings:
1. On the server computer, create a QueueManager <QManagerName>.

2. On the server computer’s command line, run the following
executable:

<MQInstallDir>/bin/runmqlsr -m <QManagerName> -t TCP -p <PORT>

3. On the client computer, edit the JMSAdmin.config properties file to
contain the following lines:

INITIAL_CONTEXT_FACTORY=<JNDI_ICF>
PROVIDER_URL=<JNDI_URL>

where <JNDI_ICF> is the Initial Context Factory (ICF) class for use
with the JNDI you have chosen. For example,
com.sun.jndi.fscontext.RefFSContextFactory. <JNDI_URL> is

Important: WebSphere MQ converts all characters to
upper case, which causes errors. To use mixed case
names, enclose them within single quotation marks, for
example, DEFINE QLOCAL ('getATP').

176 Integration Guide

IBM WebSphere MQ

the path of the provider URL which is provided in the format expected
by the JNDI server and ICF.

4. On the client computer, create a .scp command file that contains the
following parameters:

def qcf(<QCFName>) qmgr(<QManagerName>) transport(CLIENT) host(<ipaddress
of Server>) channel(SYSTEM.DEF.SVRCONN) port(<PORT>)
def q(getATP) qu(getATP)
def q(reply_getATP) qu(reply_getATP)
def q(createOrder) qu(createOrder)
end

5. On the client computer, pass the .scp file to the WebSphere MQ
JMSAdmin class using the following syntax:

java com.ibm.mq.jms.admin.JMSAdmin < intsetup.scp

This creates a .bindings file in the directory specified for the
provider URL. All the JAR files in <MQ_HOME>/java/lib/ directory
should be listed in your CLASSPATH environment variable.

To remove JMS bindings:
1. To unbind the queues from JNDI, create a .scp command file and

pass it into the WebSphere MQ JMSAdmin program. The following are
example commands:

del qcf(ivtQCF)
del q('getATP')
del q('reply_getATP')
del q('createOrder')
end

Archive Files
Since this configuration uses the client transport, the
com.ibm.mqbind.jar file is not necessary. However, the client does use
the following MQ-specific JAR files:

/mqclient/java/lib/com.ibm.mq.jar

/mqclient/java/lib/com.ibm.mqjms.jar

/mqclient/java/lib/connector.jar

/mqclient/java/lib/fscontext.jar

IBM WebSphere MQ

Integrating with JMS Systems 177

/mqclient/java/lib/jms.jar

/mqclient/java/lib/jndi.jar

/mqclient/java/lib/jta.jar

/mqclient/java/lib/providerutil.jar

11.2.3 Configuring Selling and Fulfillment Foundation to
Use WebSphere MQ Queues

When configuring Selling and Fulfillment Foundation to use the
WebSphere MQ queues, see the WebSphere MQ node in the Selling and
Fulfillment Foundation: Application Platform Configuration Guide.

To configure a service definition:
1. Log in to Selling and Fulfillment Foundation as the user who belongs

to the mqm user group (otherwise, the WebSphere MQ adapter does
not launch).

2. Use the Applications Manager to configure the service. While
configuring a WebSphere MQ service, enter the following:

The initial Context Factory
com.sun.jndi.fscontext.RefFSContextFactory, and

A provider URL as file:/<pathOfTheProviderURL>

3. Launch the integration server by running
startIntegrationServer.sh (or cmd) in <INSTALL_DIR>/bin.

4. If you need to run multiple servers, repeat Step 3 for each additional
server.

11.2.4 Accessing WebSphere MQ Using WebSphere’s JNDI
Namespace

You can configure the WebSphere MQ queues for access by WebSphere’s
JNDI namespace rather than the typical file URL. This section describes
how to make that configuration.

Note: The values for the Context Factory and the Provider
URL must match those in the JMSadmin.config file.

178 Integration Guide

IBM WebSphere MQ

11.2.5 Before You Begin
For information about the version of WebSphere MQ which includes MQ
JMS client software, see the Selling and Fulfillment Foundation:
Installation Guide.

If needed, see the IBM Technical Tip "Setting up MQ Java Message
Service (JMS) Support in WebSphere Application Server".

To configure WebSphere MQ:

1. You should set the shared library path for UNIX and LINUX systems
as follows:

set <Shared_Library_Path_Name>=<mqjava_install_path>/lib

where the <Shared_Library_Path_Name> is the shared library path
environment variable for your operating system. For example:

– In AIX it is LIBPATH.

– In HP-UX it is SHLIB_PATH.

– In Sun and Linux it is LD_LIBRARY_PATH.

2. Modify the <mqjava_install_path>/bin/JMSAdmin.config file as
follows:

INITIAL_CONTEXT_FACTORY=com.ibm.websphere.naming.WsnInitialContextFactory
PROVIDER_URL=CORBAloc:://<WAS_admin_IP_address>:<WAS_bootstrap_port>

3. Create an ivtsetup.scp command file that contains the following
parameters:

def qcf(<QCFName>) qmgr(<QManagerName>) transport(CLIENT) host(<ipaddress
of Server>) channel(SYSTEM.DEF.SVRCONN) port(<PORT>)
def q(JNDINameOfQueue) qu(QueueName)

In the following example, a QueueConnectionFactory is created with
the JNDI name ivtQCF. This QueueConnectionFactory is configured to
access the Queue Manager SYSTEM.TEST. Using the ’CLIENT’
(network based) transport on the computer 127.0.0.1,through port
1414 (WebSphere MQ default), through the server connection
channel named SYSTEM.DEF.SVRCONN (WebSphere MQ default).

Next, a queue object is created with the JNDI name getATP, which is
configured to work with the getATP queue on QueueManager

IBM WebSphere MQ

Integrating with JMS Systems 179

SYSTEM.TEST. (Of course, you must ensure that you have created
this queue on the queue manager as well.)

Finally, an end command is issued to shut down JMSAdmin.

Note that the .scp file can have any name, but the convention is
ivtsetup.scp (ivt=installation verification test).

def qcf(ivtQCF) qmgr(SYSTEM.TEST) transport(CLIENT) host(127.0.0.1)
CHANNEL(SYSTEM.DEF.SVRCONN) port (1414)

def q(getATP) qu(getATP) QMGR(SYSTEM.TEST)
end

4. Set the PATH and CLASSPATH in the JMSAdmin script as follows:

MQJAVA_PATH=<path to ma88 installation>
PATH=$MQJAVA_PATH
CLASSPATH=$MQJAVA_PATH/lib:$MQJAVA_PATH/lib/com.ibm.mq.jar:$MQJAVA_
PATH/lib/com.ibm.mqjms.jar:$MQJAVA_PATH/lib/jms.jar

For information about WebSphere JARs, see IBM documentation

5. Pass the .scp file to the WebSphere MQ JMSAdmin class using the
following syntax:

java com.ibm.mq.jms.admin.JMSAdmin < intsetup.scp

11.2.5.1 Inside the Applications Manager
Configure a service that contains a WebSphere MQ node. Ensure that the
link properties of the node match the Initial Context Factory, Provider
URL, and the JNDI name specified for the desired queue.

The WebSphere MQ and WebSphere JAR files are also required for the
IntegrationAdapter program and whatever client is putting the messages
into the queue(s).

11.2.5.2 Inside the WebSphere Admin Console
In order to put messages into the WebSphere MQ queues from inside
Selling and Fulfillment Foundation, as the Release agent needs to do or
for services invoked by Actions and Events, follow the instructions
provided in the IBM Technical Tip "Configuring MQ JMS support in the
WebSphere J2EE Environment".

180 Integration Guide

IBM WebSphere Default Messaging

If you are running on an IBM AIX system, include the following line in the
script that launches the IntegrationAdapter:

 export LDR_CNTRL=MAXDATA=0x30000000

11.3 IBM WebSphere Default Messaging
This section explains how to configure a service for Selling and
Fulfillment Foundation using IBM WebSphere Default Messaging as the
transport. For more information specific to using the WebSphere Default
Messaging, see the documentation provided by IBM. These directions
assume that the following have been successfully installed:

WebSphere Application Server with support for Default Messaging

WebSphere Default Messaging Java classes

WebSphere Default Messaging support pack

11.3.1 Configuring Selling and Fulfillment Foundation to
Use WebSphere Default Messaging

When configuring Selling and Fulfillment Foundation to use the
WebSphere Default Messaging queues, see the WebSphere Default
Messaging Queue section in the Selling and Fulfillment Foundation:
Application Platform Configuration Guide.

11.3.2 Before you Begin
For information about the version of WebSphere Default Messaging that
includes the Default Messaging client software, see the Selling and
Fulfillment Foundation: Installation Guide.

To configure WebSphere Default Messaging:

1. Set the shared library path for UNIX and LINUX system as follows:

set <Shared_Library_Path_Name>=<dm_java_install_path>/lib

where <Shared_Library_Path_Name> is the shared library path
environment variable for your operating system.

JBoss Messaging JMS

Integrating with JMS Systems 181

For example:

– On AIX it is: LIBPAT

– On Linux it is: LD_LIBRARY_PATH

2. If Agent or Integration Servers communicate with the Websphere
Default Messaging, install the WAS client. The WAS client needs to be
the exact version, including fix pack as the WAS server.

3. Add the following command to the startIntegrationServer.sh
script prior to the java line:

${WAS_CLIENT_HOME}/bin/setupClient.sh

where ${WAS_CLIENT_HOME} is the installation location of the WAS
client.

4. Edit the startIntegrationServer.sh script to run the Agent or
Integration Server to add the following system property:

-Djava.ext.dirs=$WAS_EXT_DIRS $SERVER_ROOT $CLIENTSAS.

5. Ensure that the following changes are made to the
startIntegrationServer.sh (or cmd) startup script located in the
<INSTALL_DIR>/bin directory to include the changes made in Step 3
and Step 4.

WAS_CLIENT_HOME=<path of where WAS client installation>

export WAS_CLIENT_HOME

${WAS_CLIENT_HOME}/bin/setupClient.sh

java -Djava.ext.dirs=$WAS_EXT_DIRS $SERVER_ROOT $CLIENTSAS

${BOOTCLASSPATH} ${JAVA_OPTIONS} -cp ${CLASSPATH}

com.yantra.integration.adapter.IntegrationAdapter "$1"

11.4 JBoss Messaging JMS
This section explains how to configure Red Hat JBoss JMS as the
messaging system for Selling and Fulfillment Foundation. For information
about using JBoss, see the documentation provided by Red Hat.

182 Integration Guide

JBoss Messaging JMS

11.4.1 Creating Queues
This section explains how to create queues.

To create a Queue:
1. Edit the <JBOSS_HOME>/server/<SERVER_

NAME>/deploy/jboss-messaging.sar/destination_service.xml
file to configure a queue. Table 11–1 provides a list of attributes to
use to configure a queue.

Table 11–1 JBoss JMS Attributes

Attribute Description

DestinationManager Specify the object name of the
DestinationManager where the queue is
deployed.

SecurityManager Specify the object name of the SecurityManager
where the SecurityConf is deployed.

SecurityConf Specify the configuration interpreted by the
SecurityManager.

JNDIName Specify the JNDI binding of the queue. If you
specify none, the system looks for a jmx
attribute "name" in the queue's object name.

MaxDepth Specify the maximum depth of the queue.

InMemory When set to true, messages are not persisted. It
also avoids message softening when
NullPersistenceManager is used.

RedeliveryLimit Specify the maximum number of times a
message must not be acknowledged before it is
sent to DLQ. Valid values are:

0 - indicates do not redeliver

n - indicates redeliver n times

RedeliveryDelay Specify the time (in milli seconds) to wait before
a message is redelivered after it is not
acknowledged.

MessageCounterHist
oryDayLimit

Specify the number of days you want to keep the
MessageCounter history.

JBoss Messaging JMS

Integrating with JMS Systems 183

The following is a sample code for queue configuration:

<mbean code="org.jboss.jms.server.destination.QueueService"
 name="jboss.messaging.destination:service=Queue,name=testQueue"
 xmbean-dd="xmdesc/Queue-xmbean.xml">
<depends optional-attribute-name="ServerPeer">jboss.messaging:service=
ServerPeer</depends>
 <depends>jboss.messaging:service=PostOffice</depends>
 <attribute name="SecurityConfig">
 <security>
 <role name="guest" read="true" write="true"/>
 <role name="publisher" read="true" write="true" create="false"/>
 <role name="noacc" read="false" write="false" create="false"/>
 </security>
 </attribute>
 </mbean>

11.4.2 Configuring Selling and Fulfillment Foundation to
Use JBoss Messaging Queues

When configuring Selling and Fulfillment Foundation to use JBoss
Messaging queues, see the section about the JBoss Messaging node in
the Selling and Fulfillment Foundation: Application Platform Configuration
Guide.

ReceiversImpl Specify the class you want to use for the
receivers implementation.

RecoveryRetries Specify the recovery retries for the queue. By
default, the value is set to 0 (zero). Specifies the
number of times uncommitted transactions must
be resolved before failing.

Note: You must install JBoss messaging for using JBoss
messaging queues. JBoss Messaging is supported with
JBoss 4.2.0 or higher. However, for earlier versions of
JBoss, only JBoss MQ is supported as a JMS.

Table 11–1 JBoss JMS Attributes

Attribute Description

184 Integration Guide

TIBCO JMS

To configure a service definition:
1. Log in to Selling and Fulfillment Foundation as an admin user.

2. Use the Applications Manager to configure the service. While
configuring a Generic JMS service, enter the following:

The initial Context Factory
org.jnp.interfaces.NamingContextFactory, and

A provider URL as jnp://<IP address and port of the JBoss
instance>

3. Set up the CLASSPATH for the startIntegrationServer script by
adding the required jars to the CLASSPATH. For more information
about setting up the classpath, see the section on Setting Up the
Classpath for the Runtime Utilities in the Selling and Fulfillment
Foundation: Installation Guide.

4. Launch the integration server by running
startIntegrationServer.sh (or cmd) in <INSTALL_DIR>/bin.

5. If you need to run multiple servers, repeat Step 4 for each additional
server.

11.5 TIBCO JMS
This section explains how to configure TIBCO JMS as the messaging
system for Selling and Fulfillment Foundation. For information about
using TIBCO JMS, see the documentation provided by TIBCO.

11.5.1 TIBCO JMS Attributes
Table 11–2 provides a list of attributes used to create JMS objects,
configure users, groups, and permissions in the TIBCO Enterprise
Messaging Server using the tibemsadmin command.

The tibemsadmin command is a command line utility used to create JMS
objects, and to configure user and group permissions in TIBCO. This tool
is available in the <TIBCO>/ems/5.0/bin directory.

TIBCO JMS

Integrating with JMS Systems 185

Table 11–2 TIBCO JMS Attributes

Attribute Description

tibemsd The command used to start the TIBCO server.

tibemsadmin The command used to start the TIBCO admin tool.

create factory
<Connection Factory
Name> <Connection
Factory Type>

The command used to create a Queue Connection
Factory.

Example: create factory secureqcf queue

addprop factory
<Connection Factory
Name>
url=<url-string>

The command used to set up an URL to listen to an
external address such that the Queue Connection
Factory is accessible from other hosts.

Example: addprop factory secureqcf
url=tcp://devhost:7222

create queue
<queue-name>

The command used to create a queue.

Example: create queue securequeue

create user
<username>

The command used to create a user.

Example: create user secureuser

set password
<username> <new
password>

The command used to create a password for a user.

Example: set password secureuser securepassword

create group
<groupname>

The command used to create a group.

Example: create group securegroup

add member <group
name> <user to be
added>

The command used to add a user to a group.

Example: add member securegroup secureuser

grant queue
<queuename>
group=<groupname>
<permission>

The command used to set the requisite permissions on
a queue for a group

Example:

grant queue securequeue group=securegroup send

grant queue securequeue group=securegroup receive

grant queue securequeue group=securegroup browse

addprop queue
<queuename> secure

The command used to enable authorization for a
queue.

Example: addprop queue securequeue secure

186 Integration Guide

TIBCO JMS

Configuring a JMS client on TIBCO Enterprise Messaging Server
The following parameters must be configured to connect to an unsecured
queue on TIBCO:

URL: tcp://<hostname>:<port>

Example: tcp://tibserver:7222

ICF: com.tibco.tibjms.naming.TibjmsInitialContextFactory

QCF: The name of the Queue Connection Factory created during
setup. Refer Table 11–2 for more information about the Queue
Connection Factory.

If you need to connect to a secured queue, you must pass a username
and password for both JNDI and "queuebased" security.

The following properties must be configured for use with the Service
Definition Framework (SDF):

sci.queuebasedsecurity.userid

sci.queuebasedsecurity.password

java.naming.security.principal

java.naming.security.credentials

11.5.2 Configuring Selling and Fulfillment Foundation to
use TIBCO Messaging Queues

When configuring Selling and Fulfillment Foundation to use TIBCO
Messaging queues, see the section about the TIBCO Messaging node in
the Selling and Fulfillment Foundation: Application Platform Configuration
Guide.

To configure a service definition:
1. Log in to Selling and Fulfillment Foundation as an admin user.

2. Use the Applications Manager to configure the service. While
configuring a Generic JMS service, enter the following:

The initial Context Factory
com.tibco.tibjms.naming.TibjmsInitialContextFactory, and

A provider URL as tcp://<IP address and port of the TIBCO
instance>

TIBCO JMS

Integrating with JMS Systems 187

3. Set up the CLASSPATH for the startIntegrationServer script by
adding the required jars to the CLASSPATH. For more information
about setting up the classpath, see the section on Setting Up the
Classpath for the Runtime Utilities in the Selling and Fulfillment
Foundation: Installation Guide.

4. Launch the integration server by running
startIntegrationServer.sh (or cmd) in <INSTALL_DIR>/bin.

5. If you need to run multiple servers, repeat Step 4 for each additional
server.

188 Integration Guide

TIBCO JMS

Integrating with Financial Systems 189

12
Integrating with Financial Systems

To use the data captured using the Selling and Fulfillment Foundation
Inventory Cost Management feature with your financial system, you
must:

Load Initial Inventory Cost Data

Configure Process-Specific Events

12.1 Load Initial Inventory Cost Data
Selling and Fulfillment Foundation provides an API to load the initial
inventory value of an item at a ship node for a given quantity. The
loadInventoryNodeCost API supports multiple items to be given in the
input with inventory cost data for each ship node under that.

The loadInventoryNodeCost API validates the Quantity passed with the
actual inventory supply information available for that item/ship node.
This API only considers the supply types which are specified as on-hand
and cost maintained. For more information about the input XML
attributes, see the Selling and Fulfillment Foundation: Javadocs.

This API is called for the initial load of cost data at system start up time.
This API should not be used after going into production with the
Inventory Costing Management feature implemented.

The following query can be run to get the initial onhand supply quantity:

SELECT B.ORGANIZATION_CODE, B.ITEM_ID, B.UOM, B.PRODUCT_CLASS, A.SHIPNODE_KEY
SHIP_NODE, SUM(QUANTITY) QUANTITY
FROM YFS_INVENTORY_SUPPLY A,YFS_INVENTORY_ITEM B
WHERE A.INVENTORY_ITEM_KEY = B.INVENTORY_ITEM_KEY
AND SUPPLY_TYPE IN (
SELECT SUPPLY_TYPE FROM YFS_INVENTORY_SUPPLY_TYPE

190 Integration Guide

Configure Process-Specific Events

WHERE ONHAND_SUPPLY = 'Y' AND COSTING_REQUIRED = 'Y')
GROUP BY B.ORGANIZATION_CODE, B.ITEM_ID, B.UOM, B.PRODUCT_CLASS, A.SHIPNODE_KEY

12.2 Configure Process-Specific Events
In order to interface with your financial system and use the Selling and
Fulfillment Foundation Inventory Costing data, you must configure the
applicable events for the following processes:

Receipt

Sales Order Creation

Shipment Confirmation

Invoice

Work Order Confirmation

Inventory Adjustment

Return Order

Callback from Financial System for Inventory Value Adjustment

12.2.1 Receipt Process
From the General Process Type, configure the following events for the
INVENTORY_COST_CHANGE Transaction ID:

INVENTORY_COST_CHANGE

INVENTORY_COST_WRITEOFF

12.2.1.1 INVENTORY_COST_CHANGE

When is this event raised?
This event is raised for any order receipt such as a purchase order, return
order and so on. For example, at the time of purchase order receipt this
event is raised from the inventory management module for each receipt
line containing details of a single receipt line to generate G/L level
postings in a financial application. One event is published for each
purchase order line as a receipt is recorded against it. If a purchase
order line is received in multiple receipts, multiple events are raised.

Configure Process-Specific Events

Integrating with Financial Systems 191

For more information about the data published by the event, see the
Selling and Fulfillment Foundation: Javadocs.

What are the expected updates on Financial System?
This event can be used to update general ledger entries for accounts
payable accruals and inventory value accounts.

12.2.1.2 INVENTORY_COST_WRITEOFF

When is this event raised?
When doing a receipt against an item or node that has a negative
on-hand balance, Inventory Value and Average Cost calculations need to
be modified. The application generates this second event to accompany
the standard inventory cost change event (INVENTORY_COST_
CHANGE). This second event publishes the delta between recalculated
inventory value and the write off amount details. For more information
about the data published by the event, see the Selling and Fulfillment
Foundation: Javadocs.

What are the expected updates on Financial System?
This event can be used to update general ledger entries for variance and
inventory value accounts.

12.2.2 Sales Order Creation Process
The unit cost for an order line is stored as the unit cost stored for the
item master. If the unit cost was manually entered at the item level in
the product master tables, the order line uses the manually entered unit
cost. If no manual entry was made, the order line uses the computed
unit cost stored at the item level. If no such cost was stored, the cost is
reflected as $0.00 on the sales order line and the ORDER_CREATE.ON_
ZERO_UNIT_COST event is triggered.

If the item definition is not stored in Selling and Fulfillment Foundation,
the getItemDetails user exit may be implemented to return unit cost
from an external source. For more information about the getItemDetails
user exit, see the Selling and Fulfillment Foundation: Javadocs.

192 Integration Guide

Configure Process-Specific Events

12.2.3 Shipment Confirmation Process
From the General Process Type, configure the following events for the
INVENTORY_COST_CHANGE Transaction ID:

INVENTORY_VALUE_CHANGE

12.2.3.1 INVENTORY_VALUE_CHANGE

When is this event raised?
When a sales order is shipped this event is raised from the inventory
management module for each shipment line with the inventory value
change information for the fulfillment location. For more information
about the data published by the event, see the Selling and Fulfillment
Foundation: Javadocs.

What are the expected updates on Financial System?
This event can be used to update general ledger entries for cost of goods
sold, inventory value, and variance accounts.

12.2.4 Invoice Process
Using the CREATE_ORDER_INVOICE.0003 Transaction ID for returns or
the CREATE_SHIPMENT_INVOICE.0001 Transaction ID for shipments,
configure the following events for the Invoice process:

ON_INVOICE_CREATION

12.2.4.1 ON_INVOICE_CREATION

When is this event raised?
During invoice creation, this event is raised for each invoice created. This
event publishes the details about the invoice created. For more
information about the data published by the event, see the Selling and
Fulfillment Foundation: Javadocs.

What are the expected updates on Financial System?
This can be used to post sales and account receivables general ledger
entries.

Configure Process-Specific Events

Integrating with Financial Systems 193

12.2.5 Work Order Confirmation Process
From the General Process Type, configure the following events for the
INVENTORY_COST_CHANGE Transaction ID:

INVENTORY_COST_CHANGE

INVENTORY_COST_WRITEOFF

INVENTORY_VALUE_CHANGE

12.2.5.1 INVENTORY_COST_CHANGE

When is this event raised?
During work order processing, when the production of a kit parent item is
reported, this event is raised from the inventory management module for
the parent with the inventory cost change information for the production
location. For more information about the data published by the event,
see the Selling and Fulfillment Foundation: Javadocs.

What are the expected updates on Financial System?
This event can be used to update general ledger entries on the financial
system.

12.2.5.2 INVENTORY_COST_WRITEOFF

When is this event raised?
When reporting production of a kit parent item that has a negative
on-hand balance at the production location, Inventory Value and Average
Cost calculations need to be modified. The application generates this
second event to accompany the standard inventory cost change event
(INVENTORY_COST_CHANGE). This second event publishes the delta
between recalculated inventory value and the write off amount details.
For more information about the data published by the event, see the
Selling and Fulfillment Foundation: Javadocs.

What are the expected updates on Financial System?
This event can be used to update general ledger entries on the financial
system.

194 Integration Guide

Configure Process-Specific Events

12.2.5.3 INVENTORY_VALUE_CHANGE

When is this event raised?
When reporting production of a kit, this event is raised for each kit
component.For more information about the data published by the event,
see the Selling and Fulfillment Foundation: Javadocs.

What are the expected updates on Financial System?
This event can be used to update general ledger entries for cost of goods
sold, inventory value, and variance accounts.

12.2.6 Inventory Adjustment Process
From the General Process Type, configure the following events for the
INVENTORY_COST_CHANGE Transaction ID:

INVENTORY_VALUE_CHANGE

12.2.6.1 INVENTORY_VALUE_CHANGE

When is this event raised?
When an inventory adjustment is done for an item at a fulfillment
location this event is raised from the inventory management module with
the inventory value change information for the fulfillment location. For
more information about the data published by the event, see the Selling
and Fulfillment Foundation: Javadocs.

What are the expected updates on Financial System?
This event can be used to update variance and inventory value accounts
in the financial system.

12.2.7 Return Order Process
From the General Process Type, configure the following events for the
INVENTORY_COST_CHANGE Transaction ID:

INVENTORY_VALUE_CHANGE

Configure Process-Specific Events

Integrating with Financial Systems 195

12.2.7.1 INVENTORY_VALUE_CHANGE

When is this event raised?
At the time of return order receipt this event is raised from the inventory
management module for each return receipt line with the inventory value
change information for the return location. For more information about
the data published by the event, see the Selling and Fulfillment
Foundation: Javadocs.

What are the expected updates on Financial System?
This event can be used to update variance and inventory value accounts
in the financial system.

12.2.8 Callback from Financial System for Inventory Value
Adjustment

This interface is implemented as a call to the updateInventoryCost API in
Selling and Fulfillment Foundation. This should be used whenever the
Accounts Payable application generates a variance between expected PO
cost and the actual cost on the Payables Invoice. The variance amount
should be passed back to Selling and Fulfillment Foundation to be
reflected in the inventory value. Selling and Fulfillment Foundation then
tries to adjust the inventory value and re-compute the average cost. If
the total on-hand is less than the purchase quantity (due to subsequent
shipments or issues), the total variance is prorated and applied to the
remaining on-hand inventory. An additional event is raised to adjust the
difference in the financial system. For more information about the input
attributes for the interface, see the Selling and Fulfillment Foundation:
Javadocs.

What are the expected updates on Selling and Fulfillment
Foundation?
Inventory value is adjusted by the variance amount. Average cost is
recomputed. If the total on-hand is less than what has to be adjusted,
the total variance is prorated and applied on the remaining on-hand
inventory. The amount not applied is passed back to the financial
application so that it can be stored in an appropriate variance account.

196 Integration Guide

Configure Process-Specific Events

Using the INVENTORY_COST_UPDATE Transaction ID, configure the
following events for the Callback from Financial System process:

COULD_NOT_APPLY_INV_VALUE_CHANGE

12.2.8.1 COULD_NOT_APPLY_INV_VALUE_CHANGE

When is this event raised?
The amount not applied on Selling and Fulfillment Foundation is passed
back to the financial application by raising this event which publishes the
variance amount details. For more information about the data published
by the event, see the Selling and Fulfillment Foundation: Javadocs.

What are the expected updates on Financial System?
This event can be used to update the appropriate variance account on
the financial system.

Rapid Deployment Features 197

13
Rapid Deployment Features

This chapter explains the Selling and Fulfillment Foundation Rapid
Deployment Tool (RDT) and how to utilize its features for the rapid
deployment of Selling and Fulfillment Foundation.

The rapid deployment features include:

Interface Field Mapping Documents

Initial Data Loading

In addition to these rapid deployment features, Selling and Fulfillment
Foundation provides a mechanism to create a new Sterling Warehouse
Management System node from an existing node.

For more information about Copying an Existing Node to a New Node,
Onboarding an Enterprise to a Node, Offboarding an Enterprise from a
Node, and Deleting the Current Node, refer to the Sterling Warehouse
Management System: Configuration Guide.

13.1 Interface Field Mapping Documents
An Interface Field Mapping Document specifies integration mapping
between Selling and Fulfillment Foundation and an external system.
Typically, it is a Microsoft Excel document based on the input and output
XMLs of the Selling and Fulfillment Foundation APIs or custom APIs
written at the implementation phase of a project.

This feature describes the methodology to generate a Microsoft
Excel-compatible XML spreadsheet file from the input/output XML file of
an API, which can be used to create the Interface Field Mapping
Document.

198 Integration Guide

Interface Field Mapping Documents

13.1.1 Generating Interface Field Mapping Template
Documents

Selling and Fulfillment Foundation provides a tool to generate Interface
Field Mapping Template documents from input/output XMLs.

The input XML for this generation could be an Input/Output XML from a
Selling and Fulfillment Foundation-exposed API or an XML for a custom
API, which allows the generation of Interface Field Mapping Template
documents for custom APIs created during implementation.

The tool generates the Interface Field Mapping Template document as a
Microsoft Excel XML spreadsheet document, which can be opened in
Microsoft Excel and modified to specify the mapping details.

13.1.1.1 Generating Interface Field Mapping Template Documents
Using the Generation Tool
To generate the XML spreadsheet use the following command line tool:

generateExcelXML {INXML} {INXSL} {OUTXML} {HTML} {TITLE}

where,

INXML – Name of the XML file for which the XML spreadsheet should
be generated

INXSL – Name of the XSL file which is used to generate the XML
spreadsheet

OUTXML – Name of the XML spreadsheet file to be generated

HTML – Name of the HTML file which contains the description of the
Input XML attributes.

Note: The Interface Field Mapping Template generation
tool can only be used in Microsoft Windows environment.

Initial Data Loading

Rapid Deployment Features 199

TITLE - The title that is displayed after you generate the XML
spreadsheet. Figure 13–1 shows the PO Download title.

This tool is located in <INSTALL_DIR>/bin directory. This can also be
used to generate XML spreadsheets for custom APIs.

13.1.1.2 Using Interface Field Mapping Template Documents
The XML spreadsheet generated using the command line tool can be
opened and edited using Microsoft Excel (Versions 2002 and above).

The XML spreadsheet provides the Attribute Name, Mapping, and
Remarks for each attribute.

Figure 13–1 A Sample XML Spreadsheet

Clicking on an attribute name launches the relevant datatype and
description. These integration field mappings may be modified as
applicable and saved.

13.2 Initial Data Loading
Selling and Fulfillment Foundation provides a initial data-loading tool for
loading configuration data from legacy or ERP systems. The Initial Data

Note: If you are running the RDT in a Unix environment,
you must insert an extra "\" for every "\" that you use in
the HTML file name attribute. For example, if the filename
is \\server\directory\file.html, you must specify the
filename as \\\\server\\directory\\file.html.

200 Integration Guide

Initial Data Loading

Loading (IDL) tool utilizes the bare minimum information required by the
warehouse to be functional.

13.2.1 Initial Data-Loading Services
The Initial Data Loading (IDL) tool works based on the Service Definition
Framework (SDF).

The IDL tool provides services to create the following configuration data:

Items

Shipping Cartons

Locations

SKU Dedications

Location Inventory

To use the services provided for IDL, the configuration data to be loaded
from the legacy or ERP systems should be made available in a comma
delimited flat file.

The IDL tool uses services to convert the data into the XML format,
required by the corresponding APIs to create or modify the relevant
information in the warehouse.

Figure 13–2 Sample Service as displayed in the Applications Manager

To begin the initial data loading process, the integration server should be
started by navigating <runtime>/bin folder and entering the following
command:

<runtime>/bin/startIntegrationServer.sh <servername>

Initial Data Loading

Rapid Deployment Features 201

For more information about running the Selling and Fulfillment
Foundation Integration Server, refer to the Selling and Fulfillment
Foundation: Installation Guide.

The RDTConfigDataFormat.xls file located in the
<runtime>/repository/xapi/template/merged/RDTConfigSchemas
folder contains the data sequence and the headers required for the
corresponding service provided in the IDL module of the RDT.

All Selling and Fulfillment Foundation services follow the predefined
sequence specified in the RDTConfigDataFormat.xls file for calling the
components:

The File IO Receiver is used to read the data from the delimited flat
file

The Text Translator component is used to convert the delimited data
to XML format

The XSL Translator component is used to convert the XML into a
format that is the input to an API, and

The API component is used to call the business API for creating or
modifying the data.

Each service reads the input data line by line from the delimited flat files.
Thus, all the details required for a configuration should be provided in a
single line, separated by commas, and in a fixed sequence. The first item
in each line is the header, and it is fixed for each service. If the first item
is anything other than the header then that row is not considered for
processing.

Error Handling in Initial Data Loading (IDL) Tool:
The error handing for Initial Data Loading services is undertaken at two
levels:

a. When there is an error in translating the flat file into an xml file as
per the defined schema, the file is pushed to the working
directory and an error file indicating the error is added to the
error directory. The error may now be fixed and the modified flat
file reprocessed.

b. When the API throws an exception for a record, it is sent to the
default exception queue where it can be viewed in the exception
console by searching for exceptions in initial status. The input xml

202 Integration Guide

Initial Data Loading

may now be modified by providing the right input, and
reprocessed using the reprocess button.

13.2.1.1 Item Configuration Data-Loading
This service enables you to create an item or modify the attributes of an
existing item for which inventory is stored in the warehouse. It calls the
manageItem() API.

Table 13–1, "Format for Item Configuration Data Loading Service"
explains the format of the headers and the sequence of items to be
provided for this service. For more information, see the Selling and
Fulfillment Foundation: Javadocs.

Table 13–1 Format for Item Configuration Data Loading Service

Attribute Description Sequence Data Type Size

ITEMHEDR The item header identifier 1 String 6

ItemID The unique identifier for an item that
belongs to a catalog organization

2 String 40

OrganizationCode The code of the organization whose
product information is being stored

3 String 24

UnitOfMeasure The unit of measure for item quantity 4 String 40

GlobalItemID The unique global identifier used to
cross reference an item with another
catalog organization

5 String 128

Description A localized description 6 String 200

ProductLine The product line of an item 7 String 100

KitCode The kit code of an item. Value 'LK'
indicates a logical kit, while PK
indicates a physical kit

8

ItemGroupCode The code of the item group. This is
used to identify whether the item is a
Product, Provided Service, Provided
Service Option, Delivery Service, or
Delivery Service Option

9 String 20

UnitCost The cost of one unit of the item 10 Decimal 19

CostCurrency The currency in which the item's cost
is defined

11 String 20

Initial Data Loading

Rapid Deployment Features 203

CountryOfOrigin The item’s country of origin or
manufacture

12 String 40

ItemType The generic type of the item 13 String 40

UnitWeight The weight of one unit of the item 14 Decimal 14

WeightUOM The unit of measure in which the
item’s weight is defined

15 Decimal 14

UnitHeight The height of one unit of the item 16 Decimal 14

UnitLength The length of one unit of the item 17 Decimal 14

UnitWidth The width of one unit of the item 18 Decimal 14

SerializedFlag This indicates whether the item is
serialized

19 Boolean 1

TagControlFlag This indicates whether the item is tag
controlled

20 Boolean 1

TimeSensitive This indicates whether the item is
time sensitive

21 Boolean 1

IsFifoTracked This indicates whether the item is
FIFO tracked

22 Boolean 1

IsSerialTracked This indicates whether the item is
serial tracked

23 Boolean 1

HarmonizedCode The harmonized code of the item 24 String 40

NMFCCode The NMFC code of the item 25 String 40

VelocityCode The velocity code of the item 26 String 40

ECCNNo The ECCN number of the item 27 String 40

HazmatClass The hazardous material classification
of the item

28 String 40

CommodityCode The commodity code of the item 29 String 40

StorageType The storage type of the item 30 String 40

AddName1 The name of the first additional
attribute

31 String 20

AddValue1 The value of the first additional
attribute

32 String 2000

Table 13–1 Format for Item Configuration Data Loading Service

Attribute Description Sequence Data Type Size

204 Integration Guide

Initial Data Loading

AddName2 The name of the second additional
attribute

33 String 20

AddValue2 The value of the second additional
attribute

34 String 2000

LotNumber The lot number of the item. This
indicates whether this attribute can
be used as a Tag Identifier or a Tag
Descriptor. Valid values are:
01 - Use as Tag Descriptor
02 - Use as Tag Identifier
03 - Not used

35 String 2

LotAttribute1 The lot attribute of the item. This
indicates whether this attribute can
be used as a Tag Descriptor. Valid
values are:
01 - Use as Tag Descriptor
03 - Not Use

36 String 2

LotAttribute2 The lot attribute of the item. This
indicates whether this attribute can
be used as a Tag Descriptor. Valid
values are:
01 - Use as Tag Descriptor,
03 - Not used.

37 String 2

CaseQuantity The quantity of one case of the item 38 Decimal 14

CaseWeight The weight of one case of the item 39 Decimal 14

CaseLength The length of one case of the item 40 Decimal 14

CaseWidth The width of one case of the item 41 Decimal 14

CaseHeight The height of one case of the item 42 Decimal 14

PalletQuantity The quantity of one pallet of the item 43 Decimal 14

PalletWeight The weight of one pallet of the item 44 Decimal 14

PalletLength The length of one pallet of the item 45 Decimal 14

PalletWidth The width of one pallet of the item 46 Decimal 14

PalletHeight The height of one pallet of the item 47 Decimal 14

DimensionUOM The unit of measure that define the
dimensions of the item

48 String 40

Table 13–1 Format for Item Configuration Data Loading Service

Attribute Description Sequence Data Type Size

Initial Data Loading

Rapid Deployment Features 205

The schema files used by each component of the service and the API
called by the service are as follows:

Service Name: Items

Service Group: InitialDataLoad

Text Translator: ModifyItemSchema

XSL Translator: ModifyItem

API: manageItem

Server Name: ItemLoader

13.2.1.2 Shipping Carton Data-Loading
This service creates shipping cartons (modelled as items) that are stored
in the warehouse. It calls the createItem() API.

Table 13–2, "Format for Shipping Carton Data Loading Service" explains
the format of the headers and the sequence of items to be provided for
this service. For more information, see the Selling and Fulfillment
Foundation: Javadocs.

Table 13–2 Format for Shipping Carton Data Loading Service

Attribute Description Sequence Data Type Size

ITEMHEDR The item header identifier 1 String 6

ItemID The unique identifier for an item that
belongs to a catalog organization

2 String 40

OrganizationCode The code of the organization whose
product information is being stored

3 String 24

UnitOfMeasure The unit of measure for item quantity 4 String 40

UnitWeight The weight of one unit of the item 5 Decimal 14

UnitHeight The height of one unit of the item 6 Decimal 14

UnitLength The length of one unit of the item 7 Decimal 14

UnitWidth The width of one unit of the item 8 Decimal 14

MaxCntrWeight The maximum weight of the carton 9

206 Integration Guide

Initial Data Loading

The schema files used by each component of the service and the API
called by the service are as follows:

Service Name: ShippingCartons

Service Group: InitialDataLoad

Text Translator: ShippingCartonSchema

XSL Translator: ShippingCarton

API: createItem

Server Name: ShippingCartonLoader

13.2.1.3 Location Data-Loading
This service creates locations in a zone within a node in the warehouse.
These locations specify the physical space where inventory is stored. It
calls the manageLocation() API.

Table 13–3, "Format for Location Data Loading Service" explains the
format of the headers and the sequence of items to be provided for this
service. For more information, see the Selling and Fulfillment
Foundation: Javadocs.

Table 13–3 Format for Location Data Loading Service

Attribute Description Sequence Data Type Size

LOCAHEDR The location header identifier 1 String 8

LocationId The unique identifier for the location.
This in conjunction with NODE_KEY
identifies a unique location in the node

2 String 40

Node The node to which the location
belongs.

3 Key 24

Initial Data Loading

Rapid Deployment Features 207

LocationType The system defined classification of
location to aid association of locations
of certain types for certain other
operations with WMS. The supported
types are: INTRANSIT (Mobile
locations), STAGING, VIRTUAL,
REGULAR and DOCK. For example, all
equipment locations should be of type
INTRANSIT. If LocationType is passed
blank or passed unallowed values then
default LocationType is taken as
REGULAR

4 String 40

ZoneId The zone to which the location
belongs. This in conjunction with the
node key identifies a unique zone
within the node.

5 String 40

AisleNumber The aisle number of the location.
Locations belong to zones, which have
travel aisle's between them. A zone
could belong to multiple aisles and
multiple zones could belong to an
aisle. But a location in a zone belongs
to one and only one aisle.

6 Integer 9

LevelLocation The level number of the location. This
indicates the height of the location
(y-co-ordinate of the location from the
floor) classified as levels. Level
attribute of the location is used in
arriving at locations nearest to the
dedicated locations algorithm used in
put away. Typically, the level attribute
is contained within the location ID.

7 Integer 9

BayNumber The bay number of the location.
Typically, the aisle, level and bay put
together gives the physical location of
the location in the node if they are
based on coordinate system. Bay
attribute of the location (x-coordinate
from the beginning of the aisle) is used
in arriving at locations nearest to the
dedicated locations algorithm used in
put away. Typically, the bay attribute is
contained within the location ID.

8 Integer 9

Table 13–3 Format for Location Data Loading Service

Attribute Description Sequence Data Type Size

208 Integration Guide

Initial Data Loading

MoveInSequenceN
umber

The move in sequence number of the
location. This is used by task
management for location suggestion
while moving in inventory (put away).
The put away location selection
algorithm uses this information to
select locations amongst a list of
locations based on its move in
sequence.

9 Integer 9

MoveOutSequence
Number

The move out sequence number of the
location. This is used by task
management for location suggestion
while moving out inventory (picking).
The pick location selection algorithm
uses this information to select
locations amongst a list of locations
based on its move in sequence.

10 Integer 9

InStagingLocation
Id

The in staging location id indicates the
Drop off location (For moves coming
into a location, they may be dropped
here)

11 String 40

OutStagingLocatio
nId

The out staging location id indicates
the Out Drop off Location (Location
where moves originated at this
location, may be dropped).

12 String 40

Table 13–3 Format for Location Data Loading Service

Attribute Description Sequence Data Type Size

Initial Data Loading

Rapid Deployment Features 209

VelocityCode The velocity code of the location
classifies items as A, B or C class items
based on whether they are fast selling,
not so fast selling and low selling item.
These item classifications are typically
followed by all enterprises to optimize
certain operations such as sourcing
and stocking. The reason we have
locations preferring certain velocity
codes is that, we could have locations
closer to dock stocking A class items,
and locations furthest away from the
dock stocking C class items. Velocity
code is a preference on the location
and not a constraint. If A class items
fill up all locations meant for A class
items, then they can go in to B and
then C. Similarly C can go to B and
then A for lack of space in the
respective locations preferred for a
specific velocity code. B class items go
into C and then into A. If VelocityCode
is passed blank or passed unallowed
values then default VelocityCode is
taken Last VelocityCode in the
alphabetic sequence in common code
of type VELOCITY_CODE.

13 String 40

LocationSizeCode The location size code defines the
capacity of a location. All locations
having the same size (dimensions and
ability to hold the same weight) are
classified under the same size code.
This maps to the primary key attribute
of the YFS_LOCATION_SIZE_CODE
table.

14 String 40

Table 13–3 Format for Location Data Loading Service

Attribute Description Sequence Data Type Size

210 Integration Guide

Initial Data Loading

The schema files used by each component of the service and the API
called by the service are as follows:

Service Name: Locations

Service Group: InitialDataLoad

Text Translator: LocationSchema

XSL Translator: Location

API: manageLocation

Server Name: LocationLoader

13.2.1.4 SKU Dedication Data-Loading
This service modifies the attributes of a location, and is basically used to
dedicate a location as a dedicated location. A dedicated location is one
that stores inventory for a particular item only. It calls the
modifyLocation() API.

StorageCode Storage code is an attribute of the
location that allows the warehouse to
store items that have the same
storage profile as that of the location.
For example, hazardous inflammable
items need locations close to fire
extinguishers. In this case the
locations are marked as having a
storage code, which is suitable for
storing Inflammable items. This
ensures that only inflammable items
get to these locations.

15 String 40

X Co-ordinate X Co-ordinate for a location in the
warehouse

16 Number 14

Y Co-ordinate Y Co-ordinate for a location in the
warehouse

17 Number 14

Z Co-ordinate Z Co-ordinate for a location in the
warehouse

18 Number 14

Table 13–3 Format for Location Data Loading Service

Attribute Description Sequence Data Type Size

Initial Data Loading

Rapid Deployment Features 211

Table 13–4, "Format for SKU Dedication Data Loading Service" explains
the format of the headers and the sequence of items to be provided for
this service. For more information, see the Selling and Fulfillment
Foundation: Javadocs.

The schema files used by each component of the service and the API
called by the service are as follows:

Note: This service require 9 attributes. If you are giving 8
commas to separate these 9 attributes, you have to make
sure that the last attribute is non-blank. If it is blank, you
have to close it with an extra comma, which means the 9th
comma. In this case, 9 commas does not mean that there
are 10 attributes.

Table 13–4 Format for SKU Dedication Data Loading Service

Attribute Description Sequence Data Type Size

SKUDEDIC The SKU Dedication header identifier 1 String 8

LocationId The identifier for the location. This in
conjunction with NODE_KEY identifies
a unique location in the node

2 String 40

Node The node to which the location belongs
to

3 Key 24

EnterpriseCode The code of the enterprise to which the
location is dedicated

4 String 40

ItemId The item identifier of the SKU 5 String 40

UnitOfMeasure The unit of measure of the SKU 6 String 40

ProductClass The product class of the SKU 7 String 40

SegmentType SKUs are sometimes custom made.
This field stores the customization
details.

8 String 40

Segment SKUs are sometimes custom made.
This field stores the customization
details. When inventory is customized
for a specific order, it needs to be
tracked separately so that it can be
allocated to that order

9 String 40

212 Integration Guide

Initial Data Loading

Service Name: SkuDedications

Service Group: InitialDataLoad

Text Translator: SkuDedicationSchema

XSL Translator: SkuDedication

API: modifyLocation

Server Name: SkuDedicationLoader

13.2.1.5 Location Inventory Data-Loading
This service adds the inventory for the previously created items and
locations in the warehouse. It calls the adjustLocationInventory()
API.

Table 13–5, "Format for Inventory Data Loading Service" explains the
format of the headers and the sequence of items to be provided for this
service. For more information, see the Selling and Fulfillment
Foundation: Javadocs.

Table 13–5 Format for Inventory Data Loading Service

Attribute Description Sequence Data Type Size

ALOCINVN The inventory header identifier 1 String 8

EnterpriseCode The Inventory Organization Code. This
indicates the Enterprise whose product
information is being stored.

2 String 24

Node The Business key or unique identifier
for a ship node.

3 String 24

CaseId The identifier for a case. This gives the
LPN information for adjustment.

4 String 40

LocationId The identifier for a location. This forms
unique key of this table in conjunction
with NODE_KEY. Indicates the location
from where the inventory is being
adjusted. LocationId becomes
mandatory, if CaseId/PalletId is not
passed.

5 String 40

PalletId The identifier for a pallet. This gives
the LPN information for adjustment.

6 String 40

Initial Data Loading

Rapid Deployment Features 213

InventoryStatus The inventory status gives the status
of the inventory. Only one level
InventoryStatus transitions happen for
the inventory for positive adjustments.
Negative adjustments do not take care
of InventoryStatus transitions. If not
passed, the status is taken as blank.

7 String 10

SegmentType The segment type for particular
enterprise or organization.
SegmentType becomes mandatory if
Segment is passed.

8 String 40

Segment The segment for particular enterprise
or organization. Segment becomes
mandatory if SegmentType is passed.

9 String 40

Quantity This gives the adjustment quantity for
the inventory. The negative quantity
specifies negative adjustment and
positive quantity denotes positive
adjustment. Quantity becomes
mandatory if SerialDetail does not
provide quantity for adjustment.

10 Decimal 14

ItemID The item identity for the inventory 11 String 40

UnitOfMeasure The unit of measure for the item 12 String 40

ProductClass The product class for the item 13 String 40

LotNumber The lot number for the inventory 14 String 40

LotAttribute1 The lot attribute for the inventory 15 String 40

LotAttribute2 The lot attribute for the inventory 16 String 40

Table 13–5 Format for Inventory Data Loading Service

Attribute Description Sequence Data Type Size

214 Integration Guide

Initial Data Loading

The schema files used by each component of the service and the API
called by the service are as follows:

Service Name: Inventory

Service Group: InitialDataLoad

Text Translator: AdjustLocationInventorySchema

XSL Translator: AdjustLocationInventory

API: adjustLocationInventory

Server Name: InventoryLoader

13.2.1.6 Hazmat Data-Loading
Selling and Fulfillment Foundation supports the Hazmat Data-Load tool,
which works based on the Service Definition Framework (SDF) to load
the Hazmat data to the YFS_HAZMAT_COMPLIANCE table.

ShipByDate The date by which the inventory has to
be shipped

17 Date 10

SerialNo The unique identifier for each serial 18 String 40

ReasonCode The reason code for the inventory
transaction. The business significance
of this reason code is that inventory
bins are tied to this reason code, which
is used to adjust inventory (for global
inventory visibility purposes) on host
systems. This is mandatory if inventory
is getting updated. Some Selling and
Fulfillment Foundation APIs doing
inventory adjustments expect some
adjustment reason codes to be
configured in the system. These are
RECEIPT used by Receiving, PACK used
by Packing functions and SHIP used by
Shipment. PACK should have a bin
associated while RECEIPT and SHIP
should not have bin location
associations.

19 String 40

Table 13–5 Format for Inventory Data Loading Service

Attribute Description Sequence Data Type Size

Initial Data Loading

Rapid Deployment Features 215

Use this tool to load, modify, or delete the Hazmat data as specified by
the Department Of Transportation (DOT). Based on the action passed,
the tool appropriately loads, modifies, or deletes the Hazmat data from
the YFS_HAZMAT_COMPLIANCE table.

13.2.1.6.1 Initially Loading the Hazmat Data

To initially load the Hazmat data:

1. Using any standard Web browser, download the CFR49 Hazmat data
file 172101ascii.zip from
http://hazmat.dot.gov/enforce/forms/ohmforms.htm#101.

2. Extract the cfr.dat file that is stored in the 172101ascii.zip file
to the <INSTALL_DIR>/bin directory.

3. The Hazmat Data-Load tool requires the data file to be in a readable
format in order to be processed by the Selling and Fulfillment
Foundation SDF. To convert the downloaded data file into this format,
run the prepareHazmatData.xml script located in the <INSTALL_
DIR>/bin directory. This script takes three input parameters:
runtime, datafile, and operation (the valid values for which are
CHG and DEL. Use the CHG operation to load or modify the Hazmat
data, and the DEL operation to delete data). For example, in UNIX or
Linux, run this command:

sci_ant.sh -f prepareHazmatData.xml -Druntime=<INSTALL_DIR>
-Ddatafile=cfr.dat -Doperation=CHG

For Windows, run this command:

sci_ant.cmd -f prepareHazmatData.xml -Druntime=<INSTALL_
DIR> -Ddatafile=cfr.dat -Doperation=CHG

4. After running the prepareHazmatData.xml script, each record in the
data file is appended with the HAZMATDATA string and the operation
passed, which can now be processed by the Selling and Fulfillment
Foundation SDF.

5. Start the integration server by passing the <servername> as
HazmatDataLoader.

For more information about starting the integration server, see the
Selling and Fulfillment Foundation: Installation Guide.

13.2.1.6.2 Maintaining the Hazmat Data

http://hazmat.dot.gov/enforce/forms/ohmforms.htm#101

216 Integration Guide

Initial Data Loading

To insert, modify, or delete the Hazmat data as specified by DOT:

1. Using any standard Web browser, the Hazmat data details can be
found at: http://hazmat.dot.gov/regs/hmtentries.htm

2. The Hazmat data listed in the hmtentries.htm file needs to be in a
readable format in order to be processed by the Selling and
Fulfillment Foundation SDF. Therefore, create two different Hazmat
data files, one for additions or modifications, and another file for
deletions. Ensure that the Hazmat data file format that you created
exist in the <INSTALL_DIR>/bin folder and is of the same format as
the cfr.dat file that is stored in the 172101ascii.zip file.

3. Repeat Step 3 through Step 5.

http://hazmat.dot.gov/regs/hmtentries.htm

217

Index

A
Add AD Sterling WMS action code, 23
adjustInventory API, 82
adjustLocationInventory API, 153
adjustLocationInventory(), 153
ASRS

integrating with
product is being counted, 130
product is being putaway, 128
product is being retrieved, 129

Automated Storage and Retrieval Systems, 127
automatic guided vehicles, 131

integrating with, 131

B
best practices

Sterling WMS integration, 10
Sterling WMS order transactions in shipment

interface, 20

C
CARHDR Sterling WMS table, 34
Carousels

integrating with, 127
carousels

integrating with
product is being counted, 130
product is being putaway, 128
product is being retrieved, 129

CNCDTL Sterling WMS table, 35

Configure Process Specific Events, 190
Inventory Adjustment Process, 194
Invoice Process, 192
Receipt Process, 190
Return Order Process, 194
Sales Order Creation Process, 191
Shipment Confirmation Process, 192
Work Order Confirmation Process, 193

cube-a-scan
integrating with, 135

custom prints
configuring, 83
creating, 92

D
DCS

version number supported, 7
DCSPOInterface, 15
DODTL Sterling WMS table, 16, 52
DOT (Department Of Transportation), 215

E
Enterprise Resource Planning System, 139
Enterprise Resource Planning (ERP) System, 5
environment variable

INSTALL_DIR, xxviii
INSTALL_DIR_OLD, xxviii

ERP systems
integrating with, 139

data exchange from ERP to Selling and
Fulfillment Foundation, 141

218 Integration Guide

data exchange from Selling and Fulfillment
Foundation to ERP, 141

inventory, 145
order management, 141
overview, 140
purchasing, 143
returns, 150
WIP, 147

loading configuration data, 199
error handling

Initial Data Loading (IDL), 201

F
figures

integration architecture, 2
Sterling WMS purchase order workflow, 8
Sterling WMS return order workflow, 43

G
getInventoryMismatch API

inventory
getInventoryMismatch API, 82

getInventorySnapShot API, 82
getUnprocessedImportDataEx API, 81

H
Hazmat

initially load the Hazmat data, 215
maintaining the Hazmat data, 216

I
IDL (Initial Data Loading), 200
inbound sorters

integrating with, 132
Initial Data Loading

dedicate a location, 210
error handling, 201
Hazmat, 215
item configuration, 202
loading configuration data, 199

location inventory, 212
locations, 206
services

API component, 201
File IO Receiver, 201
items, 200
location inventory, 200
locations, 200
shipping cartons, 200
SKU dedications, 200
Text Translator, 201
XSL Translator, 201

shipping cartons, 205
SKU dedication, 210

Initial Data Loading (IDL), 199
input XML

mapping receiveOrder API to Sterling
WMS, 18, 19

SCAC and Service Code in Sterling WMS
integration, 21

Sterling WMS inventory download, 41
Sterling WMS transactions for confirmShipment

API, 36
INSTALL_DIR, xxviii
INSTALL_DIR_OLD, xxviii
integrating

with ASRS
product is being putaway, 128

with automatic guided vehicles, 131
with Carousels, 127
with cube-a-scan, 135
with ERP systems, 139
with inbound sorters, 132
with Loftware Label Manager, 83
with Loftware Print Server, 83
with material handling systems, 123
with Mettler Toledo Weighing Scale, 136
with MHE, 123
with other weighing scales, 136
with outbound sorters, 134
with pack sorters, 133
with pick-to-light systems, 124
with put-to-light systems, 125
with Sterling Warehouse Management System.

See third-party WMS.Warehouse

219

Management Systems. See third-party
WMS.

with weighing scales, 136
integration

architecture illustration, 2
inventory download service, 40

IntegrationOverview, 123
Interface Field Mapping, 197

generating template documents, 198
Interface Field Mapping Template

XML spreadsheet
generating, 198

Interfaces to Financial System, 189
inventory

adjustInventory API, 82
getInventorySnapShot API, 82

inventory control systems, 82
inventory costing

parameter value, 40

J
JBoss JMS

configuring services, 181
Queues

creating, 182

L
labels

creating, 86
designing with Loftware Label Manager, 86
displaying page numbers, 86
displaying total number of pages in print, 86

Load Initial Inventory Cost Data, 189
Loading Inventory Change Information from a

Node, 75
LoadInventoryMismatch service, 63, 64

configuring, 64
Loftware Label Manager

integrating with, 83
Loftware Print Server

integrating with, 83

M
material handling systems

integrating with, 123
MHE

integrating with, 123

O
ORDADR Sterling WMS table, 27
ORDBOM Sterling WMS table, 28
ORDDTL Sterling WMS table, 25
ORDHDR Sterling WMS table, 23
ORDINS Sterling WMS table, 28
ORDNAM Sterling WMS table, 29
outbound sorters

integrating with, 134

P
pack sorters

integrating with, 133
PCKHDR Sterling WMS table, 32
PCKINF Sterling WMS table, 35
pick-to-light systems

integrating with, 124
POHDR Sterling WMS table, 15, 49
point of sale, 5
point of sale systems, 153

integrate with, 153
POS systems

integrating with
adjustLocationInventory API, 153

Prints
associating services to events, 102
creating service definitions, 92
creation of mapping XML file, 87
displaying page numbers, 86
file naming convention, 86
relocation of XML mapping file, 92
XML file settings, 88

put-to-light systems
integrating with, 125

220 Integration Guide

R
Rapid Deployment Features, 6
Rapid Deployment Features (RDT), 197
RCPDTL Sterling WMS table, 18
RCPHDR Sterling WMS table, 17, 54, 56
RDT (Rapid Deployment Tool), 197

S
SDF (Service Definition Framework), 200
See Also AGV, 131
See Also ASRS, 127
See Also ERP systems, 139
See Also POS systems, 153
See Department Of Transportation, 215
See Initial Data Loading, 200
See Service Definition Framework, 200
Service definitions

GetPackListData
configuring, 99

services
inventory download, 40
Print pack list

configuring, 92
Sterling WMS

purchase order integration, 15
Sterling Parcel Carrier Adapter

integrating with, 103
Sterling WMS

order release interface, 23
Sterling WMS inventory download services

customizing, 40
Sterling WMS inventory interface, 38

configuring service, 40
inventory download, 40

downloadInventory API, 41
input XML, 41

inventory download table
INVCHG, 42

inventory upload, 38
inventory upload table

TRNDTL, 39
Sterling WMS order shipment time-triggered

transactions

configuring, 21
Sterling WMS purchase order interface

best practices, 10
order number requirements, 10
pipeline configuration, 14
purchase orders

cancelling, 12
creating, 10
modifications allowed, 11
modifying, 11
splitting, 11

receiving goods, 12
supply type behavior, 10
tables

PODTL, 16, 52
POHDR, 15, 49
RCPDTL, 18
RCPHDR, 17, 54, 56

workflow, 8
Sterling WMS purchase order time-triggered

transactions
configuring, 13

Sterling WMS return order interface
workflow, 43

Sterling WMS ship node
configuring, 23

Sterling WMS shipment interface, 20
cancellations, 21
Interface field, 23
inventory calculations, 21
order number syntax, 21
order release tables

ORDADR, 27
ORDBOM, 28
ORDDTL, 25
ORDHDR, 23
ORDINS, 28
ORDNAM, 29

SCAC and Service Code, 21
shipment confirmation tables

CARHDR, 34
CNCDTL, 35
PCKHDR, 32
PCKINF, 35
SRLDTL, 37

221

time-triggered transactions
configuring, 21

transmittal of order modifications, 20
Synchronizing Inventory Changes with a Node, 72

T
third-party warehouse management systems

integrating with, 81
third-party WMS integration

getUnprocessedImportDataEx API, 81
XML input, 81

U
Uploading a Receipt, 63
Uploading Inventory Snapshots, 77

W
weighing scales

integrating with, 136
Mettler Toledo

integrating with, 136
WMS 6.2

Interface field, 23

X
XML integration

with warehouse management systems, 81

Y
YCS

integrating with, 103

222 Integration Guide

	Contents
	Preface
	1 Introduction
	1.1 Application Integration Architecture
	1.2 Integration with Warehouse Management Systems
	1.3 Integration with the Parcel Carrier Adapters
	1.4 Integration with the Loftware Print Server and Label Manager
	1.5 Integration with Material Handling Equipment
	1.6 Integration with Enterprise Resource Planning Systems
	1.7 Integration with Point of Sale Systems
	1.8 Integration with JMS Systems
	1.9 Integration with Financial Systems
	1.10 Rapid Deployment Features

	2 Integrating with the Distribution Center System
	2.1 DCS Purchase Order Interface
	2.1.1 Purchase Order Workflow
	2.1.2 Understanding Purchase Order Transactions
	2.1.3 Configuring the Purchase Order Time-Triggered Transactions
	2.1.4 Configuring the Purchase Order Pipeline
	2.1.5 DCS Purchase Order Interface
	2.1.5.1 POHDR - Purchase Order Download Header
	2.1.5.2 PODTL - Purchase Order Download Detail
	2.1.5.3 Sample Receive Order Output XML
	2.1.5.4 RCPHDR - Purchase Order Receipt Header
	2.1.5.5 RCPDTL - Purchase Order Receipt Detail
	2.1.5.6 Receive Order Input XML Mapping

	2.2 DCS Shipment Interface
	2.2.1 Understanding the Order Transactions
	2.2.2 Configuring DCS Shipment Time-Triggered Transactions
	2.2.3 DCS Order Release Interface
	2.2.3.1 ORDHDR - Order Release Order Header
	2.2.3.2 ORDDTL - Order Release Order Detail
	2.2.3.3 ORDADR - Order Release Order Address
	2.2.3.4 ORDINS - Order Release Order Instruction
	2.2.3.5 ORDBOM - Order Release Order Bill of Materials
	2.2.3.6 ORDNAM - Order Release Order Name

	2.2.4 DCS Shipment Confirmation
	2.2.4.1 PCKHDR - Shipment Confirmation Pickticket Header
	2.2.4.2 CARHDR - Shipment Confirmation Carton Header
	2.2.4.3 PCKINF - Shipment Confirmation Pick Information
	2.2.4.4 CNCDTL - Shipment Confirmation Cancel Detail
	2.2.4.5 SRLDTL - Pick Ticket Serial Record

	2.3 DCS Inventory Interface
	2.3.1 DCS Inventory Upload
	2.3.1.1 TRNDTL - Inventory Change Upload Record

	2.3.2 DCS Inventory Download
	2.3.2.1 INVCHG - Inventory Change Download Record

	2.4 DCS Returns Interface
	2.4.1 Return Order Integration Workflow
	2.4.2 Determining the Enterprise Code for Blind Return during Upload
	2.4.3 Configuring Return Order Integration with DCS
	2.4.3.1 Configuring return release download to DCS
	2.4.3.2 Configuration for Receiving Blind RMA

	2.4.4 Return Order Interface Data Mapping
	2.4.4.1 Return Order Release Download Data Mapping
	2.4.4.1.1 RMAHDR - Return Release Download Header
	2.4.4.1.2 RMADTL - Return Release Download Detail
	2.4.4.1.3 RMACMT- Return Release Download Comments

	2.4.4.2 Return Receipt Upload Data Mapping
	2.4.4.2.1 Data mapping to create Return Order for blind return
	2.4.4.2.2 Data mapping to record return receipts

	2.4.5 Assumptions and Limitations

	3 Integrating with Stand-Alone Sterling WMS
	3.1 Installing Integration Pack for Receipt and Inventory Change Upload Interfaces on a WMS Instance
	3.2 Installing Integration Pack for Receipt and Inventory Change Upload Interfaces on a DOM Instance
	3.3 Uploading Receipts
	3.3.1 Uploading the Receipt Information
	3.3.1.1 The ReceiptUpload-751 Service
	3.3.1.2 Configuring the ReceiptUpload-751 Service

	3.3.2 Uploading the Receipt Adjustment Information
	3.3.2.1 The AdjustReceiptUpload-751 Service
	3.3.2.2 Configuring the Updated Receipt Adjustment Information from a Node

	3.3.3 Loading the Receipt Information from a Node
	3.3.3.1 The LoadReceiptInfo-751 service

	3.3.4 Loading the Receipt Adjustment Information from a Node
	3.3.4.1 The LoadReceiptAdjustments-751 service

	3.4 Uploading Inventory Changes at a Node
	3.4.1 Uploading the Updated Inventory Information
	3.4.1.1 The InventoryChangeUpload-751 Service
	3.4.1.2 Configuring the Updated Inventory Information from a Node

	3.4.2 Loading Inventory Information from a Node
	3.4.2.1 The LoadWMSInventoryChangeInfo-751 service

	3.5 Uploading the Inventory Snapshot
	3.5.1 Generating Inventory Snapshot Files

	4 Integrating with Third-Party Warehouse Management Systems
	4.1 Third-Party Warehouse Management Systems
	4.1.1 Third-Party Shipment Advice
	4.1.2 Third-Party Inventory Change

	5 Integrating with the Loftware Print Server and Label Manager
	5.1 Designing Custom Labels
	5.2 Defining Custom Print Services

	6 Integrating with the Parcel Carrier Adapters
	6.1 APIs Invoked During the Parcel Carrier Adapters Integration
	6.2 Integration Dependencies

	7 Integrating with Material Handling Equipment
	7.1 Integration Overview
	7.2 Integrating with Pick-to-Light System
	7.3 Integrating with Put-to-Light System
	7.4 Integrating with Carousel or Automated Storage and Retrieval System
	7.4.1 Integration When a Product is Being Put Away
	7.4.2 Integration When a Product is Being Retrieved
	7.4.3 Integration When a Product is Being Counted

	7.5 Integrating with Automatic Guided Vehicle
	7.6 Integrating with Inbound Sorter
	7.7 Integrating with Pack Sorter
	7.8 Integrating with Shipping Sorter
	7.9 Integrating with Cube-a-Scan
	7.10 Integrating with Weighing Scale
	7.10.1 Integrating with Mettler Toledo Weighing Scales
	7.10.2 Integrating with Other Weighing Scales

	8 Integrating with Enterprise Resource Planning Systems
	8.1 Integration Overview
	8.2 Integration Data Flow Diagram
	8.3 Integration Protocol
	8.3.1 Data exchange from an ERP System to the Sterling WMS
	8.3.2 Data exchange from the Sterling WMS to an ERP System

	8.4 Integration Specification Details
	8.4.1 ERP Integration - Order Management
	8.4.1.1 Customer Download from an ERP System to the Sterling WMS
	8.4.1.2 Shipment/Order Release Download from an ERP System to the Sterling WMS
	8.4.1.3 Shipment Confirmation Upload from the Sterling WMS to an ERP System

	8.4.2 ERP Integration - Purchasing
	8.4.2.1 Vendor Download from an ERP System to the Sterling WMS
	8.4.2.2 Purchase Order Download from an ERP System to the Sterling WMS
	8.4.2.3 Purchase Order Closure Download from an ERP System to the Sterling WMS
	8.4.2.4 ASN Download from an ERP System to the Sterling WMS
	8.4.2.5 Receipt Upload from the Sterling WMS to an ERP System

	8.4.3 ERP Integration - Inventory
	8.4.3.1 Item Download from an ERP System to the Sterling WMS
	8.4.3.2 Item Attributes Upload from the Sterling WMS to an ERP System
	8.4.3.3 Inventory Change Upload from the Sterling WMS to an ERP System
	8.4.3.4 Inventory Snapshot Upload from the Sterling WMS to an ERP System

	8.4.4 ERP System Integration - WIP
	8.4.4.1 BOM Download from an ERP System to the Sterling WMS
	8.4.4.2 Work Order Download from an ERP System to the Sterling WMS
	8.4.4.3 Work Order Demand Upload for Manually Created Work Orders from the Sterling WMS to ERP
	8.4.4.4 Work Order Confirmation Upload from the Sterling WMS to an ERP System
	8.4.4.5 Close Work Order from the Sterling WMS to an ERP System

	8.4.5 ERP Integration - Returns
	8.4.5.1 Return Order Download from ERP to the Sterling WMS
	8.4.5.2 Return Order Closure Download from an ERP System to the Sterling WMS
	8.4.5.3 Receipt Upload from the Sterling WMS to an ERP System

	9 Integrating with Point of Sale Systems
	9.1 API Invoked During Point of Sale Integration

	10 Integrating User and Item Data with External Systems
	10.1 Order Management
	10.1.1 APIs Invoked During Order Management Integration

	10.2 User and Item Synchronization
	10.2.1 Item Synchronization Services in Selling and Fulfillment Foundation
	10.2.1.1 SendItemChanges Service
	10.2.1.2 ReceiveItemChanges Service

	10.2.2 Customer Synchronization Services in Selling and Fulfillment Foundation
	10.2.2.1 The SendCustomerChanges Service
	10.2.2.2 The ReceiveCustomerChanges Service

	10.3 Customer Event Templates
	10.4 Data Mapping
	10.4.1 Customer Data Mapping
	10.4.2 Item Data Mapping

	11 Integrating with JMS Systems
	11.1 BEA WebLogic JMS
	11.1.1 Configuring WebLogic JMS
	11.1.2 WebLogic Time-Out Considerations for Transacted Sessions

	11.2 IBM WebSphere MQ
	11.2.1 Creating the Queue Manager and Queues
	11.2.2 Configuring a Queue Manager to Client Connection
	11.2.3 Configuring Selling and Fulfillment Foundation to Use WebSphere MQ Queues
	11.2.4 Accessing WebSphere MQ Using WebSphere’s JNDI Namespace
	11.2.5 Before You Begin
	11.2.5.1 Inside the Applications Manager
	11.2.5.2 Inside the WebSphere Admin Console

	11.3 IBM WebSphere Default Messaging
	11.3.1 Configuring Selling and Fulfillment Foundation to Use WebSphere Default Messaging
	11.3.2 Before you Begin

	11.4 JBoss Messaging JMS
	11.4.1 Creating Queues
	11.4.2 Configuring Selling and Fulfillment Foundation to Use JBoss Messaging Queues

	11.5 TIBCO JMS
	11.5.1 TIBCO JMS Attributes
	11.5.2 Configuring Selling and Fulfillment Foundation to use TIBCO Messaging Queues

	12 Integrating with Financial Systems
	12.1 Load Initial Inventory Cost Data
	12.2 Configure Process-Specific Events
	12.2.1 Receipt Process
	12.2.1.1 INVENTORY_COST_CHANGE
	12.2.1.2 INVENTORY_COST_WRITEOFF

	12.2.2 Sales Order Creation Process
	12.2.3 Shipment Confirmation Process
	12.2.3.1 INVENTORY_VALUE_CHANGE

	12.2.4 Invoice Process
	12.2.4.1 ON_INVOICE_CREATION

	12.2.5 Work Order Confirmation Process
	12.2.5.1 INVENTORY_COST_CHANGE
	12.2.5.2 INVENTORY_COST_WRITEOFF
	12.2.5.3 INVENTORY_VALUE_CHANGE

	12.2.6 Inventory Adjustment Process
	12.2.6.1 INVENTORY_VALUE_CHANGE

	12.2.7 Return Order Process
	12.2.7.1 INVENTORY_VALUE_CHANGE

	12.2.8 Callback from Financial System for Inventory Value Adjustment
	12.2.8.1 COULD_NOT_APPLY_INV_VALUE_CHANGE

	13 Rapid Deployment Features
	13.1 Interface Field Mapping Documents
	13.1.1 Generating Interface Field Mapping Template Documents
	13.1.1.1 Generating Interface Field Mapping Template Documents Using the Generation Tool
	13.1.1.2 Using Interface Field Mapping Template Documents

	13.2 Initial Data Loading
	13.2.1 Initial Data-Loading Services
	13.2.1.1 Item Configuration Data-Loading
	13.2.1.2 Shipping Carton Data-Loading
	13.2.1.3 Location Data-Loading
	13.2.1.4 SKU Dedication Data-Loading
	13.2.1.5 Location Inventory Data-Loading
	13.2.1.6 Hazmat Data-Loading
	13.2.1.6.1 Initially Loading the Hazmat Data
	13.2.1.6.2 Maintaining the Hazmat Data

	Index

