
Selling and Fulfillment
Foundation: Performance
Management Guide

Release 8.5

Last updated in HF9

March 2010

Copyright Notice
Copyright © 1999 - 2010

Sterling Commerce, Inc.

ALL RIGHTS RESERVED

STERLING COMMERCE SOFTWARE

TRADE SECRET NOTICE

THE STERLING COMMERCE SOFTWARE DESCRIBED BY THIS DOCUMENTATION ("STERLING COMMERCE
SOFTWARE") IS THE CONFIDENTIAL AND TRADE SECRET PROPERTY OF STERLING COMMERCE, INC., ITS
AFFILIATED COMPANIES OR ITS OR THEIR LICENSORS, AND IS PROVIDED UNDER THE TERMS OF A
LICENSE AGREEMENT. NO DUPLICATION OR DISCLOSURE WITHOUT PRIOR WRITTEN PERMISSION.
RESTRICTED RIGHTS.

This documentation, the Sterling Commerce Software it describes, and the information and know-how
they contain constitute the proprietary, confidential and valuable trade secret information of Sterling
Commerce, Inc., its affiliated companies or its or their licensors, and may not be used for any
unauthorized purpose, or disclosed to others without the prior written permission of the applicable
Sterling Commerce entity. This documentation and the Sterling Commerce Software that it describes
have been provided pursuant to a license agreement that contains prohibitions against and/or
restrictions on their copying, modification and use. Duplication, in whole or in part, if and when
permitted, shall bear this notice and the Sterling Commerce, Inc. copyright notice. Commerce, Inc.
copyright notice.

U.S. GOVERNMENT RESTRICTED RIGHTS. This documentation and the Sterling Commerce Software it
describes are "commercial items" as defined in 48 C.F.R. 2.101. As and when provided to any agency or
instrumentality of the U.S. Government or to a U.S. Government prime contractor or a subcontractor at
any tier ("Government Licensee"), the terms and conditions of the customary Sterling Commerce
commercial license agreement are imposed on Government Licensees per 48 C.F.R. 12.212 or §
227.7202 through § 227.7202-4, as applicable, or through 48 C.F.R. § 52.244-6.

This Trade Secret Notice, including the terms of use herein is governed by the laws of the State of Ohio,
USA, without regard to its conflict of laws provisions. If you are accessing the Sterling Commerce
Software under an executed agreement, then nothing in these terms and conditions supersedes or
modifies the executed agreement.

Sterling Commerce, Inc.
4600 Lakehurst Court
Dublin, Ohio 43016-2000

Copyright © 1999 - 2010

Third-Party Software

Portions of the Sterling Commerce Software may include products, or may be distributed on the same
storage media with products, ("Third Party Software") offered by third parties ("Third Party Licensors").
Sterling Commerce Software may include Third Party Software covered by the following copyrights:
Copyright © 2006-2008 Andres Almiray. Copyright © 1999-2005 The Apache Software Foundation.
Copyright (c) 2008 Azer Koçulu http://azer.kodfabrik.com. Copyright © Einar Lielmanis,
einars@gmail.com. Copyright (c) 2006 John Reilly (www.inconspicuous.org) and Copyright (c) 2002
Douglas Crockford (www.crockford.com). Copyright (c) 2009 John Resig, http://jquery.com/. Copyright
© 2006-2008 Json-lib. Copyright © 2001 LOOX Software, Inc. Copyright © 2003-2008 Luck Consulting
Pty. Ltd. Copyright 2002-2004 © MetaStuff, Ltd. Copyright © 2009 Michael Mathews
micmath@gmail.com. Copyright © 1999-2005 Northwoods Software Corporation. Copyright (C)
Microsoft Corp. 1981-1998. Purple Technology, Inc. Copyright (c) 2004-2008 QOS.ch. Copyright © 2005
Sabre Airline Solutions. Copyright © 2004 SoftComplex, Inc. Copyright © 2000-2007 Sun
Microsystems, Inc. Copyright © 2001 VisualSoft Technologies Limited. Copyright © 2001 Zero G
Software, Inc. All rights reserved by all listed parties.

The Sterling Commerce Software is distributed on the same storage media as certain Third Party
Software covered by the following copyrights: Copyright © 1999-2006 The Apache Software Foundation.
Copyright (c) 2001-2003 Ant-Contrib project. Copyright © 1998-2007 Bela Ban. Copyright © 2005
Eclipse Foundation. Copyright © 2002-2006 Julian Hyde and others. Copyright © 1997 ICE Engineering,
Inc./Timothy Gerard Endres. Copyright 2000, 2006 IBM Corporation and others. Copyright © 1987-2006
ILOG, Inc. Copyright © 2000-2006 Infragistics. Copyright © 2002-2005 JBoss, Inc. Copyright
LuMriX.net GmbH, Switzerland. Copyright © 1998-2009 Mozilla.org. Copyright © 2003-2009 Mozdev
Group, Inc. Copyright © 1999-2002 JBoss.org. Copyright Raghu K, 2003. Copyright © 2004 David
Schweinsberg. Copyright © 2005-2006 Darren L. Spurgeon. Copyright © S.E. Morris (FISH) 2003-04.
Copyright © 2006 VisualSoft Technologies. Copyright © 2002-2009 Zipwise Software. All rights reserved
by all listed parties.

Certain components of the Sterling Commerce Software are distributed on the same storage media as
Third Party Software which are not listed above. Additional information for such Third Party Software
components of the Sterling Commerce Software is located at:
installdir/mesa/studio/plugins/SCI_Studio_License.txt.

Third Party Software which is included, or are distributed on the same storage media with, the Sterling
Commerce Software where use, duplication, or disclosure by the United States government or a
government contractor or subcontractor, are provided with RESTRICTED RIGHTS under Title 48 CFR
2.101, 12.212, 52.227-19, 227.7201 through 227.7202-4, DFAR 252.227-7013(c) (1) (ii) and (2), DFAR
252.227-7015(b)(6/95), DFAR 227.7202-3(a), FAR 52.227-14(g)(2)(6/87), and FAR 52.227-19(c)(2)
and (6/87) as applicable.

Additional information regarding certain Third Party Software is located at installdir/SCI_License.txt.

Some Third Party Licensors also provide license information and/or source code for their software via
their respective links set forth below:

http://danadler.com/jacob/

http://www.dom4j.org

This product includes software developed by the Apache Software Foundation (http://www.apache.org).
This product includes software developed by the Ant-Contrib project
(http://sourceforge.net/projects/ant-contrib). This product includes software developed by the JDOM
Project (http://www.jdom.org/). This product includes code licensed from RSA Data Security (via Sun
Microsystems, Inc.). Sun, Sun Microsystems, the Sun Logo, Java, JDK, the Java Coffee Cup logo,
JavaBeans , JDBC, JMX and all JMX based trademarks and logos are trademarks or registered trademarks
of Sun Microsystems, Inc. All other trademarks and logos are trademarks of their respective owners.

THE APACHE SOFTWARE FOUNDATION SOFTWARE

The Sterling Commerce Software is distributed with or on the same storage media as the following
software products (or components thereof) and java source code files: Xalan version 2.5.2,
 Cookie.java, Header.java, HeaderElement.java, HttpException.java, HttpState.java, NameValuePair.java,
CronTimeTrigger.java, DefaultTimeScheduler.java, PeriodicTimeTrigger.java, Target.java,

TimeScheduledEntry.java, TimeScheduler.java, TimeTrigger.java, Trigger.java, BinaryHeap.java,
PriorityQueue.java, SynchronizedPriorityQueue.java, GetOpt.java, GetOptsException.java,
IllegalArgumentException.java, MissingOptArgException.java (collectively, "Apache 1.1 Software").
Apache 1.1 Software is free software which is distributed under the terms of the following license:

License Version 1.1

Copyright 1999-2003 The Apache Software Foundation. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided
that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

2. Redistribution in binary form must reproduce the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other materials provided with the distribution.

3. The end-user documentation included with the redistribution, if any, must include the following
acknowledgement: "This product includes software developed by the Apache Software Foundation
(http://www.apache.org)." Alternatively, this acknowledgement may appear in the software itself, if and
whenever such third-party acknowledgements normally appear.

4. The names "Commons", "Jakarta", "The Jakarta Project", "HttpClient", "log4j", "Xerces "Xalan",
"Avalon", "Apache Avalon", "Avalon Cornerstone", "Avalon Framework", "Apache" and "Apache Software
Foundation" must not be used to endorse or promote products derived from this software without
specific prior written permission. For written permission, please contact apache@apache.org.

5. Products derived from this software may not be called "Apache", nor may "Apache" appear in their
name, without the prior written permission of the Apache Software Foundation.

THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESS OR IMIPLIED WARRANTIES, INCLUDING
ANY IMPLIED WARRANTY OF MERCHANTIBILITY, AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL APACHE SOFTWARE FOUNDATION OR ITS CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTIAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

This software consists of voluntary contributions made by many individuals on behalf of the Apache
Software Foundation. The GetOpt.java, GetOptsException.java, IlligalArgumentException.java and
MissingOptArgException.java software was originally based on software copyright (c) 2001, Sun
Microsystems., http://www.sun.com. For more information on the Apache Software Foundation, please
see <http://www.apache.org/>.

The preceding license only applies to the Apache 1.1 Software and does not apply to the Sterling
Commerce Software or to any other Third-Party Software.

The Sterling Commerce Software is also distributed with or on the same storage media as the following
software products (or components thereof): Ant, Antinstaller, Apache File Upload Package, Apache
Commons Beans, Apache Commons BetWixt, Apache Commons Collection, Apache Commons Digester,
Apache Commons IO, Apache Commons Lang., Apache Commons Logging, Apache Commons Net,
Apache Jakarta Commons Pool, Apache Jakarta ORO, Lucene, Xerces version 2.7, Apache Log4J,
Apache SOAP, Apache Struts and Apache Xalan 2.7.0, (collectively, "Apache 2.0 Software"). Apache
2.0 Software is free software which is distributed under the terms of the Apache License Version 2.0. A
copy of License Version 2.0 is found in the following directory files for the individual pieces of the Apache
2.0 Software: installdir/jar/commons_upload/1_0/ CommonsFileUpload_License.txt,
installdir/jar/jetspeed/1_4/RegExp_License.txt,
 installdir/ant/Ant_License.txt
<install>/jar/antInstaller/0_8/antinstaller_License.txt,
<install>/jar/commons_beanutils/1_7_0/commons-beanutils.jar (/META-INF/LICENSE.txt),
<install>/jar/commons_betwixt/0_8/commons-betwixt-0.8.jar (/META-INF/LICENSE.txt),

<install>/jar/commons_collections/3_2/LICENSE.txt,
<install>/jar/commons_digester/1_8/commons-digester-1.8.jar (/META-INF/LICENSE.txt),
<install>/jar/commons_io/1_4/LICENSE.txt,
<install>/jar/commons_lang/2_1/Commons_Lang_License.txt,
<install>/jar/commons_logging/1_0_4/commons-logging-1.0.4.jar (/META-INF/LICENSE.txt),
<install>/jar/commons_net/1_4_1/commons-net-1.4.1.jar (/META-INF/LICENSE.txt),
<install>/jar/smcfs/8.5/lucene-core-2.4.0.jar (/META-INF/LICENSE.txt),
<install>/jar/struts/2_0_11/struts2-core-2.0.11.jar (./LICENSE.txt),
<install>/jar/mesa/gisdav/WEB-INF/lib/Slide_License.txt,
<install>/mesa/studio/plugins/xerces_2.7_license.txt,
<install>/jar/commons_pool/1_2/Commons_License.txt,
<install>/jar/jakarta_oro/2_0_8/JakartaOro_License.txt,
<install>/jar/log4j/1_2_15/LOG4J_License.txt,
<install>/jar/xalan/2_7/Xalan_License.txt,
<install>/jar/soap/2_3_1/Apache_SOAP_License.txt

Unless otherwise stated in a specific directory, the Apache 2.0 Software was not modified. Neither the
Sterling Commerce Software, modifications, if any, to Apache 2.0 Software, nor other Third Party Code is
a Derivative Work or a Contribution as defined in License Version 2.0. License Version 2.0 applies only to
the Apache 2.0 Software which is the subject of the specific directory file and does not apply to the
Sterling Commerce Software or to any other Third Party Software. License Version 2.0 includes the
following provision:

"Unless required by applicable law or agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS
OF ANY KIND, either express or implied, including, without limitation, any warranties or conditions of
TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. You are
solely responsible for determining the appropriateness of using or redistributing the Work and assume
any risks associated with Your exercise of permissions under this License."

NOTICE file corresponding to the section 4 d of the Apache License, Version 2.0, in this case for the
Apache Ant distribution. Apache Ant Copyright 1999-2008 The Apache Software Foundation. This
product includes software developed by The Apache Software Foundation (http://www.apache.org/).
This product includes also software developed by :

 - the W3C consortium (http://www.w3c.org) ,

 - the SAX project (http://www.saxproject.org)

The <sync> task is based on code Copyright (c) 2002, Landmark Graphics Corp that has been kindly
donated to the Apache Software Foundation.

Portions of this software were originally based on the following:

 - software copyright (c) 1999, IBM Corporation., http://www.ibm.com.

 - software copyright (c) 1999, Sun Microsystems., http://www.sun.com.

 - voluntary contributions made by Paul Eng on behalf of the Apache Software Foundation that were
originally developed at iClick, Inc., software copyright (c) 1999.

NOTICE file corresponding to the section 4 d of the Apache License, Version 2.0, in this case for the
Apache Lucene distribution. Apache Lucene Copyright 2006 The Apache Software Foundation. This
product includes software developed by The Apache Software Foundation (http://www.apache.org/).
The snowball stemmers in contrib/snowball/src/java/net/sf/snowball were developed by Martin Porter
and Richard Boulton. The full snowball package is available from http://snowball.tartarus.org/

Ant-Contrib Software

The Sterling Commerce Software is distributed with or on the same storage media as the Anti-Contrib
software (Copyright (c) 2001-2003 Ant-Contrib project. All rights reserved.) (the "Ant-Contrib
Software"). The Ant-Contrib Software is free software which is distributed under the terms of the
following license:

The Apache Software License, Version 1.1

Copyright (c) 2001-2003 Ant-Contrib project. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided
that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and
the following disclaimer in the documentation and/or other materials provided with the distribution.

3. The end-user documentation included with the redistribution, if any, must include the following
acknowledgement:

"This product includes software developed by the Ant-Contrib project
(http://sourceforge.net/projects/ant-contrib)."

Alternately, this acknowledgement may appear in the software itself, if and wherever such third-party
acknowledgements normally appear.

 4. The name Ant-Contrib must not be used to endorse or promote products derived from this software
without prior written permission. For written permission, please contact
ant-contrib-developers@lists.sourceforge.net.

 5. Products derived from this software may not be called "Ant-Contrib" nor may "Ant-Contrib" appear in
their names without prior written permission of the Ant-Contrib project.

THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE ANT-CONTRIB PROJECT OR ITS
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. The preceding license only applies to the
Ant-Contrib Software and does not apply to the Sterling Commerce Software or to any other Third-Party
Software.

The preceding license only applies to the Ant-Contrib Software and does not apply to the Sterling
Commerce Software or to any other Third Party Software.

DOM4J Software

The Sterling Commerce Software is distributed with or on the same storage media as the Dom4h
Software which is free software distributed under the terms of the following license:

Redistribution and use of this software and associated documentation ("Software"), with or without
modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain copyright statements and notices. Redistributions must also
contain a copy of this document.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and
the following disclaimer in the documentation and/or other materials provided with the distribution.

3. The name "DOM4J" must not be used to endorse or promote products derived from this Software
without prior written permission of MetaStuff, Ltd. For written permission, please contact
dom4j-info@metastuff.com.

4. Products derived from this Software may not be called "DOM4J" nor may "DOM4J" appear in their
names without prior written permission of MetaStuff, Ltd. DOM4J is a registered trademark of MetaStuff,
Ltd.

5. Due credit should be given to the DOM4J Project - http://www.dom4j.org

THIS SOFTWARE IS PROVIDED BY METASTUFF, LTD. AND CONTRIBUTORS ``AS IS'' AND ANY
EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL METASTUFF, LTD. OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Copyright 2001-2004 (C) MetaStuff, Ltd. All Rights Reserved.

The preceding license only applies to the Dom4j Software and does not apply to the Sterling Commerce
Software, or any other Third-Party Software.

THE ECLIPSE SOFTWARE FOUNDATION

The Sterling Commerce Software is also distributed with or on the same storage media as the following
software:

com.ibm.icu.nl1_3.4.4.v200606220026.jar, org.eclipse.ant.core.nl1_3.1.100.v200606220026.jar,
org.eclipse.ant.ui.nl1_3.2.0.v200606220026.jar, org.eclipse.compare.nl1_3.2.0.v200606220026.jar,
org.eclipse.core.boot.nl1_3.1.100.v200606220026.jar,
org.eclipse.core.commands.nl1_3.2.0.v200606220026.jar,
org.eclipse.core.contenttype.nl1_3.2.0.v200606220026.jar,
org.eclipse.core.expressions.nl1_3.2.0.v200606220026.jar,
org.eclipse.core.filebuffers.nl1_3.2.0.v200606220026.jar,
org.eclipse.core.filesystem.nl1_1.0.0.v200606220026.jar,
org.eclipse.core.jobs.nl1_3.2.0.v200606220026.jar,
org.eclipse.core.resources.nl1_3.2.0.v200606220026.jar,
org.eclipse.core.runtime.compatibility.auth.nl1_3.2.0.v200606220026.jar,
org.eclipse.core.runtime.compatibility.nl1_3.1.100.v200606220026.jar,
org.eclipse.core.runtime.nl1_3.2.0.v200606220026.jar,
org.eclipse.core.variables.nl1_3.1.100.v200606220026.jar,
org.eclipse.debug.core.nl1_3.2.0.v200606220026.jar,
org.eclipse.debug.ui.nl1_3.2.0.v200606220026.jar,
org.eclipse.equinox.common.nl1_3.2.0.v200606220026.jar,
org.eclipse.equinox.preferences.nl1_3.2.0.v200606220026.jar,
org.eclipse.equinox.registry.nl1_3.2.0.v200606220026.jar,
org.eclipse.help.appserver.nl1_3.1.100.v200606220026.jar,
org.eclipse.help.base.nl1_3.2.0.v200606220026.jar, org.eclipse.help.nl1_3.2.0.v200606220026.jar,
org.eclipse.help.ui.nl1_3.2.0.v200606220026.jar, org.eclipse.jdt.apt.core.nl1_3.2.0.v200606220026.jar,
org.eclipse.jdt.apt.ui.nl1_3.2.0.v200606220026.jar,
org.eclipse.jdt.core.manipulation.nl1_1.0.0.v200606220026.jar,
org.eclipse.jdt.core.nl1_3.2.0.v200606220026.jar,
org.eclipse.jdt.debug.ui.nl1_3.2.0.v200606220026.jar,
org.eclipse.jdt.doc.isv.nl1_3.2.0.v200606220026.jar,
org.eclipse.jdt.doc.user.nl1_3.2.0.v200606220026.jar,
org.eclipse.jdt.junit4.runtime.nl1_1.0.0.v200606220026.jar,
org.eclipse.jdt.launching.nl1_3.2.0.v200606220026.jar, org.eclipse.jdt.nl1_3.2.0.v200606220026.jar,
org.eclipse.jdt.ui.nl1_3.2.0.v200606220026.jar,
org.eclipse.jface.databinding.nl1_1.0.0.v200606220026.jar,
org.eclipse.jface.nl1_3.2.0.v200606220026.jar, org.eclipse.jface.text.nl1_3.2.0.v200606220026.jar,
org.eclipse.ltk.core.refactoring.nl1_3.2.0.v200606220026.jar,
org.eclipse.ltk.ui.refactoring.nl1_3.2.0.v200606220026.jar,
org.eclipse.osgi.nl1_3.2.0.v200606220026.jar, org.eclipse.osgi.services.nl1_3.1.100.v200606220026.jar,
org.eclipse.osgi.util.nl1_3.1.100.v200606220026.jar, org.eclipse.pde.core.nl1_3.2.0.v200606220026.jar,
org.eclipse.pde.doc.user.nl1_3.2.0.v200606220026.jar,
org.eclipse.pde.junit.runtime.nl1_3.2.0.v200606220026.jar,
org.eclipse.pde.nl1_3.2.0.v200606220026.jar, org.eclipse.pde.runtime.nl1_3.2.0.v200606220026.jar,
org.eclipse.pde.ui.nl1_3.2.0.v200606220026.jar,
org.eclipse.platform.doc.isv.nl1_3.2.0.v200606220026.jar,
org.eclipse.platform.doc.user.nl1_3.2.0.v200606220026.jar,

org.eclipse.rcp.nl1_3.2.0.v200606220026.jar, org.eclipse.search.nl1_3.2.0.v200606220026.jar,
org.eclipse.swt.nl1_3.2.0.v200606220026.jar, org.eclipse.team.core.nl1_3.2.0.v200606220026.jar,
org.eclipse.team.cvs.core.nl1_3.2.0.v200606220026.jar,
org.eclipse.team.cvs.ssh.nl1_3.2.0.v200606220026.jar,
org.eclipse.team.cvs.ssh2.nl1_3.2.0.v200606220026.jar,
org.eclipse.team.cvs.ui.nl1_3.2.0.v200606220026.jar, org.eclipse.team.ui.nl1_3.2.0.v200606220026.jar,
org.eclipse.text.nl1_3.2.0.v200606220026.jar, org.eclipse.ui.browser.nl1_3.2.0.v200606220026.jar,
org.eclipse.ui.cheatsheets.nl1_3.2.0.v200606220026.jar,
org.eclipse.ui.console.nl1_3.1.100.v200606220026.jar,
org.eclipse.ui.editors.nl1_3.2.0.v200606220026.jar,
org.eclipse.ui.externaltools.nl1_3.1.100.v200606220026.jar,
org.eclipse.ui.forms.nl1_3.2.0.v200606220026.jar, org.eclipse.ui.ide.nl1_3.2.0.v200606220026.jar,
org.eclipse.ui.intro.nl1_3.2.0.v200606220026.jar, org.eclipse.ui.navigator.nl1_3.2.0.v200606220026.jar,
org.eclipse.ui.navigator.resources.nl1_3.2.0.v200606220026.jar,
org.eclipse.ui.nl1_3.2.0.v200606220026.jar,
org.eclipse.ui.presentations.r21.nl1_3.2.0.v200606220026.jar,
org.eclipse.ui.views.nl1_3.2.0.v200606220026.jar,
org.eclipse.ui.views.properties.tabbed.nl1_3.2.0.v200606220026.jar,
org.eclipse.ui.workbench.nl1_3.2.0.v200606220026.jar,
org.eclipse.ui.workbench.texteditor.nl1_3.2.0.v200606220026.jar,
org.eclipse.update.configurator.nl1_3.2.0.v200606220026.jar,
org.eclipse.update.core.nl1_3.2.0.v200606220026.jar,
org.eclipse.update.scheduler.nl1_3.2.0.v200606220026.jar,
org.eclipse.update.ui.nl1_3.2.0.v200606220026.jar,
com.ibm.icu_3.4.4.1.jar,
org.eclipse.core.commands_3.2.0.I20060605-1400.jar,
org.eclipse.core.contenttype_3.2.0.v20060603.jar,
org.eclipse.core.expressions_3.2.0.v20060605-1400.jar,
org.eclipse.core.filesystem.linux.x86_1.0.0.v20060603.jar,
org.eclipse.core.filesystem_1.0.0.v20060603.jar, org.eclipse.core.jobs_3.2.0.v20060603.jar,
org.eclipse.core.runtime.compatibility.auth_3.2.0.v20060601.jar,
org.eclipse.core.runtime_3.2.0.v20060603.jar, org.eclipse.equinox.common_3.2.0.v20060603.jar,
org.eclipse.equinox.preferences_3.2.0.v20060601.jar, org.eclipse.equinox.registry_3.2.0.v20060601.jar,
org.eclipse.help_3.2.0.v20060602.jar, org.eclipse.jface.text_3.2.0.v20060605-1400.jar,
org.eclipse.jface_3.2.0.I20060605-1400.jar, org.eclipse.osgi_3.2.0.v20060601.jar,
org.eclipse.swt.gtk.linux.x86_3.2.0.v3232m.jar, org.eclipse.swt_3.2.0.v3232o.jar,
org.eclipse.text_3.2.0.v20060605-1400.jar,
org.eclipse.ui.workbench.texteditor_3.2.0.v20060605-1400.jar,
org.eclipse.ui.workbench_3.2.0.I20060605-1400.jar, org.eclipse.ui_3.2.0.I20060605-1400.jar,
runtime_registry_compatibility.jar, eclipse.exe, eclipse.ini, and startup.jar
(collectively, "Eclipse Software").
All Eclipse Software is distributed under the terms and conditions of the Eclipse Foundation Software
User Agreement (EFSUA) and/or terms and conditions of the Eclipse Public License Version 1.0 (EPL) or
other license agreements, notices or terms and conditions referenced for the individual pieces of the
Eclipse Software, including without limitation "Abouts", "Feature Licenses", and "Feature Update
Licenses" as defined in the EFSUA .

A copy of the Eclipse Foundation Software User Agreement is found at
<install_dir>/SI/repository/rcp/rcpdependencies/windows/eclipse/notice.html,
<install_dir>/SI/repository/rcp/rcpdependencies/windows/eclipse/plugins/notice.html,
<install_dir>/SI/repository/rcp/rcpdependencies/gtk.linux_x86/eclipse/notice.html, and
<install_dir>/SI/repository/rcp/rcpdependencies/gtk.linux_x86/eclipse/plugins/notice.html.

A copy of the EPL is found at
<install_dir>/SI/repository/rcp/rcpdependencies/windows/eclipse/plugins/epl-v10.htm,
<install_dir>/SI/repository/rcp/rcpdependencies/windows/eclipse/epl-v10.htm,
<install_dir>/SI/repository/rcp/rcpdependencies/gtk.linux.x86/eclipse/plugins/epl-v10.html, and
<install_dir>/SI/repository/rcp/rcpdependencies/gtk.linux.x86/eclipse/epl-v10.html.

The reference to the license agreements, notices or terms and conditions governing each individual piece
of the Eclipse Software is found in the directory files for the individual pieces of the Eclipse Software as
described in the file identified as installdir/SCI_License.txt.

These licenses only apply to the Eclipse Software and do not apply to the Sterling Commerce Software,
or any other Third Party Software.

The Language Pack (NL Pack) piece of the Eclipse Software, is distributed in object code form. Source
code is available at
http://archive.eclipse.org/eclipse/downloads/drops/L-3.2_Language_Packs-200607121700/index.php.
In the event the source code is no longer available from the website referenced above, contact Sterling
Commerce at 978-513-6000 and ask for the Release Manager. A copy of this license is located at
<install_dir>/SI/repository/rcp/rcpdependencies/windows/eclipse/plugins/epl-v10.htm and

<install_dir>/SI/repository/rcp/rcpdependencies/gtk.linux.x86/eclipse/plugins/epl-v10.html.

The org.eclipse.core.runtime_3.2.0.v20060603.jar piece of the Eclipse Software was modified slightly in
order to remove classes containing encryption items. The org.eclipse.core.runtime_3.2.0.v20060603.jar
was modified to remove the Cipher, CipherInputStream and CipherOutputStream classes and rebuild the
org.eclipse.core.runtime_3.2.0.v20060603.jar.

Ehcache Software

The Sterling Commerce Software is also distributed with or on the same storage media as the ehache
v.1.5 software (Copyright © 2003-2008 Luck Consulting Pty. Ltd.) ("Ehache Software"). Ehcache
Software is free software which is distributed under the terms of the Apache License Version 2.0. A copy
of License Version 2.0 is found in <install>/jar/smcfs/8.5/ehcache-1.5.0.jar (./LICENSE.txt).

The Ehcache Software was not modified. Neither the Sterling Commerce Software, modifications, if any,
to the Ehcache Software, nor other Third Party Code is a Derivative Work or a Contribution as defined in
License Version 2.0. License Version 2.0 applies only to the Ehcache Software which is the subject of the
specific directory file and does not apply to the Sterling Commerce Software or to any other Third Party
Software. License Version 2.0 includes the following provision:

"Unless required by applicable law or agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS
OF ANY KIND, either express or implied, including, without limitation, any warranties or conditions of
TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. You are
solely responsible for determining the appropriateness of using or redistributing the Work and assume
any risks associated with Your exercise of permissions under this License."

EZMorph Software

The Sterling Commerce Software is also distributed with or on the same storage media as the EZMorph
v. 1.0.4 software (Copyright © 2006-2008 Andres Almiray) ("EZMorph Software"). EZMorph Software is
free software which is distributed under the terms of the Apache License Version 2.0. A copy of License
Version 2.0 is found in <install>/jar/ezmorph/1_0_4/ezmorph-1.0.4.jar (./LICENSE.txt).

The EZMorph Software was not modified. Neither the Sterling Commerce Software, modifications, if any,
to the EZMorph Software, nor other Third Party Code is a Derivative Work or a Contribution as defined in
License Version 2.0. License Version 2.0 applies only to the EZMorph Software which is the subject of
the specific directory file and does not apply to the Sterling Commerce Software or to any other Third
Party Software. License Version 2.0 includes the following provision:

"Unless required by applicable law or agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS
OF ANY KIND, either express or implied, including, without limitation, any warranties or conditions of
TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. You are
solely responsible for determining the appropriateness of using or redistributing the Work and assume
any risks associated with Your exercise of permissions under this License."

Firebug Lite Software

The Sterling Commerce Software is distributed with or on the same storage media as the Firebug Lite
Software which is free software distributed under the terms of the following license:

Copyright (c) 2008 Azer Koçulu http://azer.kodfabrik.com. All rights reserved.

Redistribution and use of this software in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

* Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

* Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other materials provided with the distribution.

* Neither the name of Azer Koçulu. nor the names of any other contributors may be used to endorse or
promote products derived from this software without specific prior written permission of Parakey Inc.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

ICE SOFTWARE

The Sterling Commerce Software is distributed on the same storage media as the ICE Software
(Copyright © 1997 ICE Engineering, Inc./Timothy Gerard Endres.) ("ICE Software"). The ICE Software is
independent from and not linked or compiled with the Sterling Commerce Software. The ICE Software is
a free software product which can be distributed and/or modified under the terms of the GNU General
Public License as published by the Free Software Foundation; either version 2 of the License or any later
version.

A copy of the GNU General Public License is provided at installdir/jar/jniregistry/1_2/ICE_License.txt.
This license only applies to the ICE Software and does not apply to the Sterling Commerce Software, or
any other Third Party Software.

The ICE Software was modified slightly in order to fix a problem discovered by Sterling Commerce
involving the RegistryKey class in the RegistryKey.java in the JNIRegistry.jar. The class was modified to
comment out the finalize () method and rebuild of the JNIRegistry.jar file.

Source code for the bug fix completed by Sterling Commerce on January 8, 2003 is located at:
installdir/jar/jniregistry/1_2/RegistryKey.java. Source code for all other components of the ICE Software
is located at http://www.trustice.com/java/jnireg/index.shtml.

The ICE Software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

JBOSS SOFTWARE

The Sterling Commerce Software is distributed on the same storage media as the JBoss Software
(Copyright © 1999-2002 JBoss.org) ("JBoss Software"). The JBoss Software is independent from and
not linked or compiled with the Sterling Commerce Software. The JBoss Software is a free software
product which can be distributed and/or modified under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either version 2.1 of the License or any later
version.

A copy of the GNU Lesser General Public License is provided at:
<install_dir>\jar\jboss\4_2_0\LICENSE.html

This license only applies to the JBoss Software and does not apply to the Sterling Commerce Software,
or any other Third Party Software.

The JBoss Software is not distributed by Sterling Commerce in its entirety. Rather, the distribution is
limited to the following jar files: el-api.jar, jasper-compiler-5.5.15.jar, jasper-el.jar, jasper.jar,
jboss-common-client.jar, jboss-j2ee.jar, jboss-jmx.jar, jboss-jsr77-client.jar, jbossmq-client.jar,

jnpserver.jar, jsp-api.jar, servlet-api.jar, tomcat-juli.jar.

The JBoss Software was modified slightly in order to allow the ClientSocketFactory to return a socket
connected to a particular host in order to control the host interfaces, regardless of whether the
ClientSocket Factory specified was custom or note. Changes were made to org.jnp..server.Main. Details
concerning this change can be found at
http://sourceforge.net/tracker/?func=detail&aid=1008902&group_id=22866&atid=376687.

Source code for the modifications completed by Sterling Commerce on August 13, 2004 is located at:
http://sourceforge.net/tracker/?func=detail&aid=1008902&group_id=22866&atid=376687. Source code
for all other components of the JBoss Software is located at http://www.jboss.org.

JGO SOFTWARE

The Sterling Commerce Software is distributed with, or on the same storage media, as certain
redistributable portions of the JGo Software provided by Northwoods Software Corporation under a
commercial license agreement (the "JGo Software"). The JGo Software is provided subject to the
disclaimers set forth above and the following notice:

U.S. Government Restricted Rights

The JGo Software and documentation are provided with RESTRICTED RIGHTS. Use, duplication, or
disclosure by the Government is subject to restrictions as set forth in subparagraph (C)(1)(ii) of the
Rights in Technical Data and Computer Software clause at DFARS 252.227-7013 or subparagraphs (C)(1)
and (2) of the Commercial Computer Software - Restricted Rights at 48 CFR 52.227-19, as applicable.
Contractor / manufacturer of the JGo Software is Northwoods Software Corporation, 142 Main St.,
Nashua, NH 03060.

JSLib Software

The Sterling Commerce Software is distributed with or on the same storage media as the JSLib software
product (Copyright (c) 2003-2009 Mozdev Group, Inc.) ("JSLib Software"). The JSLib Software is
distributed under the terms of the MOZILLA PUBLIC LICENSE Version 1.1. A copy of this license is
located at <install>\repository\eardata\platform_uifwk_ide\war\designer\MPL-1.1.txt. The JSLib
Software code is distributed in source form and is located at http://jslib.mozdev.org/installation.html.
Neither the Sterling Commerce Software nor any other Third-Party Code is a Modification or Contribution
subject to the Mozilla Public License. Pursuant to the terms of the Mozilla Public License, the following
notice applies only to the JSLib Software (and not to the Sterling Commerce Software or any other
Third-Party Software):

"The contents of the file located at http://www.mozdev.org/source/browse/jslib/ are subject to the
Mozilla Public License Version 1.1 (the "License"); you may not use this file except in compliance with the
License. You may obtain a copy of the License at http://www.mozilla.org/MPL/MPL-1.1.html.

Software distributed under the License is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
KIND, either express or implied. See the License for the specific language governing rights and
limitations under the License.

The Original Code is Mozdev Group, Inc. code. The Initial Developer of the Original Code is Mozdev
Group, Inc. Portions created by_Mozdev Group, Inc. are Copyright © 2003 Mozdev Group, Inc. All Rights
Reserved. Original Author: Pete Collins <pete@mozdev.org>one Contributor(s):_____none
listed________.

Alternatively, the contents of this file may be used under the terms of the ____ license (the "[___]
License"), in which case the provisions of [___] License are applicable instead of those above. If you
wish to allow use of your version of this file only under the terms of the [___] License and not allow
others to use your version of this file under the MPL, indicate your decision by deleting the provisions
above and replace them with the notice and other provisions required by the [___] License. If you do not
delete the provisions above, a recipient may use your version of this file under either the MPL or the
[___] License."

The preceding license only applies to the JSLib Software and does not apply to the Sterling Commerce
Software, or any other Third-Party Software.

Json Software

The Sterling Commerce Software is also distributed with or on the same storage media as the Json 2.2.2
software (Copyright © 2006-2008 Json-lib) ("Json Software"). Json Software is free software which is
distributed under the terms of the Apache License Version 2.0. A copy of License Version 2.0 is found in
<install>/jar/jsonlib/2_2_2/json-lib-2.2.2-jdk13.jar.

This product includes software developed by Douglas Crockford (http://www.crockford.com).

The Json Software was not modified. Neither the Sterling Commerce Software, modifications, if any, to
the Json Software, nor other Third Party Code is a Derivative Work or a Contribution as defined in
License Version 2.0. License Version 2.0 applies only to the Json Software which is the subject of the
specific directory file and does not apply to the Sterling Commerce Software or to any other Third Party
Software. License Version 2.0 includes the following provision:

"Unless required by applicable law or agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS
OF ANY KIND, either express or implied, including, without limitation, any warranties or conditions of
TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. You are
solely responsible for determining the appropriateness of using or redistributing the Work and assume
any risks associated with Your exercise of permissions under this License."

Purple Technology

The Sterling Commerce Software is distributed with or on the same storage media as the Purple
Technology Software (Copyright (c) 1995-1999 Purple Technology, Inc.) ("Purple Technology Software"),
which is subject to the following license:

Copyright (c) 1995-1999 Purple Technology, Inc. All rights reserved.

PLAIN LANGUAGE LICENSE: Do whatever you like with this code, free of charge, just give credit where
credit is due. If you improve it, please send your improvements to alex@purpletech.com. Check
http://www.purpletech.com/code/ for the latest version and news.

LEGAL LANGUAGE LICENSE: Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and
the following disclaimer in the documentation and/or other materials provided with the distribution.

3. The names of the authors and the names "Purple Technology," "Purple Server" and "Purple Chat" must
not be used to endorse or promote products derived from this software without prior written permission.
For written permission, please contact server@purpletech.com.

THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND PURPLE TECHNOLOGY "AS IS'' AND ANY
EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE AUTHORS OR PURPLE TECHNOLOGY BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

The preceding license only applies to the Purple Technology Software and does not apply to the Sterling
Commerce Software, or any other Third Party Software.

Rico Software

The Sterling Commerce Software is also distributed with or on the same storage media as the Rico.js
software (Copyright © 2005 Sabre Airline Solutions) ("Rico Software"). Rico Software is free software

which is distributed under the terms of the Apache License Version 2.0. A copy of License Version 2.0 is
found in <install>/repository/eardata/platform/war/ajax/scripts/Rico_License.txt.

The Rico Software was not modified. Neither the Sterling Commerce Software, modifications, if any, to
the Rico Software, nor other Third-Party Code is a Derivative Work or a Contribution as defined in
License Version 2.0. License Version 2.0 applies only to the Rico Software which is the subject of the
specific directory file and does not apply to the Sterling Commerce Software or to any other Third-Party
Software. License Version 2.0 includes the following provision:

"Unless required by applicable law or agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS
OF ANY KIND, either express or implied, including, without limitation, any warranties or conditions of
TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. You are
solely responsible for determining the appropriateness of using or redistributing the Work and assume
any risks associated with Your exercise of permissions under this License."

Rhino Software

The Sterling Commerce Software is distributed with or on the same storage media as the Rhino js.jar
(Copyright (c) 1998-2009 Mozilla.org.) ("Rhino Software"). A majority of the source code for the Rhino
Software is dual licensed under the terms of the MOZILLA PUBLIC LICENSE Version 1.1. or the GPL v.
2.0. Additionally, some files (at a minimum the contents of
toolsrc/org/Mozilla/javascript/toolsdebugger/treetable) are available under another license as set forth in
the directory file for the Rhino Software.

Sterling Commerce's use and distribution of the Rhino Software is under the Mozilla Public License. A
copy of this license is located at <install>/3rdParty/rico license.doc. The Rhino Software code is
distributed in source form and is located at http://mxr.mozilla.org/mozilla/source/js/rhino/src/. Neither
the Sterling Commerce Software nor any other Third-Party Code is a Modification or Contribution subject
to the Mozilla Public License. Pursuant to the terms of the Mozilla Public License, the following notice
applies only to the Rhino Software (and not to the Sterling Commerce Software or any other Third-Party
Software):

"The contents of the file located at <install>/jar/rhino/1_7R1/js.jar are subject to the Mozilla Public
License Version 1.1 (the "License"); you may not use this file except in compliance with the License. You
may obtain a copy of the License at http://www.mozilla.org/MPL/.

Software distributed under the License is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
KIND, either express or implied. See the License for the specific language governing rights and
limitations under the License.

The Original Code is Rhino code, released May 6, 1999. The Initial Developer is Netscape
Communications Corporation. Portions created by the Initial Developer are Copyright © 1997-1999. All
Rights Reserved. Contributor(s):_____none listed.

The preceding license only applies to the Rico Software and does not apply to the Sterling Commerce
Software, or any other Third-Party Software.

Sun Microsystems

The Sterling Commerce Software is distributed with or on the same storage media

as the following software products (or components thereof): Sun JMX, and Sun JavaMail (collectively,
"Sun Software"). Sun Software is free software which is distributed under the terms of the licenses
issued by Sun which are included in the directory files located at:

SUN COMM JAR - <install>/Applications/Foundation/lib

SUN ACTIVATION JAR - <install>/ Applications/Foundation/lib

SUN JavaMail - <install>/jar/javamail/1_4/LICENSE.txt

The Sterling Commerce Software is also distributed with or on the same storage media as the
Web-app_2_3.dtd software (Copyright © 2007 Sun Microsystems, Inc.) ("Web-App Software").
Web-App Software is free software which is distributed under the terms of the Common Development

and Distribution License ("CDDL"). A copy of the CDDL is found in
http://kenai.com/projects/javamail/sources/mercurial/show.

The source code for the Web-App Software may be found at:
<install>/3rdParty/sun/javamail-1.3.2/docs/JavaMail-1.2.pdf

Such licenses only apply to the Sun product which is the subject of such directory and does not apply to
the Sterling Commerce Software or to any other Third Party Software.

The Sterling Commerce Software is also distributed with or on the same storage media as the Sun
Microsystems, Inc. Java (TM) look and feel Graphics Repository ("Sun Graphics Artwork"), subject to the
following terms and conditions:

Copyright 2000 by Sun Microsystems, Inc. All Rights Reserved.

Sun grants you ("Licensee") a non-exclusive, royalty free, license to use, and redistribute this software
graphics artwork, as individual graphics or as a collection, as part of software code or programs that you
develop, provided that i) this copyright notice and license accompany the software graphics artwork; and
ii) you do not utilize the software graphics artwork in a manner which is disparaging to Sun. Unless
enforcement is prohibited by applicable law, you may not modify the graphics, and must use them true
to color and unmodified in every way.

This software graphics artwork is provided "AS IS," without a warranty of any kind. ALL EXPRESS OR
IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE HEREBY
EXCLUDED. SUN AND ITS LICENSORS SHALL NOT BE LIABLE FOR ANY DAMAGES SUFFERED BY
LICENSEE AS A RESULT OF USING, MODIFYING OR DISTRIBUTING THE SOFTWARE GRAPHICS
ARTWORK.

IN NO EVENT WILL SUN OR ITS LICENSORS BE LIABLE FOR ANY LOST REVENUE, PROFIT OR DATA, OR
FOR DIRECT, INDIRECT, SPECIAL, CONSEQUENTIAL, INCIDENTAL OR PUNITIVE DAMAGES, HOWEVER
CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF THE USE OF OR INABILITY
TO USE SOFTWARE GRAPHICS ARTWORK, EVEN IF SUN HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

If any of the above provisions are held to be in violation of applicable law, void, or unenforceable in any
jurisdiction, then such provisions are waived to the extent necessary for this Disclaimer to be otherwise
enforceable in such jurisdiction.

The preceding license only applies to the Sun Graphics Artwork and does not apply to the Sterling
Commerce Software, or any other Third Party Software.

WARRANTY DISCLAIMER

This documentation and the Sterling Commerce Software which it describes are licensed either "AS IS"
or with a limited warranty, as set forth in the Sterling Commerce license agreement. Other than any
limited warranties provided, NO OTHER WARRANTY IS EXPRESSED AND NONE SHALL BE IMPLIED,
INCLUDING THE WARRANTIES OF MERCHANTABILITY AND FITNESS FOR USE OR FOR A PARTICULAR
PURPOSE. The applicable Sterling Commerce entity reserves the right to revise this publication from time
to time and to make changes in the content hereof without the obligation to notify any person or entity
of such revisions or changes.

The Third Party Software is provided "AS IS" WITHOUT ANY WARRANTY AND ANY EXPRESSED OR
IMPLIED WARRANTIES, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. FURTHER, IF YOU
ARE LOCATED OR ACCESSING THIS SOFTWARE IN THE UNITED STATES, ANY EXPRESS OR IMPLIED
WARRANTY REGARDING TITLE OR NON-INFRINGEMENT ARE DISCLAIMED.

Without limiting the foregoing, the ICE Software and JBoss Software are distributed WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE.

xvii

Contents

Intended Audience .. xxix
Structure ... xxix
Selling and Fulfillment Foundation Documentation ...xxxii
Conventions ..xxxiv

1 Introduction

1.1 Lifecycle ... 1
1.2 System Components and Roles .. 1
1.3 Principles .. 3
1.3.1 Having Your Cake and Eating It, Too.. 3
1.3.2 Keep It Simple Strategy ... 4
1.3.3 Your Mileage May Vary... 4
1.3.4 Performance Recommendations Graveyard 5
1.3.5 System Test Before Going Live.. 5
1.3.6 Measure Thrice, Check Twice, Cut Once.. 6
1.3.7 Cascading Failure .. 6
1.3.8 Only the Facts Jack ... 7

2 Performance Recommendations Checklist

2.1 Performance Checklist .. 9
2.1.1 Planning Checklist ... 9
2.1.2 Architectural Checklist ..10
2.1.3 Computer Node Implementation Checklist10
2.1.4 Java Virtual Machine Implementation Checklist.................................11
2.1.5 Application Server Checklist...14

xviii Performance Management Guide

2.1.6 Selling and Fulfillment Foundation Checklist 15
2.1.7 Sterling WMS Application Checklist .. 16
2.1.8 Database Checklist .. 17
2.1.9 Oracle Database Checklist .. 17
2.1.10 UDB Database Checklist ... 18
2.1.11 Monitoring Checklist .. 19
2.2 Performance Recommendations Graveyard .. 20

3 Computer System

3.1 Overview .. 25
3.2 Planning.. 25
3.2.1 Supported Configurations ... 25
3.2.2 Capacity Sizing/Resource Requirements ... 26
3.2.2.1 Pre-Sales Server Sizing .. 26
3.2.2.2 Capacity Plan... 26
3.2.2.3 Database Disk Sizing .. 26
3.3 Implementation ... 26
3.3.1 Time Synchronization .. 26
3.3.2 Network Connectivity ... 27
3.3.2.1 Data Center Network .. 27
3.3.2.2 Auto-Negotiation .. 27
3.3.2.3 Network Bandwidth .. 28

4 IBM AIX

4.1 Implementation ... 29
4.1.1 Page Space Allocation Policy ... 29
4.1.2 Database Server Nodes.. 31
4.1.2.1 Asynchronous I/O... 31
4.1.2.1.1 Configuring Asynchronous I/O in AIX 32
4.1.2.1.2 Monitoring Asynchronous I/O in AIX..................................... 32
4.1.3 Network Connectivity ... 33
4.1.3.1 Auto-Negotiation .. 33

 xix

5 HP HP-UX11i

5.1 Network Connectivity...35
5.1.1 Auto-Negotiation..35
5.2 Database Server Nodes..36
5.2.1 Asynchronous I/O ..36

6 Red Hat Enterprise Linux

6.1 Network Connectivity...39
6.1.1 Auto-Negotiation..39

7 Sun Solaris

7.1 Implementation ..41
7.1.1 Network Connectivity..41
7.1.1.1 Auto-Negotiation ...41

8 General JVM Recommendations

8.1 Overview ...45
8.2 Supported Configuration ..46
8.3 Implementation ..46
8.3.1 Recommended JVM Command Line Options46
8.3.1.1 JVM Identifier ...46
8.3.1.2 Java Version...47
8.3.1.3 Garbage Collection Statistics...48
8.3.2 Optional JVM Command Line Settings ...48
8.3.2.1 Stack Size ..48
8.4 Monitoring..48
8.4.1 Hanging Threads/Deadlocks/Infinite Loops.......................................49
8.4.2 Memory and Paging ..50
8.4.3 OutOfMemory Exceptions ..51
8.4.3.1 Diagnosing OutOfMemory Exceptions ...52
8.4.3.1.1 Low on Total Free Memory...52
8.4.3.1.2 Causes of OOM ..53

xx Performance Management Guide

9 HotSpot JVM

9.1 Implementation ... 55
9.1.1 Starting Recommendations ... 56
9.1.1.1 Virtual Machine Mode.. 56
9.1.1.2 Permanent Generation .. 57
9.1.2 Heap Memory and Garbage Collection .. 57
9.1.2.1 Sun and HP-UX Generational Collectors 58
9.1.2.1.1 Heap Settings ... 59
9.1.2.1.2 Young Generation Guarantee .. 61
9.1.2.1.3 Starting Recommendations ... 61
9.1.2.1.4 Garbage Collection Statistics ... 62
9.2 Monitoring... 63
9.2.1 Garbage Collection Statistics... 63
9.2.1.1 Comprehensive HP GC Logs ... 64
9.2.1.1.1 Capacity... 66
9.2.1.1.2 Things to Monitor .. 66
9.2.2 SUN .. 67
9.2.2.1 Potential Memory Leak .. 67
9.2.2.1.1 Old Heap Too Small ... 67
9.2.2.1.2 GC Times ... 67
9.2.2.1.3 PrintGCStats Script .. 67

10 IBM J9 JVM

10.1 Implementation ... 71
10.1.1 Starting Recommendations ... 71
10.1.1.1 JIT and MMI .. 71
10.1.1.2 PSALLOC and NODISCLAIM (AIX only)....................................... 72
10.1.2 Heap Memory and Garbage Collection .. 72
10.1.2.1 Heap Settings .. 73
10.1.2.2 Starting Recommendations .. 73
10.1.2.3 Garbage Collection Statistics .. 74
10.2 Monitoring... 75
10.2.1 Garbage Collection Statistics... 75
10.2.1.1 Frequency of GC Health Check ... 76

 xxi

10.2.1.2 GC Times ...76
10.2.1.3 Potential Memory Leak...76
10.2.2 Extensible Verbose Toolkit ...76
10.2.3 Heapdump ..77

11 BEA JRockit

11.1 Implementation ..79
11.1.1 Starting Recommendations..79
11.1.1.1 Heap Settings ...80
11.1.1.2 Garbage Collection Statistics...80

12 BEA WebLogic

12.1 Implementation ..83
12.1.1 BEA’s WebLogic Tuning Recommendations.......................................83
12.1.1.1 Server Tuning...84
12.1.1.1.1 Work Manager ...84
12.1.1.2 Application Server Instances...84
12.1.1.3 WebLogic Connection Pool ..84
12.1.1.3.1 Define Data Source in Selling and Fulfillment Foundation85
12.1.1.4 JSP Pre-Compilation ..87
12.1.1.5 WebLogic Server Cluster ..88
12.1.2 HTTP Load-Balancing ..88
12.1.2.1 HTTP Session Replication..89
12.2 Monitoring...89

13 IBM WebSphere

13.1 Implementation ..91
13.1.1 WebSphere Tuning ...91
13.1.1.1 WebSphere Queuing Network..91
13.1.1.2 WebSphere Connection Pool ...92
13.1.1.2.1 Define Data Source in Selling and Fulfillment Foundation93
13.1.1.2.2 Define a Connection Pool in WebSphere.................................93
13.1.1.3 JSP Pre-Compilation ..95
13.1.2 HTTP Load-Balancing ..95

xxii Performance Management Guide

13.2 Monitoring... 96

14 JBoss

14.1 Implementation ... 97
14.1.1 JBoss Tuning .. 97
14.1.1.1 JSP Pre-Compilation.. 97

15 Database Management System

15.1 Overview ...101
15.2 Planning...101
15.2.1 Supported Configuration..101
15.2.2 Server Sizing ...102
15.2.3 Disk Subsystem ...102
15.2.3.1 Disk Technology..102
15.2.4 Selling and Fulfillment Foundation Schema104
15.2.4.1 Indices...104
15.2.4.1.1 Custom Indices ..105

16 Oracle10g

16.1 Implementation ..107
16.1.1 Recommended Oracle Parameters ..107
16.1.1.1 processes...108
16.1.1.2 compatible ...110
16.1.1.3 sga_max_size, sga_target, pga_aggregate_target110
16.1.1.4 cursor_sharing..111
16.1.1.5 optimizer_mode ..111
16.1.1.6 open_cursors ..111
16.1.1.7 query_rewrite_enabled and query_rewrite_integrity...................111
16.1.1.8 hpux_sched_noage..112
16.1.1.9 max_async_ports, disk_asynch_io ...113
16.1.2 Automatic Storage Management (ASM) ...113
16.1.3 Redo Logs ...114
16.1.3.1 Redo File Size ...115
16.1.4 Server Mode ..115

 xxiii

16.1.5 Selling and Fulfillment Foundation Schema116
16.1.5.1 Oracle Index Monitoring and Tuning...116
16.1.5.2 Oracle Table Partitioning ..116
16.1.5.3 Oracle Table Partition Compression..117
16.1.5.4 Tablespaces..118
16.1.5.4.1 Tables ..119
16.1.5.5 Index and Table Statistics ..119
16.1.5.5.1 Volatile Tables ...119
16.1.5.5.2 Skewed Columns and Histograms120
16.1.5.5.3 Identifying Skewed Columns..122

17 IBM Universal Database (UDB)

17.1 Implementation ..123
17.1.1 Recommended UDB dbset Registry Variables123
17.1.2 Recommended DBM CFG Parameters ..125
17.1.3 Recommended DB CFG Parameters...129
17.1.3.1 UDB Event Monitors...132
17.1.3.2 Table and Index Statistics ..133
17.1.3.2.1 Volatile Tables ...133
17.1.3.3 CLI Packages ..134
17.1.4 Selling and Fulfillment Foundation Schema134
17.1.4.1 UDB Index Monitoring and Tuning ...134
17.1.4.2 Index and Table Statistics ..135

18 Microsoft SQL Server

18.1 Implementation ..137
18.1.1 Parameters ...137
18.1.2 Microsoft SQL Server Index Monitoring and Tuning137
18.1.3 Statistics...138

19 Advanced Database Topic - Oracle10g Real Application
Cluster Database

19.1 Overview ...139
19.2 Planning ..139

xxiv Performance Management Guide

19.2.1 Supported DB Platforms ..139
19.2.2 Supported Filesystems ..140
19.2.3 Oracle RAC Support Limitations..140
19.2.3.1 OLTP Applications and Oracle RAC Concerns..............................140
19.2.4 Recommendations ..141
19.2.4.1 Sequence Numbers..141
19.2.5 High Availability ...142
19.2.5.1 WebLogic Connection Pool Properties143
19.2.5.2 TCP/IP ...144
19.2.5.3 Fast Application Notification Support ..144

20 Java Message Services

20.1 Overview ...147
20.1.1 Agent Queues ..147
20.1.2 Integration Queues...148
20.2 Implementation ..148
20.2.1 Persistence..148
20.2.2 Dedicated Queues ..149
20.2.3 Queue File Placement..150
20.2.3.1 Performance ...150
20.2.3.2 Availability ...150
20.2.4 Parameters..150

21 BEA WebLogic JMS

21.1 WebLogic JMS Recommendations ..151
21.1.1 Dedicated JMS Server ...151
21.1.1.1 Integration Queues..151
21.2 Message and Byte Paging ...152

22 IBM WebSphere MQ

22.1 WebSphere MQ Parameters ..153
22.1.1 Channel ..153
22.1.2 Log Files ...154
22.2 Placement of MQ Log and Data Files ..154

 xxv

23 General Recommendations

23.1 Planning ..157
23.1.1 Scalability Requirements ...157
23.1.2 System Test ..159
23.2 User Interfaces ...160
23.2.1 Sterling Selling and Fulfillment Suite: Application Console................160
23.2.1.1 Customization...160
23.2.1.2 HTML Compression ..161
23.2.1.3 Temporary Internet Files ..162
23.2.1.4 SSL Acceleration ...163
23.2.1.5 Search Screens ...163
23.2.1.5.1 Case-insensitive Search ..164
23.2.1.6 JSP Pre-compilation ...165
23.2.1.7 HTML Limitations...166
23.2.2 Applications Manager..166
23.2.3 Rich Client Program Interface ..166
23.2.3.1 Enabling Content Compression ..166
23.2.3.2 Images ..167
23.2.4 Guidelines for Processing Large Orders..168
23.2.4.1 Best Practices ...169
23.2.4.2 Other Architectural Considerations...170
23.3 Integration Adapters/Agents...171
23.3.1 Agent Criteria ..172
23.3.2 Agent Getters ..173
23.3.3 Agent Thread Levels ...174
23.3.3.1 Excessive Agent Scheduling ..175
23.4 Java Message Service ..175
23.4.1 Integration Queues...175
23.4.2 Dedicated JMS Destination ..176
23.4.3 JMS Persistence ...176
23.5 Performance Feature - Reference Data Caching177
23.5.1 Overview ..177
23.5.2 Cache Management ..177
23.5.3 Caching Strategies ...178
23.5.3.1 Automatically Refreshing Data Cache179

xxvi Performance Management Guide

23.5.3.2 Manually Refreshing Data Cache..179
23.5.3.3 List of Cache Managers ..180
23.5.3.4 Cleaning Up the Cache Managers List180
23.5.4 Enabling Reference Data Caching ...180
23.5.4.1 Controlling the size of the Cache ...181
23.5.5 Strategies for Enabling Reference Data Caching..............................184
23.5.5.1 Monitoring Cache ..185
23.5.5.1.1 Cache Drop Messages ...185
23.5.5.2 YFS_HEARTBEAT ...185
23.5.6 Services..186
23.5.7 APIs ...186
23.5.7.1 API Output XML Files ...186
23.5.7.2 List APIs...187
23.5.7.3 User Exits and Events ..187
23.5.8 Wildcard Characters..188
23.5.9 log4j Logging...189
23.5.9.1 Logging Level ...189
23.5.9.2 Log Destinations ...190
23.5.10 Property File ..191
23.5.10.1 Application Server Connection Pool Parameters193
23.5.10.2 Integration/Agent Server Connection Parameters.......................193
23.5.10.3 Reference Data Cache Parameters ...194
23.5.10.4 User Interface Control..194
23.5.10.5 API Control...195
23.5.10.6 Statistics ..195
23.5.10.7 Inventory Locking..196
23.5.10.7.1 Hot SKU Feature ..196
23.5.10.7.2 yfs.inventory.sortandlock ..196
23.5.11 Performance Feature - Hot SKU..197
23.5.11.1 Determining The Amount Of Inventory Lock Contention197
23.5.11.1.1 Determining Level of Lock Contention in Oracle198
23.5.11.1.2 Determining the Level of Lock Contention in UDB..................199
23.5.11.2 Conditions For Inventory Lock Contention200
23.5.11.3 Optimization ...200
23.5.11.4 Hot SKU Feature ...201

 xxvii

23.5.11.4.1 Hot SKU Feature (without lock request timeout)201
23.5.11.4.2 Hot SKU Feature with Lock Request Timeout option203
23.5.11.5 Consolidate Additional Inventory Agent205
23.5.11.6 Hot SKU Activity Monitoring ..205
23.5.11.7 Hot SKU Controls ..207
23.5.11.8 Three Usage Scenarios...208
23.5.11.9 Limitations ...209
23.5.12 Sort Order and Deadlocks..210
23.5.12.1 Sort Order..211
23.5.13 Application Servers...211
23.5.14 MS Internet Explorer ..212
23.5.14.1 Temporary Internet Files ..212
23.6 Monitoring..212
23.6.1 System Management Console and Health Monitor Agent212
23.6.2 Statistics...213
23.6.3 Inbox ...214
23.6.4 Application Logs...215

24 Sterling Distributed Order Management

24.1 Selling and Fulfillment Foundation Distributed Order Management Agents
217

24.1.1 Schedule Agent for Backorder Efficiency ..217
24.1.2 Real-Time Inventory Availability Monitor for ATP Efficiency...............218
24.1.3 Getters with Enterprise Code ...219
24.1.4 Sort Order and Deadlocks..220
24.1.4.1 Sort Order..221
24.1.5 Agent Throughput ..221
24.1.5.1 Order Creation Throughput ...221
24.1.5.2 Order LifeCycle Throughput ..223
24.1.5.3 Order Kit Line Creation Throughput..224
24.1.5.4 Throughput Query Limitations ...224
24.1.5.4.1 Reprocessing ...225
24.1.5.4.2 Maximum Potential Throughput ..225

xxviii Performance Management Guide

25 Sterling Warehouse Management System

25.1 Property File ...227
25.2 WMS Agents ...229
25.2.1 Scheduling Using Agent Criteria Group ..229
25.2.2 Processing Concurrency ..230
25.2.2.1 Create Wave...230
25.2.2.2 Release Wave ...230
25.2.2.2.1 Allocate Task Agent ..231
25.2.2.3 Agents Between Create Wave to Release Wave..........................231
25.2.3 Purge ...232
25.3 Database ...232
25.3.1 Long Running Transactions in UDB..232
25.4 JVM Settings...233
25.4.1 Java Stack Size ..233
25.5 User Interfaces ...233
25.5.1 Selling and Fulfillment Foundation UI Console233
25.5.1.1 Asynchronous Manifest Closure ...233
25.5.2 Asynchronous Batch Confirmation...234
25.5.3 Mobile Devices ...235

26 Performance Tuning Considerations for BI (Business
Intelligence)

Index

 xxix

Preface

This document provides implementation, tuning, and monitoring
recommendations and guidelines for the Selling and Fulfillment
Foundation Release 8.5 application.

Intended Audience
This manual is intended for technical architects, performance engineers,
application administrators, database administrators, and system
administrators who have to implement, monitor, and optimize Selling and
Fulfillment Foundation running in production.

Structure
This manual contains the following sections:

Chapter 1, "Introduction"
This chapter introduces this document.

Chapter 2, "Performance Recommendations Checklist"
As a quick reference, this chapter lists the recommendations found in this
guide in a checklist format.

Chapter 3, "Computer System"
This chapter provides general performance recommendations for
computer servers.

xxx Performance Management Guide

Chapter 4, "IBM AIX"
This chapter provides performance recommendations for AIX computer
servers.

Chapter 5, "HP HP-UX11i"
This chapter provides performance recommendations for HP-UX
computer servers.

Chapter 6, "Red Hat Enterprise Linux"
This chapter provides performance recommendations for Red Hat
Enterprise Linux computer servers.

Chapter 7, "Sun Solaris"
This chapter provides performance recommendations for Solaris
computer servers.

Chapter 8, "General JVM Recommendations"
This chapter provides general performance recommendation for Java
Virtual Machines.

Chapter 9, "HotSpot JVM"
This chapter provides performance recommendations for SunSoft JVMs.

Chapter 10, "IBM J9 JVM"
This chapter provides performance recommendations for IBM JVMs.

Chapter 11, "BEA JRockit"
This chapter provides performance recommendations for BEA JRockit
JVMs.

Chapter 12, "BEA WebLogic"
This chapter provides tuning recommendations for BEA WebLogic
application servers.

Chapter 13, "IBM WebSphere"
This chapter provides tuning recommendations for IBM WebSphere
application servers.

 xxxi

Chapter 14, "JBoss"
This chapter provides tuning recommendations for JBoss application
servers.

Chapter 15, "Database Management System"
This chapter provides performance recommendations for database
servers.

Chapter 16, "Oracle10g"
This chapter provides performance recommendations for Oracle10g.

Chapter 17, "IBM Universal Database (UDB)"
This chapter provides performance recommendations for IBM UDB.

Chapter 18, "Microsoft SQL Server"
This chapter provides performance recommendations for Microsoft SQL
Server.

Chapter 19, "Advanced Database Topic - Oracle10g Real
Application Cluster Database"
This chapter guides you through the planning and implementation of
Oracle10g Real Application Cluster as a clustered database for scalability
and availability.

Chapter 20, "Java Message Services"
This chapter provides a high level overview of how Selling and Fulfillment
Foundation uses JMS, and general recommendations.

Chapter 21, "BEA WebLogic JMS"
This chapter provides recommendations on how to configure the BEA
WebLogic JMS.

Chapter 22, "IBM WebSphere MQ"
This chapter provides recommendations on how to configure the IBM
WebSphere MQ.

xxxii Performance Management Guide

Chapter 23, "General Recommendations"
This chapter provides general recommendations on how to configure
Selling and Fulfillment Foundation.

Chapter 24, "Sterling Distributed Order Management"
This chapter provides recommendations on how to configure the Sterling
Distributed Order Management.

Chapter 25, "Sterling Warehouse Management System"
This chapter provides recommendations on how to configure the Sterling
Warehouse Management System.

Chapter A, "References"
This chapter lists books, articles, and web sites referenced in this
document.

Selling and Fulfillment Foundation
Documentation

For more information about the Selling and Fulfillment Foundation

components, see the following manuals:

Selling and Fulfillment Foundation: Release Notes

Selling and Fulfillment Foundation: Installation Guide

Selling and Fulfillment Foundation: Upgrade Guide

Selling and Fulfillment Foundation: Configuration Deployment Tool
Guide

Selling and Fulfillment Foundation: Performance Management Guide

Selling and Fulfillment Foundation: High Availability Guide

Selling and Fulfillment Foundation: System Management Guide

Selling and Fulfillment Foundation: Localization Guide

Selling and Fulfillment Foundation: Customization Basics Guide

Selling and Fulfillment Foundation: Customizing APIs Guide

Selling and Fulfillment Foundation: Customizing Console JSP Interface
for End User Guide

 xxxiii

Selling and Fulfillment Foundation: Customizing the RCP Interface
Guide

Selling and Fulfillment Foundation: Customizing User Interfaces for
Mobile Devices Guide

Selling and Fulfillment Foundation: Customizing Web UI Framework
Guide

Selling and Fulfillment Foundation: Customizing Swing Interface
Guide

Selling and Fulfillment Foundation: Extending the Condition Builder
Guide

Selling and Fulfillment Foundation: Extending the Database Guide

Selling and Fulfillment Foundation: Extending Transactions Guide

Selling and Fulfillment Foundation: Using Sterling RCP Extensibility
Tool Guide

Selling and Fulfillment Foundation: Integration Guide

Selling and Fulfillment Foundation: Product Concepts Guide

Sterling Warehouse ManagementTM System: Concepts Guide

Selling and Fulfillment Foundation: Application Platform Configuration
Guide

Sterling Distributed Order ManagementTM: Configuration Guide

Sterling Supply Collaboration: Configuration Guide

Sterling Global Inventory VisibilityTM: Configuration Guide

Catalog ManagementTM: Configuration Guide

Sterling Logistics Management: Configuration Guide

Sterling Reverse LogisticsTM: Configuration Guide

Sterling Warehouse Management System: Configuration Guide

Selling and Fulfillment Foundation: Application Platform User Guide

Sterling Distributed Order Management: User Guide

Sterling Supply Collaboration: User Guide

Sterling Global Inventory Visibility: User Guide

xxxiv Performance Management Guide

Sterling Logistics Management: User Guide

Sterling Reverse Logistics: User Guide

Sterling Warehouse Management System: User Guide

Selling and Fulfillment Foundation: Mobile Application User Guide

Selling and Fulfillment Foundation: Business Intelligence Guide

Selling and Fulfillment Foundation: Javadocs

Sterling Selling and Fulfillment SuiteTM: Glossary

Parcel Carrier: Adapter Guide

Selling and Fulfillment Foundation: Multitenant Enterprise Guide

Selling and Fulfillment Foundation: Password Policy Management
Guide

Selling and Fulfillment Foundation: Properties Guide

Selling and Fulfillment Foundation: Catalog Management Concepts
Guide

Selling and Fulfillment Foundation: Pricing Concepts Guide

Business Center: Item Administration Guide

Business Center: Pricing Administration Guide

Business Center: Customization Guide

Business Center: Localization Guide

Conventions
The following conventions may be used in this manual:

Convention Meaning

. . . Ellipsis represents information that has been
omitted.

< > Angle brackets indicate user-supplied input.

mono-spaced text Mono-spaced text indicates a file name, directory
path, attribute name, or an inline code example or
command.

 xxxv

/ or \ Slashes and backslashes are file separators for
Windows, UNIX, and Linux operating systems. The
file separator for the Windows operating system is
"\" and the file separator for UNIX and Linux
systems is "/". The UNIX convention is used unless
otherwise mentioned.

<INSTALL_DIR> User-supplied location of the Selling and Fulfillment
Foundation installation directory. This is only
applicable for Release 8.0 or later.

<INSTALL_DIR_OLD> User-supplied location of the Selling and Fulfillment
Foundation installation directory (for Release 8.0 or
later).

Note: This is applicable only for users upgrading
from Release 8.0 or later.

<YANTRA_HOME> User-supplied location of the Sterling Supply Chain
Applications installation directory. This is only
applicable for Releases 7.7, 7.9, and 7.11.

<YANTRA_HOME_OLD> User-supplied location of the Sterling Supply Chain
Applications installation directory (for Releases 7.7,
7.9, or 7.11).

Note: This is applicable only for users upgrading
from Releases 7.7, 7.9, or 7.11.

<YFS_HOME> For Releases 7.3, 7.5, and 7.5 SP1, this is the
user-supplied location of the Sterling Supply Chain
Applications installation directory.

For Releases 7.7, 7.9, and 7.11, this is the
user-supplied location of the <YANTRA_
HOME>/Runtime directory.

For Release 8.0 or above, the <YANTRA_
HOME>/Runtime directory is no longer used and this
is the same location as <INSTALL_DIR>.

<YFS_HOME_OLD> This is the <YANTRA_HOME>/Runtime directory for
Releases 7.7, 7.9, or 7.11.

Note: This is only applicable for users upgrading
from Releases 7.7, 7.9, or 7.11.

Convention Meaning

xxxvi Performance Management Guide

<ANALYTICS_HOME> User-supplied location of the Sterling Analytics
installation directory.

Note: This convention is used only in the
Selling and Fulfillment Foundation: Business
Intelligence Guide.

<COGNOS_HOME> User-supplied location of the IBM Cognos 8
Business Intelligence installation directory.

Note: This convention is used only in the
Selling and Fulfillment Foundation: Business
Intelligence Guide.

<MQ_JAVA_INSTALL_
PATH>

User-supplied location of the IBM WebSphere®
MQ Java components installation directory.

Note: This convention is used only in the
Selling and Fulfillment Foundation: System
Manangement and Administration Guide.

<DB> Refers to Oracle®, IBM DB2®, or Microsoft SQL
Server® depending on the database server.

<DB_TYPE> Depending on the database used, considers the
value oracle, db2, or sqlserver.

Convention Meaning

 xxxvii

Note: The Selling and Fulfillment Foundation documentation set uses the
following conventions in the context of the product name:

Yantra is used for Release 7.7 and earlier.

Sterling Supply Chain Applications is used for Releases 7.9 and 7.11.

Sterling Multi-Channel Fulfillment Solution is used for Releases 8.0
and 8.2.

Selling and Fulfillment Foundation is used for Release 8.5.

xxxviii Performance Management Guide

Introduction 1

1
Introduction

This document is the Performance Management Guide for the Selling and
Fulfillment Foundation Release 8.5.

Performance Management is defined as all the activities one performs to
ensure responsive service and processing throughput that meet the
business needs at an acceptable cost.

1.1 Lifecycle
Performance Management activities occur throughout the project
lifecycle. They could range from initial hardware sizing studies during the
presales phase, architectural trade-off studies and risk mitigation studies
during the design phase, load or system tests prior to implementation, to
continual system monitoring and tuning in production.

1.2 System Components and Roles
Performance Management activities are wide-ranging and affect all
aspects of the system ranging from computer nodes, network, disks,
application servers to Selling and Fulfillment Foundation.

One person (or role) may be responsible for one, several or all of the
components. Some typical roles include:

Hardware Engineer

System Administrator

Local Area Network Engineer

Wide Area Network Engineer

Application Server Administrator

2 Performance Management Guide

System Components and Roles

Database Administrator

Selling and Fulfillment Foundation Administrator

Capacity Planner

Performance Analyst

Architect/Planner

Given the diversity of interest and responsibilities, we have arranged this
document into the following parts.

For example, the chapters in Part I, "Computer Systems" present the
steps needed to configure the computer system nodes for Selling and
Fulfillment Foundation. This section should be of interest to the Hardware
Engineers, System Administrators, Local Area Network Engineers, and
Wide Area Network Engineers.

The chapters in Part II, "Java Virtual Machines" explain how to configure
the Java Virtual Machine (JVM). The JVM is the operating environment for
Java applications which includes the BEA WebLogic, IBM WebSphere,
JBoss application server, the Selling and Fulfillment Foundation
Agent/Monitor Servers, and so on. This chapter should be of interest to
the Application Server Administrators and Selling and Fulfillment
Foundation Administrators.

The chapters in Part III, "Application Servers" presents the steps needed
to configure the BEA WebLogic, IBM WebSphere, and JBoss application
servers. This component provides the runtime environment for Selling
and Fulfillment Foundation. This chapter should be of interest to the
Application Server Administrators.

The chapters in Part IV, "Database Management Systems" discusses the
key recommendations for the Oracle, UDB, and Microsoft SQL Server
database servers.

Chapter 19, "Advanced Database Topic - Oracle10g Real Application
Cluster Database" discusses the recommendations for implementing
Oracle10g Real Application Cluster for scalability and high availability.

Part VI, "Selling and Fulfillment Foundation" discusses how to configure
Selling and Fulfillment Foundation. This chapter should be of interest to
the Selling and Fulfillment Foundation Administrator.

Principles

Introduction 3

The Performance Analyst or the person who is responsible for monitoring
the Selling and Fulfillment Foundation system in production should read
all chapters.

The Architect or Planner who is responsible for architecting and designing
the entire system should read all the chapters.

1.3 Principles
When performing the performance management activities, you should
keep in mind the following principles.

1.3.1 Having Your Cake and Eating It, Too
Performance and scalability are critical architectural attributes. In an
ideal world, we would have the luxury of configuring systems with an
infinite number of the latest and fastest system components. In reality,
we have to construct systems that balance performance with other
architectural attributes such as availability, affordability, security,
maintainability, operability, interoperability, scalability, and many other
words that end in "ility".

Take for example the following simple trade-off study between only three
attributes - affordability, scalability and maintainability. If you want to
configure a database with very fast I/O (maximize scalability) with a
limited software budget (maximize affordability), you could implement
your database files on raw devices which, to some, can be more difficult
to manage. However, if you think that approach comes with unacceptable
maintainability and operability burdens, you could implement the
database files on the regular Unix file system. This approach would
improve maintainability and operability at no additional cost but may not
scale under high transaction volumes. If performance is important, you
may opt to implement a specialized file system that provides raw-device
performance and the maintainability of file systems. Here you would
choose to maximize performance and maintainability at the expense of
additional cost - you must purchase this specialized software.

The example above is a fairly simple trade-off study. Recognizing this
reality, this document identifies major decision junctures, provides the
context of how they fit within the overall system, provides rationale for
our recommendations, and assists you in arriving at your own decision
that is relevant to your organization’s needs.

4 Performance Management Guide

Principles

The planning sections are not recipe books. We do not provide a specific
set of instructions that you can blindly follow to completion because we
recognize that you may have unique business or operational
requirements.

1.3.2 Keep It Simple Strategy
There are a large number of settings that can be tuned in a complex
system. On HP-UX, there are over 100 TCP/IP, UDP and IP settings, over
50 HP-UX kernel parameters, close to 550 undocumented Oracle
parameters, and over 250 documented Oracle parameters. The
permutations and combinations of these settings are staggering. Some
adjustments are beneficial - some not. Some may negate the benefit of
others.

This Performance Management Principle proposes that systems be
implemented with their default settings and that changes only be made
when necessary.

This document identifies those adjustments that we believe are critical or
beneficial. These include connection pooling, reusable SQL, Java heap
settings. We identify the parameters which we believe are optional and
that you can set when there is a clear need.

1.3.3 Your Mileage May Vary
One day, an inquisitive little girl asked her mother why she trimmed the
sides of the roast before putting it into the oven. The mother said that
that was how her mother cooked. The little girl, still curious, asked the
grandmother. After finishing laughing, the grandmother explained to the
little girl that a long time ago, she had a tiny oven. She had to trim the
side of the roast to prevent it from touching the side of the oven.

You should not take our recommendations (or recommendations from
any book) as absolute truths. Recommendations may apply to most but
not all systems. We identify those recommendations that we believe are
critical. We highly recommend that you understand the context and the
implications of each recommendation. We also highly recommend that
you test each recommendation prior to production.

Principles

Introduction 5

1.3.4 Performance Recommendations Graveyard
Technology changes rapidly. Processors double in speed every eighteen
months. There are major performance enhancements every software
release. As a result, recommendations that were at one time critical to a
particular release of Selling and Fulfillment Foundation can become
deprecated. In addition, to apply the recommendations, you may at
times have to remove the obsolete recommendations.

In conjunction with the Keep It Simple Strategy and the Your Mileage
May Vary Principles, you should:

Apply tuning optimization changes when needed but only after
testing.

Capture these changes in a formal change management system.

Document the changes from the default settings and why they were
deemed necessary.

Question their applicability as the system evolves - for example,
during upgrades, operating system changes, and so forth.

We present a list of deprecated recommendations in Section 2.2,
"Performance Recommendations Graveyard".

1.3.5 System Test Before Going Live
We cannot over-emphasize the importance of system tests before going
live. This recommendation can be seen throughout this document. Your
system is different from other Selling and Fulfillment Foundation systems
because:

It has its own unique set of external systems that it connects to.

It has groups of users performing work that is specific to your
business, and so forth.

It is configured differently from other systems, and so forth.

It has different levels of customization.

It may have some screens or processes that, although are optimized
for general use, may not be optimal for your specific use.

As a result, we strongly encourage all our customers to system test the
entire system, which is made up of the Selling and Fulfillment Foundation

6 Performance Management Guide

Principles

system and all the external systems, under anticipated peak transaction
volumes prior to implementation into production.

1.3.6 Measure Thrice, Check Twice, Cut Once
An old adage in carpentry is to Measure Thrice, Check Twice and Cut
Once.

In the heat of a performance problem, it is very tempting to try different
tuning parameters without fully understanding the root-cause of the
problem. Some changes or combination of changes can have a negative
impact on the system. After trying many tuning changes, it is possible
that some of the non-beneficial changes are not rolled back.

From past experiences, we found that system optimization is often more
effective and efficient if the problem is correctly analyzed and the root
cause clearly identified. An approach that we have adopted is as follows:

(measure) Measure the system to establish the baseline performance
and throughput.

(measure) Measure the system when performance issues arise.

(check) Given the symptoms, formulate theories as to the root-cause
of the problem and the potential tuning changes.

(check) Ensure you can explain why certain tuning recommendations
can help alleviate the problem and to formulate the expected
behavior if the tuning change is applied.

(cut) Make one (or a few) tuning change at a time - in some cases,
multiple changes could negate the benefit of other changes.

(measure) Measure the system and see if the system gained the
intended benefits.

Measure Thrice, Check Twice, Cut Once.

1.3.7 Cascading Failure
A defense logistics officer, once gruffly reminded a group of young pilots
that their new fighter jet was nothing more than 50,000 parts flying in
tight formation.

This message has many parallels to any large computing systems. A
large application system has many working components ranging from

Principles

Introduction 7

physical disk drives, operating systems, interfaces to external systems,
application servers to database. All of these highly interconnected and
dependent components must work well for the system to perform.

Lets us assume that a Selling and Fulfillment Foundation transaction calls
out to an external system to check on item availability. If that external
system is unable to scale or performs poorly, that Selling and Fulfillment
Foundation transaction waits, which results in a thread being blocked. If
there are many requests for that transaction, the system could become
stalled when all the threads become blocked. As a result, a poorly tuned
system could have a ripple effect on integrated systems.

This document presents some of these interdependencies along with
approaches to monitoring them.

1.3.8 Only the Facts Jack
This document does not attempt to rewrite the vast body of tuning
knowledge found in the public domain. This document also does not
serve as a substitute for third party vendor training such as IBM, BEA
and Oracle. Instead, this document provides recommendations that
supplement or deviate from conventional recommendations or
recommendations that are specific to Selling and Fulfillment Foundation.
We have liberally referenced many excellent sources of information - the
Web, books, magazine articles, and so forth - that we found useful. A list
of these references are found in Appendix A, "References".

8 Performance Management Guide

Principles

Performance Recommendations Checklist 9

2
Performance Recommendations Checklist

This chapter provides a list of some of the recommendations found in this
document in a checklist format. We encourage you to fully understand
the rationale behind these recommendations and their implications to the
overall system.

2.1 Performance Checklist
In the following tables, the columns "Dev" and "Prod" indicate whether
the recommendations are Recommended (R), Critical (C) or Not
Applicable (NA) in a Development or Production environment
respectively.

2.1.1 Planning Checklist
The following are long-lead time planning elements. For example, you
need to ask for a server node sizing in order to know how much
computer resources to acquire. Some configurations could have more
than one month lead-time.

Table 2–1 Planning Recommendations

Recommendation Section Dev Prod Comments

Server Node Sizing 3.2.2.1

3.2.2.2

NA C You must ensure you have
sufficient computing capacity to
process peak transaction
volumes.

Database Disk
Sizing

3.2.2.3 NA C You must have sufficient disk
space for database server

10 Performance Management Guide

Performance Checklist

2.1.2 Architectural Checklist
The following recommendations are architectural or design related.

2.1.3 Computer Node Implementation Checklist

Table 2–2 Planning Recommendations

Recommendation Section Dev Prod Comments

Ensure user exit or
event processing
times are minimal
when holding on to
critical locks.

23.5.7.3 C C When defining or coding user
exits or events, make sure you
are aware of locks held and the
amount of time you could spend
in the exit or event.

Record Sorting
Strategy to avoid
deadlocks

23.5.12 C C Apply this recommendation to
custom code or the manner in
which records are locked to avoid
deadlocks.

Table 2–3 Computer Server Node Implementation Recommendations

Recommendation Section Dev Prod Comments

OS Version and OS
Kernel Parameters

3.2.1 C C Make sure you install the Selling
and Fulfillment Foundation
system on certified OS versions
and levels.

Network Speed and
Duplex Negotiation

3.3.2.2 C C Make sure your network cards
are operating at the highest
speeds. The network interface
card and the network switch can
negotiate to lower speed and
duplex. When that happens,
performance degrades noticeably,
even under low transaction
volumes.

Performance Checklist

Performance Recommendations Checklist 11

2.1.4 Java Virtual Machine Implementation Checklist

AIX Recommendations

Page Space
Allocation

4.1.1 C C AIX’s default page space
allocation policy does not reserve
swap space when processes
allocate memory allocations. This
could lead to swap space
over-commitment which forces
AIX to kill processes when it runs
out of swap space. Either:

Ensure sufficient swap space
or

Set the environment variables:
 PSALLOC=EARLY
 NODISCLAIM=TRUE

AIX/Oracle Recommendations

asynchronous I/O
parameters

4.1.2.1 NA C The default asynchronous I/O
parameters are set too low.

WebLogic / AIX Recommendations

udp_sendspace 4.1.2.1 C C WebLogic’s multicast packets are
larger than AIX’s udp_sendspace
buffers. At the default level, you
may get multicast errors.

Set udp_sendspace to 32768

Table 2–4 JVM Implementation Recommendations

Recommendation Section Dev Prod Comments

JVM Version 8.2 C C Make sure you install the Selling
and Fulfillment Foundation
system on certified JVM versions
and levels.

Table 2–3 Computer Server Node Implementation Recommendations

Recommendation Section Dev Prod Comments

12 Performance Management Guide

Performance Checklist

Add
-showversion to
the JVM command
line

8.3.1.2 R R During the JVM startup, the JVM
version and mode are displayed.
This simple step helps eliminate
cases where the wrong JVM is
used.

Verbose GC
Statistics

8.3.1.3 NA C Enable verbose GC statistics
collection. Understanding the
"health" of GCs for each JVM is
critical for performance.

Defer distributed
garbage collection
to a long interval
by setting
-Dsun.rmi.dgc.
server.gcInter
val

8.3.1.3 NA C The default distributed garbage
collection setting unnecessarily
forces expensive Full Garbage
Collections every minute. The
impact is noticeable especially for
large heaps that are larger than
600MB.

You should set this parameter on
both the Selling and Fulfillment
Foundation agents and the
application servers.

Monitor for Paging 8.4.2 C C The JVM heap must be resident in
memory. Performance degrades
noticeably if the OS has to page
portions of the heap out to disk.

Monitor for
OutOfMemory
exceptions

8.4.3 C C OutOfMemory exceptions can
cause unpredictable application
behaviors. As a safety measure,
Selling and Fulfillment
Foundation stops the JVM when
it catches an OutOfMemory
exception.

For HotSpot JVMs

JVM VM modes 9.1.1.1 C C For HotSpot JVMs, the server
mode is more applicable for long
running workloads.

Table 2–4 JVM Implementation Recommendations

Recommendation Section Dev Prod Comments

Performance Checklist

Performance Recommendations Checklist 13

For HotSpot JVMs
running WebLogic,
set
-XX:MaxPermSiz
e=256m

9.1.1.2 C C The default permanent generation
space setting is too small for Sun
and HP JVMs. If you don’t
increase this setting, the JVM fails
and throw a cryptic
java.lang.OutOfMemory
exception.

For HP JVMs,
ensure amount of
free space in the
Old Generation is
larger than the
combined size of
the Eden plus the
occupied space in
the survivor space.

9.1.2.1.2 C C Sun and HP JVMs implement a
conservative policy called the
Young Generation Guarantee (see
[8]) that states that the amount
of free space in the Old must be
larger than the eden and survivor
space on the chance that every
object is still alive after the GC. If
the Old free is too small, the JVM
reverts to Full GCs.

Customers migrating from JDK
1.3.1 may have to increase their
overall heap size or decrease the
eden.

Heap Size 9.1.2.1.3 C C Configuring the JVM Heap
correctly is not only critical for
performance but also for
availability. If the heap is sized
too big, the GC pauses could be
very long. If the heap is larger
than physical memory, the system
could "thrash". If the heap is too
small, the JVM could experience
outOfMemory exceptions.

Table 2–4 JVM Implementation Recommendations

Recommendation Section Dev Prod Comments

14 Performance Management Guide

Performance Checklist

2.1.5 Application Server Checklist

Table 2–5 Application Server Implementation Recommendations

Recommendation Section Dev Prod Comments

Connection Pool 12.1.1.3

13.1.1.2

C Database connection
establishments are very expensive
operations. If connection pooling is
not enabled in the application
servers, transactions from
application server does not scale.

The Selling and Fulfillment
Foundation agents are
automatically started with a
connection pool that is
implemented in the agent
infrastructure.

Assign each
Selling and
Fulfillment
Foundation agent
to its own JMS
destination

20.2.2 NA C For production, dedicated JMS
queues are critical for
performance. They are also easier
to monitor. For ease of
configuration and deployment in
development, you can continue to
use the single DefaultAgentQueue
for all agents.

Assign integration-
based queues to a
separate JMS
server

20.1.2 NA C Put integration-based queues
(e.g., queues used to receive
orders from an external system)
into a separate JMS server
especially if the number of
messages in that queue could
grow to large numbers.

Precompile the
JSPs

12.1.1.4

13.1.1.3

R C The application servers compile
JSPs the first time they are used.
The compilation phase can take
over 30 seconds which could lead
users to perceive poor user
interface response times.

Note: For WebLogic, we
recommend the use of
weblogic.appc over the use of
weblogic.jspc.

Performance Checklist

Performance Recommendations Checklist 15

2.1.6 Selling and Fulfillment Foundation Checklist

Table 2–6 Selling and Fulfillment Foundation Implementation
Recommendations

Recommendation Section Dev Prod Comments

Reference Data
Cache

23.5 C Reference Data Caching is critical
for scalability for customers who
have high transaction volumes.

Reference Data Caching is also
critical for UI screen
responsiveness.

Starting in Yantra 5x 5.0 SP2, the
reference data cache is enabled
by default.

For Development or
non-production environments that
are memory constrained, you can
selectively enable Reference Data
Caching. For example, for
responsive UI, you need to, at a
minimum, cache the yfs_
resource and yfs_resource_
permissions tables.

Agents and
Messaging
Configuration

23.3.3 C For production, configure the
optimum threading level, the
assignment of agents to message
queues or destinations, and the
placement of message
destinations on message servers.

16 Performance Management Guide

Performance Checklist

2.1.7 Sterling WMS Application Checklist

Statistics 23.6.2 NA R Selling and Fulfillment
Foundation generates statistics
for internal product use as well as
use by Sterling Commerce
personnel. These statistics can be
used to monitor throughput and
to assist in performance
diagnosis.

We recommend leaving statistics
generation on and regularly
purging old statistics (e.g.,
greater than 3 weeks).

Please be aware that the content
and/or structure of the metrics
can change without warning.

Table 2–7 Sterling WMS Application Checklist

Recommendation Section Dev Prod Comments

Increase Java stack
size for create
wave and batch
wave agents if you
want to process
waves with large
number of
shipments

25.4.1 NA C These agents need large stack
sizes to perform wave
optimization calculations.

Run WMS Task
Purge on a daily
basis

25.2.3 NA C Purge moves completed YFS_
TASK records to the YFS_TASK_H
history table.

RCP clients 23.2.3 NA C Modify locations.ycfg to set the
SSL and compression features.
For remote users, we strongly
recommend setting compression.

Table 2–6 Selling and Fulfillment Foundation Implementation
Recommendations

Recommendation Section Dev Prod Comments

Performance Checklist

Performance Recommendations Checklist 17

2.1.8 Database Checklist

2.1.9 Oracle Database Checklist

Table 2–8 Database Checklist

Recommendation Section Dev Prod Comments

Monitor and adjust
indices

15.2.4 C C The Selling and Fulfillment
Foundation schema comes with a
default set of indices for general
use. In some cases, the indices
may not apply to your operational
environment.

Regularly monitor the resource
cost of frequently used queries.
See if additional indices are
needed. Also monitor if indices can
be deleted.

Table 2–9 Oracle Database Checklist

Recommendation Section Dev Prod Comments

Set cursor_
sharing=FORCE

16.1.1.4 C C This parameter makes dynamic
SQL reusable, which reduces
contention on the shared pool.

18 Performance Management Guide

Performance Checklist

2.1.10 UDB Database Checklist

Oracle: Check if
histograms are
needed

16.1.5.5 NA C As you start to populate the
database, check to see if there are
indexed columns that have
skewed data distribution - for
example, most rows have the
same value (e.g., space). These
could include fields like derived_
from_order_header_key,
chained_from_order_header_
key, derived_from_order_
line_key, chained_from_order_
line_key.

If there are skewed columns, add
a histogram. The performance
impact is very noticeable. One
customer saw a query that took
30 seconds drop to sub-second.

Table 2–10 UDB Database Checklist

Recommendation Section Dev Prod Comments

Optimizer Statistics 17.1.4.2 NA C Regularly run runstats to keep
table and index statistics up to
date to ensure the UDB optimizer
picks appropriate execution plans.

Parameters
governing UDB
locking strategy

17.1.1 C C Set DB2_EVALUNCOMMITTED,
DB2_SKIPDELETED and DB2_
SKIPINSERTED to reduce lock
contention.

Parameters
governing UDB
memory

17.1.3 C C Set parameters to manage various
memory structures such as the
LOCKLIST, SORTHEAP, etc. at
AUTOMATIC.

Set self_tuning_mem parameter
to ON to enable UDB’s self-tuning
memory features.

Table 2–9 Oracle Database Checklist

Recommendation Section Dev Prod Comments

Performance Checklist

Performance Recommendations Checklist 19

2.1.11 Monitoring Checklist

Volatile Table 17.1.3.2.
1

NA C Mark tables that change
significantly as volatile.

Table 2–11 Monitoring Recommendations

Recommendation Section Dev Prod Comments

Monitor CPU
utilization

NA C Monitor CPU utilization to ensure
there are no CPU contention.

Monitor Swap
Usage

C C If there is not enough space left
on the swap device (or paging
file), the OS could prevent
another process from starting or
in some cases be forced to kill
running processes.

Monitor Paging 8.4.2 C C The Java Virtual Machines and
Database Management Systems
rely on large memory buffers or
heaps and are sensitive to
paging. Performance degrades
noticeably if there is not enough
memory to keep the JVM heap in
memory - even in Development.

Monitor paging levels using
standard operating system or
third party measurement tools.
For example:

n On Unix and Linux, you
could use SAR.

n On Windows, use System
Monitor.

Table 2–10 UDB Database Checklist

Recommendation Section Dev Prod Comments

20 Performance Management Guide

Performance Recommendations Graveyard

2.2 Performance Recommendations Graveyard
This section lists performance recommendations that were deprecated by
this release.

Monitor Heap
Garbage Collection
Performance

C Monitoring heap GC performance
is critical for performance and
availability. For example, if the
amount of heap free after a GC is
continually increasing and
approaching the maximum heap
size, the JVM could experience
outOfMemory exceptions.

Table 2–12 Deprecated Performance Recommendations

Deprecated
In

Deprecated
Recommendations Comments

Selling and
Fulfillment
Foundation 8.0

Removed recommendations
on how to diagnose and tune
JVM fragmentation.

The new IBM JDK 1.5 (J9) JVM
was redesigned to eliminate the
fragmentation caused by pinned
and dosed objects.

Sterling
Supply Chain
Applications
7.9

Removed setting specific
values for UDB LOCKLIST,
MAXLOCKS, PCKCACHESZ,
SHEAPTHRES_SHR,
SORTHEAP, NUM_
IOCLEANERS, NUM_
IOSERVERS, DFT_
PREFETCH_SZ, MAXAPPLS
and AVG_APPLS.

Rather than specifying specific
values, we recommend allowing
UDB 9 to automatically manage
these parameters.

Sterling
Supply Chain
Applications
7.9

Oracle cursor_
sharing=SIMILAR

Use cursor_sharing=FORCE.

Yantra 7x, 7.7
in Oracle10g

Oracle Parameters - shared_
pool_size

Use Oracle10g Automatic Memory
Management (AMM) sga_max_
size, sga_target and pga_
aggregate_target.

Table 2–11 Monitoring Recommendations

Recommendation Section Dev Prod Comments

Performance Recommendations Graveyard

Performance Recommendations Checklist 21

Yantra 7x, 7.7
in Oracle10g

Statistics gathering Oracle10g automatically
schedules statistics gathering
during its maintenance window.
See new recommendations in
Section 16.1.5.5, "Index and
Table Statistics"

Yantra 7x, 7.5
and Oracle10g
RAC

In the past, we adhered to
Oracle’s recommended
setting for max_commit_
propagation_delay of 700
centiseconds (or 7 seconds).
Oracle has revised its
recommendation to 0
effectively disabling the
Lamport scheme.

For existing Oracle instances,
reset max_commit_propagation_
delay so that the default value is
0.

Table 2–12 Deprecated Performance Recommendations

Deprecated
In

Deprecated
Recommendations Comments

22 Performance Management Guide

Performance Recommendations Graveyard

23

Part I
Computer Systems

This part of the book provides implementation, configuration, monitoring
and tuning recommendations for computer systems which include the
physical server nodes and the operating systems.

This part includes the following chapters:

Chapter 3, "Computer System"

Chapter 4, "IBM AIX"

Chapter 5, "HP HP-UX11i"

Chapter 6, "Red Hat Enterprise Linux"

Chapter 7, "Sun Solaris"

24 Performance Management Guide

Computer System 25

3
Computer System

This chapter provides recommendations on how to plan, implement,
configure, monitor, and tune the operating system and the computer
nodes.

3.1 Overview
Generally speaking, from a performance perspective, the server nodes
for Selling and Fulfillment Foundation fit into two broad categories:

Database server node

Mid-tier server nodes that run Selling and Fulfillment Foundation, for
example, agents and application servers

3.2 Planning
The computer systems have long lead time planning elements such as
developing the configuration specifications, soliciting bids, procuring the
configuration. The lead time to delivery and set up could take up to a
month.

The choice of hardware and vendors is typically dictated by your
organization although that choice must conform to the Selling and
Fulfillment Foundation-certified technology stack.

3.2.1 Supported Configurations
Refer to the Selling and Fulfillment Foundation: Installation Guide for a
list of the support operating systems and computer servers.

26 Performance Management Guide

Implementation

3.2.2 Capacity Sizing/Resource Requirements
Selling and Fulfillment Foundation provides three tools to help you size
your computer configuration.

3.2.2.1 Pre-Sales Server Sizing
Early in the sales phase, you can request a Selling and Fulfillment
Foundation Server Sizing study to get an estimate of the processor,
memory and network requirements for the standard/baseline Selling and
Fulfillment Foundation.

3.2.2.2 Capacity Plan
Once you have fully developed the system, you can also engage Sterling
Commerce Professional Services to conduct a capacity plan study of your
system. This involves measuring your system and using the
measurements to forecast resource requirements at anticipated peak
periods.

The benefit of this approach is that the forecasting model is based on
your system which includes all your customization, and your specific
configuration.

3.2.2.3 Database Disk Sizing
The size of the database disk subsystem could range widely from a few
hundred gigabytes to terabytes. The size depends on the business order
transaction volumes, the complexity of each order, the length of time you
want to keep the orders in the active and the history database. The
Selling and Fulfillment Foundation: Installation Guide has a section to
help you estimate the space requirements for your database.

3.3 Implementation

3.3.1 Time Synchronization
Although this is not a performance recommendation, we strongly
recommend that you keep the system time synchronized across all
computer nodes using a time synchronization protocol such as Network

Implementation

Computer System 27

Time Protocol (NTP). Keeping the system time synchronized allows you to
perform the following tasks:

Correlate events in the database, Selling and Fulfillment Foundation,
and the application server logs

Correlate workload arrival, as recorded in the application server’s
access.log to system measurements (such as SAR, vmstat, and so
forth)

3.3.2 Network Connectivity

3.3.2.1 Data Center Network
The performance of the Selling and Fulfillment Foundation system is
critically dependent on the performance of the data center network. Here
are some areas to consider:

Correct auto-negotiation to the optimum bandwidth and with full
duplex

Network bandwidth

3.3.2.2 Auto-Negotiation
By design, Ethernet network interface cards (NIC) automatically
negotiate the best speed and duplex with the switch that it is connected
to. Generally, auto-negotiation work. We have, however, seen many
cases where auto-negotiation drops the connection to sub-optimal levels
(e.g., 10mps half-duplex) after a server boot.

The impact of an incorrectly negotiated network card is dramatic. For
example, at one customer, application servers took over 20 minutes to
start when the network card on the administration server negotiated the
wrong settings.

If both the network interface card and the switch are capable of
full-duplex 100mbps or 1000mbps, you can let then auto-negotiate.
Alternatively, you can manually set the higher speed and duplex as
described in the "Auto-negotiation" sections in the subsequent chapters.

An easy way to check the NIC negotiation is to FTP, SCP or RCP a large
file (e.g., 256MB) file from a test node to all other nodes.

28 Performance Management Guide

Implementation

From the database server node, create a 256MB file using the following
command:

dd if=/dev/zero of=/tmp/egg bs=16384 count=16384

Assuming that you have three nodes (applservernode1 to
applservernode3) and you can rcp or scp into each node, issue the
following:

export ALLHOSTS="applservernode1 applservernode2 applservernode3"
for i in $ALLHOSTS
do

time rcp /tmp/egg $i:/tmp/egg
done

If you cannot rcp or scp, you can issue an FTP transfer.

The time to transfer the 256MB file should be around 20 seconds for
100mbps Fast Ethernet and around 5 seconds for 1Gbps networks (for
FTP). You likely have a network negotiation problem if the transfer times
are much slower (for example 200 seconds).

Please see the following sections on how to monitor and set the network
speed and bandwidth:

AIX - See Section 4.1.3.1, "Auto-Negotiation".

HP-UX11i - See Section 5.1.1, "Auto-Negotiation".

Red Hat Linux - See Section 6.1.1, "Auto-Negotiation".

Solaris - See Section 7.1.1.1, "Auto-Negotiation".

3.3.2.3 Network Bandwidth
The network cards on the nodes running Selling and Fulfillment
Foundation must be configured with at least a 100 Mbps full-duplex link.
In some cases, for example, you may have to implement gigabit network
cards if you have high enough transactions going through the network.
Our Pre-Sales Server Sizing (see Section 3.2.2.1, "Pre-Sales Server
Sizing") specifies the anticipated minimum network speeds.

In production, you should monitor the network bandwidth utilization. One
approach is to monitor the traffic utilization at the switch.

The application stops scaling when the network is the bottleneck.

IBM AIX 29

4
IBM AIX

This chapter provides recommendations on how to plan, implement,
configure, monitor, and tune an IBM AIX server node.

4.1 Implementation

4.1.1 Page Space Allocation Policy
AIX, by default, implements a late page space allocation policy. When a
program asks for a large memory allocation, AIX grants the virtual
memory allocation but does not allocate the space on the backing store
(or swap) until it is actually used. In contrast, early page space allocation
first allocates the space in swap before granting the virtual memory.

With late page space allocation, AIX could successfully start many
processes. However, as these processes use their virtual memory, AIX
could run low on swap. When this happens, AIX chooses the youngest
process to kill. The following message on the application server’s console
indicates that it was killed:

./startManagedWebLogic.sh[216]: 13550 Killed

The following error message is shown in the AIX error log if your
application server instance was killed because of late page space
allocation:

Date/Time: Thu May 30 17:35:37
Sequence Number: 39
Machine Id: 000F257F4C00
Node Id: ibm04
Class: S
Type: PERM

30 Performance Management Guide

Implementation

Resource Name: SYSVMM

Description
SOFTWARE PROGRAM ABNORMALLY TERMINATED

Probable Causes
SYSTEM RUNNING OUT OF PAGING SPACE

Failure Causes
INSUFFICIENT PAGING SPACE DEFINED FOR THE SYSTEM
PROGRAM USING EXCESSIVE AMOUNT OF PAGING SPACE

 Recommended Actions
 DEFINE ADDITIONAL PAGING SPACE
 REDUCE PAGING SPACE REQUIREMENTS OF PROGRAM(S)

Detail Data
PROGRAM
java
USER'S PROCESS ID:
 19194
PROGRAM'S PAGING SPACE USE IN 1KB BLOCKS
 295388

You can reduce the likelihood of a late page space allocation kill by
increasing the amount of swap space. However, the recommended
approach is to selectively turn on early page space allocation by
exporting the following environment variables:

export PSALLOC=early
export NODISCLAIM=true

The NODISCLAIM environment variable will eliminate a call to the
disclaim() system routine when a free() call is issued. You will experience
high CPU utilization (due to system calls) if you use early page allocation
but do not set this variable.

You can increase swap and page space requirements significantly if you
set these two variables for all workloads. As a result, we recommend you
only set these two variables for your JVMs and not across the system for
all other workloads.

For Selling and Fulfillment Foundation agents and BEA WebLogic
application servers, you can issue the commands in the startup scripts.

Implementation

IBM AIX 31

For IBM WebSphere, you can define the environment variables in the
Environment dialog box in the administrative client.

If you make that change and not increase the swap space, the following
error message is shown immediately on startup:

Unable to alloc heap of requested size, perhaps the maxdata value is too
small - see README.HTML for more information.
Unable to allocate an initial java heap of 1073741824 bytes.
Out of memory, aborting

*** panic: JVMST016: Cannot allocate memory for initial java heap

The exception above is actually the desired behavior because AIX is
stating that it is unable to guarantee that there is enough swap space for
all potential requirements.

4.1.2 Database Server Nodes

4.1.2.1 Asynchronous I/O
AIX supports both kernelized asynchronous I/O to raw devices or Veritas
Quick I/O devices and threaded asynchronous I/O to filesystem files
(e.g., JFS). With KAIO, the Oracle process queues I/O requests in the
kernel and are notified of I/O completion by an interrupt. In contrast,
threaded asynchronous I/O uses multiple threads with each thread
issuing a synchronous I/O to simulate the asynchronous I/O.

If you are going to implement your database files on filesystems like JFS
or JFS2, you may have to monitor and tune the asynchronous I/O
tunable parameters. By default, these parameters may be set too low for
Oracle Databases on large systems with 4 CPUs or more if you are using
threaded asynchronous I/O.

The asynchronous I/O parameters are too low in your configuration if you
find the following messages in the DBWR, CKPT, or LGWR files in the
ORACLE_BASE/admin/<dbname>/bdump directory:

Warning: lio_listio returned EAGAIN
Performance degradation may be seen

The EAGAIN from the lio_listio function indicates that "the resources
necessary to queue all the I/O requests were not available" (see lio_listio

32 Performance Management Guide

Implementation

subroutine documentation in the AIX Technical Reference: Base
Operating System and Extensions Volume 1).

You can find out the current asynchronous I/O settings by issuing the
following command:

> lsattr -El aio0
autoconfig available STATE to be configured at system restart True
fastpath enable State of fast path True
kprocprio 39 Server PRIORITY True
maxreqs 4096 Maximum number of REQUESTS True
maxservers 10 MAXIMUM number of servers per cpu True
minservers 1 MINIMUM number of servers True

4.1.2.1.1 Configuring Asynchronous I/O in AIX You can change
the asynchronous I/O parameters with the following command:

chdev -l aio0 -a minservers=x -a maxservers=y -a maxreqs=z

The minservers and maxservers are at the CPU or processor level.

4.1.2.1.2 Monitoring Asynchronous I/O in AIX Monitor the actual
number of aioservers started during a typical workload using the
following command:

pstat -a | grep aioserver

You may have to increase the number of aioservers if:

The actual number of active aioservers is equal to the maxservers
and

The CPU utilization of all the aioservers appear to be even (indicating
that all aioservers are used)

You continue to see the Warning: lio_listio returned EAGAIN messages

The MetaLink Notes discusses the issue and provide recommendations
for maxreqs, minservers and maxservers:

Oracle MetaLink Note:443368.1 - How does Oracle use AIO servers
and what determines how many are used?

Implementation

IBM AIX 33

4.1.3 Network Connectivity

4.1.3.1 Auto-Negotiation
See Section 3.3.2.2, "Auto-Negotiation" for a general discussion on
network negotiations.

On AIX, you can check the link using SMIT. In SMIT, go to Devices >
Communication > Ethernet Adapter > Adapter > Change / Show
Characteristics of an Ethernet Adapter. Select the network interface. The
link speed and mode configuration is displayed in the Media Speed field.

Alternatively, you can issue the following commands:

$ lsparent -C -k ent
ent0 Available 40-58 IBM 10/100 Mbps Ethernet PCI Adapter (23100020)

$ lsattr -E -l ent0 -a media_speed
media_speed Auto_Negotiation Media Speed True

To find out the actual negotiated speed and duplex, issue the following
command:

$ netstat -v ent0 | grep Media
Media Speed Selected: Auto negotiation
Media Speed Running: 100 Mbps Full Duplex

If the auto-negotiation failed, you can set the NIC from SMIT or by
issuing the following commands:

$ chdev -l ent0 -a media_speed=100_Full_Duplex -P
ent0 changed

reboot

34 Performance Management Guide

Implementation

HP HP-UX11i 35

5
HP HP-UX11i

This chapter provides recommendations on how to plan, implement,
configure, monitor, and tune HP HP-UX11i server nodes running on HP
PA-RISC or Itanium processors.

5.1 Network Connectivity

5.1.1 Auto-Negotiation
See Section 3.3.2.2, "Auto-Negotiation" for a general discussion on
network negotiations.

On HP-UX, you can check the link by issuing the following commands:

$ lanscan
Hardware Station Crd Hdw Net-Interface NM MAC HP-DLPI DLPI
Path Address In# State NamePPA ID Type Support Mjr#
0/0/0/0 0x00306E09612B 0 UP lan0 snap0 1 ETHER Yes 119

$ lanadmin -x 0
Current Speed = 100 Full-Duplex Auto-Negotiation-ON

If the auto-negotiation failed, you can manually set the NIC by issuing
the following commands:

$ lanadmin -X 100FD 0

WARNING: an incorrect setting could cause serious network problems!!!

Driver is attempting to set the new speed
Reset will take approximately 11 seconds

36 Performance Management Guide

Database Server Nodes

5.2 Database Server Nodes

5.2.1 Asynchronous I/O
Asynchronous I/O is very important to performance especially on high
transaction volume processing environments. In summary, processes
that issue synchronous read() or write() I/O calls must wait for the I/O
to complete before it can continue. In contrast, processes can issue
multiple asynchronous (non-blocking) aio_read() or aio_write() I/O
calls in parallel without waiting.

HP-UX does not enable asynchronous I/O by default. HP-UX also only
supports asynchronous I/O on files that reside on raw devices and not on
filesystems. If you don’t enable asynchronous I/O, workloads such as
Oracle will try to run multiple DBWRs processes to get a limited amount
of I/O parallelism.

To enable asynchronous I/O on HP-UX, you have to:

Create the /dev/async character device.

Grant MLOCK privilege to the Oracle group.

Implement asynchronous I/O to the kernel.

To create the /dev/async character device:

/sbin/mknod /dev/async c 101 0x104
chown oracle:dba /dev/async
chmod 660 /dev/async

ls -l /dev/async
crw-rw-rw- 1 bin bin 101 0x000104 May 29 2007 /dev/async

In order to use asynchronous I/O, the OS group (typically dba) that the
Oracle user belongs to must be granted the MLOCK privilege. You can
check if the group has the privileges by issuing the following command:

/usr/bin/getprivgrp dba
dba: RTPRIO MLOCK RTSCHED

To grant the privilege (along with RTPRIO and RTSCHED), add the
following string to the /etc/privgroup file:

dba RTPRIO RTSCHED MLOCK

Database Server Nodes

HP HP-UX11i 37

And then run the following command to enact the new privileges:

/usr/bin/setprivgrp -f /etc/privgroup

Next, you have to configure the asynchronous disk driver into the HP-UX
kernel. To do this:

Launch the system administration manager (sam) and

Navigate to Kcweb (Kernel Configuration) > Modules

Select asynchdsk to be loaded into the kernel

Next, you need to ensure the max_async_ports is at least as high as the
maximum number of connections (which is dictated by processes). The
max_async_ports controls how many processes can open the /dev/async
device at any given time. When the maximum is reached, subsequent
processes will drop down to using synchronous (blocked) I/O. To find out
the current settings, issue:

kctune -v max_async_ports
Tunable max_async_ports
Description Maximum number of open asyncdsk ports
Module io
Current Value 600
Value at Next Boot 600
Value at Last Boot 600
Default Value 50
Can Change At Next Boot Only

To change the max_async_ports settings, go to sam > Kernel
Configuration > Tunables.

38 Performance Management Guide

Database Server Nodes

Red Hat Enterprise Linux 39

6
Red Hat Enterprise Linux

This chapter provides recommendations on how to plan, implement,
configure, monitor, and tune Red Hat Enterprise Linux (RHEL) Advanced
Server (AS) or Enterprise Server (ES) and SuSe Linux Enterprise. Check
the Selling and Fulfillment Foundation: Installation Guide for the specific
versions and platforms.

6.1 Network Connectivity

6.1.1 Auto-Negotiation
See Section 3.3.2.2, "Auto-Negotiation" for a general discussion on
network negotiations.

For Linux, you can check the link speed and duplex by issuing the
following command. The "FD" in the following output denotes full-duplex:

$ mii-tool
eth0: negotiated 100baseTx-FD flow-control, link ok
eth1: no link

40 Performance Management Guide

Network Connectivity

Sun Solaris 41

7
Sun Solaris

This chapter provides recommendations on how to plan, implement,
configure, monitor, and tune a Sun Solaris computer server.

7.1 Implementation

7.1.1 Network Connectivity

7.1.1.1 Auto-Negotiation
See Section 3.3.2.2, "Auto-Negotiation" for a general discussion on
network negotiations.

On Solaris, you can check a gigabit (GE), Quad-Fast Ethernet (QFE) and
Fast-Ethernet (HME) links with the following process:

#ifconfig -a
lo0: flags=1000849<UP,LOOPBACK,RUNNING,MULTICAST,IPv4> mtu 8232 index 1
 inet 127.0.0.1 netmask ff000000
hme0: flags=1000843<UP,BROADCAST,RUNNING,MULTICAST,IPv4> mtu 1500 index 2
 inet 10.10.10.10 netmask ffffff00 broadcast 10.10.10.255

In the example above, the server has a single HME interface. To query
the HME settings, issue the following commands:

ndd -get /dev/hme link_speed
1
ndd -get /dev/hme link_mode
1

For QFE or GE, substitute in /dev/qfe or /dev/ge respectively.

42 Performance Management Guide

Implementation

The results of the commands above are as follows:

If the auto-negotiation failed, you can manually set the NIC by issuing
the following commands:

ndd -set /dev/hme instance 0
ndd -set /dev/hme adv_100T4_cap 0 disables T4 cabling
ndd -set /dev/hme adv_100fdx_cap 1 enables 100mps full duplex
ndd -set /dev/hme adv_100hdx_cap 0 disables 100mps half duplex
ndd -set /dev/hme adv_10fdx_cap 0 disables 10mps full duplex
ndd -set /dev/hme adv_10hdx_cap 0 disables 10mps half duplex
ndd -set /dev/hme adv_autoneg_cap 0 disables autonegotiation

You can preserve the commands above across reboot by adding the
following commands to /etc/system:

set hme:hme_adv_autoneg_cap=0
set hme:hme_adv_100T4_cap=0
set hme:hme_adv_100fdx_cap=1
set hme:hme_adv_100hdx_cap=0
set hme:hme_adv_10fdx_cap=0
set hme:hme_adv_10hdx_cap=0

You also need to manually set the switch ports to 100mps full-duplex.
Please see your switch documentation.

Table 7–1 NDD Results

NDD Variable Results

link_speed 0 = 10mps

1 = 100mps

link_mode 0 = half-duplex

1 = full-duplex

43

Part II
Java Virtual Machines

This part of the book provides information on how to implement, monitor
and tune the Java Virtual Machine (JVM), which is the core technology
that provides the runtime environment that Selling and Fulfillment
Foundation runs on.

Configuring and operating the JVM efficiently is critical for performance.
Suboptimal JVM settings cause poor application performance at best. It
could cause application outages at worst.

The first chapter in this part, Chapter 8, "General JVM
Recommendations", provides an overview of the JVM technology and
general JVM recommendations. The subsequent chapters provide detailed
JVM recommendations specific to the JVM families.

The subsequent chapters provide recommendations specific to a JVM
family. The JVM families include:

SunSoft HotSpot JVM

IBM J9 JVM

BEA JRockit

The genesis of the JVM families is the Sun JavaSoft’s Reference JVM
Implementation. From that baseline, Sun SunSoft division produces a
productionized JVM version called the SunSoft HotSpot JVM. This JVM
technology is licensed to HP. As a result, the HP and SunSoft HotSpot
JVM share a lot of the same command line options, performance
characteristics and in some cases bugs. Read Chapter 9, "HotSpot JVM" if
you are planning to run Selling and Fulfillment Foundation on the
following:

Solaris server nodes

44 Performance Management Guide

HP-UX11i server nodes

Read Chapter 10, "IBM J9 JVM" if you plan to run Selling and Fulfillment
Foundation with IBM WebSphere on:

IBM AIX server nodes

Linux on Intel Xeon processor-based servers

Read Chapter 11, "BEA JRockit" if you plan to run Selling and Fulfillment
Foundation with BEA WebLogic on:

Linux-based or Windows-based servers running on Intel Xeon
processors

General JVM Recommendations 45

8
General JVM Recommendations

This chapter provides general recommendations on how to plan,
implement, configure and tune Java Virtual Machines that is applicable to
all the supported JVM families. Family-specific JVM recommendations,
such as Permanent Generation settings for SunSoft JVMs and Wilderness
settings for IBM JVMs are found in the following JVM-specific chapters:

Chapter 9, "HotSpot JVM"

Chapter 10, "IBM J9 JVM"

Chapter 11, "BEA JRockit"

8.1 Overview
The Java language is designed to be "Written Once and Run Anywhere"
(WORA). When you compile a Java source, you get an intermediate Java
file called the Java class. The class file is made up of bytecodes
representing abstract instruction codes. These codes are not directly
executable by any computer processor. In contrast, languages like C
compile their source code to native instructions for a specific processor.

To run a Java program, you start a JVM and pass the class file to the
JVM. The JVM provides many services including loading the class file and
interpreting (executing) the byte codes. The JVM is the core technology
that provides the runtime environment in which a Java application runs
in.

Each Java program or application runs in its own JVM. For example, if
you configured an application server cluster with ten managed server
instances that is controlled by one administrative instance, your
configuration runs eleven JVM processes.

46 Performance Management Guide

Implementation

Since the JVM is the underlying processing engine for Selling and
Fulfillment Foundation, it is critical that the JVMs are optimally configured
and running efficiently. Incorrect JVM settings could cause poor
application performance. At worse, it could lead to JVM outages.

8.2 Supported Configuration
The applications are tested and certified for use on a specific set of JVMs
and JVM versions and releases. See the Selling and Fulfillment
Foundation: Installation Guide for the list of supported configurations.

To find out the JVM version, issue the following command:

$JAVA_HOME/bin/java -version

8.3 Implementation
This section provides general recommendations on how to implement,
configure and run the JVMs.

8.3.1 Recommended JVM Command Line Options
We recommend that you specify the following command line options on
all JVMs:

JVM identifier using the -D option

Java version using -showversion

Garbage Collection Statistics

Distributed Garbage Collection interval

8.3.1.1 JVM Identifier
You may have to run many JVMs in a large Selling and Fulfillment
Foundation configuration. From experience, we have found it useful to
tag JVMs with an identifier so that they are easy to identify and therefore
to monitor and manage. One approach to tagging is to use the JVM -D
option. The -D option lets you set a system property variable as a
name/value pair. For example:

java -Dyfsag=SCHEDULE <class name> and
java -Dyfsas=server01 <class name>

Implementation

General JVM Recommendations 47

In the example above, we use the -D option to set a name/value pair to
help identify the purpose of the JVM. The names, yfsag and yfsas,
indicate the type of workload - in this case, a Selling and Fulfillment
Foundation agent and an application server respectively. The values,
SCHEDULE and server01, indicate the instance of the workload. If you
issue the following command:

ps -ef | grep java | grep Dyfs

you will see:

 UID PID PPID C STIME TTY TIME CMD
 user03 6420 6418 2 08:20:21 pts/29 0:04 java -Dyfsag=SCHEDULE -server
 user03 6456 6443 2 08:23:32 pts/29 0:23 java -Dyfsas=server01 -server

The tagging and some simple scripting allows you to automate a lot of
management tasks. For example, to generate a thread dump on all the
application servers, you could issue the following command:

for i in ‘ps -ef | grep Dyfsas | awk ’{print $2}’‘
do

kill -3 $i
echo "Issued thread dump for pid=$i"

done

or

ps -ef | grep Dyfsas | awk ’{print $2}’ | xargs kill -3

8.3.1.2 Java Version
A common but difficult problem to diagnose is one where the wrong JVM
version or level was started. You can easily spot this problem if you start
the JVM with the -showversion option. If you ran the following command
on an IBM JVM on Linux:

> java -showversion <class name>

the following output is seen in your application log:

java version "1.4.2"
Java(TM) 2 Runtime Environment, Standard Edition (build 1.4.2)
Classic VM (build 1.4.2, J2RE 1.4.2 IBM build cxia321420-20040626 (JIT
enabled: jitc))

48 Performance Management Guide

Monitoring

We recommend setting the -showversion option for all JVMs. This simple
and inexpensive step provides valuable information that can help ensure
that the correct JVM version and mode are used.

8.3.1.3 Garbage Collection Statistics
Garbage collection statistics are critical for managing and monitoring
JVMs. We strongly recommend enabling garbage collection statistics in
production. The statistics is the only window you have into the behavior
of the JVM heap management and the efficiency of the JVM.

Please see the JVM-specific chapters on recommendations on how to
enable garbage collection statistics.

8.3.2 Optional JVM Command Line Settings
The following are optional settings that can be applied when needed.

8.3.2.1 Stack Size
Each time a method is called, a stack frame is created and pushed on to
the thread’s stack. The stack frame contains, at a minimum, the
method’s local variables and the method arguments. You can get a
java.lang.StackOverflowError exception if you reach the maximum
allowable stack limit of a thread. This can happen if:

The method call depth is very deep (for example, in the Create Wave
agent, the wave optimizer call depth is roughly equal to the number
of shipments assigned to a shipment group).

The stack frame is very large.

You can set the -Xss option to increase the maximum stack size per
thread.

See related section Section 25.4.1, "Java Stack Size" if you are running
the Sterling Warehouse Management System.

8.4 Monitoring
The following monitoring recommendations apply to all JDK families.

Monitoring

General JVM Recommendations 49

8.4.1 Hanging Threads/Deadlocks/Infinite Loops
In some rare exceptions, the JVM may have threads that are not
progressing, possibly because of one of the following reasons:

Threads are deadlocked.

Threads are in an infinite loop.

Threads are waiting for an external event.

JVM bug.

You can often find these offending threads by taking several successive
thread dumps and seeing if there are any threads that seem "stuck" in
the same processing point. On Unix and Linux, issue the following
command where pid is the process id of the JVM:

kill -3 pid

In Windows, you have to press the CTRL+BREAK keys on the command
window that started the JVM.

If you have a hanging or deadlocked thread, in the best case, all they do
is tie up a number of scarce worker (execute) threads. There currently
isn’t any way to kill hung or deadlock threads except to schedule a
restart of the JVM.

In the worst case, these offending threads hold on to crucial shared
resources (such as database record locks) and are blocking other threads
in this or other JVMs. This situation could lead to a system-wide
slowdown as more and more threads block behind these offending
threads.

If you have infinite looping threads, at best, all they do is make the
server node busier. In the worst case, they start to impact the
performance of transaction running in that node or they hold critical
resources needed by other threads.

Recommendations:

If you suspect a JVM has a hung or looping thread:

Take three thread dumps for that JVM. Space the thread dumps a
minute apart.

50 Performance Management Guide

Monitoring

Look at the stacktrace for the Default Queue in the successive thread
dumps - see if there are any threads that are active and in the same
code path in each thread dump.

If you suspect transactions are slow across many JVMs:

Look in your database for blocking chains - specifically, what sessions
are blocking whom. Find out what servers the root blockers are
coming from, the types of locks that they are holding and what was
the latest SQL run.

Identify the JVMs that have the root blockers. You may have to
shutdown those JVMs if the blocking sessions are spreading to a
system-wide shutdown.

8.4.2 Memory and Paging

You must make sure paging levels are minimal. The JVM manages its
heap with the assumption that the entire heap is in memory. If
significant portions of the heap are on the swap devices, the node could
find itself in a "thrashing" situation where it spends most of its time
shuffling pages between real memory and swap. This situation could
arise for many reasons including:

Starting a JVM with a heap size that is larger than physical memory

Best Practice: Since thread dumps are invaluable
diagnostic tools, you should be very comfortable taking
thread dumps when the need arises. For example, you
should occasionally take thread dumps from all JVMs (e.g.,
all application server instances, all agent/monitor servers)
during non-peak processing periods. This gives you a
chance to find out where the thread dumps are written to
and how to read the thread dumps.

Important: The JVM performs very badly, even in low
transaction volume environments if the OS has to
continually page the JVM heap to disk.

Monitoring

General JVM Recommendations 51

Starting too many JVMs and other workloads such that the combined
working set size is larger than the physical memory

8.4.3 OutOfMemory Exceptions

JVMs throw OutOfMemory exceptions when they cannot find enough
space for a new object allocation request. From our experience,
OutOfMemory exceptions are primarily due to the following reasons:

The JVM heap does not have enough total free space in the heap for
the new object, or

In the case of IBM JVMs, the heap may have enough total free but
not enough contiguous free space for the new object.

The JVMs try to recover gracefully when OutOfMemory exceptions occur -
unfortunately, the outcome of the recovery can be unpredictable. We
have seen situations where threads have disappeared (they don’t show
up in the thread dumps), threads have gone into infinite loops, or
database connections from failed threads remain opened and in some
cases, hold on to record locks.

For these and many other reasons, Selling and Fulfillment Foundation
deliberately stops the JVMs that encounter OutOfMemory exceptions.
When that occurs, you should see the following message in the
application log:

java.lang.OutOfMemoryError
Yantra encountered Java Virtual Machine Error, verify your JVM settings
Halting the system................

This measure is preferable to potentially unpredictable application
behaviors.

In production, you should periodically check for the occurrence of this
message in the Selling and Fulfillment Foundation log and to take
appropriate actions, including alerting the application administrator or
restarting the JVM.

Important: Selling and Fulfillment Foundation stops a
JVM that throws an OutOfMemory exception.

52 Performance Management Guide

Monitoring

8.4.3.1 Diagnosing OutOfMemory Exceptions

8.4.3.1.1 Low on Total Free Memory A JVM may run low on total
free memory when there is a memory leak, the JVM heap was sized too
small or there was a temporary abnormally high memory requirement
(possibly for a very large order or wave). If you encounter an
outOfMemory exception, we recommend you perform the following:

Restart the JVM with a much larger heap (for example, 1.5GB).

Monitor the amount of space used. For Sun and HP HotSpot JVMs,
you need to look at the heap used after Full GCs. If you see this value
steadily growing and never shrinking, you may likely have a memory
leak. If the heap used increases by a large value (larger than your
original heap setting) but eventually drops down to its original level,
you may have encountered a large order or wave. You may want to
investigate the nature of that order to see if the order was an
anomaly or if it is going to be recurring. You can use the GC statistics
to set you JVM heap sizes.

If you believe you have a memory leak, you can do the following:

For IBM JVMs, generate a heapdump and use the IBM Memory Dump
Diagnostic tool to identify the memory leak. We have found this tool
to be easy to use and easy to identify memory leaks. The IBM JVM
automatically generates the heapdump when it runs into an
OutOfMemory exception. You can also request a heapdump using a
Kill -3 by first setting the following environment variables:

export IBM_HEAPDUMP=true
export IBM_HEAP_DUMP=true
export IBM_HEAPDUMPDIR=<directory to store the heap dumps>

For Sun and HP HotSpot, try generating the hprof memory dump -
the IBM Memory Dump Diagnostic tool is capable of analyzing hprof
dumps. Otherwise, you may have to resort to using a tool like Quest
JProbe Memory Debugger.

For BEA JRockit, you can use the BEA JRockit Memory Leak Detector
which is part of the JRockit Management Console. The Memory Leak
Detector tells you which object is growing the fastest, what
percentage of the heap they are occupying, and the number of
instances.

Monitoring

General JVM Recommendations 53

8.4.3.1.2 Causes of OOM There can be many reasons why
transactions use a lot of memory. Some of the typical reasons include:

Calling APIs with the default output XML template - Selling and
Fulfillment Foundation allows you to specify an output XML template
to specify the amount of data to return. The effect can be dramatic.
Calling the getOrderDetail API without an output template could
result in a very large XML (over 40MB) depending on the order
complexity. Trimming the XML could reduce the size to a few hundred
bytes.

DEBUG and VERBOSE tracing - The DEBUG and VERBOSE traces are
invaluable development and debugging tools, for example printing out
the API input and output XMLs. In order to print the XML, the tracing
facility has to create a String representation of the XML, which for
very large XML document can result in very large StringBuffer
objects. As a result, you should be careful about enabling these
traces in production.

54 Performance Management Guide

Monitoring

HotSpot JVM 55

9
HotSpot JVM

This chapter provides recommendations on how to plan, implement,
configure, monitor, and tune the HotSpot Java Virtual Machines.

The Sun HotSpot JVM is used when you deploy Selling and Fulfillment
Foundation with the BEA WebLogic or the IBM WebSphere application
servers on a Sun Solaris operating system running on Sun UltraSPARC
processor-based servers.

The HP HotSpot JVM is used when you deploy Selling and Fulfillment
Foundation with the BEA WebLogic application servers on a HP-UX11i
operating system running on HP PA-RISC processor-based servers.

Note: BEA no longer supports the use of SunSoft JVM on Linux in
production.

9.1 Implementation
It is a mixed blessing that HotSpot JVMs provide many tuning
parameters because tuning the JVMs can appear to be part art and part
guess work. There isn’t a golden set of JVM settings that apply to all
customers and conditions. The settings, especially memory settings
(which we discuss below) are highly dependent on the transaction mix,
the amount of data cached, the complexity of the transactions,
concurrency levels, and so forth.

Fortunately, the HotSpot JVMs provide good measurement feedback that
allows you to measure the effectiveness of the settings.

As a starting point, we recommend you configure your JVMs with the
following initial values and to review and adjust the settings as you run
the JVMs under representative workloads and traffic volumes.

56 Performance Management Guide

Implementation

9.1.1 Starting Recommendations
As a starting point, you should configure the JVMs as follows:

Set the JVM mode to server mode.

Set the permanent generation to 128MB.

9.1.1.1 Virtual Machine Mode
The Java language is designed to be platform independent. When you
compile a Java source, you get an intermediate Java class which is made
up of bytecodes representing abstract instructions. In contrast,
languages like C compile to native binary code that a specific hardware
processor can run. To run the program, you start a JVM and pass the
class file to the JVM. The JVM loads the class file and interpret (execute)
the byte codes.

Interpretation and execution of bytecodes is much slower than the
executing code that has been compiled to the native instruction set of
the host processor.

For speed and performance, the HotSpot JVM will, on-the-fly or
just-in-time (JIT), compile frequently used methods into native code (see
[6] and [7] for more detail).

The HotSpot JVMs support two different compiler modes: -client and
-server. Each supports differing levels of optimization.

The server VM mode is designed to maximize performance of long
running workloads by applying more aggressive optimizations. The client
VM mode, in contrast, is designed to reduce application startup time and
memory footprint. The client VM mode is typically better suited for
applets running in browsers.

For optimal performance, you generally want to run long running
workloads in server mode. In some cases, you may have to switch to
client mode if there are issues with the server mode. This was the case in
earlier versions of the JVM and less so today.

To run the JVM in the server mode, you need to add the -server
directive when starting up the JVM. For example, to start WebLogic in
server mode, issue:

java -server weblogic.Server

Implementation

HotSpot JVM 57

To run WebLogic in the client mode, issue the following command:

java -client weblogic.Server

9.1.1.2 Permanent Generation
The HotSpot JVM sets aside an area, called permanent generation, to
store the JVM’s reflective data such as class and method objects. The
size of this area is set to 64MB by default. Due to the number of classes
used by application servers, you must set the permanent generation
space setting to at least 128MB. If you use the default values, an
OutOfMemory exception is more likely to occur during application server
initialization.

To increase the permanent generation space, issue the following
command:

java -server -XX:MaxPermSize=256m java_class

This recommendation applies to the application server JVM as well as the
Selling and Fulfillment Foundation agents.

9.1.2 Heap Memory and Garbage Collection
The JVM run-time environment uses a large memory pool called the heap
for object allocation. The JVM automatically invokes garbage collections
in order to clean up the heap of unreferenced or dead objects. In
contrast, memory management in legacy programming languages like
C++ was left to the programmer.

If the JVM heap settings are not set correctly, the garbage collection
overhead can make the system appear unresponsive. In the worst case,
your transactions or the JVM could abort due to outOfMemory exceptions
(please see Section 8.4.3, "OutOfMemory Exceptions").

In the past, garbage collection overhead was quite substantial and the
impact to end-user response times noticeable. Many garbage collection
techniques have been proposed and implemented - all with their own
strengths and weaknesses. Garbage collection techniques are constantly
being improved. For example, the Sun JVM supports a mainly
"stop-the-world" garbage collector - all transactions have to pause in a

Note: The agent server JVM only requires 128mb.

58 Performance Management Guide

Implementation

safe point for the entire duration of the garbage collection. The Sun JVM
supports a parallel concurrent collector where transactions can continue
running during most of the collection.

9.1.2.1 Sun and HP-UX Generational Collectors
The Sun and HP JVM organized its heap into generations to improve the
efficiency of its garbage collection, and to reduce the frequency and
duration of user-perceivable garbage collection pauses. The premise
behind generational collection is that memory is managed in generations
or in pools of memory with different ages (see Figure 9–1, "Heap
Layout").

Figure 9–1 Heap Layout

New objects are allocated in the eden. When the eden fills up, the JVM
issues a scavenge GC or minor collection to move the surviving objects
into one of the two survivor or semi spaces. The JVM does this by first
identifying and moving all referenced objects in the eden to one of the
survivor space. At the end of the scavenge GC, the eden is empty (since
all the referenced objects are now in the survivor space) and ready for
object allocation.

The scavenge GC’s efficiency depends on the amount of referenced
objects it has to move to the survivor space and not on the size of the
eden. The higher the amount of referenced objects, the slower the
scavenge GC. Studies, however, have shown that most Java objects live

semi-spacesemi-spaceeden

survivor-space

young generational heap

heap

old

Implementation

HotSpot JVM 59

a very short time. Since most objects live for a short time, one can
typically create large edens.

Referenced objects in the survivor space bounce between the two
survivor spaces at each scavenge GC until it either becomes
unreferenced or the number of bounces has reached the tenuring
threshold. If the tenuring threshold is reached, that object is migrated up
to the old heap.

When the old heap fills up, the JVM issues a Full GC or major collection.
In a Full GC, the JVM has to first identify all the referenced objects. When
that is done, the JVM sweeps the entire heap to reclaim all free memory
(for example, because the object is now dead). Finally, the JVM then
moves referenced objects in order to defragment the old heap. The
efficiency of the Full GC is dependent on the amount of referenced
objects and the size of the heap. For more information see [6] and [8].

9.1.2.1.1 Heap Settings It is both a curse and a blessing that the
SunSoft based JVMs provide many parameters to control the JVM heap
configuration. Tuning the SunSoft generational collectors can be part art
and part guess work. You may opt for the Keep It Simple Strategy
Principle. In the following example, only specify the starting (-Xms) and
maximum (-Xmx) heap size:

java -server -Xms358m -Xmx358m weblogic.Server

When choosing the JVM settings, you should keep the following in mind:

Set the initial and max heap size the same - This eliminates the need
of the JVM to decide when to expand or shrink the heap. This could
also prevent a class of outOfMemory exceptions where there is not
enough swap space when the JVM needs to expand the overall heap.

By default, the Selling and Fulfillment Foundation caches reference
data for performance. Depending on your data setup, you may have
to increase the heap size or reduce the numbers of cached records.
See Section 23.5, "Performance Feature - Reference Data Caching"
for more information on the caching feature.

Ensure that the node has enough physical memory so that portions of
the heap are not paged out.

60 Performance Management Guide

Implementation

When setting the young heap, keep the following recommendations in
mind:

Set the initial and max eden size the same - This eliminates the need
of the JVM to decide when to expand or shrink the eden.

The cost of a scavenge GC is dependent on the amount of active
objects that has to be moved to the survivor space and not on the
size of the eden. Therefore, one can usually allocate a large eden.

Allocate the eden large enough so that the scavenge GCs are not
occurring too frequently (e.g., less than once per minute) and the
collection service time is reasonably short (e.g., less than 0.3
seconds).

Alternatively, create more JVMs to spread out the load. This reduces
the amount of active objects in a JVM which, in turn, reduces the
frequency and the duration of the scavenge GC.

Keep in mind the following when configuring the survivor spaces:

The survivor spaces must be large enough to store all the active
objects coming from the eden as well as the sum of active objects
that have an age that is less than the tenuring threshold.

Keep in mind the following when configuring the old heap:

The amount of free space in the old heap must be larger than both
the eden size plus one of the survivor space. If the free space is less,
the JVM resorts to using Full GCs (see Section 9.1.2.1.2, "Young
Generation Guarantee" below).

The cost of a Full GC is dependent on the amount of active objects as
well as the size of the old heap. A Full GC is typically a lot more

Note: Please make sure you test your JVM heap settings
with representative workloads and data under anticipated
peak processing rates. In addition, you should run these
tests for a number of days. Depending on your processing
mix, the JVM heap settings could be different for the JVMs
running the agents, the application servers and the JMS
servers.

Implementation

HotSpot JVM 61

noticeable to the end user than a scavenge GC. A Full GC on a 256MB
old heap can take up to three seconds.

Keep in mind that Selling and Fulfillment Foundation provides the
ability to cache records. If you activate this feature, you should
monitor the occurrence of full GC to see if the old generation is large
enough. See Section 23.5, "Performance Feature - Reference Data
Caching" for more information on the caching feature.

Therefore, you should allocate the old heap large enough so that Full GCs
are not occurring too frequently (e.g., more than once in 15 minutes)
and the collection service time is less than 2 seconds

9.1.2.1.2 Young Generation Guarantee Starting in JDK 1.3.1_05,
the Sun/HP JDKs implemented a conservative garbage collection policy
called the Young Generation Guarantee. Before starting a GC, the JVM
checks if the free space in the old heap (OLD FREE) is larger than the
sum of the eden. The premise is that it is possible (though highly
unlikely) that every object in the eden (remains alive and uncollected)
the collection and has to be promoted to the old heap. If that ever
happens, the Young Generation Guarantee ensures that there is enough
free space in the old heap for all the promoted objects.

Please see Sun’s JDK Garbage Collection document [7] for a detailed
description of the Young Generation Guarantee.

9.1.2.1.3 Starting Recommendations We recommend that you try
the default generational settings with a 384M and a 768M heap for your
agents and application servers respectively:

java -server -Xms768m -Xmx768m \
 -XX:MaxPermSize=256m \
 weblogic.Server

Another approach is to set the overall heap to 1024MB with a 200MB
young generation. For Solaris, you would issue the following command:

java -server -Xms1024m -Xmx1024m \
 -XX:NewSize=200m -XX:MaxNewSize=200m \
 -XX:MaxPermSize=256m \
 weblogic.Server

62 Performance Management Guide

Implementation

For HP-UX, you would issue the following command:

java -server -Xms1024m -Xmx1024m \
 -Xmn200m \
 -XX:MaxPermSize=256m \
 weblogic.Server

You have to regularly monitor the "health" of the garbage collection and
adjust accordingly. For example:

If you notice that the amount of heap free after a Full GC is
approaching 500MB (the capacity of the old heap), you could
eventually get java.lang.OutOfMemory exceptions. You should
investigate why your JVM is keeping that many live objects. For
example, with your data, you may have large reference data
caches (see Section 23.5, "Performance Feature - Reference Data
Caching").

Conversely, if the amount of heap free after a Full GC is much
smaller than the old heap (and the load test is representative),
you may consider reducing the old heap.

Increase the overall heap size - However, make sure the Full GC
takes less than 2 seconds.

You must ensure that the node has enough physical memory so
that portions of the heap are not paged out.

The optimum JVM heap setting depends on your workload characteristics,
your workload concurrency levels, your workload complexity, and so
forth. The JVM heap setting can be (and often is) different between the
application servers and agents. In addition, the settings may be different
between some agents. As a result, you must periodically check the
effectiveness of each JVM’s heap setting.

9.1.2.1.4 Garbage Collection Statistics We recommend that you
continuously collect garbage collection statistics for all JVMs even in
production. The collection overhead is minor compared to the benefit.
With the statistics, you can tell if:

A JVM has or is about to run into a memory leak.

The garbage collection is efficient.

Your JVM heap settings are optimal.

Monitoring

HotSpot JVM 63

For a Sun JVM, the following statistics are displayed if you enable
-XX:+PrintGCDetails, -XX:+PrintGCTimeStamps, and -Xloggc:

0.000: [GC 0.001: [DefNew: 32192K->511K(33152K), 0.0383176 secs]
32192K->511K(101440K), 0.0385223 secs]
1.109: [GC 1.110: [DefNew: 32703K->198K(33152K), 0.0344874 secs]
32703K->697K(101440K), 0.0346844 secs]

Please see [8] for a detailed explanation of the statistics.

For an HP JVM, the following statistics are shown if you enable
-Xverbosegc:file:

<GC: 1 0 13848.360276 8 16400 31 429520056 0 429522944 0 2328104 53673984
100687544 100687544 536870912 69787968 69787968 69992448 0.162748 >
<GC: 1 0 73541.610471 9 48 31 429522944 0 429522944 2328104 9051392 53673984
100687544 100687544 536870912 70708000 70708000 70778880 0.249739 >

9.2 Monitoring

9.2.1 Garbage Collection Statistics
In our opinion, garbage collection statistics are critical and should be
enabled in production. The statistics is the only window you have into the
behavior of the JVM heap management and the efficiency of the JVM.

Best Practice: Create the GC log file name with the name
of the workload and the starting time. In the example
below the -XX:+PrintGCTimeStamps directive provides
relative times of the GC from the time the JVMs started for
the WebLogic server. The starting time in the file name
allows you to determine when the GCs occurred:

WORKLOAD=SCHEDULE
gclog_file=${WORKLOAD}_‘date +%Y%m%d-%H%M%S‘
java -verbosegc -XX:+PrintGCTimeStamps -Xloggc:${gclog_file}
weblogic.Server

Note: For Windows, format the example appropriately.

64 Performance Management Guide

Monitoring

This section describes three types of garbage collection statistics:

The first is a comprehensive set from HP’s JVM.

The second is a terse statistics from both the HP and Sun JVM.

9.2.1.1 Comprehensive HP GC Logs
At every garbage collection, the HP JVM prints out a statistic record with
20 fields in the following format:

At every garbage collection, the following 20 fields are printed:
<GC: %1 %2 %3 %4 %5 %6 %7 %8 %9 %10 %11 %12 %13 %14 %15 %16 %17 %18 %19 %20
>

 %1: Indicates the type of the garbage collection.
 1: represents a Scavenge (GC of New Generation only)
 %2: indicates if this is a parallel scavenge.
 0: non-parallel scavenge
 n(>0): parallel scavenge, n represents the number of
parallel GC threads

 2: represents an Old Generation GC or a Full GC
 %2: indicates the GC reason:
 1: Allocation failure, followed by a failed scavenge,
leading to a Full GC
 2: Call to System.gc
 3: Tenured Generation full
 4: Permanent Generation full
 5: Scavenge followed by a Train collection
 6: CMS Generation full
 7: Old generation expanded on last scavenge
 8: Old generation too full to scavenge
 9: FullGCAlot
 10: Allocation profiler triggered

 3: represents a complete background CMS GC
 %2: indicates the GC reason:
 1: Occupancy > initiatingOccupancy
 2: Expanded recently
 3: Incremental collection will fail
 4: Linear allocation will fail
 5: Anticipated promotion

 4: represents an incomplete background CMS GC

Monitoring

HotSpot JVM 65

 (exited after yielding to foreground GC)
 %2: n.m
 n indicates the GC reason:
 1: Occupancy > initiatingOccupancy
 2: Expanded recently
 3: Incremental collection will fail
 4: Linear allocation will fail
 5: Anticipated promotion
 6: Incremental CMS
 m indicates the background CMS state when yielding:
 0: Resetting
 1: Idling
 2: InitialMarking
 3: Marking
 4: FinalMarking
 5: Precleaning
 6: Sweeping

 %3: Program time at the beginning of the collection, in seconds

 %4: Garbage collection invocation. Counts of background CMS GCs
 and other GCs are maintained separately

 %5: Size of the object allocation request that forced the GC,
 in bytes

 %6: Tenuring threshold - determines how long the new born object
 remains in the New Generation

 The report includes the size of each space:
 Occupied before garbage collection (Before)
 Occupied after garbage collection (After)
 Current capacity (Capacity)
 All values are in bytes

 Eden Sub-space (within the New Generation)
 %7: Before
 %8: After
 %9: Capacity

 Survivor Sub-space (within the New Generation)
 %10: Before
 %11: After
 %12: Capacity

66 Performance Management Guide

Monitoring

 Old Generation
 %13: Before
 %14: After
 %15: Capacity

 Permanent Generation (Storage of Reflective Objects)
 %16: Before
 %17: After
 %18: Capacity

 %19: The total stop-the-world duration, in seconds.

 %20: The total time used in collection, in seconds.

HP provides a graphical tool called HPjtune to help you visualize the HP
JVM garbage collection activities. This tool is free and can be downloaded
from [11].

The following are additional recommendations that add on to HP’s
excellent documentation.

9.2.1.1.1 Capacity When the JVM is in steady state, check %9 (Eden
Capacity), %12 (Survivor Sub-space Capacity), %15 (Old Generation
Capacity), and %18 (Permanent Generation Capacity) to make sure you
have allocated the JVM heap correctly.

9.2.1.1.2 Things to Monitor In a healthy heap:

During steady state, you should see mostly Scavenge GCs (%1=1)
and the occasional Full GC caused by allocation failures (%1=2,
%2=1).

The sum of the GC times (%19 and %20) should not exceed 3% of
the measurement interval - for example, in a 1-hour measurement
interval, the time taken for all GCs should not be more than 108
seconds.

If you see continuous Full GCs (%2=1), check to see if the free space
in the old heap (%15 - %13) is less than the sum of %7 and %10. If
it is, the JVM uses Full GCs even though there may be lots of free
space in the heap (see Section 9.1.2.1.2, "Young Generation
Guarantee"). This could be due to the amount of long-lived objects in
the heap (see %14 after Full GCs), the old space (%15) is too small
for the amount of long-lived objects or the eden (%9) is too big.

Monitoring

HotSpot JVM 67

If the amount of long-lived objects (%14 after Full GCs) is large (e.g.,
greater than 350MB) and has been steadily growing, you may have a
memory leak. If %14 continues to grow, that JVM eventually fails
with an outOfMemory exception (see Section 8.4.3, "OutOfMemory
Exceptions").

9.2.2 SUN
When the following flags are set:

-verbose:gc -XX:+PrintGCTimeStamps -XX:+PrintGCDetails -Xloggc:filename

The Sun JVM produces the following garbage collection statistics:

0.000: [GC 0.001: [DefNew: 32192K->511K(33152K), 0.0383176 secs]
32192K->511K(101440K), 0.0385223 secs]
1.109: [GC 1.110: [DefNew: 32703K->198K(33152K), 0.0344874 secs]
32703K->697K(101440K), 0.0346844 secs]
2.408: [GC 2.409: [DefNew: 32390K->403K(33152K), 0.0227843 secs]
32889K->902K(101440K), 0.0231518 secs]

Please see [8] for a description of the statistics. See [9] for examples of
how to diagnose GC problems.

9.2.2.1 Potential Memory Leak
After running the JVM for a while, check the amount of objects remaining
after a Full GC to see if there are potential memory leaks (please see
Section 8.4.3, "OutOfMemory Exceptions").

9.2.2.1.1 Old Heap Too Small If you see successive Full GCs and the
"heap after GC" number is consistently larger than the size of the Old
Generation, the amount of live objects is larger than the Old Generation.

9.2.2.1.2 GC Times Watch for GC times that take over 2-5 seconds.
Recall that all threads are paused for the duration of the GC. A
transaction that normally takes 1 second grows to 3-6 seconds. More
importantly, blocked threads that are holding on to database locks could
start to block other threads in other JVMs.

9.2.2.1.3 PrintGCStats Script Sun has developed a script,
PrintGCStats, to interpret the results from the output file generated by

68 Performance Management Guide

Monitoring

"-Xloggc:filename". The PrintGCStats script can be downloaded from
http://java.sun.com/developer/technicalArticles/Programming/turbo/.

An example output of the script is as follows:

what count total mean max stddev
gen0(s) 9 0.591 0.06563 0.297 0.0870
gen0t(s) 9 0.600 0.06665 0.305 0.0895
gen1t(s) 9 7.890 0.87667 1.637 0.4381
GC(s) 18 8.490 0.47166 1.637 0.5175
alloc(MB) 9 721.889 80.20985 80.312 0.3079
promo(MB) 9 0.000 0.00000 0.000 0.0000

alloc/elapsed_time = 721.889 MB / 4045.460 s = 0.178 MB/s
alloc/tot_cpu_time = 721.889 MB / 32363.680 s = 0.022 MB/s
alloc/mut_cpu_time = 721.889 MB / 32295.761 s = 0.022 MB/s
promo/elapsed_time = 0.000 MB / 4045.460 s = 0.000 MB/s
promo/gc0_time = 0.000 MB / 0.600 s = 0.000 MB/s
gc_seq_load = 67.919 s / 32363.680 s = 0.210%
gc_conc_load = 0.000 s / 32363.680 s = 0.000%
gc_tot_load = 67.919 s / 32363.680 s = 0.210%

The following table describes what each of the tags in the above excerpt
means.

Note: The PrintGCStats script can only produce
meaningful results of the -Xloggc:filename output if the
JVM is started with the "-verbose:gc
-XX:+PrintGCTimeStamps -XX:+PrintGCDetails" flags.

Table 9–1 PrintGCStats Output Statistics

Item Name Description

gen0(s) Young generation collection time in seconds

cmsIM(s) CMS initial mark pause in seconds

cmsRM(s) CMS remark pause in seconds

GC(s) All stop-the-world GC pauses in seconds

cmsCM(s) CMS concurrent mark phase in seconds

cmsCS(s) CMS concurrent sweep phase in seconds

Monitoring

HotSpot JVM 69

There are two statistics generated by this script that are very useful in
tuning the JVM. The statistic gc_seq_load generates the total stop the
world GC time as a percent of total application time. The statistic gc_tot_
load is the total GC time for both full and scavenge GCs as a percentage
of total application time. When making changes to the JVM this script
should be run before and after to see if there is a positive change in
these numbers. It is important to note that by lowering the gc_tot_load,
and increasing the gc_seq_load, there would be a degradation in
performance of the application overall. The reason for this is that the gc_
seq_load is the total time the application spends in "Stop the World" GCs
during which all threads are stopped.

alloc(MB) Object allocation in young generation in MB

promo(MB) Object promotion to old generation in MB

elapsed_time(s) Total wall clock elapsed time for the application run in
seconds

tot_cpu_time(s) Total CPU time = no. of CPUs * elapsed_time

mut_cpu_time(s) Total time that was available to the application in
seconds

gc0_time(s) Total time used by GC during young generation pauses

alloc/elapsed_
time(MB/s)

Allocation rate per unit of elapsed time in MB/seconds

alloc/tot_cpu_
time(MB/s)

Allocation rate per unit of total CPU time in MB/seconds

alloc/mut_cpu_
time(MB/s)

Allocation rate per unit of total application time in
MB/seconds

promo/gc0_time(MB/s) Promotion rate per unit of GC time in MB/seconds

gc_seq_load(%) Percentage of total time spent in stop-the-world GCs

gc_conc_load(%) Percentage of total time spent in concurrent GCs

gc_tot_load(%) Total percentage of GC time (sequential and
concurrent)

Table 9–1 PrintGCStats Output Statistics

Item Name Description

70 Performance Management Guide

Monitoring

IBM J9 JVM 71

10
IBM J9 JVM

This chapter provides recommendations on how to plan, implement,
configure, monitor, and tune the IBM Java Virtual Machine.

The IBM J9 JVM is used when you deploy Selling and Fulfillment
Foundation with IBM WebSphere application servers on:

IBM AIX operating system on POWER4 or POWER5 based servers or

Red Hat Enterprise Linux operating system on Intel processor based
systems

10.1 Implementation

10.1.1 Starting Recommendations
In addition to the general recommendations in Chapter 8, "General JVM
Recommendations", you should configure the IBM JVM as follows:

Set JIT and MMI on (by default)

Set PSALLOC=EARLY and NODISCLAIM=TRUE (IBM AIX only)

10.1.1.1 JIT and MMI
As we mentioned in Section 8.1, "Overview", the Java language is
interpreted. Interpretation and execution of bytecodes is much slower
than the executing code that has been compiled to the native instruction
set of the host processor. The IBM JVM uses mixed-mode interpretation
(MMI) where initially bytecodes are interpreted. When the MMI detects
that bytecodes have been interpreted multiple times, it invokes a
just-in-time (JIT) compiler to compile those bytecodes to native
instructions.

72 Performance Management Guide

Implementation

For performance, you should ensure the JIT and MMI are enabled. The
JVM performance degrades significantly if JIT is disabled. Some third
party vendors may recommend disabling certain portions of the JIT
compiler. In those specific situations, we recommend you run controlled
performance tests with and without that specific JIT option to understand
the impact to performance.

The JDK 1.5 Diagnostic Guide [14] provides an excellent description of
the JIT compiler and the MMI.

10.1.1.2 PSALLOC and NODISCLAIM (AIX only)
IBM AIX implements, by default, a late page allocation policy. When you
start a JVM with a large heap, AIX does not guarantee that there is
sufficient page space to back the heap. AIX only allocates space on the
page device when you use the heap. In some cases, AIX may have to kill
JVMs when it is low on free space on the page devices.

To prevent this, we recommend setting the following environment
variables prior to starting the JVM:

PSALLOC=EARLY
NODISCLAIM=TRUE

Please see Section 4.1.1, "Page Space Allocation Policy" for more
information.

10.1.2 Heap Memory and Garbage Collection
The JVM run-time environment uses a large memory pool called the heap
for object allocation. The JVM automatically invokes garbage collections
in order to clean up the heap of unreferenced or dead objects. In
contrast, memory management in legacy programming languages like
C++ was left to the programmer.

JVM is the foundation or engine on which Selling and Fulfillment
Foundation and the BEA WebLogic or IBM WebSphere application server
runs. If the JVM heap settings are not set correctly, the garbage
collection overhead can make the system appear unresponsive. In the
worst case, your transactions or the JVM could abort due to outOfMemory
exceptions (please see Section 8.4.3, "OutOfMemory Exceptions").

The optimal JVM heap settings depends on many factors such as the type
of processing. For example, a JVM dedicated to servicing short lived

Implementation

IBM J9 JVM 73

transactions has different demands than one that services a few but very
large transactions. The IBM J9 JVM implements four different garbage
collection policies, each with its own operational characteristics, to
address these different workloads (see [12]). You can select one of the
GC policies using the -Xgcpolicy parameter. By default, the J9 JVM will
optimize the GCs for overall throughput (Xgcpolicy:optthruput). We have
found the default policy works well for most cases.

10.1.2.1 Heap Settings
The default heap settings are appropriate for small applications. By
default, the heap on AIX starts at 4MB and can grow to 64MB. You must
adjust the heap settings for your environment.

Fortunately, the IBM JVM was designed to work with most scenarios with
little tuning. From past experiences, we generally only set the initial and
maximum heap size. The IBM JVM also provides good statistics to help
monitor and tune the JVMs. See [13] for an excellent article on
monitoring the JVM performance.

10.1.2.2 Starting Recommendations
We recommend you configure the IBM JVMs with the following starting
recommendations and test the JVMs under representative workloads and
traffic volumes prior to going live in production.

As a starting point, you should configure the JVMs running the Selling
and Fulfillment Foundation agents and application servers with a 384MB,
1024MB, or larger heap respectively. The following are two sample
configurations to start the Selling and Fulfillment Foundation Schedule
agent and a WebLogic application server:

export PSALLOC=EARLY # AIX Only
export NODISCLAIM=TRUE # AIX Only

java -Xms384m -Xmx384m \
-Dsun.rmi.dgc.server.gcInterval=3600000 \
-verbosegc \
com.yantra.integration.adapter.IntegrationAdapter

java -Xms1024m -Xmx1024m \
-Dsun.rmi.dgc.server.gcInterval=3600000 \
-verbosegc \
weblogic.Server

74 Performance Management Guide

Implementation

The -Xms and -Xmx set the initial and maximum heap size. When setting
these values, keep the following guidelines in mind:

Set the initial (-Xms) and maximum (-Xmx) heap size the same - This
eliminates the need of the JVM to decide when to expand or shrink
the heap. This could also prevent the situation where there is not
enough swap space when the JVM needs to expand the overall heap.

By default, Selling and Fulfillment Foundation caches reference data
for performance. Depending on your data setup, you may have to
increase the heap size or reduce the numbers of cached records. See
Section 23.5, "Performance Feature - Reference Data Caching" for
more information on the caching feature.

You must ensure that the node has enough physical memory so that
portions of the heap are not paged out.

You must ensure there is enough swap space to back the virtual
address space requirement for all concurrently running JVMs or, if you
are on AIX, ensure the JVMs are started with PSALLOC=EARLY and
NODISCLAIM=TRUE (see Chapter 4.1.1, "Page Space Allocation
Policy").

10.1.2.3 Garbage Collection Statistics
We recommend that you continuously collect garbage collection statistics
for all JVMs especially in production. The collection overhead is minor
compared to the benefit. With the statistics, you can tell if:

A JVM has or is about to run into a memory leak.

The garbage collection is efficient.

Your JVM heap settings are optimal.

To enable GC statistics, set the -verbosegc option. The JDK 1.5
Diagnostic Guide [15] provides very good guidance on how to interpret
the garbage collection statistics.

Monitoring

IBM J9 JVM 75

10.2 Monitoring

10.2.1 Garbage Collection Statistics
Garbage collection statistics are critical and should be enabled in
production. The statistics can be used to understand the behavior of the
JVM heap management and the efficiency of the JVM.

This section describes the garbage collection statistics.

IBM provides excellent documentation on their garbage collector and how
to interpret their GC statistics (see [15]).

Here is a sample of the GC log:

<af type="tenured" id="100" timestamp="Sun Nov 25 15:56:09 2007"
intervalms="120245.593">
 <minimum requested_bytes="10016" />
 <time exclusiveaccessms="0.045" />
 <tenured freebytes="2704" totalbytes="1073741824" percent="0" >
 <soa freebytes="2704" totalbytes="1073741824" percent="0" />
 <loa freebytes="0" totalbytes="0" percent="0" />
 </tenured>
 <gc type="global" id="100" totalid="100" intervalms="120245.689">
 <refs_cleared soft="0" threshold="32" weak="0" phantom="0" />
 <finalization objectsqueued="0" />
 <timesms mark="35.301" sweep="5.074" compact="0.000" total="40.426" />
 <tenured freebytes="808526296" totalbytes="1073741824" percent="75" >
 <soa freebytes="808526296" totalbytes="1073741824" percent="75" />
 <loa freebytes="0" totalbytes="0" percent="0" />
 </tenured>
 </gc>
 <tenured freebytes="808516280" totalbytes="1073741824" percent="75" >
 <soa freebytes="808516280" totalbytes="1073741824" percent="75" />
 <loa freebytes="0" totalbytes="0" percent="0" />
 </tenured>
 <time totalms="40.569" />
</af>

In the example above, <af type="tenured" id="100" indicates that this is the
100th time an attempt to allocate memory failed and as a result, a GC
was initiated. An allocation failure is not an error in the system or code.
When there is not enough free space in the heap, the JVM automatically
initiate a garbage collection. The last time an allocation failure occurred
was 120245.593 ms ago (or 120.245 seconds).

76 Performance Management Guide

Monitoring

The lines starting with <gc type="global" id="100" provides information on
the collection process. In the example above, garbage collection initiated
the mark and sweep phases which completed in 35.301 and 5.074
milliseconds respectively. The JVM determined that the heap was not
fragmented and hence did not require to compact the heap. At the end of
the GC, the heap became 808,516,280 bytes free.

10.2.1.1 Frequency of GC Health Check
You should check how often GCs are occurring by looking at the time
between allocation failures.

10.2.1.2 GC Times
You should monitor the amount of time the JVM spends in GC. Typically,
your JVM should:

Spend less than 0.5 seconds in each GC cycle.

The percentage of time in garbage collection should be less than 3%
- This percentage can be calculated by dividing the sum of the
garbage collection times over an interval by the interval. The interval
could be a fixed 20 minutes or the last 20 GCs.

10.2.1.3 Potential Memory Leak
If the JVM is running for a while and the percentage free is continually
decreasing with each successive GC, that JVM could be heading to an
outOfMemory condition. This could indicate that either the Java
application is keeping a lot of active objects (e.g., reference data
caching) or there is a memory leak.

By default, the IBM JVM produces a HeapDump when it runs out of
memory. You can also configure the IBM JVM to produce a HeapDump on
a signal. See Section 10.2.3, "Heapdump" below.

10.2.2 Extensible Verbose Toolkit
IBM provides an excellent tool called the Extensible Verbose Toolkit
(EVTK) to help you visualize the GC statistics such as pause times,
amount of space requested, etc. The EVTK is available as a plug-in to
IBM Support Assistant (ISA). The IBM article Garbage collection with the
Extensible Verbose Toolkit [13] provides a good description on how to
use the EVTK.

Monitoring

IBM J9 JVM 77

10.2.3 Heapdump
The IBM JVM heapdump contains information about all the live objects in
its heap. The JVM automatically creates a heapdump when the JVM runs
into an outOfMemory (OOM) exception. You can also instruct the IBM
JVM to generate a heapdump with the kill -3 command if you had started
the JVM with the IBM_HEAPDUMP=true environment variable.

The IBM Memory Dump Diagnostic is an excellent tool for analyzing the
heapdump. You can download the Memory Dump Diagnostic from
http://www.alphaworks.ibm.com/tech/heapanalyzer.

You can read up on IBM heapdumps (and a lot more) in the IBM JDK 5.0
Diagnostic Guide - see [15].

78 Performance Management Guide

Monitoring

BEA JRockit 79

11
BEA JRockit

This chapter provides recommendations on how to plan, implement,
configure, monitor, and tune the BEA JRockit Java Virtual Machine.

The JRockit JVM is used when you deploy Selling and Fulfillment
Foundation with BEA WebLogic application servers on either the Red Hat
Enterprise Linux or Windows operating system on Intel processor-based
systems.

11.1 Implementation
The BEA JRockit was designed for server-side applications. One
distinguishing feature of JRockit is its adaptability. During the life of the
JVM, JRockit could change the type of garbage collector used or the size
of the heap.

11.1.1 Starting Recommendations
To exploit the adaptivity of the JRockit JVM, we recommend the simple
starting JVM settings:

java -Xms384m -Xmx384m \
-Dsun.rmi.dgc.server.gcInterval=3600000 \
-Xverbosetimestamp -verbosegc \
com.yantra.integration.adapter.IntegrationAdapter

java -Xms768m -Xmx768m \
-Dsun.rmi.dgc.server.gcInterval=3600000 \
-Xverbosetimestamp -verbosegc \
weblogic.Server

80 Performance Management Guide

Implementation

11.1.1.1 Heap Settings
The -Xms and -Xmx sets the initial and maximum heap size. When setting
these values, keep the following guidelines in mind:

Set the initial (-Xms) and maximum (-Xmx) heap size the same - This
eliminates the need of the JVM to decide when to expand or shrink
the heap. This could also prevent the situation where there is not
enough swap space when the JVM needs to expand the overall heap.

By default, Selling and Fulfillment Foundation caches reference data
for performance. Depending on your data setup, you may have to
increase the heap size or reduce the numbers of cached records. See
Section 23.5, "Performance Feature - Reference Data Caching" for
more information on the caching feature.

You must ensure that the node has enough physical memory so that
portions of the heap are not paged out.

11.1.1.2 Garbage Collection Statistics
We recommend that you continuously collect garbage collection statistics
for all JVMs even in production. The collection overhead is minor
compared to the benefit. With the statistics, you can tell if:

A JVM has or is about to run into a memory leak.

The garbage collection is efficient.

Your JVM heap settings are optimal.

To enable GC statistics, set the -verbosegc option.

81

Part III
 Application Servers

This part of the book provides information on how to implement, monitor
and tune application servers. The application server is the core
technology that provides the runtime environment that Selling and
Fulfillment Foundation runs on.

Configuring and operating the application server efficiently is critical for
performance. Suboptimal application server settings causes poor
application performance at best. It could cause application outages at
worst.

The following chapters are included in this Part:

Chapter 12, "BEA WebLogic"

Chapter 13, "IBM WebSphere"

Chapter 14, "JBoss"

82 Performance Management Guide

BEA WebLogic 83

12
BEA WebLogic

This chapter provides guidelines on the planning, implementation,
configuration, monitoring, and tuning of the BEA WebLogic application
servers.

12.1 Implementation

12.1.1 BEA’s WebLogic Tuning Recommendations
This section assumes that you:

Are familiar with and have installed BEA WebLogic application server
in a clustered mode

Have read BEA’s WebLogic Server Performance and Tuning which can
be found in http://edocs.bea.com

In keeping with our performance management principles, this section
augments the recommendations found in BEA’s WebLogic Server
Performance and Tuning when needed. You should carefully review BEA’s
recommendations because not all apply. As always, you should test any
changes from their default settings to see if the changes benefit your
configuration. Some of our recommendations that deviate from BEA’s
include:

Do not use BEA’s one-way message send performance feature that
was introduced in WebLogic 9.2. The one-way send feature allow
message producers to send messages to queues without waiting for a
corresponding response or acknowledgement. This feature improves
performance at the cost of lowering reliability. The Selling and
Fulfillment Foundation workloads, JMS interactions are transactional
and require an acknowledgement.

84 Performance Management Guide

Implementation

12.1.1.1 Server Tuning

12.1.1.1.1 Work Manager The Selling and Fulfillment Foundation
workloads run in WebLogic’s default work manager. You should monitor
the default work manager’s pool size over time to see if the pool size is
sufficient.

If the pool size climbs to 25 or more threads, you may want to consider
= configuring additional WebLogic Server instances instead of increasing
the thread count.

12.1.1.2 Application Server Instances
Please keep in mind the following when determining the number of
WebLogic instances:

Configure at most one WebLogic Server instance per processor - If
you have a 4-way node (4 processors), then configure at most 4
WebLogic Server instances on that node.

Plan for a single WebLogic Server instance to be able to use at most 4
(preferably 2) processors. If you have an 8-way node, you should not
implement one WebLogic Server instance and expect it to effectively
use all processors. With this rule, to fully utilize the node, you should
plan for two to four WebLogic Server instances.

12.1.1.3 WebLogic Connection Pool
Creating database connections are very expensive operations. For
performance, Selling and Fulfillment Foundation takes advantage of the
WebLogic connection pool.

To enable connection pooling, you need to:

Define a data source to Selling and Fulfillment Foundation.

Define a connection pool in WebLogic.

Define a data source in WebLogic that ties the data source in Selling
and Fulfillment Foundation to the connection pool in WebLogic.

Implementation

BEA WebLogic 85

12.1.1.3.1 Define Data Source in Selling and Fulfillment
Foundation

To define the data source name to Selling and Fulfillment Foundation,
add the following entry in the <INSTALL_DIR>/properties/customer_
overrides.properties file (see Section 23.5.10, "Property File"):

yfs.yfs.dblogin.datasource.name=yfsdbsourceperf

For additional information about overriding properties using the
customer_overrides.properties file, see the Selling and Fulfillment
Foundation: Properties Guide.

At initialization, Selling and Fulfillment Foundation uses the datasource
name to find the connection pool in WebLogic. In the example above, the
datasource name is yfsdbsourceperf.

Sterling Commerce recommends that you benchmark your application
before migration to production to ensure that these values are set
optimally. Sterling Commerce also recommends that you continually
monitor the connection pool usage levels to ensure that these
parameters are set optimally.

Initial Capacity

Bear in mind the following guidelines when setting the initial capacity
attribute:

You should set the initial capacity to satisfy your daily average
connection requirements. This level can be derived by monitoring
your actual pool usage levels.

You may want to set the initial capacity to a higher number if your
system experiences frequent traffic bursts.

You may not want to set initial capacity to a very high number
because both WebLogic and database server need to maintain a high
number of connections. For example, assume you have 8 managed
server instances, each with 15 execute threads. If you set initial and
maximum connection at 17, WebLogic creates and maintain 136
database connections.

Note: The BEA WebLogic Server Performance and Tuning manual (see
Tune the Number of Database Connections) recommends setting the
initial connection pool capacity equal to the maximum capacity.
Unfortunately, if you to follow that recommendation, you can not

86 Performance Management Guide

Implementation

determine the current pool usage levels since the pool usage would be
equal to the initial and the maximum. As a result:

You can not determine if there is a connection leak - for example, if
the current connection pool usage is higher than your work manager
thread utilization.

You can not know if your current connection pool usage is close to the
maximum capacity.

For that reason, we prefer to keep the initial capacity lower than the
maximum capacity.

Maximum Capacity

This attribute sets the maximum number of connections your pool can
grow to within a single WebLogic Server instance. If you set this value to
27 and you have eight WebLogic Server instances, in theory, WebLogic
could create up to 216 database connections.

Bear in mind the following guidelines when setting the maximum
capacity attribute:

Generally, each Selling and Fulfillment Foundation transaction
requires one connection. Therefore, you need one connection per
active thread. In practice, we set maximum capacity to be around the
active thread count plus a small number (e.g., 2 or 5) for a safety
buffer.

Monitor your application in production to confirm that the ratio of
connection usage is roughly equal to the number of active execute
threads.

Benchmark your application to see if custom code, user exits, and so
forth require additional connections.

Allow Shrinking and Shrink Frequency

This attribute pair informs WebLogic to release inactive connections if
they have been idle for the period as specified by "shrink frequency".
This has the advantage of releasing resources both at the WebLogic and
database server end.

Prepared Statement Cache Size

This attribute tells WebLogic to create a cache for each database
connection that can store prepared statements up to the value specified.

Implementation

BEA WebLogic 87

Prepared statements are precompiled SQL statements that can be
repeatedly invoked with different parameter values. Prepared statements
reduce the need to compile the SQL statements.

To disable prepared statement caching, set the prepared statement cache
size to 0. To use the cache, you can set a value up to 300.

12.1.1.4 JSP Pre-Compilation
When users call up a JSP page the first time, WebLogic automatically
translates the JSP file into a servlet and then compile that servlet. This
process can over 30 seconds, which could lead to user dissatisfaction.
Further, this process is performed serially even on a multiprocessor node
- if you have multiple users hitting five different pages, WebLogic
compiles these pages one at a time. As a result, we strongly recommend
precompiling the JSP pages prior to deployment into production.

To precompile, you need to build the Selling and Fulfillment Foundation
enterprise archive file (smcfs.ear). See the Selling and Fulfillment
Foundation: Installation Guide.

When you have the ear, issue the following:

WL_HOME=The Weblogic server directory
INSTALL_DIR=Selling and Fulfillment Foundation installation directory

WLS_JARS=${JAVA_HOME}/lib/tools.jar:\
${WL_HOME}/lib/weblogic_sp.jar:\
${WL_HOME}/lib/weblogic.jar:\
${WL_HOME}/lib/ojdbc14.jar:\
${JAVA_HOME}/jre/lib/rt.jar:\
${WL_HOME}/lib/webservices.jar

YANTRA_CLASSPATH="${WLS_JARS}:${CLASSPATH}"

APPC_CLASSPATH=${WL_HOME}/lib/weblogic.jar:\
${JAVA_HOME}/lib/tools.jar:\
${INSTALL_DIR}/jar/smcfs/8.5/jloox20.jar:\
${INSTALL_DIR}/jar/smcfs/8.5/lxgis20.jar

${JAVA_HOME}/bin/java -Xms1024m -Xmx1024m \
-classpath ${APPC_CLASSPATH} weblogic.appc \
-output ${INSTALL_DIR}/external_deployments/smcfs.ear \
-forceGeneration \
-O \
-verbose \

88 Performance Management Guide

Implementation

-classpath ${YANTRA_CLASSPATH} \
${INSTALL_DIR}/external_deployments/smcfs.ear

The precompiled JSPs are stored back into the smcfs.ear file.

12.1.1.5 WebLogic Server Cluster
For operational simplicity, you could implement the WebLogic Server as a
single (non-clustered) instance. However, for availability and
performance, many installations implement a WebLogic cluster over
separate physical nodes. When creating the cluster, consider the
following:

For performance, multiple WebLogic instances in a cluster generally
out-perform a single WebLogic instance on a large SMP node.

For availability, multiple WebLogic instances spread over multiple
physical nodes reduce the impact of losing a node.

For performance, multiple WebLogic instances spread over multiple
physical nodes reduce the impact of garbage collection on response
times to users.

For maintainability, set aside a bank of consecutive IP addresses for
the cluster so that you can multi-home the network cards. Each
WebLogic instance requires a unique IP address.

12.1.2 HTTP Load-Balancing
The Selling and Fulfillment Foundation HTTP screens are stateful, in the
sense that a screen preserves state information for subsequent screens.
As a result, you have to set up proxy servers or load-balancers to
load-balance HTTP requests with a “sticky” load-balancing policy. This
ensures HTTP requests go back to the server that have the session
states.

Load-balancing can improve performance for large number of HTTP users
because the user population is serviced by multiple application servers
that are managed as a cluster. Load-balancing can be implemented with
a variety of technologies ranging from the Apache proxy servers to
hardware-based load balancers.

Note: For Windows, format the example appropriately.

Monitoring

BEA WebLogic 89

12.1.2.1 HTTP Session Replication
Selling and Fulfillment Foundation supports HTTP in-memory session
replication in the following configuration:

BEA WebLogic

Apache 2.0.44 with the WebLogic plug-in as the proxy server with
idempotent set to ’OFF’

See the Selling and Fulfillment Foundation: Installation Guide for
instructions on how to set up WebLogic in-memory session replication.

Note: The Apache or load-balancer idempotent flag must be set to OFF.
In rare cases, for example, when a transaction completes and commits
but was unable to post the response to the proxy server, the proxy
server could retransmit the transaction. For some update transactions,
this could result in duplicate update entries.

12.2 Monitoring
You should monitor the following on a regular basis:

Work Manager Thread Utilization

Track the average and maximum number of active execute
threads through third-party tools or custom-developed JMX-based
programs.

Correlate that number to the workload level issued to the
application servers.

Either using mathematical projections or system tests, estimate
the number of concurrent threads expected during your peak
operational periods. As a general rule, you should plan to keep
the average active threads to 15 or less.

Garbage Collection

Monitor the frequency and health of the JVM’s heap management.
Please see the chapter relevant to your JVM in Part II, "Java
Virtual Machines".

Connection Pool Usage

Check if Connection High is equal to the JDBC pool size - the
Connection High is the highest number of connections ever

90 Performance Management Guide

Monitoring

reached. Recall, the JDBC pool to be equal to the maximum
possible transaction concurrency level plus a safety buffer of two.
The Connection High should not be the same as the JDBC pool
size.

IBM WebSphere 91

13
IBM WebSphere

This chapter provides guidelines on the planning, implementation,
configuration, monitoring, and tuning of the IBM WebSphere application
servers.

13.1 Implementation

13.1.1 WebSphere Tuning
This section assumes that you:

Are familiar with and have installed IBM WebSphere application
server in a network deployment

Have read the IBM WebSphere performance tuning guide [18]

This section elaborates on the recommendations found in [18].

13.1.1.1 WebSphere Queuing Network
In [IBM WebSphere Application Server, Advanced Edition, Tuning Guide,
IBM], IBM describes transactions to WebSphere as being processed in a
network of interconnected queues that includes the network, Web Server,
Web Container, EJB container, data source, connection pool, and the
database sessions.

IBM then recommends that the queues closest to the client be large (e.g,
the network) and that downstream queues (e.g., EJB container, data
source) grow progressively smaller as it gets further from the client. One
of the reasons offered is that an application that spends 90% of its time
in a complex servlet and only 10% of its time making short JDBC queries

92 Performance Management Guide

Implementation

would require a significantly smaller database connection queue than the
Web Container queue.

We agree with the first statement that the network queue can be large
because it is preferable to queue in the network and not in the
application server. However, from our experience, the downstream
queues should be set to the same size if not larger.

In database-intensive applications, such as Selling and Fulfillment
Foundation, when a transaction enters the Web Container, the APIs
almost always require a database connection. If one were to allow 20
concurrent transactions (by setting Maximum Thread Size in the Web
Container Services) to run against a connection pool of 12, there is a
possibility that at peak processing periods, 8 transactions would either be
forced to wait for a connection or throw an exception because it can’t get
a connection.

Using the same argument, the database instance should be able to
create more sessions than the sum of all the connections possible from
all the WebSphere instances combined. You also need additional
database sessions for standalone Java applications that need database
services (for example, the Selling and Fulfillment Foundation agents or
monitors), real-time performance monitors, database utilities and so
forth.

13.1.1.2 WebSphere Connection Pool
Creating database connections are very expensive operations. For
performance, Selling and Fulfillment Foundation takes advantage of the
WebSphere connection pool.

To enable connection pooling, you need to:

Define a data source to Selling and Fulfillment Foundation.

Define a connection pool in WebSphere and then associate the
connection pool to the datasource name in Selling and Fulfillment
Foundation.

Sterling Commerce recommends that data sources do not participate
in container managed persistence (CMP). For configuration, go to the
data sources setup in WebSphere and uncheck the Use this data
source in container managed persistence (CMP) field while
creating the data source.

Implementation

IBM WebSphere 93

13.1.1.2.1 Define Data Source in Selling and Fulfillment
Foundation

To define the datasource name to Selling and Fulfillment Foundation, add
the following entry in the <INSTALL_DIR>/properties/customer_
overrides.properties file (see Section 23.5.10, "Property File"):

yfs.yfs.dblogin.datasource.name=yfsdbsourceperf

For additional information about overriding properties using the
customer_overrides.properties file, see the Selling and Fulfillment
Foundation: Properties Guide.

At initialization, Selling and Fulfillment Foundation uses the datasource
name to find the connection pool in WebSphere. In the example above,
the datasource name is yfsdbsourceperf.

13.1.1.2.2 Define a Connection Pool in WebSphere In the
WebSphere administrative console, create a new connection pool with the
following attributes.

Sterling Commerce recommends that you benchmark your application
before migration to production to ensure that these values are set
optimally. Sterling Commerce also recommends that you continually
monitor the connection pool usage levels to ensure that these
parameters are set optimally.

Table 13–1 Connection Pool - Connection Settings

Attribute Value

Minimum pool size Initial number of connections to create for the
connection pool. If the pool is allowed to shrink, it does
not shrink below this number. See below for
recommendations.

Maximum pool size Maximum number of connections that can be created
for this pool. See below for recommendations.

Statement cache size The maximum number of prepared statements to
cache for the data source.

94 Performance Management Guide

Implementation

Minimum Pool Size

Bear in mind the following guidelines when setting the minimum pool size
attribute:

You should set the minimum pool size to satisfy your daily average
connection requirements. This level can be derived by monitoring
your actual pool usage levels.

You may want to set the minimum pool size to a higher number if
your system experiences frequent traffic bursts.

You may not want to set minimum pool size to a very high number
because both WebSphere and the database server needs to maintain
a high number of connections.

Maximum Pool Size

This attribute sets the maximum number of connections the pool can
grow to within a single WebSphere instance. If you set this value to 20
and you have ten WebSphere instances, in theory, WebSphere could
create 200 database connections.

Bear in mind the following guidelines when setting the maximum pool
size attribute:

Generally, each Selling and Fulfillment Foundation transaction
requires one connection. If you we set maximum pool size to be
around the maximum concurrency level at peak period plus a small
safety buffer (e.g., 2 or 5). For example, if you expect the
concurrency level to never grow higher than 15, you should set the
maximum pool size to 17 or 20.

Monitor your application in production to confirm that the ratio of
connection usage is roughly equal to the concurrency levels.

Benchmark your application to see if custom code, user exits, and so
forth require additional connections.

Statement Cache Size

This attribute tells WebSphere to create a cache at the data source level
to store prepared statements up to the value specified.

Implementation

IBM WebSphere 95

Prepared statements are precompiled SQL statements that can be
repeatedly invoked with different parameter values. Prepared statements
reduce the need to compile the SQL statements.

To disable prepared statement caching, set the prepared statement cache
size to 0. To use the cache, you can set a value to a higher value.

13.1.1.3 JSP Pre-Compilation
When users call a JSP page the first time, WebSphere automatically
compiles that JSP. JSP compilations, however, can take a long time which
could lead to the perception that the system is slow. Some JSPs can take
over a minute to compile. You can avoid this problem by precompiling
the JSPs after deployment. To do this, issue the following
JspBatchCompiler script from was_root/bin from each WebSphere node:

./JspBatchCompiler.sh \
-enterpriseapp.name ${appName} \
-webmodule.name smcfs.war \
-cell.name <customer cell name> \
-node.name <customer node name> \
-server.name <customer server name> \
-profileName <profile name> \
-keepgenerated true

The webmodule.name must be set to smcfs.war.

13.1.2 HTTP Load-Balancing
The Selling and Fulfillment Foundation HTTP screens are stateful in the
sense that a screen preserves state information for subsequent screens.
As a result, you have to set up proxy servers or load-balancers to

Note: For Windows, format the example appropriately.

Note: The customer cell name, customer node name,
customer server name, and customer profile name
parameters refer to the WebSphere instance where the
EAR was deployed. For more information, refer to the
WebSphere documentation.

96 Performance Management Guide

Monitoring

load-balance HTTP requests with a “sticky” load-balancing policy. This
ensures HTTP requests go back to the server that have the session
states.

Load-balancing can improve performance for large number of HTTP users
because the user population is serviced by multiple application servers
that are managed as a cluster. Load-balancing can be implemented with
a variety of technologies ranging from the Apache proxy servers to
hardware-based load balancers.

13.2 Monitoring
You should monitor the following on a regular basis:

Execute Thread Count

Track the average and maximum number of active execute
threads through third-party tools or custom-developed JMX-based
programs.

Correlate that number to the workload level issued to the
application servers.

Either using mathematical projections or system tests, estimate
the number of concurrent threads expected during your peak
operational periods. As a general rule, you should plan to keep
the average active threads to 15 or less.

Garbage Collection

Monitor the frequency and health of the JVM’s heap management.
Please see the chapter relevant to your JVM in Part II, "Java
Virtual Machines".

Connection Pool Usage

Check if Connection High is equal to the JDBC pool size - The
Connection High is the highest number of connections ever
reached. Recall, the JDBC pool to be equal to the maximum
possible transaction concurrency level plus a safety buffer of two.
The Connection High should not be the same as the JDBC pool
size.

JBoss 97

14
JBoss

This chapter provides guidelines on the planning, implementation,
configuration, monitoring, and tuning of the JBoss application servers.

14.1 Implementation

14.1.1 JBoss Tuning
This section assumes that you:

Are familiar with and have installed the JBoss application server in a
clustered mode.

Have read the Jboss admin and develpoment guide [21]

This section elaborates on the recommendations found in [21].

14.1.1.1 JSP Pre-Compilation
When users invoke a JSP page for the first time, JBoss automatically
compiles the JSP. The JSP compilation may take a long time. Some JSPs
may take more than one minute to finish compilation. Due to this, it
appears as though the system performance is slow. To improve the
system performance, ensure that you precompile JSPs before building
the Selling and Fulfillment Foundation enterprise archive file
(smcfs.ear).

98 Performance Management Guide

Implementation

To precompile JSPs:

Add the following lines to the properties/sandbox.cfg file to request
precompilation. By default, the JSPs for JBoss are not precompiled:

JBOSS_PRECOMPILE_JSP=TRUE
JBOSS_DIR=<JBOSS_HOME>

From <INSTALL_DIR>/bin, run the command to rebuild your property
files:

setupfiles.sh

Build the Selling and Fulfillment Foundation enterprise archive file
(smcfs.ear) using instructions from the Selling and Fulfillment
Foundation: Installation Guide.

The precompile scripts expects the JBoss server to be the default name
of "all". See the Selling and Fulfillment Foundation: Installation Guide.

You can increase the amount of JVM heap that the JSP compiler runs in
by changing the following parameters in the <INSTALL_
DIR>/bin/build.properties:

jboss.PRECOMPILE_MAX_MEMORY=2048m
jboss.PRECOMPILE_MIN_MEMORY=512m

99

Part IV
 Database Management Systems

This part of the book provides information on how to implement, monitor
and tune the database management systems (DBMS).

This part includes the following chapters:

Chapter 15, "Database Management System"

Chapter 16, "Oracle10g"

Chapter 17, "IBM Universal Database (UDB)"

Chapter 18, "Microsoft SQL Server"

Chapter 19, "Advanced Database Topic - Oracle10g Real Application
Cluster Database"

100 Performance Management Guide

Database Management System 101

15
Database Management System

This chapter provides guidelines on the implementation, configuration
and tuning of database management systems in general.

15.1 Overview
Selling and Fulfillment Foundation uses a database server as a repository
for the transactional, reference, and history data generated and used by
Selling and Fulfillment Foundation.

15.2 Planning
This section provides planning elements that have to be completed prior
to the implementation phase. The key planning tasks include, at a
minimum:

Selecting a certified database management server software and
version.

Determining the size and configuration of the database server node

Determining the size and configuration of the database disk
subsystem

Determining the disk technology

15.2.1 Supported Configuration
See the Selling and Fulfillment Foundation: Installation Guide for a list of
the supported configurations.

102 Performance Management Guide

Planning

15.2.2 Server Sizing
At appropriate times in the project lifecycle, you can request a Server
Sizing study from your Professional Services Project Manager or a
Sterling Commerce Sales Executive. This study starts with the Selling
and Fulfillment Foundation Server Sizing Questionnaire. Sterling
Commerce Performance Engineering creates a sizing document that
provides an estimated processor, memory, and network requirement for
the standard/baseline Selling and Fulfillment Foundation. You need to
factor in additional requirements such as other workloads on the same
node (for example, additional third party software, customization,
performance monitors, and so forth).

15.2.3 Disk Subsystem

15.2.3.1 Disk Technology
Your disk capacity requirement is a very important input to the disk
configuration planning process. This is not a simple process that involves
many other factors including:

Survivability

Configure the disks with the ability to survive single or multiple
disk failures (e.g., RAID-1 or RAID-10).

Configure the disk array with multiple I/O paths to the server to
survive I/O path failures.

Configure the disks to be accessible from multiple server nodes to
tolerate a single node failure.

Manageability

If you have very short time windows to backup the database,
select disk arrays that allow you to take logical backups (e.g.,
array snapshots).

Scalability/performance

Configure the disk array with many small disks instead of a few
large disks so that you can increase the number of I/O paths.

Configure the disk array with large NVRAM cache to improve read
and write performance.

Planning

Database Management System 103

Configure the disks with stripping (e.g., RAID-0 or RAID-10).

Let’s take for example that you need 900GB and you have disk arrays or
storage area networks (SAN) that are made up of 93GB disks. The
following table summarizes the trade-off choices for the common disk
organizations. Let’s further assume that the database is implemented
over ninety 10GB data files.

Table 15–1 Disk Organization - Trade-Off

Tech Scalability Survivability Maintainability
Num
Disks

JBOD Poor - Subject to
throughput of
individual disks

Poor - Single disk
failure creates
outage and
require database
recovery

Poor - High disk
utilization skew

10

RAID-0 Excellent -
Striping N disks
provides
read/write
throughput at N
times a single disk

Poor - Single disk
failure creates
outage and
require database
recovery

Excellent - expect
near uniform disk
utilization within a
logical unit.
Potential LUN
utilization skew.

10

RAID-1 Poor - similar
performance to
JBOD

Better - Could
survive multiple
disk failures in
different mirrored
sets

Poor - High disk
utilization skew

20

RAID-5 Excellent for read
- similar to
RAID-0.
Potentially poor
for write
performance.

Better - Able to
survive a single
disk failure.
Multiple disk
failures creates an
outage and
require database
recovery.

Excellent - low
disk util skew.
Possible LUN
utilization skew.

11

RAID-01 Excellent
read/write
performance.

Could tolerate up
to two disk
failures as long as
both failures are
not in the same
mirrored set.

Excellent - low
disk util skew.
Possible LUN
utilization skew.

20

104 Performance Management Guide

Planning

15.2.4 Selling and Fulfillment Foundation Schema
The Selling and Fulfillment Foundation: Installation Guide provides
directions on how to create the Selling and Fulfillment Foundation
database, the Selling and Fulfillment Foundation tables, and their
associated indices.

These DDL statements are intended to allow you to create a simple
schema that is suitable for general use. You need to review and possibly
modify these statements for production. Specifically:

The DDL statements create a minimal set of indices for general
Selling and Fulfillment Foundation use. You may need to create
additional or modify existing indices for your business practice.

The DDL statements create a single tablespace with a large data file.
You may want to create additional tablespaces for manageability as
well as additional data files for I/O load balancing.

15.2.4.1 Indices
Most customers use a subset of the broad functionality in Selling and
Fulfillment Foundation. As a result, the base Selling and Fulfillment
Foundation database schema with the default or starting set of indices
may have to be adjusted for your specific use. Therefore, you should
validate the starting index set to see if they support your workloads.

As a suggestion, prior to production, you should conduct a system test
where all the key screens, agents and APIs run against a copy of the
production database. During this test, you can check if additional indices
are required and if there are any unused indices you can disable or drop.

RAID-10 Excellent
read/write
performance.

Could tolerate up
to N disk failures
as long as there
isn’t two failures
in a mirrored set

Excellent - low
disk util skew.
Possible LUN
utilization skew.

20

Table 15–1 Disk Organization - Trade-Off

Tech Scalability Survivability Maintainability
Num
Disks

Planning

Database Management System 105

Please see the following sections on how to enable index monitoring:

For Oracle10g, see Section 16.1.5.1, "Oracle Index Monitoring and
Tuning".

For IBM UDB, see Section 17.1.4.1, "UDB Index Monitoring and
Tuning".

For Microsoft SQL Server, see Section 18.1.2, "Microsoft SQL Server
Index Monitoring and Tuning".

15.2.4.1.1 Custom Indices Please follow the following convention
when you create a new index:

First, make sure the index name does not end with the following suffix:

"_PK" - This suffix is reserved for indices that are the primary key
for the underlying table. For example, the index, yfs_order_
header_pk, is the primary key index for the yfs_order_header
table.

"_Inn" where nn is an integer value from 0 to 99 - This suffix is
reserved for secondary or alternate indices for the underlying
table. For example, the index, yfs_order_header_i1, is a
secondary index for the yfs_order_header table.

The convention above prevents situations where new base Selling and
Fulfillment Foundation indices have the same name as one of your
custom index.

Secondly, to further differentiate custom indices from the base, the
custom index should start with EXTN_ as a prefix and Xnn in the index
name. For example, if you add two indices to the YFS_ORDER_HEADER
table, the index names should be EXTN_ORDER_HEADER_X1 and EXTN_
ORDER_HEADER_X2.

106 Performance Management Guide

Planning

Oracle10g 107

16
Oracle10g

This chapter provides guidelines on the implementation, configuration
and tuning of Oracle10g.

16.1 Implementation
This section assumes that you have read the following Oracle documents
that are applicable to your platform:

Release notes specific to your platform

Quick Installation Guide for your platform

Installation Guide for your platform

Performance Tuning Guide

These documents can be found in the Oracle Technology Network site at
http://otn.oracle.com. The Oracle10g Release 2 (10.2) documents are
found at http://www.oracle.com/pls/db102/homepage.

This chapter provides the recommendations that we found useful or
critical to the Selling and Fulfillment Foundation performance.

16.1.1 Recommended Oracle Parameters
The following table summarizes the recommended choices:

Table 16–1 init.ora Parameters

Parameters Oracle10g

db_block_size 8KB

108 Performance Management Guide

Implementation

16.1.1.1 processes
This parameter sets the limit on the number of database connections.
You have to pick a reasonably high enough number so that the combined
connection requirements from the application servers, agents, and so
forth do not exceed the connection limit during peak processing periods.
If you do, you must restart the Oracle instance to increase this limit.

Fortunately, with the use of connection pooling in application servers, the
number of database connections is less than the number of users logged
in to Selling and Fulfillment Foundation. Depending on your anticipated
peak workload traffic, this parameter could range from a small number
like 25 to a large number in the thousands.

You must regularly monitor the number of concurrent connections in
production (and especially during peak periods) to ensure that it does

processes Must be greater than the number of connections
needed by the (a) application servers, (b) the
agents/monitors and (c) operational management
tools.

compatible 10.2.0.1 (or the appropriate Oracle10g Rel 2 level)

sga_max_size,

sga_target,

pga_aggregate_target

1GB to 4GB depending on the amount of physical
memory on your database node

cursor_sharing FORCE

timed_statistics True

optimizer_mode ALL_ROWS

open_cursors Default (higher if prepared statement caching
used)

query_rewrite_enabled True (if using the WMS application)

query_rewrite_integrity Trusted (if using the WMS application)

HP-UX Only

hpux_sched_noage 178

disk_asynch_io True

Table 16–1 init.ora Parameters

Parameters Oracle10g

Implementation

Oracle10g 109

not reach the maximum. When the maximum session is reached, Oracle
refuses to establish new connection requests.

See WebLogic connection pooling discussions in Section 12.1.1.3,
"WebLogic Connection Pool".

See WebSphere connection pooling discussions in Section 13.1.1.2,
"WebSphere Connection Pool".

Guidelines for Estimating Number of Connections.

You can roughly estimate the number of concurrent users required by
Selling and Fulfillment Foundation with the following formula:

where:

A = Maximum number of agents transaction threads that run
concurrently (see Section 23.3.3, "Agent Thread Levels".

B = Maximum application server connection pool size times the
number of application server instances. See Maximum Capacity.

C = Any additional connections that are opened by customized code
or user exits that do not go through the application server connection
pool. This connection requirement is specific to your implementation.

D = Number of asynchronous adapters (Service Definition
Framework) times the number of connections per adapter.

The Selling and Fulfillment Foundation agents and monitors are long-
running Java applications that open and use one Oracle connection per
thread.

Example: Lets assume that you plan to configure a system with the
following characteristics:

Six application server instances where each application server
instance can run up to a maximum of twenty-five (25) transactions
concurrently.

Twelve agent threads

Four asynchronous adapters where each could have up to four
threads

Maximum ten connections for operational tools such as Oracle OEM or
Quest SpotLight

concurrentOracleConnections A B C D+ + +=

110 Performance Management Guide

Implementation

Lets further assume that each transaction in the application server only
requires one database connection. Specifically, user exits do not open
their own database connection. As a result, for the example above, you
need:

In the worst case, 25 x 6 or 150 database connections from the
application servers during the peak period if there is a possibility that
all application server threads become active. This of course would not
be a desirable state - if there ever is such a possibility, you should
configure more application server instances.

12 database connections for the agents/monitors

4 x 4 or 16 database connections from the asynchronous adapters

10 database connections from your operational monitors

As a result, you should plan for at least 150 + 12 + 16 + 10 or 188
database connections.

As always, we strongly recommend that you benchmark your system to
validate these assumptions and estimates prior to a production
implementation. During the test, you should monitor the connection pool
usage levels in each of the WebLogic Server instances, the number of
agents that you need to run in order to meet your processing and service
levels and the actual Oracle connections established.

16.1.1.2 compatible
You should set the compatible parameter to the four level release
number that your Oracle software is running at in order to take
advantage of the latest optimizer features. An example of the release
number is 10.2.0.3.

16.1.1.3 sga_max_size, sga_target, pga_aggregate_target
In Oracle10g, setting sga_target allows Automatic Storage Memory
Management to manage the memory inside the System Global Area
(SGA). You can dynamically change the sga_target up to the value
specified by sga_max_size.

As a result, you could either set sga_target to be equal to or less than
the value of sga_max_size.

Implementation

Oracle10g 111

16.1.1.4 cursor_sharing
With cursor_sharing enabled, Oracle converts dynamic (non-reusable)
SQL into reusable SQL by changing literal values into bind variables.
Enabling cursor sharing significantly reduces shared pool and library
cache contention.

For optimal performance, you must set cursor_sharing=FORCE.

16.1.1.5 optimizer_mode
Starting in Oracle10g, the optimizer mode of CHOOSE has been
deprecated. You should set the optimizer_mode to the default of ALL_
ROWS.

16.1.1.6 open_cursors
This parameter limits the number of cursors an Oracle session can keep
open at any time. Generally, the default is sufficient unless you set a high
prepared statement cache size (see Prepared Statement Cache Size in
Section 12.1.1.3.1, "Define Data Source in Selling and Fulfillment
Foundation").

To find out the number of cursors opened by sessions, issue the following
query:

select sid, count(*)
from v$open_cursor
group by sid

If you suspect a cursor leak, issue the following query:

select sid,substr(sql_text,1,40),count(*)
from v$open_cursor
group by sid,substr(sql_text,1,40)
having count(*) > 10

That query identifies SQL statements that potentially have more than 10
open cursors in a given session.

16.1.1.7 query_rewrite_enabled and query_rewrite_integrity
If you are using the Sterling WMS application, you have to create at
least one function-based index as part of the application installation. As a
result, the Selling and Fulfillment Foundation schema must have QUERY
REWRITE privilege. In addition, in order for Oracle to use the

112 Performance Management Guide

Implementation

function-based indexes in queries, you have to set the Oracle
parameters:

QUERY_REWRITE_ENABLED to true and

QUERY_REWRITE_INTEGRITY to trusted.

16.1.1.8 hpux_sched_noage
(only applicable to HP-UX)

By default, HP-UX runs user processes with a time-sharing scheduling
policy which is designed to lower process priorities the longer they run.
Unfortunately, time-sharing policies can deschedule Oracle processes
while they are holding on to critical data locks or system latches. To
address this issue, HP-UX implemented the SCHED_NOAGE policy that
does not increase or decrease process priorities (see man pages on
rtsched(2)). This parameter is especially useful when you have a large
number of active database processes relative to the number of
processors.

In order to use the SCHED_NOAGE scheduling policy, the OS group
(typically dba) that the Oracle user belongs to must be granted the
RTSCHED and RTPRIO privileges. You can check if the group has the
privileges by issuing the following command:

/usr/bin/getprivgrp dba
dba: RTPRIO MLOCK RTSCHED

To grant the privilege, add the following string to the /etc/privgroup
file:

dba RTPRIO RTSCHED

And then run the following command to enact the new privileges:

/usr/bin/setprivgrp -f /etc/privgroup

The range of priorities in SCHED_NOAGE is from 178 (highest) to 255
(lowest).

After enabling SCHED_NOAGE, set the hpux_sched_noage parameter (in
the spfile) to 178.

Implementation

Oracle10g 113

16.1.1.9 max_async_ports, disk_asynch_io
Asynchronous I/O is very important to performance especially on high
transaction volume processing environments. In summary, processes
that issue synchronous read() or write() I/O calls must wait for the I/O
to complete before it can continue. In contrast, processes can issue
multiple asynchronous (non-blocking) aio_read() or aio_write() I/O
calls in parallel without waiting.

HP-UX does not enable asynchronous I/O by default. HP-UX also only
supports asynchronous I/O on files that reside on raw devices and not on
filesystems. If you don’t enable asynchronous I/O, you will have to run
multiple DBWRs (up to 20) to get a limited amount of I/O parallelism.

Please see:

Section 4.1.2.1, "Asynchronous I/O" to enable asynchronous I/O on
AIX.

Section 5.2.1, "Asynchronous I/O" to enable asynchronous I/O on
HP-UX.

After enabling asynch I/O in HP-UX, you need to set the Oracle
parameter, disk_asynch_io, to true in spfile.

16.1.2 Automatic Storage Management (ASM)
e recommend managing your database storage in Oracle’s Automatic
Storage Management. Some of the benefits of using ASM include:

Improved I/O performance and scalability

Simpler database administration tasks

Automatic I/O tuning

Reduction in number of objects to manage

We strongly encourage you to read the many ASM whitepapers and
documents on Oracle’s web-site. In addition, most storage vendors have
written best practice papers on how to configure ASM for their storage
products.

The following are specific ASM recommendations that we have found to
be critical for performance:

For HP-UX, we recommend importing only raw-devices into ASM. As
we discussed in Section 16.1.1.9, "max_async_ports, disk_asynch_

114 Performance Management Guide

Implementation

io" above, HP-UX only supports asynchronous I/O on files that are on
raw devices and not filesystems.

For high volume processing environments, ensure ASM is configured
with "disk" devices from high-performance disk storage arrays. Some
characteristics that you should look for include large NVRAM caches
to buffer disk reads and writes, efficient RAID implementation, etc.

Configure ASM with "External Redundancy" so that redundancy is
provided by your storage array instead of being implemented by
Oracle. This setting will eliminate the extra overhead in Oracle to
maintain redundancy.

16.1.3 Redo Logs
Redo logs are critical for database and instance recovery. Proper redo log
configuration is also critical for performance. Some recommendations for
redo logs configuration include:

Implement redo logs in Automatic Storage Management (ASM).

We strongly discourage implementing redo logs on file systems. If
you prefer file systems, you should implement redo logs on file
systems that are configured to perform I/O in small data blocks to
avoid partial block writes.

Redo log buffers are typically small. If redo logs are implemented on
file systems that are configured as 8KB blocks, some redo log writes
requires the file system to read in the block, append the log buffer to
that block and then write out the block to disk.

If you are using a file system on Solaris or AIX, the redo log file
system should be configured for 512 byte blocks. For HP-UX, the file
system block size should be 1024 bytes. See
http://www.ixora.com.au/tips/use_raw_log_files.htm.

If the redo logs are placed on file systems, enable direct I/O -
specifically avoid the situation where the writes are buffered in the
file system cache before written out to disk.

Consider implementing redo logs on dedicated disk devices.

Consider implementing redo log group log files on alternating disks.

Implementation

Oracle10g 115

16.1.3.1 Redo File Size
Your choice of redo file size depends on your trade-off between
performance and availability, specifically the time needed to recover the
Oracle instance in the event of a failure. For performance, some
installations opt to create large redo logs to reduce the frequency of log
switches. However, doing so means that there are potentially more
transactions in the redo logs that have to be replayed during recovery.
The general rule for sizing redo log files is to look at the time it takes to
switch log files. By issuing the following query you can see how often the
redo log files are changing. As a general rule the logs should not be
switching more that once every twenty to thirty minutes:

select * from v$loghist
order by first_time desc

The following is an example of the output:

THREAD# SEQUENCE# FIRST_CHANGE# FIRST_TIME SWITCH_CHANGE#
 1 97 7132082 10/20/2003 11:47:53 PM 7155874
 1 96 7086715 10/20/2003 11:32:04 PM 7132082
 1 95 7043684 10/20/2003 11:15:07 PM 7086715
 1 94 6998984 10/20/2003 11:00:57 PM 7043684
 1 93 6950799 10/20/2003 10:48:03 PM 6998984

In the example above, the logs switched every fifteen minutes.

16.1.4 Server Mode
You should create Oracle to use dedicated servers (instead of shared
servers). Shared servers can be useful in two-tier client/server
configurations where a large number of users need to access the
database directly.

In Selling and Fulfillment Foundation, the WebLogic or WebSphere
Application Server serves as a transaction manager to multiplex large
number of users into a finite number of connections to the Oracle
instance. Long running processes such as Agent Servers, by design,
maintain a single, dedicated connection to Oracle. As a result, in both
cases, dedicated servers are recommended.

116 Performance Management Guide

Implementation

16.1.5 Selling and Fulfillment Foundation Schema

16.1.5.1 Oracle Index Monitoring and Tuning
As we mentioned in Section 15.2.4.1, "Indices", you may have to adjust
the base starting index set to suit your operational environment. You can
find out what indices are used (and by corollary, which ones are not
used) through index monitoring. To enable index monitoring, issue the
following commands, one for each index:

...
alter index yfs_order_header_pk monitoring usage;
alter index yfs_order_header_i1 monitoring usage;
alter index yfs_order_header_i2 monitoring usage;
...

You can generate the command above by issuing the following query:

select 'alter index ' || index_name || ' monitoring usage;'
from user_indexes;

Periodically, as you run your functionality and system test, you can run
the following query to see if which indices have been used and which
have not yet been used:

select index_name, monitoring, used, start_monitoring
from v$object_usage;

INDEX_NAME MONITORING USED START_MONITORING
------------------- ---------- ---- -------------------
YFS_ORDER_HEADER_I1 YES YES 01/29/2003 01:23:03

To turn off index monitoring, issue the following command:

alter index yfs_order_header_i1 nomonitoring usage;

16.1.5.2 Oracle Table Partitioning
You can use Oracle partitioning to aid the maintainability of large tables.
You should not view partitioning as a performance tool to achieve higher
throughput; under certain circumstances it may increase throughput, but
these circumstances are rare in Selling and Fulfillment Foundation.
However, as a tool to improve the maintainability of the largest tables,

Implementation

Oracle10g 117

partitioning can be valuable. Before implementing any partitions in a
production environment, it is essential that you test the changes with the
expected production workflows. Sterling has tested and developed the
following points with regard to Oracle partitioning and the Selling and
Fulfillment Foundation application:

With the careful selection of tables based on workflow analysis, and
using Global Indices, table partitioning did not cause an appreciable
degradation of throughput compared to non-partitioned tables.

Converting the Global Indices to Local (non-prefixed) Indices showed
a minimal I/O increase. Application throughput dropped minimally.
These tables were accessed only by the purge agents and at low
access volumes. General industry consensus is to use Global Indices
for high query volumes, though local indexes on low access volumes
may maintain acceptable performance.

Table partition compression can save up to 85% of the disk space
used. We recommend this only on low volume access tables such as
the history tables.

Table partitions should ideally be set up on the initial installation. Tables
may be partitioned once loaded. We have used and recommend testing
Oracle's "dbms.redefinition" package. This package is well documented
by Oracle in the Oracle® Database PL/SQL Packages and Types
Reference and the Oracle® Database Administrator's Guide.

Oracle does not support LONG columns in table partitions. Any LONG
columns need to be converted to CLOB before attempting to partition a
table. The LONG to CLOB conversion can be performed by the
"dbms.redefinition" package at the same time as the table partitioning.

16.1.5.3 Oracle Table Partition Compression
As mentioned in Section 16.1.5.2, "Oracle Table Partitioning", partition
compression can save up to 85% of the disk space usage.

We recommend that only low access volume table partitions are
compressed after testing with production-like workflows and loads.

118 Performance Management Guide

Implementation

16.1.5.4 Tablespaces
Prior to production, you should plan the overall storage strategy.

Since there are strong preferences, the DDLs to create temporary
tablespaces and data tablespaces are left to the discretion of the
customer.

We instead provide the following recommendations for your
consideration:

You should implement these tablespaces as locally managed
tablespaces (LMTs)You do this by specifying extent management
local when creating the tablespace.

You should implement tablespaces with automatic space management
by specifying segment space management auto.

With LMTs, you may want to consider creating tablespaces that store
small reference tables with the autoallocate extent allocation
model:

create tablespace yt1
 datafile ’/u03/dbs/pyantradb/yt1_001.dbf’ size 2047m
 extent management local autoallocate
 segment space management auto;

If you have very large tables, you may want to consider putting those
tables into their own tablespace and to use the uniform extent
allocation model:

create tablespace yfs_order_header_t1
 datafile ’/u03/dbs/pyantradb/y_order_header_t1_001.dbf’ size 2002m
 extent management local uniform size 1000m
 segment space management auto;

You should create your temporary tablespace as a temporary data file
(temp files). Temp files are used to store intermediate results (e.g.,
from large sort operations). Changes to temp files are not recorded in
the redo logs:

create temporary tablespace yfs_temp
 tempfile ’/u03/dbs/pyantradb/yfs_temp_01.dbf’ size 1024m
 extent management local
 uniform size 1m;

Implementation

Oracle10g 119

16.1.5.4.1 Tables

After creating the tablespaces, you can modify and use the DDL script
file, $<INSTALL_DIR>/database/ oracle/scripts/yfs_tables.sql, to
create the tables. At a minimum, you may want to modify the table to
tablespace mapping.

16.1.5.5 Index and Table Statistics
Database optimizers rely on "relatively" up-to-date table and index
statistics to generate optimal access plans. Oracle does not need the
statistics to be absolutely correct or current, just relatively correct and
representative. As a result, you don’t have to gather statistics every day
for every table especially if your database is already large (in the
terabyte range).

Starting in Oracle10g, Oracle by default automatically gather statistics
during its maintenance window for tables that have undergone sufficient
changes. Oracle will bypass statistics generation for tables that have not
changed significantly.

16.1.5.5.1 Volatile Tables The following tables change significantly
during the day and are not candidates for automatic statistics gathering:

YFS_TASK_Q

YFS_TASK

YFS_EXPORT

YFS_IMPORT

For example, the YFS_TASK_Q table represents task that are in different
state of processing. That table grows and shrinks throughout the day. At
night, when order processing has completed, the table will have few
in-progress records. When automatic statistics gathering run during the
maintenance window, the statistics will incorrectly present this table as a
small table.

We recommend either one of the two options below for these tables:

Delete statistics for these table and then lock down the statistics.

Manually collect statistics during the day when the table is large and
then lock down the statistics.

120 Performance Management Guide

Implementation

In the first option, in the absence of statistics, Oracle will assume a large
table. The commands for the first options are:

exec dbms_stats.delete_table_stats(<schema owner>,’YFS_TASK_Q’)

exec dbms_stats.lock_table_stats(<schema owner>,’YFS_TASK_Q’)

The commands for the second option are:

exec dbms_stats.gather_table_stats (ownname => 'YANTRA', -
tabname=>’YFS_TASK_Q’, -
estimate_percent => dbms_stats.auto_sample_size)

exec dbms_stats.lock_table_stats(<schema owner>,’YFS_TASK_Q’)

16.1.5.5.2 Skewed Columns and Histograms As part of generating
the statistics, Oracle generates histograms for skewed columns.

Skewed columns are columns that have a non-uniform distribution of
values. For example, the enterprise_key column in the YFS_ORDER_
HEADER table may be made up of a few values where one value may be
more prevalent. In contrast, columns such as the order_no is more
uniformly distributed.

Given basic statistics such as number of rows and the number of distinct
column values, Oracle tends to choose a full table scan when faced with a
query, such as the one below, against columns with high skew and/or low
cardinality:

select *
from yfs_order_header
where derived_from_order_header_key = ’2003012412213801928344’;

can result in table scans even if the columns are indexed. The example
above was from an actual case (see below).

Case Study: Customer reported that the Order Detail
screen took over 4 minutes. The query that checks if the
order is a derived order resulted in a table scan of the
YFS_ORDER_HEADER table. When customer ran dbms_
stats to create histograms, Order Detail screen dropped to
1 second.

Implementation

Oracle10g 121

From the optimizer’s perspective, the queries against these columns
either return a small or a very large result set. To err on the side of
caution, the optimizer generally chooses a table scan over an index range
scan.

You can get the optimizer to choose a more optimal access plan by
providing additional statistics in the form of histograms.

By default, Oracle10g creates histograms as part of the statistics
generation. You can verify if a column has histograms by issuing the
following command:

select table_name,column_name,histogram
from user_tab_columns

TABLE_NAME COLUMN_NAME HISTOGRAM
YFS_ORDER_LINE CHAINED_FROM_ORDER_LINE_KEY NONE
YFS_ORDER_LINE CHAINED_FROM_ORDER_HEADER_KEY NONE
YFS_ORDER_LINE DERIVED_FROM_ORDER_LINE_KEY FREQUENCY
YFS_ORDER_LINE DERIVED_FROM_ORDER_HEADER_KEY FREQUENCY

In the example above, Oracel created histograms for the two DERIVED_
FROM columns but not the CHAINED_FROM columns. To manually create
the histograms for the CHAINED_FROM columns, issue the following
command:

exec dbms_stats.gather_table_stats (ownname => 'YANTRA', -
tabname=>’YFS_ORDER_LINE’, -
estimate_percent => dbms_stats.auto_sample_size, -
method_opt=>'for columns size auto CHAINED_FROM_ORDER_LINE_KEY, CHAINED_
FROM_ORDER_HEADER_KEY');

When you rerun the histogram query, you should now get:

TABLE_NAME COLUMN_NAME HISTOGRAM
YFS_ORDER_LINE CHAINED_FROM_ORDER_LINE_KEY FREQUENCY
YFS_ORDER_LINE CHAINED_FROM_ORDER_HEADER_KEY FREQUENCY
YFS_ORDER_LINE DERIVED_FROM_ORDER_LINE_KEY FREQUENCY
YFS_ORDER_LINE DERIVED_FROM_ORDER_HEADER_KEY FREQUENCY

In the example above, the method_opt with the auto parameter lets
Oracle decide whether histograms are to be created based on the
column’s data distribution and the way the columns are being used by
the application.

122 Performance Management Guide

Implementation

16.1.5.5.3 Identifying Skewed Columns The following query helps
you identify columns with skewed data distribution:

select ui.table_name,ui.index_name, column_name, column_position, num_rows,
distinct_keys as dist_keys
from user_indexes ui, user_ind_columns uic
where ui.table_name = uic.table_name and
 ui.index_name = uic.index_name and
 ui.num_rows > 0 and
 ui.distinct_keys/ui.num_rows < 0.1
order by table_name, index_name, column_position

TABLE_NAME INDEX_NAME COLUMN_NAME NUM_ DIST
 ROWS _KEYS
YFS_ORDER_LINE YFS_ORDER_LINE_I3 CHAINED_FROM_ORDER_HEADER_KEY 6552586 1
YFS_ORDER_LINE YFS_ORDER_LINE_I4 DERIVED_FROM_ORDER_HEADER_KEY 6357590 1
YFS_ORDER_LINE YFS_ORDER_LINE_I5 DERIVED_FROM_ORDER_LINE_KEY 6624191 1
YFS_ORDER_LINE YFS_ORDER_LINE_I6 CHAINED_FROM_ORDER_LINE_KEY 6534969 1
YFS_ORDER_LINE YFS_ORDER_LINE_I7 DEPENDENT_ON_LINE_KEY 6457481 1

In the example above, the customer does not use derived or chained
orders.

You should ensure that histograms are added to indexed columns if the
absence of histograms causes Oracle to choose an inefficient plan.

IBM Universal Database (UDB) 123

17
IBM Universal Database (UDB)

This chapter provides guidelines on the implementation, configuration
and tuning of IBM UDB 9.1 and IBM UDB 9.5.

17.1 Implementation
This section assumes that you have read the IBM UDB Administration
Guide: Planning [3], Administration Guide: Implementation [4] and
Performance Guide [5].

17.1.1 Recommended UDB dbset Registry Variables
UDB exposes close to 200 db2set registry variables. Of that, we have
found the following variables to be critical for performance. These
parameters are described in [5].

Table 17–1 db2set registry variables

db2set registry variables Value

DB2_USE_ALTERNATE_PAGE_CLEANING ON

DB2_EVALUNCOMMITTED ON

DB2_SKIPDELETED ON

DB2_SKIPINSERTED ON

DB2_PARALLEL_IO See below for recommendations

DB2_SELECTIVITY ALL

124 Performance Management Guide

Implementation

DB2_EVALUNCOMMITTED
Enabling this variable can reduce the amount of unneeded lock
contention from read share and next-key share. By default, UDB
requests share locks on the index or record before it checks if the record
satisfies the query predicate. Queries that scan a set of records in tables
with high frequency of inserts or updates can unnecessarily block on
records that do not belong to its result set.

When you set DB2_EVALUNCOMMITTED=ON, UDB performs an uncommitted
read on the record to perform the predicate check. If the record satisfies
the predicate, UDB then requests a share lock on that record.

DB2_SKIPDELETED
Enabling this variable allows index-range or table-scan queries to skip
over records that are in an uncommitted delete state. This reduces the
amount of lock contention from read share and next-key share locks
from range queries in tables with a high frequency of deletes.

When enabled, allows, where possible, table or index access scans to
defer or avoid row locking until a data record is known to satisfy
predicate evaluation. With this variable enabled, predicate evaluation
may occur on uncommitted data.

It is applicable only to statements using either Cursor Stability or Read
Stability isolation levels. For index scans, the index must be a type-2
index. Furthermore, deleted rows are skipped unconditionally on table
scan access while deleted keys are not skipped for type-2 index scans
unless the registry variable DB2_SKIPDELETED is also set.

DB2_SKIPINSERTED
Enabling this parameter allows SELECTs with cursor stability or read
stability isolation levels to skip over uncommitted inserted rows. This
parameter setting can reduce record lock contention on tables with heavy
insert rates.

DB2_PARALLEL_IO
Enabling this variable changes the way in which UDB calculates I/O
parallelism to the tablespace. By default, UDB sets I/O parallelism to a
tablespace to be the number of containers in that tablespace. For
example, if the tablespace has four containers, prefetches to that
tablespace are performed as four extent-sized prefetch requests.

Implementation

IBM Universal Database (UDB) 125

You should set the DB2_PARALLEL_IO variable if you implement
containers on stripped devices (e.g., RAID-5, RAID-10 or RAID-01).

If you set DB2_PARALLEL_IO=ON or DB2_PARALLEL_IO=*, UDB assumes
that containers are implemented on a RAID 5 (6+1) configuration - six
data disks plus 1 parity disk. Using the example above, prefetches to the
four-container tablespace above are performed in 24 extent-sized
prefetch requests.

You should monitor the unread_prefetch_pages and prefetch_wait_
time monitor element from the snapshot_database monitor to assess the
effectiveness of your prefetch parallel I/O settings. The unread_
prefetch_pages monitor element tracks the number of prefetch pages
that were evicted from the buffer pool before it was used. A continually
growing number could indicate that the prefetch requests are too large
either because the prefetch size is larger than the pages needed or that
the prefetch activities are bringing in too many pages for the capacity of
the buffer pool. In either case, you may want to consider reducing the
prefetch size.

The application could be waiting for pages if you have high prefetch_
wait_time values.

DB2_SELECTIVITY
Enabling this variable allows the selectivity clause to be used in the
where clause. Without setting DB2_SELECTIVITY=ALL, UDB only allows
the selectivity clause to be used for User Defined Functions (UDFs).

17.1.2 Recommended DBM CFG Parameters
You should let UDB automatically manage the following parameters:

INSTANCE_MEMORY

FCM_NUM_BUFFERS

FCM_NUM_CHANNELS

For performance, we recommend setting the following parameters.

Table 17–2 dbm cfg parameters

dbm cfg parameters Value

INTRA_PARALLEL SYSTEM

126 Performance Management Guide

Implementation

INTRA_PARALLEL
In general, we do not recommend using intra-partition parallelism in an
online transactional application.

However, parallelism, can benefit infrequent but long running,
resource-intensive operations such as creating indices.

As a result, we recommend setting INTRA_PARALLEL=SYSTEM along with
the default degree of parallelism to none (DFT_DEGREE=1). Please see
Section 17.1.3, "Recommended DB CFG Parameters".

You can enable parallelism at the connection (application) level by setting
the following command:

db2 set current degree = ’8’

In the example above, UDB is allowed to use parallelism up to degree 8.

DFT_MON_BUFPOOL
DFT_MON_LOCK
DFT_MON_SORT
DFT_MON_STMT
DFT_MON_TABLE

DFT_MON_BUFPOOL

DFT_MON_LOCK

DFT_MON_SORT

DFT_MON_STMT

DFT_MON_TABLE

DFT_MON_TIMESTAMP

DFT_MON_UOW

ON

ON

ON

ON

ON

ON

ON

MON_HEAP_SZ 16384

MAXAGENTS

Note: MAXAGENTS is deprecated in
DB2 9.5.

Must be greater than the number of
connections needed by the (a)
application servers, (b) the
agents/monitors and (c) operational
management tools.

Table 17–2 dbm cfg parameters

dbm cfg parameters Value

Implementation

IBM Universal Database (UDB) 127

DFT_MON_TIMESTAMP
DFT_MON_UOW

We recommend enabling the monitor switches above in production.

MAXAGENTS
The MAXAGENTS parameter is deprecated in Version 9.5, but is still being
used by pre-Version 9.5 data servers and clients. Any value specified for
this configuration parameter will be ignored by the DB2® Version 9.5
database manager.

This parameter sets the limit on the number of database manager agents
(both coordinator or subagents) that can be concurrently running at any
given time. You have to pick a reasonably high enough number so that
the combined connection requirements from the application servers,
agents, monitoring tools, and so forth do not exceed the MAXAGENTS
limit during peak processing periods. If you do, you must restart the UDB
instance to increase this limit.

Fortunately, with the use of connection pooling in application servers, the
number of database connections is less than the number of users logged
in to Selling and Fulfillment Foundation. Depending on your anticipated
peak workload traffic, this parameter could range from a small number
like 25 to a large number in the thousands.

You must regularly monitor the number of concurrent connections in
production (and especially during peak periods) to ensure that it does
not reach the maximum. When the MAXAGENTS limit is reached, UDB
refuses to establish new connection requests.

See WebLogic connection pooling discussions in Section 12.1.1.3,
"WebLogic Connection Pool".

See WebSphere connection pooling discussions in Section 13.1.1.2,
"WebSphere Connection Pool"

Guidelines for Estimating Number of Connections.

Note: The following information applies only to
pre-Version 9.5 data servers and clients.

128 Performance Management Guide

Implementation

You can roughly estimate the number of concurrent users required by
Selling and Fulfillment Foundation with the following formula:

where:

A = Maximum number of agents transaction threads that run
concurrently (see Section 23.3.3, "Agent Thread Levels".

B = Maximum application server connection pool size times the
number of application server instances. See Maximum Capacity.

C = Any additional connections that are opened by customized code
or user exits that do not go through the application server connection
pool. This connection requirement is specific to your implementation.

D = Number of asynchronous adapters (Service Definition
Framework) times the number of connections per adapter.

The Selling and Fulfillment Foundation agents and monitors are long-
running Java applications that open and use one database connection per
thread.

Example: Lets assume that you plan to configure a system with the
following characteristics:

Six application server instances where each application server
instance can run up to a maximum of twenty-five (25) transactions
concurrently.

Twelve agent threads

Four asynchronous adapters where each could have up to four
threads

Maximum ten connections for operational tools such as Oracle OEM or
Quest SpotLight

Lets further assume that each transaction in the application server only
requires one database connection. Specifically, user exits do not open
their own database connection. As a result, for the example above, you
need:

In the worst case, 25 x 6 or 150 database connections from the
application servers during the peak period if there is a possibility that
all application server threads become active. This of course would not

concurrent UDB()Connections A B C D+ + +=

Implementation

IBM Universal Database (UDB) 129

be a desirable state - if there ever is such a possibility, you should
configure more application server instances.

12 database connections for the agents/monitors

4 x 4 or 16 database connections from the asynchronous adapters

10 database connections from your operational monitors

As a result, you should plan for at least 150 + 12 + 16 + 10 or 188
database connections.

As always, we strongly recommend that you benchmark your system to
validate these assumptions and estimates prior to a production
implementation. During the test, you should monitor the connection pool
usage levels in each of the application server instances, the number of
agents that you need to run in order to meet your processing and service
levels and the actual UDB database connections established.

17.1.3 Recommended DB CFG Parameters
For performance, we recommend setting the following parameters.

Table 17–3 db cfg Parameters

db cfg parameters Value

SELF_TUNING_MEM ON

DATABASE_MEMORY AUTOMATIC (for Windows and AIX)

COMPUTED (for Linux, HP-UX and Solaris)

LOCKLIST AUTOMATIC

MAXLOCKS AUTOMATIC

PCKCACHESZ AUTOMATIC

SHEAPTHRES_SHR AUTOMATIC

SORTHEAP AUTOMATIC

NUM_IOCLEANERS AUTOMATIC

NUM_IOSERVERS AUTOMATIC

DFT_PREFETCH_SZ AUTOMATIC

MAXAPPLS AUTOMATIC

AVG_APPLS AUTOMATIC

130 Performance Management Guide

Implementation

SELF_TUNING_MEM
Setting this parameter to ON enables the DB2 self-tuning memory
manager (STMM) to automatically and dynamically set memory
allocations to the memory consumers such as buffer pools, lock lists,
package cache and sort heap.

DATABASE_MEMORY
Setting DATABASE_MEMORY to AUTOMATIC (for AIX or Windows) or
COMPUTED (for Linux, HP-UX or Solaris) allows DB2 to adjust the
amount of database memory depending on load, memory pressures, etc.

LOCKLIST, MAXLOCKS, PCKCACHESZ, SHEAPTHRES_SHR,
SORTHEAP
Setting these parameters to AUTOMATIC allows STMM to dynamically
manage their memory allocations.

DBHEAP
The default DBHEAP is too small. You should set it anywhere from 5,000
or higher depending on the amount of memory available and the traffic
volume.

LOGFILSIZ, LOGPRIMARY, LOGSECOND
At a minimum, you should configure four transaction logs
(LOGPRIMARY=4) of 1GB (LOGFILSIZ=262144 4K-pages) for DOM and
ten transaction logs (LOGPRIMARY=10) for WMS.

DBHEAP 5,000 or higher

LOGFILSIZ 262144

LOGPRIMARY 5 to 10 or more

LOGSECOND 3

NUM_LOG_SPAN LOGPRIMARY - safety buffer

DFT_DEGREE 1

Table 17–3 db cfg Parameters

db cfg parameters Value

Implementation

IBM Universal Database (UDB) 131

As an additional precaution, you should configure at least three
secondary transaction logs (LOGSECOND=3). UDB allocates secondary
logs when it cannot reuse any of the primary logs because of active
transactions.

You should adjust these settings as needed.

You should track the following monitor elements to assess the
effectiveness of these settings:

total_log_used and tot_log_used_top to see how much of the logs
are used. You should investigate which workloads are consuming or
holding the transaction logs when this value approaches the total
primary log capacity. If needed, you may have to adjust the
LOGPRIMARY higher.

sec_log_used_top and sec_logs_allocated to see if secondary
transaction logs are used. You should investigate how often logging
spills over to the secondary logs, what workloads are running during
the spill. In some cases, you may have to increase LOGPRIMARY to
prevent the log spills.

NUM_LOG_SPAN
Setting this parameter limits the number of logs a transaction can span,
which prevents situations where UDB cannot switch transaction logs
because all transaction logs are active. For example:

Somebody could update a record in Control Center but forget to
commit the change.

There could be software bug that updates one or more database
records but not commit the work.

This parameter should be set to at least 3 so that valid long running
transactions (e.g., WMS Create Wave agent) are not prematurely forced.
This parameter should be set to at most LOGPRIMARY minus a safety
buffer (e.g., 2). For example, if you have set LOGPRIMARY=10, then set
NUM_LOG_SPAN=8.

DFT_DEGREE
This parameter sets the default degree of parallelism for intra-partition
parallelism. In general, online transactional applications such as Selling
and Fulfillment Foundation, typically experiences high volume of short
queries that do not benefit from parallel queries. As a result, we

132 Performance Management Guide

Implementation

recommend setting DFT_DEGREE=1 which disables intra-partition
parallelism.

Parallelism can benefit long running, resource-intensive operations such
as creating indices on a large table. To enable parallelism, you need to:

Enable INTRA_PARALLEL (see Section 17.1.2, "Recommended DBM
CFG Parameters").

Override the default degree of parallelism in the application
(connection) prior to performing the operation. For example, issue
the following command to set the degree of parallelism to 8:

db2 set current degree = ’8’

17.1.3.1 UDB Event Monitors
Selling and Fulfillment Foundation is written to minimize the occurrence
of deadlocks. For example, critical database records such as inventory
records are always obtained in the same order. However, deadlocks can
still happen for many reasons including:

Custom code may obtain records in a different order.

UDB may choose an access plan that retrieves records in a different
order.

To help diagnose deadlocks, we recommend setting the following event
monitor:

MON=<monitor name - e.g., DLMON>
OUTDIR=<directory to store deadlock information>

db2 -v create event monitor $MON for deadlocks with details \
 write to file $OUTDIR buffersize 64 nonblocked
db2 -v set event monitor $MON state = 1

When a deadlock occurs, issue the following:

db2 flush event monitor $MON
db2evmon -path $OUTDIR

The flush ensures deadlock records in the buffers are written out. The
db2evmon formats the deadlock information.

Implementation

IBM Universal Database (UDB) 133

17.1.3.2 Table and Index Statistics
UDB relies on good up-to-date table and index statistics in order to
generate optimal access plans. Inaccurate statistics could lead to
sub-optimal access plans; in the worst case, it could lead to deadlocks.

To generate the statistics, we recommend that you run the following
command for each table in the Selling and Fulfillment Foundation
schema:

db2 runstats on table <table name> on key columns with distribution on key
columns and sampled detailed indexes all allow read access

The frequency at which you collect statistics depends on many factors.
You should run runstats more frequently (e.g., once per day) when the
table is growing rapidly - e.g., more than 10% each day. You can
decrease the frequency (e.g., once per week or every two weeks) if the
table has reached a sufficiently large size (e.g., greater than 1 to 5
million records).

17.1.3.2.1 Volatile Tables

In some cases, the content of tables (e.g., YFS_INVENTORY_SUPPLY_
ADDNL and YFS_INVENTORY_DEMAND_ADDNL) can fluctuate
significantly during the day. Therefore, the representativeness of the
statistics can depend on when the statistics were gathered.

In some cases, UDB may choose to table scan a table with a large
number of records if the statistics were generated when the table was
empty. The volatility of the data makes reliance on statistics, which
represents the table at a single point in time, unreliable. In those
situations, you can mark the table as volatile with the following
command:

alter table <table name> volatile cardinality

At a minimum, we recommend setting the volatile flag on the following
tables:

YFS_EXPORT

YFS_IMPORT

YFS_INVENTORY_SUPPLY_ADDNL

YFS_INVENTORY_DEMAND_ADDNL

134 Performance Management Guide

Implementation

YFS_TASK_Q

You may also have to mark small tables as volatile during their initial
growth phase. In some cases, UDB may choose to use a full table scan
when the table is small. These table scans can deadlock with other
queries. You should mark these tables as non-volatile when the table has
grown to a sufficiently large size. At that time, you want the optimizer to
choose plan based on statistics.

17.1.3.3 CLI Packages
If you configure a service as a string of API calls, all performing under a
single transaction commit boundary, that service may fail with a
SQL0805N error with a package NULLID.SYSLN203.

This happens when the number of cursors opened by a given SQL
statement goes beyond the capacity defined for the small and large CLI
packages (which are used by JDBC). In such a case, you should first
check to see if there was a cursor leak. If you are certain there isn’t a
cursor leak, you can then either break up the service into smaller chunks
or increase the number of packages bound.

The syntax for adding extra packages is:

db2 bind ../sqllib/bnd/db2clipk.bnd clipkg 10

The number of packages required can differ depending on individual
situations. You should test your application under expected peak
concurrency levels and transaction rates to ensure you have sufficient
packages.

17.1.4 Selling and Fulfillment Foundation Schema

17.1.4.1 UDB Index Monitoring and Tuning
As we mentioned in Section 15.2.4.1, "Indices", you may have to adjust
the base starting index set to suit your operational environment. You can
find out what indices are used (and by corollary, which ones are not
used) You can use UDB’s Design Advisor to monitor index usage. The
Design Advisor recommends additional indices as well as indices that are
not used.

Implementation

IBM Universal Database (UDB) 135

17.1.4.2 Index and Table Statistics
The database optimizers rely on up-to-date accurate table and index
statistics to generate optimal access plans.

In addition, columns, such as enterprise_key in the yfs_order_header,
can exhibit high skew - for example, there could be many orders for one
enterprise and a few orders for another enterprise. Columns such as
derived_from_order_header_key in the yfs_order_header table could
have very high skew, which results in low cardinality because they only
contain spaces. This can happen when customers have small numbers of
derived orders.

Queries, such as the one below, against columns with high skew and/or
low cardinality:

select *
from yfs_order_header
where derived_from_order_header_key = ’2003012412213801928344’;

can result in table scans even if the columns are indexed. The example
above was from an actual case (see below).

From the optimizer’s perspective, the queries against these columns
either return a small or a very large result set. To err on the side of
caution, the optimizer generally chooses a table scan over an index range
scan.

You can get the optimizer to choose a more optimal access plan by
providing additional statistics in the form of histograms.

Issue the following command to create histograms in UDB:

db2 runstats on table <table name> on key columns with distribution on key
columns and sampled detailed indexes all allow read access

136 Performance Management Guide

Implementation

Microsoft SQL Server 137

18
Microsoft SQL Server

This chapter provides guidelines on the implementation, configuration
and tuning for Microsoft SQL Server.

18.1 Implementation

18.1.1 Parameters
Microsoft has designed Microsoft SQL Server to be easy to install and
manage. The Microsoft SQL Server installation is straight-forward with
little up-front choices. The only mandatory decision point is the following
collation settings needed by Selling and Fulfillment Foundation to support
case-insensitive sorts:

18.1.2 Microsoft SQL Server Index Monitoring and Tuning
Prior to production, you should conduct a system test where all the key
screens, agents and APIs are run against a copy of the production
database. This is your opportunity to see if additional indices are
required.

Table 18–1 Microsoft SQL Server Installation Decision Points

Description Recommendation

Collation Settings SQL Collation: Dictionary order,
case-insensitive, for use with any
Character Set

138 Performance Management Guide

Implementation

When you add your own indices, choose a naming convention for the
indices so that the index name does not end with the following suffix:

"_PK" - This suffix is reserved for indices that are the primary key
for the underlying table. For example, the index, yfs_order_
header_pk, is the primary key index for the yfs_order_header
table.

"_Inn" where nn is an integer value from 0 to 99 - This suffix is
reserved for secondary or alternate indices for the underlying
table. For example, the index, yfs_order_header_i1, is a
secondary index for the yfs_order_header table.

In addition, you should enable index monitoring to see if there are any
unused indices you can disable or drop.

In Microsoft SQL Server, you can use the Index Tuning Wizard to
recommend new indices as well as indices that are not used.

18.1.3 Statistics
By default, Microsoft SQL Server automatically creates statistics on
indexed fields when the index is created. If deemed beneficial, Microsoft
SQL Server also creates statistics on non-indexed fields that are used in
joins or filter criteria. The information on the column’s data distribution
could help the Query Optimizer choose the optimum execution plan.
Although this feature can be disabled, we recommend leaving it on. To
check if automatic statistics creation is enabled, issue the following
query:

select databasepropertyex('ywinss01','IsAutoCreateStatistics')

The result is 1 if enabled and 0 if disabled.

Microsoft SQL Server also automatically manages the statistics based on
the amount of changes to the table. When the number of changes exceed
a threshold, Microsoft SQL Server automatically generates new statistics.
Although this feature can be disabled, we recommend leaving it on. To
check if automatic statistics update is enabled, issue the following query:

select databasepropertyex('ywinss01','IsAutoUpdateStatistics')

The result is 1 if enabled and 0 if disabled.

Advanced Database Topic - Oracle10g Real Application Cluster Database 139

19
Advanced Database Topic - Oracle10g Real

Application Cluster Database

This chapter provides limited guidelines on implementing, configuring
and tuning Oracle10g Real Application Cluster (RAC). RAC is a powerful
technology offered by Oracle. This chapter presents information that is
specific or applicable to Selling and Fulfillment Foundation. Installation
and tuning RAC in general is beyond the scope of this document.

Consult Oracle documentation, technical support, and training for all
questions pertaining to RAC and the associated technologies such as HP
ServiceGuard that are integral to the RAC solution.

19.1 Overview
Oracle10g RAC is a technology that allows you to cluster multiple Oracle
instances to acts as one Oracle instance.

19.2 Planning

19.2.1 Supported DB Platforms
The Selling and Fulfillment Foundation Release 8.5 has been tested with
Oracle10g RAC on the following database server platforms:

HP HP-UX11i running on HP PA-RISC and Itanium 2 processors

Sun Solaris 2.9 running on Sun UltraSPARC IV or IV+ processors

Red Hat Enterprise Linux 4.0 Advanced Server running on Intel Xeon
IA-32 (32-bit), EM64T/AMD64 (64-bit) and Itanium processors

140 Performance Management Guide

Planning

19.2.2 Supported Filesystems
The Oracle10g RAC database data files can be implemented on clustered
filesystems or raw devices managed in Oracle Automatic Storage
Management (ASM).

The filesystem is an important operating system component that is
critical for both performance and data integrity. Sterling Commerce
requires that Selling and Fulfillment Foundation be configured and
deployed only on filesystems that are approved and certified for use with
RAC by the Oracle Corporation.

Selling and Fulfillment Foundation has been tested with Oracle RAC
running with:

Raw devices

Oracle Cluster File System (running on Red Hat Enterprise Linux)

Selling and Fulfillment Foundation does not support systems that run on
non-Oracle RAC-supported filesystems such as the Sistina GFS.

19.2.3 Oracle RAC Support Limitations
There are practical limits to any technology. One should not expect every
technology to scale infinitely. At this time, Selling and Fulfillment
Foundation supports up to 3-node RAC configurations.

Selling and Fulfillment Foundation has, till date, been either tested or
deployed on:

2-node (HP RP7410 eight-way processors each for a total of 16
processors)

2-node (HP Itanium2-based servers) and

3-node Intel servers running Red Hat Enterprise Linux 3.0.

Call Technical Support if you have questions.

19.2.3.1 OLTP Applications and Oracle RAC Concerns
For OLTP applications, including Selling and Fulfillment Foundation, one
common concern is high insertion rates and the effect on index
maintenance. In high volume OLTP applications, index leaf blocks have to
be maintained and passed among the multiple nodes to keep them all in
sync. Generally, when new records, like orders, are being indexed, they

Planning

Advanced Database Topic - Oracle10g Real Application Cluster Database 141

are being written to the right most part of the index. In very high
transaction volumes, concurrent insertions could wait while a similar
request is handled by a different node. The index leaf block for the right
most part of the index cannot be released to another node until the
request is completed. This forces more sequenced rather than
simultaneous processing and is likely to drag significantly on
performance.

Another example is the frequency with which inventory records are being
accessed and updated.

Research suggests that other OLTP app vendors are generally aware of
these issues — some only certifying for a maximum number of nodes and
other articles suggesting optimal node / CPU configurations for Oracle
RAC.

Some industry literature suggest using hash partition or reverse indices
to reduce or eliminate contention to enable OLTP applications for RAC.
What isn’t stated is that these techniques can negatively affect
application performance which could slow down query response times. At
this point of time, Selling and Fulfillment Foundation has not been tested
for, and nor do we support the use of reverse indices or hash partitions
for Oracle RAC enablement. Check with Technical Support for the latest
information.

19.2.4 Recommendations

19.2.4.1 Sequence Numbers
Selling and Fulfillment Foundation uses Oracle sequence numbers to
quickly generate unique numbers. If you are upgrading from pre Yantra
5x 5.0 SP2 versions, ensure the seq_yfs_task_key sequence is created
with the NOORDER parameter. If the ORDER option is enabled, RAC
disables the CACHE option.

The SQL command to create sequence is as follows:

create sequence seq_yfs_table_key
increment by 1 start with 1
maxvalue 9999999999
minvalue 1
cycle
cache 500 noorder ;

142 Performance Management Guide

Planning

In the example above, the CACHE option pre-allocates and stores 500
sequence numbers in the instance’s SGA for fast access. When those
sequence numbers are used up, Oracle preallocates another group of
sequence numbers. The CACHE option should be set to a value so that
sequence requests for one to two seconds during the peak period can be
satisfied in memory is critical for performance (see [1] and [2]).

For example, if the sequence cache is set to 500, the last_sequence_
number in user_sequences table should not grow by more than 500
every two seconds or 30,000 every minute. You should monitor this
value periodically during the peak hour.

The NOORDER option allows each RAC instance to preallocate its own
group of sequence numbers. The NOORDER option is enabled by default.
If the NOORDER option is disabled (or if the ORDER option is selected),
Oracle disables the CACHE option.

Enabling the CACHE option with a sufficiently high value and the
NOORDER option are critical for Oracle10g RAC performance.

You can issue the following command to check whether the ORDER
option is disabled:

select sequence_name, order_flag, cache_size,last_number
from user_sequences
where sequence_name = ’SEQ_YFS_TABLE_KEY’

If the ORDER_FLAG is set to "N", the NOORDER option is enabled:

SEQUENCE_NAME ORDER_FLAG CACHE_SIZE LAST_NUMBER
------------------------------ ---------- ---------- -----------
SEQ_YFS_TABLE_KEY N 500 422838694

19.2.5 High Availability
Refer to the Selling and Fulfillment Foundation: High Availability Guide
for more detailed instructions.

From a performance perspective, you need to configure the Selling and
Fulfillment Foundation system so that it can quickly discover the Oracle
failure and to quickly recover the connections.

The Selling and Fulfillment Foundation system is made up of client
programs that connect to the Oracle instance. These include:

BEA WebLogic, IBM WebSphere, or JBoss AS application servers

Planning

Advanced Database Topic - Oracle10g Real Application Cluster Database 143

Selling and Fulfillment Foundation agents or monitors

19.2.5.1 WebLogic Connection Pool Properties
In WebLogic, we recommend setting the following Connection Pool
properties so that WebLogic can detect stale or dead connections faster.

With the settings above, the WebLogic connection pool manager tests
idle connections every Test Frequency seconds by issuing a Select
statement to Test Table Name. Connections that do not pass the test
are closed and a new connection reestablished. This setting helps the
connection pool manager to get rid of dead or stale connections.

Additionally, when you set Test Connections On Reserve to true, the
connection pool manager tests connections before the pool manager
gives the connection to transactions. This test adds a small delay to each
connection request.

You must set Test Table Name. The settings above are invalid without
the Test Table Name setting.

The Initial Capacity and Maximum Capacity settings should be set to
your operational requirements (see Section 12.1.1.3.1, "Define Data
Source in Selling and Fulfillment Foundation"). You should not set
Initial Capacity to zero - when WebLogic shrinks the connection pool
(at every ShrinkPeriodMinutes minutes), it aggressively shrinks all
currently unused connections, even connections that were recently
active.

You may not want to set Test Created Connections and Test
Released Connection especially if you already have enabled Test

Table 19–1 WebLogic Connection Pool Properties

Parameter Value

Test Frequency 120

Test Table Name SQL SELECT 1 FROM DUAL

Test Reserved Connections Enable

Initial Capacity 3

Maximum Capacity See Section 12.1.1.3.1, "Define Data Source in
Selling and Fulfillment Foundation"

Shrink Frequency Leave at the default of 900 seconds

144 Performance Management Guide

Planning

Connections On Reserve. The probability that a connection has died
after it was created or after it was released should be very low.

19.2.5.2 TCP/IP
The default time for a connection request to an unavailable node to
timeout is deliberately set to a high value. This value allows connection
requests (e.g., telnet connections) the opportunity to find the node on
the Internet. This setting is less applicable in a high-speed switched
network.

On Solaris, a telnet to a non-existent node takes about 2.75 minutes to
timeout. On HPUX11, the timeout is around 75 seconds.

The connection timeout value can be tuned down by issuing the following
ndd commands:

ndd -set /dev/tcp tcp_ip_abort_cinterval 1000
ndd -set /dev/tcp tcp_rexmit_interval_initial 200
ndd -set /dev/tcp tcp_rexmit_interval_max 5000

This known phenomenon is described in the following SunSolve article
found in [10]. The settings are applicable to both Solaris and HP-UX.

19.2.5.3 Fast Application Notification Support
Fast Application Notification (FAN) provides RAC the ability to inform the
client programs the status of the cluster. With FAN, the client programs,
especially those with connection pools, can drop stale connections to
failed nodes.

Selling and Fulfillment Foundation does not support FAN because neither
the BEA WebLogic or the IBM WebSphere application servers are aware
of or are capable of exploiting FAN notifications.

145

Part V
Java Message Services

This part of the book provides information on how to implement, monitor
and tune Java Message Services (JMS).

Configuring and operating the JMS queues efficiently is critical for
performance. Suboptimal JMS queue settings causes poor application
performance at best. It could cause application outages at worst.

Selling and Fulfillment Foundation is certified to run with the following
message queueing systems:

Chapter 21, "BEA WebLogic JMS"

Chapter 22, "IBM WebSphere MQ"

146 Performance Management Guide

Java Message Services 147

20
Java Message Services

This chapter provides guidelines on implementing, configuring and tuning
for Java Message Services (JMS) in general.

20.1 Overview
Selling and Fulfillment Foundation uses JMS extensively. For example:

The Selling and Fulfillment Foundation agents use JMS as a source of
work.

The Selling and Fulfillment Foundation integration servers use JMS as
a means to communicate with external systems.

20.1.1 Agent Queues
The Selling and Fulfillment Foundation agents are designed to issue a
"getter" to look for work that needs to be processed and to create the
appropriate messages into a queue. For example, the Schedule agent on
start up checks the Schedule JMS queue. If that queue is empty, it
automatically fires a "getter" query against the YFS_TASK_Q table
looking for tasks that need to be processed by the Schedule transaction.
A JMS message is created for each eligible task. Similarly, the Selling and
Fulfillment Foundation order or inventory monitors fire "getters" to look
for orders or inventory items in a particular state (for which they are
being monitored for). As above, the appropriate messages are put into
the JMS queue.

By default, the getter creates up to 5,000 messages even when there are
more eligible work. The default is generally sufficient. You can change the
limit if you find that the agent is spending more time retrieving work and
creating the messages than in processing. This could happen if you have

148 Performance Management Guide

Implementation

a high number of processing threads or if the retrieval cost is high. You
can change the limit by changing the "Number of Records to Buffer" in
the agent’s Transaction Detail (in Application Platform > Process
Modeling) > Agent Criteria Definition > Agent Criteria Details > Criteria
Parameter. See the Selling and Fulfillment Foundation: Application
Platform Configuration Guide for more information.

20.1.2 Integration Queues
In contrast, integration queues are used for external communication. For
example, one could architect the system where multiple sales channels
capture orders. These orders are passed to Selling and Fulfillment
Foundation through an integration queue.

Similarly, Selling and Fulfillment Foundation can pass messages to
external systems when transactions are processed.

20.2 Implementation

20.2.1 Persistence
You can define queues as being persistent or non-persistent. Messages in
non-persistent queues are lost after the queue is restarted. For example,
if you have 100 messages in the queue, all those messages are lost when
the WebLogic JMS server or the WebSphere MQ queue manager is
restarted. In contrast, messages in persistent queues are preserved after
a restart. Using the same example from above, the same 100 messages
are in the queue after a restart.

In general, the following recommendations apply:

All queues used by the Selling and Fulfillment Foundation agent
should be defined as non-persistent. As we described above, the
agents can easily recreate the messages if lost.

All integration queues used for external communications, either for
messages coming from external systems to Selling and Fulfillment
Foundation or for messages going from Selling and Fulfillment
Foundation to external systems, must be defined as persistent. In
most cases, recreating integration messages can be difficult
especially when the information in two or more systems have to be
re-synchronized.

Implementation

Java Message Services 149

20.2.2 Dedicated Queues
We strongly recommend you define a dedicated queue for each agent
and service that uses JMS for work because of:

Performance

Monitoring

For both the WebLogic JMS and WebSphere MQ, the cost of pulling up a
message is proportional to the number of messages the JMS server or
queue managers have to interrogate.

In the current WebLogic JMS implementation, a request for a message
with a certain selector results in a sequential search through the JMS
queue until a message with the specified selector is found. The JMS
manager could use a lot of CPU searching for messages if there are lots
of messages in the queue. Putting high volume messages into a separate
JMS destination eliminates the search - the JMS manager either finds
that there are no messages in that destination or it finds the message
immediately.

Similarly, in the current IBM MQSeries JMS implementation, the
consumer (client) uses the supplied mq.jar to connect to the MQSeries
queue manager. When the client asks for a message, the client code in
com.ibm.mq.jar retrieves messages from the queue and checks whether
the message has the specific selector. The mq.jar continues to do this
until it has found the appropriate message or there are no more
messages in the queue. When there are no more messages, the mq.jar
sleeps for 5 seconds and repeats the polling cycle. Putting messages into
its own JMS destination means that the mq.jar either finds the message
immediately or sleep for 5 seconds.

In some extreme cases, the performance and cost is very noticeable.
Take the case of a queue with messages for multiple agents and 100,000
integration messages. When a message for the Schedule transaction is
created, that message is added after the existing 100,000 messages.
When the Schedule transaction getter runs, the getter needs to walk
through the entire queue looking for Schedule messages.

An exception to the above is development and possibly test
environments. In those cases, to ease configuration and management
overhead, it may be acceptable to put all the JMS destinations into a
single JMS queue.

150 Performance Management Guide

Implementation

20.2.3 Queue File Placement

20.2.3.1 Performance
The WebSphere MQ logs and files and the BEA WebLogic JMS file and
paging stores can be implemented on an internal disk. Message queues
on a single internal disk should be able to provide from 150K to 200K
messages per hour. Obviously, many factors can affect the message
throughput including the size of the message content, the burstiness of
the traffic, and so forth).

For high transaction systems, for example, a nightly upload of global
inventory visibility messages or the import of point-of-sales orders, you
should consider placing the WebSphere MQ logs and files and the BEA
WebLogic JMS file and paging stores on a SAN RAID-10 LUN, possibly
with a large NVRAM cache. The striping component in the RAID-10
spreads the message I/Os over multiple disks. The NVRAM cache could
reduce the number of physical disk I/Os.

In extremely high transaction volume scenarios, you may have to
consider implementing multiple WebLogic JMS servers or MQ queue
managers. This is applicable to solutions where the message order is not
important.

20.2.3.2 Availability
For failover and high availability, you should consider placing the
WebSphere MQ logs and files and the BEA WebLogic JMS file stores for
persistent queues on an external SAN. In the event of a node failure, a
standby node could attach to the SAN to access the files. In addition, you
could replicate the content of the SAN to prevent message loss in the
event of a data center disaster. See the Selling and Fulfillment
Foundation: High Availability Guide for more information.

20.2.4 Parameters
Please see the following chapters for specific recommendations:

Chapter 21, "BEA WebLogic JMS"

Chapter 22, "IBM WebSphere MQ"

BEA WebLogic JMS 151

21
BEA WebLogic JMS

This chapter provides guidelines on implementing, configuring and tuning
the BEA WebLogic JMS.

21.1 WebLogic JMS Recommendations

21.1.1 Dedicated JMS Server
You should consider running the JMS server on one or more dedicated
WebLogic servers that is outside the Selling and Fulfillment Foundation
WebLogic cluster. These server instances should only provide JMS
services. The benefits of isolating the JMS server on its own server
include:

Easier to monitor and manage

Easier to diagnose issues - Issues that arise, such as OutOfMemory
exceptions, must be related to JMS services or JMS messages.

21.1.1.1 Integration Queues
In addition, you should consider putting integration queues into their own
dedicated WebLogic JMS servers running on separate JVMs especially if
these queues can grow unbounded or at a fast rate.

These integration queues should be configured as persistent so that
messages can be recovered after JMS failures. Recovering integration
messages can be difficult especially if they involve reconciling when there
are many systems or applications involved in processing the messages.

You should consider implementing controls so that producers cannot
significantly create messages faster than consumers can process

152 Performance Management Guide

Message and Byte Paging

messages. In extreme cases, high number of messages in the queue
could consume most of the JMS servers’s JVM heap resulting in degraded
or loss of service.

The benefits of implementing dedicated JMS servers for integration
queues include:

Isolating integration-based message queues that could grow
unbounded from the more predicable queues used by the Selling and
Fulfillment Foundation agents.

The ability to configure, manage, and monitor the queues to the
expected message traffic - for example, you may want to create JVMs
with 1GB heap for integration-based JMS servers and smaller heaps
for the Selling and Fulfillment Foundation agents.

21.2 Message and Byte Paging
For WebLogic JMS, you should enable message and/or byte paging on
JMS queues that could grow unbounded (for example, integration-based
queues. With this facility, the message bodies (not the message headers)
are paged out of the JVM memory on to the local file system when the
paging thresholds are exceeded. This can reduce the amount of JVM
heap space used, which could prevent service degradation or loss.

Note: In extreme cases, excessively high number of message headers
can still lead to outOfMemory exceptions.

IBM WebSphere MQ 153

22
IBM WebSphere MQ

This chapter provides specific guidelines on implementing, configuring
and tuning IBM WebSphere MQ.

22.1 WebSphere MQ Parameters
Depending on your processing volumes and the number of MQ queue
consumers and producers you expect to start, you may have to change
the log and channel parameters in the qm.ini or mqs.ini file.

22.1.1 Channel
Each thread started that reads from or writes to the MQ queues requires
a channel. If you were to start 20 JVMs with 5 threads each, you need at
least 100 channels (which is the default). You may also have to increase
the number of channels if you have workloads that open and close the
JMS connections rapidly.

If you experience messages indicating that the max channels have been
reached, do the following:

Check to see if there is a connection or channel leak. Run the
following command to see how many active channels are used:

echo "dis chs(*)" | runmqsc | grep RUNNING | wc -l

You may have to run each workload at peak production loads in your
test environment to diagnose channel leaks.

If you suspect that channels are not getting reclaimed fast enough or
if your TCP/IP connection is not reliable, you should set the following
parameters. The KeepAlive parameter tells the queue manager to
check the existence of the client. If the client is not there, the queue

154 Performance Management Guide

Placement of MQ Log and Data Files

manager reclaims the channel. The MaxChannels defaults to 100. In
production settings, that parameter could grow to a much higher
number like 300 or 500:

TCP:
KeepAlive=YES

Channels:
MaxChannels=300
MaxActiveChannels=100

22.1.2 Log Files
MQ uses log files to maintain message integrity in the event of a queue
manager restart or a media failure.

The number of log files depends on your configuration, the size of the
messages, the logging type, and the message volumes. You should
performance test your application at or above peak production loads to
see if the default MQ log settings are sufficient. If you are using
CIRCULAR logging, the following may be reasonable starting values:

Log:
LogPrimaryFiles=4
LogSecondaryFiles=1
LogFilePages=65536
LogType=CIRCULAR
LogBufferPages=0

If you use LINEAR logging (for example, to be able to survive media
failure), you must set LogPrimaryFiles higher.

22.2 Placement of MQ Log and Data Files
If your system has to be able to process a high message rate, you may
should consider placing your MQ log and data files on a fast SAN,
preferably configured with a large NVRAM and RAID-10. A single internal
disk should have sufficient capacity to allow up to 150K to 200K
messages per second. Files on a RAID-10 LUN should be able to get up
to around 1.5M to 2.0M messages per hour. Beyond that message rate,
you may want to consider implementing multiple queue managers with
separate data and log files.

155

Part VI
Selling and Fulfillment Foundation

This part of the book provides information on how to implement, monitor,
and tune Selling and Fulfillment Foundation.

This part includes the following chapters:

Chapter 23, "General Recommendations"

Chapter 24, "Sterling Distributed Order Management"

Chapter 25, "Sterling Warehouse Management System"

156 Performance Management Guide

General Recommendations 157

23
General Recommendations

This chapter provides recommendations on how to plan, implement,
configure, monitor, and tune Selling and Fulfillment Foundation in
general, that transcends both the Sterling Distributed Order Management
and the Sterling Warehouse Management System applications.

Selling and Fulfillment Foundation with the default factory (data) settings
provides a simple configuration that is suitable for development, training,
or product familiarization. That configuration is not suitable for
production except for customer with very low transaction volumes. This
chapter guides you through the components that you have to configure
for higher transaction volumes.

This chapter assumes that you:

Are familiar with the installation of Selling and Fulfillment Foundation
and have read the Selling and Fulfillment Foundation: Installation
Guide

Are familiar with the basic functionality of Selling and Fulfillment
Foundation

Have read the Selling and Fulfillment Foundation: Release Notes

23.1 Planning

23.1.1 Scalability Requirements
An important aspect of planning the implementation and configuration of
your Selling and Fulfillment Foundation system for production is
determining your workload and business processing characteristics, and

158 Performance Management Guide

Planning

your performance requirements. This includes (at a minimum) the
following:

Identifying the key or high transaction volume use case scenarios -
for example, in retail environments, you may have an order capture,
order returns, order modification and order authorization use case
scenarios. For each use case scenario, you should determine:

The workloads (both custom-developed and Sterling
Commerce-supplied) that are carried out

The forecasted peak transaction volumes

When the peak processing periods occur during the year

The external systems the Selling and Fulfillment Foundation
system is integrated with

The groups of users, their location, and their network connectivity
to Selling and Fulfillment Foundation

When choosing use case scenarios, you should include:

Workloads with anticipated high transaction volumes

Workloads that are complex (for example, orders with large number
of order lines)

Workloads/transactions that have to traverse long network distances
(for example, user and data center in different continents)

High volume transactions that are integrated with external systems

For each use case scenario, you should:

Perform load testing to at least the anticipated peak workload
volumes.

Measure the computing resource cost at different workload traffic
volumes.

Estimate the computing cost per unit work.

Identify and tune expensive workloads - This could include ensuring
all SQL are supported by appropriate indices (Section 15.2.4.1.1,
"Custom Indices"), custom code, and so forth.

Incorporate the cost per unit work into a resource capacity
forecasting or planning model.

Planning

General Recommendations 159

Project out the resource requirements for the peak periods.

If you have remote users, you have to test use case scenarios that
involve screens or network based transactions across a real or simulated
wide-area network. These include:

The use of the Selling and Fulfillment Foundation screens (for
example, to enter or modify orders)

RF transactions (for example, users at a warehouse in Asia interacting
with the WMS application in North America)

The answers to the questions above are critical to how you configure
Selling and Fulfillment Foundation.

23.1.2 System Test
We strongly advise that you schedule time and resources to test Selling
and Fulfillment Foundation system (including all custom code, integrated
external systems, and so forth) prior to implementation. Sterling
Commerce tests Selling and Fulfillment Foundation to common or general
usage patterns. Your configuration may differ greatly:

Custom code - Need to ensure your custom code scales and does not
have longevity issues. These are issues that show up after running
the system for many days - for example, memory or connection
leaks.

Integration to external systems - Need to ensure that external
systems can scale along with Selling and Fulfillment Foundation. In
the right conditions, slow external systems could tie up the Selling
and Fulfillment Foundation resource and could lead to a system slow
down.

Configuration - Need to test the Selling and Fulfillment Foundation
system with representative data. For example, your configuration
may have much larger catalogs and ship nodes than most customers.

User locations - Need to ensure users get responsive service. For
example, you may have large customer groups located in a different
continent from Selling and Fulfillment Foundation. You may also have
customers who dial in to access Selling and Fulfillment Foundation.
You need to ensure that all users get appropriate screen response
times.

160 Performance Management Guide

User Interfaces

23.2 User Interfaces
Out of the box, Selling and Fulfillment Foundation provides the following
graphical interfaces to allow users to interact with the application:

Application Console - a thin HTML-based client to view and manage
orders

Applications Manager and System Management Console - a thick
client built on Java Swing to manage the application configuration

Rich Client Platform - this is a Java/SWT thick client built on the
Eclipse RCP framework

The user interface provides the means for users to interact with Selling
and Fulfillment Foundation to view, create, modify and delete
information.

23.2.1 Application Console
An Application Console is an HTML-based interface. Microsoft Internet
Explorer is used to render the screens of the Application Console.

23.2.1.1 Customization
Selling and Fulfillment Foundation allows you to create or customize the
screens of the Application Console. You may want to do so for the
following reasons:

You want to reduce processing or the screen size - From the usage
scenario studies above, you may find that your users need a subset
of a detail screen (e.g., order detail). Further, you expect a very large
number of users to be located at a remote call center in a different
continent. To reduce server processing and the amount of bytes send
across the network, you can create a new screen that only has the
information needed.

In conjunction with simplifying the screens, you can also customize
an APIs output XML using templates. This not only reduces the
number of bytes returned but can also reduce server and database
processing. See Section 23.5.7.1, "API Output XML Files".

You may want to control the types of searches that the general users
can issue. The default search facility allows users to build up searches
by picking different criteria. For example, the order search allows

User Interfaces

General Recommendations 161

users to look for orders based on many criteria including status,
enterprise code, and so forth. Some permutation of criteria can result
in queries that require a lot of resources. You can create a search
screen for general use that has a list of searches that you and the
DBA have tested and have deemed to be "safe" for general use. You
can further develop a screen with greater search capabilities for
supervisors or application administrators. This search screen could
mandate entering the enterprise code and a date range for the search
to limit the number of records returned. Additionally, you may want
to remove certain searches such as looking for orders in a particular
status.

See the Selling and Fulfillment Foundation: Customization Guide for more
information on how to extend or customize screens.

23.2.1.2 HTML Compression
You should consider HTML compression if you have users who are
connected to Selling and Fulfillment Foundation over high latency or low
bandwidth network links. HTML compression can reduce the size of the
HTML pages by up to 85%.

Currently, the Selling and Fulfillment Foundation Console UIs have been
tested with F5 Big-IP v9 as an off-board HTML compression engine.

If you were to use a Big-IP, you should be aware of the following Big-IP
specific configuration requirements in the HTTP Profile configuration tab:

You need to set the response chunking parameter to rechunk. The
default is preserve. The reason is that Selling and Fulfillment
Foundation does not set the content length in the HTTP headers when
sending out the response. With the default setting of preserve, the
Big-IP does not attempt to compress HTML pages that do not have
content lengths set. With the rechunk setting, Big-IP compresses the
response chunks as they are received. More importantly, the Big-IP
can forward along the compressed chunks without waiting for the
entire HTML page to be compressed.

Big-IP allows you to specify the amount of compression processing
that it attempts. The setting can range from Level 1 which tries a
minimal compression in favor of processing speed to Level 9 which
tries to find the most compression. We found that Level 1
compression was able to get up to 85% compression and that the

162 Performance Management Guide

User Interfaces

benefits from Level 9 undetectable. As a result, we defaulted to
testing with Level 1 compression.

We set the compression buffer size to 128KB instead of the default of
4KB. The general thought is that the buffer size should be able to
store the entire compressed response in order to set the content
header length. In our testing, we didn’t see any appreciable
differences between 4KB and 128KB. This may be due to the fact that
we had already set response chunking to rechunk - as a result, the
Big-IP does not have to set the content length on the compressed
response. However, we were advised to set the buffer size to at least
128KB.

We recognize that there are other HTML compression technologies
available including Apache deflate module and Juniper DX application
acceleration devices. Please keep in mind that we have, to date, only
tested against the F5 Big-IP v9.

Please also keep in mind that the compression is only certified for the
Application Console. The Applications Manager and the System
Management Console do not support compression. The nWMS radio
frequency and VT220 terminal screens are small and should not require
compression.

23.2.1.3 Temporary Internet Files
You can reduce the number of hits against the application servers for
static content by enabling temporary Internet file cache in Microsoft
Internet Explorer. This improves your UI response times. To enable the
cache:

Go to the Internet Options dialog box.

In Microsoft Internet Explorer, go to Tools > Internet Option:

Click on the Settings button in the Temporary Internet Files panel.

Enable the “Check for newer version of stored pages” radio button
to Automatically.

Make sure there is sufficient disk space to store temporary
Internet files (e.g., 500MB or higher).

User Interfaces

General Recommendations 163

23.2.1.4 SSL Acceleration
If you have many users and are planning on encrypting the Selling and
Fulfillment Foundation screens with SSL, you should consider the use of
off-board hardware-based SSL accelerators. SSL encryption/decryption
are expensive operations and can reduce application server throughput
by over 30%.

Currently, we have tested the use of an F5 Big-IP v9 as an off-board SSL
acceleration engine and as an SSL Proxy. As an SSL Proxy, all page
requests going to the F5 are sent as HTTPS. The Big-IP performs all the
SSL processing and forwards all the requests to the applications servers
in the "clear".

If you plan to use a Big-IP, you should be aware of the following Big-IP
specific configuration requirements in the HTTP Profile configuration tab:

If you use BEA WebLogic application servers, you have to set the
header insert parameter to WL-Proxy-SSL: true. This header
directive informs BEA WebLogic that there is an SSL Proxy sitting in
front of the application server.

If you use IBM WebSphere application servers, you need to configure
the redirect rewrite parameter to ALL.

We recognize that there are other SSL acceleration technologies
available. Please keep in mind that we have, to date, only tested against
the F5 Big-IP v9.

Also keep in mind that SSL acceleration is targeted towards the Selling
and Fulfillment Foundation Console. The Applications Manager and the
System Management Console do not require SSL.

23.2.1.5 Search Screens
Selling and Fulfillment Foundation provides a flexible search facility that
allows users to look for orders, shipments and audit records with a wide
range of criteria. Some search combinations are more expensive than
others.

We recommend that you work with the user community to identify search
combinations that are likely to be used in production. Each search
combination should be tested to ensure they are optimized and
acceptable in a production setting. When testing these searches, you
need to make sure the tables searched are sufficiently large (e.g., over 1
million records). Inefficient queries may not be evident in small

164 Performance Management Guide

User Interfaces

databases. In addition, ensure the tables are populated with an
appropriate data mix. For example, if the query is looking for orders with
certain attributes in the closed state, you should ensure that these
attributes and the number of closed orders are representative. Database
optimizers picks search paths that it believe are optimal for the data
distribution.

It is likely that some search combinations require indices to be created
(see Section 15.2.4.1, "Indices").

23.2.1.5.1 Case-insensitive Search

The Selling and Fulfillment Foundation Search feature supports
case-insensitive searches against the YFS_PERSON_INFO table on the
following columns:

FIRST_NAME

LAST_NAME

EMAILID

ADDRESS_LINE1

ADDRESS_LINE2

CITY

STATE

ZIP_CODE

COUNTRY

The data continues to be stored in the database in mixed-case (mixture
of upper and lower case).

Oracle

To support case-insensitive searches in Oracle, you must add
function-based indices on the searched columns. To create an
function-based index that supports case-insensitive searches on the
emailid column, issue the following:

create index yfs_person_info_cust1 on yfs_person_info(upper(emailid))

User Interfaces

General Recommendations 165

UDB

For UDB, you have to add a generated column for each searched column
and an index on that generated column. For example, as in the example
above, you need to perform the following:

set integrity for yfs_person_info off

alter table yfs_person_info
 add column emailid_up generated always as (upper(emailid))

set integrity for yfs_person_info
 immediate checked force generated

create index extn_per_info_i1
 on yfs_person_info(emailid_up)

select *
from yfs_person_info
where upper(emailid) = ’SMITH’

In the example above, a generated column (emailid_up) was defined as
a generated column and indexed.

Microsoft SQL Server

In Microsoft SQL Server, searches are case-insensitive by default so there
are no changes needed.

23.2.1.6 JSP Pre-compilation
Precompiling the JSPs when you "build" the application is very important
for user interface response times. If the JSPs are not precompiled, the
application servers compile the JSP on-the-fly the first time it is used.
These compiles can take up to 30 seconds or more and could lead to the
perceptions of a badly performing system.

Please see Section 12.1.1.4, "JSP Pre-Compilation" on precompiling JSPs
in BEA WebLogic application servers.

Please see Section 13.1.1.3, "JSP Pre-Compilation" on precompiling JSPs
in IBM WebSphere application servers.

166 Performance Management Guide

User Interfaces

23.2.1.7 HTML Limitations
The view screens (for example, the Order Detail and Shipment Detail
screens) present the order or shipment entity and related records in their
entirety. The HTML page for large orders or shipments can be very large
and could take a long time to display especially over a wide area
network. For example, the view screen for a 200 line order could be up
to 500KB. Displaying this screen over a 128kbps line could take 30
seconds or more.

If your enterprise regularly process large orders, you may want to
consider the following:

As we mentioned above, consider customizing the screens to only
return the data needed, implementing HTML/HTTP compression,
using output templates to reduce the size of the output, and so forth.

23.2.2 Applications Manager
The Applications Manager is a Java applet that is used to configure the
Selling and Fulfillment Foundation rules. You may have to start the applet
with more memory if you are modifying a large or complex configuration.
You can change the memory settings in the JVM/JRE plug-in control
panel in Microsoft Windows. Go to Start > Control Panel > Java Plug-In >
Advanced. In the Java Runtime Properties, put in "-mx356m". In this
example, the JRE’s heap is allowed to grow to 356MB.

23.2.3 Rich Client Program Interface
The Rich Client Platform is a Java/SWT thick client built on the Eclipse
RCP framework. A number of Selling and Fulfillment Foundation Packaged
Composite Application (PCAs), such as Sterling Call Center and Sterling
Store and Store Operations, use this graphical interface.

23.2.3.1 Enabling Content Compression
The Rich Client Platform client supports content compression for both the
request and the response to and from the application server. The
compression will reduce the application bytes by around 85%.

You can enable compression in the locations.ycfg parameter file. See
the Selling and Fulfillment Foundation: Installation Guide for more
information on how to configure the locations.ycfg file.

User Interfaces

General Recommendations 167

You may want to consider developing multiple locations.ycfg files with
different settings. For example, you can define a locations.ycfg file for
local users without content compression and a locations.ycfg file for
remote users with compression enabled. This gives you the flexibility to
deploy the appropriate locations.ycfg file to different user groups.

In the following example, the REMOTE location has compression enabled
by setting the CompressionEnabled attribute to Y:

<Locations>
 <Location id = "DEFAULT" proxyServer="yourproxyserver.com"
 proxyPort="8080" updateType ="pull">
 <Config Name = "DEFAULT" Protocol = "https" BaseUrl = "localhost"
 PortNumber = "7001" ApiUrl ="/smcfs/RcpServlet"
 CompressionEnabled = "N"
 </Config>
 </Location>
 <Location id = "REMOTE" proxyServer="yourproxyserver.com"
 proxyPort="8080" updateType ="client">
 <Config Name = "DEFAULT" Protocol = "https"
 BaseUrl = "localhost" PortNumber = "7001"
 ApiUrl ="/smcfs/RcpServlet"
 CompressionEnabled = "Y"
 </Config>
 </Location>
</Locations>

23.2.3.2 Images
To improve the performance of the screens, the RCP client has the ability
to retrieve and display images in a separate background thread. This can
be beneficial when you are displaying large orders. For example, when
you display the order detail screen in COM PCA and you display small
images of the item at the order line level, the main thread will paint the
order detail screen and its content. A separate thread will paint the icons.

To improve the performance further, the images are cached on your local
drive after they have been retrieved. The cache could eliminate requests
back to the application server for images. The cache is deleted when you
restart the RCP client to ensure that you have the latest images.

For performance, you might want to consider the following:

You can specify an image server that is separate from the application
server. For example, in the following example, the images come from

168 Performance Management Guide

User Interfaces

http://yantraimg.acme.com. This will steer static image retrieval to
specialized image servers:

<Locations>
 ...
 <Location id = "REMOTE" proxyServer="yourproxyserver.com"
 proxyPort="8080" updateType ="client">
 <Config Name = "DEFAULT" Protocol = "https"
 BaseUrl = "localhost" PortNumber = "7001"
 ApiUrl ="/smcfs/RcpServlet"
 CompressionEnabled = "Y"
 </Config>
 <Config Name = "IMAGE" Protocol = "http"
 BaseUrl = "yantraimg.acme.com" PortNumber = "7001"
 ApiUrl="/smcfs/icons/rcp/$param1$.gif"
 CompressionEnabled = "N"
 <Config Name = "IMAGE_SMALL" Protocol = "http"
 BaseUrl = "yantraimg.acme.com" PortNumber = "7001"
 ApiUrl="/smcfs/icons/rcp/$param1$_small.gif"
 DefaultApiUrl="/smcfs/icons/rcp/404.gif"
 CompressionEnabled = "N"
 </Config>
 ...
 </Location>
</Locations>

You can disable images for users on limited or slow networks by
removing the IMAGE, IMAGE_SMALL and IMAGE_BIG Config elements
from your locations.ycfg file.

You can specify the same icon for items or groups of items.
Subsequent request for this icon will be served from cache.

23.2.4 Guidelines for Processing Large Orders
This section describes the best practices and system design
considerations that should be taken into account when you have to
process orders or shipments that have a large number of order lines.

That number varies depending on many factors, such as order
complexity. As a general guideline, we recommend that you consult
Sterling Support if you have to process orders that have over 200 lines.
These could, for example, be large, planned purchase orders in B2B
associations.

User Interfaces

General Recommendations 169

23.2.4.1 Best Practices
Customers of Sterling Commerce have used numerous strategies to
handle large orders. Some of these strategies are described here for your
consideration. Their applicability will, however, depend on your business
requirements:

Build a custom screen to view large orders.

You can develop a custom, HTML-based user interface to display the
order in smaller sections.

For example, you can create a custom screen that calls the
getOrderDetails API with a selective output template to display only
the order header information (and not the order line information).
This will significantly reduce the amount of data that is to be
retrieved from the database, and the size of information to be
displayed on the HTML screen. This HTML screen can have a button to
allow the user to get a list of the order lines. When the user clicks
this button, the getOrderLineList API is called to get a list of order
lines. Again, through the use of the output template, you can control
the amount of data retrieved and displayed. Finally, when the user
clicks a specific line, the getOrderLineDetails API is called to get all
the information relating to that line.

There are many variations to this technique. The actual
implementation is dependent on your use case scenarios.

Break up large orders into smaller, but manageable orders.

Some Sterling Commerce customers have opted to break their large
orders into smaller chunks for manageability. One approach is to
develop a front-end process to split the orders based on business
rules, prior to the orders entering the Sterling Distributed Order
Management application. The procurement analyst can use the
Master Order field, for example, to find all the related orders.

Decouple heavy processing from the user interaction.

Decoupling long-running processes from user interaction can result in
a faster response.

For example, let us assume that you have to receive a large shipment
of serialized items on a single pallet. This could be, for example, a
pallet of 10,000 gift cards, each having its own serial number. As part
of the receipt process, each item is assigned to one serial number.

170 Performance Management Guide

User Interfaces

In this case, you may want to consider implementing custom screens
to allow users to view the shipment, serial numbers, and a button to
trigger the receipt and serial number registration in the background.
This can be achieved by having a button, which, when clicked, will
send a message to a background agent to process the receipt and
serial numbers.

Thus, the user will be able to continue working when the receipt and
serial number processing is being performed in the background.

Test the application with large orders.

Ensure that you include the largest anticipated orders into your
testing. Plan the test with orders larger than your largest orders. For
example, if you expect 1,000-line orders, test with orders containing
1,200 lines.

23.2.4.2 Other Architectural Considerations
The system design or architectural approaches described in this section
typically yield sub-optimal performance when working with large orders:

Using the HTML-based Order Detail screen to display a large order.

As described earlier, the standard, product Order Detail screen
retrieves both the order header and order line information. This
approach is not optimum for large orders because the screen has to
retrieve and display all the details of the order.

Displaying large amount of data across slow networks.

Customers who are connected to low-bandwidth connections (for
example, 56 kbps modems) or high-latency connections (for
example, connected through satellite links) should impose a
constraint on the amount of data that is to be displayed.

A general industry rule is to keep the actual network payload to 50
KB. Customers who have to send a lot of data should compress the
output stream. Devices such as F5 Big-IP load balancers have built-in
compression that can reduce the payload by 80%. With compression,
you can generate screens that are up to 250 KB in size because the
resulting compressed screen will be about 50 KB.

In practice, you should, as mentioned earlier, understand your use
case scenarios. Displaying the data in smaller chunks may be more

Integration Adapters/Agents

General Recommendations 171

appropriate because it is unlikely that you will need all the data from
all the lines.

Test with representative conditions.

Your testing environment should reflect the actual production
conditions. For example, as mentioned earlier, if users are located at
remote locations on high-latency networks with low bandwidth
connections, you should not test the user interfaces on fast, local
area networks. You should, at a minimum, run tests from the actual
remote locations. If this is not feasible, you should consider simulated
WANs. For example, you can run your tests through Shunra devices
to assess the impact of slower networks. The URL for Shunra
Software Ltd. is given below:

http://www.shunra.com

Similarly, you should test the application with representative,
production database sizes.

Performing too much processing per order line.

When retrieving and processing the list of order lines, be aware of the
processing required for each order line. Although the processing
required may be low for each line, the processing can be significant
when there are many lines.

For example, assume that you want to calculate the cost of the items
associated with each line. Further, assume that you need to call an
external system to get the price, and the pricing call takes 200 milli
seconds. If you have to display a list with 600 lines, the pricing calls
could take 120 seconds. In some cases, it may be better to call the
pricing engine once with 600 items, especially if the cost of the call
represents the majority of the time. Alternatively, you can consider
providing a button to allow the user to reprice the lines if repricing is
needed.

23.3 Integration Adapters/Agents
Agent Servers or Integration Adapters are Java applications that run
time-triggered (agent) transactions (see the Sterling Distributed Order
Management: Configuration Guide). Transactions process orders or
shipments such as moving orders from one state to another.

http://shunra.com

172 Performance Management Guide

Integration Adapters/Agents

Out of the box, all time-triggered (agent) transactions are configured to
run in a single Agent Server (called the DefaultAgent). This simple setup
is convenient for training, development or product demos. This setup is
not suitable for production because all the processing threads will run in
one JVM.

23.3.1 Agent Criteria
The Applications Manager allows you to configure your transactions. See
the Selling and Fulfillment Foundation: Application Platform Configuration
Guide for detailed instructions on how to configure the Agent Criteria.

The example above defines the agent criteria for the Schedule
time-triggered (agent) transaction. The Schedule transactions run in an

Integration Adapters/Agents

General Recommendations 173

Agent Server which we have called the ScheduleSalesOrderServer
server. When you start an Agent Server with the Criteria ID of schedule_
sales_order, that server is instructed to run five threads of the Schedule
transaction. If you need more processing threads, you can either
increase the number of threads or run more instances of this Agent
Server. Please see Section 23.3.3, "Agent Thread Levels" for
recommendations on how to estimate your threading levels.

All time-triggered (agent) transactions are driven by tasks in their
message queue. A queue may serve one or more transactions. We
strongly recommend you configure one queue for each high volume
transaction.

23.3.2 Agent Getters
Work tasks are placed into the messaging queue by a getter. A getter’s
job is to put qualified orders (in this example, orders that are in the
Scheduled state) into the ScheduleSalesOrderQueue queue. You can
specify how many orders the getter picks up each time it runs. By
default, the getter picks up 5,000 orders.

Like the time-triggered (agent) transactions, a getter is also driven by
work tasks in the queue - in this case, by a getter work task instead of a
transaction work task. The getter work task is created by a trigger
server.

You should consider the following recommendations when configuring the
Agent Servers:

Agent thread levels

Getters that can accept enterprise code as an additional parameter

For JMS Servers:

Dedicated JMS Servers

Excessive agent scheduling

Dedicated JMS Destinations

Running JMS servers in client VM mode

Enabling message and byte paging

174 Performance Management Guide

Integration Adapters/Agents

23.3.3 Agent Thread Levels
You should derive the optimum number of Agent Servers to run and the
number of transaction threads for each Agent Server. The Agent Server’s
throughput depends on many factors such as the amount of
customization or user exits, the amount of data contention, the size and
capacity of the agent servers, and so forth.

One approach you can use to derive your agent’s effective throughput is:

Allow work to queue up. Make sure there are at least one to two
hours worth of work queued up.

Run a single transaction thread and record the total (running) elapse
time.

Determine the total amount of work performed by the transaction
thread for sample monitoring scripts).

Calculate the effective throughput of that agent thread by dividing
total amount of work by elapse time. The throughput rate is specified
in terms of work per unit time (e.g., order lines per hour or order
lines per minute).

During the test, you should make sure there are no significant system
bottlenecks impeding the Agent Server’s performance. Some of the
performance indicators you should watch for include:

Excessive JVM garbage collection activities (especially Full GCs)

Excessive database waits (e.g., I/O, latches, and so forth)

Inefficient queries (e.g., missing indices)

Data lock contention

Excessive thread synchronization

Make sure the Agent Server is running optimally before calculating its
potential throughput rate.

You can schedule multiple agent threads if your average processing level
is greater than the effective throughput for a single agent thread. For the
reasons mentioned above, more threads (beyond a reasonable level)
does not always mean higher throughput.

Java Message Service

General Recommendations 175

23.3.3.1 Excessive Agent Scheduling
You should not over-aggressively schedule the time-triggered (agent)
transactions - for example, configuring a time-triggered transaction to
run on many Agent Servers with high threading levels when you expect
to a low traffic volume for that transaction. If you schedule the agents
too aggressively, you could end up with a situation where the agents
(consumers) are outpacing the producers. As a result, the queue typically
has a few transactions which are quickly processed. When processed, the
Agent Server schedules another getter -- the frequent getter tasks could
cause unnecessary overheads as it looks for work to do.

In this case, "more does not necessarily mean more".

23.4 Java Message Service
Selling and Fulfillment Foundation uses JMS extensively. For example:

The Selling and Fulfillment Foundation agents use JMS as a source of
work.

The Selling and Fulfillment Foundation integration servers use JMS as
a means to communicate with external systems.

23.4.1 Integration Queues
Integration-based queues are queues for inbound external messages
(such as orders from external partners or inventory adjustments from
external warehouse management systems) or outbound external
messages (such as alert messages to an e-mail system).

You should consider putting these queues into one or more dedicated
JMS servers especially if these queues can grow unbounded. In addition,
these JMS destinations should be configured as persistent so that
messages can be recovered after JMS failures.

You should consider implementing controls so that producers cannot
significantly create messages faster than consumers can process
messages. In extreme cases, high number of messages in the queue
could consume most of the JMS servers’s JVM heap resulting in degraded
or loss of service.

176 Performance Management Guide

Java Message Service

The benefits of implementing dedicated JMS servers for integration
queues include:

Isolating integration-based message queues that could grow
unbounded from the more predicable queues used by the Selling and
Fulfillment Foundation agents

The ability to configure, manage and monitor the queues to the
expected message traffic - for example, you may want to create JVMs
with 1GB heap for integration-based JMS servers and smaller heaps
for the Selling and Fulfillment Foundation agents

23.4.2 Dedicated JMS Destination
You should configure a dedicated JMS Destination for each time-triggered
(agent) transaction for the following reasons:

Ease of monitoring - With dedicated destinations, it is easier to see
the number of messages coming into a destination, the number of
messages that require processing, the maximum number of
messages that ever existed in that destination. With that information,
you can also calculate the messaging inflow and outflow rates.

Performance - With dedicated JMS destinations, the selector is able to
quickly find the message with the specified selector/filter.

In a common JMS destination with lots of messages (e.g., greater than
20K messages), the selector could take several seconds to find the
appropriate message.

23.4.3 JMS Persistence
Many of the Selling and Fulfillment Foundation agents find work to
process from message queues. These work requests are kept in
non-persistent message queues. These messages are recreated, either
when an external or internal agent trigger is issued.

Integration messages (e.g., createOrder messages from external
systems) must be kept in persistent message queues. JMS reads the
messages back into memory from the persistent store when the JMS
server is restarted.

You should implement persistent JMS queues on a RAID-10 or RAID-5
disk array for performance and availability. These RAID disk arrays,

Performance Feature - Reference Data Caching

General Recommendations 177

especially for RAID-5, should be supported by a non-volatile cache to
ensure fast I/O write operations. For high persistent message volumes,
local disk queues can become an I/O bottleneck.

23.5 Performance Feature - Reference Data
Caching

Refrence Data Caching is critical for performance and scalability. From
experience, UI login time could jump to 30 seconds if the YFS_
RESOURCE and YFS_RESOURCE_PERMISSION tables are not cached
correctly. The application’s overall throughput will drop significantly if
caching is not enabled.

23.5.1 Overview
So, what is reference data caching? Simplistically, when a transaction
issues a database SELECT and returns ten records, the ten records are
cached in the JVM. We will go into further details below.

Starting in Yantra 5x 5.0 SP2, caching is enabled by default. The cached
records are stored in the JVM heap. Typically, around 350MB will be used
by caching during steady-state. Of course, the actual amount could
depend on your operations. As a result, with caching enabled, you should
monitor the health of the JVM heap garbage collections. For memory
constrained environments, you may want to enable caching on specific
tables.

23.5.2 Cache Management
The Selling and Fulfillment Foundation reference data caching is
implemented by a local, simple, lazy-loading, asynchronous-refresh
cache manager. The cache manager is a lazy-loader in the sense that it
does not read in the cacheable reference tables at start up but would
instead only cache records as they are being read. The benefit of the
lazy-loading strategy is that data is only cached where they are needed.

The cache manager implements a simple cache management policy. Data
that is cached remains in the cache until the cache manager is instructed
to flush the cache. This could happen because the cache has reached a
certain size limit or a reference data record was changed from a standard
Selling and Fulfillment Foundation API. The cache manager does not
implement cache management policies, such as record flushing using a

178 Performance Management Guide

Performance Feature - Reference Data Caching

least recently used algorithm, in order to avoid cache management
overheads. In our controlled test, this simple cache manager provides
significant performance benefits with little management overhead.

In keeping with the simple cache strategy, when a reference data record
is changed by a Selling and Fulfillment Foundation API, the local cache
manager notifies all the other cache managers to flush the reference
data table. There is a small time-lag between when the reference data is
changed to when the last cache manager is notified.

When the cache managers receive the change notification, the cache
managers flushes all the cached entries for the affected table. As a
result, you should cache tables that are infrequently changed. More
importantly, this notification comes from the Selling and Fulfillment
Foundation APIs. As a result, you should ensure that reference data is
never changed via database tools like SQL*Plus.

Recommendations:

You should enable reference data caching when you need the extra
performance boost.

You should ensure that the reference data is not subject to frequent
updates.

23.5.3 Caching Strategies
As we stated above, with caching, you introduce the possibility of data
consistency issues. This data inconsistency may occur when an API
changes a reference data record in one JVM while another transaction is
using another copy of that reference data in another JVM.

That said, caching is a widely used technique that favors scalability,
performance and affordability against possibly maintainability, data
consistency, and accuracy.

In this section, we describe strategies you can use to mitigate the data
consistency issues.

Strategy 1 - Trade-off Performance and Affordability against Data
Consistency

In this strategy, you may ask yourself the question. First, does the
possibility of data consistency exist? Since the refreshes are done
asynchronously, the answer is yes. The next question is, what is the

Performance Feature - Reference Data Caching

General Recommendations 179

probability of a data consistency? One of the factors that this answer
depends on is the transaction volume. There may be more. For example,
if you were to make the reference data changes at night when
transaction volumes are low, you may decide that the probability of data
consistency is potentially low. The last question you need to ask is, what
is the impact of an inconsistent data? If you determine that the impact is
insignificant, then you may decide to go with this strategy. The decision
is yours to make.

Strategy 2 - Trade-off Performance and Affordability against
Maintainability while keeping Data Consistency

In this strategy, you control updates against the cacheable reference
data to eliminate any possibility of data consistency. One approach is to
place the cacheable reference tables into a separate tablespace.

In addition, with Oracle, using the following command, you alter the
tablespace to only allow reads:

alter tablespace <tablespace name> read only;

Oracle ensures that these tables are not modified without your
knowledge. To modify the cached reference data, you then alter the
tablespace back to read/write and modify the reference data through the
Applications Manager. To be safe, you would probably do this when there
is very little transactional activity o the system. When you are done, you
can then mark that tablespace as read only with the following command:

alter tablespace <tablespace name> read write;

23.5.3.1 Automatically Refreshing Data Cache
When a record of a cached table is modified by a Selling and Fulfillment
Foundation API, the local cache manager sends change notification
messages to all the other cache managers in the Selling and Fulfillment
Foundation system. These messages are sent sequentially - going from
one cache manager to the next. The time to notify all cache managers is
dependent on the number of cache managers - the more managers, the
longer the notification process.

23.5.3.2 Manually Refreshing Data Cache
You can manually refresh the Selling and Fulfillment Foundation cache
from the System Management Console. Go to the Details page for each

180 Performance Management Guide

Performance Feature - Reference Data Caching

application server or the Selling and Fulfillment Foundation agent
instance and press the "Clear Cache" icon.

23.5.3.3 List of Cache Managers
The list of cache managers are dynamically maintained in the YFS_
HEARTBEAT database table. Selling and Fulfillment Foundation servers,
integration servers or agents automatically register themselves into this
table when they start and deregister themselves when they stop. In
addition, they also update their status in the YFS_HEARTBEAT table on a
regular basis. At any time, the heartbeat table has a record for every
running Selling and Fulfillment Foundation server instances and
integration server/agents.

The "Cache Clear Count" column in the System Management Console >
Table Level Cache List screen provides statistics on the number of times
the cache was cleared at the table level.

23.5.3.4 Cleaning Up the Cache Managers List
A JVM may not be able to deregister its entry from the YFS_HEARTBEAT
table if it died abruptly. This could lead to stale entries that point to
non-existent JVMs. You can clean up these stale entries by running the
Health Monitor agent (see Selling and Fulfillment Foundation: System
Manangement and Administration Guide) for more detail.

23.5.4 Enabling Reference Data Caching
By default, Selling and Fulfillment Foundation enables reference data
caching for:

The application server instances

The Selling and Fulfillment Foundation agents and monitors

The caching feature and the tables that are cached are governed by the
dbclassCache.properties file that is located in the <INSTALL_
DIR>/properties directory. You can change the cache settings by adding
override parameters into the customer_overrides.properties file. For
example, you can disable caching for the YFS_ACTION table by adding
the following line to the customer_overrides.properties file:

YFS_ACTION.enabled=false

Performance Feature - Reference Data Caching

General Recommendations 181

For additional information about overriding properties using the
customer_overrides.properties file, see the Selling and Fulfillment
Foundation: Properties Guide.

Currently, there are about 140 reference tables that are cacheable.

The System Management Console allows you to confirm that tables are
cached.

23.5.4.1 Controlling the size of the Cache
When a transaction issues a SELECT against a cacheable table, the cache
manager saves the retrieved records as well as the SELECT WHERE
clause. The WHERE-clause is used as a hash key to quickly determine the
existence of cached records.

The cache manager stores four distinct components:

The cached record (which the cache manager calls "OBJECT")

The query WHERE clauses that returned one or zero database record
(which the cache manager refers to as "SELECT")

The query WHERE clauses that returned zero or more database
records (which the cache manager calls "LIST") and

The results of COUNT queries and their WHERE clause (which the
cache manager calls "COUNT").

Note: In case you are wondering, the use of the terms "SELECT",
"LIST" and "COUNT" is historical and refers to the fact that the
WHERE clauses were used by the selectWithWhere(), listWithWhere
and the countWithWhere() database methods. Knowing these terms
will help you set the cache limits later in this document.

Take for example the following queries against the cacheable YFS_
ORGANIZATION table. The first query (using the selectWithWhere()
method) returns one record (call this record ORG-3):

select *
from yfs_organization
where organization_code = ’ORG-3’

At the end of the query, the cache manager stores the ORG-3 record into
a Java Map which the cache manager refers to as OBJECT. Next, the
cache manager stores the WHERE clause ("where organization_code =

182 Performance Management Guide

Performance Feature - Reference Data Caching

’ORG-3’") in the SELECT Java Map (see diagram below). The SELECT Map
associates the WHERE clause (which is a hash key) to the cached record.

The second query (using the listWithWhere() method) to the same table
returns six records (ORG-1 and ORG-6):

select *
from yfs_organization
where catalog_organization_code = ’ACME’

At the end of that query, the cache manager stores the second WHERE
clause into the LIST Java Map and the ORG-1, ORG-2, ORG-4, ORG-5
and ORG-6 records into OBJECT along with a structure that associates
the six cached record to the WHERE clause. The cache manager does not
add ORG-3 because it was already added to the OBJECT Map from the
first query.

Finally, the WHERE clause and the count results from the third query
(using the countWithWhere() method) is stored in the COUNT Map:

select count(*)
from yfs_organization
where catalog_organization_code = ’ACME’

The following diagram depicts a simplified version of the cache structure:

ORG-1

ORG-2

ORG-3

ORG-4

ORG-5

ORG-6

ORG-1

WHERE-2

WHERE-1

LIST

SELECT

OBJECT

WHERE-3

COUNT

Performance Feature - Reference Data Caching

General Recommendations 183

By default, the cache manager uses the following parameters from the
dbclassCache.properties file to control how many COUNT results,
SELECT WHERE clause, LIST WHERE clauses and OBJECT (cached
records) can be stored for each table:

sci.globalcache.count.size=10000
sci.globalcache.select.size=10000
sci.globalcache.list.size=10000
sci.globalcache.object.size=10000

As a result, a cacheable table can at most store in the JVM:

Up to 10,000 cached records (in the OBJECT Map)

Up to 10,000 SELECT WHERE clauses

Up to 10,000 LIST WHERE clauses and

Up to 10,000 COUNT results and their WHERE clauses.

You can use the customer_overrides.properties file to override the
settings. For example, you can increase the cache limit for the number of
YFS_RESOURCE records to 30,000 with the following parameter:

YFS_RESOURCE.objects=30000

For additional information about overriding properties using the
customer_overrides.properties file, see the Selling and Fulfillment
Foundation: Properties Guide.

The "Objects Cached" column in the System Management Console >
Table Level Cache List provides the number of records cached for each
table.

Please keep the following in mind if you change the default settings:

Each cached record occupies space in the JVM heap. If you increase
the number of records cached, you must ensure garbage collections
are still effective and "healthy".

Conversely, do not set the cache limit too low such that the Selling
and Fulfillment Foundation cache has to continually flush the cached
tables

The UI login process takes over 30 seconds if you set the cache limit for
the YFS_RESOURCE and YFS_RESOURCE_PERMISSION tables too low

184 Performance Management Guide

Performance Feature - Reference Data Caching

(e.g., 1,000). These two tables have over 3 thousand records which are
read as part of the UI login process. By setting a low cache limit (less
than the number of records in these two tables), the Selling and
Fulfillment Foundation cache must flush out earlier cache records when
the cache fills up. As a result, the next login must read the records again.

To minimize the amount of cache management overhead, the caching
mechanism implements a simple space management strategy - when the
number of cached records for a table hits the limit specified above, the
cache manager initializes (or refresh) that table’s cache to being empty.

23.5.5 Strategies for Enabling Reference Data Caching
The following are some suggestions to consider if you decide to cache
some or all of the reference tables:

Cache tables that have very low write or update activities. When a
record is changed, the local cache manager has to notify the other
active cache manager to flush that table.

Monitor the frequency at which the cache tables are flushed:

If a table is being flushed frequently because the records are
being changed, you may want to consider not caching these
tables. For example, your process may involve updating records in
that table en mass. If that is the case, the cost of the large
number of cache flush notifications could out weigh the benefits of
caching that table.

If a table is being flushed frequently because the number of
OBJECTS is hitting the cache limit, you should study the number
of records cached and the cache hit ratio. You may, for example,
not want to cache the table if the table has a very large number
of cacheable records (e.g., during the day, transactions will range
through all the records) and the potential cache hit ratio is low.
Conversely, you may want to increase the OBJECTS limit if the
potential cacheable records is just slightly over the limit.

Cache queries that are expensive.

Monitor heap garbage collection to make sure that the garbage
collection overhead is not significant. We recommend you keep the
garbage collection overheads (which we define as the amount of time
spent in garbage collection over an interval) to less than 3%.

Performance Feature - Reference Data Caching

General Recommendations 185

23.5.5.1 Monitoring Cache
The number of records a JVM caches depend on many factors including
the type of transaction, the data that it retrieves, the breadth of
functionality used, and possibly seasonality.

For example, an agent that is configured to Schedule Orders only caches
records that is used by the Schedule transaction. An application server, in
contrast, serves a broad range of transactions and typically requires
more memory for the cache. An application server that services both
DOM and WMS likely caches more records than one that only services
DOM.

You can monitor cache usage from the System Management Console. Go
to the Detail page for an application server or the Selling and Fulfillment
Foundation agent. Press the "Table Level Cache" button.

23.5.5.1.1 Cache Drop Messages The cache manager produces the
following message, at the log4j WARN level, to report cache flushes:

2004-02-11 13:10:44,753:WARN :main: Clearing cache. Number
 cached=7787,Lists cached=2,Singletons cached=2: YFS_ResourceDBCacheHome

The "number cached" refers to the cached records (OBJECTS). The "Lists
cached" refers to the LIST WHERE clauses. The "Singletons cached"
refers to the "SELECT WHERE clauses".

23.5.5.2 YFS_HEARTBEAT
Selling and Fulfillment Foundation records an entry into the YFS_
HEARTBEAT table for each application server and each Selling and
Fulfillment Foundation server that starts up. These entries enable Selling
and Fulfillment Foundation to manage servers and to broadcast cached
data updates to them. When a Selling and Fulfillment Foundation server
is shut down normally, the corresponding YFS_HEARTBEAT record is
removed.

When a Selling and Fulfillment Foundation server ends abnormally (or
whenever an application server ends) the corresponding record can
remain in the YFS_HEARTBEAT table even though it no longer points to a
valid running server. These pointers to servers that are no longer running
are known as "stale entries." Large number of stale entries could slow
down the management of the servers. For example, the cache refresh
broadcast will have to try to notify the servers pointed by the stale
entries.

186 Performance Management Guide

Performance Feature - Reference Data Caching

Periodically, each JVM updates its status in its YFS_HEARTBEAT record.
By default, that refresh interval is set to
yantra.statistics.persist.interval / 2 or 5 minutes.

To eliminate stale entries from the JNDI tree, you should run the Health
Monitor agent (see Selling and Fulfillment Foundation: System
Manangement and Administration Guide) for more detail.

23.5.6 Services
Selling and Fulfillment Foundation provides certain standard
out-of-the-box services, which could be used on actions configured from
events. These services have been provided in synchronous mode. Some
of these services like Receipt Closure, may require to be changed to
asynchronous mode to maximize performance.

To make them asynchronous, you would need to copy the current
supplied service to another service flow, and change the starting point to
one of the asynchronous transports like WebLogic JMS, MQ, and so forth.

In events where the originally supplied service flows are configured to
call synchronously, you would need to create a custom service which
would publish the Input XML to an asynchronous transport component
like WebLogic JMS, MSMQ, and so forth.

For more information on defining service definitions, see the Selling and
Fulfillment Foundation: Application Platform Configuration Guide.

23.5.7 APIs
Selling and Fulfillment Foundation provides an extensive list of APIs that
client programs can invoke. Here are some recommendations for you to
consider.

23.5.7.1 API Output XML Files
The Selling and Fulfillment Foundation APIs, such as getOrderDetails,
return data based on the specification of the following two XMLs files:

Output XML file

Template XML file

Performance Feature - Reference Data Caching

General Recommendations 187

The output XML file defines all the possible elements and attributes that
the API is capable of returning. The template XML file allows you to
specify a subset of the elements and attributes that the API returns.

For performance, especially for high volume APIs, you should optimize
the template XML file. Refer to the Selling and Fulfillment Foundation:
Customization Guide for recommendations.

In the template XML, strive not to use the TotalNumberOfRecords
attribute. Coding this attribute makes the application issue a separate
count query against the database. The count query can be expensive if
there is a large number of records that qualify.

23.5.7.2 List APIs
List APIs allow you to retrieve sets of data from the Selling and
Fulfillment Foundation database. These APIs are typically labeled
getXXXList - for example, getItemList, getLocationList, and
getOrganizationList. In some cases, the list API could "find" a large
number of records which would cause the API to return a very large
output XML. If unchecked, the output XML could consume a large portion
of the Java heap.

Developers can, and should, limit the number of records returned by
setting the attribute MaximumRecords in the list XML. For example, the
following input XML returns at most 2 records:

<Item MaximumRecords="2" />

You can also enforce a system-wide limit by setting
yantra.app.maxrecords (see Section 23.5.10.5, "API Control").

23.5.7.3 User Exits and Events
APIs give you the ability to add your own custom code in user exits or
events at well-defined points in the processing. The user exits and events
are defined in the Selling and Fulfillment Foundation API Javadocs and in
the Selling and Fulfillment Foundation: Customization Guide.

When using user exits and events, keep the following in mind:

Ensure the processing time in the exit and events are short. Long exit
or event processing times increases transaction response time which
could result in lowered throughput.

188 Performance Management Guide

Performance Feature - Reference Data Caching

Ensure that call-out (requests) to external systems can scale beyond
anticipated peak processing rates. Unscaleable or degraded call-outs
can significantly elongate user exit or event processing times.

Ensure that you do not hold critical record locks during the call out.
Critical record locks are defined as those records, such as the YFS_
INVENTORY_ITEM, YFS_LOCATION, YFS_LOCATION_INVENTORY,
YFS_ORDER_HEADER, and so forth that are potentially needed by
other transactions. Please see below.

You need to be aware of whether you are holding record locks when
invoking user exits or events, especially exits or events that could take a
long time to process. For example, if your transaction is holding YFS_
INVENTORY_ITEM locks and your exit takes a minute to process, you
could potentially block other inventory processing transactions that
requires that lock.

You can find out whether you are holding on to locks during a call out by
review VERBOSE traces. Look for any SELECT... FOR UPDATE statements
issued prior to the call out.

Calling a user exit while holding on to locks may not be an issue if you
are certain the user exit or event completes quickly (e.g., less than
100ms). For example, you may have coded a user exit to publish an ON_
SUCCESS message to a message queue. The call out response time is
less certain if your exit calls out to an external system. We have seen
many cases at customer sites where external systems call outs either
failed to return or have taken over two minutes.

23.5.8 Wildcard Characters
Oracle, UDB and Microsoft SQL Server use the underscore character ("_")
as a single character wildcard and the percent character ("%") as a
wildcard character that can match zero or more characters. If possible,
you should avoid using these two characters in indexed fields. Take for
example the case where you have a record with ORDER_NO equal to E1_
DIV01_03215466.

The following query is fast because only records with ’E1_DIV01_
03215466’ qualifies:

select order_header_key
from yfs_order_header
where order_no = 'E1_DIV01_03215466';

Performance Feature - Reference Data Caching

General Recommendations 189

But the following query can be very slow, especially if you have millions
of records that start with "E1%":

select order_header_key
from yfs_order_header
where order_no like 'E1_DIV01_0321546%';

In the example above, records with ORDER_NO equal to
E11DIV0110321546, E11DIV01A0321546 and so on qualifies. As a
result, the database server has to find every qualifying record with
ORDER_NOs ranging from E1<low value>DIV01<low value>0321546%
to E1<high value>DIV01<high value>0321546%.

If you use wildcards as part of the column value, you can escape the
wildcards as shown in the following example:

select order_header_key
from yfs_order_header
where order_no like 'E1_DIV01_0321546%'
escape '\';

23.5.9 log4j Logging
The Selling and Fulfillment Foundation: Installation Guide provides more
detail on how to configure log4j. Logs are important because they
provide information to help you detect:

Application problems - for example, application errors during
development

Order processing exceptions - for example, the inventory levels of an
item are low and is causing orders to backorder

23.5.9.1 Logging Level
The Selling and Fulfillment Foundation’s implementation of logging
provides the following four application logging levels:

ERRORDTL

ERROR

WARN

INFO

190 Performance Management Guide

Performance Feature - Reference Data Caching

and the following four diagnostic logging levels:

TIMER

SQLDEBUG

DEBUG

VERBOSE

You can turn on all or a combination of some of these levels. You can also
designate different log destinations.

For production, you should enable either the INFO or WARN logging level.
The application logging levels are cumulative. If you enable INFO, you
get all four levels from INFO to ERRORDTL. If you enable WARN, you get
three levels from WARN to ERRORDTL.

When needed, you can enable diagnostic logging levels for short periods
of time in production. The DEBUG and VERBOSE consume large amount
of computing resource and generate large amount of log entries.
Enabling VERBOSE logging also enables all diagnostic logging levels from
VERBOSE to TIMER as well as all application logging from INFO to
ERRORDTL. VERBOSE logs prints out lots of information including the
input, intermediate and resulting XMLs, debug information, and so forth.

The TIMER logging level produces a one-line trace entry to record when
certain processing sections are entered and exited. This diagnostic
logging level is useful for identifying areas for tuning.

The SQLDEBUG diagnostic logging level produces log entries for each
SQL statement processed. In addition, SQLDEBUG also enables the
TIMER logging level. This logging level is useful if you suspect that there
are slow SQL statements.

You control the log4j logging levels in the log4jconfig.xml file.

23.5.9.2 Log Destinations
By default, the log4jconfig.xml.sample file defines a ROLLINGFILE_
APPENDER with a hard coded destination of /application_
path/log/sci.log. If you were to start multiple JVMs (e.g., multiple
agents and/or application servers), they all write to the same file. In
some cases, the log messages from multiple JVMs could be interleaved.

Performance Feature - Reference Data Caching

General Recommendations 191

To avoid this, you can use a parameter to define a separate log file for
each JVM. This can be accomplished as follows:

In the log4jconfig.xml, set the ROLLINGFILE_APPENDER as follows:

<appender name="ROLLINGFILE_APPENDER"
class="org.apache.log4j.RollingFileAppender">

<param name="MaxFileSize" value="2048KB" />
<param name="MaxBackupIndex" value="2" />
<param name="File" value="${LOGFILE}" />
<layout class="org.apache.log4j.PatternLayout">
 <param name="ConversionPattern" value="%d:%-7p:%t: %-60m: %-25c{1}%n"/>
</layout>

</appender>

Pass in the LOGFILE parameter when starting up the JVM. In the
following example, the log file has the agent or application server
name followed by the node name and a date and time:

AGENT_LOGFILE=${LOG_DIR}/${AGENT_NAME}_{$HOSTNAME}-`date +%Y%m%d%-H%M%S`.log
java -DLOGFILE=${AGENT_LOGFILE} \

com.yantra.integration.adapter.IntegrationAdapter

23.5.10 Property File
Selling and Fulfillment Foundation uses the <INSTALL_
DIR>/properties/customer_overrides.properties file to govern how
it initializes and operates.

Selling and Fulfillment Foundation looks for the customer_
overrides.properties file by checking each directory or folder in the
CLASSPATH environment variable that has a properties folder and the
property file. For example, if you have the following property files:

/u01/prod/yfs/properties/customer_overrides.properties
/u01/prod/yfsagents/resources/customer_overrides.properties
/u01/prod/yfsspecial/resources/customer_overrides.properties
/u01/test/yfsagents/resources/customer_overrides.properties

Note: For Windows, format the example appropriately.

Note: For Windows, format the example appropriately.

192 Performance Management Guide

Performance Feature - Reference Data Caching

and your CLASSPATH is:

CLASSPATH=/u01/prod/yfs/lib/yfs.jar:/u01/prod/yfsagents

the application picks up /u01/prod/yfsagents/properties/customer_
overrides.properties. This technique gives you the flexibility to configure
one property file for the entire application or to have a property file
specific to a workload. For additional information about overriding
properties using the customer_overrides.properties file, see the
Selling and Fulfillment Foundation: Properties Guide.

Table 23–1 customer_overrides.properties

Parameters Application
Server

Integration/Ag
ent Server

In the customer_overrides.properties file, add the following entries:

Application Server Connection Pool

 yfs.yfs.dblogin.datasource.name

Mandatory Not Applicable

Integration/Agent Server Connection Pool

 yfs. yfs.dblogin.dbtype

 yfs.yfs.dblogin.driverclass

 yfs.yfs.dblogin.jdbcurl

 yfs.yfs.dblogin.userid

 yfs.yfs.dblogin.password

 yfs.yfs.context.timeout

 yfs.yfs.context.reaptime

Not Applicable Mandatory

Reference Data Cache

 yfs.yfs.dbcache.classes

 yfs.yfs.dbcache.com.yantra.yfs.
 dbclasses.tablename.
 DBCacheHome=limit.rows

Recommended Recommended

User Interface Control

 yfs.yfs.ui.MaxRecords

 yfs.yfs.ui.queryTimeout

Optional

 default=120

Not Applicable

Not Applicable

Performance Feature - Reference Data Caching

General Recommendations 193

23.5.10.1 Application Server Connection Pool Parameters
Selling and Fulfillment Foundation components (e.g., EJB, servlets) that
run in the application servers use the Application Server Connection Pool
parameters to find the connection pool. Refer to Section 12.1.1.3,
"WebLogic Connection Pool" if you are using BEA WebLogic or
Section 13.1.1.2, "WebSphere Connection Pool" if you are using IBM
WebSphere for more detail.

The Application Server Connection Pool parameters are not applicable to
agents and the asynchronous adapters because they do not run in the
application server.

Note: If Selling and Fulfillment Foundation running in an application
server cannot get a connection through the connection pool, it tries to
establish a connection through the Direct Connection parameters. If you
do not like this behavior, you can comment out the Direct Connection
parameters in the application server-specific yfs.properties file. The
application server transactions that cannot get a connection aborts with
an exception.

23.5.10.2 Integration/Agent Server Connection Parameters
The agent and integration servers implement their own self-managing
connection pool.

API Control

 yfs.yantra.app.maxrecords default=5000

Statistics

 yfs.yantra.statistics.collect

 yfs.yantra.statistics.persist.interval

Recommended

Hot SKU Feature

please see Section 23.5.11.4, "Hot SKU
Feature"

Recommended

 yfs.yfs.inventory.sortandlock Please see note below

Table 23–1 customer_overrides.properties

Parameters Application
Server

Integration/Ag
ent Server

194 Performance Management Guide

Performance Feature - Reference Data Caching

23.5.10.3 Reference Data Cache Parameters
Reference data caching is critical for performance and scalability. By
default, the cache is enabled. Please see Section 23.5, "Performance
Feature - Reference Data Caching" for more detail, recommendations and
strategies.

23.5.10.4 User Interface Control
The UI Control parameters are only applicable to the screen workloads
(e.g., JSPs) running in the application servers. They provide system level
controls to the application administrators.

yfs.ui.maxRecords

The yfs.ui.MaxRecords parameter sets the maximum number of
records that can be displayed in the list screens on a system-wide basis.
Some of these list screens include Order Lists, Alert Lists and Item Lists.
This parameter is currently defaults to 200. In addition to this control,
the List screens have a Maximum Record field which is currently defaults
to 30. Therefore, out-of-the-box, if the user issues a search that has
1,000 records, only 30 are displayed. The user can, at their discretion,
change the value of Maximum Record up to the value specified by
yfs.ui.MaxRecords.

There are some important points that you need to be aware of:

The yfs.ui.MaxRecords only controls the number of records (e.g.,
orders or items) that can be displayed in a list. It does not control the
amount of work the database has to perform to get those records.
For example, a user can issue a very inefficient query by asking for all
orders that "contains" the letter "Z" in the order number or in the
customer’s e-mail id. Those queries typically result in a full table scan
of potentially large tables.

This control was put in place to limit users from trying to display a
large number of records in a list. A large list increases the number of
active objects in the JVM heap which can force more garbage
collections which could cause transaction response times to climb.
You should test the order list transactions under concurrent loads if
you are going to increase this value.

Performance Feature - Reference Data Caching

General Recommendations 195

yfs.ui.queryTimeout

The yfs.ui.queryTimeout parameter sets the maximum amount of time
a query in a UI transaction can take. By default, this parameter is set to
120 seconds. If a query takes more than 120 seconds, the query is
canceled, the transaction aborted and rolled back and an information
screen is displayed to the user.

23.5.10.5 API Control
yantra.app.maxrecords

This parameter serves as a safe guard to limit records returned by LIST
APIs to 5,000 records. Please see Section 23.5.7.2, "List APIs".

23.5.10.6 Statistics
By default, Selling and Fulfillment Foundation generates application-level
statistics every 10 minutes. The statistics generation is governed by the
following parameters:

yantra.statistics.collect=y
yantra.statistics.persist.interval=10m

In the example above, statistics are persisted (or written out) every 10
minutes. These statistics are intended for internal generates statistics for
internal product use as well as use by Sterling Commerce personnel for
throughput monitoring and performance problem diagnosis. You can
disable statistics by setting yantra.statistics.collect=n. We, however,
recommend customers leave statistics enabled. The System Management
Console (see Section 23.6.1, "System Management Console and Health
Monitor Agent") relies on these statistics.

Please see Section 23.6.2, "Statistics" for more information.

Caution: The time that JVMs refresh their YFS_HEARTBEAT status is
set to yantra.statistics.persist.interval / 2. Therefore, by
default, the YFS_HEARTBEAT refresh interval is set to 5 minutes. We
recommend that you do not increase the
yantra.statistics.persist.interval parameter because of its
secondary effect on the YFS_HEARTBEAT refresh interval.

196 Performance Management Guide

Performance Feature - Reference Data Caching

23.5.10.7 Inventory Locking

23.5.10.7.1 Hot SKU Feature Please see Section 23.5.11.7, "Hot
SKU Controls" for information on the Hot SKU control parameters.

23.5.10.7.2 yfs.inventory.sortandlock To prevent deadlocks, Selling
and Fulfillment Foundation sorts the order or shipment lines by the items
at the line level (see Section 23.5.12, "Sort Order and Deadlocks") prior
to processing. As the application processes the line, it locks the YFS_
INVENTORY_ITEM record. For example, given the following four line
order where:

Line 1, item A

Line 2, item G

Line 3, item F

Line 4, item E

Selling and Fulfillment Foundation locks the items and process the lines
in the following sequence:

Lock item A, process line 1

Lock item E, process line 4

Lock item F, process line 3

Lock item G, process line 2

Transactions that follow this convention reduces the likelihood of
deadlocks. The exception is when orders has kits. Using the example
above, assume that item G in line 2 is a kit that is made up of the
following kit items D, B, and C. Since the application sorts the item at the
line level, the application still processes lines 1, 4, 3, and 2 as above.
However, when the transaction processes item G, it potentially locks the
kit items out of sequence. Using the example above, the locking
sequence is as follows:

Lock item A, process line 1

Lock item E, process line 4

Lock item F, process line 3

Lock items B, C, and D, process line 2

Performance Feature - Reference Data Caching

General Recommendations 197

If you are processing kits and are experiencing deadlocks, you can set
the yfs.inventory.sortandlock parameter to Y. With the parameter
enabled, the application first sorts and locks all the line item and kit
items prior to processing the transaction. Using the example above, if
you enable yfs.inventory.sortandlock, the application performs the
following:

Lock item A, B, C, D, E and F first

Process line 1

Process line 4

Process line 3

Process line 2

Note: Setting the yfs.inventory.sortandlock increases the amount of
time the YFS_INVENTORY_ITEM locks are held. That increase may not be
noticeable in small orders (for example, five line orders). However, that
increase could be noticeable if the number of lines is large (for example,
over 100 or 200 lines).

Warning: You should not set this parameter if you do not process kits.
Setting this parameter does not add any value to non-kit orders.

See Related Sections:

Section 23.5.12, "Sort Order and Deadlocks"

23.5.11 Performance Feature - Hot SKU
Selling and Fulfillment Foundation locks the inventory item record for an
item before manipulating that item’s supply or demand information. That
inventory item lock is held until the transaction is finished.

23.5.11.1 Determining The Amount Of Inventory Lock Contention
Transactions that hold inventory item record locks can block other
transactions that need the same record. A certain amount of lock
contention is acceptable especially if transactions are blocked
infrequently or for short periods of time and if there is no material impact
on processing throughput or end-user response times.

198 Performance Management Guide

Performance Feature - Reference Data Caching

23.5.11.1.1 Determining Level of Lock Contention in Oracle You
can determine the level of inventory lock contention with the following
techniques. In Oracle:

Use AWR to calculate the amount of lock contention.

In Oracle, query the v$session table to understand the extent of the
lock contention.

AWR reports provide a measure of the total amount of time (in seconds)
all transactions waited for record locks. This metric is found in the "Wait
Events for DB" section (page 2) of a AWR report. In the following
example, transactions waited for enqueues for a total of 741 seconds in
that 30-minute measurement interval:

Wait Events for DB: YRAC05 Instance: YRAC051 Snaps: 15202 -15203
 Avg
 Total Wait wait Waits
Event Waits Timeouts Time (s) (ms) /txn
---------------------------- ------------ ---------- ---------- ------ --------
db file sequential read 903,826 0 6,246 7 3.0
db file scattered read 879,659 0 4,281 5 2.9
enqueue 3,542 6 741 209 0.0
library cache pin 375 231 719 1918 0.0
buffer busy waits 116,687 0 449 4 0.4
log file sync 129,571 0 134 1 0.4

Dividing that number of enqueue wait times (741 seconds) by the
measurement interval (30 minutes) shows that the enqueue contention
was on average 0.41 blocked seconds per second. From a statistical point
of view, one transaction was blocked 41% of the time every second. If
you have ten concurrently running transactions, at one extreme, this
statistic could be interpreted as all transaction was blocked 4.1%. At the
other extreme, one transaction could have been completely blocked for
719 seconds.

In the example above, the lock contention is minimal. As a guideline,
high lock contention situations are characterized as:

Enqueue wait seconds per second is greater than 5 second per
second or

Enqueue wait is the top wait

Performance Feature - Reference Data Caching

General Recommendations 199

If enqueue wait times are significant, run the following query to identify
the sessions that are blocked, the amount of time that they were blocked
for, and the objects they are blocked on:

select sid,last_call_et, sql_text
from v$session vs, v$sqlarea sa
where last_call_et > 0 and
 vs.sql_hash_value = sa.hash_value and
 vs.lockwait > ' '
order by last_call_et desc;

SID LAST_CALL_ET SQL_TEXT
13 1 SELECT /*YANTRA*/ YFS_ORDER_HEADER.*
 FROM YFS_ORDER_HEADER YFS_ORDER_HEADER
 WHERE ENTERPRISE_KEY =:"SYS_B_0" AND
 ORDER_NO = :"SYS_B_1" FOR UPDATE

In the example above, session (SID=31) blocked for 1 second while
trying to lock a YFS_ORDER_HEADER record.

We suggest you look at the following:

Determine the objects that transactions are blocked on (e.g., are
transactions blocked on YFS_INVENTORY_ITEM or some other table).

Determine the amount of time these transactions block for - If the
blocks are for a few seconds (e.g., 1-2 seconds) and the number of
order lines per order are small, the level of contention may be
acceptable.

This query, along with the contention level derived from AWR, lets you
determine the extent of the lock contention.

23.5.11.1.2 Determining the Level of Lock Contention in UDB For
UDB, check the following monitor elements:

lock_wait_time to determine the amount of lock contention. If you
divide this number by the measurement interval, you get the average
lock wait (in milliseconds) per second.

Check the table_name monitor element in the snapshot_lockwait
monitor to see where most of the lock contention are coming from.

For each blocked agent, check the stmt_text and uow_lock_wait_
time monitor elements in the snapshot_statement monitor.

We suggest you look at the following:

200 Performance Management Guide

Performance Feature - Reference Data Caching

Determine the objects that transactions are blocked on (e.g., are
transactions blocked on YFS_INVENTORY_ITEM or some other table).

Determine the amount of time these transactions block for - if the
blocks are for a few seconds (e.g., 1-2 seconds) and the number of
order lines per order are small, the level of contention may be
acceptable.

23.5.11.2 Conditions For Inventory Lock Contention
The following three conditions must exist together for high inventory lock
contention:

Sufficiently high number of concurrent transactions that require
inventory locks

Sufficiently long inventory lock-holding times

Presence of a few common inventory (SKU) in the orders of the
concurrently running transactions

If the transaction volume is low and only one transaction is running, this
transaction does not experience any inventory lock contention. The
likelihood of inventory lock contention grows as the number of
concurrently running inventory processing transactions (e.g.,
createOrder, schedule, release, and so forth) increases.

The impact of lock contention may be minimal if the lock-holding times
are very short. Blocked transactions eventually get and lock the
inventory item they need to process.

If there are no common SKUs, all the concurrently running transactions
are able to process without blocking.

23.5.11.3 Optimization
If the inventory lock contention level is high, relative to your processing
concurrency levels, or if you feel that your processing throughput or
end-user response times are impacted, we suggest the following course
of action.

Look at the lock-holding times. Run each inventory processing
transaction with SQLDEBUG traces or possibly VERBOSE traces.
VERBOSE traces provides more data but can be more intrusive than
SQLDEBUG:

Performance Feature - Reference Data Caching

General Recommendations 201

See how long, on average, the transactions take.

See when the first inventory locks are obtained (and as a result, how
long they are held) within that transaction boundary. The goal is to
keep lock-holding times short.

See if there are places in the transaction that take a long time to
process and the processing occurs when inventory item locks are
held. For example:

The transaction may have a user-exit that calls out to external
systems. If that external system slows down or is unable to scale,
the user-exit time increases. This elongates the lock-holding
times.

There may be SQL statements that run for a long time and can be
optimized with better database statistics or an additional index.

Look at the GC logs - Make sure the transaction is not slowed
down by long costly garbage collection pauses.

Reducing lock-holding times can have compounding effects - as
lock-holding times decreases, transactions finish faster and, as a result,
lower concurrency levels.

23.5.11.4 Hot SKU Feature
If inventory lock contention is still unacceptably high after you have
applied the optimization from above, you have two options that can
potentially reduce the level of inventory item lock:

Hot SKU Feature

Hot SKU Feature (without lock request timeout)

23.5.11.4.1 Hot SKU Feature (without lock request timeout)

In a nutshell, the Hot SKU feature tracks the time to lock inventory item
records. If a lock request for an item (called SKUA) is longer than the
yfs.hotsku.secondsToClassifyAsAbnormalTime threshold, the Hot SKU
feature increments the number of "abnormal" lock attempts for SKUA. If
the number of "abnormal" attempts in a monitoring window is more than
the yfs.hotsku.secondsToClassifyAsAbnormalTime threshold, the Hot
SKU feature considers SKUA a Hot SKU.

202 Performance Management Guide

Performance Feature - Reference Data Caching

In the example below, the first transaction was able to obtain the SKUA
lock immediatley.

As a result, the number of abnormal lock attempts (which we assume to
have started at zero) stays at zero. The second transaction blocked but
eventually got the lock within the abnormal lock time period. Since the
request completed within the "abnormal" time, the request was not
considered abnormal - as a result, the number of abnormal lock attempts
is left at zero and SKUA is not considered a Hot SKU.

The next three transactions try to obtain the lock and were blocked for
longer than the abnormal lock time window. Each "abnormal lock"
attempt increases the abnormal lock count within that monitoring
window. SKUA turns hot when the count reaches the
yfs.hotsku.numRequestsInTrackingWindowToKeepAsHotSku threshold
(which defaults to 3).

A Hot SKU is downgraded to a normal SKU if the number of references to
that SKU is less than the
yfs.hotsku.numRequestsInTrackingWindowToKeepAsHotSku threshold
in a monitoring window.

Transaction Obtains SKUA Lock and Is Active Transaction Tries to Obtain SKUA Lock and Is Blocked

Abnormal Time

Num Abnormal SKUA Hot?
 Lock Attempts

0 N

0 N

1 N

2 N

3 Y

Abnormal Lock Monitoring Window

Abnormal Time

Abnormal Time

Abnormal Time

Txn 1

Txn 2

Txn 3

Txn 4

Txn 5

Performance Feature - Reference Data Caching

General Recommendations 203

Hot SKU detection and enablement occurs at each JVM. For example, a
sudden high burst of demand for a single SKU could result in the
createOrder adapter to consider that SKU hot. Later, as the downstream
agents process those orders, they independently detect and enable those
SKUs as Hot SKUs if they encounter sufficient number of "abnormal"
locks.

When an inventory item is upgraded to Hot SKU status, transactions do
not lock that inventory item before manipulating its demand or supply
information. Instead, the transactions insert the demand or supply
information into two new tables, YFS_INVENTORY_DEMAND_ADDNL or
YFS_INVENTORY_SUPPLY_ADDNL respectively. As a result, demand or
supply information can be recorded in a non-blocking manner because
inserts donot block other transactions from proceeding. Transactions
continue in this mode until the inventory items have been downgraded to
the normal status.

Inventory demand queries automatically check both the YFS_
INVENTORY_DEMAND and YFS_INVENTORY_DEMAND_ADDNL tables.
Similarly, inventory supply queries checks the YFS_INVENTORY_SUPPLY
and YFS_INVENTORY_SUPPLY_ADDNL tables.

The quantities in the inventory additional records are consolidated back
to their base inventory tables by the Consolidate Additional Inventory
agent.

23.5.11.4.2 Hot SKU Feature with Lock Request Timeout option

The lock request timeout option in the Hot SKU feature may be useful in
reducing the amount of lock holding time by limiting the time the lock
request blocks. This can be useful when you are primarily processing
large orders (for example, over 50 lines per order) where the
transactions could block for a very long time.

Using the previous example, with the same transaction arrival times and
processing times, we see that Transaction 1 immediately obtains SKUA’s
record lock and processes SKUA without the Hot SKU feature. Transaction
2 comes in and blocks on the Transaction 1 but eventually gets the lock
within the abnormal time. As a result, Transaction 2 also processes SKUA
without the Hot SKU feature.

204 Performance Management Guide

Performance Feature - Reference Data Caching

Transaction 3 starts and is blocked by Transaction 1. Eventually,
Transaction 3’s lock request times out. When that happens, the
transaction increments SKUA’s abnormal lock attempt count to 1 and
re-issues the lock request.

Similarly, Transaction 4 is blocked by Transaction 1 until its lock request
times out. This transaction increments the abnormal lock attempt count
to 2.

When Transaction 3 times out its second lock request, the Hot SKU
feature upgrades SKUA to Hot SKU status. When that has happened,
Transaction 3 can process SKUA even though Transaction 2 still has the
SKUA record lock.

Similarly, when Transaction 4 times out, it is able to process SKUA.

Transaction Obtains SKUA Lock and Is Active Transaction Tries to Obtain SKUA Lock and Is Blocked

Num Abnormal Turn
 Lock Attempts SKUA Hot?

0 N

0 N

1 N

2 N

3 Y

Monitoring Window

Abnormal Time

Abnormal Time

Abnormal Time Abnormal Time

Abnormal Time

3

Transaction Processes SKUA as a Hot SKU

Y

4 already hot

Txn 1

Txn 2

Txn 3

Txn 4

Txn 5

Performance Feature - Reference Data Caching

General Recommendations 205

More importantly, when Transaction 5 comes in, it sees that SKUA is
already a Hot SKU and does not attempt to lock the SKUA record.

One important benefit to lock request timeout is in situations where the
blocker could be holding on to locks for a long time. With the timeout
option enabled, the blocked transactions has to wait up to a maximum of
abnormal lock count (yfs.hotsku. numberOfAbnormal
LocksForSwitchTo HotSKU) times the abnormal lock timeout
(yfs.hotsku. secondsToClassifyAs AbnormalTime) before the
transaction starts to process the SKU as a Hot SKU.

23.5.11.5 Consolidate Additional Inventory Agent
If you enable the Hot SKU feature, you must run the c (see the Selling
and Fulfillment Foundation: Application Platform Configuration Guide).
This agent consolidates the quantity in the demand and supply additional
records back into the base YFS_INVENTORY_DEMAND or YFS_
INVENTORY_SUPPLY tables. The additional demand and supply records
are deleted after the quantities are consolidated.

Typically, you should configure this agent to run continuously with one
thread. You don’t need to overly aggressively schedule this agent - if you
do, the agent consolidates a small number of additional records. At the
same time, you do not want to run for long periods without this agent - if
you do, you could accumulate a large number of inventory additional
records which can slow down inventory queries.

If you are using the UDB database server, you need to set the parameter
DB2_SKIPINSERTED to ON and mark the YFS_INVENTORY_SUPPLY_
ADDNL and YFS_INVENTORY_DEMAND_ADDNL tables as volatile. These
settings reduce lock contention. Please see the following sections for
more information:

Section 17.1.1, "Recommended UDB dbset Registry Variables"

Section 17.1.3.2.1, "Volatile Tables"

23.5.11.6 Hot SKU Activity Monitoring
The following messages are logged by the Hot SKU feature:

Thread-8:2004-06-02 13:50:06,336:INFO : Turning/retaining Item:
[Acme:SKUA:EACH:A] into a hot sku as abnormal lock count has increased now
to:4: YFSAvailHotSKUItem

206 Performance Management Guide

Performance Feature - Reference Data Caching

Thread-7:2004-06-02 16:14:44,871:INFO : Turning Item: [Acme:SKUA:EACH:A]
into a cold SKU as total requests in last 2 windows were :2 and 2:
YFSAvailHotSKUItem

In the example above, the inventory item, SKUA, for the Acme
organization, with UOM EACH and product class A, was upgraded to Hot
SKU status because the Hot SKU feature encountered four abnormal lock
attempts in a monitoring period. Later, SKUA was downgraded to normal
status when there was only 2 lock requests in the last two monitoring
windows.

If you see multiple "turning hot" messages for a particular SKU (for
example SKUA in the following example), you ran into a situation where
multiple threads tried to lock an inventory item, which was at that time
not considered a hot SKU, and was blocked. When those threads
eventually get the lock, it prints the message indicating that it
encountered an "abnormal" lock and has decided to turn that item hot:

Thread-8:2004-06-02 13:50:06,336:INFO : Turning/retaining Item:
[Acme:SKUA:EACH:A] into a hot sku as abnormal lock count has increased now
to:4: YFSAvailHotSKUItem
Thread-10:2004-06-02 13:50:06,417:INFO : Turning/retaining Item:
[Acme:SKUA:EACH:A] into a hot sku as abnormal lock count has increased now
to:5: YFSAvailHotSKUItem
Thread-7:2004-06-02 13:50:06,423:INFO : Turning/retaining Item:
[Acme:SKUA:EACH:A] into a hot sku as abnormal lock count has increased now
to:6: YFSAvailHotSKUItem

That item was likely successfully converted to a hot SKU if you do not
see any more subsequent "turning hot" messages for that item.

On the other hand, if you continue to see "turning hot" messages for the
same SKU in the same window, you may have a "Hot" SKU that has low
inventory. When a SKU’s inventory level is below a safety level, the Hot
SKU feature continues to lock that inventory item to calculate the items
availability (see Section 23.5.11.9, "Limitations" below).

Performance Feature - Reference Data Caching

General Recommendations 207

23.5.11.7 Hot SKU Controls

In your customer_overrides.properties file, specify the Hot SKU
Control parameters. For additional information about overriding
properties using the customer_overrides.properties file, see the
Selling and Fulfillment Foundation: Properties Guide.

Warning: The Hot SKU component is a very powerful feature
that you can deploy if your organization is experiencing true
high Hot SKU contention. These parameters may cause
performance problems if set incorrectly. Read this document
carefully. Verify that you have true Hot SKU contention before
enabling this feature or changing any settings. If in doubt, call
Technical Support.

Table 23–2 Hot SKU Control

Parameter Description

In the customer_overrides.properties file, add the following entries:

yfs.yfs.hotsku.
useHotSKUFeature

Control used to enable/disable the Hot SKU feature.

By default, this parameter is set to "N".

yfs.yfs.hotsku.useTime
OutLocking

Control used to enable or disable the lock request
timeout option in the Hot SKU feature. By default, the
parameter is set to "N".

yfs.yfs.hotsku.
secondsToClassifyAs
AbnormalTime

Threshold used to determine when a lock request is
"abnormal".

If a lock request exceeded this threshold, that lock
request is counted as an "abnormal" lock request.

Defaults to 0.5 seconds.

yfs.yfs.hotsku.windowT
imeInMinutes

Interval of one tracking window during which
"abnormal" lock requests are tracked. A subsequent
window begins once the first window ends.

Default interval is 10 minutes.

208 Performance Management Guide

Performance Feature - Reference Data Caching

23.5.11.8 Three Usage Scenarios
Currently we envisage three scenarios for the Hot SKU feature.

yfs.yfs.hotsku.
numberOfAbnormal
LocksForSwitchTo
HotSKU

Threshold used to determine when to promote an
inventory item to Hot SKU status.

If the number of "abnormal" lock requests for an item
exceeds this value within the tracking window, that
item is promoted to Hot SKU status.

see Section 23.5.11.8, "Three Usage Scenarios" for
recommended settings.

yfs.yfs.hotsku.numReq
uestsInTrackingWindow
ToKeepAsHotSku

Minimum number of requests needed within the
tracking window to keep the item in Hot SKU status.

yfs.yfs.hotsku.showExt
raMessagesAsInfo

Enables extra messages to be displayed at info logging
level.

Default value is "N".

yfs.yfs.hotsku.itemMap
PurgeLeadTime

This parameter is used when the number of Hot SKU
items in the cache has reached its limit (specified by
yfs.yfs.hotsku.maxItem MapSizeInMemory). When
cache is full, eject Hot SKU if it has not been accessed
in yfs.hotsku.itemMapPurgeLeadTime minutes. Default
value is 10.

For Selling and Fulfillment Foundation Internal Use Only

yfs.yfs.hotsku.qtyMulti
plier

Defaults to 30. Do not modify without Sterling
Commerce guidance.

yfs.yfs.hotsku.highReq
uest QuantityMultiplier

Defaults to 2. Do not modify without Sterling
Commerce guidance.

yfs.yfs.hotsku.maxItem
MapSizeInMemory

Defaults to 1000. Do not modify without Sterling
Commerce guidance.

Table 23–3 Hot SKU Usage Scenarios

Scenario Description Parameters

Not Enabled Inventory lock contention
is minimal. The Hot SKU
feature is not needed.

yfs.hotsku.useHotSKUFeature=N

Table 23–2 Hot SKU Control

Parameter Description

Performance Feature - Reference Data Caching

General Recommendations 209

23.5.11.9 Limitations
There are four situations where Selling and Fulfillment Foundation
continues to lock the YFS_INVENTORY_ITEM records even when the item
is considered a Hot SKU.

First, the following APIs always lock the YFS_INVENTORY_ITEM records
during supply adjustment:

updateFutureInventory

getInventoryMismatch

Second, Selling and Fulfillment Foundation always locks YFS_
INVENTORY_ITEM records for tag-controlled items if the request is for
specific tag criteria.

Small
Orders

Inventory lock contention
is sufficiently high and is
caused by a high volume
of small orders (around
1-5 order lines per order)

yfs.hotsku.useHotSKUFeature=Y

yfs.hotsku.numberOfAbnormalLoc
ksForSwitchToHotSKU=3

yfs.hotsku.windowTimeInMinutes=20.0

yfs.hotsku.numRequestsInTrackingWind
owToKeepAsHotSku=3

Large
Orders

Inventory lock contention
is sufficiently high and is
caused by a high volume
of large orders (more
than 50 order lines per
order)

yfs.hotsku.useHotSKUFeature=Y

yfs.hotsku.useTimeOutLocking=Y

yfs.hotsku.numberOfAbnormalLoc
ksForSwitchToHotSKU=3

yfs.hotsku.windowTimeInMinutes=5.0

yfs.hotsku.numRequestsInTrackingWind
owToKeepAsHotSku=5

Table 23–3 Hot SKU Usage Scenarios

Scenario Description Parameters

210 Performance Management Guide

Performance Feature - Reference Data Caching

Third, Selling and Fulfillment Foundation locks the YFS_INVENTORY_ITEM
records for an item that is currently a Hot SKU in order to calculate
availability if the inventory for that item is below a safety level.

Fourth, if the ‘Summarize and Maintain Total Supply and Demand Values
For Tag Controlled Items’ Installation Rule is enabled, the Hot SKU logic
is not used, and the values of the TotalOnhandSupply, TotalOtherSupply
and TotalDemand fields are updated accordingly. For more information on
defining additional inventory rules, refer to the Sterling Global Inventory
Visibility: Configuration Guide.

23.5.12 Sort Order and Deadlocks
Deadlocks occur when two or more sessions mutually block each other to
the point where neither session can progress. As a result, these sessions
continue to block until the database management system kills one of the
deadlocked sessions in order for the others to continue.

Deadlocks occur when two or more sessions obtain resource locks in an
arbitrary fashion. For example, the following is a classic example:

Txn 1 Txn 2
Locks Record A Locks Record B
Tries to Lock Record B (blocked) Tries to Lock Record A (blocked)

In the example above, Txn 1 holds the lock for Record A and Txn 2 holds
the lock for Record B. When Txn 1 tries to lock Record B, it becomes
blocked. When Txn 2 tries to lock Record A, it also becomes blocked.
Now, neither session can progress unless one of the transaction is killed.

If the resource locks were obtained in a consistent order, the deadlock
does not occur. For example, all transactions agree to lock the records in
ascending order (Record A then Record B).

Note: The reserveItemInventory API checks the safety
level availability of Hot SKU items, however, it does not
load an availability picture for Hot SKU items. A prior call
to one of the promising APIs such as findInventory is
required to load the availability picture for Hot SKU items.

Performance Feature - Reference Data Caching

General Recommendations 211

Replaying the example above, we now have:

Txn 1 Txn 2
Locks Record A Tries to Lock Record A (blocked)
Locks Record B
commits
 Locks Record A
 Locks Record B
 commits

In the example above, Txn 2 is delayed but not deadlocked. Both
transactions eventually complete.

23.5.12.1 Sort Order
When you develop custom code, you should be aware that Selling and
Fulfillment Foundation obtains YFS_INVENTORY_ITEM locks in the
following sort order:

 Item ID, Product Class and UOM

If you adopt this sort order, you should greatly minimize the chance of
deadlocks.

23.5.13 Application Servers
The Selling and Fulfillment Foundation UI is made up Java Server Pages
(JSPs). When users call up a JSP the first time, the application server
automatically translates and compiles the JSP file. This process can over
30 seconds, which could lead to the perception of an unresponsive
system. Further, this process is performed serially even on a
multiprocessor node - if you have multiple users hitting five different
pages, WebLogic compiles these pages one at a time. As a result, we
strongly recommend precompiling the JSP pages prior to deployment into
production.

You should ensure your application server administrator precompiles the
JSPs as part of the application deployment.

Please see Section 12.1.1.4, "JSP Pre-Compilation" on precompiling JSPs
in BEA WebLogic application servers.

Please see Section 13.1.1.3, "JSP Pre-Compilation" on precompiling JSPs
in IBM WebSphere application servers.

212 Performance Management Guide

Monitoring

23.5.14 MS Internet Explorer

23.5.14.1 Temporary Internet Files
You can reduce the number of hits against the application servers for
static content by enabling temporary Internet file cache in Microsoft
Internet Explorer. This improves your UI response times. To enable the
cache:

Go to the Internet Options dialog box.

In Microsoft Internet Explorer, go to Tools > Internet Option:

Click on the Settings button in the Temporary Internet Files panel.

Enable the “Check for newer version of stored pages” radio button
to Automatically.

Make sure there is sufficient disk space to store temporary
Internet files (e.g., 500MB or higher).

23.6 Monitoring
You can monitor the status and progress of Selling and Fulfillment
Foundation with the following tools or techniques:

System Management Console

Throughput Queries

Selling and Fulfillment Foundation Statistics

YFS_INBOX

Application Logs

23.6.1 System Management Console and Health Monitor
Agent

The System Management Console is an application monitor. Some of the
areas you can monitor include:

The processing throughput, response time, the amount of pending
work, and the number of errors generated at the API and agent level

The status of the application servers

Monitoring

General Recommendations 213

The number of messages in JMS queues

In addition, the System Management Console allows you to:

Shut down, suspend, or resume agent and integration servers.

Clear reference data cache for a single or all cached tables.

Enable/disable API, agents, user exits, services, and the application
consoles application traces.

The companion Health Monitor agent can be configured to alert system
administrators when problems occur such as when an application server
crashes or agent servers are not processing tasks.

The System Management Console’s functionality, screens, and related
tasks are documented in detail in the Selling and Fulfillment Foundation:
System Manangement and Administration Guide.

23.6.2 Statistics
The System Management Console gets most of its measurements from
data found in the YFS_STATISTICS_DETAIL table. These statistics are
described in the Selling and Fulfillment Foundation: Application Platform
Configuration Guide.

Selling and Fulfillment Foundation Statistics records, by default, are
generated every 10 minutes for each active API and transaction running
in each application server or Integration Adapter. For example, if the
Schedule transaction was active in 3 Integration Adapters, you have 3
sets of statistics for each measurement interval.

Time-triggered transactions, at a minimum, generate the following four
metrics:

The GetJobsProcessed metric indicates how many times Get Jobs
were issued to look for work for this transaction.

The ExecuteMessageCreated metric indicates how many records
were selected for processing.

The ExecuteMessageSuccess metric indicates how many messages
were successfully processed.

The ExecuteMessageFailure metric conversely indicates how many
messages were not successfully processed.

214 Performance Management Guide

Monitoring

With these four metrics, you could:

Track ExecuteMessageSuccess to see how much work the application
is processing throughout the day.

Track the ratio of ExecuteMessageSuccess divided by
ExecuteMessageCreated to get an idea of the effectiveness. For
example, a ratio of 0.8 means that only 80% of the orders are
successfully processed. If the effectiveness ratio is consistently low, it
could indicate that the application is encountering a large number of
work (or orders) that repeatedly fail. This could lead to extra
processing overhead.

Calculate the resource cost per unit work processed by correlating the
number of worked processed against the CPU consumed. You could
track this to see if the cost per unit work is changing. This metric is
useful for identifying areas to optimize. It is also the basis for
computing resource capacity forecasting or planning.

In addition, some transactions produce transaction specific statistics. For
example, some of the metrics the Schedule transaction generates
includes NumOrdersBackordered, NumWorkOrdersCreated, and so forth.

23.6.3 Inbox
You should monitor the number of active alerts in the YFS_INBOX table.
Selling and Fulfillment Foundation alerts come from the following source:

Transactions that are configured to raise alerts

Monitor (such as the order monitor)

Users subscribed to queues with large number of open alerts can
experience slow logins. Very large YFS_INBOX tables can impact login
times for all users.

You can find out the number of active and non-active alerts by issuing
the following query:

select active_flag,count(*)
from yfs_inbox
group by active_flag

Monitoring

General Recommendations 215

You can find out the distribution of alerts by queue name and inbox type
by issuing the following query:

select queue_name, inbox_type, active_flag, count(*)
from yfs_inbox inb,yfs_queue q
where inb.queue_key = q.queue_key
group by queue_name, inbox_type, active_flag

You can find out the hourly rate of alert creation for July 4, 2004 by
issuing the following query:

select substr(inbox_key,1,10),count(*)
from yfs_inbox
where inbox_key > ’20040704000000’ and
 inbox_key < ’20040704999999’
group by substr(inbox_key,1,10);

23.6.4 Application Logs
You should regularly monitor Selling and Fulfillment Foundation and
application server logs for, at a minimum, the following:

Application errors or business exception conditions - for example,
invalid input XML to APIs, and so forth.

System errors - e.g., Java OutOfMemory or NullPointer exceptions

216 Performance Management Guide

Monitoring

Sterling Distributed Order Management 217

24
Sterling Distributed Order Management

This chapter provides recommendations on how to plan, implement,
configure, monitor, and tune the Selling and Fulfillment Foundation
Distributed Order Management system.

The Sterling Distributed Order Management with the default factory
(data) settings provides a simple configuration that is suitable for
development, training or product familiarization. That configuration is not
suitable for production except for customer with very low transaction
volumes. This chapter guides you through the components that you have
to configure for higher transaction volumes.

This chapter assumes that you:

Are familiar with the basic functionality of the Sterling Distributed
Order Management

Have read the common Selling and Fulfillment Foundation
performance concepts in Chapter 23, "General Recommendations"

Have read and followed all the instructions found in the Selling and
Fulfillment Foundation: Installation Guide

Have read the Selling and Fulfillment Foundation: Release Notes

24.1 Selling and Fulfillment Foundation
Distributed Order Management Agents

24.1.1 Schedule Agent for Backorder Efficiency
The SCHEDULE transaction schedules orders to specific ship nodes
making sure that the scheduled ship nodes have enough inventory to

218 Performance Management Guide

Selling and Fulfillment Foundation Distributed Order Management Agents

process the order. An order line is put into a backordered state when
there is insufficient inventory to be retried at a later time. By default, the
retry interval is set to five hours. This setting should be applicable to
most customers. In some cases, your SCHEDULE agent may be spending
a lot of time reprocessing backorders. For example, your warehouses
may only restock once a week and you have a large number of
backorders. If you have a large number of backordered orders and the
backorders can last a few days, you may want to consider one or both of
the following:

Increase the backorder reprocess interval (possibly to a day) in the
Scheduling Rule Details screen (see the Sterling Distributed Order
Management: Configuration Guide)

Create a separate SCHEDULE agent to only process backorders. The
benefit of this approach is you can reduce the frequency when you
trigger the backorder Schedule agent. For example, you could
continue to automatically trigger your main SCHEDULE agent once a
minute (if you have very strict end-to-end order processing service
level agreements) and your backorder SCHEDULE agent every two
hours or after inventory supply updates.

24.1.2 Real-Time Inventory Availability Monitor for ATP
Efficiency

The Real-Time Inventory Availability Monitor is used to alert external
systems when inventory availability crosses pre-defined thresholds.
When items are flagged for real-time availability monitoring, a record is
inserted into the YFS_INVENTORY_ACTIVITY table by inventory
transactions that update supply or demand information.

This monitor checks inventory availability based on information in the
YFS_INVENTORY_ACTIVITY table. The activity records associated with an
item are deleted after the inventory check.

If you plan to use the real-time inventory availability monitor, we suggest
you start with 5 threads and monitor the number of records in the YFS_
INVENTORY_ACTIVITY table. It is highly recommended that you
aggressively monitor the YFS_INVENTORY_ACTIVITY table. Additionally,
we also recommend that you set this agent to be auto triggered with an
interval of 5 minutes.

Selling and Fulfillment Foundation Distributed Order Management Agents

Sterling Distributed Order Management 219

The following query can be used to monitor build up in the YFS_
INVENTORY_ACTIVITY table. This query tells you the oldest activity
record in the table:

select sysdate, min(inventory_activity_key) "Min Datetime"
from yfs_inventory_activity

SYSDATE Min Datetime
12/22/2004 3:57:57 PM 20041222155659187360102

In the example above, the query was issued at 15:57:57 and the oldest
inventory activity record was created at 15:56:59. Therefore, the
monitor is keeping up by about 1 minute.

If the time gap between the current time and the oldest record keeps
increasing over time, we recommend starting additional JVMs of this
agent.

Note: Although described as 'real-time', availability changes may not be
triggered immediately as inventory changes occur if the agent has a
backlog of messages to process. Furthermore, this monitor exists as a
time-triggered transaction, and thus monitors availability of inventory
items only when the monitor is triggered based on the configured
runtime properties.

24.1.3 Getters with Enterprise Code
The getters for the following time-triggered (agent) transactions can take
enterprise code as an additional parameter:

Order monitor

Shipment monitor

Negotiation monitor

Payment collection

When the Agent Server processes a default getter task (a getter task
that picks up work for any enterprise), the server turns around and
creates a getter message for each enterprise. Each of these getters by
default pick up their own 5,000 orders. Therefore, if you have four
defined enterprises, the first getter message results in the creation of
four enterprise-specific getter messages. Those four getter messages

220 Performance Management Guide

Selling and Fulfillment Foundation Distributed Order Management Agents

could potentially create up to 20,000 task messages. If you have many
enterprises, you may want to consider:

Lowering the number of orders a getter puts into the message queue
or

Explicitly scheduling getters with enterprise codes (instead of using
the default getter which gets orders for all enterprises).

24.1.4 Sort Order and Deadlocks
Deadlocks occur when two or more sessions mutually block each other to
the point where neither session can progress. As a result, these sessions
continue to block until the database management system kills one of the
deadlocked sessions in order for the others to continue.

Deadlocks occur when two or more sessions obtain resource locks in an
arbitrary fashion. For example, the following is a classic example:

Txn 1 Txn 2
Locks Record A Locks Record B
Tries to Lock Record B (blocked) Tries to Lock Record A (blocked)

In the example above, Txn 1 holds the lock for Record A and Txn 2 holds
the lock for Record B. When Txn 1 tries to lock Record B, it becomes
blocked. When Txn 2 tries to lock Record A, it also becomes blocked.
Now, neither session can progress unless one of the transaction is killed.

If the resource locks were obtained in a consistent order, the deadlock
does not occur. For example, all transactions agree to lock the records in
ascending order (Record A then Record B).

Replaying the example above, we now have:

Txn 1 Txn 2
Locks Record A Tries to Lock Record A (blocked)
Locks Record B
commits
 Locks Record A
 Locks Record B
 commits

In the example above, Txn 2 is delayed but not deadlocked. Both
transactions eventually complete.

Selling and Fulfillment Foundation Distributed Order Management Agents

Sterling Distributed Order Management 221

24.1.4.1 Sort Order
When you develop custom code, you should be aware that Selling and
Fulfillment Foundation obtains YFS_INVENTORY_ITEM locks in the
following sort order:

 Item ID, Product Class and UOM

If you adopt this sort order, you should greatly minimize the chance of
deadlocks.

24.1.5 Agent Throughput
In addition to the data provided by the System Management Console and
the Selling and Fulfillment Foundation Statistics, you can also get
application processing statistics by data mining the Selling and
Fulfillment Foundation database. This technique takes advantage of the
following application characteristics:

A record is created in yfs_order_header for every new order.

A record is created in yfs_order_line for every order line.

A record is created in yfs_order_release_status each time the order
line moves through the various states in its lifecycle.

An audit record is created in yfs_order_audit each time an order or
order line is modified.

An audit record is created in yfs_inventory_audit each time an
inventory item is modified.

Each record has a primary key whose value is made up of two parts:

A date/time component in the form of year, month, date, hours,
minutes, and seconds. For example, a record that was created on
September 21, 2003 at 4:20:14 pm has 20030921162014 as the
first part of the key).

A monotonically-increasing sequence number.

24.1.5.1 Order Creation Throughput
For example, in Oracle, to calculate the rate at which orders were created
on a specific date (e.g., July 4, 2004), you can issue the following query:

select substr(order_header_key,1,10) time, count(*) as count
from yfs_order_header

222 Performance Management Guide

Selling and Fulfillment Foundation Distributed Order Management Agents

where order_header_key > ’20040704000000’ and
 order_header_key < ’20040704999999’
group by substr(order_header_key,1,10);

This query produces a listing like this:

TIME COUNT
------------------------ ----------
2004070406 3333
2004070407 3366
2004070408 3333

For UDB, to issue the query above at the uncommitted read lock level,
issue the query with the "WITH UR" option:

select substr(order_header_key,1,10) time, count(*) as count
from yfs_order_header
where order_header_key > ’20040704000000’ and
 order_header_key < ’20040704999999’
group by substr(order_header_key,1,10)
with UR;

In Microsoft SQL Server, issue the following:

-- number of order headers
select substring(order_header_key,1,12) "Orders", count(*) "Meas. Minute
Rate"
from yfs_order_header
where order_header_key like '20040704%'
group by substring(order_header_key,1,12);

-- number of order lines created
select substring(order_line_key,1,12) "Order Lines", count(*) "Meas. Minute
Rate"
from yfs_order_line

Note: For UDB, you should issue throughput queries as
uncommitted reads. By default, queries run at the cursor
stability level. As a result, UDB has to obtain a read share
lock on the record it is reading. Queries against tables with
high insert or update activities block behind records with
update or exclusive locks.

Selling and Fulfillment Foundation Distributed Order Management Agents

Sterling Distributed Order Management 223

where order_line_key like '20040704%'
group by substring(order_line_key,1,12);

24.1.5.2 Order LifeCycle Throughput
Similarly, you can calculate the throughput of orders going through its
various lifecycle states with the following example:

select pipeline_key, status, substr(order_release_status_key,1,10) time,
 count(*) count
from yantra.yfs_order_release_status
where order_release_status_key > ’20040704000000’ and
 order_release_status_key < ’20040704999999’
group by pipeline_key,
 status,
 substr(order_release_status_key,1,10);

PIPELINE_KEY STATUS TIME COUNT
------------------------ --------------- ------------------------ ----------
2004070409425525425230 1100 2003102906 13333
2004070409425525425230 1100 2003102907 13464
2004070409425525425230 1100 2003102908 13333
2004070409425525425230 1300 2003102906 50
2004070409425525425230 1300 2003102907 23
2004070409425525425230 1300 2003102908 50
2004070409425525425230 3200 2003102906 13234
2004070409425525425230 3200 2003102907 13477
2004070409425525425230 3200 2003102908 13290

The definition of the STATUS is found in YFS_STATUS and PIPELINE_KEY
in YFS_PIPELINE. For example, status of 1100 indicates order lines being
created. In the example above, there were 13,333 order lines created for
one pipeline and another 4,333 order lines created in another pipeline.

Best Practice: You should baseline the throughput of
individual agents and key APIs to get an idea of the
potential throughput. You should then monitor the agents
in production against the baseline. This continual
monitoring may reveal issues - for example, a credit
authorization agency providing slower response times,
issues with the database, and so forth.

224 Performance Management Guide

Selling and Fulfillment Foundation Distributed Order Management Agents

24.1.5.3 Order Kit Line Creation Throughput
To calculate Kit Line creation, issue the following example:

select substr(order_kit_line_key,1,10) time,
 count(*) count
from yfs_order_kit_line
where order_kit_line_key > ’20040704000000’ and
 order_kit_line_key < ’20040704999999’
group by substr(order_kit_line_key,1,10);

This query produces a listing like this:

TIME COUNT
------------------------ ----------
2004070406 3333
2004070407 3366
2004070408 3333

24.1.5.4 Throughput Query Limitations
As we discussed above, the throughput queries provides processing rates
by counting the number of records created. If you run the throughput

Best Practice: You can monitor the flow of the orders on
an hourly basis by pivoting the data so that STATUS is in
the column and TIME is in the row. For example, the data
above can be displayed as follows:

Time 1100 1300 3200
2004070406 13333 50 13234
2004070407 13464 23 13447
2004070408 13333 50 13290

In the pivot example above, 13,333 order lines were
created on 2003/07/04 at 06am. At that same time period,
50 order lines went to Backorder and 13,234 were
Released. More importantly, one may conclude that the
flow of the orders through the pipeline is good because
order releases are keeping pace with order creation.

There are many ways to create pivot tables including
Microsoft Excel (use Data > PivotTable and PivotChart
Report...).

Selling and Fulfillment Foundation Distributed Order Management Agents

Sterling Distributed Order Management 225

query against the YFS_ORDER_RELEASE_STATUS table, you get rates at
which order lines move through the pipeline statuses.

24.1.5.4.1 Reprocessing The throughput queries do not report
"unsuccessful" work and as a result can appear skewed if you have a lot
of order reprocessing. You can, however, augment these throughput
queries with data from the Selling and Fulfillment Foundation Statistics
(see Section 23.6.2, "Statistics").

For example, assume there are 10,000 orders available for scheduling.
When the Schedule agent processes the 10,000 orders, it finds that
9,000 orders cannot be scheduled because they are either awaiting
authorization or items are backordered. The throughput query reports
that the Schedule agent successfully scheduled 1,000 orders but does
not indicate that it tried to but was unable to schedule the other 9,000
orders. In these extreme cases, the Schedule agents appear to consume
a lot of computing resources for the amount of work (as reported by the
throughput query) performed.

In addition to tracking the order flow, you should also track the number
of exceptions using the exception query below (see Section 23.6.3,
"Inbox").

24.1.5.4.2 Maximum Potential Throughput The throughput query
reports actual work done within each measurement or reporting period.
The rates can be less than the maximum throughput when there are idle
agent threads during the reporting period - for example, when there is
not enough work for the agents to process.

To calculate your agent configuration’s maximum throughput, you need
to create a queue of work so that all agent threads are busy the entire
reporting period and the amount of reprocessing is normal or
representative of your peak day.

226 Performance Management Guide

Selling and Fulfillment Foundation Distributed Order Management Agents

Sterling Warehouse Management System 227

25
Sterling Warehouse Management

System

This chapter provides recommendations on how to plan, implement,
configure, monitor, and tune the Sterling Warehouse Management
System. Sterling WMS’ default factory (data) settings provide a simple
configuration that is suitable for development, training or product
familiarization. That configuration is not suitable for production except for
customer with very low transaction volumes. This chapter guides you
through the components that you have to configure for higher
transaction volumes.

This chapter assumes that you:

Are familiar with the basic functionality of Sterling WMS

Have read the common Selling and Fulfillment Foundation
performance concepts in Chapter 23, "General Recommendations"

Have read and followed all the instructions found in the Selling and
Fulfillment Foundation: Installation Guide

Have read the Selling and Fulfillment Foundation: Release Notes

25.1 Property File
The following parameters are used to influence the Sterling WMS
processing:

Table 25–1 yfs.properties

Parameters Value

In the customer_overrides.properties file, add the following
entries:

228 Performance Management Guide

Property File

The Create Wave transaction uses an efficient constraint-based
optimization engine to assign shipments to waves. This engine iteratively
assigns shipments to waves and recalculate cost. Suboptimal wave
assignments are discarded and another solution set attempted. You can
limit the number of iterations by editing <INSTALL_
DIR>/properties/customer_overrides.properties file and the
following entry:

yfs.yfs.solver.iterations.wavecreate=< number of iterations >

For additional information about overriding properties using the
customer_overrides.properties file, see the Selling and Fulfillment
Foundation: Properties Guide.

We recommend testing the Create Wave transaction for your warehouse
at the default iteration level (1) and at a higher level (e.g., iteration of 5)
to see if there is an appreciable difference in processing times and
shipment wave assignment. In some cases, setting
yfs.solver.iterations.wavecreate to a lower number results in
marginal differences in the wave assignment but a significant reduction
in processing times.

One way to test the efficacy of the yfs.solver.iterations.wavecreate
setting is to run controlled tests in your QA environment. For example,
an approach is to:

Create a reasonable number of shipments that are ready for the
Create Wave processing.

Take a backup so that you can repeat the test.

Run the Create Wave with increasing values and assess the resulting
waves.

Restore the database and repeat above.

The yfs.containerization.maxshipmentsinoneround parameter sets the
number of shipments considered for containerization per iteration. The default is

yfs.yfs.solver.iterations.wavecreate 1

yfs.yfs.containerization.maxshipmentsinoneround 75

Table 25–1 yfs.properties

Parameters Value

WMS Agents

Sterling Warehouse Management System 229

75. With that setting, 75 shipments at a time are containerized and committed.
This process reduces the number of record locks held.

25.2 WMS Agents
This section describes the runtime or performance characteristics of the
Sterling WMS agents or transactions.

25.2.1 Scheduling Using Agent Criteria Group
Sterling WMS customers with a large number of small warehouses that
require wave planning may want to use the "agent criteria group" wave
scheduling feature. By default, the wave processing agents (e.g., Create
Wave, Release Wave) are triggered individually for each node.

You could use utilities such as CRON on Unix to automatically trigger
each of the nodes at some interval. However, if you have a 100 nodes
and you would like to issue the triggers every hour, you would need to
set up CRON for the 100 nodes for each agent.

An alternative is to use agent criteria groups. This can be accomplished
in the following steps:

First define an agent criteria group in the Application Platform >
System Administration > Agent Criteria Groups.

Next, assign one or more nodes to the appropriate agent criteria
group in the Application Platform > Participant Modeling. For each
node, go to the Organization Details > Roles & Participation dialog
box. Select the appropriate agent criteria group.

Next, in the Application Platform > Process Modeling > Wave >
Outbound Picking process model, select Transaction on the left
screen. Select the appropriate transaction (e.g., Create Wave,
Release Wave, and so forth).

Create a new Agent Criteria Definition. In that Agent Criteria Details
> Criteria Parameter, assign the agent criteria group to the
appropriate parameter.

When you start the agent and trigger for this agent criteria, you start the
transaction for the agent criteria group. This in turn starts the transaction
for each of the nodes assigned to that agent criteria group.

230 Performance Management Guide

WMS Agents

For example, you may define a node group by time zones or regional
groups.

You may want to continue scheduling the wave agents for large
warehouse nodes (those with high shipment volumes) individually.
Putting large nodes in node groups causes nodes could result in nodes
waiting for the large nodes to complete their processing.

See the Selling and Fulfillment Foundation: Application Platform
Configuration Guide for more information.

25.2.2 Processing Concurrency
For scalability, the Selling and Fulfillment Foundation agents are designed
to run in multiple parallel threads. Some of the Sterling Warehouse
Management System agents, by design, run single threaded for a given
warehouse node. These agents include the:

Create Wave

Release Wave

25.2.2.1 Create Wave
The Create Wave agent assigns eligible shipments and shipment lines for
a warehouse node into optimum waves. By design, only one Create Wave
transaction can concurrently run for a warehouse node.

You can, however, run multiple Create Wave transactions concurrently if
you have multiple warehouse nodes - provided, as stated above, only
one Create Wave transaction is running per warehouse node. This
restriction is enforced by the application.

You can specify the number of threads in the Applications Manager (see
Section 23.3, "Integration Adapters/Agents").

25.2.2.2 Release Wave
The Release Wave transaction creates pick tasks from shipment lines in a
wave. As part of the processing, this transaction serializes access to
inventory item records for that node by locking YFS_TRANSACTION_
LOCK records to prevent concurrent updates to inventory items during
Release Wave processing. There is a YFS_TRANSACTION_LOCK record for
each inventory item/node combination.

WMS Agents

Sterling Warehouse Management System 231

As a result, you should only run one Release Wave thread per warehouse
node.

25.2.2.2.1 Allocate Task Agent You may want to use the Allocate
Task agent if you process large waves (for example, over 500 line
waves). The Release Wave acquires locks on the YFS_LOCATION_
INVENTORY record before managing the inventory at those locations. For
large waves, the locks held by the Release Wave agent could impact
other transactions, such as picks, moves, etc., that also need YFS_
LOCATION_INVENTORY record locks.

You can direct the Release Wave agent to defer inventory location
updates. This allows the Release Wave agent to complete its processing
without acquiring these locks. A subsequent agent, the Allocate Task,
acquires the YFS_LOCATION_INVENTORY record locks and update the
inventory at the location on a task basis. The amount of time that the
record lock is held is much shorter (essentially for the duration of
processing that task).

For more information about AllocateTask agent, refer to the Sterling
Warehouse Management System: Configuration Guide.

25.2.2.3 Agents Between Create Wave to Release Wave
In general, all the agents from Create Wave through to Release Wave
inclusive, including all custom agents, should be run in a single threaded
fashion for each agent criteria group (see Section 25.2.1, "Scheduling
Using Agent Criteria Group")or for each node if you want to ensure the
waves are released in the order that they are created.

For example, assume you have 10 nodes - N01 to N10. Assume also
that:

Nodes N01 to N03 are assigned to agent criteria group 1.

Nodes N04 to N08 are assigned to agent criteria group 2.

N09 and N10 are scheduled individually.

Then for a given agent (say 'Assign Lane') you should run 4 JVMs (one
for each agent criteria group and one each for nodes N09 and N10). Each
of these JVMs have to be configured to run with only one thread per
transaction. These agents and transactions can run in parallel.

232 Performance Management Guide

Database

As we mentioned above, this is only necessary if you need your waves to
be released in the order in which the waves were created. If the ordering
is unnecessary, you can run these transactions in parallel.

25.2.3 Purge
We strongly recommend running the WMS Task Purge agent on a daily
basis. This agent is used to keep the YFS_TASK table small by moving
completed YFS_TASK records to the YFS_TASK_H history table. YFS_
TASK table that grows unchecked could affect the performance of WMS
task-based transactions, such as next task suggestion.

25.3 Database

25.3.1 Long Running Transactions in UDB
The WMS application is made of both short and long running
transactions. Short transactions are characterized by a small number of
database records read and possibly updated within a short processing
time under a single unit of work. At the end of the processing (or unit of
work), the workload commits the transaction. Database locks are
released.

In contrast, some workloads, by their nature, are long running
transactions. For example, the Create Wave transaction groups eligible
shipments and shipment lines into optimum waves based on
customer-specified wave constraints. The length of the processing time
depends on many factors such as the number of shipments, the
complexity of the optimization, the wave constraints, and so forth.

You should consider the following when configuring a UDB database:

Monitor the amount of transaction log usage - specifically monitor
TOTAL_LOG_USED, TOTAL_LOG_USED_TOP, SEC_LOG_USED_TOP, and SEC_
LOGS_ALLOCATED monitor elements. You should ensure that the
amount of log used does not approach the capacity of the primary
logs and that UDB is not spilling over to secondary logs.

Monitor the APPL_ID_OLDEST_XACT monitor element - see which
transaction holds the oldest transaction log entry.

User Interfaces

Sterling Warehouse Management System 233

Enable NUM_LOG_SPAN parameter to safeguard against a long running
transaction holding too many logs that could result in a situation
where all the transaction logs are full. Please see NUM_LOG_SPAN
discussion in Section 17.1.3, "Recommended DB CFG Parameters".

25.4 JVM Settings

25.4.1 Java Stack Size
You have to increase the Java stack size if you plan to create waves or
batch waves with more than 4,000 shipment lines that are assigned to a
single shipment group. You can use the following table as a guideline.

Please see Section 8.3.2.1, "Stack Size" for instructions on how to set
the Java thread stack size.

25.5 User Interfaces

25.5.1 Selling and Fulfillment Foundation UI Console

25.5.1.1 Asynchronous Manifest Closure
Sterling WMS allows you to close manifests from the Selling and
Fulfillment Foundation UI synchronously or asynchronously. By default, in
the synchronous mode, the user has to wait for the request to complete.
Depending on the number of shipments in a manifest, the manifest close
operation can take a long time and may result in users believing the UI is
"locked up".

Table 25–2 Stack Size Recommendations for Create Wave/Batch Wave

Shipment Lines per Shipment
Group Stack Size

4,000 2MB

10,000 4MB

15,000 6MB

20,000 8MB

25,000 10MB

234 Performance Management Guide

User Interfaces

Sterling WMS allows you to configure the system so that manifests are
closed asynchronously. In this mode, the request from the UI creates a
message for the CLOSE_MANIFEST agent. The screen is released to the
user after the message is created. To change to the asynchronous
manifest close mode, edit <INSTALL_DIR>/properties/customer_
overrides.properties file and the following entry:

yfs.yfs.closemanifest.online=N

If this property is set, the user need to configure the CLOSE_MANIFEST
agent for processing manifest closures requests. The users also need to
check for alerts/errors in the Alert Console. The manifest status "Closure
Failed" indicates occurrence of errors while closing a manifest. For
additional information about overriding properties using the customer_
overrides.properties file, see the Selling and Fulfillment Foundation:
Properties Guide.

25.5.2 Asynchronous Batch Confirmation
Sterling WMS allows you to confirm batch sheets from the Selling and
Fulfillment Foundation UI synchronously or asynchronously. By default, in
the synchronous mode, you have to wait for the request to complete.
Depending on the number of tasks in the batch, the batch confirmation
operation can take a long time and may result in users believing the UI is
"locked up".

Sterling WMS allows you to configure the system so that batches are
confirmed asynchronously. In this mode, the request from the UI creates
a message for the REQ_BATCH_COMPLETION agent. The screen is
released to the user after the message is created. To change to the
asynchronous confirm batch mode, edit <INSTALL_
DIR>/properties/customer_overrides.properties file and the
following entry:

yfs.yfs.confirmbatch.online=N

If this property is set, the user needs to configure the REQ_BATCH_
COMPLETION agent for processing the batch confirmation requests. The
users also need to check for alerts/errors in the Alert Console. The batch
status "Completion Failed" indicates occurrence of errors while confirming
a batch. For additional information about overriding properties using the
customer_overrides.properties file, see the Selling and Fulfillment
Foundation: Properties Guide.

User Interfaces

Sterling Warehouse Management System 235

25.5.3 Mobile Devices
The Sterling WMS application supports two mobile device displays - a
VT100 character-based display and a Microsoft PocketPC Graphical UI
display. The PocketPC display interacts with the Sterling WMS with HTML.
The VT100 display sends VT100 characters.

You may want to consider using the VT100 RF display if you have limited
network bandwidth.

236 Performance Management Guide

User Interfaces

Performance Tuning Considerations for BI (Business Intelligence) 237

26
Performance Tuning Considerations

for BI (Business Intelligence)

This chapter will be provided in the next release of the product.

238 Performance Management Guide

References 239

A
References

Some of the books that we strongly recommend include:

Oracle

[1] Oracle10g SQL Reference, Oracle

[2] Oracle9i Real Application Cluster (RAC) Administration (9.2), Oracle

IBM UDB

[3] Administration Guide: Planning, Version 9, IBM

[4] Administration Guide: Implementation, Version 9, IBM

[5] Performance Guide, Version 9, IBM

Sun Java Virtual Machine

[6] The Java HotSpot Performance Engine Architecture, Sun Microsystems,
http://java.sun.com/products/hotspot/whitepaper.html

[7] The Java HotSpot Virtual Machine, v1.4.1, Sun Microsystems,
http://java.sun.com/products/hotspot/docs/whitepaper/Java_Hotspot_
v1.4.1/Java_HSpot_WP_v1.4.1_1002_1.html

[8] Tuning Garbage Collection with the 1.4.2 JavaTM Virtual Machine, Sun
Microsystems, http://java.sun.com/docs/hotspot/gc1.4.2

[9] Diagnosing a Garbage Collection problem, Sun Microsystems
http://java.sun.com/docs/hotspot/gc1.4.2/example.html

[10] Document 01363, How to reduce the time-out period for telnet
connections http://sunsolve.sun.com/pub-cgi/retrieve.pl?doc=ffaqs/01363

HP Java Virtual Machine

[11] HPjtune - visualization tool for HP JVM GC activities
http://www.hp.com/products1/unix/java/java2/hpjtune/index.html

240 Performance Management Guide

IBM Java Virtual Machine

[12] Mattias Persson, Java technology, IBM Style, Garbage Collection Policies,
Part 1, IBM

[13] Mattias Persson, Holly Cummins, Java technology, IBM Style, Part 2,
Garbage collection with the Extensible Verbose Toolkit, IBM

[14] Sumit Chawla, Fine-Tuning Java Garbage Collection Performance, How to
detect and troubleshoot garbage collection issues with the IBM Java Virtual
Machine, IBM

[15] IBM Developer Kit and Runtime Environment, Java Technology Edition,
Diagnostic Guide, Version 5.0, SC34-6650

BEA WebLogic

[16] BEA WebLogic Server Performance and Tuning.
http://edocs.bea.com/wls/docs92/pdf/perform.pdf

[17] BEA WebLogic Server Administration Guide.
http://edocs.bea.com/wls/docs92/pdf/adminguide.pdf

IBM WebSphere

[18] IBM WebSphere Application Server, Advanced Edition, Tuning Guide, IBM

[19] Mark Endrei, IBM WebSphere V4.0 Advanced Edition Handbook, IBM
Redbook

[20] WebSphere InfoCenter, http://www.ibm.com
http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp

JBoss

[21] JBoss Admin. and Development Guide

[22] JBoss Application Server Documentation Library,
http://labs.jboss.com/jbossas/docs

241

Index

A
agent criteria. See Selling and Fulfillment

Foundation Integration Adapters
AIX, 29

database server nodes, 31, 36
early page space allocation, 29
late page space allocation, 29
network connectivity, 33
page space allocation policy, 29
PSALLOC, 30

asynchronous I/O, 31
auto-negotiation. See network interface card

B
BEA

WebLogic
tuning

connection pool, 84
prepared statement

cache, 86

C
capacity plan, 26

See also sizing tools
capacity sizing, 26
cascading failure, 6
checklists

application server, 14
computer node implementation, 10

JVM implementation, 11
planning, 9, 10

computer systems
overview, 25
planning, 25

capacity sizing, 26
resource requirements, 26

connection pool
See BEA WebLogic tuning
See IBM WebSphere tuning

Consolidate Additional Inventory agent, 205
cursor_sharing. See Oracle, init.ora parameters

D
database disk sizing, 26

E
early page space allocation. See AIX
environment variable

INSTALL_DIR, xxxv
INSTALL_DIR_OLD, xxxv

H
Hot SKU. Selling and Fulfillment Foundation Hot

SKU Feature

I
IBM

WebSphere

242 Performance Management Guide

JSP precompilation, 95
implementation

network connectivity, 27
time-synchronization, 26

init.ora parameters. See Oracle
INSTALL_DIR, xxxv
INSTALL_DIR_OLD, xxxv
inventory locks. See Selling and Fulfillment

Foundation Hot SKU Feature

J
JBoss

JSP precompilation, 97

L
late page space allocation. See AIX
log4j logging, 189

N
network connectivity, 27

auto-negotiation, 27
data center network, 27

network interface card
auto-negotiation

incorrect negotiation, 27

O
Oracle

dedicated servers, 115
init.ora parameters

cursor_sharing
recommendations, 107

redo log, 114
OutOfMemory exceptions, 51

P
performance management principles, 3
planning

capacity sizing, 26

resource requirements, 26
prepared statement cache

See BEA WebLogic tuning
pre-sales server sizing, 26

See sizing tools
PSALLOC. See AIX

R
RAID (Redundant Array of Independent Disks), 102
redundant array of independent disks. See RAID
reference data caching

caching strategies, 178
enabling data cache, 180
limiting records cached, 181
manually refreshing cache, 179

resource requirements, 26

S
Selling and Fulfillment Foundation

Integration Adapters
agent criteria, 172

logging. See log4 logging
System Management Console, 212

Selling and Fulfillment Foundation agents/monitors
implications of excessive scheduling, 175
time-triggered transactions, 173

Selling and Fulfillment Foundation Hot SKU
Feature, 196

Consolidate Additional Inventory agent, 205
server nodes

mid-tier, 25
sizing tools

capacity plan, 26
server node, 26

System Management Console, 212

T
time-synchronization, 26
time-triggered transactions

See Selling and Fulfillment Foundation
agents/monitors

Index 243

U
UDB

volatile cardinality, 133
volatile table, 133

V
volatile cardinality. See UDB

W
WebLogic

tuning
execute thread count, 84

tuning recommendations, 83, 97

244 Performance Management Guide

	Contents
	Preface
	1 Introduction
	1.1 Lifecycle
	1.2 System Components and Roles
	1.3 Principles
	1.3.1 Having Your Cake and Eating It, Too
	1.3.2 Keep It Simple Strategy
	1.3.3 Your Mileage May Vary
	1.3.4 Performance Recommendations Graveyard
	1.3.5 System Test Before Going Live
	1.3.6 Measure Thrice, Check Twice, Cut Once
	1.3.7 Cascading Failure
	1.3.8 Only the Facts Jack

	2 Performance Recommendations Checklist
	2.1 Performance Checklist
	2.1.1 Planning Checklist
	2.1.2 Architectural Checklist
	2.1.3 Computer Node Implementation Checklist
	2.1.4 Java Virtual Machine Implementation Checklist
	2.1.5 Application Server Checklist
	2.1.6 Selling and Fulfillment Foundation Checklist
	2.1.7 Sterling WMS Application Checklist
	2.1.8 Database Checklist
	2.1.9 Oracle Database Checklist
	2.1.10 UDB Database Checklist
	2.1.11 Monitoring Checklist

	2.2 Performance Recommendations Graveyard

	Part I Computer Systems
	3 Computer System
	3.1 Overview
	3.2 Planning
	3.2.1 Supported Configurations
	3.2.2 Capacity Sizing/Resource Requirements
	3.2.2.1 Pre-Sales Server Sizing
	3.2.2.2 Capacity Plan
	3.2.2.3 Database Disk Sizing

	3.3 Implementation
	3.3.1 Time Synchronization
	3.3.2 Network Connectivity
	3.3.2.1 Data Center Network
	3.3.2.2 Auto-Negotiation
	3.3.2.3 Network Bandwidth

	4 IBM AIX
	4.1 Implementation
	4.1.1 Page Space Allocation Policy
	4.1.2 Database Server Nodes
	4.1.2.1 Asynchronous I/O
	4.1.2.1.1 Configuring Asynchronous I/O in AIX
	4.1.2.1.2 Monitoring Asynchronous I/O in AIX

	4.1.3 Network Connectivity
	4.1.3.1 Auto-Negotiation

	5 HP HP-UX11i
	5.1 Network Connectivity
	5.1.1 Auto-Negotiation

	5.2 Database Server Nodes
	5.2.1 Asynchronous I/O

	6 Red Hat Enterprise Linux
	6.1 Network Connectivity
	6.1.1 Auto-Negotiation

	7 Sun Solaris
	7.1 Implementation
	7.1.1 Network Connectivity
	7.1.1.1 Auto-Negotiation

	Part II Java Virtual Machines
	8 General JVM Recommendations
	8.1 Overview
	8.2 Supported Configuration
	8.3 Implementation
	8.3.1 Recommended JVM Command Line Options
	8.3.1.1 JVM Identifier
	8.3.1.2 Java Version
	8.3.1.3 Garbage Collection Statistics

	8.3.2 Optional JVM Command Line Settings
	8.3.2.1 Stack Size

	8.4 Monitoring
	8.4.1 Hanging Threads/Deadlocks/Infinite Loops
	8.4.2 Memory and Paging
	8.4.3 OutOfMemory Exceptions
	8.4.3.1 Diagnosing OutOfMemory Exceptions
	8.4.3.1.1 Low on Total Free Memory
	8.4.3.1.2 Causes of OOM

	9 HotSpot JVM
	9.1 Implementation
	9.1.1 Starting Recommendations
	9.1.1.1 Virtual Machine Mode
	9.1.1.2 Permanent Generation

	9.1.2 Heap Memory and Garbage Collection
	9.1.2.1 Sun and HP-UX Generational Collectors
	9.1.2.1.1 Heap Settings
	9.1.2.1.2 Young Generation Guarantee
	9.1.2.1.3 Starting Recommendations
	9.1.2.1.4 Garbage Collection Statistics

	9.2 Monitoring
	9.2.1 Garbage Collection Statistics
	9.2.1.1 Comprehensive HP GC Logs
	9.2.1.1.1 Capacity
	9.2.1.1.2 Things to Monitor

	9.2.2 SUN
	9.2.2.1 Potential Memory Leak
	9.2.2.1.1 Old Heap Too Small
	9.2.2.1.2 GC Times
	9.2.2.1.3 PrintGCStats Script

	10 IBM J9 JVM
	10.1 Implementation
	10.1.1 Starting Recommendations
	10.1.1.1 JIT and MMI
	10.1.1.2 PSALLOC and NODISCLAIM (AIX only)

	10.1.2 Heap Memory and Garbage Collection
	10.1.2.1 Heap Settings
	10.1.2.2 Starting Recommendations
	10.1.2.3 Garbage Collection Statistics

	10.2 Monitoring
	10.2.1 Garbage Collection Statistics
	10.2.1.1 Frequency of GC Health Check
	10.2.1.2 GC Times
	10.2.1.3 Potential Memory Leak

	10.2.2 Extensible Verbose Toolkit
	10.2.3 Heapdump

	11 BEA JRockit
	11.1 Implementation
	11.1.1 Starting Recommendations
	11.1.1.1 Heap Settings
	11.1.1.2 Garbage Collection Statistics

	Part III Part III Application Servers
	12 BEA WebLogic
	12.1 Implementation
	12.1.1 BEA’s WebLogic Tuning Recommendations
	12.1.1.1 Server Tuning
	12.1.1.1.1 Work Manager

	12.1.1.2 Application Server Instances
	12.1.1.3 WebLogic Connection Pool
	12.1.1.3.1 Define Data Source in Selling and Fulfillment Foundation

	12.1.1.4 JSP Pre-Compilation
	12.1.1.5 WebLogic Server Cluster

	12.1.2 HTTP Load-Balancing
	12.1.2.1 HTTP Session Replication

	12.2 Monitoring

	13 IBM WebSphere
	13.1 Implementation
	13.1.1 WebSphere Tuning
	13.1.1.1 WebSphere Queuing Network
	13.1.1.2 WebSphere Connection Pool
	13.1.1.2.1 Define Data Source in Selling and Fulfillment Foundation
	13.1.1.2.2 Define a Connection Pool in WebSphere

	13.1.1.3 JSP Pre-Compilation

	13.1.2 HTTP Load-Balancing

	13.2 Monitoring

	14 JBoss
	14.1 Implementation
	14.1.1 JBoss Tuning
	14.1.1.1 JSP Pre-Compilation

	Part IV Part IV Database Management Systems
	15 Database Management System
	15.1 Overview
	15.2 Planning
	15.2.1 Supported Configuration
	15.2.2 Server Sizing
	15.2.3 Disk Subsystem
	15.2.3.1 Disk Technology

	15.2.4 Selling and Fulfillment Foundation Schema
	15.2.4.1 Indices
	15.2.4.1.1 Custom Indices

	16 Oracle10g
	16.1 Implementation
	16.1.1 Recommended Oracle Parameters
	16.1.1.1 processes
	16.1.1.2 compatible
	16.1.1.3 sga_max_size, sga_target, pga_aggregate_target
	16.1.1.4 cursor_sharing
	16.1.1.5 optimizer_mode
	16.1.1.6 open_cursors
	16.1.1.7 query_rewrite_enabled and query_rewrite_integrity
	16.1.1.8 hpux_sched_noage
	16.1.1.9 max_async_ports, disk_asynch_io

	16.1.2 Automatic Storage Management (ASM)
	16.1.3 Redo Logs
	16.1.3.1 Redo File Size

	16.1.4 Server Mode
	16.1.5 Selling and Fulfillment Foundation Schema
	16.1.5.1 Oracle Index Monitoring and Tuning
	16.1.5.2 Oracle Table Partitioning
	16.1.5.3 Oracle Table Partition Compression
	16.1.5.4 Tablespaces
	16.1.5.4.1 Tables

	16.1.5.5 Index and Table Statistics
	16.1.5.5.1 Volatile Tables
	16.1.5.5.2 Skewed Columns and Histograms
	16.1.5.5.3 Identifying Skewed Columns

	17 IBM Universal Database (UDB)
	17.1 Implementation
	17.1.1 Recommended UDB dbset Registry Variables
	17.1.2 Recommended DBM CFG Parameters
	17.1.3 Recommended DB CFG Parameters
	17.1.3.1 UDB Event Monitors
	17.1.3.2 Table and Index Statistics
	17.1.3.2.1 Volatile Tables

	17.1.3.3 CLI Packages

	17.1.4 Selling and Fulfillment Foundation Schema
	17.1.4.1 UDB Index Monitoring and Tuning
	17.1.4.2 Index and Table Statistics

	18 Microsoft SQL Server
	18.1 Implementation
	18.1.1 Parameters
	18.1.2 Microsoft SQL Server Index Monitoring and Tuning
	18.1.3 Statistics

	19 Advanced Database Topic - Oracle10g Real Application Cluster Database
	19.1 Overview
	19.2 Planning
	19.2.1 Supported DB Platforms
	19.2.2 Supported Filesystems
	19.2.3 Oracle RAC Support Limitations
	19.2.3.1 OLTP Applications and Oracle RAC Concerns

	19.2.4 Recommendations
	19.2.4.1 Sequence Numbers

	19.2.5 High Availability
	19.2.5.1 WebLogic Connection Pool Properties
	19.2.5.2 TCP/IP
	19.2.5.3 Fast Application Notification Support

	Part V Java Message Services
	20 Java Message Services
	20.1 Overview
	20.1.1 Agent Queues
	20.1.2 Integration Queues

	20.2 Implementation
	20.2.1 Persistence
	20.2.2 Dedicated Queues
	20.2.3 Queue File Placement
	20.2.3.1 Performance
	20.2.3.2 Availability

	20.2.4 Parameters

	21 BEA WebLogic JMS
	21.1 WebLogic JMS Recommendations
	21.1.1 Dedicated JMS Server
	21.1.1.1 Integration Queues

	21.2 Message and Byte Paging

	22 IBM WebSphere MQ
	22.1 WebSphere MQ Parameters
	22.1.1 Channel
	22.1.2 Log Files

	22.2 Placement of MQ Log and Data Files

	Part VI Selling and Fulfillment Foundation
	23 General Recommendations
	23.1 Planning
	23.1.1 Scalability Requirements
	23.1.2 System Test

	23.2 User Interfaces
	23.2.1 Application Console
	23.2.1.1 Customization
	23.2.1.2 HTML Compression
	23.2.1.3 Temporary Internet Files
	23.2.1.4 SSL Acceleration
	23.2.1.5 Search Screens
	23.2.1.5.1 Case-insensitive Search

	23.2.1.6 JSP Pre-compilation
	23.2.1.7 HTML Limitations

	23.2.2 Applications Manager
	23.2.3 Rich Client Program Interface
	23.2.3.1 Enabling Content Compression
	23.2.3.2 Images

	23.2.4 Guidelines for Processing Large Orders
	23.2.4.1 Best Practices
	23.2.4.2 Other Architectural Considerations

	23.3 Integration Adapters/Agents
	23.3.1 Agent Criteria
	23.3.2 Agent Getters
	23.3.3 Agent Thread Levels
	23.3.3.1 Excessive Agent Scheduling

	23.4 Java Message Service
	23.4.1 Integration Queues
	23.4.2 Dedicated JMS Destination
	23.4.3 JMS Persistence

	23.5 Performance Feature - Reference Data Caching
	23.5.1 Overview
	23.5.2 Cache Management
	23.5.3 Caching Strategies
	23.5.3.1 Automatically Refreshing Data Cache
	23.5.3.2 Manually Refreshing Data Cache
	23.5.3.3 List of Cache Managers
	23.5.3.4 Cleaning Up the Cache Managers List

	23.5.4 Enabling Reference Data Caching
	23.5.4.1 Controlling the size of the Cache

	23.5.5 Strategies for Enabling Reference Data Caching
	23.5.5.1 Monitoring Cache
	23.5.5.1.1 Cache Drop Messages

	23.5.5.2 YFS_HEARTBEAT

	23.5.6 Services
	23.5.7 APIs
	23.5.7.1 API Output XML Files
	23.5.7.2 List APIs
	23.5.7.3 User Exits and Events

	23.5.8 Wildcard Characters
	23.5.9 log4j Logging
	23.5.9.1 Logging Level
	23.5.9.2 Log Destinations

	23.5.10 Property File
	23.5.10.1 Application Server Connection Pool Parameters
	23.5.10.2 Integration/Agent Server Connection Parameters
	23.5.10.3 Reference Data Cache Parameters
	23.5.10.4 User Interface Control
	23.5.10.5 API Control
	23.5.10.6 Statistics
	23.5.10.7 Inventory Locking
	23.5.10.7.1 Hot SKU Feature
	23.5.10.7.2 yfs.inventory.sortandlock

	23.5.11 Performance Feature - Hot SKU
	23.5.11.1 Determining The Amount Of Inventory Lock Contention
	23.5.11.1.1 Determining Level of Lock Contention in Oracle
	23.5.11.1.2 Determining the Level of Lock Contention in UDB

	23.5.11.2 Conditions For Inventory Lock Contention
	23.5.11.3 Optimization
	23.5.11.4 Hot SKU Feature
	23.5.11.4.1 Hot SKU Feature (without lock request timeout)
	23.5.11.4.2 Hot SKU Feature with Lock Request Timeout option

	23.5.11.5 Consolidate Additional Inventory Agent
	23.5.11.6 Hot SKU Activity Monitoring
	23.5.11.7 Hot SKU Controls
	23.5.11.8 Three Usage Scenarios
	23.5.11.9 Limitations

	23.5.12 Sort Order and Deadlocks
	23.5.12.1 Sort Order

	23.5.13 Application Servers
	23.5.14 MS Internet Explorer
	23.5.14.1 Temporary Internet Files

	23.6 Monitoring
	23.6.1 System Management Console and Health Monitor Agent
	23.6.2 Statistics
	23.6.3 Inbox
	23.6.4 Application Logs

	24 Sterling Distributed Order Management
	24.1 Selling and Fulfillment Foundation Distributed Order Management Agents
	24.1.1 Schedule Agent for Backorder Efficiency
	24.1.2 Real-Time Inventory Availability Monitor for ATP Efficiency
	24.1.3 Getters with Enterprise Code
	24.1.4 Sort Order and Deadlocks
	24.1.4.1 Sort Order

	24.1.5 Agent Throughput
	24.1.5.1 Order Creation Throughput
	24.1.5.2 Order LifeCycle Throughput
	24.1.5.3 Order Kit Line Creation Throughput
	24.1.5.4 Throughput Query Limitations
	24.1.5.4.1 Reprocessing
	24.1.5.4.2 Maximum Potential Throughput

	25 Sterling Warehouse Management System
	25.1 Property File
	25.2 WMS Agents
	25.2.1 Scheduling Using Agent Criteria Group
	25.2.2 Processing Concurrency
	25.2.2.1 Create Wave
	25.2.2.2 Release Wave
	25.2.2.2.1 Allocate Task Agent

	25.2.2.3 Agents Between Create Wave to Release Wave

	25.2.3 Purge

	25.3 Database
	25.3.1 Long Running Transactions in UDB

	25.4 JVM Settings
	25.4.1 Java Stack Size

	25.5 User Interfaces
	25.5.1 Selling and Fulfillment Foundation UI Console
	25.5.1.1 Asynchronous Manifest Closure

	25.5.2 Asynchronous Batch Confirmation
	25.5.3 Mobile Devices

	26 Performance Tuning Considerations for BI (Business Intelligence)
	A References
	Index

