
Sterling Business Center

Customization Guide
Version 9.1.0.31

���

Sterling Business Center

Customization Guide
Version 9.1.0.31

���

Note
Before using this information and the product it supports, read the information in “Notices” on page 141.

Copyright

This edition applies to the 9.1 Version of IBM Sterling Selling and Fulfillment Foundation and to all subsequent
releases and modifications until otherwise indicated in new editions.

© Copyright IBM Corporation 1999, 2012.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Chapter 1. Checklist for Customization
Projects 1
Customization Projects 1
Prepare Your Development Environment 1
Plan Your Customizations 1
Extend the Database 1
Make Other Changes to APIs 2
Customize the UI 2
Extend Transactions 2
Build and Deploy your Customizations or Extensions 3

Chapter 2. Customizing Sterling
Business Center 5
Overview of Sterling Business Center Customization 5

Customizing the Sterling Business Center User
Interface 5
Differential Screen Extensions. 6

Extensibility in the Web UI Framework for
Application Developers 6

Differential Extensibility in the Web UI
Framework 7
Override Extensibility in the Web UI Framework . 8
Differential Extensibility Versus Override
Extensibility in the Web UI Framework 9
What Can Be Customized and Extended with the
Web UI Framework. 10
Customizing with the Web UI Framework . . . 11
Extending Versus Customizing an Ext JS
Widget/Component with the Web UI Framework 11
Extensibility Workbench Versus Designer
Workbench in the Web UI Framework 11

Setting Up the Customization Environment. . . . 12
Extensibility Workbench of the Web UI Framework
for Application Developers 13

Configuring the Web UI Framework Extensibility
Workbench 16
Using the Web UI Framework Extensibility
Workbench to Modify a Widget. 16
Extensibility Workbench Tools of the Web UI
Framework 18
Control Details View of the Web UI Framework 19
Property Restrictions in Extensibility in the Web
UI Framework 21
Adding Namespaces to Screens Using
Extensibility in the Web UI Framework 22

Designer Workbench of the Web UI Framework for
Application Developers 22

Creating New UI Screens Using the Designer
Workbench in the Web UI Framework 25
Designer Workbench Tools of the Web UI
Framework 25
Using the Web UI Framework Designer
Workbench to Create New Screens for Custom
Developers 27

Generating Copyright Comments with the Web
UI Framework 28

Mashup Layer of the Web UI Framework 29
Interface Contracts of the Web UI Framework -
Mashup Layer 30
Mashup Layer Classes of the Web UI Framework 30
Mashup XML Metadata of the Web UI
Framework 31
Configuring Mashups in Web UI Framework . . 33
Specifying Multiple XAPI Calls with the Web UI
Framework 33
How the Mashup Layer Handles Authorization
and Transaction Management in the Web UI
Framework 34

Programming Tools of the Web UI Framework . . 35
Ext JS Plugins in the Web UI Framework . . . 35
Ext JS Plugin Methods in the Web UI Framework 36
Creating Ext JS Plugins with the Web UI
Framework 37
Example Code for Registering Ext JS Plugins in
the Web UI Framework 37

Extending Mashups 37
Mashups in Sterling Business Center 37
Extending Mashups in the Web UI Framework 38

Creating and Extending a Struts File 40
Struts in Sterling Business Center 40
Creating and Extending a Struts XML File in the
Web UI Framework. 40

Creating a Menu Entry for a New Web UI
Framework Screen Using the Applications Manager . 40
Customizing the web.dita File 42

Customizing the web.xml File for Deployment . 42
Customizing the web.xml File for Development 43

Changing Bundle Files. 43
Resource Bundles in Sterling Business Center . . 43
Changing Bundle Files in the Web UI Framework 43

Building and Customizing Pages and Controls . . 44
Widgets of the Web UI Framework 44
Working with Widgets in the Web UI Framework 47
Adding a Widget to a Screen with the Web UI
Framework 48
Customizing Widgets in an Existing Installation
with the Web UI Framework 49
Hiding Fields with the Web UI Framework . . . 49
Accessing the Working Files of the Web UI
Framework 49
Viewing Screen Objects in the Outline or Tree
View of the Web UI Framework 50
Configuring Properties for Screens, Widgets, and
Other Items with the Web UI Framework . . . 52
Providing Description Attributes for Binding
Namespaces in the Web UI Framework 54
Wizards of the Web UI Framework 55
Preset Properties in the Web UI Framework . . 59
Enabling a Child Screen to Access a Parent
Screen with the Web UI Framework 62

© Copyright IBM Corp. 1999, 2012 iii

Menu Customizations with the Web UI
Framework 63
Creating Smart Tags with the Web UI Framework 63
Generating Code from Templates with the Web
UI Framework 65
Customize Related Tasks for Sterling Business
Center 75
Customize Advanced Search Criteria for Sterling
Business Center 80
Customize the Conditions in an Approval Rule
for Sterling Business Center 88

Debugging Tools of the Web UI Framework . . . 94
Setting Up Backend Logging in the web.xml File in
the Web UI Framework 95

Enabling Backend Logging in the User Interface
with the Web UI Framework 97

State Management in the Web UI Framework . . . 98
Implementing State Management with the Web
UI Framework 98
Interface Contracts of the Web UI Framework -
State Management on the Client Side and Server
Side 99

Transaction Management in the Web UI
Framework 100

Implementing Transaction Management with the
Web UI Framework 100
Interface Contracts of the Web UI Framework -
Transaction Management 101

Look and Feel 104
UI Branding in the Web UI Framework. . . . 104
Specifying a Home Page when Building Screens
with the Web UI Framework 107
Indicating Mandatory UI Fields with the Web
UI Framework 108
Adding Support for Custom Themes with the
Web UI Framework 108

Security 110
Web UI Framework Security - Authentication 110
Web UI Framework Security - Authorization . . 117
Web UI Framework Security - Adding Login
Pages 120
Web UI Framework Security - Supporting
Multiple Guest Users 121
Web UI Framework Security - Adding Request
Validators 121
Web UI Framework Security - Cross-Site
Request Forgery 123
Web UI Framework Security - Protecting
Against CSRF Attacks 123

Data Handling 126
Data Type Handling in the Web UI Framework 126
Supporting Item Quantity Decimal Handling in
the Web UI Framework 131
Validating Fields with the Web UI Framework 131
Disabling All UI Fields at One Time with the
Web UI Framework 132
Checking for Screen Changes in the Web UI
Framework 132
Configuring a Data Source with the Web UI
Framework 133
Adding a Data Source with the Web UI
Framework 133

Deploying Extensions 134
Deploying Sterling Business Center Extensions 134
Deploying the Enterprise Archive Package . . 139

Notices 141

Index 145

iv Sterling Business Center: Customization Guide

Chapter 1. Checklist for Customization Projects

Customization Projects
Projects to customize or extend Sterling Business Center vary with the type of
changes that are needed. However, most projects involve an interconnected series
of changes that are best carried out in a particular order. The checklist identifies
the most common order of customization tasks and indicates which guide in the
documentation set provides details about each stage.

The items identified for extension and/or modification in the documentation are
Source Components (to the extent such item involves source code) and Sample
Materials for purposes of the License Information file associated with this product.

Prepare Your Development Environment
Set up a development environment that mirrors your production environment,
including whether you deploy your application on a WebLogic, WebSphere®, or
JBoss application server. Doing so ensures that you can test your extensions in a
real-time environment.

You install and deploy your application in your development environment
following the same steps that you used to install and deploy it in your production
environment. Refer to your system requirements and installation documentation
for details.

You have an option to customize your application with Microsoft COM+. Using
Microsoft COM+ has advantages such as increased security, better performance,
increased manageability of server applications, and support for clients of mixed
environments. If this is your choice, see the Customization Basics Guide about
additional installation instructions.

Plan Your Customizations
Are you adding a new menu entry? Or customizing the sign-in screen or logo? Or
customizing views or wizards? Or creating new themes or new screens? Each type
of customization varies in scope and complexity.

For background, see the Customization Basics Guide, which summarizes the types of
changes that you can make and provides important guidelines about file names,
keywords, and other general conventions.

Extend the Database
For many customization projects, the first task is to extend the database so that it
supports the other UI or API changes that you make later. For instructions, see the
Extending the Database Guide, which includes information about the following
topics:
v Important guidelines about what you can and cannot change in the database.

© Copyright IBM Corp. 1999, 2012 1

v Information about modifying APIs. If you modify database tables so that any
APIs are impacted, you must extend the templates of those APIs or you cannot
store or retrieve data from the database. This step is required if table
modifications impact an API.

v How to generate audit references so that you improve record management by
tracking records at the entity level. This step is optional.

Make Other Changes to APIs
Your application can call or invoke standard APIs or custom APIs. For background
about APIs and the services architecture of service types, behavior, and security,
see the Customizing APIs Guide. This guide includes information about the
following types of changes:
v Invoke standard APIs for displaying data in the UI and for saving changes made

in the UI to the database.
v Invoke customized APIs for executing your custom logic in the extended service

definitions and pipeline configurations.
v APIs use input and output XML to store and retrieve data from the database. If

you don't extend these API input and output XML files, you may not get the
results you want in the UI when your business logic is executing.

v Every API input and output XML file has a DTD and XSD associated to it.
Whenever you modify input and output XML, you must generate the
corresponding DTD and XSD to ensure data integrity. If you don't generate the
DTD and XSD for extended XMLs, you may get inconsistent data.

Customize the UI
IBM® applications support several UI frameworks. Depending on your application
and the customizations you want to make, you may work in only one or in several
of these frameworks. Each framework has its own process for customizing
components such as menu items, logos, themes, and so on.

Depending on the framework you want, consult one of the following guides:
v Customizing the Console JSP Interface Guide

v Customizing the Swing Interface Guide

v Customizing User Interfaces for Mobile Devices Guide

v Customizing the Rich Client Platform Guide and Using the RCP Extensibility Tool
Guide

v Customizing the Web UI Framework Guide

Extend Transactions
You can extend and enhance the standard functionality of your application by
extending the Condition Builder and by integrating with external systems. For
background about transaction types, security, dynamic variables, and extending the
Condition Builder, see the Extending Transactions Guide and Extending the Condition
Builder Guide. These guides includes information about the following types of
changes:
v Extend the Condition Builder to define complex and dynamic conditions for

executing your custom business logic and using a static set of attributes.
v Define variables to dynamically configure properties belonging to actions,

agents, and services configurations.

2 Sterling Business Center: Customization Guide

v Set up transactional data security for controlling who has access to what data,
how much they can see, and what they can do with it.

v Create custom time-triggered transactions. You can invoke and schedule custom
time-triggered transactions in much the same manner as you invoke and
schedule the time-triggered transactions supplied by your application.

v Coordinate your custom, time-triggered transactions with external transactions
and run them either by raising an event, calling a user exit, or invoking a
custom API or service.

Build and Deploy your Customizations or Extensions
After performing the customizations that you want, you must build and deploy
your customizations or extensions.
1. Build and deploy your customizations or extensions in the test environment so

you can verify them.
2. When you are ready, repeat the same process to build and deploy your

customizations and extensions in your production environment.

For instructions about this process, see the Customization Basics Guide which
includes information about the following topics:
v Building and deploying standard resources, database extensions, and other

extensions (such as templates, user exits, and Java interfaces).
v Building and deploying enterprise-level extensions.

Chapter 1. Checklist for Customization Projects 3

4 Sterling Business Center: Customization Guide

Chapter 2. Customizing Sterling Business Center

Overview of Sterling Business Center Customization
The Sterling Business Center application can be customized based on your business
requirements. This guide provides the different types of customization that are
possible. Depending on your requirements, you can customize the Web UI
Framework components and extend the database.

After you customize an existing screen, you must deploy your changes in the
application. You can also extend the application database. For example, you can
add a column to a standard table by modifying the entity database extension XML
files. For more information about extending the database, see the Sterling Selling
and Fulfillment Foundation: Extending the Database Guide.

To monitor the execution of a program that is run to trap errors when you are
customizing Sterling Business Center, you can use the debugging tools provided
with the application.

The Sterling Business Center application is built on the Ext JS Javascript
framework, version 3.0.

The Sterling Business Center application has few screens that are specific to
English locale and non-English locales. Following is a list of screens that are
specific to English locale and non-English locales:
v Pricing Rule Summary screen
v Manual Pricing Rule Summary
v Manual Pricing Rule Summary
v Coupon Summary screen
v Customer Entitlement screen
v Seller Entitlement screen

When you are customizing these screens, ensure that you customize both the
English locale and non-English locale screens. However, if users are only in a
non-English locale, you can customize only the non-English locale screens and
leave the English locale screens as-is.

Customizing the Sterling Business Center User Interface
You can customize the user interface of an existing out-of-the-box installation of
the Sterling Business Center application using the Extensibility Workbench. The
Extensibility Workbench allows you to customize the existing installation at
runtime without recompiling or changing the original source code.

The Sterling Business Center application is built on the Ext JS JavaScript
framework, version 3.0. The JavaScript API Documentation contains information
about the JavaScript utility and classes used by the application. The JavaScript API
Documentation can be accessed using the following URL:

http://<server>:<port>/<context_root>/yfscommon/jsdocs/30/index.html

© Copyright IBM Corp. 1999, 2012 5

where context_root is the context root of the smcfsdocs.war file, which is used for
the context-sensitive help. For more information about deploying the
context-sensitive help, refer to the Sterling Selling and Fulfillment Foundation:
Installation Guide.

Differential Screen Extensions
Differential extensibility enables you to customize parts of a screen. You can add a
new field, or hide an existing field in the user interface. Additionally, you can
modify the properties of the out-of-the-box fields. The Java Script Builder (JSB)
files are located in the <INSTALL_DIR>/repository/eardata/sbc/war/builder/sbc
directory.

Extensibility in the Web UI Framework for Application Developers
Extensibility allows you to customize the user interface of an out-of-the-box
installation of an application using the Extensibility Workbench. Although
application developers mostly use the Designer Workbench, the Extensibility
Workbench is useful for testing and simulating the behavior of the Web UI
Framework tools of the actual user interface.

You can open an existing screen and bring up the same user interface tools that
were used by application developers to build the screen using the Designer
Workbench. You can add controls (like buttons, labels, and grid columns), panels,
data sources, and other items. The Extensibility Workbench allows you to
personalize and localize an application.

Note: When customizing the interface, copy the standard resources of an
application and then modify your copy. Do not modify the standard resources of
an application.

Functional Overview

Extensibility allows you to customize an existing installation of an application at
runtime without recompiling or changing the original source code.

Extensibility works in two areas of an application:
v Extensibility in the UI helps to show more relevant and organized data to the

end user. It also helps in showing a personalized or a localized version of an
application.
UI extensibility allows you to add new widgets to a UI screen, hide existing
widgets, override default field labels, customize the theme for an application ,
and other UI-related tasks.
UI extensibility takes two basic forms:
– Override extensibility, in which you completely replace the out-of-the-box

screens with new screens. Use the Designer Workbench for this task.
– Differential extensibility, in which you change parts of the out-of-the-box

screens. Use the Extensibility Workbench for this task.
The changes that one can make to an existing component using differential
extensibility are limited to a particular set of properties. This ensures that
arbitrary properties are not allowed to change, resulting in upgrade issues.

You can work with override extensibility in the following layers: Struts, mashup,
presentation, and XAPI mashup. With differential extensibility, you can work
with only the presentation and XAPI mashup layers.

6 Sterling Business Center: Customization Guide

v Extensibility in the backend helps you perform custom business logic and
processing. Custom logic can be driven by integration with other applications,
changed use cases, and other special requirements of an application.
Backend extensibility allows you to change the server-side APIs to perform the
customized business logic.

Technical Overview

UI framework extensibility has the following technical details:
v The HTML UI is based on the Ext JS JavaScript framework.

In the Ext JS-based class hierarchy, various JavaScript libraries have their own
class-based hierarchy for creating object models. The Web UI Framework uses
the Ext JS-based class hierarchy for this purpose.

v Every screen is identified by an identifier (className) that must be unique
across an application.

v Every component within a screen is identified by an identifier (sciId) that must
be unique within the screen.

v Once a component has been added to the base screen, it should not be removed.
If a component is removed, and an extension was applied with regard to the
removed component, the extension might not display after an upgrade.

Backend extensibility has the following technical details:
v To get the extended JSP file, the extensibility mechanism appends extn to the

path to get the complete src (source) path of the extension file.
v Applications consuming only the Base UI Framework will provide the custom

extensibility mechanism as defined in the Base UI Framework's interface
contract. There will not be any default implementation in the Base UI
Framework.

v The extended mashup class makes XAPI calls and other kinds of calls. If a XAPI
mashup is being extended, then a XAPI call also should be made.

v If the extensibility mechanism is not given in the backend of an application, an
error will occur and be logged.

v If the mashup implementation is not given in the backend of an application, an
error will occur and be logged.

To build an extensible application, it is essential to follow strict design guidelines.
In the Web UI Framework, this involves the following:
v Adding business logic (rules and conditions) in a mashup so that it is easy to

re-use and change.
v Using the client-side JavaScript component (Ext JS) to build a rich and

responsive user interface (without business logic).

Differential Extensibility in the Web UI Framework
With differential extensibility, you can customize parts of a screen. Changes are
overlaid on top of the base screen. Differential extensibility contrasts with override
extensibility, where the entire screen is replaced.

In differential extensibility, the extensions are stored in a file that is separate from
the file of the screen being viewed or edited. During runtime of the application,
the extensions are applied to the functionality of the application. This kind of
extensibility gives you flexibility with upgrades.

Chapter 2. Customizing Sterling Business Center 7

In differential extensibility, in general, you can do the following:
v Add new UI components to an out-of-the-box screen.
v Change an existing component such as styles, labels, and layout parameters.
v Hide a component present in an out-of-the-box screen.
v Remove a component that was added via extensibility.

Note: None of the out-of-the-box components or component properties can be
deleted.

v Respond to events.

The following images show an example of an out-of-the-box screen and an
extended screen. Differential extensibility was used to add a search button and a
Before Date field.

Out-of-the-box screen (without extensions):

Extended screen:

Override Extensibility in the Web UI Framework
With override extensibility, you can customize a screen by completely replacing it.
Override extensibility contrasts with differential extensibility, in which only parts
of the screen are replaced. Use the Designer Workbench to apply override
extensibility.

Note: Although you can apply override extensibility using the Designer
Workbench, you are limited in the changes that you can make. Please contact IBM
Customer Support for assistance when applying override extensibility using the
Designer Workbench.

8 Sterling Business Center: Customization Guide

Differential Extensibility Versus Override Extensibility in the
Web UI Framework

Area Differential Extensibility Override Extensibility

Scope of Changes Individual screen components. Entire screen.

Screen Actions v Add component

v Change component

v Hide a component present in an
out-of-the-box screen

v Remove a component or a
component property added using
the Extensibility Workbench

v Override default field labels

v Customize theme

Replace entire screen.

Recommended
Usage

When screen requires minor
enhancements with little behavioral
change.

When screen requires complex
enhancements, such as removing
controls or changed business use
cases.

After an upgrade, if you are not
interested in the enhancements in
an out-of-the-box screen, this
method is recommended.

Tool Extensibility Workbench Designer Workbench

Runtime
Application

Extensions are applied to the
functionality of the application.

Functionality that is extended is
completely replaced. Both the
functionality and the UI layout
and/or appearance are replaced (if
required).

Upgrade Issues Increases upgrade flexibility,
because original screen does not
change, making individual
extensions to the screen easier to
apply. An extensible screen adheres
to the extensibility guidelines, such
as unique IDs. These IDs should
not be absent from the upgraded
screens.

Might increase upgrade time,
especially if there are
upgrade-related source code
changes in the application that
relate to overridden screen.

The added code for XAPI mashups
that are used for a new screen (if
any) would be affected with the
changes in the database tables or
source code.

Extensible Layers v Presentation layer (UI)

v XAPI mashup layer

v Presentation layer (UI)

v XAPI mashup layer

v Non-XAPI mashup layer

v Struts layer

Chapter 2. Customizing Sterling Business Center 9

Area Differential Extensibility Override Extensibility

Screen File
Management

Extensions are stored in a different
file from the files of the screen
being extended. This different file
must be a new JavaScript file that
must be created by the user. This
new JavaScript file must be
included in the application using
JSB definitions.

v Base screens extend the
sc.plat.ui.ExtensibleScreen class.

These screen definitions have an
identifier that is unique across
the application.

v Screen extensions extend the
sc.plat.ui.Extension class.

These extensions are registered
with the Web UI Framework
extension registry for the base
screen's identifier.

Screen files are completely
replaced.

New Java Server Page (JSP) files
override base JSP files. These JSP
files can be designed in the
Designer Workbench or from
another source.

What Can Be Customized and Extended with the Web UI
Framework

You can use the Web UI Framework to customize and extend any screen of the
application that also follows these guidelines:
v Any extensible UI content is served to the client using a JSP (Java Server page).
v A unique identifier must be created for every screen class (the className

property) and screen component (the sciId property).
If this guideline is not followed, a console warning will alert you that more than
one screen or screen component has the same ID. You can still launch and
deploy the application out-of-the-box with duplicate IDs for screen or screen
components, but duplicate IDs are likely to cause problems when you try to
extend.

v In differential extensibility (where only parts of the screen change), the
extensions are defined in an extension file which must be included with the
out-of-the-box screen.

v It uses the Ext JS JavaScript framework.
v The screen class must extend from the class sc.plat.ui.ExtensibleScreen.
v It does not add controls dynamically. These controls cannot be changed by

screen extensions. Also, all layouts do not support the addition of dynamic
controls.

You can extend screens that were not originally created using the Web UI
Framework tools (for example, hand-coded screens). However, if a screen was
designed using the Web UI Framework tools, it can be easily extended because it
conforms to the Web UI Framework standards.

10 Sterling Business Center: Customization Guide

Customizing with the Web UI Framework
The Web UI Framework allows you to plug in customizations of tasks like
authentication and authorization. When you customize the application, you need
to write special program code that works with the interface contracts of the default
installation of the application.

You can use interface contracts to customize the following tasks:
v Authentication
v Post authentication
v Authorization
v Mashup layer
v Transaction management
v State management
v Localization
v Data type handling

Customizations also use the web.xml file and the install3rdParty tool.

Extending Versus Customizing an Ext JS Widget/Component
with the Web UI Framework

Extending and customizing are very similar. Both involve changes to the default,
out-of-the-box version of the application.

Extending is a type of customization that involves creating changes in a separate
file that are applied to the application, making these changes easy to identify and
easy to remove.

Customization can also involve more direct changes to the application that change
(and do not preserve) the original configuration of the application.

Extensibility Workbench Versus Designer Workbench in the
Web UI Framework

The Extensibility Workbench is used to modify the UI while the application is live
and running online. The changes can be saved and later applied to the application
EAR, if required. Use the Extensibility Workbench to make changes to part of the
UI. To create new screens while working in the Extensibility Workbench, access the
Designer Workbench through the Design new screens link at the bottom of the
Extensibility Workbench.

Chapter 2. Customizing Sterling Business Center 11

The Designer Workbench is also used by application developers to first create
offline the screens that you can modify using the Extensibility Workbench.

Setting Up the Customization Environment
About this task

The Sterling Business Center application can be customized based on the business
requirements of users. This topic provides information about setting up the
customization environment.

Sterling Business Center must be customized using the sbcdev.war file, and not the
sbc.war file. The sbcdev.war file contains additional folders and web.xml entries

12 Sterling Business Center: Customization Guide

that are required for customization. You must deploy the sbc.war file in the
production server with the required extensions that are created using the
sbcdev.war file.

To set up the customization environment:

Procedure
1. Run the following command to create the sbcdev.war file:

v For Linux/UNIX:
.\buildwar.sh -Dappserver=<application server> -Dwarfiles=sbcdev

v For Windows:
.\buildwar.cmd -Dappserver=<application server> -Dwarfiles=sbcdev

2. Deploy the sbcdev.war file.
3. Start the application server by passing the following argument:

-Dwufdevmode=true

Extensibility Workbench of the Web UI Framework for Application
Developers

The Web UI Framework includes an Extensibility Workbench that allows you to
use WYSIWYG tools in an existing application to put overlays on a screen's user
interface configuration. Although application developers mostly use the Designer
Workbench, the Extensibility Workbench is useful for testing and simulating the
behavior of the Web UI Framework tools of the actual user interface.

The Extensibility Workbench consists of the following components:
v Extensibility Workbench

Used to extend an out-of-the-box screen. JavaScript source files are generated
containing the overlays, and are included along with the out-of-the-box screen's
source files. This is accomplished by the loading of JavaScript libraries.

v Designer Workbench
Used to design new screens.

The Extensibility Workbench can be run and used only within an existing
installation of an application. The Designer Workbench can be run as either a
standalone application or it can be accessed from the Extensibility Workbench. If
you access the Designer Workbench from the Extensibility Workbench, you can use
the Back button to return to an application. However, you will need to re-activate
the Extensibility Workbench.

Screens designed in the Designer Workbench have to be deployed and run in an
existing installation of an application to see the functional behavior. In the
Extensibility Workbench, extensions are added to a screen in a live application. If a
change is made to a screen, the changes can be viewed instantly. To extend a
screen using the Extensibility Workbench, you have to navigate to the
corresponding screen and then start extending it.

Application without Extensibility Workbench:

Chapter 2. Customizing Sterling Business Center 13

Application with Extensibility Workbench after clicking Shift + space bar (tabs and
link at bottom of screen):

Application after maximizing Extensibility Workbench views by clicking plus (+)
sign at bottom of screen:

14 Sterling Business Center: Customization Guide

Functional Overview

The user interface layout of the Extensibility Workbench is similar to the Designer
Workbench, with multi-tabbed editors and views. In the Designer Workbench, the
components are edited on a canvas. With the Extensibility Workbench, the screen
acts as a canvas that allows the editing of out-of-the-box components on an
existing screen. You can show a screen with and without extensions applied to it.

Tools for model validators and screen localization are available to assist extension
development.

Technical Overview

The Extensibility Workbench is built using the Ext JS JavaScript framework.
Differential extensions to a screen are stored in a file in the JSON metadata format.
This format stores the extension's properties overlays to be applied onto the base
screen. It also is used to generate extension code blocks to which a template is
applied.

The following is an example of metadata for differential extensibility. The overlays
item shows what was changed using the Extensibility Workbench.
{

type: "SCREEN_EXTENSION",
version: "",
extension: {

className: "com.zzz.AnExtension",
superclassName: "sc.plat.ui.Extension",’
overlays: [

{
op: ’change’, //operation type
sciId: ’view’, //reference of the component being change’d
config: <a_config_object_metadata>

},
{ ... }, { ... }

]
}

}

This metadata references the config object metadata a_config_object_metadata.

A property can have different types of values, so the config object metadata needs
to capture the property type. Additionally, every config object needs a definition
that provides properties and validation rules for the object.

The following is an example of config object metadata:
a_config_object_metadata = {

property1: {
type: <type_of_property>,
value: <property_value>

},
property_string: {

type: ’string’,
value: ’aString’

},
property_expr: {

type: ’expr’,
value: ’(x+y)’

},
property_object: {

type: ’object’,

Chapter 2. Customizing Sterling Business Center 15

value: <another_config_object_metadata: { ... }>
},
defid: <id_of_config_object_definition>

}

From the above metadata, the resulting config object would be:
a_config_object = {

property1: <aValue>,
property_string: ’aString’,
property_expr: (x+y),
property_object: <another_config_object>

}

Configuring the Web UI Framework Extensibility Workbench
About this task

If you are using Mozilla Firefox and the Mapping Preferences dialog box appears
when you open the Extensibility Workbench, you need to configure the application
to access the supporting files for the Extensibility Workbench. In your browser,
access the add-ons menu (usually under the Tools menu) and enable the Sterling
Designer extension. A popup dialog box opens, asking you to install two add-ons
(jsLib and the Sterling Designer extension). Make sure that you install both of the
add-ons, and then enable them.

This option to install the add-ons is only available in Mozilla Firefox. Internet
Explorer, the other browser supported by the Extensibility Workbench, uses
ActiveX for reading and writing files. In IE, make sure that the ActiveX settings are
correctly enabled.

When logging in to the application console from IE, if you get the Could not use
ActiveX for file IO warning, then the IE settings for ActiveX must be checked to
ensure that all relevant settings are enabled. If these settings are not enabled, you
will not be able to view any folder displayed in the Mapping Preferences dialog
box while setting the workspace directory for the Extensibility Workbench.

Make sure that the server/site which is hosting the application is added under the
secured/trusted sites list in IE.

Using the Web UI Framework Extensibility Workbench to
Modify a Widget

Procedure
1. In the application, open the screen that you want to change.
2. Click Shift + space bar.
3. Review and accept the Extensibility Workbench Usage Terms and Conditions.

The Extensibility Workbench launches if you accept the terms and conditions
(provided you have also completed the Directory to URL Mapping and you
have associated a file for the screen). Any subsequent use of the Shift + space
bar hot key hides and then re-launches the workbench until the browser is
refreshed or a new screen is opened, in which case the Terms and Conditions
window re-appears.
If you decline the terms and conditions, the workbench does not launch.
The tools of the Extensibility Workbench appear in different views. You might
have to click the plus sign button on the Extensibility Workbench toolbar to
display all of the views.

16 Sterling Business Center: Customization Guide

4. Click the plus sign button to show all views or the minus button to minimize
all views. When all of the views are minimized, you can click the tab of a
view to display just that view. When a view is displayed, you can minimize
the view by clicking the minus sign in the upper right hand corner of the
view.

5. Before you can work with a widget on a screen, you need to select or
associate the extension file for the screen. The extension file stores the
extensions (changes) to the screen. The Add extension file for screen dialog
box appears when you first try to work on a widget.
The extension file contains metadata about your changes. Extension files are
saved in your current working directory. They can be viewed in the Files tab
of the Palette & Files view.
When the Extensibility Workbench is launched for the first time, the current
working directory is defaulted to the directory entered during mapping. You
can change this later in the Files tab.
a. In the Add extension file for screen dialog box, specify the extension file

by either using the browse button to select an existing file, or by typing
the name of the file in the Extension file field.
Type the name of the file if you want to associate/create a new file. If you
have already extended the screen and have an extension file for the screen,
you can browse for the file.

b. Click the OK button.
If a dialog box appears that includes the message Selected file contains
source that does not match with the current screen., click OK to overwrite the
file or Cancel to choose another file. This message usually means that you
have chosen the wrong metadata file.

After you have saved the extensions to a screen and deployed those changes
in the application, you do not have to add the extension file to make further
changes to the screen. The extension file will be automatically loaded with the
screen.
After you select this extension file, the following view actions occur:
v The Outline view populates with information about the widgets on the

screen.
v The Screen Details View populates with information about the extension

file.
The Extension Class Name field displays the name of the generated
extension class. You can change this name.

v The Properties view displays the original properties of the widget.
6. To add a widget to the screen, select the widget on the Palette tab. Right-click

or left-click at the place on the screen where you want the widget to appear.
When you add a new widget, the sciId property of the widget must include
the default extn_ prefix. This differentiates an extended component from an
out-of-the-box component.

7. To change a widget, select it on the screen or in the Outline view.
8. To change or create a widget property, do the following. For more information

about widget properties, refer to the Ext JS framework documentation at
(2.2.1) http://www.extjs.com/deploy/ext-2.2.1/docs/ or (3.0)
http://www.extjs.com/deploy/dev/docs/.
v If you want to change the properties of an item, click the Refresh instances

button in the Screen Details view to make those property changes active.

Chapter 2. Customizing Sterling Business Center 17

If you want to change the properties of an existing item, a separate grid
titled “Original Properties” appears that displays the original property
values of that item.
The “Original Properties” grid is not shown for any new component added
through extensibility. Any new properties added through extensibility are
listed in a separate grid above the "Original Properties" grid (if the
component is present in the base screen).
You cannot change a property listed under “Original Properties”. However,
you can override an existing property or add new properties to an
out-of-the-box component.

v To create a new property for an item, click the Add button in the Properties
view. Before clicking the Add button, the desired property should be
selected from the dropdown list of available properties.

9. To save your changes in your project directory (but not deploy them), click the
Save button in the Screen Details view.

10. To work on another screen, go to the other screen and then re-activate the
Extensibility Workbench by clicking Shift + space bar.

11. After you have saved all of your screen extensions, you must deploy the
changes for them to take effect in the application.

Extensibility Workbench Tools of the Web UI Framework
The following table shows the tools to use for the different tasks that you can
perform using the Extensibility Workbench:

For more information about widget properties, refer to the Ext JS framework
documentation at (2.2.1) http://www.extjs.com/deploy/ext-2.2.1/docs/ or (3.0)
http://www.extjs.com/deploy/dev/docs/.

If you want to... Use this tool...

Add widgets to a screen. Palette & Files view
(Palette tab)

Create input and output data sources for mashup layer files. Palette & Files view
(Data tab)

Access the local file system. Palette & Files view
(Files tab)

View a directory-type listing of all the widgets on the screen.

The view populates after you specify an extension file and select or
add an item.

Outline View
(Components tab)

Re-arrange UI components in a directory-type listing. Outline View
(Components tab)

Show overlays applicable for the screen.

This shows all of the changes made with the workbench. It helps
you view changes and (if necessary) remove them.

The Click to View Overlays button displays overlays.

Outline View
(Overlays tab)

Collapse the Outline view to show just the top screen item (screen).

Expand the Outline view to show all of the screen items.

18 Sterling Business Center: Customization Guide

If you want to... Use this tool...

View a list of the properties of the screen and any widget that is
selected.

Properties view

Add a property to a widget. Properties view (Add
tab)

Set the data binding of a widget.

Add the bindingData property and then extend the
AbstractBindingMgr class. The implementation needs to be
provided for the methods of the class as mentioned in the
documentation for each method. For more information, refer to the
JavaScript documentation for sc.plat.AbstractBindingMgr.

Properties view (Add
tab)

Show the name of the screen that is being modified. Screen Details view

Save an updated screen. Screen Details view
(Save button)

Activate changes to the properties of a widget. Screen Details view
(Refresh instances
button)

Access bundle files for localization. Screen Details view
(Localize button)

Start or stop extensibility.

You can change screens (by selecting the appropriate menu option)
without having to use this button.

Display all views.

Minimize all views.

Link to the Designer Workbench. Design new screens
link

Control Details View of the Web UI Framework
The Control Details View of the Extensiblity Workbench displays basic
control/parent screen details and information like bindingData and datatype
information. It shows some additional information that is not present in the
Original Properties grid.

The contents of the Control Details View are updated according to the selected
control. The view does not expand and collapse with all of the other Extensibility
Workbench views, because of the large amount of space that it uses.

The Control Details View includes two tabs:
v Control Details (default active tab)
v Parent Screen Details

Chapter 2. Customizing Sterling Business Center 19

The Control Details tab shows detail about the selected control under the following
categories:
v Control Properties

Shows the basic information about the selected control like sciId and xtype. The
remaining config properties are viewable under the Properties View. sciId is
shown to uniquely identify the selected control. In case of a column, the
dataIndex is also displayed. If the column has an editor, then the editor xtype is
also shown.

v Parent Screen Properties
Shows information that can be used to uniquely identify the control's parent
screen.

v Control Datatype Properties
Displays information about the datatype which is computed from the binding or
scuiDataType attribute(provided during screen development).

v Control Binding Properties
Displays all the control bindingData properties. For example, if the selected
control is a textfield, then source and targetBinding would be displayed. In case
of a combo, in addition to source and targetBinding the optionsBinding would
also be displayed (provided that these properties have been defined on the
control during development).

20 Sterling Business Center: Customization Guide

The Parent Screen Details tab includes information about the className,
superclass, sciId, namespaces, and namespace description.
v Screen Config Properties

Displays screen information like sciId, screen class and superclass name.
v Target Namespaces and Description

Displays target namespaces (target bindings if namespaces not available) and
their corresponding description from the namespacesDesc attribute. If no
description is provided, the value is left blank.

v Source Namespaces and Description
Displays source namespaces (source bindings if namespaces not available) and
their corresponding description from the namespacesDesc attribute. If no
description is provided, the value is left blank.

Note: If there are no values available for Control Datatype properties, Control
Binding properties and Source/Target Namespaces and Description, then an empty
panel with the same name would be populated.

Property Restrictions in Extensibility in the Web UI Framework
Certain properties should not be added during extensibility. If you add any of
these properties from the Properties View, then you would get a relevant message
in the console (Mozilla Firefox only) and the property would not be added in the
Properties View. The property list is as follows:
v All controls: defid, id, _original_sciId, sciId, xtype.
v text, number, bignumber, textarea, triggerfield, combo, time, date and spinner

(ext 3 only): (restricted properties listed in all controls) + vtype.
v containers and their sublcasses: (restricted properties in all controls) + items
v panel and its subclasses: (restricted properties in all containers) + tbar, bbar,

buttons
v gridpanel and subclasses: (restricted properties in panels) + columns
v screen: (restricted properties in panels) + className, classId, superclassName,

regXtype

Note: bindingData should not be added/modified for any base screen control. You
can add/edit it if the control is added during extensibility.

Chapter 2. Customizing Sterling Business Center 21

Note: Grid supports the extn_bindingData property, which can be used during
extensibility (if the grid is a base screen component) to add new fields to the Grid's
store.

Adding Namespaces to Screens Using Extensibility in the Web
UI Framework

Procedure
1. Select the screen in the Tree View.
2. Type namespaces in the Properties View.
3. For every source and target namespace added, you need to provide a name and

description. It is recommended that the names of all namespaces added during
extensibility begin with extn_ to easily identify them.

Note: The methods getTargetModel(), getModel(), and setModel() can be called
from the extension and would return results from the combined model of the
screen and extension.

Designer Workbench of the Web UI Framework for Application
Developers

The Designer Workbench allows you to use WYSIWYG tools to build new screens
for an application. It has tools similar to the Extensibility Workbench, which is
used to change the screens of an out-of-the-box installation of an application.

You can access the Designer Workbench in two ways:
v A URL.

Application developers access the Designer Workbench with this method.
v A link in the Extensibility Workbench.

Custom developers access the Designer Workbench with this method.

Note: Although you can access the Designer Workbench from an out-of-the-box
installation of an application, you are limited in the changes that you can make.
Work withIBM Customer Support when changing an out-of-the-box installation
using the Designer Workbench.

22 Sterling Business Center: Customization Guide

Functional Overview

The user interface layout of the Designer Workbench includes multi-tabbed editors
and views. Use these view to work with:
v Widgets
v Data sources
v Project files
v Screen layouts
v Component hierarchy
v Component properties
v Code templates

Technical Overview

The UI of the Designer Workbench is built using the Ext JS JavaScript framework.
The UI elements of a screen are stored in a file in the JSON metadata format. This
metadata is used to generate extension config objects, which you can edit in Ext JS.
Ext JS supports editing config objects only for creating or changing UI components.

Palette components reside in a component registry. The component class extends
the sci.ide.DefComponent class. Use the following attributes of the
sci.ide.DefComponent class to add a new component to the component registry of
the Designer Workbench:

Attribute Description

id The unique ID of the component that is used to distinguish between
all the components available in the Designer Workbench.

Chapter 2. Customizing Sterling Business Center 23

Attribute Description

type The registered type of the component. It is usually the xtype of the
component.

text The display text of the component.

acronym The acronym for the component. It is used for auto-naming variable
instances.

iconCls The css icon class that is used as the component icon.

category The category under which the component is grouped. To add the
component to the Design Workbench, it should be grouped under
Controls, Panels or Others. If a new category needs to be created,
that category must be registered.

named A boolean property that defaults to true if the component extends
sci.ide.DefComponent. When a named component is added to a
screen, an auto-generated sciId property is added to it.

applyDefaults This method accepts the model (an object containing properties
associated with a component) of the component being created as its
argument and applies the default properties of the component to
the model.

getProperties This method returns a collection (Ext.util.MixedCollection) of all
property definitions for the component. The id of the property is
the key which is mapped to a property definition.

Properties can be added to a Property Registry for global access. A
property definition is a JavaScript object with the following
attributes:

v id

The unique identifier of a property. If the property is present in
Ext docs then it may be the same as the config option for the
Component constructor.

v type

The data type of the property definition.

v isArray

A boolean value that indicates if the current property is an array.

v getDefaultValue

A method that returns the default value of the property.

v getDefObject

A method that provides the property definition to the caller.

v getValues

A method that returns an array of all the possible values of the
property.

resolveLink This method should be implemented if the component being added
is a container, i.e., it can accept any other Designer Workbench
component/container. It is used to decide if the component being
added can be accepted as a child.

validate This method accepts the model of the component as the argument
and verifies if the component is in error state. If the model is found
to be in error (inconsistent set of properties and values), then it may
show errors, warnings or suggest corrections (if available).

24 Sterling Business Center: Customization Guide

Creating New UI Screens Using the Designer Workbench in
the Web UI Framework

Use the canvas in the Designer Workbench to create the actual user interface that
will be used by an application. Work with the canvas by dropping (adding)
widgets from the Palette view of the workbench. You cannot use the Extensibility
Workbench to create new screens.

Use the buttons in the upper left hand corner of the Designer Workbench to do the
following:
v New

Create a new screen.
v Save

Save the changes on a screen.
v Undo

Undo screen changes that you have not saved yet.
v Redo

Redo changes that you have undone using the Undo button.

Follow these guidelines when dropping widgets:
v Make sure that the widget is selected in the Palette view before you drop it.
v Make sure your cursor is over the canvas before you drop the widget on the

canvas.
v Use the canvas tooltips to decide when to drop and how to drop the widget.

You cannot drag and drop a widget from the Palette view to the canvas.
For example, if your screen includes a panel, and you want to add a button to
screen (but not to the panel), make sure:
– Your cursor is not over the panel.
– The tooltip reads Click to add button in screen and not Click to add button

in panel or Click to add button before panel.
v Use the Tree View to delete or re-arrange the widgets. To delete a widget, you

must first right-click the widget and select the delete option.
v Use the widget names in the Palette view to create preset properties, but

right-click the widget in the canvas to apply a preset property.

Designer Workbench Tools of the Web UI Framework

The following table shows the tools to use for the different tasks that you can
perform using the Designer Workbench:

For more information about widget properties, refer to the Ext JS framework
documentation at (2.2.1) http://www.extjs.com/deploy/ext-2.2.1/docs/ or (3.0)
http://www.extjs.com/deploy/dev/docs/.

If you want to... Use this tool...

Create a new screen. New button

Save a new screen. Save button

Undo changes that you made to the screen. Undo button

Redo changes to the canvas that you just undid. Redo button

Chapter 2. Customizing Sterling Business Center 25

If you want to... Use this tool...

Add widgets to a screen. Palette tab

Create data sources for sending data to input and output XML files.
Mashup layer files use these data sources.

Data tab

Add file access to a control. Files tab

Configure the directory path to the project that will use the changes
from the Designer Workbench.

Files tab (Options
button)

Immediately update your main project with changes that you make
using the Designer Workbench.

Files tab (Notify
project check box)

View the workspace for the screen that you are creating by adding
widgets.

Canvas

View a directory-type listing of all the widgets on the canvas (screen). Tree View

Collapse the Tree View to show just the top screen item (screen).

Expand the Tree View to show all of the screen items.

View a list the properties of the screen and any widget that is selected. Properties view

Add a property to a widget. Properties view
(Add tab)

Set the data binding of a widget.

Add the bindingData property and then extend the AbstractBindingMgr
class. The implementation needs to be provided for the methods of the
class as mentioned in the documentation for each method. For more
information, refer to the JavaScript documentation for
sc.plat.AbstractBindingMgr.

Properties view
(Add tab)

Check if a screen has any errors or warnings and see if a fix is available,
using the Check results dialog box.

For example, if you have not localized all of the controls in the current
screen, the Check results dialog box displays a list of controls that have
not been localized. To resolve this, click the icon under the Fix? column,
which directs you to the Localization Panel, where you can localize the
controls.

Diagnostics
button

Create mashup layer files.

This button displays the Configure Mashups dialog box.

Mashups button

Display JavaScript source code for the screen. More button
(View Source
menu option)

View an encoded string of user preferences that are stored as cookies
(like the project directory and data source directory). This string can be
copied and added to your JavaScript bookmarks.

If you clear all of your browser cookies, you can use this user preference
information to restore your original preferences.

More button
(Export
Preferences menu
option)

26 Sterling Business Center: Customization Guide

If you want to... Use this tool...

Localize widgets.

This button displays the Localization panel dialog box.

You must first save the screen before you can localize any widgets.

More button
(Localize Screen
menu option)

Load libraries into the Designer Workbench. To do this, you must add
an include file.

More button
(Manage Libraries
menu option)

Generate code from the Code Template Generator window that you can
use to update mashup, Struts, JSB, resource, resource permission, and
menu files.

Generate Code
button

Using the Web UI Framework Designer Workbench to Create
New Screens for Custom Developers

Procedure
1. Access the Designer Workbench from the Extensibility Workbench by clicking

the Design new screens link in the lower right hand corner of the Extensibility
Workbench.

2. In the Designer Workbench, click the New button to create a new screen.
3. Perform one or more of the following tasks:

v To add a widget, click on the Palette tab. Select a widget. On the canvas,
right-click or left-click where you want the widget to appear. You can later
use the Tree View to rearrange the order of the widgets.

v Use the Tree View to see a directory-style overview of how widgets are
arranged on the canvas. Also use the Tree View to delete items or rearrange
items (for example, move a column from one grid to another grid, or move a
button from one panel to another panel).

v Use the Properties view to add or change any widget properties. For more
information about widget properties, refer to the Ext JS framework

Chapter 2. Customizing Sterling Business Center 27

documentation at (2.2.1) http://www.extjs.com/deploy/ext-2.2.1/docs/ or
(3.0) http://www.extjs.com/deploy/dev/docs/.

v (Optional) To create a mashup, click the Data tab. Configure an output data
source. Then, click the Mashups button to create the mashup xml file, which
will include a reference to the output data source.

v (Optional) Use the Code Template Generator window to generate code that
can be either pasted on the Code Update page and updated in the
application or (if the changes are permanent) saved in a relevant file like
mashup.xml or a Struts file for the application. Access the Code Template
Generator window using the Generate Code button near the More button.

4. To specify the project that will use the screens that you are creating and
modifying, click the Files tab.
a. Check the Notify project check box.
b. Click the Options button.

The Configure Project Directory dialog box appears.
c. Configure your project directory and click OK.

5. To save the new screen, click the Save button. The changes immediately appear
in the project file.

6. To return to the Extensibility Workbench, use the Back button of your browser.
You will have to re-activate the Extensibility Workbench by clicking Shift +
space bar.

7. After you create all of your new screens, you must deploy them as an extension
to the application. For more information, refer to the documentation on
deployment.

Generating Copyright Comments with the Web UI Framework
About this task

Copyright comments can be added to all of the js and config.js files which get
generated through the Designer Workbench.

Procedure
1. Click the More button at the top right of the Designer Workbench toolbar.

2. Click Copyright Comments.
The Provide Copyright Comments to add in js and config.js files window
displays.

3. Enter the copyright statement in the dialog box.
4. Click the Save button to save the comments.

28 Sterling Business Center: Customization Guide

The comments are stored in the designer.preferences file at: C:\Documents and
Settings\<user-name>\.designer. If you delete the designer.preferences file, you
need to provide comments again, because this file holds all of your Designer
Workbench-related preferences.
Sample comments generated:
/* *
* Copyright Your Company 2010
* */

where
Copyright Your Company 2010

are the comments provided by the user.
Once this setup is done, all files (both old and new) that are saved through the
Designer Workbench are generated with these comments.
These copyright comments are also used and generated in the overlay files
generated through the Extensibility Workbench and the bundle files during
localization.

Note: It is recommended that you delete browser cache files and cookies before
entering copyright comments.

Note: If you remove the provided comments in the Provide Copyright
Comments dialog box and click Save, or if you don't do this setup, your
screens will be generated the way they were being generated before, that is,
without any copyright comments.

Mashup Layer of the Web UI Framework
The mashup layer of the Web UI Framework connects end user actions at the front
end of an application with business logic at the back end of an application. The
mashup layer handles authorization (permission control) and transaction
management tasks. You can configure the mashup layer in the Designer
Workbench. The mashup layer allows business calls for data handling to be used
in more than one place (like a backend server and a database) without being
repeated.

The mashup layer is a core logic service layer that acts as an intermediate service
layer to which both action classes and JSON (JavaScript Object Notation) endpoints
delegate. Examples include the Struts action classes in the UI backend and the Ext
JS JSON in the presentation layer. The action classes and the JSON endpoints act as
types of adapters, with the core logic contained in the service layer.

The mashup layer of the Web UI Framework is used to invoke business calls (XAPI
calls) for data handling to the backend server. Each XAPI call and multiple XAPI
call are always called under one transaction. Each multiple XAPI is under one
transaction. The mashup layer is a mixture of XAPIs and other mashups.

IBM recommends that you use the mashup layer of the Web UI Framework. If you
do not use the Web UI Framework, a mashup layer exists, but it does not support
XAPI calls to the backend server.

The mashup layer does not contain business logic. Its main purpose is to call
different APIs and create data that is user interface-specific. You can access the
mashup layer from the user interface back end with different development tools
(Struts, DWR, custom servlet, etc.).

Chapter 2. Customizing Sterling Business Center 29

The mashup layer can do the following:
v Handle calls to the business logic layer to get or modify data.
v Take responsibility for bean creation and then invoke the business logic layer.
v Take responsibility for managing data transformation so that the output data is

ready for use in the presentation layer.

If errors occur in the following situations, check your mashup setup:
v If the mashup metadata is not found for a given mashup ID.
v If mashup metadata is not extensible, but an attempt is made to extend it.

Interface Contracts of the Web UI Framework - Mashup Layer
For more information, refer to the Java API documentation in your installation
directory (<INSTALL_DIR>/xapidocs/core_javadocs).

Interface
Contract Description Methods

ISCUIMashup Includes the business logic of an
application. If transactional is set,
then all of the business logic in one
mashup will be under one
transaction.

A custom mashup implementation
is plugged in using an
<app>_mashup.xml file. Any XAPI
service calls that an application
might need for its business logic
will be included in the <API>
element of the <app>_mashup.xml
file.

v execute

Takes in SCUIContext, input
object, and XML in the form of
metadata as an SCUIMetaData
object.

Mashup Layer Classes of the Web UI Framework

Class Description Methods

SCUIMashupRegistryHelps load mashup during initial
setup.

Reads all of the mashup XML files
and creates SCUIMashupMetaData
objects per mashup ID. It maintains
this registry for all of the mashup
IDs according to whether a mashup
is extensible.

v loadMashup

Loads all the XML files under
the /mashupxmls/
<applicationId> directory in the
context root.

v loadExtnMashup

Loads all the XML files under
the /mashupxmls/
<applicationId>/extn directory
in the context root.

30 Sterling Business Center: Customization Guide

Class Description Methods

SCUIMashupHelperCalled by a Struts action to load /
fetch mashups.

v invokeMashup(String mashupId,
SCUIContext uiContext Object
input)

If resourceId is given, calls the
authorization layer.

If transactional is set to true, sets
the transaction context.

Instantiates the mashup
implementation given by the
class name in the mashup.xml
file.

v loadMashupXML

Called by the startup servlet.

Mashup XML Metadata of the Web UI Framework
A mashup configuration is an XML file that you create in the Designer Workbench.
This XML file includes the following items:

XML Item Type of Item Description

mashups Element Encloses all of the details of a mashup.

Contains the definition of one or more individual
mashups in an element mashup.

id Attribute
(mashup tag)

Unique identifier of the mashup.

transactional Attribute
(mashup tag)

Indicates if the mashup is transactional in nature
(true if transactional). Used for the transaction
management task. For all out XAPI calls, this must be
set to true.

description Attribute
(mashup tag)

Describes the mashup.

Chapter 2. Customizing Sterling Business Center 31

XML Item Type of Item Description

resourceId Attribute
(mashup tag)

Unique identifier of the resource which needs to be
authorized. Used for the authorization task.

If resourceId is not specified, authorization does not
take place and the mashup gets the permission by
default.

Create resources in the Applications Manager. If a
mashup is given access to all resources, the
resourceId is not needed.

If a resourceId does not have permissions for a
mashup, it cannot view the results of that mashup.
This will result in the message Mashup invocation
failed.

If two mashups have the same ID and namespace
names, the mashup is invoked only once. If two
mashups have the same ID, but different namespace
names, the mashup is invoked two times.

If the permission for one tag of a mashup is revoked,
the mashup cannot be invoked.

extensible Attribute
(mashup tag)

Indicates if the mashup can be extended.

mashuptype Attribute
(mashup tag)

Has the following values:

v XAPI (for XAPI calls)

v AggregateXAPI (for multiple mashups)

classInformation Tag (within
mashup tag)

Includes a name attribute, which is the fully qualified
class name of the mashup implementation.

mashupRef Tag (within
mashup tag)

Indicates each XAPI within a multiple XAPI call in a
mashup. Includes an id attribute and a namespace
tag (APINamespace).

APINamespace Tag (within
mashupRef tag)

Defines namespace for each XAPI in a multiple XAPI
call. Includes the following attributes:

v inputNS - input namespace

v outputNS - output namespace

The following are examples of mashup XML files:
<mashups>

<mashup id =’m0001’
transactional=’true’
resourceId=’SC02187’
extensible=’true’
mashuptype=’XAPI’>

<classInformation name="com.sterlingcommerce.ui.web.framework.mashup.impl.SCUIMashupImplementer"
/>

</mashup>
<mashup ...
/>
<mashup ...
/>

</mashups>

32 Sterling Business Center: Customization Guide

<mashups>
<mashup id=’STK-getAllFlightInfo’ transactional=’true’
description="Flight, Flight Trips, Flight servicesmashup"
mashuptype=’AggregateXAPI’>

<classInformation
name="com.sterlingcommerce.ui.web.platform.mashup.SCUIXAPIAggregatorMashup" />

<mashupRef id="demoapp-stk-getFlightList">
<APINamespace inputNS=’flight’
outputNS=’flightOutput’ />

</mashupRef>
<mashupRef id="demoapp-stk-getFlightServiceList">

<APINamespace inputNS=’flightService’
outputNS=’flightServiceOutput’ />

</mashupRef>
<mashupRef id="STK-aggFlightTrip">

<APINamespace inputNS=’flightTrip’
outputNS=’flightTripOutput’ />

</mashupRef>
</mashup>

</mashups>

Configuring Mashups in Web UI Framework
Procedure
1. Open the Designer Workbench.
2. Click the Data tab.
3. Configure an output data source.
4. Click the Mashup button to create the mashup XML file, which will include a

reference to the output data source.

Specifying Multiple XAPI Calls with the Web UI Framework
About this task

With the Web UI Framework, you can specify more than one XAPI call under one
transaction, using the mashup layer. When you do this, you create mashups within
other mashups. IBM recommends that you use multiple XAPI mashup
configurations only for fetch operations, and not for save operations.

Procedure
1. Open the Designer Workbench.
2. Click the Mashups button to create or open a mashup.xml file.
3. For each XAPI, create mashups within the main mashup. Each of these

mashups has an id as an attribute to uniquely identify the mashup definition in
the XML file. Each mashup also has a resourceId as an optional attribute which
is used for authorization and takes precedence over individual resource
permission defined under the main mashup element.
Also, these mashups contain one or more mashupRef elements, which are used
to reference other mashups. The mashup id referenced in the mashupRef
element must be defined in the mashup.xml file before the reference.
The mashupRef element can also have an endpoint as an attribute that will take
precedence over endpoint attribute in the mashup element. The endpoint
attribute in the mashup element will in turn take precedence over the one
defined in the XAPI layer.

4. In each mashupRef tag within each XAPI mashup, use the APINamespace
element to define the input namespace and the output namespace for each API
in the mashup. If this element is not given, the input namespace defaults to the

Chapter 2. Customizing Sterling Business Center 33

element name that serves as the input XML and the output namespace defaults
to the element name in the output XML.
If there are two mashups with the same id values and same namespaces, the
calls are merged to only one XAPI under the multiple XAPI call. If the
namespaces are different, they are treated as separate XAPIs under the multiple
XAPI call.

How the Mashup Layer Handles Authorization and Transaction
Management in the Web UI Framework

The mashup layer acts as a single point where authorization and transaction
management are handled in a consistent way, no matter what development tool
you use to access it (Struts, DWR, custom servlet, etc.).

If a resource ID is not passed for authorization or if the request is not transactional,
the request is not stopped. Instead, it continues through to the mashup and
business logic layers.

Each invocation of a mashup is considered to be part of a transaction.

The following graphic shows how the mashup layer handles authorization and
transaction management, using the Struts development tool as an example:

34 Sterling Business Center: Customization Guide

Programming Tools of the Web UI Framework

Ext JS Plugins in the Web UI Framework
When you create a component using the Ext JS JavaScript framework, your config
options can include plugins, which provide custom functionality for a component.
Plugins are often used to change the look and feel of a screen. For example, you
could add a plugin to change the color of a page title to red.

Before using the plugin, it must be registered in an application. Plugins are
registered for specific types of components.

Chapter 2. Customizing Sterling Business Center 35

Ext JS Plugin Methods in the Web UI Framework
The sc.plat.PluginRegistry class that is used by Ext JS plugins includes the
following methods for registering and deregistering plugins:
v registerPlugin(plugin, boolOverride)

Adds plugin to registry.
v registerTypePlugin(name, id)

Registers the type with the plugin corresponding to the ID passed. Before a type
is registered with an ID corresponding to a plugin, a plugin with that ID must
be registered using the registerPlugin method.

v unregisterTypePlugin(name, id)
Unregisters the plugin for the component type if a plugin has been registered
with the ID passed.

The following table describes the parameters for these methods:

Parameter Method(s) Description

plugin registerPlugin An object/array plugin object or array of
plugin objects that includes:

v (Required) An init method that accepts a
reference of the type Ext.Component.

v A property ID (id) that is the unique ID of
the plugin object.

The order of plugin objects formed in the
array is:

1. Plugins registered under xtype (if any).

2. Plugins registered under sctype (if any).

3. Plugins registered under binding data
(default implementation).

4. Plugins passed while creating the
component (if any).

boolOverride registerPlugin An optional boolean value.

v true - If the ID of the plugin passed is
already registered against a different
plugin, then the new plugin replaces the
old plugin and the new plugin is
registered against this ID.

v false (default) - If two plugins are
registered with the same id, then the first
plugin takes precedent over the second
plugin. The following message appears:

ID already exists

lululu v registerTypePlugin

v

unregisterTypePlugin

(String) Component type name:

v xtype or sctype

v Custom type such as sourceBinding in
bindingData of component

id registerTypePlugin (String) ID of the plugin.

id unregisterTypePlugin (String) The unique ID for each plugin that
it was registered against.

36 Sterling Business Center: Customization Guide

Creating Ext JS Plugins with the Web UI Framework
About this task

To register a plugin, use the sc.plat.PluginRegistry class to register one of the
following component types. When a component is created, all of the plugins that
are registered for any of these types are passed as a config option, along with any
other plugins.
v xtype

A standard config option defined by Ext JS.
v sctype

A standard component config option defined by IBM. Screens can be grouped
under different sctypes. The sctype can be passed as a config option to the
component based on the screen where it is present.

v A custom type like the attribute in binding data.
The default implementation of this feature will look for an ID registered with
the attribute in the source binding data. You can override the default
implementation.

Example Code for Registering Ext JS Plugins in the Web UI
Framework

The following example code shows how to register a plugin. This code adds a
plugin that sets the collapsible property to true for all components that have the
xtype panel.
var s = {

id: ’first’,
init: function(comp){

comp.collapsible = true;
}

};
sc.plat.PluginRegistry.registerPlugin(s);
sc.plat.PluginRegistry.registerTypePlugin(’panel’, ’first’);

The following example code shows how to unregister the plugin that was
registered in the above code.
sc.plat.PluginRegistry.unregisterTypePlugin(’panel’,’panelid’);

Extending Mashups

Mashups in Sterling Business Center
You can customize the input XML template, and the output XML template of an
API call. Additionally, you can define new mashup layers. The Sterling Business
Center mashups are located in the <INSTALL_DIR>/repository/eardata/sbc/war/
mashupxmls/sbc directory. You must place the extended mashups in the
<INSTALL_DIR>/extensions/sbc/webpages directory.

The Sterling Business Center mashups use the following mashup types:
v XAPI (for XAPI calls)
v AggregateXAPI (for multiple mashups)
v SBCAPI (for application-specific mashups)

Chapter 2. Customizing Sterling Business Center 37

Extending Mashups in the Web UI Framework
You can extend mashups using both differential and override extensibility. A
mashup is extended on the basis of the <mashup id> tag specified in the XML file.
A XAPI mashup can be extended irrespective of the screen being extended.

Extending Mashups Using Override Extensibility in the Web UI
Framework
About this task

You can extend a mashup using override extensibility both automatically and
manually.

In both of the following procedures, you create a new mashup XML file to replace
the mashup file that you are extending. You can create that file in one of the
following ways:
v Hand-coding.
v Generation of code using the mashup template in the Code Template Generator.

The mashup id would be the same as the id of the mashup file that you are
extending. After you paste the generated code on the Code Update page, you
can test the behavior of the new mashup file in the application.

Procedure
1. To automatically override a mashup, do the following:

a. Identify a mashup to be extended.
b. Go to the <INSTALL_DIR>/extensions/<app_dir>/webpages directory. This

directory path is not part of the out-of-the-box installation, and must be
created by the user within the <INSTALL_DIR>/extensions directory.

c. Replicate the relative folder structure (relative with regard to deployment)
of the mashup XML file containing the mashups to be created. The original
mashup XML file is located in the <INSTALL_DIR>/repository/eardata/
<app_dir>/war/mashupxmls/<app_dir> directory.

d. Create a new XML file with the same name as the base file. Any mashup in
this XML file that has the same ID as the base file would override the base
file mashup.

2. To manually override a mashup, do the following:
a. Create a new mashup XML file with entries for the mashup file to be

overridden. This file can have any name and does not need to replicate the
relative directory structure of the XML file containing the mashup to be
extended.

b. Add this XML file to the <INSTALL_DIR>/extensions/<app_dir>/webpages
directory.
If you have created a servlet class to register a JSB (JavaScript Builder), the
code to include this mashup XML file also can be written in the same
servlet class. Else, you should create a servlet class to register this mashup
XML file. Use the method loadOverrideMashupXml in the
SCUIMashupHelper class. For more information, refer to the documentation
on deploying extensions using JavaScript Builder files.

Extending Mashups Using Differential Extensibility in the Web UI
Framework
About this task

To extend a mashup using differential extensibility, do the following:

38 Sterling Business Center: Customization Guide

Procedure
1. Create a new mashup XML file with entries for the mashup file to be

overridden. This file can have any name and does not need to replicate the
relative directory structure of the XML file containing the mashup to be
extended.

2. Add this XML file to the <INSTALL_DIR>/extensions/<app_dir>/webpages
directory. This directory path is not part of the out-of-the-box installation, and
must be created by the user within the <INSTALL_DIR>/extensions directory.
The original mashup XML file is located in the <INSTALL_DIR>/repository/
eardata/<app_dir>/war/mashupxmls/<app_dir> directory.
If you have created a servlet class to register a JSB (JavaScript Builder), the
code to include this mashup XML file also can be written in the same servlet
class. Else, you should create a servlet class to register this mashup XML file.
Use the method loadIncrementalMashupXml in the SCUIMashupHelper class.
For more information, refer to the documentation on deploying extensions
using JavaScript Builder files.
The new file's contents are added to the respective mashups in the base screen
based on the <mashup id>.
For example, you might have the following out-of-the-box mashup:
<mashup id=’demoapp-stk-getFlight’ transactional=’true’ description="Flight Fetch mashup"

mashuptype="XAPI">
<classInformation name="com.sterlingcommerce.ui.web.platform.mashup.SCUIXAPIMashup" />
<API Name="getFlight">

<Input>
<Flight FlightKey="" />

</Input>
<Template>

<Flight FlightName="" />
</Template>

</API>
</mashup>

To use differential extensibility, you could create an incremental/differential
mashup as shown below in the following example override_mashup.xml file in
a /myapps/override directory with the same mashup ID:
<mashup id=’demoapp-stk-getFlight’ mashuptype="XAPI">

<classInformation name="com.sterlingcommerce.ui.web.platform.mashup.SCUIXAPIMashup" />
<API Name="getFlight">

<Template>
<Flight OrganizationCode="" />

</Template>
</API>

</mashup>

If you use the incremental load method loadIncrementalMashupXml(/myapps/
override/override_mashup.xml, ...), then the inner elements in the
override_mashup.xml file are merged into the original mashup, and it will
behave as though the mashup was coded as follows:
<mashup id=’demoapp-stk-getFlight’ transactional=’true’ description="Flight Fetch mashup"

mashuptype="XAPI">
<classInformation name="com.sterlingcommerce.ui.web.platform.mashup.SCUIXAPIMashup" />
<API Name="getFlight">

<Input>
<Flight FlightKey="" />

</Input>
<Template>

<Flight FlightName="" OrganizationCode="" />
</Template>

</API>
</mashup>

Chapter 2. Customizing Sterling Business Center 39

Creating and Extending a Struts File

Struts in Sterling Business Center
You can define new Struts and override the existing Struts. The Sterling Business
Center Struts files are located in the <INSTALL_DIR>/repository/eardata/sbc/war/
WEB-INF/classes directory. The struts.xml.sample and struts.properties.samplefiles
are located in the <INSTALL_DIR>/repository/eardata/sbc/extn directory.

Creating and Extending a Struts XML File in the Web UI
Framework

Procedure
1. Create your app_extn_struts.xml file to extend the app_struts.xml file which

contains all of your actions.
2. Navigate to the <Install Dir>/repository/eardata/<application name>/extn

directory and re-name the struts.properties.sample and struts.xml.sample files
to struts.properties and struts.xml respectively.
The following shows struts.properties sample contents:
struts.action.extension=do
struts.devMode=true

The following shows struts.xml sample contents:
<struts>

<include file="struts-default.xml"/>
<include file="scuiimpl_struts.xml"/>
<include file="app_struts.xml"/>
<include file="app_extn_struts.xml"/> <!--your extn struts must be included after the app_struts.xml -->

</struts>

3. Include the app_extn_struts.xml file in the classpath. This can be done by one
of the following ways:
v Create a WEB-INF/lib directory in the extn directory and copy your jar file

containing the app_extn_struts.xml file there. This step can be followed in
case of single and multiwar deployments.

v Create a WEB-INF/classes directory in the extn directory and copy your
app_extn_struts.xml file there. This step can be followed in case of single and
multiwar deployments.

v Create a jar file containing the app_extn_struts.xml file and run the
Install3rdParty.sh script. This step can only be followed in case of a single
war deployment.

4. Run the buildear or buildwar utility to create the EAR/WAR file.

What to do next

Note: When you override struts that use custom strut classes, see the appropriate
Javadocs for other details about your implementation.

Creating a Menu Entry for a New Web UI Framework Screen Using the
Applications Manager

About this task

You can use the Applications Manager to create a new menu entry for a new Web
UI Framework screen using the following items:
v Resource

40 Sterling Business Center: Customization Guide

v Menu
v User permissions
v Struts xml file

You can also create a new menu using the Code Template Generator of the
Designer Workbench. Use the Code Template Generator to access the Code Update
page, where you create the menu using code that you generated in the Code
Template Generator. For more information, refer to the documentation on the Code
Template Generator.

Procedure
1. Launch the application.
2. Launch the Applications Manager.
3. Click Applications > Application Platform.
4. Create a new resource by doing the following:

a. Double-click the Presentation item.
b. Double-click the Resources item.

The Resource Hierarchy appears.
c. Select the Sterling_Supply_Chain_Applications_Console item.
d. Click the Create New button (the green plus sign).

The Resource Details screen appears.
e. Type information for all the tags.

The Resource ID tag associates menus and resources. For the URL tag, type
<package namespace in your struts.xml file>/<action name>. For the
Resource Type tag, select StrutsAction from the dropdown list.

Note: The URL package name and the action name in the struts.xml file
should be the same.

f. Click the Save button in the upper right corner of the Resource Details
screen.

5. Create the new screen using the Designer Workbench.
6. Copy all of the generated files of the new screen to a new folder in the

<app_dir>/webpages directory. These files include the <newscreen>.json,
<newscreen>.js, <newscreen>_config.js, and <newscreen>.js.sample files.

7. Create a new menu by doing the following:
a. Double-click the Presentation item.
b. Double-click the Menu item.

The Menu Hierarchy appears.
c. Double-click the option for the menu where the new screen will be

accessed.
For example, you would double-click the <application>_Admin_Menu
option to create a menu under the top menu or under an existing submenu
like AdminPage.

d. Click the parent menu for the new menu entry.
e. Click the Create New Menu Item button (it includes a green plus sign).

The Menu Item Details screen appears.
f. Type information for all the tags.

For the Resource ID tag, select the resource with which this menu should be
associated.

Chapter 2. Customizing Sterling Business Center 41

8. Give user permissions by doing the following:
a. Double-click the Security item.
b. Double-click the Users item.

The User Search screen appears.
c. Select a user and subscribe to a group. For example, you could select

<application>admin and subscribe to the SYSTEM group.
d. Under the Security item, double-click the Groups item.

The Groups screen appears.
e. Edit the details for the user's default group. For <application>admin, the

default group is <application>admingroup.
f. Double-click the default group name to display the Group Details screen.
g. Click the Permissions button for the Cross Application option.
h. Allow the user access to the new Struts action.
i. Save the changes and revert the group subscriptions to the default values.

9. Define the Struts action in a Struts config file which serves the page that is
linked to where you click on the menu. You can use the Struts file in the Code
Template Generator to define the Struts action, which you would then paste
into the above mentioned config file. The resourceId should be the same as the
resourceId defined in the Applications Manager. For more information on how
to include this file entry in the struts.xml file, refer to the information on
creating and extending Struts XML files. The jar file for the install3rdParty.sh
command should also contain the java class file for this Struts action.
<struts>

<package name="<package-name>" namespace=/<namepsace>"" extends="struts-default">
<action name="home" class="<struts-action-class>">

<param name="RessourceId"><resourceId></param>
<result name="success"><result-1></result>

</action>
</package>

</struts>

Customizing the web.dita File

Customizing the web.xml File for Deployment
About this task

After performing the customizations, you must customize the web.xml file for
deployment.

To customize the web.xml file for deployment:

Procedure
1. Run the buildear or buildwar utility to create the sbc.war file.
2. Copy the web.xml.sample file from the <INSTALL_DIR>/repository/eardata/sbc/

extn directory to the same directory with the file name "web.xml".
3. Modify the newly created web.xml files as needed.
4. If you need to add a new servlet or filter, package it in a .jar file, and run the

<INSTALL_DIR>/bin/install3rdParty.sh script to include this jar file in a
classpath.

5. Run the buildear or buildwar utility to create the sbc.war file.

42 Sterling Business Center: Customization Guide

Customizing the web.xml File for Development
About this task

During development, you can customize the web.xml file to view your
customizations.

To customize the web.xml file during development:

Procedure
1. Run the buildwar utility to create the sbcdev.war file.
2. Copy the web.xml.sample file from the <INSTALL_DIR>/repository/eardata/

sbcdev/extn directory to the same directory with the file name "web.xml".
3. Modify the newly created web.xml files as needed.
4. If you need to add a new servlet or filter, package it in a .jar file, and run the

<INSTALL_DIR>/bin/install3rdParty.sh script to include this jar file in a
classpath.

5. Run the buildwar utility to create the sbcdev.war file.

Changing Bundle Files

Resource Bundles in Sterling Business Center
Resource Bundles on the Server

You can define new server-side bundle entries and override the out-of-the-box
server-side bundle entries. The server-side bundle file (sbcbundle.properties) is
located in the <INSTALL_DIR>/resources/ directory.

For more information about customizing resource bundles on the server, refer to
the Sterling Selling and Fulfillment Foundation: Customization Basics Guide.

Resource Bundles on the Client

You can define new client-side bundle entries and override the out-of-the-box
client-side bundle entries. The client-side bundle files are located in the
<INSTALL_DIR>/repository/eardata/sbc/war/sbc/resources directory.

To load the client-side bundles, the sbcBundle target is used. This target is defined
in the sbccore.jsb file located in the <INSTALL_DIR>/repository/eardata/sbc/war/
builder/sbc directory.

Changing Bundle Files in the Web UI Framework
About this task

You can change bundle files in one of two ways:
v Through localization.
v Through extensibility.

Procedure
1. If you are changing a bundle file through localization, you must replicate the

folder structure of your current bundle file in the localization folder of the
application.

Chapter 2. Customizing Sterling Business Center 43

For example, if your bundle file is at /folder1/folder2/x-bundle.js and you are
localizing or replacing a bundle entry for the fr-FR locale, then you should
create a bundle file with the new values for the bundles that you want to
change and retain all existing values at /localization/fr/FR/folder1/folder2/x-
bundle.js.

2. If you are changing a bundle file through extensibility, do the following:
a. Create your bundle files which only have the bundle entries that you want

to replace.
b. Identify the target name of the JSB that is being used to render the screen

whose bundles should be replaced. The name should be entered in the
loadAfter attribute of your JSB.

c. Specify only the path and name of your bundle-js file in the extn directory
in the tag <include name>. For example:
<?xml version="1.0" encoding="utf-8"?>
<project name="scuiIDE"

author="Project author">
<target name="flight_route"

<!-- The name attribute in <target> is used to uniquely identify this JSB in the
application. It serves as its identifier.-->

file="/extn/stk/flightRoute/test-all.js"
loadAfter="flightService"

<!-- The loadAfter attribute in <target> is used to specify the javascript library
after which the current JSB should be rendered.-->

allowDynamicLoad="true"
debug="True"
shorthand="False"
shorthand-list="">

<include name="/extn/stk/flightRoute/flightRouteList_bundle.js"/>
</target>

</project>

Building and Customizing Pages and Controls

Widgets of the Web UI Framework

The following tables describe the widgets that are available in the Palette view of
the Designer Workbench and the Extensibility Workbench. For more information
about widget properties, refer to the Ext JS framework documentation at (2.2.1)
http://www.extjs.com/deploy/ext-2.2.1/docs/ or (3.0) http://www.extjs.com/
deploy/dev/docs/.

Most of the widgets can be used with both Ext JS 2.2.1 and Ext JS 3.0. Widgets that
can be used with only one version are identified. The graphic of the Palette shows
the widgets available in Ext JS 3.0.

The following items cannot be created with widgets:
v Menus. Work with the Ext.menu.Menu class of Ext JS.
v Wizards. Wizards must be defined using an XML file.
v Repeating panels with radio buttons. Work with the Ext.form.Radio class of Ext

JS.

44 Sterling Business Center: Customization Guide

Controls

Note: For information about the Column widget, refer to the Grids section. This
widget appears in the Controls section in Ext JS 2.2.1 and in the Grids section in
Ext JS 3.0.

Chapter 2. Customizing Sterling Business Center 45

Control Description

Label Text that can identify other controls.

Text Text for input and display.

Date Time Date and time values.

Number Number values, up to 16 digits.

Big Number Number values, more than 16 digits.

The Big Number control works in the same way as the Number
control, except that the getValue() function returns a string.

The Big Number control is a customized control that is not
documented in the online Ext JS documentation. It extends the
features of the Text control.

TextArea Multiple lines of text.

Field Provides default event handling, sizing, value handling, and other
functionality.

File Upload Widget Used for accessing files from external sources.

Hidden Hides values in forms that need to be passed when you submit a
form.

Link Connects outside of current screen (for example, a URL).

Button When clicked, causes an action.
Note: Ext JS 3.0 does not support the Toolbar.Button,
Toolbar.Splitbutton, or the menu button.

Cycle Button Button that cycles through menus as you click it. Down arrow
displays items for each menu.

Check Box Single box that flags a value as true or false.

Radio A type of check box that can be grouped with other radio controls
and allows only one control in a group to be checked.

TriggerField A type of text field that includes a clickable trigger button.

Combination Box A type of text field that includes a list of values from which you can
select.

Time Time input field with a time dropdown tool and automatic time
validation.

Date Date input field with a date picker tool and automatic time
validation.

ProgressBar Shows progress of an operation.

Slider Supports vertical or horizontal orientation, keyboard adjustments,
configurable snapping, axis clicking, and animation.

Display Field (3.0
only)

Display-only text field that is not validated or submitted.

Spacer (3.0 only) Provides a gap or a space in a layout.

Spinner (3.0 only) A number field with up and down arrows to increase or decrease
the value in particular increments.

Grids (3.0 only)

Grid/Column Description

Grid Panel that includes table-like columns and rows.

46 Sterling Business Center: Customization Guide

Grid/Column Description

EditableGrid A type of grid that allows cell editing on selected columns.

Column Normal/default column for a grid.

Boolean Column (3.0
only)

Renders boolean data fields.

Number Column (3.0
only)

Renders numeric fields according to a format string.

Date Column (3.0
only)

Renders date fields according to a specified format.

Template Column (3.0
only)

Renders values by processing a record's data using the XTemplate.

Panels

Note: For information about the Grid and EditableGrid widgets, refer to the Grids
section. These two widgets appear in the Panels section in Ext JS 2.2.1 and in the
Grids section in Ext JS 3.0.

Panel Description

Panel Container that can include:

v Bottom and top toolbars

v Separate header, footer and body sections

v Built-in expandable and collapsible behavior

v Prebuilt tool buttons that can be customized

Tree Panel Tree-structured representation of hierarchically organized data.

Field Set Groups form fields.

TabPanel Groups tabs which can respond in unique ways to being activated
and de-activated.

Toolbar (3.0 only) Container that can include virtually any type of component.

Others

Use the Custom Component option in the Others section to add, to the screen, a
component that you have created (like another screen developed using the
Designer Workbench). The Custom Component option gives one screen access to a
second screen whose components include that first screen (child-to-parent screen
access). Use the preset properties to specify this access.

Working with Widgets in the Web UI Framework
Use the Outline View (Extensibility Workbench) or the Tree View (Designer
Workbench) to do the following when you are working with widgets:
v Re-arrange widgets

Different rules apply to how you can re-arrange widgets. For example, you
cannot move a button from a standard panel to a standard grid. The Designer
Workbench has built-in safeguards against the improper re-arrangement of

Chapter 2. Customizing Sterling Business Center 47

widgets. An error message appears if you try to move a button from a standard
panel to a standard grid. These safeguards help you organize your screen in the
most functional way.
You can re-arrange widgets in the following ways:
– Change the order of widgets. For example, you can place a text field between

two buttons.
– Move a widget from the main screen to a panel, or from one panel to another

panel. For example, you can move a button from a standard panel to a field
set. Or you can move a column from a standard grid to an editable grid.

– Move one standard panel onto another standard panel.
If a screen uses a special tab sequence, re-arranging widgets might affect your
intended sequence of actions when you tab from one widget to another.

v Delete widgets
You cannot delete a widget from the base/out-of-the-box screen. You can only
delete widgets that were added using the Extensibility Workbench. If you delete
a widget that was used to work with data (like a text box or combination box),
you will have to find another way to work with that data.

v Select a widget so that you can view or change its properties in the Properties
view. If you are unsure of what widget is being shown in the Outline or Tree
View, click the widget on the screen, and a horizontal blue line will show the
location of the widget in the view.
You can always use the canvas to select a widget, but it is not as precise as
using the Outline View or Tree View. On the canvas, it might take you several
clicks to select the right widget.
For more information about widget properties, refer to the Ext JS framework
documentation at (2.2.1) http://www.extjs.com/deploy/ext-2.2.1/docs/ or (3.0)
http://www.extjs.com/deploy/dev/docs/.

Adding a Widget to a Screen with the Web UI Framework
Procedure
1. Make sure the Palette tab is showing on the Extensibility Workbench or the

Designer Workbench, and not the Data or Files tab.
2. Click on a widget.
3. (Required only if a preset is required) Click the check box for the preset.
4. (Required only if a preset is required) Make any changes to the default

properties of the widget by creating a preset property.
5. Move your cursor to the screen and right-click or left-click to add the widget to

the screen. A tooltip will help confirm when you can add the widget.
In the Designer Workbench, the widget appears in two places:
v On the canvas, in the most upper left hand location.

For example, if you add a button to a blank canvas, it appears in the upper
left hand corner of the canvas. If you add a second button, it appears directly
beneath the first button.

v In the Tree View, in a hierarchical pattern under the screen object.
In the Extensibility Workbench, the widget appears in two places:
v On the screen, in the location where you clicked.
v In the Outline view, in a hierarchical pattern under the screen object.

48 Sterling Business Center: Customization Guide

Customizing Widgets in an Existing Installation with the Web
UI Framework

Procedure
1. Open an existing installation of the application.
2. Navigate to the screen where you want to work.
3. Click Shift + space bar to bring up the Extensibility Workbench.
4. Select the widget that you want to modify. In the following example, the tooltip

shows that you can select the Delete button.

Note: The button/links present in a base screen will continue to function
unless you provide your action/click handler in the Properties View and click
on Refresh Instances to apply those changes (If you directly click on a
button/link on the screen, you might lose your changes if the action redirects
you to another page). Hence, it would be best to select and edit these controls
through the Tree View instead of the screen.

5. Make any changes to the widget, using the tools of the Extensibility
Workbench. In the following example, you can add a property to the Delete
button using the Properties view.

6. Save your changes.

Hiding Fields with the Web UI Framework
Procedure
1. In the Designer Workbench or the Extensibility Workbench, add a panel to the

screen.
2. Set the hidden property of the panel to true.
3. Add to the panel the field that you want to hide.
4. Save the screen.

Accessing the Working Files of the Web UI Framework
Access the working files in your project (*.json screen files) using the Files tab.

The Files tab includes the following tools:
v The Options button enables you to specify the project directory where you store

the project files.
v The button with three dots near the top of the tab enables you to display the

contents of a different directory.

Chapter 2. Customizing Sterling Business Center 49

v The Notify project check box near the bottom of the tab enables you to
immediately update your main project with changes that you make using the
Designer Workbench.

Viewing Screen Objects in the Outline or Tree View of the Web
UI Framework

Use the Outline view (Extensibility Workbench) or the Tree View (Designer
Workbench) to collapse and expand all or part of your list of screen objects.
Collapsing and expanding the list does not affect the screen.

You can do the following:
v Collapse the list so that only the screen object appears.

If you collapse the list, and then click on the plus sign for the screen object, only
the first level of widgets appear. This gives you a more general view of the
screen.

v Expand the list to show all of the widgets.

If you are unsure of what widget is being shown in the Outline or Tree View, click
the widget on the screen, and a horizontal blue line will show the location of the
widget in the view.

Outline view (example for a Search button):

50 Sterling Business Center: Customization Guide

Tree View (draft screen with panel, buttons, and field):

Chapter 2. Customizing Sterling Business Center 51

Configuring Properties for Screens, Widgets, and Other Items
with the Web UI Framework

About this task

Use the Properties view in the Designer Workbench to work with the properties of
the canvas widgets. The Properties view settings work in conjunction with the
settings in the Configure Properties dialog box.

For more information about widget properties, refer to the Ext JS framework
documentation at (2.2.1) http://www.extjs.com/deploy/ext-2.2.1/docs/ or (3.0)
http://www.extjs.com/deploy/dev/docs/.

Procedure
1. Select that widget in the Tree View.

Note: The button/links present in a base screen will still continue to function
unless you provide your action/click handler in the Properties View and click
on Refresh Instances to apply those changes (If you directly click on a
button/link on the canvas, you might lose your changes if the action redirects
you to another page). Hence, it would be best to select and edit these controls
through the Tree View instead of the canvas.

2. Make sure that the tab for that widget is showing in the foreground of the
Properties view, and not the tab for the screen (which always shows in either
the foreground or the background).
For example, if you select a trigger widget in the Tree View, tabs will show for
both the screen and the widget.

52 Sterling Business Center: Customization Guide

3. To change the type or value of an existing property, click in the Type or Value
field for that property, and make your change.
For example, for a text field, you could change the Type from string to an
expression (expr), and then enter an expression in the Value field.

4. Add a property.
a. Use the down arrow by the Add button to select a new property. The

dropdown list shows all of the available properties for that widget that are
not default properties.

b. Click the Add button.
The property appears with the other properties. The default type for that
property appears in the Type field.

c. If necessary, change the default type to an expression (expr).
d. Enter a value for the property.
e. Change the property name to a unique name.
For example, for a button, you could add an enableToggle property, leave its
type as boolean, and set its value to true.

5. Continue working with the screen.

Chapter 2. Customizing Sterling Business Center 53

Providing Description Attributes for Binding Namespaces in
the Web UI Framework

The namespaces attribute on a screen provides information about the namespaces
that have been used for binding controls. Customizers can view the namespaces
and their descriptions (if provided by the developers) in the Control Details View
of the Extensibility Workbench or the Properties window in the Designer
Workbench. They do not have to open the JavaScript source files to view the
namespaces.

The namespaces attribute is an object with two attributes (source and target) which
individually are arrays of an object. In older screens, this attribute is an object with
two attributes (source and target) which individually are arrays of a string. You
can use the Designer Workbench to update the namespaces structures of older
screens to use object arrays instead of string arrays.

The following shows the namespaces structure:
namespaces: {

source: [’a’, ’b’]
, target: [’c’, ’d’]

}
, namespacesDesc: {

sourceDesc: [’description for a’, ’description for b’]
, targetDesc: [’description for c’, ’description for d’]

}

The namespaces are saved under the namespaces object while the descriptions are
saved under the namespacesDesc object. There is a one-to-one mapping between
the contents in namespaces and namespacesDesc. This maintains backward
compatibility with older applications that used a different namespaces structure.

An older screen that uses the different namespaces structure is upgraded in the
Designer Workbench and the new structure is written to the JavaScript and
JavaScript Object Notation files. The user receives a prompt, and on confirmation
the update finishes. Once updated, the file can no longer be opened in an older
version of the Designer Workbench. The new contents are written into the js and
json files once the user saves them using the Save button.

After updating, the description field for both the source and the target will default
to, respectively, Description for <source name> and Description for <target
name>.

With older screens where namespaces were not provided in the Designer
Workbench and not present in the js and json files, this upgrade generates the
following js file:
namespaces: {

target: []
, source: []

}
, namespacesDesc: {

targetDesc: []
, sourceDesc: []

}

With these kinds of screens, you should provide a one-to-one mapping between
the bindingData source and target arrays with namespacesDesc. In extensibility, if
namespacesDesc has non-empty values while namespaces is empty, values would
be displayed corresponding to bindingData.

54 Sterling Business Center: Customization Guide

Wizards of the Web UI Framework
Wizards guide users through the steps of a task in a specific sequence. Wizards are
required for complex or infrequently performed tasks where the user is unfamiliar
with the steps involved.

You must use an XML file to create the flow definition of your wizard. You cannot
use widgets on the Palette tab of the Designer Workbench to create wizards. Also,
you cannot use the Extensibility Designer to customize wizards. After you create a
flow definition, you must register it.

Once a wizard is created, all client/server communication must be Ajax-based.

The wizard flow definition includes the following items:
v Page

The visible part of the wizard. Each page must have a unique ID within the
wizard.

v Rule
Determines the flow of the wizard. A rule can lead to:
– The next page in the wizard flow.
– Another rule.

v Transition
A connector which connects the wizard flow together. A transition can happen
from page-to-page, page-to-rule, rule-to-page, or rule-to-rule.

v Flow controller
The flow controller drives the wizard flow, and does the following:
– Determines the next wizard entity that is shown or evaluated, based on the

current activity entity.
– Provides basic navigation capabilities like showNextPage and

showPreviousPage.
– Tracks data to be remembered in a session when a page transition occurs.
Any wizard controller has to extend ISCUIWizardFlowController. The default
wizard controller class is
com.sterlingcommerce.ui.web.platform.wizard.SCUIDefaultWizardController.
The wizard flow controller utility class orchestrates the flow based on the
definition. You can plug in your own flow controller or use the default flow
controller.

v Breadcrumbs
Multiple pages can be grouped into the same category, which allows for the
logical grouping of pages and the reduction of steps shown in the breadcrumb.
You can add your own breadcrumbs to the application using utilities provided
on the front end. The sc.plat.ui.Wizard class contains all the utilities.

Creating a Wizard with the Web UI Framework
About this task

Do the following in the flow definition XML file:

Procedure
1. Specify the following attributes in the wizardEntities tag:

v Page

Chapter 2. Customizing Sterling Business Center 55

v Rule
v Transition

2. Specify the flow controller attributes in the wizard tag.
If you leave it blank or undefined,
com.sterlingcommerce.ui.web.platform.wizard.SCUIDefaultWizardController
will be used as a controller.

3. Specify the breadcrumbs attributes in the categories tag.
4. Specify the Web UI Framework front end of the wizard.

On the UI, a wizard should be extended from the sc.plat.ui.Wizard class. A
Wizard is a container with specific functionalities related to wizards. A Wizard
can contain wizard pages (instances of sc.plat.ui.WizardPage or
sc.plat.ui.ExtensibleWizardPage). With its card layout. a Wizard can switch
between multiple wizard pages.
The sc.plat.ui.Wizard class extends the sc.plat.ui.Screen class, which adds data
binding capabilities to it.
The doAction method, doBreadcrumbAction method, and other methods have
been provided in the class for navigation.
This class also fires various events which can be used to redraw a breadcrumb
panel or a navigation panel.
For more information refer to the JavaScript documentation for these classes.

Wizard Page Attributes in the Web UI Framework
The following table shows the page attributes to specify in the wizardEntities tag
of your XML file when you create a wizard:

Attribute Description Constraints

id The ID of the wizard page. Should be unique
within the wizard.

impl The JSP/Struts action which renders the
page.

Mandatory

type Indicates the type of entity (PAGE or RULE). Mandatory

start Indicates if this page is the starting entity of
the wizard.

Only one PAGE or
RULE should be
marked as true.

last Indicates if this page is the last entity of the
wizard.

Only one PAGE or
RULE should be
marked as true.

category Indicates the category of this page. Used for
breadcrumbs.

namespace/name The namespace for which data would be
sent out of this page. If a rule originates
from this page, the namespaces should be a
superset of the defined namespaces for that
rule. There can be many such namespaces.

Wizard Rule Attributes in the Web UI Framework
The following table shows the rule attributes to specify in the wizardEntities tag of
your XML file when you create a wizard:

56 Sterling Business Center: Customization Guide

Attribute Description Constraints

id The ID of the wizard rule. Should be unique within the
wizard.

impl The rule implementation:

v Java class

Implements a predefined
interface.

v greex

Returns a string output.

type Indicates the type of entity (PAGE
or RULE).

Mandatory

start Indicates if this page is the starting
entity of the wizard.

Only one PAGE or RULE should be
marked as true.

last Indicates if this page is the last
entity of the wizard.

Only one PAGE or RULE should be
marked as true.

output/value The allowed output from the rule.
There can be many such outputs.

namespace/name The namespace for which data
would be sent to the rule. If this
rule originates from a page, the
namespaces should be a superset of
the defined namespaces for that
page. There can be many such
namespaces.

Wizard Transition Attributes in the Web UI Framework
The following table shows the transition attributes to specify in the
wizardTransition tag of your XML file when you create a wizard:

Attribute Description Constraints

id The ID of the transition. Should be unique
within the wizard.

source The ID of the source entity from which this
transition originates.

Value should be same
as ID of one of the
defined PAGE or
RULE types.

target The ID of the destination entity at which
this transition ends.

Value should be the
same as the ID of one
of the defined PAGE
or RULE types.

output Required when the originator of this
transition is a rule. The target is chosen
based on the output which the rule
calculates.

output/value The output of the rule.

Chapter 2. Customizing Sterling Business Center 57

Attribute Description Constraints

output/target The ID of the destination entity. Value should be same
as ID of one of the
defined PAGE or
RULE types.

Wizard Flow Controller Attributes in the Web UI Framework
The following table shows the flow controller attributes to specify in the wizard
tag of your XML file when you create a wizard:

Attribute Description Constraints

id The ID of the transition. Should be unique within the
webapp.

flowController The fully qualified class name of
the flow controller.

If the attribute is empty or does not
exist, the controller provided by the
framework will be defaulted.

independentPages Indicates if the wizard pages are
independent of each other (true or
false).

If this is set to false, when a
previous page is shown, all pages
until the requested page are
discarded. Data for the discarded
pages is lost. However, you can set
up an event that saves the
discarded pages.

Defaults to false.

finishImpl A URL which handles the wizard's
save action.

Wizard Breadcrumb Attributes in the Web UI Framework
The following table shows the breadcrumb attributes to specify in the categories
tag of your XML file when you create a wizard:

Attribute Description Constraints

category.id The ID of the category. Should be unique within the flow.

category.descriptionThe resource bundle key. Mandatory

category.style The css class that needs to be
applied to the breadcrumb.

Optional

Sample XML Flow Definition for Wizards in the Web UI
Framework
Each page of a wizard needs to specify namespaces it can allow as output from
that page. If a rule is invoked after a page, these namespaces should be a superset
of the namespaces defined for that rule.
<wizard id="<application>.sampleWizrd"
flowController="com.sterlingcommerce.ui.web.platform.wizard.SCUIDefaultWizardController"
independentPages="false">
<wizardEntities>

<wizardEntity id="Page0"
impl="/<app_dir>/wizard/wizardpage1.jsp" last="false" start="true"

58 Sterling Business Center: Customization Guide

type="PAGE" category="SampleWizard.category0">
<namespace name="ns1">
<namespace name="ns2">
<namespace name="ns3">

</wizardEntity>
</wizardEntities>

<wizardTransitions>
<wizardTransition id="NewTransitionId6" source="Page0" target="Rule"/>
<wizardTransition id="NewTransitionId9" source="Page1" target="Page3"/>
<wizardTransition id="NewTransitionId10" source="Page2" target="Page3"/>
<wizardTransition id="NewTransitionId7" source="Rule">

<output target="Page1" value="1"/>
<output target="Page2" value="2"/>

</wizardTransition>
</wizardTransitions>
<categories>

<category id="SampleWizard.category0"
description="category0" style="simple"/>

<category id="SampleWizard.category1"
description="category1" style="simple"/>

<category id="SampleWizard.category2"
description="category2" style="simple"/>

</categories>
</wizard>

Preset Properties in the Web UI Framework
You can configure the properties of a Web UI Framework widget so that it has
preset properties whenever you create a new instance of it. This feature overrides
the default properties of the widget.

For more information about widget properties, refer to the Ext JS framework
documentation at (2.2.1) http://www.extjs.com/deploy/ext-2.2.1/docs/ or (3.0)
http://www.extjs.com/deploy/dev/docs/.

The Designer Workbench includes two types of presets:
v Out-of-the-box presets

These presets are shipped along with the Designer Workbench and are provided
for a few widgets. They are not editable.
Although out-of-the-box presets are read-only, their contents can be copied, and
used to create new editable presets.

v Custom (user-defined) presets
You can define any number of custom presets for every widget, provided each
one has a unique name. These presets are stored in your project directory in the
designer-metadata folder.

You can also work with presets in the Extensibility Workbench, but you have fewer
options than you have with the Designer Workbench.

With the Designer Workbench, you can work with presets in the canvas and in the
following views:
v Palette
v Data
v Tree

Chapter 2. Customizing Sterling Business Center 59

In the Palette and Data views, the presets selected for a widget serve as the default
preset until the browser is refreshed or any other preset is selected from the list.
Any widget dropped on the canvas is initialized with the properties of the selected
preset.

In the Tree View and on the canvas, selecting a preset for a widget results in the
addition of the properties of the preset to that widget. When applying a preset to a
widget, no existing properties are deleted. Any new properties from the preset are
added to the widget. Preset properties that already exist in the widget are updated.

With the Extensibility Workbench, you can do the following with preset properties:
v Right-click on a widget in the Palette & Files View and select a preset to apply.
v Create new presets.

With the Extensibility Workbench, you cannot do the following with preset
properties:
v Apply a preset to a control using the Outline View.
v Apply a preset to a control by right-clicking on the screen.

Creating Preset Properties with the Web UI Framework
Procedure
1. Open the Designer Workbench.
2. In the Palette or Data Sources view, right-click any item and select the

Configure Presets option.
The Configure Presets dialog box appears, with any preset properties for all of
the widgets.
You can work with the presets of any customizable widget, and not just the
widget that you right-clicked in the Designer Workbench to display the
Configure Presets dialog box.

The Controls Tree view on the left side contains the widgets that have:
v Out-of-the-box properties that you cannot change, but which you can copy to

make a new widget.

60 Sterling Business Center: Customization Guide

v Properties that can be customized with new presets.
When you work with new preset properties, you can save individual presets by
clicking the Save button. You can save all of the presets at once by clicking the
OK button, which also closes the Configure Presets dialog box.

3. To create brand new presets for a widget, do the following:
a. Right-click a widget in the Controls Tree view.
b. Choose the create new preset option.

A default name for the preset appears.
c. Select the new preset.
d. In the Preset Properties view, use the default name or type a new name for

the preset in the Preset Name field. Click the Save button to save a new
name in the Controls Tree view.

e. To create a brand new property for a preset, type the name of the new
property in the combination box adjacent to the Add button, and click the
Add button. A line for this property appears in the Preset Properties view.
In the Type field, you can make this new property a string value or an
expression. In the Value field, enter the string value or expression. Click the
Save button to immediately save this new property, or click the OK button
to save all custom properties at the same time and also close the dialog box.

f. To create a property that is based on an existing property (like maxlength or
labelStyle), select that property from the combination box adjacent to the
Add button, and click the Add button. A line for this property appears in
the Preset Properties view. In the Type field, you can make this new
property a value of its default data type (number, boolean, etc.) or an
expression. In the Value field, enter a value or expression. Click the Save
button to immediately save this new property, or click the OK button to
save unsaved presets and their properties at the same time and also close
the dialog box.

4. To create a preset for a widget that is based on another preset of that widget,
do the following:
a. Right-click a preset in the Controls Tree view.
b. Choose the create from selected option.

A copy of that preset is created.
c. In the Preset Properties view, type a new name for the new preset property

in the Preset Name field. Click the Save button to save the name in the
Controls Tree view.

d. To create a preset property for a brand new property, type the name of the
new property in the text box with the down arrow, and click the Add
button. A line for this property appears in the Preset Properties view. In the
Type field, you can make this new property a string value or an expression.
In the Value field, enter the string value or expression. Click the Save
button to immediately save this new property, or click the OK button to
save all custom properties at the same time and also close the dialog box.

e. To create a property that is based on an existing property (like maxlength or
labelStyle), select that property from the combination box adjacent to the
Add button, and click the Add button. A line for this property appears in
the Preset Properties view. In the Type field, you can make this new
property a value of its default data type (number, boolean, etc.) or an
expression. In the Value field, enter a value or expression. Click the Save
button to immediately save this new property, or click the OK button to
save all custom properties at the same time and also close the dialog box.

Chapter 2. Customizing Sterling Business Center 61

5. When you are finished, and you have not closed the Configure Presets dialog
box, do one of the following to save preset changes.
A preset can contain a number of preset properties. A preset is a holder for all
the properties that a user enters. When you click the Save button, a preset is
saved.
v Click the Close button. Only presets that you have saved using the Save

button will be kept.
v Click the OK button. Any preset changes will be kept.

Applying Preset Properties with the Web UI Framework
Procedure
1. Right-click on an existing or newly created widget on the canvas or in the Tree

View.
The Apply Preset menu appears.

2. Move your mouse over the Apply Preset menu to display your preset options
(you do not have to click). If preset properties are configured for that widget,
you will see the Default Properties option, an out-of-the-box preset (if
provided), and at least one preset option. If no preset option appears, you will
need to create one.

3. To apply a preset option, select that option. To display the properties for that
option in the Properties view, re-click on that widget to refresh the Properties
View with the new set of properties.

4. If you want to go back to the default properties for that widget, right-click the
widget and select the Default Properties option.

Enabling a Child Screen to Access a Parent Screen with the
Web UI Framework

About this task

A screen can contain another screen within it. If the child screen requires access to
the parent screen, you can use a property in the child screen to access any
component or property in the parent screen.

Procedure
1. Click on the Palette tab in the Designer Workbench.
2. Right-click on the Custom Components option in the Others category.
3. Check the box by Parent Handle, which is an out-of-the-box preset provided

with the Designer Workbench.
4. Move your cursor over the canvas until you see the tool tip Click to add

customct in screen.
5. Right-click or left-click where you want to add this access handle.
6. Make any property adjustments to the handle. You cannot change the default

property values of either scOwnerScr (this) or xtype (panel) in the Configure
Presets View. These default properties indicate a handle from a child screen to a
parent screen.
You can create other presets for this control.
Once you select this preset for a Custom Component and add the widget to the
screen, you can view these two properties in the Properties View below the
Tree View. You can modify the property values or add new properties, since
you are now working on an instance of a Custom Component that was added
to the screen (and not on the preset) and that was initialized with your values.

62 Sterling Business Center: Customization Guide

Menu Customizations with the Web UI Framework
You can make menu customizations using the Ext.menu.Menu class of the Ext JS
JavaScript framework.

The Designer Workbench does not have a widget for creating menus. However,
you can create menus using the menu template of the Code Template Generator,
which you access from the Designer Workbench using the Generate Code button.
Code generated by the Code Template Generator is pasted or typed on the Code
Update page, where you finish the creation of the code for the new menu. For
more information, refer to the documentation for the Code Template Generator.

In Web UI Framework, to show a menu in a screen, you have to get menu data
from the server and render it on the browser.

In the default implementation, the tag includeMenu is provided, which can be
called from JSP as:
<scuiimpltag:includeMenu></scuiimpltag:includeMenu>

This returns all of the menus configured for the logged-in user for which the user
has permissions.

This tag returns menu data as JSON data (which can have text), a URL, JavaScript,
or an image.
{
text: ’First Menu’,
subMenu: [{
text: ’First SubMenu’,
url: ’/<app_dir>/<app_dir>/editRule.do’
js: ’openpopup()’,
img: ’my-cls-img’
}

To render this data, the default implementation is provided as a JavaScript file. To
use this file, include the following code in the JSP:
<script type="text/javascript" src="<%=request.getContextPath()%>/platform/scripts/menuPaint.js"></script>

Use the following guidelines for menu customization:
v To change the UI look and feel of the menu, it has to use its own

implementation instead of the application menuPaint.js.
v To get menu data with more information, it has to use its own implementation

instead of the application using includeMenu tag.

Creating Smart Tags with the Web UI Framework
About this task

Smart tags are used to recognize certain types of data. For example, when you
hover your cursor over a component which has a smart tag, a list of actions that
can be performed are displayed. The following graphic shows an example of a
smart tag:

Chapter 2. Customizing Sterling Business Center 63

To use a smart tag with a component, do the following:

Procedure
1. Register the smart tag actions for a component. Use the class

sc.plat.SmartTagActionRegistry to add action providers to the registry, using the
following methods:
v registerActionProvider(obj, boolOverride)

A valid action provider object must contain a getActions method that accepts
a reference of the type Ext.Component. It must also contain an “id” property
that is the unique ID of this action provider object. The getActions method
must return an array of objects that can have the following properties:

v categoryid: The unique ID of the category object.
v sequenceid: Sequence number which helps in sorting.
v item: Config of Ext.menu.Item

The following is an example of an object that can be returned by the
getActions method. This example uses the default ID category (DEFAULT).
{

categoryid: ’DEFAULT’,
sequenceid: 1
item: {
text: ’Show a Ext.Window’,

handler: function(){
new Ext.Window({

width: 600,
height: 500
}).show();

}
}

}

v registerActionType(name, id)

64 Sterling Business Center: Customization Guide

Registers the type with the action provider object corresponding to the ID
passed. Before doing this, you must first register an action provider object
with that ID using the registerActionProvider method.
The default UI displays the actions returned. You can use the default UI or
override it by registering your own UI provider.

2. Set the scSmartTag property for that component to one of the following values:
v true

The default implementation of the application gets the attribute in the source
binding data. Objects that are registered with a key equal to the attribute in
the source binding data are fetched.

v A value such as the attribute in sourceBinding or targetBinding.
Objects that are registered with a key equal to the scSmartTag property are
fetched.

Generating Code from Templates with the Web UI Framework
You can use templates (instead of hand-coding) to generate code for the following
components:
v Mashup APIs
v Struts actions
v JSB (JavaScript Builder)
v Resources
v Resource permissions
v Resource and permissions (combines resource and resource permission

templates)
v Menus

The Code Template Generator helps save you development time. For example, you
can use a code template to update and test a mashup or JSB file, instead of
hard-coding the file and re-starting the application server.

Access the Code Template Generator from the Generate Code button of the
Designer Workbench to create code from either default or custom templates.
Templates include static (fixed) values, as well as variable values that you can
change. Code is generated in a manner similar to the manner in which code is
generated for js and config.js files.

After you create the code, you can update the code in a running application
without stopping the server. To update the code, you must copy it from the Code
Template Generator and paste it in the file of the component that you are
updating. The Code Template Generator does not create a new file or add the
generated code to a file.

The Code Template Generator is optional, but IBM recommends that you use it to
reduce your development time. You can copy and paste generated code into
mashup, Struts, JSB, resource, resource permission, and menu files, instead of
hand-coding those files.

The Code Template Generator is not used for extending the application. However,
you can use it to test override extensibility changes made using the Designer
Workbench.

Chapter 2. Customizing Sterling Business Center 65

A new template appears in the Create New Template window, which you access
from the Code Template Generator window. If you are creating a new template
from an existing template, the Create New Template window includes variables
that can be used in the code template and reduce the number of required fields in
the Code Template Generator. If you are creating a new blank template, the new
template is empty.

Code Template Generator of the Web UI Framework
Access the Code Template Generator from the Generate Code option in the top
toolbar of the Designer Workbench. The generator includes the following sections:
v Available Templates

Displays all of the available templates in a tree view. Includes default and
custom templates. Default templates are available for JSB (JavaScript Builder),
mashups, Struts actions, resources, resource permissions, and menus.
The applications that only consume the uifwk clump would only have the
default JSB template available in the existing Designer Workbench.
Create custom templates from copies of the default templates.

v Template Details
Includes variable text that you can change (the Template Input Variables section)
and the code that is generated from the template (the Generated Code section).
The fields in the Template Input Variables section depend on the type of
template.

For example, you could create a new JSB template from the default template by
right clicking on default JSB Template and then clicking on Create from selected.
This brings up the Create New Template window. Then, you would use the User
Defined Variables section of the Create New Template window to add a new
target_name variable that uses the type expr and the value className. If you use
the same code template, then you can remove the Target Name input as this
variable would now get the value of the className variable. Once saved, this

66 Sterling Business Center: Customization Guide

custom JSB template would have five input fields on the Code Template Generator
window instead of the six input fields that appear on the default JSB template. You
could also modify the template and use the className variable instead of the
target_name variable, with the same result.

You cannot change a default template, but you can copy its contents to make a
custom template. You can edit a custom template or copy its contents to make
another custom template.

The fields that appear in the Template Input Variables section depend on the
component that you are changing. The values that you enter in this section are
assigned to the XML code that will be generated. These values are also stored in
the json file of the screen.

For example, in the above graphic showing a JSB template, stk is the value of the
Project Name variable, which is the label for the proj_name variable (JSB project)
used in the code template. The stk value would be assigned to its corresponding
variable (proj_name) and replaced in the generated code.

The values in the Template Input Variables section appear in the Generated Code
section after you click the Generate Code button. You can directly change the
generated code, but these changes will be lost if you click the Generate Code
button again during this session. The text in the Generated Code field is not saved
to a file on disk. You can copy the generated code to another file.

Clicking the OK button saves all of the screen's changes to the screen's json file
and closes the Code Template Generator. That is, all of the variable values for all of
the templates are saved. Clicking the Cancel button closes the Code Template
Generator without saving changes to the screen's json file.

Default Code Templates of the Web UI Framework
The Web UI Framework includes the following templates that can be used to
update different WUF screen components during runtime:
v Mashup APIs
v Struts actions
v JSB (JavaScript Builder)
v Resources
v Resource permissions
v Resource and permissions (combines resource and resource permission

templates)
v Menus

WUF uses template metadata to create (by default) XML code templates, which in
turn are used to generate XML code that is used by the application. However, you
can define a custom template that is not an XML template.

Template updates occur in the following ways:
v In the current login session (all templates). The changes last only as long as you

are logged in. You can test the changes while you are logged in.
v In the database (all templates except mashup and JSB). The changes are

permanent unless you delete them. Updates of components in the database are
an alternative to updates of those same components in the Applications
Manager.

Chapter 2. Customizing Sterling Business Center 67

The following sections describe how each template works and the XML elements
for each kind of component.

Mashups

This updates only the mashup registry that is in the session (but not permanently
in the database).

The generated template code can be used to update mashup.xml files, through
copying and pasting. If you are using Aggregator mashups or adding more
attributes to the mashup code, you must define your own template.

The following variables are used in the default code template for mashups:

Item Description Source

id Uniquely identifies a mashup in the
application.

User-entered.

description Information about mashup. User-entered.

apiName API that is being used in mashup. User-entered.

input Input to mashup. User-entered.

outputTpl Output from server. User-entered.

Struts

Struts can be updated by adding the generated code to the application's struts.xml
file if:
v The struts.xml file is removed from the jar file in which it is packaged and

placed under the WEB-INF/classes directory.
For example, in the case of stk, you would remove the stk_struts.xml file from
the platform_ui_demo_app.jar file and place it under the WEB-INF/classes
directory.
Any changes that you make to the struts.xml file would be reflected in the
application. If two actions have the same ID, then the action that appears last in
the file would be picked up in the application.

v The Struts dev mode is enabled (turned on automatically if the war file is built
with -Ddevmode=true).

v The application is deployed as an exploded war file by using the following
command:
buildwar.sh -Dwarfiles=<war file name> -Dappserver=<appserver> -Dnowebservice=true -Ddevmode=true

When using WebLogic 10, use the following command:
buildwar.sh -Dwarfiles=<war file name> -Dappserver=weblogic -Dnowebservice=true -Ddevmode=true Dwls-10=true

The following variables are used in the default code template for Struts actions:

Item Description Source

actionName Uniquely identifies an action in the
application.

User-entered.

id ID of mashup used/called. User-entered.

68 Sterling Business Center: Customization Guide

Item Description Source

input_ns Namespace used for input. User-entered.

output_ns Namespace used for output. User-entered.

success_jsp_path JSP to load if the action is successfully
completed.

User-entered.

JSB (JavaScript Builder)

This updates only the JSB registry that is in the session (but not permanently in the
database).

The following variables are used in the default code template for JSB (JavaScript
Builder):

Item Description Source

proj_name Name of the project. User-entered.

target_name Identifies a JavaScript library. Should be
unique in the application.

User-entered.

target_file Directory/file path for JavaScript library. User-entered.

loadAfter Specifies the library after which the current
JSB library should be loaded.

User-entered.

config_js Path of the config.js file for the screen. User-entered.

js Path of the JavaScript file for the screen. User-entered.

bundle_js Path of the bundle JavaScript file for the
screen.

User-entered.

Resources

This updates or adds the resource in the current session and permanently in the
database.

The following variables are used in the default code template for resources

Item Description Source

app_code Application code. User-entered.

app_name Application name. User-entered.

parent_resource_id Resource ID of the parent resource. User-entered.

resource_create_type Resource create type (for example, USER). User-entered.

resource_desc Information about the resource. User-entered.

resource_key Unique key of the resource. User-entered.

url The action URL for the Struts action. User-entered.

Chapter 2. Customizing Sterling Business Center 69

Resource Permissions

This updates or adds the resource permissions both in the current session and
permanently in the database.

The following variables are used in the default code template for resource
permissions:

Item Description Source

resource_perm_key Resource permission key. User-entered.

user_group_id The ID of the group to which the user
belongs.

User-entered.

user_group_key The key of the group to which the user
belongs.

User-entered.

Resource and Permission

This combines the resource and resource permission templates. It updates or adds
resources and resource permissions both in the current session and permanently in
the database.

The following variables are used in the default code template for resources and
permissions:

Item Description Source

app_code Application code. User-entered.

app_name Application name. User-entered.

parent_resource_id Resource ID of the parent resource. User-entered.

resource_create_type Resource create type (for example, USER). User-entered.

resource_desc Information about the resource. User-entered.

resource_key Unique key of the resource. User-entered.

url The action URL for the Struts action. User-entered.

resource_perm_key Resource permission key. User-entered.

user_group_id The ID of the group to which the user
belongs.

User-entered.

user_group_key The key of the group to which the user
belongs.

User-entered.

Menus

This updates or adds a menu both in the current session and permanently in the
database. It provides an alternative to the Applications Manager method of
creating a menu.

The following variables are used in the default code template for menus:

70 Sterling Business Center: Customization Guide

Item Description Source

menu_desc Information about this menu entry. User-entered.

menu_key Key/ID used to uniquely identify this menu. User-entered.

menu_type The menu type. User-entered.

parent_menu_key The menu key of the parent. User-entered.

resource_key Key used to identify the source. User-entered.

Creating a Custom Code Template with the Web UI Framework
About this task

Do the following to create a custom code template from either a default template
or a custom template.

Procedure
1. Open the Code Template Generator.
2. In the Available Templates section, right-click on a template in one of the

following lists:
v Custom Templates
v Default Templates

3. Choose the create from selected option.
A new template appears in the Create New Template window. This window
includes variables that can be used in the code template and reduce the
number of required fields in the Code Template Generator.
The Existing Screen Variables section show the default variables, which you
cannot change (names and values). The User Defined Variables section shows
the variables that you created and which you can change (names, types, and
values).

Chapter 2. Customizing Sterling Business Center 71

In the User Defined Variables section, you can add any properties to the
name/value pairs that are part of the default template. Click the Add button to
add a user-defined variable, which defaults to the string type. You can change
the type to an expression (expr).
The above example screen shows a user-defined variable (projname) of the type
expr and the value className (className is a screen variable). The application
uses the expression projName=className, instead of the
projName=”className” (if the type is string).
You can remove variables by right-clicking on a variable row and selecting the
delete option.

4. In the Template Details section, define the following information:
v Template Name: Unique identifier of a template that also serves as the json

file name.
v Variable Name: Name by which this parameter is referenced in the template.
v Variable Label: Text that would be displayed before the input field of this

variable on the Code Template Generator window.
v Variable Type: String or expression (expr).
v Value: String, variable, or expression that could be evaluated to return a

value. This value would then serve as the default value and be used to
populate the value in the input field for this variable on the Code Template
Generator window. By default, this field is left empty.

You can add variables by clicking the Add New button. A new variable row
appears.
You can remove variables by right-clicking on a variable row and selecting the
delete option.
The bottom part of the Template Details section shows the Ext JS XTemplate
that is used to generate the code.

5. Save the new template by clicking the Save button. The new template is saved
as a json file (using the template name) in the following directory:
<user's project directory>/designer-metadata/templates
If you do not want to save the template, click the Cancel button.
After you click the Save button, the Create New Template window closes and
the Code Template Generator window appears. You can now use the new
template to update the code for a screen component.

Creating a Custom Code Template Using a Blank Template with
the Web UI Framework
Procedure
1. Open the Code Template Generator.
2. In the Available Templates section, right-click on the heading of the Custom

Templates list.
3. Choose the create new template option.

A blank template appears, with the default template name. All of the variable
values are blank except for the variables in the Existing Variables section.

72 Sterling Business Center: Customization Guide

4. Add variables and enter values for them.
5. Click the Save button to create the Ext XTemplate for the new template. Click

the Cancel button to exit the Create New Template window without saving any
of your work.
The Code Template Generator window re-appears.

6. Click the Generate Code button to create the custom template from the Ext
XTemplate that you just created.
New code appears in the Generated Code section of the Code Template
Generator window.

7. Save the custom template by clicking the OK button. You can exit the Code
Template Generator without saving the custom template by clicking the Cancel
button.
After saving a custom template, it appears in the Custom Templates list in the
Available Templates section of the Code Template Generator.

Editing a Custom Code Template with the Web UI Framework
Procedure
1. Open the Code Template Generator.
2. In the Available Templates section, right-click on a template in the Custom

Templates list.
3. Choose the edit template option.

The template appears, with variables in the Template Input Variables section
and the code in the “Provide the Ext XTemplate to use” section..
In the User Defined Variables section, update the values for any of the variables
or add new variables.

4. Click the Save button to update the Ext XTemplate for the template. Click the
Cancel button to exit the Create New Template window without saving any of
your work.
The Code Template Generator window re-appears.

Chapter 2. Customizing Sterling Business Center 73

5. Click the Generate Code button to update the template.
New code appears in the Generated Code section.

6. Save the updated template by clicking the OK button.
You can exit the Code Template Generator without saving the template by
clicking the Cancel button.

Updating a Screen in a Running Application with the Web UI
Framework
About this task

After updating the code of a screen component using a code template, you can
update that component in a running application without stopping the server (hot
code replace).

In the update window, you can paste in code or type in your own code.

You can use this procedure when you are adding new code or updating existing
code. To override existing code, the new code must have the same resource ID as
the existing code.

Hot code replace and code generation are completely independent of each other.
Hot code replace enables you to view your changes in the application without
having to update any files or restart the server. This reduces the total development
time and also enables you to debug or test your changes to the application.

Procedure
1. Make sure that you are running the application in Struts dev mode in exploded

war mode (provide -Ddevmode=true while building the war file). Also, when
launching the application, wufdevmode should be set to true.

2. Access the hot code replace screen using the following JSP:
/platform/dev/afc_updatePage.jsp (In case of Sterling Application Platform)
The Hot Code Update page for applications that consume the uifwk clump
only would be at the following relative path:
/platform/dev/uifwk_updatePage.jsp
To enable hot code replace for any other component, applications need to
provide their own dev JSP and its implementation.

3. Click on the tab for the component that you want to update (Mashup, JSB,
Resource, Resource Permission, Menu).

74 Sterling Business Center: Customization Guide

4. Paste in the code that you generated for that component in the Code Template
Generator. You can also paste in code that you have hand-coded or directly
type in code.

5. Update the application by doing one of the following:
v To update one component, click the tab for that component and click the

Update button.
v To update more than one changed component (but not all changed

components), click the tab for each component and click the Update button.
Updating a resource, resource permission, or menu updates these components
both temporarily in the current login session and permanently in the database.
Updates to a mashup or JSB are made only in the current login session.
When you press the Update button, the changes are written to the URL of the
application, where you can test the changes.

Customize Related Tasks for Sterling Business Center
Sterling Business Center enables users to efficiently set up and maintain the catalog
for their organization, and define the peripheral components of items such as
assets and classifications after their organization has downloaded detail for all of
the items into the database.

You do this by performing tasks and related tasks using the Sterling Business
Center task-based user interface.

The Related Tasks panel contains related task categories and related tasks under a
given category that pertains to a screen.

The Related Tasks panel can be customized by:
v Removing a related task or a related task category
v Adding a related task or a related task category
v Redirecting a related task to a new screen in the corresponding Related Task

metadata file

All the customizations pertaining to the related tasks must be performed by
defining the corresponding Related Task metadata file located at the
<install_dir>/extensions/sbc/webpages/sbc/metadata/relatedtasks folder.

The related task metadata filenames for the screens are listed in the following
table:

Screen Name Related Task Metadata File Name

Customer Entitlement buyingentitledetailscreen.xml

Seller Entitlement sellingentitledetailscreen.xml

Customer Entitlement Search buyingentitlementsearch.xml

Seller Entitlement Search sellingentitlementsearch.xml

Delivery Service Associations sbcItemDetailsManageServices.xml

Return Pickup Service
Associations

sbcItemDetailsManageServices.xml

Coupon Search couponSearch.xml

Manual Pricing Rule Search manualPricingRuleSearch.xml

Chapter 2. Customizing Sterling Business Center 75

Screen Name Related Task Metadata File Name

Price List Search seapricelistsearch.xml

Pricing Rule Search pricingRuleSearch.xml

For all other screens <sciId>.xml

...where sciId is the unique identifier of the screen.

For example, itemSearch is the sciId property of the Item
Search screen and the Related Task metadata file for this
screen is itemSearch.xml.

Components of a Related Task Metadata File

A Related Task metadata file contains the following elements:
v Category: You can add, delete, or modify a related task category by defining the

Action attribute in the Category element in the Related Task metadata file.
You can perform the following tasks pertaining to a related task category in the
corresponding Related Task metadata file:
– Add a new related task category in the corresponding Related Task metadata

file: The new related task category is added at the end of the list in the
corresponding Related Tasks panel.

– Delete a related task category from the corresponding Related Tasks XML: All
the related tasks under a given category are deleted from the corresponding
Related Tasks panel.

– Modify a related task category in the Related Task metadata file
corresponding to a related task category: You can add a new related task,
remove an existing related task, and modify an existing related task.
Modifying a related task includes modifying only the action that occurs when
a user clicks a related task under a given category.

v IncludeCategory: If a Related Task metadata file contains this element, it
indicates that this XML consists of multiple Related Task metadata files
corresponding to various categories. The path to these Related Task metadata
files are defined in the corresponding File attribute of the IncludeCategory
element. You can add or delete the IncludeCategory element, which in turn adds
or deletes a category if it is present in the File attribute. However, you cannot set
the value of the Action attribute to MODIFY in the IncludeCategory element.

v Task: You can add, delete, or modify a related task by defining the Action
attribute in the Task element. However, you need to first set the Action attribute
to Modify in the corresponding Category element.

Note: You cannot customize the Dynamic Tasks.

Related Tasks - Sample Metadata XML File
Below is a sample metadata XML file for a Related Task.
<RelatedTasks>

<Categories>
<Category CategoryID="Pricelist" CategoryName="b_PriceList">

<Tasks>
<Task ActionID="SBCCreatePricelistAction"

TaskName="b_NewPriceList" PermissionID="SBCPR001" TaskID="SBCPRC00002"/>
</Tasks>

</Category>
<Category CategoryID="TestPriceList" CategoryName=

76 Sterling Business Center: Customization Guide

"b_TestConfiguration">
<Tasks>

<Task ActionID="SBCTestPricingAction" TaskName="b_TestPricing"
PermissionID="SBCPR050" TaskID="SBCPRC00008"/>

</Tasks>
</Category>

</Categories>
</RelatedTasks>

The following table describes the attributes for the Category element as shown in
the sample metadata XML file.

Attribute Description

CategoryID The unique identifier for the category.

CategoryName The bundle entry for the category name. This bundle entry
should be defined in the client JavaScript bundle file.

The following table describes the attributes for the Task element as shown in the
sample metadata XML file.

Attribute Description

ActionID The unique identifier of the action to be executed when a
user clicks a task in the user interface. The action should be
defined on the client side.

TaskName The bundle entry for the task name. This bundle entry
should be defined in the client JavaScript bundle file.

TaskID The unique identifier of the task.

Add a Related Task Category
About this task

You can add a related task category to the list of existing categories in a Related
Task panel. For example, if you have created a new category with new tasks, you
can add a new related task category containing new related tasks in the Related
Tasks panel.

To add a related task category:

Procedure
1. Create a corresponding Related Task metadata file if it does not already exist in

the <install_dir>/extensions/sbc/webpages/sbc/metadata/relatedtasks folder.
2. Create an element, Category, as a child element of the Categories root element.
3. Set the value of the Action XML attribute to ADD.
4. Set the value of the CategoryID XML attribute as required. This value acts as a

unique identifier for the related task category.
5. Set the value of the CategoryName XML attribute as required. This value

indicates the bundle key of the related task category that is displayed in the
corresponding Related Tasks panel.
The related task category is added at the end of the list of categories in the
corresponding Related Tasks panel.

Chapter 2. Customizing Sterling Business Center 77

Note: Ensure that you rebuild the enterprise archive (EAR) after adding a new
related task category or related task. For more information about building an
EAR, refer to the Sterling Selling and Fulfillment Foundation: Installation Guide.

Modify a Related Task Category
About this task

You may want to modify a related task category in order to add, delete, or modify
a task under it.

To modify a related task category:

Procedure
1. Create a corresponding Related Task metadata file if it does not already exist in

the <install_dir>/extensions/sbc/webpages/sbc/metadata/relatedtasks folder.
2. Create an element, Category, as a child element of the Categories root element.
3. Set the value of the corresponding Action XML attribute to MODIFY.
4. Set the value of the CategoryID XML attribute as required. This value acts as a

unique identifier for the related task category.
5. Perform any or all of the following tasks:

v Add a Related Task
v Modify a Related Task
v Delete a Related Task

Add a Related Task:
About this task

If you have created a new screen, you can add a new related task in the Related
Tasks panel, which, when clicked, displays the corresponding screen.

Procedure

1. Create an element, Tasks, as a child element of the Category root element.
2. Create an element Task, as a child element of the Tasks element.
3. Set the value of the corresponding Action XML attribute to ADD.
4. Set the value of the TaskID XML attribute as required. This value acts as a

unique identifier and resource identifier for the related task.
5. Set the value of the TaskName XML attribute as required. This value indicates

the bundle key of the related task that is displayed in the corresponding
Related Tasks panel.

6. Set the value of the PermissionID XML attribute as required. This indicates the
resource that controls the permission to this task.

7. Set the value of the ActionID XML attribute as required. This value indicates
the action that will return the corresponding screen in which the related task
can be performed.
The related task is added to the related task category in the corresponding
Related Tasks panel.

Modify a Related Task:
About this task

You can modify the ActionID attribute of the Task element so that when the
corresponding related task is clicked in the Related Tasks panel, a new screen

78 Sterling Business Center: Customization Guide

linked to the modified ActionID attribute is displayed. For example, if you have
created a new screen, you can modify the existing related task in the Related Tasks
panel, which, when clicked, displays the corresponding screen.

Procedure

1. Create an element, Tasks, as a child element of the Category root element.
2. Create an element, Task, as a child element of the Tasks element.
3. Set the value of the TaskID XML attribute as required. This value acts as a

unique identifier and resource identifier for the related task.
4. Define the value of the corresponding ActionID XML attribute as required. This

value indicates the action that will return the corresponding screen in which
the related task can be performed.
The related task is modified. When a user clicks the related task in the
corresponding Related Tasks panel, the screen to which the value in the
ActionID attribute refers, is displayed.

Delete a Related Task:
Procedure

1. Create an element, Tasks, as a child element of the Category root element.
2. Create an element, Task, as a child element of the Tasks root element.
3. Set the value of the TaskID XML attribute as required. This value acts as a

unique identifier and resource identifier for the related task.
4. Set the value of the corresponding Action XML attribute to DELETE.

The related task is deleted from the related task category in the corresponding
Related Tasks panel.

Delete a Related Task Category
About this task

You may not want users to perform related tasks under a given category when
viewing a screen. In such a scenario, you can delete the corresponding related task
category from the Related Tasks panel.

To delete a related task category:

Procedure
1. Create a corresponding Related Task metadata file if it does not already exist in

the <install_dir>/extensions/sbc/webpages/sbc/metadata/relatedtasks folder.
2. Create an element, Category, as a child element of the Categories root element.
3. Set the value of the CategoryID XML attribute as required. This value acts as a

unique identifier for the related task category.
4. Set the value of the corresponding Action XML attribute to DELETE.

The related task category along with the related tasks under that category are
deleted from the Related Tasks panel.

Note: Ensure that you rebuild the enterprise archive (EAR) after deleting a
related task category or related task. For more information about building an
EAR, refer to the Sterling Selling and Fulfillment Foundation: Installation Guide.

Chapter 2. Customizing Sterling Business Center 79

Customize Advanced Search Criteria for Sterling Business
Center

Sterling Business Center enables users to perform basic and advanced searches.
You, as an implementer, can customize the advanced search criteria. The advanced
search criteria can be modified by either removing a few attributes or adding a few
attributes to the corresponding Advanced Search metadata file. All the
customizations for the Advanced Search screens must be performed by defining an
Advanced Search metadata file in the <install_dir>/extensions/sbc/webpages/sbc/
metadata/advancedsearch folder. An Advanced Search metadata file must be
created to specify the search attributes, along with details such as the controls to be
displayed in the user interface (UI), query types to be used, and so on.

The following table lists the Advanced Search metadata files that must be created
to customize the corresponding Advanced Search screens:

Screen Name Advanced Search Metadata File Name

Coupon Search Coupon.xml

Entitlement Search Entitlement.xml

Item Search Item.xml

Price List Search Pricelist.xml

Pricing Rule Search PricingRule.xml

Service Search Service.xml

Service Option Search ServiceOption.xml

Manual Pricing Rule Search ManualPricingRule.xml

Approval Rule Search ApprovalRule.xml

Add or Modify a Search Attribute
About this task

You can add a search attribute to a list of existing search attributes in an Advanced
Search screen. In addition, you can also modify an existing search criteria.

To add or modify a search attribute:

Procedure
1. Create a corresponding Advanced Search metadata file if it does not already

exist in the <install_dir>/extensions/sbc/webpages/sbc/metadata/
advancedsearch folder.

2. Create an element, Attribute, as a child element of the root element, Attributes.
3. Set the value of the XML attribute, Action, to ADD.
4. Define the values of the other XML attributes.

Note: Ensure that you rebuild the enterprise archive (EAR) after adding a new
search attribute. For more information about building an EAR, see the Sterling
Selling and Fulfillment Foundation: Installation Guide.

80 Sterling Business Center: Customization Guide

Defining the Values for XML Attributes for a Search Attribute: The following
table contains information about defining the values of the XML attributes for a
search attribute:

Component
Component
Type Component Location Description

Name Attribute Attributes/Attribute Indicates the XML name
of the search attribute.
This component, along
with the XPath, is used to
set the source and target
binding for the control
that is displayed in the
UI.

DataType Attribute Attributes/Attribute Indicates the data type of
the search attribute. If
data Type is not provided,
it is derived using the
XPath and the Name
attribute values. You can
use the DataType attribute
to override the default
data types. Each data type
is mapped to String, Date,
or Number. If query types
are not explicitly
mentioned, this mapping
is used to display the
query types in the UI.

DisplayName Attribute Attributes/Attribute Indicates the bundle key
of a label that is displayed
in a drop-down list for
search attributes. If the
label is not mentioned,
the Name attribute is
considered as the bundle
key to display the label.
This bundle entry should
be defined in the
server-side bundle file.

XPath Attribute Attributes/Attribute Indicates the XML path of
the element to which the
search attribute belongs.

Chapter 2. Customizing Sterling Business Center 81

Component
Component
Type Component Location Description

DefaultQueryTypesAttribute Attributes/Attribute Indicates the default
query type for the search
attribute. If
DefaultQueryTypeDesc is
not set for an attribute, set
it by performing this
procedure:

Get the supported query
types by either reading
the overridden query
types or using the
out-of-the-box query types
for the data type of the
attribute. Because Equal is
the most commonly used
query type, verify if it is
one of the supported
query types. If yes, use
Equal as the default.
Otherwise, use the first
query type, which is
displayed in the list of
supported query types.

StringQueryTypes Element Attributes/Attribute Indicates that
out-of-the-box string
query types are being
overridden with the child
elements of the
StringQueryTypes
element. If all the possible
StringQueryTypes are not
required, create one
QueryType child element
of StringQueryType for
each query type you want
to support.

DateQueryTypes Element Attributes/Attribute Indicates that
out-of-the-box date query
types are being
overridden with the child
elements of the
DateQueryTypes element.
If all the possible date
query types are not
required, create one
QueryType child element
of DateQueryType for
each query type you want
to support.

82 Sterling Business Center: Customization Guide

Component
Component
Type Component Location Description

NumericQueryTypesElement Attributes/Attribute Indicates that
out-of-the-box numeric
query types are being
overridden with the child
elements of the
NumericQueryTypes
element. If all the possible
NumericQueryTypes are
not required, create one
QueryType child element
of NumericQueryType for
each query type you want
to support.

QueryType Element Attributes/Attribute/
StringQueryTypes

OR

Attributes/Attribute/
DateQueryTypes

OR

Attributes/Attribute/
NumericQueryTypes

Indicates the query types
that are supported for the
search attribute. See the
Query Types Supported
for Search Attribute
section for detailed
information on the
supported parameters.

QueryType Attribute Attributes/Attribute/
StringQueryTypes/QueryType

OR

Attributes/Attribute/
DateQueryTypes/QueryType

OR

Attributes/Attribute/
NumericQueryTypes/QueryType

Indicates the query type.
For more information
about the supported
query types, see the
description of the
QueryType Element.

QueryTypeDesc Attribute Attributes/Attribute/
StringQueryTypes/QueryType

OR

Attributes/Attribute/
DateQueryTypes/QueryType

OR

Attributes/Attribute/
NumericQueryTypes/QueryType

Indicates the bundle key
of the label that is
displayed for the query
type in the UI. If the
value of QueryTypeDesc
is not set, the
QueryTypeDesc attribute
value corresponding to
the query type is
considered as the bundle
key that will display the
query type label. This
bundle entry should be
defined in the server-side
bundle file. For more
information about the
supported query types,
see the description of the
QueryType Element.

Chapter 2. Customizing Sterling Business Center 83

Component
Component
Type Component Location Description

Configuration Element Attributes/Attribute Indicates that the search
attribute will have certain
configuration for UI
control and possible
values of the search
attribute.

ActionURL Attribute Attributes/Attribute/
Configuration

Indicates the action that
returns the list of possible
values for the search
attribute. This action may
either return the static list
of predefined values or
call the corresponding
API to get them , and
then return them. For
example, the ActionURL
can return the values
pertaining to the common
codes, currency, and
countries.

UIControlConfigurationElement Attributes/Attribute/
Configuration

Indicates that the search
attribute will have certain
configurations for UI
control.

xtype Attribute Attributes/Attribute/
Configuration/UIControlConfiguration

Indicates the type of the
control that is displayed
in the Advanced Search
screen for the search
attribute. See the Possible
xtypes for an Attribute
section for the list of
xtypes and descriptions.

optionsBinding Attribute Attributes/Attribute/
Configuration/UIControlConfiguration

The optionsBinding
attribute is used to specify
the repeating elements of
the list that constitutes
one value of either
combination box values or
radio button values.

Note: This is applicable
only for a combination
box and a radio button.

displayField Attribute Attributes/Attribute/
Configuration/UIControlConfiguration

The displayField attribute
specifies the attribute
whose value is used as
the label.

Note: This is applicable
only for a combination
box and a radio button.

84 Sterling Business Center: Customization Guide

Component
Component
Type Component Location Description

valueField Attribute Attributes/Attribute/
Configuration/UIControlConfiguration

The valueField attribute is
used to uniquely identify
the repeating element in
order to display the
correct value of the
selected option from
either a combination box
or a radio button.

Query Types Supported for Search Attribute

The following table contains the types of queries supported for the search attribute,
which is described in the Add or Modify a Search Attribute topic.

Query Type
Supported for: QueryType QueryTypeDesc Description

strings EQ is is

strings FLIKE starts_with starts with

strings LIKE contains contains

numbers EQ is is

numbers GE greater_than_or_equal_togreater than or equal
to

numbers LE less_than_or_equal_to less than or equal to

numbers NE not_equal_to not equal to

numbers LT less_than less than

numbers GT greater_than greater than

dates EQ is is

dates GE greater_than_or_equal_togreater than or equal
to

dates LE less_than_or_equal_to less than or equal to

dates NE not_equal_to not equal to

dates LT less_than less than

dates GT greater_than greater than

dates BETWEEN between_from_and_to between

Possible xtypes for an Attribute

An xtype attribute indicates the type of the control that is displayed in the
Advanced Search screen for the search attribute. The following table contains the
possible xtypes supported for a search attribute, which is described in the table in
the Add or Modify a Search Attribute topic.

Chapter 2. Customizing Sterling Business Center 85

xtype Description

xadvancedtextcontrol Used to display a text box in the UI.

xadvancedradiocontrol Used to display radio buttons in the UI.

xadvanceddatecontrol Used to display a field for entering date in the UI.

xadvancedcomboboxcontrol Used to display a drop-down list in the UI.

xadvancedtriggercontrol Used to display a trigger field in the UI.

xadvattributelookup Used to display an attribute lookup widget in the UI.

xadvancednumbercontrol Used to display a number field in the UI.

Example - Adding a Search Attribute:
About this task

You may want to enable users to search the child price lists of a master price list.
In such a scenario, you can add the master price list ID attribute to the list of
advanced price list search attributes. Because master price list IDs are string values,
you can allow the query types, starts with or is, and use a text box as the input
control.

To add the master price list ID as a search criteria:

Procedure

1. Create the Pricelist.xml file in the <install_dir>/extensions/sbc/webpages/
sbc/metadata/advancedsearch folder if the file does not exist in the folder.
Ensure that the root element of the XML is Attributes.

2. Create an Attribute element as a child element of the Attributes root element.
3. Set the value of the Action XML attributes to ADD.
4. Set the value of the Name XML attribute to PricelistName in the Attribute

element. This is because the XML attribute that is set with the master price list
ID in the input XML is PricelistName.

5. Set the value of the XPath XML attribute to PricelistHeader\
InheritFromPricelistHeader in the Attribute element. This is because the XML
path of the PricelistName attribute for the master price list ID is
PricelistHeader\InheritFromPricelistHeader.

6. To define the user interface (UI) label in the search attribute drop-down list,
set the DisplayName XML attribute to any key. Ensure that you add a bundle
entry as the key for this attribute.

7. To use a text field for the attribute, set the xtype XML attribute to
xadvancedtextcontrol.

8. Create an element, Configuration, as the child element of the Attribute
element.

9. Create an element, UIControlConfiguration, as the child element of the
Configuration element.

10. To use only a few string query types, create the element, StringQueryTypes,
as the child element of the Attribute element.

11. To support the is and starts with query types, perform the following steps:
a. Add the QueryType elements with the value of the QueryType XML

attribute as EQ and FLIKE.

86 Sterling Business Center: Customization Guide

b. To customize the query type description, set the value of the
QueryTypeDesc XML attribute to the correct bundle key.

The search attribute is added.
Following is the newly added attribute element for the master price list ID
field:
<Attribute Action="ADD" Name="PricelistName" DisplayName="b_Price_List_Name"
XPath="PricelistHeader/InheritFromPricelistHeader">

<Configuration>
<UIControlConfiguration xtype="xadvancedtextcontrol"/>

</Configuration>
<StringQueryTypes>

<QueryType QueryType="EQ" QueryTypeDesc="is"/>
<QueryType QueryType="FLIKE"/>

</StringQueryTypes>
</Attribute>

Example - Modifying a Search Attribute:
About this task

Users may want to allow only the is and starts with query types for the Item ID
field in the Advanced Search Item screen in order to improve the performance of
the search task. In such a scenario, you can modify the existing query types for the
search attribute.

To modify the QueryType XML attribute:

Procedure

1. Create the Item.xml file if it does not exist in the <install_dir>/extensions/sbc/
webpages/sbc/metadata/advancedsearch folder.

2. Create an element, Attribute, as a child element of the Attributes root element.
3. Set the value of the Name attribute to ItemID.

Following is the XML attribute that has to be modified:
<Attribute Name="ItemID" DisplayName="b_ItemSearch_Item_ID" XPath="Item">

<Configuration>
<UIControlConfiguration xtype="xadvancedtextcontrol"/>
</Configuration>

</Attribute>

4. Set the value of the Action attribute to ADD.
5. Add the QueryType elements with the value of the QueryType XML attribute

as EQ and FLIKE.
6. To customize the query type description, set the value of the QueryTypeDesc

XML attribute to the correct bundle key.
The XML attribute is modified.
Following is the attribute element that is modified:
<Attribute Name="ItemID" DisplayName="b_ItemSearch_Item_ID" XPath="Item" Action="ADD">

<Configuration>
<UIControlConfiguration xtype="xadvancedtextcontrol"/>

</Configuration>
<StringQueryTypes>

<QueryType QueryType="EQ" QueryTypeDesc="is"/>
<QueryType QueryType="FLIKE" QueryTypeDesc="starts_with"/>

</StringQueryTypes>
</Attribute>

Chapter 2. Customizing Sterling Business Center 87

Remove a Search Attribute
About this task

You may want users to exclude a search attribute when performing an advanced
search. In such a scenario, you can remove the corresponding attribute from the
search criteria.

To remove a search attribute:

Procedure
1. Create a corresponding Advanced Search metadata file if it does not already

exist in the <install_dir>/extensions/sbc/webpages/sbc/metadata/
advancedsearch folder.

2. Create an element, Attribute, as a child element of the Attributes root element.
3. Set the value of the Name attribute to the name of the search attribute you

want to remove.
4. Set the value of the corresponding Action XML attribute to DELETE.

The search attribute is removed.

Note: Ensure that you rebuild the enterprise archive (EAR) after removing a
search attribute. For more information about building the EAR, see the Sterling
Selling and Fulfillment Foundation: Installation Guide.

Example - Removing a Search Attribute:
About this task

You may, for example, want users to exclude the target attribute as a search criteria
from the Advanced Pricing Rule Search screen. In such a scenario, you can remove
the corresponding XML attribute from the PricingRule.xml file.

To remove the target attribute:

Procedure

1. Create the PricingRule.xml file if it does not exist in the <install_dir>/
extensions/sbc/webpages/sbc/metadata/advancedsearch folder.

2. Create an element, Attribute, as a child element of the Attributes root element.
3. Set the value of the Name attribute to TargetAttributeValue.
4. Set the value of the corresponding Action XML attribute to DELETE.

The search attribute is removed.
Following is the attribute element that is removed:
<Attribute Name="TargetAttributeValue" Action="DELETE">
</Attribute>

Customize the Conditions in an Approval Rule for Sterling
Business Center

Sterling Business Center enables enterprise users to create approval rules that will
be used to set and enforce discount policies in theSterling Field Sales application.
Enterprise users can also create the conditions under which an approval rule will
become applicable. You, as an implementer, can customize the conditions displayed
in the Approval Rule Summary screen. A condition pertains to a domain that is

88 Sterling Business Center: Customization Guide

displayed in a tree hierarchy containing various entity attributes. Depending on the
entity attribute selected, fields are displayed in the dynamic row of the Conditions
panel.

You can customize the Conditions panel in the Approval Rule Summary screen by
configuring the ApprovalRuleConfig.xml file in the <install_dir>/extensions/sbc/
webpages/sbc/metadata/approval folder. You must create the
ApprovalRuleConfig.xml file to specify the entity attributes, along with details
such as the controls to be displayed in the user interface (UI), query types to be
used, and so on.

Approval Rule – Sample Configuration Metadata XML File
Below is a sample configuration metadata XML file for an Approval Rule.
<ApprovalConfig>

<Domain Name="Order">
<Attributes>

<Attribute Name="OrderDate" DisplayName="b_Effective_Start_Date"
XPath="Order" DefaultQueryType="DATEGREATER">
<QueryTypes>

<QueryType QueryType="DATEGREATER" QueryTypeDesc="b_date_greater">
<GreexFunction Name="dateGreater" />
<Configuration>

<UIControlConfiguration xtype="xapprovaldatecontrol" />
</Configuration>

</QueryType>
</QueryTypes>

</Attribute>
</Attributes>

</Domain>
</ApprovalConfig>

Refer to the following table for more information about the other XML attributes.

Component
Component
Type Component Location Description

Name Attribute ApprovalConfig/Domain/
Attributes/Attribute

Indicates the XML name of
the entity attribute.

DisplayName Attribute ApprovalConfig/Domain/
Attributes/Attribute

Indicates the bundle key of a
label that is displayed in a
drop-down list for entity
attributes. If the label is not
mentioned, the Name
attribute is considered as the
bundle key to display the
label. The bundle entry
should be defined in the
server-side bundle file.

XPath Attribute ApprovalConfig/Domain/
Attributes/Attribute

Indicates the XML path of
the element to which the
entity attribute belongs. This
XML path is also used by the
corresponding Greex Rule
XML to locate the entity
attribute when the approval
rule is being evaluated.

DefaultQueryTypes Attribute ApprovalConfig/Domain/
Attributes/Attribute

Indicates the default query
type for the entity attribute.

Chapter 2. Customizing Sterling Business Center 89

Component
Component
Type Component Location Description

compareAny Attribute ApprovalConfig/Domain/
Attributes/Attribute

Indicates that the Greex
engine compares any of the
values of the corresponding
XPath.

QueryTypes Element ApprovalConfig/Domain/
Attributes/Attribute/QueryTypes

Indicates the parent element
of the supported query types
for the entity attribute.

QueryType Element ApprovalConfig/Domain/
Attributes/Attribute/QueryTypes/
QueryType

Indicates the query types
that are supported for the
entity attribute. Ensure that
you set the value of the
corresponding GreexFunction
child element.

QueryType Attribute ApprovalConfig/Domain/
Attributes/Attribute/QueryTypes/
QueryType

Indicates the query type.

QueryTypeDesc Attribute ApprovalConfig/Domain/
Attributes/Attribute/QueryTypes/
QueryType

Indicates the bundle key of
the label that is displayed for
the query type in the UI.
This bundle entry should be
defined in the server-side
bundle file.

GreexFunction Element ApprovalConfig/Domain/
Attributes/Attribute/
QueryTypes/QueryType/
GreexFunction

Indicates the Greex Function
associated to a query type.

Name Attribute ApprovalConfig/Domain/
Attributes/Attribute/QueryTypes/
QueryType/GreexFunction

Indicates the Greex Function
associated to a query type so
that the condition using this
query type can be
transformed in a Greex Rule
XML.

Configuration Element ApprovalConfig/Domain/
Attributes/Attribute

Indicates that the entity
attribute will have certain
configurations for UI control
and possible values for the
entity attribute.

ActionURL Attribute ApprovalConfig/Domain/
Attributes/Attribute/QueryTypes/
QueryType/Configuration

Indicates the action that
returns the list of possible
values for the entity
attribute. This action may
either return the static list of
predefined values or call the
corresponding API to get
them, and then return them.
For example, ActionURL can
return the values pertaining
to the common codes,
currency, and countries.

90 Sterling Business Center: Customization Guide

Component
Component
Type Component Location Description

UIControlConfigurationElement ApprovalConfig/Domain/
Attributes/Attribute/QueryTypes/
QueryType/Configuration/
UIControlConfiguration

Indicates that the entity
attribute will have certain
configurations for UI control.

xtype Attribute ApprovalConfig/Domain/
Attributes/Attribute/QueryTypes/
QueryType/Configuration/
UIControlConfiguration

Indicates the type of control
that is displayed in the
Conditions panel in the
Approval Rule Summary
screen for the entity
attribute. For the list of
xtypes and descriptions, see
the section below, Possible
xtypes for an XML Attribute
When Defining an Entity
Attribute.

decimalPrecision Attribute ApprovalConfig/Domain/
Attributes/Attribute/QueryTypes/
QueryType/Configuration/
UIControlConfiguration

Indicates the number of
digits allowed after a
decimal separator of a
decimal number in a number
field.

allowNegative Attribute ApprovalConfig/Domain/
Attributes/Attribute/QueryTypes/
QueryType/Configuration/
UIControlConfiguration

Indicates if negative values
are allowed as an input in a
number field.

maxValue Attribute ApprovalConfig/Domain/
Attributes/Attribute/QueryTypes/
QueryType/Configuration/
UIControlConfiguration

Indicates the maximum
value that is allowed as an
input in a number field.

optionsBinding Attribute ApprovalConfig/Domain/
Attributes/Attribute/QueryTypes/
QueryType/Configuration/
UIControlConfiguration

The optionsBinding attribute
is used to specify the
repeating elements of the list
that constitutes one value of
either combination box
values or radio button
values.

Note: This is applicable only
for a combination box and a
radio button.

displayField Attribute ApprovalConfig/Domain/
Attributes/Attribute/QueryTypes/
QueryType/Configuration/
UIControlConfiguration

The displayField attribute
specifies the attribute whose
value is used as the label.

Note: This is applicable only
for a combination box and a
radio button.

valueField Attribute ApprovalConfig/Domain/
Attributes/Attribute/QueryTypes/
QueryType/Configuration/
UIControlConfiguration

The valueField attribute is
used to uniquely identify the
repeating element in order to
display the correct value of
the selected option from
either a combination box or a
radio button.

Chapter 2. Customizing Sterling Business Center 91

Possible xtypes for an XML Attribute When Defining an Entity Attribute

Following are the possible xtypes that can be used when defining the values of the
XML attributes for an entity attribute:

xtype Description

xapprovaltextcontrol Used to display a text box in the UI.

xapprovalradiocontrol Used to display radio buttons in the UI.

xapprovaldatecontrol Used to display a field for entering date in
the UI.

xapprovalcombocontrol Used to display a drop-down list in the UI.

xapprovaltriggercontrol Used to display a trigger field in the UI.

xapprovalattributelookup Used to display the Item attribute lookup
widget in the UI.

xapprovalnumbercontrol Used to display a number field in the UI.

Add a New Entity Attribute to a Domain
About this task

You can add a new entity attribute to a domain that is displayed in the tree
hierarchy from which an enterprise user can select the newly added entity attribute
to create a condition. However, you cannot add a new dynamic entity attribute like
the Item attribute to a domain. This is because the dynamic entity attributes are
read dynamically from the database, and depending on the entity attribute the
XML attributes such as query types, xpaths and so on are displayed. You can add
new entity attributes to the Order and OrderLine domains.

To add a new entity attribute to a domain:

Procedure
1. Create the ApprovalRuleConfig.xml file if it does not already exist in the

<install_dir>/extensions/sbc/webpages/sbc/metadata/approval folder.
2. Create an element, Attribute, as a child element of the Attributes element.

Ensure that you follow the structure of the following sample XML file when
creating elements.

3. Set the value of the Action XML attribute to ADD.
4. Define the values of the other XML attributes.

Note: Ensure that you rebuild the enterprise archive (EAR) after adding an
entity attribute. For more information about building an EAR, refer to the
Sterling Selling and Fulfillment Foundation: Installation Guide.

Note: You cannot use custom Greex functions to define the customized
conditions for an Approval Rule.

92 Sterling Business Center: Customization Guide

Modify an Entity Attribute in a Domain
About this task

You can modify an entity attribute in a domain to add a new query type or delete
an existing query type. The entity attribute is displayed in the tree hierarchy from
which an enterprise user can select the modified entity attribute to create a
condition. However, you cannot modify an existing dynamic entity attribute such
as ItemAttribute in a domain.

To modify an entity attribute in a domain:

Procedure
1. Create the ApprovalRuleConfig.xml file if it does not already exist in the

<install_dir>/extensions/sbc/webpages/sbc/metadata/approval folder.
2. Create an element, Attribute, as a child element of the Attributes element.
3. Set the value of the Action XML attribute to MODIFY.
4. Modify the values of the other XML attributes.

Add a New Query Type to an Entity Attribute:
About this task

To add a new query type to an entity attribute:

Procedure

1. Create the ApprovalRuleConfig.xml file if it does not already exist in the
<install_dir>/extensions/sbc/webpages/sbc/metadata/approval folder.

2. Create an element, Attribute, as a child element of the Attributes element.
3. Set the value of the XML attribute, QueryType, to ADD.
4. Modify the values of the other XML attributes.

Delete an Existing Query Type from an Entity Attribute:
About this task

If you delete a query type and the corresponding entity attribute is used by a
condition in an approval rule, none of the conditions will be displayed in the
Approval Summary screen corresponding to the approval rule.

To delete an existing query type from an entity attribute:

Procedure

1. Create the ApprovalRuleConfig.xml file if it does not already exist in the
<install_dir>/extensions/sbc/webpages/sbc/metadata/Approval folder.

2. Create an element, Attribute, as a child element of the Attributes element.
3. Set the value of the QueryType XML attribute to DELETE.

Note: Ensure that you rebuild an enterprise archive (EAR) after modifying an
entity attribute. For more information about building the EAR, refer to the
Sterling Selling and Fulfillment Foundation: Installation Guide.

Chapter 2. Customizing Sterling Business Center 93

Delete an Entity Attribute from a Domain
About this task

You can delete an entity attribute from a domain. If you delete an entity attribute
and the entity attribute is used by a condition in an approval rule, none of the
conditions will be displayed in the Approval Summary screen corresponding to the
approval rule.

To delete an entity attribute from a domain:

Procedure
1. Create the ApprovalRuleConfig.xml file if it does not already exist in the

<install_dir>/extensions/sbc/webpages/sbc/metadata/approval folder.
2. Create an element, Attribute, as a child element of the Attributes element.
3. Set the value of the Action XML attribute to DELETE.

The entity attribute is deleted from the domain.

Note: Ensure that you rebuild an enterprise archive (EAR) after deleting an
entity attribute. For more information about building the EAR, refer to the
Sterling Selling and Fulfillment Foundation: Installation Guide.

Note: You cannot use custom Greex functions to define the customized
conditions for an Approval Rule.

Debugging Tools of the Web UI Framework
v Console

This appears at the bottom of the screen after you log in to the application. It
includes the following features:
– Debug Console tab

This shows the actions that you ran while tracing actions using the Start Trace
button (for more information, see next bullet).
It also includes a panel for your test scripts. You can trap errors using these
scripts.

– DOM Inspector
This shows the paths for files used on the screen (JavaScript, css, and other
files).

v Start Trace button
When you click this button, all of the actions that you take are recorded until
you click the Stop Trace button. The button toggles between the Start Trace and
Stop Trace labels. Your actions are recorded on the Debug Console tab of the
Console.
To display this button, click Ctrl + F2.

v View Screen Model button
Clicking this button displays the Screen Model dialog box, which shows the
following information:
– Ext JS-based screen information.
– The namespaces that are bound to this screen.
– The data for these namespaces.

You can view this information in one of the following ways:

94 Sterling Business Center: Customization Guide

v Text View
Shows the data in the JSON format.

v Tree View
Shows property information about the object in a directory view.

To display this button, click Ctrl + F2.

For an example of this button, do the following:
1. Click Admin Page > Manage Airport

2. Click the Search button.
Search results appear.

3. Click Ctrl + F2.
4. Click the View Screen Model button.

The Screen Model dialog box appears.

5. In the Screens panel, click down the tree through sc.[application].airport and
Source Namespace and select the getAirportList namespace.

6. In the Model panel, click on the Text View and the Tree View to see different
views of the data for the getAirportList namespace.

Setting Up Backend Logging in the web.xml File in the Web UI
Framework

About this task

The Web UI Framework allows you to enable logging for backend framework
usages (Struts, mashups, and API), based on the URI for each client. Once you
have specified the logging, you can activate it using the Start Request Log button
in the debugging toolbar in the application.

For each logging request, the WUF backend logging will be done for the following:
v When a Struts action is called, the Struts action name is logged.
v When a mashup is invoked, the XAPIMashup class name and the API

name/Flowname are logged.
v When a redirect happens or requestDispatcher is created.

Chapter 2. Customizing Sterling Business Center 95

Procedure
1. Use the scui-request-log-enabled context parameter of the web.xml file to set up

backend logging. By default, this parameter is set to true. If it is not set to true,
then the Start Request Log button does not appear.
Sample web.xml entry:
<context-param>

<param-name>scui-request-log-enabled</param-name>
<param-value>true</param-value>

</context-param>

2. Use the com.sterlingcommerce.ui.web.framework.utils.SCUIUtils class to
provide static methods to check if logging is enabled.
public static boolean isRequestLogEnabledInCtx(SCUIContext uiContext){

return isRequestLogEnabledInCtx(uiContext.getWebContext().getRequest());
}
public static boolean isRequestLogEnabledInCtx(HttpServletRequest request){

// read from context param if enabled
// read from the boolean from isRequestLogEnabled
return isRequestLogEnabledInCtx;

}
...
public static boolean isRequestLogEnabled(SCUIContext uiContext){

return isRequestLogEnabled(uiContext.getWebContext().getRequest());
}
...
public
static boolean isRequestLogEnabled(HttpServletRequest request){

// read from context param if enabled
// read from the boolean from isRequestLogEnabled
return isRequestLogEnabled;

}

3. Use the com.sterlingcommerce.ui.web.framework.context.SCUIContext class to
actually log the message. The utility method in this class can be used by the
application to log its request-based messages. It will be logged only if the
scui-request-log-enabled context parameter is true and the user has started the
request log via the debugging toolbar.

Note: A runtime exception is thrown if the method is called when logging is
not enabled by, for example, another internal method.
...
public void setRequestLogMessage(String message){
...
// check if log enabled and attribute already exists.
this.setAttribute(SCUIConstants.REQUEST_LOG_MSG_PARAM_NAME, message);
}
...

4. A separate appender is used to put all request-based logging in a separate file.
The requestinfo.log file is available at <install>/logs or your default log
location.
The log has to be enabled by one of the following actions:
v The -Dyfs.logall=Y command
v Enabling logging via the System Management Console.
If the log is not enabled, no logging will take place.
Sample log message:
2010-02-18 06:38:47,257:DEBUG :[ACTIVE] ExecuteThread: ’0’ for queue: ’weblogic.kernel.Default (self-tuning)’:
Inside SCUIAction flightTrip
Getting Request dispatcher /stk/flightTrip/flightTrip.jsp [system]: requestlogger
2010-02-18 06:39:08,806:DEBUG :[ACTIVE] ExecuteThread: ’4’ for queue: ’weblogic.kernel.Default (self-tuning)’:
Inside SCUIAction getFlightTrip

96 Sterling Business Center: Customization Guide

Inside SCUIXAPIMashup com.sterlingcommerce.ui.web.platform.mashup.SCUIXAPIMashup
Api name is getFlightTripList
Getting Request dispatcher /stk/flightTrip/gft.jsp [stkadmin]: requestlogger
2010-02-18 06:39:09,013:DEBUG :[ACTIVE] ExecuteThread: ’4’ for queue: ’weblogic.kernel.Default (self-tuning)’:
Inside SCUIAction getOrganizationList
Inside SCUIXAPIMashup com.sterlingcommerce.ui.web.platform.mashup.SCUIXAPIMashup
Api name is getOrganizationList
Getting Request dispatcher /stk/flightTrip/gol.jsp [stkadmin]: requestlogger
2010-02-18 06:39:11,833:DEBUG :[ACTIVE] ExecuteThread: ’4’ for queue: ’weblogic.kernel.Default (self-tuning)’:
Inside SCUIAction airport
Getting Request dispatcher /stk/airport/airportScreen.jsp [stkadmin]: requestlogger
2010-02-18 06:39:15,836:DEBUG :[ACTIVE] ExecuteThread: ’4’ for queue: ’weblogic.kernel.Default (self-tuning)’:
Inside SCUIAction getAirportList
Inside SCUIXAPIMashup com.sterlingcommerce.ui.web.platform.mashup.SCUIXAPIMashup
Api name is getAirportList
Getting Request dispatcher /stk/airport/airportList.jsp [stkadmin]: requestlogger
2010-02-18 06:39:52,948:DEBUG :[ACTIVE] ExecuteThread: ’4’ for queue: ’weblogic.kernel.Default (self-tuning)’:
Inside SCUIAction activateRequestLog [stkadmin]: requestlogger

5. The Stop Request Log button comes up on the debugging toolbar when the
Start Request Log button is activated. Clicking the Stop Request Log button
will stop the logging in the requestinfo.log file after a final Struts action is
called.

Enabling Backend Logging in the User Interface with the Web
UI Framework

Procedure
1. In the user interface, display the Start Request Log button by clicking Ctrl +

F2.
The button appears in the debugging toolbar which appears in the upper
lefthand corner of the screen.

2. To enable logging, click the Start Request Log button.
The Console will not display any details about request logging. It will be
available in the requestinfo.log file either in the default log directory or in the
log directory specified by the user during installation.
The button name changes to Stop Request Log.
Log messages will be created when a Struts action is called, when a mashup is
invoked, and when a redirect happens or a requestDispatcher is created.

3. To disable logging, click the Stop Request Log button. The request-based
logging will stop.
The button name changes to Start Request Log.

Chapter 2. Customizing Sterling Business Center 97

State Management in the Web UI Framework
The Web UI Framework provides a mechanism for state management, which
enables the application to remember a user interface state and apply it across user
sessions. You can implement state management with either the default
implementation of the Web UI Framework or with a pluggable custom
implementation. You can also customize the default implementation of the Web UI
Framework.

The default Web UI Framework implementation of state management has the
following features:
v The state is saved and restored from the database, where the

PLT_USER_UI_STATE table contains the state information.
v The UI state is stored on a periodic basis. The time period is configurable.

Note: Saving the UI state on every change is performance-intensive.
v You can control the list of components whose state is stored/restored.
v State changes are remembered/cached. If there are no state changes, then the

state is not saved.
v Utility methods are provided on both the client side and the server side to

synchronously fetch the state. The UI state is cached on the client side once it
has been accessed, to avoid multiple round trips to the server.

v If a particular user is deleted, the state for that user is automatically deleted
from the PLT_USER_UI_STATE table.

Implementing State Management with the Web UI Framework
When you install the application that uses the Web UI Framework, a default
implementation of state management is provided.

In the Ext JS JavaScript framework, Ext.state.Provider is the abstract base class for
state provider implementations. This class provides methods for encoding and
decoding typed variables, including dates and definitions of the Provider interface.

If you want to provide your own implementation of state management, the
Ext.state.CookieProvider class has an example of this implementation.

The state is saved periodically by posting the data to a servlet, which in turn
delegates the task to a class that is specified in the web.xml file. The UI framework
defines an interface which the class in the web.xml file needs to implement.
<context-param>

<param-name>scui-uistate-provider</param-name>
<param-value>
com.sterlingcommerce.ui.web.platform.state.SCUIStateProvider
</param-value>

</context-param>

The default state provider works along with the Ext library in the following
manner:
v Local caching of component states, for faster retrieval on subsequent actions.

Note: This might not be useful for multiple page applications.
v Saves the available/changed state into the database on page unload. This

assumes that the session timeout has not occurred.

98 Sterling Business Center: Customization Guide

v The Ext library automatically calls the get state method for all components
which are state-aware.

v The Ext library automatically calls the set state method whenever the state
changes for a component.

By default, the state management implementation is not registered with the Ext JS
library. The implementation needs to be registered by the application. This
provides flexibility if the application does not require the UI state to be persisted.

Interface Contracts of the Web UI Framework - State
Management on the Client Side and Server Side

The state management task has interface contracts on both the client side
(JavaScript) and the server side (Java).

For more information, refer to:
v The Ext JS framework documentation at (2.2.1) http://www.extjs.com/deploy/

ext-2.2.1/docs/ or (3.0) http://www.extjs.com/deploy/dev/docs/.
v The Java API documentation in your installation directory (<INSTALL_DIR>/

xapidocs/core_javadocs).

Interface Contract Description Methods

SC.platform.state.StateProvider
(client side)

Implements the
Ext.state.Provider base class
for state provider
implementations.

Ext.state.Provider has the
following methods:

v get

Returns the current value
for a key.

v clear

Clears a value from the
state.

v set

Sets the value for a key.

An example of a custom
implementation of state
management is in the
Ext.state.CookieProvider
class.

Includes the following utility
methods:

v Retrieves the state from the
database, given the
ScreenName and the
ComponentName.

v Retrieves a list of all
component states from a
database, given a
ScreenName.

v Persists a state to a
database, given a
ScreenName and a
ComponentName.

v Clears a state, given a
ScreenName and a
ComponentName.

Chapter 2. Customizing Sterling Business Center 99

Interface Contract Description Methods

ISCUIStateProvider (server
side)

Manages the saving and
retrieving of the UI state.

Use one of the following
methods to implement this
contract:

v Make the following
web.xml context parameter
entry:

<param-name>

scui-uistate-provider

</param-name>

<param-value>

(Fully qualified class
name of the
implementation)

</param-value>

v Call the setUIStateProvider
utility method of the
SCUIStateHelper class.

v getUIState(userId,
componentId, screenId,
applicationId, uiContext)

Retrieves the state of the
given component.

v

getListOfUIStatesForScreen(userId,
screenId, applicationId,
uiContext)

Retrieves the full list of state
information for all
components belonging to
the specified screen.

v init(servletContext)

Performs initialization.
Called only once in the life
cycle.

v saveUIState(uiState,
uiContext)

Saves/persists the
provided state object.

v

saveUIStatesList(uiStateList,
uiContext)

Saves/persists the provided
list of state objects.

Transaction Management in the Web UI Framework
The Web UI Framework provides tools for transaction management. This helps you
decide how to start, end, commit, and roll back transactions, which ensures data
integrity.

You can implement transaction management with either the default
implementation of the Web UI Framework or with a pluggable custom
implementation. You can customize the Web UI Framework implementation of
transaction management. All customizations involve changes to the web.xml file
and to the transaction management interface contract of the Base UI Framework.

Transaction management is handled in the mashup layer of the Web UI
Framework. The mashup layer also handles authorization and connects the user
interface of the application with the business logic (data layer). More than one
mashup can be defined within the mashup layer, and one mashup is one
transaction. If one mashup is nested within another mashup, the beginning and
end of the parent mashup is one transaction.

Implementing Transaction Management with the Web UI
Framework

You can implement transaction management in one of the following two ways:
v A custom implementation of transaction management that uses the interface

classes of the Web UI Framework.

100 Sterling Business Center: Customization Guide

Applications need to register their implementation for the
ISCUITransactionContextFactory class either as a context parameter or by
making a Java call to the method
SCUITransactionContextHelper.setTransactionContextFactory.
Registering can be done by either of the following methods:
– Calling the static setter method

SCUITransactionContextHelper.setTransactionContextFactory
– Adding a context parameter scui-transaction-context-factory with the value as

the implementation class name. In this case, the helper class will instantiate
the context factory.
<context-param>

<param-name>scui-transaction-context-factory</param-name>
<param-value>
com.sterlingcommerce.app.TransactionContextFactory
</param-value>

</context-param>

In both methods, the Web UI Framework will call the init method of the
ISCUITransactionContextFactory class just after registering it. Applications can
use this method do some initializations for the factory.
Errors might occur if a factory class is not provided or if a class registered using
the context parameter does not implement the interface
ISCUITransactionContextFactory. In either of these situations, if a transaction
context is requested, Web UI Framework will throw a SCUIException with the
proper error message.

v The default implementation of the Web UI Framework. You can customize this
implementation. Use the following interface classes:
– YFSContext
– YCPUIAPIManager

The Web UI Framework provides the same transaction management
functionalities as the previous version of the application.

Interface Contracts of the Web UI Framework - Transaction
Management

For more information, refer to the Java API documentation in your installation
directory (<INSTALL_DIR>/xapidocs/core_javadocs).

Chapter 2. Customizing Sterling Business Center 101

Interface Contract Description Methods

ISCUITransactionContextISCUITransactionContext defines
the behavior expected in any
implementation of transaction
context in an application.

v begin

Called on the beginning of the
current transaction. Can be
used to prepare connections to
data sources.

v commit

Commits all of the changes for
the current transaction. Called
after the successful execution
of all of the tasks for the
current transaction.

v rollback

Called if any of the tasks for
the current transaction fails.
You can roll back all of the
changes made during that
transaction.

v end

Called when the current
transaction ends. You can use
this method to close all of the
connections made to the data
sources for that transaction.

v addTransactionObject

Adds multiple connections to a
transaction context.

v removeTransactionObject

Removes connections to a
transaction context.

v getTransactionObject

Fetches an already-added
transaction object from the
transaction context.

102 Sterling Business Center: Customization Guide

Interface Contract Description Methods

ISCUITransactionContextFactoryDefines the behavior expected in
any implementation of a
Transaction Context Factory in an
application.

v createTransactionContext

Creates a Transaction Context
for a transaction. You can
either create a new Transaction
Context for fetch it from a
Transaction Context pool and
return it.

v releaseTransactionContext

Called when a transaction
finishes. This method can
either destroy a Transaction
Context or return it to the
pool.

v init

Instantiates a class when the
first call for a Transaction
Context is made. This method
is called once for a Transaction
Factory during instantiation.

v sessionDestroyed

Called when a session is
destroyed. You can choose to
perform an action based on the
session destroyed.

The
ISCUITransactionContextFactory
class extends the
ISCUISessionAware class,
which is a marker class that
helps the
ISCUITransactionContextFactory
class register itself to the
HttpSessionListener
implementation class.

Transaction management also includes the following helper class which an
application needs for transaction management-related tasks.

Chapter 2. Customizing Sterling Business Center 103

Class Name Description Methods

SCUITransactionContextHelperActs as a controller for
transaction management.

v setTransactionContextFactory

Registers the transaction context
factory of an application. You can
use this method to initialize and
register a factory during the start
of a web application.

For any transaction context
request, the
SCUITransactionContextHelper
class first looks to see if a factory
is set. If not, the class tries to
instantiate a factory using a
context parameter. If a parameter
is not found, an error is thrown.
Once instantiated, the same
instance is used for further
references unless another context
is set using the
setTransactionContextFactory
method.

v getTransactionContextFactory

Returns the Current® Transaction
Context Factory for an
application. Returns null if no
Factory is set or loaded.

Look and Feel

UI Branding in the Web UI Framework
The Web UI Framework allows you to change the UI branding to your own brand
name, including company logos. You can use the Ext JS Plugins to customize the
look and feel. For more information on how to use Ext JS Plugins, refer to the
information on Programming Tools of the Web UI Framework.

You can also change the theme and other items. A sample application can be
divided into the following two parts:
v Themes
v Layout

Themes

All of the themes used in the Web UI Framework use CSS files that can be
overridden by:
v Putting the overridden entries in a directory. A custom CSS file can be placed

anywhere.
Use the IncludeCSS tag to override the CSS file. The IncludeCSS tag supports a
locale. Use the localized file of the CSS for the corresponding locale. The
localized file can then be used to override the CSS.
Example:
<scuitag:includeCSS path="/sfs/resources/default/css/sfs-core.css" />

104 Sterling Business Center: Customization Guide

v Using the post authentication implementation
(ISCUIPostAuthenticationProvider).

Layout

This is a sample layout that can be used as a starting point by an application. You
can choose to design your own custom layout, but this type of layout structure is
recommended.

The screen layout can be divided into five different parts as shown below:

A—Header
B—Menu
C—Page Header
D—Page or Screen
E—Footer

v Header—Consists of application name, company logo, static links, logged-in
user's information, and a background image.
Sample Header Layout with Spacing and Text Information:

v Menu—The Web UI Framework provides the capability to include menu in a
screen. Users can call a JavaScript function by passing the ID of the HTML
element where the menu should be rendered. The menu entries are fetched from
getUserHeirarchy API for the logged-in user.
Sample Menu Layout with Spacing and Text Information:

Chapter 2. Customizing Sterling Business Center 105

v Page Header—Consists of page title and one or more panels.
Sample Page Header Layout with Spacing and Text Information:

v Page or Screen—Consists of one or more panels.
Sample Page or Screen Layout with Spacing and Text Information:

v Footer—Consists of static links and copyright information.
Sample Footer Layout with Spacing and Text Information:

106 Sterling Business Center: Customization Guide

Specifying a Home Page when Building Screens with the Web
UI Framework

About this task

During login, the authentication provider fetches the home page to be displayed in
the following manner:

Procedure
1. It first looks for the home page entry in the forward URL which is fetched from

the request parameter's scui-login-page-referrer attribute.
If the user is logging in for the first time, this attribute is set to null and the
authentication provider looks for the custom Home Page Provider class entry.
Only if the user is logging again after browsing through some pages, the
authentication provider will first look for the home page to be displayed in the
referral URL. For example, after logging in, the user has browsed through some
pages and then for checkout he is again asked to re-enter the login information.
Now, when the same user again tries to log in, the authentication provider will
first look for the page to be displayed in the referral URL.

2. If the forwarded URL is not defined, it looks for the custom Home Page
Provider class context param (scui-loginhomepage-provider) in the web.xml
file.
If you have some custom logic on how to display the home page based on
some validations, then you will need to add this custom logic and validation in
your Home Page Provider class. This class should implement the
ISCUIHomePageProvider interface. You will return the URI for home page in
the getHomePagePath(SCUIContext ctx) method.
Using this custom home page provider, you can specify multiple home pages.
You should add the context param entry for your custom Home Page Provider
class in the web.xml file as shown below:
<context-param>

<param-name>scui-loginhomepage-provider</param-name>
<param-value>com.sc.cp.MyHomePageProvider</param-value>

</context-param>

3. If the Home Page Provider class entry is not defined, it looks for the Default
Home Page context param (scui-loginhomepage-default) in the web.xml file.
If you do not have any custom logic or validations for displaying the home
page, you can provide a default home page to go to when the user is logged in.

Chapter 2. Customizing Sterling Business Center 107

You should add a context param entry for the default home page in the
web.xml file as shown below. The <Web_Context_Root> variable is the context
root of your web application.
<context-param>

<param-name>scui-loginhomepage-default</param-name>
<param-value>/<Web_Context_Root>/home.do</param-value>

</context-param>

4. If the Default Home Page entry is not defined, it will go to the home.detail
page.

Indicating Mandatory UI Fields with the Web UI Framework
The Web UI Framework provides a CSS class which allows an application to
indicate a field as mandatory in the Web UI Framework screens. The mandatory
fields in the UI will be indicated or marked using an asterisk symbol (*).

To indicate a field as mandatory, use the sc-mandatory class on the label config.
The sc-mandatory class is defined in the platform.css file located in the
<INSTALL_DIR>/repository/eardata/platform_uifwk/<version>/war/platform/css
directory, where <version> is the Sterling Application Platform version being
consumed by the application.Sample Ext JS config for a label:
{

xtype: "label",
sciId: "lblClosedOn",
text: "Closed On",
cls: "sc-mandatory"

}

Adding Support for Custom Themes with the Web UI
Framework

About this task

The Web UI Framework allows you to define your own custom themes. For
example, you can have different themes based on organization. If the organization
key (OrganizationKey) for user x is xyz, then you can define a new CSS file for
this user as xyz.css. If that theme file exists, and the user is authenticated, the
theme file will be loaded. If it does not exist, the application will look for xyz's
primary organization (PrimaryOrganization) and load that organization's CSS file.

You can also add or modify these custom themes based on custom logic in the post
authentication implementation.

For more information, refer to the Java API documentation for the
ISCUIPostAuthenticationProvider interface in your installation directory.

The following chart shows how the theme file is determined:

108 Sterling Business Center: Customization Guide

To add support for custom theme files:

Procedure
1. Set up your list of themes in an arrayList which will be added to the

SCUITheme class. You can modify this arrayList if you have access to the
SCUIContext class. The arrayList is created from the custom CSS file. For
example:
private ArrayList customThemesList = new ArrayList();
public ArrayList getCustomThemesList() {

return customThemesList;

Chapter 2. Customizing Sterling Business Center 109

}
public void addCustomThemes(String customTheme) {

customThemesList.add(customTheme);
}

Include a reference to your arrayList in an implementation of the
ISCUIPostAuthenticationProvider interface. All of the custom themes can be
added using the addCustomThemes method. For example:
public class SCUIPostAuthenticationProviderImpl implements

ISCUIPostAuthenticationProvider {
public SCUISecurityResponse postAuthenticate(SCUIContext uiContext) {
uiContext.getUserPreferences().getTheme().addAdditionalCSS(<CUSTOM_THEME>);
return new SCUISecurityResponse();
}

}

The custom CSS file name, along with the full path of the file, should be passed
as the argument to the addCustomThemes method.

2. Implement the interface and the array list as a third party jar file to the
application, using the install3rdparty.sh script.

3. Define the CSS by either creating a new CSS or by overriding the existing CSS.

Security

Web UI Framework Security - Authentication
Authentication identifies users who have access to the application. It is the first
step in the login process. It occurs before you are authorized for resources in the
application. Use the Applications Manager to specify user IDs and passwords.

All requests are authenticated unless the URI (universal resource indicator) is in
the bypass list. This is sometimes done for graphic files, cascading style sheets
(css), and other items that support information that is already protected by
authentication.

With the Web UI Framework, you have the following options for implementing
authentication:
v The default implementation, which includes support for single sign on (SSO).

If you are currently using the default implementation of authentication, and
want to continue using that implementation, you must use this option. The
default implementation supports all existing authentication features.

v A custom implementation where you plug in your own authentication
implementation and do not use the default implementation. A customized
implementation can have additional authentication processes, such as single sign
on (SSO). You also can customize the post authentication mechanism.
You must use either the default authentication implementation or a customized
authentication implementation, but if you do not use the default post
authentication implementation, you are not required to provide a customized
post authentication implementation.

v A custom implementation where you customize the default implementation.

Note: If the application is going to be installed in a multi WAR environment, do
not reference UI framework classes such as “SCUIContextHelp.class” in the single
sign on implementation class.
With all options, the implementation is plugged into interface contracts, which

110 Sterling Business Center: Customization Guide

have definitions of the behavior expected with any authentication mechanism that
can plug in to it. This ensures a consistent mechanism for authentication, no matter
how you are implementing it (custom or default). The interface contracts also have
definitions of the behavior expected with any post-authentication mechanism,
which is called if the authentication mechanism succeeds.

Authentication can be invoked in different ways:
v LDAP
v Database table

The following picture shows the flow of authentication:

Chapter 2. Customizing Sterling Business Center 111

Web UI Framework Security - Implementing Authentication
When you implement authentication, you must first decide if you want to
customize or use the default implementation of authentication provided by the
application. You have the following options:
v The default implementation.

To use this implementation, just install the application.
v A customized implementation where you plug in your own authentication

implementation and do not use the default implementation.
v A customized implementation where you customize the default implementation.

112 Sterling Business Center: Customization Guide

Customizing Authentication

The custom authentication mechanism for the application consists of the
AuthenticationProvider class that implements the ISCUIAuthenticationProvider
interface. AuthenticationProvider is plugged in using the context parameter in
web.xml as shown in the following example:
<context-param>

<param-name>scui-authentication-provider</param-name>
<param-value>com.app.MyAppAuthenticationProvider</param-value>

</context-param>

The following shows an example of a custom AuthenticationProvider that uses the
provider specified in the web.xml example:
public class MyAppAuthenticationProvider
implements ISCUIAuthenticationProvider
{
public SCUISecurityResponse authenticate(SCUIContext uiContext)
{

//authenticate the user
//set the SCUISecurityContext in uiContext
//set the SCUIUserPreferences in uiContext
....

}

public void init()
{

//initialize the authentication mechanism.
...

}

public void sessionDestroyed(HttpSessionEvent sessionEvent)
{

//close the connection and release it back into the pool
...

}
}

Interface Contracts of the Web UI Framework - Authorization
For more information, refer to the Java API documentation in your installation
directory (<INSTALL_DIR>/xapidocs/core_javadocs).

Chapter 2. Customizing Sterling Business Center 113

Interface Contract Description Methods

ISCUIAuthorizationProviderDefines the behavior expected in
any implementation of
authorization in an application.

ISCUIAuthorizationProvider is
plugged in to an application
using the context parameter in
web.xml:

v <param-name>

scui-authorization-provider

v <param-value>

com.app.MyAppAuthorizationProvider

v hasPermission

Takes in SCUIContext and
resourceId. Returns true if the
user in the SecurityContext has
any permission to the resource
given by the resourceId.
Otherwise, it returns false.

v getPermission

Takes in SCUIContext and
resourceId. Returns an
implementation of
ISCUIResourcePermission that
contains the permission for the
given resourceId.

v init

Handles initialization, like
loading the security
information or caching it. This
method is called once, when
ISCUIAuthorizationProvider is
first set.

v sessionDestroyed

Closes all opened
session-specific handles.

The
ISCUIAuthorizationProvider
class extends the
ISCUISessionAware class,
which is a marker class that
helps the
ISCUIAuthorizationProvider
class register itself to the
HttpSessionListener
implementation class.

When a session is invalidated
or destroyed, the
sessionDestroyedmethod is
called by the listener to close
the handles opened during
initialization.

114 Sterling Business Center: Customization Guide

Interface Contract Description Methods

ISCUIResourcePermissionDefines the behavior expected in
any implementation of
authorization for a given
resource ID in an application.

ISCUIResourcePermission is
returned by
ISCUIAuthorizationProvider after
the authorization.

v canRead

Returns true if the user has
permission to read for a given
ResourceId. Otherwise, it
returns false.

v canEdit

Returns true if the user has
permission to edit for a given
ResourceId. Otherwise, it
returns false.

v canExecute

Returns true if the user has
permission to execute for a
given ResourceId. Otherwise, it
returns false.

This could be the permission
control that is used for
executing the mashup class.

Interface Contracts of the Web UI Framework - Post
Authentication
For more information, refer to the Java API documentation in your installation
directory (<INSTALL_DIR>/xapidocs/core_javadocs).

Chapter 2. Customizing Sterling Business Center 115

Interface Contract Description Methods

ISCUIPostAuthenticationProviderDefines the behavior expected in
any implementation of
authentication in an application.

AuthenticationProvider is
plugged in to an application
using the context parameter in
the web.xml file:

v <param-name>

scui-post-authentication-
provider

v <param-value>

com.app.MyAppPostAuthenticationProvider

Multiple
PostAuthenticationProviders can
be set using the web.xml file. No
order is maintained but if one
PostAuthentication fails, the
request is redirected to the URL
in the forwarded page with the
error.

Multiple
PostAuthenticationProviders are
set using the web.xml
param-name
scui-post-authentication-
provider.

v postAuthenticate

Takes in the SCUIContext. The
expected response (after post
authentication) is an
SCUISecurityResponse object
that encapsulates the return
status, the URL of the page,
exception, and error message.

v init

Handles initialization, like
loading the security
information or caching it. This
method is called once, when
PostAuthenticationProvider is
first set.

v sessionDestroyed

Closes all opened
session-specific handles.

The
ISCUIAuthenticationProvider
class extends the
ISCUISessionAware class,
which is a marker class that
helps the
ISCUIAuthenticationProvider
class register itself to the
HttpSessionListener
implementation class.

When a session is invalidated
or destroyed, the
sessionDestroyedmethod is
called by the listener to close
the handles opened during
initialization.

Web UI Framework Security - Bypassing Authentication for a URI
About this task

You can set up the application to bypass authentication for URIs (universal
resource indicators) that point to graphic files, cascading style sheets (css), and
other items that support information that is already protected by authentication.

Procedure
1. Open the web.xml file.
2. Add one or more parameters to the <context-param> tag:

v bypass.uri.endswith
Allows any URI ending with the specified text to be bypassed. You can use
this parameter with js, css, and gif files.
In the following example, any URI that ends with “.gif” would be bypassed:
<context-param>

<param-name>bypass.uri.endswith.<application>.3</param-name>
<param-value>.gif</param-value>

</context-param>

116 Sterling Business Center: Customization Guide

v bypass.uri.regex
Allows any URI that includes the specified wild card characters to be
bypassed.
In the following example, any URI that includes “<app_dir>”, “/”, and at
least one uppercase letter would be bypassed:
<context-param>

<param-name>bypass.uri.regex.<application>.1</param-name>
<param-value>.*<app_dir>/[A-Z]+.*</param-value>

</context-param>

Web UI Framework Security - Authorization
Authorization enables you to grant permissions to a user for different resources. It
occurs after you are authenticated in an application.

With the Web UI Framework, you have the following options for implementing
authorization:
v The default implementation.

If you are currently using the default implementation of authorization, and want
to continue using that implementation, you must use this option. The default
implementation supports all existing authorization features.

v A customized implementation without the default implementation.
v A customized implementation of the default implementation.

With all options, the implementation is plugged into interface contracts, which
have definitions of the behavior expected with any authorization mechanism that
can plug into it. This ensures a consistent mechanism for authorization, no matter
how you are implementing it (custom or default).

If you do not use the Web UI Framework default implementation of authorization,
and no custom implementation is provided, by default the user will have access to
all resources.

Authorization uses a resource ID to see if a user has permission to use a resource.
Resource IDs control access to the Extensibility Workbench and Designer
Workbench.

Authorization can be invoked in different ways:
v LDAP
v Database table
v A resource ID in the metadata of a mashup

To use a mashup, you must define a resource ID for the mashup to control the
access of the mashup and give it to the mashup.xml.

Web UI Framework Security - Implementing Authorization
When you implement authorization, you must first decide if you want to
customize or use the default implementation of authorization provided by the
application. You have the following options:
v The default implementation.

To use this implementation, just install the application.
v A customized implementation without the default implementation.
v A customized implementation of the default implementation.

Chapter 2. Customizing Sterling Business Center 117

IBM recommends that permissions for users be cached.

Customizing Authorization

The custom authorization mechanism for the application consists of the
AuthorizationProvider class that implements the ISCUIAuthorizationProvider
interface and ResourcePermission that implements the ISCUIResourcePermission
interface. ResourcePermission is returned by the AuthorizationProvider class after
the authorization. AuthorizationProvider is plugged in using the context parameter
in web.xml as shown in the following example:
<context-param>

<param-name>scui-authorization-provider</param-name>
<param-value>com.app.MyAppAuthorizationProvider</param-value>

</context-param>

You can generate resource permission code using the resource permission template
of the Code Template Generator.

The following shows an example of a custom AuthorizationProvider that uses the
provider specified in the web.xml example:
public class MyAppAuthorizationProvider implements
ISCUIAuthorizationProvider
{

....
public boolean hasPermission(SCUIContext uiContext, String resourceId)

{
ISCUIResourcePermission getPermission(uiContext, resourceId);
....
}

public ISCUIResourcePermission getPermission(SCUIContext uiContext,
String resourceId)

{
//authorize the user from the SCUISecurityContext
...

}
public void init()
{

// initialize the authorization mechanism.
...
}

public void sessionDestroyed(HttpSessionEvent sessionEvent)
{

//close the connection and release it back into the pool ...
}

}

Interface Contracts of the Web UI Framework - Authorization
For more information, refer to the Java API documentation in your installation
directory (<INSTALL_DIR>/xapidocs/core_javadocs).

118 Sterling Business Center: Customization Guide

Interface Contract Description Methods

ISCUIAuthorizationProviderDefines the behavior expected in
any implementation of
authorization in an application.

ISCUIAuthorizationProvider is
plugged in to an application
using the context parameter in
web.xml:

v <param-name>

scui-authorization-provider

v <param-value>

com.app.MyAppAuthorizationProvider

v hasPermission

Takes in SCUIContext and
resourceId. Returns true if the
user in the SecurityContext has
any permission to the resource
given by the resourceId.
Otherwise, it returns false.

v getPermission

Takes in SCUIContext and
resourceId. Returns an
implementation of
ISCUIResourcePermission that
contains the permission for the
given resourceId.

v init

Handles initialization, like
loading the security
information or caching it. This
method is called once, when
ISCUIAuthorizationProvider is
first set.

v sessionDestroyed

Closes all opened
session-specific handles.

The
ISCUIAuthorizationProvider
class extends the
ISCUISessionAware class,
which is a marker class that
helps the
ISCUIAuthorizationProvider
class register itself to the
HttpSessionListener
implementation class.

When a session is invalidated
or destroyed, the
sessionDestroyedmethod is
called by the listener to close
the handles opened during
initialization.

Chapter 2. Customizing Sterling Business Center 119

Interface Contract Description Methods

ISCUIResourcePermissionDefines the behavior expected in
any implementation of
authorization for a given
resource ID in an application.

ISCUIResourcePermission is
returned by
ISCUIAuthorizationProvider after
the authorization.

v canRead

Returns true if the user has
permission to read for a given
ResourceId. Otherwise, it
returns false.

v canEdit

Returns true if the user has
permission to edit for a given
ResourceId. Otherwise, it
returns false.

v canExecute

Returns true if the user has
permission to execute for a
given ResourceId. Otherwise, it
returns false.

This could be the permission
control that is used for
executing the mashup class.

Web UI Framework Security - Adding Login Pages
About this task

The Web UI Framework enables you to set up more than one login page. Login
pages can be used for different organizations or other groupings of users. You also
can set up a customized implementation of multiple login pages.

Procedure
1. Install the application with the Web UI Framework.
2. Decide how you want to implement multiple login pages, using one of the

following ways:
v The default implementation provided in the Web UI Framework.

If no customized login page provider is given, the default implementation
reads the following web.xml file <context-param> parameters:
<param-name>scui-login-page</param-name>
<param-value>/myapp/console/login.jsp</param-value>

v A customized implementation that is plugged into the Web UI Framework.
3. For a customized implementation, specify your custom login page provider in

web.xml using the scui-login-page-provider parameter.
Example:
<context-param>

<param-name>scui-login-page-provider</param-name>
<param-value>com.app.MyLoginPageProvider</param-value>

</context-param>

This provider will be accessed by the getLoginPage() method of
ISCUILoginPageProvider. The custom implementation must use the interface
contract defined in the ISCUILoginPageProvider class.
To implement the customized Java code, build a jar file that contains the Java
class, and then install the jar file using the install3rdparty.sh script. To
implement this customization, rebuild the EAR or WAR file as you did during
the installation, and then deploy the application on the application server.

120 Sterling Business Center: Customization Guide

Web UI Framework Security - Supporting Multiple Guest Users
About this task

With the Web UI Framework, your authentication process can include the
authentication of one or more guest users for a particular URL of the application. If
the application is not configured for multiple guest users, the default
implementation allows only one guest user (if it is set up). If the application is not
configured for multiple guest users or for the default implementation of only one
guest user, the guest can be specified using web.xml parameters:
<context-param>

<param-name>scui-guest-user</param-name>
<param-value>myAppGuest</param-value>

</context-param>

To support multiple guest users, you must use the default implementation of the
Web UI Framework. You can customize this default implementation.

Procedure
1. Install the application with the default implementation of the Web UI

Framework.
2. Specify your custom guest user provider in web.xml using the

scui-guest-user-provider parameter.
Example:
<context-param>

<param-name>scui-guest-user-provider</param-name>
<param-value>com.app.MyGuestUserProvider</param-value>

</context-param>

This provider will be accessed by the getGuestUser() method of
ISCUIGuestUserProvider. For all guest users, the password is the same as the
user name. The custom implementation must use the interface contract defined
in ISCUIGuestUserProvider.
To implement the customized Java code, build a jar file that contains the Java
class, and then install the jar file using the install3rdparty.sh script. To
implement this customization, rebuild the EAR or WAR file as you did during
the installation, and then deploy the application on the application server.

Web UI Framework Security - Adding Request Validators
About this task

The Web UI Framework allows you to set up more than one validation for a
request. This validation process requires additional authentication of a user after
that user has initially logged in. It allows that user to continue a login session.

For more information, refer to the Java API documentation in your installation
directory (<INSTALL_DIR>/xapidocs/core_javadocs).

Procedure
1. Install the application with the default implementation of the Web UI

Framework.
2. Create your implementation of multiple validations, which you will plug into

the Web UI Framework. The Web UI Framework does not have a default
implementation of multiple validations. If no implementation is provided, the
request is not further validated after the initial authentication.

Chapter 2. Customizing Sterling Business Center 121

The request validations are done for every request, so you need to optimize
this feature based on your needs. The implementation of request validators
must use the contract defined in ISCUIRequestValidator.

3. The SCUISecurityResponse class is returned by the request validator's validate
method. If the validation fails, the request is redirected to the URL specified in
the SCUISecurityResponse class. Also, include settings for the return status,
exception, and error message. This information is used by the validate method
of the ISCUIRequestValidator in the Web UI Framework.
The ISCUIRequestValidator interface defines what the Web UI Framework
expects in any request validation implementation. This interface uses the
following methods:
v validate

Takes in SCUIContext. The response is an SCUISecurityResponse object that
encapsulates the return status, the URL of the page, exception, and error
message. This method executes the business logic needed by the application.

v init
Handles initialization.

v sessionDestroyed
Closes all opened session-specific handles. The ISCUIValidator extends the
ISCUISessionAware interface, a marker interface that will facilitate
ISCUIValidator to register itself to the HttpSessionListener implementation
class. When the session is invalidated or destroyed, the sessionDestroyed
method is called by the listener to close the session-specific handles opened
during initialization.

The following shows an example of an ISCUIRequestValidator interface:
public interface ISCUIRequestValidator extends ISCUISessionAware
{

public SCUISecurityResponse validate(SCUIContext uiContext);
public void init();
public void sessionDestroyed();

}

The request validation consists of one or more instances of RequestValidator
that implements the ISCUIRequestValidator interface class. Multiple request
validators can be set, but their order is not guaranteed. RequestValidator is
plugged in using the context parameter in web.xml as shown in the following
example:
<context-param>

<param-name>scui-request-validator1</param-name>
<param-value>com.app.MyURLValidator</param-value>

</context-param>
<context-param>

<param-name>scui-request-validator2</param-name>
<param-value>com.app.MyAdminValidator</param-value>

</context-param>

All of the validation implementation or validators given in the context
parameter in web.xml are called (in no particular order) for supporting
additional validation.

4. To implement the customized Java code, build a jar file that contains the Java
class, and then install the jar file using the install3rdparty.sh script. To
implement this customization, rebuild the EAR or WAR file as you did during
the installation, and then deploy the application on the application server.

122 Sterling Business Center: Customization Guide

Web UI Framework Security - Cross-Site Request Forgery
The Web UI Framework provides protection for the application against cross-site
request forgery (CSRF), which maliciously exploits a web site where unauthorized
commands are transmitted from a user that the web site trusts. CSRF (also called
XSRF) is different from cross-site scripting (CSS or XSS), which exploits the trust a
user has for a particular site. CSRF is also known as one-click attack, sidejacking,
or session riding.

CSRF works by including a link or script in a page that accesses a site to which the
user is known (or is supposed) to have authenticated. For example, User A might
be browsing a forum where User B has posted a message. With CSRF, User B
might create the following HTML image element that, instead of being an image
file, references a script on the web site of User A's bank and requests a withdrawal
of $1,000,000:

If User A's bank keeps their authentication information in a cookie, and if the
cookie hasn't expired, then the attempt by User A's browser to load the image will
submit the withdrawal form with the authentication cookie, and authorize a
transaction without User A's approval.

In this scenario, the problem can be summed up in the following three points:
v Because of the browser's policy, the authentication cookies are sent to the bank

server even though the request originated from a different web site.
v User A's bank stores authentication information in a cookie and completely relies

on the cookies for authentication purposes.
v User A's bank does not differentiate between GET and POST requests.

The CSRF protection in the Web UI Framework does not apply to the first point,
since it is a browser policy. But it does apply to the second and third points by
using both a cookie and an additional token for authentication. CSRF attacks are
usually prevented by always checking for a unique token in each request that hits
the server. In the Web UI Framework, the token is used in the following manner:
1. When login finishes, a newly created token is set for the session (for validation

purposes). This token is available on the client side of the application.
2. The token is used in the following ways:

v This token is used for all AJAX requests and within the Web UI Framework
utilities.

v When a POST or GET request is made to the server, the application
automatically validates that the CSRF token is available in the request.

Web UI Framework Security - Protecting Against CSRF
Attacks

Procedure
1. Open the web.xml file.
2. To validate the token that is used to protect against CSRF attacks, create a

request validator that will be registered in the application (if the validator is
not already present in the web.xml file).
Example:

Chapter 2. Customizing Sterling Business Center 123

<context-param>
<param-name>scui-request-validator-10</param-name>
<param-value>

com.sterlingcommerce.ui.web.platform.security.SCUICSRFTokenValidator
</param-value>

</context-param>

3. Set up the modes in which the validator can operate:
v ALL (default) - Both POST and GET requests will be validated for the CSRF

token.
v POST - Only POST requests will be validated for the CSRF token.
v NONE - The validator will not validate any request for the CSRF token.
You can specify the validator mode in the context parameter of either the
config.xml file or the web.xml file (if the validator mode is not already present
in the web.xml file).
The mode defaults to ALL if the mode is not specified or if a context parameter
is not specified for the validate mode.
Example:
<context-param>

<param-name>scui-csrf-validator-request-method</param-name>
<param-value>ALL</param-value>

</context-param>

4. If necessary, set up URI inclusion and exclusion lists for the validator, using the
following guidelines:
v If a URI is on the exclusion list, it will not be validated for the CSRF token.
v If a URI (universal resource indicator) is on the inclusion list, and not on the

exclusion list, it will be validated for the CSRF token.
v If a URI is not on the exclusion list and is in the inclusion list, it will be

validated for the CSRF token.
Use the following context parameters in the web.xml file to create inclusion and
exclusion lists. Any number of parameters can be provided.
v csrf-include-uri

Any request with a URI that is the same as the value is validated for the
CSRF token.
Example (for web.xml):
<context-param>

<param-name>csrf.include.uri.endswith.stk.1</param-name>
<param-value>.do</param-value>

</context-param>

v csrf-include-uri-endswith
Any request with a URI that ends with the value is validated for the CSRF
token.
Example (for web.xml):
<context-param>

<param-name>csrf.include.uri.endswith.stk.2</param-name>
<param-value>.xml</param-value>

</context-param>

v csrf-include-uri-regex
Any request with a URI that matches the regex (provided as a value for the
parameter) is validated for the CSRF token.
Example (for web.xml):

124 Sterling Business Center: Customization Guide

<context-param>
<param-name>csrf.include.uri.stk.1</param-name>
<param-value>/stk/home.jsp</param-value>

</context-param>

v csrf-bypass-uri
Any request with a URI that matches the value is bypassed and not checked
for the CSRF token.
Example (for web.xml):
<context-param>

<param-name>csrf.bypass.uri.stk.1</param-name>
<param-value>/console/login.jsp</param-value>

</context-param>

v csrf-bypass-uri-endswith
Any request with a URI that ends with the value is bypassed
Example (for web.xml):
<context-param>

<param-name>csrf.bypass.uri.endswith.stk.1</param-name>
<param-value>.js</param-value>

</context-param>

v csrf-bypass-uri-regex
Any request with a URI that matches the regex (provided as a value for the
parameter) is not checked for the CSRF token.
Example (for web.xml):
<context-param>

<param-name>csrf.bypass.uri.regex.stk.1</param-name>
<param-value>[a-zA-Z0-0]*servlet/param-value>

</context-param>

By default, all URIs are in the inclusion list, even if a csrf-include parameter is
not provided. You must explicitly specify that a URI is in the exclusion list. If
no inclusion list is provided, by default all URIs are considered to be in the
inclusion list. Specific URIs can be added to an inclusion list by the application
to avoid all URIs being validated for the CSRF token.
By default, the framework provides an exclusion list to bypass CSRF validation
for requests for gif, png, css, or js-type files.

5. Most CSRF attacks work just by replicating POST requests into its GET
equivalent. Because most applications do not differentiate between POST and
GET requests, the attacks usually work. To differentiate between GET and
POST requests, in your Struts action definitions, set up the modes in which the
validator can operate, using the requestMethodSupported parameter of the
action:
v POST - (default) Only POST requests are allowed.

If requestMethodSupported is not set or is an unknown value, then it
defaults to POST.

v ALL - Both GET and POST requests are allowed.
Example:
<action name="accountTransfer" class="com.AccountTransfer">

<param name="requestMethodSupported">POST</param>
<param name="resourceId">AccountTransfer_Action002</param>

</action>

Chapter 2. Customizing Sterling Business Center 125

Data Handling

Data Type Handling in the Web UI Framework
A consistent method of data type handling is required to validate input boxes on
the UI, for defining their entity XML files, and for other tasks. A data type is a
data attribute that helps you set constraints on the data, such as acceptable values
and what operations may be performed on that data.

The data type is required on the client side of the application for:
v UI field validation (length, size, etc.)

When you add fields to the screen using the Extensibility Designer, the data
types of the new fields help determine the display of the screen.

v UI component display (size, etc.)

Validation can be set up for user events like clicking a button or changing the
cursor focus.

With the Web UI Framework, you have the following options for data type
handling:
v The default implementation, which lets you continue using the data type

handling implementation of the Console JSP, Swing, or RCP UI implementations.
Those implementations use the following data type definition files:
– datatypes.xml (located at <INSTALL_DIR>/repository/datatypes)
– yfsdatatypemap.xml (located at <INSTALL_DIR>/repository/xapi/template/

merged/resource)
You can customize this default implementation.

v Register the customized implementation of data handling. You can use the
web.xml file for this registration.
The following shows the out-of-the box configuration of the data type-related
parameters in the web.xml file. To customize data type handling, you must
replace the <param-value> entry with the classpath to the custom Java class,
based on its location and package name.
<context-param>

<param-name>scui-datatype-provider</param-name>
<param-value>

com.sterlingcommerce.ui.web.platform.dataType.SCUIDataTypeProvider
</param-value>

</context-param>

You can also register the customized implementation by making a Java call to
the method SCUIDataTypeHelper.setDataTypeProvider.
The following shows an example of a package for a customized implementation:
package com.sterlingcommerce.ui.dataType;
import java.util.Map;
public interface ISCUIDataTypeProvider{

public Map getDataTypes();
public SCUIDataType getDataType(StringdataTypeName);
public SCUIValidationResponse validate(StringdataTypeName, Stringvalue);
publicbooleanisValid(StringdataTypeName,Stringvalue);
publicvoidinit();

For more information about these packages, refer to the documentation on the
interface contracts for data type handling.
The following shows the guidelines for creating a data type using the
SCUIDataType class that is used in the above package:

126 Sterling Business Center: Customization Guide

package com.sterlingcommerce.ui.dataType;
public class SCUIDataType {

/** Holds value of property name. */
private String name;
/** Holds value of property type. */
private String type;
/** Holds value of property size. */
private Integer size;
/** Holds value of property decimalDigits. */
private Integer decimalDigits;
/** Holds value of property negativeAllowed. */
private Boolean negativeAllowed;
.......
public void setName(String name) {

this.name = name;
}

public void setType(String type){
this.type = type;

}
public void setSize(int size){

this.size = new Integer(size);
}
public void setDecimalDigits(int decimalDigits) {

this.decimalDigits = new Integer(decimalDigits);
}

public void setNegativeAllowed(boolean negativeAllowed){
this.negativeAllowed = new Boolean(negativeAllowed);

}

.......

public String getType(){
return this.type;

}

public boolean isNumeric() {
return ("NUMBER".equalsIgnoreCase(getType()));

}
........

}

To implement the customized Java code, build a jar file that contains the Java class,
and then install the jar file using the install3rdparty.sh script.

To implement this customization, rebuild the EAR or WAR file as you did during
the installation, and then deploy the application on the application server.

Interface Contracts of the Web UI Framework - Data Type
Handling
For more information, refer to the Java API documentation in your installation
directory (<INSTALL_DIR>/xapidocs/core_javadocs).

Chapter 2. Customizing Sterling Business Center 127

Interface Contract Description Methods

DataTypeProvider Implements the
ISCUIDataProvider interface,
which defines the behavior
expected in any implementation
of data type handling in an
application.

DataTypeProvider is plugged in
to an application using the
context parameter in web.xml:

v <param-name>

scui-datatype-provider

v <param-value>

com.application.ApplicationDataTypeProvider

v getDataTypes

Returns a map of data types
through the merged map of
DataType.xml and
DataTypeMap.xml.

v getDataType(String dataType)

Takes the name of the data
type and returns the data type
object.

v validate(String dataTypeName,
String value)

Validates the value passed
against the data type and
returns the
SCUIvalidationReponse.

v isValid(String dataTypeName,
String value)

Validates the value passed and
returns true or false based on
the success of the validation.

v init

Handles initialization.

Assigning Data Types to a Grid Column with the Web UI
Framework
About this task

You can use the Ext JS JavaScript framework to control the data type of a grid
column, instead of using the Properties view of the Designer Workbench. You can
program a column data type to depend on the data type of data in corresponding
columns of the grid. The data type can be used to determine the column's
alignment and sorting behavior.

To define a data type for a grid column, use one of the following config options for
the column definition. Work through the order of the list when deciding which
config option to use.
1. scuiDataType

The data type name. If this option is present, the other two config options
(bindingData.sFieldConfig.mapping and bindingData.tAttrBinding) are not
used.

2. bindingData.sFieldConfig.mapping
The source binding for the column. An attempt will be made by the application
to determine the value of the config. If no data type is found for that value,
bindingData.tAttrBinding is used to determine the data type.

3. bindingData.tAttrBinding
The target binding for the grid column. An attempt will be made by the
application to determine the data type for the value of the config.

Once the data type is determined, the following column properties will be
defaulted, based on the data type:

128 Sterling Business Center: Customization Guide

v Alignment
Numbers are right-justified, and dates are middle-justified.

v The type for the store field. The sorting of grid columns is based on the type
attribute of the store field config.
The following list shows the default data types for different data types. For
example, if you encounter a number with no decimal digits, it will be stored in
the store field as an integer (int).
– NUMBER (with no decimal digits) - int
– NUMBER (with decimal digits) - float
– DATE - date
– TIME - date
– DATETIME - date

v renderer
A renderer is a JavaScript function that can be used to change the text and the
look and feel of the application.

v DATE - sc.plat.DateFormatter.getDefaultRenderer('DATE')
This JavaScript API returns the renderer which would display the date in the
format specified for that user.

v TIME - sc.plat.DateFormatter.getDefaultRenderer('TIME')
This JavaScript API returns the renderer which would display the time in the
format specified for that user.

v DATETIME - sc.plat.DateFormatter.getDefaultRenderer('DATETIME')
This JavaScript API returns the renderer which would display the timestamp in
the format specified for that user.

Creating Extra Fields in Grid Stores with the Web UI Framework
The WUF binding framework is used to populate data into a grid. This framework
uses the bindingData provided for the grid to create the store. The column
configuration is used by the framework to create fields in the store.

Sometimes, more fields (more than the number of columns) may be required in the
store for a grid. To add these fields, the bindingData of a grid accepts the fields
property.

The following shows an example of a table bindingData object:
bindingData: {

sourceBinding : ["getFlightServiceList:FlightServiceList.FlightService"],
targetBinding : ["getFlightServiceList:FlightServiceList.FlightService"],
storeConfig: {

// ... extra parameters used to create the store
}

}

The following shows an example of a column configuration:
{

dataIndex: ’’,
bindingData: {

sFieldConfig : {
mapping : "FlightServiceKey"

},
tAttrBinding : "FlightServiceKey"

}
}

Chapter 2. Customizing Sterling Business Center 129

The configuration of the fields property that is required when adding fields in the
store for a grid is shown below:
fields: [{

name: ’fieldName’,
mapping: ’fieldMapping’

}]

The following shows an example of the table bindingData object in which the
fields property is used:
bindingData: {

sourceBinding : ["getFlightServiceList:FlightServiceList.FlightService"],
targetBinding : ["getFlightServiceList:FlightServiceList.FlightService"],
storeConfig: {},
fields: [{

name: ’fieldName’,
mapping: ’fieldMapping’

}]
}

Note: If a column with the same name exists in the grid, the definition provided in
table binding data under the fields name would be ignored.

Using extensibility, you can add the extn_bindingData property for an existing
table (a table which was originally present on the screen, i.e., it was not added to
the screen by a user during extensibility).

The following shows an example of an extn_bindingData object that implements
the fields property:
extn_bindingData: {

fields: [{
name: ’fieldName’,
mapping: ’fieldMapping’

}]
}

Customizing Sorting from Multiple Record Fields with the Web UI
Framework
You can customize the sorting of table columns that use data that combines
multiple fields of a record (for example, by using a renderer). You can do this with
both Ext JS 2.2.1 and Ext JS 3.0.

Perform this sort by using the sortType function in the Ext.data.field class. Instead
of one item being passed to sortType (value of a field), three items will be passed
(value of a field, the record, and the field being sorted). This functionality is
provided by overriding the sortData method in the Ext.data.Store class to pass the
record and field in addition to the value of the field.

When users are not creating the store for a grid, they can pass sortType as a config
option in the bindingData.sFieldConfig property in the columnModel or columns
of a grid.

For example, a grid can have the following configuration:
columns: [{

dataIndex: ’airlines’,

bindingData: {

sFieldConfig : {

mapping : "airlines",

130 Sterling Business Center: Customization Guide

sortType: this.sortTypeFn

}

}

}]

where this.sortTypeFn is defined in the screen JavaScript file as:
sortTypeFn: function(val, rec, fld){

return val + rec.get(’airlinenumber’);
// computing the value based on value of field (airlines) and
// value of ’airlinenumber’ field

}”

Supporting Item Quantity Decimal Handling in the Web UI
Framework

You can use the Web UI Framework to specify decimal numbers for item
quantities. The yfs.install.displaydoublequantity property of yfs.properties indicates
whether to support fractional quantities for attributes which belong to the
QUANTITY data type. If yfs.install.displaydoublequantity is set to Y (the default
value), then you can specify decimal numbers for item quantities.

Validating Fields with the Web UI Framework
About this task

You can validate fields against certain standards, using the default validation
system or your own validation system.

The Web UI Framework provides validation for the following three types of
information in the en_US locale:
v E-mail address (using the international accepted standard)
v Telephone number format (locale-specific)
v Credit card number (using the Luhn algorithm)

To validate items, do the following:

Procedure
1. Register the field attributes that you will be using for validation by

implementing the registerFieldAttributes(validationType, attribute) function,
using the following arguments:
v validationType (required)

Validation type. By default, the application includes validation types for
e-mail address, telephone number format, and credit card number.

v attribute
XML attributes for validations. An attribute can be registered for multiple
validation types.
Use this function to implement customized validators that you want to plug
in to the application.

2. Implement the registerValidators(validationType, validator) function, using the
following arguments:
v validationType (required)

Validation type.
v validator (required)

Chapter 2. Customizing Sterling Business Center 131

Validator function for validation type.

Results

The following is an example of how to add validation for a last name:
sc.plat.ValidateUtils.registerValidator(’LastName’, function (value){

if (value == null || value.length<2) {
return {status: 2,message: "Last name needs at least two characters" };

}
return {status: 1};

});

Disabling All UI Fields at One Time with the Web UI
Framework

You can use the Web UI Framework to disable all of the screen fields at once,
without having to individually disable any field. When you disable a field, you
cannot change the data that is in that field. The field becomes read-only. After
disabling all of the fields, you can still cut and paste information from those fields,
but you cannot submit information from form fields that have been disabled. You
cannot disable all of the fields only for look-and-feel purposes.

To disable all of the screen fields at once, use the Ext JS JavaScript method
disableFields. A function created from this method has the following properties:
v disable

Boolean property that determines if all fields on the screen are disabled.
v deep

Boolean property that determines whether the disable property applies to the
immediate children fields of the screen. If this is set to true, the disable property
applies to all children fields. If this is set to false, the disable property applies
only to immediate children fields.

v allowCopy
Boolean property that determines whether a disable method is called for all
fields. If this is set to true, fields will be marked read-only with an opacity of
0.6. If this is set to false, a disable method will be called for all fields.

v disableCSS
String property that shows the custom css that will be applied if allowCopy is
set to true.

If the scIgnoreDisable property in a field is set to true, that field will ignore the
disableFields method.

Checking for Screen Changes in the Web UI Framework
About this task

In screens created using the Web UI Framework, the application can take actions
that are based on whether a screen field changed. For example, if you open a
screen to modify a field, and you end up not modifying that field, you could
program the application not to submit information from that screen to a server
when you close the screen.

The isDirty method checks all of the fields of a screen to see if they have changed.
Each editable field also has an isDirty method, so you can program the application
to take actions based on whether a particular field changed.

132 Sterling Business Center: Customization Guide

Screen changes are also monitored using a dirtystatechange event. Whenever a
field is modified on a screen, the dirtystatechange event is fired on the screen. In
the following example, the Save button is enabled whenever a field on a screen is
modified:
Screen.addListener(’dirtystatechange’,function(scr, isDirty)

{
savBtn.disable(!isDirty);
},

this);

Configuring a Data Source with the Web UI Framework
About this task

To work with a data source, you must first configure it using the Configure Data
Sources dialog box.

The Web UI Framework does not use XML binding. The Configure Data Sources
dialog box works with only JSON data sources.

Procedure
1. Make sure the Data tab is showing, and not the Palette or Files tab.
2. Click the button that is just to the right of the dropdown arrow.

The Configure Data Sources dialog box appears.
3. Configure the following items:

v Type of data source (input or output)
v Data source

The data source directory is the directory containing JSON data source files,
which can be provided to application developers. With the Web UI
Framework, a tool is provided for generating JSON data sources from XAPI
XML and XSD definitions.

v Path to data source directory
v Namespace, elements, and attributes

4. Click the Finish button.
The data source is configured. This initializes the bindingData property of the
widget that is using the data source. You can also specify binding by creating
or editing this property in the Properties view.

Adding a Data Source with the Web UI Framework
About this task

To work with a data source, you must first configure it using the Configure Data
Sources dialog box.

Procedure
1. Make sure the Data tab is showing, and not the Palette or Files tab.
2. Make sure that you are on the screen where you want to add a data source.
3. Click on the down arrow to select a data source.
4. Add the data source to the screen.

Chapter 2. Customizing Sterling Business Center 133

Deploying Extensions

Deploying Sterling Business Center Extensions
After you complete all customizations for the Sterling Business Center application,
you must place all the extensions in the <INSTALL_DIR>/extensions/sbc/webpages
directory. You must place all the JavaScript files in the <INSTALL_DIR>/extensions/
sbc/webpages/extn directory.

Deploying Web UI Framework Extensions
After you customize an existing screen using the Extensibility Workbench or create
a new screen using the Designer Workbench, you must deploy your changes in the
application. You can use either Java Server pages (JSP) or JavaScript Builder (JSB)
files to deploy Extensibility Workbench changes. To deploy Designer Workbench
changes, you must use a Java Server page.

A JavaScript Builder file contains JavaScript library/package definitions. The Web
UI Framework provides programmatic control over this library with differential
extensibility.

If minification is required, the directory structure in the <Install
dir>/extensions/<app name>/webpages directory changes slightly. For more
information, refer to the documentation on compiling and minifying JavaScript
files.

Deploying Extensions Created by the Web UI Framework
Extensibility Workbench and Designer Workbench Using a Java
Server Page
About this task

Do the following to use a Java Server page (JSP) to deploy differential extensions
(modified with the Extensibility Workbench) or override extensions (created using
the Designer Workbench):

Note: UNIX/Linux file paths are used in the following procedure.

Procedure
1. Install the application and build a WAR file for it.

a. Deploy the WAR file on the server in the exploded format.
b. After the deployment finishes, start the application server.

2. Make sure that the changes made using the Extensibility Workbench or the new
screen created using the Designer Workbench have all the relevant JSON and
JavaScript files generated and saved.

3. In the <INSTALL_DIR>/extensions folder, create the following subdirectory:
<application package name>/webpages

4. In the webpages subdirectory, replicate the directory structure of the screen that
you want to extend (relative to your deployment) and copy in all of the script
files generated by the workbench.
For example, if you extend the Manage Flight Route screen (which uses the file
path <application package name>/flightRoute), you would copy all of the
extension script files into the <INSTALL_DIR>/extensions/<application package
name>/webpages/<application package name>/flightRoute directory.

5. Create a new JSP file with the same name as the base JSP file to launch these
newly generated files in the same folder. Sample code for the original JSP:

134 Sterling Business Center: Customization Guide

<%@ taglib uri="/WEB-INF/scui.tld" prefix="scuitag" %>
<jsp:include page="/stk/include.jsp">

<jsp:param name="title" value="manage flight route" />
</jsp:include>
<script>

Ext.ns("sc.stk");
sc.stk.fn = function() {

var fr = new sc.stk.flightRoute();
sc.plat.ScreenTitle.setText(fr.Header, null, "sc-panel-belowmenu-text");
sc.plat.ScreenTitle.setText(fr.Header, null, "sc-panel-belowmenu-desc");
fr.render("mainBodyPanel");

}
<scuitag:includeJS
name="[’/stk/flightRoute/flightRouteList_config.js’,’/stk/flightRoute/flightRouteList.js’,
’/stk/flightRoute/flightRouteList_bundle.js’]"
callBack="sc.stk.fn"/>
</script>
<jsp:include page="/stk/footer.jsp">

Sample code for the new JSP (differential extensibility):
<%@ taglib uri="/WEB-INF/scui.tld" prefix="scuitag" %>
<jsp:include page="/stk/include.jsp">

<jsp:param name="title" value="manage flight route" />
</jsp:include>
<script>

Ext.ns("sc.stk");
sc.stk.fn = function() {

var fr = new sc.stk.flightRoute();
sc.plat.ScreenTitle.setText(fr.Header, null, "sc-panel-belowmenu-text");
sc.plat.ScreenTitle.setDescription(fr.Header, null, "sc-panel-belowmenu-desc");
fr.render("mainBodyPanel");

}
<scuitag:includeJS
name="[’/stk/flightRoute/flightRouteList_config.js’,’/stk/flightRoute/flightRouteList.js’,
’/stk/flightRoute/flightRouteList_bundle.js’,’/stk/flightRoute/test_overlays.js’
,’/stk/flightRoute/test.js’]"
callBack="sc.stk.fn"/>
//The new JSP also includes the newly generated files: test_overlays.js and test.js
</script>
<jsp:include page="/stk/footer.jsp">

Sample code for the new JSP (override extensibility):
<%@ taglib uri="/WEB-INF/scui.tld" prefix="scuitag" %>
<jsp:include page="/stk/include.jsp">

<jsp:param name="title" value="Custom Screen" />
</jsp:include>
<script>

Ext.ns("sc.stk");
sc.stk.fn = function() {

var fr = new sc.stk.flightRoute();
/*
sc.extn.CustomScreen is the className for the new screen. It is available
as a property for a screen in the designer and defaulted to
sc.module.ClassName. The user can change it.
*/

sc.plat.ScreenTitle.setText(fr.Header, null, "sc-panel-belowmenu-text");
/*
Here, the setText(arg1, arg2, arg3) method has been used to set arg1 as
title for a page as arg3="sc-panel-belowmenu-text". Here, a bundle entry in
the file: newScreen_bundle.js corresponding to Header would be picked up.
*/

sc.plat.ScreenTitle.setDescription(" ", null, "sc-panel-belowmenu-desc");
fr.render("mainBodyPanel");

};
<scuitag:includeJS
name="[’/extn/stk/flightRoute/newScreen_config.js’,

Chapter 2. Customizing Sterling Business Center 135

’/extn/stk/flightRoute/newScreen.js’, ’/stk/flightRoute/newScreen_bundle.js’]"
callBack="sc.stk.fn"/>
//This JSP includes the files generated through the designer:
newScreen_config.js, newScreen.js and the localization file:
newScreen_bundle.js
</script>
<jsp:include page="/stk/footer.jsp">

6. Rebuild the WAR file.
The contents of the <INSTALL_DIR>/extensions/<application package
name>/webpages directory are copied to the following directory:
<INSTALL_DIR>/external_deployments/<application package name>/extn
This directory structure exists only if a WAR file is created and then exploded
in the same <INSTALL_DIR>/external_deployments directory.
Any JSP file within this directory that has the same name and at the same
relative directory structure as the base JSP would override the out-of-the-box
JSP file.

7. Relaunch the application to display the extended changes.

Deploying Extensions Created by the Web UI Framework
Extensibility Workbench Using a JavaScript Builder File
About this task

Do the following to use a JavaScript Builder file to deploy differential extensions
created using the Extensibility Workbench. You cannot use this procedure to
deploy override extensions created using the Designer Workbench.

Also, a JSB can be used if the base screen is launched through a JSB or through a
JSB that uses a JavaScript library to render screens.

Note: UNIX/Linux file paths are used in the following procedure.

Procedure
1. Install the application and build a WAR file for it.

a. Deploy the WAR file on the server in the exploded format.
b. Start the application server by passing the following argument:

-Dwufdevmode=true

2. Make sure that the changes made using the Extensibility Workbench have all
the Java files generated and saved.

3. In the <INSTALL_DIR>/extensions folder of your installation directory, create
the following subdirectory:
<application package name>/webpages

4. In the webpages subdirectory, replicate the directory structure of the screen that
you want to extend (relative to your deployment) and copy in all of the script
files generated by the Extensibility Workbench.
For example, if you extend the Manage Flight Route screen (which uses the file
path <application package name>/flightRoute), you would copy all of the
extension Java files into the <INSTALL_DIR>/extensions/<application package
name>/webpages/<application package name>/flightRoute directory.

5. Create a new JSB file in the same folder to launch these newly generated files.
The <ExtensionJSFile>_overlays.js files should be included before the
corresponding <ExtensionJSFile>.js files. You can use the JSB template of the
Code Template Generator to create the code for this file. You would have to
paste the code into the new file. Sample code for JSB:

136 Sterling Business Center: Customization Guide

<?xml version="1.0" encoding="utf-8"?>
<project name="scuiIDE"

author="Your Company">
<target name="flight_route"

<!-- The name attribute in <target> is used to uniquely identify
this JSB in the application. It serves as its identifier.-->

file="/extn/stk/flightRoute/test-all.js"
loadAfter="flightService"

<!-- The loadAfter attribute in <target> is used to specify the
javascript library after which the current JSB should be rendered.-->

allowDynamicLoad="true"
debug="True"
shorthand="False"
shorthand-list="">

<include name="/extn/stk/flightRoute/test_overlays.js"/>
<include name="/extn/stk/flightRoute/test.js"/>

</target>
</project>

6. Create a new servlet to register the new JSB file. The extn folder should be
prefixed for LoadJSLibraryXml and loadIncrementalMashupExtnXml calls.
Sample code for creating the servlet:
package jsbCreator;
import javax.servlet.ServletConfig;
import javax.servlet.ServletException;
import javax.servlet.http.HttpServlet;
import
com.sterlingcommerce.ui.web.framework.helpers.SCUIJSLibraryHelper;
import
com.sterlingcommerce.ui.web.framework.helpers.SCUIMashupHelper;
public class CreateServlet extends HttpServlet {

private static final long serialVersionUID =
4693417985837892469L;

public synchronized void init(final ServletConfig config)
throws ServletException {

//loads the JSB specified at the path
SCUIJSLibraryHelper.loadJSLibraryXml

("extn/stk/flightRoute/test.jsb", config.getServletContext());
//loads the mashup XML specified at the path
SCUIMashupHelper.loadIncrementalMashupExtnXml

("/extn/stk/flightRoute/test_mashup.xml", config.getServletContext());
}

}

7. Package the servlet into a jar file.
8. Update the web.xml file with your customizations.
9. Relaunch the application to display the extended changes.

The changes will appear overlaid on the base screen.

Compiling and Minifying JavaScript Files in the Web UI
Framework
About this task

This topic provides information about compiling and minifying JavaScript files.

Note: : Minification will only combine the JavaScript files.

Procedure
1. Run the jscompile command to get possible JavaScript compilation warnings

using the sci_ant.sh command from the Install/bin directory. This command
works with the jsUtil.xml file in the same directory. This command can include
the following properties:

Chapter 2. Customizing Sterling Business Center 137

Note: This is an optional step and not a requirement for minification.
v gis.install: Installation directory path.
v srcDir: Source directory.
v errorOnly: Indicates whether to check for all warnings and errors (false) or

for errors only (true). Defaults to false.
v format: Output format - (h) for html/(t) for text. Defaults to t. If errorOnly is

set to true, only html (h) is the valid option.
v outputFile: Output file path. If file path is not provided or file doesn't exist.

all warnings will be directed to standard output.
v warningOptions: Warning options (comma separated). Default options:

[onevar, undef, forin, debug, browser, eqeqeq, newcap, evil]. For all warning
options, see http://www.jslint.com/

For example:
./sci_ant.sh –f jsUtil.xml jscompile –Dgis.install=<Install_Dir> –DsrcDir=<Install_Dir>
/repository/eardata/platform_uifwk/<version>/war/platform

Note: If you are using sci_ant.sh, then gis.install becomes optional.
2. Combine your files into one file by using the sci_ant.sh command from the

Install/bin directory. This command works with the jsUtil.xml file in the same
directory. This command can include the following properties:
v gis.install: Installation directory path.
v jsbDir: JSB directory path (mandatory).
v srcDir: Source directory. Will be used if input attribute is not specified in JSB.

Optional.
v destDir: Destination directory. Will be used if input attribute is not specified

in JSB. Optional.
v createIndividualFile: Indicates whether to create individual files (true/false).

Defaults to false (do not create individual files). Optional.
v jscompile: Indicates whether to get JavaScript warning/errors (true/false).

Defaults to true (get errors).

For example:
./sci_ant.sh –f jsUtil.xml minify-js –Dgis.install=<Install_Dir> –DsrcDir=<Install_Dir>
/repository/eardata/platform_uifwk/<version>/war -DjsbDir=<Install_Dir>
/repository/eardata/platform_uifwk/<version>/war/builder –DdestDir=<Install_Dir>
/repository/eardata/platform_uifwk/<version>/war

where <version> is either 20 or 30 depending on if you are using Ext JS 2 or Ext
JS 3 JavaScript-related files/content.

Note: If you are using sci_ant.sh, then gis.install becomes optional.
If minification is required for extended JavaScript files, you should create an
extn folder within the directory where overlays/extensions are added
(<install-dir>/extensions/<application name>/webpages). Copy all of the files to
be minified to that directory. You must follow the process of creating the same
relative directory structure for extensibility. You can then run the minification
script successfully because the minified file path in the JSB file does exist.
When you run the buildear/buildwar script, the following happens:
a. First, all contents of the overlays/extensions directory except the extn

directory are copied to the <application war>/extn directory.
b. Then, the contents of the extn directory in the overlays/extensions directory

get copied to the <application war>/extn directory. As the contents of this

138 Sterling Business Center: Customization Guide

directory are copied last, it would override the contents contributed by
overlays/extensions directory in case of a conflict (same directory structure).

Deploying the Enterprise Archive Package
About this task

To make Sterling Business Center available for use, you must create and deploy the
application EAR file.

Procedure
1. Set up the application server appropriately for deploying the application. For

more information about setting up the application server, refer to the
installation documentation.

2. Create the EAR package for the application server.
v To create the application EAR file for a single WAR deployment, run the

following command from the <INSTALL_DIR>/bin directory: UNIX
./buildear.sh (.cmd for Windows) -Dappserver=<application server> -Dwarfiles=<war file> -Dearfile=<ear file>

v To create the application EAR file for a multiple WAR deployment, run the
following command from the <INSTALL_DIR>/bin directory:
./buildear.sh (.cmd for Windows) -Dsupport.multi.war=true
-Dappserver=<application server> -Dwarfiles=<war file,<comma-separated packages>
-Dearfile=<ear file>

To create additional WAR files, add the appropriate packages to the value of
the -Dwarfiles argument, separated by commas. For example, to create three
WAR files, set the -Dwarfiles argument in the commands in Step 2 as
follows:
-Dwarfiles=<war file 1>,<war file 2>,<war file 3>

Running the command in this step creates the EAR file in the
<INSTALL_DIR>/external_deployments directory. It also places the multiple
war files in the EAR file.

3. Deploy the EAR file on the application server. For more information about
creating and deploying the EAR file, refer to the installation documentation.

Chapter 2. Customizing Sterling Business Center 139

140 Sterling Business Center: Customization Guide

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not grant you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte character set (DBCS) information,
contact the IBM Intellectual Property Department in your country or send
inquiries, in writing, to:

Intellectual Property Licensing

Legal and Intellectual Property Law

IBM Japan Ltd.

1623-14, Shimotsuruma, Yamato-shi

Kanagawa 242-8502 Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be

© Copyright IBM Corp. 1999, 2012 141

incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Corporation

J46A/G4

555 Bailey Avenue

San Jose, CA 95141-1003

U.S.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

All IBM prices shown are IBM's suggested retail prices, are current and are subject
to change without notice. Dealer prices may vary.

142 Sterling Business Center: Customization Guide

This information is for planning purposes only. The information herein is subject to
change before the products described become available.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. The sample
programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work, must
include a copyright notice as follows:

© IBM 2012. Portions of this code are derived from IBM Corp. Sample Programs. ©
Copyright IBM Corp. 2012.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

Trademarks

IBM, the IBM logo, and ibm.com® are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the Web at “Copyright and
trademark information” at http://www.ibm.com/legal/copytrade.shtml.

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered
trademarks or trademarks of Adobe Systems Incorporated in the United States,
and/or other countries.

IT Infrastructure Library is a registered trademark of the Central Computer and
Telecommunications Agency which is now part of the Office of Government
Commerce.

Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo,
Celeron, Intel Xeon, Intel SpeedStep, Itanium, and Pentium are trademarks or
registered trademarks of Intel Corporation or its subsidiaries in the United States
and other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both.

Notices 143

http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

ITIL is a registered trademark, and a registered community trademark of the Office
of Government Commerce, and is registered in the U.S. Patent and Trademark
Office.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Oracle and/or its affiliates.

Cell Broadband Engine is a trademark of Sony Computer Entertainment, Inc. in the
United States, other countries, or both and is used under license therefrom.

Linear Tape-Open, LTO, the LTO Logo, Ultrium and the Ultrium Logo are
trademarks of HP, IBM Corp. and Quantum in the U.S. and other countries.

Connect Control Center®, Connect:Direct®, Connect:Enterprise®, Gentran®,
Gentran®:Basic®, Gentran:Control®, Gentran:Director®, Gentran:Plus®,
Gentran:Realtime®, Gentran:Server®, Gentran:Viewpoint®, Sterling Commerce™,
Sterling Information Broker®, and Sterling Integrator® are trademarks or registered
trademarks of Sterling Commerce™, Inc., an IBM Company.

Other company, product, and service names may be trademarks or service marks
of others.

144 Sterling Business Center: Customization Guide

Index

A
advanced search metadata file

name:approval rule search 80
advanced search metadata file

name:coupon search 80
advanced search metadata file

name:entitlement search 80
advanced search metadata file name:item

search 80
advanced search metadata file

name:manual pricing rule search 80
advanced search metadata file name:price

list search 80
advanced search metadata file

name:pricing rule search 80
advanced search metadata file

name:service option search 80
advanced search metadata file

name:service search 80

B
basic and advanced searches 80

C
customize advance search criteria:add or

modify a search attribute 80
customize advance search criteria:add or

modify a search attribute example 86,
93

customize advance search
criteria:defining XML attributes 81, 89

customize advance search criteria:remove
a search attribute 88

customize advance search criteria:remove
a search attribute example 88

customize conditions:add a new entity
attribute 92

customize conditions:delete a query
type 93

customize conditions:delete an entity
attribute 94

customize conditions:modify an entity
attribute 93

customize related tasks:add a related
task 78

customize related tasks:add a related task
category 77

customize related tasks:delete a related
task 79

customize related tasks:delete a related
task category 79

customize related tasks:modify a related
task 79

customize related tasks:modify a related
task category 78

R
related task metadata file name:coupon

search 75
related task metadata file name:customer

entitlement 75
related task metadata file name:customer

entitlement search 75
related task metadata file name:delivery

service association 75
related task metadata file name:manual

pricing rule search 75
related task metadata file name:price list

search 76
related task metadata file name:pricing

rule search 76
related task metadata file name:return

pickup association 75
related task metadata file name:seller

entitlement 75
related task metadata file name:seller

entitlement search 75

© Copyright IBM Corp. 1999, 2012 145

146 Sterling Business Center: Customization Guide

����

Printed in USA

	Contents
	Chapter 1. Checklist for Customization Projects
	Customization Projects
	Prepare Your Development Environment
	Plan Your Customizations
	Extend the Database
	Make Other Changes to APIs
	Customize the UI
	Extend Transactions
	Build and Deploy your Customizations or Extensions

	Chapter 2. Customizing Sterling Business Center
	Overview of Sterling Business Center Customization
	Customizing the Sterling Business Center User Interface
	Differential Screen Extensions

	Extensibility in the Web UI Framework for Application Developers
	Differential Extensibility in the Web UI Framework
	Override Extensibility in the Web UI Framework
	Differential Extensibility Versus Override Extensibility in the Web UI Framework
	What Can Be Customized and Extended with the Web UI Framework
	Customizing with the Web UI Framework
	Extending Versus Customizing an Ext JS Widget/Component with the Web UI Framework
	Extensibility Workbench Versus Designer Workbench in the Web UI Framework

	Setting Up the Customization Environment
	Extensibility Workbench of the Web UI Framework for Application Developers
	Configuring the Web UI Framework Extensibility Workbench
	Using the Web UI Framework Extensibility Workbench to Modify a Widget
	Extensibility Workbench Tools of the Web UI Framework
	Control Details View of the Web UI Framework
	Property Restrictions in Extensibility in the Web UI Framework
	Adding Namespaces to Screens Using Extensibility in the Web UI Framework

	Designer Workbench of the Web UI Framework for Application Developers
	Creating New UI Screens Using the Designer Workbench in the Web UI Framework
	Designer Workbench Tools of the Web UI Framework
	Using the Web UI Framework Designer Workbench to Create New Screens for Custom Developers
	Generating Copyright Comments with the Web UI Framework

	Mashup Layer of the Web UI Framework
	Interface Contracts of the Web UI Framework - Mashup Layer
	Mashup Layer Classes of the Web UI Framework
	Mashup XML Metadata of the Web UI Framework
	Configuring Mashups in Web UI Framework
	Specifying Multiple XAPI Calls with the Web UI Framework
	How the Mashup Layer Handles Authorization and Transaction Management in the Web UI Framework

	Programming Tools of the Web UI Framework
	Ext JS Plugins in the Web UI Framework
	Ext JS Plugin Methods in the Web UI Framework
	Creating Ext JS Plugins with the Web UI Framework
	Example Code for Registering Ext JS Plugins in the Web UI Framework

	Extending Mashups
	Mashups in Sterling Business Center
	Extending Mashups in the Web UI Framework
	Extending Mashups Using Override Extensibility in the Web UI Framework
	Extending Mashups Using Differential Extensibility in the Web UI Framework

	Creating and Extending a Struts File
	Struts in Sterling Business Center
	Creating and Extending a Struts XML File in the Web UI Framework

	Creating a Menu Entry for a New Web UI Framework Screen Using the Applications Manager
	Customizing the web.dita File
	Customizing the web.xml File for Deployment
	Customizing the web.xml File for Development

	Changing Bundle Files
	Resource Bundles in Sterling Business Center
	Changing Bundle Files in the Web UI Framework

	Building and Customizing Pages and Controls
	Widgets of the Web UI Framework
	Working with Widgets in the Web UI Framework
	Adding a Widget to a Screen with the Web UI Framework
	Customizing Widgets in an Existing Installation with the Web UI Framework
	Hiding Fields with the Web UI Framework
	Accessing the Working Files of the Web UI Framework
	Viewing Screen Objects in the Outline or Tree View of the Web UI Framework
	Configuring Properties for Screens, Widgets, and Other Items with the Web UI Framework
	Providing Description Attributes for Binding Namespaces in the Web UI Framework
	Wizards of the Web UI Framework
	Creating a Wizard with the Web UI Framework
	Wizard Page Attributes in the Web UI Framework
	Wizard Rule Attributes in the Web UI Framework
	Wizard Transition Attributes in the Web UI Framework
	Wizard Flow Controller Attributes in the Web UI Framework
	Wizard Breadcrumb Attributes in the Web UI Framework
	Sample XML Flow Definition for Wizards in the Web UI Framework

	Preset Properties in the Web UI Framework
	Creating Preset Properties with the Web UI Framework
	Applying Preset Properties with the Web UI Framework

	Enabling a Child Screen to Access a Parent Screen with the Web UI Framework
	Menu Customizations with the Web UI Framework
	Creating Smart Tags with the Web UI Framework
	Generating Code from Templates with the Web UI Framework
	Code Template Generator of the Web UI Framework
	Default Code Templates of the Web UI Framework
	Creating a Custom Code Template with the Web UI Framework
	Creating a Custom Code Template Using a Blank Template with the Web UI Framework
	Editing a Custom Code Template with the Web UI Framework
	Updating a Screen in a Running Application with the Web UI Framework

	Customize Related Tasks for Sterling Business Center
	Related Tasks - Sample Metadata XML File
	Add a Related Task Category
	Modify a Related Task Category
	Delete a Related Task Category

	Customize Advanced Search Criteria for Sterling Business Center
	Add or Modify a Search Attribute
	Remove a Search Attribute

	Customize the Conditions in an Approval Rule for Sterling Business Center
	Approval Rule – Sample Configuration Metadata XML File
	Add a New Entity Attribute to a Domain
	Modify an Entity Attribute in a Domain
	Delete an Entity Attribute from a Domain

	Debugging Tools of the Web UI Framework
	Setting Up Backend Logging in the web.xml File in the Web UI Framework
	Enabling Backend Logging in the User Interface with the Web UI Framework

	State Management in the Web UI Framework
	Implementing State Management with the Web UI Framework
	Interface Contracts of the Web UI Framework - State Management on the Client Side and Server Side

	Transaction Management in the Web UI Framework
	Implementing Transaction Management with the Web UI Framework
	Interface Contracts of the Web UI Framework - Transaction Management

	Look and Feel
	UI Branding in the Web UI Framework
	Specifying a Home Page when Building Screens with the Web UI Framework
	Indicating Mandatory UI Fields with the Web UI Framework
	Adding Support for Custom Themes with the Web UI Framework

	Security
	Web UI Framework Security - Authentication
	Web UI Framework Security - Implementing Authentication
	Interface Contracts of the Web UI Framework - Authorization
	Interface Contracts of the Web UI Framework - Post Authentication
	Web UI Framework Security - Bypassing Authentication for a URI

	Web UI Framework Security - Authorization
	Web UI Framework Security - Implementing Authorization
	Interface Contracts of the Web UI Framework - Authorization

	Web UI Framework Security - Adding Login Pages
	Web UI Framework Security - Supporting Multiple Guest Users
	Web UI Framework Security - Adding Request Validators
	Web UI Framework Security - Cross-Site Request Forgery
	Web UI Framework Security - Protecting Against CSRF Attacks

	Data Handling
	Data Type Handling in the Web UI Framework
	Interface Contracts of the Web UI Framework - Data Type Handling
	Assigning Data Types to a Grid Column with the Web UI Framework
	Creating Extra Fields in Grid Stores with the Web UI Framework
	Customizing Sorting from Multiple Record Fields with the Web UI Framework

	Supporting Item Quantity Decimal Handling in the Web UI Framework
	Validating Fields with the Web UI Framework
	Disabling All UI Fields at One Time with the Web UI Framework
	Checking for Screen Changes in the Web UI Framework
	Configuring a Data Source with the Web UI Framework
	Adding a Data Source with the Web UI Framework

	Deploying Extensions
	Deploying Sterling Business Center Extensions
	Deploying Web UI Framework Extensions
	Deploying Extensions Created by the Web UI Framework Extensibility Workbench and Designer Workbench Using a Java Server Page
	Deploying Extensions Created by the Web UI Framework Extensibility Workbench Using a JavaScript Builder File
	Compiling and Minifying JavaScript Files in the Web UI Framework

	Deploying the Enterprise Archive Package

	Notices
	Index
	A
	B
	C
	R

