Sterling Selling and Fulfillment Foundation

Customization Basics

Version 91

<|ll

Sterling Selling and Fulfillment Foundation

Customization Basics

Version 91

<|ll

Note
FBefore using this information and the product it supports, read the information in|[“Notices” on page 51

Copyright

This edition applies to the 9.1 Version of IBM Sterling Selling and Fulfillment Foundation and to all subsequent
releases and modifications until otherwise indicated in new editions.

© Copyright IBM Corporation 1999, 2011.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

Chapter 1. Checklist for Customization
Projects.

Customization Projects . .
Prepare Your Development Env1ronment

Plan Your Customizations .

Extend the Database .

Make Other Changes to APIs

Customize the UI.

Extend Transactions .

Build and Deploy your Customrzatrons or Extensrons

OJU)NNHH»—\»—\—l

Chapter 2. Extensibility Overview.
Extending Your Application .o

Extending the Console User Interface .

Extending the Applications Manager User Interface
Extending the Mobile User Interface

Extending the Database.

Extending Transactions .

Extending the Rich Client Platform User Interface

[IENEEN le e NG I I 3) |

Chapter 3. Setting Up the Development
Environment.

Prerequisites for Extending Your Applrcatlon
Understanding the Development Environment .
Preparing the Development Environment on
WebLogic . . . oo 009
Preparing the Development Env1ronment on
WebSphere . . . 12
Preparing the Development Envrronment on]Boss 14
Developing and Testing in the Development

o o O

Environment15
Testing Ul Customlzat1ons .o N [
Configuring the UI Cache Refresh Actrons16
Configure Resource Cache Refresh Actions . . . 16

Chapter 4. Customization Using
Microsoft COM+. 17

Microsoft COM+ Prerequisites . . . A V4
Creating a COM+ Application on Wmdows .. 17
Adding Components to a COM+ Application . . . 17
Configuring the COM+ Service.18
Creating a Client Proxy19
Installing a Client Proxy19

Chapter 5. Masking Sensitive
Information During Logging 21

Masking Sensitive Information During Logging
Using Log4j21

Chapter 6. Data Validation 23

About Data Validation.23
Disabling Data Validation . . L. . .24
Bypassing Data Validation for an URI24

© Copyright IBM Corp. 1999, 2011

Implementing Data Validation 25
Defining Regular Expressions in Datatypes XML
File25
Defining Regular Expressrons in XML Flles . .25
Registering Regular Expressions . . .27

Defining Validation Rules in Datatypes XML Flle 28
Externalizing Validation Rules Defined in the

Datatypes XML File28
Defining Validation Rules in XML F1les .. .29
Defining Abstract Validation Rules31
Extending Abstract Validation Rules32
Registering Validation Rules.32
Overriding Regular Expressions33
Overriding Validation Rules 33

Defining an Adapter to Find Valrdatron Rules . 34
Defining URI-Based Adapter to Find Validation

Rules . . . Lo.. L. 34

Deleting Reg1stered Valrdatron Rules N
Exception Handling35

Defining Error Messages36

Localizing Error Messages36

Defining Custom Regular Express1on Error

Message Provider36
Localizing Validation Rules37

Chapter 7. Building and Deploylng

Extensions39
After You Create Your Extensrons G
Building Resource Extensions39
Building Other Extensions40
Building Database Extensions41
Deploying Extensions41
Building and Deploying Enterprrse—Level Extensrons 42

Building Enterprise-Level Extensions42

Building Enterprise-Level Resources Extensrons 43
Building Enterprise-Level Database Extensions 43
Building Enterprise-Level Template Extensions 44

Deploying Enterprise-Level Extensions 44
Customizing Web.xml 44
Customizing web.xml for Multrple Applrcatrons 44
Customizing web.xml for Session Timeouts. . . 45
Deploying the Enterprise Archive Package 45
Deploying Multiple EARs on One Appl1cat1on
Server46
Defining the]NDI Context Namespace B 1)
Defining Context Root Entries47

Chapter 8. File Names, Keywords, and
Other Conventions 49
Reserved Special Characters and Keywords

Introduction49
Naming Files.49
Reserved Keywords . . e &
Using Multi-Byte Characters o 0]

iii

Notices

iv Sterling Selling and Fulfillment Foundation

. 51

Chapter 1. Checklist for Customization Projects

Customization Projects

Projects to customize or extend Sterling Selling and Fulfillment Foundation vary
with the type of changes that are needed. However, most projects involve an
interconnected series of changes that are best carried out in a particular order. The
checklist identifies the most common order of customization tasks and indicates
which guide in the documentation set provides details about each stage.

The items identified for extension and/or modification in the documentation are
Source Components (to the extent such item involves source code) and Sample
Materials for purposes of the License Information file associated with this product.

Prepare Your Development Environment

Set up a development environment that mirrors your production environment,
including whether you deploy your application on a WebLogic, WebSphere®, or
JBoss application server. Doing so ensures that you can test your extensions in a
real-time environment.

You install and deploy your application in your development environment
following the same steps that you used to install and deploy it in your production
environment. Refer to your system requirements and installation documentation
for details.

You have an option to customize your application with Microsoft COM+. Using
Microsoft COM+ has advantages such as increased security, better performance,
increased manageability of server applications, and support for clients of mixed
environments. If this is your choice, see the Customization Basics Guide about
additional installation instructions.

Plan Your Customizations

Are you adding a new menu entry? Or customizing the sign-in screen or logo? Or
customizing views or wizards? Or creating new themes or new screens? Each type
of customization varies in scope and complexity.

For background, see the Customization Basics Guide, which summarizes the types of
changes that you can make and provides important guidelines about file names,
keywords, and other general conventions.

Extend the Database

For many customization projects, the first task is to extend the database so that it
supports the other Ul or API changes that you make later. For instructions, see the
Extending the Database Guide, which includes information about the following
topics:

* Important guidelines about what you can and cannot change in the database.

© Copyright IBM Corp. 1999, 2011 1

Information about modifying APIs. If you modify database tables so that any
APIs are impacted, you must extend the templates of those APIs or you cannot
store or retrieve data from the database. This step is required if table
modifications impact an APL

How to generate audit references so that you improve record management by
tracking records at the entity level. This step is optional.

Make Other Changes to APIs

Your application can call or invoke standard APIs or custom APIs. For background
about APIs and the services architecture of service types, behavior, and security,
see the Customizing APIs Guide. This guide includes information about the
following types of changes:

Invoke standard APIs for displaying data in the UI and for saving changes made
in the UI to the database.

Invoke customized APIs for executing your custom logic in the extended service
definitions and pipeline configurations.

APIs use input and output XML to store and retrieve data from the database. If
you don't extend these API input and output XML files, you may not get the
results you want in the Ul when your business logic is executing.

Every API input and output XML file has a DTD and XSD associated to it.
Whenever you modify input and output XML, you must generate the
corresponding DTD and XSD to ensure data integrity. If you don't generate the
DTD and XSD for extended XMLs, you may get inconsistent data.

Customize the

2

Ul

IBM® applications support several UI frameworks. Depending on your application
and the customizations you want to make, you may work in only one or in several
of these frameworks. Each framework has its own process for customizing
components such as menu items, logos, themes, and so on.

Depending on the framework you want, consult one of the following guides:

Customizing the Console JSP Interface Guide
Customizing the Swing Interface Guide
Customizing User Interfaces for Mobile Devices Guide

Customizing the Rich Client Platform Guide and Using the RCP Extensibility Tool
Guide

Customizing the Web Ul Framework Guide

Depending on the framework you want, consult one of the following guides:

Customizing the Console [SP Interface Guide
Customizing the Swing Interface Guide
Customizing User Interfaces for Mobile Devices Guide

Customizing the Rich Client Platform Guide and Using the RCP Extensibility Tool
Guide

Customizing the Web Ul Framework Guide

Sterling Selling and Fulfillment Foundation

Extend Transactions

You can extend and enhance the standard functionality of your application by
extending the Condition Builder and by integrating with external systems. For
background about transaction types, security, dynamic variables, and extending the
Condition Builder, see the Extending Transactions Guide and Extending the Condition
Builder Guide. These guides includes information about the following types of
changes:

* Extend the Condition Builder to define complex and dynamic conditions for
executing your custom business logic and using a static set of attributes.

* Define variables to dynamically configure properties belonging to actions,
agents, and services configurations.

* Set up transactional data security for controlling who has access to what data,
how much they can see, and what they can do with it.

* Create custom time-triggered transactions. You can invoke and schedule custom
time-triggered transactions in much the same manner as you invoke and
schedule the time-triggered transactions supplied by your application.

* Coordinate your custom, time-triggered transactions with external transactions
and run them either by raising an event, calling a user exit, or invoking a
custom API or service.

Build and Deploy your Customizations or Extensions

After performing the customizations that you want, you must build and deploy
your customizations or extensions.

1. Build and deploy your customizations or extensions in the test environment so
you can verify them.

2. When you are ready, repeat the same process to build and deploy your
customizations and extensions in your production environment.

For instructions about this process, see the Customization Basics Guide which

includes information about the following topics:

* Building and deploying standard resources, database extensions, and other
extensions (such as templates, user exits, and Java interfaces).

* Building and deploying enterprise-level extensions.

Chapter 1. Checklist for Customization Projects 3

4 Sterling Selling and Fulfillment Foundation

Chapter 2. Extensibility Overview

Extending Your Application

This chapter introduces the types of extensibility possible through Sterling Selling
and Fulfillment Foundation. It provides an overview, describes high-level concepts,
and provides technical architectural diagrams of the application.

* Look and Feel Extensibility

The application provides a Presentation Framework toolkit that enables you to
change the way information is rendered or displayed without changing the way
it functions.

* Transactional Extensibility

Sterling Selling and Fulfillment Foundation provides a Service Definition
Framework, which is an infrastructure that automates the conversion and
transportation of data betweenSterling Selling and Fulfillment Foundation and
third-party applications, and then converts that data into formats readable by
each system. The Service Definition Framework also handles logging and
exceptions. It enables you to create custom transactions that extend the
functionality of the application.

¢ Database Extensibility

In addition to customizing the user interface and transactions, you can extend
the database to store additional attributes specific for your business.

* Printed Documents Extensibility

You can customize printed documents. For example, you can extend the default
length of bar codes.

You can use JasperReports for generating printed reports in the application.
Additionally, you can also generate reports as a PDE, RTF or any other Jasper
Print object in the application. JasperReports is an open source Java reporting
tool, which you download and install separately. The JasperReports installation
guidelines are provided in the INSTALL_DIR /xapidocs/code_examples/
jasperreports/alert_report_readme.html file. A sample JasperReport called
sampleAlertReport.pdf is also available in the same directory.

A Jasper print component is defined in the Service Definition Framework which
can be used to automatically print a document based on an event. It is a
standard XML-based component that accepts XML as input and provides an
output XML. For more information on this component and the print transaction,
refer to the Sterling Selling and Fulfillment Foundation: Application Platform
Configuration Guide.

* Browser Portal Extensibility

You can export views into the application database that lists a user's frequently
used search criteria.

Extending the Console User Interface

The Application Console is the user interface for conducting and tracking
day-to-day transactional business, such as orders and inventory.

The Application Console Ul uses HTML within Java Server Pages (JSPs). The user
interface layer accesses the exposed APIs through services defined in the Service

Definition Framework, which ensures that only exposed APIs are used.

© Copyright IBM Corp. 1999, 2011 5

The UI layer of the Service Definition Framework uses very minimal XML
manipulation. Wherever significant manipulation of XML output becomes
necessary, changes to the APIs provide a more Ul friendly output.

The following figure shows the technical architecture of the Application Console
user interface.

For detailed information about extending the Application Console user interface,
see the Sterling Selling and Fulfillment Foundation: Customizing Console |SP
Interface for End-User Guide.

Extending the Applications Manager User Interface

The Applications Manager is the user interface for configuring the setup of an
organization's business rules and transactions. It is composed of Java Swing pages.

For detailed information about extending the user interface, see Sterling Selling
and Fulfillment Foundation: Customizing the Swing Interface Guide.

Extending the Mobile User Interface

Sterling Selling and Fulfillment Foundation enables you to develop and display a
custom user interface for mobile devices used in warehouse operations.

The mobile architecture consists of two components: A client and a server.

* Mobile client—Typically a Pocket PC-based handheld device, but it can also be a
VT220 emulation terminal. In this documentation, the mobile client is also
referred to as a mobile device.

* Application server— Sterling Selling and Fulfillment Foundation running on an
application server.

The client and server communicate using the HTTP protocol to transfer HTML
according to the request and response model. Each client request is of the type
"/console/*.ppc".

The application server directs requests for any.ppc to the controlling servlet (called
the Console Servlet) which in turn redirects the request to the pocketpc.jsp file. The
pocketpc.jsp file redirects the request to the JSP as specified in the uientity. The JSP
renders an HTML response, which is displayed by the mobile client.

The following figure illustrates this architecture.

6 Sterling Selling and Fulfillment Foundation

St hairsd v sl o Endey DAL

([pem—

Pocket PC

User Id

Passuord

b
HTML Console
Serviet
POCKETPC.JSP
" HTML <requested
JSP=
vi220 |
VT220
emulator

For detailed information about extending the mobile user interface, see Sterling
Selling and Fulfillment Foundation : Customizing User Interfaces for Mobile Devices
Guide.

Extending the Database

Database extensibility enables you to add columns and tables to capture additional
data.

For more information, see Sterling Selling and Fulfillment Foundation: Extending
the Database Guide.

Extending Transactions

Sterling Selling and Fulfillment Foundation provides a mechanism for processing
and resolving errors during data transformation and transportation. This
mechanism, called the Service Definition Framework, enables access to the
following transactional processes:

» System APIs exposed by the application

* Event handlers to route the data published by the application to the transport
services layer

¢ Time-triggered transactions that monitor and run tasks as needed

The Service Definition Framework provides error checking through the log4j utility,
which writes both trace and debug information to a log file.

In addition, you can extend the application by creating the following types of
custom code:

* Extended (custom) APIs

* User exits that override the default business algorithm

Chapter 2. Extensibility Overview 7

* User exits that extend the business algorithm used by APIs and time-triggered
transactions

* Custom time-triggered transactions

For more information about extending transactions, see Sterling Selling and
Fulfillment Foundation : Extending Transactions Guide.

Extending the Rich Client Platform User Interface

The Rich Client Platform provides a highly interactive Rich Client that can be
remotely deployed, updated, and easily managed. A Rich Client is a client that
processes the bulk of data operations without depending on the server to which it
is connected. However, it is dependent on the server, primarily for data storage.
The Rich client is rich in features and functionality and has complete access to the
programming functions of the operating system.

For more information, see Sterling Selling and Fulfillment Foundation : Customizing
the Rich Client Platform Interface Guide.

8 Sterling Selling and Fulfillment Foundation

Chapter 3. Setting Up the Development Environment

Prerequisites for Extending Your Application

This guide assumes that you:
* Have already installed the application.

* Are familiar with creating and running the Enterprise Archive (EAR) file in
deployment mode, as described in the Sterling Selling and Fulfillment
Foundation: Installation Guide.

 Are familiar with the standard (factory default) installation.

Throughout this guide, INSTALL_DIR refers to the directory where you have
installed Sterling Selling and Fulfillment Foundation.

Understanding the Development Environment

The development environment you need depends on the type of work you are
doing.

If you intend to customize Sterling Selling and Fulfillment Foundation, you need a
test environment that enables you to verify that your changes work as you intend.
To save development time, you can customize your test environment to run the
application in development mode.

If you extend the database, include the yfsdbextn jar file before the yantrashared.jar
in the CLASSPATH in all scripts.

If you have installed any Packaged Composite Application (PCA), for
example,Sterling Call Center and Sterling Store, the yantrautil,jar should be
removed from the application server CLASSPATH before starting the application
server to run the application in development mode.

Development mode saves time by enabling your application server to
automatically load the latest version of edited JSP files directly from specific
directories rather than reading them from theSterling Selling and Fulfillment
Foundation EAR file. This enables you to customize and test iteratively, without
having to repeatedly create the EAR file.

Development mode also enables you to immediately test Ul customizations.

The way you set up the development environment depends on the application
server you use.

Preparing the Development Environment on WebLogic

About this task
To enable WebLogic to run Sterling Selling and Fulfillment Foundation without
creating an EAR, you must define an application in WebLogic with the appropriate

settings and then configure your startup script to set up the CLASSPATH required
by the application.

© Copyright IBM Corp. 1999, 2011 9

10

Setting up the application directory structure enables WebLogic to read from files
directly rather than from the EAR file.

To configure WebLogic to run application in exploded mode:

Procedure

1.

Edit the <WEBLOGIC_DOMAIN>/bin/startWebLogic.cmd script for windows
(startWebLogic.sh for UNIX), and set the following argument in Options as
Java parameters:

-Dsci.opsproxy.disable=Y -Dvendor=shell
-DvendorFile=/servers.properties

Start your WebLogic server and open the WebLogic system console. The
system console can be accessed using a URL similar to the following;:

http://<hostname or ip-address>:<port number of your
WebLogic Server>/console

Log in to the console using the system administrator ID and password for
your WebLogic server.

In the Domain Structure panel, click Deployments.

If there are existing deployments of the application, stop them and delete
them:

a. Stop the existing deployments of the application:
¢ Check the box of the applicable deployment you want to delete.
¢ Click Stop and select Force Stop Now from the pop-up menu.
* In Delete Application Assistant, click Yes.
* In Messages, the message "Selected Deployments have been requested
to stop" displays.
b. Delete the existing deployments of the application:
¢ Check the box of the applicable deployment you want to delete.
* Click Delete.
* In Delete Application Assistant, click Yes.

* In Messages, this message displays: "Selected Deployments were
deleted. Remember to click Activate Changes after you are
finished."

* In the Change Center panel, click Activate Changes.

In Location, browse to the directory where the <application_name>.war file was
extracted and click Next.

Select Install this deployment as an application and click Next.

In Source accessibility, Select I will make the deployment accessible from the
following location.

In Location:, make sure that the location points to the directory where the
<application_name>.war file was extracted.

Copy the weblogic.xml file from the INSTALL_DIR/repository/eardata/
platform /descriptors/weblogic/ WAR/WEB-INF directory to the
INSTALL_DIR/extensions/smcfs directory.

Copy the ycpapibundle.properties file and ycpapibundle_<lang>_
country.properties (if applicable) from the <INSTALL_DIR>/resources directory
to the <INSTALL_DIR>/repository/eardata/smcfs/war/yfscommon directory.

Sterling Selling and Fulfillment Foundation

10.

1.

12.

13.

14.
15.

16.

17.
18.

Copy the yscpapibundle.properties file and yscpapibundle_<lang>_
<country>.properties (if applicable) from the <INSTALL_DIR>/resources
directory to the <INSTALL_DIR>/repository/eardata/smcfs/war/yfscommon
directory.

Copy the extnbundle.properties file and extnbundle_<lang>_
<country>.properties (if applicable) from the <INSTALL_DIR>/resources/extn
directory to the <INSTALL_DIR>/repository/eardata/smcfs/war/yfscommon
directory.

(Optional) If a PCA is installed, copy the following files to the
<INSTALL_DIR>/repository/eardata/smcfs/war/yfscommon directory:

* <INSTALL_DIR>/resources/com.yantra.yfc.rcp.common_bundle.properties
e <INSTALL_DIR>/resources/com.yantra.yfc.rcp_bundle.properties

¢ <INSTALL_DIR> /resources/PCA_Codebundle.properties. For example,
forSterling Call Center and Sterling Storeapplication, copy the
ycdbundle.properties file.

Copy the extensions you have made to the <INSTALL_DIR>/extensions/
global/webpages directory.

Exception: To include a customized JSP in a specific package, place it in
<INSTALL_DIR>/extensions/<package>/webpages. For example, use
<INSTALL_DIR>/extensions /smcfs/webpages and <INSTALL_DIR>/
extensions/sbc/webpages for smcfs or sbc wars, respectively.

To include a customized JSP in all packages, place it in <INSTALL_DIR>/
extensions /global/webpages.

Rebuild the EAR file as you did during installation process.
Extract the following war files from the smcfs.ear file:

* smcfs.war

e sbc.war

* sma.war

Then extract each of these war files into a directory of your choice.

Extract the remaining jar files from the smcfs.ear file and copy all the
extracted jar files to WEB-INF/lib. Doing this will make these jar files
accessible to WebLogic and you don't have to include these jar files in the
WebLogic CLASSPATH.

Deploy each directory on WebLogic as a Web application.

Test your customizations using the following WebLogic Hot Deployment Test
Mode standards:

If you modify... In these files... Then...

Startup parameters properties Restart WebLogic

UI extensibility JSP, JavaScript, CSS, Load dynamically

theme XML

Localization literals alertmessages and Restart WebLogic

localization bundle
files

Database extensions entity XMLs Rebuild the entities jar file and include the

jar in the classpath directory, then restart
WebSphere.

Chapter 3. Setting Up the Development Environment 11

If you modify... In these files... Then...

APIs and other template XMLs Rebuild the resources jar file and include the
template files jar in the classpath directory, then restart
WebLogic.

What to do next

Sterling Selling and Fulfillment Foundation does not support documentation
extensions for Context-Sensitive Help in exploded mode. If you want to use
Context-Sensitive Help in exploded mode, build a separate smcfsdocs.ear file and
deploy it.

Now you need to configure WebLogic as described subsequently. If you need
further information, see the WebLogic documentation.

WebLogic must be configured to enable the server to read from the directory
where the application_name.war file was extracted. The necessary steps for
configuring WebLogic to run the application in exploded (non-EAR) mode for your
development environment are given as follows.

Note:

Sterling Selling and Fulfillment Foundation deployed in exploded mode works in
the same way as the Solution deployed in EAR mode. There are no performance
implications specific to exploded mode.

IBM recommends the EAR mode of deployment in production. In case an
application server hosts multiple applications, there is no interference for jars or
classes across applications. This is because each application is packaged or
deployed as a single EAR file isolated from other application packages (EARs).
However, in exploded mode, the class that is first added to the classpath is always
considered.

Preparing the Development Environment on WebSphere

12

About this task

When using WebSphere, you can test the modifications that you have made to
Sterling Selling and Fulfillment Foundation.

Note: IBM recommends that you directly copy all the jar files from the extracted
EAR to the WEB-INF/lib directory. Doing this will make these jar files accessible to
WebSphere and you do not have to include these jar files in the WebSphere
CLASSPATH.

To configure WebSphere to run the application in exploded mode:

Procedure
1. Set the following JVM arguments for this deployment:

-Dsci.opsproxy.disable=Y
-Dvendor=shell -DvendorFile=/servers.properties

2. Deploy the EAR, using the documentation provided by IBM. During
deployment, WebSphere copies all the contents of WAR and EAR files to the

Sterling Selling and Fulfillment Foundation

<WAS_HOME>/ AppServer/profiles/<PROFILE_NAME> /installed Apps/
<CELL_NAME>/<APP_NAME>/ directory.

After deployment, any files copied to the <WAS_HOME>/AppServer/profiles/
<PROFILE_NAME> /installedApps/<CELL_NAME>/<APP_NAME>/ directory
can be modified as needed. For example, if you are extending a custom code
written as part of the database extensibility, the custom code files can be
directly moved to the appropriate directory under <WAS_HOME>/AppServer/
profiles/<PROFILE_NAME> /installed Apps/<CELL_NAME>/<APP_NAME>/
directory for testing. IBM calls this ability to modify and move files as needed
"hot deployment."

The custom JSPs written as part of Ul extensibility can be directly incorporated
into the application WAR file.

Note: The application does not support documentation extensions for
Context-Sensitive Help in exploded mode. If you want to use Context-Sensitive
Help in exploded mode, build a separate smcfsdocs.ear file and deploy it.

3. Build your extensions.

4. Stop the application server.

5. Copy the jars created as part of building and deploying extensions and
overwrite the jars in <WAS_HOME>/AppServer /profiles/<PROFILE_NAME>/
installed Apps/<CELL_NAME>/<APP_NAME>.

For example:

* If you are extending your database, build and deploy the entities.jar and
copy the jar to the <WAS_HOME>/AppServer/profiles/<PROFILE_NAME>/
installed Apps/CELL_NAME/<APP_NAME> directory.

 If you are extending Ul resources, build and deploy the resources.jar, and

copy the jar to the <WAS_HOME>/AppServer/profiles/<PROFILE_NAME>/
installed Apps/<CELL_NAME>/<APP_NAME> directory.
6. Copy your customized files (for example, localization literal files, JSPs), to the
appropriate <WAS_HOME>/AppServer/profiles/<PROFILE_NAME>/
installed Apps/<CELL_NAME>/APP_NAME/smcfs.war/<Module_Name>
directory.
For example, if you have some customizations in the Catalog module, add the
files in the <WAS_HOME>/AppServer/profiles/<PROFILE_NAME>/
installed Apps/<CELL_NAME>/<APP_NAME>/smcfs.war/ycm directory.

7. Restart the application server.

8. Test your customizations using the following WebSphere Hot Deployment Test
Mode standards:

If you modify... In these files... Then...
Startup properties Restart WebSphere.
parameters
UI extensibility JSP, JavaScript, CSS, Load dynamically.
theme XML
Localization alertmessages and ~ Restart WebSphere.
literals localization bundle
files

Chapter 3. Setting Up the Development Environment 13

If you modify... In these files... Then...

Database entity XMLs Rebuild the entities jar file.

extensions
Include the jar in the following directory:

WAS_HOME/AppServer/profiles/PROFILE_NAME/
installedApps/CELL_NAME/APP_NAME

Restart WebSphere.

APIs and other template XMLs Rebuild the resources jar file.
template files

Include the jar in the following directory:

WAS_HOME/AppServer/profiles/PROFILE_NAME/
installedApps/CELL_NAME/APP_NAME

Restart WebSphere.

Preparing the Development Environment on JBoss
About this task

This section explains how to test the modifications made toSterling Selling and
Fulfillment Foundation when using JBoss.

Note: IBMrecommends that you directly copy all the jar files from the extracted
EAR to the WEB-INF/lib directory. Doing this will make these jar files accessible to
JBoss and you do not have to include these jar files in the JBoss CLASSPATH.

To configure JBoss to run the application in exploded mode:

Procedure

1. Edit the </[BOSS_DOMAIN>/bin/run.cmd script for Windows (run.sh for
UNIX), and set the following argument in Options as Java parameters:

-Dsci.opsproxy.disable=Y -Dvendor=shell
-DvendorFile=/servers.properties

2. Rebuild the EAR file as you did during the installation process.

Note: The application does not support documentation extensions for
context-sensitive Help in exploded mode. If you want to use context-sensitive
Help in exploded mode, build a separate smcfsdocs.ear file and deploy it.

3. Stop the application server and execute the following steps.

For example, if you have some customizations in the Catalog module, add the
files in the <JBOSS_HOME> /server /<SERVER_NAME>/deploy/smcfs.ear/
smcfs.war/ycm directory.

Create a new directory and name it smcfs.ear.
4. Extract the EAR into the smcfs.ear directory you created.

5. Within the smcfs.ear directory, a smcfs.war file exists. Rename this .war file or
copy it into another directory.

6. Within the smcfs.ear directory, create a new subdirectory, and name it
smcfs.war.

7. Extract and extract all the files from the smcfs.war file into the
smcfs.ear/smcfs.war subdirectory.

8. Delete the smcfs.war file that you renamed or copied in step 5.

14 Sterling Selling and Fulfillment Foundation

9. Copy the jars created as part of building and deploying extensions and
overwrite the jars in <JBOSS_HOME>/server/<SERVER_NAME>/deploy/
smcfs.ear directory.

For example:

* If you are extending your database, build and deploy the entities.jar and
copy the jar to the <J[BOSS_HOME> /server/<SERVER_NAME>/deploy/
smcfs.ear directory.

* If you are extending Ul resources, build and deploy the resources.jar, and
copy the jar to the <J[BOSS_HOME> /server/<SERVER_NAME>/deploy/
smcfs.ear directory.

10. Copy your customized files (for example, localization literal files, JSPs), to the
appropriate <JBOSS_HOME>/server/<SERVER_NAME>/deploy/smcfs.ear/
smcfs.war directory.

11. Restart the application server.

12. After deploying, you can modify the files copied to the <JBOSS_HOME>/
server/<SERVER_NAME>/deploy directory. For example, if you extend a
custom code written as part of database extensibility, you can directly move
the extended custom code to the appropriate directory under the
<JBOSS_HOME>/server/<SERVER_NAME>/deploy directory for testing.
JBoss identifies the changes and redeploys the application (Hot Deployment).

13. Test your customizations using the JBoss Hot Deployment Test Mode
standards described in the following table.

If you modify... In these files... Then...
Startup properties Restart JBoss.
parameters
UI extensibility ~ JSP, JavaScript, CSS, Load dynamically.
theme XML
Localization alertmessages and Restart JBoss.
literals localization bundle files
Database entity XMLs Rebuild the entities.jar file and include the
extensions jar in the JBOSS_HOME /server/

SERVER_NAME /deploysmcfs.ear directory,
then restart JBoss.

APIs and other template XMLs Rebuild the resources jar file and include the

template files jar in the JBOSS_HOME /server/
SERVER_NAME/deploy/smcfs.ear directory,
then restart JBoss.

Application web.xml, application.xml, Restart JBoss.
configuration and property files
files

Developing and Testing in the Development Environment

Now that you have set up your development environment, you are ready to begin
customizing Sterling Selling and Fulfillment Foundation , using the directions
provided throughout this guide. This section explains how to use the icons that
enable you immediately test UI customization.

Note: After any modifications are made to the following files, the application
server must be restarted:

* datatypes.xml file

Chapter 3. Setting Up the Development Environment 15

* yfsdatatypemap.xml file

Testing Ul Customizations

About this task

After making changes to Ul Resources within the Resource Hierarchy tree, you can
test your changes immediately by using the Cache Refresh icons.

To use the cache refresh icons:

Procedure
1. Make changes as needed.
2. Select the refresh cache icon that fits your needs as follows:
 If you want to update one entity and its child resources - Select the specific
entity and select the & Refresh Entity Cache icon

* If you want to update all resources - Select the 25 Refresh Cache icon
3. Log into the application again to test your changes.

Configuring the Ul Cache Refresh Actions

16

In a standard deployment of Sterling Selling and Fulfillment Foundation, any
configuration changes made within the Resource Hierarchy tree do not take effect
until the application server has been restarted. This means that testing your Ul
extensions can be a time-consuming activity. Therefore, the application provides
actions within the Resource Hierarchy tree that enable you to refresh the resources
so that your modifications can be tested immediately.

These actions can only be enabled in a development environment. They do not
work in a deployment environment. This section explains how to enable these
actions. These actions should be disabled in a deployment environment.

Configure Resource Cache Refresh Actions

About this task
To configure the resource cache refresh actions:

Procedure

1. Use the <INSTALL_DIR>/properties/customer_overrides.properties file to set
the yfs.uidev.refreshResources property to Y.

2. This enables the following actions on the Resource Hierarchy tree in the
Applications Manager:
. e Refresh Cache icon - Refreshes all resources.
« @5 Refresh Entity icon - Refreshes the selected entity resource and its child
resources.

For instructions on using the Refresh Cache icons, see Testing Ul
Customizations.

Sterling Selling and Fulfillment Foundation

Chapter 4. Customization Using Microsoft COM+

Microsoft COM+ Prerequisites

When using Microsoft COM+, you need to create and configure the application on
a Windows server. You also need to create and install a client proxy.

Creating a COM+ Application on Windows
About this task

To create the Sterling Selling and Fulfillment Foundation COM+ application on a
server that has a Windows operating system:

Procedure

1.

2.

From the Windows Start menu, navigate to Administrative Tools » Component
Services.

From the Component Services tree, navigate to Component Services -
Computers > My Computer > COM+ Applications and then right-click COM+
Application. Select New » Application.

After the Welcome to COM Application Install Wizard screen appears, click
Next.

Select Create an Empty Application.
In the Create Empty window, enter the following and then click Next:
¢ For Application Name, enter your application name.

* For Activation Type, select Server Application. This ensures that the
components are started as dedicated processes.

In the Set Application Identity window, select This User and enter the
appropriate Windows user name and password. This user is the identity under
which the application is run. Make sure that the user belongs to the
Administrators group. Click Next and then click Finish.

The newly created COM+ application appears under the Component Services
tree.

Results

Now you can add components to your w COM+ application.

Adding Components to a COM+ Application
About this task

To add components to a Sterling Selling and Fulfillment Foundation COM+
application:

Procedure

1.

From the Component Services tree, navigate to Component Services »
Computers > My Computer > COM+ Applications > Selling and Fulfillment
Foundation » Components and then right-click Components. Select New -
Components.

© Copyright IBM Corp. 1999, 2011 17

After the Welcome to COM Component Install Wizard screen appears, click
Next.

Select Install New Component.

Browse to INSTALL_DIR/bin/YIFComApi.dll. Select it and select Open. Then
click Next and Finish.

Make sure that your system path contains the directories that store the
following DLLs:

¢ <INSTALL_DIR>/bin/YIFINIApi.dll
e <INSTALL_DIR>/bin/release/msvcrt.dll
e <INSTALL_DIR>/bin/release/msvcp60.dll

* jvm.dll (usually found under <JAVA_HOME> /jre/bin/hotspot on the client
machine)

Verify that the <INSTALL_DIR>/properties directory includes the yfs.properties
file and the <INSTALL_DIR>/resources directory includes the
yifclient.properties file.

Note: If you have added any entries to the INSTALL_DIR/properties/
customer_overrides.properties file, ensure that this file is included in the
<INSTALL_DIR>/properties directory.

Configuring the COM+ Service
About this task

18

To configure theSterling Selling and Fulfillment Foundation COM+ service:

Procedure

1.

1.

From the Component Services tree, right-click the newly created COM+
Application.

Select Properties.
The Properties dialog box is displayed.
Select the Advanced tab.

Under Server Process Shutdown panel, select Minutes Until Idle Shutdown,
enter the time in minutes after which you want the process to shut down, and
then click OK.

Double-click the COM+ application.

Double-click Components.

Right-click YIFComApi.YIFComApi.1 and select Properties.
The YIFComApi.YIFComApi.1 Properties dialog box appears.
Select the Activation tab.

Select Enable object pooling.

In the Object pooling section, enter the Minimum and Maximum pool sizes
based on the Component usage. Configure pooling to make optimal use of
your hardware resources. The pool configuration can change as available
hardware resources change.

Select Enable Just In Time Activation.

JIT activation activates an instance of an object just before the first call is made
to it and then immediately deactivates the instance after it finishes processing
its work.

Sterling Selling and Fulfillment Foundation

Creating a Client Proxy
About this task

To create a client proxy:

Procedure

1. Right-click yourSterling Selling and Fulfillment Foundation COM+ application
and select Export.

2. After the Welcome to COM Application Export Wizard screen appears, click
Next.

3. In the Application Export window, enter the path and file name where the
export .MSI file is to be created.

4. Select Export as Application Proxy.
5. Click Next and then click Finish.

Installing a Client Proxy
About this task

To install a client proxy, make sure the following DLL files are in your system
path:

* <INSTALL_DIR>/bin/YIFJNIApi.dll
e <INSTALL_DIR>/bin/release/msvcrt.dll
* <INSTALL_DIR>/bin/release/msvcp60.dll

e jvm.dll (located under the JAVA/jre/bin/hotspot directory on the client machine.
Double-click the *.MSI file to install the component on the client.)

Note: This method of including the DLL files is deprecated in Release 7.7. The

recommended method to call APIs and Services from a Microsoft Windows COM+
environment is through Web services or over HTTP.

Chapter 4. Customization Using Microsoft COM+ 19

20 Sterling Selling and Fulfillment Foundation

Chapter 5. Masking Sensitive Information During Logging

Masking Sensitive Information During Logging Using Log4j
About this task

You can configure the log4j utility to prevent sensitive information such as credit
card number, passwords, and so forth from being logged in the log messages. To
mask the sensitive information, you must use the application-provided custom
log4j Layout and Filter and also define a set of named regular expressions in the
customer_override.properties file.

The custom log4j layout will get the formatted message and filter the results based
on a set of configurable regular expressions. This custom log4;j filter will allow you
to match the message against a set of regular expressions and discard the message,
if it matches.

To mask sensitive information during logging:

Procedure

1. Change the layout class name in the custom logging configuration to
SCIFilteredPatternLayout. For example:
<layout
class="com.sterlingcommerce.woodstock.util.frame.logex.SCIFilteredPatternLay
out">
<param name="ConversionPattern" value="%d:%-7p:%t: %-60m
[%X{AppUserId}]: %-25c{1}%n"/>
<param name="FilterSet" value="common-filter"/> <!-- Optional -->
</layout>
2. Change the filter class name in the custom logging configuration to
SCIPatternFilter. For example:
<filter
class="com.sterlingcommerce.woodstock.util.frame.logex.SCIPatternFilter">
<param name="FilterSet" value="suppress" /> <!-- Optional -->
</filter>
3. Define a set of named regular expressions against which you want to match the
message in the <INSTALL_DIR>/properties/customer_ overrides.properties file
using following properties:

filterset.<name>.pattern.<num>=<pattern>
This property is optional:
filterset.<name>.replace.<num>=<replace>

where <pattern> is a Java-style regular expression and defines the regular
expression against which you want to match the message string. The replace
property is optional, and defines the string which will be used to replace the
expression.

You can set the default FilterSet parameters by setting the following properties:
default.filter.filterset=<filter_name>
default.layout.filterset=<layout_name>

You can also define a common set of regular expression patterns across
multiple filter sets as following:

filterset.name.includes=<namel>,<name2>,...

© Copyright IBM Corp. 1999, 2011 21

You can view the <INSTALL_DIR>/properties/logfilter.properties.in file to see
some sample entries for defining these properties.

22 Sterling Selling and Fulfillment Foundation

Chapter 6. Data Validation

About Data Validation

The Sterling Selling and Fulfillment Foundation provides the Data Validation
functionality for validating and sanitizing request inputs and outputs. You can use
the Data Validation functionality to allow only explicitly defined characteristics in
the input and output requests, and drop all the other data. You can define your
own validation rules for validating different request parameters. You can also
encode data before sending it back to the user interface (UI).

Data validation or sanitization can be performed for various kinds of inputs such
as parameter name, parameter value, cookie name, cookie value, and so on. The
application also supports regular expression based validation.

Input Validator

The Input Validator finds all the validation rules that are registered for a particular
input, and performs the validation. The Validator is called by a request wrapper to
validate request inputs.

By default, to validate request inputs such as parameter value, parameter name,
and so on, the Input Validator uses the regular expressions shipped out-of-the-box
by the application. The out-of-the-box shipped regular expressions are defined in
the regularexpressions/sc_regularexpressions.xml file ((located inside the
<INSTALL_DIR> /jar/platform_afc/5_7/platform_dvjar).

Note: If you want to relax some of the validation rules for certain inputs, you
must register all the custom validation rules with the Input Validator.

Validation Rule

A validation rule performs validation and sanitization of the input. A validation
rule contains a property as input identifier for which validation has to happen. A
validation is invoked whenever the corresponding input request is accessed. A
validation rule must specify the name of the input, it has to validate. For example,
to validate the value of a parameter, the validation rule must specify the name of
that particular parameter. Multiple inputs with the same name can exist. All the
validation rules must be registered with the Input Validator in order to validate the
corresponding input.

Some validation rules are shipped out-of-the-box by the application. The
out-of-the-box shipped validation rules are defined in the validationrules/
sc_validationrules.xml file (located inside the <INSTALL DIR>/jar/platform_afc/
5_7/platform_dvijar). These validation rules are invoked for all the inputs
belonging to the same category. For example, all the HTTP Header names are
validated against the HTTPHeaderName regular expression.

Note: No validation rules are defined for a given input. The validation rules
specified earlier will be used to validate the input.

You can define the following types of validation rules:

© Copyright IBM Corp. 1999, 2011 23

* Regular Expression-Based Validation Rule—This type of validation rule is
designed to perform regular expression-based validations. This validation rule
type supports multiple whitelist and blacklist regular expressions.

* Java-Based Validation Rule—This type of validation rule is designed to perform
Java-based validation and sanitization of inputs. This validation rule type
validates an input and then calls the getValidInput() method of the
implementation class.

Disabling Data Validation
About this task

By default, data validation is enabled on all input requests, which are validated
against the registered validation rules. You can disable the data validation on input
requests by adding a context parameter in the module configuration file.

To disable data validation, in the web.xml file located in your
EARFILE/WARFILE/WEB-INF folder, add an entry for the context-param element
as follows:

<context-param>
<param-name>scui-suppress-request-validation</param-name>
<param-value>TRUE</param-value>

</context-param>

Bypassing Data Validation for an URI

By default, data validation is enabled on all input requests. You can, however,
bypass data validation on input requests for some specific Universal Resource
Indicators (URIs) by adding a bypass URI as context parameters in the module
configuration file.

To bypass data validation, in the web.xml file located in your EARFILE/
WARFILE/WEB-INF folder, add an entry for the config-param element for each
such URI, for example:

<context-param>
<param-name>request.validation.bypass.uri.l</param-name>
<param-value>/console/login.jsp</param-value>

</context-param>

<context-param>
<param-name>request.validation.bypass.uri.2</param-name>
<param-value>/console/start.jsp</param-value>

</context-param>

<context-param>
<param-name>request.validation.bypass.uri.endswith.l</param-name>
<param-value>.js</param-value>

</context-param>

<context-param>
<param-name> request.validation.bypass.uri.regex.1l</param-name>
<param-value>".xtest.jsp$</param-value>

</context-param>

These context parameters can have names starting with
request.validation.bypass.uri, or request.validation.bypass.uri.endswith, or
request.validation.bypass.uri.regex, as described in the following list. You can
define multiple entries for these context parameters.

* request.validation.bypass.uri—Any request with an URI that is the same as the
value specified in the param-value element of the context parameter will be
bypassed and not validated.

24 Sterling Selling and Fulfillment Foundation

* request.validation.bypass.uri.endswith—Any request with an URI that ends with
the value specified in the param-value element of the context parameter will be
bypassed and not validated.

* request.validation.bypass.uri.regex—Any URI request that matches the regular
expression, as specified in the param-value element of the context parameter,
will be bypassed and not validated.

Implementing Data Validation

To implement data validation, perform the following tasks:

* Defining Regular Expressions in Datatypes XML File

* Defining Regular Expressions in XML Files

* Registering Regular Expressions

* Defining Validation Rules in Datatypes XML File

* Externalizing Validation Rules Defined in the Datatypes XML File
* Defining Validation Rules in XML Files

* Defining Abstract Validation Rules

* Extending Abstract Validation Rules

¢ Registering Validation Rules

* Overriding Regular Expressions

* Opverriding Validation Rules

* Defining Error Messages

* Localizing Error Messages

* Defining Custom Regular Expression Error Message Provider

* Localizing Validation Rules

Defining Regular Expressions in Datatypes XML File

You can define the regular expressions for input validation in the datatypes.xml
file. It is recommended that you define those regular expressions in the
datatypes.xml file, which are being used for a single datatype and are not being
used for multiple datatypes at the same time. Otherwise, if you define regular
expression for individual data types you want to use the same regular expression
in multiple data types, then making a change to such regular expression may
become cumbersome because you will have to make the similar change at multiple
places manually. You can define regular expression for input validation in the
datatypes.xml file in the following format:
<DataType Name="Address" Size="70" Type="NVARCHAR">

<UIType Size="30" UITableSize="30"/>

<Validation>

<Regex MaxLength="200" JavaPattern=""[a-zA-Z4-9.0\-\/+=_()
\{\}\[\], :'"]*$" JSPattern=""/>

</Validation>

</DataType>

Note: You can externalize the regular expressions defined in the datatypes.xml file
into a separate XML file and then use reference of these regular expressions in
multiple datatypes.

Defining Regular Expressions in XML Files

You can define regular expressions for input validation in separate XML files and
reference to these regular expressions can be used in multiple datatypes defined in
the datatypes.xml file and also in multiple rules defined in the different rules XML

Chapter 6. Data Validation 25

26

files. The main advantage of this approach is that it makes it easier to modify the
regular expression in one place and the changes will take effect both in the
datatypes.xml file and different rules XML files. Each regular expression has an
unique id associated with it. The regular expression files can be registered with the
Sterling Selling and Fulfillment Foundation by adding a context parameter in the
web.xml file.

To define regular expression for input validation, create an XML file in the
following format:
<RegularExpressions>
<RegularExpression id="" javaPattern="" jsPattern="" blacklistErrorMsg=""
whitelistErrorMsg=""/>
<RegularExpression id="" javaPattern="" jsPattern=""/>
</RegularExpressions>

The following table describes various elements and attributes of the regular
expressions XML file.

Note: Any empty attribute will be considered as not provided. For example, an
element defined as <RegularExpression id="dates" javaPattern=""
jsPattern=""[a-zA-Z0-9.,!\-/+=_ :]*$"/> is equivalent to <RegularExpression
id="dates" jsPattern=""[a-zA-Z0-9.,!\-/+=_:]*$"/>.

Element/Attribute Description

RegularExpressions Required. The regular expressions XML file must have
RegularExpressions as root element.

RegularExpression Optional. Each regular expression must be defined as one
RegularExpression element. It can have zero or more occurrences.

id Required. Unique identifier for the regular expression. This id can
be used as reference for this regular expression in various places.

javaPattern Optional. Regular Expression pattern for performing server-side

validation. If not specified, the input validation happens on the
client side based on the jsPattern attribute value and the server-side
validation is not done.

jsPattern Optional. Regular Expression pattern for performing client-side
validation. If not specified, the input validation happens on the
server side based on the javaPattern attribute value and the
client-side validation is not done.

whitelistErrorMsg Optional. Bundle key for the error message to be displayed, if the
white list patterns of the regular expression fail.
blacklistErrorMsg Optional. Bundle key for the error message to be shown if the black

list patterns of the regular expression fail.

For example, let us consider that you define a regular expression with an id dates
in the regular expressions XML file as follows:
<RegularExpressions>
<RegularExpression id="dates" javaPattern=""[a-zA-Z0-9.,!\-/+=_ :]*§$"
jsPattern="~[a-zA-Z0-9.,!\-/+=_:]*§" blacklistErrorMsg=""
whitelistErrorMsg=""/>
</RegularExpressions>

Now, you can reference this dates regular expression in both Rule XML as well as
in the Datatypes XML.

Sterling Selling and Fulfillment Foundation

Using Regular Expression Reference in Rule XML

You can provide a reference of the regular expression id in the RegularExpression
element when defining a rule in the rule XML. For example,

<ValidationRules>
<Rule id="" ruleType="Regex" inputType="" inputName="" uri=""
maxLength="" minLength="" allowNull="" >
<Whitelist>
<RegularExpression ref="dates"/>
</Rule>
</ValidationRules>

Using Regular Expression Reference in Datatypes XML

You can provide a reference of the regular expression id in the Regex element
when defining a regular expression in the datatypes.xml file. For example,

<DataTypes>
<DataType Name="Date" PpcSize="12" Size="7" Type="DATE">
<Validation>
<Regex Ref="dates" />
</Validation>
<UIType Size="8" UITableSize="15"/>
</DataType>
</DataTypes>

Registering Regular Expressions

To register regular expression files with Sterling Selling and Fulfillment
Foundation, add a new context parameter for each regular expressions file in the
web.xml file (located inside your EARFILE/WARFILE/WEB-INF directory) in one
of the following ways:

<context-param>
<param-name>scui-regex-file-<unique-identifier></param-name>
<param-value><file-path-inside-webapp>::<load order></param-value>
</context-param>

OR

<context-param>
<param-name>scui-regex-file-unique-identifier</param-name>
<param-value><fully-qualified-name-of-the-file>::<load order></param-value>
</context-param>

where <load order> defines the order in which the regular expressions file must be
loaded. File having the least load order will be read first. Multiple files can have
same load order. If no load order is defined, the system considers it to be zero.

Note: You must use a load order above 500 to register the regular expression files.

For example,

<context-param>
<param-name>scui-regex-file-fwk-1</param-name>
<param-value>/WEB-INF/regexl.xml</param-value>

</context-param>

<context-param>
<param-name>scui-regx-file-fwk-2</param-name>
<param-value>/WEB-INF/regex2.xml::1</param-value>

</context-param>

<context-param>
<param-name>scui-regx-file-fwk-3</param-name>
<param-value>/com/test/regex-used-from-datatypes.xml::2</param-value>

</context-param>

Chapter 6. Data Validation 27

28

Note: The regular expression files containing regular expressions, which are being
referenced from the datatypes.xml file, must be kept inside a JAR and the JAR
must be available in APP dynamic classpath. The regular expression files
containing other rules (which are not being referenced from datatypes.xml file)
must be kept inside the <INSTALL_DIR> /repository directory.IBM recommends
that you keep such files inside the EARFILE/WARFILE/WEB-INF directory to
make them inaccessible by http access.

Defining Validation Rules in Datatypes XML File

You can register a validation rule using the datatypes.xml file. This method of
registering a validation rule can only be used for parameter value inputs. The
datatype for a parameter is deduced using the datatypes map. And the parameter
value is validated using the validation rules registered against that datatype.

Applications based on the HTML UI Framework can register a regular expression
based or java based validation rule in the datatypes.xml file in the following way:
<DataType Name="Address" Size="70" Type="NVARCHAR">
<UIType Size="30" UITableSize="30"/>
<Validation>
<Regex JavaPattern="<pattern>" JSPattern="<pattern>" allowNull="false"/>
<Impl JavaClass="com.sterlingcommerce.test.MyRuleClass"
JSFunctionName="myJavascriptFunction"/>
</Validation>
</DataType>

By default, for a <Regex> element, the maximum size of the validation rule is set
to the size of the datatype. You can override the maximum size of the validation
rule using the MaxLength attribute. Also, you can set the minimum size of the
validation rule using the MinLength attribute. Similarly, you can override other
attributes such as JSPattern, JavaPattern, and AllowNull. For example,
<DataType Size="5" Name="Pincode" Type="NUMBER">

<Validation>

<Regex MaxLength="200" MinLength="3" JavaPattern=""[a-zA-Z0-9.,!\-/+=:]*§"

</Validation>

</DataType>

Note: Java based validation rule class must have a fully qualified class name. And
this class must implement the ISCValidationRule interface.

Note: In the datatypes.xml file, you can also define javascript patterns and
functions to validate the input on the client itself. These client side validations will
be fetched on the client and all the corresponding inputs will be validated against
these client side validations.

Externalizing Validation Rules Defined in the Datatypes XML

File

You can also externalize the validation rules defined in the datatypes.xml file as
abstract rules. Firstly you need to define such rules as abstract rules and then
extend this abstract rule in the datatypes.xml file.

For example, let us consider that you have defined a validation rule in the
datatypes.xml file as follows:

<DataTypes>
<DataType Name="Date" PpcSize="12" Size="7" Type="DATE">
<Validation>
<Regex MaxLength="200" JavaPattern=""[a-zA-Z0-9.,!\-/+=_:]*§$"
JSPattern=""[a-zA-Z0-9.,!\-/+=_ :]*$"/>

Sterling Selling and Fulfillment Foundation

JSPatte

</Validation>
<UIType Size="8" UITableSize="15"/>
</DataType>
</DataTypes>

You can externalize this validation rule as an abstract rule in the Rule XML file as
follows:
<ValidationRules>
<Rule id="abstractl" ruleType="Regex" abstract="true" maxLength="100" minLength="0">
<Whitelist>
<RegularExpression ref="refl"/>
</Whitelist>
</Rule>
</ValidationRules>

Now, you can reference this abstract validation rule (abstractl) in the datatypes.xml
file by adding the extends attribute in the Rule element. For example,
<DataTypes>
<DataType Name="Date" PpcSize="12" Size="7" Type="DATE">
<Validation>
<Rule Extends="abstractl" />
</Validation>
<UIType Size="8" UITableSize="15"/>
</DataType>
</DataTypes>

Defining Validation Rules in XML Files

Validation rules that are not related to datatypes or parameter value validation
cannot be defined in the datatypes.xml file. But you can define such rules by
creating a new Rule XML files. The rules XML files can be registered with
theSterling Selling and Fulfillment Foundation by adding a context parameter for
each rule XML file in the web.xml file.

To define a rule for input validation, create an XML file in the following format:

<ValidationRules>
<RuTe id="" ruleType="Regex" inputType="" inputName="" uri="" maxLength=""

minLength="" allowNull="" >
<Whitelist>
<RegularExpression ref="" />
</Whitelist>
<Blacklist>
<RegularExpression ref="" />
</Blacklist>
</Rule>
<Rule id="" ruleType="Java" inputType="" inputName="" uri="" impl="" />
<Rule id="abstractl" ruleType="Java" abstract="true" impl="" />
<Rule id="" extends="abstractl" inputType="" inputName="" uri="" />
<Rule id="abstract2" ruleType="Regex" abstract="true" maxLength=""
minLength="" allowNull="" >
<Whitelist>
<RegularExpression ref="" />
</Whitelist>
<Blacklist>
<RegularExpression ref="" />
</Blacklist>
</Rule>

<RuTe id="" extends="abstract2" inputType="" inputName="" uri="" maxLength=""
minLength="" allowNull="" />
</ValidationRules>

The following table describes various elements and attributes of the rules XML file.

Chapter 6. Data Validation 29

Note: Any empty attribute will be considered as not provided. For example, an
element defined as <Rule id="dates" ruleType="Regex" inputType="" inputName=
uri="" maxLength="" minLength="" allowNull="" > is equivalent to <Rule
id="dates" ruleType="Regex" inputName="">. An exception to this behavior is
attribute inputName. The inputName attribute can contain empty string and it is a

valid value for inputName attribute.

"

"

Element/Attribute Description

ValidationRules Required. The rules XML file must have ValidationRules as root
element.

Rule Optional. Each rule (either java rule or regular expression rule)
must be defined as one Rule element. It can have zero or more
occurrences.

id Optional. Unique identifier for the rule.

Note: This attribute is required, if you are extending an existing
rule. If not provided, the existing rule cannot be extended. If a
duplicate id found, and it does not result into extension, an
exception is thrown.

abstract Optional. Set the value of this attribute to true, if the rule is an

abstract rule. An abstract rule can be extended by another rule.
extends Optional. Identifier of the abstract rule being extended.
ruleType Required. Type of rule.

Valid Values: Java, Regex.

Note: If the rule is extending an abstract rule, this attribute should
not be present.
inputType Required. Type of the input.

Valid Values: HTTPParameterValue, HTTPParameterName,
HTTPCookieValue, HTTPCookieName, HTTPHeaderValue,
HTTPHeaderName, HTTPScheme, HTTPServerName,
HTTPContextPath, HTTPPath, HTTPQueryString, HTTPURI,
HTTPURL, HTTPJSESSIONID, HTTPServletPath, JavascriptClient.

Note: The JavascriptClient input type is used to fetch validation
rules on the client for inputs, which do not have any datatype
associated with them.

Note: For input type JavascriptClient, only global or default rules
can be defined. Therefore, valid values for attribute inputName are
global or _default_. Value of attribute uri is ignored. The impl
attribute should contain the name of the javascript method. The
regular expression defined by attribute ref should have a javascript
regular expression.

Note: For abstract rules, this attribute should not be present.
inputName Required. Name of the input.

Note: For abstract rules, this attribute should not be present.
uri Optional. URI for which the rule should be valid.

Note: For abstract rules, this attribute should not be present.
Child Elements and Attributes for rule type Java
impl Required. Fully qualified name of the rule implementation class.
This class must extend the ISCValidaitonRule class.

Note: If the rule is extending an abstract rule, this attribute should
not be present.

30 Sterling Selling and Fulfillment Foundation

Element/Attribute Description

Child Elements and Attributes for rule type Regex
maxLength Optional. Allowed maximum length.

Valid Values: number, string.

Note: If the rule is extending an abstract rule, this value will
override the maxLength defined for an abstract rule.
minLength Optional. Allowed minimum length. Valid Values: number, string.

Note: If the rule is extending an abstract rule, this value will
override the minLength defined for an abstract rule.

allowNull Optional. Set the value of this attribute to false, if you want to
mandate the value for the input.

Valid Values: true, false.

Note: If the rule is extending an abstract rule, this value will
override the allowNull defined for an abstract rule.

Whitelist Optional. Container element for white list patterns. It can have zero
or one occurrence.

Note: If the rule is extending an abstract rule, this attribute should
not be present.

Blacklist Optional. Container element for black list patterns. It can have zero
or one occurrence.

Note: If the rule is extending an abstract rule, this attribute should
not be present.

RegularExpression Optional. This element can have zero or many occurrences.

ref Required. Reference of the regular expression definition.

Defining Abstract Validation Rules

An abstract validation rule does not have inputIype, inputName and uri attributes.
These attributes are provided by the validation rule extending the abstract
validation rule. You can define a validation rule as an abstract validation rule by
setting the value of abstract attribute to true. For example,
<ValidationRules>
<Rule id="abstractl" ruleType="Regex" abstract="true" maxLength="10"
minLength="0" allowNull="false" >
<Whitelist>
<RegularExpression ref="regexl" />
</Whitelist>
</Rule>
<Rule id="abstract2" ruleType="Java" impl="com.sterling.validation.testRule"
abstract="true">
</Rule>
</ValidationRules>

Note: For JSON parameter values used in XAPI inputs in the Web Ul Framework
based applications, framework provides an abstract rule definition with id as
uifwkimpl-json-xapi-input-param-value.

For all the inputs which are in JSON format and are being used in XAPI calls in
the Web UI Framework based applications, you must extend the rule definition
uifwkimpl-json-xapi-input-param-value. For example:

<Rule id="sampleRulel" extends="uifwkimpl-json-xapi-input-param-value"
inputType="HTTPParameterValue" inputName="getCategoriesList"/>

Chapter 6. Data Validation 31

The abstract rule uifwkimpl-json-xapi-input-param-value is of type Java.

Extending Abstract Validation Rules

You can extend an abstract rule by adding the extends attribute in the Rule
element. The value of the extends attribute should contain the identifier of the
abstract rule that you want to extend. For example,

<ValidationRules>
<Rule id="imp1l" extends="abstractl" inputType="HTTPParameterValue"
inputName="Test" uri="/console/home.do" maxLength="100">
</Rule>
<Rule id="impl12" extends="abstract2" inputType="HTTPParameterValue"
inputName="Test1" uri="/console/home.do">
</Rule>
</ValidationRules>

In this case, the maxLength defined for rule impll will override the maxLength
defined for rule abstractl.

Registering Validation Rules

To register the rule XML files with the Sterling Selling and Fulfillment Foundation,

add a new context parameter for each rule XML file in the web.xml file (located

inside your EARFILE/WARFILE/WEB-INF directory) in one of the following

ways:

<context-param>
<param-name>scui-validation-rules-file-<unique-identifier></param-name>
<param-value><file-path-inside-webapp>::<load order></param-value>

</context-param>

OR

<context-param>
<param-name>scui-validation-rules-file-unique-identifier</param-name>
<param-value>fully-qualified-name-of-the-file::load order</param-value>
</context-param>

where load order defines the order in which the rules file must be loaded. File
having the least load order will be read first. Multiple files can have same load
order. If no load order is defined, system considers it as zero.

Note: You must use load order of above 500 to register the validation rule files.

For example,

<context-param>
<param-name>scui-validation-rules-file-fwk-1</param-name>
<param-value>/WEB-INF/rulesl.xml</param-value>

</context-param>

<context-param>
<param-name>scui-validation-rules-file-fwk-2</param-name>
<param-value>/WEB-INF/rules2.xml::1</param-value>

</context-param>

<context-param>
<param-name>scui-validation-rules-file-fwk-3</param-name>
<param-value>/com/test/rules-being-used-from-datatypes.xml::2</param-value>

</context-param>

Note: The validation rule files containing regular expressions, which are being
referenced from the datatypes.xml file, must be kept inside a JAR and the JAR
must be available in APP dynamic classpath. The regular expression files

containing other rules (which are not being referenced from datatypes.xml file)

32 Sterling Selling and Fulfillment Foundation

must be kept inside the <INSTALL_DIR> /repository directory.IBM recommends
you to keep such files inside the EARFILE/WARFILE/WEB-INF directory to make
them inaccessible by http access.

Overriding Regular Expressions

You can override an existing regular expression by defining and registering a
similar entry in their custom regular expressions file. When defining the regular
expression you must give the same id for the regular expression. You must register
the new regular expression XML files with higher load orders.

Overriding Validation Rules

You can override an existing validation rule by defining and registering a similar
entry in their custom rules file. When defining the rule you must give the same
value for the following attributes:

e id

* inputName

* inputType

e url (if provided)

Note: The id attribute is the primary key for performing the similarity check on a
validation rule. If the id does not match, or is not defined, the validation rule will
not be extended. And if the id matches but other attributes for similarity doesn't
match, an exception will be thrown.

Note: You can only override rules that are registered using rule XMLs and NOT
datatypes.xml file. Also, for abstract rules only the id attribute is checked.

You must register the new rule XML files with higher load orders.

Note: When you are registering validation rules for inputs, the following
inputTypes constants must be used:

e HTTPParameterValue
* HTTPParameterName
» HTTPCookieValue

* HTTPCookieName
 HTTPHeaderValue

» HTTPHeaderName

* HTTPScheme

* HTTPServerName

* HTTPContextPath

e HTTPPath

* HTTPQueryString
 HTTPURI

« HTTPURL

* HTTPJSESSIONID

* HTTPServletPath

* JavascriptClient

Chapter 6. Data Validation 33

Defining an Adapter to Find Validation Rules

This is an optional task. You can define an adapter, to find the validation rules,
that will be used to validate the parameter values. This adapter class must
implement the ISCUIInputValidationAdapter interface, and must be registered with
the application as a context parameter. For example:
<context-param>

<param-name>scui-param-value-validation-adapter</param-name>

<param-value>test.MyParamValueValidationAdapter</param-value>
</context-param>

You must implement the getValidationRules() method of the
ISCUIInputValidationAdapter interface and pass the parameter name in the name
argument.

When validating a parameter value, the system will call the registered adapter to
find the rules against which the parameter value should be validated. The
getValidationRules() method can either return all the rules registered for the passed
parameter name, or have some logic to find other rules too. If no adapter is
registered, the system will use all the rules registered for the given parameter
name, along with the global rules or the default rules, to validate the parameter
value.

Defining URI-Based Adapter to Find Validation Rules

This is an optional task. You can define the URI based adapter, which you want to

use to find the validation rules, which will be used to validate the parameter

values. This adapter class must implement the ISCUIInputValidationAdapter

interface and must be registered with the application as a context parameter as
following;:

<context-param>
<param-name>scui-param-value-validation-adapter::<uri-without-context-path></param-name>

<param-value><fully-qualified-adapter-class-name<>/param-value>
</context-param>

For example:

<context-param>
<param-name>scui-param-value-validation-adapter::/console/exception.list</param-name>
<param-value>test.Adapter</param-value>

</context-param>

You must implement the getValidationRules() method of the
ISCUIInputValidationAdapter interface and pass the parameter name in the name
argument.

When validating a parameter value, the system will call the registered adapter to
find out the URI based rules against which the parameter value should be
validated. The getValidationRules() method can either return all the URI based
rules registered for the passed parameter name, or can have some logic to find
other rules also. If no adapter is registered, the system will use all the URI based
rules registered for the given parameter name (along with global rules or default
rules) to validate the parameter value.

Deleting Registered Validation Rules

You can delete the registered validation rules by calling any of the following
methods of the SCValidator class:

* removeDefaultRules (String inputType)

34 Sterling Selling and Fulfillment Foundation

* removeGlobalRules (String inputType)
* removeRules (String name, String inputType)
* removeRules (ISCValidationRuleKey name, String inputType)

Exception Handling

While validating a request, if an invalid input is found, an
SCUIRequestValidationException is thrown. You can override this default behavior
by adding the scui-suppress-validation-exception context parameter with the value
as TRUE in the web.xml file located in your EARFILE/WARFILE/WEB-INF folder.
For example:

<context-param>0

(YYY\<param-name>scui-suppress-validation-exception</param-name>

(YYY’<param-value>TRUE</param-value>
</context-param>

When you set this parameter's value as TRUE, all the validation exceptions are
added to a list that can be accessed using an ArrayList as follows:

ArrayList<SCUIRequestValidationException>
SCUIWebValidationUtils.getValidaionErrorList(HttpServietRequest request)

You can also define a global exception handler. If any validation exception has not
been detected and goes back to the SCUISafeRequestFilter, the request will be sent
to the corresponding global error handler servlet container.

This global exception handler and the request method can be defined as context
parameters in the web.xml file located in your EARFILE/WARFILE/WEB-INF
folder. For example:
<context-param>

<param-name>scui-global-validation-exception-handler-path

</param-name>

<param-value><path_to_global_exception_handler></param-value>
</context-param>
<context-param>

<param-name><scui-global-validation-exception-handler-method>

</param-name>

<param-value>FORWARD | INCLUDE |REDIRECT</param-value>
</context-param>

For applications that are based on the Web UI framework, the Sterling Selling and
Fulfillment Foundation provides /jsps/datavalidationerror.jsp as the default
exception handler.

For applications that are based on the HTML Ul framework, the Sterling Selling
and Fulfillment Foundation provides /common/datavalidationerrorjsp as the
default exception handler.

The Web UI Framework has also added a Struts Action result
"DATAVALIDATIONERROR", which would be returned in case of invalid request.

You can define this result type and the corresponding path (say
/jsps/datavalidationerror.jsp) for these struts actions.

By default, the global exception handler method is set to FORWARD.

Chapter 6. Data Validation 35

36

Defining Error Messages

You can define error messages on each regular expression to show the context
sensitive error. The error messages are localizable bundle entries defined in the
various bundle file. For example,
<RegularExpressions>
<RegularExpression id="dates" javaPattern=""[a-zA-Z0-9]*$"
jsPattern="~[a-zA-Z0-9]*$" whitelistErrorMsg="only alphanumeric_chars_allowed"
blacklistErrorMsg="alphanumeric_chars_not_allowed"/>
</RegularExpressions>

and in the bundle.properties file, add the following entry:

only alphanumeric_chars_allowed={1} must contain only alphanumeric characters.
alphanumeric_chars_not_allowed={1} must not contain any alphanumeric characters.

In this case, If the regular expression dates fails in input validation, the error string
defined in the bundle keys only_alphanumeric_chars_allowed or
alphanumeric_chars_not_allowed is displayed as error message. The name of the
input being validated will be used as the second message formatter. The first
message formatter is the regular expression.

Note: If whitelistErrorMsg and/or blacklistErrorMsg attribute are not defined, the
default error messages are displayed.

Localizing Error Messages

You can localize the error message defined for individual regular expressions.

For HTML UI based applications, the bundle keys for error messages should be
present in java bundle files for server side validations and in javascript bundles for
client side validations.

For Web UI Framework based applications, the bundle keys for error messages
should be present in java bundle files for server side validations and in javascript
bundles for client side validations.

For RCP based applications, the bundle keys for error messages should be present
in java bundle files for both server and client side validations.

Defining Custom Regular Expression Error Message Provider

This is an optional task. You can provide a custom error message provider by
creating an instance of the error message provider class. The error message
provider class must implement the ISCRegexErrorMessageProvider interface. Also,
the error message provider class must be registered with must be registered with
the Sterling Selling and Fulfillment Foundation by adding a new context parameter
in the web.xml file ((located inside your EARFILE/WARFILE/WEB-INF directory)
as follows:
<context-param>
<param-name><scui-regular-expression-error-message-provider></param-name>

<param-value><fully-qualified-class-name></param-value>
</context-param>

For example,

<context-param>
<param-name>scui-regular-expression-error-message-provider</param-name>
<param-value>com.text.RegExErrorMsgProvider</param-value>
</context-param>

Sterling Selling and Fulfillment Foundation

Note: Error messages returned by the error message provider class must be bundle
keys. The error message will be localized and formatted with regular expression
being passed as the first formatter and the input being validated as the second

formatter.

Localizing Validation Rules

There cannot be any localization for the validation rules as each rule should
validate the input in all available locales. Therefore, you must define the rules that
support all the available locales in the rules file itself.

Chapter 6. Data Validation 37

38 Sterling Selling and Fulfillment Foundation

Chapter 7. Building and Deploying Extensions

After You Create Your Extensions

After you are satisfied with all of the extensions you have made toSterling Selling
and Fulfillment Foundation (such as customizing the Ul and database, creating
custom code and files, and so forth), make sure that you build and deploy the new
extensions. You should re-build and deploy the Application Enterprise Archive
(EAR) with all the Java files, resource files, JSP files, custom classes, and so forth,
that you created or modified.

Building Resource Extensions

To build extensions to application resources, you must rebuild the resources jar file
by running the deployer.sh (or deployer.cmd on Windows) utility from the
INSTALL_DIR/bin directory. For example:

./deployer.sh -t resourcejar

This applies to all application resources, including:

¢ Theme, CSS, Config resources, Data types files, and so forth

* Extended APIs, Events, and XSL templates

* Modifications made in the database, resources, and template directories

To incorporate your JSP or JS file modifications, rebuild the Selling and Fulfillment
Foundation EAR.

If you are extending any resource XML files, place your extended *.xml files in the
<INSTALL_DIR> /extensions/global /template/resource folder.

If you are extending any event.xml files, place your extended *.xml files in the
<INSTALL_DIR>/extensions/global /template/event folder.

If you are extending an *.xsl file, place your extended .xsl files in the
<INSTALL_DIR>/extensions/global /template/xsl folder. But when providing the
name of the template.xsl file during service definition, the path should be
/global/template/xsl/<CUSTOM-TEMPLATE-XSL>.

Ensure that all the extended JSP and JS files are stored in the <INSTALL_DIR>/
extensions/global/webpages directory, if they are not already there.

Customizing Resource Bundles

You can define new bundle entries and override out-of-the-box bundle entries.
Server side bundle files are located in the <INSTALL_DIR>/resources directory. To
change bundle files, add or override the appropriate entries in the

<INSTALL_DIR> /extensions/global /resources/extnbundle.properties file.

For example, you can add a new entry such as Detailed_Description=Detailed
Description key-value pair as follows:

© Copyright IBM Corp. 1999, 2011 39

1. Add the key-value pair to the <INSTALL_DIR>/extensions/global /resources/
extnbundle.properties file.

2. Build resources jar.
3. Build the EAR.

Building Other Extensions
About this task

To build your custom code extensions (user exits, extended APIs, custom
implementations of supplied Java interfaces, and so forth) modifications, generate a
JAR file containing these Java files and custom classes. After creating the JAR file,
include the new JAR file in the CLASSPATH environment variable by running the
install3rdParty.sh (or install3rdParty.cmmd on Windows) utility from the
<INSTALL_DIR>/bin directory. For example:

./instal13rdParty.sh <vendorName> <vendorVersion> <-j | -1 | -p | -r | -d >
<filelist> [-targetJVM DCL | EVERY | NOWHERE | APP | AGENT]

Here, <vendorName> refers to the name of the vendor such as WebLogic,
WebSphere, and JBoss. <vendorVersion> refers to the version of the vendor. Pass the
appropriate argument based on the file type. You can pass the following
arguments:

* - for JAR or compressed files

* -l for shared libraries

* -p for properties files

* -r for resource properties files

* -d for database JAR or compressed files

<filelist> refers to the path to your custom file.

Note: If you want to make this custom JAR available to the application server and
agents when running the install3rdParty utility, based on your requirement pass
the following target JVM arguments:

¢ DCL—If you want to add the custom JAR to the main dynamic classpath.cfg file
only.

* EVERY—If you want to add the custom JAR to all the dynamic classpath files
(for example, APPDynamicclasspath.cfg, A GENTDynamicclasspath.cfg,
OPSDynamicclasspath.cfg, and ACTIVEMQDynamicclasspath.cfgfiles).

* NOWHERE—If you just want to add the custom JAR to the <INSTALL_DIR>/jar
directory and do not want to update any of the dynamic classpath files.

* AGENT—If you want to add the custom JAR to the
AGENTDynamicclasspath.cfg file.

* APP—If you want to add the custom JAR to the EAR file.
For example, if you want to add the custom JAR to the
AGENTDynamicclasspath.cfg file, run the install3rdparty command with following

arguments:

./instal13rdParty.sh weblogic 10 -j <Path_to_your custom_JAR> -targetJVM
AGENT

40 Sterling Selling and Fulfillment Foundation

Note: At times, mechanisms supplied by Sterling Selling and Fulfillment
Foundation, such as time-triggered transactions, APIs, and user exits, are replaced
by improved mechanisms. When these mechanism are replaced, they are
designated as “deprecated.” Whenever possible, use the new mechanisms rather
than the deprecated ones. If you do need to use a deprecated mechanism, it must
be run in backward compatibility mode. In addition, note that deprecated
mechanisms are supported for two major software versions, and then they are
removed from the product.

Building Database Extensions
About this task

To build the extensions to your database, re-build the entities.jar by running the
deployer.sh (or deployer.cmd on Windows) utility from the <INSTALL_DIR>/bin
directory. For example:

./deployer.sh -t entitydeployer

Note: Before building the database extensions, make sure that all the extension
files are stored in the INSTALL_DIR/extensions/global/entities directory.

By default, when you run the entitydeployer target, all the log messages are
printed to the <INSTALL_DIR>/logs/entitydeployer.log file. If you want to print
the log messages in the log file as well as on the console, pass the -1 info parameter
when you run the entitydeployer target. For example:

./deployer.sh -t entitydeployer -1 info

To update the ERD documentation, re-build the entities.jar by running the
deployer.sh (or deployer.cmd on Windows) utility from the INSTALL_DIR/bin
directory. For example:

./deployer.sh -t updateERD

Note: By default, when you run the entitydeployer target or InstallService script,
the dbverify tool is also run. But if you want to suppress this call to the dbverify
tool again when you run InstallService script, override and set the NO_DBVERIFY
property to true in the <INSTALL_DIR>/install/properties/sandbox.cfg file. For
more information about overriding properties, refer to the Sterling Selling and
Fulfillment Foundation: Properties Guide.

For deploying the database extensions, refer to Deploying Extensions.

Deploying Extensions

After you build the required Sterling Selling and Fulfillment Foundation
extensions, you must deploy them.

To deploy the extensions, re-build the EAR file as you did during installation.
IBM recommends that you re-build and deploy the EAR file on your development

system and test there first. Then, deploy your extensions to your production
system and test them again.

Chapter 7. Building and Deploying Extensions 41

Also, before deploying your extensions on a production system, verify that the
<INSTALL_DIR> /properties/customer_overrides.properties file has the correct
settings. For example, ensure that the cache refresh icons specified in the
yfs.uidev.refreshResources property is set to N. For additional information about
overriding properties using the customer_overrides.properties file, see the Sterling
Selling and Fulfillment Foundation: Properties Guide.

Building and Deploying Enterprise-Level Extensions

42

You can define resources used by Sterling Selling and Fulfillment Foundation, such
as templates, database extensions, Ul resources, and so forth, at the Enterprise
level. The Enterprise-Level resources are bundled into a services package for
deployment.

Enterprise-Level resources can be developed and packaged as an Enterprise service
package. This service package contains all of the components required to on-board
an Enterprise. The Enterprise-Level resources are identified using a unique
resource identifier. The unique resource identifier is used to locate the resources
belonging to an Enterprise. Using the unique resource identifier, you can easily
deploy or move the Enterprise-Level resources. You define these resource
identifiers when you create an organization. For more information about creating
an organization, see Sterling Selling and Fulfillment Foundation: Application
Platform Configuration Guide.

Building Enterprise-Level Extensions

About this task

To build your modified Enterprise-Level extensions such as templates, resource
files, customized webpages, entities, and so forth:

Procedure

1. Create a new XML file named as descriptor.xml and add the following entry:

<ExtensionsDescriptor>
(Y\\<Package Name="<RESOURCE_IDENTIFIER>"/>
</ExtensionsDescriptor>
where <RESOURCE_IDENTIFIER> refers to the unique resource identifier
defined for identifying the resources belonging to an Enterprise.

2. Generate a custom JAR file containing the Enterprise-Level extension files. The
custom JAR file should have the following directory structure depending on the
extensions you have made:

Note: Before creating the custom JAR, make sure to copy the descriptor .xml
file to the root of the JAR file.

e /template/ <TEMPLATE_SPECIFIC_FOLDER> — for storing the extended
template files

Where TEMPLATE_SPECIFIC_FOLDER refers to the directory that contains
the specific templates. For example:

api—For storing the API-specific templates

email—For storing E-mail-specific templates

event—For storing Event-specific templates

userexit—For storing UE-specific templates

Sterling Selling and Fulfillment Foundation

In addition to templates, you can put JAR files, resource files, entity extensions,
and customized webpages in the JAR file by creating the required folder in the
root of the JAR file. For example,

* /jars —For storing the required JAR files

* /uijars —For storing the Ul-specific JAR files

* /entities—For storing the extended entity XMLs

* /webpages—For storing the customized webpages
* /resources—For storing the modified resource files

3. After creating the JAR file, deploy the new JAR file by running the
InstallExtensions.sh (or InstallExtensions.cmd on Windows) utility from the
INSTALL_DIR/bin directory. For example:

./InstallExtensions.sh <filename>
Here, <filename> refers to the path to the JAR file you created in step 2.

What to do next

After building the template extensions, make sure that you re-build the
resources.jar.

Building Enterprise-Level Resources Extensions
About this task

To build your modified Enterprise level Ul resource files (such as theme, css,
config resources, or datatypemaps files), re-build the resourcesjar file by running
the deployer.sh (or deployer.cmd on Windows) utility from the INSTALL_DIR/bin
directory. For example:

./deployer.sh -t resourcejar

To incorporate your JSP or JS file modifications, re-build theSterling Selling and
Fulfillment Foundation EAR.

Note: Make sure that all of the extended JSP and]S files are stored in the
INSTALL_DIR /repository/eardata/smcfs/war directory.

Building Enterprise-Level Database Extensions
About this task

To build your modified Enterprise-Level database, re-build the entities jar file by
running the deployer.sh (or deployer.cmd on Windows) utility from the
INSTALL_DIR/bin directory. For example:

./deployer.sh -t entitydeployer

Note: Before building the database extensions, make sure that all of the extension
files are stored in the INSTALL_DIR /repository/entity /extensions directory.

Note: By default, when you run the entitydeployer target or InstallService script,
the dbverify tool is also run. But if you want to suppress this call to the dbverify
tool again when you run InstallService script, override and set the NO_DBVERIFY
property to true in the INSTALL_DIR /install/properties/sandbox.cfg file. For more
information about overriding properties, refer to the Sterling Selling and
Fulfillment Foundation: Properties Guide.

Chapter 7. Building and Deploying Extensions 43

By default, when you run the entitydeployer target, all the log messages are
printed to the INSTALL_DIR /logs/entitydeployer.log file. If you want to print the
log messages in the log file as well as on the console, pass the -1 info parameter
when you run the entitydeployer target. For example:

./deployer.sh -t entitydeployer -1 info

Building Enterprise-Level Template Extensions

The system automatically reads the extended templates from the template folder
that gets created in the INSTALL_DIR/extensions directory after you run the
InstallExtensions.sh script.

Deploying Enterprise-Level Extensions

About this task

After you build the required Enterprise-Level extensions, you must deploy these
extensions.

To deploy the Enterprise-Level extensions, re-build and deploy the Sterling Selling
and Fulfillment Foundation Enterprise Archive (EAR). For more information on
how to build an EAR, see Sterling Selling and Fulfillment Foundation: Installation
Guide.

Note: IBM recommends that you re-build and deploy the EAR file on your
development system and test there first. Then, deploy your extensions to your
production system and test them again. For information about deploying Sterling
Selling and Fulfillment Foundation, see Sterling Selling and Fulfillment
Foundation: Installation Guide.

Also, before deploying your extensions on a production system, ensure that the
INSTALL_DIR /properties/customer_overrides.properties file has the correct
settings. For example, ensure that the cache refresh icons specified in the
yfs.uidev.refreshResources property is set to N. For additional information about
overriding properties using the customer_overrides.properties file, see the Sterling
Selling and Fulfillment Foundation: Properties Guide.

Customizing Web.xml

44

Customizing web.xml for Multiple Applications

Sterling Selling and Fulfillment Foundation provides the following extensions for
web.xml.

The extension package should have a ".extn" suffix and the "package_name"
attribute should be used to specify the package. For example:

<WebComponents Package = "package_name.extn">

Applications have the capability to suppress some common configurations.
Applications can suppress these configurations by using the Suppress element. The
suppression will be done by removing any element that matches the suppression
criteria. For example:

<WebComponents Package = "package_name.extn">

<Suppress>

<servlet><servlet-name>JasperPDFReport</servlet-name></serviet>
servlet-mapping><servlet-name>JasperPDFReport</serviet-name>

Sterling Selling and Fulfillment Foundation

</servlet-mapping>

</Suppress>

<web-app>

<l-- AT1 the web.xml pieces needed, in standard web.xml format. -->
</web-app>

</WebComponents>

In this example, all configurations are suppressed in which the servlet element
contains a child servlet-name with the given name.

Customizing web.xml for Session Timeouts

The default session timeout value is 6000 secondsset from the SessionTimeout
value in the YFS_USER table. To set a different session timeout, configure two
parameters in your web.xml file:

* A context parameter to allow the timeout value to be set from the file

Note: If this value is not set, the session timeout parameter is ignored.
* A session timeout parameter to set the numeric value

To customize session timeouts:

1. Edit your EARFILE/WARFILE/WEB-INF/web.xml file to add the context
parameter scui-suppress-user-level-sessiontimeout-override. Set the value to y:
<context-param>

<param-name>scui-suppress-user-level-sessiontimeout-override</param-name>
<param-value>y</param-value>
</context-param>

This allows the session timeout to be set from the timeout value.

2. Add an entry to web.xml to set the session timeout configuration parameter, in
minutes:
<session-config>

<session-timeout><timeout_value_in_minutes></session-timeout>
</session-config>

Deploying the Enterprise Archive Package
About this task

To makeSterling Selling and Fulfillment Foundation available for use, you must
create and deploy the application EAR file.

Procedure

1. Set up the application server appropriately for deploying the application. For
more information about setting up the application server, refer to the
installation documentation.

2. Create the EAR package for the application server.

* To create the application EAR file for a single WAR deployment, run the
following command from the <INSTALL_DIR>/bin directory: UNIX

./buildear.sh (.cmd for Windows) -Dappserver=<application server> -Dwarfiles=<war file> -Dea

* To create the application EAR file for a multiple WAR deployment, run the
following command from the <INSTALL_DIR>/bin directory:
./buildear.sh (.cmd for Windows) -Dsupport.multi.war=true

-Dappserver=<application server> -Dwarfiles=<war file,<comma-separated packages>
-Dearfile=<ear file>

Chapter 7. Building and Deploying Extensions 45

To create additional WAR files, add the appropriate packages to the value of
the -Dwarfiles argument, separated by commas. For example, to create three
WAR files, set the -Dwarfiles argument in the commands in Step 2 as
follows:

-Dwarfiles=<war file 1>,<war file 2>,<war file 3>
Running the command in this step creates the EAR file in the

<INSTALL_DIR>/external_deployments directory. It also places the multiple
war files in the EAR file.

3. Deploy the EAR file on the application server. For more information about
creating and deploying the EAR file, refer to the installation documentation.

Deploying Multiple EARs on One Application Server

46

Sterling Selling and Fulfillment Foundation provides support for deployment of
Multiple EARs (Enterprise Archives) on single application server. On the same
application server, you can do either of the following:

* Deploy different customizations of the same or different versions of the
application.

* Deploy different versions of the same application.

The number of different EARs that can be deployed on a single application server
depends on the available resources on the application server. To support this
deployment of multiple EARs, the different versions or customizations of the same
application should be deployed as an EAR and not in exploded mode.

Note: Sterling Selling and Fulfillment Foundation assumes that each EAR file is
generated from a different <INSTALL_DIR> directory.

To deploy multiple EARs, you must do the following:
* Define JNDI (Java Naming and Directory Interface) Context Namespace
* Define Context Root Entries

Defining the JNDI Context Namespace

About this task

You must define the JNDI (Java Naming and Directory Interface) context
namespace property to avoid JNDI clashes. To define the JNDI entries, do the
following:

Procedure
1. Edit the <INSTALL_DIR>/properties/sandbox.cfg file.
2. Add the YFS_CONTEXT_NAMESPACE property and assign it a name.

3. Run the following script from the <INSTALL_DIR>/bin directory to munge the
value of this property to the yifclient.properties file:

* setupfiles.sh (for UNIX/Linux)
¢ setupfiles.cmd (for Windows)

Sterling Selling and Fulfillment Foundation

Defining Context Root Entries
About this task

You must add the WAR file mappings for defining the context root in the
build.properties.in file. This ensures that the web applications that are installed on
single application server have unique context roots.

Note: Multiple EARs or context roots require additional memory for the
application server JVM. Testing has shown that the deployment of a second
application EAR file requires 2.5 - 3.5 times the memory of a single EAR.
Supporting two deployments may require up to 2.5 GB of heap space and 1.2 GB
of permanent space.

During installation, you can use JVM-specific arguments to avoid out-of-memory
errors. For more information, see the Sterling Selling and Fulfillment Foundation:
Properties Guide descriptions of ADDITIONAL_ANT_JAVA_TASK_ARGS and
ADDITIONAL_ANT_COMPILER_TASK_ARGS.

To add these entries, do the following:

Procedure

1. Edit the <INSTALL_DIR>/install/bin/build.properties.in file.

2. Add the WAR file mappings for the context root paths for any web application.
The key should be the name of the application's WAR file. For example,

platformdemo.war=/myplatformdemo
yantrawebservices.war=/yantrawebservices
platformdemodocs.war=/myplatformdemodocs

If you want to deploy the same WAR file twice, use WAR file mappings like
the following example:

platformdemol.war=platformdemo,platform
platformdemo2.war=platformdemo,platform

Then, during the EAR build, pass the following argument:
-Dwarfiles=platformdemol,platformdemo2

3. Run the following script from the INSTALL_DIR/bin directory to munge the
context root WAR file mappings to the build.properties file:
¢ setupfiles.sh (for UNIX/Linux)
* setupfiles.cmd (for Windows)

Results

Note: If you provide yfs.context.namespace property and don't provide the
mapping of the WAR files in the build.properties.in file, the buildEAR.cmmd
(buildear.sh for UNIX/Linux) script will throw an error forcing the user to fill in
the WAR file mappings. And if you provide the mapping of the WAR files in the
build.properties.in file and don't provide yfs.context.namespace property, the WAR
file mappings are ignored.

Also, the yfs.context.namespace property value and the WAR file mappings name

should be different for each EAR that you want to deploy on the same application
server.

Chapter 7. Building and Deploying Extensions 47

48 Sterling Selling and Fulfillment Foundation

Chapter 8. File Names, Keywords, and Other Conventions

Reserved Special Characters and Keywords Introduction

Sterling Selling and Fulfillment Foundation reserves keywords and special
characters that are only used internally. For more details about using special
characters, see the Sterling Selling and Fulfillment Foundation: Customizing APIs
Guide.

Naming Files

When naming files,IBM recommends that you choose characters from the standard
English-based character set, such as A through Z and 0 (zero) through 9. That way,
if you need to localize the application in languages other than English, you do not
need to rename files.

Reserved Keywords

Some keywords are reserved for use by the Sterling Selling and Fulfillment
Foundation and are important to keep in mind when programming with APIs and
creating error codes. Do not create file names or error codes that start with the
following:

* DCS
* INV
« OMD
« OMP
* OMR
« OMS
e PLT
* SYS
- WMS
* YCM
* YCP
* YCS
* YDM
* YFC
* YFE
* YFS
* YFX
* YIC
* YIF
* YPM
* YRET

© Copyright IBM Corp. 1999, 2011 49

Using Multi-Byte Characters

If you want to use multi-byte characters, your database must be configured to
support multi-byte characters. For more information about multi-byte characters

and localization, see the Sterling Selling and Fulfillment Foundation: Localization
Guide.

50 Sterling Selling and Fulfillment Foundation

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not grant you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation

North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte character set (DBCS) information,
contact the IBM Intellectual Property Department in your country or send
inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.

1623-14, Shimotsuruma, Yamato-shi
Kanagawa 242-8502 Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be

© Copyright IBM Corp. 1999, 2011 51

52

incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Corporation
J46A/G4

555 Bailey Avenue

San Jose, CA 95141-1003
U.S.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

All IBM prices shown are IBM's suggested retail prices, are current and are subject
to change without notice. Dealer prices may vary.

Sterling Selling and Fulfillment Foundation

This information is for planning purposes only. The information herein is subject to
change before the products described become available.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. The sample
programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work, must
include a copyright notice as follows:

© IBM 2011. Portions of this code are derived from IBM Corp. Sample Programs. ©
Copyright IBM Corp. 2011.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

Trademarks

IBM, the IBM logo, and ibm.com® are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the Web at “/Copyright and]
ftrademark information|’ at |http:/ /www.ibm.com /legal /copytrade.shtml|

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered
trademarks or trademarks of Adobe Systems Incorporated in the United States,
and/or other countries.

IT Infrastructure Library is a registered trademark of the Central Computer and
Telecommunications Agency which is now part of the Office of Government
Commerce.

Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo,
Celeron, Intel Xeon, Intel SpeedStep, Itanium, and Pentium are trademarks or
registered trademarks of Intel Corporation or its subsidiaries in the United States
and other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both.

Notices 53

http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml

54

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

ITIL is a registered trademark, and a registered community trademark of the Office
of Government Commerce, and is registered in the U.S. Patent and Trademark
Office.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Oracle and/or its affiliates.

Cell Broadband Engine is a trademark of Sony Computer Entertainment, Inc. in the
United States, other countries, or both and is used under license therefrom.

Linear Tape-Open, LTO, the LTO Logo, Ultrium and the Ultrium Logo are
trademarks of HP, IBM Corp. and Quantum in the U.S. and other countries.

Connect Control Center®, Connect:Direct®, Connect:Enterprisem, Gentran®,
Gentran®:Basic®, Gentran:Control®, Gentran:Director®, Gentran:Plus®,
Gentran:Realtime®, Gentran:Server®, Gentran:Viewpoint®, Sterling Commerce ",
Sterling Information Broker®, and Sterling Integrator® are trademarks or registered
trademarks of Sterling Commerce, Inc., an IBM Company.

Other company, product, and service names may be trademarks or service marks
of others.

Sterling Selling and Fulfillment Foundation

Product Number:

Printed in USA

	Contents
	Chapter 1. Checklist for Customization Projects
	Customization Projects
	Prepare Your Development Environment
	Plan Your Customizations
	Extend the Database
	Make Other Changes to APIs
	Customize the UI
	Extend Transactions
	Build and Deploy your Customizations or Extensions

	Chapter 2. Extensibility Overview
	Extending Your Application
	Extending the Console User Interface
	Extending the Applications Manager User Interface
	Extending the Mobile User Interface
	Extending the Database
	Extending Transactions
	Extending the Rich Client Platform User Interface

	Chapter 3. Setting Up the Development Environment
	Prerequisites for Extending Your Application
	Understanding the Development Environment
	Preparing the Development Environment on WebLogic
	Preparing the Development Environment on WebSphere
	Preparing the Development Environment on JBoss
	Developing and Testing in the Development Environment
	Testing UI Customizations

	Configuring the UI Cache Refresh Actions
	Configure Resource Cache Refresh Actions

	Chapter 4. Customization Using Microsoft COM+
	Microsoft COM+ Prerequisites
	Creating a COM+ Application on Windows
	Adding Components to a COM+ Application
	Configuring the COM+ Service
	Creating a Client Proxy
	Installing a Client Proxy

	Chapter 5. Masking Sensitive Information During Logging
	Masking Sensitive Information During Logging Using Log4j

	Chapter 6. Data Validation
	About Data Validation
	Disabling Data Validation
	Bypassing Data Validation for an URI
	Implementing Data Validation
	Defining Regular Expressions in Datatypes XML File
	Defining Regular Expressions in XML Files
	Registering Regular Expressions
	Defining Validation Rules in Datatypes XML File
	Externalizing Validation Rules Defined in the Datatypes XML File
	Defining Validation Rules in XML Files
	Defining Abstract Validation Rules
	Extending Abstract Validation Rules
	Registering Validation Rules
	Overriding Regular Expressions
	Overriding Validation Rules
	Defining an Adapter to Find Validation Rules
	Defining URI-Based Adapter to Find Validation Rules
	Deleting Registered Validation Rules

	Exception Handling
	Defining Error Messages
	Localizing Error Messages
	Defining Custom Regular Expression Error Message Provider

	Localizing Validation Rules

	Chapter 7. Building and Deploying Extensions
	After You Create Your Extensions
	Building Resource Extensions
	Building Other Extensions
	Building Database Extensions
	Deploying Extensions
	Building and Deploying Enterprise-Level Extensions
	Building Enterprise-Level Extensions
	Building Enterprise-Level Resources Extensions
	Building Enterprise-Level Database Extensions
	Building Enterprise-Level Template Extensions
	Deploying Enterprise-Level Extensions

	Customizing Web.xml
	Customizing web.xml for Multiple Applications
	Customizing web.xml for Session Timeouts

	Deploying the Enterprise Archive Package
	Deploying Multiple EARs on One Application Server
	Defining the JNDI Context Namespace
	Defining Context Root Entries

	Chapter 8. File Names, Keywords, and Other Conventions
	Reserved Special Characters and Keywords Introduction
	Naming Files
	Reserved Keywords
	Using Multi-Byte Characters

	Notices

