
Sterling Selling and Fulfillment Foundation

Customizing APIs
Version 9.1

���

Sterling Selling and Fulfillment Foundation

Customizing APIs
Version 9.1

���

Note
Before using this information and the product it supports, read the information in “Notices” on page 49.

Copyright

This edition applies to the 9.1 Version of IBM Sterling Selling and Fulfillment Foundation and to all subsequent
releases and modifications until otherwise indicated in new editions.

© Copyright IBM Corporation 1999, 2011.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Chapter 1. Checklist for Customization
Projects 1
Customization Projects 1
Prepare Your Development Environment 1
Plan Your Customizations 1
Extend the Database 1
Make Other Changes to APIs 2
Customize the UI 2
Extend Transactions 2
Build and Deploy your Customizations or Extensions 3

Chapter 2. Extending Services 5
About Extending Services 5
Invoking Services Synchronously or Asynchronously 6
Business Functions To Use In Services 6
Message Size For Asynchronous Services 7
Exception Handling and Services 7

Chapter 3. Understanding APIs 9
About APIs 9
API Behavior 9
Types of APIs 9
API Security 10

Include the apisecurity File in the Documentation 12
Date and Time Handling by APIs 13

Specifying Time Zones. 13
Using Date-Time Syntax 14

Chapter 4. Input XML Files for APIs . . 15
About Input XML Files for APIs 15
Guidelines for Forming API Input 16

Using Literals in Maps and XMLs 16
Using Special Characters 16
XML-Based APIs 17
Support for CreateTS and ModifyTS in Input and
Output XML Files 18

Forming Queries in the Input XML of List APIs . . 18
To Form Queries. 18
Setting Query Timeouts for XAPIs 19

Sorting Through OrderBy Element in the Input XML
of List APIs 20

Chapter 5. Output XML Files for APIs 23
About Output XML Files and Templates for APIs. . 23
Extending an Output XML Template 24
Best Practices for Creating Custom Output XML
Templates 24

Gather Information Relevant to the API 24
Gather Information Relevant to Your Business
Needs 25
Choose an Appropriate Template Mechanism . . 25
Develop Useful Templates 27
Keep Performance Needs in Mind 27

Defining and Deploying a Static Template for
Output XML 27
Defining and Deploying a Dynamic Template for
Output XML 28
Sequence of Precedence for Output XML Templates 29

API Templates 29
Event Templates 30

Chapter 6. DTDs, XSDs, and Complex
Queries 31
DTD and XSD Generator 31
Defining Complex Queries 34

Chapter 7. Creating Extended APIs . . 39
Invoking Extended APIs 39
Implementing the Error Sequence User Exit . . . 40
Implementing the YIFExceptionGroupFinder
Interface 41
Exception Handling in Extended APIs 41
Locking Records in Extended APIs 41

Chapter 8. Invoking APIs and Services 43
Invoking APIs from the Client Environment . . . 43
Invoking Services and Standard APIs
Programmatically 44
Configuring Service Invocation 45
Directing API Calls to Specific Servers 46

Notices 49

© Copyright IBM Corp. 1999, 2011 iii

iv Customizing APIs

Chapter 1. Checklist for Customization Projects

Customization Projects
Projects to customize or extend Sterling Business CenterSterling Selling and
Fulfillment FoundationSterling Field Sales vary with the type of changes that are
needed. However, most projects involve an interconnected series of changes that
are best carried out in a particular order. The checklist identifies the most common
order of customization tasks and indicates which guide in the documentation set
provides details about each stage.

Prepare Your Development Environment
Set up a development environment that mirrors your production environment,
including whether you deploy your application on a WebLogic, WebSphere®, or
JBoss application server. Doing so ensures that you can test your extensions in a
real-time environment.

You install and deploy your application in your development environment
following the same steps that you used to install and deploy it in your production
environment. Refer to your system requirements and installation documentation
for details.

You have an option to customize your application with Microsoft COM+. Using
Microsoft COM+ has advantages such as increased security, better performance,
increased manageability of server applications, and support for clients of mixed
environments. If this is your choice, see the Customization Basics Guide about
additional installation instructions.

Plan Your Customizations
Are you adding a new menu entry? Or customizing the sign-in screen or logo? Or
customizing views or wizards? Or creating new themes or new screens? Each type
of customization varies in scope and complexity.

For background, see the Customization Basics Guide, which summarizes the types of
changes that you can make and provides important guidelines about file names,
keywords, and other general conventions.

Extend the Database
For many customization projects, the first task is to extend the database so that it
supports the other UI or API changes that you make later. For instructions, see the
Extending the Database Guide, which includes information about the following
topics:
v Important guidelines about what you can and cannot change in the database.
v Information about modifying APIs. If you modify database tables so that any

APIs are impacted, you must extend the templates of those APIs or you cannot
store or retrieve data from the database. This step is required if table
modifications impact an API.

v How to generate audit references so that you improve record management by
tracking records at the entity level. This step is optional.

© Copyright IBM Corp. 1999, 2011 1

Make Other Changes to APIs
Your application can call or invoke standard APIs or custom APIs. For background
about APIs and the services architecture of service types, behavior, and security,
see the Customizing APIs Guide. This guide includes information about the
following types of changes:
v Invoke standard APIs for displaying data in the UI and for saving changes made

in the UI to the database.
v Invoke customized APIs for executing your custom logic in the extended service

definitions and pipeline configurations.
v APIs use input and output XML to store and retrieve data from the database. If

you don't extend these API input and output XML files, you may not get the
results you want in the UI when your business logic is executing.

v Every API input and output XML file has a DTD and XSD associated to it.
Whenever you modify input and output XML, you must generate the
corresponding DTD and XSD to ensure data integrity. If you don't generate the
DTD and XSD for extended XMLs, you may get inconsistent data.

Customize the UI
IBM® applications support several UI frameworks. Depending on your application
and the customizations you want to make, you may work in only one or in several
of these frameworks. Each framework has its own process for customizing
components such as menu items, logos, themes, and so on.

Depending on the framework you want, consult one of the following guides:
v Customizing the Console JSP Interface Guide

v Customizing the Swing Interface Guide

v Customizing User Interfaces for Mobile Devices Guide

v Customizing the Rich Client Platform Guide and Using the RCP Extensibility Tool
Guide

v Customizing the Web UI Framework Guide

Depending on the framework you want, consult one of the following guides:
v Customizing the Console JSP Interface Guide

v Customizing the Swing Interface Guide

v Customizing User Interfaces for Mobile Devices Guide

v Customizing the Rich Client Platform Guide and Using the RCP Extensibility Tool
Guide

v Customizing the Web UI Framework Guide

Extend Transactions
You can extend and enhance the standard functionality of your application by
extending the Condition Builder and by integrating with external systems. For
background about transaction types, security, dynamic variables, and extending the
Condition Builder, see the Extending Transactions Guide and Extending the Condition
Builder Guide. These guides includes information about the following types of
changes:
v Extend the Condition Builder to define complex and dynamic conditions for

executing your custom business logic and using a static set of attributes.

2 Customizing APIs

v Define variables to dynamically configure properties belonging to actions,
agents, and services configurations.

v Set up transactional data security for controlling who has access to what data,
how much they can see, and what they can do with it.

v Create custom time-triggered transactions. You can invoke and schedule custom
time-triggered transactions in much the same manner as you invoke and
schedule the time-triggered transactions supplied by your application.

v Coordinate your custom, time-triggered transactions with external transactions
and run them either by raising an event, calling a user exit, or invoking a
custom API or service.

Build and Deploy your Customizations or Extensions
After performing the customizations that you want, you must build and deploy
your customizations or extensions.
1. Build and deploy your customizations or extensions in the test environment so

you can verify them.
2. When you are ready, repeat the same process to build and deploy your

customizations and extensions in your production environment.

For instructions about this process, see the Customization Basics Guide which
includes information about the following topics:
v Building and deploying standard resources, database extensions, and other

extensions (such as templates, user exits, and Java™ interfaces).
v Building and deploying enterprise-level extensions.

Chapter 1. Checklist for Customization Projects 3

4 Customizing APIs

Chapter 2. Extending Services

About Extending Services
InSterling Business CenterSterling Selling and Fulfillment FoundationSterling Field
Sales terminology, a service is a core business logic component that is stateless and
does not contain presentation logic. Each service (either provided out-of-the-box by
the application or those that are custom created using the Service Definition
Framework) represents a logical unit of processing that can be independently
performed without any loss of data integrity and within one transaction boundary.
Using the Service Definition Framework, one or more services can be aggregated
into larger composite services which can in turn be used to create other services.
This provides a way to build small reusable components that can be linked
together to provide complex business processing.

All services within the Service Definition Framework can be invoked
bidirectionally either through internal application business processes or through
external systems. Services deployed in the Service Definition Framework are
stateless, each having their own transaction commitment boundaries.

A service can be invoked by the application by associating the service with an
event through an action. You can use a standard interoperability event handler or
implement your own custom event handler. You can then configure the application
to invoke the event handlers when certain events are raised and conditions are
met. For more information about configuring events, conditions, and actions, see
the Sterling Business CenterSterling Selling and Fulfillment FoundationSterling
Field Sales: Configuration Guide Application Platform Configuration Guide.

The application provides several user exits to extend business logic. User exits
invoked from within transactions can be associated to a service when configuring
transactions. Note that templates are not supported for user exits. For more
information on configuring user exits, see the Sterling Business CenterSterling
Selling and Fulfillment FoundationSterling Field Sales: Configuration Guide
Application Platform Configuration Guide.

Once services have been configured, they can also be invoked programmatically by
a client.

The service invocation configuration depends on the location of the client invoking
the service in relation to the location of the Sterling Business CenterSterling Selling
and Fulfillment FoundationSterling Field Sales installation, as described in the
following situations:
v If the invoking client does not have Sterling Business CenterSterling Selling and

Fulfillment FoundationSterling Field Sales installed - Configure for remote
invocation.

v If the invoking client does have Sterling Business CenterSterling Selling and
Fulfillment FoundationSterling Field Sales installed - Configure for local
invocation.

© Copyright IBM Corp. 1999, 2011 5

Invoking Services Synchronously or Asynchronously
Depending upon the mode of invocation, services can be classified into two major
categories:
v Synchronously invoked services (on demand) - These services can perform all

their processing and return the result in single call.
v Asynchronously invoked services (message driven)

Synchronously Invoked Services

These services can perform all their processing and return the result in a single
call, on demand.

Asynchronously Invoked Services

These services automatically perform all their processing whenever triggered by a
message from an external system or from within Sterling Business CenterSterling
Selling and Fulfillment FoundationSterling Field Sales. The trigger could be in the
form of a file, a database record or a message in a message queue depending upon
the mode of integration. These services do not return any value and are purely
used for background processing such as sending out emails or automatically
receiving updates from or sending updates to an external system.

In general, asynchronous services provide a lower cost to performance ratio than
synchronous services and should be preferred wherever possible. However,
asynchronous services queue up and process messages in the order they are
received. The time to process a certain transaction after it's been queued can vary
widely depending upon peaks in your processing cycle and a host of other factors.
Therefore, they are not suitable for certain specific scenarios where an SLA (service
level agreement) requires that a transaction has to be processed within a specified
short time frame. However, these scenarios are rare for most businesses and
business processes and asynchronous processing is efficient enough for the
majority of transactions at a significantly lower cost while still providing a high
service level.

Business Functions To Use In Services
A service typically consists of one or more messaging components (or components
that define how messages to and from the service are handled), one or more utility
components (such as email or alert handlers) and one or more business processing
components. For information about the utility and messaging components available
for services defined in the application, see the Sterling Business CenterSterling
Selling and Fulfillment FoundationSterling Field Sales: Configuration Guide
Application Platform Configuration Guide. This section describes how to work with
services, customize and extend the business processing components, and make
them usable in services.

The application is shipped with an extensive out-of-the-box business function
library. Each function in this library is known as a standard API. For detailed
information on the input, output, and behavior of each standard API, see the
Javadocs.

You can also write your own business functions and use them in services. Each
such function is known as an extended API.

6 Customizing APIs

While standard APIs can be aggregated and linked together to form more complex
services, for most cases the API provides all the functionality that is required for a
business transaction and is therefore not required to be linked together with other
components or APIs. To ease working with this most common scenario, all of the
standard APIs are automatically available for synchronous invocation without the
need to model each one as a service using the Service Definition Framework. You
can think of these APIs as "automatically defined" synchronous services. However,
extended APIs and asynchronous invocation of these APIs requires that you
explicitly model them as services first using the Service Definition Framework.

Message Size For Asynchronous Services
If a database table reaches its maximum size and a send() function attempts to
insert a message in the table, the Service Definition Framework throws an
exception. See the size limitations noted in the following table:

Mechanism Data Type Size

Database (Oracle) CLOB 4 GB

Database (Microsoft SQL Server) TEXT 4 GB

JMS Queue TextMessage 4 GB

MSMQ Queue Message 2 GB

Exception Handling and Services
The Alert Console displays all exceptions logged by the Service Definition
Framework. It also enables you to reprocess exceptions that occur in transactions
configured to be asynchronous. When using a database or queue, calls are
asynchronous.

The Service Definition Framework uses the log4j utility for logging exception
information. The log4j utility writes both trace and debug information to a log file.
You can configure the logger to send different categories of messages to different
destinations. Categories are organized hierarchically, which permits inheritance.
Each category can be configured with a priority indicating a severity level. If a
category is not configured with a priority, it inherits the priority of its closest
ancestor with an assigned priority.

All exceptions that occur during an API call or during use of an event handler are
logged.

Chapter 2. Extending Services 7

8 Customizing APIs

Chapter 3. Understanding APIs

About APIs
You can use both standard APIs that are supplied by the application and any
extended (custom) APIs that you have created. Sterling Business CenterSterling
Selling and Fulfillment FoundationSterling Field Sales provides standard APIs to
handle the most common business scenarios. For example, there are APIs that
create an order, allocate an order, and report shipment confirmation. Standard APIs
can be invoked directly or aggregated into more complex services.

API Behavior
Each API takes an XML document as input and returns another XML document as
output. The YFSEnvironment input parameter represents a runtime state under
which this API is being invoked. It is used for the following tasks:
v Security audits and logging
v Transaction control
v Achieving invocation-specific API behavior

For an asynchronous service,Sterling Business CenterSterling Selling and
Fulfillment FoundationSterling Field Sales automatically creates an instance of this
object and passes it to each API part of the service. To programmatically invoke a
synchronous service, you have to create an instance of this environment by calling
the createEnvironment() API.

Note: In general, input to APIs should not contain any "BLANK" elements or
attributes. A blank element can be defined as an element containing all the
attributes with blank values. If a blank element is passed, the API behavior is
unpredictable.

All APIs (whether standard or extended) have the same signature with respect to
input parameters and return values. This signature is of the form
org.w3c.dom.Document APIName(YFSEnvironment env, org.w3c.dom.Document input);

In order for custom APIs to access custom values, the API should implement the
com.yantra.interop.japi.YIFCustomApi interface. If entered, these name/value pairs
are passed to the Custom API as a Properties object. See the Javadocs for more
information about the com.yantra.interop.japi.YIFCustomApi interface.

Types of APIs
An API processes records based on key attribute values, processing records with a
primary key first. If the primary key is not found, the API then searches for the
logical keys and then processes those records. For example, the ChangeOrder() API
first looks for the OrderHeaderKey key attribute and then for the combination of
the OrderNo and EnterpriseCode key attributes.

© Copyright IBM Corp. 1999, 2011 9

Select APIs

Typically prefixed with "get," select APIs return one record for an entity (for
example, the getOrderDetails() API returns the details of one order). They do not
update the database.

Since select APIs return only one record, they require unique key attributes to be
passed in the input XML. If a unique key attribute is not passed in the input XML,
the API uses blanks for those attributes in the criteria to select the record. There
can be more than one unique key combination, and in that combination you must
pass any one of the multiple combinations.

For example, an order is uniquely identified either by the OrderHeaderKey key
attribute or by a combination of the OrderNo and EnterpriseCode attributes. So,
when calling the getOrderDetails() API, you must pass either the OrderHeaderKey
attribute or the combination of the OrderNo, EnterpriseCode and DocumentType
key attributes. If you pass only OrderNo, the API returns the order that matches
OrderNo and has a blank enterprise code. In order to identify the unique key
combinations for each API, see the Javadocs.

However, getOrderDetails() API uses a select for update on YFS_ORDER_HEADER
so that its internal processes such as user exits, events, etc., have a lock on the
order elements while the thread working on it is active. This enables to maintain a
transaction cache until the final commit. Hence, you need to avoid using nested
transactions to overcome the locking mechanism by performing:
1. Commit or rollback only once for all event of the order. Keep in mind that all

the events are set to rollback if one of them fails.
2. Select the order for each event and process. Also keep in mind that if age of the

orders having multiple events are higher it could have an impact on the
performance.

List APIs

Typically prefixed with "get," list APIs return a list of records for an entity that
match the criteria specified through the input XML, for example, the getOrderList()
API returns a list of orders. If any attribute in the input XML has a blank value, it
is ignored. List APIs do not update the database. You can also get the paginated
data from a list API by calling the getPage API and passing the list API as the
input to the getPage API. For more information about the getPage API, see the
Javadocs.

Update APIs

Update APIs insert new records into the database. They also modify or delete
existing records in the database. Update APIs that modify or delete existing records
use the same logic as select APIs to identify which record to update. If no record is
found, update APIs throw an exception.

API Security
When calling an API, you must pass through the following two levels of security:
1. Authentication with a user ID, a certificate or both. The login API is called

before any other API is called.
2. Authorization, which verifies which API that you can access.

10 Customizing APIs

This security procedure is for every API call that is made through an application
server process. By default, agent and integration servers always have full access to
APIs.

Once you have passed the authentication check, an authorization check determines
what APIs and resources you can access. This authorization check is in addition to
the user interface (UI) security. For example, the UI security might allow you
access to a screen that lists users. To generate a list of users at the screen, you
might also have to pass an authorization check for the getUserList API that lists
the users.

Other examples of authorization checks include:
v If you use the getCommonCodeList API for display purposes, you should not be

able to get user information that is explicitly restricted from the output of the
API.

v If you call the getUserList API before assigning an alert, you should not be able
to get user passwords.

v If you use the UserHierarchy API to change your password:
– You should not be able to change your own IsSuperUser flag.
– You should not be able to modify another user's information.
– You should not be able to subscribe to additional user groups, which would

give you more system access.

This security is implemented using the apisecurity specific template files. These
apisecurity template files are XML files that documents the input and output
elements to which (by default) all APIs are restricted. These files are automatically
generated during XAPI deployment, even when document generation is turned off.

Note: Services do not use the apisecurity file.

Templates are used for the input and output authorization checks. These templates
override the regular templates.

For example, an input template with the lines OrganizationCode=#PROHIBITED# and
IsSuperUser=#PROHIBITED# would prevent you from subscribing to more user
groups and gaining more permissions.

The output template supplements the filtering performed by the default
documentation-based template. If an element is restricted because it is not
configured in the apisecurity file, it will never be returned in the output, even if
present in the documentation-based template.

Note: At certain points in the input and output, APIs like multiApi and getPage
have authorization access for any element. But other APIs that are called by these
APIs must go through the authorization check.

Access to API security and the permission level are controlled in the following
properties in the yfs.properties file. All authorization failures are logged to a
logging category named sci.apisecurity.
v api.security.enabled

– Y (default)—Enable API security
– N—Do not enable API security

v api.security.mode

Chapter 3. Understanding APIs 11

– STRICT—If any validation fails, throw an exception. This is appropriate for
production systems, if all permissions are configured properly.

– LAX—Filter out and log invalid input, but continue processing. The filtering
allows the system to mostly work despite incorrect input or output, while the
logging helps to identify places that need change.

Note: The system may still throw an exception when the filtering produces
an ambiguous behavior.

– DEBUG—Log invalid input and output, but do not filter anything or throw
exceptions. This is only appropriate during initial development, to identify
the permissions required by various processes.

If you do not specify a security mode, there is no filtering, thrown exceptions, or
authorization checking. There is limited logging.
v api.security.override.apiName.mode

Use this setting to override permissions on individual APIs. This property uses
the same values as api.security.mode.

v api.security.smc.enabled
– Y—Enable API security for the Applications ManagerConfigurator
– N (default)—Do not enable API security for the Applications

ManagerConfigurator
v api.security.console.enabled

– Y—Enable API security for the Application Console
– N (default)—Do not enable API security for the Application Console

When upgrading, you should initially disable this feature and grant all access
through properties. In an upgraded system, you can phase in this feature by
enabling security one API at a time, as you define and test permissions. If enabled,
only the system user group has grant permission to the APIs; for all other custom
user groups, appropriate permission has to be given. For information about user
group permissions, see the Sterling Business CenterSterling Selling and Fulfillment
FoundationSterling Field Sales: Configuration Guide Application Platform Configuration
Guide.

Include the apisecurity File in the Documentation
About this task

To include the apisecurity file in the documentation, and package it in the EAR
(enterprise archive) file, do the following:

Procedure
1. Place the extensions in the INSTALL_DIR/xapidocs/extn/input directory.
2. Rebuild the documentation (including the apisecurity files) by running the

following command:
deployer.sh -t xapideployer -l info [new target]

3. Build the EAR file. The apisecurity template files will be packaged from:
INSTALL_DIR/repository/xapi/template/merged/apisecurity.

12 Customizing APIs

Date and Time Handling by APIs
Sterling Business CenterSterling Selling and Fulfillment FoundationSterling Field
Sales handles values for both date-time and date. Date-time refers to values that
contains a date and time component, where Date refers to values that contain only
a date component.

Date values can be made nullable by specifying Nullable="true" in the entity
XML. Thereby the Date values in the table is blanked out. The expected behavior
of a date column is marked as Y is described in the following table.

Action Description

Insert When the field is not populated in a database object (is null), the
database infrastructure automatically inserts a null value into the
column in the database.

Update When the application nulls out a date, it sets the corresponding field to
null value in the database.

Select or List When a column is defined as nullable and the date from the database is
returned as null, it is automatically nulled out. So, the corresponding
get method returns a null.

Search by date Can pass null value as needed when specified to do so.

Note: If you have specified the date value as 01/01/2400 in versions prior to
Release 8.5, those values are now treated as null. The dates with special
significance are:
v Null date - 01/01/2400
v High date - 01/01/2500
v Low date - 01/01/1900

Specifying Time Zones
Dates and times are time zone aware. Time zones are relative to the Coordinated
Universal Time (UTC).

For example, if an order is created on the system on 06/15/2003 at 16:00:00 in
New York, (USA/New York time zone) a user in Chicago who examines that order
observes that order creation date-time as 06/15/2003 at 15:00:00, (USA/Chicago
time zone).

For a time published from Boston that is -5:00 hours from UTC, the string literal
"-5:00" is appended to the current date-time attribute published from APIs. The
input "2003-04-23T14:15:32-05:00" gives the date, time, and time zone reference for
a transaction.

The yfs.install.localecode parameter in the yfs.properties file determines the
Sterling Business CenterSterling Selling and Fulfillment FoundationSterling Field
Sales time zone. For example, yfs.install.localecode=en_US_EST

To configure the time zone, set the yfs.install.localecode property to en_US_EST in
the INSTALL_DIR/properties/customer_overrides.properties file.

Chapter 3. Understanding APIs 13

Using Date-Time Syntax
All APIs, user exits, and events that use date-time fields have a uniform syntax (a
combination of the basic and extended formats of the ISO 8601 specification). This
syntax is the expected format for all input as well as output.

Date Only Syntax

YYYY-MM-DD

Date-Time Syntax

YYYY-MM-DDTHH:MI:SS+HH:MM

Values in bold above are placeholders for literals. For example, the format for
March 5, 2003, 11:30:59 p.m. is 2003-03-05T23:30:59.

Note: This syntax is an ISO Date-Time syntax and not the database syntax. Using a
syntax other than the ISO Date-Time format may cause problems. For example, the
time element in the Date-Time syntax may be overlooked or calculated incorrectly.

For example, if you provide the Date-Time input as "2007-05-18-19.10.28.000000",
the system may interpret it as just "2007-05-18" because the T symbol is missing in
the input.

Syntax Parameters

Parameter Description

YYYY Required. Four-digit year. Used in both date-time and date
fields.

MM Required. Two-digit month. Used in both date-time and date
fields.

DD Required. Two-digit day of the month. Used in both date-time
and date fields.

T Required. The literal value T, which separates the date and
time component. Used only in date-time fields.

HH Required. Two-digit hour of the day. For example, 11 p.m. is
displayed as 23:00:00. Used only in date-time fields.

MI Required. Two-digit minutes of the hour. For example, 59
minutes is displayed as 00:59:00. Used only in date-time
fields.

SS Required. Two-digit seconds of the minute. For example, 21
seconds is displayed as 00:00:21. Used only in date-time fields.

+HH:MI Optional. Two-digit hours and minutes, separated by a colon
(":"). Indicates how many hours from UTC, using - to indicate
earlier than UTC and + to indicate later than UTC. If this
value is not passed in input, the time zone of the application
is assumed.

14 Customizing APIs

Chapter 4. Input XML Files for APIs

About Input XML Files for APIs
APIs retrieve data using input XML files that define which records need to be
selected or used. When extending the database to include additional fields, you
need to also extend the input XML to populate those fields.

CAUTION: Do not pass a blank element (an element containing all the attributes
with blank values) to an API. Also, do not pass attributes that have leading or
trailing spaces. The result of either situation is not predictable.

The following example shows an input XML modification.

Example of Input XML Modification

The following example modifies the input XML file for the YFS_createOrder() API:
<Orders AuthenticationKey="">

<Order EnterpriseCode="DEFAULT" OrderNo="DB04"
OrderName="DB04" OrderDate="20010803" OrderType="Phone" PriorityCode="1"
PriorityNumber="1" ReqDeliveryDate="20010810" ReqCancelDate=""
ReqShipDate="20010810" SCAC="FEDEX" CarrierServiceCode="Express Saver Pak"
CarrierAccountNo="112255" NotifyAfterShipmentFlag="N"
NotificationType="FAX" NotificationReference="" ShipCompleteFlag="N"
EnteredBy="Iain " ChargeActualFreightFlag="Y" AORFlag="Y"
SearchCriteria1="Search" SearchCriteria2="Search Again" >

<OrderLines>
<OrderLine PrimeLineNo="1" SubLineNo="1"

OrderedQty="1" ReqDeliveryDate="20010810" ReqCancelDate="20010810"
ReqShipDate="20010810" SCAC="FEDEX" CarrierServiceCode="Express
Saver Pak" PickableFlag="Y" HoldFlag="N" CustomerPONo="11" >

<Extn ExtnAcmeLineType="Type1"/>
<Item ItemID="ITEM1" ProductClass="A" ItemWeight="1"

ItemDesc="paintball gun" ItemShortDesc="pball gun"
UnitOfMeasure="EACH" CustomerItem="Spectra Flex" CustomerItemDesc="GEGRG"
SupplierItem="Spectra Flex @ supplier" SupplierItemDesc="Spectra
Flex Desc @ supplier" UnitCost="15.99" CountryOfOrigin="CA"/>

<PersonInfoShipTo Title="Mr" FirstName="Quigley"
MiddleName="Al" LastName="Johns" Company="Company" JobTitle="Project
Clert" AddressLine1="Address Line 1 -3 Main Street" AddressLine2="ShipTo
Address line 2" AddressLine3="ShipTo Address line 3" AddressLine4="ShipTo
Address line 4" AddressLine5="ShipTo Address line 5" AddressLine6="ShipTo
Address line 6" City="Acton" State="MA" ZipCode="01720" Country="US"
DayPhone="978-635-9242" EveningPhone="978-635-9252" MobilePhone="978-888-8888"
Beeper="" OtherPhone="other555-5555" DayFaxNo="" EveningFaxNo=""
EMailID="jquigley@maine.com" AlternateEmailID="hfournier@ontario.com"
ShipToID=""/>

</OrderLine>
<NumberOfOrderLines/>

</OrderLines>
<PersonInfoShipTo Title="MR" FirstName="s"

MiddleName="X" LastName="T" Suffix="T" Department="T" Company="SD"
JobTitle="SS" AddressLine1="SS" AddressLine2="SS" AddressLine3="SS"
AddressLine4="SS" AddressLine5="SS" AddressLine6="SS" City="REDWOOD"
State="CA" ZipCode="01852" Country="USA" DayPhone="3456789234"
EveningPhone="3456789234" MobilePhone="" EveningFaxNo="SS" />

<PersonInfoBillTo Title="mj" FirstName="m"
MiddleName="JJ" LastName="KK" Suffix="lll" Department="l" Company="kj"
JobTitle="k" AddressLine1="HJHKK" AddressLine2="HJKHK" AddressLine3="HKHJ"
AddressLine4="" AddressLine5="" AddressLine6="" City="UUU" State="IUI"

© Copyright IBM Corp. 1999, 2011 15

ZipCode="78787" Country="USA" />
</Order>
<NumberOfOrders/>

</Orders>

Important: In order for the factory setup scripts to operate properly, when you
add a column to a database table, be sure that the column is not null and that it
has a default value. If you need to make the column nullable, the default value
must not be present.

Also, when you are specifying XML Name and XML Group, keep in mind that the
values should be valid Document Object Model (DOM) strings. (The values must
not contain spaces or special characters that are not supported by the DOM
specification.)

The following example XML file adds a column to the YFS_ORDER_LINE table:
<?xml version="1.0" encoding="UTF-8" ?>
<DBSchema>
<Entities>
<Entity TableName="YFS_ORDER_LINE">
<Attributes>
<Attribute ColumnName="EXTN_ACME_LINE_TYPE" DecimalDigits=""

Default Value="’ ’" Size="10" Type="CHAR" XMLGroup="Extn"
XMLName="ExtnAcmeLineType"/>

</Attributes>
</Entity>
</Entities>
</DBSchema>

Guidelines for Forming API Input
When coding API input parameters, follow the stated guidelines for using literals
and formatting API input.

Do not pass a blank element (an element containing all the attributes with blank
values) to an API. Also, do not pass attributes that have leading or trailing spaces.
The result of either situation is not predictable.

Using Literals in Maps and XMLs
Using literals enables you to write code with fewer bugs because the compiler
catches the use of incorrect names in the name=value pair. In addition, using literals
simplifies the maintenance of your code; if you change the name, all you need to
do is recompile your code instead of editing one or more name instances within it
first.

Using Special Characters
The fields that are a part of the logical key for any record in the Sterling Business
CenterSterling Selling and Fulfillment FoundationSterling Field Sales schema (such
as OrganizationCode and OrderNo) have some restrictions. For such fields, the
application does not support the use of special characters listed in the following
table.

Special Character Description

& Ampersand

> Greater Than

< Less Than

16 Customizing APIs

Special Character Description

% Percent

" Quotation Mark

+ Plus sign

' Single quotation or Apostrophe

(Parenthesis

) Parenthesis

[Square Bracket

] Square Bracket

Note: You can use the plus (+) and ampersand (&) signs only in the ItemID field.

Note: A forward slash (/) must not be used in attributes that form part of a path
in another attribute. For example, Category ID must not include a forward slash,
as Category ID is used to form the attribute Category Path, which uses the forward
slash as a path separator.

In addition,IBM recommends against using third-party vendors' reserved special
characters. For example, in certain situations, data with underscore characters ("_")
on an Oracle database could result in unexpectedly slow query performance
because the database deciphers the underscore as a single character wild-card.

The following fields have no restrictions and support all characters:
v All description fields (for example, item description)
v All name fields (for example, organization name)
v All address fields (for example, billing address)

Note: However when creating address fields through the UI, the information
entered after the quotation mark (") is truncated and appears as a new entry in
YFS_PERSON_INFO table. To work around this problem, use apostrophe (')
instead of quotations.

v All instruction fields (for example, gift wrapping)
v All text fields (for example, reasons and comments)

Note: The Sterling Business CenterSterling Selling and Fulfillment
FoundationSterling Field Sales Mobile Device does not support the use of the
ampersand (&) character.

XML-Based APIs
The following table lists special characters and the escape sequences that should be
used in place of them in XML.

For This Character Enter This Sequence

quotation mark (") "

single quotation (') '

greater than symbol (>) >

less than symbol (<) <

ampersand (&) &

Chapter 4. Input XML Files for APIs 17

Support for CreateTS and ModifyTS in Input and Output XML
Files

CreateTS and ModifyTS can be used in getAPIs(input or output) if an entity in the
input or output XML file for which these attributes are requested have
corresponding tables. These attributes indicate when a record was created or
modified in the database.

Forming Queries in the Input XML of List APIs
The input XML of list APIs enable queries on conditions such as starts with,
contains, is greater than, and so forth. The following example shows a fragment of
the input XML that returns a list of items at a specific shipping node that fall
within a specific weight range and to be shipped during a specific date range.

Example: getOrderList API Input XML with Query Type Values
<Order ReqShipDateQryType="DATERANGE" FromReqShipDate="20010113" ToReqShipDate="20030113" /Order>
<OrderLine ShipNode="Atlantic" /OrderLine>
<Item ItemWeightQryType="BETWEEN" FromItemWeight="2" ToItemWeight="20"/>
<OrderRelease CarrierServiceCodeQryType="FLIKE"
CarrierServiceCode="Priority" />

Note: Some APIs do not support QryType for an input attribute. These APIs are:
v getAssignedPricelistHeaderList
v getCarrierServiceList
v getNodeSCACAccountList
v getOrderLineStatusList
v getPaymentStatusList
v getPriceListForOrdering
v getQueryTypeList
v getReceiptLinesForTransaction
v getRegionList
v getServerList
v getShipmentListForOrder
v getSurroundingNodeList
v getTaskQueueDataList
v getTraceableComponentList
v getTraceList
v getZoneListForDiscount

To Form Queries
About this task

To form queries:

Procedure
1. Edit the custom input XML of any list API, and append QryType to any

attribute you want to query on. Any attribute that is not appended with
QryType can also be queried on, using the default query type value EQ, as
shown for ShipNode in the example in the topic on forming queries in the
input XML of list APIs.

18 Customizing APIs

2. For attributes appended with QryType, specify a query type value from the
following table. This is case sensitive.

3. Specify the values that are applicable to your search criteria.
The values for the QryType attributes vary depending on the datatype of the
field. The following table lists the supported query type values for each
datatype.

Field DataType Supported Query Type Values

Char/VarChar2 v EQ - Equal to

v FLIKE - Starts with

v LIKE - Contains

v GT - Greater than

v LT - Less than

Number v BETWEEN - Range of values

v EQ - Equal to

v GE - Greater than or equal to

v GT - Greater than

v LE - Less than or equal to

v LT - Less than

v NE - Not equal to

Date v DATERANGE - Range of dates

v EQ - Equals

v GE - Greater than or equal to

v GT - Greater than

v LE - Less than or equal to

v LT - Less than

v NE - Not equal to

Date-Time v BETWEEN - Range of dates

v EQ - Equals

v GE - Greater than or equal to

v GT - Greater than

v LE - Less than or equal to

v LT - Less than

v NE - Not equal to

Null v ISNULL - Return records that are null.

v NOTNULL - Return records that are not null.

Note: These two query types are used when the column or attribute is
set to Nullable in the entity XML.

Setting Query Timeouts for XAPIs
About this task

You can add individual query timeouts for APIs. To do this, specify the query
timeout value in seconds for the API in the API's input XML. For example:

Chapter 4. Input XML Files for APIs 19

<ApiInput QueryTimeout="10">
...
...
...
</ApiInput>

Note: The value of the QueryTimeout attribute overrides the value of the
yfs.ui.queryTimeout property in the yfs.properties file. But the value of this
attribute is valid only for a single API call. After the API execution is complete, the
query timeout is set to the old value based on the value of the yfs.ui.queryTimeout
property in the yfs.properties file.

Sorting Through OrderBy Element in the Input XML of List APIs
The input XML of list APIs supports sorting based on the OrderBy element.

To form queries:

Edit the custom input XML of any list API, and add the OrderBy element. Add the
Attribute child element, and in the Name attribute specify the name of the field
based on which you want to sort the results.

The OrderBy element supports ordering of the attributes in both ascending and
descending order. By default, the results are sorted in ascending order. If you want
to sort the results in descending order, add the Desc attribute to the Attribute
element and set it to Y.

You can also do nested sorting using the OrderBy element.

getOrganizationList API Input XML with OrderBy Element

The following example shows a fragment of the input XML that returns a list of
organizations and results are sorted by the OrganizationName attribute.
<Organization IgnoreOrdering="N" MaximumRecords="5000">

<OrderBy>
<Attribute Name="OrganizationName"/>

</OrderBy>
</Organization>

getOrganizationList API Input XML with Nested OrderBy Element

The following example shows a fragment of the input XML that returns a list of
organizations and results are sorted by OrganizationName and LocaleCode
attributes.
<Organization IgnoreOrdering="N" MaximumRecords="5000">

<OrderBy>
<Attribute Name="OrganizationName"/>
<Attribute Name="LocaleCode"/>
</OrderBy>

</Organization>

getOrganizationList API Input XML with OrderBy Element and
Desc Attribute

The following example shows a fragment of the input XML that returns a list of
organizations and results are sorted by the OrganizationName attribute in the
descending order.

20 Customizing APIs

<Organization IgnoreOrdering="N" MaximumRecords="5000">
<OrderBy>

<Attribute Name="OrganizationName" Desc="Y"/>
</OrderBy>

</Organization>

Chapter 4. Input XML Files for APIs 21

22 Customizing APIs

Chapter 5. Output XML Files for APIs

About Output XML Files and Templates for APIs
APIs return data using two types of output XML files that define which elements
and attributes are required by an API.
v Output XML File - Defines the outer limits of the data an API can return. Do not

modify output XML files.
v Template XML File - Defines the data returned by an API for the record

specified in the input XML file and restricts the amount of data to a subset of
the output XML. You can modify this file to incorporate a subset of the
attributes and elements from the output XML.

Output XML Templates

Many APIs use a corresponding output template. The output template is in XML
format and is read in by an API in order to determine the elements and attributes
for which it should return. The standard output template defines the elements and
attributes returned for any specific API. (To see the entire range of possible values
an API can return, see its output XML in Javadocs.) The standard template can be
a subset of the entire range of values returned, as determined by the output XML
in the Javadocs.

Note: Ensure that when adding elements and attributes to the output template,
use only those that are documented in the Javadocs. While the APIs can output
additional elements and attributes, only those that are documented in the Javadocs
are supported.

For example, the standard output template of the getOrderList() API returns the
header-level information of an order and the standard output template of the
getOrderDetails() API returns in depth information about an order.

Besides the standard output XML template, you can create custom output
templates for APIs to use for your own business requirements, such as different
output for different document types.

Document Types

If you use a variety of business-related document types such as orders, planned
orders, purchase orders, and returns, you can use custom templates that enable an
API to return the values that pertain to each unique document type.

For example, you can use one template with the getOrderDetails() API to return
information about Planned Orders and another template for the getOrderDetails()
API to return different information about Orders.

Standard Output Template Behavior

The set of values that the standard output template returns covers a variety of
business scenarios. With such a large range of possibilities, an API using the
standard output template may return much more data than you need for your
business purposes (and take much more time to process than you prefer).

© Copyright IBM Corp. 1999, 2011 23

If you want to customize the information returned by an API, you can do so by
creating and using a custom template, using our guidelines and procedures.

Extending an Output XML Template
About this task

Many APIs use an output XML template to define what is returned. Each API has
its own XML template, which is picked up from the INSTALL_DIR/repository/
xapi/template/merged/api/apiName.xml file. The files in this directory are part of
the product and should not be altered. However, these templates can be
overridden by implementing template extensions.

To extend a template file:

Procedure
1. Copy the template INSTALL_DIR/repository/xapi/template/merged/api/

apiName.xml file to the INSTALL_DIR/extensions/global/template/api/
directory, keeping the same file name.
If the /global/template/api/ directory does not exist, create the required
directory structure.

2. Modify the copied file, as needed. To extend a template file, add the Extn tag
under the entity tag. For example, if you have added a column EXTN_COLOR to
YFS_ITEM table, you also must add the tag Extn under the tag Item in the
getItemDetails.xml file as follows:
<Item ItemKey=""....>

<PrimaryInfo MasterCatalogID="" .../>
...
<Extn ExtnColor=""/>

</Item>

Note: If you are extending an output XML template, place your extended files
in the INSTALL_DIR/extensions/global/template/api folder. But when
providing the name of the template.api file during service definition, the path
should be /global/template/api/CUSTOM-TEMPLATE-API.

Best Practices for Creating Custom Output XML Templates
Whenever you call an API, you need to pass your own customized template, not
the sample provided by Sterling Business CenterSterling Selling and Fulfillment
FoundationSterling Field Sales. This section helps guide your decision-making
processes in planning how to design custom output templates.

In general, when you customize an output template, you do so by editing a copy
of the standard template. You cannot modify the standard output template.

There are two ways of customizing and calling the output template. Which
function you choose depends on the size and type of the data set you want
returned by the API.

Gather Information Relevant to the API
Custom output templates provide the flexibility to return whatever data you wish,
so it is important to understand that it is possible to modify an output template in
such a way that it returns information that is not quite relevant to the API.

24 Customizing APIs

For example, it is possible to modify the output template of the getOrderList() API
in such a way that it returns detailed information about an order rather than just
header-level information. You should modify an output template in such a way
that it takes advantage of the unique aspects of its corresponding API. Keeping
each template unique to its API prevents any ambiguity about which API to use in
any specific situation.

Gather Information Relevant to Your Business Needs
Since the standard output template returns all attributes, even for empty elements
in the template, you might want to tailor information to your specific business
needs. If you don't exclude the attributes you don't require, you receive more data
than you need and the extra data may slow the performance of the API.

For example, if you are using the getOrderDetails()API to return only OrderLine
attributes but your custom output template includes Schedule attributes, all
attributes for OrderLine and Schedule are returned.

Choose an Appropriate Template Mechanism
In general, the format of any template should follow the same structure as the
standard template. Keeping this general rule in mind, there are two ways to
customize the standard template, differentiated by the amount of data they return
and how they can be called:
v Static templates
v Dynamic templates

Static templates provide the ability to add new elements but not remove any of the
defaults. A static template is pervasive, as it is picked up by default by an API
whenever that API is invoked.

Dynamic templates provide the ability to add new elements and remove any of the
default elements from the standard template. A dynamic template is an instance, as
it is picked up only for a specific API call, such as when configured to do so
during user interface extensibility.

A comparison of the differences between the two types of template mechanisms is
summarized in the following table.

Template Types Allowed XML Elements Behavior

Static Template Default template elements cannot
be removed.

New elements can be added.

Pervasive. Picked up by default by
an API.

Dynamic
Template

Default template elements can be
removed.

New elements can be added.

Instance. Picked for a specific API
call, as configured during user
interface extensibility.

Choose which of these mechanisms best fits your business needs and adhere to it.

Remember that when you define a dynamic template, all possible values are
returned. In order to return the smallest amount of data for an element, when you
are pruning away elements you don't need, you need to include its parent with at
least one of its attributes.

Chapter 5. Output XML Files for APIs 25

If you leave an element blank or include unwanted attributes in the parent element
all values are returned, as illustrated in the following example of a poorly pruned
dynamic template.

A Poorly Pruned Dynamic Template
<!-- getOrderDetails Output XML -->
<Order>

<OrderLines>
<!--1 or more order line-->

<OrderLine>
<Item CountryOfOrigin="" ItemDesc="" ItemID=""/>
<Schedules>

<Schedule Attr1 />
</Schedules>

</OrderLine>
</OrderLines>

<Order>

Since the poorly pruned dynamic template specifies all OrderLine attributes as
well as a few Item and Schedule attributes, the API returns values similar to the
following.
<OrderLine AllocationDate="03/28/2002" CarrierAccountNo="112233"
CarrierServiceCode="Next Day Air" Createprogid="CustomTester"
Createts="03/28/2002" Createuserid="CustomTester" CustomerLinePONo="999"
CustomerPONo="111" DeliveryCode="AIR" DepartmentCode="Clothing"
ExtendedFlag="" ExternalReference1="" ExternalReference2=""
ExternalReference3="" ExternalReference4="" ExternalReference5=""
FreightTerms="Buyer" HoldFlag="N" HoldReasonCode="HoldReas"
ImportLicenseExpDate="08/08/2002" ImportLicenseNo="225588"
InternalReference1="" InternalReference2="" InternalReference3=""
InternalReference4="" InternalReference5="" KitCode=""
LineClass="" LineSeqNo="1.1" LineType="Single" Lockid="1" MarkForKey=""
Modifyprogid="CustomTester" Modifyts="03/28/2002"
Modifyuserid="CustomTester" OrderClass="NEW"
OrderHeaderKey="200203281036245174" OrderLineKey="200203281036245175"
OrderedQty="5.00" OrigOrderLineKey="" OriginalOrderedQty="5.00"
OtherCharges="0.00" OtherChargesPerLine="0.00" OtherChargesPerUnit="0.00"
PackListType="Bill" PersonalizeCode="PersCode" PersonalizeFlag=""
PickableFlag="Y" PricingDate="01/01/2500" PrimeLineNo="1"
Purpose="Purpose" ReceivingNode="B1N1" ReqCancelDate="01/01/2500"
ReqDeliveryDate="04/04/2002" ReqShipDate="03/30/2002"
ReservationID="" ReservationPool="" SCAC="UPS" ShipNode="E1N1" ShipToID=""
ShipToKey="" ShipTogetherNo="Y" SplitQty="0.00" SubLineNo="1"
TotalDiscountAmount="0.00" TotalOtherCharges="0.00">
<Item CountryOfOrigin="" ItemDesc="" ItemID=""/>
<Schedules>
<Schedule ExpectedDeliveryDate="" ExpectedShipmentDate=""
TagNumber="" OrderHeaderKey="" OrderLineKey="" OrderLineScheduleKey=""
ScheduleNo="" ShipByDate="" Quantity="" PromisedApptStartDate=""
PromisedApptEndDate=""/>
</Schedules>
</OrderLine>
</OrderLines>
</Order>

A Carefully Pruned Custom Output Template

In this carefully pruned custom output template, the dynamic template has been
trimmed down, keeping in mind the following guidelines:
v The structure of the custom output template mirrors the structure of the

standard output template.

26 Customizing APIs

v Excess elements (regarding kits, schedules, addresses, and so forth) are pruned
away.

v Parent elements are populated with one attribute in order to suppress excess
detail. For example, specifying the OrderNo attribute for the Order element
suppresses all of the other Order attributes.

<!-- getOrderDetails Output XML -->
<Order OrderNo=””>

<OrderLines>
<!--1 or more order line-->

<OrderLine PrimeLineNo="">
<Item CountryOfOrigin="" ItemDesc="" ItemID=""/>

</OrderLine>
</OrderLines>

</Order>

Since this carefully pruned custom output template specifies only a few Item
attributes and only one attribute for its parent element, the getOrderDetails() API
returns only the following values:
<?xml version="1.0" encoding="UTF-8" ?>
<Order OrderNo=Y00000765>

<OrderLines>
<OrderLine PrimeLineNo="1">

<Item CountryOfOrigin="IN" Item Description"
ItemDesc="Green Sari" ItemID="GNSARI5LT" />

</OrderLine>
<OrderLine PrimeLineNo="3">

<Item CountryOfOrigin="CA" ItemDesc="Pink Scarf"
ItemID="PKSCARF4LT" />

</OrderLine>
</OrderLines>

</Order>

This method of pruning the templates improves the performance as database
access to order schedules and other unwanted elements has been prevented.

Develop Useful Templates
The supplied templates located in the INSTALL_DIR/repository/xapi/template/
merged/api/ directory are sample guides. Use them to help you develop your
own output XML templates. Using your own customized templates gives you
much more flexibility, greater performance, and more assurance of appropriate
data output. You can either pass your template through the env or put it in the
extension folder.

Keep Performance Needs in Mind
Besides tailoring the templates to your business needs, it is important to keep
technological considerations in mind. For performance-related information about
using output, see the Sterling Business CenterSterling Selling and Fulfillment
FoundationSterling Field Sales: Performance Management Guide.

Defining and Deploying a Static Template for Output XML
About this task

If you want to use a template that has more elements in addition to those in the
standard output template, create a static output template. This function enables
you to create a template that includes all of the elements in the standard output
template plus any new ones you add. For example, you may need to add UI fields

Chapter 5. Output XML Files for APIs 27

for any database columns you have added. Note that if you use this function, you
cannot remove any elements that exist in the standard template.

To define and deploy a static template:

Procedure
1. Copy the standard output template for the API that you want to modify from

the INSTALL_DIR/repository/xapi/template/merged/api/FileName.xml file to
INSTALL_DIR/extensions/global/template/FileName[.DocType].xml.
v Keep the file name of your new template the same as the standard template.

The name of the output template corresponds with the name of the API or
event associated with it. For example, the getOrderDetails() API takes the
output template file getOrderDetails.xml.

v If the template references a document type, include the document type code
in the filename.
For example, to create an output template for the getOrderDetails() API for
an Order (0001) document type, the name of the template XML is
getOrderDetails.0001.xml.

2. Modify the copied template in the /extensions/global/template/api/ directory
as required, keeping in mind the best practices for creating custom output XML
templates.

Note: You may add any elements you wish, but you cannot remove any of the
elements present in the standard output template.

3. Call the API as typical and it automatically picks up the custom output
template from the directory containing the custom templates.

Defining and Deploying a Dynamic Template for Output XML
About this task

If you want to use a template that contains a subset of the elements in the
standard output template, create a dynamic output template. If you want the
ability to remove some elements from the standard template and perhaps add your
own elements, you do that by passing your XML data or a file name into the
YFSEnvironment object.

To define and deploy a dynamic template:

Procedure
1. Copy the standard output template for the API that you want to modify from

the INSTALL_DIR/repository/xapi/template/merged/api/FileName.xml file to
INSTALL_DIR/extensions/global/template/api/FileName.xml.
When naming your new template file, use the same name as the standard
template
The name of the output template corresponds with the name of the API or
event associated with it. For example, the getOrderDetails() API takes the
output template file getOrderDetails.xml.

2. Modify the copied template in the /extensions/global/template/api directory
as required, keeping in mind the best practices for creating custom output XML
templates.

28 Customizing APIs

3. During user interface extensibility, call the setApiTemplate() function on the
YFSEnvironment object. This enables you to specify an output template before
calling an API, using one of the following functions:
v XML data as a variable - as in the following example:

YFSEnvironment env = createEnv();
Document doc = getTemplateDocument();
env.setApiTemplate("getOrderDetails", doc);
private YFSEnvironment createEnv() {
//create new environment by passing the user id, program id, etc.
}
private Document getTemplateDocument() {
//create a Document object containing the desired template XML.
}

v XML file as a variable - as in the following example:
YFSEnvironment env = createEnv();
env.clearApiTemplates();
env.setApiTemplate("getOrderDetails", "myOrderDetails");
private YFSEnvironment createEnv() {
//create new environment by passing the user id, program id, etc.
}

The API then uses the template passed in through YFSEnvironment to
produce the output XML document. For details about the YFSEnvironment
interface, see the Javadocs.

Sequence of Precedence for Output XML Templates
Since Sterling Business CenterSterling Selling and Fulfillment FoundationSterling
Field Sales enables you to define multiple types of templates, in addition to the
standard templates that you cannot modify, it is important to understand the order
of precedence in which Sterling Business CenterSterling Selling and Fulfillment
FoundationSterling Field Sales implements when reading API and event templates.

API Templates
The following table shows the sequence of precedence for determining which
output template is used by an API. (Events use a similar sequence of precedence.)
Note that templates are not supported for user exits.

Priority Output Template Path and File Name

1 setApiTemplate(file|xmlDocument) to YFSEnvironment

When a file is specified, it is picked up from the INSTALL_DIR/extensions/
global/template/api directory.

2 INSTALL_DIR/extensions/global/template/api/apiName.docType.xml

3 INSTALL_DIR/extensions/global/template/api/apiName.docType.xml
(Sterling Business CenterSterling Selling and Fulfillment FoundationSterling
Field Sales sample template; not for use in production.)

4 INSTALL_DIR/extensions/global/template/api/apiName.xml

5 INSTALL_DIR/extensions/global/template/api/apiName.xml (Sterling
Business CenterSterling Selling and Fulfillment FoundationSterling Field
Sales sample template; not for use in production.)

Chapter 5. Output XML Files for APIs 29

Event Templates
Event templates help determine what elements and attributes should be present in
the output XML of an event. For events raised, see the relevant transactions in the
Javadocs.

To see which events take output templates, see the files in the
INSTALL_DIR/repository/xapi/template/merged/event/ directory. These
templates can be overridden by files you place in the INSTALL_DIR/extensions/
global/template/ directory.

The naming convention for templates is BaseTxnName.eventName.xml. For
example, the on_success event of the createOrder() API uses the
ORDER_CREATE.ON_SUCCESS.xml event template.

Note: Templates are not supported for user exits.

30 Customizing APIs

Chapter 6. DTDs, XSDs, and Complex Queries

DTD and XSD Generator
Every Sterling Business CenterSterling Selling and Fulfillment FoundationSterling
Field Sales API uses standard input, output, and error XMLs. These XMLs conform
to the related Document Type Definition (DTD). For example, consider the
following XML:
<?xml version="1.0" encoding="UTF-8">
<Order EnterpriseCode="DEFAULT" OrderNo="S100" />

The corresponding DTD for this XML is:
<!ELEMENT Order>
<!ATTLIST Order OrderNo CDATA #IMPLIED>
<!ATTLIST Order EnterpriseCode CDATA #REQUIRED>

To create such DTDs for the extended Sterling Business CenterSterling Selling and
Fulfillment FoundationSterling Field Sales XML, a tool called the xsdGenerator.xml
is provided in the INSTALL_DIR/bin directory. This tool converts a
specially-formatted XML file into a DTD and XML schema definition (XSD). The
command for running the tool is:
sci_ant.sh -f xsdGenerator.xml generate

You can also pass the following properties as command line arguments:
v xsdgen.use.targetnamespace

v xsdgen.use.datatypeimport

For example,
sci_ant.sh -Dxsdgen.use.targetnamespace=N
-Dxsdgen.use.datatypeimport=N -f xsdGenerator.xml generate

The following table contains information about the XSD Generator properties:

Fields Description

xsdgen.use.targetnamespace Optional. The default value is Y. If set to Y, the XSD files
are generated with a defined target namespace.

xsdgen.use.datatypeimport Optional. The default value is Y. If set to Y, all the XSD files
reference a single common XSD file containing all the
common data type definitions. If set to N, each XSD file is
created with a copy of the database definitions embedded
within it.

The input XML files should be placed in the INSTALL_DIR/xapidocs/extn/input
directory. The resulting DTD and XSD files are placed in the INSTALL_DIR/
xapidocs/extn/output/dtd and INSTALL_DIR/xapidocs/extn/output/xsd
directories respectively.

Note: When the xsdgen.use.datatypeimport is set to 'Y' it will generate the
updated datatypes.xsd file in the <INSTALL_DIR>/xapidocs/extn/output/xsd
directory based on the merged datatypes.xml including the data type extensions.

© Copyright IBM Corp. 1999, 2011 31

Consider the following sample XML that could be placed in the input directory
and converted to an XSD and DTD:
<Item yfc:DTDOccurrence="REQUIRED" ItemKey="" ItemID="REQUIRED"
OrganizationCode="REQUIRED" UnitOfMeasure="">

<PrimaryInformation Description="" ItemType="" />
<AdditionalAttributeList>

<AdditionalAttribute Name="" Value=""/>
</AdditionalAttributeList>
<Extn ExtnAttr1="" ExtnRefId="">

<CSTItemDataList yfc:DTDOccurrence="ZeroOrOne">
<CSTItemData yfc:DTDOccurrence="ZeroOrMany" ItemDataKey=""

Description="">
<CSTItemExtraData yfc:DTDOccurrence="ZeroOrOne" CodeType=""

DataType="" />
<YFSCommonCode yfc:DTDOccurrence="REQUIRED" CodeName=""

CodeType="" CodeValue="" />
</CSTItemData>

</CSTItemDataList>
</Extn>

</Item>

The following table contains descriptions of special attributes for XML:

Fields Description

yfc:QryTypeSupported This attribute determines whether or not the query type
functionality is supported for the attributes in this element.
If set to Y, it takes effect for all the elements.

yfc:ComplexQuerySupported This attribute specifies whether or not a complex query
type is supported. This attribute can only be present in the
root element.

yfc:XSDType The name of the type to use for the root element schema
definition.

yfc:DTDOccurrence This attribute can contain any of the following values:

v REQUIRED - This element must be present if the parent
element is present.

v ZeroOrOne - This element is optional, but may occur
only once.

v ZeroOrMany - This element is optional, but may occur
multiple times.

v OneOrMany - This element is required, and may occur
multiple times.

yfc:UseEntityOrdering This attribute determines whether or not all the first-level
children of an element are ordered in the sequence they are
found in the entity xmls. This attribute can contain any of
the following values:

v true - All the first-level children of an element are
ordered in the sequence they are found in the entity
xmls.

v false - The first-level children of an element are not
ordered in the sequence they are found in the entity
xmls.

xmlns The namespace to use for the targetNameSpace in the
output XSD. This attribute takes effect only if it is present
in the root element.

32 Customizing APIs

The attributes with values of REQUIRED are generated as required attributes in the
DTD and XSD. However, an existing required attribute cannot be marked as
optional.

The attribute values can also be specified to supply additional constraints. A list of
options is separated by a vertical bar (|). The value of the attribute must be one of
the given options. This is only supported for data types based on the strings. The
values are trimmed of the whitespace character if the value itself is entirely spaces,
in which case the enumerated option remains unchanged.

For example, SomeAttr="A | B | C | |" results in valid options of "A", "B", "C", "
", and "".

Note: The DTDs do not support enumerated values containing only whitespace
characters. Therefore, restrictions of this type cannot be represented in the DTD.

The default input and output XMLs that can act as a base for your custom XML
are located in the INSTALL_DIR/xapidocs/xmlstruct/ directory. Also note that the
DTDOccurrence and REQUIRED data provided for the standard tables are inferred
from the base file in the xmlstruct directory and do not need to be supplied. If
they are provided, the existing information is overridden by any new information
present in the custom XMLs. Any required datatype and relationship information
are obtained from the entity XMLs.

Note: Do not put your custom XMLs in the xmlstruct directory.

Therefore, when the tool is run these base XML files serve as a default to your
custom XML files, which need only contain the changes made by you such as the
extended elements and attributes. This allows future upgrades to safely modify the
XML files in the xmlstruct directory. Re-running the XSD generation tool
automatically picks up these updates.

The appropriate XML file in the xmlstruct directory associated with your custom
XML is identified by the file name. Your custom XML may start with an optional
prefix followed by an under-score and the base file name. For example, a custom
XML file named Custom_File_YFS_getOrderDetails_input.xml refers to the
YFS_getOrderDetails_input.xml file in the xmlstruct directory.

However, the naming convention is optional. For example, you can also name your
custom XML sampleCustomApi.xml but no base file is used. In this case, the tool
outputs an informational message to indicate that no base XML is found.

Note: If you want to use our base XML file for conversion, the naming convention
of your custom XML must be suffixed appropriately. For example,
Custom_File_YFS_getOrderDetails_input.xml would use the base file named
YFS_getOrderDetails_input.xml.

The generated XSD specifies the target namespace as shown below:
<xsd:schema attributeFormDefault="unqualified"
elementFormDefault="qualified"
targetNamespace="http://www.sterlingcommerce.com/documentation"
xmlns:xsd=http://www.w3.org/2001/XMLSchema
xmlns:yfc="http://www.sterlingcommerce.com/documentation">

This namespace is picked up from the xmlns attribute on the root element of the
input XML and defaults to http://www.sterlingcommerce.com/documentation.

Chapter 6. DTDs, XSDs, and Complex Queries 33

The XSD and DTD files contain query type attributes used in list APIs when
QryTypeSupported="Y" is set in the root element of the input XML. Similarly, the
complex query types defined for getItemList() and getOrganizationList() APIs are
represented in the XSD and DTD files when ComplexQuerySupported="Y" is set.

However, in APIs the following exceptions are exhibited in the DTDs since these
constraints cannot be represented in a pure DTD, XSD or both:
v If an XML contains multiple Extn attributes, the generated DTD-only (not

generated XSD) defines a single Extn element which appears as the union of all
possible Extn elements.

v Conditionally required attributes. For example, you need to specify a group of
attributes or another group of attributes such as OrderHeaderKey or
EnterpriseCode/OrderNo.

v Mandatory condition of a node depends on some attribute value. For example in
the createOrder() API, the OrderLine node is required if the DraftOrderFlag="N".

Defining Complex Queries
Complex queries help to narrow a detailed listing obtained as output from an API.
To generate the desired output, you can pass queries using And or Or operators in
the input XML of an API.

For example, you can query the getItemList API based on the unit of measure,
item group code or any parameters provided in the API definition, using the
complex query operators, And or Or.

Complex queries are supported for the following APIs:
v deletePricelistAssignmentList
v deletePricingRuleAssignmentList
v getAttributeAllowedValueList
v getClassificationPurposeList
v getCustomerContactList
v getInventoryReservationList
v getItemList
v getOrderLineList
v getOrderList
v getOrganizationList
v getSearchIndexTriggerList
v getShipmentList

Note: Only item, organization, order, order line, shipment and shipment line
entities are supported for performing complex queries. The attributes for complex
query must map directly to valid database columns of these entities and should be
within the same XML element.

For more information about these APIs, see the Javadocs. For more information on
valid database columns, see the Sterling Business CenterSterling Selling and
Fulfillment FoundationSterling Field Sales ERDs.

Example: Adding Complex Queries in getItemList API

Consider the following scenario for adding complex queries to the getItemList API.

34 Customizing APIs

The getItemList API returns a list of items based on the selection criteria specified
in the input XML such as item attributes, aliases, category, and so on. You can
create complex queries in the getItemList input XML as shown in the following
example:
<Item OrganizationCode="DEFAULT" ItemGroupCode="PS" >

<PrimaryInformation PricingQuantityStrategy="IQTY">
<ComplexQuery Operator="OR">

<And>
<Or>

<Exp Name="UnitOfMeasure" QryType="ISNULL"/>
<Exp Name="UnitOfMeasure" Value="HR" QryType="FLIKE"/>

</Or>
<And>

<Exp Name="ManufacturerName" Value="XYZ"/>
</And>
</And>

</ComplexQuery>
</PrimaryInformation>

</Item>

OrganizationCode and ItemGroupCode are the two attributes of the <Item> element
and PricingQuantityStrategy is the attribute of the <PrimaryInformation> element
considered in this example. However you can include any or all of the attributes in
the getItemList API. All the attributes in the API are interpreted with an implied
And along with the complex query operator.

Apply the following rules when including complex queries:
v You can define only one ComplexQuery under a single element. For example,

you cannot have two ComplexQuery operator under an Item element.
v You cannot add a single complex query against two different tables. For

example, in getShipmentList API you cannot use ChainedFromOrderHeaderKey
and ShipmentLineNo in the same query, since the former belongs to
YFS_ORDER_LINE table and the latter is an attribute of the
YFS_SHIPMENT_LINE table.

v The attribute with no value is not considered in the complex query, like
Attribute="".

v For attributes appended with QryType, specify a query type value from the
folllowing table. This is case sensitive.

The values for the QryType attributes vary depending on the datatype of the field.
The following table lists the supported query type values used by List APIs for
each datatype.

Field DataType Supported Query Type Values

Char/VarChar2 v EQ - Equal to

v FLIKE - Starts with

v LIKE - Contains

v GT - Greater than

v LT - Less than

Chapter 6. DTDs, XSDs, and Complex Queries 35

Field DataType Supported Query Type Values

Number v BETWEEN - Range of values

v EQ - Equal to

v GE - Greater than or equal to

v GT - Greater than

v LE - Less than or equal to

v LT - Less than

v NE - Not equal to

Date v DATERANGE - Range of dates

v EQ - Equals

v GE - Greater than or equal to

v GT - Greater than

v LE - Less than or equal to

v LT - Less than

v NE - Not equal to

Date-Time v BETWEEN - Range of dates

v EQ - Equals

v GE - Greater than or equal to

v GT - Greater than

v LE - Less than or equal to

v LT - Less than

v NE - Not equal to

Null v ISNULL - Return records that are null.

v NOTNULL - Return records that are not null.

Note: These two query types are used when the column or attribute is
set to Nullable in the entity XML.

v There can be only one element under the ComplexQuery namely, And or Or.
v And or Or elements can have one or many child elements as required.
v And or Or elements can have other And or Or expression elements as child

elements.

This example can be interpreted as the following logical expression:
(OrganizationCode="DEFAULT" AND ItemGroupCode="PS") AND
((PricingQuantityStrategy="IQTY") OR ((UnitOfMeasure = "EACH"
OR UnitOfMeasure="HR") AND (ManufacturerName = "XYZ")))

By following the above example you can include complex queries to achieve
desired results from your database using the above mentioned APIs.

Note: Use of Complex Query in conjunction with Case Insenstive search for a
column is not supported. However this can be achieved by using the shadow
column in Name Attribute of Exp element of complex query. For example, if the
shadow column for ORGANIZATION_CODE in table YFS_ORGANIZATION is
ORGANIZATION_CODE_LC, then getOrganizationList api can be called with
below input to perform case insenstive search on OrganizationCode whose value is
either org1 or org2.

36 Customizing APIs

<Organization OrganizationCode="org1" OrganizationCodeQryType="LIKE">
<ComplexQuery Operator= "OR"

<Or>
<Exp Name="OrganizationCodeLC" QryType="LIKE" Value="org2"/>

</ComplexQuery>
</Organization>

Chapter 6. DTDs, XSDs, and Complex Queries 37

38 Customizing APIs

Chapter 7. Creating Extended APIs

Invoking Extended APIs
About this task

Extended APIs are APIs that you provide; they are sometimes called custom APIs.
You can use an extended API to invoke a Sterling Business CenterSterling Selling
and Fulfillment FoundationSterling Field Sales API or third-party API, as well as to
perform custom processing through the Service Definition Framework.

To invoke an extended API:

Procedure
1. Code a class.
2. Code a function that has exactly two parameters of types YFSEnvironment and

Document and ensure that the function returns a document.
public Document <method-name> (YFSEnvironment env, Document doc)

3. Configure a service that contains an API node. When configuring an API node,
use the properties described in the following table.

Property Description

General Tab

Extended API Select this option if a custom API is to be invoked.

API Name Select or enter the API to be called.

Note: This field is for integration purposes only.

Class Name Specifies the class you coded in the first step.

Method Name Specifies the function to be called as coded in the previous
step.

Arguments Tab

Argument Name You can pass name/value pairs to the API by entering the
values in the Arguments Tab.

In order for custom APIs to access custom values, the API
should implement the interface
com.yantra.interop.japi.YIFCustomApi.

If entered, these name/value pairs are passed to the custom
API as a properties object.

Argument Value Enter the argument value.

Template Tab

XML Template Select this radio button to construct the XML to be used for
the API output. Enter the template root element name and
click OK. You can then construct the XML.

File Name Select this radio button to enter the filename of the XML
file to be used as the API output template. This file should
also exist in your CLASSPATH.

© Copyright IBM Corp. 1999, 2011 39

Property Description

Facts Tab

You can configure the Fact Lookup for Database and custom APIs by using the Facts tab.
You can define Name-Value pairs for Fact lookup. The Value can be an XML Path.

Fact Name Enter the fact name.

Fact Value Enter the fact value.

When connecting the nodes within a service, keep in mind the API node
connection properties as listed in the following API Node Connection
Properties table:

Connection Node Connection Rules

Can be the first node after
the start node

Only for services invoked synchronously

Can be placed before v Any transport node except FTP or File IO

v Any other component node

Can be placed after v Start node

v Any transport node except FTP or File IO

v Any other component node

Passes data unchanged Yes

4. Make sure the class is in the CLASSPATH of the Service Definition Framework.
5. Make sure that the class implements a method with a signature that takes in

exactly two parameters, a YFSEnvironment and a Document.

The following example shows how to implement a class:
import com.yantra.yfs.japi.YFSEnvironment;
import org.w3c.dom.Document;
public class Bar {

public Bar () {
}

public Document foo(YFSEnvironment env, Document doc)
{
//write your implementation code here
}

}

6. To access the extended API you created, invoke the service containing your
extended API.
For details and sample code that show how to access properties specified when
the custom API is configured, see the YIFCustomAPI interface in the Javadocs.

Implementing the Error Sequence User Exit
You can configure the Service Definition Framework to call a user exit that checks
for prior errors for the exception group to which the API belongs. This user exit is
called before any processing of the message starts. A Java interface is supplied for
its implementation. This interface definition is in the
com.yantra.interop.japi.YIFErrorSequenceUE class. The user exit computes the
Message Key based on user defined custom code.

YIFErrorSequenceUE defines two functions. The function definitions are:

40 Customizing APIs

1) public Document getExceptionGroupReference(Document document, String apiName)
throws Exception
2) public void setExceptionGroupFinder (YIFExceptionGroupFinder finder)

The getExceptionGroupReference() function takes two parameters:
v Document - The input XML document retrieved by the Integration Adapter
v String - The API for which the Integration Adapter retrieved the XML

The setExceptionGroupFinder() function sets the YIFExceptionGroupFinder()
interface. Use the implementation of this interface to retrieve the exceptionGroupId
if prior errors exist.

An example implementation of this function is:
public void setExceptionGroupFinder (YIFExceptionGroupFinder finder){

this.finder = finder;
}

Implementing the YIFExceptionGroupFinder Interface
This interface defines the findExistingError() function that takes in Document as the
input parameter.

For example, the input XML document that the user exit passes to the
findExistingError() function would contain:
<?xml version="1.0"?>
<ExceptionGroupReference messageKey="xyz"/>

Exception Handling in Extended APIs
The client always has the option of throwing an exception to the Service Definition
Framework instead of handling it when it occurs. Depending on the configuration,
the Service Definition Framework either sends the exception to the Alert Console
or logs the exception.

Locking Records in Extended APIs
You can lock a record in a custom table when executing a custom entity API in
Service Definition Framework (SDF). To lock a record, you must pass the
SelectMethod attribute as part of the input XML to the custom entity API. The
locking happens within the transaction boundary of the custom API call.

The value of the SelectMethod attribute will determine what (if any) type of
locking to be used. You can pass one of the following values for the SelectMethod
attribute:
v WAIT—The record is locked for SELECT FOR UPDATE operation.
v NO_WAIT—The record is locked for SELECT FOR UPDATE NOWAIT operation.
v NONE—Locking mechanism is not used.

Note: If you pass any other value for the SelectMethod attribute, an error is
thrown indicating that the "SelectMethod" attribute value is not valid.

Note: If the SelectMethod attribute does not exist or if it is set to NONE in the
input XML, the locking mechanism is not used.

Chapter 7. Creating Extended APIs 41

42 Customizing APIs

Chapter 8. Invoking APIs and Services

Invoking APIs from the Client Environment
In order to call standard APIs from the client, ensure that the client environment is
set up correctly. The client environment must have appropriate CLASSPATH
settings and JAR files as described in this section for a basic configuration. SSL,
JNDI, or other security requirements may affect your configuration.

Note: It is recommended that you do not invoke a local API in the application
JVM before the server initialization. Also, if you are making a local API call, you
must add the following code after the local API invocation in the block that has
YIFClientFactoryImpl.getLocalApi and api.invoke:
YFCRemoteManager.setIsLocalInvocation(false);

The INSTALL_DIR/resources/ directory must contain the yifclient.properties file.

If you are calling in local mode, the client CLASSPATH must contain all JAR files
referred to in the INSTALL_DIR/properties/dynamicclasspath.cfg file.

When invoking APIs through EJB or HTTP, the client CLASSPATH must contain
the following files in WAS_HOME/AppClient/properties directory:
v xapi.jar
v log4j-1.2.15.jar
v platform_afc.jar
v xercesImpl.jar
v xml-apis.jar
v ejbstubs.jar (or equivalent .jar file containing EJB stubs).

The client CLASSPATH must also contain the following files from
INSTALL_DIR/jar/:
v install_foundation.jar
v smcfs/9.1/smcfsshared.jar
v platform_afc_demo.jar (for demonstration application)

Application Server-specific Files

In addition to the files listed above, the following files are required:

Application
Server Required Files

IBM WebSphere For WebSphere, use *ejb.jar available in the EAR file to retrieve the
ejbstubs.jar.

v j2ee.jar

v com.ibm.ws.ejb.thinclient_version.jar

v com.ibm.ws.orb_7.0.0.jar

v com.ibm.ws.sib.client.thin.jms_version.jar

v com.ibm.ws.wcom.jar

© Copyright IBM Corp. 1999, 2011 43

Application
Server Required Files

Oracle
WebLogic

v wlfullclient.jar

v Consult your application server documentation for other CLASSPATH
requirements.

JBoss The CLASSPATH should include entries for the following jar files:

v log4j-1.2.15.jar

v jboss-j2ee.jar

v jnpserver.jar

v jboss-common-client.jar

v concurrent.jar

v jboss.jar

v jboss-serialization.jar

v jboss-remoting.jar

v jbosssx.jar

v jboss-transaction.jar

Invoking Services and Standard APIs Programmatically
Sterling Business CenterSterling Selling and Fulfillment FoundationSterling Field
Sales provides sample code that demonstrates how the standard APIs and services
of the application can be invoked programmatically. See the sample files in the
INSTALL_DIR/xapidocs/code_examples/ directory.

Note: Use the executeFlow() method of the YIFApi interface to run a service
defined within the Service Definition Framework.

API and service transactions that are outbound from the application can be
configured through the Service Builder, as described in the Sterling Business
CenterSterling Selling and Fulfillment FoundationSterling Field Sales: Configuration
Guide Application Platform Configuration Guide.

API and service transactions that are inbound to Sterling Business CenterSterling
Selling and Fulfillment FoundationSterling Field Sales can be invoked through the
following protocols:
v EJB
v HTTP and HTTPS
v LOCAL
v Web Services
v COM+

EJB

Use EJB for server-side execution of the code. Java call. All the methods in Sterling
Business CenterSterling Selling and Fulfillment FoundationSterling Field Sales take
a YFSEnvironment and a document, and return a document. Since EJBs are
designed to be called remotely, each of these documents is serialized on one end
and unserialized on the other. However, the application uses an EJB, where each
API takes two string parameters and returns a string. Thereby, forcing any
document implementation to serialize and unserialize using a standard
well-defined interface.

44 Customizing APIs

For example, a new EJB is created with method signatures like:
String createOrder(String env, String inputXML) throws YFSException, RemoteException;

where env is an XML that should be a valid input to createEnvironment variable.
The return value is the output XML.

When calling an API using YIFClientFactory.getInstance().getApi(“EJB”) the call is
made using this String-based EJB. With this type of call you can pass a
YFSEnvironment and document, and get a document in return. The Sterling
Business CenterSterling Selling and Fulfillment FoundationSterling Field Sales code
performs the conversion transparently.

Note: The DOM-based EJB is deprecated. Hence, moving forward you need to use
the String-based EJB for server-side execution.

HTTP

Use HTTP for server side execution of code. Java call.

LOCAL

Use Local for client side execution of code. COM or Java call.

Web Services

Use Web Services for client side execution of code. COM or Java call.

COM+

Use COM for client side execution of VB or C++ code. COM or Java call.

Using COM requires setting up your server and runtime clients.

Note: Exceptions encountered when making synchronous API calls through EJB,
COM, or HTTP transport protocols are not queued for reprocessing.

Configuring Service Invocation
About this task

To configure service invocation:

Procedure
1. Rename the INSTALL_DIR/resources/yifclient.properties.in file to

INSTALL_DIR/resources/yifclient.properties.
2. Ensure that the CLASSPATH contains the following:

v log4j-1.2.15.jar
v xercesImpl.jar
v install_foundation.jar
v platform_afc.jar
v resources.jar
v entities.jar
v xapi.jar

Chapter 8. Invoking APIs and Services 45

v JARs requried by your application server
v JARs required by user exits and custom APIs

3. Set your java command line property to:
-Dlog4j.configuration=resources/log4jconfig.xml

4. Make sure that the INSTALL_DIR directory is in your CLASSPATH.
5. Set the log4j properties in the log4jconfig.xml file to the appropriate values for

your environment. If these properties are not specified correctly, the Service
Definition Framework does not initialize correctly.
v If you are using the EJB protocol and Oracle WebLogic, make sure that

weblogic.jar is in your CLASSPATH environment variable. In addition,
xercesImpl.jar and xalan.jar must precede weblogic.jar in your
CLASSPATH.

v If you are using the EJB protocol and JBoss, make sure that
JBOSS_HOME/client/jbossall-client.jar is in your CLASSPATH environment
variable.

v If you are using the EJB protocol and IBM WebSphere, make sure that the
CLASSPATH environment variable contains the necessary JAR files. For
information about the WebSphere JAR files, see the IBM documentation.
Make sure that the CLASSPATH environment variable contains the
appropriate properties directory.

Note: If you are invoking the service or API from the machine on which the
server is running, make sure that the CLASSPATH environment variable
contains the WAS_HOME/AppServer/properties/ directory.

If you are invoking the service or API from a different machine, make sure
that the CLASSPATH environment variable contains the
WAS_HOME/AppClient/properties/ directory.

v If you are configuring a COM+ protocol call, use one of the following COM
signatures that you need:
createEnvironment(VARIANT *lEnvHandle, BSTR sProgID,
BSTR sUserID, int *iRetval)

Signature for calling standard APIs:
<SterlingAPI>(VARIANT *lEnvHandle, BSTR inXML,
VARIANT *outXML, VARIANT *errXML, int *retval)

Signature for calling services:
executeFlow(VARIANT *lEnvHandle, BSTR flowName,
BSTR flowMsg, VARIANT *outXML, VARIANT *errXML, int *retval)

For examples of VB code, see the samples in the INSTALL_DIR/xapidocs/
code_examples/complus directory.

Directing API Calls to Specific Servers
About this task

The application provides the ability to route custom API calls to a particular server
or group of servers when these APIs are invoked either remotely or locally.

To enable this, the server(s) and the protocol must be specified in the
yifclient.properties file and in the required APIs. The endpoint is the configured
server(s) or a protocol which is used for routing the API calls.

46 Customizing APIs

If the XAPI client is configured for multiple URLs, an attempt to connect is made
to each server in the group in turn. If the connection works but something else
fails, no other server is tried and an exception is thrown.

To direct API calls to a specific server or group of servers, perform the following
steps:

Procedure
1. Specify the endpoint attribute in the yifclient.properties file under the directory

INSTALL_DIR/resources/. Modify the yifclient.properties file to include the
declaration and usage of endpoint in the following format:
endpoint.Server_Name.apifactory.protocol=HTTP
endpoint.Server_Name.httpapi.url=http://server:port/context_root/
interop/InteropHttpServlet

To configure the XAPI client for multiple URLs, define the group as a
comma-separated list:
endpoint.Server_Name.httpapi.url=http://server1:port1/context_root1/
interop/InteropHttpServlet,http://server2:port2/context_root2/
interop/InteropHttpServlet...

The expression endpoint.Server_Name specifies a server with the name
Server_Name. For example, endpoint.INBOXSERVER creates an endpoint with the
name INBOXSERVER. You can assign properties to the endpoint name, which
takes precedence over any other assigned property.
The protocol configured for the endpoint is HTTP as specified in the line:
endpoint.Server_Name.apifactory.protocol=HTTP

The settings specified in the second line, endpoint.Server_Name.httpapi.url,
are used to connect to the server specified in the endpoint.

2. Configure a protocol to be used for connecting to the specified server. The
protocols such as HTTP, HTTPS, EJB, LOCAL, AUTO are reserved endpoint
names. If any of these are configured for the endpoint, the system uses the
default connection settings (as applicable) for routing the API calls.

3. For each API, specify the endpoint to be used:
yfs.api.apiname.endpoint=ENDPOINT

The API then calls the server(s) specified in the endpoint attribute.

Note: If an endpoint is not configured for an API, then it uses the default
(local) server or a general one configured for all APIs. The property set at the
API level takes precedence over other common properties.

Chapter 8. Invoking APIs and Services 47

48 Customizing APIs

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not grant you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte character set (DBCS) information,
contact the IBM Intellectual Property Department in your country or send
inquiries, in writing, to:

Intellectual Property Licensing

Legal and Intellectual Property Law

IBM Japan Ltd.

19-21, Nihonbashi-Hakozakicho, Chuo-ku

Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be

© Copyright IBM Corp. 1999, 2011 49

incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Corporation

J46A/G4

555 Bailey Avenue

San Jose, CA 95141-1003

U.S.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

All IBM prices shown are IBM's suggested retail prices, are current and are subject
to change without notice. Dealer prices may vary.

50 Customizing APIs

This information is for planning purposes only. The information herein is subject to
change before the products described become available.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. The sample
programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work, must
include a copyright notice as follows:

© IBM 2014. Portions of this code are derived from IBM Corp. Sample Programs. ©
Copyright IBM Corp. 2014.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

Trademarks

IBM, the IBM logo, and ibm.com® are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the Web at “Copyright and
trademark information” at http://www.ibm.com/legal/copytrade.shtml.

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered
trademarks or trademarks of Adobe Systems Incorporated in the United States,
and/or other countries.

IT Infrastructure Library is a registered trademark of the Central Computer and
Telecommunications Agency which is now part of the Office of Government
Commerce.

Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo,
Celeron, Intel Xeon, Intel SpeedStep, Itanium, and Pentium are trademarks or
registered trademarks of Intel Corporation or its subsidiaries in the United States
and other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both.

Notices 51

http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

ITIL is a registered trademark, and a registered community trademark of the Office
of Government Commerce, and is registered in the U.S. Patent and Trademark
Office.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Oracle and/or its affiliates.

Cell Broadband Engine is a trademark of Sony Computer Entertainment, Inc. in the
United States, other countries, or both and is used under license therefrom.

Linear Tape-Open, LTO, the LTO Logo, Ultrium and the Ultrium Logo are
trademarks of HP, IBM Corp. and Quantum in the U.S. and other countries.

Connect Control Center®, Connect:Direct®, Connect:Enterprise®, Gentran®,
Gentran®:Basic®, Gentran:Control®, Gentran:Director®, Gentran:Plus®,
Gentran:Realtime®, Gentran:Server®, Gentran:Viewpoint®, Sterling Commerce™,
Sterling Information Broker®, and Sterling Integrator® are trademarks or registered
trademarks of Sterling Commerce®, Inc., an IBM Company.

Other company, product, and service names may be trademarks or service marks
of others.

52 Customizing APIs

����

Product Number: xxxx-xxx

Printed in USA

	Contents
	Chapter 1. Checklist for Customization Projects
	Customization Projects
	Prepare Your Development Environment
	Plan Your Customizations
	Extend the Database
	Make Other Changes to APIs
	Customize the UI
	Extend Transactions
	Build and Deploy your Customizations or Extensions

	Chapter 2. Extending Services
	About Extending Services
	Invoking Services Synchronously or Asynchronously
	Business Functions To Use In Services
	Message Size For Asynchronous Services
	Exception Handling and Services

	Chapter 3. Understanding APIs
	About APIs
	API Behavior
	Types of APIs
	API Security
	Include the apisecurity File in the Documentation

	Date and Time Handling by APIs
	Specifying Time Zones
	Using Date-Time Syntax

	Chapter 4. Input XML Files for APIs
	About Input XML Files for APIs
	Guidelines for Forming API Input
	Using Literals in Maps and XMLs
	Using Special Characters
	XML-Based APIs
	Support for CreateTS and ModifyTS in Input and Output XML Files

	Forming Queries in the Input XML of List APIs
	To Form Queries
	Setting Query Timeouts for XAPIs

	Sorting Through OrderBy Element in the Input XML of List APIs

	Chapter 5. Output XML Files for APIs
	About Output XML Files and Templates for APIs
	Extending an Output XML Template
	Best Practices for Creating Custom Output XML Templates
	Gather Information Relevant to the API
	Gather Information Relevant to Your Business Needs
	Choose an Appropriate Template Mechanism
	Develop Useful Templates
	Keep Performance Needs in Mind

	Defining and Deploying a Static Template for Output XML
	Defining and Deploying a Dynamic Template for Output XML
	Sequence of Precedence for Output XML Templates
	API Templates
	Event Templates

	Chapter 6. DTDs, XSDs, and Complex Queries
	DTD and XSD Generator
	Defining Complex Queries

	Chapter 7. Creating Extended APIs
	Invoking Extended APIs
	Implementing the Error Sequence User Exit
	Implementing the YIFExceptionGroupFinder Interface
	Exception Handling in Extended APIs
	Locking Records in Extended APIs

	Chapter 8. Invoking APIs and Services
	Invoking APIs from the Client Environment
	Invoking Services and Standard APIs Programmatically
	Configuring Service Invocation
	Directing API Calls to Specific Servers

	Notices

