
Sterling Selling and Fulfillment Foundation

Customizing the Rich Client Platform
Interface
Version 9.1.0.40

���





Sterling Selling and Fulfillment Foundation

Customizing the Rich Client Platform
Interface
Version 9.1.0.40

���



Note
Before using this information and the product it supports, read the information in “Notices” on page 201.

Copyright

This edition applies to the 9.1 Version of IBM Sterling Selling and Fulfillment Foundation and to all subsequent
releases and modifications until otherwise indicated in new editions.

© Copyright IBM Corporation 1999, 2013.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.



Contents

Chapter 1. Checklist for Customization
Projects . . . . . . . . . . . . . . . 1
Customization Projects . . . . . . . . . . . 1
Prepare Your Development Environment . . . . . 1
Plan Your Customizations . . . . . . . . . . 1
Extend the Database . . . . . . . . . . . . 1
Make Other Changes to APIs . . . . . . . . . 2
Customize the UI . . . . . . . . . . . . . 2
Extend Transactions . . . . . . . . . . . . 3
Build and Deploy your Customizations or Extensions 3

Chapter 2. The Rich Client Platform . . . 5
About Customizing the Rich Client Platform Interface 5
Rich Client Platform Architecture . . . . . . . 6
Benefits of Using the Rich Client Platform Interface . 7
Rich Client Platform and Desktop Applications . . . 8
XML Binding for Rich Client Platform Applications . 8
Localizing Rich Client Platform Applications . . . 9
Themes for Rich Client Platform Applications . . . 9
Related Tasks for Rich Client Platform Applications . 9
Shared Tasks for Rich Client Platform Applications 10
Navigator Tasks for Rich Client Platform
Applications . . . . . . . . . . . . . . 10
Wizards for Rich Client Platform Applications . . . 10
Hot Keys for Rich Client Platform Applications . . 13
Debug Mode for Rich Client Platform Applications 13

Running Rich Client Platform Applications in
Debug Mode . . . . . . . . . . . . . 14
Running the Standalone Rich Client Platform
Application in Debug Mode . . . . . . . . 14
Running the Rich Client Platform Application in
Eclipse in Debug Mode . . . . . . . . . 15

Prototype Mode for Rich Client Platform
Applications . . . . . . . . . . . . . . 15

Running Standalone Rich Client Platform
Applications in Prototype Mode . . . . . . 15
Running Rich Client Platform Applications in
Eclipse in Prototype Mode . . . . . . . . 16

Tracing a Rich Client Platform Application . . . . 16
Tracing a Standalone Rich Client Platform
Application . . . . . . . . . . . . . 17
Tracing a Rich Client Platform Application in
Eclipse . . . . . . . . . . . . . . . 18
Masking Sensitive Information During Trace . . 18

Capitalizing the Text Entered in Rich Client
Platform Applications . . . . . . . . . . . 19
Fetching Images for Rich Client Platform
Applications . . . . . . . . . . . . . . 20
Security Handling for Rich Client Platform
Applications . . . . . . . . . . . . . . 20
Output Templates for Rich Client Platform
Applications . . . . . . . . . . . . . . 20
Commands for Rich Client Platform Applications. . 20
Log Files for Rich Client Platform Applications . . 21

Masking Sensitive Information During Logging 21

Data Caching for Rich Client Platform Applications 22
Error Handling for Rich Client Platform
Applications . . . . . . . . . . . . . . 22
Table Filtering for Rich Client Platform Applications 23

Clearing the Sort Order in a Table . . . . . . 23
Scheduling Jobs for Rich Client Platform
Applications . . . . . . . . . . . . . . 24

Scheduling a Generic Job . . . . . . . . . 24
Scheduling an Alert-Related Job . . . . . . 24
Preventing the Deactivation of Alert Notification 25

Audio Files for Rich Client Platform Applications . 26
Low Resolution Display for Rich Client Platform
Applications . . . . . . . . . . . . . . 26
Displaying Panel Tasks on the Menu Bar for Rich
Client Platform Applications. . . . . . . . . 28
Switching Locales for Rich Client Platform
Applications . . . . . . . . . . . . . . 29
Using a VM Login for Rich Client Platform
Applications . . . . . . . . . . . . . . 29
Using a VM JRE for Rich Client Platform
Applications . . . . . . . . . . . . . . 29
Supervisory Overrides for Rich Client Platform
Applications . . . . . . . . . . . . . . 30

Using the Pop-Up Method to Perform
Supervisory Overrides . . . . . . . . . . 30
Starting a Supervisory Transaction to Perform
Supervisory Overrides . . . . . . . . . . 31

Running Rich Client Platform Applications in POS
Mode . . . . . . . . . . . . . . . . 31
Version-Based Communication between Client and
Server . . . . . . . . . . . . . . . . 32
Integrating Web Applications with Rich Client
Platform . . . . . . . . . . . . . . . 33

Create an Extension . . . . . . . . . . 34

Chapter 3. The Development
Environment for Rich Client Platform
Applications . . . . . . . . . . . . 37
Installing Prerequisite Software Components . . . 37

Clean Cached Build Information in Eclipse . . . 37
Installing the Rich Client Platform Plug-In . . . 38
Installing the Rich Client Platform Tools Plug-In 38
Rich Client Platform Tools . . . . . . . . 38

Creating and Configuring Locations . . . . . . 40
Creating a Plug-In Project . . . . . . . . . 41
Rich Client Platform Plug-In Wizard . . . . . . 42

Running the Rich Client Platform Plug-In Wizard 43
Launching the Rich Client Platform Application in
Eclipse . . . . . . . . . . . . . . . . 45

Chapter 4. Customizing the Log In
Screen . . . . . . . . . . . . . . . 49
Customizing the Login Screen . . . . . . . . 49

© Copyright IBM Corp. 1999, 2013 iii



Chapter 5. Customizing Rich Client
Platform Applications . . . . . . . . 51
Overview of Customizing Rich Client Platform
Applications . . . . . . . . . . . . . . 51
Localizing Rich Client Platform Applications . . . 51
Defining Themes for Rich Client Platform
Applications . . . . . . . . . . . . . . 51
Extending Rich Client Platform Applications . . . 51
Building and Deploying Extended Rich Client
Platform Applications . . . . . . . . . . . 52
Building Rich Client Platform Extensions . . . . 52
Deploying Rich Client Platform Extensions . . . . 54

Chapter 6. Customizing the About Box 55
Customizing the About Box . . . . . . . . . 55

Chapter 7. Masking Sensitive Customer
Information . . . . . . . . . . . . . 57
Methods for Masking Sensitive Customer
Information . . . . . . . . . . . . . . 57

Chapter 8. Modifying Existing Screens
and Wizards . . . . . . . . . . . . 59
Modifying Existing Rich Client Platform Screens . . 59
Validating or Capturing Data During API or Service
Calls. . . . . . . . . . . . . . . . . 59
Modifying Existing Rich Client Platform Wizards. . 60
Retrieve Wizard and Namespace Information . . . 62
Creating an Extended Wizard Definition. . . . . 62
Registering the Wizard Extension File . . . . . 63
Creating the Wizard Entity . . . . . . . . . 63
Modifying the Wizard Extension Behavior . . . . 63

Chapter 9. Creating and Adding
Screens . . . . . . . . . . . . . . 65
About Creating a Rich Client Platform Composite 65
Creating a Rich Client Platform Composite Using
the Rich Client Platform Composite Wizard . . . 65
About Designing a Rich Client Platform Composite 66
Creating the Search Criteria Panel for a Rich Client
Platform Composite . . . . . . . . . . . 67
Adding Controls to the Search Criteria Panel for a
Rich Client Platform Composite . . . . . . . 69
Creating the Search Result Panel for a Rich Client
Platform Composite . . . . . . . . . . . 71
Displaying Paginated Results in a Rich Client
Platform Composite . . . . . . . . . . . 72
Creating Tables for Rich Client Platform Screens . . 74

Creating Standard Tables . . . . . . . . . 74
Adding Columns to the Standard Table . . . . 75
Creating Editable Tables . . . . . . . . . 75

Naming Controls for Rich Client Platform Screens 76
Creating a Binding Object . . . . . . . . 76
Naming a Control . . . . . . . . . . . 76

Setting Data On Controls for Rich Client Platform
Screens . . . . . . . . . . . . . . . . 76
Binding Controls and Classes for Rich Client
Platform Screens. . . . . . . . . . . . . 77

Source Binding for Controls on Rich Client Platform
Screens . . . . . . . . . . . . . . . . 77

Multiple Source Bindings . . . . . . . . . 78
Target Binding for Controls on Rich Client Platform
Screens . . . . . . . . . . . . . . . . 79
Checked Binding for Controls on Rich Client
Platform Screens. . . . . . . . . . . . . 80
Unchecked Binding for Controls on Rich Client
Platform Screens. . . . . . . . . . . . . 80
List Binding for Controls on Rich Client Platform
Screens . . . . . . . . . . . . . . . . 81
Code Binding for Controls on Rich Client Platform
Screens . . . . . . . . . . . . . . . . 81
Description Binding for Controls on Rich Client
Platform Screens. . . . . . . . . . . . . 81
Attribute Binding for Controls on Rich Client
Platform Screens. . . . . . . . . . . . . 82
Key Binding for Controls on Rich Client Platform
Screens . . . . . . . . . . . . . . . . 82
Binding Input to Custom Controls on Rich Client
Platform Screens. . . . . . . . . . . . . 83
About Setting Bindings for Controls on Rich Client
Platform Screens. . . . . . . . . . . . . 83
Creating a Binding Object for a Label. . . . . . 84

Bind a Label . . . . . . . . . . . . . 84
Creating a Binding Object for Text Boxes . . . . 85

Bind a Text Box . . . . . . . . . . . . 85
Creating a Binding Object for StyledText
Components . . . . . . . . . . . . . . 86

Bind a StyledText Component . . . . . . . 86
Creating a Binding Object for Combo Boxes . . . 87

Bind a Combo Box . . . . . . . . . . . 87
Version-Specific Data in Combo Boxes . . . . . 88

Populating Version-Specific Data in Combo Boxes 88
Creating a Binding Object for List Boxes. . . . . 89

Bind a List Box . . . . . . . . . . . . 89
Creating a Binding Object for Checkboxes . . . . 90

Bind a Check Box . . . . . . . . . . . 90
Creating a Binding Object for Radio Buttons . . . 91

Bind a Radio Button . . . . . . . . . . 91
Creating a Binding Object for Links . . . . . . 92

Bind a Link . . . . . . . . . . . . . 92
Creating a Binding Object for a Standard Table . . 93

Creating a Binding Object for a Column . . . . 93
Bind a Standard Table and Column . . . . . 93

Setting Bindings for an Editable Table . . . . . 96
Binding Combo Box Cell Editors . . . . . . 96

Setting Bindings for an Extended Table . . . . . 97
Creating a Binding Object for an Extended Table 97
Create a Map of the Advanced Column Binding
Data . . . . . . . . . . . . . . . . 97
Bind an Extended Table and Advanced Column 98

Setting Bindings for Extended Editable Tables . . 100
Binding Combo Box Cell Editors . . . . . . 101

Creating a Binding Object for a File Upload
Column in a Table in the Rich Client Platform . . 102
Creating a Binding Object for a File Upload Text
Box in the Rich Client Platform . . . . . . . 103
Localizing Controls and Defining Themes for Rich
Client Platform Applications . . . . . . . . 105

Defining Themes for Controls . . . . . . . 105

iv Customizing the Rich Client Platform Interface



Calling APIs and Services for Rich Client Platform
Applications. . . . . . . . . . . . . . 105

Calling the Same API/Service Multiple Times 106
Calling Multiple APIs/Services . . . . . . 107

Adding New Rich Client Platform Screens as
Pop-ups . . . . . . . . . . . . . . . 108
Adding New Rich Client Platform Screens to Menu
Commands . . . . . . . . . . . . . . 109
Displaying New Rich Client Platform Screens in an
Editor . . . . . . . . . . . . . . . . 109

Chapter 10. Configuring File Uploads
and Downloads . . . . . . . . . . 113
Uploading and Downloading . . . . . . . . 113
Using yfs.properties to Configure File Uploads . . 113
Configuring File Uploads . . . . . . . . . 114
Securing Uploaded Files . . . . . . . . . . 116
Upload Error Messages . . . . . . . . . . 117
Configuring File Downloads . . . . . . . . 118
Securing Downloaded Files . . . . . . . . . 119
Download Error Messages . . . . . . . . . 120
Structuring the File Upload and Download . . . 121
Uploading and Downloading Using Interface
Contracts without the Sterling Application
Platform . . . . . . . . . . . . . . . 124

Chapter 11. Creating and Adding
Wizards . . . . . . . . . . . . . . 127
Phase 1: Create Wizard Definitions . . . . . . 127

Creating a Wizard Definition with the Rich
Client Platform Wizard Editor . . . . . . . 127

Phase 2: Create Components to Implement a
Wizard Definition . . . . . . . . . . . . 128

Creating Wizard Class . . . . . . . . . 128
Creating Wizard Behavior Class . . . . . . 130

Phase 3 Adding Components to Wizard Definition 132
Adding a Rule to a Wizard Definition . . . . 132
Adding a Page to a Wizard Definition . . . . 133
Adding a Sub-task to a Wizard Definition . . . 134
Adding a Transition to a Wizard Definition . . 134

Creating Wizard Page Components . . . . . . 135
Creating Wizard Page Class . . . . . . . 135
Creating Wizard Page Behavior Class . . . . 137

Creating Wizard Rule Components . . . . . . 139
Registering the Wizard Command File . . . . 141

Adding Wizards as Pop-ups in Rich Client
Platform Applications . . . . . . . . . . 141
Adding Wizards to Menu Commands in Rich
Client Platform Applications . . . . . . . . 141
Adding Wizards to Editors in Rich Client Platform
Applications. . . . . . . . . . . . . . 142

Chapter 12. Creating Related Tasks 145
About Related Tasks . . . . . . . . . . . 145
Extending the YRCRelatedTasks Extension Point 145
Extending the YRCRelatedTaskCategories
Extension Point. . . . . . . . . . . . . 147
Extending the YRCRelatedTaskGroups Extension
Point . . . . . . . . . . . . . . . . 148

Extending the YRCRelatedTasksDisplayer
Extension Point. . . . . . . . . . . . . 149
Access Editor Information . . . . . . . . . 150
Extending the
YRCRelatedTasksExtensionContributor Extension
Point . . . . . . . . . . . . . . . . 150
Enabling Custom Dialog Boxes Through an
Extension Point for Rich Client Platform
Applications. . . . . . . . . . . . . . 152

Chapter 13. Creating Commands . . . 153
About Commands . . . . . . . . . . . . 153
Defining Namespaces . . . . . . . . . . 154
Overriding Commands . . . . . . . . . . 155

Chapter 14. Defining and Overriding
Hot Keys . . . . . . . . . . . . . 157
Phase 1: Defining a Hot Key Command . . . . 157
Phase 2: Defining a Hot Key Binding . . . . . 158
Phase 3: Defining a Hot Key Action . . . . . . 159
Overriding Hot Keys . . . . . . . . . . . 159

Disabling Related Task Hot Keys . . . . . . 160

Chapter 15. Merging Templates. . . . 163
Merging Input and Output Templates . . . . . 163

Chapter 16. Related and Shared Tasks 165
Adding New Related Tasks. . . . . . . . . 165
Hiding Existing Related Tasks . . . . . . . . 165
Registering Shared Tasks . . . . . . . . . 165
Using Shared Tasks . . . . . . . . . . . 167

Chapter 17. Defining Themes . . . . 169
Defining New Themes . . . . . . . . . . 169
Defining Themes for Controls . . . . . . . . 170

Applying Themes to Non-editable Text Boxes 171

Chapter 18. Menus and Custom
Controls . . . . . . . . . . . . . 173
Adding and Removing Menus in Rich Client
Platform Applications . . . . . . . . . . 173
Customizing the Menu View Through the
YRCMenuDisplayer Extension Point. . . . . . 173
Creating Custom Controls for Rich Client Platform
Applications. . . . . . . . . . . . . . 174

Extending the YRCCustomControl Extension
Point . . . . . . . . . . . . . . . 174

Using Custom Controls in RCP Applications . . . 175

Chapter 19. Setting the Extension
Model and Configuring SSL and SSO . 177
Setting the Extension Model for Rich Client
Platform Applications . . . . . . . . . . 177
Configuring SSL for Rich Client Platform
Applications. . . . . . . . . . . . . . 177
Configuring SSO for Rich Client Platform
Applications. . . . . . . . . . . . . . 178

Client Settings for SSO Configuration . . . . 178
Server Settings for SSO Configuration . . . . 179

Contents v



Chapter 20. General Concepts
Reference . . . . . . . . . . . . . 181
Rich Client Platform Architecture. . . . . . . 181
Eclipse and its Rich Client Platform . . . . . . 182
Workbench . . . . . . . . . . . . . . 183
Plug-In Manifest Editor . . . . . . . . . . 183
YRCPluginAutoLoader Extension Point. . . . . 184
YRCAutoUpdateExtn Extension Point . . . . . 184
YRCApplicationInitializer Extension Point . . . . 185
YRCContainerToolbar Extension Point . . . . . 186
YRCPostWindowOpenInitializer Extension Point 187
YRCJasperReport Extension Point . . . . . . 188
YRCContainerTitleProvider Extension Point . . . 188

YRCMessageDisplayer Extension Point . . . . . 189
Creating New Actions . . . . . . . . . . 190
Registering a Plug-In . . . . . . . . . . . 192
Registering Plug-In Files. . . . . . . . . . 193
Validating Controls . . . . . . . . . . . 195
Custom Data Formatting . . . . . . . . . 195
Siblings . . . . . . . . . . . . . . . 198
Rich Client Platform Utilities . . . . . . . . 198

Viewing Screen Models . . . . . . . . . 198
Saving Models as Templates . . . . . . . 199

Notices . . . . . . . . . . . . . . 201

vi Customizing the Rich Client Platform Interface



Chapter 1. Checklist for Customization Projects

Customization Projects
Projects to customize or extend Sterling Business CenterSterling Selling and
Fulfillment FoundationSterling Field Sales vary with the type of changes that are
needed. However, most projects involve an interconnected series of changes that
are best carried out in a particular order. The checklist identifies the most common
order of customization tasks and indicates which guide in the documentation set
provides details about each stage.

The items identified for extension and/or modification in the documentation are
Source Components (to the extent such item involves source code) and Sample
Materials for purposes of the License Information file associated with this product.

Prepare Your Development Environment
Set up a development environment that mirrors your production environment,
including whether you deploy your application on a WebLogic, WebSphere®, or
JBoss application server. Doing so ensures that you can test your extensions in a
real-time environment.

You install and deploy your application in your development environment
following the same steps that you used to install and deploy it in your production
environment. Refer to your system requirements and installation documentation
for details.

You have an option to customize your application with Microsoft COM+. Using
Microsoft COM+ has advantages such as increased security, better performance,
increased manageability of server applications, and support for clients of mixed
environments. If this is your choice, see the Customization Basics Guide about
additional installation instructions.

Plan Your Customizations
Are you adding a new menu entry? Or customizing the sign-in screen or logo? Or
customizing views or wizards? Or creating new themes or new screens? Each type
of customization varies in scope and complexity.

For background, see the Customization Basics Guide, which summarizes the types of
changes that you can make and provides important guidelines about file names,
keywords, and other general conventions.

Extend the Database
For many customization projects, the first task is to extend the database so that it
supports the other UI or API changes that you make later. For instructions, see the
Extending the Database Guide, which includes information about the following
topics:
v Important guidelines about what you can and cannot change in the database.

© Copyright IBM Corp. 1999, 2013 1



v Information about modifying APIs. If you modify database tables so that any
APIs are impacted, you must extend the templates of those APIs or you cannot
store or retrieve data from the database. This step is required if table
modifications impact an API.

v How to generate audit references so that you improve record management by
tracking records at the entity level. This step is optional.

Make Other Changes to APIs
Your application can call or invoke standard APIs or custom APIs. For background
about APIs and the services architecture of service types, behavior, and security,
see the Customizing APIs Guide. This guide includes information about the
following types of changes:
v Invoke standard APIs for displaying data in the UI and for saving changes made

in the UI to the database.
v Invoke customized APIs for executing your custom logic in the extended service

definitions and pipeline configurations.
v APIs use input and output XML to store and retrieve data from the database. If

you don't extend these API input and output XML files, you may not get the
results you want in the UI when your business logic is executing.

v Every API input and output XML file has a DTD and XSD associated to it.
Whenever you modify input and output XML, you must generate the
corresponding DTD and XSD to ensure data integrity. If you don't generate the
DTD and XSD for extended XMLs, you may get inconsistent data.

Customize the UI
IBM® applications support several UI frameworks. Depending on your application
and the customizations you want to make, you may work in only one or in several
of these frameworks. Each framework has its own process for customizing
components such as menu items, logos, themes, and so on.

Depending on the framework you want, consult one of the following guides:
v Customizing the Console JSP Interface Guide

v Customizing the Swing Interface Guide

v Customizing User Interfaces for Mobile Devices Guide

v Customizing the Rich Client Platform Guide and Using the RCP Extensibility Tool
Guide

v Customizing the Web UI Framework Guide

Depending on the framework you want, consult one of the following guides:
v Customizing the Console JSP Interface Guide

v Customizing the Swing Interface Guide

v Customizing User Interfaces for Mobile Devices Guide

v Customizing the Rich Client Platform Guide and Using the RCP Extensibility Tool
Guide

v Customizing the Web UI Framework Guide

2 Customizing the Rich Client Platform Interface



Extend Transactions
You can extend and enhance the standard functionality of your application by
extending the Condition Builder and by integrating with external systems. For
background about transaction types, security, dynamic variables, and extending the
Condition Builder, see the Extending Transactions Guide and Extending the Condition
Builder Guide. These guides includes information about the following types of
changes:
v Extend the Condition Builder to define complex and dynamic conditions for

executing your custom business logic and using a static set of attributes.
v Define variables to dynamically configure properties belonging to actions,

agents, and services configurations.
v Set up transactional data security for controlling who has access to what data,

how much they can see, and what they can do with it.
v Create custom time-triggered transactions. You can invoke and schedule custom

time-triggered transactions in much the same manner as you invoke and
schedule the time-triggered transactions supplied by your application.

v Coordinate your custom, time-triggered transactions with external transactions
and run them either by raising an event, calling a user exit, or invoking a
custom API or service.

Build and Deploy your Customizations or Extensions
After performing the customizations that you want, you must build and deploy
your customizations or extensions.
1. Build and deploy your customizations or extensions in the test environment so

you can verify them.
2. When you are ready, repeat the same process to build and deploy your

customizations and extensions in your production environment.

For instructions about this process, see the Customization Basics Guide which
includes information about the following topics:
v Building and deploying standard resources, database extensions, and other

extensions (such as templates, user exits, and Java™ interfaces).
v Building and deploying enterprise-level extensions.

Chapter 1. Checklist for Customization Projects 3



4 Customizing the Rich Client Platform Interface



Chapter 2. The Rich Client Platform

About Customizing the Rich Client Platform Interface
This section explains the prerequisites for customizing the Rich Client Platform
application UIs easily, quickly, and with fewer errors.

Rich Client Platform Concepts

Before customizing the Rich Client Platform application UIs, it is important that
you understand the various concepts of the Rich Client Platform.

Extensibility Capability Summary

Before extending any Rich Client Platform application UI, it is necessary to
understand the extensibility capabilities provided by the Rich Client Platform.

Guidelines for Smooth Updates and Easy Maintenance

When customizing applications that use the Rich Client Platform UI, do not
modify:
v Plug-in files
v Sterling Business CenterSterling Selling and Fulfillment FoundationSterling Field

Sales-related resource files
v JAR files

These files are shipped as part of the standard default configuration. You can,
however, create new files or copy the existing files and modify them.

Setting Up the Development Environment

To customize applications, set up the development environment to accommodate
modifications that you make to the Rich Client Platform application UI. For more
information about setting up the development environment, see "The Development
Environment for Rich Client Platform Applications".

Extending Rich Client Platform Applications

The Rich Client Platform provides various extension points that you can
implement to extend the Rich Client Platform application as needed. Using
features such as Localization and Theming, you can further extend the Rich Client
Platform application. The Rich Client Platform also provides a Rich Client Platform
Extensibility tool with which you can extend the Rich Client Platform application's
UI.

You can extend the Rich Client Platform application by:
v Adding or Removing Menus—You can add or remove menus from the Rich

Client Platform screens by defining a new resource in the resources of Sterling
Business CenterSterling Selling and Fulfillment FoundationSterling Field Sales .
For more information about adding or removing menus, see "Menus and
Custom Controls for Rich Client Platform Applications".

© Copyright IBM Corp. 1999, 2013 5



v Creating and Adding New Screens—You can create new Rich Client Platform
screens for a Rich Client Platform application. You can also add the newly
created Rich Client Platform screens to a Rich Client Platform application. For
more information about creating and adding new screens, see "Creating and
Adding New Screens".

v Adding New Related Tasks and Hiding Existing Related Tasks—You can add
new related tasks and hide existing related tasks from the Rich Client Platform
applications. For more information about adding and hiding related tasks, see
"Creating Related Tasks for Rich Client Platform Applications".

v Modifying Existing Screens—You can modify existing screens of a Rich Client
Platform application using the Rich Client Platform Extensibility Tool. For
information about modifying existing screens, see "Modifying the Existing Rich
Client Platform Screens and Wizards".

v Modifying Existing Wizards—You can modify the existing wizards of a Rich
Client Platform application. For more information about modifying the existing
wizards, see "Modifying Existing Rich Client Platform Wizards".

v Localizing—You can localize the Rich Client Platform application for different
languages based on the user's locale. The user can localize the Rich Client
Platform application by defining locale-specific entries and translating the text.
For more information about localizing the Rich Client Platform application, see
"Customizing Rich Client Platform Application".

v Theming—You can customize the Rich Client Platform application by using
custom themes. You can change the font type and color scheme for controls,
graphical text, messages, and so forth. For more information about theming, see
"Defining Themes for Rich Client Platform Applications".

Rich Client Platform Architecture
The Rich Client Platform provides a highly interactive Rich Client Platform, which
can be remotely deployed, updated, and easily managed. A Rich Client Platform is
a client that processes the bulk of data operations without depending on the server
to which it is connected. However, it is dependent on the server, primarily for data
storage. The Rich Client Platform is rich in features and functionality and has
complete access to the programming functions of the operating system.

Rich Clients are designed in such a way that you can work over low bandwidth
network connections and still efficiently utilize the client-side capabilities to avoid
costly round trips to the central server. You can also work offline.

The Rich Client Platform is built on the Eclipse Rich Client Platform. The Rich
Client Platform has extended the Eclipse Rich Client Platform to provide additional
features and functionality. In addition to the features provided by the Eclipse Rich
Client Platform, the Rich Client Platform provides features such as localizing,
theming, binding, and so forth. The UI forSterling Call Center and Sterling Store
application is developed using the Rich Client Platform. The following figure
depicts the Rich Client Platform architecture.

6 Customizing the Rich Client Platform Interface



Benefits of Using the Rich Client Platform Interface
The benefits of using the Rich Client Platform are:
v Rich User Experience

– High responsiveness during information retrieval. This does not work in a
"page-at-a-time" paradigm of Hyper Text Markup Language (HTML).

– Ability to validate client side data, if needed.
– Highly interactive and graphical user interface.
– Provides visibility to multiple pages on the screen without refreshing any

page.
– Ability to locally store data in memory.
– Batch server operations.
– Ability to interact with other Desktop applications such as e-mail and

spreadsheets.
v Lower Total Cost of Ownership (TCO)

– Ability to automatically update the Rich Client Platform applications to
remote clients based on the server-side update information.

– Centralized administration, setup, and client updates.
– Ability to work across Wide Area Network (WAN) through multiple security

infrastructures such as proxies, Firewalls, and so forth.
– Built-in support for data compression and batch command processing results

in optimal network utilization.
– Ability to work with standard protocols such as Hyper Text Transfer Protocol

(HTTP) and Hyper Text Transfer Protocol Secure (HTTPS).
v Deployment Strategy

– Rich Client Platform applications are self contained Desktop applications, and
depend on the Java Runtime Environments (JREs). The Rich Client Platform
applications can be copied to theSterling Business CenterSterling Selling and
Fulfillment FoundationSterling Field Sales directory and point them to the

Figure 1. Rich Client Platform Architecture

Chapter 2. The Rich Client Platform 7



specific JRE. This provides a reliable and coexisting application deployment
strategy without disrupting other existing Java installations. For information
about JRE versions that the Rich Client Platform supports, see the Sterling
Business CenterSterling Selling and Fulfillment FoundationSterling Field
Sales: Installation GuideInstalling the Platform.

– Subsequent upgrades can be automated with theSterling Business
CenterSterling Selling and Fulfillment FoundationSterling Field Sales
auto-update feature, which checks and updates the existing configuration on
a server. If you do not want to use the auto-update feature, you can turn it off
and remotely perform a manual file copy based update.

– Since basic installation and upgrade involves a "file copy" operation,
administration and maintenance can be done locally or remotely.

– Rich Clients support standard input devices such as keyboard, mouse, stylus,
barcode scanner, and so forth. Rich Clients also support standard printers
within the supported operating systems.

– Since Rich Client Platform is a Desktop application, any standard mechanism
such as desktop shortcut or program file links can be used to launch the
application.

Rich Client Platform and Desktop Applications
The Rich Client Platform supports desktop applications. A desktop application or
Multiple Document Interface (MDI) application contains standard menus, views,
editors, and so forth. You can work with multiple views and editors
simultaneously. You can switch from one editor to another without closing any
editor that is already open. You can use any standard mechanism (such as desktop
shortcut or program file links) to launch the desktop application. A desktop
application allows you to open one or more documents at the same time and
displays each document in a separate window. The menu bar for a desktop
application is displayed on the application frame. Some examples of desktop
applications includeSterling Call Center and Sterling Store application, which is
developed using the Rich Client Platform.

XML Binding for Rich Client Platform Applications
To easily create UIs, the core classes in the Rich Client Platform support XML
Binding for different types of controls to an XML Distributed Object Model (DOM).
This allows the UI developer to bind different controls on a form to various parts
of the DOM. The advantage of using XML Binding is that the developer has to
write limited code for displaying or retrieving data from a specific field in any
screen or both. The developer has to only set and get the model of a screen to set
and get the data for the entire screen.

The XML Binding is performed to map the input XML to the screen and back from
the screen to an output XML. XML Binding in the Rich Client Platform is XML
driven. A binding definition is an XPath (XML Path), which defines the rules for
retrieving data from one XML and sending it to another XML. You can set the
XML Bindings for various controls such as text boxes, combo boxes, buttons,
tables, and so forth. The XML Bindings are specified to associate controls on the
screen with a model (an XML document that stores information). To associate the
controls to a model, XML Bindings are specified. Usually, it is an XPath specifying
the attribute or an element in the document. The XML Binding used depends on
the type of control that is used. The Rich Client Platform provides various XML

8 Customizing the Rich Client Platform Interface



Binding data classes for different controls. For more information about XML
binding classes, see the Binding Controls and Classes for Rich Client Platform
Screens topic.

Note:

For a Label, the XPath expression is not supported in the binding definition.

Localizing Rich Client Platform Applications
The Rich Client Platform applications are all internationalized. This means they can
handle multiple languages and cultural conventions transparently. The Rich Client
Platform enables you to customize the Rich Client Platform applications in such a
way that the extensions are also internationalized. The user can localize all the
graphical text and messages. You can localize the Rich Client Platform application
by defining locale-specific entries in the bundle file. For more information about
localizing the Rich Client Platform application, see the Sterling Business
CenterSterling Selling and Fulfillment FoundationSterling Field Sales : Localization
Guide.

Database Localization

In addition to storing the transaction data, the database also stores configuration
data, such as error codes and item descriptions of various attributes. This means
that the database may need to store values in a language-specific format. If these
database literals are not localized, screen literals displays inconsistently, with some
displaying in the localized language and others displaying in English. You can
store item descriptions in your database in multiple languages. If localizing Rich
Client Platform application UIs, you may want to localize the factory setup. For
more information about database localization, see the Sterling Business
CenterSterling Selling and Fulfillment FoundationSterling Field Sales: Localization
Guide.

Themes for Rich Client Platform Applications
The theming feature enables users to define different fonts, colors used within the
applications by creating a custom theme. For more information about theming
controls, see "Defining Themes".

Related Tasks for Rich Client Platform Applications
This feature allows you to extend the Rich Client Platform applications by adding
(or hiding) end user tasks in the UI. These tasks are available to the end user
through a common related tasks view. Related Tasks feature enables you to
perform the tasks that are related to a particular operation. You can group a set of
related tasks by associated them with a group. You can also define a category,
which can contain multiple tasks from multiple groups. For example, if you are
viewing the details of an order, then all the related tasks for this operation such as
Cancel Order, Add Order Line, and so forth are displayed in the Related Tasks
view under the Order group. You can provide the implementation for displaying
these related tasks on the screen. You can also provide the implementation for
opening extensible related tasks in the application-provided editor or in your own
custom editor. For creating the related tasks you need to extend the following
extension points:
v YRCRelatedTasks extension point

Chapter 2. The Rich Client Platform 9



v YRCRelatedTaskCategories extension point
v YRCRelatedTaskGroups extension point
v YRCRelatedTasksDisplayer extension point
v YRCRelatedTasksExtensionContributor extension point

For more information about adding new related tasks and hiding existing related
tasks, see "Related and Shared Tasks".

Shared Tasks for Rich Client Platform Applications
Rich Client Platform-based applications may contain some reusable UI components
such as lookup screens. In such cases, the other Rich Client Platform-based
applications or extension plug-ins do not have to recreate the same UI components.
Instead, they can use the available UI components as a shared task.

To maintain the backward compatibility and to avoid multiple plug-in
dependencies, the shared tasks are registered with the Rich Client Platform plug-in.
The other Rich Client Platform-based applications or extension plug-ins can
directly invoke these shared tasks using the utility methods provided by the Rich
Client Platform plug-in.

You can register the shared tasks through the YRCSharedTasks extension point
defined in the Rich Client Platform plug-in. To use these registered shared tasks in
your application, invoke them by clicking a button or menu item. For more
information about registering and using shared tasks, see "Related and Shared
Tasks".

Navigator Tasks for Rich Client Platform Applications
This feature allows you to extend the Rich Client Platform applications by adding
or hiding the navigator task in the UI. These tasks are available to the end user in
the navigator view.

For example, to modify the navigator tasks menu in Sterling Store Inventory
Management PCA, perform the following sequence of actions:
1. Create a new Resources as required under Sterling Store Inventory

Management PCA resource hierarchy.
2. Create a new Menu Hierarchy or modify the existing Sterling Store Inventory

Management PCA menu hierarchy.
3. Assign the desired Menu Group to Sterling Store Inventory Management PCA

user.

For more information about Defining Menus and Resources, see "Defining Menus"
and "Defining Resources" sections of Sterling Selling and Fulfillment Foundation:
Application Platform Configuration Guide.

Wizards for Rich Client Platform Applications
A wizard definition defines the flow of a wizard. You can define new wizard rules
to control the flow of a wizard. The flow of a wizard depends on the output value
of a wizard rule. The output of a wizard rule is compared with a transition value.
Transition lines are used to transfer control from one wizard entity to another
wizard entity.

10 Customizing the Rich Client Platform Interface



A wizard definition contains:
v Wizard Entity—There are three types of wizard entities:

– Wizard Page - A wizard page takes care of the UI in order to take inputs from
a user.

– Wizard Rule - A wizard rule is a logical step that performs computations to
evaluate different output values. Based on these output values, wizard
transitions are defined to decide the flow of the wizard.

– Sub-task - This is a separate individual task that can be embedded into a
wizard. A sub-task can be utilized in the wizard flow. When the execution of
a sub-task is complete, the control moves to the next defined wizard entity in
the wizard flow. For example, a sub-task can be a wizard that can be inserted
between two wizard entities, or it can be the last entity in the wizard flow. If
a sub-task is inserted between two wizard entities, the sub-task should
display the Next button for navigation to the next wizard entity. If the
sub-task is the last entity in the wizard flow, it should display the Finish
button to end the wizard. This information must be passed to the context
object, which is used to control the flow of data between the parent wizard
and the sub-task, and contains the input to the sub-task. If there is an output
of the sub-task, it can be set in the context and passed back to the parent
wizard. The context object utility methods will display the appropriate
buttons for navigation. However, the context object utility must have its
position information in the parent wizard to display the correct navigation
buttons.

v Wizard Transition—This is used to transfer control from one wizard entity to
another wizard entity. Wizard transition connects wizard entity sequences with
each other.

You can start your wizard with any wizard entity (a wizard rule or a wizard page
or a sub-task).

For the wizard entity from where the wizard definition starts, the Starting property
should be set to "true". For the wizard entity at which the wizard definition ends,
the isLast property should be set to "true".

You can add transition lines to transfer the control from one wizard entity to
another wizard entity based on the output values of the wizard rule. The
transitions originating from a wizard page can have only one target. Transitions
starting from a wizard rule can have multiple targets based on the rule output. The
output of a wizard rule is compared with the transition values defined for a rule.
Based on this value, control is transferred to the appropriate wizard entity.

All the new wizard definitions are created in the Plug-in_id_wizard_name.ycml file.

Note: Use a separate Plug-in_id_wizard_name.ycml file for each wizard definition.

Consider, for example, that you have a wizard definition for the following wizard
flow:

Chapter 2. The Rich Client Platform 11



In this case, the wizard starts from the wizard rule (Rule1). From the wizard rule
(Rule1), the wizard transitions either to a wizard page (Page1) or a sub-task (Task1)
based on the output values of the wizard rule (Rule1).

Depending on the transition of the wizard from the wizard rule (Rule1), the wizard
ends at two different wizard pages (Page2 or Page3). For the wizard entity from
where the wizard definition started, the start property must be set to "true". For
the wizard entity at which the wizard definition ends, the isLast property must be
set to "true".

The Rich Client Platform supports three types of wizard entities:
v A wizard rule (Rule1) contains a wizard rule identifier (ID), implementation

class (Impl), namespace definition for the rule (Namespace), and the list of
output values, one of which is the output of the wizard rule.

Note: Multiple transitions can take place from a wizard rule. Therefore, a
wizard rule can return multiple output values, one value for each transition that
starts from the wizard rule.

v A sub-task (SubTask) contains a sub-task identifier (ID), implementation class
(Impl), namespace definition for the sub-task (Namespace), and the flags isLast
and Starting, to indicate whether the sub-task is the starting entity or the last
entity in the wizard flow.

Note: A sub-task cannot have multiple transitions. You can have only one
transition starting from a sub-task and ending at another wizard entity.

v A wizard page (Page1) contains a wizard page identifier (ID) and
implementation class (Impl).

Note: A wizard page cannot have multiple transitions. You can have only one
transition starting from a wizard page and ending at another wizard entity.

The application supports three types of transitions:
v Transition from a wizard rule—You can have multiple transitions from a wizard

rule. The wizard transition that starts from a wizard rule contains a wizard
transition identifier (ID), source wizard entity (source), multiple target wizard
entities (target), and the output value of the wizard rule for which the transition

Figure 2. Sample Wizard Flow

12 Customizing the Rich Client Platform Interface



occurs. The source contains the identifier of the wizard entity from where the
transition starts. The target contains the identifier of the wizard entity at which
the transition ends.
For example, in the wizard flow illustrated earlier, two transitions start from a
wizard rule (Rule1). These two transitions end at two different wizard entities,
such as wizard page (Page1) and sub-task (SubTask), based on the output value
returned by the wizard rule (Rule1).

Note: Because a wizard rule can have multiple transitions, when a transition
starts from a wizard rule, you can define multiple targets, with values associated
with each target.

Note: The transition identifier (ID) for all the transitions that start from a wizard
rule are the same. The transition occurs based on the value defined for a given
transition.
For example, in the wizard flow illustrated earlier, the transition starts from a
wizard page (Page1) and ends in a wizard page (Page3).

v Transition from a wizard page—You can have only a single transition from a
wizard page. The wizard transition that starts from a wizard page contains a
wizard transition identifier (ID), source wizard entity (source), and target wizard
entity (target). The source contains the identifier of the wizard entity from where
the transition starts. The target contains the identifier of the wizard entity at
which the transition ends.
For example, in the wizard flow illustrated earlier, the transition starts from a
wizard page (Page1) and ends in a wizard page (Page3).

v Transition from a sub-task—You can have only a single transition from a
sub-task. A wizard transition that starts from a sub-task contains a wizard
transition identifier (ID), source wizard entity (source), and target wizard entity
(target). The source contains the identifier of the wizard entity from where the
transition starts. The target contains the identifier of the wizard entity at which
the transition ends.
For example, in the wizard flow illustrated earlier, the transition starts from a
sub-task (SubTask) and ends in a wizard page (Page2).

Hot Keys for Rich Client Platform Applications
Hot keys are keyboard shortcuts that perform a predefined function. For example,
if you want to perform an operation, you can either click the Search button or
press F7. The Rich Client Platform enables you to define hot keys for the new
screens you create for Rich Client Platform applications. The Rich Client Platform
also enables you to override the hot keys defined for the existing screens.

For more information about defining new hot keys and overriding existing hot
keys, see "Defining and Overriding Hot Keys".

Debug Mode for Rich Client Platform Applications
Rich Client Platform enables you to run a Rich Client Platform application in the
debug mode and performs additional validations on the Rich Client Platform
application to reduce the number of errors created when performing extensions.
Also, when you run an application in debug mode, the Rich Client Platform
provides a comprehensive visibility to information about errors and missing
parameters.

Chapter 2. The Rich Client Platform 13



Note: If you do not specify the control name for a control, the background of that
particular control is highlighted in red color, when the application is run in debug
mode.

The Rich Client Platform performs the following validations in debug mode:
v Control Name Validation—The Rich Client Platform checks whether or not a

unique control name has been specified for each control in the Rich Client
Platform application. If this is not specified, when you move the cursor on that
control, the tool tip displays "Specify the name of the control". Additionally, the
control is displayed with a red background. This is useful in extending a Rich
Client Platform application. You can easily extend a screen if you know the
name of all controls on the screen.

v Bundle Entry Validation—The Rich Client Platform checks whether you have
specified the bundle entry in the *bundle.properties file for each string in the
Rich Client Platform application. If you do not specify the bundle entry for a
string, it is considered as a non-localized string. Such non-localized strings
always displays within the exclamation marks (!). For example, if you do not
specify the bundle entry for the "Order No" string, the string display as !Order
No!. This bundle entry validation helps the developers to understand whether
the strings on the UI are localized or non-localized.

Note: The localized strings are sometimes displayed within the exclamation marks.

Running Rich Client Platform Applications in Debug Mode
About this task

You can run the Rich Client Platform application in debug mode in order to
perform some extra validations and traces. Additionally, debug mode provides
much more visual information to tell you what is wrong and where. You can run
both a standalone application and an application within Eclipse in the debug
mode.

Running the Standalone Rich Client Platform Application in
Debug Mode

About this task

You can run the standalone Rich Client Platform application in debug mode. The
standalone application can be a shipped application or an extended application.

To run the standalone Rich Client Platform application in debug mode:

Procedure
1. Modify the Rich Client Platform application's *.ini file to provide the

appropriate VM arguments to run the application in debug mode. You can find
the *.ini file for the Rich Client Platform application in the
INSTALL_DIR/repository/rcpdrop/OPERATING_SYSTEM/PCA_DIR/
directory.
For example, to run the Sterling Call Center and Sterling Store application in
debug mode, edit the INSTALL_DIR/repository/rcpdrop/
OPERATING_SYSTEM/com/com.ini file.

2. In the *.ini file, add the following VM arguments:
-vmargs
-Ddebugmode=true

14 Customizing the Rich Client Platform Interface



3. Run the EXE file of the Rich Client Platform application.

Running the Rich Client Platform Application in Eclipse in
Debug Mode

About this task

When launching the Rich Client Platform application in Eclipse, in the VM
Arguments field, enter the following arguments:
-Ddebugmode=true.

Prototype Mode for Rich Client Platform Applications
The advantage of running a Rich Client Platform application in the prototype
mode enables you to quickly test UIs that you develop, without having to
communicate with the server for APIs or services output. During an API or service
call, the Rich Client Platform application uses the sample output XML files that are
located in the prototype directory. The output of the sample output XML file is
hard-coded and does not reflect any real-time data.

Running Rich Client Platform Applications in Prototype Mode

You can run the Rich Client Platform application in the prototype mode to test UIs.
The Rich Client Platform enables you to run any standalone application or
applications within Eclipse in prototype mode.

Running Standalone Rich Client Platform Applications in
Prototype Mode

About this task

You can run the standalone Rich Client Platform application in prototype mode.
The standalone application can be an extended application or any application that
is already shipped.

To run the standalone Rich Client Platform application in prototype mode:

Procedure
1. Modify the Rich Client Platform application's *.ini file stored in the

INSTALL_DIR/repository/rcpdrop/OPERATING_SYSTEM/PCA_DIR/
directory to provide appropriate VM arguments.
For example, to run the Sterling Call Center and Sterling Store application in
the prototype mode, modify the INSTALL_DIR/repository/rcpdrop/
OPERATING_SYSTEM/com/com.ini file.

2. In the *.ini file, add the following VM arguments:
-vmargs
-DProtoTypeDir=C:/EclipseInfrastructure/com.yantra.yfc.rcp.ri/prototype

where ProtoTypeDir property refers to the prototype directory that contains the
sample output XML files.

3. Verify that the name of all sample output XML files stored in the prototype
directory are same as the command name for which they are used. For
example, if the command name is getOrderDetails, the sample output XML file
used for this command must be named as getOrderDetails.xml.

Chapter 2. The Rich Client Platform 15



4. To run a command in the prototype mode, in the commands file, set the value
of the prototype attribute for that particular command to "true". For more
information about creating commands, see "Creating Commands".

Note: The prototype mode is always set at the command level. It is important
that you set the value of the prototype attribute to "true". This invokes the API
or service in prototype mode.

5. Run the EXE file of the appropriate Rich Client Platform application.

Running Rich Client Platform Applications in Eclipse in
Prototype Mode

About this task

When launching the Rich Client Platform application in Eclipse, in the VM
Arguments field, enter the following argument:
-DProtoTypeDir=C:/EclipseInfrastructure/com.yantra.yfc.rcp.ri/prototype

Where ProtoTypeDir property refers to the prototype directory that contains the
sample output XML files.

Note: Make sure that the name of all sample output XML files stored in the
prototype directory are same as the command name for which they are used. For
example, if the command name is getOrderDetails, the sample output XML file
used for this command must be named as getOrderDetails.xml.

Tracing a Rich Client Platform Application
The Rich Client Platform enables you to trace a specific Rich Client Platform
application. This is useful in checking operations such as API or service calls,
warning or error messages (if any), bindings, and so forth. When you start tracing
an application, the system writes all the information in the log file.

Timer Tracing

The Rich Client Platform provides a lightweight time tracing mechanism using
which a Rich Client Platform application can be traced based on time. The timer
tracing mechanism can be used to check the performance of an application.

The Timer Tracing mechanism can be used to measure the time taken by the
application to perform the following operations:
v Screen Loading—Total time taken for completely loading a particular screen in

order to be ready for use.
v Data Displaying and Fetching—Total time taken to populate the data on the

screen and total time taken to fetch the data from the screen.
v API or Service Calling—Total time taken for an API or Service call to complete.
v Execute Wizard Rule—Total time taken to execute a "Wizard Rule" of a wizard.
v Execute Individual tasks—In addition a Rich Client Platform application can

trace the total time taken for completion of a particular task such as Cancel
Order, Search Order, Search Item, and so forth by setting the timer. You can set
the timer using the TimerTraceEnabled(), startTimer(String formid,String
identifier), endTimer(String formid ,String identifier,String operation ,String
message) methods of the YRCPlatformUI class. For more information about
YRCPlatformUI class and its methods, refer to Javadocs.

16 Customizing the Rich Client Platform Interface



To use the lightweight timer tracing, in addition to the "trace" and "debugfile"
arguments you must also pass the "tracelevel" as VM argument. The "tracelevel"
VM argument can have following values:

v TIMER—Indicates that the timer trace information needs to be captured. The
Rich Client Platform stores the timings traced in the log file that you have
passed in the "debugfile" VM argument. The log file is renamed and is
appended with "_timer" suffix. For example, you must pass the VM arguments
as:

-Dtrace=true
-Dtracelevel=timer
-Ddebugfile=d:\RuntimeInfo.log

Since the tracelevel is "timer", the log file which contains the timer trace
information will be named as RuntimeInfo_timer.log.
v DEBUG—Indicates that the debug tracer information needs to be captured. The

Rich Client Platform stores the debug information in the log file that you have
passed in the "debugfile" VM argument. The log file is renamed and is
appended with "_debug" suffix. For example, you must pass the VM arguments
as:
-Dtrace=true
-Dtracelevel=debug
-Ddebugfile=d:\RuntimeInfo.log

Since the tracelevel is "debug", the log file which contains the debug trace
information will be named as RuntimeInfo_debug.log.

v ALL—Indicates that both debug as well as timer tracer information needs to be
captured. In this case, the Rich Client Platform generates two separate files: one
for debug trace information and the other one for timer trace information. The
Rich Client Platform renames the log file that you have passed in the "debugfile"
VM argument into two separate files with the appropriate suffix. The debug
trace information is stored in the file with "_debug" suffix and timer trace
information is stored in the file with "_timer" suffix. For example, you must pass
the VM arguments as:
-Dtrace=true
-Dtracelevel=all
-Ddebugfile=d:\RuntimeInfo.log

Now since the tracelevel is "all", the system will generate two different log files.
The file which contains the debug trace information will be named as
RuntimeInfo_debug.log and the file which contains timer trace information will
be named as RuntimeInfo_timer.log.

Note: By default, the Rich Client Platform takes ALL as the value for the
"tracelevel" VM argument. This means that by default the system captures both
timer and debug tracer details and stores them in their respective log files.

You can trace both the standalone application and any application within Eclipse.

Tracing a Standalone Rich Client Platform Application
About this task

You can set the trace on for a standalone Rich Client Platform application. The
standalone application can be any application that is shipped or an extended
application.

To start tracing a standalone Rich Client Platform application:

Chapter 2. The Rich Client Platform 17



Procedure
1. Locate the application_id.ini file of the Rich Client Platform application stored in

the INSTALL_DIR/repository/rcpdrop/OPERATING_SYSTEM/PCA_DIR/
directory to add the appropriate VM arguments.
For example, to trace the Sterling Call Center and Sterling Store application,
locate the INSTALL_DIR/repository/rcpdrop/OPERATING_SYSTEM/com/
com.ini file.

2. Edit the application_id.ini file, add the following parameter to the list of VM
arguments:
-vmargs
-Ddebugfile=C:/debug.log

where debugfile property refers to the directory in which the log file is created.

Note: If the -vmargs parameter already exists in the file, add the -Ddebugfile
parameter anywhere after the -vmargs parameter. Do not add another -vmargs
parameter.

3. Run the EXE file of the appropriate Rich Client Platform application.
4. After you successfully log in to the application, the application window

displays. To start or stop tracing the application, press Ctrl+F2.

Note: When you press Ctrl+F2 to start the trace, the information that is present
in the log file is deleted. In the title bar of the application "Trace is On"
displays:

Note:

If you want the trace to be ON by default for an application, set the trace
property to "true" in the *.ini file. For example, -Dtrace=true

To stop tracing the application, press Ctrl+F2.

IBM recommends not to set the trace ON as the default option. Instead, use the
Ctrl+F2 key combination to turn the trace ON, if needed.

Tracing a Rich Client Platform Application in Eclipse
About this task

When launching the Rich Client Platform application in Eclipse, in the VM
Arguments field, enter the following argument:
-Ddebugfile=C:/debug.log

where debugfile property refers to the directory in which the log file is created.

Masking Sensitive Information During Trace
You can mask sensitive information such as credit card information, CVV numbers
and passwords in the generated log files by using the message filters provided by
the Application Platform. The message filters are used before logging. You can

18 Customizing the Rich Client Platform Interface



substitute messages in the log files to protect sensitive information by using the
message filters. To use the message filters, you must first register them during
plugin initialization.

To hide sensitive information by using message filters, do the following:

1. The Application Platform provides a new interface IYRCTraceMessageFilter for
filtering sensitive information.

2. You must implement the IYRCTraceMessageFilter interface to provide message
filters as required for hiding sensitive information, before writing them to the log
files.

The IYRCTraceMessageFilter interface returns a message string which is written to
the log file. For more information on message filters and the
IYRCTraceMessageFilter interface, refer to the Javadocs.

Note: Hiding sensitive information using the message filters is applicable only for
the debug file, not for the timer file.

Registering a Message Filter

The message filters are used to hide or filter sensitive information such as credit
card information, passwords or CVV numbers in the log files. A new method
addTraceMessageFilter is added in the YRCPlatformUI class. To register your
message filter file use the addTraceMessageFilter method within the plugin
constructor. For more information on registering the message filter, refer to the
Javadocs.

Note: Before calling the addTraceMessageFilter() method, the plugin must be
registered using the registerPlugin() method of the YRCPlatformUI class.

Capitalizing the Text Entered in Rich Client Platform Applications
About this task

You can force all capital letters in text fields for a Rich Client Platform application.
When you enable capital letters for text fields, the value in the text field is
automatically converted to capital letters even if the value entered is in lowercase
letters.

To enable capital letters in text fields:

Procedure
1. Locate the application_id.ini file of the Rich Client Platform application stored in

the INSTALL_DIR/repository/rcpdrop/OPERATING_SYSTEM/PCA_DIR/
directory to add the appropriate VM arguments.
For example, to enable capital letters in text fields for Sterling Call Center and
Sterling Store application, locate the INSTALL_DIR/repository/rcpdrop/
OPERATING_SYSTEM/com/com.ini file.

2. Edit the application_id.ini file, add the following parameter to the list of VM
arguments:
-vmargs
-Denablecapsintextboxes=true

Chapter 2. The Rich Client Platform 19



Fetching Images for Rich Client Platform Applications
About this task

The Rich Client Platform allows you to fetch images from the server to the labels
and table columns. To fetch images from the server, define a Config element in the
location.ycfg file and set the connection settings for fetching images. You can
define multiple Config elements to fetch images of different formats. The Rich
Client Platform supports various image formats such as GIF, BMP, ICO, JPEG,
PNG, and TIFF. For information about configuring the connection settings for
fetching images from the server, see theSterling Business CenterSterling Selling and
Fulfillment FoundationSterling Field Sales Installation GuideInstalling the Platform.

Note: You can fetch images from the server only for labels and table columns.

Security Handling for Rich Client Platform Applications
The Rich Client Platform enables you to securely communicate with the servers. It
allows you to connect to servers using the HTTPS protocol. This provides an
authenticated and encrypted way of running the resources from the server on the
client machine. The authentication and encryption is handled using certificates,
which help you run the authorized resources on client machines. These certificates
must be stored in the truststore folder of the Rich Client Platform plug-in.

By default, during handshake, if there is a mismatch between the URL's host name
and the server's identification host name, the Rich Client Platform allows the
HTTPS connection.

Note: You must provide your own custom verification logic by adding the host
name verifier.

You can add your own custom verification logic by extending the
YRCHostNameVerifier extension point.

To connect to the server using the HTTPS protocol, specify the protocol as HTTPS
and also specify the port number for the HTTPS connection in the configuration
file. For more information about configuring the connection settings for HTTPS
connection, see the Sterling Business CenterSterling Selling and Fulfillment
FoundationSterling Field Sales: Installation GuideInstalling the Platform.

Output Templates for Rich Client Platform Applications
Output templates are used during an API call or service to ensure that the data is
retrieved in the desired format (for example, if you want to display few attributes
in a particular order.)

You can also merge output templates to retrieve the additional data from an API or
service. For more information about template merging, see "Merging Templates".

Commands for Rich Client Platform Applications
The Rich Client Platform has modeled API calls as commands. Commands are
defined to call APIs or services to retrieve data in the desired format. Whenever
you call an API, specify the name of the command associated with the API. The
Rich Client Platform supports the creation of commands at a form level. You can

20 Customizing the Rich Client Platform Interface



also override commands if necessary. This is useful when you want to call a
custom API for a particular form. For more information about creating commands,
see "Creating Commands".

Log Files for Rich Client Platform Applications
Log files contain information such as warnings and errors (if any). When you run a
Rich Client Platform application, the following log files get generated:
v Eclipse log file—Whenever you run a Rich Client Platform application, the

Eclipse automatically creates a log file. This log file contains high-level error
messages and/or warnings logged by Eclipse.
Using the osgi.instance.area.default property, you can configure the location to
store this log file in the INSTALL_DIR/repository/rcpdrop/
OPERATING_SYSTEM/PCA_DIR/configuration/config.ini file. By default, this
log file is stored in the @user.home/application_workspace directory. The Rich
Client Platform does not allow you to rename the log file.
For example, if you run the Sterling Call Center and Sterling Store application,
the config.ini file is stored in the INSTALL_DIR/repository/rcpdrop/
OPERATING_SYSTEM/COM/configuration directory.
In the config.ini file, the osgi.instance.area.default property is set to:
osgi.instance.area.default=@user.home/comworkspace

Here, @user.home refers to a user's home directory. You can only change the
directory where the log file gets created. You cannot change the name of the file.

v Rich Client Platform Infrastructure log file—Whenever you run a Rich Client
Platform application for which the tracing is turned ON, the Rich Client
Platform plug-in creates a log file. This log file provides information about API
or service calls, warning or error messages (if any), bindings, and so forth. You
can specify the location in the *.ini file of the appropriate application that you
want to trace. The *.ini file is located in the INSTALL_DIR/repository/rcpdrop/
OPERATING_SYSTEM/PCA_DIR/ directory.

Note: Make sure that the tracing is turned ON in the application for the
information to be written in the log file.

Masking Sensitive Information During Logging
The Rich Client Platform enables you to prevent sensitive information such as
credit card number, passwords, and so forth from being logged in the log
messages. You can mask sensitive information by defining a set of named regular
expressions in the customer_override.properties file.

The Rich Client Platform matches the log messages against a set of well defined
regular expressions and discards the message if it matches.

To mask sensitive information during logging, define a set of named regular
expressions against which you want to match the log messages in the
INSTALL_DIR/properties/customer_overrides.properties file using the following
properties:
filterset.name.pattern.num=pattern
[optional]filterset.name.replace.num=replace

where pattern is a Java-style regular expression and defines the regular expression
against which you want to match the message string. The replace property is

Chapter 2. The Rich Client Platform 21



optional, and defines the string which will be used to replace the expression. The
filter is used to suppress a log message and layout is used to replace the log
message with some other string.

You can set the default FilterSet parameters by setting the following properties:
default.rcp.filter.filterset=logfilter.filter_name
default.rcp.layout.filterset=logfilter.layout_name

You can also define a common set of regular expression patterns across multiple
filter sets as following:
filterset.name.includes=name1,name2,...

You can view the INSTALL_DIR/properties/logfilter.properties.in file to see some
sample entries for defining these properties.

Data Caching for Rich Client Platform Applications
The Rich Client Platform allows you to cache data at the plug-in level for later use.
The cache is maintained separately for each plug-in, with each plug-in cache
having a MAX SIZE. When the cache size for a plug-in reaches the MAX SIZE, the
Least Recently Used (LRU) algorithm is used to remove the old cache and add the
new cache. To cache the data for a plug-in, call the add() method of the
YRCCacheManager class. This method accepts the following input arguments:
v pluginId (String)—Pass the identifier of the plug-in for which you want to cache

data.
v key (Object)—Pass the key object that you want to associate with the data to be

cached.
v value (Object)—Pass the value object that you want to associate with the data to

be cached.
To access the cached data for a plug-in, call the get() method of the
YRCCacheManager class. This method accepts the following input arguments:

v pluginId (String)—Pass the identifier of the plug-in for which you want to access
the cache data.

v key (Object)—Pass the key object associated with the cached data that you want
to access.

Note: After you access the cached data for a plug-in, that particular cached data is
moved to the top of the Most Recently Used (MRU) list of the plug-in.

Clearing Data Cache

You can clear all the existing cache for a particular plug-in by calling the
clearCache() method of the YRCCacheManager class. This method accepts the
plug-in identifier as input argument. In the pluginId (String) argument, pass the
identifier of the plug-in for which you want to clear all the existing cache.You can
also clear the entire existing cache for all the plug-ins at the same time by calling
the clearAllCache() method of the YRCCacheManager class.

Error Handling for Rich Client Platform Applications
The Rich Client Platform enables you to handle the errors encountered in an API
call. Because it allows you to add an error handler extension for an error code, all
the related error codes are handled and routed to the error handler.

22 Customizing the Rich Client Platform Interface



Configure the error handler to show the appropriate error message. The current
context used for an API call can be passed to the error handler to process the
errors.

The extension point definition for the error handler is as follows:
com.yantra.yfc.rcp.YRCErrorHandler

A sample extension defined in the plugin.xml can be as follows:
<extension id="" point="com.yantra.yfc.rcp.YRCErrorHandler">

<ErrorHandler errorCode="<error_code_to_be_handled>"
class="<error_handler_class_name>"/>

</extension>

The class mentioned in the attribute class should implement interface
com.yantra.yfc.rcp.IYRCErrorHandler.

The method handleError(String errorCode, Document errorDocument,
YRCApiContext context) is invoked when an error is encountered for the error
code defined in the extension.

Table Filtering for Rich Client Platform Applications
About this task

The Rich Client Platform enables you to filter the records in a table based on
custom criteria. For example, if a table contains 100 records, you may want to filter
the records in the table based on some value for one or more columns. You can
achieve this by using the Table Filter functionality.

To filter records in a table:

Procedure
1. Right-click the table and select Filter from the pop-up menu. Depending on the

table you are filtering, the filtering options provided in the Filter pop-up
window vary for each table column.

2. Enter the criteria for one or more columns based on how you want to filter
table records.

3. Click OK.

Clearing the Sort Order in a Table
About this task

The Rich Client Platform enables you to clear the existing sort order in a table
when necessary. For example, you may want clear the default sort order.

To clear the sort order, call the clearSort(String tableName) method of the
YRCBehavior class and pass the table name for which you want to clear the sort
order. For example,
btnReset.clearSort("tblSearchCriteria");

where tblSearchCriteria is the table name.

Chapter 2. The Rich Client Platform 23



Scheduling Jobs for Rich Client Platform Applications
Jobs are reusable units of work that can be scheduled to run with the Job Manager.
When a job is completed, it can be scheduled to run again. The Rich Client
Platform supports scheduling of:
v Generic jobs
v Alert-related jobs

Scheduling a Generic Job
About this task

The Rich Client Platform enables you to schedule a job by registering all the
generic jobs.

To create and register a generic job:

Procedure
1. Create a new object of the YRCJobData class. This class accepts the following

arguments as input:
v proceedEvenIfIdle (Boolean)—This flag indicates whether the job should be

suspended or run if the application is idle.

Note: You can set the idle time (in minutes) for the job by providing the VM
arguments. For example, -Dideltime=3

By default, idle time is set to 5 minutes.
v scheduleIntervalInMinutes (int)—Contains the time interval (in minutes) after

which you need to reschedule the job.
2. Create a new job. This job must extend the YRCJob class. The YRCJob class

accepts the following arguments as input:
v name (String)—Contains the name of the job.
v YRCJobData (Object)—Job data object, which contains the configuration of

the job.
3. Override the execute() method to write the code to perform the appropriate

operation when the job is scheduled.
4. Register the job you created with the Rich Client Platform using the registerJob

(YRCJob job) method.

Scheduling an Alert-Related Job
About this task

The Rich Client Platform enables you to schedule alert-related jobs. You can
configure the alert-related jobs to run at a desired time interval. For example, you
may want a message to pop up in an Alert Pop-up window panel every two
minutes when an alert is assigned to the user who has logged in.

24 Customizing the Rich Client Platform Interface



You can register such alert-related jobs with the Rich Client Platform, which in
turn schedules the jobs at the desired interval.

To create and register an alert-related job:

Procedure
1. Create a new object of the YRCJobData class. This class accepts the following

arguments as input:
v proceedEvenIfIdle (Boolean)-A boolean flag that indicates whether the job

has to run even if the application is idle.

Note: You can set the idle time (in minutes) for the job by providing the VM
arguments. For example, -Dideltime=3

By default, idle time is set to 5 minutes.
v scheduleIntervalInMinutes (int)-Contains the time interval (in minutes) after

which the job must be rescheduled.
2. Register the job you created with the Rich Client Platform using the

registerAlertJob() method. This method accepts the following parameters:
v IYRCAlertPopUpHandler-This interface provides visibility to alert details

when you click the alert message hyperlink. This is an optional parameter. If
this parameter is passed as "null", the alert message displays as a label
instead of a hyperlink.

v YRCJobData-Job data object that contains the job configuration.

Preventing the Deactivation of Alert Notification
About this task

Alert related jobs configure alerts to pop up at scheduled intervals. Users can turn
off notification of alerts by selecting the Do Not Notify check box in the Alert
Notification Panel. However, this may not be desired for certain alerts, which have
to be mandatorily run and displayed.

To prevent disabling of such alerts, the system provides a method to hide the Do
Not Notify check box.

To hide the Do Not Notify check box:

Procedure
1. A static utility method is added in the YRCAlertMessageController class with

the following format:
public static void hideDoNotNotifyCheckbox(true)

2. Set the flag to true to hide the check box.
This method must be called before registering the Alert job. Based on the flag
set in the utility method, the Do Not Notify check box is hidden or displayed.
By default, the check box is displayed.

Chapter 2. The Rich Client Platform 25



Audio Files for Rich Client Platform Applications
About this task

In an Rich Client Platform-based application, you can load and play an audio file
when a specific event occurs. For example, you may want to play an audio file
whenever an alert is raised.

To play an audio file:

Procedure
1. First, load the audio file into an Rich Client Platform-based application by

defining the theme entries in the Plug-in_id_theme_name.ythm file at the plug-in
level. To set a theme for loading an audio file, define the entries in the theme
file for the audio file. For example:
<ThemeEntry Name="AlertPopupAudio">

<Audio Path="/audio/alertpopup.wav" LoopCount="3" />
</ThemeEntry>

Here, the Name attribute indicates the name of the theme entry that is used for
theming an audio file. The Path attribute contains the path of the audio file to
be loaded, and the LoopCount attribute indicates the number of times the
audio file should be played repeatedly.

Note: Sterling Rich Client Platform Infrastructure supports only *.wav files.
2. Play the audio file by calling the playAudio(String themeEntry) method of the

YRCPlatformUI class. For example:
YRCPlatformUI.playAudio("AlertPopupAudio");

In this case, the AlertPopupAudio is the name of the theme entry defined in
the theme file.

Low Resolution Display for Rich Client Platform Applications
The following figure depicts one of the Rich Client Platform PCA applications that
displays on a screen for which the system resolution is set to greater than 800 X
600 pixels (high resolution display).

26 Customizing the Rich Client Platform Interface



If you set the screen resolution to less than or equal to 800 X 600 pixels and
relaunch the application, the left panel (Navigator and Tasks panel) is not visible
and the menu items are placed in the menu bar. The font size in the theme entries
defined for a particular screen also reduces by one point. The following figure
depicts one of the Rich Client Platform PCA applications that displays on a screen
whose system resolution is set to less than or equal to 800 X 600 pixels.

Chapter 2. The Rich Client Platform 27



Displaying Panel Tasks on the Menu Bar for Rich Client Platform
Applications

About this task

In high resolution, the Navigator tasks are displayed in a panel on the left side.
You can display these Navigation panel tasks as menu bar entries in the Rich
Client Platform application.

To display the Navigation panel tasks as menu bar entries:

Procedure
1. Modify the Rich Client Platform application's *.ini file to provide the

appropriate VM argument. You can find the *.ini file for the Rich Client
Platform application in the INSTALL_DIR/repository/rcpdrop/
OPERATING_SYSTEM/PCA_DIR/ directory.
For example, to run theSterling Call Center and Sterling Store application in
debug mode, edit the INSTALL_DIR/repository/rcpdrop/
OPERATING_SYSTEM/com/com.ini file.

2. In the *.ini file, add the following VM argument:

28 Customizing the Rich Client Platform Interface



-vmargs
-Dshownavigatorasmenu=true

3. Run the *.exe file of the Rich Client Platform application.

Switching Locales for Rich Client Platform Applications
The Rich Client Platform application enables users to switch locales based on the
locale configuration.

To switch locales, pass the locale code as -Dlocalecode=<LOCALE_CODE>.

Note: If the passed locale is not defined on the server, the system locale is used.

Using a VM Login for Rich Client Platform Applications
The Rich Client Platform enables you to log in to a Rich Client Platform
application by passing the location name, user ID, and password as VM
arguments.

Note: You can pass the appropriate VM arguments in the *.ini file of a Rich Client
Platform application. You can find the *.ini files in the INSTALL_DIR/repository/
rcpdrop/OPERATING_SYSTEM/PCA_DIR/ directory.

You can pass "location" as a VM argument to log in to a Rich Client Platform
application. For example, if you want to log in to a Rich Client Platform
application using "DEFAULT" as the location, pass the following VM argument:
-Dlocation=DEFAULT

Note: If you pass "location" as a VM argument, the Location Preference pop-up
window does not display.

You can pass "userid" and "password" as VM arguments to log in to a Rich Client
Platform application. For example, to log in to a Rich Client Platform application
using "storeop" as the user ID and "admin" as the password, pass the following
VM arguments:
-Duserid=storeop
-Dpassword=admin

Note: If you pass "userid" and "password" as VM arguments, the Log In pop-up
window does not display.

By default the Sterling Rich Client log-in window is displayed at the top and
cannot be minimized. To change the log-in window behavior, you need to set the
value of the "logindialogontop" system property as “false” in application ini file. If
you want the log-in window to be displayed at the top, set the value of the
"logindialogontop" property as "true" (default behavior).

Using a VM JRE for Rich Client Platform Applications
In case multiple Java Runtime Environments (JREs) are installed on the system, the
Rich Client Platform enables you to specify which Java Runtime Environment (JRE)
to use to launch the Rich Client Application by passing the Path as VM argument.

You can pass the VM arguments in the *.ini file of a Rich Client Platform
application. You can find the *.ini files in the INSTALL_DIR/repository/rcpdrop/
OPERATING_SYSTEM/PCA_DIR/ directory.

Chapter 2. The Rich Client Platform 29



For example, you can find the com.ini file forSterling Call Center and Sterling
Store application in the INSTALL_DIR/repository/rcpdrop/
OPERATING_SYSTEM/com/com.ini file.

Edit the application_id.ini file, and add the following parameter to the list of VM
arguments:
-vmargs
<path_to_the_JRE>

Supervisory Overrides for Rich Client Platform Applications
The Supervisory Override functionality of the Rich Client Platform enables a user
with no permissions to perform a particular task or operation. For example, if a
user logs in to a Rich Client Platform application to modify the value of a field, the
user must have permission to perform this task. Otherwise, you can perform
supervisory overrides to allow the user to modify the field value.

Using the Pop-Up Method to Perform Supervisory Overrides
About this task

This section explains how to use the pop-up method to perform supervisory
overrides for the currently logged in user. The advantage of using this method is
that the user does not need to manually log out of the application after performing
the task. As soon as the user closes the pop-up window, the system automatically
logs the user out of the application.

To perform supervisory overrides using the pop-up method:

Call the openSupervisorShell() utility method in the YRCPlatformUI class. This
method considers the following input arguments:
v pnlRoot (Composite)-Specifies the screen to display as a pop-up window.
v permissionID (String)-Specifies the resource identifier of the task or operation for

which the user must have permission.
v titleKey (String)-Specifies the title of the pop-up window.
v iconTheme (String)-Specifies the theme entry of the image to display in the

pop-up window.
v width (int)-Specifies the default width of the pop-up window.
v height (int)-Specifies the default height of the pop-up window.

When the openSupervisorShell() method is called, the Rich Client Platform
performs the following actions:

Procedure
1. The Login pop-up window displays.
2. After successfully logging in to a Rich Client Platform application, the system

verifies whether the user has permission to perform the task.
3. The appropriate screen opens in a pop-up window.
4. When the user closes the pop-up window, the system automatically logs the

user out of the application.

30 Customizing the Rich Client Platform Interface



Starting a Supervisory Transaction to Perform Supervisory
Overrides

About this task

Another method of performing supervisory overrides is to start a supervisory
transaction. However, if you use this method, the user must manually log out off
the application after performing a task or operation.

To perform supervisory overrides by starting a supervisory transaction:

Procedure
1. Call the handleSupervisorTransaction() utility method in the YRCPlatformUI

class. This method considers the following input arguments:
v permissionID (String)-Specifies the resource identifier of the task or operation

for which the user must have permission.
v actionID (String)-Specifies the identifier of the action to invoke.
When the handleSupervisorTransaction() method is called, Rich Client Platform
performs the following actions:
a. The Login pop-up window displays.
b. After the user successfully logs in to a Rich Client Platform application, the

system verifies whether the user has permission to perform the task.
c. Rich Client Platform invokes the task.

2. Call the logoffSupervisor() method to log the user out of the application.

Running Rich Client Platform Applications in POS Mode
About this task

The Rich Client Platform enables you to run the Rich Client Platform application in
Point of Sales (POS) mode. When you run the Rich Client Platform application in
POS mode, the title bar of the application window is removed.

To run a Rich Client Platform application in POS mode, set the value of the
posmode parameter to true by passing -Dposmode=true as the VM argument.

The following figure depicts the application layout in POS mode.

Chapter 2. The Rich Client Platform 31



Version-Based Communication between Client and Server
When server components are migrated from an older version to a later version, all
the server components are deployed in the server in a single exercise. Similarly, the
Rich Client Platform client is also updated with the latest version. The old Rich
Client Platform client must have the functionality to communicate with the
migrated or the new application server.
v The Rich Client Platform application is built using the Rich Client Platform

plug-in, the PCA plug-in and a custom extension plug-in.
v A client.properties file is provided in resources.jar (com.yantra.yfc.rcp plug-in),

which is modified by a PCA for PCA-specific properties. The client.properties
file contains the version information and other details as key-value pairs, which
are available at the server in an environment object.

v You can add your own properties in another client.properties file in the extn
directory (in the resources.jar file).

v To change any of the existing properties, add the new value (for the property
key) in the same client.properties file mentioned in the previous step.

Note: Custom properties override the Rich Client Platform or PCA properties.
v All the PCA-specific keys should start with their respective module code. For

example, the version key for COM PCA entry should be com_Version=8.0.

32 Customizing the Rich Client Platform Interface



v When creating an HTTP connection from the Rich Client Platform application to
an application server, all the keys are set into the request header.

v In the server, the Rich Client Platform Servlet reads the request header and sets
them into the YFSEnvironment.

v The environment object is passed as input to all the services and APIs. A Java
HashMap of client properties can be obtained from this YFSEnvironment object,
which contains the value of a key pertaining to the client version. This value can
be used appropriately on the server.

Client Component

The following methods are provided in the YRCClientPropertiesManager:
v void setClientProperty(String key, String value, boolean overrideIfExists)sets

additional properties dynamically.
v Properties getClientProperties ()returns all the client property registered through

the client.properties file dynamically using the void setClientProperty method.

Server Component

A new ClientVersionSupport interface has been added to enable version-based
communication between client and server. This interface is implemented by the
out-of-the-box YCPContext and the InteropEnvStub.

Any class implementing YFSEnvironment should also implement the
ClientVersionSupport interface. From the YFSEnvironment, you can get the value
for a specific key from the hashmap.

The sample code for server class is shown here:
If (env instanceof ClientVersionSupport)
{

ClientVersionSupport
clientVersionSupport = (ClientVersionSupport) env;

HashMap
map = clientVersionSupport.getClientProperties();
If(map != null) {

String value = (String)map.get(key);
}

}

To enable multiple Rich Client Platform clients for communicating with the
corresponding server components, multiple commands.ycml files are supported,
one for each Sterling Application Platform version of the client connecting to it:
v A utility class file YRCCommandsMergeUtils.java is added to Sterling

Application Platform.
v Use this utility java class in build scripts for merging all commands into one

single file named Commands_VERSION.ycml. The version information is read
from the client.properties file.

Integrating Web Applications with Rich Client Platform
The Rich Client Platform provides a mechanism to integrate multiple Web
applications based on different domains, which enables applications on Rich Client
Platform to seamlessly connect to one or more Sterling Web application without
actually logging into the other application.

Chapter 2. The Rich Client Platform 33



To integrate other Web applications with Rich Client Platform, an extension point
YRCWebAppIntegrator and an interface IYRCWebAppHandler are added to Rich
Client Platform and a number of utilities are exposed in the class
YRCWebAppUtils.

The required configuration details (used for logging in to the Web application)
must be provided in the locations.ycfg file by specifying a config element (name,
application ID, protocol etc) for each application that must be integrated with Rich
Client Platform, as follows. Each config element name, which identifies the Web
application to connect to, must be unique. The ApplicationID is the Web
Application ID.
<Config Name=WebApp1
ApplicationID=""
Protocol="http"
BaseUrl="10.11.26.99"
PortNumber="7007"
WebAppContext="/smcfs<application_name>"
NoUILoginURL="/NoUILoginServlet">
</Config>

Note: Include a config element for each Web application to be integrated. The
attributes, Protocol, BaseUrl, NoUILoginServlet and ApplicationID are mandatory.
The system creates the URL by concatenating the following values provided under
each config element:
Protocol + :// + BaseUrl + : PortNumber + WebAppContext +

NoUILoginServlet

Create an Extension
About this task

To create an extension:

Procedure
1. Each extension has a number of elements, corresponding to the number of Web

applications that Rich Client Platform wants to connect to.
2. Each extension element must contain the following mandatory attributes:

v id -This ID should correspond to the config element name that contains the
configuration details required for a particular Web application.

v classToLoad - Specifies the class to be loaded to implement the interface
IYRCWebAppHandler.

v The IYRCWebAppHandler has the following format:
public interface IYRCWebAppHandler {

/**
* This method implementation will have to store the browser
* configuration details so that the application
* implementation can access the same when required.
*
* @param configElement is the config element which provides
* browser configuration details for the web application
* which the Rich Client Platform Application intends to switch.
*/
public void init(Element configElement );

/**
* This method implementation will have to handle login to the
* application, Rich Client Platform application intends to
* connect to. Add any listeners that need to be added to
* the browser including the one to handle session timeout .
*

34 Customizing the Rich Client Platform Interface



* @param browser is the browser instance provided by the application
* @param handler has to provide implementation as to
* what data has to posted.
*/
public void handleBrowser(Browser browser,

IYRCBrowserHandler handler);
/**
* This method implementation will have to store the login
* information of the user who has logged in to the application.
*
* @param info provides information about the current user
* userid and session information
*/
public void setUserInfo(YRCLoginInfo info);

3. The following utilities related to the Web application integration are exposed in
the class YRCWebAppUtils:
v setUpBrowser - Must be called when a Web application has to be integrated

with Rich Client Platform.
public static void setupBrowser(String configName,
Browser browser, IYRCBrowserHandler handler)

v loginToWebApp - Must be called when a Rich Client Platform application
that is already launched needs to log the user in to another application by
using the session ID.
public static YRCWebAppLoginInfo loginToWebApp(String configName,
YRCLoginInfo info,HashMap<String, String> paramsMap)

v addCookiesToBrowserSynchronously - Must be called to set cookies to the
Web browser synchronously.
public static YRCWebAppStatus addCookiesToBrowserSynchronously
(String webAppconfigName, final Browser browser)

v addCookiesToBrowserAsynchronously - Must be called to set cookies to the
Web browser asynchronously.
public static void addCookiesToBrowserAsynchronously
(final String webAppConfigName,final Browser browser,
final YRCWebAppLoginInfo webAppLoginInfo,
final IYRCBrowserHandler handler)

v formNoUILoginURL - Must be called to create an URL from the Web
application config element.
public static String formNoUILoginURL(Element webAppConfigElement)

Chapter 2. The Rich Client Platform 35



36 Customizing the Rich Client Platform Interface



Chapter 3. The Development Environment for Rich Client
Platform Applications

Installing Prerequisite Software Components
This section describes the various software components required to customize the
Rich Client Platform application. Before deploying the Rich Client Platform
application, make sure that you have already installed the following software
components:
v Eclipse SDK

Install the Eclipse SDK version that the Rich Client Platform supports.
v Eclipse-related Plug-ins

Install the following Eclipse-related plug-ins that the Rich Client Platform
supports.

v VE (Visual Editor) plug-in
v GEF (Graphical Editor Framework) plug-in
v EMF (Eclipse Modeling Framework) plug-in
v Java Development Kit (JDK)

Install the JDK version that the Rich Client Platform supports.
v Rich Client Platform plug-ins

Install the following Rich Client Platform plug-ins that the Rich Client Platform
supports. For more information about the Rich Client Platform plug-ins version,
see the Installation Guide.
– Rich Client Platform plug-in
– Rich Client Platform Tools plug-in

These plug-ins are shipped along withSterling Business CenterSterling Selling and
Fulfillment FoundationSterling Field Sales and are located in the
INSTALL_DIR/rcpclient directory

Note: If you are installing a new version of the Rich Client Platform plug-ins or
updating the earlier versions you must clean the cached build information in
Eclipse.

Clean Cached Build Information in Eclipse
About this task

To clean cached build information in Eclipse, start the Eclipse SDK with the
"-clean" option:

Procedure
1. Right-click the Eclipse's shortcut and select Properties from the pop-menu. The

Properties window displays.
2. In Target, enter the command-line argument -clean at the end. For example,

"C:\Eclipse\eclipse\eclipse.exe" -clean.
3. In Target, enter the command-line argument -clean at the end. For example,

"C:\Eclipse 3.2\eclipse\eclipse.exe" -clean.
4. Start the Eclipse SDK.

© Copyright IBM Corp. 1999, 2013 37



Installing the Rich Client Platform Plug-In
About this task

To install the Rich Client Platform plug-ins:

Copy the contents of the folder <INSTALL_DIR>/rcpclient to the
<ECLIPSE_HOME>/plugins folder. <ECLIPSE_HOME> refers to the Eclipse SDK
installation directory.

The rcpclient folder contains the following plug-ins:
v com.yantra.ide.rcptools.core_1.1.0 - This plug-in is used to enable the Rich Client

Platform extensibility tool.
v com.yantra.ide.rcptools.rcpextn_1.1.0 - This plug-in is used to enable the Rich

Client Platform extensibility tool.
v com.yantra.ide.rcptools.uieditor_1.1.0 - This plug-in is used to enable the Rich

Client Platform UI Editor for creating Rich Client Platform Composite, and Rich
Client Platform plug-in.

v com.yantra.yfc.rcp.common_1.0.0 - This is the base plug-in and is common for
all applications of Rich Client Platform. This plug-in is required.

v com.yantra.yfc.rcp.libs - This is the base plug-in of Rich Client Platform libraries
and is common for all applications of Rich Client Platform.

v com.yantra.yfc.rcp_1.0.0 - This is the base plug-in and is common for all
applications of Rich Client Platform. This plug-in is required.

Note: You must first copy the required plug-ins in the <ECLIPSE_HOME>/
plugins folder and then the application-specific plug-ins. Extensibility plug-ins
can be included for application extensibility, if required.

Installing the Rich Client Platform Tools Plug-In
About this task

To install the Rich Client Platform Tools plug-in, copy the contents of the folder
INSTALL_DIR/rcpclient to the ECLIPSE_HOME/plugins folder.

ECLIPSE_HOME refers to the Eclipse SDK installation directory.

Rich Client Platform Tools
The Rich Client Platform Tools plug-in contains the following tools:
v Rich Client Platform Command XML Editor—The Rich Client Platform

Command XML Editor provides a way to conveniently edit the
Plug-in_id_commands.ycml file. The Commands XML file is used to create or
modify commands and namespaces.

v Rich Client Platform Config XML Editor—The Rich Client Platform Config XML
Editor tool provides a way to conveniently edit the locations.ycfg file. The
locations.ycfg file contains configuration information for the Rich Client Platform
applications. A location configuration and server configuration must be defined
to connect the Rich Client Platform application to the server.

v Rich Client Platform Theme Editor—The Rich Client Platform Theme Editor tool
provides a convenient way to edit the Plug-in_id_theme name.ythm file. The
theme file is used to define theme entries for a particular theme.

38 Customizing the Rich Client Platform Interface



v Rich Client Platform Wizard Editor—Rich Client Platform Wizard Editor tool is
used to conveniently edit the Plug-in_id_commands.ycml for creating or
modifying the wizard definition. The wizard definition specifies the flow of a
wizard.

Note: To understand how to use Rich Client Platform tools such as the Rich
Client Platform Command XML Editor, Rich Client Platform Config XML Editor,
and so forth in Eclipse, see the cheat sheets provided by the Rich Client
Platform.

v Rich Client Platform UI Wizards—The Rich Client Platform UI Editor is a
plug-in that includes several development time database utilities for the Rich
Client Platform application. The Rich Client Platform UI Editor provides various
wizards for creating these utilities, such as:
– Rich Client Platform Composite—The Rich Client Platform Composite wizard

is used to create standalone Rich Client Platform screens for the Rich Client
Platform application.

– Rich Client Platform Plug-in—The Rich Client Platform Plug-in wizard is
used to extend an Eclipse plug-in so that it can be recognized by the Rich
Client Platform. The Rich Client Platform Plug-in wizard includes a plug-in
file and various Sterling Business CenterSterling Selling and Fulfillment
FoundationSterling Field Sales-specific resource files such as theme file,
configuration file, command file, bundle file, and extension file. The plug-in
Java file is used to register the Eclipse plug-in and the Rich Client
Platform-specific resource files with the Rich Client Platform. Whenever you
run the Rich Client Platform Plug-in wizard on top of an Eclipse plug-in, the
newly created bundle activator gets updated. Also, the bundle activator for
the plug-in file is placed in the plugin.xml file.

– Rich Client Platform Extensibility Tool—The Rich Client Platform Extensibility
Tool is used to modify the existing screens of a Rich Client Platform
application. Using this tool you can add new controls, modify existing
controls, and so forth.

v Rich Client Platform Application Plug-in—Extract the Rich Client Platform
application compressed file that you want to customize to any directory. You can
find the compressed file for a PCA in the
INSTALL_DIR/rcp/PCA_DIR/rcpclient/ directory. PCA_NAME refers to the
PCA installation directory.
For example, if you want to customize theSterling Call Center and Sterling Store
application, extract the INSTALL_DIR/rcp/COM/rcpclient/com.zip file to any
directory.
After you extract all files, copy the content of the Rich Client Platform
Application's plug-in folder to the ECLIPSE_HOME/plugins folder.
For example, if you want to customize the Sterling Call Center and Sterling
Store application, copy the TEMP_DIR/plugins/com.yantra.pca.ycd.rcp_version
to the ECLIPSE_HOME/plugins folder.
where TEMP_DIR is the name of the directory where you have extracted the
com.zip file. ECLIPSE_HOME refers to the directory where you have installed
Eclipse SDK.

View Rich Client Platform Cheat Sheets
About this task

To view the cheat sheets in Eclipse:

Chapter 3. The Development Environment for Rich Client Platform Applications 39



Procedure
1. Start the Eclipse SDK.
2. From the menu bar select Help > Cheat Sheets. The Cheat Sheet Selection

window displays.
Expand Rich Client Platform: UI Editor from the list and open the appropriate
cheat sheet.

Open the Rich Client Platform UI wizards
About this task

To open the UI wizards:

Procedure
1. Launch the Rich Client Platform application in Eclipse.
2. Press Ctrl+N.

Expand Rich Client Platform Wizards from the list of wizards and open the
appropriate wizard.

Creating and Configuring Locations
About this task

To configure locations, ensure that you create the locations.ycfg XML file.

To configure a location, follow these steps:

Procedure
1. In the locations.ycfg XML file, define a Locations root element.
2. Under the Locations root element, define the Location element. In the id

attribute of the Location element, specify the location identifier such as
DEFAULT, LOCAL, REMOTE, and so forth.

3. Configure the proxy server and application server URL settings for the location.
For more information about location configuration settings, see the Sterling
Business CenterSterling Selling and Fulfillment FoundationSterling Field Sales:
Installing the PlatformInstallation Guide.

Note: You must have one Location element with id attribute value of DEFAULT
and this Location element must have a Config element whose Name attribute is
DEFAULT.

When you log in to a Rich Client Platform application using a particular
location, the system checks whether or not the loaded location has a
"DEFAULT" Config element defined for it. If the selected location has DEFAULT
Config element, the system loads the that configuration. Otherwise the system
loads the DEFAULT configuration defined in the DEFAULT location.

4. Add locations.ycfg XML file to resources.jar file.
5. Copy the resources.jar file to the ECLIPSE_HOME/plugins/

com.yantra.yfc.rcp_version directory
where ECLIPSE_HOME refers to the Eclipse SDK installation directory.

40 Customizing the Rich Client Platform Interface



Creating a Plug-In Project
About this task

This section explains how to create a plug-in project.

To create a plug-in project:

Procedure
1. Start the Eclipse SDK.
2. From the menu bar, select WindowOpen PerspectiveOther.....

The Select Perspective window displays.

3. From the list of wizards, select Plug-in Development.
4. Click OK. The Eclipse Workbench opens in Java perspective.
5. From the menu bar, select File > New > New Project.... The New Project

window displays.
6. From the list of wizards, under Plug-in Development category, select the

Plug-in Project.
7. Click Next. The New Plug-in Project window displays.

Chapter 3. The Development Environment for Rich Client Platform Applications 41



Field Description

Project name: Enter the name of the new plug-in project.

Use default location Uncheck this box if you want to specify the path where you want
to store the new plug-in project. By default, this box is always
checked.

IBM recommends that you use the default directory to store the
new plug-in project.

Project Settings

Make sure that the Source folder: and Output folder: text boxes are empty.

Target Platform

Eclipse version: Select 3.3 from the drop-down list.

8. Click Next. The Plug-in Content page displays.
9. Click Next. The Templates page displays.

10. Click Finish. The new plug-in project gets created.

Rich Client Platform Plug-In Wizard
After creating the new plug-in project, run the Rich Client Platform Plug-in wizard
on top of the new plug-in project that you created. The Rich Client Platform
Plug-in wizard enables you to extend an Eclipse plug-in so that it is easily
understood by the Rich Client Platform. The Rich Client Platform Plug-in wizard
creates a plug-in Java file and the following Rich Client Platform-specific resource
files:

42 Customizing the Rich Client Platform Interface



v Bundle files such as *bundle.properties—Used to define bundle entries for
internationalizing a Rich Client Platform application.

v Command files such as *commands.ycml—Used to define commands for calling
APIs or services to get the required data.

v Theme files such as *theme.ythm—Used to define theme entries for theming a
Rich Client Platform application.

v Extension files such as *extn.yuix—Used to store all the extensions made to a
Rich Client Platform application.

These resource files allow you to extend the UI and control the behavior of a Rich
Client Platform application. The plug-in Java file is used to register the Eclipse
plug-in and the Rich Client Platform-specific resource files with the Rich Client
Platform.

Running the Rich Client Platform Plug-In Wizard
About this task

To run the Rich Client Platform Plug-in wizard:

Procedure
1. Start the Eclipse SDK.
2. From the menu, select Window > Show View > Navigator. The plug-in project

is displayed in the Navigator view.
3. Expand the plug-in project that you created.
4. Right-click the source folder where you want to store the Rich Client Platform

extension plug-in Java file and select New > Other from the pop-up menu. The
New window displays.

5. From the list of wizards, select Rich Client Platform Wizards > Rich Client
Platform Plug-in.

6. Click Next. The New Plug-in to Rich Client Platform UI window displays.

Chapter 3. The Development Environment for Rich Client Platform Applications 43



Field Description

Source Folder: The folder path that you selected displays. Click Browse to browse
to the source folder where you want to store the plug-in java file, if
necessary.

Plugin Id The identifier of the plug-in project which contains the source
folder displays.

Package: The package name displays. If this field is empty, the system
considers the source folder as the default package.

Note: It is recommended that you do not use a default package
with this wizard. The plug-in name is created and prefixed with a
dot or period. Therefore, you will encounter an error when you
run the application within Eclipse.

Plugin File Name By default, the NewPlugin.java plugin file name displays. Enter a
new plug-in file name, if necessary. This plug-in file registers your
resource files such as bundles, themes, commands, and extension
files.

Application File
Name

Enter the name of an application file name, if necessary.

7. Click Finish.
After you run the Rich Client Platform Plugin wizard on top of a plug-in
project, the Rich Client Platform performs the following tasks:
v Loads the dependent plug-ins. The dependent plug-ins are the plug-ins

whose extension points are extended by another plug-in to extend the
functionality provided by the Eclipse platform.

v Implements the YRCPluginAutoLoader extension point. The
YRCPluginAutoLoader extension point is provided by the Rich Client

44 Customizing the Rich Client Platform Interface



Platform, which defines the order in which plug-ins need to be loaded. The
YRCPluginAutoLoader extension point automatically loads the classes within
a plug-in during startup in the specified order. All classes that need to be
automatically loaded are sorted in ascending order and loaded one at a time.

v Creates the plug-in Java file. The plug-in Java file is stored in the folder you
specified. This file is used to register the plug-in you created and the Rich
Client Platform-specific resource files.

v Creates the following Rich Client Platform-specific resource files:
v Bundle file of format *bundle.properties
v Commands file of format *commands.ycml
v Theme file of format *theme.ythm
v Extension file of format *extn.yuix
The following illustrates a typical folder structure that has both the plug-in Java
file and the Rich Client Platform-specific resource files stored under the
package that you specified.

Launching the Rich Client Platform Application in Eclipse
About this task

After you run the Rich Client Platform Plugin wizard on the plug-in project,
launch the Rich Client Platform application that you want to customize within
Eclipse.

To launch the Rich Client Platform application in Eclipse:

Procedure
1. Start the Eclipse SDK. In the Package Explorer view, you can see the plug-in

project that you created.
2. From the menu bar, select Run > Run.... The Run window displays.

Chapter 3. The Development Environment for Rich Client Platform Applications 45



3. In the left panel, right-click and select New_configuration from the pop-up
menu.

4. In Name, enter the name for the new run configuration. For example, Call
Center Application.

5. In the Workspace Data panel, in Location, enter the location where you want
to create the runtime workspace. Click File System... to browse to the
directory where you want to create the runtime workspace.

6. In the Program to Run panel, select Run a product: and from the drop-down
list select the product identifier of the application you want to customize. For
example, if you want to customize theSterling Call Center and Sterling Store
application, select the product identifier of the Sterling Call Center and
Sterling Store application. For more information about the product identifier
for each PCA, see the respective Rich Client Platform based applications
Installation Guide.

7. In the Plug-ins tab, choose Choose plug-ins and fragments to launch from the
list.

8. Click Deselect All.
9. From the list of plug-ins, expand Workspace Plug-ins and select the plug-in

project that you created.
10. Expand Target Platform. Select the Rich Client Platform application plug-in

that you want to customize.

Note: Ensure you select the plug-in is the same as the Rich Client Platform
application whose ID you selected in Step 6.

11. Select the com.yantra.ide.rcptools.rcpextn plug-in.
12. Click Add Required Plug-ins.
13. Click Validate plug-in Set. If you have correctly performed all steps, the

Plug-in Validation window displays the message "No problems were detected
in the selected set of plug-ins."

46 Customizing the Rich Client Platform Interface



14. Click OK.
15. Select Configuration tab and check the Clear the configuration area before

launching box. This clears the cached configuration data saved by Eclipse.
16. Click Apply.
17. Click Run. The Rich Client Platform application now runs.

Note: The Rich Client Platform Extensibility tool plug-in depends on some of
the Eclipse plug-ins. When you add the Rich Client Platform extensibility tool
plug-in, these dependent Eclipse plug-ins are automatically added. Therefore,
when you launch a Rich Client Platform application such asSterling Store and
Sterling Store application within Eclipse, the system throws the following
error messages:
Invalid Menu Extension (Path is invalid): org.eclipse.ui.actions.showKeyAssistHandler.

Invalid Menu Extension (Path is invalid): org.eclipse.update.ui.updateMenu.

Invalid Menu Extension (Path is invalid): org.eclipse.update.ui.configManager.

Invalid Menu Extension (Path is invalid): org.eclipse.update.ui.newUpdates.

These are known issues and have no bearing on the functioning of an
application.

Chapter 3. The Development Environment for Rich Client Platform Applications 47



48 Customizing the Rich Client Platform Interface



Chapter 4. Customizing the Log In Screen

Customizing the Login Screen
About this task

You can customize login screen for the following:
v Adding additional fields.
v Modifying background color.
v Customizing images

What to do next

Adding Additional Fields to the Login Screen

The Sterling RCP provides the YRCloginDialogExtn extension point, which enables
a user to customize the Login Dialog with additional fields. An implementation
has to be provided for the YRCLoginDialogExtn extension point using the
IYRCLoginDialog interface. The implementation should update the login input
document with the requisite attributes or add additional attributes or perform both
tasks.

Every extension of the Login Dialog must have the following mandatory attributes:
v ModuleId—The module ID of the application for which the Login Dialog is

being extended, for example, the module ID of Sterling Call Center client
application is ycd, and the module ID of theSterling Store client application is
sop.

v ClassToLoad—The class to be loaded to extend the IYRCLoginDialog interface.
v LoadOrder—When multiple Login Dialog implementations exist for the same

application, the LoadOrder attribute decides which Login Dialog implementation
must be picked up. The Login Dialog extension with the highest value of the
LoadOrder attribute is selected and loaded.

If the implementation for the YRCLoginDialogExtn extension point using the
IYRCLoginDialog interface is absent, the application will display the default Login
Dialog.

Note: Following are the limitations of the YRCLoginDialogExtn extension point
implementation:
v An API cannot be called prior to logging into an application. For example, if a

drop-down list is used when customizing the Login screen, the drop-down list
cannot be populated by calling an API. In this scenario, the drop-down list can
be populated with hard-coded items, or with contents from a file.

v The customization of the Login Dialog must be performed in a separate and
independent plug-in that does not include any other customizations, such as
those pertaining to bundles, commands, and so on.

Modifying Background Color of the Login Screen

© Copyright IBM Corp. 1999, 2013 49



You can change the background color of the login dialog using the
setLoginDialogueColor (int red, int green, int blue) method of the YRCPlatformUI
class.

Customizing Login Screen Images

You can customize the login dialog images using the
setLoginDialogueImages(Image leftImage, Image rightImage, Image topImage,
Image bottomImage, String moduleId) method of the YRCPlatformUI class.

50 Customizing the Rich Client Platform Interface



Chapter 5. Customizing Rich Client Platform Applications

Overview of Customizing Rich Client Platform Applications
The Rich Client Platform supports various ways of customizing a Rich Client
Platform application.

When customizing the Rich Client Platform application, copy the standard Rich
Client Platform-specific resource files and modify them or create new resource
files. Do not modify the Sterling Business CenterSterling Selling and Fulfillment
FoundationSterling Field Sales-specific resource files that are shipped with Sterling
Business CenterSterling Selling and Fulfillment FoundationSterling Field Sales.

Localizing Rich Client Platform Applications
You can localize a Rich Client Platform application's locale-specific files based on
the user's locale. The Rich Client Platform supports bundle and theme
locale-specific files. The Rich Client Platform application plug-ins contain bundle
file such as Plug-in_id_name.properties and theme file such as Plug-in_
id_theme_name.ythm. For more information about localizing bundle and theme
files, see the Sterling Business CenterSterling Selling and Fulfillment
FoundationSterling Field Sales: Localization Guide.

Defining Themes for Rich Client Platform Applications
You can theme the Rich Client Platform application based on the custom theme. To
theme your application, at the plug-in level, define new theme entries for controls,
text, strings, images, and so forth in the Plug-in_id_theme name.ythm file. For more
information about theming the Rich Client Platform application, see "Defining
Themes".

Extending Rich Client Platform Applications
You can extend the Rich Client Platform application's UI to address specific needs
of your business. Extending the Rich Client Platform application can be as simple
as defining some additional fields or as advanced as defining an entire new
plug-in.

IBM recommends that you extend the Rich Client Platform application by
modifying existing screens.

Before you can start extending the Rich Client Platform application using any one
of the given ways, make sure that you set up the development environment for
performing customizations. For more information about setting up development
environment, see the "The Development Environment for Rich Client Platform
Applications".

Note: In some screens or editors, the layout of a screen or editor may have
changed because of a HF or upgrade. For example, new controls being added,
existing controls being hidden, and so forth. To ensure that your extensions are
applied on such screens or editors, you will have to rework on positioning these
new custom controls, for example, labels, text boxes, radio buttons, and so forth (if
necessary).

© Copyright IBM Corp. 1999, 2013 51



Modifying Existing Screens

Use the Rich Client Platform Extensibility Tool to modify or extend existing screens
of the Rich Client Platform application. This tool allows you to modify existing
screens by adding or removing text boxes, labels, combo boxes, buttons, table
columns, and so forth from the existing forms. You can also add or modify
composites and groups. For more information about modifying existing screens,
see "Modifying Existing Screens and Wizards".

Note: Whenever out-of-the-box logic for any Application shipped control is
overridden through extensibility (i.e. by writing custom logic in extension behavior
class of the control), the overridden logic is implemented first followed by the
out-of-the-box logic. For example, if the Order Search button logic is overridden to
open the customer screen, the customer screen will be opened first and when that
screen is closed the order search screen will be opened.

But if out-of-the-box logic for any Application shipped control is overridden to
display an error validation dialog, only the error dialog will be opened and
out-of-the-box logic will not be implemented.

Modifying Existing Wizards

You can modify the wizard definition XML of the existing wizards by adding new
wizard entities (wizard page, wizard rule, or sub-task). You can also modify the
flow of a wizard by adding new transitions or overriding the existing transitions.
A wizard rule is used to control the flow of a wizard based on certain criteria. The
flow of a wizard depends on the output value of a wizard rule. Use the transition
lines to transfer control from one wizard page or rule to another wizard page or
rule. The system compares the output of the wizard rule with the transition value.
Based on the transition value, the system transfers the control to the appropriate
wizard page or rule. The sub-task is used to perform a separate sub-task within the
wizard flow. For example, you can add a sub-task to the wizard flow. That
sub-task can be a separate wizard within the existing wizard.

Creating and Adding New Screens

You can create new Rich Client Platform screens for a Rich Client Platform
application in Eclipse using the Visual Editor (VE).

After creating new screens, you can add these to the Rich Client Platform
application.

For more information, see Creating and Adding Screens.

Building and Deploying Extended Rich Client Platform Applications
After making extensions to a Rich Client Platform application, make sure that you
build and deploy the new extensions. You should build and deploy the Rich Client
Platform application with all the new plug-ins that you created, resource files that
you synchronized, and SSL certificates.

Building Rich Client Platform Extensions
About this task

Building the Rich Client Platform extensions is as follows:

52 Customizing the Rich Client Platform Interface



Procedure
1. Start the Eclipse SDK.
2. From the menu bar, select Window > Show View > Navigator. The plug-in

project is displayed in the Navigator view.
3. Right-click on the plug-in project that you want to build and deploy.
4. Select Export... from the pop-up menu. The Export window displays.

5. From the list of export destinations, under Plug-in Deployment, select
Deployable plug-ins and fragments.

6. Click Next.
The Available Plug-ins window displays.

Chapter 5. Customizing Rich Client Platform Applications 53



7. In the Destination tab, Choose Archive file:.
8. Click Browse and browse to the folder where you want to store the exported

plug-in compressed file.
9. In the Options tab, make sure that the Package plug-ins as individual JAR

archives box is checked.
10. Click Finish. The plug-in jar is generated and stored in the plugins folder in

the compressed file as specified in step 8.

Deploying Rich Client Platform Extensions
About this task

After you build the Rich Client Platform extensions plugin jar, you must deploy
this plug-in.

To deploy the Rich Client Platform extensions, copy the plugin jar that you built to
the plugins directory of the RCP_EXTN_FOLDER folder and follow the steps as
described in the Deploying and Updating Rich Client Platform Application chapter of
theSterling Business CenterSterling Selling and Fulfillment FoundationSterling
Field Sales Installation GuideInstalling the Platform.

54 Customizing the Rich Client Platform Interface



Chapter 6. Customizing the About Box

Customizing the About Box
About this task

The About Box of a Rich Client application indicates the name of the application
and also the version number of the application.

To customize the About Box:

Procedure
1. Create a custom about.properties file in the INSTALL_DIR/extensions/plugins/

plug-in-id/ directory.
2. Edit the about.properties file and all your custom entries in the name=value pair

format.

Note: Your custom about.properties file must contain the following entries:
v Name
v Version
v Build

For example, if you are customizing Sterling Call Center and Sterling Store
About Box, the custom about.properties file will look like this:
Name=Sterling Call Center and Sterling Store
Version=8.5
Build=1201

3. Register your custom about.properties file with your plug-in. To register your
about.properties file, call the registerAboutPluginProperties() method within the
plug-in's constructor. For example,
YRCPlatformUI.registerAboutPluginProperties("about", ID);

where ID is a unique identifier of the plug-in that registers this about.properties
file.

Note: Make sure that the properties file being registered is present in the
plug-in project.

Note: Before calling the registerAboutPluginProperties() method, the plug-in
must be registered using the registerPlugin() method of the YRCPlatformUI
class. For more information, see the Registering a Plug-In topic.

© Copyright IBM Corp. 1999, 2013 55



56 Customizing the Rich Client Platform Interface



Chapter 7. Masking Sensitive Customer Information

Methods for Masking Sensitive Customer Information
The Rich Client Platform provides two methods to prevent sensitive information
such as credit card numbers, CVV numbers, or passwords from being visible in log
messages:
v To mask sensitive information in logging messages, add entries to the

customer_overrides.properties file specifying the information to be masked.
Because the properties file resides on the server, it is always available to mask
information on the client side. See the Masking Sensitive Information During
Logging topic.

v To obtain greater control over the filtering process, register and implement a
custom message filter class. This method eliminates the need to define multiple
properties in the customer_overrides.properties file. However, the custom class is
stored on the client, so if the class is removed from the client, filtering will no
longer occur. It applies only to debug (not timer) files. See the Masking Sensitive
Information During Trace topic.

© Copyright IBM Corp. 1999, 2013 57



58 Customizing the Rich Client Platform Interface



Chapter 8. Modifying Existing Screens and Wizards

Modifying Existing Rich Client Platform Screens
This section explains how to modify the existing screens of a Rich Client Platform
application.

Starting the Rich Client Platform Extensibility Tool

After you set up the development environment, start the Rich Client Platform
Extensibility Tool.

Customizing the User Interface

After you start the Rich Client Platform Extensibility Tool, you can customize the
existing screen by adding or removing text boxes, labels, combo boxes, buttons,
table columns, and so forth. You can also add composites and groups to the screen.

Synchronizing Differences

Whenever you customize an existing screen, you must synchronize the resource
files.

Building and Deploying Extensions

After you extend the existing screens, make sure that you build and deploy the
new extensions. .

Validating or Capturing Data During API or Service Calls
You can validate or capture additional data during API or Service calls by
overriding the preCommand() method of the YRC ExtensionBehavior class. You
can also ensure the receipt of notification upon completion of an API or Service
call by overriding the preCommand() method of the YRC ExtensionBehavior class.
v preCommand(YRCApiContext apiContext)—To validate the data or capture

additional data before calling an API or Service or both, override the
preCommand(YRCApiContext apiContext) method in the behavior class. The
preCommand(YRCApiContext apiContext) method returns a boolean value. The
valid values are "true" or "false". If the value returned is "false", the Rich Client
Platform terminates the API or Service call. For example:
public boolean preCommand(YRCApiContext apiContext) {

if("getOrderDetails".equals(apiContext.getApiName())) {
return false;

} else {
return true;

}
}

v postCommand(YRCApiContext apiContext)—To ensure the receipt of notification
upon completion of an API or Service call, override the
postCommand(YRCApiContext apiContext) method in the behavior class. Using
postCommand() method you can store the API or Service call output and use it
at later point in time for incorporating customizations on the screen. For
example:

© Copyright IBM Corp. 1999, 2013 59



public void postCommand(YRCApiContext apiContext) {
System.out.println("Finished api call:"+apiContext.getApiName());

}

Note: The postCommand() method does not prevent the default handling of the
API output on the screen.

Modifying Existing Rich Client Platform Wizards
You can modify the existing wizards by creating new wizard entities such as
wizard page, wizard rule, or sub-task in the new wizard definition. Define the new
wizard definitions in the plug-in project by creating the Plug-
in_id_wizard_name.ywx file.

Before modifying an existing wizard:
v You must know the form identifier of the wizard you want to extend. After you

have identified the form identifier, define the same form identifier in the
extended wizard definition using the id attribute of the wizard element.

v To add new wizard rules, you must know the namespace for defining new rules
and their values. After you have identified the namespace, define the new rules
and their values in the Plug-in_id_wizard_name.ywx file.

v To add new sub-tasks, you must know the namespace for defining new
sub-tasks. After you have identified the namespace, define the new sub-tasks in
the Plug-in_id_wizard_name.ywx file.

An example of how to extend an existing wizard is described here.

In the Plug-in_id_wizard_name.ycml file, you have an existing wizard definition
defined for the following wizard flow:

In this wizard flow, the wizard starts from a wizard page (Page1) and transitions
to a wizard rule (Rule1). The wizard rule (Rule1) computes some values and
returns these values, based on which the control is transferred to two different
wizard pages (Page2 and Page3). For Value1, the wizard transitions from Rule1 to
Page2, and for Value2, the wizard transitions from Rule1 to Page3.

The sample Plug-in_id_wizard_name.ycml XML for the existing wizard definition is
as follows:

60 Customizing the Rich Client Platform Interface



<forms>
<form Id="com.yantra.pca.ycd.rcp.alert.wizard.YCDAlertWizard">
<namespaces>
<namespace type="input" name="Rule" templateName="getRule"/>
<namespaces>
<Wizard>
<WizardEntities>

<WizardEntity id="Page1">
impl="java:com.yantra.yfc.rcp.wizard.pages.AlertWizPage1"
type="PAGE" xPos="340" yPos="200" start="true">

</WizardEntity>
<WizardEntity id="Rule1">

impl="java:com.yantra.yfc.rcp.wizard.rules.AlertWizRule1"
type="RULE" xPos="40" yPos="200">

<Namespace name="Rule"/>
<Output value="value1"/>
<Output value="value2"/>

</WizardEntity>
<WizardEntity id="Page2">

impl="java:com.yantra.yfc.rcp.wizard.pages.AlertWizPage2"
type="PAGE" xPos="140" yPos="200" last="true">

</WizardEntity>
<WizardEntity id="Page3">

impl="java:com.yantra.yfc.rcp.wizard.pages.AlertWizPage3"
type="PAGE" xPos="140" yPos="200" last="true">

</WizardEntity>
</WizardEntities>
<WizardTransitions>

<WizardTransition id="Trxn1" source="Page1" target="Rule1"/>
<WizardTransition id="Trxn2" source="Rule1">

<Output target="Page2" value="value1">
</WizardTransition>
<WizardTransition id="Trxn2" source="Rule1">

<Output target="Page3" value="value2">
</WizardTransition>

<WizardTransitions>
<Wizard>
</form>
</forms>

To extend the existing wizard flow, for Value1, replace the existing transition from
Rule1 to Page2 with the transition from Rule1 to SubTask1 as follows:

Create the extended wizard definition in the Plug-in_id_wizard_name.ywx file.

Chapter 8. Modifying Existing Screens and Wizards 61



Retrieve Wizard and Namespace Information
About this task

To get the wizard and namespace information:

Procedure
1. In the Rich Client Platform application, navigate to the wizard you want to

extend.
2. In the Rich Client Platform Extensibility Tool, view the screen information. The

wizard and namespace information is displayed in the screen information
window.

Creating an Extended Wizard Definition
About this task

This section explains how to create an extended wizard definition in a Rich Client
Platform application.

To create an extended wizard definition:

Procedure
1. Create a new *.ywx XML file and save it in the plug-in project that you

created when setting up the development environment, for example,
Plug-in_idwizard_name.ywx.

2. Start the Eclipse SDK.
3. In the Navigator view, expand the plug-in project that you created.
4. Right-click the newly created *.ywx file and select Open With > Text Editor

from the pop-up menu.
5. Create the Wizards root element.
6. In the applicationId attribute, specify the application identifier of the Rich

Client Platform application whose wizard you want to extend.
For more information about the application IDs of a Rich Client Platform
application, see the corresponding Rich Client Platform application
documentation.

7. Create the Wizard element under the Wizards root element.
8. In the id attribute, specify the form identifier of the wizard you are extending.
9. Create the WizardEntities element under the Wizard element.

10. Create the required new wizard entities, such as wizard rule, wizard page, or
sub-task under the WizardEntities element. For example, create a new sub-task
(SubTask1).

11. Create and override the required wizard transitions under the WizardEntities
element. For example, override the existing transition, Trxn2, with Value1 for
transition from Rule1 to SubTask1.

12. Close the Wizard element.
13. Close the Wizards root element.

The sample Plug-in_idwizard_name.ywx XML file for the extended wizard
definition is as follows:
<Wizards applicationId="YFSSYS00011">

<Wizard id="com.yantra.pca.ycd.rcp.alert.wizard.YCDAlertWizard">
<WizardEntities>

62 Customizing the Rich Client Platform Interface



<WizardEntity id="SubTask1">
�impl="com.yantra.yfc.rcp.wizard.subtasks.AlertSubTask1"
type="WIZARD" xPos="340" yPos="200" last="true"/>

</WizardEntities>
<WizardTransitions>

<WizardTransition id="Trxn2" source="Rule1">
<Output target="SubTask1" value="value1">

<WizardTransitions>
</Wizard>
</Wizards>

The id attribute of the wizard entity contains the form identifier of the wizard
that you extended. For the new sub-task (SubTask1), a new WizardEntity
element in the WizardEntities element is created.
In the existing wizard definition, the Trxn2 with value1 defines the transition
from Rule1 to Page2. In the new wizard definition, override this transition
with the new target, which is SubTask1.

Registering the Wizard Extension File
About this task

After creating the extended wizard definition in the newly created
<Plug-in_id><wizard_name>.ywx file, you must register this file with your plug-in.
To register your *.ywx file, call the registerWizardExtensions() method within the
plug-in's constructor. For example,
YRCPlatformUI.registerWizardExtensions("<Plug-in_id>_<wizard_name>",
ID)

where Plug-in_idwizard_name is the name of your wizard extension file without the
".ywx" extension. ID is a unique identifier of the plug-in that registers this wizard
extension file.

Note: Before calling the registerWizardExtensions() method, the plug-in must be
registered using the registerPlugin() method of the YRCPlatformUI class.

Creating the Wizard Entity
You must create the implementation Java class for the new wizard entity that you
add to the extended wizard definition. This can be a wizard rule, a wizard page, or
a sub-task. This implementation class is specified in the wizard extension file using
the impl attribute of the WizardEntity element.
v If you are adding a new wizard page, you must create the implementation Java

class for the wizard page. For more information about creating a new wizard
page class, see "Adding a Page to a Wizard Definition".

v If you are adding a new wizard rule, you must create the implementation Java
class for the wizard rule. For more information about creating a new wizard
rule, see "Adding a Rule to a Wizard Definition".

v If you are adding a sub-task, the implementation class specified in the Impl
property of the sub-task should point to a separate subtask that can be run
independently as a task.

Modifying the Wizard Extension Behavior
If you have already created the wizard extension behavior class, do the following:

Chapter 8. Modifying Existing Screens and Wizards 63



v If you are adding a new wizard page, return an instance of the new wizard page
in the createPage(String pageIdToBeShown, Composite pnlRoot) method of the
wizard extension behavior class. For example:
public IYRCComposite createPage(String pageIdToBeShown) {
IYRCComposite page=null;
If(pageIdToBeShown.equalsIgnoreCase(AlertWizPage2.FORM_ID))
{ AlertWizPage2 temp = new AlertWizPage2(new Shell(Display.getDefault(), SWT.NONE);

page = temp;
}

return page;
}

v If you are adding a new sub-task, return an instance of the new sub-task in the
createChildWizard(String wizardPageFormId, Composite pnlRoot,
YRCWizardContext wizardContext) method of the wizard extension behavior
class.
A sub-task can be a wizard that can either be inserted between two wizard
entities or the last entity in the wizard flow. If a sub-task is inserted between
two wizard entities, the sub-task should display the Next button for navigation
to the next wizard entity. If the sub-task is the last entity in the wizard flow, the
sub-task should display the Finish button to end the wizard. This information
must be passed to the context object (YRCWizardContext). A context object is
used to control the flow of data between the parent wizard and the sub-task,
and contains the input to the sub-task. If there is an output to the sub-task, it
can be set in context and passed back to the parent wizard. Because the context
object utility methods display the appropriate buttons for navigation, these
methods must have the position information in the parent wizard to display the
proper navigation buttons. For example:
public YRCWizard createChildWizard(String wizardPageFormId,
Composite pnlRoot, YRCWizardContext wizardContext){
return
null;
}

64 Customizing the Rich Client Platform Interface



Chapter 9. Creating and Adding Screens

About Creating a Rich Client Platform Composite
After you set up the development environment, start creating the new Rich Client
Platform screen. The Rich Client Platform provides features that enable you to
create Rich Client Platform screens.

The Rich Client Platform composite consists of:
v Composite File—The composite Java file handles the UI. In the composite java

file, write the code for naming, binding, localizing, and theming controls.
v Behavior File—The behavior Java file handles the functionality or behavior of

the screen. In the behavior Java file, write the code for calling APIs or services
and getting or setting the XML model for populating the bound controls.
The Rich Client Platform provides the Rich Client Platform Composite wizard
for creating the Rich Client Platform composite. The Rich Client Platform
Composite wizard creates an empty composite. You need to design the
composite by adding appropriate controls as needed. After designing the
composite, name, bind, localize, and theme controls that you add to the
composite.

Creating a Rich Client Platform Composite Using the Rich Client
Platform Composite Wizard

About this task

To create a Rich Client Platform composite using the Rich Client Platform
Composite wizard:

Procedure
1. Start the Eclipse SDK.
2. In the navigator view, expand the plug-in project that you created when setting

up the development environment.
3. To store the screens, right-click on the folder.
4. Select New > Other... from the pop-up menu. The New window displays.
5. From the list of wizards, select Rich Client Platform Wizards category > UI

Wizards > Rich Client Platform Composite.
6. Click Next. The New Rich Client Platform Composite window displays.

© Copyright IBM Corp. 1999, 2013 65



Field Description

Source Folder: The path of the folder that you selected automatically displays.
Click Browse to browse to the source folder where you want to
store the composite and behavior java files.

Package: Enter the name of the package in which you want to store the
composite and behavior java files (if necessary). This helps you to
easily manage the directory structure of your plug-in project. If not
specified, the system automatically creates the composite java file
with the default package name.

Composite File Name: By default, the NewPanel.java composite file name displays. Enter
a new composite file name, if necessary.

7. Click Finish. The system creates a composite file and behavior file in the
specified source folder. These files are stored in the package that you specified.
The following figure illustrates a typical folder structure that has both Java files
stored under the package name.

About Designing a Rich Client Platform Composite
You can customize the layout and alignment of your screen as needed. In Visual
Editor (Eclipse plug-in), use the Standard Widget Toolkit (SWT) to design UIs.

66 Customizing the Rich Client Platform Interface



The Visual Editor enables you to work with layout managers and easily design
your screen. This section explains how to create a simple Search and List screen
with an example. The following figure depicts a sample Search and List screen.

You can divide the Search and List screen into the following panels:
v Search Criteria panel—This panel contains controls that are used to get input

from the user. This may include text boxes, combo boxes, radio buttons,
checkboxes, and so forth. When you click the search button, the appropriate API
is called with contents in the controls as input to the API. The API output is
displayed in the Search Results panel.

v Search Results panel—This panel displays the search results. If the results
returns multiple items, you can show the items in a table. Otherwise, you can
display data using suitable controls.

Creating the Search Criteria Panel for a Rich Client Platform
Composite

About this task

To create the Search Criteria panel for the Search and List screen:

Procedure
1. Start the Eclipse SDK.
2. In the navigator window, expand the plug-in project that you created.

Chapter 9. Creating and Adding Screens 67



3. Expand the folder where you have stored the Rich Client Platform composite
file.

4. Right-click the Rich Client Platform composite file and select Open With >
Visual Editor from the pop-up menu. The composite file opens in the Visual
Editor UI. The Java Beans view automatically opens on the left-hand side of
the Eclipse workbench along with other views. Otherwise, manually open the
Java Beans View by selecting Window > Show View > Other.... From the list
of views under Java, select Java Beans.
In the Java Beans view, you can view the hierarchy of SWT containers and
controls.
In the Properties view, you can view properties and values of the selected
containers (composite and group) and controls (labels, text boxes, combo
boxes, and so forth).
You can select containers or controls from the Visual Editor UI or Java Beans
View.

5. From the Java Beans view, select this composite.
6. From the Properties view, in the layout property, select FillLayout from the

drop-down list.
7. From the Java Beans view, select pnlRoot composite.
8. From the Properties view, select the GridLayout value from the drop-down

list for the layout property.
9. From the Palette, click SWT Containers.

10. Select Composite and place it in the pnlRoot composite. The Name pop-up
window displays.

11. Enter the name for the Composite. For example, cmpSearchCriteria.
12. From the Properties view, select the GridLayout value from the drop-down

list for the layout property.
13. Right-click the cmpSearchCriteria composite, and select the Customize

Layout... from the pop-up menu. The Customize Layout pop-up window
displays.

14. In the Grid Columns panel, in Number of columns:, enter 4.

15. Select the Component tab. In the Fill panel, click to fill the excess
horizontal space.

16. In the Grab Excess panel, click to grab the excess horizontal space.

68 Customizing the Rich Client Platform Interface



17. Now add various controls to the cmpSearchCriteria composite. For more
information about adding controls to the cmpSearchCriteria composite, see the
Adding Controls to the Search Criteria Panel for a Rich Client Platform Composite
topic.

18. Bind the controls to display the required data. For more information about
binding controls, see the Binding Controls and Classes for Rich Client Platform
Screens topic.

Adding Controls to the Search Criteria Panel for a Rich Client Platform
Composite

About this task

To add various controls to the composite follow these steps:

Procedure
1. From the Palette, click SWT Controls.
2. Select Label and place it in the cmpSearchCriteria composite. The Name

pop-up window displays.
3. Enter the name of the Label. For example, lblOrderNo.
4. In the Properties view, enter the text property value as OrderNo.
5. Right-click the lblOrderNo label and select Customize Layout... from the

pop-up menu. The Customize Layout pop-up window displays.

6. Select the Component tab. In the Fill panel, click to fill the excess

horizontal space. Click .
7. From SWT Controls, select Text and place it after the lblOrderNo label. The

Name pop-up window displays.
8. Enter the name for the Text. For example, txtOrderNo.
9. Right-click the txtOrderNo text box and select Customize Layout... from the

pop-up menu. The Customize Layout pop-up window displays.
10. Select the Component tab. In Span panel, in Horizontal, enter 3.

11. In the Fill panel, click to fill the excess horizontal space and click .
12. From SWT Controls, select Label and place it after the txtOrderNo text box.

The Name pop-up window displays.
13. Enter the name for the Label. For example, lblStatus.
14. In the Properties view, enter the text property value as Status.
15. Right-click the lblStatus label and select Customize Layout... from the pop-up

menu. The Customize Layout pop-up window displays.

16. Select the Component tab. In the Fill panel, click to fill the excess

horizontal space and click .
17. From SWT Controls, select Combo and place it after the lblStatus label. The

Name pop-up window displays.
18. Enter the name for the Combo. For example, cmbStatus.
19. Right-click the cmbStatus composite, and select the Customize Layout... from

the pop-up menu. The Customize Layout pop-up window displays.

Chapter 9. Creating and Adding Screens 69



20. Select the Component tab. In Grab Excess panel, click to grab the excess
horizontal space.

21. In the Fill panel, click to fill the excess horizontal space. Click .
22. From SWT Controls, select CheckBox and place it after the cmbStatus combo

box. The Name pop-up window displays.
23. Enter the name of the CheckBox. For example, chkAcrossEnterprise.
24. In the Properties view, enter the text property value as Across Enterprise.

25. Select the Component tab. In the Fill panel, click to fill the excess

horizontal space. Click .
26. From SWT Controls, select Button and place it after the chkAcrossEnterprise

check box. The Name pop-up window displays.
27. Enter the name of the Button. For example, btnSearch.
28. In the Properties view, enter the text property value as Search.
29. Right-click the btnSearch button and select Customize Layout... from the

pop-up menu. The Customize Layout pop-up window displays.

30. Select the Component tab. In the Alignment panel, click to right align the
btnSearch button.

31. In the Grab Excess panel, click to grab the excess horizontal space.
32. From SWT Containers, select Group and place it after the btnSearch command

button. The Name pop-up window displays.
33. Enter the name of the Group. For example, grpPaymentType.
34. In the Properties view, select the GridLayout value from the drop-down list

for the layout property.
35. Enter the text property value as Payment Type.
36. Right-click the grpPaymentType group and select Customize Layout... from

the pop-up menu. The Customize Layout pop-up window displays.
37. In the Grid Columns panel, in Number of columns:, enter 2.
38. Select the Component tab. In Span panel, in Horizontal, enter 4.
39. From SWT Containers, select RadioButton and place it inside the

grpPaymentType group. The Name pop-up window displays.
40. Enter the name for the RadioButton. For example, rdbtnCheck.
41. In the Properties view, enter the text property value as Check.
42. Add another radio button and enter the name for the RadioButton. For

example, rdbtnCreditCard.
43. In the Properties view, enter the text property value as Credit Card.

44. Click . The Search Criteria panel is created as shown:

70 Customizing the Rich Client Platform Interface



Creating the Search Result Panel for a Rich Client Platform Composite
About this task

To create the Search Results panel for the Search and List screen:

Procedure
1. From the Palette, click SWT Containers.
2. Select Composite and place it under the pnlRoot composite. The Name

pop-up window displays.
3. Enter the name for the Composite. For example, cmpSearchResult.
4. From the Properties view, select the GridLayout value from the drop-down

list for the cmpSearchResult composite.
5. Right-click the cmpSearchResult composite, and select the Customize

Layout... from the pop-up menu. The Customize Layout pop-up window
displays.

6. Select the Layout tab. In Grid Columns panel, in Number of columns, enter 1.
7. Select the Component tab. In Fill panel:

v Click to fill the excess horizontal space.

v Click to fill the excess vertical space.
8. In Grab Excess panel:

v Click to grab the excess horizontal space.

v Click to grab the excess vertical space.

v Click .
9. Create a standard table in the cmpSearchResult composite.

10. Click . The following Search Results panel is created:

Chapter 9. Creating and Adding Screens 71



11. Bind the table and table columns with the required data.

Displaying Paginated Results in a Rich Client Platform Composite
You can display paginated results in a Search and List composite. The Search and
List composite that wants to display the paginated results must implement the
IYRCPaginatedSearchAndListComposite interface and return an instance of the
YRCPaginationData object. This YRCPaginationData object should contain the
pagination strategy that you want to use, along with the name of the table in
which you want to display the paginated results. The YRCPaginatedData is
internally used by the system to make a pagination call to the getPage API in order
to get the pagination results. Use one of the following pagination strategies to get
the paginated results:
v GENERIC
v ROWNUM
v RESULTSET
v NEXTPAGE

By default, the GENERIC pagination strategy is used to get the paginated results.

Note: Screens that make pagination calls should set the
YRCApiContext.setPaginationRequired property to "true". If not set to "true", a
normal API call is performed.

If you try to use a feature that is not supported in a particular pagination strategy,
the system throws an YRCPaginationException exception.

For more information about the getPage API and various pagination strategies, see
the Javadocs.

72 Customizing the Rich Client Platform Interface



Page Size

To configure the page size for displaying the paginated data, use the
INSTALL_DIR/properties/customer_overrides.properties file to set the
yfc.ui.ListPageSize property.

Note: If in the customer_overrides.properties file, the yfc.ui.ListPageSize attribute
is not set. The system defaults the page size to 50.

You can also set this property during application initialization by calling the
setpageSize() of the YRCPaginationData class.

YRCPaginatedData

Return an instance of the YRCPaginationData class with the following parameters:
v paginationStrategy(int)—The pagination strategy that you want to use to get the

paginated results.
v resultsTable(Table)—The name of the table in which you want to display the

paginated results.

YRCPaginationException

Return an instance of the YRCPaginationException class to throw an exception to
indicate that a particular pagination strategy does not support this feature. The
exception is thrown when the system attempts to call the getPage API, and either
the pagination is not supported for that particular screen or composite, or the
pagination data is null.

IYRCPageNavigator

To get a handle for the various navigation operations for paginated results, you
must implement the page navigation methods. To implement page navigation:
1. The screen for which the pagination is required must implement the

IYRCPaginatedSearchAndListComposite interface.
2. Set the value of the setPaginationRequired attribute to true for YRCApiContext

of the API that is being called for pagination, which populates the paginated
data to a table.

3. Users must create a user interface for any of the following, depending on the
pagination strategy and the functionality:
v Next Page—To navigate to the next page in the paginated result set, use the

showNextPage() method of the YRCPaginationNavigator class. Pass the
pagination data to this method.

v Previous Page—To navigate to the previous page in the paginated result set,
use the showPreviousPage() method of the YRCPaginationNavigator class.
Pass the pagination data to this method.

v Goto Page PAGE_NO—To navigate to a particular page in the paginated
result set, use the gotoPage() method of the YRCPaginationNavigator class.
Pass the pagination data and the page number to this method.

4. To obtain page navigation controls such as next page, or previous page, or goto
page, call the corresponding method in the IYRCPageNavigator interface.

5. For example, To obtain the next page, use the following:
btnNext.addSelectionListener(new org.eclipse.swt.events.SelectionAdapter()
{ public void widgetSelected(org.eclipse.swt.events.SelectionEvent e)
{ try { myBehavior.getPageNavigator().showNextPage(getPaginationData()

Chapter 9. Creating and Adding Screens 73



);
} catch (YRCPaginationException e1) { myBehavior.trace(e1);
}
}
});

Here, btnNext is the control which navigates to the next page, on click.

Note: Since the pagination API is called asynchronously, the showNextPage()
method will not return any output till the API call is completed. The method,
handleAPICompletion() for the pagination API returns the pagination data.

Note: Make sure that the pagination API is called prior to calling any of the
methods in the IYRCPageNavigator interface. Also, the getPaginatedData() method
implementation should return the same instance of YRCPaginatedData method
every time, since it contains the cumulative information pertaining to the
corresponding screen pagination. For example,
YRCPaginationData data;

public YRCPaginationData getPaginationData() {
if(data == null)

data = new YRCPaginationData(IYRCPaginationConstants.YRC_GENERIC_
PAGINATION_STRATEGY, tblSearchResults);

return data;
}

Server-Side Sorting

You can perform server-side sorting for a table by calling the performSort() method
of the IYRCPageNavigator interface. Pass the pagination data to this method.

You can also perform server-side sorting for a table by right-clicking the Table
column and selecting Sort from the pop-up menu.

Note: To get the pop-up menu for server side sorting, you must call the
setServerSortBinding() method of the YRCTblClmBindingData class and pass the
XPath of the attribute (on which you want perform the sort operation) to the
method.

Creating Tables for Rich Client Platform Screens
The Rich Client Platform supports two types of tables, standard tables and editable
tables. As the name suggests, you can modify the data in an editable table, but not
in a standard table.

Creating Standard Tables
About this task

You can create a standard table and add columns to this table.

To create a standard table:

Procedure
1. From the Palette, click SWT Controls.
2. Select Table and place it in a composite. The Name pop-up window displays.
3. Enter the name for the Table. For example, tblSearchResults.
4. Right-click the tblSearchResults table, and select the Customize Layout... from

the pop-up menu. The Customize Layout pop-up window displays.

74 Customizing the Rich Client Platform Interface



5. Set the layout properties such as Fill, Grab Access, and so forth as needed.

Adding Columns to the Standard Table
About this task

To add columns to a table:

Procedure
1. From the Palette, click SWT Controls.
2. Select TableColumn and place it in a table. The Name pop-up window

displays. You can add as many columns as you want in a table.
3. Enter the name for each TableColumn that you add to a table. For example,

tblcolOrderNo.
4. Bind the table and table columns with the data. For more information about

binding a standard table, see the Creating a Binding Object for a Standard Table
topic.

Creating Editable Tables
About this task

To create an editable table:

Procedure
1. Create a standard table.
2. To change the standard table to an editable table, associate each table column to

a specific cell editor.

Note: You must write the code for creating an editable table in the Rich Client
Platform composite class.
Create an array of cell editors [ ] of size that is equal to number of columns.
For example:
String[] editors = new String[noOfColumns];

The Rich Client Platform supports the following cell editors that are defined in
YRCInternalConstants class:
v YRCInternalConstants.YRCComboBoxCellEditor
v YRCInternalConstants.YRCTextCellEditor
v YRCInternalConstants.YRCCheckBoxCellEditor

3. Create a cell editor and associate with a column. This column acts as an
editable cell. For example:
editors[columnIndex1] = YRCConstants.YRC_COMBO_BOX_CELL_EDITOR;

editors[columnIndex2] = YRCConstants.YRC_TEXT_BOX_CELL_EDITOR;

Note: When creating a combo box cell editor you must create a
YRCComboBindingData binding object and set the appropriate bindings.

4. After creating all cell editors, set the CellTypes for the table with the cell editor
array as the input argument. For example:
tableBindingData.setCellTypes(editors);

5. Bind the table and table columns with the required data.

Chapter 9. Creating and Adding Screens 75



Naming Controls for Rich Client Platform Screens
To name a control, invoke the setName() method on the binding object of that
particular control. You must always set a unique name for each control on the
screen so that it is easy to refer this control in other files.

To name a control, you must create a binding object.

Creating a Binding Object
About this task

To create a binding object for naming a control, create a new instance of binding
class for a specific control. For example, to name a text box, create the following:
YRCTextBindingData oData = new YRCTextBindingData();

where YRCTextBindingData is the class to set bindings for the text box and oData
is the binding object.

Naming a Control
About this task

Use the binding object that you created to name the control.

To name a control:

Procedure
1. Set the name of the control as follows:

oData.setName("txtOrderNo");

where txtOrderNo is the name of the text box.
2. Set the binding data for the control by associating the binding object to the key

for that control. For example:
txtOrderNo.setData(YRCConstants.YRC_TEXT_BINDING_DEFINATION,oData);

where txtOrderNo is the reference variable name of the text box, which you
specified in the visual editor and
YRCConstants.YRC_TEXT_BINDING_DEFINATION is the key used for
identifying the text box binding object.

Note: IBM recommends that you do not use the same binding object for
multiple controls.
If the binding object for a control such as composite or group does not exist, or
if you want to name a control without creating the binding object, you can
directly set the name for that control using the setData() method. For example,
grpSearchCriteria.setData(YRCConstants.YRC_CONTROL_NAME,
"grpSearchCriteria");

where grpSearchCriteria is the reference variable name of the group, which you
specified in the visual editor.

Setting Data On Controls for Rich Client Platform Screens
About this task

You can set additional data on out of the box or custom controls for performing
additional operations. This provides you the ability to read the controls on a screen

76 Customizing the Rich Client Platform Interface



and determine whether or not the additional data has been set for a given control
through extensibilty. You can perform custom operations on the control based on
the data set for that control.

You can set the data for a control using the setControlData(String fieldName,String
key, Object value) method of the YRCExtensionBehavior class.

where fieldName is the name of the control on which data needs to be set, key is the
key for the data, and value is the value set for the key.

Binding Controls and Classes for Rich Client Platform Screens
Bindings are defined to map an input XML model to the screen and back from the
screen to an target XML model.

Binding Classes

The Rich Client Platform allows you to create binding objects of the following class
types for different controls:
v YRCLabelBindingData class for binding labels.
v YRCTextBindingData class for binding text boxes.
v YRCStyledTextBindingData class for binding styledtext components.
v YRCComboBindingData class for binding combo boxes.
v YRCListBindingData class for binding list boxes.
v YRCButtonBindingData class for binding checkboxes and radio buttons.
v YRCLinkBindingData class for binding links.
v YRCTableBindingData class for binding tables.
v YRCTblClmBindingData class for binding table columns.
v YRCCstmCtrlBindingData class for binding custom controls.

Types of Bindings Required for Controls on Rich Client Platform
Screens

Each control is associated with a set of bindings. The Rich Client Platform supports
the following types of bindings for the control types:
v Label
v Check Box
v Radio Button
v Text Box, StyledText component, and Link
v Combo Box and List Box
v Table
v Table Column—For Table columns, set the Attribute Binding.
v Custom Control

Source Binding for Controls on Rich Client Platform Screens
Source binding displays XML data in the screen returned by an API by mapping
the XML attributes to the screen components. Use the source binding to specify the
XML path of an attribute whose value you want to get from an XML model and
display in a control. For example, consider the following XML model:

Chapter 9. Creating and Adding Screens 77



<OrderList>
<Order OrderNo="Y00102495" Status="Accepted">

</OrderList>

If you want to get the value of the OrderNo attribute from the XML model and
display in a text box, set the source binding for the text box as:
txtBindingData.setSourceBinding("OrderDetails:OrderList/Order/@OrderNo")

where txtBindingData is the text box binding object and OrderDetails is the
namespace of the XML model.

When you set the source binding for a table, specify only the repeating element of
the XML model. For example, consider the following XML model:
<OrderList>

<Order OrderNo="Y00102495" Status="Accepted">
<Order OrderNo="Y00992495" Status="Scheduled">
<Order OrderNo="Y00990195" Status="Shipped">

</OrderList>

Now, set the source binding for the table as:
tblBindingData.setSourceBinding("Results:Orderlist/Order")

where tblBindingData is the table binding object, Results is the namespace of the
XML model, and Order is the repeating element in the XML model.

Multiple Source Bindings
About this task

The Rich Client Platform supports multiple source bindings that allow you to
display the values of multiple attributes in the same control. You can separate
multiple source bindings by a semicolon. Using the key binding, you can change
the format of the multiple source-binding values.

The Rich Client Platform allows you to set multiple source bindings for a control.
However, the XML model should have the same namespace for multiple binding
attributes.

For example, consider the XML model as specified in the Source Binding for Controls
on Rich Client Platform Screens topic. To display the values of both OrderNo and
OrderDate attributes of the XML model in a text box, do the following:

Procedure
1. Set the multiple source bindings for the text box as:

txtBindingData.setSourceBinding("OrderDetails:OrderList/Order/@OrderNo;OrderDetails:OrderList/Order/@Status")

where txtBindingData is the text box binding object and OrderDetails is the
namespace of the XML model.

2. Set the key binding for the text box as:
txtBindingData.setKey("orderno_and_status_description")

where orderno_and_status_description is the key.
3. In the Plug-in id_bundle.properties file, enter the key value pair (key = value)

bundle entry for the multiple source binding as:
orderno_and_status_description = The Order No. {0} was booked on {1}

where orderno_and_status_description is the key. {0} and {1} are the positions
of the binding attributes in the XML path.

78 Customizing the Rich Client Platform Interface



The value in the text box displays as: The Order No. Y00102495 was booked on
2005-04-07.

Target Binding for Controls on Rich Client Platform Screens
Target binding allows you to create an input XML for an API that contains data
entered on the screen. You can use the target binding to specify the XML path of
an attribute whose value you want to get from a control and set in an XML model.
For example, consider the following XML model:
<OrderList>

<Order OrderNo="Y00102495" Status="Accepted">
</OrderList>

If you want to set the value entered in the text box for the OrderNo attribute in the
XML model, set the target binding for the text box as:
txtBindingData.setTargetBinding("OrderDetails:OrderList/Order/@OrderNo")

where txtBindingData is the text box binding object and OrderDetails is the
namespace of the XML model.

When you set the target binding for a table, specify only the repeating element of
the XML model. For example, consider the following XML model:
<OrderList>

<Order OrderNo="Y00102495" Status="Accepted">
<Order OrderNo="Y00992495" Status="Scheduled">
<Order OrderNo="Y00990195" Status="Shipped">

</OrderList>

Now, set the target binding for the table as:
tblBindingData.setTargetBinding("Results:Orderlist/Order")

where tblBindingData is the table binding object, Results is the namespace of the
XML model, and Order is the repeating element in the XML model.

Multiple Target Bindings

The Rich Client Platform supports multiple target bindings, allowing you to set the
value of the attributes at multiple locations in the XML models. This is useful
when you want to pass the value of a single control on the screen as an input to
multiple APIs. You can also specify multiple target bindings for a control by
separating them by a semicolon. For example, consider the following XML models:

OrderListDetails is the namespace of the following model.
<OrderList OrderNo="Y00102495" OrderDate="2005-04-07">

<Order OrderNo="Y00102495" Status="Accepted">
</OrderList>

OrderLineDetails is the namespace of the following model.
<OrderLine>

<OrderLineList>
<Order OrderNo="Y00102495" ItemID="MOUSE"/>

</OrderLineList>
</OrderLine>

If you want to set the value entered in the text box for the OrderNo attribute in the
XML models, set the target binding for the text box as:

Chapter 9. Creating and Adding Screens 79



txtBindingData.setTargetBinding("OrderListDetails:OrderList/
@OrderNo;OrderListDetails:OrderList/Order/@OrderNo;OrderLineDetails:
OrderLine/OrderLineList/Order/@OrderNo)

where txtBindingData is the text box binding object. OrderListDetails and
OrderLineDetails are the namespaces of the XML models.

Checked Binding for Controls on Rich Client Platform Screens
Checked binding is used only for checkboxes and radio buttons. Checked binding
is used to specify the value based on which radio button gets selected or check box
gets checked or unchecked. Use the checked binding to specify a string to get and
set the value of an attribute in an XML model.

When getting the attribute value, the system compares the string value with the
attribute value in the XML model. If the value matches, the check box of the
corresponding attribute is automatically checked.

When you check a box, the system sets the string value specified in the Checked
binding as the attribute value in the XML model.

For example, consider the following XML model:
<OrderList>

<Order OrderNo="Y001" Status="Accepted"
IsAccrossEnterprise="Y" FromHistory="N"/>

</OrderList>

For example, to get and set the value of the IsAccrossEnterprise attribute value as
Y, set the checked binding as follows:
btnBindingData.setCheckedBinding("Y")

where btnBindingData is the button binding object.

Unchecked Binding for Controls on Rich Client Platform Screens
The unchecked binding is used to specify a string to get and set the value of an
attribute in an XML model.

When comparing the value of an attribute, the value of the specified string is
compared with the attribute value. If the value matches, the check box of the
corresponding attribute gets automatically unchecked.

When setting the value of an attribute, the system sets the string value as the
attribute value in the XML model when you uncheck the box.

For example, consider the XML model as specified in the Checked Binding for
Controls on Rich Client Platform Screens topic. If you want to get and set the value of
the IsAccrossEnterprise attribute as N, set the unchecked binding as:
btnBindingData.setUnCheckedBinding("N")

where btnBindingData is the button binding object.

80 Customizing the Rich Client Platform Interface



List Binding for Controls on Rich Client Platform Screens
Use the list binding to specify the XML path of the repeating element to populate
the list box or combo box with a list of attribute values.

For example, consider the following XML model:
<Order>

<OrderStatusList>
<OrderStatus Status="1001" StatusDesc="Created"/>
<OrderStatus Status="1002" StatusDesc="Packed"/>
<OrderStatus Status="1003" StatusDesc="Released"/>
<OrderStatus Status="1004" StatusDesc="Shipped"/>

</OrderStatusList>
</Order>

If you want to populate the list box or combo box with the StatusDesc attribute
values, set the list binding as:
cmbBindingData.setListBinding

("OrderStatusDetails:Order/OrderStatusList/OrderStatus")

where cmbBindingData is the combo binding object, OrderStatusDetails is the
namespace of the XML model, and OrderStatus is the repeating element in the
XML model.

Note: You must not specify an XML attribute in the list binding.

Code Binding for Controls on Rich Client Platform Screens
Use the code binding to specify the XML path of an attribute. The value assigned
to the code binding attribute is based on the value selected from the list box or
combo box.

For example, consider the XML model as specified in the List Binding for Controls
on Rich Client Platform Screens topic. To get the value of the Status attribute based
on the value selected for the StatusDesc attribute, set the code binding as:
cmbBindingData.setCodeBinding("Status")

where Status is the attribute whose value is picked from the XML model based on
the value of the StatusDesc attribute, which is specified in the Description Binding
for Controls on Rich Client Platform Screens topic.

Description Binding for Controls on Rich Client Platform Screens
Use the description binding for displaying the attribute's value on the screen. To
display the attribute value, specify the attribute corresponding to the repeating
element that you specified in the list binding.

For example, consider the XML model as specified in the List Binding for Controls
on Rich Client Platform Screens topic. If you want to display the value of StatusDesc
attribute, then set the Description Binding as:
cmbBindingData.setDescriptionBinding("StatusDesc")

where cmbBindingData is the combo binding object and StatusDesc is the attribute
corresponding to the repeating element.

Chapter 9. Creating and Adding Screens 81



Attribute Binding for Controls on Rich Client Platform Screens
Use the attribute binding to specify the XML path of the attribute whose value you
want to display in a table column. For example, consider the following XML
model:
<OrderList>

<Order ItemID="MOUSE" ItemDesc="Pointing device"/>
<Order ItemID="KEYBOARD" ItemDesc="Keyboard Device"/>
<Order ItemID="PENCIL" ItemDesc="7HB Bold Pencil"/>
<Order ItemID="PEN" ItemDesc="Super Pen"/>

</OrderList>

To display the value of ItemID attribute in the table column:
v Set the source binding for the table as:

ItemDetails:OrderList/Order

where Order is the repeating element in the XML model.
v Specify the attribute binding as:

ItemID

where ItemID is the attribute corresponding to the repeating element as
specified in source binding.

Multiple Attribute Bindings

The Rich Client Platform supports multiple attribute bindings, allowing you to
display the values of multiple attributes in a table column. You can separate
multiple attribute bindings by a semicolon. Using the key binding, you can change
the format of the multiple attribute-binding values.

The Rich Client Platform allows you to set multiple attribute bindings for a
control. But the XML model must have the same namespace for multiple binding
attributes.

For example, to display the values of ItemID and ItemDesc attributes in a table
column:
v Set the attribute binding for the table column as:

ItemID;ItemDesc

v Set the key binding for the table column as:
item_description

where item_description is the key.
v In the bundle file, enter the key = value pair bundle entry for the previously

specified source binding as:
item_description = {0} : {1}

where item_description is the key. {0} and {1} is the position of the binding
attributes in the XML path as specified in the source binding.
As a result, the table column displays the value as: MOUSE : Pointing Device.

Key Binding for Controls on Rich Client Platform Screens
Use the key binding to specify a resource bundle key, which you want to use to
format and display the XML data within a localizable sentence or combined with
another XML data attribute. The key binding is used in conjunction with the
source binding or attribute binding as described in the previous sections. For
example, consider the following XML model:

82 Customizing the Rich Client Platform Interface



<OrderList>
<Order ItemID="MOUSE" ItemDesc="Pointing device"/>

</OrderList>

To format the value of the ItemID attribute:
v Specify the source binding as:

ItemDetails:OrderList/Order/@ItemID

v Specify the key binding as: item_description

The bundle file contains the following <key>=<value> pair bundle entry for the
previously specified key:
item_description= The item ordered is : {0}

where item_description is the key. {0} is the position of the binding attributes in the
XML path.

The value displayed is: The item ordered is MOUSE.

Binding Input to Custom Controls on Rich Client Platform Screens
About this task

Custom Control Input binding allows you to configure following parameters for a
custom control:
v BorderRequiredOnInputControls—Whether you want to have borderaround the

custom control or not.
v Editable—Whether you want to make the custom control editable or not.
v NoOfColumns—Number of columns you want to have in the custom control.
v Style(int)—Style you want to have for the custom control. For example,

SWT.LEFT, SWT.WRAP, and so forth.

For example, you can set the Custom Control Input Binding for a custom control
as follows:

Procedure
1. Set the border for the custom control as:

cstmCtrlInputBindingData.setBorderRequiredOnInputControls(true);

where cstmCtrlInputBindingData is the custom control input binding object.
2. To make the custom control editable, set the editable parameter as:

cstmCtrlInputBindingData.setEditable(false);

3. To define multiple columns for a custom control, set the NoOfColumns
parameter as:
cstmCtrlInputBindingData.NoOfColumns (3);

where (3) is the number of columns you want to have in the custom control.
4. Set the custom control style as:

cstmCtrlInputBindingData.setStyle(SWT.LEFT );

About Setting Bindings for Controls on Rich Client Platform Screens
Consider the following input and target XML models for specifying the different
bindings for controls:

Chapter 9. Creating and Adding Screens 83



Input XML Model
<Order OrderNo="Y001" Status="Included In Shipment"

IsAccrossEnterprise="Y" FromHistory="N" Link
Binding="A Link Binding Example : Click Me">

<OrderLineList>
<OrderLine ItemID="MOUSE" CodeDescription="First

Class" Code="A"/>
<OrderLine ItemID="PEN" CodeDescription="Second

Class" Code="B"/>
<OrderLine ItemID="PENCIL" CodeDescription="First

Class" Code="A"/>
</OrderLineList>

</Order>

Target XML Model
<OrderList>

<Order OrderNo="Y001" Status="Accepted"
CodeDescription="First Class" Code="A"
IsAccrossEnterprise="Y" FromHistory="N"/>

<Order OrderNo="Y002" Status="Released"
CodeDescription="Second Class" Code="B"
IsAccrossEnterprise="N" FromHistory="Y"/>

<Order OrderNo="Y003" Status="Shipped"
CodeDescription="Third Class" Code="C"
IsAccrossEnterprise="Y" FromHistory="Y"/>

</OrderList>
<OrderStatus>

<Order OrderNo="Y001" Status="Accepted"/>
<Order OrderNo="Y002" Status="Released"/>
<Order OrderNo="Y003" Status="Shipped"/>

</OrderStatus>

Creating a Binding Object for a Label
About this task

To set bindings for a label, create a binding object for the label.

To create a binding object for a label, create a new instance of the
YRCLabelBindingData binding class. For example:
YRCLabelBindingData lblBindingData = new YRCLabelBindingData();

where YRCLabelBindingData is the class to set bindings for the label and
lblBindingData is the binding object.

Bind a Label
Procedure
1. Set the name of the label using the binding object that you created. For

example:
lblBindingData.setName("lblOrderNo");

where lblOrderNo is the name of the text box and lblBindingData is the
binding object.

2. Set the source binding for the label. For example:
lblBindingData.setSourceBinding("OrderDetails:Order/@OrderNo");

where OrderDetails is the namespace of the model.
3. (Optional) Set the multiple source binding for the label. For example:

lblBindingData.setSourceBinding("OrderDetails:Order/@OrderNo;Order/@Status");

84 Customizing the Rich Client Platform Interface



where OrderDetails is the namespace of the model.
4. (Optional) Set the key binding for the label. For example:

lblBindingData.setKey("order_details");

where order_details is the key.

Note: If you are specifying multiple source binding for the label, this step is
mandatory.

5. (Optional) If you want to display an image for this label, set the server image
configuration for the label to display the image from the server. For example:
lblBindingData.setServerImageConfiguration(YRCConstants.IMAGE_SMALL);

where IMAGE_SMALL is the value of the Name attribute of the Config
element, which is defined in the configuration file. For more information about
configuring server images, see theSterling Business CenterSterling Selling and
Fulfillment FoundationSterling Field Sales Installation GuideInstalling the
Platform.

6. Set the binding data for the label by associating the binding object to the key.
For example:
lblOrderNo.setData(YRCConstants.YRC_LABEL_BINDING_DEFINITION,
lblBindingData);

where lblOrderNo is the reference variable name of the label that you specified
in the visual editor and YRCConstants.YRC_LABEL_BINDING_DEFINITION is
the key used for identifying the label binding object.

Creating a Binding Object for Text Boxes
About this task

To set bindings for a text box, you must create a binding object for the text box.

To create a binding object for a text box, create a new instance of the
YRCTextBindingData binding class. For example:
YRCTextBindingData txtBindingData = new YRCTextBindingData();

where YRCTextBindingData is the class to set bindings for the text box and
txtBindingData is the binding object.

Bind a Text Box
Procedure
1. Set the name of the text box by using the binding object that you created. For

example:
txtBindingData.setName("txtOrderNo");

where txtOrderNo is the name of the text box and txtBindingData is the
binding object.

2. Set the source binding for the text box. For example:
txtBindingData.setSourceBinding("OrderDetails:Order/@OrderNo");

where OrderDetails is the namespace of the model.
3. (Optional) Set the multiple source binding for the text box. For example:

txtBindingData.setSourceBinding("OrderDetails:Order/@OrderNo;Order/@Status");

where OrderDetails is the namespace of the model.
4. (Optional) Set the key binding for the text box. For example:

txtBindingData.setKey("order_details");

Chapter 9. Creating and Adding Screens 85



where order_details is the key.

Note: If you are specifying multiple source binding for the text box, this step is
mandatory.

5. Set the target binding for the text box. For example:
txtBindingData.setTargetBinding("OrderListDetails:OrderList/Order/@OrderNo");

where OrderListDetails is the namespace of the model.
6. (Optional) Set the multiple target binding for the text box. For example:

txtBindingData.setTargetBinding("OrderDetails:Order/@OrderNo;OrderStatus/Order/@Status");

where OrderDetails is the namespace of the model.
7. Set the binding data for the text box by associating the binding object to the

key. For example:
txtOrderNo.setData(YRCConstants.YRC_TEXT_BINDING_DEFINATION,
txtBindingData);

where txtOrderNo is the reference variable name of the text box, which you
specified in the visual editor and
YRCConstants.YRC_TEXT_BINDING_DEFINATION is the key used for
identifying the text box binding object.

Creating a Binding Object for StyledText Components
About this task

To set bindings for a styledtext component, create a binding object for the
styledtext component.

To create a binding object for a styledtext component, create a new instance of the
YRCStyledTextBindingData binding class. For example:
YRCStyledTextBindingData styledTextBindingData = new
YRCStyledTextBindingData();

where YRCStyledTextBindingData is the class to set bindings for the text box and
styledTextBindingData is the binding object.

Bind a StyledText Component
Procedure
1. Set the name of the styledtext component using the binding object that you

created. For example:
styledTextBindingData.setName("styledTextOrderNo");

where styledTextOrderNo is the name of the text box and
styledTextBindingData is the binding object.

2. Set the source binding for the styledtext component. For example:
styledTextBindingData.setSourceBinding("OrderDetails:Order/@OrderNo");

where OrderDetails is the namespace of the model.
For more information about source binding, see "Source Binding for Controls
on Rich Client Platform Screens".

3. (Optional) Set the multiple source binding for the styledtext component. For
example:
styledTextBindingData.setSourceBinding("OrderDetails:Order/
@OrderNo;Order/@Status");

where OrderDetails is the namespace of the model.

86 Customizing the Rich Client Platform Interface



For more information about multiple source binding, see "Multiple Source
Bindings".

4. (Optional) Set the key binding for the styledtext component. For example:
txtBindingData.setKey("order_details");

where order_details is the key.

Note: If you are specifying multiple source binding for the styledtext
component, this step is mandatory.
For more information about key binding, see "Key Binding for Controls on Rich
Client Platform Screens".

5. Set the target binding for the styledtext component. For example:
styledTextBindingData.setTargetBinding("OrderListDetails:OrderList/
Order/@OrderNo");

where OrderListDetails is the namespace of the model.
For more information about target binding, see "Target Binding for Controls on
Rich Client Platform Screens".

6. (Optional) Set the multiple target binding for the styledtext component. For
example:
styledTextBindingData.setTargetBinding("OrderDetails:Order/
@OrderNo;OrderStatus/Order/@Status");

where OrderDetails is the namespace of the model.
For more information about multiple target binding, see "Multiple Target
Bindings".

7. Set the binding data for the styledtext component by associating the binding
object to the key. For example:
styledTextOrderNo.setData(YRCConstants.YRC_STYLED_TEXT_BINDING_DEFINATION,
styledTextBindingData);

where styledTextOrderNo is the reference variable name of the styledText
component, which you specified in the visual editor and
YRCConstants.YRC_STYLED_TEXT_BINDING_DEFINATION is the key used
for identifying the styledtext component binding object.

Creating a Binding Object for Combo Boxes
About this task

To set bindings for a combo box, create a binding object for the combo box.

To create a binding object for a combo box, create a new instance of the
YRCComboBindingData binding class. For example:
YRCComboBindingData cmbBindingData = new YRCComboBindingData();

where YRCComboBindingData is the class to set bindings for the combo box and
cmbBindingData is a binding object.

Bind a Combo Box
Procedure
1. Set the name of the combo box using the binding object that you created. For

example:
cmbBindingData.setName("cmbCode");

where cmbCode is the name of the combo box and cmbBindingData is the
binding object.

Chapter 9. Creating and Adding Screens 87



2. Set the source binding for the combo box. For example:
cmbBindingData.setSourceBinding("OrderDetails:Order/OrderLineList/OrderLine/@Code");

where OrderDetails is the namespace of the model.

Note: For combo box, source binding is used to specify the default value that
should get selected in the combo box. The value of the source binding attribute
is compared with the code binding attribute and the corresponding value of the
description binding attribute gets selected in the combo box.

3. Set the list binding for the combo box. For example:
cmbBindingData.setListBinding("OrderListDetails:OrderList/Order");

where OrderListDetails is the namespace of the model.
4. Set the description binding for the combo box. For example:

cmbBindingData.setDescriptionBinding("CodeDescription");

5. Set the code binding for the combo box. For example:
cmbBindingData.setCodeBinding("Code");

6. Set the target binding for the combo box. For example:
cmbBindingData.setTargetBinding("OrderListDetails:OrderList/Order/@Code");

where OrderListDetails is the namespace of the model.

Note: For combo box, target binding is used to specify the attribute whose
value is set in the target XML model when user selects a value from the combo
box. The value of the code binding attribute is set as the value of the target
binding attribute in the target XML model.

7. Set the binding data for the combo box by associating the binding object with
the key. For example:
cmbCommonCode.setData(YRCConstants.YRC_COMBO_BINDING_

DEFINATION,cmbBindingData);

where cmbCommonCode is the reference variable name of the combo box,
which you specified in the visual editor and
YRCConstants.YRC_COMBO_BINDING_DEFINATION is the key used for
identifying the combo box binding object.

Version-Specific Data in Combo Boxes
The Rich Client Platform supports multiple versions of Rich Client Platform clients
on a single server. In such a scenario, data populated in combo boxes such as
common codes vary between versions and do not correspond to the version of the
client launched. To overcome this problem, combo binding is enabled for version
awareness.

The getCommonCodeList API and YRCComboBindingData are enhanced to
include additional parameters. The method
comboBindingData.setApplicationVersionSpecific(true) is called for displaying
version-specific data in select combo boxes for the required application.

Populating Version-Specific Data in Combo Boxes
About this task

To populate the combo boxes with version-specific data:

88 Customizing the Rich Client Platform Interface



Procedure
1. The method setApplicationVersionSpecific is added to the

YRCComboBindingData to specify version-specific information in a combo box,
in the following format:
public void setApplicationVersionSpecific(boolean versionSpecific)

2. Set versionSpecific to ''true''. If this is set to "true", the combo boxes are
populated with version-specific information such as common codes. Only data
pertaining to the version of the client launched is populated in the combo box.

3. Combo boxes which are populated with version-specific data bear a different
theme, versionedComboTheme. Applications can override this theme, if
required. The Control Info Panel is updated to include the version specific
information as well as the theme applied for a combo box as follows:
v Is Application Version Specific: true
v Theme Name: VersionedComboTheme

4. If data selected in the combo box is not compatible with the version of the
client launched, a default key DifferentVersionPreffix = **{0}** is added to the
Sterling Application Platform Bundle, where {0} represents incompatible data.
For example, if status information "Chained Order Created" in a combo box is
selected, but does not correspond to the version of the client launched, it is
displayed in the following format:
**Chained Order created**.
The application can override this key.

Creating a Binding Object for List Boxes
About this task

To set bindings for a list box, create a binding object for the list box.

To create a binding object for a list box, create a new instance of the
YRCListBindingData binding class. For example:
YRCListBindingData lstBindingData = new YRCListBindingData();

where YRCListBindingData is the class to set bindings for the list box and
lstBindingData is a binding object.

Bind a List Box
Procedure
1. Set the name of the list box using the binding object that you created. For

example:
lstBindingData.setName("lstCommonCode");

where lstCommonCode is the name of the list box and lstBindingData is the
binding object.

2. Set the source binding for the list box. For example:
lstBindingData.setSourceBinding("OrderDetails:Order/OrderLineList/OrderLine/@Code");

where OrderDetails is the namespace of the model.

Note: For list box, source binding is used to specify the default value that
should get selected in the list box. The value of the source binding attribute is
compared with the code binding attribute and the corresponding value of the
description binding attribute gets selected in the list box.

Chapter 9. Creating and Adding Screens 89



3. Set the list binding for the list box. For example:
lstBindingData.setListBinding("OrderListDetails:OrderList/Order");

where OrderListDetails is the namespace of the model.
4. Set the description binding for the list box. For example:

lstBindingData.setDescriptionBinding("CodeDescription");

5. Set the code binding for the list box. For example:
lstBindingData.setCodeBinding("Code");

6. Set the target binding for the list box. For example:
lstBindingData.setTargetBinding("OrderListDetails:OrderList/Order/@Code");

where OrderListDetails is the namespace of the model.

Note: For list box, target binding is used to specify the attribute whose value is
set in the target XML model when user selects a value from the list box. The
value of the code binding attribute is set as the value of the target binding
attribute in the target XML model.

7. Set the binding data for the list box by associating the binding object with the
key. For example:
lstCommonCode.setData(YRCConstants.YRC_LIST_BINDING_DEFINITION,
lstBindingData);

where lstCommonCode is the reference variable name of the list box, which
you specified in the visual editor and
YRCConstants.YRC_LIST_BINDING_DEFINITION is the key used for
identifying the combo box binding object.

Creating a Binding Object for Checkboxes
About this task

To set bindings for a check box, create a binding object for the check box.

To create a binding object for a check box, create a new instance of the
YRCButtonBindingData binding class. For example:
YRCButtonBindingData chkBindingData = new YRCButtonBindingData();

where YRCButtonBindingData is the class to set bindings for the check box and
chkBindingData is a binding object.

Bind a Check Box
Procedure
1. Set the name of the check box using the binding object that you created. For

example:
chkBindingData.setName("chkAcrossEnterprice");

where chkAccrossEnterprice is the name of the check box and chkBindingData
is the binding object.

2. Set the source binding for the check box. For example:
chkBindingData.setSourceBinding("OrderDetails:Order/@IsAccrossEnterprice");

where OrderDetails is the namespace of the model.
3. Set the target binding for the check box. For example:

chkBindingData.setTargetBinding("OrderDetails:Order/@IsAccrossEnterprice");

where OrderDetails is the namespace of the model.
4. Set the checked binding for the check box. For example:

90 Customizing the Rich Client Platform Interface



chkBindingData.setCheckedBinding("Y");

When getting the IsAcrossEnterprise field value from the input XML model, the
string "Y" is compared with the IsAcrossEnterprise field value in the input XML
model. If the value matches, the check box is automatically checked. When
setting the field value in the target XML model, the string "Y" is set as the
value for IsAcrossEnterprise field when you check the box.

5. Set the unchecked binding for the check box. For example:
chkBindingData.setUnCheckedBinding("N");

When getting the IsAcrossEnterprise field value from the input XML model, the
string "N" is compared with the IsAcrossEnterprise field value in the input
XML model. If the value matches, the check box is automatically unchecked.
When setting the field value in the target XML model, the string "N" is set as
the value for IsAcrossEnterprise field when you uncheck the box.

6. Set the binding data for the check box by associating the binding object to the
key. For example:
chkAcrossEnterprice.setData(YRCConstants.YRC_BUTTON_BINDING_DEFINATION,chkBindingData);

where chkAcrossEnterprice is the reference variable name of the check box,
which you specified in the visual editor and
YRCConstants.YRC_BUTTON_BINDING_DEFINATION is the key used for
identifying the check box binding object.

Creating a Binding Object for Radio Buttons
About this task

To set bindings for a radio button, create a binding object for the radio button.

To create a binding object for a radio button, create a new instance of the
YRCButtonBindingData binding class. For example:
YRCButtonBindingData rdBindingData = new YRCButtonBindingData();

where YRCButtonBindingData is the class to set bindings for the radio button and
rdBindingData is a binding object.

Bind a Radio Button
Procedure
1. Set the name of the radio button using the binding object that you created. For

example:
rdBindingData.setName("rdOpen");

where rdOpen is the name of the radio button and rdBindingData is the
binding object.

2. Set the source binding for the radio button. For example:
rdBindingData.setSourceBinding("OrderDetails:Order/@FromHistory");

where OrderDetails is the namespace of the model.
3. Set the target binding for the radio button. For example:

rdBindingData.setTargetBinding("OrderDetails:Order/@FromHistory");

where OrderDetails is the namespace of the model.
4. Set the checked binding for the radio button to specify the value used to get

the FromHistory field value from the input XML model. Set the specified value
for the FromHistory field in the target XML model. For example:
rdBindingData.setCheckedBinding("S001");

Chapter 9. Creating and Adding Screens 91



where S001 is the value of the rdOpen radio button.
For example, if there are three radio buttons, create binding for each of the
radio buttons. Set name, source binding and target binding for each radio
button. Set the checked binding for each radio button with different values
such as S001, S002, and S003. Therefore, when getting the value for a particular
field from the input XML model, the value "S001" is compared with the value
of that field in the input XML model. If the value matches, then the radio
button corresponding to that field is automatically selected. When setting the
value in the target XML model, the value "S001" is set as the value for that field
in the target XML model when you select the radio button corresponding to
that field.

5. Set the binding data for the radio button by associating the binding object to
the key. For example:
rdOpen.setData(YRCConstants.YRC_BUTTON_BINDING_DEFINATION,rdBindingData);

where rdOpen is the reference variable name of the radio button, which you
specified in the visual editor and
YRCConstants.YRC_BUTTON_BINDING_DEFINATION is the key used for
identifying the check box binding object.

Creating a Binding Object for Links
About this task

To set bindings for a link, you must create a binding object for the link.

To create a binding object for a link, create a new instance of the
YRCLinkBindingData binding class. For example:
YRCLinkBindingData linkBindingData = new YRCLinkBindingData();

where YRCLinkBindingData is the class to set bindings for the link and
linkBindingData is the binding object.

Bind a Link
Procedure
1. Set the name of the link using the binding object that you created. For example:

linkBindingData.setName("lnkClickHere");

where lnkClickHere is the name of the link and linkBindingData is the binding
object.

2. Set the source binding for the link. For example:
linkBindingData.setSourceBinding("OrderDetails:Order/@Binding");

where OrderDetails is the namespace of the model.
3. Set the binding data for the link by associating the binding object to the key.

For example:
lnkClickHere.setData(YRCConstants.YRC_LINK_BINDING_DEFINATION,linkBindingData);

where lnkClickHere is the reference variable name of the link, which you
specified in the visual editor and
YRCConstants.YRC_LINK_BINDING_DEFINATION is the key used for
identifying the link binding object.

92 Customizing the Rich Client Platform Interface



Creating a Binding Object for a Standard Table
About this task

To set bindings for a standard table, you must create a binding object for the
standard table. Also, you must create a binding object for a column.

To create a binding object for a standard table, create a new instance of
YRCTableBindingData binding class. For example:
YRCTableBindingData tblBindingData =
new YRCTableBindingData();

where YRCTableBindingData is the class to set bindings for the standard table and
tblBindingData is a binding object.

Creating a Binding Object for a Column
About this task

To create a binding object for a column, create an array of
YRCTblClmBindingData[] with an array size equal to the number of columns in
the table. For example:
YRCTblClmBindingData clmBindingData[] =
new YRCTblClmBindingData[no. of columns in the table];

Bind a Standard Table and Column
Procedure
1. Set the name of the table using the table binding object that you created. For

example:
tblbBindingData.setName("tblSearchResults");

where tblSearchResults is the name of the table and tblbBindingData is the
binding object.

2. Set the name of the table column using the table column binding object that
you created. For example:
clmBindingData[0].setName("clmItemID");

where tblSearchResults is the name of the table column and clmBindingData is
the binding object.

3. Associate the YRCTblClmBindingData() attribute to each column. For
example:
clmBindingData[0] = new YRCTblClmBindingData();

4. Set the attribute binding for the column. For example:
clmBindingData[0].setAttributeBinding("ItemID");

5. (Optional) Set the multiple attribute binding for the column. For example:
clmBindingData[0].setAttributeBinding("ItemID;Code");

where OrderDetails is the namespace of the model.
6. (Optional) Set the key binding for the column. For example:

clmBindingData[0].setKey("item_details");

where item_details is the key.

Note: If you are specifying multiple attribute binding for the column, this step
is mandatory.

7. Set the title of the table column. For example:

Chapter 9. Creating and Adding Screens 93



clmBindingData[0].setColumnBinding("item_id");

8. Set the server image configuration for the column to display the image from
the server. For example,
clmBindingData[0].setServerImageConfiguration(YRCConstants.IMAGE_SMALL);

where IMAGE_SMALL is the value of the Name attribute of the Config
element, which is defined in the configuration file. For more information
about configuring server images, see the Sterling Business CenterSterling
Selling and Fulfillment FoundationSterling Field Sales: Installation
GuideInstalling the Platform.

9. To sort a column, set the SortReqd attribute value to "true". For example:
clmBindingData[0].setSortReqd(true);

10. To make a column data localized, set the DbLocaliseReqd attribute value to
"true". For example:
clmBindingData[0].setDbLocaliseReqd(true);

For more information about database localization, see the Sterling Business
CenterSterling Selling and Fulfillment FoundationSterling Field Sales:
Localization Guide.

11. Repeat steps 2 to 10 to set bindings for all columns in the table.
12. To allow navigation through the keys in a table, set the

KeyNavigationRequired attribute value to "true". For example:
tblBindingData.setKeyNavigationRequired(true);

13. To sort a table, set the SortReqd attribute value to "true". For example:
tblBindingData.setSortRequired(true);

14. To filter the table based on some value, set the FilterReqd attribute value to
"true". For example:
tblBindingData.setFilterRequired(true);

15. Set the source binding for the column. For example:
tblBindingData.setSourceBinding("Results:/OrderLineList/OrderLine");

where Results is the namespace for this model.
16. Set the column binding data on the table binding data using the

setTblClmBindings() method. For example:
tblBindingData.setTblClmBindings(clmBindingData);

17. (Optional) Use the setLinkProvider() method to create links in the table. The
setLinkProvider() method takes the IYRCTableLinkProvider interface as input,
which contains two methods getLinkTheme() and linkSelected(). You must
implement these methods to create links in the table. The linkSelected()
method is called when you select any link in the column. For example:
tblBindingData.setLinkProvider(new IYRCTableLinkProvider() {
public String getLinkTheme(Object element, int columnIndex) {
return "TableLink"; }
public void linkSelected(Object element, int columnIndex) {
}});

In the getLinkTheme() method, add the logic to set themes for links in a
column. This method returns the name of the link theme. If it returns null it is
assumed that a link is not required.
In the linkSelected() method, add the logic to perform the required operation,
when the link on the table column cell gets selected.

Note: To create links in your table, set the LinkRequired flag of the table
column binding object to "true". For example:
clmBindingData[0].setLinkReqd(true);

94 Customizing the Rich Client Platform Interface



where clmBindingData is the object of YRCTblClmBindingData class and 0 is
the column index.

18. (Optional) Use the setImageProvider() method to add images for a table
column. The setImageProvider() method takes the IYRCTableImageProvider
interface as input, which contains getImageThemeForColumn() method. You
must implement this method to add images in columns. For example:
tblBindingData.setImageProvider(new IYRCTableImageProvider(){
public String getImageThemeForColumn(Object element, int columnIndex){
return null;
}});

In the getImageThemeForColumn() method, add the logic for setting a unique
image theme for the table column cell based on some condition. This method
returns the unique image theme set. If it returns null, the default image theme
is applied.

19. (Optional) Use the setColorProvider() method to set different colors for the
table columns. The setColorProvider() method takes the
IYRCTableColorProvider interface as input, which contains getColorTheme()
method. You must implement this method to provide different colors for the
table columns. For example:
tblBindingData.setColorProvider(new IYRCTableColorProvider(){
public String getColorTheme(Object element, int columnIndex) {
return null;
}});

In the getColorTheme() method, add the logic for setting different colors for
the table column cells based on some condition. For example, you may want
to set different color for non-editable cells that displays data for the status
field, and different color for editable cells that displays data for the amount
field. This method returns the name of the color theme. If it returns null, the
default color theme is applied.

20. (Optional) Use the setFontProvider() method to set different font types for the
table columns. The setFontProvider() method takes the IYRCTableFontProvider
interface as input, which contains getFontTheme() method. You must
implement this method to provide different colors for the table columns. For
example:
tblBindingData.setFontProvider(new IYRCTableFontProvider(){
public String getFontTheme(Object element, int columnIndex) {
return null;
}});

In the getFontTheme() method, add the logic for setting different font types
for the table column cells based on some condition. For example, you may
want to set different font type for non-editable cells that displays data for the
status field and different font type for editable cells that displays data for the
amount field. This method returns the name of the font theme. If it returns
null, the default font theme is applied.

21. After setting the binding properties for the YRCTableBindingData object, set
the binding data for the table by associating the binding object to the key. For
example:
tblSearchResult.setData(YRCConstants.YRC_TABLE_BINDING_DEFINATION,
tblBindingData);

where YRCConstants.YRC_BUTTON_BINDING_DEFINATION is the key used
for the table binding object.

Chapter 9. Creating and Adding Screens 95



Setting Bindings for an Editable Table
Binding editable tables is same as binding standard tables except that when you
bind editable tables, you must handle the editable table columns. To bind an
editable table, follow the steps as described in the Creating a Binding Object for a
Standard Table topic.

To handle the editable table columns, use the setCellModifier() method. The
setCellModifier() method takes the IYRCCellModifier interface as input, which
contains three methods allowModifiedValue(), allowModify() and
getModifiedValue(). You must implement these methods to control editable
features of different columns in the table. For example:
tblBindingData.setCellModifier(new IYRCCellModifier() {
protected boolean allowModify(String property, String value,
Element element)
{
return true;
}
protected int allowModifiedValue(String property, String value,
Element element)
{
return 0;
}
protected String getModifiedValue(String property, String value,
Element element)
{
return value;
}});

In the allowModify() method, add the logic to check whether you want to allow
modifications in an editable cell of a table column. For example, you may want to
allow modifications for an editable cell, which displays data for the discount field.
This method returns a boolean value, "true" or "false". If the method returns a
"false" value, it indicates that modifications are not allowed for that cell.

In the allowModifiedValue() method, add the logic for adding further validation
constraints to check whether the new value entered is valid or not. This method
returns an integer value. If it returns "0", then the existing value is not replaced
with the new value.

In the getModifiedValue() method, add the logic to set the modified value for a cell
of a table column that you are currently editing. You can use this method to
update some other property based on the current one or to change the format of
the property.

Binding Combo Box Cell Editors
About this task

Binding combo box cell editors means binding a combo box inside an editable
table. To set bindings for a combo box cell editor, do the following:

Procedure
1. Create a binding object for the combo box.
2. Set the list binding, description binding, and code binding for the combo box.

Note: Only set the list binding, description binding, and code binding for the
combo box.

96 Customizing the Rich Client Platform Interface



3. Set the binding data of the table column with the YRCComboBindingData
binding object as an argument. For example:
clmBindingData[columnIndex].setBindingData(cmbBindingData);

where cmbCommonCode is the reference variable name of the combo box,
which you specified in the visual editor and
YRCConstants.YRC_COMBO_BINDING_DEFINATION is the key used for
identifying the combo box binding object.

Setting Bindings for an Extended Table
To set bindings for an extended table, you must create a binding object for the
extended table.

Note: Make sure that you write the code for binding extended tables in the
extension behavior class that you created. In the extension behavior class, override
the getExtendedTableBindingData() method. In this method create and return the
extended table binding object. For example:
YRCExtendedTableBindingData extntblBindingData = new
YRCExtendedTableBindingData("tableSearch");
// Create and get the advanced column binding map for the extended table.
HashMap advclmBindingData = getTableColumnBindingData ("tableSearch");
extntblBindingData.setTableColumnBindingsMap ("advclmBindingData");
.
.

//Set Bindings for Extended Table and Advanced Columns
.
return extntblBindingData;

where tableSearch is the name of the extended table.

Creating a Binding Object for an Extended Table
About this task

To create a binding object for an extended table, create a new instance of
YRCExtendedTableBindingData binding class. For example:
YRCExtendedTableBindingData extntblBindingData = new
YRCExtendedTableBindingData();

where YRCExtendedTableBindingData is the class to set bindings for the extended
table and extntblBindingData is a binding object.

Create a Map of the Advanced Column Binding Data
About this task

To create a map of the binding data for the advanced column that you added
using the Rich Client Platform Extensibility Tool, create a new instance of
HashMap binding class. For example:
HashMap bindingDataMap = new HashMap();

where HashMap is the class to create a map of the advanced column binding data
and bindingDataMap is the hash map. The HashMap contains the name of the
advanced column as the key and the corresponding binding data as the value.

Chapter 9. Creating and Adding Screens 97



Bind an Extended Table and Advanced Column
About this task

Procedure
1. Create a binding object for an advanced column by creating a new instance of

the YRCTblClmBindingData binding class. For example:
YRCTblClmBindingData advclmBindingData = new YRCTblClmBindingData();

where YRCTblClmBindingData is the class to set bindings for the advanced
column and advclmBindingData is a binding object.

Note: Only if you have added an advanced column through extensibility, you
need to create the binding object and set bindings for that advanced column.

2. Set the attribute binding for the advanced column. For example:
advclmBindingData.setAttributeBinding("ItemID");

3. (Optional) Set multiple attribute binding for the advanced column. For
example:
advclmBindingData.setAttributeBinding("ItemID;Code");

where OrderDetails is the namespace of the model.
4. (Optional) Set the key binding for the advanced column. For example:

advclmBindingData.setKey("item_details");

where item_details is the key.

Note: If you specify multiple attribute binding for the column, step is
mandatory.

5. Set the server image configuration for the advanced column to display the
image from the server. For example,
advclmBindingData.setServerImageConfiguration(YRCConstants.IMAGE_SMALL);

where IMAGE_SMALL is the value of the Name attribute of the Config
element, which is defined in the configuration file. For more information
about configuring server images, see the Sterling Business CenterSterling
Selling and Fulfillment FoundationSterling Field Sales: Installation
GuideInstalling the Platform.

6. To sort the advanced column, set the SortReqd attribute value to "true". For
example:
advclmBindingData.setSortReqd(true);

7. To localize the advanced column data, set the DbLocaliseReqd attribute value
to "true". For example:
advclmBindingData.setDbLocaliseReqd(true);

For more information about localizing the database, see the Sterling Business
CenterSterling Selling and Fulfillment FoundationSterling Field Sales:
Localization Guide.

8. To filter an advanced column based on some value, set the FilterReqd
attribute value to "true". For example:
advclmBindingData.setFilterRequired(true);

9. Add the advanced column binding data object to the data map object. For
example:
bindingDataMap.put("extn_AdvClm1", advclmBindingData);

98 Customizing the Rich Client Platform Interface



where bindingDataMap is the hash map binding object, extn_AdvCml is the
name of the advanced column added using the Rich Client Platform
Extensibility Tool, and advclmBindingData is the advanced column binding
object.

10. Repeat Step 1 through Step 9 to set bindings for all advanced columns that
you add to the extended table using the Rich Client Platform Extensibility
Tool.

11. (Optional) To sort an extended table, set the SortReqd attribute value to "true".
For example:
extntblBindingData.setSortRequired(true);

12. (Optional) To filter an extended table based on some value, set the FilterReqd
attribute value to "true". For example:
extntblBindingData.setFilterRequired(true);

13. Set the source binding for the table. For example:
extntblBindingData.setSourceBinding("Results:/OrderLineList/OrderLine");

where Results is the namespace for this model.
14. (Optional) Use the setLinkProvider() method to create links in the advanced

columns that you added using the Rich Client Platform Extensibility Tool. The
setLinkProvider() method takes the YRCExtendedTableLinkProvider class as
input, which contains two methods getLinkTheme() and linkSelected(). You
must implement these methods to create links in the advanced columns of an
extended table. The linkSelected() method is called when you select any link
in the column. For example:
YRCExtendedTableLinkProvider extntblLinkProvider
= new YRCExtendedTableLinkProvider() {
public String getLinkTheme(Object element, String property) {
return "TableLink"; }
public void linkSelected(Object element, String property) {
}};
extntblBindingData.setLinkProvider(extntblLinkProvider);

In the getLinkTheme() method, add the logic to set themes for links in a
column. This method returns the name of the link theme. If it returns null it is
assumed that a link is not required.
In the linkSelected() method, add the logic to perform the required operation,
when you click the link in the advanced column cell.

Note: To create links in your extended table, set the LinkRequired flag of the
advanced column binding object to "true". For example:
advclmBindingData.setLinkReqd(true);

where advclmBindingData is the advanced column binding object.

Note: On UNIX or Linux, to activate a link in an editable table, double-click
on the link.

15. (Optional) Use the setImageProvider() method to add images for an advanced
column. The setImageProvider() method takes the
YRCExtendedTableImageProvider class as input, which contains
getImageThemeForColumn() method. You must implement this method to
add images in advanced columns. For example:
YRCExtendedTableImageProvider extntblImageProvider
= new YRCExtendedTableImageProvider() {
public String getImageThemeForColumn(Object element, String property) {

if (property.equals("@ItemID")) {
Element e = (Element)element;
String strImageTheme = e.getAttribute("TableFilter");

Chapter 9. Creating and Adding Screens 99



return strImageTheme;
} return null;

}}; extntblBindingData.setImageProvider (extntblImageProvider);

In the getImageThemeForColumn() method, add the logic for setting a unique
image theme for the advanced column cell based on some condition. This
method returns the unique image theme set. If it returns null, the default
image theme is applied.

16. (Optional) Use the setColorProvider() method to set different colors for the
advanced columns. The setColorProvider() method takes the
YRCExtendedTableColorProvider class as input, which contains
getColorTheme() method. You must implement this method to provide
different colors for the advanced columns. For example:
YRCExtendedTableColorProvider extntblColorProvider
= new YRCExtendedTableColorProvider() {
public String getColorTheme(Object element, String property) {

if (property.equals("@Price")) {
Element e = (Element)element;
int price = YRCXmlUtils.getIntAttribute(e,"Price");

If (price < 50) {
return "ValidationOK";

else
{

return "ValidationERROR";
}

} return null;
}};
extntblBindingData.setColorProvider (extntblColorProvider);

In the getColorTheme() method, add the logic for setting different colors for
the advanced column cells based on some condition. For example, you may
want to apply a different color for non-editable cells that displays data for the
status field, and a different color for editable cells that displays data for the
amount field. This method returns the name of the color theme. If it returns
null, the default color theme is applied.

Setting Bindings for Extended Editable Tables
Binding extended editable tables is same as binding extended tables. The only
difference is that when you bind extended editable tables, you must handle the
editable advanced columns. To bind an extended editable table, follow the steps as
described in “Setting Bindings for an Extended Table” on page 97.

To handle the editable advanced columns, use the setCellModifier() method. The
setCellModifier() method takes the YRCExtendedCellModifier class as input, which
contains three methods allowModifiedValue(), allowModify(), and
getModifiedValue(). You must implement these methods to control editable
features of different columns in the table. For example:
YRCExtendedCellModifier extntblCellModifier =

new YRCExtendedCellModifier() {
public boolean allowModify(String property, String value,

Element element) {
return true;

}
public YRCValidationResponse validateModifiedValue(String property,
String value, Element element) {
return new YRCValidationResponse(YRCValidationResponse.YRC_VALIDATION_OK,
"Status message");
}
public String getModifiedValue(String property, String value,
Element element) {

100 Customizing the Rich Client Platform Interface



return value;
}});
extntblBindingData.setCellModifier (extntblCellModifier);

In the allowModify() method, add the logic to check whether you want to allow
modifications in an editable cell of an advanced column. For example, you may
want to allow modifications for an editable cell, which displays data for the
discount field. This method returns a boolean value, "true" or "false". If the method
returns a "false" value, it indicates that modifications are not allowed for that cell.

In the validateModifiedValue() method, add the logic for adding further validation
constraints to check whether the new value entered is valid or not. This method
returns an instance of YRCValidationResponse object with an appropriate status
code and status message. The status code can be one of the following:
v YRCValidationResponse.YRC_VALIDATION_OK
v YRCValidationResponse.YRC_VALIDATION_WARNING
v YRCValidationResponse.YRC_VALIDATION_ERROR

In the getModifiedValue() method, add the logic to set the modified value for a cell
of an advanced column that you are currently editing. You can use this method to
update some other property based on the current one or to change the format of
the property.

Binding Combo Box Cell Editors
About this task

Binding combo box cell editors indicates binding a combo box inside an editable
extended table. To set bindings for a combo box cell editor:

Procedure
1. Create a binding object for the combo box.
2. Set the list binding, description binding, and code binding for the combo box.

Note: Only set the list binding, description binding, and code binding for the
combo box.

3. Set the binding data of the advanced column with the YRCComboBindingData
binding object as an argument. For example:
advclmBindingData.setBindingData(cmbBindingData);

where cmbBindingData is the combo box binding object and YRCConstants.
YRC_COMBO_BINDING_DEFINITION is the key used for identifying the
combo box binding object.

4. Add the advanced column binding data object to the advanced column data
map object. For example:
bindingDataMap.put("extn_AdvClm1", advclmBindingData);

where bindingDataMap is the hash map binding object, extn_AdvCml is the
name of the advanced column that you added using the Rich Client Platform
Extensibility Tool, and advclmBindingData is the advanced column binding
object.

Chapter 9. Creating and Adding Screens 101



Creating a Binding Object for a File Upload Column in a Table in the
Rich Client Platform

Procedure
1. Create a new instance of the YRCTblClmBindingData binding class. For

example:
YRCTblClmBindingData advclmBindingData = new YRCTblClmBindingData();

where YRCTblClmBindingData is the class to set bindings for the advanced
column and advclmBindingData is the binding object.

Note: You need to create the binding object and set bindings for the advanced
column only if you have added an advanced column through extensibility.

2. Set the attribute binding for the advanced column. For example:
advclmBindingData.setAttributeBinding("ItemID");

3. (Optional) Set multiple attribute binding for the advanced column. For
example:
advclmBindingData.setAttributeBinding("ItemID;Code");

where ItemID is the namespace of the model.
4. (Optional) Set the key binding for the advanced column. For example:

advclmBindingData.setKey("item_details");

where item_details is the key.

Note: If you are specifying multiple attribute binding for the column, this step
is mandatory.

5. Set the server image configuration for the advanced column to display the
image from the server. For example:
advclmBindingData.setServerImageConfiguration("YRCConstants_IMAGE_SMALL");

where IMAGE_SMALL is the value of the Name attribute of the Config element,
which is defined in the configuration file.

6. To sort the advanced column, set the SortReqd attribute value to true. For
example:
advclmBindingData.SortReqd(true);

7. To localize the advanced column data, set the DbLocaliseReqd attribute value
to true. For example:
advclmBindingData.DbLocaliseReqd(true);

8. To filter an advanced column based on some value, set the setFilterRequired
attribute value to true. For example:
advclmBindingData.setFilterRequired(true);

9. Add the advanced column binding data object to the data map object. For
example:
bindingDataMap.put("extn_AdvClml", advclmBindingData);

where bindingDataMap is the hash map binding object, extn_AdvClml is the
name of the advanced column added using the Rich Client Platform
Extensibility tool, and advclmBindingData is the advanced column binding
object.

102 Customizing the Rich Client Platform Interface



10. Set the name of the back end table, which is the parent table of the file
attachment table. For example:
advclmBindingData.setFileUploadTable("<table_name>");

where <table_name> is the back end table.
11. Specify that the table column is being used for a file upload. For example:

advclmBindingData.setFile(true);

where advclmBindingData is the table column being used for a file upload.
12. Specify the method to set the file upload type. For example:

advclmBindingData.setFileUploadType("ONSUBMIT");

where ONSUBMIT indicates that the file needs to be uploaded to the server
before the calling of the API which persists the file to the database.

13. Indicate if the model update will be handled by the application and/or a
single table column is used to upload files for multiple entities. For example:
advclmBindingData.setModelUpdateDynamic(boolean modelUpdateDynamic)

where modelUpdateDynamic=true if the model update is performed by the
application.

Creating a Binding Object for a File Upload Text Box in the Rich Client
Platform

Procedure
1. Create a new instance of the YRCTextbindingData binding class. For example:

YRCTextbindingData txtBindingData = new YRCTextbindingData();

where YRCTextbindingData is the class to set bindings for the text box and
txtBindingData is the binding object.

2. Set the name of the text box by using the binding object that you created. For
example:
txtBindingData.setName("txtOrderNo");

where txtOrderNo is the name of the text box and txtBindingData is the
binding object.

3. Set the source binding for the text box. For example:
txtBindingData.setSourceBinding("OrderDetails:Order/@OrderNo");

where OrderDetails is the namespace of the model.
4. (Optional) Set the multiple source binding for the text box. For example:

txtBindingData.setSourceBinding("OrderDetails:Order/@OrderNo;Order/@Status");

where OrderDetails is the namespace of the model.
5. (Optional) Set the key binding for the text box. For example:

txtBindingData.setKey("order_details");

where order_details is the key.

Note: If you are specifying multiple source binding for the text box, this step
is mandatory.

6. Set the target binding for the text box. For example:

Chapter 9. Creating and Adding Screens 103



txtBindingData.setTargetBinding("OrderListDetails:OrderList/Order/@OrderNo");

where OrderListDetails is the namespace of the model.
7. Set the multiple target binding for the text box. For example:

txtBindingData.setTargetBinding("OrderDetails:Order/@OrderNo;OrderStatus/Order/@Status");

where OrderDetails is the namespace of the model.
8. Set the binding data for the text box by associating the binding object to the

key. For example:
txtOrderNo.setData(YRCConstants.YRC_TEXT_BINDING_DEFINATION,txtBindingData);

where txtOrderNo is the reference variable name of the text box, which you
specified in the visual editor, and YRCConstants.YRC_TEXT_BINDING_DEFINATION
is the key used for identifying the text box binding object.

9. Set the type of the field to true for file upload. For example:
txtOrderNo.setFile(true);

where txtOrderNo is the field value which is the location of the file which
needs to get uploaded.

10. Specify that the file validations for the maximum allowed size and file types
which will be allowed for for file upload are table-specific, given by the table
name. For example:
txtOrderNo.setFileUploadTable("<table_name>");

where <table_name> is the table for which the file validations are allowed.
11. Specify the method to set the file upload type.

Note: The application only has to use this method, and does not have to use
the getFileUploadType method.
For example:
txtOrderNo.setFileUploadType("ONSELECT");

where ONSELECT indicates that the file needs to be uploaded as soon as the file
is registered.
txtOrderNo.setFileUploadType("ONSUBMIT");

where ONSUBMIT indicates that the file needs to be uploaded to the server
before the API which persists the file to the database is called. For one control
at any time, the file upload type can be either ONSELECT or ONSUBMIT

12. Indicate if the model update will be handled by the application and/or a
single text control is used to upload files for multiple entities. For example:
txtOrderNo.setModelUpdateDynamic(boolean modelUpdateDynamic)

where modelUpdateDynamic=true if the model update is performed by the
application.

Note: For file validation to occur, the field should be associated with a data
type.

104 Customizing the Rich Client Platform Interface



Localizing Controls and Defining Themes for Rich Client Platform
Applications

About this task

To localize controls, text, or strings:

Procedure
1. Specify the key = value pair in your Plug-in id_bundle.properties file at the

plug-in level. Here, key is the resource key and value is the literal displayed for
the corresponding locale.

2. Replace value with the translated value. For example, to localize a label:
a. Set the key value pair bundle file for the label. For example:

Customer_Address=Customer Address

where Customer_Address is the key and Customer Address is the value for
the key.

b. Set the text of the label with the key as the input argument. For example:
lblCustAdd.setText("Customer_Address");

where lblCustAdd is the reference variable name of the label, which you
specified in the visual editor.

Note: The Rich Client Platform automatically localizes labels, buttons,
group headers, tab folder items, and table column headers. Therefore, the
literals used in the binding object must be resource bundle keys if they need
to be translated to different languages.

Defining Themes for Controls
For theming controls, define the new theme entries in the Plug-
in_id_theme_name.ythm file.

Calling APIs and Services for Rich Client Platform Applications
About this task

Calling an API or service is as follows:

Procedure
1. Create a command in the Plug-in id_commands.ycml file and associate the API

or services to be called with the command. Make sure that the code used for
calling an API or service is written in the behavior class. For example, to call
the getOrderList API, you must create a command with the name as
getOrderList and in the APIName attribute enter getOrderList. For more
information about creating commands, see "Creating Commands".

2. Create a YRCApiContext class object. For example:
YRCApiContext context = new YRCApiContext();

3. Set the command name for the context. For example:
context.setApiName("getOrderList");

where getOrderList is the command name that you created in the Plug-in
id_commands.ycml file.

4. Set the form id for the context. For example,
context.setFormId(getFormId());

Chapter 9. Creating and Adding Screens 105



5. Set the input XML document that is passed to an API or service. For example:
context.setInputXml(getTargetModel("Order").getOwnerDocument());

where Order is the namespace of the XML model.
6. (Optional) Set the key for the context that you created. For example:

context.setUserData("InitialData","1");

where InitialData is the key and 1 is the value for this key. The value of the key
is used to uniquely identify the context. This step is mandatory, if you are
calling the same API multiple times. For more information about calling same
API multiple times, see the Calling the Same API/Service Multiple Times topic

7. Call the API or service. For example,
callApi(context);

8. After the API or service call is complete, the Rich Client Platform calls the
handleApiCompletion() method of behavior class to validate the output and
process it. Therefore, you can write the API completion logic in this method.
For example:
public void handleApiCompletion (YRCApiContext context) {

if(context.getInvokeAPIStatus() < 0) {
// Add logic for the failure condition

}
else {
if(YRCPlatformUI.equals(context.getApiName(),"getOrderList")){

setOrderList(context); }
}

}

Note: If an API or service call fails, the Rich Client Platform throws an
exception.

Calling the Same API/Service Multiple Times
About this task

The Rich Client Platform enables you to call the same API or service multiple tiles.
For example, if you want to call the getOrderList API three times with a different
input XML model as input to the API:

Procedure
1. Create three objects of the YRCApiContext class. For example,

YRCApiContext context1 = new YRCApiContext();
YRCApiContext context2 = new YRCApiContext();
YRCApiContext context3 = new YRCApiContext();

2. Set the same command name for each context. For example,
context1.setApiName("getOrderList");
context2.setApiName("getOrderList");
context3.setApiName("getOrderList");

3. Set the form id for each context. For example,
context1.setFormId(getFormId());
context2.setFormId(getFormId());
context3.setFormId(getFormId());

4. Set the different input XML document for each context.
context1.setInputXml(getTargetModel("Order").getOwnerDocument());
context2.setInputXml(getTargetModel("OrderDetail").getOwnerDocument());
context3.setInputXml(getTargetModel("OrderList").getOwnerDocument());

where Order, OrderDetail, and OrderList are the namespaces of the different
XML model.

106 Customizing the Rich Client Platform Interface



5. Set the key for each context using the UserData key.
context1.setUserData("InitialData","1");
context2.setUserData("InitialData","2");
context3.setUserData("InitialData","3");

where InitialData is the key and 1,2,and 3 are the values for this key based on
the each context. The value of the key is used to uniquely identify each context.

6. Call the API for each context.
callApi(context1);
callApi(context2);
callApi(context3);

7. In the handleApiCompletion() method, get the context.getUserData() to identify
each context. Then, validate and process the output at each API level. For
example,
public void handleApiCompletion(YRCApiContext context) {

if(YRCPLatformUI.equals(context.getUserData("InitialData"),"1")) {
//Add your own logic for validating and processing the
//output at each API level.

}
else if(YRCPLatformUI.equals(context.getUserData("InitialData"),"2")) {
//Add your own logic for validating and processing the
//output at each API level.

}
else if(YRCPLatformUi.equals(context.getUserData("InitialData"),"3")) {
//Add your own logic for validating and processing the
//output at each API level.
}

Calling Multiple APIs/Services
About this task

The Rich Client Platform enables you to call multiple APIs. To call multiple APIs,
define multiple commands in the <Plug-in id>_commands.ycml file.

Note: IBM recommends that you call all APIs at the same time to reduce the
network traffic.

For example, if there are three combo boxes: cmbStatus, cmbEnterprise, and
cmbCountry, you must call APIs or services to display a list of values for these
combo boxes. For instance, the values displayed for the cmbStatus combo box
depends on the output of the getOrderList API. The values displayed for the
cmbEnterprise combo box depends on the output of the getShipNodeList API. The
values displayed for the cmbCountry combo box depends on the output of the
getCommonCodeList API output.

To call multiple APIs or services:

Procedure
1. In the Plug-in id_commands.ycml file, define three commands with names as

getOrderList, getShipNodeList, and getCommonCodeList. Associate an API or
service with each of these commands using the APIName attribute. Make sure
that the code used for calling an API or service is written in the behavior class.
For more information about creating commands, see "Creating Commands".

2. Create a YRCApiContext class object. For example:
YRCApiContext context = new YRCApiContext();

3. To call multiple APIs, set the command names for the commands that you
created in the Plug-in id_commands.ycml file. For example:

Chapter 9. Creating and Adding Screens 107



context.setApiNames(new
String[]{"getOrderStatusList","getShipNodeList","getCommonCodeList"});

4. Set the form id for the context. For example,
context.setFormId(getFormId());

5. Set input XMLs for multiple APIs. For example:
context.setInputXmls(new
Document[]{"getOrderStatusList","getShipNodeList","getCommonCodeList"});

6. (Optional) Set Unique key for multiple commands. For example:
context.setUserData("InitialData","1");

7. Call the API or service. For example:
callApi(context);

8. Invoke the handleApiCompletion() method to validate and process the output
at each API level. You must call this method after executing the callApi()
method. For example:
public void handleApiCompletion(YRCApiContext context) {
String[] sAPINames = context.getApiNames();
if(YRCPlatform.equals(sAPINames[0],"getOrderStatusList")){
setOrderList(context); }
else if(YRCPlatform.equals(sAPINames[1],"getShipNodeList")){
setShipNodeList(context); }
else if(YRCPlatform.equals(sAPINames[2],"getCommonCodeList")){
setCommonCodeList(context); }}

Adding New Rich Client Platform Screens as Pop-ups
About this task

You can display the new screen as a pop-up screen, when you click on a button.
You need to associate the new screen with the button. To display a new screen as a
pop-up screen:

Procedure
1. Add a new button to an existing screen.

Note: When adding the new button, make sure that you check the "Validation
Required?" box.

2. Synchronize the extension behavior for the screen.
3. In the navigator view, expand the plug-in project that you created when setting

up the development environment.
4. Expand the package and open the extension behavior class, which you

specified in Step 2.
5. In the validateButtonClick() method, add the logic to display the new screen in

a pop-up window or dialog window, when you click on the newly added
button. For example,
ViewOrderDetails screen = new ViewOrderDetails(new
Shell(Display.getDefault()), SWT.NONE, bindingData, filterObjectList);
YRCDialog oDialog = new YRCDialog(screen,400,400,"OrderDetails",null);
oDialog.open();

where ViewOrderDetails is the class name of the screen and OrderDetails is the
title of the dialog window that displays this screen.

108 Customizing the Rich Client Platform Interface



Adding New Rich Client Platform Screens to Menu Commands
About this task

You can display the new screen as a menu item. The menu items are connected to
the actions by specifying the action identifier for a specific menu item. Configure
the action which gets invoked, when you click on the menu item or a related task.
To add new screens to a Rich Client Platform application menu, define screens in
the resources. All the resources of have a set of primary properties that are
common to all types of resources. For example, all resources have a Resource ID.
These resources are used to define screens. In addition to primary properties, each
type of resource has a set of unique properties that is specific to a particular type
of resource.

For adding new screens to an application in the resources, define the Resource ID,
URL, and Resource Type. The Resource ID is a unique identifier for each resource.
The URL contains the Rich Client Platform ActionId of the class that invokes the
screen, which is defined in the plugin.xml file.

Note: The action identifiers are not specific to menus. The Related Tasks can also
invoke these actions.

The class that invokes the newly created screen must be created by extending the
YRCAction class. In the YRCAction class, the execute() method invokes the action
configured by you when you click on a menu item. In the execute() method you
can write a code to open the new screen either in a pop-up window or an editor.

For more information about defining resources, see the Sterling Business
CenterSterling Selling and Fulfillment FoundationSterling Field Sales Configuration
Guide Application Platform Configuration Guide.

Displaying New Rich Client Platform Screens in an Editor
About this task

You can display the new screen in an editor when you click on a button or a menu
item or a related task. To display a new screen in an editor:

Procedure
1. Start the Eclipse SDK.
2. In the navigator view, expand the plug-in project that you created when

setting up the development environment.
3. To open the plugin.xml file in the Plug-in Manifest Editor, do any of the

following:
v Double-click on plugin.xml file.
v Right-click on plugin.xml file and select Open With > Plug-in Manifest

Editor.
4. Select the Extensions tab.
5. Click Add. From the New Extension window, select org.eclipse.ui.editors

extension point from the list.
6. Click Finish.
7. Select the org.eclipse.ui.editors extension point. The Extension Details panel

displays.

Chapter 9. Creating and Adding Screens 109



8. In the Extension Details panel, enter the properties of org.eclipse.ui.editors
extension point.

9. Right-click on the org.eclipse.ui.editors extension and select New > editor.
The editor extension element gets created.

10. Select the editor extension element. The Extension Element Details panel
displays.

11. Enter the properties of the editor extension element.
12. In id*, enter the identifier for the editor.
13. In icon, browse to the path of the icon that you want to associate with this

editor.
14. In class, to specify the implementation class, do any of the following:

v Click Browse. The Select Type pop-up window displays. Select the class
that extends the YRCEditorPart class.

v Click on the class: hyperlink. The Java Attribute Editor window displays.

Field Description

Source folder: The name of the source folder that you selected to store the editor
class automatically displays. Click Browse to browse to the folder
that you want to specify as the source folder.

110 Customizing the Rich Client Platform Interface



Field Description

Package: The name of the package that you selected to store the editor class
automatically displays. Click Browse to browse to the package
where you want to store the editor class.

Name Enter the name of the editor class.

Superclass: Click Browse. The Superclass Selection window displays. In
Choose a type, enter YRCEditorPart and click OK.

Constructors from
superclass

Check this box. The system automatically creates the constructor
for the YRCEditorPart superclass.

Inherited abstract
methods

Check this box. The system automatically adds the abstract
methods inherited by the YRCEditorPart superclass.

Finish When you click on this button, the system creates the new editor
class in the selected folder or package.

15. To open the new screen in the specified editor using the menu item, define a
new resource in the resources for the new menu item.

16. In the execute() method of the action set that you associated with the menu
item in the previous step do the following:
v Create a new input element to pass to the YRCEditorInput object.
v Create a new input object to pass to the YRCEditorInput object, if required.
v Create a new YRCEditorInput object. Pass the input element and the input

object that you created (if required). Also pass the array of strings, which
contains the attribute of the input element, and the related task.

v Open the editor that you created for the new screen by passing the Id of the
editor to the YRCPlatformUI.openEditor() method.

Note: Make sure that the editor identifier that you pass to the
YRCPlatformUI.openEditor() method is same as specified in Step 12.
For example,
Element inputElement = YRCXmlUtils.createFromString
("<Order OrderNo=\"YCD001\"/>").getDocumentElement();
Object inputObject = new String("");
YRCEditorInput editorInput = new YRCEditorInput(inputElement,
inputObject, new String[]{"OrderNo"}, "YCD_TASK_QUICK_ACCESS");
YRCPlatformUI.openEditor("com.yantra.qa.editors.QAEdito", editorInput);

Chapter 9. Creating and Adding Screens 111



112 Customizing the Rich Client Platform Interface



Chapter 10. Configuring File Uploads and Downloads

Uploading and Downloading
You can set up your Web UI Framework (WUF) and Rich Client Platform (RCP)
applications to attach files to records of a table, upload files, and download
attached files. Uploads and downloads flow between internal file systems and the
application database.

With this feature, you can do the following:
v Perform a file upload or download in a single transaction.
v Have multiple file uploads within a single API call.
v Restrict the types and sizes of files being uploaded.
v Perform authentication during a file download.
v Perform authorization during a file download.
v Download one file at a time.
v Attach more than one document per record.

This feature has the following limitations:
v Two or more files with the same name cannot be uploaded and attached to a

particular record of a database table. The application must have customized
validation to prevent two or more files with the same name from being
uploaded.

v It is not supported for the Console UI Framework, HTTPTester, End Point, and
remote clients.

v In Windows, file names are case-insensitive within a particular directory, but in
Linux, file names are case-sensitive. At the Sterling Application Platform level,
the case insensitivity of file names will not be checked before the files are
imported into the database. That is, at the Sterling Application Platform level,
abc.txt and ABC.txt are two different files. Application developers will have to
decide if the application allows files of the same name but in different cases to
be uploaded for a record of a database table.

Using yfs.properties to Configure File Uploads
The yfs.properties file includes several properties that you need to set to upload
files in the Web UI Framework and the Rich Client Platform. For more information,
refer to other upload-related tasks and the inline documentation in the actual
yfs.properties file.

Note: Do not directly edit or change the yfs.properties* files. To make changes to
the properties in these files, you must use the customer_overrides.properties file.
IBM does not recommend that you modify or change any properties in files ending
with .in because newer versions or patches of the product will overwrite your
changes. IBM also does not recommend that you change a property file that has a
corresponding .in file because the setupfiles script will re-create the properties file
again, thus causing you to lose your changes.

© Copyright IBM Corp. 1999, 2013 113



Configuring File Uploads
For file uploads in the Rich Client Platform, you can use only text fields to capture
the file location. Text binding data and table column binding data have methods to
indicate that a particular control might contain file data. The following graphic
shows how a file could be uploaded:

You also need to do the following to configure file uploads.

Note: For more information about the yfs.properties settings, refer to the
information about using yfs.properties to configure file uploads in the Rich Client
Platform.
v Use the yfs.properties file to specify whether to start uploading a file as soon as

a field gets file location information and the validation passes, or after the file is
selected and validations are successful.

v Enable RCP uploads using the following methods in the YRCTextBindingData
class. For more information, refer to the Javadocs.public boolean isFile()

Checks to see if a field is the file data type to upload a file.public void
setFile(boolean isFile)

114 Customizing the Rich Client Platform Interface



Sets a field as the location of the file that needs to get uploaded.public void
setFileUploadTable(String tableName)

Sets the name of the back end table.public String getFileUploadTable()

Gets the name of the back end table.public String getFileUploadType()

Gets the file upload type, which determines when a file is uploaded to the
server.public void setFileUploadType(String fileUploadType)

Sets the file upload type, which determines when a file is uploaded to the
server.public boolean isModelUpdateDynamic()

Indicates if the model update will be handled by the application and/or a single
text control is used to upload files for multiple entities.public void
setModelUpdateDynamic(boolean modelUpdateDynamic)

Indicates that the application will handle the model update. It sets the model
update property to dynamic, which indicates that the application will handle the
model update.

v Specify the allowed file types in the yfs.properties file.
v Specify the maximum allowed file size in the yfs.properties file.

The preference in which the maximum allowed size and allowed types are picked
is:
1. Table-specific properties.
2. Application-specific properties.
3. Properties from yfs.properties which are not table-specific.
4. Default properties.

You can configure the user interface to tell users that a file upload is in progress or
when the file upload is complete, using event-related code. Also, utility methods
are available for canceling file uploads that are in progress and for deleting files
that have been uploaded.

When you move your cursor out of a field that is enabled for file upload, the
following validation occurs to determine if a file being uploaded is valid or not.
For validation to occur, the field should be associated with a datatype.
1. Whether a file is present.
2. Whether it is a file and not a directory.
3. Whether the file is an allowed file type.
4. Whether the file is within the maximum allowed size.

On the successful streaming of files to the server for temporary storage, a unique
file ID is generated for each of the files uploaded. The format of the ID is
<UserID>_<System Time in Milliseconds>_<CurrentThreadID>_<Counter>. This ID
information is used when file information has to be persisted in the database as
part of the API call.

The following example code shows XML code that uses this ID. The example ID is
consoleadmin_1273071853344_16_1. This is the model update after the files were
persisted temporarily. In the example, FileLocation is the location at which the files
were persisted temporarily.
<Organization>

<OrgList>
<Org Organization_Key="XYZ" OrgAttachmentDoc="admin_1267599660674_1" />
<FileAttachments>

<FileAttachment FileLocation="C:\bea\user_projects\domains\<domain_name>\
AdminServer\consoleadmin\2297091940258334\consoleadmin_1273071853344_16_1"

Chapter 10. Configuring File Uploads and Downloads 115



FileSize=123 FileName="abc.txt" FileContentType="text/plain"/>
</FileAttachments>

</OrgList>
<User User_Key="admin" UserAttachmentTxt="admin_1267599660675_2"/>
<FileAttachments>

<FileAttachment FileLocation="C:\bea\user_projects\domains\<domain_name>\
AdminServer\consoleadmin\2297091940258334\consoleadmin_1273071853344_16_1"
FileSize=345 FileName="xyz.txt" FileContentType="text/plain"/>

</FileAttachments>
</Organization>

An API failure occurs when:
v There is a failure to send across files to the server.
v There is an exception while trying to persist files in the database as part of the

API call (that is, after the files have been placed successfully on the server in
temporary storage).

To rename an already existing file in the database, the attribute value
NewFileName=new_file_name has to be set to the file attachment element to
update an already existing file attachment record with the new file name.

Securing Uploaded Files
Interfaces for the following tasks help with securing uploaded files in the Web UI
Framework and the Rich Client Platform:
v Virus scan
v Encoding/decoding of files

Virus Scan

You can plug in logic to scan an uploaded file for viruses. Use the yfs.properties
file to plug in the scanner. A default implementation of virus scanning is not
available.

The virus scanner interface includes the following methods. For more information,
refer to the Javadocs.
v public PLTVirusScanResponse scan(InputStream stream, PLTFileHandlerObj

fileObject)
Called first during uploads and downloads to scan the file input stream as is
during the upload/download request.

v public PLTVirusScanResponse scan(PLTFileHandlerObj fileObject)
Called only during uploads to enable the scanning of the file written to
temporary directory.

Encoding/Decoding of Files

Files that are uploaded can be encoded before they are streamed to a temporary
server folder as part of the upload process. These files are encoded by objects of
the IFileEncoderDecoder interface, which has two methods (encode and decode). A
default implementation is provided for this interface. Use the sc.file.upload.encoder
property of the yfs.properties file to plug in the encoder/decoder. For more
information about the sc.file.upload.encoder property, refer to the inline
documentation in the actual yfs.properties file.

Note: The default encoder increases file sizes significantly.

116 Customizing the Rich Client Platform Interface



The following includes basic information about each method. For more
information, refer to the Javadocs.
v public void encode(InputStream iStream, OutputStream oStream)

Encodes the input stream and places it in the output stream. Called during file
upload.

v public void decode(InputStream iStream, OutputStream oStream)
Decodes the input stream and places it in the output stream. Called during file
download.

Encoding and decoding can negatively affect performance. If the
sc.file.upload.encoder property is not set, then encoding and decoding are skipped.

Compression/Decompression of BLOB Data

You can compress and decompress data that is stored in columns and tables. The
actual file content, stored as bytes in the PLT_FILE_DATA table, follows this
mechanism by marking the column as CompressionSupported=true and
UseCompression=true.

Upload Error Messages

Number Error Code Error Condition

Error-Related More
Information or Any
Message

1 PLTF001 If sc.file.upload.dir is
not set

Mandatory
temporary directory
not configured in
properties file.

2 PLTF007 If user is not
authenticated.

File Upload -
Authentication
Failed.

3 PLTF006 Session is not valid. InvalidSession

4 PLTF009 If the file size
exceeds the allowed
size.

Cannot proceed with
file upload.
Maximum file size
exceeded for file
:<filename>.
Maximum file size
allowed(bytes):<max_size>

5 PLTF011 If the file type is not
allowed.

Cannot proceed with
file upload. File type
not allowed. File
:<filename>. Allowed
file
types:<allowed_types>

6 PLTF004 If file is not found
after virus scan in
quarantine directory.

File is not found in
the directory
specified after virus
scan.

7 PLTF008 If virus scan fails. Error message sent
by the virus scan
implementation
should be shown.

Chapter 10. Configuring File Uploads and Downloads 117



Number Error Code Error Condition

Error-Related More
Information or Any
Message

8 If file cannot be
deleted after it is
placed in the
temporary directory.

Error: Cannot delete
file at location:

9 If file is not found at
the specified location,
during file delete.

Error: File not
present at location:

10 If during file delete,
if yfs.properties is
not configured or file
location is not
provided.

Error: File upload
temporary is not
configured in
yfs.properties or file
location is not
provided.

11 If file is successfully
deleted in temporary
location.

File deleted at
location:

12 PLTF013 Virus scan
implementation class
cannot be found or is
incorrect.

Error message sent
will be available on
the client.

13 PLTF014 Encoder-decoder
implementation class
cannot be found or is
incorrect.

Error message sent
will be available on
the client.

14 PLTF015 File upload
temporary directory
is not found.

Error message sent
will be available on
the client.

15 PLTF016 File upload quaranti
ne directory is not
found.

Error message sent
will be available on
the client.

16 PLTF017 Processing of
multipart/form-data
request failed.

Error message sent
will be available on
the client.

17 PLTF018 File upload property
is not defined
correctly.

Error message sent
will be available on
the client.

Configuring File Downloads
A utility method is used to download files in the Rich Client Platform. The method
call will take in the API name, API input XML, and the file download input XML
with the FileAttachmentKey. The key is mandatory and points to the file that has
to be downloaded from the database. Only one file can be downloaded at a time.
This request is posted to the servlet (PLTFileDownloadServlet) that handles the
download of files.

The syntax of the method is public static void downloadFile(String APIName,
Document inputXML, Document fileDownloadinput), with these parameter
definitions:
v APIName

118 Customizing the Rich Client Platform Interface



The name of the API that needs to be called. This is for authorization. On the
success of this API, files are fetched.

v inputXML
The input XML required for the execution of the API. This is for authorization.

v fileDownloadinputThis is used after authorization finishes and the API call
succeeds. This XML must contain the FileAttachmentKey, which is like a
primary key to get the file attached. It points to the file that has to be
downloaded from the database. It is mandatory for the application to pass this
information to download a file.

Files are downloaded to the location specified by the VM argument
-DFileDownloadDir that is specified in the application.ini file. This argument can
contain @user.home in the path, which is the user's home directory. If the argument
is not specified, then the default location will be @user.home/RCP/FileDownloads.

Events are fired to indicate that a download is in progress and when downloading
is complete. You need to configure the UI to indicate when the download begins
and ends.

Securing Downloaded Files
When downloading files in the Web UI Framework and the Rich Client Platform,
to authenticate and authorize the file download request, an API and API input has
to be passed along with the file download input. The API will be called with the
API input passed. If the API is successful, the file specified in the file download
input will be downloaded.

The API which has to be called for file download authorization has to be registered
with the class PLTFileDownloadAPIRegistry using the method API(String
appCode, String appName). The client request should provide the API name and
input. The following is an example of the API input (for the getUserList API):
<User UserKey="">

<FileAttachments>
<FileAttachment FileName=""/>

</FileAttachments>
</User>

As part of the API invocation, authorization and other security tasks are handled
by API security, token validation, and other tasks. This API is invoked to check if
the API succeeds. If it does, then the user is authorized to download files. Then the
file for which FileAttachmentKey is provided in the file download input XML file
will be downloaded.

The API template is provided inside the template/filedownloadapi folder in the
resources.jar file. This is the template for the API which has to be called for
authorization. It should be as small as possible, for example:
<User UserKey="">

<FileAttachments>
<FileAttachment FileName="" FileAttachmentKey=""/>

</FileAttachments>
</User>

Authorization for the file download servlet (PLTFileDownloadServlet) is configured
via web.xml. The context parameter is sc-file-download-authorization-required.
By default, this property value is TRUE.

Chapter 10. Configuring File Uploads and Downloads 119



For download, APIName,APIInputXML, and FileDownloadInputXML are all
required and have to be passed from the client. If the web.xml entry
sc-file-download-authorization-required is set to FALSE, then the
FileAttachmentKey in FileDownloadInputXML is used to fetch the file. If
sc-file-download-authorization-required is set to TRUE, then the API passed by
the client is called with the API input passed. The template for this API call is
described earlier in this topic. If the API call succeeds, then the file is downloaded.

The user invoking the servlet should have permission for the API. On the
successful completion of this API, the file data is decompressed, decoded, and the
client is served with the file it requested for download.

Download Error Messages

Number Error Code Error Condition

Error-Related More
Information or Any
Message

1 PLTF006 Session is not valid. InvalidSession

2 PLTF002 File download input
is not provided.

File download input
is not provided.

3 PLTF012 FileAttachment key is
not provided in file
download input.

FileAttachment key is
not provided

4 PLTF003 File download
authorization is
required, but API
input is not
provided.

API input to
download file is not
provided.

5 PLTF003 File download
authorization is
required, but API
name is not
registered.

API provided for file
download file
authorization is not
registered.

6 PLTF003 File download
authorization is
required, but API
template is not found
at location
template/
FileDownloadapi.

Template not found
for API authorization.

7 YCP0045 If after authorization,
FileAttachment key
cannot be found in
the output.

File attachment
record does not exist
or the user is not
authorized to access
it.

8 YCP0045 If the file attachment
record is not found
in the file attachment
table.

File attachment
record does not exist.

9 PLTF008 If virus scan
implementation finds
virus.

Error message sent
by the virus scan
implementation
should be shown.

120 Customizing the Rich Client Platform Interface



Number Error Code Error Condition

Error-Related More
Information or Any
Message

10 PLTF004 If after virus scan,
the file is not found
within the quarantine
directory.

File is not found in
the directory
specified after the
virus scan.

11 PLTF013 Virus scan
implementation class
cannot be found or is
incorrect.

Error message sent
will be available on
the client.

12 PLTF014 Encoder-decoder
implementation class
cannot be found or is
incorrect.

Error message sent
will be available on
the client.

Structuring the File Upload and Download
You can implement file upload/download functionality through interface contracts
in the Web UI Framework and the Rich Client Platform. The upload/download
implementations can be plugged in either through web.xml as context parameters
or programmatically using exposed methods.

This enables you to do the following:
v Customize upload/download functionality in the same way that you can

customize authorization, authentication, and other tasks.
v Implement upload/download functionality for applications that do not use the

Sterling Application Platform.

These tasks use the following base classes which are present both in the Sterling
Application Platform (the platform_afc.jar file) and in the base file attachment jar
file (platform_fa.jar) that is used when not using the Sterling Application Platform:
v The interfaces IFileUploadProvider and IFileDownloadProvider
v The abstract class PLTFileUploadProvider
v The servlets PLTFileUploadservlet and PLTFileDownloadServlet

Note: For applications consuming the platform_afc.jar file, the platform_fa.jar file
does not have to be added in the classpath since the file attachment base classes of
the platform_fa.jar file are included in the platform_afc.jar file.

Default File Upload/Download Implementations

The following graphic shows the default implementation of upload/download
functionality in applications based on the Sterling Application Platform but which
do not use the Web UI Framework (like the Rich Client Platform):

In the graphic, Platform and Platform_AFC refer to the Sterling Application
Platform.

Chapter 10. Configuring File Uploads and Downloads 121



Default implementation classes are as follows:
v For upload -

com.sterlingcommerce.woodstock.util.frame.file.impl.PLTFileUploadProviderImpl
v For download -

com.sterlingcommerce.woodstock.util.frame.file.impl.PLTFileDownloadProviderImpl

The following graphic shows the default implementation of upload/download
functionality in applications based on the Sterling Application Platform and use
the Web UI Framework:

In the graphic, Platform and Platform_AFC refer to the Sterling Application
Platform.

122 Customizing the Rich Client Platform Interface



Default implementation classes are as follows:
v For upload -

com.sterlingcommerce.ui.web.platform.file.SCUIFileUploadProviderImpl
v For download -

com.sterlingcommerce.ui.web.platform.file.SCUIFileDownloadProviderImpl

Plugging in File Upload/Download Implementations through
web.xml

The following context parameters are used when plugging in file
upload/download implementations through web.xml:
v For upload - sc-file-upload-provider
v For download - sc-file-download-provider

The value of the above mentioned context parameters should be a qualified Java
class path which implements IFileUploadProvider and IFileDownloadProvider for
upload and download, respectively.

Sample context parameters to be plugged in applications based on the Sterling
Application Platform but which do not use the WUF (note the PLT prefix in the
method name):

<context-param>
<param-name>sc-file-upload-provider</param-name>
<param-value>

com.sterlingcommerce.woodstock.util.frame.file.impl.PLTFileUploadProviderImpl
</param-value>

</context-param>
<context-param>

Chapter 10. Configuring File Uploads and Downloads 123



<param-name>sc-file-download-provider</param-name>
<param-value>

com.sterlingcommerce.woodstock.util.frame.file.impl.PLTFileDownloadProviderImpl
</param-value>

</context-param>

Sample context parameters to be plugged in applications based on the Sterling
Application Platform and are on WUF (note the SCUI prefix in the method name):

<context-param>
<param-name>sc-file-upload-provider</param-name>
<param-value>

com.sterlingcommerce.ui.web.platform.file.SCUIFileUploadProviderImpl
</param-value>

</context-param>
<context-param>

<param-name>sc-file-download-provider</param-name>
<param-value>

com.sterlingcommerce.ui.web.platform.file.SCUIFileDownloadProviderImpl
</param-value>

</context-param>

Note: By default, the context parameters required to plug in the default
implementations will not be provided. Consuming applications will have to add
the context parameters in the web.xml file or set it using setFileUploadProvider
and setFileDownloadProvider methods exposed in the
PLTFileUploadDownloadHelper class.

Plugging in File Upload/Download Implementations
Programmatically Using Exposed Methods

The methods setFileUploadProvider and setFileDownloadProvider are exposed in
the PLTFileUploadDownloadHelper class to plug in file upload/download
implementations programmatically using interface contracts.

Sample usage of the above mentioned set methods:
PLTFileUploadDownloadHelper.setUploadProviderImpl(uploadImpl);
PLTFileUploadDownloadHelper.setDownloadProviderImpl(downloadImpl);

Here, uploadImpl and downloadImpl are class objects which implement
IFileUploadProvider and IFileDownloadProvider, respectively.

Uploading and Downloading Using Interface Contracts without the
Sterling Application Platform

About this task

In the Web UI Framework and the Rich Client Platform, you can plug in file
upload/download implementations without the Sterling Application Platform
using the file attachment base framework (platform_fa.jar):

Procedure
1. Code the file upload provider to implement IFileUploadProvider or extend

PLTFileUploadProvider, whichever is appropriate.
2. Code the file download provider to implement IFileDownloadProvider.

124 Customizing the Rich Client Platform Interface



3. Add the context parameters sc-file-upload-provider and
sc-file-download-provider to web.xml or set the file upload/download
providers in the initialization servlet of the application, with the qualified Java
class path of the implementations.

4. Add file upload/download servlet and servlet mapping entries in the web.xml
file.
Sample servlet and servlet mapping entries for file upload and download
servlet:
<servlet id="Servlet_55">

<description>File Upload Servlet</description>
<display-name>File Upload Servlet</display-name>
<servlet-name>FileUploadServlet</servlet-name>
<servlet-class>

com.sterlingcommerce.woodstock.util.frame.file.base.servlets.PLTFileUploadServlet
</servlet-class>

</servlet>
<servlet id="Servlet_56">

<description>File Download Servlet</description>
<display-name>File Download Servlet</display-name>
<servlet-name>FileDownloadServlet</servlet-name>
<servlet-class>

com.sterlingcommerce.woodstock.util.frame.file.base.servlets.PLTFileDownloadServlet
</servlet-class>

</servlet>
<servlet-mapping id="ServletMapping_30">

<servlet-name>FileUploadServlet</servlet-name>
<url-pattern>/FileUploadServlet/*</url-pattern>

</servlet-mapping>
<servlet-mapping id="ServletMapping_31">

<servlet-name>FileDownloadServlet</servlet-name>
<url-pattern>/FileDownloadServlet/*</url-pattern>

</servlet-mapping>

Chapter 10. Configuring File Uploads and Downloads 125



126 Customizing the Rich Client Platform Interface



Chapter 11. Creating and Adding Wizards

Phase 1: Create Wizard Definitions
A wizard is used for any task consisting of many steps, which must be completed
in a specific order. A wizard acts as an interface to lead a user through a complex
task, using step-by-step pages. It can also be used for the execution of any task
involving a sequential series of steps.

Wizard behavior means that each wizard page in a sequence contains a "Next"
button, which the user clicks to move to the next wizard page after entering data
or configuring information in the current wizard page. If the user decides to go
back and change any information entered in a previous wizard page, each wizard
page contains a "Previous" button that the user clicks to go back. At the end of the
wizard sequence, the user clicks a Finish button to begin the particular process.

Note: Before you can start creating wizards, you must set up the development
environment. For more information about setting up development environment,
see "The Development Environment for Rich Client Platform Applications".

Creating a Wizard Definition

You can create a new or modify an existing wizard definition by adding wizard
entities and wizard transitions. The flow of the wizard depends on the output
value of a wizard rule. The wizard definition is created in the
Plug-in_id_commands.ycml file.

Note: You must use a separate Plug-in_id_wizard_name.ycml file for each wizard
definition you create.

Creating a Wizard Definition with the Rich Client Platform
Wizard Editor

About this task

The Rich Client Platform Wizard Editor is used for creating or modifying the
wizard definition. To open the Plug-in_id_commands.ycml file in the Rich Client
Platform Wizard Editor:

Procedure
1. Start the Eclipse SDK.
2. From the menu bar, select Window > Show View > Navigator. The plug-in

project is displayed in the Navigator view.
3. In the navigator window, expand the plug-in project that you created when

setting up the development environment.
4. Right-click the Plug-in_id_wizard_name.ycml file, select Open With > Rich

Client Platform Wizard Editor from the pop-up menu.
5. The Rich Client Platform Wizard Editor displays. A Palette is available on the

right-hand side, containing a list of tools that can be used to create or modify
wizard definition, for example, Marquee, Transition, Rule, Page, and
ChildWizard.

© Copyright IBM Corp. 1999, 2013 127



6. In the Properties view, in Wizard Description, enter the description for the new
wizard.

Phase 2: Create Components to Implement a Wizard Definition
After creating the new wizard definition, you need to create the individual wizard
components that provide implementation for the new wizard.

A wizard contains a wizard class and a wizard behavior class.
v Wizard Class—The container class that controls the UI of the wizard.
v Wizard Behavior Class—The container class that controls the behavior of the

wizard. Primary function of this class is to display the appropriate wizard pages
in a wizard.

Creating Wizard Class
About this task

To create a wizard class:

Procedure
1. Start the Eclipse SDK.
2. From the menu bar, select Window > Show View > Navigator. The plug-in

project is displayed in the Navigator view.
3. In the navigator window, expand the plug-in project that you created when

setting up the development environment.
4. To store the wizard class, right-click on a folder or package and select New >

Class from the pop-up menu. The New Java Class window displays.

128 Customizing the Rich Client Platform Interface



Field Description

Source folder: The name of the source folder that you selected to store the wizard
class automatically displays. Click Browse to browse to the folder
that you want to specify as the source folder.

Package: The name of the package that you selected to store the wizard class
automatically displays. Click Browse to browse to the package
where you want to store the wizard class.

Name Enter the name of the wizard class.

Superclass: Click Browse, the Superclass Selection window displays. In Choose
a type, enter YRCWizard and click OK.

Constructors from
superclass

Check this box. The system automatically creates the constructor
for the YRCWizard superclass.

Inherited abstract
methods

Check this box. The system automatically adds the abstract
methods inherited by the YRCWizard superclass.

5. Click Finish. The system creates the new wizard class in the folder or package
selected by you.

6. Open the newly created wizard class in the Java Editor.

Chapter 11. Creating and Adding Wizards 129



7. Right-click in the editor window, select Source > Override/Implement
Methods... from the pop-up menu. The Override/Implement Methods
window displays.

8. Select getFormId(), getHelpId(), and createBehavior() methods from the list of
methods provided in the YRCWizard class and click OK.

9. Create the field FORM_ID and specify the identifier of the wizard in this field.
For example,
public static final String FORM_ID = "com.yantra.pca.ycd.rcp.wizard.NewWizard";

Override the getFormId() method and return this form id field.

Note: The identifier specified in the FORM_ID field should be the same form
id that you specified in the wizard definition.

10. In the wizard class constructor initialize the wizard by calling the
initializeWizard() method. For example,
public NewWizard(String wizardId, Composite parent,
Object wizardInput, int style) {

super(wizardId, parent, wizardInput, style);
initializeWizard();

}

11. Override the createBehavior() method. Create and return an instance of the
wizard behavior class. For example,
protected YRCWizardBehavior createBehavior() {
myBehavior = new RCPRIWizardBehavior(this, FORM_ID);
return myBehavior;

}

Creating Wizard Behavior Class
About this task

To create a wizard behavior class:

Procedure
1. Start the Eclipse SDK.
2. From the menu bar, select Window > Show View > Navigator. The plug-in

project is displayed in the Navigator view.
3. In the navigator window, expand the plug-in project that you created when

setting up the development environment.
4. To store the wizard behavior class, right-click on a folder or package and

select New > Class from the pop-up menu. The New Java Class window
displays.

130 Customizing the Rich Client Platform Interface



Field Description

Source folder: The name of the source folder that you selected to store the wizard
behavior class automatically displays. Click Browse to browse to
the folder that you want to specify as the source folder.

Package: The name of the package that you selected to store the wizard
behavior class automatically displays. Click Browse to browse to
the package where you want to store the wizard behavior class.

Name Enter the name of the wizard behavior class.

Superclass: Click Browse, the Superclass Selection window displays. In Choose
a type, enter YRCWizardBehavior and click OK.

Constructors from
superclass

Check this box. The system automatically creates the constructor
for the YRCWizardBehavior superclass.

Inherited abstract
methods

Check this box. The system automatically adds the abstract
methods inherited by the YRCWizardBehavior superclass.

5. Click Finish. The system creates the new wizard behavior class in the folder
or package selected by you.

6. Open the newly created wizard behavior class in the Java Editor.
7. Right-click in the editor window, select Source > Override/Implement

Methods... option from the pop-up menu. The Override/Implement Methods
window displays.

Chapter 11. Creating and Adding Wizards 131



8. Select initPage(String) method from the list of methods provided in the
YRCWizardBehavior class and click OK.

9. In the initPage(String) method, write the code for performing wizard page
specific operations. For example, setting the model, calling API or service, and
so forth.

10. In the createPage(String pageIdToBeShown, Composite pnlRoot) method,
return an instance of a wizard page corresponding to the pageId. This method
is called internally.
public IYRCComposite createPage(String pageIdToBeShown,

Composite pnlRoot) {
IYRCComposite page=null;
If(pageIdToBeShown.equalsIgnoreCase(NewWizardPage1.FORM_ID))
{ NewWizardPage1 temp = new NewWizardPage1(pnlRoot, SWT.NONE);

page = temp;
} else if(pageIdToBeShown.equalsIgnoreCase(NewWizardPage2.FORM_ID)) {NewWizardPage2
temp = new NewWizardPage2(pnlRoot, SWT.NONE);

page = temp;
}
return page;
}

For more information about creating wizard page class, see "Creating Wizard
Page Class".

Phase 3 Adding Components to Wizard Definition
About this task

After creating the individual wizard components, you need to add all these
components to the wizard definition. You can add the following wizard
components to the wizard definition:
v Wizard Rule
v Wizard Page
v Sub-task
v Wizard Transition

Adding a Rule to a Wizard Definition
About this task

To add a new wizard rule:

Procedure
1. Open the Plug-in_id_wizard_name.ycml file using the Rich Client Platform

Wizard Editor. For more information about opening the Rich Client Platform
Wizard Editor, see "Creating a Wizard Definition with the Rich Client Platform
Wizard Editor".

2. From the Palette, click Rule and select Rule.
3. Place the Rule in the Wizard Definition editor where you want to add it.
4. In the Properties view, in Description, enter the description for the new

wizard rule.
5. In the Properties view, in Id, enter the unique identifier for the wizard rule.
6. In Impl, enter the fully qualified path of the implementation class for this

wizard rule. For example:
java:com.yantra.pca.ycd.rcp.wizard.rules.NewWizardRule1

132 Customizing the Rich Client Platform Interface



Here, com.yantra.pca.ycd.rcp.wizard.rules is the package name and
NewWizardRule1 is the wizard rule class name that provides the
implementation for this wizard rule.
In a wizard rule, you can also specify a Greex rule you want to evaluate. To
specify the Greex rule, in Impl, enter the relative path of the *.greex file,
which contains the Greex rule you want to evaluate. For example:
greex:greexRules/test1.greex

Here, test1.greex is the name of the Greex file. greexRules is the directory in
your plug-in project containing the *.greex file.

Note: You can use only those Greex rules whose return type is either string or
Boolean.

7. In isLast, enter true if the wizard rule is the last entity in the wizard flow.
8. In Namespaces, enter the namespaces of the XML model based on which the

output of a rule is computed. You can enter more than one namespace for a
rule by separating them with a semi-colon. These namespaces are defined in
the Plug-in_id_command.ycml file.

9. In Outputs, enter one or more output values that will be returned by the
wizard rule. Based on the output values returned by the wizard rule, the
control is transferred to a wizard entity. You can define more than one output
value for a wizard rule by separating them with semi-colon.

10. In Starting, enter true if the wizard rule is the starting entity in the wizard
flow.

11. In X and Y, enter the X and Y co-ordinates for this wizard rule. These
co-ordinates are relative to the (0,0) co-ordinates of the top-left corner.

Adding a Page to a Wizard Definition
About this task

To add a new wizard page:

Procedure
1. Open the Plug-in_id_wizard_name.ycml file using the Rich Client Platform

Wizard Editor.
2. From the Palette, click Page and select Page.
3. Place the page in the Wizard Definition editor where you want to add it.
4. In the Properties view, in Description, enter the description for the new

wizard page.
5. In the Properties view, in Id, enter the unique identifier for the wizard page.
6. In Can Be Hidden, enter true if you want to hide the wizard page in the

wizard flow.
7. In Impl, enter the fully qualified path of the implementation class for the

wizard page that you created. For example:
com.yantra.pca.ycd.rcp.wizard.pages.NewWizardPage1

Here, com.yantra.pca.ycd.rcp.wizard.pages is the package name and
NewWizardPage1 is the wizard page class name that provides the
implementation for this wizard page.

8. In isLast, enter true if the wizard page is the last entity in the wizard flow.
9. In isLast, enter true if the wizard page is the starting entity in the wizard

flow.

Chapter 11. Creating and Adding Wizards 133



10. In X and Y, enter the X and Y co-ordinates for this page. These co-ordinates
are relative to the (0,0) co-ordinates of the top-left corner.

Adding a Sub-task to a Wizard Definition
About this task

To add a new sub-task:

Procedure
1. Open the Plug-in_id_wizard_name.ycml file using the Rich Client Platform

Wizard Editor.
2. From the Palette, click ChildWizard and select ChildWizard.
3. Place the ChildWizard in the Wizard Definition editor where you want to add

it.
4. In the Properties view, in Description, enter the description for the new

sub-task.
5. In the Properties view, in the Id field, enter the unique identifier for the

sub-task.
6. In Impl, enter the fully qualified path of the implementation class for this

sub-task. For example:
java:com.yantra.pca.ycd.rcp.wizard.subtasks.NewSubTask1

Here, the com.yantra.pca.ycd.rcp.wizard.subtasks is the package name and
NewSubTask1 is the sub-task class name that provides the implementation for
this sub-task.

7. In isLast, enter true if the sub-task is the last entity in the wizard flow.
8. In Namespaces, enter the namespaces of the XML model that will be used for

the sub-task. You can enter more than one namespace for a sub-task by
separating them with a semi-colon. These namespaces are defined in the
Plug-in_id_command.ycml file.

9. In Starting, enter true if the sub-task is the starting entity in the wizard flow.
10. In X and Y, enter the X and Y co-ordinates for this sub-task. These

co-ordinates are relative to the (0,0) co-ordinates of the top-left corner.

Adding a Transition to a Wizard Definition
About this task

Wizard transition is used to transfer control from one wizard entity to another
wizard entity. The wizard transition value is compared with the output of the
wizard rule, and based on this value, the control is transferred to the next wizard
entity. You can define same wizard transition identifier for multiple wizard
transitions. However, they must have different values associated with them.

To add a new wizard transition:

Procedure
1. Open the Plug-in_id_commands.ycml file using the Rich Client Platform Wizard

Editor..
2. From the Palette, select Transition.
3. Click the wizard entity from which you want to transfer the control and then

click the wizard entity to which you want to transfer the control.

134 Customizing the Rich Client Platform Interface



4. In the Properties view, in Transition Id, enter the identifier for this wizard
transition.

Note: Multiple wizard transitions originating from a wizard rule must have
same wizard Transition ID. There can only be one transition from a wizard
page.

Creating Wizard Page Components
A wizard page contains a wizard page class and a wizard page behavior class.
v Wizard Page Class—The container class that controls the UI of the wizard page

to take inputs from the user. In addition, this class takes care of binding controls,
and so forth.

v Wizard Page Behavior Class—The container class that controls the behavior of
the wizard page.

Creating Wizard Page Class
About this task

To create a wizard page class:

Procedure
1. Start the Eclipse SDK.
2. From the menu bar, select Window > Show View > Navigator. The plug-in

project is displayed in the Navigator view.
3. In the navigator window, expand the plug-in project that you created when

setting up the development environment.
4. To store the wizard page class, right-click on a folder or package and select

New > Class from the pop-up menu. The New Java Class window displays.

Chapter 11. Creating and Adding Wizards 135



Field Description

Source folder: The name of the source folder that you selected to store the wizard
page class automatically displays. Click Browse to browse to the
folder that you want to specify as the source folder.

Package: The name of the package that you selected to store the wizard
page class automatically displays. Click Browse to browse to the
package where you want to store the wizard page class.

Name Enter the name of the wizard page class.

Superclass: Click Browse, the Superclass Selection window displays. In Choose
a type, enter Composite and click OK.

Interfaces: Click Add, the Implemented Interfaces Selection window displays.
In Choose a type, enter IYRCComposite and click OK.

Constructors from
superclass

Check this box. The system automatically creates the constructor
for the Composite superclass.

Inherited abstract
methods

Check this box. The system automatically adds the abstract
methods inherited by the Composite superclass.

5. Click Finish. The system creates the new wizard page class in the folder or
package selected by you.

136 Customizing the Rich Client Platform Interface



6. Open the wizard page java class in the java editor and design the UI to take
the inputs from the user as per the requirements.

7. In the getFormId() method return the unique FORM_ID of this wizard page.

Note: The string identifier specified in the FORM_ID field should be the same
form id that you specified for the wizard page in the wizard definition.

8. In the constructor of the wizard page class, create an instance of wizard page
behavior class and store is as a field. For example,
public NewWizardPage1(Composite parent, int style) {
super(parent, style);
this.setData("FORMID", FORM_ID);
myBehavior = new NewWizardPage1Behavior(this);
}

Creating Wizard Page Behavior Class
About this task

To create a wizard page behavior class:

Procedure
1. Start the Eclipse SDK.
2. From the menu bar, select Window > Show View > Navigator. The plug-in

project is displayed in the Navigator view.
3. In the navigator window, expand the plug-in project that you created.
4. To store the wizard page behavior class, right-click on a folder or package and

select New > Class from the pop-up menu. The New Java Class window
displays.

Chapter 11. Creating and Adding Wizards 137



Field Description

Source folder: The name of the source folder that you selected to store the wizard
page behavior class automatically displays. Click Browse to browse
to the folder that you want to specify as the source folder.

Package: The name of the package that you selected to store the wizard
page behavior class automatically displays. Click Browse to browse
to the package where you want to store the wizard page behavior
class.

Name Enter the name of the wizard page behavior class.

Superclass: Click Browse, the Superclass Selection window displays. In Choose
a type, enter YRCWizardPageBehavior and click OK.

Constructors from
superclass

Check this box. The system automatically creates the constructor
for the YRCWizardPageBehavior superclass.

Inherited abstract
methods

Check this box. The system automatically adds the abstract
methods inherited by the YRCWizardPageBehavior superclass.

5. Click Finish. The system creates the new wizard page behavior class in the
folder or package selected by you.

138 Customizing the Rich Client Platform Interface



6. In the initPage(String) method, write the code for performing wizard page
specific operations. For example, setting the model, calling API or service, and
so forth.

Creating Wizard Rule Components
About this task

A wizard rule contains a wizard rule class. This class performs logical
computations to evaluate various output values. Based on these output values flow
of the wizard is decided.

To add a new wizard rule:

Procedure
1. Start the Eclipse SDK.
2. From the menu bar, select Window > Show View > Navigator. The plug-in

project is displayed in the Navigator view.
3. In the navigator window, expand the plug-in project that you created when

setting up the development environment.
4. To store the wizard rule class, right-click on a folder or package and select New

> Class from the pop-up menu. The New Java Class window displays.

Chapter 11. Creating and Adding Wizards 139



Field Description

Source folder: The name of the source folder that you selected to store the wizard
rule class automatically displays. Click Browse to browse to the
folder that you want to specify as the source folder.

Package: The name of the package that you selected to store the wizard rule
class automatically displays. Click Browse to browse to the
package where you want to store the wizard rule class.

Name Enter the name of the wizard rule class.

Superclass: Click Browse, the Superclass Selection window displays. In Choose
a type, enter Object and click OK.

Interfaces: Click Add, the Implemented Interfaces Selection window displays.
In Choose a type, enter IYRCWizardRule and click OK.

Constructors from
superclass

Check this box. The system automatically creates the constructor
for the superclass.

Inherited abstract
methods

Check this box. The system automatically adds the abstract
methods inherited by the superclass.

5. Click Finish. The system creates the new wizard rule class in the folder or
package selected by you.

140 Customizing the Rich Client Platform Interface



6. In the execute(HashMap namespaceModelMap) method, write the logic for
computing the output value using the model that is passed in the
namespaceModelMap parameter and return the output value of the rule. This
method is called when the wizard flow needs the output value of this rule.
Wizard flow is based on the output of this rule, as defined in the wizard
definition. The HashMap contains a list of all namespaces and the
corresponding models. These namespaces are defined in the
Plug-in_Id_wizard_name.ycml file.

Registering the Wizard Command File
After you create the wizard definition in the Plug-in_id_wizard_name.ycml
commands file, you must register this command file with the plug-in project that
you created, if required. This is required in order to make your new wizard work
according to the flow that you have defined in the commands file.

Adding Wizards as Pop-ups in Rich Client Platform Applications
About this task

You can display the new wizards as a pop-up screen, when you click on a button.
You need to associate the new wizard with the button. To display a new wizard as
a pop-up screen:

Procedure
1. Add a new button to an existing screen.

Note: When adding the new button, make sure that you check the "Validation
Required?" box.

2. Synchronize the extension behavior for the screen.
3. In the navigator view, expand the plug-in project that you created when setting

up the development environment.
4. Expand the package and open the extension behavior class, which you

specified in Step 2.
5. In the validateButtonClick() method, add the logic to display the new screen in

a pop-up window or dialog window, when you click on the newly added
button. For example,
Object WizardInput = YRCXmlUtils.createfromString("<WizardInput/>");
NewWizard wizard = new NewWizard(NewWizard.FORM_ID,
Shell(Display.getDefault()), WizardInput, SWT.NONE);
wizard.start();
YRCDialog oDialog = new YRCDialog(wizard,400,400,"AddLine",null);
oDialog.open();

Adding Wizards to Menu Commands in Rich Client Platform
Applications

You can display the new wizard as a menu item. The menu items are connected to
the actions by specifying the action identifier for a specific menu item. Configure
the action which gets invoked, when you click on the menu item or a related task.
To add new wizards to a Rich Client Platform application menu, define wizards in
the your application. All the resources have a set of primary properties that are
common to all types of resources. For example, all resources have a Resource ID.

Chapter 11. Creating and Adding Wizards 141



These resources are used to define wizards. In addition to primary properties, each
type of resource has a set of unique properties that is specific to a particular type
of resource.

For adding new wizards to an application in the Resources, define the Resource
ID, URL, and Resource Type. The Resource ID is a unique identifier for each
resource. The URL contains the Rich Client Platform ActionId of the class that
invokes the wizard, which is defined in the plugin.xml file.

Note: The action identifiers are not specific to menus. The Related Tasks can also
invoke these actions.

The class that invokes the newly created wizard must be created by extending the
YRCAction class. In the YRCAction class, the execute() method invokes the action
configured by you when you click on a menu item. In the execute() method you
can write a code to open the new wizard either in a pop-up window or an editor.

For more information about defining resources, see theSterling Business
CenterSterling Selling and Fulfillment FoundationSterling Field Sales Configuration
Guide Application Platform Configuration Guide.

Adding Wizards to Editors in Rich Client Platform Applications
About this task

You can display the new wizard in an editor when you click on a button or a
menu item or a related task. To display a new wizard in an editor:

Procedure
1. Start the Eclipse SDK.
2. In the navigator view, expand the plug-in project that you created when

setting up the development environment.
3. To open the plugin.xml file in the Plug-in Manifest Editor, do any of the

following:
v Double-click on plugin.xml file.
v Right-click on plugin.xml file and select Window > Show View >

Navigator.
4. Select the Extensions tab.
5. Click Add.
6. From the New Extension window, select org.eclipse.ui.editors extension point

from the list.
7. Click Finish.
8. Select the org.eclipse.ui.editors extension point. The Extension Details panel

displays.
9. In the Extension Details panel, enter the properties of org.eclipse.ui.editors

extension point.
10. Right-click on org.eclipse.ui.editors extension and select New > editor. The

editor extension element gets created.
11. Select the editor extension element. The Extension Element Details panel

displays.
12. Enter the properties of the editor extension element.
13. In id*, enter the identifier for the editor.

142 Customizing the Rich Client Platform Interface



14. In icon, browse to the path of the icon that you want to associate with this
editor.

15. In class, to specify the implementation class, do any of the following:
v Click Browse. The Select Type pop-up window displays. Select the class

that extends the YRCEditorPart class.
v Click on the class: hyperlink. The Java Attribute Editor window displays.

Field Description

Source folder: The name of the source folder that you selected to store the editor
class automatically displays. Click Browse to browse to the folder
that you want to specify as the source folder.

Package: The name of the package that you selected to store the editor class
automatically displays. Click Browse to browse to the package
where you want to store the editor class.

Name Enter the name of the editor class.

Superclass: Click Browse, the Superclass Selection window displays. In Choose
a type, enter YRCEditorPart and click OK.

Constructors from
superclass

Check this box. The system automatically creates the constructor
for the YRCEditorPart superclass.

Chapter 11. Creating and Adding Wizards 143



Field Description

Inherited abstract
methods

Check this box. The system automatically adds the abstract
methods inherited by the YRCEditorPart superclass.

Finish When you click on this button, the system creates the new editor
class in the selected folder or package.

16. Open the newly created editor class in the Java Editor.
17. In the createPartControl() method create and return the instance of the new

wizard that you created. For example,
public Composite createPartControl(Composite parent, String task) {
Object WizardInput = YRCXmlUtils.createfromString("<WizardInput/>");
NewWizard wizard = new NewWizard(NewWizard.FORM_ID, parent,
WizardInput, SWT.NONE);
wizard.start();
return wizard;
}

18. To open the new wizard in the specified editor using the menu item, define a
new resource in the Sterling Business CenterSterling Selling and Fulfillment
FoundationSterling Field Sales Resources for the new menu item.

19. In the execute() method of the action set that you associated with the menu
item in the previous step do the following:
v Create a new input element to pass to the YRCEditorInput object.
v Create a new input object to pass to the YRCEditorInput object, if required.
v Create a new YRCEditorInput object. Pass the input element and the input

object that you created (if required). Also pass the array of strings, which
contains the attribute of the input element, and the related task.

v Open the editor that you created for the new screen by passing the Id of the
editor to the YRCPlatformUI.openEditor() method.

Note: Make sure that the editor identifier that you pass to the
YRCPlatformUI.openEditor() method is same as specified in Step 12.
For example:
Element inputElement = YRCXmlUtils.createFromString
("<Order OrderNo=\"YCD001\" />").getDocumentElement();
Object inputObject = new String("");
YRCEditorInput editorInput = new YRCEditorInput(inputElement,
inputObject, new String[]{"OrderNo"}, "YCD_TASK_QUICK_ACCESS");
YRCPlatformUI.openEditor("com.yantra.qa.editors.QAEdito", editorInput);

144 Customizing the Rich Client Platform Interface



Chapter 12. Creating Related Tasks

About Related Tasks
The Rich Client Platform provides the ability to create related tasks by grouping a
set of appropriate tasks based on the functionality. You must define the group and
category for each related task. All related tasks can belong to multiple categories,
but limited to one group.

In addition, you can move the existing related tasks from one group to another
group by creating a new related task in the second group with same the action ID
as given in the first group and then hiding the existing related task in the first
group.

Extending the YRCRelatedTasks Extension Point
About this task

The Rich Client Platform provides the YRCRelatedTasks extension point for
defining related tasks. This extension point needs to be used when you want to
display a new Related task on the Related tasks view.

Each related task is associated with a group. You can also define multiple
categories for each related task. This extension point is defined in the
com.yantra.yfc.rcp plug-in. Any plug-in that is dependent on the
com.yantra.yfc.rcp plug-in can extend this extension point to define its own related
tasks. The YRCRelatedTasks extension has an extension element called tasks. The
tasks extension element also has an extension element called task.

Prior to implementing this extension point the following information is required:
v Category Information—When a new related task is being associated to the active

task running in the current editor, you need to know the categories which the
active task is interested in, so that the new related task can be shown on the
Related tasks view. Once you have identified the category id to which the new
related task should belong to, you must define the same category definition
using the YRCRelatedTaskCategories extension point. Also, make sure that the
new related task is defined in the previously mentioned category.

Note: You can only add new related task to an existing category.

You must define this category in your plugin.xml file, and make sure that the
new related task is defined under this category.

v Group Information—To display a new related task, you can either use an
existing group or create a new group.

To get the category and the group information for adding the new related task to a
existing task:

Procedure
1. In the Rich Client Platform application, navigate to the task you want to

extend.

© Copyright IBM Corp. 1999, 2013 145



2. Through the Rich Client Platform Extensibility Tool, view the screen
information. The category and group information is displayed in the screen
information window.

3. Start the Eclipse SDK.
4. In the navigator view, expand the plug-in project that you created.
5. To open the plugin.xml file in the Plug-in Manifest Editor, do any of the

following:
v Double-click on plugin.xml file.
v Right-click on plugin.xml file and select Open With > Plug-in Manifest

Editor.
6. Select the Extensions tab.
7. Click Add.
8. From the New Extension window, select com.yantra.yfc.rcp.YRCRelatedTasks

extension point from the list.
9. Click Finish. The com.yantra.yfc.rcp.YRCRelatedTasks extension point gets

created. The tasks, categories, and permissions extension elements gets created
automatically in a tree structure.

10. Select the com.yantra.yfc.rcp.YRCRelatedTasks extension point. The Extension
Details panel displays.

11. In the Extension Details panel, enter the properties of YRCRelatedTasks
extension point.

12. Select the tasks extension element. The Extension Element Details panel
displays.

13. In the Extension Element Details panel, enter the properties of the tasks
extension element.

14. Expand the tasks extension element and select the task extension element. The
Extension Element Details panel displays.

15. In the Extension Element Details panel, enter the properties of the task
extension element. To create a new task extension element, right-click on tasks
extension you created and select New > task. The task extension element gets
created. You can create multiple task elements under the tasks extension
element.

16. In groupId, enter the identifier of the group to which the related task belongs
to. The groups are defined by extending the YRCRelatedTaskGroups extension
point.

17. In actionId, enter the identifier of the action that gets invoked when you click
on the related task. The action class of the actionId that you specified should
extend the YRCRelatedTaskAction class.

18. In permissionId, enter the resource identifier from theSterling Business
CenterSterling Selling and Fulfillment FoundationSterling Field Sales
Resources that provide implementation for checking permissions to perform
the related task. For example, a customer support representative may not have
permissions to change the price of an item. The resource identifier for a given
resource is defined in the Sterling Business CenterSterling Selling and
Fulfillment FoundationSterling Field Sales Configuration Guide Application
Platform Configuration Guide

19. Set the isExtension property to true if you want to mark the related task as a
extended related task.

Note: Whenever you set the value of the isExtension property to true for a
related task, it indicates that you want to open the extended related task in an

146 Customizing the Rich Client Platform Interface



existing editor. Therefore, you must define an extension contributor to open
the extended related task in an existing editor.

20. Set the filterRequired property to true, if you want to filter related tasks based
on custom criteria. For example, the Cancel Order related task should not be
displayed after you ship an order.

21. Select the categories extension element. The Extension Element Details panel
displays.

22. In the Extension Element Details panel, enter the properties of the categories
extension element.

23. Expand the categories extension element and select the category extension
element. The Extension Element Details panel displays.

24. In the Extension Details panel, enter the properties of the category extension
element.

25. In id, enter the identifier of the category to which the related task belongs to.
These categories are defined by extending the YRCRelatedTaskCategories
extension point.

26. Select the permissions extension element. The Extension Element Details panel
displays.

27. In the Extension Element Details panel, enter the properties of the permissions
extension element.

28. Expand the permissions extension element and select the permission extension
element. The Extension Element Details panel displays.

29. In the Extension Element Details panel, enter the properties of the permission
extension element. To create a new permission extension element, right-click
the permissions extension element that you created and select New >
permissions. The permission extension element gets created. Just as the Rich
Client Platform supports the definition of multiple permissions for each
related task, you can define multiple permission extension elements under the
category extension element.

30. In permissionId, enter the unique resource identifier that you defined for this
resource in the Sterling Business CenterSterling Selling and Fulfillment
FoundationSterling Field Sales Configuration Guide Application Platform
Configuration Guide

31. In applicationid, enter the unique identifier of the RCP application.

Extending the YRCRelatedTaskCategories Extension Point
About this task

The Rich Client Platform provides the YRCRelatedTaskCategories extension point
for defining categories, which can contain multiple related tasks from multiple
groups. This extension point is defined in the com.yantra.yfc.rcp plug-in. Any
plug-in that is dependent on the com.yantra.yfc.rcp plug-in can extend this
extension point to define its own categories for the related tasks. The
YRCRelatedTaskCategories extension has an extension element called categories.
The categories extension element also has an extension element called category.

To extend the YRCRelatedTaskCategories extension point:

Procedure
1. Start the Eclipse SDK.

Chapter 12. Creating Related Tasks 147



2. In the navigator view, expand the plug-in project that you created when
setting up the development environment.

3. To open the plugin.xml file in the Plug-in Manifest Editor, do any of the
following:
v Double-click on plugin.xml file.
v Right-click on plugin.xml file, and select New > tasks.

4. Select the Extensions tab.
5. Click Add.
6. From the New Extension window, select

com.yantra.yfc.rcp.YRCRelatedTaskCategories extension point from the list.
7. Click Finish. The com.yantra.yfc.rcp.YRCRelatedTaskCategories extension

point gets created. The categories and tasks extension elements gets created
automatically in a tree structure.

8. Select the com.yantra.yfc.rcp.YRCRelatedTaskCategories extension point. The
Extension Details panel displays.

9. In the Extension Details panel, enter the properties of the
YRCRelatedTaskCategories extension point.

10. Select the categories extension element. The Extension Element Details panel
displays.

11. In the Extension Element Details panel, enter the properties of the categories
extension element.

12. Expand the categories extension element and select the category extension
element. The Extension Element Details panel displays.

13. In the Extension Element Details panel, enter the properties of the category
extension element.

14. Expand the category extension element and select the tasks extension element.
The Extension Element Details panel displays.

15. In the Extension Element Details panel, enter the properties of the tasks
extension element.

16. Expand the tasks extension element and select the task extension element. The
Extension Element Details panel displays.

17. In the Extension Details panel, enter the properties of the task extension
element.

18. In id, enter the id of the related task that you want to have in this particular
category.

Extending the YRCRelatedTaskGroups Extension Point
About this task

The Rich Client Platform provides the YRCRelatedTaskGroups extension point for
defining group for a set of related tasks. This extension point is defined in the
com.yantra.yfc.rcp plug-in. Any plug-in that is dependent on the
com.yantra.yfc.rcp plug-in can extend this extension point to define its own groups
for the related tasks. The YRCRelatedTaskGroups extension has an extension
element called groups. The groups extension element also has a extension element
called group.

To extend the YRCRelatedTaskGroups extension point:

148 Customizing the Rich Client Platform Interface



Procedure
1. Start the Eclipse SDK.
2. In the navigator view, expand the plug-in project that you created when

setting up the development environment.
3. To open the plugin.xml file in the Plug-in Manifest Editor, do any of the

following:
v Double-click on plugin.xml file.
v Right-click on plugin.xml file, and select Open With > Plug-in Manifest

Editor.
4. Select the Extensions tab.
5. Click Add.
6. From the New Extension window, select

com.yantra.yfc.rcp.YRCRelatedTaskGroups extension point from the list.
7. Click Finish.
8. Select the com.yantra.yfc.rcp.YRCRelatedTaskGroups extension point. The

Extension Details panel displays.
9. In the Extension Details panel, enter the properties of the

YRCRelatedTaskGroups extension point.
10. Select the groups extension element. The Extension Element Details panel

displays.
11. In the Extension Element Details panel, enter the properties of the groups

extension element.
12. Expand the groups extension element and select the group extension element.

The Extension Element Details panel displays.
13. In the Extension Details panel, enter the properties of the group extension

element.
14. In sequence, enter the number to indicate that the groups should display in

the ascending order of the sequence number in the Related Tasks view. The
groups are displayed in the ascending order of their sequence number.

Extending the YRCRelatedTasksDisplayer Extension Point
About this task

The Rich Client Platform provides the YRCRelatedTasksDisplayer extension point
for specifying the class that implements the
com.yantra.yfc.rcp.IYRCRelatedTasksDisplayer interface.

This extension point is used to display the Related tasks view, implement this
extension point only if you need to override the way the current view is displayed.

This extension point is defined in the com.yantra.yfc.rcp plug-in. Any plug-in that
is dependent on the com.yantra.yfc.rcp plug-in can extend this extension point to
provide its own implementation. The YRCRelatedTasks element has an extension
element called relatedTasksDisplayer.

To extend the YRCRelatedTasksDisplayer extension point:

Procedure
1. Start the Eclipse SDK.

Chapter 12. Creating Related Tasks 149



2. In the navigator view, expand the plug-in project that you created when
setting up the development environment.

3. To open the plugin.xml file in the Plug-in Manifest Editor, do any of the
following:
v Double-click on plugin.xml file.
v Right-click on plugin.xml file, and select Open With > Plug-in Manifest

Editor.
4. Select the Extensions tab.
5. Click Add. From the New Extension window, select

com.yantra.yfc.rcp.YRCRelatedTasksDisplayer extension point from the list.
6. Click Finish.
7. Select the com.yantra.yfc.rcp.YRCRelatedTasksDisplayer extension point. The

Extension Details panel displays.
8. In the Extension Details panel, enter the properties of the

YRCRelatedTasksDisplayer extension point.
9. Select the relatedTasksDisplayer extension element. The Extension Element

Details panel displays.
10. To specify the implementation class, do any of the following

v Click Browse. The Select Type pop-up window displays. Select the class
that implements the com.yantra.yfc.rcp.IYRCRelatedTasksDisplayer
interface. The specified class must return the list of all the related tasks that
you want to display in a panel as ArrayList.

v Click on the class* hyperlink. The Java Attribute Editor window displays.
a. Enter the name of the class that implements the

com.yantra.yfc.rcp.IYRCRelatedTasksDisplayer interface.
b. Click Finish. The new class is automatically created.

Access Editor Information
About this task

Before implementing the YRCRelatedTasksExtensionContributor extension point
the following information is required:
v Editor Information—To open the newly created related task within an

application shipped editor, you need to know the identifier of that particular
editor.

To access the editor information:

Procedure
1. Navigate to the task you want to extend in the Rich Client Platform

application.
2. View the screen information through the Rich Client Platform Extensibility

Tool. The editor information is displayed in the screen information window.

Extending the YRCRelatedTasksExtensionContributor Extension Point
About this task

The Rich Client Platform provides the YRCRelatedTasksExtensionContributor
extension point for specifying the class that implements the
com.yantra.yfc.rcp.IYRCRelatedTasksExtensionContributor interface. Use this

150 Customizing the Rich Client Platform Interface



extension point only when you want to open a newly created related task within
an application shipped editor. This extension contributor is called when a extended
related task needs to be invoked in an application shipped editor.

This extension point is defined in the com.yantra.yfc.rcp plug-in. Any plug-in that
is dependent on the com.yantra.yfc.rcp plug-in can extend this extension point to
provide its own implementation for extended related tasks. The
YRCRelatedTasksExtensionContributor element has an extension element called
relatedTasksExtensionContributor.

To extend the YRCRelatedTasksExtensionContributor extension point:

Procedure
1. Start the Eclipse SDK.
2. In the navigator view, expand the plug-in project that you created.
3. To open the plugin.xml file in the Plug-in Manifest Editor, do any of the

following:
v Double-click on plugin.xml file.
v Right-click on plugin.xml file, and select Open With > Plug-in Manifest

Editor.
4. Select the Extensions tab.
5. Click Add.
6. From the New Extension window, select

com.yantra.yfc.rcp.YRCRelatedTasksExtensionContributor extension point
from the list.

7. Click Finish.
8. Select the com.yantra.yfc.rcp.YRCRelatedTasksExtensionContributor

extension point. The Extension Details panel displays.
9. In the Extension Details panel, enter the properties of the

YRCRelatedTasksExtensionContributor extension point.
10. Select the relatedTasksExtensionContributor extension element. The

Extension Element Details panel displays.
Make sure that for each relatedTasksExtensionContributor extension element
you specify a unique editor. Otherwise, the system randomly selects an
extension contributor from the specified extension contributors.

11. In editorId, specify the Id of the editor in which the extensible related tasks
need to be opened. You can use the Rich Client Platform-provided editor or
your own custom editor to open the related task. For one
relatedTasksExtensionContributor elements, you can specify only one editor
Id.

12. To specify the implementation class, do any of the following
v Click Browse. The Select Type pop-up window displays. Select the class

that implements the
com.yantra.yfc.rcp.IYRCRelatedTasksExtensionContributor interface.

v Click on the class* hyperlink. The Java Attribute Editor window displays.
a. Enter the name of the class, that implements the

com.yantra.yfc.rcp.IYRCRelatedTasksExtensionContributor interface.
b. Click Finish. The new class is automatically created.

13. Override the createPartControl(Composite parent, YRCEditorInput
editorInput, YRCRelatedTask currentTask) and return the panel to open the
current editor. For example,

Chapter 12. Creating Related Tasks 151



public Composite createPartControl(Composite parent,
YRCEditorInput editorInput, YRCRelatedTask currentTask) {
YCDAlertScreen NewScreen = new YCDAlertScreen(parent, SWT.NONE);

return NewScreen;
}

Enabling Custom Dialog Boxes Through an Extension Point for Rich
Client Platform Applications

About this task

The Rich Client Platform provides four types of dialog boxes, namely, Error,
Warning, Information and Confirmation, which have default and standard theme
(font, size, background color and foreground color) settings. To use different
settings for dialog boxes, an application can create its own custom dialog boxes
with suitable themes and/or other parameters, as required.

To enable an application to create its own custom dialog boxes, an extension point
YRCMessageDialog and an interface IYRCMessageDialog to implement the class
are added to com.yantra.yfc.rcp plug-in.

An application can extend all or any of the message dialog boxes using the
interface. If the extension is not specified, default settings are applied to the dialog
boxes.

Note: The application must handle the entire creation and rendering of custom
dialog boxes. However, required information for a dialog box such as a suitable
title and message are provided by Rich Client Platform.

To create an extension:

Procedure
1. Use the extension point YRCMessageDialog for implementation.
2. Select this extension point and provide the following details in the Extension

Elements Detail panel as explained subsequently:
v Each extension element consists of one or more Message Dialog elements,

each with a mandatory attribute, ModuleID. The ModuleID must correspond
to the application's ModuleID to identify the application, for which, the
dialog box changes are required.

v Each Message Dialog element may contain one or more Dialog elements. For
each Dialog element, provide the following mandatory attributes:
– type - Indicates the type of dialog box to be extended [Error, Warning,

Information, Confirmation or API Error].
– classToLoad - Specifies the class to be loaded for implementing the

interface IYRCMessageDialog.
– The IYRCMessageDialog interface is defined in the following format

public interface IYRCMessageDialog {
Object show(Object ... objects);

}

Apart from the four dialog boxes, Applications can also extend dialog boxes
used for displaying errors encountered during an API execution. The API error
message displays error code and error description. Applications can extend this
message box by using the error document provided by Rich Client Platform.

152 Customizing the Rich Client Platform Interface



Chapter 13. Creating Commands

About Commands
You can create commands to call APIs or services to retrieve data in the required
format. To create commands at the form level, use the Plug-in id_commands.ycml
command file. Each form is a self-contained panel in itself. A self-contained panel
has its own behavior class that extends the YRCBehavior class. Therefore, you
must specify the identifier of the form in the Id attribute of the form element.

Note: In case of wizards, although wizard page has its own behavior, it is not a
self-contained panel. This is because the wizard page behavior is internally
dependent on the wizard behavior. Therefore, to create commands for a wizard
page, you must create commands at the wizard level. You must specify the
identifier of the wizard in the Id attribute of the form element.

The various attributes of command element are:

Field Description

Name Specify a unique name for the command. Command names are
unique across the system and redefining a command with the same
name overrides an existing definition.

APIName Specify the name of an API or service. Associate each command
you create with an API or service name.

APIType Specify the API type. The valid values are API and SERVICE.

outputNamespace Specify the namespace of the output template. This namespace is
defined in the namespaces element.

inputNamespace Specify the namespace of the input XML model.

Note: If a Rich Client Platform application does not set the input
namespace programmatically when calling a command, the system
will, by default, create the input namespace in the following
manner:

1. The target XML model for the screen is retrieved.

2. The input namespace attributes are then retrieved from the
target XML model.

However, if the Rich Client Platform application sets the input
namespace programmatically when calling a command, the input
namespace specified is ignored.

The latter is the more commonly used approach in Rich Client
Platform applications.

URL If you want to invoke your own API instead of Sterling Business
CenterSterling Selling and Fulfillment FoundationSterling Field
Sales APIs or services, specify the URL path of the server in the
URL attribute. This URL must contain the value of the Name
attribute of the Config element from the *.ycfg file. The complete
path of the URL is defined in *.ycfg file. For more information
about defining server URL in the *.ycfg file, see the Sterling
Business CenterSterling Selling and Fulfillment FoundationSterling
Field Sales: Installing the PlatformInstallation Guide.

© Copyright IBM Corp. 1999, 2013 153



Field Description

prototype Set the value of prototype attribute equal to "true" to run the
commands in prototype mode. In prototype mode, the application
uses XMLs stored in the prototype folder on the client machine as
an output of an API.

version The Rich Client Platform also supports versioning of APIs to
ensure backward compatibility. Specify the version of the API that
you want to call in the version attribute.

The following code is from a typical *.ycml file that is used to create commands:
<forms>

<form Id = "com.yantra.order.capture.ui.screens.OrderSearchandList">
<commands>

<command Name="getOrderDetails"
APIName="getOrderDetails"
APIType="API"
outputNamespace="OrderDetails"
inputNamespace=""
URL="LOCAL"
prototype="true"
version=""/>

<command Name = "getOrderList"
APIName = "getOrderList"
APIType="API"
outputNamespace="OrderList"
inputNamespace=""
URL=""
prototype=""
version=""/>

</commands>
</form>

</forms>

Note: IBM recommends that you do not make changes to the configuration file
shipped with Sterling Business CenterSterling Selling and Fulfillment
FoundationSterling Field Sales. Always create your own configuration file or use
the default configuration file that gets created whenever you create a new Rich
Client Platform plug-in.

Every plug-in must invoke the command files during plug-in initialization to
register its own set of commands. For more information about registering a
commands file and other plug-in files, see the Registering a Plug-In topic.

Defining Namespaces
Namespaces are defined to uniquely identify an XML model. Use the Plug-in
id_commands.ycml file to define namespaces. You can define namespaces at the
form level. Specify the unique identifier of the form in the Id attribute of the form
element. The various attributes of namespace element are:

Field Description

name Specify a unique name for the namespace.

154 Customizing the Rich Client Platform Interface



Field Description

type Specify the type of namespace, depending on whether the template
is to be used as input or output. For example, "input" or "output".

Note: If you are creating the namespaces for the wizard rules:

v Specify type attribute as "input" if you want to take inputs from
the user as the target model of the screen.

v Specify type attribute as "output" if you want to populate the
controls with the values from an existing model.

templateName Specify the name of the XML file that is to be picked from the
server. For example, getOrderDetails. The system searches for this
file on the server in the template/Plug-in_id/form_id/namespaces
directory
Note: Plug-in_id is the ID of the plug-in, which will register the
ycml file.

The following code is from a typical *.ycml file that is used to define namespaces:
<forms>

<form Id = "com.yantra.order.capture.ui.screens.OrderSearchandList">
<commands>

<command Name="getOrderDetails"
APIName="getOrderDetails"
APIType="API"
Namespace="OrderDetails"
URL=""
prototype=""
version=""/>

</commands>
<namespaces>

<namespace name="OrderDetails"
type="output"
templateName="getOrderDetails"/>

<namespace name="OrderList"
type="output"
templateName="getOrderList"/>

</namespaces>
</form>

</forms>

Overriding Commands
The Overriding Commands feature enables a user to call its custom API instead of
APIs provided by the application for a particular form. To override a command,
you must enter your own custom API name and use the same form Id and
command name. For example, on OrderSearchandList form you want to call your
own custom customGetOrderDetails API instead of the getOrderDetails API
provided by the application.

The sample code from the *.ycml file to override commands:
<forms>

<form Id = "com.yantra.order.capture.ui.screens.OrderSearchandList">
<commands>

<command Name="getOrderDetails"
APIName="customGetOrderDetails"
APIType="SERVICE"
outputNamespace="custOrderDetails"
inputNamespace="custOrderDetails"
URL="LOCAL"
prototype=""

Chapter 13. Creating Commands 155



version=""/>
</commands>

</form>
</forms>

156 Customizing the Rich Client Platform Interface



Chapter 14. Defining and Overriding Hot Keys

Phase 1: Defining a Hot Key Command
About this task

The Rich Client Platform enables you to define new hot keys for new screens, and
override the hot keys defined for the existing screens

To define a new command:

Procedure
1. Start the Eclipse SDK.
2. In the navigator view, expand the plug-in project that you created when

setting up the development environment.
3. To open the plugin.xml file in the Plug-in Manifest Editor, do any of the

following:
v Double-click on plugin.xml file.
v Right-click on plugin.xml file, and select Open With > Plug-in Manifest

Editor.
4. Select the Extensions tab.
5. Click Add.
6. From the New Extension window, select org.eclipse.ui.commands extension

point from the list.
7. Click Finish.
8. Select the org.eclipse.ui.commands extension point. The Extension Details

panel displays.
9. In the Extension Details panel, set the properties of the

org.eclipse.ui.commands extension point.
10. Create the category extension element, if applicable. The category element is

used to logically group a set of commands. To create a new category extension
element, right-click on org.eclipse.ui.commands extension point and select
New > category. The category extension element is created.

11. Select the category extension element. The Extension Element Details panel
displays.

12. In id*, enter the unique identifier of the category.
13. In name*, enter the name of the category.
14. Create a new command extension element, right-click on

org.eclipse.ui.commands extension point and select New > command. The
command extension element is created.

15. Select the command extension element. The Extension Element Details panel
displays.

16. In id*, enter the unique identifier of the command.
17. In name*, enter the name of the command.
18. In categoryId, enter the identifier of the category to which the command

belongs, if applicable.

19. Click to save the changes.

© Copyright IBM Corp. 1999, 2013 157



Phase 2: Defining a Hot Key Binding
About this task

To define a new key binding for the category that you created in the
org.eclipse.ui.commands extension point:

Procedure
1. Start the Eclipse SDK.
2. In the navigator view, expand the plug-in project that you created when

setting up the development environment.
3. To open the plugin.xml file in the Plug-in Manifest Editor, do any of the

following:
v Double-click on plugin.xml file.
v Right-click on plugin.xml file, and select Open With > Plug-in Manifest

Editor.
4. Select the Extensions tab.
5. Click Add. From the New Extension window, select org.eclipse.ui.bindings

extension point from the list.
6. Click Finish.
7. Select the org.eclipse.ui.bindings extension point. The Extension Details panel

displays.
8. In the Extension Details panel, set the properties of the org.eclipse.ui.bindings

extension point.
9. Create a new key extension element, right-click on org.eclipse.ui.bindings

extension point and select New > key. The key extension element is created.
10. Select the key extension element. The Extension Element Details panel

displays.
11. In sequence*, enter a valid key sequence of the hot key for the command.

v Use M1 to specify the Ctrl key
v Use M2 to specify the Shift key
v Use M3 to specify the Alt key
v Use Esc to specify the Escape key
To specify a combination of keys use the " + " operator. For example, to
specify the hot key for a control as Ctrl+Alt+K, enter the key sequence as
M1+M3+K.

12. In schemeId*, enter defaultYantraKeyConfigurations.
13. Set the context for the hot key either as local or global. In a local context, you

can use the hot key for a specific screen in the application. In a global context,
you can use the hot key for any screen in the application.
v If you want to set the context of the hot key as local, in contextId, enter the

identifier of the form used to identify the screen.
To retrieve information for a specific screen, in a Rich Client Platform
application, navigate to the screen for which you are defining the new hot
keys. Using the Rich Client Platform Extensibility Tool, you can view the
screen information.

v If you want to set the context of the hot key as global, in contextId, enter
the global context identifier of the Rich Client Platform. This context
identifier is defined in the plugin.xml file of Rich Client Platform plug-in,
for example, com.yantra.rcp.contexts.global.

158 Customizing the Rich Client Platform Interface



14. In commandId, enter the identifier of the command that you defined.

15. Click to save the changes.

Phase 3: Defining a Hot Key Action
About this task

After defining the command and hot key binding, define the action to invoke
when you press the hot key.

For more information about defining or creating new actions, see the Creating New
Actions topic.

Note: In the definitionId field, enter the identifier of the hot key command that
you created in Phase1.

After defining the command, key binding, and action, the structure of the
plugin.xml file of the plug-in project is shown in the following figure.

Overriding Hot Keys
About this task

You can override the hot key bindings defined for existing screens. To override an
existing hot key, you need to know the identifier of the command.

To override a hot key:

Procedure
1. Start the Eclipse SDK.
2. In the navigator view, expand the plug-in project that you created when

setting up the development environment.
3. To open the plugin.xml file in the Plug-in Manifest Editor, do any of the

following:
v Double-click on plugin.xml file.
v Right-click on plugin.xml file, and select Open With > Plug-in Manifest

Editor

4. Select the Extensions tab.
5. Click Add.
6. From the New Extension window, select org.eclipse.ui.bindings extension

point from the list.

Chapter 14. Defining and Overriding Hot Keys 159



7. Click Finish.
8. Select the org.eclipse.ui.bindings extension point. The Extension Details panel

displays.
9. In the Extension Details panel, set the properties of the org.eclipse.ui.bindings

extension point.
10. Create a new key extension element, right-click on org.eclipse.ui.bindings

extension point, and select New > category. The key extension element is
created.

11. Select the key extension element. The Extension Element Details panel
displays.

12. In sequence*, enter the new valid key sequence of the hot key that you want
to override.
v Use M1 to specify the Ctrl key
v Use M2 to specify the Shift key
v Use M3 to specify the Alt key
v Use Esc to specify the Escape key
To specify a combination of keys use the " + " operator. For example, to
specify the hot key for a control as Ctrl+Alt+K, enter the key sequence as
M1+M3+K.

13. In schemeId*, enter defaultYantraKeyConfigurations.

14. Set the context for the hot key. You can either set the context as local or global.
Local context means that the hot key can be used only for a particular screen
in the application. Global context means that the hot key can be used for any
screen in the application.
v If you want to set the context of the hot key as local—In contextId, enter

the identifier of the form that is used to identify the screen. To get the
information about a particular screen:

v In the Rich Client Platform application, navigate to the screen for which
you are defining the new hot keys.

v Through the Rich Client Platform Extensibility Tool view the screen
information.

v If you want to set the context of the hot key as global—In contextId, enter
the global context identifier of the Rich Client Platform. This context
identifier is defined in the plugin.xml file of the Rich Client Platform
plug-in. For example, com.yantra.rcp.contexts.global.

15. In commandId, enter the identifier of the command whose hot key you want
to override.

16. Click to save the changes.

Disabling Related Task Hot Keys
About this task

By default, the hot keys defined for related tasks are always enabled. You can
globally disable hot keys defined for the related tasks in a Rich Client Platform
application.

To disable the related task hot keys, call the enableRelatedTasksHotKeys() utility
method of the YRCAppShellConfiguration class and pass "false" as the input
argument. For example,
YRCAppShellConfiguration.enableRelatedTasksHotKeys(false);

160 Customizing the Rich Client Platform Interface



Note: You can disable the hot key for a particular related task by changing the hot
key configurations using the Rich Client Platform Extensibility Tool.

Chapter 14. Defining and Overriding Hot Keys 161



162 Customizing the Rich Client Platform Interface



Chapter 15. Merging Templates

Merging Input and Output Templates
About this task

The Rich Client Platform allows you to merge the input and output templates as
per your needs. Template merging can be used to get additional data from an API
or Service. For example, you may want to get the values of additional attributes
from an API or service. All the templates that are shipped withSterling Business
CenterSterling Selling and Fulfillment FoundationSterling Field Sales are stored on
the server in the namespaces folder of the Rich Client Platform plug-in and PCA
plug-in directories. For getting the values of additional attributes, you may have to
first extend the Application database by creating a new column and then updating
the template.

The PCA templates are located at INSTALL_DIR/repository/xapi/template/
merged/PCA_plug-in_id/form_id/namespaces

To extend the PCA templates, place the extended templates for the PCA in
INSTALL_DIR/extensions/global/template/plug-in-id/form_id/namespaces

The Rich Client Platform templates are located at: INSTALL_DIR/repository/xapi/
template/merged/com.yantra.yfc.rcp/namespaces

Note: You cannot extend the Rich Client Platform templates.

For APIs or services for which no form identifier is specified, the output templates
are stored in the following folder of the Rich Client Platform plug-in:
INSTALL_DIR/repository/xapi/template/merged/template/Plug-in_id/
namespaces

You can create new output templates and store them in the following folder of the
Rich Client Platform plug-in:
<INSTALL_DIR>/extensions/global/template/<plug-in-id>/<form_id>/namespaces

As an example, the following is a getOrderLineDetails output template:
<OrderLine>

<OrderLineList>
<Order OrderNo="Y00102495" ItemID="MOUSE"/>

</OrderLineList>
</OrderLine>

To add a new attribute called Status to the OrderNo element in this output
template:

Procedure
1. Create the XML file with the same name as the existing output template and

store it in the /extensions/global/template/Plug-in_id/form_id/namespaces
folder of the Sterling Business CenterSterling Selling and Fulfillment
FoundationSterling Field Sales PCA plug-in. For example,
getOrderLineDetails.xml.

© Copyright IBM Corp. 1999, 2013 163



2. Add a new attribute called Status in the Order element. Add only the
additional attributes that you require. The new output template looks as
follows:
<OrderLine>

<OrderLineList>
<Order Status=" "/>

</OrderLineList> <
/OrderLine>

The new getOrderLineDetails output template looks as follows:
<OrderLine>

<OrderLineList>
<Order OrderNo="Y00102495" ItemID="MOUSE" Status=" "/>

</OrderLineList>
</OrderLine>

164 Customizing the Rich Client Platform Interface



Chapter 16. Related and Shared Tasks

Adding New Related Tasks
You can add new related tasks to the Rich Client Platform application by extending
the following extension points provided by the Rich Client Platform.
v YRCRelatedTasks
v YRCRelatedTaskCategories
v YRCRelatedTaskGroups
v YRCRelatedTasksDisplayer
v YRCRelatedTasksExtensionContributor

For more information about creating related tasks, see "Creating Related Tasks".

Hiding Existing Related Tasks
If you want to hide the related tasks panel on the screen, remove the related tasks
from the list specified in the YRCRelatedTasksDisplayer extension point.

If you want to hide the individual related tasks from the related tasks panel,
revoke the permissions for that particular related task resource from the Sterling
Business CenterSterling Selling and Fulfillment FoundationSterling Field Sales
Configuration Guide Application Platform Configuration Guide

Registering Shared Tasks
About this task

You can register the new shared tasks with the Rich Client Platform plug-in using
the YRCSharedTasks extension point.

To register the new shared tasks:

Procedure
1. Start the Eclipse SDK.
2. In the navigator view, expand the plug-in project that you created when

setting up the development environment.
3. To open the plugin.xml file in the Plug-in Manifest Editor, do any of the

following:
v Double-click on plugin.xml file.
v Right-click on plugin.xml file, and select Open With > Plug-in Manifest

Editor.
4. Click the Extensions tab.
5. Click Add. From the New Extension window, select

com.yantra.yfc.rcp.YRCSharedTasks extension point from the list.
6. Click Finish.
7. Select the com.yantra.yfc.rcp.YRCSharedTasks extension point. The Extension

Details panel displays.

© Copyright IBM Corp. 1999, 2013 165



8. In the Extension Details panel, enter the properties of the YRCSharedTasks
extension point.

9. In id*, enter the unique identifier for the shared task. This shared task
identifier should be unique across all the applications and plug-ins.

10. In name*, enter the name for the shared task.
11. In description*, enter the description of the shared task.
12. In class*, specify the implementation class for the shared task.

To specify the implementation class, do any of the following:
v Click Browse. The Select Type pop-up window displays. Select the class to

use to extend the YRCSharedTask class.
v Click the class* hyperlink. The Java Attribute Editor window displays.

Field Description

Source folder: The name of the source folder that you selected to store the shared
task class automatically displays. Click Browse to browse to the
folder that you want to specify as the source folder.

Package: The name of the package that you selected to store the shared task
class automatically displays. Click Browse to browse to the
package where you want to store the shared task class.

Name Enter the name of the shared task class.

166 Customizing the Rich Client Platform Interface



Field Description

Superclass: Click Browse, the Superclass Selection window displays. In Choose
a type, enter YRCSharedTask and click OK.

Constructors from
superclass

Check this box. The system automatically creates the constructor
for the YRCSharedTask superclass.

Inherited abstract
methods

Check this box. The system automatically adds the abstract
methods inherited by the YRCSharedTask superclass.

Finish When you click on this button, the system creates the new shared
task class in the selected folder or package.

13. Open the newly created editor class in the Java Editor and implement the
abstract methods of the YRCSharedTask class.

Using Shared Tasks
About this task

You can invoke a shared task by clicking a button, menu item, and so forth. You
can also invoke a shared task by calling the launchSharedTask(String taskId,
Element input) method provided by the YRCPlatformUI utility class of the Rich
Client Platform.

To invoke a shared task within an application, you must know the complete details
of the shared task, such the identifier of the shared task, structure of the input
XML template, and structure of the output XML template.

To view the shared task information:

Procedure
1. Navigate to the Rich Client Platform application.
2. In the Rich Client Platform Extensibility Tool, view the shared task information.

After getting the required information invoke the shared task by calling the
launchSharedTask(String taskId, Element input) method. For example:
YRCPlatformUI.launchSharedTask("com.yantra.rcp.SharedTask1",input);

where com.yantra.rcp.SharedTask1 is the identifier of the shared task that you
want to invoke and input is an input XML element that exist in the input XML
to the shared task.
The YRCPlatformUI class provides more methods, which you can call to invoke
a particular shared task. For example, launchSharedTask(String taskId),
launchSharedTask(Composite parent, String taskId), and so forth.

Chapter 16. Related and Shared Tasks 167



168 Customizing the Rich Client Platform Interface



Chapter 17. Defining Themes

Defining New Themes
About this task

For theming the Rich Client Platform application, define the new theme entries in
the Plug-in_id_theme_name.ythm theme file. After you register the theme file, it is
loaded using the user-defined locale. For more information about registering the
theme file and other plug-in files, see “Registering Plug-In Files” on page 193. The
system loads all theme entries into a common repository and automatically applies
them to the controls on the UI. The last theme definition that is loaded overrides
the previous theme definitions.

To define the new theme entries for theming the Rich Client Platform application:

Procedure
1. Before you can start theming your Rich Client Platform application, you must

set up the development environment. For more information about setting up
the development environment, see "The Development Environment for Rich
Client Platform Applications".

2. In the navigator window, expand the plug-in project that you created.
3. Open the *.ythm file in the text editor.
4. Create the root element Theme.
5. In the id attribute, specify the unique identifier for the theme.
6. Create ThemeEntry element under the Theme element.
7. In the Name attribute specify the unique name for this theme entry.
8. Create the Font element under ThemeEntry and set the its attributes. For Font

element attribute list, see the following table.

Attribute Description

Name Specify the name of the font you want to use. For example,
Tahoma, Courier, Arial, and so forth.

Height Specify the height of the font.

Style Specify the font style that you want to use. For example,
NORMAL, BOLD, ITALIC, and so forth.

9. Create the BackgroundColor element under ThemeEntry and set the its
attributes. For BackgroundColor element attribute list, see the following table.

Attribute Description

Red Specify the decimal color code for the red color. Valid values range
from 0 to 255.

Green Specify the decimal color code for the green color. Valid values
range from 0 to 255.

Blue Specify the decimal color code for the blue color. Valid values
range from 0 to 255.

10. Create the ForegroundColor element under ThemeEntry and set the its
attributes. Use the same attribute list as the BackgroundColor elements.

© Copyright IBM Corp. 1999, 2013 169



11. Create the Image element under the ThemeEntry element, if applicable.
12. In the Path attribute, specify the path of the image you want to display.

Note: You can create multiple ThemeEntry elements to define themes for
various resources such as control text, user info, error text, error icons, logos,
and so forth.

13. Rename the *.ythm file to: file_name_theme_name.ythm. For example,
comapp_jade.ythm.
where comapp is the file_name and jade is the theme_name.

14. Register the theme file in the plugin java file of the plug-in project using the
registerTheme() method. For example,
YRCPlatformUI.registerTheme("<file_name>_<themename>", ID);

The sample theme entries from the *.ythm file are as follows:
<Theme id="jade">

<ThemeEntry Name="Label">
<Font Name="Tahoma" Height="9" Style="NORMAL"/>
<ForegroundColor Red="0" Green="0" Blue="0"/>
<BackgroundColor Red="245" Green="245" Blue="245"/>

</ThemeEntry>
<ThemeEntry Name="Text">

<Font Name="Tahoma" Height="8" Style="NORMAL"/>
<ForegroundColor Red="0" Green="0" Blue="0"/>
<BackgroundColor Red="255" Green="255" Blue="255"/>

</ThemeEntry>
<ThemeEntry Name="Table">

<Font Name="Tahoma" Height="8" Style="NORMAL"/>
<BackgroundColor Red="245" Green="245" Blue="245"/>
<ForegroundColor Red="0" Green="0" Blue="0"/>

</ThemeEntry>
<ThemeEntry Name="ErrorColor">

<Font Name="Tahoma" Height="10" Style="BOLD"/>
<ForegroundColor Red="255" Green="0" Blue="0"/>
<BackgroundColor Red="245" Green="245" Blue="245"/>

</ThemeEntry>
<ThemeEntry Name="ErrorIcon">

<Image Path="/icons/error.gif"/>
</ThemeEntry>

<ThemeEntry Name="HeaderLogo">
<Image Path="/icons/yantra_header.jpg"/>

</ThemeEntry>
</Theme>

Defining Themes for Controls
About this task

For theming controls, define the theme entries in the Plug-in_id_theme_name.ythm
file at the plug-in level. For example, let us consider that you have created a new
label and you want to have a specific font and color for that label. To set a theme
for the label:

Procedure
1. Define entries in the theme file for the label. For example:

<Theme id="sapphire">
<ThemeEntry Name="MyLabel">

<Font Height="8" Name="Tahoma" Style="NORMAL"/>

170 Customizing the Rich Client Platform Interface



<ForegroundColor Blue="0" Green="0" Red="0"/>
<BackgroundColor Blue="245" Green="245" Red="245"/>

</ThemeEntry>
</Theme>

where id attribute is the unique identifier for the Plug-in_id_theme_name.ythm
file. The Name attribute indicates the name of the theme entry, which is used
for theming controls.

Note: The theme file corresponding to the theme specified within the user
configuration is loaded. For example, if you log on to the Rich Client Platform
application as user that is configured to use the theme with id as "sapphire",
then the theme file with id "sapphire" gets loaded.

Therefore, if you are creating new screens and adding new entries for the
"sapphire" theme, the Id attribute of this extension theme file should be
"sapphire".

2. Set the binding data for the control by associating the binding object with the
key. For example,
lblDate.setData(YRCConstants.YRC_CONTROL_CUSTOMTYPE,"MyLabel");

where lblDate is the reference variable name of the label, which you specified
in the visual editor, YRCConstants.YRC_CONTROL_CUSTOMTYPE is the key
used for identifying the custom theme entry, and MyLabel is the name of the
ThemeEntry element in the theme file.

What to do next

Note: You cannot define theme for the following RCP UI controls. This is an
eclipse SWT limitation:
v Button—You can only change the font (size , name , and style) for a button. The

background and foreground color cannot be changed as it is OS specific.
v Combo Box—You can only change the foreground , background and font of the

contents of a combo box. The combo box color cannot be changed as it is OS
specific.

v Table Column—Theme cannot be applied for a table column.

Applying Themes to Non-editable Text Boxes
About this task

Labels do not support text edits and cannot display lengthy text. To overcome this
problem, non-editable text boxes are used (without the border). Such non-editable
text boxes do not have any theme set and are indistinguishable from labels.

To distinguish between labels and non-editable text boxes, a new theme
NoneditableTextboxTheme as the ThemeEntry Name is included in the *.ythm files,
by default. The Rich Client Platform applies this default theme to all non-editable
text boxes that do not already have a theme.

To override the default settings:

Add a theme entry with the same name, NoneditableTextboxTheme, in the
Application plugins, *.ycml file as follows:

Chapter 17. Defining Themes 171



<ThemeEntry Name="NoneditableTextboxTheme">
<Font Height="8" Name="Tahoma" Style="NORMAL"/>
<ForegroundColor Blue="0" Green="179" Red="0"/>
<BackgroundColor Blue="255" Green="255" Red="255"/>
</ThemeEntry>

Note: This theme cannot be applied to text boxes that are made non-editable
dynamically.

172 Customizing the Rich Client Platform Interface



Chapter 18. Menus and Custom Controls

Adding and Removing Menus in Rich Client Platform Applications
Menu configuration contains the standard application resources and also the
extended resources that you define when configuring resources.

All menus are grouped into a menu group. The default menu group contains the
standard menu configuration of the Application Console, which is linked to the
default Administrator user. When creating your own users, you can reuse this
menu group or create a new menu group. The custom menus may contain
different menu items.

For more information about adding or removing menus, see the Defining Menus
topic in the Sterling Business CenterSterling Selling and Fulfillment
FoundationSterling Field Sales Configuration Guide Application Platform
Configuration Guide.

Customizing the Menu View Through the YRCMenuDisplayer Extension
Point

About this task

The Rich Client Platform enables you to extend the menu view for specific
modules in Rich Client Platform applications through an extension point,
YRCMenuDisplayer. This extension point is provided in the com.yantra.yfc.rcp
plugin. An interface IYRCMenuDisplayer is also provided, which must be
implemented by the class specified in the extension.

To customize the menu view for specific modules that contain a menu view in
Rich Client Platform applications, perform the following steps:

Procedure
1. Start the Eclipse SDK.
2. In the navigator view, expand the plug-in project that you created.
3. To open the plugin.xml file in the Plug-in Manifest editor, do any of the

following:
v Double-click on plugin.xml file.
v Right-click on plugin.xml file and select Open With > Plug-in Manifest

Editor.
4. Select the Extensions tab.
5. Click Add.
6. From the New Extension window, select YRCMenuDisplayer extension point

from the list.
7. Click Finish.
8. Select the com.yantra.yfc.rcp.YRCMenuDisplayer extension point. The

Extension Details panel is displayed.
9. In the Extension Details panel, enter the properties of YRCMenuDisplayer

extension.

© Copyright IBM Corp. 1999, 2013 173



10. The extension point has a defined sequence, which consists of the following
attributes:
v id: The extension is identified by a unique ID which must be specified.
v name: This is the name given to the extension. The name is optional. For

example, mymenu.
v MenuDisplayer: The MenuDisplayer element defines the class to be loaded

for customizing the menu view on the workbench window. This extension
point consists of the following mandatory attributes:

v class: Specify a fully qualified path to the Java class that must implement
the IYRCMenuDisplayer interface.

v moduleId: Specify the module ID of the application for which the menu
view must be customized. For example, ycd (for Sterling Call Center and
Sterling Store).

Creating Custom Controls for Rich Client Platform Applications
The Rich Client Platform enables you to create custom controls to handle various
business requirements. For example, capturing date and time from a single control
can be difficult as it is prone to errors and it is not intuitive. To solve this issue,
you can model date and time as a single custom control.

Note: By default, the Rich Client Platform provides custom control implementation
for Date and Time control. But Rich Client Platform allows you to create new
custom controls based on your business requirement. For example, you may want
to create a custom control with specific look and feel, control type, order of
controls.

Extending the YRCCustomControl Extension Point
About this task

To extend the YRCCustomControl extension point:

Procedure
1. Start the Eclipse SDK.
2. In the navigator view, expand the plug-in project that you created.
3. To open the plugin.xml file in the Plug-in Manifest Editor, do any of the

following:
v Double-click on plugin.xml file.
v Right-click on plugin.xml file and select Open With > Plug-in Manifest

Editor.
4. Select the Extensions tab.
5. Click Add.
6. From the New Extension window, select the

com.yantra.yfc.rcp.YRCCustomControl extension point from the list.
7. Click Finish.
8. Select the com.yantra.yfc.rcp.YRCCustomControl extension point. The

Extension Details panel displays.
9. In the Extension Details panel, enter the properties of YRCCustomControl

extension point.
10. In controlId, enter the unique identifier for the custom control. You can create

different custom controls using a single extension point but different controlId.

174 Customizing the Rich Client Platform Interface



11. In class, to specify the implementation class, do any of the following:
v Click Browse. The Select Type pop-up window displays. Select the class that

extends the org.eclipse.swt.widgets.Composite class.
v Click on the class: hyperlink. The Java Attribute Editor window displays.

Field Description

Source folder: The name of the source folder that you selected to store the custom
control class automatically displays. Click Browse to browse to the
folder that you want to specify as the source folder.

Package: The name of the package that you selected to store the custom
control class automatically displays. Click Browse to browse to the
package where you want to store the custom control class.

Name Enter the name of the custom control class.

Superclass: Click Browse, the Superclass Selection window displays. In Choose
a type, enter Composite and click OK.

Interfaces: Click Add, the Implemented Interfaces Selection window displays.
In Choose a type, enter IYRCCustomControl and click OK.

Constructors from
superclass

Check this box. The system automatically creates the constructor
for the Composite superclass.

Inherited abstract
methods

Check this box. The system automatically adds the abstract
methods inherited by the Composite superclass.

12. Open the newly created custom control class in the Java Editor and implement
the abstract methods of the Composite class.

Using Custom Controls in RCP Applications
To use a custom control you need to implement the IYRCCustomControl interface
in your custom class. The IYRCCustomControl interface provides the ability to
display or fetch data in any format as per your business requirement. For example,
you may want to display date and time in AM or PM format. To display data in a
custom control, you need to implement the following abstract methods of the
IYRCCustomControl interface:
v setBehavior(YRCBehavior)—Pass the Parent behavior to this method to handle

errors, refresh views, and toggle Editor dirty status. To handle error on tab out,
use the addFieldInError() and removeFieldInError() methods. Also, whenever a
text is entered in the custom control, you should mark editor dirty status, using
the setDirty() method.

Note: If you want to invoke the custom control after behavior creation, then you
should set the behavior explicitly. Otherwise Rich Client Platform will set the
behavior for the custom control. In case of extensibility, the Rich Client Platform
automatically takes care of setting the behavior.

v setText(namespace, value)—Whenever the setModel() method is called,
depending on the source binding and the namespace, the text is set on the
controls. In case of a custom control, this method is called whenever the
setModel() method is called for the given namespace. Implementor of this class
should set the text on the custom control.

v setFocusOnErrorControl()—This method is used to set focus on Error control, if
the custom control has some validation error.
Whenever showError() method is called and the custom control is in error (i.e
you have called the addFieldInError() method in behavior on some validation),
this method is called by Rich Client Platform to set focus on the control in error.

Chapter 18. Menus and Custom Controls 175



v getText(namespace)—This method is called on the getTargetModel() method for
each namespace defined in the target Binding. The value that you return should
be a deformatted value.

v getBindingData()—Pass the binding object of the
YRCCustomControlBindingData class that you created for the custom control.

v setInput(input)—Pass the custom control input binding object that you created
for the custom control.

You can invoke a custom control by calling the
getCustomControl(parentComposite, customControlId, CustomControlBindingData)
method provided by the YRCUIUtils utility class of the Rich Client Platform.

Note: Rich Client Platform also provides an overrided method which does not
take parent composite as argument. Using this method or passing a null parent
will return the custom control with parent as a new shell. But in this case, you
should call the setParent() method on the custom control.

For example:
IYRCCustomControl dateTimeCtrl = YRCUIUtils.getCustomControl("DateTime",
customCtrlBindingData);

where DateTime is the identifier of the custom control that you want to invoke and
customCtrlBindingData is the custom control binding object.

The YRCUIUtils class also provides following additional methods, which you can
call for a custom control:
v localizeControl(parent, formId, pluginId)—Used to handle localization for the

text on all controls, hot key on links, and buttons on parent control and all its
children.

v applyTheme(parent, formId)—Used to apply a particular theme on parent
control and all its children.

v getCustomControl(controlId)—Returns a custom control which is an instance of
IYRCCustomControl class

176 Customizing the Rich Client Platform Interface



Chapter 19. Setting the Extension Model and Configuring SSL
and SSO

Setting the Extension Model for Rich Client Platform Applications
Extension model is set to populate the newly added fields on the form with the
required data. Extension model must be used in case you are not getting the
required data from the existing model or existing APIs or services called on the
screen.

Before you set the extension model, do the following:
v Creating Commands—In the Plug-in_id_commands.ycml file, create new

commands for calling an API or service for a screen. For more information,
about creating commands, see "Creating Commands".

v Defining Namespaces—In the Plug-in_id_commands.ycml file, define the new
namespaces for a screen.

Note: All the new namespaces that you define must start with "Extn_".

After creating new commands and namespaces for a screen, call an API or service.
After API or service call completes, call the setExtensionModel() method to
populate the newly added fields on the screen. You must pass the namespace of
the model and the target element as arguments to the setExtensionModel() method.

Note: Use the setExtensionModel() method only if the a specific API is not
returning the required data for the newly added field and hence you want to call
your own API.

Configuring SSL for Rich Client Platform Applications
About this task

The Rich Client Platform allows you to connect to servers using the HTTPS
protocol.

You can add your own custom hostname verification logic by adding the hostname
verifier. To add the hostname verifier, you must extend the YRCHostNameVerifier
extension point.

To extend the YRCHostNameVerifier extension point:

Procedure
1. Start the Eclipse SDK.
2. In the navigator view, expand the plug-in project that you created when

setting up the development environment.
3. To open the plugin.xml file in the Plug-in Manifest Editor, do any of the

following:
v Double-click on plugin.xml file.
v Right-click on plugin.xml file and select Open With > Plug-in Manifest

Editor.
4. Select the Extensions tab.

© Copyright IBM Corp. 1999, 2013 177



5. Click Add.
6. From the New Extension window, select

com.yantra.yfc.rcp.YRCHostNameVerifier extension point from the list.
7. Click Finish.
8. Select the com.yantra.yfc.rcp.YRCHostNameVerifier extension point. The

Extension Details panel displays.
9. In the Extension Details panel, enter the properties of the

YRCHostNameVerifier extension point.
10. To create a new hostNameVerifier extension element, right-click on

com.yantra.yfc.rcp.YRCHostNameVerifier extension and select New >
hostNameVerifier. The hostNameVerifier extension element gets created.

11. Select the hostNameVerifier extension element. The Extension Element Details
panel displays.

12. To specify the implementation class, do any of the following
v Click Browse. The Select Type pop-up window displays. Select the class

that implements the javax.net.ssl.HostnameVerifier interface.
v Click the class* hyperlink. The Java Attribute Editor window displays.
v Enter the name of the class that implements the

javax.net.ssl.HostnameVerifier interface.
v Click Finish. The new class gets created.

13. Implement the verify (String hostName, SSLSession session) method and
return the value "true" if the host name is acceptable. Otherwise, return the
value "false".

Configuring SSO for Rich Client Platform Applications
Single Sign-on (SSO) enables a user to perform an authentication once and gain
access to the of multiple applications' resources without having to login to the
applications again and again. To set up an SSO for a Rich Client Platform
application, you need to configure both client-side and server side settings.

Note: SSO must be implemented as a separate plug-in. If not implemented as a
separate plug-in, the out-of-the-box key= value bindings will be ignored.

Client Settings for SSO Configuration
About this task

Perform the following steps:

Procedure
1. Create a new plug-in for SSO authentication.
2. Start the Eclipse SDK.
3. In the navigator view, expand the plug-in project that you created.
4. To open the plugin.xml file in the Plug-in Manifest Editor, perform one of the

following tasks:
v Double-click the plugin.xml file.
v Right-click the plugin.xml file and select Open With > Plug-in Manifest

Editor.
5. Select the Extensions tab.
6. Click Add.

178 Customizing the Rich Client Platform Interface



7. From the New Extension window, select
com.yantra.yfc.rcp.YRCSSOAuthenticator extension point from the list.

8. Click Finish.
9. Select the com.yantra.yfc.rcp.YRCSSOAuthenticator extension point. The

Extension Details panel is displayed.
10. In the Extension Details panel, enter the properties of the

com.yantra.yfc.rcp.YRCSSOAuthenticator extension point.
11. To specify the implementation class, perform one of the following tasks:

v Click Browse. In the Select Type pop-up window that is displayed, select
the class that implements the com.yantra.yfc.rcp.YRCSSOAuthenticator
interface.

v Click the class* hyperlink. The Java Attribute Editor window is displayed.
v – Enter the name of the class that implements the

com.yantra.yfc.rcp.YRCSSOAuthenticator interface.
v Click Finish. The new class is automatically created.

12. Implement the isAuthTokenAvailable() method. If the SSO Authentication is
available in the Rich Client Platform Application, the isAuthTokenAvailable()
method should return True. Otherwise, it should return False.

13. Implement the setAuthToken(URLConnection connection) method and return
the key and value pairs of the connection request property. Following is an
example of this:
public void setAuthToken(URLConnection connection){
connection.setRequestProperty(key,value);
}

14. Override the getBrowserAuthParams() method and return the map of the
connection request parameters. The map should contain the string objects as
key and value pairs. Following is an example of this:
public Map getBrowserAuthParams() {
Map map = new HashMap();
map.put(key, value);
return map;
}

15. Edit the Rich Client Platform application's *.ini file and add the following VM
arguments:
-vmargs
-Dssomode=Y

Server Settings for SSO Configuration
Procedure
1. Open the INSTALL_DIR/repository/eardata/platform/descriptors/weblogic/

WAR/WEB-INF/web.xml file and search for the servlet-name tag.
2. Inside the RcpSSOServlet servlet-name tag, add the following init parameter

entry:
<init-param>

<param-name>rcpssomanager</param-name>
<param-value>com.yantra.SsoManager</param-value>

</init-param>

Note: To use SSO, the client should be configured to SSO and should have the
authentication token. The rcpssomanger init parameter set on the server is used
to validate the user session.

Chapter 19. Setting the Extension Model and Configuring SSL and SSO 179



180 Customizing the Rich Client Platform Interface



Chapter 20. General Concepts Reference

Rich Client Platform Architecture
Rich Internet Clients have advantages of both Client-Server and thin-client
applications. Rich Internet Client applications are developed on open standards
and have strong integration with the Desktop Operating System (OS), resulting in
rich interaction. Rich Internet Client applications provide immediate feedback to
users when they interact with the application. Rich Internet Client applications use
modern UI controls, such as tree controls or tabbed panels. Also, Rich Internet
Client applications allow users to perform interactive operations such as drag and
drop.

User Interfaces (UI) have been an integral part of any software application. For the
last few decades, a wide range of architectures and technologies have been used to
deliver user interfaces. The Total Cost of Ownership (TCO) and Usability,
Responsiveness, and Performance (URP) have been the two balancing factors for
choice of technologies.

TCO covers all the upfront and ongoing costs of an application, which includes:
purchase price, equipment, installation, training, and ongoing maintenance.

URP measures the performance of an application, its usability, and user's
productivity.

The ideal application would be one with a low TCO and a high URP.

UI architectures can be classified as:
v Green screen (or Character User Interfaces (CUI))
v Client-Server
v Browser based
v Rich Internet Client

The CUI provided users with basic user interfaces. CUI did not have the capability
of displaying information such as product images due to lack of graphic
capabilities. With the advent of Graphical User Interfaces (GUI) and operating
systems such as Windows, applications can support more sophisticated user
interfaces along with alternate input devices. For example, mouse.

The GUI applications developed using Client-Server technologies resulted in
Dynamic Link Library (DLL) conflicts and heavy network usage with respect to
TCO.

In mid-90's, internet technologies such as Hyper Text Markup Language (HTML)
started emerging very fast. Due to its simplicity and very low TCO, internet
technologies had tremendous impact in the way business applications were
delivered. Initially, HTML was only used for displaying information. However, its
potential for applications was soon exploited.

HTMLs performance in an interactive mode is highly limited, with high number of
trips required back and forth from the server. In addition, standard HTML was

© Copyright IBM Corp. 1999, 2013 181



never intended to produce the high-quality and high-performance user interfaces
that excelled under the Client-Server model.

The reduction in TCO of these browser-based applications was at the expense of
the users, as the URP was severely reduced.

The following figure illustrates the Rich Client Platform Architecture.

Today, technologies exists to create what is commonly known as Rich Internet
Clients that have advantages of a Client-Server model in terms of URP and
thin-client applications in terms of TCO. Rich Internet Client applications are
developed on open standards and have strong integration with the desktop
Operating System (OS), which results in highly rich interaction. Rich Internet
Client applications are also designed to provide server-based updates and are
designed to work with low bandwidth networks and standard security protocols.

Eclipse and its Rich Client Platform
Eclipse is an open source software development environment dedicated to provide
a robust, full-featured, and commercial-quality industry platform for the
development of highly integrated tools. The Eclipse Platform is designed for
building Integrated Development Environments (IDEs) that are used to create
diverse applications.

Eclipse Rich Client Platform helps in building java applications that are
Application Platform independent. Eclipse Rich Client Platform can also be used
for building non-IDE applications. Eclipse Rich Client Platform provides a general
UI, which can be extended by developers to suit their business needs.

www.eclipse.org is an association of software development tool vendors. The
Eclipse community was formed in order to create better development
environments and product integration. The community shares an interest in
creating products that are easily interoperable, because they are based on plug-in
technology and a common platform.

The Eclipse platform, which is a part of the Eclipse project, is an open extensible
Integrated Development Environment (IDE). The Eclipse platform provides
building blocks and a foundation for constructing and running integrated software
development tools. Primarily, Eclipse platform is driven by International Business
Machines (IBM). Eclipse technology is widely accepted within the Java community.

The Eclipse Rich Client Platform addresses the need for a single cross-platform
environment to create highly-interactive business applications. Essentially, Rich
Client Platform provides a generic Eclipse workbench that developers can extend
to construct their own applications. Eclipse Rich Client Platform is a part of the
Eclipse 3.23.3release. Eclipse Rich Client Platform enables application developers to
deliver rich internet applications that run on platforms such as Windows, Linux,
and so forth.

Figure 3. Rich Client Platform Architecture

182 Customizing the Rich Client Platform Interface



Workbench
Workbench refers to the desktop development environment. Workbench window
contains one or more perspectives. A perspective defines the initial set and layout
of views in the Workbench window. Perspectives contain views, editors, menus,
and tool bars. You can customize a perspective by defining a set of actions. More
than one Workbench window can exist on the desktop at any given time.

Plug-In Manifest Editor
The Plug-in Manifest Editor provides a single UI for editing the manifest and other
plug-in rel.ted files. The Plug-in Manifest Editor contains following sections.

Overview

The Overview section provides plug-in details such as plug-in identifier, version,
and so forth. It also specifies the class that is called when the user runs a plug-in.

Dependencies

The Dependencies section provides a list of dependant plugins required by the
plug-in to compile its code. If a plug-in is using the extension points of some other
plugins, then the plug-in must list those plugins as dependant plugins.

Runtime

The Runtime section provides a list of libraries in which the plug-in code is
packaged. For example, sop.jar. The class loader searches these libraries during
runtime to load the plug-in's classes. You can set the library's type, visibility, and
content in the runtime section.

Extensions

The Extensions section describes the functionality that a plug-in contributes to the
Eclipse platform by extending other plugins extension points. The extension
declaration must adhere to the schema defined by the extension point it extends.
You can add new menus and menu items along with toolbar by extending the
org.eclipse.ui.actionSets extension point.

Extension Points

The Extension Points section provides a list of new extension points that are
defined by a plug-in, which can be extended by other plugins to add the new
functionality. For example, the Rich Client Platform plug-in provides a
YRCPluginAutoLoader extension point which other plugins can extend to load
their plug-in.

Build

The Build section provides a list of libraries that are required at the runtime. It also
lists the source folder where these libraries are located. You can select the folders
and/or files you want to include in the source build and binary build.

Chapter 20. General Concepts Reference 183



Manifest.mf

The manifest.mf file contains a list of plugins that are loaded dynamically. The
Bundle-Activator entry specifies the name of the plug-in. For example,
com.yantra.yfc.rcp.

Plugin.xml

The plugin.xml file contains all information that is required to run a plug-in. The
plugin.xml file is used for defining Eclipse extension points, and other dependent
plug-in's extension points. However, if you are not using any extension points, you
can exclude this file.

Build.properties

The build.properties file contains all files and directories that are required by a
plug-in at the runtime.

YRCPluginAutoLoader Extension Point
The Rich Client Platform provides YRCPluginAutoLoader extension point, which
defines the order in which the plugins needs to be loaded. The
YRCPluginAutoLoader is an extension point, which is defined in the
com.yantra.yfc.rcp plug-in. Any plug-in that is dependent on the
com.yantra.yfc.rcp plug-in can extend this extension point to automatically load a
class in the specified order when starting the Rich Client Platform application. The
YRCPluginAutoLoader automatically loads the classes within a plug-in during
startup in a specified order. All classes that need to be automatically loaded are
sorted in ascending order and loaded one at a time. The YRCPluginAutoLoader
has a extension element called AutoLoad, which has two properties ClassToLoad
and LoadOrder.

Note: Loading a class within a plug-in may load the plug-in itself, resulting in
initialization of the class used for registering plug-in and other resource files.
Therefore, the YRCPluginAutoLoader extension point is used for initialization
purposes.

YRCAutoUpdateExtn Extension Point
The Rich Client Platform provides an extension point, YRCUpdateExtn and an
interface IYRCClientUpdater, which can be used to prevent users from logging on
to the system when application updates are being automatically installed.

The interface IYRCClientUpdater contains downloadingUpdate and
downloadComplete methods, which must be implemented to inform users about
the updates being installed and when they are complete.

The method downloadingUpdate must be called after the Updatecheck method
and returns one of the following:
v DO_NOT_UPDATE—Skips the update.
v BLOCK_UI—Downloads the update and prevents user from logging on.
v CONTINUE—Continues to download the update but allows users to log in.

The method downloadComplete must be called after the method
DownloadingUpdate and returns one of the follwing:

184 Customizing the Rich Client Platform Interface



v INSTALL_EXIT—Installs updates and closes the application.
v INSTALL_RESTART—Installs updates and restarts the application. The login

credentials must be passed again when the application is restarted.
v CONTINUE—Displays Update Downloaded message and installs updates when

user restarts the application.

YRCApplicationInitializer Extension Point
About this task

The Rich Client Platform provides an extension point, YRCApplicationInitializer,
and an interface, IYRCApplicationInitializer, which can be used to define the
classes that are initialized and invoked during application startup. These classes
are called after login but before the application workbench window is created or
opened.

The YRCApplicationInitializer extension point is defined in the com.yantra.yfc.rcp
plug-in and must implement the IYRCApplicationInitializer interface.

To define the initialization class, perform the following steps:

Procedure
1. Start the Eclipse SDK.
2. In the navigator view, expand the plug-in project that you created.
3. To open the plugin.xml file in the Plug-in Manifest editor, do any of the

following:
v Double-click on plugin.xml file.
v Right-click on plugin.xml file and select Open With > Plug-in Manifest

Editor

4. Select the Extensions tab.
5. Click Add.
6. From the New Extension window, select YRCApplicationInitializer extension

point from the list.
7. Click Finish.
8. Select the com.yantra.yfc.rcp.YRCApplicationInitializer extension point. The

Extension Details panel is displayed.
9. In the Extension Details panel, enter the properties of

YRCApplicationInitializer extension.
10. The extension point has a defined sequence, which consists of the following

attributes:
v id—The extension is identified by a unique ID which must be specified.
v name—This is the name given to the extension. The name is optional. For

example, myappinitializer.
v Initializer—The Initializer element defines the initializer class to be loaded

before the workbench window is created or opened. This consists of the
following mandatory attribute that must be defined:
– class—Specify a fully classified path to a Java class that must implement

the IYRCApplicationInitializer interface.

Chapter 20. General Concepts Reference 185



YRCContainerToolbar Extension Point
About this task

YRCContainerToolbar extension point is a resource provider extension point for
PCAs, provided by the Rich Client Platform in the com.yantra.yfc.rcp plugin. An
interface IYRCContainerToolbarProvider is provided, which must be implemented
by the class specified in the extension.

The YRCContainerToolbar extension point can be used to display a toolbar or
customize the existing toolbar on the application workbench window.

By default, the application container layout consists of the following elements:
v Container Header
v Container Toolbar
v Related Task/menu
v Main Editor

You can use this extension point to customize the toolbar on the container layout.

To display or customize the toolbar, perform the following steps:

Procedure
1. Start the Eclipse SDK.
2. In the navigator view, expand the plug-in project that you created.
3. To open the plugin.xml file in the Plug-in Manifest editor, do any of the

following:
v Double-click on plugin.xml file.
v Right-click on plugin.xml file and select Open With > Plug-in Manifest

Editor.
4. Select the Extensions tab.
5. Click Add. From the New Extension window, select YRCContainerToolbar

extension point from the list.
6. Click Finish.
7. Select the com.yantra.yfc.rcp.YRCContainerToolbar extension point. The

Extension Details panel is displayed.
8. In the Extension Details panel, enter the properties of YRCContainerToolbar

extension.
9. The extension point has a defined sequence, which consists of the following

attributes:
v id—The extension is identified by a unique ID which must be specified.
v name—This is the name given to the extension point. The name is optional.

For example, mycontainertitle.
v ApplicationToolbarProvider—This element defines the class to be loaded

before the workbench window is created or opened. This consists of the
following mandatory attributes:
– moduleId—Specify the module ID of the PCA for which you want to

display or customize the toolbar. For example, ycd (forSterling Call Center
and Sterling Store application).

– class—Specify fully classified path to a Java class that must implement the
interface IYRCContainerToolbarProvider interface.

186 Customizing the Rich Client Platform Interface



YRCPostWindowOpenInitializer Extension Point
About this task

The YRCPostWindowOpenInitializer extension point is provided in the
com.yantra.yfc.rcp plug-in for initialization operations. The extension point can be
used to open the required editors and menus after the application workbench
window is open. The YRCPostWindowOpenInitializer extension point can also be
used to display or hide views.

An interface IYRCPostWindowOpenInitializer is provided, which must be
implemented by the class specified in the extension.

To create an extension for YRCPostWindowOpenInitializer, perform the following
steps:

Procedure
1. Start the Eclipse SDK.
2. In the navigator view, expand the plug-in project that you created.
3. To open the plugin.xml file in the Plug-in Manifest editor, do any of the

following:
v Double-click on plugin.xml file.
v Right-click on plugin.xml file and select Open With > Plug-in Manifest

Editor.
4. Select the Extensions tab.
5. Click Add.
6. From the New Extension window, select YRCPostWindowOpenInitializer

extension point from the list.
7. Click Finish.
8. Select the com.yantra.yfc.rcp.YRCPostWindowOpenInitializer extension point.

The Extension Details panel is displayed.
9. In the Extension Details panel, enter the properties of

YRCPostWindowOpenInitializer extension.
10. The extension point has a defined sequence, which consists of the following

attributes:
v id—The extension is identified by a unique ID which must be specified.
v name—This is the name given to the extension point. The name is optional.

For example, mywindowinitializer.
v Initializer—This element defines the class to be loaded after the workbench

window is created or opened, for post-window initialization. This consists
of the following mandatory attribute:
– class—Specify a fully classified path to a Java class that must be called

after the workbench window is opened. This class must implement the
IYRCPostWindowOpenInitializer interface.

Chapter 20. General Concepts Reference 187



YRCJasperReport Extension Point
About this task

The YRCJasperReport extension point is a report definition extension point
provided in the com.yantra.yfc.rcp plug-in to define or register definitions of Jasper
reports. Application plugins can use this extension point to override the default
report definitions.

To register your own Jasper report definitions, perform the following steps:

Procedure
1. Start the Eclipse SDK.
2. In the navigator view, expand the plug-in project that you created.
3. To open the plugin.xml file in the Plug-in Manifest editor, do any of the

following:
v Double-click on plugin.xml file.
v Right-click on plugin.xml file and select Open With > Plug-in Manifest

Editor.
4. Select the Extensions tab.
5. Click Add.
6. From the New Extension window, select YRCJasperReport extension point

from the list.
7. Click Finish.
8. Select the com.yantra.yfc.rcp.YRCJasperReport extension point. The Extension

Details panel is displayed.
9. In the Extension Details panel, enter the properties of YRCJasperReport

extension.
10. The extension point has a defined sequence, consisting of one or more

elements called JasperReport, for registering or defining each report:
v id—The extension is identified by a unique report ID which must be

specified. Based on this report ID, applications can override or execute
Jasper reports.

v description—Specify the report description, which is required.
v permissionId—Permission ID is the permission given to a user for

launching reports. This is optional.
v file—Specify the path and the file name of the Jasper report for which you

want to register the definitions. Only files with the extension, .jasper, must
be specified.

YRCContainerTitleProvider Extension Point
About this task

YRCContainerTitleProvider is a resource provider extension point for PCAs,
provided in the com.yantra.yfc.rcp plug-in. This extension point can be used to
create and display a title header on the application workbench window.

An interface IYRCContainerTitleHeader, is provided which must be implemented
by the Java class specified in the extension point.

To display the title header, perform the following steps:

188 Customizing the Rich Client Platform Interface



Procedure
1. Start the Eclipse SDK.
2. In the navigator view, expand the plug-in project that you created.
3. To open the plugin.xml file in the Plug-in Manifest editor, do any of the

following:
v Double-click on plugin.xml file.
v Right-click on plugin.xml file and select Open With > Plug-in Manifest

Editor.
4. Select the Extensions tab.
5. Click Add.
6. From the New Extension window, select YRCContainerTitleProvider

extension point from the list.
7. Click Finish.
8. Select the com.yantra.yfc.rcp.YRCContainerTitleProvider extension point. The

Extension Details panel is displayed.
9. In the Extension Details panel, enter the properties of

YRCContainerTitleProvider extension.
10. The extension point has a defined sequence, which consists of the following

attributes:
v id—The extension is identified by a unique ID which must be specified.
v name—This is the name given to the extension. The name is optional. For

example, containertitle.
v ApplicationTitleProvider—This element defines the class to be loaded for

displaying the title header on the workbench window. This consists of the
following mandatory attributes:
– class—Specify a fully classified path to a Java class that must implement

the interface IYRCContainerProvider. This class must create the title
control, set user and title information for the title header that must be
displayed on the application workbench window.

– moduleId—Specify the module ID of the PCA for which you want to
display the title header. For example, sop.

YRCMessageDisplayer Extension Point
About this task

The YRCMessageDisplayer extension point is a resource provider extension point
for PCAs, provided in the com.yantra.yfc.rcp plug-in. The extension point can be
used to customize the message view on the application workbench window of the
PCAs. An interface, IYRCMessageDisplayer is provided which must be
implemented by the class specified in the extension.

The standard message view contains the following:
v Customer name
v Customer message
v Status or error message

You can add or modify messages on the message view by using this extension
point.

To customize the message view, perform the following steps:

Chapter 20. General Concepts Reference 189



Procedure
1. Start the Eclipse SDK.
2. In the navigator view, expand the plug-in project that you created.
3. To open the plugin.xml file in the Plug-in Manifest editor, do any of the

following:
v Double-click on plugin.xml file.
v Right-click on plugin.xml file and select Open With > Plug-in Manifest

Editor.
4. Select the Extensions tab.
5. Click Add.
6. From the New Extension window, select YRCMessageDisplayer extension

point from the list.
7. Click Finish.
8. Select the com.yantra.yfc.rcp.YRCMessageDisplayer extension point. The

Extension Details panel is displayed.
9. In the Extension Details panel, enter the properties of YRCMessageDisplayer

extension.
10. The extension point has a defined sequence, which consists of the following

attributes:
v id—The extension is identified by a unique ID which must be specified.
v MessageDisplayerList—The MessageDisplayerList group element consists of

one or more MessageDisplayer elements, each corresponding to the module
ID of an application. For example, MessageDisplayerList1 can contain one
or more MessageDisplayer elements corresponding to different module IDs
of applications such as COM,SOM, or SOP.

v name—This is the name given to the extension. The name is optional. For
example, mymessageDisplayer.

11. MessageDisplayer element: Each MessageDisplayer element belongs to the
MessageDisplayerList element and consists of the following mandatory
attributes:
v moduleId—Specify the module ID of the PCA for which you want to

customize the message view. For example, ycd (forSterling Call Center and
Sterling Store application).

v class—Specify the Java class that must implement the interface
IYRCMessageDisplayer interface.

Creating New Actions
About this task

This section explains how to create new actions and invoke them on clicking of a
menu item or button in a Rich Client Platform application.

To create a new action:

Procedure
1. Start the Eclipse SDK.
2. In the navigator view, expand the plug-in project that you created.
3. To open the plugin.xml file in the Plug-in Manifest editor, do any of the

following:

190 Customizing the Rich Client Platform Interface



v Double-click on plugin.xml file.
v Right-click on plugin.xml file and select Open With > Plug-in Manifest

Editor.
4. Select the Extensions tab.
5. Click Add.
6. From the New Extension window, select org.eclipse.ui.actionSets extension

point from the list.
7. Click Finish. The ActionSet extension element is created.
8. Select the org.eclipse.ui.actionSets extension point. The Extension Details

panel displays.
9. In the Extension Details panel, enter the properties of org.eclipse.ui.actionSets

extension point.
10. Select the ActionSet extension element. The Extension Element Details panel

displays.
11. In the Extension Details panel, enter the properties of the actionSet extension

element.
12. In the visible, select true from the drop-down menu to make the actions

defined in this action set visible.
13. To create a new action extension element, right-click on actionSet extension

element and select New > action. The action extension element is created.
14. Select the action extension element. The Extension Element Details panel

displays.
15. In id*, enter a unique identifier for the action. This action identifier

corresponds to the identifier of the action that gets invoked when you click on
a menu item or related task. This action identifier also corresponds to the
action identifier specified in the URL field, which is defined within a resource.

16. In class, to specify the implementation class, do any of the following:

Note: This implementation class can extend either YRCAction class or
YRCRelatedTaskAction class. If you are creating an normal action, which is
used for menu items then extend the YRCAction class and if you want to
create an related task action, which is used for related tasks then extend the
YRCRelatedTaskAction class.
v If you want to select an existing action class, click Browse, . The Select Type

pop-up window displays. Select the action class that extends the YRCAction
class or YRCRelatedTaskAction class. Click on the class hyperlink.

v If you want to create a new action class, click on the class hyperlink. The
Java Attribute Editor window displays.
a. In Source Folder, the name of the source folder that you selected to store

the action class automatically displays. You can also browse to the folder
that you want to specify as the source folder.

b. In Package, the name of the package that you selected to store the action
class automatically displays. This helps you to easily manage your
directory structure.

c. In Name, enter the name of the action class.
d. In Superclass, click Browse, the Superclass Selection window displays.
e. Select the YRCAction class or YRCRelatedTaskAction class from the list

and click OK.

Chapter 20. General Concepts Reference 191



f. In Interfaces:, remove the interface
org.eclipse.ui.IWorkbenchWindowActionDelegate, which is resent by
default.

g. Check the Constructors from superclass box. The system automatically
creates the constructor for the superclass that you specified.

h. Check the Inherited abstract methods box. The system automatically
adds the abstract methods inherited by the superclass that you specified.

i. Click Finish. The system creates the new action class in the folder or
package selected by you.

17. Open the newly created action class in the Java Editor.
18. Depending on the action class that you are extending, write the code to

perform the required operation in the inherited abstract execute() method. For
example,
v If you are extending the YRCAction class then write the code for

performing the required operation in the execute() method. The execute()
method internally checks if the action can be run or not. This check criteria
depends on the following criteria:
– Whether or not the current editor has errors.
– Whether or not the current editor has been modified.
Therefore, following methods must be overridden in the class which is
extending the YRCAction class:
– checkForErrors()—This method is used to check if the current editor has

errors or not. If you want to skip this check, then return false.
– checkForModifications()—This method is used to check if the current

editor has been modified or not. If you want to skip this check, then
return false.

v If you are extending theYRCRelatedTaskAction class then write the code for
performing the required operation in the executeTask() method.

Registering a Plug-In
Every plug-in that is a part of the Rich Client Platform application must be
registered. Various features such as localization, theming, configuration, UI
extension depend on a plug-in being registered. To register a plug-in in the Rich
Client Platform application, you must invoke the registerPlugin() method of the
YRCPlatformUI class.

Note: When you create a Rich Client Platform plug-in using the Rich Client
Platform Wizards > UI wizards > Rich Client Platform Plug-in, the class for
registering a plug-in and other Rich Client Platform-specific resource files is
automatically created. Therefore, you need not explicitly register the plug-in and
other Rich Client Platform-specific resource files.

A sample code for registering a plug-in is as follows:
public class TestPlugin extends AbstractUIPlugin {

private static TestPlugin plugin;
public static final String ID="com.mycompany.test.rcp";
public TestPlugin() {

super();
plugin=this;
try {

YRCPlatformUI.registerPlugin(ID, this);
} catch (Exception ex) {

192 Customizing the Rich Client Platform Interface



YRCPlatformUI.trace(ex);
}

}
}

Registering Plug-In Files
Every plug-in that wants to use its own resource files such as bundle, theme,
configuration files, and so forth must register these files with Rich Client Platform
application. You can register all resource files together within the plug-in
constructor.

A sample code that can be used to register a plug-in and all its resource files is as
follows:
public class TestPlugin extends AbstractUIPlugin {

private static TestPlugin plugin;
public static final String ID="com.mycompany.test.rcp";
public TestPlugin() {

super();
plugin=this;
try {

YRCPlatformUI.registerPlugin(ID, this);
YRCPlatformUI.registerConfiguration("com.mycompany.test.rcp_config", ID);
YRCPlatformUI.registerBundle("com.mycompany.test.rcp_bundle", ID);
YRCPlatformUI.registerCommands("com.mycompany.test.rcp_commands", ID);
YRCPlatformUI.registerExtensions("com.mycompany.test.rcp_extn", ID);
YRCPlatformUI.registerTheme("com.mycompany.test.rcp_sapphire", ID);

} catch (Exception ex) {
YRCPlatformUI.trace(ex);

}
}

Registering Bundle File

The bundle file is used for localizing Rich Client Platform applications. Every
plug-in that requires its own bundle file should invoke the registerBundle()
method of the YRCPlatformUI class during plug-in initialization, preferably within
the plug-in constructor to register its bundle file. After the bundle file is registered,
it gets loaded using the users current locale. The bundle file must have "properties"
extension.

To register the bundle file within the plug-in constructor, for example:
YRCPlatformUI.registerBundle("com.yantra.pca.ycd_bundle", ID)

where com.yantra.pca.ycd_bundle is the name of the bundle file without
".properties" extension. ID is a unique identifier of the plug-in that registers this
bundle file.

Note: Before calling the registerBundle() method, the plug-in must be registered
using the registerPlugin() method of the YRCPlatformUI class.

Registering Theme File

The theme file is used for setting the color scheme and font properties of Rich
Client Platform applications. Every plug-in that requires its own theme file should
invoke the registerTheme() method of the YRCPlatformUI class during plug-in
initialization, preferably within the plug-in constructor to register its theme file.

To register the theme file within the plug-in constructor, for example:

Chapter 20. General Concepts Reference 193



YRCPlatformUI.registerTheme("com.mycompany.test.rcp_skyblue", ID)

where com.mycompany.test.rcp_skyblue is the name of the your theme file without
".ythm" extension. ID is a unique identifier of the plug-in that registers this theme
file.

Note: Before calling the registerTheme() method, the plug-in must be registered
using the registerPlugin() method of the YRCPlatformUI class.

Registering Configuration File

The configuration file is used to set the URL path parameters for connecting Rich
Client Platform applications to the server. Every plug-in that requires its own
configuration file should invoke the registerConfiguration() method of the
YRCPlatformUI class during plug-in initialization, preferably within the plug-in
constructor to register its configuration file. Configuration file must have extension
"ycfg". Plugins can use any custom XML configuration file.

To register your configuration file within the plug-in constructor, for example:
YRCPlatformUI.registerConfiguraton("com.mycompany.test.rcp_config", ID)

where com.mycompany.test.rcp_config is the name of the your configuration file
without ".ycfg" extension. ID is a unique identifier of the plug-in that registers this
configuration file.

Note: Before calling the registerConfiguration() method, the plug-in must be
registered using the registerPlugin() method of the YRCPlatformUI class.

Registering Commands File

The commands file is used to create commands to call different APIs or services.
Every plug-in that requires its own set of commands should invoke the
registerCommands() method of the YRCPlatformUI class during plug-in
initialization, preferably within the plug-in constructor to register its commands
file. Commands file must have extension "ycml". The command names are unique,
and reusing a command name overrides an existing definition. To register your
commands file within the plug-in constructor:
YRCPlatformUI.registerCommands("com.mycompany.test.rcp_commands", ID)

where com.mycompany.test.rcp_commands is the name of the your commands file
without ".ycml" extension. ID is a unique identifier of the plug-in that registers this
commands file.

Note: Before calling the registerCommands() method, the plug-in must be
registered using the registerPlugin() method of the YRCPlatformUI class.

Registering Extension File

The extension file is used to store information about Rich Client Platform
applications UI extensibility such as addition of new fields, modification of existing
fields, and so forth. Every plug-in that requires its own extension file should
invoke the registerExtensions() method of the YRCPlatformUI class during plug-in
initialization, preferably within the plug-in constructor to register its extension file.
The extension file must have "yuix" extension. To register your extension file
within the plug-in constructor:
YRCPlatformUI.registerExtensions("com.yantra.order.capture_extn.yuix",ID)

194 Customizing the Rich Client Platform Interface



where com.yantra.order.capture_extn.yuix is the name of the your extension file
with ".extn" extension. ID is a unique identifier of the plug-in that registers this
extension file.

Note: Before calling the registerExtensions() method, the plug-in must be
registered using the registerPlugin() method of the YRCPlatformUI class.

Validating Controls
The Rich Client Platform provides methods to validate various controls. When the
controls have target binding, the associated data type is retrieved and appropriate
validation is performed at the infrastructure level. You can validate the data
entered in the controls such as text box, combo box, button, and so forth by
implementing the appropriate validate method. The data type validation can be
performed for the value entered by the user. Validations can also be performed for
custom criteria. If the data type validation for a control fails, the validate method
for that control is not called and an error message is displayed.

The methods for validating the following controls are:
v Text Control—When the text control loses focus, the data type validation and

other mandatory validations are performed first. If the validation succeeds, the
control is passed to the validateTextField() method.

v Combo Control—When a different item is selected from the combo control, the
data type validation and other mandatory validations are performed first. If the
validation succeeds, the control is passed to the validateComboField() method.

v Button Control—When the controls such as button, check box, radio button
whether selected or unselected, the validateButtonClick() method is invoked.

Note: In case of radio button, if the validation fails, the focus is set on the
selected radio button and not on the original radio button. You will have to
explicitly set the focus on the original radio button.

You can extend the default validations using the previously mentioned methods
and define custom validations in your action classes. However, the default
validations will always be performed after the custom validations and the default
validations cannot be suppressed.

If you want to suppress the default validations, hide the control associated with
the action that is performing the validation. Add a custom control and define a
new action for the custom control with the custom validations that are required.
However, ensure that the new action contains the code which performs the same
logic as the default validations in addition to the custom validations.

Custom Data Formatting
About this task

Rich Client Platform enables you to perform custom data formatting.

For example, say that the user enters 6175677890 in the Phone Number field and
presses the Tab key. You want to format this number and display it as
617-567-7890.

Chapter 20. General Concepts Reference 195



To display the formatted value, you must associate the formatted logic with the
Phone Number field. You can perform custom formatting for a field by extending
the YRCDataFormatter extension point.

Note: Rich Client Platform supports custom data formatting for label, text, and
styled text controls.

To extend the YRCDataFormatter extension point:

Procedure
1. Start the Eclipse SDK.
2. In the navigator view, expand the plug-in project that you created.
3. To open the plugin.xml file in the Plug-in Manifest editor, do any of the

following:
v Double-click on plugin.xml file.
v Right-click on plugin.xml file and select Open With > Plug-in Manifest

Editor.
4. Select the Extensions tab.
5. Click Add.
6. From the New Extension window, select

com.yantra.yfc.rcp.YRCDataFormatter extension point from the list.
7. Click Finish.
8. Select the com.yantra.yfc.rcp.YRCDataFormatter extension point. The

Extension Details panel displays.
9. In the Extension Details panel, enter the properties of the

com.yantra.yfc.rcp.YRCDataFormatter extension point.
10. In ID, enter a unique identifier for the com.yantra.yfc.rcp.YRCDataFormatter

extension point. This is a mandatory field.
11. To create a new dataFormatter extension element, right-click on

com.yantra.yfc.rcp.YRCDataFormatter and select New > dataFormatter. The
dataFormatter extension element is created.

12. Select the dataFormatter extension element. The Extension Element Details
panel displays.

13. In the Extension Details panel, enter the properties of the dataFormatter
extension element.

14. In attributeBinding*, enter the name of the XPath attribute whose value you
want to custom format. For example, the attribute binding can be set as
DayPhone.

15. In class, specify the implementation class by doing any of the following:
v Click Browse. The Select Type pop-up window displays. Select the

implementation class that contains the formatting logic for the field.
v Click on the class* hyperlink. The Java Attribute Editor window displays.

– In Source Folder, the name of the source folder that you selected to store
the implementation class displays. You can also browse to the folder that
you want to specify as the source folder.

– In Package, the name of the package that you selected to store the
implementation class displays. This enables you to easily manage your
directory structure.

– In Name, enter the name of the implementation class.
– In Superclass, click Browse. The Superclass Selection window displays.

196 Customizing the Rich Client Platform Interface



– Enter the YRCDataFormatter class and click OK.

– Check the Constructors from superclass box. The system creates the
constructor for the superclass that you specified.

– Check the Inherited abstract methods box. The system automatically
adds the abstract methods inherited by the superclass that you specified.

– Click Finish. The system creates the new implementation class in the
folder or package selected by you.

16. Open the newly created implementation class in the Java editor.
17. Override the inherited abstract getFormattedValue() method. Write the

formatting code for displaying the field value and return the formatted value.
For example, the formatting logic can be:
public YRCFormatResponse getFormattedValue(String attributBinding,
String value) {

YRCFormatResponse response = null;
//validForDataType(String)method can be used to do custom validation
//on the value of the field.
//Based on the validation we can set the response.
if(validForDataType(value)) {

String retVal = value.substring(0, 3)+"-"+value.substring(3, 6)+
"-"+ value.substring(6);

response =
new YRCFormatResponse(YRCFormatResponse.YRC_VALIDATION_OK,
"Valid Format", retVal);

}
else{

response =
new YRCFormatResponse(YRCFormatResponse.YRC_VALIDATION_ERROR,
"InValid Format", null);

}
return response;

}

If you want to perform some custom validation on the field value, you can
write your own logic to validate the value. For example, in the following code
the validForDataType(String) method is used to perform custom validation on
the field value.
private boolean validForDataType(String value) {

if(value.length()==10){
return true;

}
return false;

}

18. Override the inherited abstract getDeformattedValue() method. Write the
deformatted value of the field you want to store in the XML and return the
deformatted value. For example, the deformatting logic can be:
public
String getDeformattedValue(String attributBinding, String value) {

String retVal=null;
String [] retValArray = value.split("-");
for(int i=0;i<retValArray.length;i++){

if (i==0) {
retVal = retValArray[i];

}else {
retVal = retVal+retValArray[i];

}
}

return retVal;
}

Chapter 20. General Concepts Reference 197



Siblings
Siblings are the first level children of the parent. For example, let us consider the
following scenario:

Here, the siblings of the OrderNo label are text box (Y001), button (Search), and
Group2, which are the first level children of Group1. Similarly, the sibling of
ItemID label is the text box (SKU-1001).

Rich Client Platform Utilities
Rich Client Platform provides a utility tool using which you can gather
information for a particular UI or form such as form id, models used, and so forth.

Viewing Screen Models
About this task

By using the Screen Model utility tool, you can view the form identifier and all
models used in any UI, along with the various elements and attributes used in a
model. You can also save all screen models as templates.

To view a screen model:

Procedure
1. Run the appropriate Rich Client Platform application.
2. After you successfully log in to the application, the application window

displays.
3. Open the screen for which you want to view models.
4. Press CTRL+SHIFT+M to view screen model. The Screen Models window

displays.

198 Customizing the Rich Client Platform Interface



In the formId field, the identifier of the form displays, which is used to identify
the screen.
The left-hand side panel displays a list of models used in the screen as a tree
structure with root being the form identifier of the screen. After you select a
specific model, you can view a list of elements and attributes defined in the
model on the right-hand side panel. If a screen contains embedded screens in
it, then you can view a list of models used for each screen.

Saving Models as Templates
About this task

To save existing models as templates:

Procedure
1. Click the button next to the Templates Directory field. The Choose Directory

pop-up window displays.
2. Select the directory where you want to store the models of the screen as

templates, and click OK.
3. Click Save. The system stores the models of each screen as templates in their

respective folders.

Chapter 20. General Concepts Reference 199



200 Customizing the Rich Client Platform Interface



Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not grant you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte character set (DBCS) information,
contact the IBM Intellectual Property Department in your country or send
inquiries, in writing, to:

Intellectual Property Licensing

Legal and Intellectual Property Law

IBM Japan Ltd.

1623-14, Shimotsuruma, Yamato-shi

Kanagawa 242-8502 Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be

© Copyright IBM Corp. 1999, 2013 201



incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Corporation

J46A/G4

555 Bailey Avenue

San Jose, CA 95141-1003

U.S.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

All IBM prices shown are IBM's suggested retail prices, are current and are subject
to change without notice. Dealer prices may vary.

202 Customizing the Rich Client Platform Interface



This information is for planning purposes only. The information herein is subject to
change before the products described become available.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. The sample
programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work, must
include a copyright notice as follows:

© IBM 2013. Portions of this code are derived from IBM Corp. Sample Programs. ©
Copyright IBM Corp. 2013.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

Trademarks

IBM, the IBM logo, and ibm.com® are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the Web at “Copyright and
trademark information” at http://www.ibm.com/legal/copytrade.shtml.

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered
trademarks or trademarks of Adobe Systems Incorporated in the United States,
and/or other countries.

IT Infrastructure Library is a registered trademark of the Central Computer and
Telecommunications Agency which is now part of the Office of Government
Commerce.

Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo,
Celeron, Intel Xeon, Intel SpeedStep, Itanium, and Pentium are trademarks or
registered trademarks of Intel Corporation or its subsidiaries in the United States
and other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both.

Notices 203

http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml


Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

ITIL is a registered trademark, and a registered community trademark of the Office
of Government Commerce, and is registered in the U.S. Patent and Trademark
Office.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Oracle and/or its affiliates.

Cell Broadband Engine is a trademark of Sony Computer Entertainment, Inc. in the
United States, other countries, or both and is used under license therefrom.

Linear Tape-Open, LTO, the LTO Logo, Ultrium and the Ultrium Logo are
trademarks of HP, IBM Corp. and Quantum in the U.S. and other countries.

Connect Control Center®, Connect:Direct®, Connect:Enterprise®, Gentran®,
Gentran®:Basic®, Gentran:Control®, Gentran:Director®, Gentran:Plus®,
Gentran:Realtime®, Gentran:Server®, Gentran:Viewpoint®, Sterling Commerce™,
Sterling Information Broker®, and Sterling Integrator® are trademarks or registered
trademarks of Sterling Commerce®, Inc., an IBM Company.

Other company, product, and service names may be trademarks or service marks
of others.

204 Customizing the Rich Client Platform Interface





����

Product Number: xxxx-xxx

Printed in USA


	Contents
	Chapter 1. Checklist for Customization Projects
	Customization Projects
	Prepare Your Development Environment
	Plan Your Customizations
	Extend the Database
	Make Other Changes to APIs
	Customize the UI
	Extend Transactions
	Build and Deploy your Customizations or Extensions

	Chapter 2. The Rich Client Platform
	About Customizing the Rich Client Platform Interface
	Rich Client Platform Architecture
	Benefits of Using the Rich Client Platform Interface
	Rich Client Platform and Desktop Applications
	XML Binding for Rich Client Platform Applications
	Localizing Rich Client Platform Applications
	Themes for Rich Client Platform Applications
	Related Tasks for Rich Client Platform Applications
	Shared Tasks for Rich Client Platform Applications
	Navigator Tasks for Rich Client Platform Applications
	Wizards for Rich Client Platform Applications
	Hot Keys for Rich Client Platform Applications
	Debug Mode for Rich Client Platform Applications
	Running Rich Client Platform Applications in Debug Mode
	Running the Standalone Rich Client Platform Application in Debug Mode
	Running the Rich Client Platform Application in Eclipse in Debug Mode

	Prototype Mode for Rich Client Platform Applications
	Running Standalone Rich Client Platform Applications in Prototype Mode
	Running Rich Client Platform Applications in Eclipse in Prototype Mode

	Tracing a Rich Client Platform Application
	Tracing a Standalone Rich Client Platform Application
	Tracing a Rich Client Platform Application in Eclipse
	Masking Sensitive Information During Trace

	Capitalizing the Text Entered in Rich Client Platform Applications
	Fetching Images for Rich Client Platform Applications
	Security Handling for Rich Client Platform Applications
	Output Templates for Rich Client Platform Applications
	Commands for Rich Client Platform Applications
	Log Files for Rich Client Platform Applications
	Masking Sensitive Information During Logging

	Data Caching for Rich Client Platform Applications
	Error Handling for Rich Client Platform Applications
	Table Filtering for Rich Client Platform Applications
	Clearing the Sort Order in a Table

	Scheduling Jobs for Rich Client Platform Applications
	Scheduling a Generic Job
	Scheduling an Alert-Related Job
	Preventing the Deactivation of Alert Notification

	Audio Files for Rich Client Platform Applications
	Low Resolution Display for Rich Client Platform Applications
	Displaying Panel Tasks on the Menu Bar for Rich Client Platform Applications
	Switching Locales for Rich Client Platform Applications
	Using a VM Login for Rich Client Platform Applications
	Using a VM JRE for Rich Client Platform Applications
	Supervisory Overrides for Rich Client Platform Applications
	Using the Pop-Up Method to Perform Supervisory Overrides
	Starting a Supervisory Transaction to Perform Supervisory Overrides

	Running Rich Client Platform Applications in POS Mode
	Version-Based Communication between Client and Server
	Integrating Web Applications with Rich Client Platform
	Create an Extension


	Chapter 3. The Development Environment for Rich Client Platform Applications
	Installing Prerequisite Software Components
	Clean Cached Build Information in Eclipse
	Installing the Rich Client Platform Plug-In
	Installing the Rich Client Platform Tools Plug-In
	Rich Client Platform Tools
	View Rich Client Platform Cheat Sheets
	Open the Rich Client Platform UI wizards


	Creating and Configuring Locations
	Creating a Plug-In Project
	Rich Client Platform Plug-In Wizard
	Running the Rich Client Platform Plug-In Wizard

	Launching the Rich Client Platform Application in Eclipse

	Chapter 4. Customizing the Log In Screen
	Customizing the Login Screen

	Chapter 5. Customizing Rich Client Platform Applications
	Overview of Customizing Rich Client Platform Applications
	Localizing Rich Client Platform Applications
	Defining Themes for Rich Client Platform Applications
	Extending Rich Client Platform Applications
	Building and Deploying Extended Rich Client Platform Applications
	Building Rich Client Platform Extensions
	Deploying Rich Client Platform Extensions

	Chapter 6. Customizing the About Box
	Customizing the About Box

	Chapter 7. Masking Sensitive Customer Information
	Methods for Masking Sensitive Customer Information

	Chapter 8. Modifying Existing Screens and Wizards
	Modifying Existing Rich Client Platform Screens
	Validating or Capturing Data During API or Service Calls
	Modifying Existing Rich Client Platform Wizards
	Retrieve Wizard and Namespace Information
	Creating an Extended Wizard Definition
	Registering the Wizard Extension File
	Creating the Wizard Entity
	Modifying the Wizard Extension Behavior

	Chapter 9. Creating and Adding Screens
	About Creating a Rich Client Platform Composite
	Creating a Rich Client Platform Composite Using the Rich Client Platform Composite Wizard
	About Designing a Rich Client Platform Composite
	Creating the Search Criteria Panel for a Rich Client Platform Composite
	Adding Controls to the Search Criteria Panel for a Rich Client Platform Composite
	Creating the Search Result Panel for a Rich Client Platform Composite
	Displaying Paginated Results in a Rich Client Platform Composite
	Creating Tables for Rich Client Platform Screens
	Creating Standard Tables
	Adding Columns to the Standard Table
	Creating Editable Tables

	Naming Controls for Rich Client Platform Screens
	Creating a Binding Object
	Naming a Control

	Setting Data On Controls for Rich Client Platform Screens
	Binding Controls and Classes for Rich Client Platform Screens
	Source Binding for Controls on Rich Client Platform Screens
	Multiple Source Bindings

	Target Binding for Controls on Rich Client Platform Screens
	Checked Binding for Controls on Rich Client Platform Screens
	Unchecked Binding for Controls on Rich Client Platform Screens
	List Binding for Controls on Rich Client Platform Screens
	Code Binding for Controls on Rich Client Platform Screens
	Description Binding for Controls on Rich Client Platform Screens
	Attribute Binding for Controls on Rich Client Platform Screens
	Key Binding for Controls on Rich Client Platform Screens
	Binding Input to Custom Controls on Rich Client Platform Screens
	About Setting Bindings for Controls on Rich Client Platform Screens
	Creating a Binding Object for a Label
	Bind a Label

	Creating a Binding Object for Text Boxes
	Bind a Text Box

	Creating a Binding Object for StyledText Components
	Bind a StyledText Component

	Creating a Binding Object for Combo Boxes
	Bind a Combo Box

	Version-Specific Data in Combo Boxes
	Populating Version-Specific Data in Combo Boxes

	Creating a Binding Object for List Boxes
	Bind a List Box

	Creating a Binding Object for Checkboxes
	Bind a Check Box

	Creating a Binding Object for Radio Buttons
	Bind a Radio Button

	Creating a Binding Object for Links
	Bind a Link

	Creating a Binding Object for a Standard Table
	Creating a Binding Object for a Column
	Bind a Standard Table and Column

	Setting Bindings for an Editable Table
	Binding Combo Box Cell Editors

	Setting Bindings for an Extended Table
	Creating a Binding Object for an Extended Table
	Create a Map of the Advanced Column Binding Data
	Bind an Extended Table and Advanced Column

	Setting Bindings for Extended Editable Tables
	Binding Combo Box Cell Editors

	Creating a Binding Object for a File Upload Column in a Table in the Rich Client Platform
	Creating a Binding Object for a File Upload Text Box in the Rich Client Platform
	Localizing Controls and Defining Themes for Rich Client Platform Applications
	Defining Themes for Controls

	Calling APIs and Services for Rich Client Platform Applications
	Calling the Same API/Service Multiple Times
	Calling Multiple APIs/Services

	Adding New Rich Client Platform Screens as Pop-ups
	Adding New Rich Client Platform Screens to Menu Commands
	Displaying New Rich Client Platform Screens in an Editor

	Chapter 10. Configuring File Uploads and Downloads
	Uploading and Downloading
	Using yfs.properties to Configure File Uploads
	Configuring File Uploads
	Securing Uploaded Files
	Upload Error Messages
	Configuring File Downloads
	Securing Downloaded Files
	Download Error Messages
	Structuring the File Upload and Download
	Uploading and Downloading Using Interface Contracts without the Sterling Application Platform

	Chapter 11. Creating and Adding Wizards
	Phase 1: Create Wizard Definitions
	Creating a Wizard Definition with the Rich Client Platform Wizard Editor

	Phase 2: Create Components to Implement a Wizard Definition
	Creating Wizard Class
	Creating Wizard Behavior Class

	Phase 3 Adding Components to Wizard Definition
	Adding a Rule to a Wizard Definition
	Adding a Page to a Wizard Definition
	Adding a Sub-task to a Wizard Definition
	Adding a Transition to a Wizard Definition

	Creating Wizard Page Components
	Creating Wizard Page Class
	Creating Wizard Page Behavior Class

	Creating Wizard Rule Components
	Registering the Wizard Command File

	Adding Wizards as Pop-ups in Rich Client Platform Applications
	Adding Wizards to Menu Commands in Rich Client Platform Applications
	Adding Wizards to Editors in Rich Client Platform Applications

	Chapter 12. Creating Related Tasks
	About Related Tasks
	Extending the YRCRelatedTasks Extension Point
	Extending the YRCRelatedTaskCategories Extension Point
	Extending the YRCRelatedTaskGroups Extension Point
	Extending the YRCRelatedTasksDisplayer Extension Point
	Access Editor Information
	Extending the YRCRelatedTasksExtensionContributor Extension Point
	Enabling Custom Dialog Boxes Through an Extension Point for Rich Client Platform Applications

	Chapter 13. Creating Commands
	About Commands
	Defining Namespaces
	Overriding Commands

	Chapter 14. Defining and Overriding Hot Keys
	Phase 1: Defining a Hot Key Command
	Phase 2: Defining a Hot Key Binding
	Phase 3: Defining a Hot Key Action
	Overriding Hot Keys
	Disabling Related Task Hot Keys


	Chapter 15. Merging Templates
	Merging Input and Output Templates

	Chapter 16. Related and Shared Tasks
	Adding New Related Tasks
	Hiding Existing Related Tasks
	Registering Shared Tasks
	Using Shared Tasks

	Chapter 17. Defining Themes
	Defining New Themes
	Defining Themes for Controls
	Applying Themes to Non-editable Text Boxes


	Chapter 18. Menus and Custom Controls
	Adding and Removing Menus in Rich Client Platform Applications
	Customizing the Menu View Through the YRCMenuDisplayer Extension Point
	Creating Custom Controls for Rich Client Platform Applications
	Extending the YRCCustomControl Extension Point

	Using Custom Controls in RCP Applications

	Chapter 19. Setting the Extension Model and Configuring SSL and SSO
	Setting the Extension Model for Rich Client Platform Applications
	Configuring SSL for Rich Client Platform Applications
	Configuring SSO for Rich Client Platform Applications
	Client Settings for SSO Configuration
	Server Settings for SSO Configuration


	Chapter 20. General Concepts Reference
	Rich Client Platform Architecture
	Eclipse and its Rich Client Platform
	Workbench
	Plug-In Manifest Editor
	YRCPluginAutoLoader Extension Point
	YRCAutoUpdateExtn Extension Point
	YRCApplicationInitializer Extension Point
	YRCContainerToolbar Extension Point
	YRCPostWindowOpenInitializer Extension Point
	YRCJasperReport Extension Point
	YRCContainerTitleProvider Extension Point
	YRCMessageDisplayer Extension Point
	Creating New Actions
	Registering a Plug-In
	Registering Plug-In Files
	Validating Controls
	Custom Data Formatting
	Siblings
	Rich Client Platform Utilities
	Viewing Screen Models
	Saving Models as Templates


	Notices

