
Sterling Selling and Fulfillment Foundation

Customizing User Interfaces for Mobile
Devices
Version 9.1

���

Sterling Selling and Fulfillment Foundation

Customizing User Interfaces for Mobile
Devices
Version 9.1

���

Note
Before using this information and the product it supports, read the information in “Notices” on page 47.

Copyright

This edition applies to the 9.1 Version of IBM Sterling Selling and Fulfillment Foundation and to all subsequent
releases and modifications until otherwise indicated in new editions.

© Copyright IBM Corporation 1999, 2011.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Chapter 1. Checklist for Customization
Projects 1
Customization Projects 1
Prepare Your Development Environment 1
Plan Your Customizations 1
Extend the Database 1
Make Other Changes to APIs 2
Customize the UI 2
Extend Transactions 3
Build and Deploy your Customizations or Extensions 3

Chapter 2. Planning Custom Interfaces
for Mobile Devices 5
Differences between Console User and Mobile Device
Interfaces 5
Guidelines for Smooth Upgrades and Maintenance . 5
Design Guidelines for Mobile Device Screens . . . 6
Planning Mobile Device Screen Size 6
Passing Data Between Mobile Device Screens . . . 8
Error Handling for Mobile Devices 8

Chapter 3. Creating Resources for
Mobile Device Interfaces 11
Creating Resources in the Applications Manager . . 11
Inventory Inquiry Resources in the Applications
Manager: An Example 11

Chapter 4. Menu Entries and HTML
Templates for Mobile Devices 17
Adding a Menu Entry 17
Creating an HTML Template 19

Chapter 5. Creating JSP Files 21
JSP File Structure 21
JSP File Name and Directory Guidelines 21

Chapter 6. Style Reference for Mobile
Device Interfaces 23
HTML Tags for Mobile Device Interfaces 23
JSP Tag Library 24
Data Type Reference 24

Chapter 7. Programming Standards for
Mobile Device Interfaces 25

JSP File Standards for Mobile Device Interfaces . . 25
Internationalization Standards for Mobile Device
Interfaces 25
Validating HTML Files for Mobile Device Interfaces 25

Chapter 8. JSP Functions for Mobile
Device Interfaces 27
JSP Functions Used for Mobile Device Interfaces . . 27
addToTempQ 27
clearTempQ 28
deleteAllFromTempQ 28
deleteFromTempQ 29
getErrorXML 29
getField 30
getForm 30
getStoredElement 31
getTempQ 31
getTempQValue 32
replaceInTempQ 32
resetAttribute. 33
sendForm 33

Chapter 9. Configuring the Mobile
Application 35
Configuring the Mobile Application 35
Configuring the Mobile Application Screens . . . 36

New Attributes 36
Associating Resource ID with a Process 37
Use Cases 38

Chapter 10. Menu-Level Customization
of the Mobile Application 43
Menu-Level Customization of the Mobile
Application 43
Menu-Level Customization 43

Avoiding Copying of HTML Files 43
Avoiding Copying of JSP Files 43

Chapter 11. Configuring Mobile
Application User Interface Components 45

Notices 47

© Copyright IBM Corp. 1999, 2011 iii

iv Sterling Selling and Fulfillment Foundation

Chapter 1. Checklist for Customization Projects

Customization Projects
Projects to customize or extend Sterling Selling and Fulfillment Foundation vary
with the type of changes that are needed. However, most projects involve an
interconnected series of changes that are best carried out in a particular order. The
checklist identifies the most common order of customization tasks and indicates
which guide in the documentation set provides details about each stage.

The items identified for extension and/or modification in the documentation are
Source Components (to the extent such item involves source code) and Sample
Materials for purposes of the License Information file associated with this product.

Prepare Your Development Environment
Set up a development environment that mirrors your production environment,
including whether you deploy your application on a WebLogic, WebSphere®, or
JBoss application server. Doing so ensures that you can test your extensions in a
real-time environment.

You install and deploy your application in your development environment
following the same steps that you used to install and deploy it in your production
environment. Refer to your system requirements and installation documentation
for details.

You have an option to customize your application with Microsoft COM+. Using
Microsoft COM+ has advantages such as increased security, better performance,
increased manageability of server applications, and support for clients of mixed
environments. If this is your choice, see the Customization Basics Guide about
additional installation instructions.

Plan Your Customizations
Are you adding a new menu entry? Or customizing the sign-in screen or logo? Or
customizing views or wizards? Or creating new themes or new screens? Each type
of customization varies in scope and complexity.

For background, see the Customization Basics Guide, which summarizes the types of
changes that you can make and provides important guidelines about file names,
keywords, and other general conventions.

Extend the Database
For many customization projects, the first task is to extend the database so that it
supports the other UI or API changes that you make later. For instructions, see the
Extending the Database Guide, which includes information about the following
topics:
v Important guidelines about what you can and cannot change in the database.

© Copyright IBM Corp. 1999, 2011 1

v Information about modifying APIs. If you modify database tables so that any
APIs are impacted, you must extend the templates of those APIs or you cannot
store or retrieve data from the database. This step is required if table
modifications impact an API.

v How to generate audit references so that you improve record management by
tracking records at the entity level. This step is optional.

Make Other Changes to APIs
Your application can call or invoke standard APIs or custom APIs. For background
about APIs and the services architecture of service types, behavior, and security,
see the Customizing APIs Guide. This guide includes information about the
following types of changes:
v Invoke standard APIs for displaying data in the UI and for saving changes made

in the UI to the database.
v Invoke customized APIs for executing your custom logic in the extended service

definitions and pipeline configurations.
v APIs use input and output XML to store and retrieve data from the database. If

you don't extend these API input and output XML files, you may not get the
results you want in the UI when your business logic is executing.

v Every API input and output XML file has a DTD and XSD associated to it.
Whenever you modify input and output XML, you must generate the
corresponding DTD and XSD to ensure data integrity. If you don't generate the
DTD and XSD for extended XMLs, you may get inconsistent data.

Customize the UI
IBM® applications support several UI frameworks. Depending on your application
and the customizations you want to make, you may work in only one or in several
of these frameworks. Each framework has its own process for customizing
components such as menu items, logos, themes, and so on.

Depending on the framework you want, consult one of the following guides:
v Customizing the Console JSP Interface Guide

v Customizing the Swing Interface Guide

v Customizing User Interfaces for Mobile Devices Guide

v Customizing the Rich Client Platform Guide and Using the RCP Extensibility Tool
Guide

v Customizing the Web UI Framework Guide

Depending on the framework you want, consult one of the following guides:
v Customizing the Console JSP Interface Guide

v Customizing the Swing Interface Guide

v Customizing User Interfaces for Mobile Devices Guide

v Customizing the Rich Client Platform Guide and Using the RCP Extensibility Tool
Guide

v Customizing the Web UI Framework Guide

2 Sterling Selling and Fulfillment Foundation

Extend Transactions
You can extend and enhance the standard functionality of your application by
extending the Condition Builder and by integrating with external systems. For
background about transaction types, security, dynamic variables, and extending the
Condition Builder, see the Extending Transactions Guide and Extending the Condition
Builder Guide. These guides includes information about the following types of
changes:
v Extend the Condition Builder to define complex and dynamic conditions for

executing your custom business logic and using a static set of attributes.
v Define variables to dynamically configure properties belonging to actions,

agents, and services configurations.
v Set up transactional data security for controlling who has access to what data,

how much they can see, and what they can do with it.
v Create custom time-triggered transactions. You can invoke and schedule custom

time-triggered transactions in much the same manner as you invoke and
schedule the time-triggered transactions supplied by your application.

v Coordinate your custom, time-triggered transactions with external transactions
and run them either by raising an event, calling a user exit, or invoking a
custom API or service.

Build and Deploy your Customizations or Extensions
After performing the customizations that you want, you must build and deploy
your customizations or extensions.
1. Build and deploy your customizations or extensions in the test environment so

you can verify them.
2. When you are ready, repeat the same process to build and deploy your

customizations and extensions in your production environment.

For instructions about this process, see the Customization Basics Guide which
includes information about the following topics:
v Building and deploying standard resources, database extensions, and other

extensions (such as templates, user exits, and Java interfaces).
v Building and deploying enterprise-level extensions.

Chapter 1. Checklist for Customization Projects 3

4 Sterling Selling and Fulfillment Foundation

Chapter 2. Planning Custom Interfaces for Mobile Devices

Differences between Console User and Mobile Device Interfaces
Sterling Selling and Fulfillment Foundation enables you to develop and display a
custom user interface for the mobile devices used in warehouse operations.

Mobile device user interface extensibility is accomplished through scripts that
determine how the user interface renders the screen and passes data.

Before beginning, you need to understand how to develop HTML, JSP, and XML
components, how to use APIs, and how to use the Application Console and the
Applications Manager user interfaces.

When customizing the interface, copy the standard resources of Sterling Selling
and Fulfillment Foundation and then modify your copy, or create a completely
new view. Do not modify the standard resources.

Note that the mobile device user interface differs from the Console user interface
in the following ways:
v Mobile device screens use separate architecture for search and list views. If you

need search view and list views functionality, model them as detail views.
v Mobile device screens can have only one detail view. Each detail view can

contain only one inner panel.
v A mobile device inner panel cannot have any actions or icons.

The APIs return the data that needs to be displayed. For information on functions
specific to mobile devices that are used within the JSP files, see “JSP Functions
Used for Mobile Device Interfaces” on page 27

Customizing the mobile device user interface is accomplished using the
Applications Manager user interface. For more information, see the Sterling Selling
and Fulfillment Foundation: Application Platform Configuration Guide.

Guidelines for Smooth Upgrades and Maintenance
v Do not change the resource definitions of any of the resources shipped as part of

the standard default configuration. Either make a copy through the Applications
Manager and then change the copy, or create your own new views.

v Do not change any of the JSP files, JavaScript files and icon JAR files that are
supplied by the application. If you do, your changes may be lost during
upgrades.

v When creating new views, consider issues regarding ease of maintenance as well
as ease of creation. When you create a new view, inner panel, and so forth, it is
possible to link to the JSPs supplied by the application. But in future releases,
the application may add more resources to these JSP, which means you must
monitor software changes and update your configuration to account for these
changes.

v Build in usability: Any new views you develop should look and behave like the
product views, so before you begin developing, gain an understanding of how
the default views behave.

© Copyright IBM Corp. 1999, 2011 5

v Prepare your development environment: In order to start the customization
process, prepare the development environment to accommodate development
and testing of the mobile user interface changes.

Design Guidelines for Mobile Device Screens
In order to optimize the display of data and execution of transactions, design
simple screens and simple transactions using the following rules:
v Avoid placing a lot of information into a small space. This ensures more rapid

transaction time and enables the end user to parse data visually more quickly.
v Because of the reduced screen size, if you need to display a lot of data, the

display of data may need to be altered to accommodate the amount of data. In
this case, the data must be persisted from one screen to the next before finally
being posted. For small screens, use the TEMPQ utilities to pass data between
screens.

v The TempQ utilities enables you to persist and pass data from one screen to the
next. For information on the TempQ utilities, see “JSP Functions Used for Mobile
Device Interfaces” on page 27

v Provide text on one line and the data field on another line to accommodate for
internationalization requirements.

v Validate fields only when necessary in order to optimize transaction execution
time.

v Choose fast or templatized APIs that return exactly the correct type of
information needed in order to optimize transaction execution time.

Planning Mobile Device Screen Size
Keep the following things in mind when defining the screen size dimensions for a
mobile device:
v Restrict the screen size to 8 lines X 24 (or 22) characters per line. This ensures

that your custom screen also displays correctly on a VT220 terminal.
v A mobile device screen can contain only table.
v A mobile device screen can handle a combined total of the following hidden and

displayed fields:

Field Maximum Size

Text and hidden fields 15

Labels and protected fields 15

Command buttons 5

v When the maximum allowed size for a given field is violated by a user (for
example, when a user enters 20 hidden fields), the following error message is
displayed: "An error was encountered while running this program: Invalid
procedure call or argument."

v Draw a layout of each screen. For example, creating inventory screens requires
an Inventory Inquiry screen and an Inventory Detail screen.

6 Sterling Selling and Fulfillment Foundation

Note the use of fixed width font while drawing the screen layouts. The buttons
are not counted in the 8-row limit.

Figure 1. Inventory Inquiry Screen

Figure 2. Inventory Detail Screen

Chapter 2. Planning Custom Interfaces for Mobile Devices 7

In this example, the getItemList() API fetches item details based on the
information submitted on the Inventory Inquiry Search Screen, and getATP() API
fetches inventory details for the item on the Inventory Inquiry Detail screen.

v List the APIs that must be called when each screen is navigated to. This should
include the entire API input that is passed and the API template that is used for
filtering the API output, if applicable.

Passing Data Between Mobile Device Screens
Because of the small screen size, the data may need to be persisted from one screen
to the next before finally being posted. When passing data between screens, you
can either use hidden text or the TempQ utilities. We recommend the usage of
TempQ. A TempQ stores the name/value pair information on one page in the
session and provides for accessor methods on the subsequent pages. For details on
these utilities, see “JSP Functions Used for Mobile Device Interfaces” on page 27

Error Handling for Mobile Devices
Error handling is taken care of by the utility method getError XML as shown in the
rfutil.jspf file. For information on the getError XML, see “deleteFromTempQ” on
page 29

Validations performed by tabbing out of a field or by clicking a button may lead to
an error. These errors are displayed in a standard error XML in the response
output stream:
<errors>

<error errortxt="errorDesc" focus="errorField"/>
</errors>

See the following Inventory Inquiry error message example.

Figure 3. Inventory Inquiry Screen, Inventory Detail Screen

8 Sterling Selling and Fulfillment Foundation

Figure 4. Error Condition 1: Item ID is not entered

Chapter 2. Planning Custom Interfaces for Mobile Devices 9

10 Sterling Selling and Fulfillment Foundation

Chapter 3. Creating Resources for Mobile Device Interfaces

Creating Resources in the Applications Manager
About this task

Mobile device screens are composed of screen resources, such as an entity, a detail
view, inner panels, and APIs. The following mobile device resources define the
screen look and feel, screen behavior, and screen flow:

Resource Description

Screen Entity Controls access to transactions. It also provides the starting point (JSP
name).

Detail View Mobile device screens are modeled as detail views. A screen can have
only one detail view. Each detail view can contain only one inner
panel. A screen can contain only tables.

Inner Panel Mobile device inner panels cannot have any actions or icons.

APIs Required APIs can be defined under the API List for the inner panel.

To create custom mobile device resources:

Procedure

Configure the resources described in the table.

Inventory Inquiry Resources in the Applications Manager: An Example
The Creating Inventory Inquiry screens requires the following user interface
resources:
v A screen entity called rfinventory
v Detail view called rfinventoryD1
v Inner panel called rfinventoryIP1
v getItemDetails() API called rfinventoryD1IP1API

These resources are detailed in the following tables.

© Copyright IBM Corp. 1999, 2011 11

Table 1. Mobile Device Screen Entity Resource Values

Name Value

Resource ID rfinventory

Description RF_Inventory

Resource Type Entity

Resource Sequence (Default Suggested Value)

Application Warehouse Management

Document Type General

Figure 5. Mobile Device Screen Entity Resource

12 Sterling Selling and Fulfillment Foundation

Table 2. Mobile Device Screen Detail View Resource Values

Name Value

Resource ID rfinventoryD1

Description RF_Inventory_Detail_View

Resource Type Detail View

Resource Sequence (Default Suggested Value)

Application Warehouse Management

Figure 6. Mobile Device Screen Detail View

Chapter 3. Creating Resources for Mobile Device Interfaces 13

Table 3. Mobile Device Screen Inner Panel Resource Values

Name Value

Resource ID rfinventoryD1IP1

Description RF_Inventory_Inner_Panel

Resource Type Inner Panel

Resource Sequence (Default Suggested Value)

Application Warehouse Management

Java Server Page /extensions/global/webpage/rf/wms/inventory/frmInventory.jsp

Figure 7. Mobile Device Screen Inner Panel Resource

14 Sterling Selling and Fulfillment Foundation

Table 4. Mobile Device Screen API Resource Values

Name Value

Resource ID rfinventoryD1IP1AP1

Description RF_Inventory_API

Resource Type API

Resource
Sequence

(Default Suggested Value)

Application Enter Warehouse Management.

Invoke an API Select this radio button.

API Name getItemList

Output Name
Space

ItemList

Ignore Exception Select this checkbox

Skip Automatic
Execution

Always select this checkbox when defining a mobile device screen API
resource.

Figure 8. Mobile Device Screen API Resource

Chapter 3. Creating Resources for Mobile Device Interfaces 15

Table 4. Mobile Device Screen API Resource Values (continued)

Name Value

Input <?xml version="1.0" encoding="UTF-8"?>
<Item AuthenticationKey="" GetUnpublishedItems="Y"
ItemID="xml:/InventoryItem/@ItemID" ItemIDQryType="EQ"
MaximumRecords="1" OrganizationCode="xml:/ent/@ent"/>

Template <?xml version="1.0" encoding="UTF-8"?>
<ItemList TotalItemList="" TotalNumberOfRecords="">

<Item GlobalItemID="" ItemID="" ItemKey=""
OrganizationCode="" UnitOfMeasure="">

<PrimaryInformation DefaultProductClass=""
Description="" ShortDescription=""/>

</Item>
</ItemList>

16 Sterling Selling and Fulfillment Foundation

Chapter 4. Menu Entries and HTML Templates for Mobile
Devices

Adding a Menu Entry
About this task

To create a mobile device menu entry:

Procedure
1. Create a menu entry using the Menu Applications Manager. On saving the

screen, a new Menu Group called “Custom Menu” is created.

2. Right-click Custom Menu → Default_Yantra_Mobile_Menu → Create New
Menu Item and select Details.

© Copyright IBM Corp. 1999, 2011 17

3. Add a new Menu Item with the description Mobile_Inventory_Inquiry, the
Resource ID rfinventory, and the menu sequence as suggested on this Menu
Item Details screen:

4. Create a bundle property for Mobile_Inventory_Inquiry with a value 'Inventory
Inquiry' in the INSTALL_DIR/extensions/global/resources/
extnbundle.properties file. This creates a mobile device menu option called
Inventory Inquiry.

Note: Ensure that the following file does not exist: INSTALL_DIR/resources/
extn/extnbundle.properties

This file must be removed because it will conflict with the extensions build
process for bundle entries.

18 Sterling Selling and Fulfillment Foundation

Choosing this Menu option eventually invokes the JSP defined in the inner
panel associated with this entity.
For example, in the rfinventory UI entity, the/extensions/global/webpages/rf/
wms/inventory/fmInventory.jsp file relative to theSterling Selling and
Fulfillment Foundation base URL is invoked.

Creating an HTML Template
A template HTML enables rendering the look and feel of the mobile device screen.
A template HTML defines which fields are included and how they are laid out.
Each screen requires a template HTML file. The template HTML uses some custom
mobile device tags in addition to the standard HTML tags.

The template HTML must adhere to the XSD defined in the INSTALL_DIR/
repository/xapi/template/merged/mobilescreens/rf.xsd style sheet.

All template HTML files must reside in the INSTALL_DIR/extensions/global/
template/mobilescreens/uientity directory. The name uientity refers to the screen
entity resource that needs to be created for a mobile transaction.

The template HTML files for the inventory inquiry scenario are available for you to
copy and reuse from the INSTALL_DIR/xapidocs/code_examples/rfinventory/
directory.

Figure 9. Mobile Application Menu Screen

Chapter 4. Menu Entries and HTML Templates for Mobile Devices 19

20 Sterling Selling and Fulfillment Foundation

Chapter 5. Creating JSP Files

JSP File Structure
The JSP files call the appropriate API (if needed), pick up the appropriate template
XML, and pass the values returned by the API as data to the template XML.

A separate JSP file must be written for each of the following screen components:
v Screen - for invoking the HTML template and rendering the screen on the

mobile client.
v Validation - for performing field level validations.
v Command button - for performing actions on clicking of the command button.

A JSP file for a mobile UI screen typically contains three sections, but not all
bullets apply to every mobile JSP file:

Section Function

1 v Extracts values from the pageContext or Session.

v Performs setAttribute for some of the input bindings.

2 v Calls an API using callAPI.

v Processes logic for the API output.

3 v Sends Form or Forward Page

v Sends Error

The example JSP files for the inventory inquiry scenario are available for you to
copy and reuse from the INSTALL_DIR/xapidocs/code_examples/rfinventory/
directory.

JSP File Name and Directory Guidelines
When naming JSP files for mobile devices, use the following rules:
v The starting JSP file can have any name but the same name must be defined

while adding the inner panel for the screen entity.
v The validation JSP file name syntax must be formName + "Val" + fieldname +

".jsp" format (for example, frmSearchValtxtItemId.jsp is invoked for validating
the txtItemId field on the tab out of the txtItemId field in the frmSearch form).

v The name of the JSP being called on the click of a button must be named after
the value of the action property in the URL. For example, if button has the URL
value of /console/rfinventory.ppc?action=frmSearchUpdCmdInquire, then the
JSP being invoked is named as frmSearchUpdCmdInquire.jsp.

v All JSPs must be added to the INSTALL_DIR/extensions/global/webpages/rf/
wms/uientity directory (for example, INSTALL_DIR/extensions/global/
webpages/rf/wms/inventory/frmInventory.jsp).

v These JSPs use common utility methods as defined in the INSTALL_DIR/
repository/eardata/platform/war/yfc/rfutil.jspf file.

© Copyright IBM Corp. 1999, 2011 21

22 Sterling Selling and Fulfillment Foundation

Chapter 6. Style Reference for Mobile Device Interfaces

HTML Tags for Mobile Device Interfaces
The mobile UI uses the following HTML tags:

Tag Valid Values/Detail

type Valid values are: text, hidden, or button.

subtype Text type tags use the following values:

v Label - Static text.

v ProtectedText - Non-editable input.

v Text - Input text box.

Hidden type tags use the value Hidden.

Button type tags use the following values:

v Command - HTML button.

v CommandLogout - Logs the user out and displays the login
prompt.

v CommandBack - Switches to the previous view.

v CommandNextView - Switches to the next view.

name Name of the field. Cannot contain spaces.

value Value of the field (Internationalized string from the resource
bundle)

size Length of the field.

maxlen Maximum length of the field.

row Row in which the field should appear.

col Column in which the field should start.

validate Input data validated by the server. Valid values are:

v Always - validate input data in all cases.

v True - validate input data only if the old value if different from
the new value.

v False - do not validate input data.

mandatory Field usage validated by the server. Valid values are:

v True - the user is required to specify a value for the field.

v False - the user is not required to specify a value for the field.

inputbinding XML binding for a field. The UI infrastructure resolves this binding
and displays the value on the UI.

outputbinding XML binding for a field when the field value passes to the next
screen.

tag Binding for the field recognized by the UI infrastructure for Pocket
PC and WinCE applications. The purpose of this is same as the
outputbinding. The tag syntax is "binding=x", where 'x' is an XML
binding (similar to the ones in Console screens).

defaultoutput If this is not set to False, when inputbinding is resolved as void,
the UI infrastructure resolves outputbinding of a field, and
displays its value in the UI.

© Copyright IBM Corp. 1999, 2011 23

Tag Valid Values/Detail

url Specified only for "button/Command" field type/subtype. If set,
the request is forwarded to the value of this attribute. It should
always be of the form

target + "?action=" + calledFormName

where target is the value of the attribute target in the "form"
element of the HMTL while calledFormName is the name of the
JSP to be invoked without the ".jsp" extension.

Note: The sequence in which the UI infrastructure resolves an input tag is as
follows:
1. Resolves inputbinding.
2. Resolves outputbinding if defaultoutput is not set to False.
3. If no resolution is found, uses the value attribute provided in the HTML.
4. If no resolution is found, uses the defaultvalue attribute provided in the HTML.
5. Resolves defaultbinding.

JSP Tag Library
Mobile UI screens for this application use the same JSP tags listed in the Sterling
Selling and Fulfillment Foundation: Customizing Console JSP Interface for End User
Guide.

Data Type Reference
The mobile UI for this application uses the same data types listed in the Sterling
Selling and Fulfillment FoundationCustomizing Console JSP Interface for End User
Guide.

24 Sterling Selling and Fulfillment Foundation

Chapter 7. Programming Standards for Mobile Device
Interfaces

JSP File Standards for Mobile Device Interfaces
Although HTML code is embedded in Java Server Pages, strive to write JSP code
that is easily readable. If you require some special XML manipulation that cannot
be incorporated in the APIs, include a separate JSP file, so that HTML tags and
Java code do not become mixed together.

Use the following standards when writing JSP files:
v Tab spacing - Set the editor tab spacing to 4.
v JavaScript files - Do not include any JavaScript in the JSP file. Put all JavaScript

into a separate JS file.
v HTML tags - Type all HTML tags and attributes in lowercase letters.
v HTML attributes - Enclose all HTML element attribute values in double quotes.

Single quotes and no quotes may work, but the standard is to use double
quotes.

v HTML tables - Strictly adheres to XSD defined.
v Tags - Close all tags, whether required or not.
v Comments - Enclose all comments in the following manner: <%/*........*/%>

Tip: When finished coding a form, open it in any visual HTML editor to validate
that the HTML is well-formed.

Internationalization Standards for Mobile Device Interfaces
The Presentation Framework enables you to write an internationalized application
by providing the following features that can be customized to be locale-specific:
v i18n JSP tag for literals
v Server-side error messages

Validating HTML Files for Mobile Device Interfaces
Validate your HTML files. You can use any commercial software package or free
online application such as the World Wide Web Consortium (W3C) HTML
Validator at http://validator.w3.org/. As an alternative, when you finish coding a
form, you can open it in any visual HTML editor to validate that the HTML is
well-formed.

Additionally, validate the HTML files against the XSD files.

© Copyright IBM Corp. 1999, 2011 25

http://validator.w3.org/

26 Sterling Selling and Fulfillment Foundation

Chapter 8. JSP Functions for Mobile Device Interfaces

JSP Functions Used for Mobile Device Interfaces
You can extend a mobile device interface by including any of the functions listed
in the INSTALL_DIR/repository/eardata/platform/war/yfc/rfutil.jspf file in your
JSP file. In alphabetical order, these functions are:
v addToTempQ
v clearTempQ
v deleteAllFromTempQ
v deleteFromTempQ
v getErrorXML
v getField
v getForm
v getStoredElement
v getTempQ
v getTempQValue
v replaceInTempQ
v resetAttribute
v sendForm

addToTempQ
Description

This mobile device JSP function adds the keyName and keyValue pair to TempQ in
order to persistence data across JSPs. The TempQ utilities store name/value pair
information on one page in the session and provide methods for accessing them on
the subsequent screens.

This function also enables support of multiple duplicate key names.

Syntax

public void addToTempQ (String keyName, String keyValue, boolean
allowDuplicates) throws Exception

public void addToTempQ (String keyName, String keyValue, Map m, boolean
allowDuplicates) throws Exception

Input Parameters

keyName - Required. Name of the key to be stored in the TempQ.

keyValue - Required. Value of the key to be stored in the TempQ.

allowDuplicates - Required. Determines whether or not duplicate objects are
allowed to be added to the TempQ.

© Copyright IBM Corp. 1999, 2011 27

m - Optional. Enables you to provide a map of name/value pairs in a
java.util.map.

Example

The following example shows how the addToTempQ function can be used when
multiple cases have to be scanned and multiple CaseIDs have to be stored in a
TempQ:
addToTempQ("Case", "Case", caseMap, true);

clearTempQ
Description

This mobile device JSP function clears the TempQ. This is the first function to
invoke before persisting any information in the TempQ. The TempQ utilities store
name/value pair information on one page in the session and provide methods for
accessing them on the subsequent screens.

Syntax

public void clearTempQ() throws Exception

Input Parameters

None.

Example

The following example shows how this function can be used to clear the TempQ:
clearTempQ();

deleteAllFromTempQ
Description

This mobile device JSP function deletes entries from TempQ for a given keyName.
Use this after an exception to clear CaseIds stored so far.

The TempQ utilities store name/value pair information on one page in the session
and provide methods for accessing them on the subsequent screens.

Syntax

public void deleteAllFromTempQ(String keyName) throws Exception

Input Parameters

keyName - Required. This is the key for which TempQ entries are deleted.

Example

The following example shows how the deleteAllFromTempQ function can be used
to remove all TempQ entries that correspond with the keyName CaseScanned:
deleteAllFromTempQ("CaseScanned");

28 Sterling Selling and Fulfillment Foundation

deleteFromTempQ
Description

This mobile device JSP function deletes the TempQ entry for a given keyName and
keyValue pair.

The TempQ utilities store name/value pair information on one page in the session
and provide methods for accessing them on the subsequent screens.

Syntax

public void deleteFromTempQ(String keyName, String keyValue) throws Exception

Input Parameters

keyName - Required. Name of the key in the TempQ that requires deletion.

keyValue - Required. Value of the key in the TempQ that requires deletion.

Example

The following example shows how the getLocale function can be used in
conjunction with the getDoubleFromLocalizedString function:
deleteFromTempQ("Case","Case");

getErrorXML
Description

This mobile device JSP function returns an XML representation of error. The mobile
device interprets this XML and renders an error page.

Syntax

public String getErrorXML(String error, String errorField)

public String getErrorXML(String error, String errorField, String severity)

Input Parameters

error - Required. Error description for the error to be shown to the user. This is
usually derived by invoking the checkForError() function.

errorField - Required. Form field where the focus must be transferred to on
clearing the error page.

severity - Optional. Displays the degree of error present. Recommended values in
ascending order are: info, error, warning.

Example

The following example shows how this function can be used to get the error XML
for rendering an error message on a mobile UI screen:
errorXML=getErrorXML(errorDesc, errorfield)

Chapter 8. JSP Functions for Mobile Device Interfaces 29

getField
Description

This mobile device JSP function is used in conjunction with the getForm() function.

Syntax

public YFCElement getField(YFCDocument formDoc, String fieldName) throws
Exception

Input Parameters

formDoc - Required. Name of the YFCDocument from which the element must be
extracted.

fieldName - Required. Name of the form field for which the other attributes need
to be set.

Example

The following example shows the getField function.

Consider a form with formName as formName. The following code creates a
YFCDocument from the XHTML form:
YFCDocument ydoc=getForm(formName);

Prior to setting the attributes of the form for a specific element, getField can be
called as:
YFCElement dropoffLocationElem = getField(ydoc,"lblDropoffLocation");

To set the type and subtype attributes for the dropoffLocationElem, use:
dropoffLocationElem.setAttribute("type","hidden");
dropoffLocationElem.setAttribute("subtype","Hidden");

getForm
Description

This mobile device JSP function reads the XHTML form for a given form name and
returns a YFCDocument. The currentEntity name is prefixed to the formname and
.html is suffixed. It looks for the file in the INSTALL_DIR/repository/xapi/
template/merged/mobilescreens/ directory.

The getForm() function is always used in conjunction with the getField() function.

Syntax

public YFCDocument getForm(String formName) throws Exception

Input Parameters

formName - Required. Name of the XHTML form.

30 Sterling Selling and Fulfillment Foundation

Example

The following example shows how this function can be used to return a
YFCDocument for the form "formName":
YFCDocument ydoc=getForm()

getStoredElement
Description

This mobile device JSP function returns the XML Element for all TempQ entries.
Each keyName and keyValue entry can be obtained by traversing the Element.

Syntax

private YFCElement getStoredElement(YFCDocument ydoc, String keyName, String
keyValue) throws Exception

Input Parameters

ydoc - Required. YFCDocument representation of the XHTML form.

keyName - Required. Name of the key in the TempQ.

keyValue - Required. Value of the key in the TempQ.

Example

The following example shows the getStoredElement function:
YFCElement criteria = getStoredElement(getTempQ(),"Criteria", "criteria");

getTempQ
Description

This mobile device JSP function retrieves the TempQ document object from
Session. If a TempQ document does not exist, this function creates one. Since the
return type of this function is YFCDocument, it is used to get a handle to the
TempQ and thereafter is used to get its elements or attributes for some of its
elements.

The TempQ utilities store name/value pair information on one page in the session
and provide methods for accessing them on the subsequent screens.

Syntax

public YFCDocument getTempQ() throws Exception

Input Parameters

None.

Chapter 8. JSP Functions for Mobile Device Interfaces 31

Example

The following example shows how this function can be used to first get the TempQ
documents and then later to get the node list for elements with the tag name LPN:
YFCNodeList lpnlist=()((getTempQ()), getElementsByTagName("LPN"));

getTempQValue
Description

This mobile device JSP function returns the value of the TempQ for a specific key.
The TempQ utilities store name/value pair information on one page in the session
and provide methods for accessing them on the subsequent screens.

Syntax

private String getTempQValue(String keyName) throws Exception

Input Parameters

keyName - Required. Name of the key for which the TempQ value is to be
returned.

Example

The following example shows how the getTempQValue function can be used to
return the keyValue corresponding to the CaseScanned key from the TempQ:
getTempQValue("CaseScanned");

replaceInTempQ
Description

This mobile device JSP function replaces the value in TempQ for a given key. The
TempQ utilities store name/value pair information on one page in the session and
provide methods for accessing them on the subsequent screens.

Syntax

public void replaceInTempQ(String keyName, String keyValue) throws Exception

public void replaceInTempQ(String keyName, String keyValue, String
newKeyValue) throws Exception

public void replaceInTempQ(String keyName, String keyValue, Map m) throws
Exception

Input Parameters

keyName - Required. Name of the key in the TempQ that is being replaced.

keyValue - Required. Value of the key in the TempQ that is being replaced.

newKeyValue - Optional. The new value of the key in TempQ that replaces the old
value.

32 Sterling Selling and Fulfillment Foundation

m - Optional. Map that should replace the existing keyValue.

Example

The following example shows how this function can be used to change the value
of RecordCount from "1" to "resultMap":
replaceInTempQ("RecordCountResult","1",resultMap);

resetAttribute
Description

This mobile device JSP function removes the named attribute from request and
PageContext.

Note: It is a good coding practice to reset an attribute before using it in the code.

Syntax

public void resetAttribute(String name)

public void resetAttribute(String name, Object value)

Input Parameters

name - Required. The name of the request attribute that needs to be reset.

value - Optional. The value of the request attribute that the attribute should be
reset to.

Example

The following example shows how the restAttribute JSP function removes the
named attribute from request and PageContext:
resetAttribute("TaskList","");

sendForm
Description

This mobile device JSP function posts an HTML form and provides focus on a
specific field on a subsequent JSP form. Three versions of syntax enable you to
customize how data should display.

Syntax

public String sendForm(String formName, String focusField) throws Exception

public String sendForm(String formName, String focusField, boolean sendData)
throws Exception

public String sendForm(YFCDocument formDoc, String focusField, boolean
sendData) throws Exception

Chapter 8. JSP Functions for Mobile Device Interfaces 33

Input Parameters

formDoc - Required. Either formName of formDoc must be provided.

formName - Required. Either formName of formDoc must be provided.

focusField - Required. Form field where the focus must be transferred to in the
invoked JSP.

sendData - Optional. Valid values: true and false.

Example

The following example shows how the sendForm function can be used so that the
form corresponding to the YFCDocument ydoc is posted. On invocation of the
subsequent JSP, the focus is transferred to the txtLocationId field and data is
posted.
sendForm(ydoc, "txtLocationId", true)

34 Sterling Selling and Fulfillment Foundation

Chapter 9. Configuring the Mobile Application

Configuring the Mobile Application
Sterling Selling and Fulfillment Foundation provide the ability to configure mobile
screen parameters to meet specific implementation requirements.

Each menu on the Mobile Application screen has a Resource ID associated with it.
You can create a new resource and associate it with the menu. For more
information about creating a new resource and adding a menu entry, see "Creating
Resources in the Applications Manager" and "Adding a Menu Entry" sections.

You can create an XML file and use it to configure the Mobile Application screens
that has the same Resource ID, at both field level and form level. The following
describes the format of a sample XML file.
<MobileConsoleOverride>

<ResourceOverrides>
<ResourceOverride ResourceId="ordrfreceive">

<FormOverrides>
<FormOverride name="frmReceiveIntoLocation">

<Fields>
<Field name="txtLocationId"

defaultvalue="DOCKLOCATION" validate="always"/>
</Fields>

</FormOverride>
<FormOverride name="frmReceivingCriteria"

defaultfocusfield="txtShipmentNo" overridefocusfield="txtPONo">
<Fields>

<Field name="lblShipRef"
subtype="Hidden" />

</Fields>
</FormOverride>

</FormOverrides>
</ResourceOverride>
<ResourceOverride ResourceId="fsrfputaway">

<FormOverrides>
<FormOverride name="frmPutawayEquipment">

<Fields>
<Field name="txtEquipmentId"

mandatory="true" />
</Fields>

</FormOverride>
<FormOverride name="frmSKUPickInstruction">

<Fields>
<Field name="txtItemId"

defaultbinding="xml:/TaskList/Task/Inventory/@ItemId" validate="always"/>
</Fields>

</FormOverride>
</FormOverrides>

</ResourceOverride>
<ResourceOverride ResourceId="nerfmanualmove">

<FormOverrides>
<FormOverride name="frmEquipment"

onloadaction="F3" />
<FormOverride name="frmSource"

defaultfocusfield="txtLocationId" overridefocusfield="txtInv">
<Fields>

<Field name="txtInv"
executeaction="F8"/>

</Fields>

© Copyright IBM Corp. 1999, 2011 35

</FormOverride>
</FormOverrides>

</ResourceOverride>
</ResourceOverrides>

</MobileConsoleOverride>

Configuring the Mobile Application Screens
About this task

This section explains how to configure Mobile Application screens.

To configure a Mobile Application screen:

Procedure
1. Identify the Resource ID and Form Name by pressing the F1 key.
2. In <INSTALL_DIR>/repository/xapi/template/merged/mobilescreens/

<ResourceId> folder, identify the HTML file for the Form Name.
3. Identify the fields you want to override.
4. Create an XML file in the <INSTALL_DIR>/repository/xapi/template/merged/

mobilescreens/overrides folder to configure the fields by changing the value of
the attributes.

5. Run <INSTALL_DIR>/bin/deployer.sh -t resourcejar. This puts the xmls that
are in the <INSTALL_DIR>/repository/xapi/template/merged/mobilescreens/
overrides folder to resources.jar.

6. Rebuild and redeploy the EAR.

New Attributes
Sterling Selling and Fulfillment Foundation have introduced the following new
attributes to the field element:
v mandatory

You can mandate a field by setting the value of the attribute to "true" in the
XML file. When you configure a field as mandatory, the functional keys, other
than F1, F4, F7, and F10 do not let you proceed further.
For example, you can mandate scanning the equipment number when
performing the pick process.

Note: The error message "Entry is mandatory" is thrown if you try to skip a
field whose mandatory attribute is set to "true".

v defaultvalue
You can default the value of a field on the screen by configuring this attribute at
the field level in the XML file.
For example, if a warehouse has only one location where it receives inventory,
the Location ID can be defaulted so that the user do not have to scan or enter
this field every time when receiving inventory.

Note: When configuring the "defaultvalue" attribute, if the "validate" attribute in
that field is set to "true", you must ensure that it is set to "always".

v defaultbinding
You can default the value of a field with the value of some other field by
assigning the "defaultbinding" to the "inputbinding" attribute of the other field.

36 Sterling Selling and Fulfillment Foundation

For example, in the Pick screen, you can default the item ID field with the
suggested item ID by setting the "defaultbinding" attribute of the item ID field
to the "inputbinding" attribute of the suggested item ID.

Note: When configuring the "defaultbinding" attribute, if the "validate" attribute
in that field is set to "true", you must ensure that it is set to "always".

v executeaction
You can press the Tab key and emulate the action of a button available on the
screen without pressing the button or using the corresponding functional key by
configuring this attribute in the XML file.
For example, you can emulate the F3 action without pressing this key or
choosing Go by setting the value of this attribute to "F3".

v onloadaction
You can skip a screen and move to the next one using an action available on the
current screen by configuring this attribute at the form level.
For example, you can skip the Equipment Entry screen, where you are asked to
enter or scan the Equipment #, and move to the next screen without choosing
the Go button or pressing F3 by setting the value of this attribute to "F3".

v defaultfocusfield, overridefocusfield
You can default the cursor to point to a particular field from the default field by
configuring these attributes at the form level.
For example, when performing ad hoc move, in the pick screen, you can default
the cursor to point to the Item/Case/Pallet field instead of Location/Pallet/Case
field by setting the value of "defaultfocusfield" to "txtLocationId" and
"overridefocusfield" to "txtInv".

Note: You cannot configure the following screens for a single menu item. Any
modifications made to these screens are not for a specific menu item, Therefore, it
is visible in any pick-related screens. All these screens belong to the rftask
resourceId.
v frmTaskCriteria
v frmRetrievalCriteria
v frmPartialDepositInstruction
v frmSKUPickingInstructions
v frmDepositException
v frmPickException
v frmTaskExpirationDate
v frmTaskLotEntry
v frmTaskSerialEntry
v frmTaskSecondarySerialEntry
v frmConfirmEmptyLocation
v frmWaitingForTasks
v frmNoOpenTasks
v frmTaskInvalidTag

Associating Resource ID with a Process
Users may want to define different screen behaviors for any task-based process
followed in the implementation. In such situations, users can create a new
Resource ID and associate it with the task type in the Task Type wizard.

Chapter 9. Configuring the Mobile Application 37

The Mobile Application loads the Resource ID specified in the task type wizard
when performing tasks of this type. The user can configure the UI for this
Resource ID and get a different screen behavior.

Use Cases

Pick and Deposit
About this task

Requirement — When picking a pallet, scan the pallet LPN and go to the Deposit
screen. In the Deposit screen, the LPN that you scanned at the time of picking is
defaulted and the system asks you to scan the deposit location.

Current® behavior — To pick and deposit a pallet, scan the pallet LPN at the time
of picking and click the Deposit button or press F8 key to go to the Deposit screen.
In the Deposit screen, you need to scan the suggested LPN and suggested deposit
location. Click the Enter button or Go button or press the F3 key to deposit the
pallet.

Configurations

To configure the Pick screen to meet the above requirement:

38 Sterling Selling and Fulfillment Foundation

Procedure
1. From the Menu page, select Putaway and press Enter.
2. In the Equipment Entry screen, scan the Equipment # and press Enter.
3. In the Case Pick screen, press F1 to identify the Resource ID ("rfputaway") and

Form Name ("frmCasePickInstruction").
4. From the <INSTALL_DIR>/repository/xapi/template/merged/mobilescreens/

rfputaway folder, identify the form by selecting the
frmCasePickInstruction.html file.

5. Identify the field you want to override ("txtCaseId").
6. Identify the field attributes to overrides and create a field level override XML

file in the following format.
<FormOverride name="frmCasePickInstruction">

<Fields>
<Field name="txtCaseId" executeaction="F8"/>
</Fields>

<FormOverrides>

With this configuration, after you scan an LPN, the Deposit button or F8
action invokes.

Note: If you scan an invalid data in the text field, an error is thrown and the
Deposit button or F8 action does not invoke.

7. In the Deposit screen, press F1 to identify the Resource ID ("rfputaway") and
Form Name ("frmCaseDepositInstruction").

8. From the <INSTALL_DIR>/repository/xapi/template/merged/mobilescreens/
rfputaway folder, identify the form by selecting the
frmCaseDepositInstruction.html file.

9. Identify the fields you want to override ("txtCaseId" and "txtLocationId")
10. Identify the field ("txtSuggestedCaseId") whose value you want to default in

the txtCaseId field.
11. Copy the value of inputbinding ("xml:/DepositLocation/@LabelAll").
12. Use the mobileConsoleOverrides.xml file and write an element in the

following format:
<FormOverride Name="frmCaseDepositInstruction">

<Fields>
<Field Name="txtCaseId"

defaultbinding="xml:/DepositLocation/@LabelAll"/>
validate="always" />

</Field>
<Field Name="txtLocationId"

executeaction="F3" /> v
alidate="always"/>

</Fields>
</FormOverride>.

Note: Since the txtCaseId and txtLocationId fields have "validate" set to "true",
you must set the value "always" in mobileConsoleOverrides.xml.
With this configuration, whatever Case ID is suggested in the Deposit screen
is defaulted in the text field. Whenever, you scan a valid location, the Deposit
button or F3 action invokes.

13. Create an override XML file with the above elements in the
<INSTALL_DIR>/repository/xapi/template/merged/mobilescreens/overrides
folder. The XML file is in the following format:

Chapter 9. Configuring the Mobile Application 39

<MobileConsoleOverride>
<ResourceOverrides>

<ResourceOverride ResourceId="rfputaway" >
<FormOverrides>

<FormOverride Name="frmCasePickInstruction">
<Fields>

<Field Name="txtCaseId" executeaction="F8"/>
</Field>

</Fields>
</FormOverride>
<FormOverride Name="frmCaseDepositInstruction">

<Fields>
<Field Name="txtCaseId"

defaultbinding="xml:/DepositLocation/@LabelAll"/>
validate="always"/>

</Field>
<Field Name="txtLocationId"

executeaction="F3"/>
</Field>

</Fields>
</FormOverride>

</FormOverrides>
</ResourceOverride>

</ResourceOverrides>
</MobileConsoleOverride>

Defaulting Dock Location
About this task

Requirement - While performing receiving, the location is defaulted in the Receive
screen and you are not asked to scan it every time you perform a receiving task.

Current Behavior — The system asks you to scan the location where you want to
receive the shipment after you scan or enter the receiving criteria.

Configurations

To configure the Receive screen to meet the above requirement:

Procedure
1. From the Menu page, select Receipt and press Enter.
2. In the Receive screen, select Purchase Order as document type and press Enter.
3. Press F1 to identify the Resource ID ("rfreceive") and Form Name

("frmReceiveIntoLocation").
4. From the <INSTALL_DIR>/repository/xapi/template/merged/mobilescreens/

rfreceive folder, identify the form by selecting the frmReceiveIntoLocation.html
file.

5. Identify the field you want to override ("txtLocationId").
6. Use the override XML file located in the <INSTALL_DIR>/repository/xapi/

template/merged/mobilescreens/overrides folder and write an element in the
following format:
<MobileConsoleOverride>
<ResourceOverrides>

<ResourceOverride ResourceId="rfreceive" >
<FormOverrides>

<FormOverride Name="frmReceiveIntoLocation">
<Fields>

<Field Name="txtLocationId"
defaultvalue="DOCK-LOCATION" validate="always"/>

</Fields>

40 Sterling Selling and Fulfillment Foundation

</FormOverride>
</FormOverrides>

</ResourceOverride>
</ResourceOverrides>
</MobileConsoleOverride>

With this configuration, the location defaults in the Receive screen.

Skipping a Screen
About this task

Requirement - When performing an ad hoc move, you want to skip the Equipment
Entry screen and go directly to the Source screen without clicking the Go button or
pressing the F3 key.

Current Behavior - After selecting Ad hoc Move, the system asks you to scan the
Equipment # after which you click the Go button or press the F3 key to go to the
Source screen.

Configurations

To configure the Ad Hoc Move screen to meet the above requirement:

Procedure
1. From the Menu page, select Ad hoc Move and press Enter.
2. Press F1 to identify the Resource ID ("rfmanualmove"), Form Name

("frmEquipment") and the action you want to emulate (F3).
3. Use the override XML file located in the <INSTALL_DIR>/repository/xapi/

template/merged/mobilescreens/overrides folder and write an element in the
following format:
</MobileConsoleOverride>
</ResourceOverrides>

<ResourceOverride ResourceId="rfmanualmove" >
<FormOverrides>

<FormOverride name="frmEquipment" onloadaction="F3"/>
</FormOverrides>

</ResourceOverride>
</ResourceOverrides>
</MobileConsoleOverride>

With this configuration, you go directly to the Source screen after selecting Ad
hoc Move from the menu.

Chapter 9. Configuring the Mobile Application 41

42 Sterling Selling and Fulfillment Foundation

Chapter 10. Menu-Level Customization of the Mobile
Application

Menu-Level Customization of the Mobile Application
There are occasions when a warehouse needs to set up different menu options for
the Mobile Application to specify resource-level parameters for different behaviors.
For example, a new Pack Shipment menu is created to enable automatic recording
of item details in the container being packed or a new Ad hoc move menu is
created for a particular activity code and activity group.

When customizing the Mobile Application, the JSPs and HTMLs are mostly
changed. Therefore, a new resource ID for the new customized version is created.
All the JSP and HTML files corresponding to the factory shipped resource IDs are
copied into new directories corresponding to the new resource ID. These newly
created directories are at the same level as the old directories from which the JSP
and HTML files are copied. The HTML files are modified by replacing the
occurrence of <resourceId>.ppc with <new resourceId>.ppc. The new resource ID
is then associated with a new menu item.

Menu-Level Customization
When performing menu-level customizations, the JSP and HTML files are not
modified. The Sterling Warehouse Management System enables you to create a
new menu for the Mobile Application and associate it with a new resource ID,
without making copies of the JSP and HTML files.

The following sections explain how to avoid copying the JSP and HTML files when
performing menu-level customizations.

Avoiding Copying of HTML Files
About this task

To avoid copying of HTML files:

Procedure
1. Save the factory-shipped resource with a new ID by adding a prefix that ends

with a hyphen (-) to the old resource ID.
For example, to create a new Ad hoc move, save the resource "manualmove"
with a prefix "1-". The new resource ID is "1-manualmove".

2. Create a new menu and associate the new resource ID with it.
This ensures that the newly created resource also accesses the same HTML files
accessed by the factory-shipped resource.

Avoiding Copying of JSP Files
About this task

To avoid copying of JSP files:

© Copyright IBM Corp. 1999, 2011 43

Procedure
1. Save the factory-shipped resource with a new ID.
2. In the resource details, the JavaServerPage parameter appears. Remove "/extn"

from the JavaServerPage parameter.
3. Create a new menu and associate the new resource ID with it.

This ensures that the newly created resource also accesses the same JSP files
accessed by the factory-shipped resource.

44 Sterling Selling and Fulfillment Foundation

Chapter 11. Configuring Mobile Application User Interface
Components

By configuring the properties in the YMAProperties.xml file, the look and feel of
the Mobile Application can be changed.

Note: The configuration capabilities described in this section are valid only for
Microsoft Windows CE and Pocket PC mobile terminals.

Device Properties File

LXE MX7 handheld YMAProperties.MX7.xml

LXE VX3X series truck mount YMAProperties.VX3X.xml

PocketPC mobile terminal YMAProperties.ppc.xml

Symbol VRC7900 series truck mount YMAProperties.vrc7900.xml

The Mobile Application reads the configuration from the YMAProperties.xml file.
Therefore, locate the property XML that matches your mobile device (listed in the
above table), and rename it as YMAProperties.xml.

The properties listed in the following are provided out-of-the-box.

Property Description

CharHeight Height of a character in pixels.

CharWidth Width of a character in pixels.

TextFontName Specifies the font used in the text boxes.

TextFontSize Specifies the size of the font used in the text boxes.

TextIsBold Specifies whether the characters in the text box should
appear as bold.

LabelFontName Specifies the font used in the label fields.

LabelFontSize Specifies the size of the font used in the label fields.

LabelHeight Height of the label fields in pixels.

LabelIsBold Specifies if the characters in the label fields should appear
as bold.

LineHeight Height of a line in pixels.

MaxYValue Specifies the height of the renderable area in a screen in
pixels. When a character is requested to be positioned at a
value that is higher than this, control automatically moves
to a second column.

ColumnWidth Specifies the number of pixels to advance to the right in
order to move to the next column.

DeActivateOKButtonOnError If the mobile device has an auto scan or auto click facility,
it closes the error message dialog box automatically.

This property allows the deactivation of the OK button in
the error message dialog box so that the Mobile Application
continues to display the error message to the user.

© Copyright IBM Corp. 1999, 2011 45

Property Description

SoundForError This property allows to specify a different beep in an error
scenario. Identify a sound file (.wav) available on the
mobile device, and set without extension (.wav) to this
attribute.

enablePasteFunction Allows paste facility in the text boxes.

sipEnabled This property enables input from the soft input panel of a
mobile device.

46 Sterling Selling and Fulfillment Foundation

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not grant you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte character set (DBCS) information,
contact the IBM Intellectual Property Department in your country or send
inquiries, in writing, to:

Intellectual Property Licensing

Legal and Intellectual Property Law

IBM Japan Ltd.

1623-14, Shimotsuruma, Yamato-shi

Kanagawa 242-8502 Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be

© Copyright IBM Corp. 1999, 2011 47

incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Corporation

J46A/G4

555 Bailey Avenue

San Jose, CA 95141-1003

U.S.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

All IBM prices shown are IBM's suggested retail prices, are current and are subject
to change without notice. Dealer prices may vary.

48 Sterling Selling and Fulfillment Foundation

This information is for planning purposes only. The information herein is subject to
change before the products described become available.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. The sample
programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work, must
include a copyright notice as follows:

© IBM 2011. Portions of this code are derived from IBM Corp. Sample Programs. ©
Copyright IBM Corp. 2011.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

Trademarks

IBM, the IBM logo, and ibm.com® are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the Web at “Copyright and
trademark information” at http://www.ibm.com/legal/copytrade.shtml.

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered
trademarks or trademarks of Adobe Systems Incorporated in the United States,
and/or other countries.

IT Infrastructure Library is a registered trademark of the Central Computer and
Telecommunications Agency which is now part of the Office of Government
Commerce.

Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo,
Celeron, Intel Xeon, Intel SpeedStep, Itanium, and Pentium are trademarks or
registered trademarks of Intel Corporation or its subsidiaries in the United States
and other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both.

Notices 49

http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

ITIL is a registered trademark, and a registered community trademark of the Office
of Government Commerce, and is registered in the U.S. Patent and Trademark
Office.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Oracle and/or its affiliates.

Cell Broadband Engine is a trademark of Sony Computer Entertainment, Inc. in the
United States, other countries, or both and is used under license therefrom.

Linear Tape-Open, LTO, the LTO Logo, Ultrium and the Ultrium Logo are
trademarks of HP, IBM Corp. and Quantum in the U.S. and other countries.

Connect Control Center®, Connect:Direct®, Connect:Enterprise™, Gentran®,
Gentran®:Basic®, Gentran:Control®, Gentran:Director®, Gentran:Plus®,
Gentran:Realtime®, Gentran:Server®, Gentran:Viewpoint®, Sterling Commerce™,
Sterling Information Broker®, and Sterling Integrator® are trademarks or registered
trademarks of Sterling Commerce™, Inc., an IBM Company.

Other company, product, and service names may be trademarks or service marks
of others.

50 Sterling Selling and Fulfillment Foundation

����

Product Number: xxxx-xxx

Printed in USA

	Contents
	Chapter 1. Checklist for Customization Projects
	Customization Projects
	Prepare Your Development Environment
	Plan Your Customizations
	Extend the Database
	Make Other Changes to APIs
	Customize the UI
	Extend Transactions
	Build and Deploy your Customizations or Extensions

	Chapter 2. Planning Custom Interfaces for Mobile Devices
	Differences between Console User and Mobile Device Interfaces
	Guidelines for Smooth Upgrades and Maintenance
	Design Guidelines for Mobile Device Screens
	Planning Mobile Device Screen Size
	Passing Data Between Mobile Device Screens
	Error Handling for Mobile Devices

	Chapter 3. Creating Resources for Mobile Device Interfaces
	Creating Resources in the Applications Manager
	Inventory Inquiry Resources in the Applications Manager: An Example

	Chapter 4. Menu Entries and HTML Templates for Mobile Devices
	Adding a Menu Entry
	Creating an HTML Template

	Chapter 5. Creating JSP Files
	JSP File Structure
	JSP File Name and Directory Guidelines

	Chapter 6. Style Reference for Mobile Device Interfaces
	HTML Tags for Mobile Device Interfaces
	JSP Tag Library
	Data Type Reference

	Chapter 7. Programming Standards for Mobile Device Interfaces
	JSP File Standards for Mobile Device Interfaces
	Internationalization Standards for Mobile Device Interfaces
	Validating HTML Files for Mobile Device Interfaces

	Chapter 8. JSP Functions for Mobile Device Interfaces
	JSP Functions Used for Mobile Device Interfaces
	addToTempQ
	clearTempQ
	deleteAllFromTempQ
	deleteFromTempQ
	getErrorXML
	getField
	getForm
	getStoredElement
	getTempQ
	getTempQValue
	replaceInTempQ
	resetAttribute
	sendForm

	Chapter 9. Configuring the Mobile Application
	Configuring the Mobile Application
	Configuring the Mobile Application Screens
	New Attributes
	Associating Resource ID with a Process
	Use Cases
	Pick and Deposit
	Defaulting Dock Location
	Skipping a Screen

	Chapter 10. Menu-Level Customization of the Mobile Application
	Menu-Level Customization of the Mobile Application
	Menu-Level Customization
	Avoiding Copying of HTML Files
	Avoiding Copying of JSP Files

	Chapter 11. Configuring Mobile Application User Interface Components
	Notices

