Sterling Selling and Fulfillment Foundation

Extending Transactions

Version 91

<|ll

Sterling Selling and Fulfillment Foundation

Extending Transactions

Version 91

<|ll

Note
FBefore using this information and the product it supports, read the information in|[“Notices” on page 29

Copyright

This edition applies to the 9.1 Version of IBM Sterling Selling and Fulfillment Foundation and to all subsequent
releases and modifications until otherwise indicated in new editions.

© Copyright IBM Corporation 1999, 2011.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

Chapter 1. Checklist for Customization
Projects.

Customization Projects . .
Prepare Your Development Env1ronment

Plan Your Customizations .

Extend the Database.

Make Other Changes to APIS

Customize the UI.

Extend Transactions .

Build and Deploy your Customlzanons or Extens1ons

Chapter 2. Extending Transactions .
About Extending Transactions
About Time Triggered Transactions .

Using User Exits to Extend Standard Transactlons

Using Event Handlers to Extend Standard
Transactions
About Conflgurmg Events
E-Mail Message Event Handler .
E-Mail Templates .
Create Custom E-Mail Template
Exception Alert Event Handler
Exception Alert Templates . .
Create Custom Exception Alert Templates
Publish Event Handler .
Execute Event Handler . .
Java Extensions as Event Handlers . .
Oracle Stored Procedures as Event Handlers.
HTTP Extension as Event Handlers
COM Extensions as Event Handlers .
Event Chaining and Event Handlers .

© Copyright IBM Corp. 1999, 2011

OJQ)NI\)H»—KD—\b—\—L

a1 a1 o Q1

O O O 0 000NN

O

Chapter 3. Using Variables for
Configuration. . . . T K
Using Variables for Dynamic Conflguratlon. .. .13

Chapter 4. Creating Custom
Time-Triggered Transactions 15

About Custom Time-Triggered Transactions . . . 15
getJobs() Abstract Function15
executeJobs() Abstract Function. . . . 16

Creating Custom Non-Task-Based, Tlme—Trlggered

Transactions . . . 16

About Creating Custom Task Based Tlme Trlggered

Transactions . . . 16
Creating Custom Task Based Tlme Trlggered
Transactions17

Chapter 5. External Transactions . . . 19
Coordinating with External Transactions.19
Implement External Transaction Coordination . . . 19

Chapter 6. Transactional Data Security 23

How Is Transactional Data Secured?23
Encryption Logic . . .23
Choosing an Encryption and Decryptlon Strategy .24
How is Encryption Supported?. 25
Encrypting Credit Card Numbers26
Encryption Through Property Files27

Notices29

iii

iv Sterling Selling and Fulfillment Foundation

Chapter 1. Checklist for Customization Projects

Customization Projects

Projects to customize or extend Sterling Selling and Fulfillment Foundation vary
with the type of changes that are needed. However, most projects involve an
interconnected series of changes that are best carried out in a particular order. The
checklist identifies the most common order of customization tasks and indicates
which guide in the documentation set provides details about each stage.

The items identified for extension and/or modification in the documentation are
Source Components (to the extent such item involves source code) and Sample
Materials for purposes of the License Information file associated with this product.

Prepare Your Development Environment

Set up a development environment that mirrors your production environment,
including whether you deploy your application on a WebLogic, WebSphere®, or
JBoss application server. Doing so ensures that you can test your extensions in a
real-time environment.

You install and deploy your application in your development environment
following the same steps that you used to install and deploy it in your production
environment. Refer to your system requirements and installation documentation
for details.

You have an option to customize your application with Microsoft COM+. Using
Microsoft COM+ has advantages such as increased security, better performance,
increased manageability of server applications, and support for clients of mixed
environments. If this is your choice, see the Customization Basics Guide about
additional installation instructions.

Plan Your Customizations

Are you adding a new menu entry? Or customizing the sign-in screen or logo? Or
customizing views or wizards? Or creating new themes or new screens? Each type
of customization varies in scope and complexity.

For background, see the Customization Basics Guide, which summarizes the types of
changes that you can make and provides important guidelines about file names,
keywords, and other general conventions.

Extend the Database

For many customization projects, the first task is to extend the database so that it
supports the other Ul or API changes that you make later. For instructions, see the
Extending the Database Guide, which includes information about the following
topics:

* Important guidelines about what you can and cannot change in the database.

© Copyright IBM Corp. 1999, 2011 1

Information about modifying APIs. If you modify database tables so that any
APIs are impacted, you must extend the templates of those APIs or you cannot
store or retrieve data from the database. This step is required if table
modifications impact an APL

How to generate audit references so that you improve record management by
tracking records at the entity level. This step is optional.

Make Other Changes to APIs

Your application can call or invoke standard APIs or custom APIs. For background
about APIs and the services architecture of service types, behavior, and security,
see the Customizing APIs Guide. This guide includes information about the
following types of changes:

Invoke standard APIs for displaying data in the UI and for saving changes made
in the UI to the database.

Invoke customized APIs for executing your custom logic in the extended service
definitions and pipeline configurations.

APIs use input and output XML to store and retrieve data from the database. If
you don't extend these API input and output XML files, you may not get the
results you want in the Ul when your business logic is executing.

Every API input and output XML file has a DTD and XSD associated to it.
Whenever you modify input and output XML, you must generate the
corresponding DTD and XSD to ensure data integrity. If you don't generate the
DTD and XSD for extended XMLs, you may get inconsistent data.

Customize the

2

Ul

IBM® applications support several UI frameworks. Depending on your application
and the customizations you want to make, you may work in only one or in several
of these frameworks. Each framework has its own process for customizing
components such as menu items, logos, themes, and so on.

Depending on the framework you want, consult one of the following guides:

Customizing the Console JSP Interface Guide
Customizing the Swing Interface Guide
Customizing User Interfaces for Mobile Devices Guide

Customizing the Rich Client Platform Guide and Using the RCP Extensibility Tool
Guide

Customizing the Web Ul Framework Guide

Depending on the framework you want, consult one of the following guides:

Customizing the Console [SP Interface Guide
Customizing the Swing Interface Guide
Customizing User Interfaces for Mobile Devices Guide

Customizing the Rich Client Platform Guide and Using the RCP Extensibility Tool
Guide

Customizing the Web Ul Framework Guide

Sterling Selling and Fulfillment Foundation

Extend Transactions

You can extend and enhance the standard functionality of your application by
extending the Condition Builder and by integrating with external systems. For
background about transaction types, security, dynamic variables, and extending the
Condition Builder, see the Extending Transactions Guide and Extending the Condition
Builder Guide. These guides includes information about the following types of
changes:

* Extend the Condition Builder to define complex and dynamic conditions for
executing your custom business logic and using a static set of attributes.

* Define variables to dynamically configure properties belonging to actions,
agents, and services configurations.

* Set up transactional data security for controlling who has access to what data,
how much they can see, and what they can do with it.

* Create custom time-triggered transactions. You can invoke and schedule custom
time-triggered transactions in much the same manner as you invoke and
schedule the time-triggered transactions supplied by your application.

* Coordinate your custom, time-triggered transactions with external transactions
and run them either by raising an event, calling a user exit, or invoking a
custom API or service.

Build and Deploy your Customizations or Extensions

After performing the customizations that you want, you must build and deploy
your customizations or extensions.

1. Build and deploy your customizations or extensions in the test environment so
you can verify them.

2. When you are ready, repeat the same process to build and deploy your
customizations and extensions in your production environment.

For instructions about this process, see the Customization Basics Guide which

includes information about the following topics:

* Building and deploying standard resources, database extensions, and other
extensions (such as templates, user exits, and Java interfaces).

* Building and deploying enterprise-level extensions.

Chapter 1. Checklist for Customization Projects 3

4 Sterling Selling and Fulfillment Foundation

Chapter 2. Extending Transactions

About Extending Transactions

You can extendSterling Selling and Fulfillment Foundation programmatically both
to enhance the functionality of your implementation and to integrate with external
systems.

This section describes how to achieve extensibility programmatically, using these
mechanisms. Transaction processing mechanisms in the application can be
classified into two basic categories:

¢ Synchronous (on demand) or asynchronous (message driven) services
e Time-triggered transactions

About Time Triggered Transactions

A time-triggered transaction, or agent, is a program that performs a variety of
individual functions, automatically and at specific time intervals. It is not triggered
by conditions, events, or user input.

There are three types of time-triggered transactions:

* Business process transactions - responsible for processing day-to-day
transactions

* Monitors - watch and send alerts for processing delays and exceptions
* Purges - clear out data that may be discarded after having been processed

You can extend the transactions provided by the application by using one of the
following mechanisms:

* User exits
¢ Event handlers

For information on using the time-triggered transactions provided by your
application, see the Sterling Selling and Fulfillment Foundation: Configuration
Guide.

Using User Exits to Extend Standard Transactions

Sterling Selling and Fulfillment Foundation provides the ability to extend or
override key business algorithms. This is accomplished through user exits that are
invoked when the algorithms are run.

A typical user exit can:
* Opverride application logic by providing its own logic.

* Extend application logic by providing more inputs to the application algorithm.

For example, if an order is split into multiple shipments, you may need to
compute the order price differently for each shipment. In order to change the way
Sterling Selling and Fulfillment Foundation computes order prices, you can
override the specific computation or algorithm in the repriceOrder user exit.

© Copyright IBM Corp. 1999, 2011 5

Each user exit is a separate Java interface. You may choose to implement only
those user exits where you want to override or augment the business logic.

Note: When the API or time-triggered transaction is executing the default
algorithm, the user exit is called. If your implementation of the function throws an
exception, the current transaction is rolled back.

For detailed descriptions of each user exit, see the following Javadocs packages:
* com.yantra.ycm.japi.ue
* com.yantra.ycp.japi.ue
* com.yantra.ydm.japi.ue

* com.yantra.yfsjapi.ue
Implementing and Deploying User Exits

All user exit classes should be deployed as a JAR file that is available in the
CLASSPATH of the agent adapter script and in the smcfs.ear file deployed in your
application server. For more information about implementing user exits, see the
Sterling Selling and Fulfillment Foundation: Configuration Guide.

For information on creating and deploying custom classes, see the Sterling Selling
and Fulfillment Foundation :Installation Guide.

Guidelines for User Exits

The following guidelines have to be kept in mind when you are using User Exits
within the application API:

* User Exits are structured to return specific information and hence their usage
must be restricted for such purpose alone.

* From the user exits, you cannot invoke APIs that modify the data. This is to
ensure that errors do not occur because of the data that is getting modified in
the parent transaction (the transaction that calls the user exit), and the same data
getting modified in the user exit custom code. For example, you cannot invoke a
changeOrder() API from a user exit that obtains information related to the same
order.

However, APIs that do not modify the data (like select APIs) can be invoked in the
user exits. For example, you can call getOrderDetails() API from a user exit.

Using Event Handlers to Extend Standard Transactions

6

The application raises events at specific moments in processing. It enables you to
define an action to be performed when a specific event occurs.

In the application configuration, an event is defined to invoke the application's
event handler. The event handler performs special processing on data published by
the event before being transported to the transport services layer.

As part of the event configuration, services can be invoked. When such services are
invoked, some of the events, like INVENTORY_CHANGE pass data as a map
whereas the other events pass data as an XML. In the event of data being passed
as a map, when the service is configured for such an event the data map is
converted to an XML as follows:

Sterling Selling and Fulfillment Foundation

<?xml version="1.0" encoding="UTF-8"?>
<SterlingXML>
<XML AccountNo="" AdjustmentType="ADJUSTMENT"
EnterpriseCode="DEFAULT" ItemID="ITEM1"
ItemKey="2005030116023851364" />
</SterlingXML>

Note: By default, when you raise an event that has Map data, the data map gets
converted to an XML with 'SterlingXML'" as the root tag. If you want to override
this root tag value, you must set the yfs.sci.event.flow.roottag property value as the
new root tag in the install_dir /properties/customer_overrides.properties file.

About Configuring Events

In Release 5.0 and later, you can associate an action to a service to perform special
processing required. For example, the event PUBLISH_SHIP_ADVICE could invoke
the application event handler to call a custom Java class. The Java class can
augment the publish ship advice XML. The Service Definition Framework can
transport the enriched XML data to the transport services layer.

For more information on configuring actions and associating the actions to events,
or on the various components you use to build a service, see the Sterling Selling
and Fulfillment Foundation: Configuration Guide.

The event handlers that can be invoked from an action (configured in the Other
tab) are described below.

Note: The following event handlers are provided exclusively for backward
compatibility purposes.

E-Mail Message Event Handler

The application provides a standard Send E-mail event handler for sending e-mail
messages on various events. For example, when a line is shipped, you can send
shipment information. SMTP-based e-mail is supported for these messages. When
configured in the Other tab when configuring an Action, the e-mail is sent
synchronously. If the mail server is not available, an exception is thrown. For
sending an event notification in the form of an e-mail message using a service, see
the Sterling Selling and Fulfillment Foundation: Configuration Guide.

E-Mail Templates

E-mail templates enable you format e-mail messages. The E-mail node receives
XML data and merges it with the XSL template you specify. You can configure an
E-mail node in the Service Builder to use an e-mail template.

Create Custom E-Mail Template
About this task

To create and use a custom e-mail template:

Procedure

1. Copy the install_dir/repository/xapi/template/merged/email/orders_mail xsl
template file.

2. Modify the file as needed, rename it, and save it within the
install_dir / extensions/global /template/xsl/ CUSTOM-TEMPLATE-XSL

Chapter 2. Extending Transactions 7

directory. You can save it to another directory, but using the standard directory
structure supplied bySterling Selling and Fulfillment Foundation helps ensure
consistency.

3. From the Service Builder, configure an E-mail node to use your custom e-mail
template. In the Body Template field specify /template/xsl/CUSTOM-
TEMPLATE-XSL.

Note that using the install_dir/repository /xapi/template/merged /email /
file_name.mlt file with Actions to accomplish the same purpose has been
deprecated as of Release 5.0. Use the E-mail node and an XSL file instead.

Exception Alert Event Handler

The application supports standard event handlers sending exception alerts to the
Alert Console. These exceptions are redirected to a specific user or to an exception
queue for a group of users. For example, you can send an exception alert to the
customer service representative queue when authorization fails so the customer
service representative can contact the buyer in person. For more information about
the Alert Console, see the Sterling Selling and Fulfillment Foundation : User Guide.

Exception Alert Templates

Exception alert templates enable you to supply additional text to alerts raised. This
enables you to make error message more descriptive and easy to understand. They
also provide a means of supplying a hyperlink to the resolution screens from the
Alert console. For example, for any alert created for an order, shipment, or load
document type, a hyperlink is created and displays in the "Created For" column on
the Alert List screens. In the Exception Alert Template you can customize this
hyperlink or create any other hyperlinks. The input data to the alert node is
merged with the template you specify and then posted as the description of the
alert raised.

Events that publish data in data buffer format use an ECT template, which are text
files that contain tags. These tags are replaced by actual data at run time. All tags
use the |#YFS_tagname| syntax.

For example, use the tag |#YFS_OrderNo| to have the actual order number appear
in its place (if OrderNo is published as a part of the data buffer). Any of the data
elements published in the data buffer can be used in the template.

For the exception console, there are two templates. One template is used for
determining the DETAIL_DESCRIPTION field of the YFS_INBOX table. The other
template is used for determining the LIST_DESCRIPTION field of the YFS_INBOX
table. The templates are merged with the data published (by an event) and the
resulting string is populated to the corresponding field.

Create Custom Exception Alert Templates
About this task

To create and use a custom exception template:

Procedure

1. Copy the install_dir/repository/xapi/template/merged/exception_console/
example_exception_console.xsl template file.

2. Modify the file as needed, rename it, and save it within the
install_dir /extensions/global/template/xsl/ CUSTOM-TEMPLATE-XSL

8 Sterling Selling and Fulfillment Foundation

directory. You can save it to another directory, but using the standard directory
structure supplied by the application helps ensure consistency.

3. From the Service Builder, configure an Alert node to use your custom exception
console template. In the XSL Template field, specify template/xsl/CUSTOM-
TEMPLATE-XSL.

Note: Using the install_dir /repository /xapi/template/merged/
exception_console/file_name.ect file with Actions to accomplish the same
purpose has been deprecated in Release 5.0. Use the Alert node and an XSL file
instead.

Publish Event Handler

The application enables publishing of data by the event manager to external
systems for interoperability. You can configure any event to publish data to other
systems. For example, upon the event ON_SUCCESS of the SHIP_ CONFIRM
transaction, you may want to publish data to an external financial system.

When configuring the Publish event handler, you must provide a set of system IDs
separated by semicolons (for example, SYSTEM1;System2;TestSystem). These are
IDs of time-triggered Transactions that are expected to read and process the data.
The event manager writes the data provided by the transaction to the
YFS_EXPORT table and writes one record for each system ID configured.

For publishing data using a service, use a Database transport node. For more
information, see the Sterling Selling and Fulfillment Foundation : Configuration
Guide.

Execute Event Handler

The Execute event handler tells the event manager to invoke the specified
program. The application looks for this program in the PATH. Data is passed to
the program as the first command line argument. Like the Publish event handler,
the Execute event handler is invoked asynchronously. This is achieved by using a
custom API that runs the program in a service.

Java Extensions as Event Handlers

Java extensions enable you to implement event handlers as Java classes. With each
action, you can associate one Java event handler. The Java class you create must
implement the com.yantra.yfs japi.util. YEFSEventHandlerEx interface. This is
achieved by using a custom API which actually runs the program in a service.

Oracle Stored Procedures as Event Handlers

If you configure an event handler as an Oracle stored procedure, the stored
procedure is invoked with the following parameters:

PROCEDURE DO_ACTION(TRANID IN VARCHAR2,ACTIONCODE IN VARCHARZ2,KEY DATA IN
VARCHARZ ,DATA_TYPE IN NUMBER,DATA_BUFFER1 IN VARCHARZ,DATA_BUFFERZ2 IN

VARCHARZ,DATA:BUFFER3 IN VARCHARZ ,DATA_BUFFER4 IN VARCHAR2,DATA_BUFFER5 IN
VARCHAR2 ,DATA_COMPLETE IN NUMBER,SHIP_NODE IN VARCHARZ2,RETURN_VALUE IN OUT NUMBER)

PL/SQL limits the maximum size of a VARCHAR? variable to 2,000 bytes, so 2,000

bytes is the maximum length of the string passed in data buffers. If the input is
greater than 10,000 characters, the buffer is truncated and the parameter

Chapter 2. Extending Transactions 9

DATA_COMPLETE has a value of 0 (zero). If the buffer is less than 10,000 bytes
and is completely passed to the stored procedure, DATA_COMPLETE is passed as
1.

Important: You must not do a commit or a rollback in the stored procedure at any
time in a stored procedure associated to a event handler.

Execution of stored procedures is not a supported service component.

HTTP Extension as Event Handlers

If you configure an event handler as an HTTP extension, the application sends
data using the post() function to the specified URL. Data is posted using the
variables in the following table.

Variable Description
sTranID ID of the transaction raising the event.
iDataType If iDataType is set to 1, XML data is published with the event and

sData contains the entire XML string. Otherwise, iData Type is set
to 0 and sData contains a name=value pair. To see what the
name=value pair contains, see the DBD file associated with the
event in the Javadocs.

sData See iDataType description.

sShipNode Ship node ID, if available.

A service can be configured to post data using the HTTP protocol. For details, see
the Sterling Selling and Fulfillment Foundation Configuration Guide.

COM Extensions as Event Handlers

10

Using COM requires setting up your server and runtime clients.

If you define an event handler as a COM extension, the application calls the COM
component you specify as the COM object. The COM component you create must
expose the IDispatch interface and a pre-identified function doAction() as part of
the interface. The signature of the doAction() function should be as follows:

[IDL Syntax]

doAction ([in] BSTR sTranID, [in] BSTR sActionCode, [in] BSTR sKeyData, [in]long
DataType, [in] BSTR sData, [in] BSTR ShipNode, [Out] Tong *Retval);

Because the application accesses this function through the IDispatch interface, you
can write your COM component either in the Visual Basic or C++ programming
language. The function signature that you must expose through Visual Basic is:
Public Function doAction(ByVal bsTranID As String, ByVal boActionCode As String,

ByVal bsKeyData As String, ByVal DataType As Long, ByVal bsData As String, ByVal
ShipNode As String, retVal as Long) As Long

The function signature that you must expose through C++ is:

STDMETHODIMP COMActionImpl::doAction(BSTR sTranID, BSTR sActionCode, BSTR sKeyData,
long DataType, BSTR sData, BSTR Node, long *RetVal)

COMActionImpl is the class name that implements the doAction() function. While
configuring the event handler, you must specify the Program ID of the COM
component to be invoked.

Sterling Selling and Fulfillment Foundation

Event Chaining and Event Handlers

Some event handlers support invocation of APIs. These APIs can retrieve more
data pertinent to the event being raised, or they may direct to perform a business
computation or transaction. In turn, the transaction can raise other events, thus
resulting in event chaining. For example, one of the event handlers for the
ORDER_CREATE event can check the validity of an order and call an API to
HOLD the order. This results in the triggering of the HOLD event, which sends an
e-mail message to a customer service representative. Event chaining provides an
extensibility mechanism that is required for complex business processing.

Important: Actions that are configured to be invoked by the ON_FAILURE event
must not perform any database updates. Any database updates performed by an
action invoked by the ON_FAILURE event is rolled back.

To access the data published by Sterling Selling and Fulfillment Foundation , you
must implement the YFSEventHandlerEx() interface, which provides the
handleEvent() function to implement as follows:

public boolean handleEvent (YFSEnvironment oEnv, String sTranID, String

sActionCode, Map sKeyData, int iDataType, Object sData, String sShipNode,
String [] parms) throws Exception

Important: While it is possible to implement an API that causes an event that is
associated with an action in the application to call the same API, take care to avoid
this situation. It creates an infinite loop.

The class name must be configured as the Java object on the Action Configuration
screen in theSterling Selling and Fulfillment Foundation transaction configuration.
For more information, see the Sterling Selling and Fulfillment Foundation
Configuration Guide.

All the parameters for the handleEvent() function are input parameters, with
values inserted by the application. The last parameter in this function is the parms
parameter, which is an array of String constants. The values of these string
constants are the values of the string constants specified after the class name
during the action configuration in the application.

Note: For details on the YFSEventHandlerEx interface, see the Javadocs.

Chapter 2. Extending Transactions 11

12 Sterling Selling and Fulfillment Foundation

Chapter 3. Using Variables for Configuration

Using Variables for Dynamic Configuration

You can dynamically configure certain properties belonging to actions, agents and
services configuration to cut back on your implementation time. For example, you
can provide a dynamic way of configuring network properties such as provider
URLs, E-mail server, and Sender addresses. These properties can be configured as
variables in one place and can be resolved at runtime when these properties are
being used.

You can provide variables in place of file or directory names wherever a file name
or path can be entered in the Applications Manager. This variable substitution is
based on an entry in the install_dir /properties/customer_overrides.properties file
and is resolved during runtime.

You can use variable names in the following components of the Applications
Manager:

* Service Definition Framework
— All transport types such as JMS queue name, Initial Context Factory, QCF
lookup and Provider URL. File Sender and Receiver, FTP source and

destination for sender and receiver directories and HTTP and Webservice
transport types.

— In the e-mail component, where you can specify, the email server, subject,
listener port, and From addresses. The dynamic configuration can also be
used for specifying the email protocol.

- Actions
- In call HTTP extension and Execute Program.

— Agent criteria details
- JMS Queue Name, Initial Context Factory, QCF Lookup and Provider URL.

* Printer Devices, Print Documents, and Print Components
* DPurge Criteria's log file name
* In the System Management console:

— You can use variables to specify installation rules such as e-mail server name,

server IP address, server listener port, and e-mail protocol.

— You can provide variables for the JMS monitoring configuration fields, which
include: WebLogic Provider URL, WebSphere Channel name, host name, port
number and queue manager name.

For the fields identified above, you can configure the values as
yfs.VARIABLE_NAME in the install_dir /properties/customer_overrides.properties
file. It is stored in the database as is and at runtime when the variables are used, a
lookup is performed in the customer_overrides.properties file to decipher the
value. Since the values for these variables are fetched from the
customer_overrides.properties file, they are specific to a particular JVM.

Note: The value of this variable cannot be seen in the health monitor agent details,

since the value depends on the JVM on which it is deployed. You have to click on
the server details of the monitor agent to view the value of the variable.

© Copyright IBM Corp. 1999, 2011 13

For example, if you want to set the File IO Receiver's directory structure to a
common variable (such as ${ffbase}) , then the incoming directory should be set to:

${ffbase}/incoming

The value for the variable ${ffbase} that you defined in the Applications Manager
must be defined in the customer_overrides.properties file with a prefix of yfs as:

yfs.ffbase=C:/FileIODir/Receiver

This ${ffbase}/incoming value is stored in the database, and when processing the
file adapter, the variable is resolved to C:/FilelODir/Receiver/incoming.

The following conditions are assumed for the usage of this variable:
* All the variables when referenced must be in the following format:
— ${variable_name}

* All variables should be properly formed. If a variable is not found, no
substitution takes place.

* Variables must not contain the '}' character.
* Variables must not begin or end with a whitespace character.

* Templates do not support variables for filenames since they are always resolved
within the classpath.

14 Sterling Selling and Fulfillment Foundation

Chapter 4. Creating Custom Time-Triggered Transactions

About Custom Time-Triggered Transactions

The application provides infrastructure that enables you to write your own
time-triggered transactions. You invoke and schedule these time-triggered
transactions in much the same manner as you invoke and schedule standard
time-triggered transactions.

For information on how to configure the standard time-triggered transactions, see
the Sterling Selling and Fulfillment Foundation Configuration Guide.

Depending upon the way time-triggered transactions determine the list of tasks to
be processed (their work load), they can be classified into one of the following
categories:

* Non task-based (generic) - these time-triggered transactions use custom logic to
determine the work they have to perform. They may or may not use the
centralized Task Queue.

* Task-based (specific) - these time-triggered transactions use the Task Queue to
determine their work.

The application provides infrastructure to create both types of custom
time-triggered transactions.

The ability to write non-task-based time-triggered transactions is provided using
the com.yantra.ycp.japi.utilL. YCPBaseAgent class. This class provides a generic
infrastructure irrespective of whether the Task Queue is used or not and therefore
can be used to write any time-triggered transaction.

Task-based time-triggered transactions can be programmed by subclassing the
com.yantra.ycp.japi.util. YCPBaseTaskAgent class.

If your transaction is Task Queue based, it is suggested that you use the
infrastructure provided specifically to write task-based transactions. This
infrastructure automatically determines work for your custom agent from the Task
Queue, thus reducing the amount of design and development required for your
transaction.

All the custom agents written to the application specification are subclassed from
the com.yantra.ycp.japi.util. YCPBaseAgent class, which has two abstract functions.
When you implement these functions, they provide the processing capabilities of a
time-triggered transaction.

getJobs() Abstract Function

The getJobs()abstract function uses:

* Env, a pre-created instance of a YFSEnvironment object that can be passed to
APls

e inXML, an org.w3c.dom.Document object which contains the input XML

© Copyright IBM Corp. 1999, 2011 15

The implementation of this function should obtain jobs (from the database) that
need to be run, construct a list of org.w3c.dom.Document objects, and return the
list. See the following signature:

public List getJobs(YFSEnvironment Env, Document inXML)

executeJobs() Abstract Function

Each document in the List returned by the getJobs() function is passed to this
function for execution. If this function throws an exception, the exception is logged
and the transaction is rolled back, otherwise it is committed. See the following
signature:

public Document executeJob(YFSEnvironment Env, Document inXML)

After all of the documents have been processed by the executeJob() function, the
application invokes the getJobs() function again to obtain the next set of tasks that
need to be processed by the executeJob() function. This repeats until no more jobs
are returned by the getJobs() function.

For examples of the input XML, see the YCPBaseTaskAgent class in the Javadocs.

The com.yantra.ycp.japi.util. YCPBaseAgent also provides utility functions for trace
logging and timer information with the following signatures:

* public void log(String classMethodName, String message);
* public startTimer(String timerName);

* public endTimer(String timerName);

Creating Custom Non-Task-Based, Time-Triggered Transactions
About this task

Custom non-task-based time-triggered transactions should be written as subclasses
of the com.yantra.ycp.japi.utiLYCPBaseAgent class. For a sample custom
time-triggered transaction, see the com.yantra.ycp.japi.util. YCPBaseAgent class in
the Javadocs.

To write a custom non-task-based time-triggered transaction:

Procedure
1. Subclass com.yantra.ycp.japi.util. YCPBaseAgent.
2. Implement the executeJob() and getJobs() functions in this class.

3. From the Applications Manager, configure a time-triggered transaction and
assign an Agent Server to it.

4. Schedule and run your custom time-triggered transaction according to the
instructions in the Sterling Selling and Fulfillment Foundation: Installation
Guide.

About Creating Custom Task-Based, Time-Triggered Transactions

Task-based custom time-triggered transactions are written as subclasses of the
com.yantra.ycp.japi.util. YCPBaseTaskAgent class, which is a subclass of
com.yantra.ycp.japi.util. YCPBaseAgent with the getJobs() and executeJob()
functions already implemented. Creating a task-based custom time-triggered

16 Sterling Selling and Fulfillment Foundation

transaction by subclassing this class involves implementing the executeTask()
function to process one task queue record passed to you as input.

Note: If the executeTask() function throws an exception, the exception is logged
and the transaction is rolled back, otherwise it is committed.

The logging and timing utility functions available are similar to the ones provided
by the com.yantra.ycp.japi.util. YCPBaseAgent class. The signature of the
executeTask() function is public Document executeTask(YFSEnvironment oEnv,
Document inXML);Env is a pre-created instance of a YFSEnvironment object that
can be passed to APIs and InXML is the org.w3c.dom.Document object, which
contains the custom task XML. The custom task XML also contains a
TransactionFilters Node, which contains all the parameters passed to the task-based
custom time-triggered transaction. This node is below the root node of the input
XML. For example, see an example for a task-based custom time-triggered
transaction.
<?xml version="1.0" encoding="UTF-8"?>
<TaskQueue TaskQKey="" TransactionKey="" DataKey="" DataType="" AvailableDate=""
Lockid="" Createts="" Createprogid="" Createuserid=""
Modifyts=""Modifyprogid="" Modifyuserid="" >
<TransactionFilters AgentName="" TransactionKey=""

CurrentThread="" NumRecordsToBuffer="" TotalThreads=""/>
</TaskQueue>

For a sample custom task-based time-triggered transaction, see the
com.yantra.ycp.japi.util. YCPBaseTaskAgent class in the Javadocs.

Creating Custom Task-Based, Time-Triggered Transactions
About this task

To write a task-based custom time-triggered transaction:

Procedure
1. Subclass com.yantra.ycp.japi.util. YCPBaseTaskAgent.
2. Implement the executeTask() function in this class.

3. From the Applications Manager, configure a time-triggered transaction and
assign an Agent Server to it.

4. Schedule and run your custom time-triggered transaction according to the
instructions in the Sterling Selling and Fulfillment Foundation: Installation
Guide.

Chapter 4. Creating Custom Time-Triggered Transactions 17

18 Sterling Selling and Fulfillment Foundation

Chapter 5. External Transactions

Coordinating with External Transactions

The application provides the capability to run external code either by raising an
event, calling a user exit, or invoking a custom API or service. During these
invocations, the external systems can begin a transaction. Since the external
transaction is not part of the Sterling Selling and Fulfillment Foundation
transaction it could lead to data inconsistencies if the Sterling Selling and
Fulfillment Foundation transaction is rolled back but the external transaction is not.

External transaction coordination lets the external systems register their
transactions with Sterling Selling and Fulfillment Foundation. When Sterling
Selling and Fulfillment Foundation is ready to commit its transaction, the
YFSTxnCoordinatorUE user exit is invoked, which lets the application handle the
commits and rollbacks on the external transactions.

Implement External Transaction Coordination
About this task

To implement external transaction coordination:

Procedure

1. Create the custom API that you want to implement your external transaction
process, but DO NOT commit the external transactions. Instead, register the
external transaction object with the YFSEnvironment by calling the
(YESEnvironment)env.setTxnObject(String ID, Object txnObj).

The String ID is a unique name used by the user exit implementation class to
identify the custom transaction object.

The following example illustrates a simple custom APL

public class doSomethingAPI
{
private YFCLogCategory cat = YFCLogCategory.instance("DoSomethingAPI");
public doSomethingAPI() // constructor is empty
{
1
public void writeToDB (String key, YFSEnvironment oEnv)
{
try
{
Driver aDriver =
(Driver)Class.forName("oracle.jdbc.OracleDriver").newInstance();
String url = "jdbc:oracle:thin:0127.0.0.1:1521:qotree2";
Connection conn = DriverManager.getConnection(url, "Scott", "Tiger");
conn.setAutoCommit(false);
String sql = "insert into TxnTest (key) values ('" + key + "')";
Statement stmt = conn.createStatement();
stmt.executeUpdate(sql);
oEnv.setTxnObject ("YDBconn", conn);

catch (Exception e)

{

System.out.printin ("Caught Exception :\n" + e);
1
1

© Copyright IBM Corp. 1999, 2011 19

20

public Document doSomething(YFSEnvironment env, Document doc) throws Exception

{ System.out.printIn("Executing doSomething method........... ")
writeToDB ("doSomething", env);
return doc;

}
}
Implement the com.yantra.yfs japi.ue.YFSTTxnCoordinatorUE user exit interface
to commit the external transactions either before or after Sterling Selling and
Fulfillment Foundation perform its commits. Then implement the rollback
method so that if the Sterling Selling and Fulfillment Foundation transaction
triggers a rollback, the afterYantraTxnRollback(YFSEnvironment oEnv) method

is called to rollback the external transactions as well. Implement the following
methods to accomplish this:

* beforeYantraTxnCommit(YFSEnvironment oEnv)
* afterYantraTxnCommit(YFSEnvironment oEnv)
* afterYantraTxnRollback(YFSEnvironment oEnv)

Note: You can use either the beforeYantraTxnCommit or the
afterYantraTxnCommit user exit to synchronize commits, depending on your
integration requirements.

Calling(YFSEnvironment)env.getTxnObject(ID)enables these methods to obtain
the handle to the external transaction object that was previously registered by
the (YFSEnvironment)env.setTxnObject(String ID, Object txnObj). Note the ID is
the same in both the getTxnObject call and the setTxnObject call.

The following is an example of the YFSTTxnCoordinatorUE user exit interface
implementation.

public class afterTxnCommit implements YFSTxnCoordinatorUE

{
public void beforeYantraTxnCommit (YFSEnvironment oEnv) throws YFSUserExitException

// before method is not implemented because after method is implemented.
1
public void afterYantraTxnCommit (YFSEnvironment oEnv) throws YFSUserExitException
{
System.out.printin ("Entering method afterYantraTxnCommit......... ")s
try
{
Connection ydbConn = (Connection)oEnv.getTxnObject("YDBconn");
ydbConn.commit();
}
catch (Exception e)
{
System.out.printin ("Caught Exception :\n" + e);
1
1
public void afterYantraTxnRollback (YFSEnvironment oEnv) throws
YFSUserExitException
{
System.out.printin ("Entering method afterYantraTxnRollback......... ")
try
{
Connection ydbConn = (Connection)oEnv.getTxnObject("YDBconn");
ydbConn.rollback();
1
catch (Exception e)
{
System.out.printin ("Caught Exception :\n" + e);
1
}

Sterling Selling and Fulfillment Foundation

3. Launch the Applications Manager and navigate to System Administration >
User Exit Management to configure the YFSTxnCoordinatorUE Implementation
class.

For more information about the YFSTxnCoordinatorUE user exit interface
definition, see the Javadocs.

Chapter 5. External Transactions 21

22 Sterling Selling and Fulfillment Foundation

Chapter 6. Transactional Data Security

How Is Transactional Data Secured?

Security issues involve controlling who has access to what data, how much they
can see, and what they can do with it. The application provides mechanisms that
address the following security issues:

e User access control
* Single sign on

¢ Data encryption
User Access Control

Through an access control mechanism of user group permissions, logins, and order
modification permissions, the application provides security measures for multiple
levels of customer service and administrative organizations.

APIs control access to different areas of system functionality. It is the responsibility
of the caller to ensure that the invoking user has access rights for the function
being invoked. The application provides security manager APIs to help in this
effort. See the com.yantra.api.ycp.security package in the Javadocs.

Single Sign On

If a single sign on mechanism is required within the application, implement the
interface com.yantra.ycp.japi.util. YCPSSOManager, which has a getUserData()
function that returns a String(Userld). For more detailed information, see the
Javadocs.

Data Encryption

Encryption ensures that sensitive data is not viewed by unauthorized people. The
application provides APIs that enable you to encrypt data such as user names,
passwords, and credit card numbers.

In addition, encryption and decryption is only applied after it has been specified
within the Applications Manager. For example, only user exits that have been
passed credit card information can access decrypted credit card numbers.

Encryption Logic

The application exposes the com.yantra.ycp.japi.util. YCPEncrypter interface to
handle encryption logic. All application encryption and decryption is handled by
an encrypter class that implements this interface. This class is specified by
configuring the following properties in the install_dir /properties/
customer_overrides.properties file:

* yfs.encrypter.class
* yfs.propertyencrypter.class properties

Both classes must implement the com.yantra.ycp.japi.util. YCPEncrypter interface.

© Copyright IBM Corp. 1999, 2011 23

The com.yantra.ycp.japi.util. YCPEncrypter interface has the following two
functions:

* public java.lang.String encrypt(java.lang.String sData) - sData is the data passed
by the application to the implementing class for encryption. The return value is
the encrypted string.

* public java.lang.String decrypt(java.lang.String sData) - sData is the data which
is required to be decrypted.

For information on writing your own property encrypter class, see the
YCPEncrypter interface in the Javadocs.

Encryption and decryption functions in this interface are invoked multiple times
by Sterling Selling and Fulfillment Foundation . The application does not
distinguish between clear text and encrypted information. Therefore, the encrypt
function may be invoked with previously encrypted data. In order to avoid double
encryption, it is important for the encrypt function to be able to distinguish
between clear text and previously encrypted information. If previously encrypted
information is passed to the function, your implementation of this function should
return what is passed into it without encrypting it again.

The decrypt function also should be able to distinguish between clear text and
previously encrypted text.

Disabling Encryption and Decryption

To disable encryption (or decryption), implement the encrypt (or decrypt) function
to return the same value it is passed as input without any processing.

Choosing an Encryption and Decryption Strategy

24

There are multiple deployment options when choosing an encryption strategy. The
most typical options are:

* No encryption or decryption
 External tokenization

* Both encryption and decryption
* No decryption

Note: It is recommended that you use external tokenization as your encryption
strategy.

Use the following explanation to guide your decision-making process:
Using No Encryption and No Decryption

Do not save clear text credit cards numbers in the database. However, you may
configure encryption in Sterling Selling and Fulfillment Foundation , if:

* Your business does not accept, process, or store credit card numbers or other
sensitive information.

* All encryption and decryption is handled externally. The application passes the
externally encrypted credit card numbers to other systems. If you enable
encryption, strings that are encrypted would be encrypted again.

Note: Storing encrypted PANs, even if encryption and decryption is not
implemented, may put the application into PCI DSS and PA-DSS auditing scope.

Sterling Selling and Fulfillment Foundation

External Tokenization

TheSterling Sensitive Data Capture Server application captures and tokenizes credit
card numbers and store value card numbers. It is recommended that you review
the Sterling Selling and Fulfillment Foundation : Secure Deployment Guide for the
approach to meeting PCI DSS and PA-DSS requirements.

Using Both Encryption and Decryption

The application encrypts and decrypts credit card numbers automatically as
required. However, this strategy is not the recommended encryption strategy.

Using Encryption But No Decryption

If your business requiresSterling Selling and Fulfillment Foundation to store credit
card numbers, but you never want Sterling Selling and Fulfillment Foundation to
automatically decrypt them under any circumstances, you may want to enable only
the encrypt function and disable the decrypt function.

This way,Sterling Selling and Fulfillment Foundation encrypts the credit card
numbers passed in as clear text but never converts them back. OnceSterling Selling
and Fulfillment Foundation encrypts the information, all your custom extensions
are passed as encrypted credit card numbers and must handle decryption
externally. It is important to note that a few user exits inSterling Selling and
Fulfillment Foundation (for example, YFSbeforeCreateOrderUE) are invoked before
the credit card number is encrypted, so it still has access to the clear text number.

How is Encryption Supported?

The application supports encryption for the following places:

* Properties specified in the yfs.properties, yifclient.properties, and
management.properties files

* Credit card numbers
Encryption Through yfs.properties

Properties such as the JDBC URL, database User ID and Password can be stored
encrypted in the customer_overrides.properties file. Because the application needs
this information to connect to the database, these values must be decrypted by the
application. If you do not wish the application to ever decrypt data, these
properties cannot be stored encrypted.

Note: If you want set any of the properties specified in the yfs.properties file, add
an entry for that particular property in the install_dir /properties/
customer_overrides.properties file.

Encryption for Credit Card Numbers

The application can encrypt credit card numbers before storing them in the
database. Unlike the properties specified in the yfs.properties file, decrypted credit
card numbers are never required by the application for default processing.
However, you may extend the application by implementing a user exit that
requires decrypted credit card numbers for charging or storing user preferences. If
you don't want the application to decrypt information automatically, you must
decrypt these credit card numbers in your implementation of the user exit.

Chapter 6. Transactional Data Security 25

Encrypting Credit Card Numbers

26

If you implement encryption, the application encrypts credit card number in the
following situations:

* When returned by an API
* When published as a part of event data
* When stored anywhere in the database

* When displayed on the user interface (although the user interface may have an
option to override this behavior based on user access)

Encrypting Credit Card Numbers Through APIs

Note: It is recommended that payment information entering the system be already
tokenized instead of being encrypted.

The application provides the following APIs that enable you to encrypt and
decrypt credit card numbers assuming that both encryption and decryption
algorithms have been implemented by the Encrypter class:

+ getEncryptedString() - accepts a string passed to it and returns the string
encrypted

 getDecryptedString() - accepts an encrypted string and returns the string
decrypted

» getEncryptedCreditCardNumber() - returns an encrypted credit card number

Note: getEncryptedCreditCardNumber() has been deprecated in Release 9.0. It
has been replaced with getEncryptedString().

* getDecryptedCreditCardNumber() - returns the credit card number that had
been encrypted using the getEncryptedCreditCardNumber() API

Note: getDecryptedCreditCardNumber() has been deprecated in Release 9.0. It has
been replaced with getDecryptedString().

Encrypting Credit Card Numbers Through User Exits

Only user exits that are passed credit card information can access decrypted credit
card numbers. The application provides the following user exits for passing credit
card data:

* YFSCollectionCreditCardUE

* YFSCollectionCustomerAccountUE
* YFSCollectionOthersUE

* YFSCollectionStoredValueCardUE
* YFSValidateInvokedCollectionUE

Note: Some user exits, such as YFSBeforeCreateOrder and YFSBeforeChangeOrder,
may have access to credit card numbers before they are encrypted in the system.

For detailed information about these user exits, see the Javadocs.

Sterling Selling and Fulfillment Foundation

Encryption Through Property Files
About this task

Some properties relay sensitive data such as user IDs and passwords, which you
may want to encrypt. Any property (except for the yfs.propertyencrypter.class
property in the yfs.properties file) mentioned in the following files can be
encrypted using the install_dir /properties /customer_overrides.properties file:

e install_dir/properties/yfs.properties
* install_dir/resources/yifclient.properties files

To encrypt properties:

Procedure
1. Prefix the property value you want to encrypt with encrypted:. For example,
yfs.dblogin.datasource.name=encrypted:encrypted value

2. Ensure that the security.propertyencrypter.class property is accessible through
the CLASSPATH environment variable.

3. Implement the YCPEncrypter interface. For details about this interface, see the
Javadocs.

These properties starting with encrypted: are automatically decrypted at
runtime.

Chapter 6. Transactional Data Security 27

28 Sterling Selling and Fulfillment Foundation

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not grant you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation

North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte character set (DBCS) information,
contact the IBM Intellectual Property Department in your country or send
inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.

1623-14, Shimotsuruma, Yamato-shi
Kanagawa 242-8502 Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be

© Copyright IBM Corp. 1999, 2011 29

30

incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Corporation
J46A/G4

555 Bailey Avenue

San Jose, CA 95141-1003
U.S.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

All IBM prices shown are IBM's suggested retail prices, are current and are subject
to change without notice. Dealer prices may vary.

Sterling Selling and Fulfillment Foundation

This information is for planning purposes only. The information herein is subject to
change before the products described become available.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. The sample
programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work, must
include a copyright notice as follows:

© IBM 2011. Portions of this code are derived from IBM Corp. Sample Programs. ©
Copyright IBM Corp. 2011.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

Trademarks

IBM, the IBM logo, and ibm.com® are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the Web at “/Copyright and]
ftrademark information|’ at |http:/ /www.ibm.com /legal /copytrade.shtml|

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered
trademarks or trademarks of Adobe Systems Incorporated in the United States,
and/or other countries.

IT Infrastructure Library is a registered trademark of the Central Computer and
Telecommunications Agency which is now part of the Office of Government
Commerce.

Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo,
Celeron, Intel Xeon, Intel SpeedStep, Itanium, and Pentium are trademarks or
registered trademarks of Intel Corporation or its subsidiaries in the United States
and other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both.

Notices 31

http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml

32

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

ITIL is a registered trademark, and a registered community trademark of the Office
of Government Commerce, and is registered in the U.S. Patent and Trademark
Office.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Oracle and/or its affiliates.

Cell Broadband Engine is a trademark of Sony Computer Entertainment, Inc. in the
United States, other countries, or both and is used under license therefrom.

Linear Tape-Open, LTO, the LTO Logo, Ultrium and the Ultrium Logo are
trademarks of HP, IBM Corp. and Quantum in the U.S. and other countries.

Connect Control Center®, Connect:Direct®, Connect:Enterprisem, Gentran®,
Gentran®:Basic®, Gentran:Control®, Gentran:Director®, Gentran:Plus®,
Gentran:Realtime®, Gentran:Server®, Gentran:Viewpoint®, Sterling Commerce ",
Sterling Information Broker®, and Sterling Integrator® are trademarks or registered
trademarks of Sterling Commerce, Inc., an IBM Company.

Other company, product, and service names may be trademarks or service marks
of others.

Sterling Selling and Fulfillment Foundation

Product Number: XXxx-xxx

Printed in USA

	Contents
	Chapter 1. Checklist for Customization Projects
	Customization Projects
	Prepare Your Development Environment
	Plan Your Customizations
	Extend the Database
	Make Other Changes to APIs
	Customize the UI
	Extend Transactions
	Build and Deploy your Customizations or Extensions

	Chapter 2. Extending Transactions
	About Extending Transactions
	About Time Triggered Transactions
	Using User Exits to Extend Standard Transactions
	Using Event Handlers to Extend Standard Transactions
	About Configuring Events

	E-Mail Message Event Handler
	E-Mail Templates
	Create Custom E-Mail Template

	Exception Alert Event Handler
	Exception Alert Templates
	Create Custom Exception Alert Templates

	Publish Event Handler
	Execute Event Handler
	Java Extensions as Event Handlers
	Oracle Stored Procedures as Event Handlers
	HTTP Extension as Event Handlers
	COM Extensions as Event Handlers
	Event Chaining and Event Handlers

	Chapter 3. Using Variables for Configuration
	Using Variables for Dynamic Configuration

	Chapter 4. Creating Custom Time-Triggered Transactions
	About Custom Time-Triggered Transactions
	getJobs() Abstract Function
	executeJobs() Abstract Function

	Creating Custom Non-Task-Based, Time-Triggered Transactions
	About Creating Custom Task-Based, Time-Triggered Transactions
	Creating Custom Task-Based, Time-Triggered Transactions

	Chapter 5. External Transactions
	Coordinating with External Transactions
	Implement External Transaction Coordination

	Chapter 6. Transactional Data Security
	How Is Transactional Data Secured?
	Encryption Logic
	Choosing an Encryption and Decryption Strategy
	How is Encryption Supported?
	Encrypting Credit Card Numbers
	Encryption Through Property Files

	Notices

