
Sterling Selling and Fulfillment Foundation

Extending the Database
Version 9.1

���

Sterling Selling and Fulfillment Foundation

Extending the Database
Version 9.1

���

Note
Before using this information and the product it supports, read the information in “Notices” on page 49.

Copyright

This edition applies to the 9.1 Version of IBM Sterling Selling and Fulfillment Foundation and to all subsequent
releases and modifications until otherwise indicated in new editions.

© Copyright IBM Corporation 1999, 2011.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Chapter 1. Checklist for Customization
Projects 1
Customization Projects 1
Prepare Your Development Environment 1
Plan Your Customizations 1
Extend the Database 1
Make Other Changes to APIs 2
Customize the UI 2
Extend Transactions 2
Build and Deploy your Customizations or Extensions 3

Chapter 2. Guidelines for Extending
Databases 5
Guidelines for Extending Databases 5
About Extending the Database 5

What is the SQLProxy Tool? 6
Setting Up the SQLProxy Tool 6

Guidelines for Adding Columns to a Standard Table 7
Guidelines for Adding Support for Data Compression
for Columns 8
Guidelines for Adding Non-Unique Indices to a
Standard Table. 9
Guidelines for Adding Foreign Key Elements to a
Standard Table. 9
Guidelines for Adding Text Search Index Elements to
a Standard Table 9
Coding Guidelines to Avoid Deadlocks 9

Chapter 3. Extending Database Tables 11
Adding a Column to a Standard Table 11
Features Requiring Multiple Extensions When
Adding a Column to a Standard Table 13
Increasing the Size of a Standard Column 14
Extending a Catalog Search 15
Predefining and Grouping a Set of Columns for a
Query 18

Adding Unique Tag Identifiers and Descriptors to a
Standard Table 19
Adding Non-Unique Indices to a Standard Table . . 20
Adding Foreign Key Elements to a Standard Table 21
Adding Text Search Indices to a Standard Table . . 23
Enabling Case Insensitive Searches 24

Modifying an Entity XML 25
Creating Custom and Hang-off Tables 25

Steps to Create a Custom Table 26
Steps to Create a Hang-off Table 31
Purging Data from Hang-off Tables 35

Chapter 4. Extending the Data Types
Files 37
Extending the Data Types Files 37

Extending the Data Type Map File. 37
Extending the Data Type File 37

Chapter 5. Create a Custom View . . . 39
Create a Custom View to Join Multiple Tables . . . 39

Chapter 6. Generating Audit
References for Entities 41
About Extending Audit References 41

Chapter 7. Extending API Templates . . 43
About Extending API Templates 43
Including Extended Attributes in the API Template 43
Including Custom and Hang-Off Entities in the API
Template 44
Configuring Services for Custom and Hang-off APIs 45

Notices 49

© Copyright IBM Corp. 1999, 2011 iii

iv Sterling Selling and Fulfillment Foundation

Chapter 1. Checklist for Customization Projects

Customization Projects
Projects to customize or extend Sterling Business CenterSterling Selling and
Fulfillment FoundationSterling Field Sales vary with the type of changes that are
needed. However, most projects involve an interconnected series of changes that
are best carried out in a particular order. The checklist identifies the most common
order of customization tasks and indicates which guide in the documentation set
provides details about each stage.

Prepare Your Development Environment
Set up a development environment that mirrors your production environment,
including whether you deploy your application on a WebLogic, WebSphere®, or
JBoss application server. Doing so ensures that you can test your extensions in a
real-time environment.

You install and deploy your application in your development environment
following the same steps that you used to install and deploy it in your production
environment. Refer to your system requirements and installation documentation
for details.

You have an option to customize your application with Microsoft COM+. Using
Microsoft COM+ has advantages such as increased security, better performance,
increased manageability of server applications, and support for clients of mixed
environments. If this is your choice, see the Customization Basics Guide about
additional installation instructions.

Plan Your Customizations
Are you adding a new menu entry? Or customizing the sign-in screen or logo? Or
customizing views or wizards? Or creating new themes or new screens? Each type
of customization varies in scope and complexity.

For background, see the Customization Basics Guide, which summarizes the types of
changes that you can make and provides important guidelines about file names,
keywords, and other general conventions.

Extend the Database
For many customization projects, the first task is to extend the database so that it
supports the other UI or API changes that you make later. For instructions, see the
Extending the Database Guide, which includes information about the following
topics:
v Important guidelines about what you can and cannot change in the database.
v Information about modifying APIs. If you modify database tables so that any

APIs are impacted, you must extend the templates of those APIs or you cannot
store or retrieve data from the database. This step is required if table
modifications impact an API.

v How to generate audit references so that you improve record management by
tracking records at the entity level. This step is optional.

© Copyright IBM Corp. 1999, 2011 1

Make Other Changes to APIs
Your application can call or invoke standard APIs or custom APIs. For background
about APIs and the services architecture of service types, behavior, and security,
see the Customizing APIs Guide. This guide includes information about the
following types of changes:
v Invoke standard APIs for displaying data in the UI and for saving changes made

in the UI to the database.
v Invoke customized APIs for executing your custom logic in the extended service

definitions and pipeline configurations.
v APIs use input and output XML to store and retrieve data from the database. If

you don't extend these API input and output XML files, you may not get the
results you want in the UI when your business logic is executing.

v Every API input and output XML file has a DTD and XSD associated to it.
Whenever you modify input and output XML, you must generate the
corresponding DTD and XSD to ensure data integrity. If you don't generate the
DTD and XSD for extended XMLs, you may get inconsistent data.

Customize the UI
IBM® applications support several UI frameworks. Depending on your application
and the customizations you want to make, you may work in only one or in several
of these frameworks. Each framework has its own process for customizing
components such as menu items, logos, themes, and so on.

Depending on the framework you want, consult one of the following guides:
v Customizing the Console JSP Interface Guide

v Customizing the Swing Interface Guide

v Customizing User Interfaces for Mobile Devices Guide

v Customizing the Rich Client Platform Guide and Using the RCP Extensibility Tool
Guide

v Customizing the Web UI Framework Guide

Depending on the framework you want, consult one of the following guides:
v Customizing the Console JSP Interface Guide

v Customizing the Swing Interface Guide

v Customizing User Interfaces for Mobile Devices Guide

v Customizing the Rich Client Platform Guide and Using the RCP Extensibility Tool
Guide

v Customizing the Web UI Framework Guide

Extend Transactions
You can extend and enhance the standard functionality of your application by
extending the Condition Builder and by integrating with external systems. For
background about transaction types, security, dynamic variables, and extending the
Condition Builder, see the Extending Transactions Guide and Extending the Condition
Builder Guide. These guides includes information about the following types of
changes:
v Extend the Condition Builder to define complex and dynamic conditions for

executing your custom business logic and using a static set of attributes.

2 Sterling Selling and Fulfillment Foundation

v Define variables to dynamically configure properties belonging to actions,
agents, and services configurations.

v Set up transactional data security for controlling who has access to what data,
how much they can see, and what they can do with it.

v Create custom time-triggered transactions. You can invoke and schedule custom
time-triggered transactions in much the same manner as you invoke and
schedule the time-triggered transactions supplied by your application.

v Coordinate your custom, time-triggered transactions with external transactions
and run them either by raising an event, calling a user exit, or invoking a
custom API or service.

Build and Deploy your Customizations or Extensions
After performing the customizations that you want, you must build and deploy
your customizations or extensions.
1. Build and deploy your customizations or extensions in the test environment so

you can verify them.
2. When you are ready, repeat the same process to build and deploy your

customizations and extensions in your production environment.

For instructions about this process, see the Customization Basics Guide which
includes information about the following topics:
v Building and deploying standard resources, database extensions, and other

extensions (such as templates, user exits, and Java™ interfaces).
v Building and deploying enterprise-level extensions.

Chapter 1. Checklist for Customization Projects 3

4 Sterling Selling and Fulfillment Foundation

Chapter 2. Guidelines for Extending Databases

Guidelines for Extending Databases
Modifying sequences is not supported. Editing the sequences.xml file in the entity
repository will have no effect. Furthermore,IBM recommends against modifying
sequences via the database tools. Under most circumstances it will not be
necessary and will have adverse effects.

About Extending the Database
Certain aspects of theSterling Business CenterSterling Selling and Fulfillment
FoundationSterling Field Sales database cannot be modified. If you try to make
these modifications, your data is not harmed, but your attempted changes are not
incorporated into the database. The application does not permit modification of the
following:
v Existing columns of tables
v Primary keys of tables
v Unique keys of tables
v Views

When planning extensions to the database, consider the implications of your
changes and how they may impact other areas.

Note: If you modify a table and your deployment uses the Sterling Business
Centercomponent, the view associated with the table must also be modified.

Entity Relationship Diagrams

To learn more about the Sterling Business CenterSterling Selling and Fulfillment
FoundationSterling Field Sales database, see the entity relationship diagrams
(ERDs) using the INSTALL_DIR/xapidocs/erd/html/erd.html file. These ERDs
provide the following information:
v Indicate which tables can be extended by adding columns.
v Indicate which tables can have hang-off relationship.
v Relationships between tables (to help you understand the relationship between

logical entities such as orders, shipments, and payments).
v Indices details. Each table is indexed by a primary key. Most tables also have a

unique index that is constituted of the columns that make the logical unique key.
In addition, some tables have alternate indices to support queries.

v Views that indicate how several tables interact.

Entity Database XML Files

The standard tables that are shipped with the application database are defined in a
set of entity XML files, also known as database definition XML files. Each entity
XML file may contain several table definitions. To learn more about these tables,
see the files in the INSTALL_DIR/repository/entity directory. Within these entity
XML files, an entity represents a table and an attribute represents a column.

© Copyright IBM Corp. 1999, 2011 5

What is the SQLProxy Tool?
SQLProxy captures SQL statements going through a JDBC driver to the database
and generates JDBC traces. SQLProxy captures all SQL statements, regardless of
the type of database being used. Another tool, the SQL Proxy Analyzer, produces a
report based on the SQLProxy trace records. Using the SQLProxy tools can help
you to analyze database response times for queries, which can help your capacity
planning and maximize efficient usage of your database servers. Only use these
tools when directed to do so byIBM Customer Support.

Setting Up the SQLProxy Tool
About this task

To set up the SQLProxy tool, you must add properties to the
customer_overrides.properties file prior to starting the application server or noapp
server. These will override settings for these properties in jdbc.properties.

Note: The SQLProxy properties in the yfs.properties file (such as
yfs.enable.proxy.sql.logging, yfs.enable.source.logging, and yfs.proxy.log.dir) have
been deprecated. All users, regardless of whether you are using a third party
application server (WebSphere, JBoss, WebLogic) or the noapp server, must
configure the tool by adding the following JDBC properties to the
customer_overrides.properties file.

Procedure
1. In the \install_dir\properties\ folder, locate the customer_overrides.properties

file or create it, if it does not exist.
2. Set the following properties in customer_overrides.properties:

jdbcService.proxyLoggingEnabled=Y

(Determines if logging is needed.)
jdbcService.proxySourceLogging=Y

(Provides additional caller information.)
jdbcService.proxyLogDir=<INSTALL_DIR>\logs

(Directory where the trace files will be generated.)

Starting and Using the SQLProxy Tool
About this task

Logs are generated for all database operations when the log level is set to TIMER
or higher. To begin tracing, execute the API or agent after setting the log level. The
trace files are generated in the location specified in the proxyLogDir property. The
following details are included in the files:
v *.log file gives component name, start and end system times, operation execution

times (individual and cumulative), operation name, SQL statement, java class
name

v *.tail file helps in understanding the long running queries (used mostly in
performance testing)

Stopping the SQLProxy
About this task

To stop logging, remove the TIMER trace. To completely disable the proxy, set the
enabled property to N. See Stopping a Component Trace in the Sterling Business

6 Sterling Selling and Fulfillment Foundation

CenterSterling Selling and Fulfillment FoundationSterling Field SalesSystem
Management Guide.

Analyzing the Results
You can export the contents of a file to a .csv file and open it in XSL. There is also
a support tool called the SQLProxy Analyzer which analyzes and summarizes
JDBC trace records. This tool is available as part of MTCP in Eclipse.

CAUTION:
ContactSterling Business CenterSterling Selling and Fulfillment
FoundationSterling Field Sales Customer Support when using this tool.

About the SQLProxy Analyzer

The SQLProxy Analyzer is a tool used to analyze the data in the SQLProxy logs.
The Analyzer has the following capabilities:
v Can process multiple log files in a directory or a single log file
v For each log file (which represents a database connection), the Analyzer

produces a summary of the unit of work (UOW). (There might be multiple
UOWs in a connection.)

v Can calculate the number of executions and total cost of the SQL
v Response Time Buckets, which are useful if you have a many SQL instances and

a high average SQL time. The response time bucket will show you which bucket
the SQL response time falls into.

v Provides execution plans, which are automatically generated by the Analyzer.
You can specify any Oracle database (it does not necessarily have to be the one
from which the SQL was captured). This enables you to point the analyzer to a
very large database that has up-to-date Oracle statistics.

v For each unit of work, the Analyzer provides:
– A summary of all the SQL (SQLs are grouped together to get a small

summary from a very large file)
– The LOCK HOLDING time (therefore, you can see if the system grabs locks

that could impact other workloads)
– Oracle EXPLAIN plans, which assist you in assessing whether certain queries

will potentially get slower as the database grows larger

Guidelines for Adding Columns to a Standard Table
When extending the columns of standard tables, keep the following considerations
in mind:
v You can only add columns to tables as specified in the ERDs.
v You cannot remove or modify any columns.
v You can add columns either before or after installing the application.
v For all columns added to an application database table, you must provide a

default value that is relevant to the database framework.
v You cannot use nullable columns for the following fields:

– Primary Key Attributes
– Entity Relationships
Hence, in the entity XML, Nullable="true" is allowed for all columns except the
ones noted above.

v You cannot add columns with a data type of Long.

Chapter 2. Guidelines for Extending Databases 7

v When using application components (such as events and user exits) that read in
a map or publish a map (such as the GetOrderNoUE user exit), extended fields
in the maps are prefixed with Extn_.

Note: In Oracle database, data type CLOB is generated instead of LONG for new
installations. However, for upgrades, existing LONG columns will remain
unchanged.

Note: In DB2® database, the Date data type is generated as TIMESTAMP by
theSterling Business CenterSterling Selling and Fulfillment FoundationSterling
Field Sales framework.

Guidelines for Adding Support for Data Compression for Columns
You can enable data compression for new and existing columns of Standard,
Custom, or Hang-off tables. The data compression allows a reduction in size for
tables when being implemented.
v For newly added columns, you can enable data compression by adding both

CompressionSupported="true" and UseCompression="true" in the entity XML.
v For existing columns in a standard table, you can enable data compression by

overriding the value of the UseCompression attribute.

Note: You may only enable data compression for existing columns that have the
CompressionSupported attribute set to True.

When adding support for data compression to the columns of standard tables,
keep the following considerations in mind:
v Data Compression should only be used for columns containing a large amount

of text data that is typically not queried directly, such as audit records, error
stack traces, and XML template data. The nature of these records can consume a
significant amount of space within the database.

v Columns using CompressionSupported="true" do not support query operations
from list APIs. This can be overridden by setting the QueryAllowed attribute to
True in the entity XML.

v By default, columns using CompressionSupported="true" cannot be used as part
of an index or unique constraint. This can be overridden by setting the
AllowCompressedColumns attribute to True on the index element in the entity
XML.

v Primary Key columns cannot be marked as compressible columns.
v Data compression should be enabled only if the maximum size of the column is

>= 500 bytes. Any column marked for data compression with less than 500 bytes
results in warnings.

v By default, the data compression is done using the GZip algorithm. You can
override this default data compression logic by setting the
yfs.db.compression.class=class name property in the
customer_overrides.properties file. In the class name, specify the name of your
custom class which contains the data compression logic.

Data Compression Logic

The data for compressible columns is compressed using the GZip algorithm. You
can override this default data compression logic and provide your custom
compression logic by implementing the SCICustomDataCompressor interface.

8 Sterling Selling and Fulfillment Foundation

You must enter the name of the custom class that implements the
SCICustomDataCompressor interface in the yfs.db.compression.class=class name
property in the customer_overrides.properties file.

Guidelines for Adding Non-Unique Indices to a Standard Table
When adding non-unique indices, use a naming convention that differs from
theSterling Business CenterSterling Selling and Fulfillment FoundationSterling
Field Sales convention, which is tablename_i<1+n>. Using your own naming
convention prevents your indices from accidentally being dropped during
upgrades. The following considerations are also recommended:
v Adding a prefix that doesn't start with Y.
v Prefix your non-unique indices with EXTN_ for easier identification.
v Unique indices are not allowed for tables.
v Column names for indices must be valid.
v Index names should not exceed 18 characters.

Guidelines for Adding Foreign Key Elements to a Standard Table
Currently foreign key relationships in extended columns of tables are restricted to
only the YFS_PERSON_INFO table. When exposing foreign key elements, the
following validations are performed:
v The parent table name must be YFS_PERSON_INFO.
v The parent column name must be a primary key of the YFS_PERSON_INFO

table.

Guidelines for Adding Text Search Index Elements to a Standard Table
When adding text search index elements to standard tables, keep the following
considerations in mind:
v You can add the text search element only to non-transactional tables.
v The searches performed for the text search indices are case insensitive.
v You can define more than one text search indices per entity.
v You cannot define multiple columns on a text index.
v IBM supports CTXCAT and CONTEXT text search index types on Oracle.
v Defining both the extended entity and the text search index in the same

extension XML file is recommended.

Coding Guidelines to Avoid Deadlocks
Deadlock refers to a specific condition in a database, when two processes are
waiting for the other process to release a resource. For example, when one client
application holds a lock on a table and attempts to obtain the lock on a second
table that is held by another client application, this may lead to a deadlock if the
other application attempts to obtain the lock that is held by the first application.

To circumvent the deadlock problem, it is recommended that you need to sort the
information to be accessed in a certain order before grabbing locks. This is
applicable to situations where you need to grab multiple inventory item locks
within a single transaction boundary. However, you do not need to sort if you call
the APIs to process single items per transaction commit.

Chapter 2. Guidelines for Extending Databases 9

Reading Uncommitted Data in DB2 Database

In DB2, when you select a record from a table, a read lock is obtained on the
record. If the record being selected has been updated but not committed, the
thread waits until it commits the changes. Alternatively you could read the record
with Uncommitted Read (UR) in which case the latest value that has been updated
is provided to the user.

You can read uncommitted data from any list API by enabling the
ReadUncommitted attribute to Y in its input XML. To achieve this, you must
customize the individual JSP and pass the ReadUncommitted attribute as a hidden
attribute. For example:
<input type="hidden" name="xml:/Order/@ReadUnCommitted" value="Y"/>

As a result, the locking scenario is circumvented in the DB2 database. Locking is
the default in DB2.

It is not mandatory to pass this flag. However, if you set this flag to Y, the system
is forced to read uncommitted data. For example, a transaction, T1, updates Table
TAB-1 but the transaction's data is not committed. If the ReadUncommitted flag is
set to Y, other transactions can read the uncommitted data in Table TAB-1.

Before setting this flag, evaluate concurrent transactions to determine whether a
situation exists in which a deadlock is occurring. If no such situation occurs, the
flag should remain at its default setting.

This behavior is different from Oracle, hence if you are writing custom code on
DB2 you should understand this behavior to avoid lock escalations.

10 Sterling Selling and Fulfillment Foundation

Chapter 3. Extending Database Tables

Adding a Column to a Standard Table
About this task

You add columns to tables by modifying the entity database extension XML files
and then rebuilding the application database and JAR files. After the application
has been rebuilt, the APIs recognize these added columns and use them when
storing and retrieving data.

To add a column to a standard table:

Procedure
1. Copy the install_dir/repository/entity/extensions/Extensions.xml.sample file as

install_dir/extensions/global/entities/your_filename.xml file OR modify your
existing extension XML file.

2. Edit the your_filename.xml file to add a new entity tag as shown in the
following example for each table you want to extend. If the tag already exists,
use the existing one. For a description of the XML attributes, see the table that
follows the example.
<!-- element exposed to create a column -->
<DBSchema>

<Entities>
<Entity TableName="REQUIRED">
<Attributes>

<Attribute ColumnName="REQUIRED" DataType="" DecimalDigits=""
CompressionSupported="false"
UseCompression="false" QueryAllowed="false" DefaultValue="" Description=""
Nullable="false" Size="1" Type="REQUIRED" XMLName="" XMLGroup=""
SqlServerDataType="" />

</Attributes>
</Entity>

</Entities>
</DBSchema>

Attribute Description

ColumnName Required. Name of the column added to this table. The
ColumnName must start with EXTN_.

DataType Optional. Valid values are available in the
install_dir/repository/datatypes/datatypes.xml file.

DecimalDigits Optional. Number of digits of precision required after the
decimal. Needed only for numeric fields.

CompressionSupported Optional. Attribute used to indicate whether or not the data
compression is supported for this column. Valid values are
True or False. If True, compression support is enabled.

Note: If the data inserted into a column has both
CompressionSupported and UseCompression attributes set
to True, then this attribute should not be set back to False.
Doing so would result in all compressed data being
retrieved without any decompression.

© Copyright IBM Corp. 1999, 2011 11

Attribute Description

UseCompression Optional. Attribute used to compress data for this column.
Valid values are True or False. If True data is compressed.

Note: The value of this attribute should be set to True only
if the CompressionSupported attribute is set to True.

QueryAllowed Optional. Attribute used to enable a compressible column
to be used for queries in a List API. Valid values are True
or False. If True the column can be used for queries in the
List APIs.

Note: If the value of the CompressionSupported attribute is
set to true then the value of this attribute should also be set
to True.

DefaultValue Required. Used as is for the defaults clause in your
database.

Description Optional. Description of column usage.

Nullable Optional. Attribute used to describe the nullable value of a
field. Default is false. Nullable=true is allowed for all
columns except Primary Key Attributes and Entity
Relationships.

Size Size of the database column.

Type Required. Data type of the database column. This attribute
also determines the type of attribute in the Java classes that
are generated and the format of the attribute in the XML.
The valid types are CHAR, VARCHAR2, NUMBER, DATE,
and TIMESTAMP.

If you are using Microsoft SQL Server® and want to specify
a data type as TEXT in the database, you also need to use
the SqlServerDataType attribute and specify the attribute
value as TEXT.

Note: If DATE is specified, only the calendar date is stored.
If TIMESTAMP is specified, the calendar date and time are
stored.

XMLName XML name of the attribute, if it is different from the name
of the attribute.

Choose a name that does not conflict with the base
extension. It is recommended that you use Extn as a prefix.
It is also strongly recommended that you use the same
convention for arriving at the XMLName as the Sterling
Business CenterSterling Selling and Fulfillment
FoundationSterling Field Sales base product does: Make
each letter following the underscore in the column name
upper case, and the rest lower case. Then, remove the
underscores. Thus, Extn_Item_Id should be: ExtnItemId.

XMLGroup If present, indicates the child tag in which the attribute is
present. If the attribute is not present in the XML, use the
NOT_SHOWN string.

The XMLGroup must be Extn. Thus, the data for the
extended columns is in a separate element in the API XML
output.

12 Sterling Selling and Fulfillment Foundation

Attribute Description

VirtualDefaultValue Optional. This attribute is applicable to Null Columns.
When a null is returned from the database, it is stored in
memory as the virtual default value.

SqlServerDataType Optional. Pertains only to Microsoft SQL Server databases.
If you see a warning about the row size being too long,
specify one or more of your larger columns as "TEXT".

Columns of type TEXT are not included in the maximum
row size calculation for a table.

ForceUpperCase Optional. If a "case insensitive" search is required for a text
column, this field should be set to "True".

If set to "True", the system converts the data entered in this
field to uppercase.

3. Create a new Attribute tag for each column you want to add to the table.
4. Use the database verification tool dbverify for generating scripts to add the

columns to your database.

Note: On Microsoft SQL Server, the total length of all extended columns should
not exceed 900 bytes. If Microsoft SQL Server throws a warning that the row
size exceeds the maximum length, change the data type of one or more of your
columns to TEXT and then specify TEXT for the SqlServerDataType attribute as
described in the table above.

5. Extend the corresponding API templates by following the steps described in
"About Extending API Templates."

6. Build and deploy your extensions.

Results

A special case of extending columns for adding unique tag identifiers or
descriptors is explained in “Adding Unique Tag Identifiers and Descriptors to a
Standard Table” on page 19.

Features Requiring Multiple Extensions When Adding a Column to a
Standard Table

In addition to extending standard tables, you can extend the following features
using the specified guidelines:
v Classification Inheritance—If you are adding columns to extend attributes in the

YFS_ITEM table and you want to make these attributes available for
classification inheritance, a duplicate entity tag must be added to your XML for
the YFS_CLASS_ITEM_ATTR table. Additionally, Nullable should be set to true
and DefaultValue should not be passed for these attributes. For more
information on defining item attributes at the classification level, refer to the
Catalog Management Configuration Guide.

v Item Entitlements—If you are adding columns to extend attributes in the
YFS_CUSTOMER table and you want to make these attributes available for
entitlement rule assignment, a duplicate entity tag must be added to your XML
for the YFS_ENTITLE_RULE_ASSIGNMENT table. Additionally, Nullable should
be set to true and DefaultValue should not be passed for these attributes. For
more information on entitlement rule assignment, refer to the Business Center:
Item Administration Guide.

Chapter 3. Extending Database Tables 13

v Pricelist Assignments—If you are adding columns to extend attributes in the
YFS_CUSTOMER table and you want to make these attributes available for
pricelist assignment, a duplicate entity tag must be added to your XML for the
YFS_PRICELIST_ASSIGNMENT table. Additionally, Nullable should be set to
true and DefaultValue should not be passed for these attributes. For more
information on pricelist assignment, refer to the Business Center: Pricing
Administration Guide.

v Pricing Rule Assignments—If you are adding columns to extend attributes in the
YFS_CUSTOMER table and you want to make these attributes available for
pricing rule assignment, a duplicate entity tag must be added to your XML for
the YFS_PRICING_RULE_ASSIGNMENT table. Additionally, Nullable should be
set to true and DefaultValue should not be passed for these attributes. For more
information on pricing rule assignment, refer to the Business Center: Pricing
Administration Guide.

Increasing the Size of a Standard Column
About this task

You can increase the size of the table columns by extending the yfsdatatype XML
file and rebuilding the database and JAR files. After the application is rebuilt, the
APIs recognize these resized columns and use them when storing and retrieving
data. This can only be done for columns of datatype VARCHAR2, and the size of
the columns can only be increased, not decreased.

To increase the size of a standard column in a table:

Procedure
1. Create a new install_dir/extensions/global/etc/datatypes.xml file, if it does not

already exist.
If the /global/etc/ directory structure does not exist, create the required
directory structure.

2. Copy the existing column definition from the install_dir/repository/datatypes/
datatypes.xml file to the newly created install_dir/extensions/global/etc/
datatypes.xml file and then apply the required changes.

3. Extend the datatype by increasing the size attribute to the desired size as
shown in the following example. Only the desired changes need to be listed in
this file. Do not mention datatypes that do not need to be changed.
<DataTypes>
<DataType Name="TagNumber" Size="140"/>
</DataTypes>

4. Manually alter the columns in the database. You can also use the database
verification tool dbverify for generating scripts to add columns to your
database.

Note: On Microsoft SQL Server, the total length of all extended columns should
not exceed 900 bytes. If the Microsoft SQL Server throws a warning that the
row size exceeds the maximum length, change the datatype of one or more of
your columns to TEXT. Specify TEXT for the SqlServerDataType attribute as
described in the Attributes table in "Adding a Column to a Standard Table."

5. Build and deploy your database extensions.

14 Sterling Selling and Fulfillment Foundation

Extending a Catalog Search
About this task

You can extend a catalog search to provide broader search capabilities by updating
information in the catalog search index file. To update the index file, modify the
corresponding extended XML configuration file. The following components of
catalog search are extensible:
v Search system configurations
v Locales and the corresponding analyzer
v Query parser
v Attributes

To extend a catalog search:

Procedure
1. Copy the install_dir/repository/xapi/template/merged/resource/extn/

ExtnCatalogSearchConfigProperties.xml.sample file as install_dir/extensions/
global/template/resource/extn/ExtnCatalogSearchConfigProperties.xml file OR
modify your existing extension XML file.
The following example shows a sample ExtnCatalogSearchConfigProperties.xml
file.
<SearchConfigurations>

<SearchSystemConfigurations>
<MergeFactor Value="2"/>

<MaxMergeDocs Value="2147483647"/>
</SearchSystemConfigurations>
<IndexSets>
<IndexSet Name="CatalogIndex">

<Locales>
<Locale LocaleCode="en_US"
SynonymFile="/properties/EnglishSynonym.properties"/>
<Locale LocaleCode="fr_FR"

QueryParserClass="package.FrenchQueryParser.class"
AnalyzerClass="package.FrenchAnalyzer.class"
SynonymFile="/properties/FrenchSynonym.properties"/>

</Locales>
<Entities>

<Entity Name="Item">
<Attributes>

<Attribute XMLName="MyExtendedDescription"
DefaultWeight="1.0" Index="ANALYZED"
Store="Y" UseSynonyms="N" Searchable="Y" Sortable="N"/>

<Attribute IndexFieldName="CustomerItemDescription"
DefaultWeight="1.0" Index="ANALYZED" Store="Y" UseSynonyms="N"
Searchable="Y" Sortable="N" GetExternalValue="Y"/>

</Attributes>
<Entity Name="CategoryItem" RelationshipName="Category_ItemList">
<Entity Name="Category" RelationshipName="Category">
<Attributes>

<Attribute XMLName="MyCategoryExtendedDescription"
DefaultWeight="1.0" Index="ANALYZED" Store="Y"
UseSynonyms="N" Searchable="Y" Sortable="N"/>

</Attributes>
</Entity>
</Entity>
<Entity Name="Asset" RelationshipName="AssetList">
<Attributes>

<Attribute Type="MyManual" DefaultWeight="1.0" Index="ANALYZED"
Store="N" UseSynonyms="N" Searchable="Y" Sortable="N"/>

</Attributes>

Chapter 3. Extending Database Tables 15

</Entity>
</Entity>

</Entities>
</IndexSet>

</IndexSets>
</SearchConfigurations>

2. To modify system configuration information for the index file, modify the
elements in the SearchSystemConfigurations section of
ExtnCatalogSearchConfigProperties.xml. The following table describes the
SearchSystemConfiguration elements in
ExtnCatalogSearchConfigProperties.xml.

Element Description

MergeFactor Value Specifies the number of documents that the Apache Lucene open
source search engine stores in memory before writing them to disk
as a single segment. For more information about setting this value,
see: http://lucene.apache.org

MaxMergeDocs Value Specifies the number of documents that can be contained in one
segment. For more information about setting this value, see:
http://lucene.apache.org

3. To add or modify locale information for the index file, add or modify the
elements in the Locales section of ExtnCatalogSearchConfigProperties.xml. The
preceding example shows a sample ExtnCatalogSearchConfigProperties.xml file
in which a synonym file has been added to the US-English locale, and a French
locale has also been added. The following table describes the Locale elements
in ExtnCatalogSearchConfigProperties.xml.

Element Description

LocaleCode Specifies the locale code for the index file. If you are adding a
locale, ensure that you specify a corresponding analyzer.
US-English is the default locale.

QueryParserClass Specifies the path to the query parser. The application provides
the Lucene query parser by default.

AnalyzerClass Specifies the path to the analyzer. The application provides
corresponding analyzers for the default locale.

SynonymFile Specifies the path to the synonym file for the corresponding
locale. Use the synonym file to configure related terms for
keyword searches.

4. To add item information for the index file, add the attributes in the Item section
of ExtnCatalogSearchConfigProperties.xml. The preceding example shows a
sample ExtnCatalogSearchConfigProperties.xml file in which the
MyExtendedDescription attribute and the CustomerItemDescription attribute
have been added. The following table describes Item attribute elements in
ExtnCatalogSearchConfigProperties.xml.

Note: You can add attributes to the extended XML configuration file for the
catalog search index, but you cannot modify attributes nor add entities. See
install_dir/repository/xapi/template/merged/resource/
CatalogSearchConfigProperties.xml for a list of attributes that are supported by
default.

5. To add catalog information pertaining to the index file, add the attributes in the
Category section of ExtnCatalogSearchConfigProperties.xml. The preceding
example shows a sample ExtnCatalogSearchConfigProperties.xml file in which

16 Sterling Selling and Fulfillment Foundation

the MyCategoryExtendedDescription Category attribute has been added. The
following table describes the Category attribute elements
ExtnCatalogSearchConfigProperties.xml.

6. To add asset information for the index file, add attributes in the Asset section
of ExtnCatalogSearchConfigProperties.xml. The preceding example shows a
sample ExtnCatalogSearchConfigProperties.xml file in which the asset with the
asset type MyManual added. The following table describes attributes for
CatalogSearchConfigProperties.xml.

Note: The application calls the YCMParseAssetUE user exit to parse the
content of the asset for the corresponding asset type.

Attribute Description

XMLName For item and category attributes of Item Entity, specifies the XML
attribute name for the field.

IndexFieldName Specifies the field name of the attribute as stored in the index.
Values for IndexFieldName must be unique throughout the
configuration file. If IndexFieldName is not configured in the xml
configuration file, the system derives a value for it based on the
formula Entity Name.XMLName.

Type For asset attributes, specifies the asset type in the database.

Default Weight Specifies the weight given to the term. The default value is 1.

Index Specifies one of the following options for storing field values:

Analyzed - stores the value as searchable segments. For example,
if a user searches for Desktop Computers and the index
parameter for the field is analyzed, the search results include
items with the terms Desktop Computer, Desktop, and Computer.

Non_analyzed - stores the value as it appears in the database,
requiring an exact match to return the value. In the previous
example, if the search for Desktop Computers was performed on
a non_analyzed field, the search would return only items with the
term Desktop Computer.

Store Specifies one of the following options for storing field values:

Y - stores the value of the attribute in the index so that it may be
returned as search output. If the GetExternalValue attribute is set
to Y, Store is treated as Y.

N - does not store the value and only keeps data in the index for
the attribute that is in a proprietary format and used only during
the search.

UseSynonyms Specifies one of the following options for including synonyms in
the search:

Y - indicates that search queries include synonyms.

N - indicates that search queries do not include synonyms.

Chapter 3. Extending Database Tables 17

Attribute Description

Searchable Specifies one of the following search options for the field:

Y - indicates that the field is included as possible search criteria
when creating a search query.

N - indicates that the field is not included as possible search
criteria when creating a search query.

For example, the Searchable parameter for the Is_Superseded field
in the default XML file is set to N and the Store parameter is set
to Y. Users cannot search on the Is_Superseded field in a query.
However, queries of superseded items that are obsolete return the
superseding items.

Sortable Specifies one of the following sort options for the field:

Y - indicates that search results are sorted by this field.

N - indicates that search results are not sorted by this item.

GetExternalValue Specifies one of the following options for the field:

Y - indicates that the value for this attribute is obtained from an
external source through a user exit.

N - indicates that the user exit is not called.

Predefining and Grouping a Set of Columns for a Query
You can select and group columns to be used in a query (select/list) search by
adding a parameter QueryGroup in the entity definition. Each QueryGroup
contains the columns to be used for a query. Each QueryGroup is identified by a
unique name under which, the columns must be specified.

A global map QueryGroupMap is provided in the Entity class, which contains a
unique query group name and attributes corresponding to the columns of the
query group. This map is populated when entity repository is loaded.

Note: The QueryGroup name must be not be blank. When adding a query group
name to the map, check whether the name already exists in the map.

Each entity can have multiple such query groups, which are defined under a
parameter QueryGroups:
<Entity>

<QueryGroups>
<QueryGroup Name="PasswordQueryGroup">

<Column Name="PASSWORD"/>
<Column Name="IS_PASSWORD_ENCRYPTED"/>
<Column Name="SALT"/>

</QueryGroup>
<QueryGroup Name="BusinessQueryGroup">

<Column Name="BUSINESS_KEY"/>
<Column Name="CONTACTADDRESS_KEY"/>
<ColumnName="BILLINGADDRESS_KEY"/>
</QueryGroup>

</QueryGroups>
</Entity>

Any number of columns can be specified under the query group. However,
columns must not be repeated for a query group.

18 Sterling Selling and Fulfillment Foundation

Note: A column in a QueryGroup can be a part of other QueryGroups. A query
group must contain at least one valid column and columns defined for a query
group must exist in the entity. You cannot add virtual columns to the query group.

To obtain a list of all columns that are part of a particular QueryGroup, use the
method getColumnSetForQueryGroup in the following format:
public Set getColumnSetForQueryGroup(String queryGroupName)

The following methods also can be used along with specific parameters to get a list
of columns in a query group:
v selectWithWhereForQueryGroup
v listWithWhereForQueryGroup

For example,
public YFS_User selectWithWhereForQueryGroup(YFCDBContext ctx,
String aWhereClause, String queryGroupName) throws YFCDBException{
Set columns = getColumnSet(queryGroupName);
return selectWithWhere(ctx, aWhereClause, columns);
}

Adding Unique Tag Identifiers and Descriptors to a Standard Table
The Sterling Business CenterSterling Selling and Fulfillment FoundationSterling
Field Sales default tag identifiers are Batch Number, Revision Number, and Lot
Number. You may have a need to extend the application database to define unique
tag identifiers or descriptors.

It is recommended that the data type of any unique tag identifiers or descriptors
that you add be CHAR or VARCHAR.

Note: Whenever you extend the tag attributes you must also extend the console
because the templates for the APIs do not contain these extended tag attributes.

For example, if you work in the metal industry, you may want to use a custom tag
identifier named Steel which has both Mill and Grade attributes. Since these are
not supplied by default, you must extend the set of tables listed below to include
the Steel tag identifier column in each table.

Extending Tables When Adding Unique Tag Identifiers

You must extend each of the following tables whenever you add unique tag
identifiers to the application database:
v YFS_COUNT_RESULT_TAG
v YFS_COUNT_TAG
v YFS_INVENTORY_AUDIT
v YFS_INVENTORY_TAG
v YFS_ITEM_TAG - The data type to be used for this table is CHAR(2).
v YFS_MOVE_REQUEST_LINE_TAG
v YFS_ORDER_KIT_LINE_SCHEDULE
v YFS_ORDER_KIT_LINE_SCHEDULE_H
v YFS_ORDER_LINE_REQ_TAG
v YFS_ORDER_LINE_REQ_TAG_H
v YFS_ORDER_LINE_SCHEDULE

Chapter 3. Extending Database Tables 19

v YFS_ORDER_LINE_SCHEDULE_H
v YFS_ORDER_LINE_RESERVATION
v YFS_RECEIPT_LINE
v YFS_RECEIPT_LINE_H
v YFS_SHIPMENT_LINE_REQ_TAG
v YFS_SHIPMENT_LINE_REQ_TAG_H
v YFS_SHIPMENT_TAG_SERIAL
v YFS_SHIPMENT_TAG_SERIAL_H
v YFS_WORK_ORDER_COMP_TAG
v YFS_WORK_ORDER_COMP_TAG_H
v YFS_WORK_ORDER_TAG
v YFS_WORK_ORDER_TAG_H

Extending Tables When Adding Unique Tag Descriptors

You must extend each of the following tables whenever you add unique tag
descriptors to the application database:
v YFS_COUNT_RESULT_TAG
v YFS_COUNT_TAG
v YFS_INVENTORY_TAG
v YFS_ITEM_TAG The data type to be used for this table is CHAR(2).
v YFS_ORDER_LINE_REQ_TAG
v YFS_ORDER_LINE_REQ_TAG_H
v YFS_RECEIPT_LINE
v YFS_RECEIPT_LINE_H
v YFS_SHIPMENT_LINE_REQ_TAG
v YFS_SHIPMENT_LINE_REQ_TAG_H
v YFS_SHIPMENT_TAG_SERIAL
v YFS_SHIPMENT_TAG_SERIAL_H
v YFS_WORK_ORDER_COMP_TAG
v YFS_WORK_ORDER_TAG
v YFS_WORK_ORDER_TAG_H

Adding Non-Unique Indices to a Standard Table
About this task

You can add non-unique indices to entities. You add indices to a standard Sterling
Business CenterSterling Selling and Fulfillment FoundationSterling Field Sales
database table, by adding an Index element in the extension XML for that table.

To add non-unique indices to a standard table:

Procedure
1. Copy the install_dir/installed_data/repository/entity/extensions/

Extensions.xml.sample file as install_dir/extensions/global/entities/
your_filename.xml file OR modify your existing extension XML file.

20 Sterling Selling and Fulfillment Foundation

2. Edit the your_filename.xml file to add non-unique indices as shown in the
following example for each table you want to extend. For a description of the
XML attributes, see the table that follows the example.
<!-- element exposed to create index -->
<DBSchema>
<Entities>

<Entity TableName="REQUIRED">
.
.

<Indices>
<Index Name="REQUIRED" AllowCompressedColumns="false">

<Column Name="REQUIRED" />
.
.

</Index>
.
.

</Indices>
.
.

</Entity>
</Entities>
</DBSchema>

Attribute Description

Entity

TableName Required. Name of the table for which the indices are added, For
example: YFS_ITEM.

Entity/Index

Name Required. The name of the custom index. Name should start with a
prefix EXTN_

AllowCompressedColumnsOptional. If True, the index is allowed to contain columns marked
with CompressionSupported attribute set to True.

Entity/Index/Column

Name Required. The name of the column for which the index is added.
Create a new Column Name for each column for which the index
is added.

3. Create a new Index tag for each index you want to add to the column.
4. Extend the corresponding API templates to include the non-unique indices by

following the instructions in Extending API Templates.
5. Build and deploy your extensions.

Adding Foreign Key Elements to a Standard Table
About this task

A foreign key relationship is a relationship between an extended column in any
application database table and the YFS_PERSON_INFO table. You can create
foreign key elements to establish relationship between an extended column and the
YFS_PERSON_INFO table.

Note: Currently, the YFS_PERSON_INFO is the only table which supports a
relationship with foreign key extensions within the application database.

To add foreign key elements to a standard table:

Chapter 3. Extending Database Tables 21

Procedure
1. Copy the install_dir/repository/entity/extensions/Extensions.xml.sample file as

install_dir/extensions/global/entities/your_filename.xml file OR modify your
existing extension XML file.

2. Edit the your_filename.xml file to add foreign key elements as shown in the
following example for each table you want to extend. For a description of the
XML attributes, see the table that follows the example.
<!-- element exposed to create foreign key relationship -->
<DBSchema>
<Entities>

<Entity TableName="REQUIRED">
.
.
<!-- element exposed to create relationship with PERSON_INFO table -->

<ForeignKeys>
<ForeignKey ParentTableName="YFS_PERSON_INFO"
XMLName="YFSName1" >

<Attribute ColumnName="REQUIRED"
ParentColumnName="PERSON_INFO_KEY" />

</ForeignKey>
<ForeignKey ParentTableName="YFS_PERSON_INFO"

XMLName="YFSName2" >
<Attribute ColumnName="REQUIRED"
ParentColumnName="PERSON_INFO_KEY" />

</ForeignKey>
.
.

</ForeignKeys>
.
.

</Entity>
</Entities>

</DBSchema>

Attribute Description

Entity

TableName Required. Name of the table for which the foreign key elements are
added. For example: YFS_ITEM.

Entity/ForeignKeys/ForeignKey

ParentTableName The name of the parent table for this foreign key element.

Note: This value must be YFS_PERSON_INFO which is the only
table that currently supports foreign key relationships.

XMLName You can specify the XML representation of the element name. It
must start with the prefix of the parent entity. For example, if
ParentTableName is prefixed with YFS then the XMlName must
start with YFS.

By default the parent table name is assumed.

Entity/ForeignKeys/ForeignKey/Attribute

ColumnName Specifies the extended column name of the Entity.

ParentColumnName The column name of the YFS_PERSON_INFO that has a foreign
key element relationship.

3. Create a new ForeignKey tag for each foreign key relationship you want to
add.

4. Multiple foreign key elements can be related to the same parent table.

22 Sterling Selling and Fulfillment Foundation

5. Extend the corresponding API templates to include the foreign key elements by
following the instructions in Extending API Templates.

6. Build and deploy your extensions.

Adding Text Search Indices to a Standard Table
About this task

You can add text search indices to entities. You add text search indices to a
standard application database table by adding a TSIndex element in the extension
XML for that table.

To add text search indices to a standard table:

Procedure
1. Copy the install_dir/repository/entity/extensions/Extensions.xml.sample file as

install_dir/extensions/global/entities/your_filename.xml file OR modify your
existing extension XML file.

2. Edit the your_filename.xml file to add text search indices as shown in the
following example for each table you want to extend. For a description of the
XML attributes, see the table that follows the example.
<!-- element exposed to create index -->
<DBSchema>

<Entities>
<Entity TableName="REQUIRED">
.
.
<TSIndices>

<TSIndex Name="REQUIRED" >
<Column Name="USERNAME" />
</TSIndex>
.
.
</TSIndices>
.
.
</Entity>

</Entities>
</DBSchema>

Attribute Description

Entity

TableName Required. Name of the table for which the text search indices are
added. For example: YFS_USER.

Entity/TSIndex

Name Required. The name of the text search index. For example:
YFS_TS_USER_Name.

Note: This value cannot exceed 18 characters.

Entity/TSIndex/Column

Name Required. The name of the column for which the text search index
is added. You cannot define multiple columns on a text index.

3. Create a new TSIndex tag for each text search index you want to add to the
column.

4. Build and deploy your extensions.

Chapter 3. Extending Database Tables 23

Enabling Case Insensitive Searches
About this task

You can make search operations in the application case insensitive by enabling case
insensitive search for the required entity/column. This is achieved by adding the
attribute CaseInsensitiveSearch in the required entity XML file.

To enable case insensitivity:

Procedure
1. Edit the required Entity XML to include the CaseInsensitiveSearch=Y attribute.

Include the shadow column attribute ShadowColumnName in the Entity XML
and specify a name for the shadow column. If this is left blank, the system auto
generates one. However, you must specify a shadow column name if you are
indexing the shadow column.
A shadow column is then generated, which is linked to the original column
that is marked as case insensitive.

2. If the agent is being run in a production environment, specify the configuration
mode for the entity or column in the CaseInsensitiveSearch.Mode property in
the customer_overrides.properties file. Set the value of the
CaseInsensitiveSearch.Mode property to MIXED or DISABLED.

Note: By default, case insensitivity is enabled.
3. Disable the cache for the entity for which you want to run the Case Insensitive

Data Loader agent.

Note: It is recommended that along with disabling the cache, you turn off the
audits for that particular entity as well.

4. Run the Case Insensitive Data Loader agent to populate data in shadow
columns.

Note: If you skipped Step 2, skip this step, as well.
5. Set the value of the CaseInsensitiveSearch.Mode property to ENABLED in the

customer_overrides.properties file.

Note: If you disabled audits in Step 3, enable audits now.
6. Enable the cache for the entity or column for which the Case Insensitive Data

Loader agent was run in Step 3.
The following APIs support case insensitive searches for system defined
columns:
v getOrderList
v getItemListForOrdering
v getExceptionListForOrder
v getCustomerList
For custom columns that have been extended, the case insensitive search works
if the normal search works on those columns.

Note: This feature is applicable only for searches that use the application
generated XAPIs. Searches using custom queries will not be case insensitive.

24 Sterling Selling and Fulfillment Foundation

Note: Case insensitive search can be enabled only for text data type
(Char/Varchar columns).

Note: Use of Complex Query in conjunction with Case Insensitive search for a
column is not supported. For more information about a way to achieve this, see the
Selling and Fulfillment Foundation: Customizing APIs.

Modifying an Entity XML
Procedure
1. Edit the required Entity XML to include the attribute CaseInsensitiveSearch

under the <Attributes> tag, for required columns as shown below.
<Entity Description="This table stores all the exceptions raised

by the system."
EntityType="TRANSACTION" Extensible="Y" Module="ycp"
Name="Inbox" Prefix="YFS_" TableName="YFS_INBOX" XMLName="Inbox">
<Attributes>
........
<Attribute ColumnName="EXCEPTION_TYPE"
DataType="Text-40" DefaultValue="’ ’ "
Description="The type of exception."
Name="Exception_Type" Nullable="false"
XMLName="ExceptionType" CaseInsensitiveSearch ="Y"
ShadowColumnName="ExceptionType_LC"/>
......

<Indices>
<Index Name="EXCEPTION_TYPE_I1">

<Column Name="ExceptionType_LC"/>
</Index>

</Indices>

2. Include the ShadowColumnName attribute and specify a name for the shadow
column, as shown in the above example.

Creating Custom and Hang-off Tables
The database framework allows you to extend the application database by creating
custom or hang-off tables.

A custom table is an independent table and cannot be modeled as an extension to
a standard application database table.

A hang-off table is a table with a many-to-one relationship with a standard
application database table.

Creating a custom or hang-off entity enables you to:
v Create a relationship between a standard table and a hang-off table.
v Invoke Extensible APIs that store and retrieve data from hang-off tables.
v Invoke dbverify for generating appropriate SQL scripts to create or alter tables

for custom or hang-off entities.
v Audit item and organization tables.

Keep in mind the following which apply to the creation of custom or hang-off
tables:
v You can only determine if an entity is enabled for hang-off by referencing the

associated Entity Relationship Diagram (ERD) located in the
install_dir/xapidocs/ERD directory.

Chapter 3. Extending Database Tables 25

v Based on the Extensions.xml file, the application does not create a foreign key
constraint in the EFrame_TableChanges.sql, but the foreign key relationship is
enforced.

v Currently only order, order line, work order, shipment, item, and organization
tables are marked as hang-off enabled.

v Custom and hang-off table names must not start with a Y.

v The "Extn" part is trimmed off from the XML name of the custom and hang-off
tables.

v Primary key name must not start with a Y.
v Primary key can be of numeric data type.
v Entity names must start with the prefix provided in the entity definition.
v The YIFApi interface does not extend APIs for custom/hang-off tables.

Therefore, the APIs for these tables must be configured as services.
v Javadocs are not created for the APIs created by the infrastructure to support

custom and hang-off tables.
v XSD generation and validation is not done for custom or hang-off tables.
v Every custom or hang-off entity must have a primary key.

Column Name Data Type Default Value

Key-Column Key OR Any numeric data
type

' ' (space)

v (Optional) A custom or hang-off entity can have the following columns
described in the following table:

Column Name Data Type Default Value

CREATETS TimeStamp sysdate

MODIFYTS TimeStamp sysdate

CREATEUSERID UserId ' ' (space)

MODIFYUSERID UserId ' ' (space)

CREATEPROGID ProgramID ' ' (space)

MODIFYPROGID ProgramID ' ' (space)

LOCKID Lockid 0 (zero)

Note: In DB2 database, the Date data type is generated as TIMESTAMP by the
Sterling Business CenterSterling Selling and Fulfillment FoundationSterling Field
Sales framework.

Steps to Create a Custom Table
About this task

To create a custom table:

Procedure
1. Copy the install_dir/repository/entity/extensions/Extensions.xml.sample file as

install_dir/extensions/global/entities/your_filename.xml file OR modify your
existing extension XML file. For example, assume that
ABC_CUSTOMER_ORDER_LINE is a custom table.

26 Sterling Selling and Fulfillment Foundation

2. Edit the your_filename.xml file to create custom tables as shown in the following
example. For a description of the XML attributes, see the table that follows the
example.
<DBSchema>

<Entities>
<Entity ApiNeeded="Y/N" AuditRequired="Y" Description=""
HasHistory="Y/N" Prefix="ABC"
TableName="ABC_CUSTOMER_ORDER_LINE" >
<!-- table columns -->
<Attributes>

<Attribute ColumnName="CREATETS" DataType="TimeStamp"
DefaultValue="sysdate" Description="Create TimeStamp" />

<Attribute ColumnName="MODIFYTS" DataType="TimeStamp"
DefaultValue="sysdate" Description="Modify TimeStamp" />

<Attribute ColumnName="CREATEUSERID" DataType="UserId"
DefaultValue="' '" Description="Creating User ID" />

<Attribute ColumnName="MODIFYUSERID" DataType="UserId"
DefaultValue="' '" Description="Modifying User ID" />

<Attribute ColumnName="CREATEPROGID" DataType="ProgramID"
DefaultValue="' '" Description="Creating Program ID" />

<Attribute ColumnName="MODIFYPROGID" DataType="ProgramID"
DefaultValue="' '" Description="Modifying Program ID" />

<Attribute ColumnName="LOCKID" DataType="Lockid"
DefaultValue="0" Description="Lock ID" />

<Attribute ColumnName="TABLE_KEY" DataType="Key" DefaultValue=" "
Description="" Nullable="True/False" XMLName="TableKey" />

.
.

</Attributes>
<!-- PrimaryKey is a mandatory attribute in entity definition.

This element can have ONLY ONE attribute element -->
<PrimaryKey Name="TABLE_NAME_PK">

<Attribute ColumnName="TABLE_KEY" />
</PrimaryKey>
<!-- Indices -->
<Indices>

<Index Name="INDEX_I1" Unique="True/False">
<Column Name="Attribute2" />
.
.

</Index>
.
.

</Indices>
<!-- Relationship -->
<Parent ParentTableName="YFS_ORDER_LINE" XMLName="YFSOrderLine" >
<Attribute ColumnName="CUSTOM_ORDER_KEY"

ParentColumnName="ORDER_LINE_KEY" />
.
.
</Parent>
<!-- ForeignKeys -->
<ForeignKeys>

<ForeignKey ParentTableName="PARENT_ORDER_LINE"
XMLName="PARENTName1" >

<Attribute ColumnName="CUSTOM_ORDER_KEY"
ParentColumnName="PARENT_COLUMN_KEY" />

.

.
</ForeignKey>
.
.

</ForeignKeys>
<!-- AuditReferences -->
<AuditReferences>

<Reference ColumnName="TABLE_KEY" />

Chapter 3. Extending Database Tables 27

.

.
</AuditReferences>

</Entity>
</Entities>

</DBSchema>

3. The following table explain the attributes in the entity XML:

Attribute Description

Entity

ApiNeeded Indicate whether or not APIs should be
generated. Valid values are Y or N. A default set
of APIs are generated if Y is passed.

For example in the
ABC_CUSTOMER_ORDER_LINE tables, the
application creates the following APIs when the
database extension jar file is generated:

v getABCCustomerOrderLine()

v getABCCustomerOrderLineList()

v createABCCustomerOrderLine()

v changeABCCustomerOrderLine()

v deleteABCCustomerOrderLine()

These APIs can be accessed as services using the
Service Definition Framework.

AuditRequired If set to Y, an audit record for this entity is
created.

HasHistory This flag indicates whether the custom table can
have a history table associated with it.

The default value is N.

If the flag is set to Y, the appropriate scripts for
generating database scripts for creating and
altering the history table is generated by
dbverify.

For a custom table, the HasHistory flag must be
set to Y for generating history tables. However, if
a Parent relationship is defined in the entity
XML, this flag is copied from the parent table
definition, and all child entities cannot override
this flag.

Prefix The prefix added to your custom tables. It is
recommended that you do not use a prefix
starting with Y.

TableName The name given to your custom table.

Entity/Attributes/Attribute

ColumnName The names of the column that comprise the table.

DataType The data type of the column. Valid data types
are given in the install_dir/repository/datatypes/
datatypes.xml file.

28 Sterling Selling and Fulfillment Foundation

Attribute Description

CompressionSupported Optional. Attribute used to indicate whether or
not the data compression is supported for this
column. Valid values are True or False. If True
compression support is enabled.

Note: If the data inserted into a column has both
CompressionSupported and UseCompression
attributes set to True, then this attribute should
not be set back to False. Doing so would result
in all compressed data being retrieved without
any decompression.

UseCompression Optional. Attribute used to compress data for
this column. Valid values are True or False. If
True data is compressed.

Note: The value of this attribute should be set to
True only if the CompressionSupported attribute
is set to True.

QueryAllowed Optional. Attribute used to enable a compressible
column to be used for queries in a List API.
Valid values are True or False. If True the
column can be used for queries in the List APIs.

Note: If the value of the CompressionSupported
attribute is set to true then the value of this
attribute should also be set to True.

DefaultValue Default value for the column.

Description A description of the columns that could be used
in Javadocs or ERD.

Nullable Optional. Attribute used to describe the nullable
value of a field. Default is false. Nullable=true is
allowed for all columns except Primary Key
Attributes and Entity Relationships.

XMLName Optional. XML name of the attribute, if it is
different from the name of the attribute.

Choose a name that does not conflict with the
base extension. It is recommended that you use
Extn as a prefix. It is also strongly recommended
that you use the same convention for arriving at
the XMLName as the base product does: Make
each letter following the underscore in the
column name upper case, and the rest lower
case. Then, remove the underscores. Thus,
Extn_Item_Id should be: ExtnItemId.

Entity/PrimaryKey

Name Name of the unique index created for the
primary key. This value cannot exceed 18
characters.

Note: The name of the primary key in the
extension XML should end with _PK.

ColumnName The name of the table column that is identified
as the primary key.

Entity/Indices/Index

Chapter 3. Extending Database Tables 29

Attribute Description

Name The index name. This value cannot exceed 18
characters.

Unique This key is present only for custom entities. Valid
values are True or False. If True a unique index
is created.

AllowCompressedColumns Optional. If True, the index is allowed to contain
columns marked with CompressionSupported
attribute set to True.

Column/ Name The table column name associated with the
index.

Entity/Parent

ParentTableName Name of the other table this entity has foreign
key relationship.

XMLName The XML name of the parent attribute. It should
start with the prefix mentioned in the parent
table.

By default the parent table name is assumed.

Parent/Attribute Level

ParentColumnName Column name in the parent table.

Note: To create relationships among entities, the
data type of parent column must be of type CHAR
or VARCHAR.

ColumnName Column name in this custom entity.

Entity/ForeignKeys/ForeignKey

ParentTableName The name of the table with which the entity has
a foreign key relationship.

XMLName XML representation of the element name.

By default the parent table name is assumed.

Entity/ForeignKeys/ForeignKey/Attribute

ParentColumnName Column name of the parent table.

Note: To create foreign keys among entities, the
data type of parent column must be of type CHAR
or VARCHAR.

ColumnName Column name in this custom entity.

Entity/AuditReferences/Reference

ColumnName Reference Column name in the audit table.

Note: In entity definition, relationship can be defined under Parent and
ForeignKey elements.

4. The relationship defined under the ForeignKey element indicates:
a. If the foreign table is an application database table, for a single record in the

foreign table, zero or many records in this custom table may exist.
b. This is a read-only relationship, hence deletion of a record from the foreign

table does not result in the deletion of a matching record from this custom
table.

30 Sterling Selling and Fulfillment Foundation

5. The relationship defined under the Parent element indicates:
a. For a single record in the parent table, multiple child records may exist.
b. Deletion of a record from the parent table results in the deletion of

matching records from the child table, if any.
6. Extend the corresponding API templates (for example, getOrderDetails()API)

by following the instructions in Extending API Templates.

Note: The APIs generated by the application for the custom tables can be
invoked as a service and through a multiAPI wrapper component.

7. Build and deploy your extensions.

Steps to Create a Hang-off Table
About this task

To create a hang-off table:

Procedure
1. Copy the install_dir/repository/entity/extensions/Extensions.xml.sample file as

install_dir/extensions/global/entities/your_filename.xml file OR modify your
existing extension XML file. For example, assume that
ABC_CUSTOMER_ORDER_LINE is a hang-off table.

2. Edit the your_filename.xml file to create hang-off tables as shown in the
following example. For a description of the XML attributes, see the table that
follows the example.
<DBSchema>

<Entities>
<Entity ApiNeeded="Y/N" AuditRequired="Y" Description=""

HasHistory="Y/N" Prefix="ABC"
TableName="ABC_CUSTOMER_ORDER_LINE" >
<!-- table columns -->
<Attributes>

<Attribute ColumnName="CREATETS" DataType="TimeStamp"
DefaultValue="sysdate" Description="Create TimeStamp" />
<Attribute ColumnName="MODIFYTS" DataType="TimeStamp"
DefaultValue="sysdate" Description="Modify TimeStamp" />
<Attribute ColumnName="CREATEUSERID" DataType="UserId"
DefaultValue="' '" Description="Creating User ID" />
<Attribute ColumnName="MODIFYUSERID" DataType="UserId"
DefaultValue="' '" Description="Modifying User ID" />
<Attribute ColumnName="CREATEPROGID" DataType="ProgramID"
DefaultValue="' '" Description="Creating Program ID" />
<Attribute ColumnName="MODIFYPROGID" DataType="ProgramID"
DefaultValue="' '" Description="Modifying Program ID" />
<Attribute ColumnName="LOCKID" DataType="Lockid" DefaultValue="0"
Description="Lock ID" />
<Attribute ColumnName="TABLE_KEY" DataType="Key" DefaultValue=" "
Description="" Nullable="True/False" XMLName="TableKey" />
.
.

</Attributes>
<!-- PrimaryKey is a mandatory attribute in entity definition. This

element can have ONLY ONE attribute element -->
<PrimaryKey Name="TABLE_NAME_PK">

<Attribute ColumnName="TABLE_KEY" />
</PrimaryKey>
<!-- Indices -->
<Indices>

<Index Name="INDEX_I1" Unique="True/False">
<Column Name="Attribute2" />
.

Chapter 3. Extending Database Tables 31

.
</Index>
.
.

</Indices>
<!-- Relationship -->
<Parent ParentTableName="YFS_ORDER_LINE" XMLName="YFSOrderLine" >

<Attribute ColumnName="CUSTOM_ORDER_KEY"
ParentColumnName="ORDER_LINE_KEY" />
.
.

</Parent>
<ForeignKeys>

<ForeignKey ParentTableName="PARENT_ORDER_LINE"
XMLName="PARENTName1" >
<Attribute ColumnName="CUSTOM_ORDER_KEY"

ParentColumnName="PARENT_COLUMN_KEY" />
.
.

</ForeignKey>
.
.
</ForeignKeys>

<!-- AuditReferences -->
<AuditReferences>

<Reference ColumnName="TABLE_KEY" />
.
.

</AuditReferences>
</Entity>

</Entities>
</DBSchema>

3. The following table explains the attributes in the entity XML:

Attribute Description

Entity

ApiNeeded Indicates whether or not APIs should be generated. Valid values
are Y or N. A default set of APIs are generated if Y is passed.

For example in the ABC_CUSTOMER_ORDER_LINE table, the
application creates the following APIs when the database extension
jar file is generated:

v listABCCustomerOrderLine()

v getABCCustomerOrderLine()

v createABCCustomerOrderLine()

v modifyABCCustomerOrderLine()

v deleteABCCustomerOrderLine()

These APIs can be accessed as services using the Service Definition
Framework.

AuditRequired If set to Y, audit record for this entity is created.

Note: This attribute must not be passed when you are creating a
hang-off for order related tables. In this case, the audits are
automatically inserted into the YFS_ORDER_AUDIT table.

Description A description of the entity that could be used in Javadocs or ERD.

32 Sterling Selling and Fulfillment Foundation

Attribute Description

HasHistory This flag is automatically inherited from the parent table. For
example, let us assume that ABC_ORDER_HEADER table is
created as an hang-off table for YFS_ORDER_HEADER, which has
an associated history table. Then ABC_ORDER_HEADER_H is
automatically generated by the database framework.

Prefix The prefix added to your custom tables. It is recommended that
you do not use a prefix starting with Y.

TableName The name given to your hang-off table.

Entity/Attributes/Attribute

ColumnName The names of the column that comprise the table.

DataType The data type of the column. Valid data types are given in
install_dir/repository/datatypes/datatypes.xml file.

CompressionSupported Optional. Attribute used to indicate whether or not the data
compression is supported for this column. Valid values are True or
False. If True compression support is enabled.

Note: If the data inserted into a column has both
CompressionSupported and UseCompression attributes set to True,
then this attribute should not be set back to False. Doing so would
result in all compressed data being retrieved without any
decompression.

UseCompression Optional. Attribute used to compress data for this column. Valid
values are True or False. If True data is compressed.

Note: The value of this attribute should be set to True only if the
CompressionSupported attribute is set to True.

QueryAllowed Optional. Attribute used to enable a compressible column to be
used for queries in a List API. Valid values are True or False. If
True the column can be used for queries in the List APIs.

Note: If the value of the CompressionSupported attribute is set to
true then the value of this attribute should also be set to True.

DefaultValue Default value for the column

Description A description of the columns that could be used in Javadocs or
ERD.

Nullable Optional. Attribute used to describe the nullable value of a field.
Default is false. Nullable=true is allowed for all columns except
Primary Key Attributes and Entity Relationships.

XMLName Optional. XML name of the attribute, if it is different from the
name of the attribute.

Choose a name that does not conflict with the base extension. It is
recommended that you use Extn as a prefix. It is also strongly
recommended that you use the same convention for arriving at the
XMLName as theSterling Business CenterSterling Selling and
Fulfillment FoundationSterling Field Sales base product does: Make
each letter following the underscore in the column name upper
case, and the rest lower case. Then, remove the underscores. Thus,
Extn_Item_Id should be: ExtnItemId.

Entity/PrimaryKey

Chapter 3. Extending Database Tables 33

Attribute Description

Name Name of the unique index created for the primary key. This value
cannot exceed 18 characters.

Note: The name of the primary key in the extension XML should
end with _PK.

ColumnName The name of the table column that is identified as the primary key.

Entity/Indices/Index

Name The index name. This value cannot exceed 18 characters.

Unique This key is present only for custom entities. Valid values are True
or False. If True a unique index is created.

AllowCompressedColumnsOptional. If True, the index is allowed to contain columns marked
with CompressionSupported attribute set to True.

Column/ Name The table column name associated with the index.

Entity/Parent

ParentTableName Name of the other table this entity has foreign key relationship.

XMLName The XML name of the parent attribute. It should start with the
prefix mentioned in the parent table.

By default the parent table name is assumed.

Parent/Attribute Level

ParentColumnName Column name in the parent table.

Note: To create relationships among entities, the data type of
parent column must be of type CHAR or VARCHAR.

ColumnName Column name in this custom entity.

Entity/ForeignKeys/ForeignKey

ParentTableName The name of the table with which the entity has a foreign key
relationship.

XMLName XML representation of the element name.

By default the parent table name is assumed.

Entity/ForeignKeys/ForeignKey/Attribute

ParentColumnName Column name of the parent table.

Note: To create foreign keys among entities, the data type of parent
column must be of type CHAR or VARCHAR.

ColumnName Column name in this hang-off entity.

Entity/AuditReferences/Reference

ColumnName Reference Column name in the audit table.

Note: In entity definition, relationship can be defined under ForeignKey
elements.

4. The relationship defined under the ForeignKey element indicates:
a. If the foreign table is aSterling Business CenterSterling Selling and

Fulfillment FoundationSterling Field Sales table, for a single record in the
foreign table, zero or many records in this hang-off table may exist.

34 Sterling Selling and Fulfillment Foundation

b. This is a read-only relationship, hence deletion of a record from the foreign
table does not result in the deletion of a matching record from this hang-off
table.

5. Extend the corresponding API templates (for example, getOrderDetails API) by
following the instructions in "Extending API Templates."

Note: The APIs generated for the hang-off tables can be invoked as a service
and through a multiAPI wrapper component.

6. Build and deploy your extensions.

Purging Data from Hang-off Tables
Currently, the Purge agent moves records to history tables. With the hang-off
entities enabled, the Purge agent also deletes records from hang-off tables.
However, the data from a hang-off table can be purged only if its parent elements
are also purged. If a history table exists, records are added to the history table. The
records are deleted from the history table using the History Purge agent.

In order to purge the hang-off entities you need to include the entities.jar file in the
classpath of the agent server.

Chapter 3. Extending Database Tables 35

36 Sterling Selling and Fulfillment Foundation

Chapter 4. Extending the Data Types Files

Extending the Data Types Files
You can extend the attributes available to you by adding your own XML attributes
and abstract data types to the datatypes.xml file.

You will need to modify the datatypes.xml file in the following cases:
v When you want to change the actual size of an existing data type.
v When you want to restrict the length of the input for a particular field on the

UI. For example, say the data type allows the input to be of length 20 but in the
UI you want to restrict the length of the input to just 10.

v When the existing data types does not meet your requirements and you want to
create a completely new data type.

You will need to modify the yfsdatatypemap.xml file in the following case:
v When you have defined a completely new data type in the datatypes.xml file

and you want to define the mapping for this new data type in the
yfsdatatypemap.xml file.

Extending the Data Type Map File
About this task

To extend the data type map XML file:

Procedure
1. Create a new install_dir/extensions/global/template/resource/

yfsdatatypemap.xml file.
If the /global/template/resource/ directory structure does not exist, create the
required directory structure.

2. Add an XML root node in the same way it appears in the install_dir/
repository/xapi/template/merged/resource/yfsdatatypemap.xml file.

3. Add any attributes that need to be mapped in the yfsdatatypemap.xml file.
4. Build and deploy your extensions.

Extending the Data Type File
About this task

To extend the data type XML file:

Procedure
1. Create a new install_dir/extensions/global/etc/datatypes.xml file, if it does not

already exist.
If the /global/etc/ directory structure does not exist, create the required
directory structure.

Note: When datatypes are extended through install_dir/extensions/global/etc/
datatypes.xml file, the resources.jar file needs to be rebuilt before running the
dbverify tool.

© Copyright IBM Corp. 1999, 2011 37

2. Add an XML root node in the same way it appears in the install_dir/
repository/datatypes/datatypes.xml file.

3. Add any differential values for the datatypes, including the following:
v Add and define parameters for new datatypes
v Modify parameters of existing datatypes

Note: For existing datatypes, you can modify only the UI related attributes in
the datatypes.xml file such as UI Size and UITableSize.

Note: You cannot resize the Date input fields within the console across the
board even if your date format is larger than the default date format used by
the application.

Note: The application reserves the Type attribute for internal use, and so you
cannot override it. All other attributes can be overridden.

Note: For existing datatypes, you cannot change a character type to a numeric
type. For example, you cannot change a CHAR type to NUMBER type. An
exception will be thrown for such invalid conversions. Following conversions
are treated as invalid conversions:
v Converting NVARCHAR, NCHAR, VARCHAR2, BLOB, CLOB, TIME, DATE,

DATETIME type to NUMBER type.
v Converting NVARCHAR, NCHAR, VARCHAR2, BLOB, CLOB, TIME, DATE,

DATETIME type to SCI_LONG type.
v Converting NVARCHAR, NCHAR, VARCHAR2, BLOB, CLOB, TIME, DATE,

DATETIME type to SCI_INT type.
v Converting any type to BLOB, CLOB type.
v Converting BLOB, CLOB type to any type.
v Converting from any type to DATE, DATETIME, TIME type.

Note: The invalid conversions are not specific to any database. The invalid
conversions are based on the criteria whether the new datatype can hold the
data that the old datatype column can take.

Note: If you add any new table column extensions and you are using
SQLServer, ensure that they have NCHAR and NVARCHAR character-based
datatypes.Do not use CHAR and VARCHAR datatypes for SQLServer.

4. Build and deploy your extensions.

38 Sterling Selling and Fulfillment Foundation

Chapter 5. Create a Custom View

Create a Custom View to Join Multiple Tables
About this task

A custom view can be created to join multiple DB2 tables. This approach can be
used for either out-of-the-box or custom tables.

Product APIs are then used to query from the custom views. Custom queries are
not required.

Procedure
1. Create custom table(s), if required.
2. Write a View entity, using the example below as a guideline.

The db framework generates db classes and APIs on the view to retrieve
records.

Restrictions: Classes or APIs generated in this way support the get and list
API functions only, and cannot be used to modify data.

dbverify does not process or handle views. Any change made in the xml file for
a view is not processed by dbverify.

3. Customize the appropriate console to invoke the database APIs corresponding
to the view.

4. Build and deploy your customization.

Example: Inventory Item Search

A business case necessitates an inventory item search (inventory console) based on
extended attributes of yfs_item. Such a search requires the yfs_item and
yfs_inventory_item tables to be joined in a view, but yfs_inventory_item is not
extensible.

The view entity is defined as shown in the ExtnCatalogSearchConfigProperties.xml
file below, and the inventory console is customized to invoke the database APIs
corresponding to the view.

The following is the sample ExtnCatalogSearchConfigProperties.xml file:
<DBSchema>

<Entities>
<Entity TableName="EXTN_INV_ITEM_VW"

Description="This view joins YFS_ITEM and YFS_INVENTORY_ITEM
tables to enable querying based on webclass and subclass
attributes"

View="true"
EntityType="VIEW"
HasHistory="False"
AuditRequired="N"
ApiNeeded="Y"
Prefix="EXTN" >

<Attributes>
<Attribute ColumnName="ITEM_INV_VW_KEY"

DataType="Key"

© Copyright IBM Corp. 1999, 2011 39

DefaultValue="’ ’"
Description="Primary key for this view."
Nullable="false"
XMLName="ItemInVwKey"/>

<Attribute ColumnName="ITEM_ID"
DataType="ItemID"
Description="Identifer for this inventory item."
Name="Item_Id"
Nullable="false"
XMLName="ItemID"
DefaultValue="’ ’" />

<Attribute ColumnName="UOM"
DataType="UOM"
Description="Unit of measure for this inventory item."
Name="Uom"
Nullable="false"
XMLName="UnitOfMeasure"
DefaultValue="’ ’" />

<Attribute ColumnName="EXTN_SUBCLASS"
DataType="VARCHAR2-24"
Type="VARCHAR2"
Size="24"
DefaultValue="’ ’"
Nullable="false"
XMLName="ExtnSubclass"/>

<Attribute ColumnName="DEFAULT_PRODUCT_CLASS"
DataType="ProductClass"
DefaultValue="’ ’"
Description="Default product class of an item."
Name="Default_Product_Class"
Nullable="false"
XMLName="DefaultProductClass"/>

<Attribute ColumnName="PRODUCT_CLASS"
DataType="ProductClass"
DefaultValue="’ ’"
Description="Product class for the item of this

inventory audit."
Name="Product_Class"
Nullable="false"/>

<Attribute ColumnName="DESCRIPTION"
DataType="ItemDesc"
DefaultValue="’ ’"
Description="Description of the item."
Name="Description"
Nullable="false"
XMLName="Description"/>

</Attributes>
<PrimaryKey>

<Attribute ColumnName="ITEM_INV_VW_KEY"
Name="Item_Inv_Vw_Key"/>

</PrimaryKey>
</Entity>

</Entities>
</DBSchema>

40 Sterling Selling and Fulfillment Foundation

Chapter 6. Generating Audit References for Entities

About Extending Audit References
About this task

If the AuditRequired flag is enabled in the entity XML, audit records are added to
the YFS_AUDIT table. The default for this flag is Y, for item and organization
tables. However, the audit flag and audit references can be overridden by the
extension XML file.

Note: All the records pertaining to the cached tables as well as the tables for
which the value of AuditRequired flag is set to Y are logged into YFS_AUDIT
table.

If you want to switch off the generation of audit references for some specific
entities, change the value of the AuditRequired flag to N for such entities.

Note: You can add new audit references in the extension XML file. When new
references are added, they take precedence over the existing audit references,
which are entirely overridden.

You can add up to six audit references only.

Only item and organization header-level audit records are inserted in the
YFS_AUDIT_HEADER table. The audit references refer to the columns of the entity
being audited.

The audits can be generated for the hang-off and custom tables, by modifying the
entity table name and audit reference column names.

Note: Auditing is not supported for hang-off tables with more than one parent.

To generate audit references for entities:

Procedure
1. Edit the your_filename.xml file in the install_dir/repository/entity/extensions

directory to enable audit record generation for desired entities. The following
example explains the elements to be added to the database schema:
<DBSchema>

<Entities>
<Entity TableName="YFS_ITEM" AuditRequired="Y" >

.

.
<AuditReferences>

<Reference ColumnName="ItemId" />
.
.

</AuditReferences>
.
.

</Entity>
</Entities>

</DBSchema>

© Copyright IBM Corp. 1999, 2011 41

Attribute Description

Entity

TableName The table name to be audited.

AuditRequired If this flag is set to Y the audit references are entered in the
YFS_AUDIT table.

Note: This attribute must not be passed when you are creating a
hang-off for order related tables. In this case, the audits are
automatically inserted into the related order audit tables.

Entity/AuditReferences/Reference

ColumnName The column name in this entity which has audit references. This
name must be valid for the entity.

2. Create a new Reference tag for each audit reference you want to add.
3. The hang-off of an order table audits can be viewed with the associated order

audits.

42 Sterling Selling and Fulfillment Foundation

Chapter 7. Extending API Templates

About Extending API Templates
About this task

Each template-based API delivers different output, depending on the template
passed to it. To verify whether an API is template-based or not, see the Javadocs.

If your table modifications impact any APIs, you must extend the templates of
those APIs. Place the extended API templates in the install_dir/extensions/global/
template/api directory.

To find out which APIs are impacted by table modifications:

Procedure
1. Note the XMLName attribute of the table being modified in the entity tag

inside the database entity XML files (which contains the definition of all the
tables). These database entity XML files are located in install_dir/repository/
entity directory.

2. Search for the pattern of that XMLName attribute in the install_dir/extensions/
global/template/api directory. The search results in finding exposed and
internal APIs impacted by the table modifications or extensions.
For example, consider that you want to extend an attribute in the
YFS_CHARGE_CATEGORY table. The XMLName for this table as specified in
install_dir/repository/entity/omp_tables.xml is ChargeCategory. Now search
for the attribute ChargeCategory in install_dir/extensions/global/template/api
directory to find the APIs impacted by this extension.

Including Extended Attributes in the API Template
The extended attributes appear as a separate <Extn> element under the primary
element.

For example, in the default output XML template of the getItemDetails() API, the
Item attributes have the following structure:
<?xml version="1.0" encoding="UTF-8"?>
<Item .. Item attributes >

<PrimaryInformation PrimaryInformation attributes />
<ItemServiceSkillList .. ItemServiceSkillList attributes/>
<ItemAliasList ... ItemAliasList attributes />
.
.

</Item>

After extending the Item header, the getItemDetails() API can output the following
XML:
<?xml version="1.0" encoding="UTF-8"?>
<Item .. Item attributes >

<PrimaryInformation PrimaryInformation attributes />
<Extn ExtnAltQty="200408201034469490" extnded attributes />
<YFSPersonInfo PersonInfoKey="200408201034469490"/>
<ItemServiceSkillList .. ItemServiceSkillList attributes/>

© Copyright IBM Corp. 1999, 2011 43

<ItemAliasList ... ItemAliasList attributes />
.
.

</Item>

Note: Foreign Key variables for the extended column appear as a PersonInfoKey
attribute of the YFSPersonInfo element. The relationship can be validated if the
extended column and the PersonInfoKey have the same value.

The extended attribute is retrieved from the XMLName attribute of the
your_filename.xml file that you edited in the previous sections, when extending a
standard table. Place your extended templates in the install_dir/extensions/global/
template/api directory.

Including Custom and Hang-Off Entities in the API Template
About this task

The standard APIs can be extended to provide information from the custom or
hang-off tables. A tool specifically provided for generating the template XML's,
templateXmlGen.xml is located in the install_dir/bin directory.

Procedure
1. Run the template XML generation tool from your install_dir directory by using

the following command:
sci_ant.sh -Dtable=TABLE_NAME -f bin/templateXmlGen.xml

2. Once the command is run, the sample XML files are placed in the
install_dir/extn/sampleXML directory as TABLE_NAME_sample.xml.

For example, consider HF_Order_Header is a hang-off of YFS_Order_Header table.
The generated HF_Order_Header_sample.xml is as follows:
<HFOrderHeader Createprogid=" " Description=" " DocumentType=" "
EnterpriseKey=" " OrderHeaderKey=" " OrderName=" " OrderNo=" " >
</HFOrderHeader>

3. A sample XML for including the above attributes in a standard API can be
generated by passing the YFS table that has a relationship with the hang-off
table you are interested in.
For example, assume HF_Order_Header is a hang-off table with a relationship
to the YFS_Order_Header table. The XML template generated by the tool when
TABLE_NAME=YFS_Order_Header is passed:
<Order>

<OrderLines>
<OrderLine>

<Extn extended attributes >
<HFOrderHeaderList>

<HFOrderHeader Createprogid=" " Description=" ">
</HFOrderHeader>

</HFOrderHeaderList>
</Extn>

</OrderLine>
</OrderLines>

</Order>

Note: You can modify the attributes only within your custom or hang-off
element.

44 Sterling Selling and Fulfillment Foundation

You can prune this sample XML to include your custom attributes in an API
template, such as getOrderDetails output template. However, you cannot
modify any of the YFS elements or attributes.

Note: The sample XMLs are also automatically generated when you create the
database extension jar file, and are posted in the install_dir/xapidocs/
sampleXML directory. However, if you need to create a sample template, you
must run the template XML generation tool separately by specifying the
corresponding YFS table name.

4. A hang-off table can be deleted by passing an Operation attribute in the change
or modify APIs. For example, HF_Order_Header element can be deleted in a
changeOrder API as:
<Order>

<OrderLines>
<OrderLine>

<Extn extended attributes >
<HFOrderHeaderList>

<HFOrderHeader Operation="Delete" Createprogid=" " >
</HFOrderHeader>

</HFOrderHeaderList>
</Extn>

</OrderLine>
</OrderLines>

</Order>

The operations such as Create and Modify are run by default. If an entry for
that element exists, the API modifies the entries with the recent value. In the
case where that element does not exist it creates a new entry.

5. The records in a hang-off table can be reset by assigning the value of “true” to
the Reset attribute at the list level element of the XML. When the records are
reset, all existing records for that hang off table that correspond to the parent
table are deleted and all elements included under the list element are inserted.
For example, hang off records in the HF_Order_Header_list element can be
reset by using the following:
<Order>

<OrderLines>
<OrderLine>

<Extn extended attributes >
<HFOrderHeaderList Reset="true">

<HFOrderHeader>
</HFOrderHeader>

</HFOrderHeaderList>
</Extn>

</OrderLine>
</OrderLines>

</Order>

6. Build and deploy your extensions.

Configuring Services for Custom and Hang-off APIs
The APIs generated for custom or hang-off entities by the application can be
invoked as a service and through a multiAPI wrapper component. For more
information on invoking the APIs through a multiAPI component, refer to the
Javadocs. The service configuration user interface has to be enabled to configure
these APIs.

Chapter 7. Extending API Templates 45

To include custom APIs, you can create a service definition as shown in the figure.
The configuration fields are explained in the following table.

Field Name Description

General Tab

Standard API Select this option if a standard application API is to be invoked. If
selected, the standard API Name drop down list displays. For each
API, the Class Name and Method Name are provided and cannot
be edited.

Extended API Select this option if a custom Java code is to be invoked.

Extended Database
API

Select this option if the service invokes a custom or hang-off API.
If selected, a custom API Name drop-down list displays. For each
API, the Class Name and Method Name are provided and cannot
be edited.

Note: If you want to lock a record in a custom table, pass the
SelectMethod attribute as part of the input XML to the custom
entity API. The locking happens within the transaction boundary
of the custom API call.

The SelectMethod attribute can take the following values:

v WAIT

v NO_WAIT

v NONE

API Name Select or enter the API to be called.

Note: This field is for integration purposes only.

Class Name Specifies the class to be called.

Method Name Specifies the method to be called.

Requires Backward
Compatibility

Select this field to indicate that input data coming through the API
is from a previous version (only applicable to system APIs).

Version If you chose Requires Backward Compatibility, select the
application version the API is to behave as. Only the applicable
versions for the individual API display.

Arguments Tab

46 Sterling Selling and Fulfillment Foundation

Field Name Description

Argument Name You can pass name/value pairs to the API by entering the values
in the Arguments Tab.

In order for custom APIs to access custom values, the API should
implement the interface com.yantra.interop.japi.YIFCustomApi.

If entered, these name/value pairs are passed to the CustomApi as
a Properties object.

Argument Value Enter the argument value.

Template Tab

When system APIs are invoked, you can specify an output
template to be used by the API. You can specify the template in the
configuration properties of the Service Definition, the Resource
Definition in the Resource Hierarchy tree, or both. However, if the
template has been specified at both definition levels, the template
specified in the Service Definition is used.

XML Template Select this radio button to construct the XML to be used for the
API output. Enter the template root element name and click OK.
You can then construct the XML.

File Name Select this radio button to enter the filename of the XML file to be
used as the API output template. This file should also exist in your
CLASSPATH.

Facts Tab

A Fact is an attribute that is used by an API or an agent to identify
which colony to connect to and retrieve data from. Based on the
fact name and fact value entered, the corresponding colony is
determined.

Fact Name Enter the fact name of the XML attribute.

Fact Value Enter the fact value of the XML attribute.

Chapter 7. Extending API Templates 47

48 Sterling Selling and Fulfillment Foundation

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not grant you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte character set (DBCS) information,
contact the IBM Intellectual Property Department in your country or send
inquiries, in writing, to:

Intellectual Property Licensing

Legal and Intellectual Property Law

IBM Japan Ltd.

19-21, Nihonbashi-Hakozakicho, Chuo-ku

Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be

© Copyright IBM Corp. 1999, 2011 49

incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Corporation

J46A/G4

555 Bailey Avenue

San Jose, CA 95141-1003

U.S.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

All IBM prices shown are IBM's suggested retail prices, are current and are subject
to change without notice. Dealer prices may vary.

50 Sterling Selling and Fulfillment Foundation

This information is for planning purposes only. The information herein is subject to
change before the products described become available.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. The sample
programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work, must
include a copyright notice as follows:

© IBM 2013. Portions of this code are derived from IBM Corp. Sample Programs. ©
Copyright IBM Corp. 2013.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

Trademarks

IBM, the IBM logo, and ibm.com® are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the Web at “Copyright and
trademark information” at http://www.ibm.com/legal/copytrade.shtml.

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered
trademarks or trademarks of Adobe Systems Incorporated in the United States,
and/or other countries.

IT Infrastructure Library is a registered trademark of the Central Computer and
Telecommunications Agency which is now part of the Office of Government
Commerce.

Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo,
Celeron, Intel Xeon, Intel SpeedStep, Itanium, and Pentium are trademarks or
registered trademarks of Intel Corporation or its subsidiaries in the United States
and other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both.

Notices 51

http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

ITIL is a registered trademark, and a registered community trademark of the Office
of Government Commerce, and is registered in the U.S. Patent and Trademark
Office.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Oracle and/or its affiliates.

Cell Broadband Engine is a trademark of Sony Computer Entertainment, Inc. in the
United States, other countries, or both and is used under license therefrom.

Linear Tape-Open, LTO, the LTO Logo, Ultrium and the Ultrium Logo are
trademarks of HP, IBM Corp. and Quantum in the U.S. and other countries.

Connect Control Center®, Connect:Direct®, Connect:Enterprise®, Gentran®,
Gentran®:Basic®, Gentran:Control®, Gentran:Director®, Gentran:Plus®,
Gentran:Realtime®, Gentran:Server®, Gentran:Viewpoint®, Sterling Commerce™,
Sterling Information Broker®, and Sterling Integrator® are trademarks or registered
trademarks of Sterling Commerce®, Inc., an IBM Company.

Other company, product, and service names may be trademarks or service marks
of others.

52 Sterling Selling and Fulfillment Foundation

����

Product Number: xxxx-xxx

Printed in USA

	Contents
	Chapter 1. Checklist for Customization Projects
	Customization Projects
	Prepare Your Development Environment
	Plan Your Customizations
	Extend the Database
	Make Other Changes to APIs
	Customize the UI
	Extend Transactions
	Build and Deploy your Customizations or Extensions

	Chapter 2. Guidelines for Extending Databases
	Guidelines for Extending Databases
	About Extending the Database
	What is the SQLProxy Tool?
	Setting Up the SQLProxy Tool
	Starting and Using the SQLProxy Tool
	Stopping the SQLProxy
	Analyzing the Results

	Guidelines for Adding Columns to a Standard Table
	Guidelines for Adding Support for Data Compression for Columns
	Guidelines for Adding Non-Unique Indices to a Standard Table
	Guidelines for Adding Foreign Key Elements to a Standard Table
	Guidelines for Adding Text Search Index Elements to a Standard Table
	Coding Guidelines to Avoid Deadlocks

	Chapter 3. Extending Database Tables
	Adding a Column to a Standard Table
	Features Requiring Multiple Extensions When Adding a Column to a Standard Table
	Increasing the Size of a Standard Column
	Extending a Catalog Search
	Predefining and Grouping a Set of Columns for a Query
	Adding Unique Tag Identifiers and Descriptors to a Standard Table
	Adding Non-Unique Indices to a Standard Table
	Adding Foreign Key Elements to a Standard Table
	Adding Text Search Indices to a Standard Table
	Enabling Case Insensitive Searches
	Modifying an Entity XML

	Creating Custom and Hang-off Tables
	Steps to Create a Custom Table
	Steps to Create a Hang-off Table
	Purging Data from Hang-off Tables

	Chapter 4. Extending the Data Types Files
	Extending the Data Types Files
	Extending the Data Type Map File
	Extending the Data Type File

	Chapter 5. Create a Custom View
	Create a Custom View to Join Multiple Tables

	Chapter 6. Generating Audit References for Entities
	About Extending Audit References

	Chapter 7. Extending API Templates
	About Extending API Templates
	Including Extended Attributes in the API Template
	Including Custom and Hang-Off Entities in the API Template
	Configuring Services for Custom and Hang-off APIs

	Notices

