
Sterling Selling and Fulfillment Foundation

Integration Guide
Release 9.1

���

Sterling Selling and Fulfillment Foundation

Integration Guide
Release 9.1

���

Note
Before using this information and the product it supports, read the information in “Notices” on page 151.

Copyright

This edition applies to the 9.1 Version of IBM Sterling Selling and Fulfillment Foundation and to all subsequent
releases and modifications until otherwise indicated in new editions.

© Copyright IBM Corporation 1999, 2011.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Chapter 1. Integration Overview 1
Integrating with Sterling Selling and Fulfillment
Foundation 1
Application Integration Architecture 1
Integration with Warehouse Management Systems . . 2
Integration with Parcel Carrier Adapters 2
Integration with the Loftware Print Server and Label
Manager 2
Integration with Material Handling Equipment . . . 3
Integration with Enterprise Resource Planning
Systems 3
Integration with Point of Sale Systems 3
Integration with JMS Systems. 3
Integration with Financial Systems 3
Rapid Deployment Features 3

Chapter 2. Integrating with the
Distribution Center System 5
Introduction to Distribution Center System
Integration 5
DCS Purchase Order Interface Function 5

Purchase Order Workflow 5
Understanding Purchase Order Transactions . . . 7
Configuring Purchase Order Time-Triggered
Transactions 9
Configuring the Purchase Order Pipeline 9
DCS Purchase Order Interface 10

DCS Shipment Interface 13
Understanding Order Transactions. 13
Configuring DCS Shipment Time-Triggered
Transactions 14
DCS Order Release Interface. 15
DCS Shipment Confirmation 22

DCS Inventory Interface 26
DCS Inventory Upload 26
DCS Inventory Download 27

DCS Returns Interface 29
Return Order Integration Workflow 30
Determining the Enterprise Code for Blind
Return During Upload. 31
Configuring Return Order Integration with DCS 31
Return Order Interface Data Mapping 33
Assumptions and Limitations 38

Chapter 3. Integrating with Stand-Alone
Sterling Warehouse Management
System 41
Limitation on Use of Services with Stand-Alone
Sterling Warehouse Management System 41
Installing Integration Pack for Receipt and Inventory
Change Upload Interfaces on a Sterling Warehouse
Management System Instance 41

Installing Integration Pack for Receipt and Inventory
Change Upload Interfaces on a Sterling Distributed
Order Management Instance. 41
Uploading Receipts 42

Uploading Receipt Information 42
Uploading Receipt Adjustment Information. . . 44
Loading Receipt Information from a Node . . . 45
Loading Receipt Adjustment Information from a
Node 47

Uploading Inventory Changes at a Node 48
Uploading Updated Inventory Information . . . 48
Loading Inventory Information from a Node . . 50

Uploading Inventory Snapshots 51
Generating Inventory Snapshot Files 51

Chapter 4. Integrating with Third-Party
Warehouse Management Systems . . . 53
Introduction to Third-Party Warehouse Management
System Integration 53
Third-Party Warehouse Management Systems . . . 53

Third-Party Shipment Advice 53
Third-Party Inventory Change 53

Chapter 5. Integrating with the Loftware
Print Server and Label Manager 55
Overview of Loftware Print Server and Label
Manager Integration 55

Printing Standard Labels 56
Designing Custom Labels. 57

Displaying Page Numbers 57
File Naming Conventions for Custom Labels . . 57
File Design Conventions for Labels 57
Creating a New Label Format 57

Defining Custom Print Services. 61
Configuring a Print Pack List Service 61

Chapter 6. Integrating with Parcel
Carrier Adapters 69
Overview of Parcel Carrier Adapter Integration . . 69
APIs Invoked During Parcel Carrier Adapter
Integration 69
Field-Level Mapping Between the openManifest API
on the Sterling Warehouse Management System and
the openManifest API on the Carrier Adapter . . . 70
Mappings Between the addContainerToManifest API
on the Sterling Warehouse Management System and
the shipCarton API on the Carrier Adapter 71
Mapping Between the
removeContainerFromManifest API on the Sterling
Warehouse Management System and the
deleteCarton API on the Carrier Adapter 81
Mapping Between the closeManifest API on the
Sterling Warehouse Management System and the
closeManifest API on the Carrier Adapter 81

© Copyright IBM Corp. 1999, 2011 iii

Integration Dependencies 82

Chapter 7. Integrating with Material
Handling Equipment 83
Overview of Material Handling Equipment
Integration 83
Integrating with Pick-to-Light Systems 83
Integrating with Put-to-Light Systems 84
Integrating with Carousel or Automated Storage
and Retrieval Systems 86

Integration When a Product is Being Put Away 86
Integration When a Product is Being Retrieved 86
Integration When a Product is Being Counted . . 87

Integrating with Automatic Guided Vehicles . . . 88
Integrating with Inbound Sorters 89
Integrating with Pack Sorters 89
Integrating with Shipping Sorters 90
Integrating with Cube-a-Scans 91
Integrating with Weighing Scales 91

Integrating with Mettler Toledo Weighing Scales 91
Integrating with Other Weighing Scales 92

Chapter 8. Integrating with Enterprise
Resource Planning Systems 95
Overview of Integration with ERP Components . . 95
Integration Data Flow Diagram. 96
Integration Protocol 96
ERP Integration Specification: Order Management 97

Customer Download from an ERP System to the
Sterling Warehouse Management System . . . 97
Shipment/Order Release Download from an ERP
System to the Sterling Warehouse Management
System 97
Shipment Confirmation Upload from the Sterling
Warehouse Management System to an ERP
System 97

ERP Integration Specification: Purchasing 98
Vendor Download from an ERP System to the
Sterling Warehouse Management System . . . 98
Purchase Order Download from an ERP System
to the Sterling Warehouse Management System . 98
Purchase Order Closure Download from an ERP
System to the Sterling Warehouse Management
System 98
ASN Download from an ERP System to the
Sterling Warehouse Management System . . . 98
Receipt Upload from the Sterling Warehouse
Management System to an ERP System 99

ERP Integration Specification: Inventory 99
Item Download from an ERP System to the
Sterling Warehouse Management System . . . 99
Item Attributes Upload from the Sterling
Warehouse Management System to an ERP
System 99
Inventory Change Upload from the Sterling
Warehouse Management System to an ERP
System 100
Inventory Snapshot Upload from the Sterling
Warehouse Management System to an ERP
System 100

ERP System Integration Specification: WIP . . . 100
BOM Download from an ERP System to the
Sterling Warehouse Management System . . . 100
Work Order Download from an ERP System to
the Sterling Warehouse Management System . . 101
Work Order Demand Upload for Manually
Created Work Orders from the Sterling
Warehouse Management System to ERP . . . 101
Work Order Confirmation Upload from the
Sterling Warehouse Management System to an
ERP System 101
Close Work Order from the Sterling Warehouse
Management System to an ERP System. . . . 102

ERP Integration Specification: Returns 102
Return Order Download from ERP to the
Sterling Warehouse Management System . . . 102
Return Order Closure Download from an ERP
System to the Sterling Warehouse Management
System 102
Receipt Upload from the Sterling Warehouse
Management System to an ERP System. . . . 103

Chapter 9. Point of Sale System
Integration 105
Integrating with Point of Sale Systems 105
API Invoked During Point of Sale Integration . . 105

Chapter 10. Integrating User and Item
Data with External Systems 107
External System Integration Overview 107
Order Management Integration 107

APIs Invoked During Order Management
Integration 107

User and Item Synchronization 108
Item Synchronization Services in Sterling Selling
and Fulfillment Foundation 108

SendItemChanges Service 108
ReceiveItemChanges Service 109

Customer Synchronization Services in Sterling
Selling and Fulfillment Foundation 110

SendCustomerChanges Service 110
ReceiveCustomerChanges Service. 111

Modifying Customer Event Templates 112
Data Mapping 113
Customer Data Mapping 113
Item Data Mapping 114

Chapter 11. Integrating with JMS
Systems 119
Introduction to Integrating with JMS 119
Configuring Oracle WebLogic JMS 119

WebLogic Time-Out Considerations for
Transacted Sessions 120

Before You Begin Configuring IBM WebSphere MQ 121
Creating the Queue Manager and Queues for
IBM WebSphere MQ 121
Configuring a Queue Manager to Client
Connection for IBM WebSphere MQ. 121
Configuring Sterling Selling and Fulfillment
Foundation to Use WebSphere MQ Queues . . 123

iv Sterling Selling and Fulfillment Foundation: Integration Guide

Configuring IBM WebSphere MQ for Access by
WebSphere's JNDI Namespace. 123

Configuring IBM WebSphere Default Messaging 125
Configuring Sterling Selling and Fulfillment
Foundation to Use WebSphere Default
Messaging 125

JBoss Messaging JMS 126
Creating Queues in JBoss Messaging JMS . . . 126
Configuring Sterling Selling and Fulfillment
Foundation to Use JBoss Messaging Queues . . 127

Configuring TIBCO JMS. 128
TIBCO JMS Attributes 128
Configuring TIBCO JMS as an Agent Queue . . 129
Configuring the Sterling Selling and Fulfillment
Foundation To Use TIBCO Messaging Queues . 130

Chapter 12. Integrating with Financial
Systems 131
Requirements for Financial System Integration . . 131
Load Initial Inventory Cost Data 131
Configuring Process-Specific Events 131

Receipt Process 131
Sales Order Creation Process 132
Shipment Confirmation Process 132
Invoice Process 133
Work Order Confirmation Process 133
Inventory Adjustment Process 134
Return Order Process. 134
Callback from Financial System for Inventory
Value Adjustment 134

Chapter 13. Rapid Deployment
Features 137
Rapid Deployment Feature Overview 137
Interface Field Mapping Documents 137

Generating Interface Field Mapping Template
Documents 137

Initial Data Loading 139
Initial Data-Loading Services 139

Notices 151

Contents v

vi Sterling Selling and Fulfillment Foundation: Integration Guide

Chapter 1. Integration Overview

Integrating with Sterling Selling and Fulfillment Foundation
IBM® Sterling Selling and Fulfillment Foundation can be integrated with other IBM
offerings, such as the Distributed Center Solution and third-party applications,
through the services defined using the Service Definition Framework.

Sterling Selling and Fulfillment Foundation provides integration with:
v The Distribution Center System
v Third-Party Warehouse Management System
v The Parcel Carrier Adapters
v Loftware Print Server and Label Manager
v Material Handling Equipment
v Enterprise Resource Planning Systems
v Point of Sale Systems
v JMS Systems
v Financial Systems
v Interface Field Mapping Documents

For more information about defining specific services, see the Sterling Selling and
Fulfillment Foundation: Application Platform Configuration Guide

Note: If you try to configure more than one action serially using the Service
Definition Framework, the Applications Manager throws an error message, "A
continue link must be attached to the next condition or action." To avoid this error,
group these actions and replace them with one service.

Application Integration Architecture
Adapters connect to external systems through the Service Definition Framework
for data transformation.

The following figure shows how the Service Definition Framework fits into the
applications integration architecture of Sterling Selling and Fulfillment Foundation,
the various adapters that perform data transformation, and the goals of the
transformations.

© Copyright IBM Corp. 1999, 2011 1

For more information about the adapters used within Sterling Selling and
Fulfillment Foundation, see the Sterling Selling and Fulfillment Foundation:
Application Platform Configuration Guide.

Integration with Warehouse Management Systems
Sterling Selling and Fulfillment Foundation provides real-time integration with the
IBM Sterling Warehouse Management System (Sterling Warehouse Management
System).

Sterling Selling and Fulfillment Foundation supports integration with the
Distribution Center System (DCS). The DCS application supports warehouse
inventory, distribution, returns and activities. Typically, it is used in distribution
centers for fulfilling large numbers of orders, with items required in quantities of a
case or less. For information about integrating Sterling Selling and Fulfillment
Foundation with the Distribution Center System, see “Introduction to Distribution
Center System Integration” on page 5.

Sterling Selling and Fulfillment Foundation also supports integration with
third-party warehouse management systems. For information about integrating
Sterling Selling and Fulfillment Foundation with third-party warehouse
management systems, see “Introduction to Third-Party Warehouse Management
System Integration” on page 53.

Integration with Parcel Carrier Adapters
Sterling Selling and Fulfillment Foundation provides integration with the Parcel
Carrier Adapters (Carrier Adapter), which manages all the carrier-integration
related functions of Sterling Selling and Fulfillment Foundation. Sterling Selling
and Fulfillment Foundation interfaces with the Carrier Adapter to use its
carrier-integration functions.

The Carrier Adapter is regularly updated with the latest carrier data, such as rates
and special services, and hence can act as a centralized carrier-integration database
and business rules manager. The Carrier Adapter helps companies to quickly meet
the changing requirements initiated by both carriers and customers, in the most
efficient way.

The Carrier Adapter has a data driven design. The functionality is defined in terms
of the relation between data elements stored in the database. Carriers having
similar functionality can be incorporated into an installation with minimal
engineering effort.

The Carrier Adapter is now integrated into Sterling Selling and Fulfillment
Foundation. For more information about the Carrier Adapter and how to configure
it, see the Sterling Selling and Fulfillment Foundation: Parcel Carrier Adapter .

Integration with the Loftware Print Server and Label Manager
Sterling Selling and Fulfillment Foundation provides integration with the Loftware
Print Server and Loftware Label Manager for printing reports and designing
custom labels. You can also design custom print services using the Service
Definition Framework. For more information about the print server and label
manager, see “Overview of Loftware Print Server and Label Manager Integration”
on page 55.

2 Sterling Selling and Fulfillment Foundation: Integration Guide

Integration with Material Handling Equipment
Sterling Selling and Fulfillment Foundation provides integration with various
material handling equipment (MHE). The automation enabled through the
integration enables increased efficiency in various processes of a warehouse. For
information about integrating Sterling Selling and Fulfillment Foundation with
MHE, see “Overview of Material Handling Equipment Integration” on page 83.

Integration with Enterprise Resource Planning Systems
Sterling Selling and Fulfillment Foundation provides integration with the
Enterprise Resource Planning (ERP) systems. An ERP system is a packaged
business software system that allows a company to automate and integrate the
majority of its business processes. For information about integrating Sterling
Selling and Fulfillment Foundation with ERP Systems, see “Overview of
Integration with ERP Components” on page 95.

Integration with Point of Sale Systems
Sterling Selling and Fulfillment Foundation provides integration with the
point-of-sale systems used in stores for product check-outs and returns from
customers. For information about integrating Sterling Selling and Fulfillment
Foundation with point-of-sale systems, see “Integrating with Point of Sale
Systems” on page 105.

Integration with JMS Systems
In order for some service nodes to communicate with external applications,
external message queueing software must be configured. For information about
configuring the third-party message queueing applications, see “Introduction to
Integrating with JMS” on page 119.

Integration with Financial Systems
To use the data captured using the Sterling Selling and Fulfillment Foundation
Inventory Cost Management feature with your financial system, you must load the
Initial Inventory Cost Data and configure process-specific events.

For information about integrating Sterling Selling and Fulfillment Foundation with
financial systems, see “Requirements for Financial System Integration” on page
131.

Rapid Deployment Features
Sterling Selling and Fulfillment Foundation Rapid Deployment Features can be
utilized for the rapid deployment of Sterling Selling and Fulfillment Foundation.
For information about Rapid Deployment Features, see “Rapid Deployment
Feature Overview” on page 137.

Chapter 1. Integration Overview 3

4 Sterling Selling and Fulfillment Foundation: Integration Guide

Chapter 2. Integrating with the Distribution Center System

Introduction to Distribution Center System Integration

Note: For the Sterling Selling and Fulfillment Foundation Release 9.0, the
integration described in this chapter has been deprecated.

The Distribution Center System (DCS) is a previously released product that
supports warehouse activities such as the inventory of items and the distribution
of packages. Typically, DCS operates in distribution centers fulfilling large numbers
of orders for items required in quantities of a case or less. It supports both
real-time radio frequency (RF) transactions and paper-based transactions.

Note: Sterling Selling and Fulfillment Foundation and Distribution Center System
integration requires that the DCS interface format conforms to the field size and
start positions at each of the integration points as detailed in the tables in this
chapter. For information about configuring DCS, see the DCS 6.2 documentation.
In addition, you must configure Sterling Selling and Fulfillment Foundation as
described in this chapter.

Note: Sterling Selling and Fulfillment Foundation is certified for DCS 6.2 Service
Pack 3 Hot Fix 13 and above.

DCS Purchase Order Interface Function
When a Purchase Order is created on Sterling Selling and Fulfillment Foundation
(either by importing Purchase Orders created by external order management
systems or by using the Application Console), DCS integration enables you to
publish that data to the DCS. The integration interface uses the Purchase Order
Download and Upload time-triggered transactions. For more information about
these transactions, see the Sterling Selling and Fulfillment Foundation: Application
Platform Configuration Guide.

Purchase Order Workflow
The following figure illustrates the workflow for the Purchase Order Download
and Purchase Order Upload time-triggered transactions that send Purchase Order
data between an external system and the DCS using the Sterling Selling and
Fulfillment Foundation.

© Copyright IBM Corp. 1999, 2011 5

1. An external Purchase Order system invokes Sterling Selling and Fulfillment
Foundation createOrder() API to create a Purchase Order for a DCS receiving
node. A Purchase Order is created and the order status becomes Created (1100).
Any future modifications to the original Purchase Order by an external system
are made by invoking the changeOrder() API.

2. The ON_SUCCESS event of the createOrder() or changeOrder() API invokes
an action, which in turn invokes a service called YantraWMSPODownloadService.
This service publishes data into the YFS_EXPORT table with
YantraWMSPODownloadService as the flow name.

3. The Purchase Order Download time-triggered transaction takes the record from
the YFS_EXPORT table and inserts it into the DCS interface
INFC_DNLD_TAB_1 table. Before downloading to the DCS, the transaction
verifies that the ship node assigned to the Purchase Order line is a DCS ship
node. If the ship node is not a DCS ship node, the transaction marks the record
as processed and takes no further action.

4. The vendor sends an advance shipment notice (ASN) to the DCS for shipping
the items on the Purchase Order. When items are received at the receiving
node, the DCS uploads Purchase Order Receipt records to the DCS interface
table.
The Purchase Order Receipt Upload time-triggered transaction picks up the
Purchase Order Receipt records from the DCS upload interface table and calls
the receiveOrder() API with the Receive Purchase Order transaction. The
status of items received is changed to Received (3900).
If the Purchase Order is to be downloaded to Sterling Selling and Fulfillment
Foundation from an external system, the ON_SUCCESS event of the Receive
Purchase Order transaction can be configured to invoke an action to publish the
Purchase Order Receipt data to the YFS_EXPORT table.
The data is then uploaded back to the external Purchase Order system.
For step-by-step procedures, see Configuring Purchase Order Time-Triggered
Transactions.

6 Sterling Selling and Fulfillment Foundation: Integration Guide

Understanding Purchase Order Transactions
When deciding how to implement DCS Purchase Order functionality, keep in mind
the expected behaviors associated with the Purchase Order transactions in the
contexts described in the following topics.

Supply Type Behavior
When the Purchase Order Status is Created (1100), the quantity in the
YFS_INVENTORY_SUPPLY table is added to the PO_PLACED supply type.

When the Purchase Order Status is moved to Order Received (3900), the quantity
in the YFS_INVENTORY_SUPPLY table moves from supply type PLANNED_PO to
supply type ONHAND. This is the default behavior and can be reconfigured as
needed.

Creating a Purchase Order
Sterling Selling and Fulfillment Foundation requires the Purchase Order number it
passes to the DCS to be unique across all Enterprises. While Sterling Selling and
Fulfillment Foundation permits the length of the Order number to be up to 40
characters, the DCS limits the length of both the Order and the Purchase Order
number to a maximum of 13 characters. In addition, to comply with the DCS
requirements, Purchase Order numbers may contain any combination of numbers
and uppercase alphabetic characters; lowercase alphabetic characters are not
permitted.

All Purchase Order lines must use consecutive prime line numbers, with all
subline numbers as = 1. The PODTL Record Type does not take in subline
numbers. For more information see “PODTL - Purchase Order Download Detail”
on page 10.

When integrating with the DCS, all the advance shipment notifications (Purchase
Order Receipt) created and uploaded to the DCS interface table are only for the
Purchase Orders that were initially downloaded from Sterling Selling and
Fulfillment Foundation.

When passing parameters to the DCS interface table, be sure that the length does
not exceed that which is enabled by the DCS Purchase Order header and detail
records.

Parameters are passed to the DCS when Sterling Selling and Fulfillment
Foundation downloads Purchase Orders from an external system.

Note that the date for the Estimated Time of Arrival in the DCS is the Requested
Delivery Date at the time of the Purchase Order creation on Sterling Selling and
Fulfillment Foundation.

Modifying a Purchase Order
Only the following modifications to a Purchase Order are permitted:
v Changing the quantity
v Changing the requested delivery date
v Adding one or more lines

Splitting a Purchase Order
A Purchase Order cannot be split across receiving nodes, even for the same DCS.
One Purchase Order is created for only one installation of the DCS and only one of
its receiving nodes. All Purchase Order lines must have the same receiving node.

Chapter 2. Integrating with the Distribution Center System 7

Canceling a Purchase Order or Line
While it is not possible to explicitly cancel a Purchase Order or Purchase Order
line, if the quantity zero (0) is passed from Sterling Selling and Fulfillment
Foundation, the Purchase Order modification time-triggered transaction interprets
it as closing the order line on the DCS. For the DCS, the results of canceling a line
is the same as closing a line. If the ordered quantity becomes zero, Sterling Selling
and Fulfillment Foundation does not permit any further changes to the line.

If Sterling Selling and Fulfillment Foundation receives a Purchase Order receipt
from the DCS on a line that has been cancelled by the external Purchase
OrderPurchase Order system (due to interface timing issues), it raises an exception
in Sterling Selling and Fulfillment Foundation.

Receiving Goods into Inventory
The warehouse receiving the goods is identified as the Receiving Ship Node on the
Purchase Order.

The specific goods that a node receives must match the description of the line
items on the original Purchase Order.

Receipt overage is controlled by the DCS by setting up an overage receipt
percentage based on your receiving preferences for each line type downloaded.

Configure the Overage Receipt Percentage
About this task

To configure the overage receipt percentage in the Applications Manager:

Procedure
1. Navigate to Applications > Supply Collaboration > Document Specific >

Purchase Order > Receipt > Receiving Preference.
2. On the Search Results panel choose :

The overage percentage is controlled in the DCS. The Sterling Selling and
Fulfillment Foundation percentage is applied during receipt. This means that
the receiving node for the DCS cannot receive quantity in excess of the overage
percentage specified. Also, by the same logic, Sterling Selling and Fulfillment
Foundation does not permit new order quantities to be modified to be below
the quantity already received for that Purchase Order line.

3. Be sure to configure the received quantity so that Sterling Selling and
Fulfillment Foundation and all the DCS work together.
For example, if received quantity is configured as ONHAND in Sterling Selling and
Fulfillment Foundation, it should be configured as Allocatable in all the DCS
installations.

Sterling Selling and Fulfillment Foundation and DCS Received
Quantity Mapping
The following table shows Sterling Selling and Fulfillment Foundation and DCS
Received Quantity Mapping:

Quantity Description

Sterling Selling
and Fulfillment
Foundation DCS

Available items ONHAND Allocatable

Items kept in reserve HELD Non Allocatable

8 Sterling Selling and Fulfillment Foundation: Integration Guide

In addition, a node cannot receive goods against a cancelled or closed line.

Inventory is increased in the onhand supply when Sterling Selling and Fulfillment
Foundation receives and processes the Purchase Order Receipt Upload transaction
from the DCS, which must not be configured to upload separate inventory
transactions for receipts.

For more information about configuring DCS Inventory Updates, see the DCS
documentation.

Configuring Purchase Order Time-Triggered Transactions
About this task

Setting up a Purchase Order involves configuring and scheduling time- triggered
transactions and configuring the pipeline that the Purchase Order should use. You
also should check your Oracle database configuration.

To configure the Purchase Order time-triggered transactions:

Procedure
1. Check that Oracle database links are created for each DCS receiving node for

which you want to create a Purchase Order. Sterling Selling and Fulfillment
Foundation maintains the links and views to the DCS interface table for each
receiving node in the DCS system.

2. Configure the Purchase Order Download and Purchase Order Receipt Upload
time-triggered transactions. For detailed information about configuring these
transactions, see the Sterling Selling and Fulfillment Foundation: Application
Platform Configuration Guide.

Note: While the WMS Purchase Order Download time-triggered transaction
does not require a ship node to be configured for downloading, you do need to
configure agent criteria for each ship node from which a WMS Purchase Order
Receipt Upload is to be processed.

3. Configure the pipeline using the directions in Configuring the Purchase Order
Pipeline.

4. Schedule the time intervals for running the Purchase Order time-triggered
transactions, as described in the Sterling Selling and Fulfillment Foundation:
Application Platform Configuration Guide.
The Purchase Order Download transaction writes the POHDR and PODTL
records into the DCS download interface table.
The Purchase Order Receipt Upload transaction reads the RCPHDR and
RCPDTL records from the DCS upload interface table.

Configuring the Purchase Order Pipeline
About this task

The Purchase Order time-triggered transactions require a Purchase Order pipeline.
If you need additional information about configuring pipelines, see the Sterling
Selling and Fulfillment Foundation: Application Platform Configuration Guide.

To configure the Purchase Order pipeline:

Chapter 2. Integrating with the Distribution Center System 9

Procedure
1. From the Applications Manager menu, choose Business Process > Process

Modeling.
2. Verify that the Purchase Order pipeline is configured with the following

transactions:

3. At the bottom of the left pane, click the Services tab to open the Services tree.
4. Create a new service named YantraWMSPODownloadService that is invoked

synchronously, does not provide real time response, and contains the following
sequence of nodes:
a. Start node
b. Database node: specify the table name property as YFS_EXPORT
c. End node

5. Create an action. Click the Invoked Services tab and add the service
YantraWMSPODownloadService you created.

6. Attach this action to the ON_SUCCESS events of the Create Order and Change
Order transactions in the Purchase Order Execution repository. If necessary, add
a condition to call this action only if the receiving node is the WMS Node.

DCS Purchase Order Interface

POHDR - Purchase Order Download Header

The following table lists the header information required by the Purchase Order
Download time-triggered transaction.

DCS Parameter
Sterling Selling and Fulfillment
Foundation Parameter

Field
Size

Start
Position

whse OrderLine.ReceivingNode in
CreateOrder XML

5 1

record_type ‘POHDR' 6 6

action_code Always ‘CH' 2 12

recv_order_type ‘VN' 2 14

recv_order_no Order.OrderNo in CreateOrder XML
(Alphabetic characters must be
upper-case)

13 16

recv_order_release_no ‘1' 3 29

source Order.SellerOrganizationCode in
CreateOrder XML

10 32

PODTL - Purchase Order Download Detail

The following table lists the detail, or line information, required by the Purchase
Order Download time-triggered transaction.

10 Sterling Selling and Fulfillment Foundation: Integration Guide

DCS Parameter
Sterling Selling and Fulfillment Foundation
Parameter

Field
Size

Start
Position

whse OrderLine.ReceivingNode in CreateOrder
XML

5 1

record_type ‘PODTL' 6 6

action_code ‘CL' Only for PO Line Close. (This happens
when the line ordered quantity is reduced to
zero.)

‘CH' for all other modifications, such as
changing the quantity (to nonzero), ETA, or
adding lines.

2 12

recv_order_type ‘VN' 2 14

recv_order_no Order.OrderNo in CreateOrder XML
(Alphabetic characters must be upper-case)

13 16

recv_order_release_no ‘1' 3 29

recv_order_line_no OrderLine.PrimeLineNo in CreateOrder XML 5 32

item_id OrderLine.Item.ItemID in CreateOrder XML 24 37

product_class OrderLine.Item.ProductClass in CreateOrder
XML

6 61

pack_type Always blank 4 67

order_qty OrderLine.OrderedQty in CreateOrder XML 9 71

pre_production Always blank 1 80

x_doc_recv_order Always blank 1 81

eta_date OrderLine.ReqShipDate in CreateOrder XML 8 82

unit_price OrderLine.LinePriceInfo.UnitPrice in
CreateOrder XML

11 90

country_of_origin OrderLine.Item.CountryOfOrigin in
CreateOrder XML

5 101

reference_1 Always blank 20 106

reference_2 Always blank 20 126

reference_3 Always blank 20 146

Sample Receive Order Output XML
The following code example shows a sample of the XML published by the
ON_SUCCESS event of the Receive Order transaction.
<?xml version="1.0" encoding="UTF-8"?>
<Receipt EnterpriseCode="E1" OrderNo="BB_11" ReceiptNo="AMAR88891">

<ReceiptLines>
<ReceiptLine PrimeLineNo="2" Quantity="1.0" ReceiptHeaderKey=""
SubLineNo="1"/>

</ReceiptLines>
</Receipt>

RCPHDR - Purchase Order Receipt Header

The following table lists the header information required by the Purchase Order
Receipt time-triggered transaction.

Chapter 2. Integrating with the Distribution Center System 11

DCS Parameter
Sterling Selling and Fulfillment
Foundation Parameter

Field
Size

Start
Position

whse OrderLine.ReceivingNode in CreateOrder
XML

5 1

record_type ‘RCPHDR' 6 6

action_code Always ‘AD' 2 12

asn_no Advance Shipment Notice number 20 14

asn_type Advance Shipment Notice type 2 34

reference_1 Reference number 30 191

RCPDTL - Purchase Order Receipt Detail

The following table lists the detail, or line information, required by the Purchase
Order Receipt time-triggered transaction.

DCS Parameter
Sterling Selling and Fulfillment
Foundation Parameter

Field
Size

Start
Position

whse OrderLine.ReceivingNode in CreateOrder
XML

5 1

record_type ‘RCPDTL' 6 6

action_code Always ‘AD' 2 12

asn_no Advance Shipment Notice number 20 14

asn_type Advance Shipment Notice type 2 34

recv_order_no Order.OrderNo in CreateOrder XML
(Alphabetic characters must be upper-case)

13 66

recv_order_line_no OrderLine.PrimeLineNo in CreateOrder
XML

5 82

received_qty Quantity received in ASN against order
line number

7 119

Receive Order Input XML Mapping
The receiveOrder() API input XML maps to DCS tables at the order header level
and at the order line level.

Order Header Records

The receiveOrder() API input XML and the DCS Order Header map as shown in
the following table:

Table 1. Order Header Records

Sterling Selling and Fulfillment
Foundation XML Parameter DCS Parameter

orderheaderkey Always blank

orderreleasekey Always blank

receiptheaderkey Always blank

receiptno HEADER.ANS_NO

releaseno Always blank

12 Sterling Selling and Fulfillment Foundation: Integration Guide

Shipment Records

The receiveOrder() API input XML and the DCS Order map as shown in the
following table:

Table 2. Shipment Records

Sterling Selling and Fulfillment
Foundation XML Parameter DCS Parameter

enterprisecode EnterpriseCode

orderno DETAIL.RECV_ORDER_NO

Order Line Records

The receiveOrder() API input XML and the DCS Order Line map as shown in the
following table:

Table 3. Order Line Records

DCS Parameter
Sterling Selling and Fulfillment
Foundation Parameter

BreakIntoComponents Always blank

DispositionCode Always blank

InspectedBy Always blank

InspectionComments Always blank

InspectionDate Always blank

LotNumber Always blank

OrderLineKey Always blank

PrimeLineNo DETAIL.RECV_ORDER_LINE_NO

SubLineNo 1

Quantity DETAIL.RECEIVED_QTY

ReceiptLineNo Always blank

SerialNo Always blank

ShipByDate Always blank

<KitLines> Not Used

DCS Shipment Interface
The DCS integrates with the IBM Sterling Distributed Order Management interface
of Sterling Selling and Fulfillment Foundation. This integration enables
shipment-related information to be passed between applications.

Understanding Order Transactions
Before implementing the upload and download functionality, you should
understand the following default behaviors:
v Modifications to an Order or Order Release in Sterling Selling and Fulfillment

Foundation after download to DCS are not transmitted to DCS.

Chapter 2. Integrating with the Distribution Center System 13

v Inventory is reduced from the onhand supply when Sterling Selling and
Fulfillment Foundation receives and processes the shipment confirmation
transaction from DCS. DCS must not be configured to upload separate inventory
transactions for shipments.

v The SCAC and Service Code used by the Sterling Selling and Fulfillment
Foundation input XML corresponds to the SCAC field in the DCS interface. Map
each carrier defined in DCS to those in Sterling Selling and Fulfillment
Foundation by creating an identical configuration in the Applications Manager >
Application Platform > Participant Modeling. For example, if DCS uses UPSG as
the SCAC Code for United Parcel Ground Service, in Sterling Selling and
Fulfillment Foundation for the participant called UPS, set the SCAC and Service
Code as UPSG, and specify the Service as Ground.

v DCS should disable cancellation from transaction 02012 (Order Release list).
Sterling Selling and Fulfillment Foundation only recognizes cancellations with
return ownership = Y when done from DCS transaction 02013 (load/shipper
list).

v The Order No for Shipment Advice can be a maximum length of 13 bytes and
must be upper-case characters and numbers or just numbers (lowercase
characters are not allowed).

Configuring DCS Shipment Time-Triggered Transactions
About this task

Setting up a sales order involves configuring and scheduling the Send Release and
WMS Shipment Confirmation time-triggered transactions and configuring the
pipeline a sales order should use. You also should check your Oracle database
configuration.

To configure the Send Release and WMS Shipment Confirmation time-triggered
transactions:

Procedure
1. Check your Oracle database to ensure that links are created for each DCS ship

node for which you create a Release. Sterling Selling and Fulfillment
Foundation maintains links and views to the DCS interface tables for each
node.

2. Configure the Send Release and Ship Confirm time-triggered transactions:
v If you want to configure the Send Release transaction, from the Applications

Manager Applications menu, choose Application Platform > Process
Modelling > Order > Sales Order > Order Fulfillment > Transaction
Repository Send Release.

v If you want to configure the Ship Confirm transaction, from the Applications
Manager Applications menu, choose Application Platform > Process
Modelling > General > General > Transaction Repository > Ship Confirm.

Note: While the Send Release time-triggered transaction does not require a
ship node to be configured for downloading, you do need to configure agent
criteria for each ship node from which a WMS shipment confirmation is to
be processed.

3. Configure the Sales Order Fulfillment Pipeline to download ship advice to DCS
and receive shipment confirmation from DCS.
The repository has a default pipeline configured to download shipment advice
to DCS and receive shipment confirmation. When modifying the pipeline, first

14 Sterling Selling and Fulfillment Foundation: Integration Guide

copy the default pipeline and then modify that copy to suit your needs. For
more information about configuring a pipeline, see the Sterling Selling and
Fulfillment Foundation: Application Platform Configuration Guide.
While configuring the pipeline, keep in mind the following characteristics of
the DCS shipment-related integration:
v Order Releases to be downloaded to DCS are staged with the status Awaiting

WMS Interface (3200.02). The Send Release transaction in the pipeline is
configured to pick up these Order Releases and download them to DCS.

v After the download completes, the Order Release status moves to Sent to
Node (3300).

v The Shipment Confirmation transaction uploads the shipment from the DCS
interface table and moves the status of the Order to Shipped (3700).

4. Schedule the time intervals for running the Send Release and WMS Shipment
Confirmation time-triggered transactions from DCS, as described in the Sterling
Selling and Fulfillment Foundation: Application Platform Configuration Guide.

DCS Order Release Interface
When Order Releases are going to the DCS interface, the Send Release transaction
dispatches the Order Release information to DCS in open interface format if the
ship node's interface is set to DCS in Sterling Selling and Fulfillment Foundation.

Setting a Ship Node as a WMS Ship Node
About this task

To set the ship node as a WMS ship node:

Procedure
1. From the Applications Manager Applications menu, choose Application

Platform > Participant Modeling > Organization Details > Roles & Participation
Tab > Node Attributes/Primary Info Tab (on the right) > Execution In Node
Using.

2. Choose the Sterling Warehouse Management System 6.2.

Send Release Transaction Supported Record Types
Sterling Selling and Fulfillment Foundation supports the following record types,
which are output by the Send Release time-triggered transaction:
v ORDHDR – Order Release Order Header
v ORDDTL – Order Release Order Detail
v ORDADR – Order Release Order Address
v ORDINS – Order Release Order Instruction
v ORDBOM – Order Release Order Bill of Materials
v ORDNAM – Order Release Order Name

These record types are written by the Send Release transaction into the DCS
download interface table.

Only the action code Add (AD) is supported by Sterling Selling and Fulfillment
Foundation.

Chapter 2. Integrating with the Distribution Center System 15

ORDHDR – Order Release Order Header

The following table lists the Order Release header information mapped to DCS.

DCS Parameter
Sterling Selling and Fulfillment Foundation
Parameter

Field
Size

Start
Position

whse ShipNode 5 1

record_type Always ‘ORDHDR' 6 6

action_code Always ‘AD' 2 12

order_no Order Number
(Alphabetic characters must be upper-case)

13 14

order_rel_no Order Release Number 3 27

ship_to_cust_id PersonInfoShipTo PersonID in CreateOrder
XML

35 30

bill_cust_id PersonInfoBillTo PersonID in CreateOrder XML 35 65

forward_to_cust_id PersonInfoMarkFor PersonID in CreateOrder
XML

35 100

pack_hold_flag Always ‘N' 1 135

order_type OrderType in CreateOrder XML 1 136

order_cancel_date ReqCancelDate in Order Release being
downloaded

8 147

order_due_date ReqDeliveryDate in CreateOrder XML 8 155

terms_code TermsCode in CreateOrder XML 8 163

carrier_code SCAC 4 173

priority_code PriorityCode in CreateOrder XML 2 177

consol_rule Always blank 2 179

cartonization_rule Always blank 2 181

cust_order CustomerPONo in CreateOrder XML 25 183

pack_list_type PackList Type in ShipAdvice XML 2 208

spc_ticket_req PersonalizeCode in CreateOrder XML 2 210

asn_flag NotifyAfterShipmentFlag in CreateOrder XML 1 212

delivery_date ReqDeliveryDate in Order Release being
downloaded

8 216

orig_ship_date ReqShipDate in Order Release being
downloaded

8 224

samples_flag Always blank 1 234

ship_to_customer_
name

PersonInfoShipTo FirstName and LastName in
CreateOrder XML

35 235

ship_to_addr1 PersonInfoShipTo AddressLine1 in CreateOrder
XML

35 270

ship_to_addr2 PersonInfoShipTo AddressLine2 in CreateOrder
XML

35 305

ship_to_addr3 PersonInfoShipTo AddressLine3 in CreateOrder
XML

35 340

ship_to_add4 PersonInfoShipTo AddressLine4 in CreateOrder
XML

35 375

ship_to_city PersonInfoShipTo City in CreateOrder XML 30 410

16 Sterling Selling and Fulfillment Foundation: Integration Guide

DCS Parameter
Sterling Selling and Fulfillment Foundation
Parameter

Field
Size

Start
Position

ship_to_state PersonInfoShipTo State in CreateOrder XML 2 440

ship_to_zip_code PersonInfoShipTo Zip Code in CreateOrder
XML

9 442

ship_to_country_ code PersonInfoShipTo Country in CreateOrder XML 5 451

cross_dock_flag Always blank 2 456

split_flag ShipCompleteFlag in CreateOrder XML 1 488

consol_flag Always blank 1 489

shippable_order Always ‘Y' 1 490

delivery_code DeliveryCode in CreateOrder XML 1 517

back_order_
authorized_ind

Always ‘01' 2 526

cal_check_req_ind Always ‘N' 1 541

inbound_flag Always ‘N' 1 550

order_create_date OrderDate in CreateOrder XML 8 564

carrier_service Carrier Service Code in CreateOrder XML 10 572

cust_carrier_charge_
account_no

Carrier Account Number in CreateOrder XML 35 582

enterprise_code Enterprise Code 24 639

ORDDTL – Order Release Order Detail

The following table lists the Order Release detail information mapped to DCS.

Table 4. Order Release Detail Information Mapped to DCS

DCS Parameter
Sterling Selling and Fulfillment Foundation
Parameter

Field
Size

Start
Position

whse ShipNode 5 1

record_type Always ‘ORDDTL' 6 6

action_code Always ‘AD' 2 12

order_no Order Number
(Alphabetic characters must be upper-case)

13 14

order_rel_no Order Release Number 3 27

order_prime_line Order Prime Line Number 5 30

order_sub_line Order Sub Line Number 5 35

mark_for PersonInfoMarkFor PersonID in CreateOrder
XML

35 40

item_id ItemID in CreateOrder XML 24 75

product_class ProductClass in CreateOrder XML 6 99

quality_status Always blank 2 105

department_code DepartmentCode in CreateOrder XML 6 107

hazard_flag Always ‘N' 1 119

qty_ordered OrderedQty in CreateOrder XML 9 120

shippable_qty Total Quantity to be shipped 9 129

Chapter 2. Integrating with the Distribution Center System 17

Table 4. Order Release Detail Information Mapped to DCS (continued)

DCS Parameter
Sterling Selling and Fulfillment Foundation
Parameter

Field
Size

Start
Position

nonshippable_qty Always ‘0' 9 138

pack_type Always ‘EACH' 4 147

ship_together_code ShipTogetherNo in CreateOrder XML 5 151

line_price Unit Price from LinePriceInfo in CreateOrder
XML

11 156

spl_processing_code1 Always blank 4 167

orig_req_ship_date ReqShipDate in CreateOrder XML 8 249

act_req_ship_date ReqShipDate in CreateOrder XML 8 257

customer_po_no CustomerPONo in CreateOrder XML 25 269

ship_sure_model_ind Always ‘Y' 1 294

order_line_point Always blank 5 295

line_type Always blank 4 300

carrier_code Always blank 4 304

samples_flag Always ‘N' 1 308

customer_po_line_no CustomerLinePONo in CreateOrder XML 13 335

customer_sku CustomerItem in CreateOrder XML 40 386

kit_code KitCode in CreateOrder XML 2 466

ORDADR – Order Release Order Address

The following table lists the Order Release address information mapped to DCS.

Table 5. Order Release Address Information Mapped to DCS

DCS Parameter
Sterling Selling and Fulfillment
Foundation Parameter

Field
Size

Start
Position

whse ShipNode 5 1

record_type Always ‘ORDADR' 6 6

action_code Always ‘AD' 2 12

order_no Order Number
(Alphabetic characters must be
upper-case)

13 14

order_rel_no Order Release Number 3 27

address_type ‘FT' or ‘BT' 2 30

customer_name FirstName and LastName in
CreateOrder XML

35 32

addr1 AddressLine1 in CreateOrder XML 35 67

addr2 AddressLine2 in CreateOrder XML 35 102

addr3 AddressLine3 in CreateOrder XML 35 137

addr4 AddressLine4 in CreateOrder XML 35 172

city City in CreateOrder XML 30 207

state State in CreateOrder XML 2 237

zip_code Zip Code in CreateOrder XML 9 239

18 Sterling Selling and Fulfillment Foundation: Integration Guide

Table 5. Order Release Address Information Mapped to DCS (continued)

DCS Parameter
Sterling Selling and Fulfillment
Foundation Parameter

Field
Size

Start
Position

country_code Country in CreateOrder XML 5 248

wms_buffer Always blank 30 253

ORDINS – Order Release Order Instruction

The following lists the Order Release instruction information mapped to DCS.

Table 6. Order Release Instruction Information Mapped to DCS

DCS Parameter
Sterling Selling and Fulfillment
Foundation Parameter

Field
Size

Start
Position

whse ShipNode 5 1

record_type Always 'ORDINS' 6 6

action_code Always 'AD' 2 12

order_no Order Number
(Alphabetic characters must be
upper-case)

13 14

order_rel_no Order Release Number 3 27

order_prime_line Order Prime Line Number 5 30

order_sub_line Order Sub Line Number 5 35

instruction_type InstructionType in CreateOrder XML 3 40

seq_no Sequence Number of instructions 3 43

usage_type Instruction usage 2 46

instructions_text InstructionText in CreateOrder XML 80 48

wms_buffer Always blank 30 128

ORDBOM – Order Release Order Bill of Materials

The following table lists the Order Release Bill of Materials information mapped to
DCS.

DCS Parameter
Sterling Selling and Fulfillment
Foundation Parameter

Field
Size

Start
Position

whse ShipNode 5 1

record_type Always 'ORDBOM' 6 6

action_code Always 'AD' 2 12

order_no Order Number
(Alphabetic characters must be
upper-case)

13 14

order_rel_no Order Release Number 3 27

order_prime_line Order Prime Line Number 5 30

order_sub_line Order Sub Line Number 5 35

item_id ItemID in CreateOrder XML 24 40

product_class ProductClass in CreateOrder XML 6 64

quality_status Always blank 2 70

Chapter 2. Integrating with the Distribution Center System 19

DCS Parameter
Sterling Selling and Fulfillment
Foundation Parameter

Field
Size

Start
Position

pack_type Always 'EACH' 4 72

bom_qty KitQty in CreateOrder XML 9 76

pick_slip_number Always blank 13 85

picking_line_detail_id Always blank 13 98

scrap_factor Always '0000000' 7 111

reference_field1 Always blank 40 118

reference_field2 Always blank 40 158

reference_field3 Always blank 40 198

reference_field4 Always blank 40 238

reference_field5 Always blank 40 278

wms_buffer Always blank 30 318

ORDNAM – Order Release Order Name
This interface format is used to send orders having the following information:
v COD - This record is sent for orders having PaymentType as COD.
v Customer Phone Number - This record is sent only if the ShipTo Customer Day

Phone Number is not blank.
v Importer information - This record is sent for international shipments only. This

information is not sent if country code in any address (ship node or ship-to
address) is blank.

v YFS accepts Import License ID and Import License Expiration Date at Order line
level, whereas DCS accepts it at Order header level.

v Exporter Information - This record is sent for international shipments only.

The ship node address country code and ship-to address country code should not
be blank.

The following table lists the Order Release name information mapped to DCS.

DCS Parameter
Sterling Selling and Fulfillment Foundation
Parameter

Field
Size

Start
Position

whse ShipNode 5 1

record_type Always 'ORDNAM' 6 6

action_code Always 'AD' 2 12

order_no Order Number
(Alphabetic characters must be upper-case)

13 14

order_rel_no Order Release Number 3 27

name For COD- '100'

For Customer Phone Number - '300'

For Importer Information - '400'1

For Exporter Information - '400'

3 30

20 Sterling Selling and Fulfillment Foundation: Integration Guide

DCS Parameter
Sterling Selling and Fulfillment Foundation
Parameter

Field
Size

Start
Position

value For COD- '103'

For Customer Phone Number - '301'

For Importer Information - '402'1

For Exporter Information - '401'

3 33

reference_field1 For COD - 'COD'

For Customer Phone Number -
PersonInfoShipTo DayPhone in CreateOrder
XML

For Importer information - TaxPayerId in
CreateOrder XML1

For Exporter Information - ExportTaxPayerId
of the ShipNode

40 36

reference_field2 For COD - Always blank

For Customer Phone Number - Always blank

For Importer Information - ImportLicenseNo in
CreateOrder XML1

For Exporter Information - ExportLicenseNo of
the ShipNode

40 76

reference_field3 For COD - Always blank

For Customer Phone Number - Always blank

For Importer information -
ImportLicenseExpDate in CreateOrder XML1

For Exporter Information -
ExportLicenseExpDate of the ShipNode

40 116

reference_field4 Always blank 40 156

reference_field5 Always blank 40 196

wms_buffer Always blank 30 236

Tracking License Information

When Sterling Selling and Fulfillment Foundation sends Order Release information
to DCS, it sends only the Import License ID and Import License Expiration Date
from the first order line and ignores information from the other lines. As a result, if
you need to track all license information, group items by license type in separate
orders.

For example, put all materials that require the same type of license for hazardous
material on one order and items that require the same type of license for
nonhazardous chemicals on another.

Chapter 2. Integrating with the Distribution Center System 21

DCS Shipment Confirmation
Sterling Selling and Fulfillment Foundation picks up the shipment confirmations
posted by DCS in the open interface tables. The WMS Shipment Confirmation
time-triggered transaction performs shipment confirmation.

Only action codes Cancel (CA) and Ship (SH) are picked up by Sterling Selling and
Fulfillment Foundation.

Not all records and attributes are supported by Sterling Selling and Fulfillment
Foundation. The WMS Shipment Confirmation transaction reads only the
PCKHDR, CARHDR, PCKINF, CNCDTL, and SRLDTL record types from the DCS
upload interface table.

PCKHDR – Shipment Confirmation Pickticket Header
The following table lists the shipment confirmation pickticket header information
mapped to DCS.

DCS Parameter
Sterling Selling and Fulfillment
Foundation Parameter

Field
Size

Start
Position

whse ShipNode 5 1

record_type Always 'PCKHDR' 6 6

action_code Always 'CA' or 'SH' 2 12

pickticket_no PickTicketNo in confirmShipment XML 20 14

ship_type Ship Mode in confirmShipment XML 4 80

actual_ship_date ShipDate in confirmShipment XML 8 92

carrier_code SCAC and Service Code in
confirmShipment XML

4 107

trailer_no TrailerNo in confirmShipment XML 20 111

freight_charges FreightCharge in confirmShipment
XML

13 131

manifest_no ManifestNo in confirmShipment XML 20 144

bol_no BOL Number 20 164

pro_no ProNo in confirmShipment XML 20 184

master_bol_no Parent Shipment Key 20 204

total_weight TotalWeight in confirmShipment XML 13 224

seal_no Seal Number 20 250

total_volume TotalVolume in confirmShipment XML 7 296

it_number IT number 20 303

it_date IT Date 8 323

from_appointment_date From appointment date 8 331

to_appointment_date To appointment date 8 339

appointment_number Appointment number 40 363

ship_to_addr1 ToAddress AddressLine1 in
confirmShipment XML

35 483

ship_to_addr2 ToAddress AddressLine2 in
confirmShipment XML

35 518

ship_to_addr3 ToAddress AddressLine3 in
confirmShipment XML

35 553

22 Sterling Selling and Fulfillment Foundation: Integration Guide

DCS Parameter
Sterling Selling and Fulfillment
Foundation Parameter

Field
Size

Start
Position

ship_to_addr4 ToAddress AddressLine4 in
confirmShipment XML

35 588

ship_to_city ToAddress City in confirmShipment
XML

30 623

ship_to_state ToAddress State in confirmShipment
XML

2 653

ship_to_zip ToAddress Zip Code in
confirmShipment XML

9 655

ship_to_country ToAddress Country in confirmShipment
XML

5 664

CARHDR – Shipment Confirmation Carton Header

The following table lists the carton header information mapped to DCS.

DCS Parameter
Sterling Selling and Fulfillment
Foundation Parameter

Field
Size

Start
Position

whse ShipNode 5 1

record_type Always 'CARHDR' '6 6

action_code 'CA' or 'SH' '2 12

pickticket_no Not used 20 14

carton_no Container number 11 34

weight Used for containers other than pallets.
Used as Container Gross Weight and
Container Net Weight.

13 59

tracking_number Tracking number 20 72

ucc128_code If the third character is not '1', this is
used as Container SCM.

30 92

manifest_no Manifest number 10 122

pallet_scm If the third character of ucc128_code is
'1', this is used as Container SCM.

30 132

package_type Container type 2 162

pallet_length Used if the container is pallet. Specifies
the pallet length.

9 164

pallet_width Used if the container is pallet. Specifies
the pallet length.

9 173

pallet_height Used if the container is pallet. Specifies
the pallet height.

9 182

pallet_gross_weight Used if the container is pallet. Specifies
the pallet gross weight.

9 191

pallet_net_weight Used if the container is pallet. Specifies
the pallet net weight.

9 200

carton_length Used for containers other than pallet.
Specifies the container length.

9 209

carton_width Used for containers other than pallet.
Specifies the container width.

9 218

Chapter 2. Integrating with the Distribution Center System 23

DCS Parameter
Sterling Selling and Fulfillment
Foundation Parameter

Field
Size

Start
Position

carton_height Used for containers other than pallet.
Specifies the container height.

9 227

freight_charge Freight Charge 7 238

PCKINF – Shipment Confirmation Pick Information

The following table lists the shipment confirmation pick information mapped to
DCS.

DCS Parameter
Sterling Selling and Fulfillment
Foundation Parameter

Field
Size

Start
Position

whse ShipNode 5 1

record_type Always 'PCKINF' 6 6

action_code Always 'CA' or 'SH' 2 12

pickticket_no PickTicketNo in confirmShipment XML 20 14

carton_no Container No 11 34

item_id Item ID 24 45

product_class Product Class 2 69

picked_qty Shipped Qty 9 80

order_no Order No 13 89

order_release_no Release Number 3 102

order_line_no Prime Line No 4 105

sub_line_no Sub Line No 5 109

CNCDTL – Shipment Confirmation Cancel Detail

The following table lists the cancel detail information mapped to DCS.

The CNCDTL record is created only when Orders or Shipments are cancelled or
backordered from the DCS Load/Shipper screen (02013), not the Order Release List
screen (02012).

DCS Parameter
Sterling Selling and Fulfillment
Foundation Parameter

Field
Size

Start
Position

whse ShipNode 5 1

record_type Always 'CNCDTL' 6 6

action_code Always 'CA' or 'SH' 2 12

order_no Order No 13 34

order_release_no Order Release No 3 47

order_line_no Prime Line No 5 50

sub_line_no Sub Line No 5 55

item_id Item ID 24 60

product_class Product Class 2 84

cancel_quantity BackOrder Qty 9 92

24 Sterling Selling and Fulfillment Foundation: Integration Guide

SRLDTL - Pick Ticket Serial Record

Sterling Selling and Fulfillment Foundation can accept serial numbers when an
item has been configured in DCS as Serialized and the Sterling Selling and
Fulfillment Foundation WMS Ship Confirmation agent is used. When an item is
configured as Serialized in DCS and is shipped from DCS, DCS publishes SRLDTL
records into the interface tables.

The WMS Ship Confirm Upload agent reads the interface records published by
DCS and forms an input XML for the confirmShipment() API.

The SRLDTL records published by DCS are across order lines. These records do
not contain line information. Sterling Selling and Fulfillment Foundation retrieves
the serial records corresponding to each shipment line by matching the following
attributes from the SRLDTL record with the shipment line, and making a subset of
serial records for each shipment line:
v Item ID of SRLDTL with item id of Shipment line,
v Product Class of SRLDTL with product class of Shipment line,
v Pallet SCM of SRLDTL with pallet SCM on the container for the shipment line.
v Carton SCM: Based on setup in DCS, this field can have either carton SCM or

container number. If the attribute length is 20, it is mapped to the Carton SCM
of the shipment line. Otherwise, it is mapped to the Container Number of the
shipment line.

Once a subset of the SRLDTL records is formed, Sterling Selling and Fulfillment
Foundation adds a ShipmentLine element for each SRLDTL record in the XML and
reduces the quantity from the already existing ShipmentLine element.

For example, Not Used if a shipment line has five units and there are five SRLDTL
records for each unit, Sterling Selling and Fulfillment Foundation adds five
ShipmentLine elements to the input XML and reduces the quantity of the original
element to zero (0).

Note that the YFS_Container_Details table should have a serial number for each
unit shipped.

Pickticket Serial Record Information Mapped to DCS

The following table lists the pickticket serial record information mapped to DCS.

DCS Parameter
Sterling Selling and Fulfillment
Foundation Parameter

Field
Size

Start
Position

whse ShipNode (Not used) 5 1

record_type SRLDTL 6 6

action_code Not used 2 12

pickticket_no Not used 20 14

item_id Shipment line's item ID 24 34

product_class Shipment line's product class 2 58

item_pseudo_no Not used 12 60

item_serial_no Serial number (Passed to the API) 20 72

component_item_id Not used 24 92

component_product_class Not used 2 116

Chapter 2. Integrating with the Distribution Center System 25

DCS Parameter
Sterling Selling and Fulfillment
Foundation Parameter

Field
Size

Start
Position

component_pseudo_no Not used 12 118

component_serial_no Not used 20 130

quantity Quantity 9 150

country_of_origin Not used 5 159

customer_po_number Not used 25 164

pallet_scm CARHDR's pallet SCM. 20 189

carton_scm If the attribute length is 20, it is mapped
to the Carton SCM of the shipment line.
Otherwise, it is mapped to the
Container Number of the shipment line.

20 209

upc_code Not used 12 229

upc_case_code_scanned Not used 14 241

upc_case_code_
number_of_boxes

Not used 7 255

DCS Inventory Interface
The DCS inventory interface can download inventory changes due to Returns in
Sterling Selling and Fulfillment Foundation to DCS. It can also read the uploads of
inventory changes from DCS to Sterling Selling and Fulfillment Foundation.

DCS Inventory Upload
The Sterling Selling and Fulfillment Foundation inventory upload picks up
inventory change information from DCS and uploads the information to Sterling
Selling and Fulfillment Foundation. The WMS Inventory Upload time-triggered
transaction, scheduled through yfs.wms.inventory, performs inventory change
uploading which is read by the WMS Inventory Upload transaction.

DCS passes only one record type, TRNDTL, for an item and product class
combination.

TRNDTL – Inventory Change Upload Record

The following table lists the inventory change upload information mapped to DCS.

DCS Parameter
Sterling Selling and Fulfillment
Foundation Parameter

Field
Size

Start
Position

whse ShipNode 5 1

record_type Always ‘TRNDTL' 6 6

action_code Always ‘AD' 2 12

tran_code ReferenceField4 5 31

tran_reason_code ReasonCode 4 41

item_id Item ID 24 45

product_class Product Class 2 69

pack_type UOM 4 71

unavailable_quantity HeldQty 8 77

26 Sterling Selling and Fulfillment Foundation: Integration Guide

DCS Parameter
Sterling Selling and Fulfillment
Foundation Parameter

Field
Size

Start
Position

available_quantity OnHandQty 8 85

held_quantity HeldQty 8 93

order_release_no ReferenceField2 3 203

order_line_no ReferenceField3 5 206

to_location ReferenceField5 12 284

reference_field_1 ReferenceField1 30 296

reference_field_2 ReasonText 30 326

Note: Reference Fields 1-5 map to the reference field in the YFS_Inventory_Audit
table.

Note: For Work Orders, DCS sets the value of the Reference_Field4 Sterling Selling
and Fulfillment Foundation Parameter to KITD for use by inventory costing.

For more information about the Inventory Upload transaction, see the Sterling
Selling and Fulfillment Foundation: Application Platform Configuration Guide.

DCS Inventory Download
When a Return is recorded in the Sterling Selling and Fulfillment Foundation,
inventory adjustments may take place depending on the configuration of Status
and Supply Type. When inventory adjustments take place on ship nodes specified
as InterfaceType DCS, the inventory changes are published to the WMS interface
tables, if a service is configured to do so.

Note: Do not configure multiple Supply Types to be downloaded to DCS. Doing
so downloads duplicate records to the INFC_DNLD_TAB_1 interface table.

Configuring an Inventory Download Service
About this task

To configure an inventory download service:

Procedure
1. From the Applications Manager menu, choose Business Process > Process

Modeling. Open the General tab and choose the Details of the General process
type.

2. Create a new service that is invoked synchronously, does not provide real time
response, and contains the following sequence of nodes:
a. Start node.
b. API node. Choose Extended API node and configure it as follows:

v Specify any name for API name.
v Specify Class Name as com.yantra.inv.business.

inventory.YFSInventoryDownload

v Specify Method Name as downloadInventory

c. End node.
3. Create an action. Choose the Invoked Services tab and add the service you

created.

Chapter 2. Integrating with the Distribution Center System 27

4. Enable the INVENTORY_CHANGE event raised by the
INVENTORY_CHANGE transaction.

5. Attach the action created in 3 on page 27 to the INVENTORY_CHANGE event
of the INVENTORY_CHANGE transaction.

6. If necessary, add a Condition node to call the action only if AdjustmentType is
RETURN. The AdjustmentType is RETURN when inventory adjustments take
place due to Returns.

Note: Even if a service is configured unconditionally, the ship node must be
specified as InterfaceType DCS and AdjustmentType is RETURN in order for the
data to be written to the interface tables.

Input XML Passed to the Inventory Download Service: The following input
XML is passed to the Inventory Download service by the event:
<?xml version="1.0" encoding="UTF-8"?>
<YantraXML> <XML AccountNo="" AdjustmentType=" "

CostCurrency="" EnterpriseCode=" " ItemID=" "
ItemKey="" Organization=" "
ProductClass="" Quantity="" ReasonCode="" ReasonText=""
Reference_1=""
Reference_2="" Reference_3="" Reference_4=""
Reference_5="" ShipByDate="" ShipNode=""
SupplyReference=" " SupplyReferenceType=""
SupplyType=" " UnitCost="" UnitOfMeasure=" "/> </YantraXML>

The downloadInventory() method publishes inventory to WMS only if the
'AdjustmentType' in the XML is 'RETURN' and the ship node's interface type is
'WMS_YANTRA'. This method converts the XML into a WMS format string. A
record is inserted into the 'Infc_Dnld_Tab_1' table in the WMS database with
interface type as 'INVD'.

Adding Location and Reference Fields

The default XML (published by the event) does not contain location. Either Sterling
Warehouse Management System can be configured to have a default location or
this XML can be modified (to add the 'WarehouseLocation' attribute) in the service
before passing it to this method. If the XML contains the 'WarehouseLocation'
attribute, it is passed to Sterling Warehouse Management System as the location.
Similarly, the 'WMSReferenceField1' and 'WMSReferenceField2' attributes can be
added to the XML for Sterling Warehouse Management System fields
'ReferenceField1' and 'ReferenceField2'.

INVCHG - Inventory Change Download Record

The following table lists the inventory change download information mapped to
DCS.

DCS Parameter
Sterling Selling and Fulfillment Foundation
Parameter

Field
Size

Start
Position

whse /YantraXML/XML/ShipNode 5 1

record_type INVCHG 6 6

action_code AD 2 12

tran_date Transaction date in 'CCYYMMDD' format 8 14

tran_time Transaction time in 'HHMMSS' format 6 22

tran_seq_no 001 3 28

28 Sterling Selling and Fulfillment Foundation: Integration Guide

DCS Parameter
Sterling Selling and Fulfillment Foundation
Parameter

Field
Size

Start
Position

tran_code WIMT 5 31

tran_type Always blank 5 36

tran_reason_code Always blank 4 41

item_id /YantraXML/XML/ItemID 40 45

product_class /YantraXML/XML/ProductClass 6 85

pack_type EACH 4 91

quality_status Always blank 2 95

unavailable_quantity 0 7 97

available_quantity /YantraXML/XML/Quantity 7 104

held_quantity 0 7 111

location /YantraXML/XML/WarehouseLocation 20 118

user_id User ID from the context 8 138

reference_field_1 Data maps to /YantraXML/XML/
WMSReferenceField1. No data is passed, it
maps to /YantraXML/XML/
SupplyReference.

Note: OrderNo is passed in
/YantraXML/XML/SupplyReference by the
event.

30 146

reference_field_2 Data maps to /YantraXML/XML/
WMSReferenceField2. No data is passed, it
maps to /YantraXML/XML/SupplyType.

30 176

wms_buffer Always blank 30 206

DCS Returns Interface
The integration of Sterling Selling and Fulfillment Foundation with DCS enables
information related to Return Order release to pass between the two applications.

The integration provides an API (sendReturnReleaseToDCS) to send the Return
Order release to DCS, and a time triggered transaction (DCS Return Receipt
Upload Agent) to get the return release receipt information from DCS.
Additionally, this integration supports receipts against blind returns that were
created on DCS.

Chapter 2. Integrating with the Distribution Center System 29

Return Order Integration Workflow
The following figure illustrates the workflow for the Return Order integration.

1. An external Return Order system invokes the createOrder() API on Sterling
Selling and Fulfillment Foundation to create a Return Order for a DCS
receiving node. A Return Order is created and the order status becomes
Created (1100).

2. When the Return Order is released, the
ON_RELEASE_CREATION_OR_CHANGE event of the releaseOrder API can be
configured to invoke the service YantraSendReturnReleaseToDCSService, which
inserts a message containing the return release key into the JMS Queue. For
more information about configuring Return Order integration with DCS, see
"Configuring Return Order Integration with DCS".
The return release is modified by invoking the changeRelease API. After the
return release modification, if the ON_SUCCESS event is configured to invoke
YantraSendReturnReleaseToDCSService, a message containing the release key is
inserted into the JMS queue.

3. The sendReturnReleaseToDCS API picks up the return release key from the JMS
Queue, fetches the release details, and inserts a message containing the release
details into the DCS interface table INFC_DNLD_TAB_1.

4. An agent on DCS picks up the return release data from INFC_DNLD_TAB_1
and creates a return on DCS.

5. Alternatively, a blind return can be directly created on DCS using the DCS user
interface.

6. Once the return is received, DCS agents insert the receipt details into the
interface table INFC_UPLD_TAB_1.

7. The DCS Return Receipt Upload Agent picks up the receipt details from the
interface table INFC_UPLD_TAB_1 and calls the receiveOrder API to mark the
Return Order as received.
For blind returns, before calling the receiveOrder API, the DCS Return Receipt
Upload Agent first calls the createOrder API to create a Return Order, or the

30 Sterling Selling and Fulfillment Foundation: Integration Guide

changeOrder API to change the order that already exists for this blind return
on Sterling Selling and Fulfillment Foundation.

Determining the Enterprise Code for Blind Return During
Upload

For blind RMA the system determines the enterprise code as follows:
1. If the value of RARHDR.REFERENCE-1 is blank, the primary organization of

the owner of the ship node is taken as the enterprise code.
2. If the value of RARHDR.REFERENCE-1 is not blank, the system checks the

value of RARHDR.REFERENCE-1.
v If the value of RARHDR.REFERENCE-1 is a valid organization with an

Enterprise role, the system uses the value of RARHDR.REFERENCE-1 as the
enterprise Code.

v If the value of RARHDR.REFERENCE-1 is not a valid organization with an
Enterprise role, the system throws an error.

Configuring Return Order Integration with DCS
Return Order Integration with DCS can have various configurations.

The setup for the Disposition Code should be identical in both Sterling Selling and
Fulfillment Foundation and DCS.

Inventory updates during return receipt upload should be turned off. Inventory
adjustments for return receipts should be done through the inventory adjustment
interface with DCS. Whenever inventory is updated in DCS, inventory is updated
in Sterling Selling and Fulfillment Foundation too through this interface.

Configuring Return Release Download to DCS
About this task

Configuring return release download to DCS involves creating a new JMS Queue,
service, and action.

To configure return release download to DCS:

Procedure
1. Create a synchronous service such as YantraSendReturnReleaseToDCSService

under Reverse Logistics Services.
This service puts the Return Order release key into a JMS queue, say
RMADownloadQueue, if the ship node is a DCS node.

The "Condition" mentioned in the figure should be configured with ship node
interface type = ‘WMS_YANTRA'.

2. For the API component in the service,
v Choose the General tab.

Chapter 2. Integrating with the Distribution Center System 31

v Select the Sterling Selling and Fulfillment Foundation Standard API option
button.

v From the API Name drop-down list, select sendReturnReleaseToDCS.
When the integration server configured in the JMS receiver runs, the
sendReturnReleaseToDCS API picks up the order release key from the JMS
queue and inserts the return release details in the DCS interface table.

3. Navigate to ReverseLogistics Repository > Actions and create an action, say
SendReturnReleaseToDCS.
This action should invoke YantraSendReturnReleaseToDCSService.

4. Configure ON_RELEASE_CREATION_OR_CHANGE event of the SCHEDULE
RETURN transaction and ON_SUCCESS event of the changeRelease API to
invoke this action (in the case of Reverse Logistics, the SCHEDULE RETURN
transaction also does the release).

Configuration for Receiving Blind RMA
Return Receipts for Blind RMAs created at the warehouse and the receipt details
are uploaded as regular return receipts. The receipt upload agent creates the
Return Order with a ‘03' order type in Sterling Selling and Fulfillment Foundation.

Based on the pipeline determination condition given below, the Blind RMA
Pipeline is used for Blind RMA Return Order fulfillment.

Note: The condition "Is Blind RMA" mentioned in the figure is configured as
OrderType=‘03'.

Return releases are not created for these return orders. However, a receipt is
recorded against the Return Order.

The Blind RMA Pipeline should be configured according to the following pipeline:

32 Sterling Selling and Fulfillment Foundation: Integration Guide

Return Order Interface Data Mapping

RMAHDR - Return Release Download Header

The following table lists the header information required by the Return Release
Download API.

DCS Parameter
Sterling Selling and Fulfillment
Foundation Parameter

Field
Size

Start
Position

WHSE OrderRelease/@ReceivingNode 5 1

RECORD-TYPE “RMAHDR” 6 6

ACTION-CODE “CH” or “CL” based on modification
or closure

2 12

RMA-NUMBER OrderRelease/Order/@OrderNo 15 14

RMA-RELEASE-NO OrderRelease/@ReleaseNo 3 29

RMA-TYPE OrderRelease/Order/@OrderType 2 32

EXPECTED-NO-OF-CASES N/A 5 34

EXPECTED-NUMBER-OF-
PALLETS

N/A 5 39

EXPECTED-NUMBER-OF-UNITS N/A 7 44

TRAILER-NO N/A 20 51

FREIGHT-COLLECT-FLAG OrderRelease/Order/@TermsCode 1 71

EXPECTED-DATE OrderRelease/Order/@OrderDate 8 72

CARRIER-CODE OrderRelease/Order/@SCAC 4 80

INVOICE-NUMBER N/A 20 84

SHIP-TO-CUST-ID OrderRelease/OrderLine/@ShipToID 10 104

BILL-TO-CUST-ID OrderRelease/Order/@BillToID 10 114

ENTRY-DATE OrderRelease/Order/@OrderDate 8 124

SHIP-TO-NAME OrderRelease/PersonInfoShipTo/

@FirstName + @LastName

25 132

BILL-TO-SHORT-NAME OrderRelease/Order/
PersonInfoBillTo/@FirstName +
@LastName

12 157

Chapter 2. Integrating with the Distribution Center System 33

DCS Parameter
Sterling Selling and Fulfillment
Foundation Parameter

Field
Size

Start
Position

SHIP-TO-ADDR-1 OrderRelease/PersonInfoShipTo/

@AddressLine1

30 169

SHIP-TO-ADDR-2 OrderRelease/PersonInfoShipTo/

@AddressLine2

30 199

SHIP-TO-ADDR-3 OrderRelease/PersonInfoShipTo/

@AddressLine3

30 229

SHIP-TO-CITY OrderRelease/PersonInfoShipTo/

@City

30 259

SHIP-TO-STATE-CODE OrderRelease/PersonInfoShipTo/

@State

2 289

SHIP-TO-ZIP OrderRelease/PersonInfoShipTo/

@ZipCode

9 291

SHIP-TO-COUNTRY-CODE OrderRelease/PersonInfoShipTo/

@Country

5 300

CLAIM-NO N/A 20 305

PICKTICKET-NO N/A 20 325

REASON-CODE N/A 4 345

PRO-NUMBER N/A 20 349

REFERENCE-FIELD-1 OrderRelease/Order/

@EnterpriseCode

20 369

REFERENCE-FIELD-2 N/A 20 389

REFERENCE-FIELD-3 N/A 20 409

REFERENCE-FIELD-4 N/A 20 429

REFERENCE-FIELD-5 N/A 20 449

REFERENCE-FIELD-6 N/A 20 469

REFERENCE-FLAG-1 N/A 1 489

REFERENCE-FLAG-2 N/A 1 490

REFERENCE-FLAG-3 N/A 1 491

REFERENCE-FLAG-4 N/A 1 492

REFERENCE-FLAG-5 N/A 1 493

REFERENCE-FLAG-6 N/A 1 494

WMS-BUFFER Defaulted with blank spaces 30 495

RMADTL - Return Release Download Detail

The following table lists the detail or line information required by the Return
Release Download API.

34 Sterling Selling and Fulfillment Foundation: Integration Guide

DCS Parameter
Sterling Selling and Fulfillment Foundation
Parameter

Field
Size

Start
Position

WHSE OrderRelease/@Receiving Node 5 1

RECORD-TYPE “RMADTL” 6 6

ACTION-CODE “CH” or “CL” based on modification or
closure

2 12

RMA-NUMBER OrderRelease/Order/@OrderNo 15 14

RMA-RELEASE-NO OrderRelease/@ReleaseNo 3 29

RMA-LINE-NO OrderRelease/OrderLine/@PrimeLineNo 5 32

RMA-SUB-NO Default value ‘0' 5 37

ITEM-ID OrderRelease/OrderLine/Item/@ItemID 24 42

PRODUCT-CLASS OrderRelease/OrderLine/Item/
@ProductClass

2 66

QUALITY-STATUS Defaulted in INTERFACE_DEFAULTS 2 68

PACK-TYPE Defaulted in INTERFACE_DEFAULTS 4 70

EXPECTED-QUANTITY OrderRelease/OrderLine/OrderStatuses/
OrderStatus/@StatusQuantity

9 74

RMA-REASON-CODE OrderRelease/OrderLine/@ReturnReason 4 83

DISPOSITION-CODE N/A 2 87

CREDIT-FLAG OrderRelease/Order/@TermsCode 1 89

PSEUDO-SERIAL-
NUMBER

N/A 20 90

INVOICE-NUMBER N/A 20 110

PICKTICKET-NO N/A 20 130

RMACMT- Return Release Download Comments

The following table lists the comment information required by the Return Release
Download API.

DCS Parameter Release 5.0 Parameter
Field
Size

Start
Position

WHSE OrderRelease/@Receiving Node 5 1

RECORD-TYPE “RMACMT” 6 6

ACTION-CODE “CH” or “CL” based on modification or
closure

2 12

RMA-NUMBER OrderRelease/Order/@OrderNo 15 14

RMA-RELEASE-NO OrderRelease/@ReleaseNo 3 29

RMA-LINE-NO OrderRelease/OrderLine/@PrimeLineNo or
‘0' for header level comment

5 32

RMA-SUB-NO Default value ‘0' 5 37

Chapter 2. Integrating with the Distribution Center System 35

DCS Parameter Release 5.0 Parameter
Field
Size

Start
Position

COMMENT-SEQ-NO OrderRelease/Order/Instructions/

Instruction/@SequenceNo

OR

OrderRelease/Orderline/Instructions/

Instruction/@SequenceNo

5 42

COMMENT-TYPE Maps to appropriate DCS Comment Type 2 47

COMMENT-TEXT OrderLine-> InstructionText

OR

Order -> InstructionText– ‘0' as return line
number

80 49

Return Receipt Upload Data Mapping

Data Mapping to Create Return Order for Blind Return:

The following table lists the interface attribute mapping to create return orders if
they do not exist in Sterling Selling and Fulfillment Foundation.

Sterling Selling and Fulfillment
Foundation DCS

Order/DocumentType Default value for Return Document ‘0003'

Order/OrderDate RARHDR.RECEIVED-DATE

Order/OrderNo RARHDR.RMA_NUMBER

Order/OrderType Default Value ‘03'

Order/SCAC RARHDR. CARRIER-CODE

Order/TermsCode RARHDR. FREIGHT-COLLECT

Order/PersonInfoShipTo/ FirstName RARHDR. CUSTOMER-NAME

Order/PersonInfoShipTo/

AddressLine1

RARHDR. ADDRESS-1

Order/PersonInfoShipTo/

AddressLine2

RARHDR. ADDRESS-2

Order/PersonInfoShipTo/

AddressLine3

RARHDR. ADDRESS-3

Order/PersonInfoShipTo/

City

RARHDR. CITY

Order/PersonInfoShipTo/

State

RARHDR. STATE

Order/PersonInfoShipTo/

ZipCode

RARHDR. ZIP

36 Sterling Selling and Fulfillment Foundation: Integration Guide

Sterling Selling and Fulfillment
Foundation DCS

Order/PersonInfoShipTo/

Country

RARHDR. COUNTRY-CODE

Order/PersonInfoBillTo/ FirstName RARHDR. CUSTOMER-NAME

Order/PersonInfoBillTo/

AddressLine1

RARHDR. ADDRESS-1

Order/PersonInfoBillTo/

AddressLine2

RARHDR. ADDRESS-2

Order/PersonInfoBillTo/

AddressLine3

RARHDR. ADDRESS-3

Order/PersonInfoBillTo/

City

RARHDR. CITY

Order/PersonInfoBillTo/

State

RARHDR. STATE

Order/PersonInfoBillTo/

ZipCode

RARHDR. ZIP

Order/PersonInfoBillTo/

Country

RARHDR. COUNTRY-CODE

Order/EnterpriseCode RARHDR.REFERENCE-1, if the value of
RARHDR.REFERENCE-1 is a valid Organization
with Enterprise role.

If the value of RARHDR.REFERENCE-1 is blank,
this becomes the primary enterprise of the
receiving node's organization.

If the value of RARHDR.REFERENCE-1 is not a
valid enterprise code, the system throws an error.

OrderLine/ReceivingNode RARHDR.WHSE

Order/Instructions/

InstructionText

RARCMT.COMMENT-TEXT (if
RARCMT.RMA-LINE-NO=0)

Order/Instructions/

InstructionType

RARCMT.COMMENT-TYPE (if
RARCMT.RMA-LINE-NO=0)

Order/Instructions/

SequenceNo

RARCMT.SEQ_NUMBER (if RARCMT.RMA-
LINE-NO=0)

OrderLine/PrimeLineNo RARDTL.RMA-LINE-NO

OrderLine/OrderedQuantity RARDTL.QUANTITY

OrderLine/Item/ItemID RARDTL.ITEM_ID

OrderLine/Item/ProductClass RARDTL.PRODUCT_CLASS

OrderLine/SubLineNo Default Value ‘0'

OrderLine/Item/UnitofMeasure Default Value ‘EACH'

Chapter 2. Integrating with the Distribution Center System 37

Sterling Selling and Fulfillment
Foundation DCS

OrderLine/ReturnReason RARDTL.RMA-REASON-CODE

OrderLine/Instructions/Instruction/
InstructionText

RARCMT.COMMENT-TEXT

OrderLine/Instructions/Instruction/
InstructionType

RARCMT.COMMENT-TEXT

OrderLine/Instructions/Instruction/
SequenceNo

RARCMT.SEQ-NUMBER

Data Mapping to Record Return Receipts:

The following table lists the interface attribute mapping to record return receipts
on Sterling Selling and Fulfillment Foundation.

Table 7. Data Mapping to Record Return Receipts

Sterling Selling and Fulfillment
Foundation DCS

Receipt/ReceiptNo RARHDR.WORKSHEET-NO

Receipt/EnterpriseCode RARHDR.REFERENCE-1 if the receipt is not
against a blind RMA. Otherwise the
enterprise code is same as that of the blind
RMA.

Receipt/ReleaseNo RARHDR.RMA-RELEASE-NO

ReceiptLine/InspectedBy RARDTL.USERID

ReceiptLine/InspectionComments RARDTL.RMA-REASON-CODE

ReceiptLine/DispositionCode RARDTL.DISPOSITION-CODE

ReceiptLine/InspectionDate RARHDR.RECEIVED-DATE

Receipt/OrderNo RARDTL.RMA-NUMBER

ReceiptLine/PrimeLineNo RARDTL.RMA-LINE-NO

ReceiptLine/Quantity RARDTL.QUANTITY

ReceiptLine/SerialNo RARDTL.SERIAL-NO

ReceiptLine/SubLineNo Default Value ‘1'

Assumptions and Limitations
The assumptions and limitations in the integration of Sterling Selling and
Fulfillment Foundation with DCS for returns interface are listed below:
v The integration to DCS is at return release rather than return creation. This is

done to support returns that may require a manual credit check or approval
before it is accepted (released).
To send a return order to DCS whenever a return is created, you can model a
service to call Return Release upon creation, based on a return type.

v The Return Order number in Sterling Selling and Fulfillment Foundation is
unique across all enterprises.

v All Return Order lines must use consecutive prime line numbers, with all sub
line numbers as ‘0'. The RMADTL record always sets the RMA_SUB_NO as ‘0'.

v Only one release is supported for each receiving node of the Return Order. To
apply this, enable the document type level rule ‘Consolidate New Releases' for

38 Sterling Selling and Fulfillment Foundation: Integration Guide

the ‘Reverse Logistics' document type. This allows the new lines added to the
Return Order to be included in the existing release.

v Receipt is allowed only for items included in the Return Order. To receive an
item that is not in the return, a line with that item should be added into the
return release and downloaded into DCS again.

v Inventory updates during return receipt upload should be turned off. Inventory
adjustments for return receipts should be done through the inventory
adjustment interface with DCS. Whenever inventory is updated in DCS, the
inventory is updated in Sterling Selling and Fulfillment Foundation too through
this interface.

v The following modifications are allowed on a Return Order:
– Order Level
– ADD_LINE: A new line can be added to the Return Order. This line is added

in the created status. Based on the ‘Consolidate New Releases' setting in the
‘Reverse Logistics' document type level, this new line is added into the
existing release during the release process and the entire release is
downloaded to DCS.

– Order Line Level
– Modifications are not allowed in the Return Order line level.
– Order Release Level
– ADD_LINE: A new release line can be added.
– CANCEL: IBM recommends that you disallow cancellation once the return

release is sent to DCS. This is because the return receipt upload agent throws
an exception if the return is being received or has already been received in
DCS while it is getting cancelled on Sterling Selling and Fulfillment
Foundation.

– ADD_QUANTITY: A release line quantity can be added.
– The other modifications allowed are Add Note, Change BillTo, Change

Carrier, Change Carrier Account No, Change Carrier Service Code, Change
Freight Terms, Change Delivery Code, Change MarkFor, Change
ReqShipDate, and Change ShipTo.

v Receipt overage is not allowed in DCS. A new return line must be created on
Sterling Selling and Fulfillment Foundation and downloaded to DCS upon
release.

v Return Orders with Kit items should be created as blind returns on DCS. They
cannot be created for sales orders in Sterling Selling and Fulfillment Foundation.

v Return Orders with Kit items should contain return lines for kit components.
v Return Orders can be created for multiple sales orders and can be received in

DCS.
v The return receipt upload agent does not upload instructions to Sterling Selling

and Fulfillment Foundation if the instruction text is blank.
v The configuration assumptions for DCS are:

– The creation of a return in DCS is enabled only for blind returns.
– For blind returns on DCS, a new function should be configured to "Create

Blind RMA" with RMA_Type='03' defaulted and protected. This ensures that
blind RMAs are always created with RMA_Type = '03'.

– The ability to receive an overage item or a different item on a return is
disabled.

For more information about configuring DCS Inventory updates, see the Yantra 5x
Configuration Guide.

Chapter 2. Integrating with the Distribution Center System 39

40 Sterling Selling and Fulfillment Foundation: Integration Guide

Chapter 3. Integrating with Stand-Alone Sterling Warehouse
Management System

Limitation on Use of Services with Stand-Alone Sterling Warehouse
Management System

The use of services with the stand-alone Sterling Warehouse Management System
are not supported in a multischema environment.

Installing Integration Pack for Receipt and Inventory Change Upload
Interfaces on a Sterling Warehouse Management System Instance

About this task

To install the receipt and inventory change upload components on the Sterling
Warehouse Management System instance:

Procedure
1. Set the environment variable INSTALL_DIR to point to the Sterling Selling and

Fulfillment Foundation installation directory.
2. Change the directory to <INSTALL_DIR>/bin, and run the following command

for UNIX or Linux:
sci_ant.sh -f wms_integration_pack_installer.xml (or sci_ant.cmd for
Windows).

3. After you run the above command, check the contents of the
wms_integration_pack_fc_installer.xml.restart file located in the
<INSTALL_DIR>/database/FactorySetup/install/ directory. In the
wms_integration_pack_fc_installer.xml.restart file make sure that the
"Completed" attribute of the TaskInfo element is set to "Y". If this is set to "N",
fix the integration pack installation problems, and repeat the previous step.

Installing Integration Pack for Receipt and Inventory Change Upload
Interfaces on a Sterling Distributed Order Management Instance

About this task

Note: If your Sterling Distributed Order Management instance is on a release that
is prior to Release 9.0, you must copy the following files located in the runtime
directory of the Sterling Warehouse Management System instance to the runtime
directory of the Sterling Distributed Order Management instance.
v <INSTALL_DIR>/bin/omp_integration_pack_installer.xml

v <INSTALL_DIR>/database/FactorySetup/install/
omp_integration_pack_fc_installer.xml

v <INSTALL_DIR>/database/FactorySetup/IntegrationPack/IP_OMP_*.xml

To install the receipt and inventory change upload components on the Sterling
Distributed Order Management instance:

© Copyright IBM Corp. 1999, 2011 41

Procedure
1. Set the environment variable INSTALL_DIR to point to the Sterling Selling and

Fulfillment Foundation installation directory.
2. Change the directory to <INSTALL_DIR>/bin, and run the following command

for UNIX or Linux:
sci_ant.sh -f omp_integration_pack_installer.xml (or sci_ant.cmd for
Windows).

3. After you run the above command, check the contents of the
omp_integration_pack_fc_installer.xml.restart file located in the
<INSTALL_DIR>/database/FactorySetup/install/ directory. In the
omp_integration_pack_fc_installer.xml.restart file make sure that the
"Completed" attribute of the TaskInfo element is set to "Y". If this is set to "N",
fix the integration pack installation problems, and repeat the previous step.

Uploading Receipts
Sterling Selling and Fulfillment Foundation supports integration between Sterling
Distributed Order Management and Sterling Warehouse Management System for
uploading receipts and receipt adjustments. To integrate Sterling Distributed Order
Management and Sterling Warehouse Management System, you must configure a
common JMS queue. You must also model the node on both instances. For the
Sterling Distributed Order Management instance, model the node as a non-Sterling
Warehouse Management System integrated node.

Uploading receipts has the following integration touch points:
v Sterling Warehouse Management System - Uploading Receipt Information and

Uploading Receipt Adjustment Information
v DOM Components - Loading Receipt Information from a Node and Loading

Receipt Adjustment Information from a Node

Uploading Receipt Information
To upload the receipt details from Sterling Warehouse Management System to
Sterling Distributed Order Management, use the ReceiptUpload-751 service.

ReceiptUpload-751 Service
This service is invoked from the WMS instance.

The receiveOrder API is invoked during the receiving process. When the receiving
process for a case or pallet is complete, and the user closes the case or pallet, or
when receiving for a loose SKU is complete, one of the ON_CASE_RECEIPT,
ON_PALLET_RECEIPT, and ON_SKU_RECEIPT events of the RECEIVE_RECEIPT
transaction is raised. To invoke the ReceiptiUpload-751 service, ensure that the
UploadReceipt action, under Order>PO Order Receipt>Actions>Receipt Upload, is
configured on these events.

The ReceiptUpload-751 service then translates the API output and serves as an
input to the receiveOrder API. This is published as a message to the JMS queue of
the web server of the DOM instance.

This service invokes the getReceiptLinesList API. The getReceiptLinesList API has
been modified to use an additional flag called RelevantItemLinesOnly. If this flag is
set to "Y", the API returns the relevant lines exploding the hierarchical information
of LPNs as necessary, satisfying the input criteria.

42 Sterling Selling and Fulfillment Foundation: Integration Guide

This flag is relevant if:
v Either the case identifier or pallet identifier is passed as input.
v The case identifier or pallet identifier passed is not shipped out of the

warehouse.

Configuring the ReceiptUpload-751 Service
About this task

To configure the ReceiptUpload-751 service:

Procedure
1. From the Applications menu of the Applications Manager, select Application

Platform.
2. From the tree in the application rules side panel, double-click Process

Modeling.
3. Click the Order tab. In the Process Types swimlane, right-click the Purchase

Order Receipt process type and click Model Process. The Repository Details
window and work area are displayed for the Order process type.

4. Click the Service Definitions tab.
5. Expand the DefaultGroup branch.
6. Right-click ReceiptUpload-751 and select Details. The Service Detail window

appears in the work area.

7. Click the green connector that connects the XSL Translator and the WebLogic
JMS. The JMS Sender properties displays as shown.

8. In the Runtime tab, make sure that the "Commit of this message depends on
parent transaction" box is checked.
For field value descriptions, refer to the Service Builder Nodes and Parameters
appendix of the Sterling Selling and Fulfillment Foundation: Application Platform
Configuration Guide.

Chapter 3. Integrating with Stand-Alone Sterling Warehouse Management System 43

Uploading Receipt Adjustment Information
To upload receipt adjustment details from Sterling Warehouse Management System
to Sterling Distributed Order Management, use the AdjustReceiptUpload-751
service.

AdjustReceiptUpload-751 Service
This service is invoked from the WMS instance.

The unreceiveOrder API is invoked during the unreceiving process. When the
unreceiving process is complete, the ON_SUCCESS event of the
UNRECEIVE_RECEIPT transaction is raised. To invoke the AdjustReceiptUpload-
751 service, ensure that the adjustReceiptUpload action, under Order>PO Order
Receipt>Actions>Receipt Upload, is configured on the ON_SUCCESS event.

The AdjustReceiptUpload-751 service then translates the API output and serves as
an input to the unreceiveOrder AP1. This is published as a message in the JMS
queue of the web server of the Sterling Distributed Order Management instance.

Configuring Updated Receipt Adjustment Information from a Node:
About this task

To configure the AdjustReceiptUpload-751 service:

Procedure

1. From the Applications menu of the Applications Manager, select Application
Platform.

2. From the tree in the application rules side panel, double-click Process
Modeling.

3. Click the Order tab. In the Process Types swimlane, right-click the Purchase
Order Receipt process type and click Model Process. The Repository Details
window and work area are displayed for the Order process type.

4. Click the Service Definitions tab.
5. Expand the DefaultGroup branch.
6. Right-click AdjustReceiptUpload-751 and select Details. The Service Detail

window appears in the work area.

44 Sterling Selling and Fulfillment Foundation: Integration Guide

7. Click the green connector that connects the XSL Translator and the WebLogic
JMS. The JMS Sender properties displays as shown.

8. In the Runtime tab, make sure that the "Commit of this message depends on
parent transaction" box is checked.
For field value descriptions, refer to the Service Builder Nodes and Parameters
appendix of the Sterling Selling and Fulfillment Foundation: Application Platform
Configuration Guide.

Loading Receipt Information from a Node
About this task

The LoadReceiptInfo-751 service is used at the Sterling Distributed Order
Management instance to retrieve receipt details from the node.

To retrieve receipt details, set up the LoadReceiptInfo-751 service for Sterling
Distributed Order Management instance.

Procedure
1. From the Applications menu of the Applications Manager, select Application

Platform.
2. From the tree in the application rules side panel, double-click Process

Modeling.
3. Click the Order tab. In the Process Types swimlane, right-click the Purchase

Order Receipt process type and click Model Process. The Repository Details
window and work area are displayed for the Order process type.

4. Click the Service Definitions tab.
5. Expand the DefaultGroup branch.
6. Right-click LoadReceiptInfo-751 and select Details. The Service Detail window

appears in the work area.

Chapter 3. Integrating with Stand-Alone Sterling Warehouse Management System 45

LoadReceiptInfo-751 Service
This service is invoked from the Sterling Distributed Order Management instance.

Although we have used Weblogic JMS as an example, the Sterling Selling and
Fulfillment Foundation also supports the use of IBM WebSphere® and JBoss
Messaging JMS.

Configuring the LoadReceiptInfo-751 Service:
About this task

The LoadReceiptInfo-751 service reads the message from the JMS queue and
invokes the receiveOrder API.

To configure the service:

Procedure

In the Service Detail: LoadReceiptInfo-751 window, click the green connector that
connects the WebLogic JMS and the API. The JMS Receiver properties displays as
shown.

For field value descriptions of the fields, refer to the Service Builder Nodes and
Parameters appendix of the Sterling Selling and Fulfillment Foundation: Application
Platform Configuration Guide.

46 Sterling Selling and Fulfillment Foundation: Integration Guide

Loading Receipt Adjustment Information from a Node
About this task

The LoadReceiptAdjustments-751 service is used at the Sterling Distributed Order
Management instance to retrieve receipt details from the node.

To retrieve receipt details:

Procedure
1. From the Applications menu of the Applications Manager, select Application

Platform.
2. From the tree in the application rules side panel, double-click Process

Modeling.
3. Click the Order tab. In the Process Types swimlane, right-click the Purchase

Order Receipt process type and click Model Process.
The Repository Details window and work area are displayed for the Order
process type.

4. Click the Service Definitions tab.
5. Expand the DefaultGroup branch.
6. Right-click LoadReceiptAdjustments-751 and select Details.

The Service Detail window appears in the work area.

LoadReceiptAdjustments-751 Service
This service is invoked from the Sterling Distributed Order Management instance.

Although we have used WebLogic JMS as an example, Sterling Selling and
Fulfillment Foundation supports the use of IBM WebSphere and JBoss Messaging
JMS.

The LoadReceiptAdjustments-751 service reads the message from the JMS queue
and invokes the unreceiveOrder API.

Configuring the LoadReceiptAdjustments-751 Service:

Chapter 3. Integrating with Stand-Alone Sterling Warehouse Management System 47

About this task

To configure the service:

Procedure

In the Service Detail: LoadReceiptAdjustments-751 window, click the green
connector that connects the WebLogic JMS and the API.
The JMS Receiver properties displays as shown.

For field value descriptions, refer to the Service Builder Nodes and Parameters
appendix of the Sterling Selling and Fulfillment Foundation: Application Platform
Configuration Guide.

Uploading Inventory Changes at a Node
Sterling Selling and Fulfillment Foundation provides inventory integration between
Sterling Distributed Order Management and Sterling Warehouse Management
System that are running on two different instances. To synchronize inventory
between separate Sterling Distributed Order Management and Sterling Warehouse
Management System instances, you must configure a common JMS queue. You
must also model the node on both instances. For a Sterling Distributed Order
Management instance, model the node as a non-Sterling Warehouse Management
System integrated node.

The uploading process is performed in two phases, which are described in the
following topics.

Uploading Updated Inventory Information
To keep inventory information between Sterling Distributed Order Management
and Sterling Warehouse Management System instances in synchronization, use the
InventoryChangeUpload-751 service.

InventoryChangeUpload-751 Service
Inventory information needs to be transmitted to the Sterling Distributed Order
Management instance for all adjustment types other than RECEIPT, RETURN, and
SHIPMENT. (Inventory for these adjustment types would typically be transmitted
by means of receipt or shipping interfaces). The InventoryChangeUpload-751
service is invoked from the WMS instance on the SUPPLY_CHANGE event of the
INVENTORY_CHANGE transaction, which is raised whenever inventory changes
at a node. To invoke the InventoryChangeUpload-751 service, ensure that the
UploadInventoryChange action, under General>General>Actions>Inventory
Synchronization, is configured on the SUPPLY_CHANGE event.

This service then translates the output of the SUPPLY_CHANGE event and creates
an input XML for the adjustInventory API. This input XML is published as a
message to the JMS queue of the web server of the DOM instance.

48 Sterling Selling and Fulfillment Foundation: Integration Guide

The "doesAdjustmentTypeRequiresTransmission" condition is used to determine
which inventory changes require transmission. This condition returns true if the
adjustment type is any value other than RECEIPT, RETURN, and SHIPMENT.

Configuring the Updated Inventory Information from a Node
About this task

To configure the service:

Procedure
1. From the Applications menu of the Applications Manager, select Application

Platform.
2. From the tree in the application rules side panel, double-click Process

Modeling.
3. Click the General tab. In the Process Types swimlane, right-click the General

process type and select Model Process. The Repository Details window and
work area displays for the General process type.

4. Click the Service Definitions tab.
5. Expand the InventorySynchronization branch.
6. Right-click InventoryChangeUpload-751 and select Details. The Service Detail

window appears in the work area.

7. Click the green connector that connects the XSL Translator and the WebLogic
JMS. The JMS Sender properties displays as shown.

8. In the Runtime tab, make sure that the "Commit of this message depends on
parent transaction" box is checked.

Chapter 3. Integrating with Stand-Alone Sterling Warehouse Management System 49

For field value descriptions, refer to the Service Builder Nodes and Parameters
appendix of the Sterling Selling and Fulfillment Foundation: Application Platform
Configuration Guide.

Loading Inventory Information from a Node
About this task

In order to reconcile the inventory picture between Sterling Distributed Order
Management and Sterling Warehouse Management System, the inventory picture at
the Sterling Warehouse Management System instance must be loaded to the
Sterling Distributed Order Management instance.

To reconcile the inventory picture, set up the LoadWMSInventoryChangeInfo-751
service for the Sterling Distributed Order Management instance:

Procedure
1. From the Applications menu of the Applications Manager, select Application

Platform.
2. From the tree in the application rules side panel, double-click Process

Modeling.
3. Click the General tab. In the Process Types swimlane, right-click the General

process type and select Model Process. The Repository Details window and
work area displays for the General process type.

4. Click the Service Definitions tab.
5. Expand the InventorySynchronization branch.
6. Right-click LoadWMSInventoryChangeInfo-751 and select details.

The Service Detail window appears in the work area.

LoadWMSInventoryChangeInfo-751 Service
This service is invoked from the Sterling Distributed Order Management instance.

Although we have used WebLogic JMS as an example, Sterling Selling and
Fulfillment Foundation also supports the use of IBM WebSphere and JBoss
Messaging JMS.

50 Sterling Selling and Fulfillment Foundation: Integration Guide

The LoadWMSInventoryChangeInfo-751 service reads the message from the JMS
queue and invokes the adjustInventory API.

Configuring the LoadWMSInventoryChangeInfo-751 Service:
About this task

To configure the service:

Procedure

In the Service Detail: LoadWMSInventoryChangeInfo-751 window, click the green
connector that connects the WebLogic JMS and API. The JMS Receiver properties
displays as shown.

For field value descriptions, refer to the Service Builder Nodes and Parameters
appendix of the Sterling Selling and Fulfillment Foundation: Application Platform
Configuration Guide.

Uploading Inventory Snapshots
Sterling Selling and Fulfillment Foundation provides the ability to upload
inventory snapshots for integrating Sterling Warehouse Management System and
Sterling Distributed Order Management that are running on different instances.
This involves loading the inventory picture from a Sterling Warehouse
Management System instance to a Sterling Distributed Order Management
instance.

Generating Inventory Snapshot Files
About this task

A single XML file is generated by running the inventory snapshot component at a
WMS instance where data is fetched from the YFS_Inv_SnapShot_VW view. This
view is derived from the following tables:
v YFS_INVENTORY_ITEM
v YFS_INVENTORY_SUPPLY
v YFS_INVENTORY_TAG

To run the inventory snapshot component on a Sterling Warehouse Management
System instance:

Procedure
1. Go to the <INSTALL_DIR>/bin directory.
2. For UNIX or Linux, run this command:

sci_ant.sh -f runInventorySnapShot.xml -DFilePath=<FilePath>
-DShipNode=<ShipNode> -DReasonCode=<ReasonCode> -DReasonText=<ReasonText>
-DItemsPerGroup=<ItemsPerGroup>

Chapter 3. Integrating with Stand-Alone Sterling Warehouse Management System 51

For Windows, run this command:
sci_ant.cmd -f runInventorySnapShot.xml -DFilePath=<FilePath>
-DShipNode=<ShipNode> -DReasonCode=<ReasonCode> -DReasonText=<ReasonText>
-DItemsPerGroup=<ItemsPerGroup>

These are the parameters passed for the inventory snapshot:

Table 8. Inventory Snapshot

Field Description

FilePath The absolute path of the directory where the
generated XML file is stored.

ShipNode The ship node for which the XML file is
generated.

ReasonCode The reason code that is defined by the user.

Reason Text The reason code text that is that is defined
by the user.

ItemsPerGroup The number of item tags in the items tag
element. The recommended value is 100.
However, you could specify any value from
1 to 100.

Results

Note: The time taken to generate an XML file on a WMS instance is not more than
3 minutes when the number of records in the YFS_INVENTORY_SUPPLY table are
430,000 and 512 M heap is used.

These generated XML files can be shared by both Sterling Warehouse Management
System and Sterling Distributed Order Management instances through NFS mounts
or can also be transferred through FTP to the DOM instance.

For more information about uploading inventory snapshot components on a
Sterling Distributed Order Management instance, refer to the Sterling Selling and
Fulfillment Foundation: Global Inventory Visibility Configuration Guide.

52 Sterling Selling and Fulfillment Foundation: Integration Guide

Chapter 4. Integrating with Third-Party Warehouse
Management Systems

Introduction to Third-Party Warehouse Management System
Integration

Sterling Selling and Fulfillment Foundation enables you to integrate with external
third-party warehouse management systems in order to identify external ship
nodes, manage external inventory and distribution of items, and coordinate
external warehouse activities.

The Sterling Selling and Fulfillment Foundation provides complete functionality for
Distributed Order Management and Warehouse Management systems without the
need for integration. For more information about the IBM Sterling Warehouse
Management System, see the Sterling Selling and Fulfillment Foundation: Warehouse
Management System Concepts Guide.

Third-Party Warehouse Management Systems
Sterling Selling and Fulfillment Foundation provides XML-based integration to
third-party warehouse management systems (WMS). To integrate Sterling Selling
and Fulfillment Foundation with third-party warehouse management systems,
configure them using services, as indicated in the Sterling Selling and Fulfillment
Foundation: Application Platform Configuration Guide. In addition, use the following
APIs when necessary:
v getUnprocessedImportDataEx() – Retrieves unprocessed data from import tables.

Third-Party Shipment Advice
When creating shipment advice data for third-party software, use services to stage
your data. For more information about using services, see the Sterling Selling and
Fulfillment Foundation: Application Platform Configuration Guide.

Third-Party Inventory Change
Sterling Selling and Fulfillment Foundation enables XML-based integration with
third-party warehouse management inventory control systems through services or
though system APIs. The following APIs enable integration with third-party
systems for inventory change:
v getInventorySnapShot – Obtains total number of items in inventory at all ship

nodes.
v getInventoryMismatch – Detects or corrects mismatches between the global

inventory picture on Sterling Selling and Fulfillment Foundation and the global
inventory picture on the external system.

v adjustInventory – Applies corrections to the global inventory picture in Sterling
Selling and Fulfillment Foundation. This could also be used to correct a
mismatch when the getInventoryMismatch API is used to detect the mismatches.

© Copyright IBM Corp. 1999, 2011 53

54 Sterling Selling and Fulfillment Foundation: Integration Guide

Chapter 5. Integrating with the Loftware Print Server and
Label Manager

Overview of Loftware Print Server and Label Manager Integration
The Sterling Warehouse Management System can be integrated with the Loftware
Print Server (LPS) and Loftware Label Manager (LLM), and custom prints can be
configured.

For more information about installing and configuring the Loftware Print Server,
see the Sterling Selling and Fulfillment Foundation: Installation Guide.

For more information about server requirements and installation guidelines of
Loftware Label Manager, see the Loftware Print Server User's Guide and Loftware
Label Manager User's Guide.

For more information about configuring printers, see the Sterling Selling and
Fulfillment Foundation: Warehouse Management System Configuration Guide.

Sterling Warehouse Management System supports all capabilities of the Loftware
Printer Server, including cluster installations. For specific details, consult
http://www.loftware.com.

Standard Labels Provided by the Sterling WMS

The Sterling Warehouse Management System provides the following Standard
Labels:
v UCC 128 Container Shipping Label
v VICS Bill Of Lading
v Packing Slip
v Batch Sheets

– Item Pick Batch Sheet
– Cart Manifest Batch sheet

v Count Sheet
v UPS Carrier Label
v UPS Pickup Summary

Important Assumptions About Standard Labels

The factory shipped Cart Manifest Print is based on the following assumptions:
1. Each cart location is assumed to have 1 slot, when the number of locations in

the cart is greater than 8.
2. Each cart location is assumed to have 2 slots, when the number of locations in

the cart is less than or equal to 8.

For example, if the cart locations in the cart are named as A, B, C, ... H, then the
Cart Manifest Print has locations such as A1, A2, B1, B2, C1, C2, ... H1, H2.

Thus, the task type "Number of containers allowed per location in the equipment"
should always be set at 1 or 2.

© Copyright IBM Corp. 1999, 2011 55

http://www.loftware.com/

For other configurations of the Cart, the Print has to be customized.

Printing Standard Labels
To print these standard labels, the Sterling Warehouse Management System
provides services associated with events. By default, the events are disabled.
Enable the events if you want to print the standard labels. The following table lists
the services provided in the Sterling Warehouse Management System.

Service Name Event Description

PrintShippingLabel ADD_TO_CONTAINER.ON_
CONTAINER_PACK_
COMPLETE

Prints a UCC-128 Shipping
Label for a container

PrintShipmentContainerLabels Reprint Request from console Prints UCC-128 Container
Labels for Containers in
the Shipment

PrintShipmentBOL CONFIRM_SHIPMENT.ON_
SUCCESS

Print a VICS BOL for
Shipment

PrintTaskList Reprint Request from console Prints a BatchSheet
(CartManifest or
ItemPickBatch Sheet) or a
CountSheet, based on the
ActivityGroup for the
Batch. If the Batch belongs
to the ActivityGroup
COUNT, the CountSheet is
printed.

PrintLoadBOL RECEIVE_IN_TRANSIT_
UPDATES.ON_SUCCESS

Prints a VICS BOL for
Load

PrintWave PRINT_WAVE.ON_SUCCESS Prints PickList
(BatchSheets), Container
Labels and pre-generates
PackLists for Shipments in
the Wave

PrintPackList ADD_TO_CONTAINER.ON_
SHIPMENT_PACK_
COMPLETE

Prints a PackList

PickListPrint PRINT_PICKLIST.ON_
SUCCESS

Prints PackLists for
Shipments in the PickList

PrintTaskSheets COMPLETE_TASK.
TASK_COMPLETED

Creates a Batch for
successor Tasks of the
completed task and Prints
a BatchSheet for the same

PrintMoveTickets RELEASE_MOVE_
REQUEST.ON_SUCCESS

Creates a Batch for the
MoveRequest and prints a
BatchSheet for the same

PrintPostPickContainers POST_PICK_
CONTAINERIZATION.ON_
SUCCESS

Prints UCC-128 Shipping
Labels for containers
created as part of Post Pick
Containerization

56 Sterling Selling and Fulfillment Foundation: Integration Guide

Designing Custom Labels
Use Loftware Label Manager to design a label (creates an .lwl file). For more
information about creating new labels using Loftware Label Manager, see Loftware
Label Manager User's Guide.

Note: The Sterling Warehouse Management System requires the repeating fields in
a label to have names in the format of <fieldname>_<integer>. The integer in the
field name takes values like 1, 2, 3.

The Loftware Label Manager may be installed on any compatible PC. For more
information about server requirements and installation guidelines, see Loftware
Print Server User's Guide.

Note: While designing a custom label, use of the .LST file maintains uniformity in
label field names across different labels. For more information about LST file(s), see
Loftware Label Manager User's Guide.

Displaying Page Numbers
Procedure

To display Page Numbers and Total Number of Pages in the print output: add the
following fields to the Label (.lwl file):
v PageNo

v TotalPages

Results

This ensures that the page numbers are displayed in the format Page X of N.

File Naming Conventions for Custom Labels
The Sterling Warehouse Management System requires the following naming
conventions be followed while creating labels (.lwl files) using Loftware Label
Manager:
v The first page of the label file created should be named in the format

<filename>.lwl

v The middle page of the label file created should be named in the format
<filename>_Mid.lwl

v The last page of the label file created should be named in the format
<filename>_Last.lwl

File Design Conventions for Labels
The first page of the label and the last page of the label are always single pages.
The middle page, on the other hand, is used n number of times in accordance with
the total number of label pages to be printed.

For example, if a label print is six pages, the first page and last page make two
pages, and the middle page (<filename>_Mid.lwl) is repeated four times.

Creating a New Label Format
You can print a label in single-page or multi-page format depending on the
number of lines in the label. If the number of lines can be accommodated on the
first page itself, you can print the label in single-page format. For this, you must

Chapter 5. Integrating with the Loftware Print Server and Label Manager 57

create a new label format (<filename>_SinglePage.lwl). For more information
about creating a label format, see the Sterling Selling and Fulfillment Foundation:
Application Platform Configuration Guide.

After you create the new label format, the print service calls the xsl file to check
the number of lines in the label. Depending on the number of lines, a single-page
or multi-page label is printed. For example, the LTL Manifest Label can be printed
in single-page or multi-page format.

Copying the Custom Label
About this task

After you create the custom label:

Procedure

Copy the label to the Runtime > Template > Label > Extn directory.

Generating a Mapping XML File for a Label
About this task

The GenLabelMappingXML.java tool is used to generate Mapping XML for a label
designed using Loftware Label Manager. The output XML contains all the field
names of the label. XPath bindings for the label fields have to be specified.

To generate a Mapping XML for a label:

Procedure
1. Invoke the GenLabelMappingXML tool:

java -classpath <classpath>
com.yantra.tools.labelxmlmapping.GenLabelMappingXML
<parameter1> <parameter2>

<parameter1> - File name of the .tab file generated when the label (.lwl) file is
saved in Loftware Label Manager.
The full path, excluding the extension should be specified.
<parameter2> - File name of the XML file generated by the tool.
The full path, excluding the extension should be specified.
For example, to generate a Mapping XML for the label BOL.lwl, the .tab file
name is BOL.tab
Example:
java -classpath
platform_afc.jar;log4j-1.2.12.jar;xercesImpl.jar
com.yantra.tools.labelxmlmapping.GenLabelMappingXML
<path-of-the-file>/BOL <path-of-file>/BOLMap

2. Ensure that the classpath has the following jar files:
v platform_afc.jar

v log4j-1.2.12.jar

v xercesImpl.jar

3. Edit the map file (XML) generated for a label (LWL) to associate the XML data
to the fields required on the label and copy it into the Sterling Selling and
Fulfillment Foundation Runtime Template folder. See Editing and Relocating
the Map File Generated for a Label.

58 Sterling Selling and Fulfillment Foundation: Integration Guide

XML File Settings Generated by GenLabelMappingXML.java
In the Mapping XML file generated using the GenLabelMappingXML.java tool:
v Each Label Field has a corresponding LabelField element
v Label Fields which are repeating are present in the RepeatingField element.
v Each of the Repeating Fields has a MaxFirstPage, MaxMidPage, and MaxLastPage,

which denote the number of times the field is repeated in the First page, Middle
Pages, and Last Page respectively.

v To repeat the same set of values of the field in all the pages, the
RepeatValuesOnEachPage attribute should be set to "Y" in the RepeatingField
element.

Example of Mapping XML File
<?xml version="1.0" encoding="UTF-8"?>
<LabelFieldMap>

<LabelField
Binding="/Shipment/SellerOrganization/CorporatePersonInfo/@AddressLine1"
LabelFieldName="FromAddressLine1" RepeatingElement=""/>

<LabelField
Binding="/Shipment/SellerOrganization/CorporatePersonInfo/@AddressLine2"
LabelFieldName="FromAddressLine2" RepeatingElement=""/>

<LabelField
Binding="concat(/Shipment/SellerOrganization/CorporatePersonInfo/@FirstName,
’ ’,/Shipment/SellerOrganization/CorporatePersonInfo/@LastName)"
LabelFieldName="FromName" RepeatingElement="" DataType="Text"/>

<LabelField
Binding="/Shipment/SellerOrganization/CorporatePersonInfo/@City"
LabelFieldName="FromCity" RepeatingElement="" DataType="Text"/>

<LabelField
Binding="/Shipment/SellerOrganization/CorporatePersonInfo/@State"
LabelFieldName="FromState" RepeatingElement="" DataType="Text"/>

<LabelField
Binding="/Shipment/SellerOrganization/CorporatePersonInfo/@Country"
LabelFieldName="FromCountry" RepeatingElement="" DataType="Text"/>

<LabelField
Binding="/Shipment/SellerOrganization/CorporatePersonInfo/@ZipCode"
LabelFieldName="FromZip" RepeatingElement="" DataType="Text"/>

<LabelField Binding="/Shipment/@ShipmentNo" LabelFieldName="ShipmentNo"
RepeatingElement="" DataType="Text"/>

<LabelField Binding="/Shipment/@ActualShipmentDate"
LabelFieldName="ShipmentDate" RepeatingElement="" DataType="Date"/>

<LabelField Binding="concat(/Shipment/ToAddress/@FirstName,’
’,/Shipment/ToAddress/@LastName)" LabelFieldName="ToName"
RepeatingElement="" DataType="Text"/>

<LabelField Binding="/Shipment/ToAddress/@AddressLine1"
LabelFieldName="ToAddressLine1" RepeatingElement="" DataType="Text"/>

<LabelField Binding="/Shipment/ToAddress/@AddressLine2"
LabelFieldName="ToAddressLine2" RepeatingElement="" DataType="Text"/>

<LabelField Binding="/Shipment/ToAddress/@City" LabelFieldName="ToCity"
RepeatingElement="" DataType="Text"/>

<LabelField Binding="/Shipment/ToAddress/@State"
LabelFieldName="ToState" RepeatingElement="" DataType="Text"/>

<LabelField Binding="/Shipment/ToAddress/@ZipCode"
LabelFieldName="ToZip" RepeatingElement="" DataType="Text"/>

<LabelField Binding="/Shipment/ToAddress/@Country"
LabelFieldName="ToCountry" RepeatingElement="" DataType="Text"/>

<LabelField
Binding="concat(/Shipment/BillingInformation/AlternateParty/@FirstName,’
’,/Shipment/BillingInformation/AlternateParty/@LastName)"
LabelFieldName="BillToName" RepeatingElement="" DataType="Text"/>

<LabelField
Binding="/Shipment/BillingInformation/AlternateParty/@AddressLine1"
LabelFieldName="BillToAddressLine1" RepeatingElement="" DataType="Text"/>

<LabelField

Chapter 5. Integrating with the Loftware Print Server and Label Manager 59

Binding="/Shipment/BillingInformation/AlternateParty/@AddressLine2"
LabelFieldName="BillToAddressLine2" RepeatingElement="" DataType="Text"/>

<LabelField Binding="/Shipment/BillingInformation/AlternateParty/@City"
LabelFieldName="BillToCity" RepeatingElement="" DataType="Text"/>

<LabelField Binding="/Shipment/BillingInformation/AlternateParty/@State"
LabelFieldName="BillToState" RepeatingElement="" DataType="Text"/>

<LabelField
Binding="/Shipment/BillingInformation/AlternateParty/@ZipCode"
LabelFieldName="BillToZip" RepeatingElement="" DataType="Text"/>

<LabelField
Binding="/Shipment/BillingInformation/AlternateParty/@Country"
LabelFieldName="BillToCountry" RepeatingElement="" DataType="Text"/>

<LabelField Binding="/Shipment/Carrier/@ScacDesc" LabelFieldName="SCAC"
RepeatingElement="" DataType="Text"/>

<LabelField Binding="/Shipment/BillingInformation/@ShipmentChargeType"
LabelFieldName="FreightTerms" RepeatingElement="" DataType="Text"/>

<LabelField Binding="concat(/Shipment/MarkForAddress/@FirstName,’
’,/Shipment/MarkForAddress/@LastName)" LabelFieldName="MarkFor"
RepeatingElement="" DataType="Text"/>

<LabelField
Binding="/Shipment/Instructions/Instruction[@InstructionType=’SHIP’]/@Instru
ctionText" LabelFieldName="SpecialInstruction" RepeatingElement=""
DataType="Text"/>

<LabelField
Binding="/Shipment/ShipmentLines/ShipmentLine/OrderLine/@CustomerPONo"
LabelFieldName="CustomerPONo" RepeatingElement="ShipmentLine"
DataType="Text"/>

<LabelField Binding="/Shipment/ShipmentLines/ShipmentLine/@ItemID"
LabelFieldName="ItemId" RepeatingElement="" DataType="Text"/>

<LabelField
Binding="/Shipment/ShipmentLines/ShipmentLine/OrderLine/Item/@CustomerItem"
LabelFieldName="CustItemId" RepeatingElement="ShipmentLine"
DataType="Text"/>

<LabelField
Binding="/Shipment/ShipmentLines/ShipmentLine/OrderLine/Item/@ItemDesc"
LabelFieldName="ItemDesc" RepeatingElement="ShipmentLine" DataType="Text"/>

<LabelField
Binding="/Shipment/ShipmentLines/ShipmentLine/@UnitOfMeasure"
LabelFieldName="UOM" RepeatingElement="ShipmentLine" DataType="Text"/>

<LabelField Binding="/Shipment/ShipmentLines/ShipmentLine/@OrderedQty"
LabelFieldName="OrdQty" RepeatingElement="ShipmentLine" DataType="Text"/>

<LabelField Binding="/Shipment/ShipmentLines/ShipmentLine/@Quantity"
LabelFieldName="Quantity" RepeatingElement="ShipmentLine" DataType="Text"/>

<LabelField
Binding="/Shipment/ShipmentLines/ShipmentLine/@BackOrderedQty"
LabelFieldName="BOQty" RepeatingElement="ShipmentLine" DataType="Text"/>

<LabelField Binding="" LabelFieldName="Line" RepeatingElement=""
Sequence="Y" DataType="Text"/>

<RepeatingFields>
<RepeatingField LabelFieldName="CustomerPONo" MaxFirstPage="12"

MaxLastPage="12" MaxMidPage="12"/>
<RepeatingField LabelFieldName="ItemId" MaxFirstPage="12"

MaxLastPage="12" MaxMidPage="12"/>
<RepeatingField LabelFieldName="CustItemId" MaxFirstPage="12"

MaxLastPage="12" MaxMidPage="12"/>
<RepeatingField LabelFieldName="ItemDesc" MaxFirstPage="12"

MaxLastPage="12" MaxMidPage="12"/>
<RepeatingField LabelFieldName="UOM" MaxFirstPage="12"

MaxLastPage="12" MaxMidPage="12"/>
<RepeatingField LabelFieldName="OrdQty" MaxFirstPage="12"

MaxLastPage="12" MaxMidPage="12"/>
<RepeatingField LabelFieldName="Quantity" MaxFirstPage="12"

MaxLastPage="12" MaxMidPage="12"/>
<RepeatingField LabelFieldName="BOQty" MaxFirstPage="12"

MaxLastPage="12" MaxMidPage="12"/>

60 Sterling Selling and Fulfillment Foundation: Integration Guide

<RepeatingField LabelFieldName="Line" MaxFirstPage="12"
MaxLastPage="12" MaxMidPage="12"/>

</RepeatingFields>
</LabelFieldMap>

Editing and Relocating the Map File Generated for a Label
Procedure
1. Edit the map file (XML) generated for a label (LWL) to associate the XML data

to the fields required on the label:

Note: XPath Functions can be used in the binding, provided the XPath Binding
for a RepeatingField represents a Nodeset.
v Sequence - Sequence="Y" setting is to be used in instances where a labelfield

represents a sequence of numbers. For example, serial numbers in a table.
v DataType - Set up the relevant DataType for the LabelField. Valid values are

Text, Date, and DateTime.
v Repeating Element - Specify the RepeatingElement for the XPath Binding. If

no Repeating Element is specified, the element containing the attribute is
used as the RepeatingElement by default. In this example, the ShipmentLine
is the RepeatingElement:
<LabelField Binding="/Shipment/ShipmentLines/ShipmentLine/OrderLine/
Item/@ItemDesc" LabelFieldName="ItemDesc"
RepeatingElement="ShipmentLine" DataType="Text"/>

2. Place the edited XML map file into the Sterling Selling and Fulfillment
Foundation Runtime Template folder by pasting it into the Runtime > Template
> Label > Extn directory.

Defining Custom Print Services
Services required for printing a Pack List are supplied by default within the
Sterling Selling and Fulfillment Foundation framework. The examples provided in
the following topic can be used as a reference point to create custom Prints.

Configuring a Print Pack List Service
About this task

Prints are required to be configured as services to be invoked from an event or the
console (UI).

To configure a Print Pack List service:

Procedure
1. From the Application Platform tree, choose Process Modeling > Container >

Pack Process. The Pack Process window is displayed.
2. Choose Actions tab. From Pack Process Repository > Prints, choose

PrintPackList.
3. The Service Detail: PrintPackList (Pack Process) window is displayed.

Chapter 5. Integrating with the Loftware Print Server and Label Manager 61

Results

For more information about configuring Service Details, see the Sterling Selling and
Fulfillment Foundation: Application Platform Configuration Guide.

The Input XML to the service definition is transformed into the input of the
PrintDocumentSet() API using an XSL Translator.

For more information about the input to PrintDocumentSet() API and the
description of the XML attributes, refer to the Sterling Selling and Fulfillment
Foundation: Javadocs.

Example of Typical XSL for PrintDocumentSet()
The following is an example of a typical XSL that generates the input to the
PrintDocumentSet() API:

<?xml version = "1.0" encoding = "UTF-8"?>
<xsl:stylesheet xmlns:xsl = "http://www.w3.org/1999/XSL/Transform"

version = "1.0">
<xsl:output indent="yes"/>
<xsl:template match="Print | Shipment">
<PrintDocuments>
<xsl:attribute name="PrintName">
<xsl:text>packList</xsl:text>
</xsl:attribute>
<xsl:attribute name="FlushToPrinter">
<xsl:text>Y</xsl:text>
</xsl:attribute>
<PrintDocument>
<xsl:attribute name="BeforeChildrenPrintDocumentId">
<xsl:text>PACKLIST</xsl:text>
</xsl:attribute>
<xsl:attribute name="DataElementPath">
<xsl:text>xml:/Shipment</xsl:text>
</xsl:attribute>
<xsl:choose>
<xsl:when test="name()="Print"">
<xsl:copy-of select="PrinterPreference"/>

62 Sterling Selling and Fulfillment Foundation: Integration Guide

<xsl:copy-of select="LabelPreference"/>
</xsl:when>
<xsl:when test="name()="Shipment"">
<PrinterPreference>
<xsl:attribute name="PrinterId"/>
<xsl:attribute name="UsergroupId"/>
<xsl:attribute

name="UserId"><xsl:text>xml:/Shipment/@Modifyuserid</xsl:text>
</xsl:attribute>

<xsl:attribute name="WorkStationId"/>
<xsl:attribute

name="OrganizationCode"><xsl:text>xml:/Shipment/ShipNode/
@NodeOrgCode</xsl:text></xsl:attribute>

</PrinterPreference>
<LabelPreference>
<xsl:attribute name="EnterpriseCode">
<xsl:text>xml:/Shipment/@EnterpriseCode</xsl:text>
</xsl:attribute>
<xsl:attribute name="BuyerOrganizationCode">
<xsl:text>xml:/Shipment/@BuyerOrganizationCode</xsl:text>
</xsl:attribute>
<xsl:attribute name="SellerOrganizationCode">
<xsl:text>xml:/Shipment/@SellerOrganizationCode</xsl:text>
</xsl:attribute>
</LabelPreference>
</xsl:when>
</xsl:choose>
<KeyAttributes>
<KeyAttribute>
<xsl:attribute name="Name"><xsl:text>ShipmentKey</xsl:text></xsl:attribute>
</KeyAttribute>
</KeyAttributes>
<InputData>
<xsl:attribute name="FlowName">
<xsl:text>GetPackListData</xsl:text>
</xsl:attribute>
<Shipment>
<xsl:choose>
<xsl:when test="name()="Print"">
<xsl:copy-of select="Shipment/@*" />
</xsl:when>
<xsl:when test="name()="Shipment"">
<xsl:copy-of select="@*" />
</xsl:when>
</xsl:choose>
</Shipment>
<Template>
<Api Name="getShipmentDetails">
<Template>
<Shipment>
<SellerOrganization>
<CorporatePersonInfo/>
</SellerOrganization>
<Carrier/>
<MarkForAddress/>
<BillingInformation>
<AlternateParty/>
</BillingInformation>
<Instructions>
<Instruction/>
</Instructions>
<FromAddress/>
<ToAddress/>
<ShipmentLines>
<ShipmentLine CountryOfOrigin="" FifoNo="" ItemDesc="" ItemID=""

OrderHeaderKey="" OrderLineKey="" OrderNo="" OrderReleaseKey=""
PrimeLineNo="" ProductClass="" Quantity="" ReleaseNo="" Segment=""

Chapter 5. Integrating with the Loftware Print Server and Label Manager 63

SegmentType="" ShipmentKey="" ShipmentLineKey="" ShipmentLineNo=""
SubLineNo="" UnitOfMeasure="" BackOrderedQty="" ShipmentSubLineNo="">

<Order/>
<OrderLine>
<Item/>
<OrderStatuses>
<OrderStatus OrderHeaderKey="" OrderLineKey="" OrderLineScheduleKey=""

OrderReleaseKey="" OrderReleaseStatusKey="" PipelineKey=""
ReceivingNode="" ShipNode="" Status="" StatusDate=""
StatusDescription="" StatusQty="" StatusReason="" TotalQuantity="">

<OrderStatusTranQuantity StatusQty="" TotalQuantity=""
TransactionalUOM="" />

<Details ExpectedDeliveryDate="" ExpectedShipmentDate="" ShipByDate=""
TagNumber="">

</Details>
</OrderStatus>
</OrderStatuses>
</OrderLine>
</ShipmentLine>
</ShipmentLines>
<Containers>
<Container>
<ContainerDetails>
<ContainerDetail>
<ShipmentLine>
<OrderLine>
<Item/>
</OrderLine>
</ShipmentLine>
</ContainerDetail>
</ContainerDetails>
</Container>
</Containers>
<ShipNode>
<ShipNodePersonInfo/>
</ShipNode>
</Shipment>
</Template>
</Api>
</Template>
</InputData>
</PrintDocument>
</PrintDocuments>
</xsl:template>
</xsl:stylesheet>

Format for Input XML to XSL Translator

The Input XML to the above XSL translator should belong to either of the
following formats:
<Shipment ShipmentKey=""/>

OR
<Print><Shipment ShipmentKey=""/><LabelPreference EnterpriseCode=""/><Printer
Preference UserId="" UsergroupId=""/></Print>

The former input XML is passed when the service is invoked from an event, while
the latter is passed when the service is invoked from the console (UI).

XML Generated After XSL Translation

The following is an example of the XML generated after the XSL Translation using
the above mentioned XSL:

64 Sterling Selling and Fulfillment Foundation: Integration Guide

<?xml version = "1.0" encoding = "UTF-8"?>
<PrintDocuments PrintName="packList" FlushToPrinter="Y">
<PrintDocument Localecode="xml:/Shipment/ShipNode/@Localecode">
<InputData APIName="getShipmentDetails">
<Shipment ShipmentKey="">
</Shipment>
<Template>
<Shipment>
<ShipNode>
<ShipNodePersonInfo/>
</ShipNode>
</Shipment>
</Template>
</InputData>
</PrintDocument>
<PrintDocument BeforeChildrenPrintDocumentId="PACKLIST"

DataElementPath="xml:/Shipment">
<PrinterPreference PrinterId="" UserId="xml:/Shipment/@Modifyuserid"

UsergroupId="" WorkStationId=""
OrganizationCode="xml:/Shipment/ShipNode/@NodeOrgCode"/>

<LabelPreference EnterpriseCode="xml:/Shipment/@EnterpriseCode"
BuyerOrganizationCode="xml:/Shipment/@BuyerOrganizationCode"
SellerOrganizationCode="xml:/Shipment/@SellerOrganizationCode" />

<KeyAttributes>
<KeyAttribute Name="ShipmentKey"/>
</KeyAttributes>
<InputData FlowName="GetPackListData">
<Shipment ShipmentKey=""/>
<Template>
<Api Name="getShipmentDetails">
<Template>
<Shipment ShipmentKey="" ShipmentNo="" ActualShipmentDate=""

ExpectedShipmentDate="">
<SellerOrganization OrganizationCode="">
<CorporatePersonInfo AddressLine1="" AddressLine2="" FirstName=""

MiddleName="" LastName="" City="" State="" Country="" ZipCode="" />
</SellerOrganization>
<Carrier Scac="" ScacDesc=""/>
<MarkForAddress/>
<BillingInformation ShipmentChargeType=""/>
<Instructions>
<Instruction InstructionType="" InstructionText=""/>
</Instructions>
<ToAddress/>
<ShipmentLines>
<ShipmentLine ItemDesc="" ItemID="" OrderHeaderKey="" OrderLineKey=""
OrderNo="" OrderReleaseKey="" PrimeLineNo="" Quantity="" ReleaseNo=""
ShipmentKey="" ShipmentLineKey="" ShipmentLineNo="" SubLineNo=""
UnitOfMeasure="" BackOrderedQty="" ShipmentSubLineNo="">
<Order OrderHeaderKey="" OrderNo="">
<PersonInfoBillTo AddressLine1="" AddressLine2="" FirstName="" MiddleName=""
LastName="" City="" State="" Country="" ZipCode="" />
</Order>
<OrderLine CustomerPONo="" OrderLineKey="" OrderedQty=""
OriginalOrderedQty="" Status="" StatusQuantity="" SubLineNo="" >
<Item CustomerItem=""/>
<OrderStatuses>
<OrderStatus OrderLineKey="" OrderReleaseStatusKey="" Status=""
StatusQty="" TotalQuantity=""/>
</OrderStatuses>
</OrderLine>
</ShipmentLine>
</ShipmentLines>
<ShipNode NodeOrgCode=""/>
</Shipment>
</Template>
</Api>

Chapter 5. Integrating with the Loftware Print Server and Label Manager 65

</Template>
</InputData>
</PrintDocument>
</PrintDocuments>

Printing a Packing Slip with the GetPackListData Service
About this task

The XML shown in XML Generated After XSL Translation prints a Packing Slip
(PACKLIST) as specified by the BeforeChildrenPrintDocumentId attribute in the
PrintDocument node.

The data required to print the packlist is obtained by invoking the
GetPackListData service as specified by the FlowName attribute in the InputData
node.

To configure the GetPackListData service definition:

Procedure
1. From the Application Platform tree, choose Process Modeling > Container >

Pack Process. The Pack Process window is displayed.
2. Choose Service Definitions Tab. From Pack Process Repository > Prints, choose

GetPackListData.
3. The Service Details: GetPackListData (Pack Process) window is displayed.

Results

For more information about configuring Service Details, see the Sterling Selling and
Fulfillment Foundation: Application Platform Configuration Guide.

The GetPackListData service calls the GetShipmentDetails() API and the output is
transformed using the XSL Translator.

The XSL translator (as reproduced below) calculates the backordered quantity for
the shipment lines returned by the GetShipmentDetails() API:

66 Sterling Selling and Fulfillment Foundation: Integration Guide

<?xml version = "1.0" encoding = "UTF-8"?>
<xsl:stylesheet xmlns:xsl = "http://www.w3.org/1999/XSL/Transform" version =

"1.0">
<xsl:output indent="yes"/>
<xsl:template match="/Shipment">

<Shipment>
<xsl:choose>

<xsl:when test="not(@ActualShipmentDate) or
(@ActualShipmentDate="")">

<xsl:attribute name="ActualShipmentDate"><xsl:value-of
select="@ExpectedShipmentDate"/></xsl:attribute>

</xsl:when>
<xsl:otherwise>

<xsl:attribute name="ActualShipmentDate"><xsl:value-of
select="@ActualShipmentDate"/></xsl:attribute>

</xsl:otherwise>
</xsl:choose>
<xsl:message>ActualShipmentDate<xsl:value-of

select="@ActualShipmentDate"/></xsl:message>
<xsl:for-each select="@*">

<xsl:if test="not(name()= "ActualShipmentDate")">
<xsl:attribute name="{name()}"><xsl:value-of select="."/>
</xsl:attribute>

</xsl:if>
</xsl:for-each>
<xsl:copy-of select="SellerOrganization"/>
<xsl:copy-of select="Carrier"/>
<xsl:copy-of select="ShipNode"/>
<xsl:copy-of select="ToAddress"/>
<xsl:copy-of select="MarkForAddress"/>
<xsl:copy-of select="BillingInformation"/>
<xsl:copy-of select="Instructions"/>
<xsl:copy-of select="Containers"/>
<ShipmentLines>

<xsl:for-each select="ShipmentLines/ShipmentLine[@Shipment
SubLineNo=’0’]">

<ShipmentLine>
<xsl:variable name="qty"

select="sum(OrderLine/OrderStatuses/OrderStatus[@OrderLineKey=current()
/@OrderLineKey and substring(@Status,1,4)=’1300’]/@StatusQty)"/>

<xsl:attribute name="OrderedQty">
<xsl:value-of

select="sum(OrderLine/OrderStatuses/OrderStatus[@OrderLineKey=current()/
@OrderLineKey and not(substring(@Status,1,4)=’1400’)]/@StatusQty)"/>

</xsl:attribute>
<xsl:attribute name="BackOrderedQty">

<xsl:value-of select="$qty"/>
</xsl:attribute>

<xsl:copy-of select="@*"/>
<xsl:copy-of select="OrderLine"/>

</ShipmentLine>
</xsl:for-each>

</ShipmentLines>
</Shipment>

</xsl:template>
</xsl:stylesheet>

Once a service has been created for a print, it should be associated to an
appropriate event. For more information about Service Association, see the Sterling
Selling and Fulfillment Foundation: Warehouse Management System Configuration Guide.

Chapter 5. Integrating with the Loftware Print Server and Label Manager 67

68 Sterling Selling and Fulfillment Foundation: Integration Guide

Chapter 6. Integrating with Parcel Carrier Adapters

Overview of Parcel Carrier Adapter Integration
The Parcel Carrier Adapters (Carrier Adapter) manages all the carrier
integration-related functions of Sterling Selling and Fulfillment Foundation.
Sterling Selling and Fulfillment Foundation interfaces with the Carrier Adapter to
use its carrier-integration functions.

The Carrier Adapter is regularly updated with the latest carrier data, such as rates
and special services, and can act as a centralized carrier-integration database and
business rules manager. The Carrier Adapter helps you to quickly meet the
changing requirements initiated by both carriers and customers, in the most
efficient way.

The Carrier Adapter has a data-driven design. The functionality is defined in terms
of the relations between data elements stored in the database. Carriers having
similar functionality can be incorporated into an installation with minimal
engineering effort.

The Carrier Adapter is now integrated into Sterling Selling and Fulfillment
Foundation. For more information about the Carrier Adapter and how to configure
it, see the Sterling Selling and Fulfillment Foundation: Parcel Carrier Adapter .

APIs Invoked During Parcel Carrier Adapter Integration
These APIs are invoked during the Sterling Warehouse Management System
integration with the Carrier Adapter.

APIs Invoked During the Carrier Adapter Integration with UPSN
v openManifest API
v shipCarton API
v deleteCarton API
v closeManifest API

APIs Invoked During the Carrier Adapter Integration with FedEx
v openManifest API
v shipCarton API
v deleteCarton API
v closeManifest API

APIs Used for Carrier Adapter Integration

The Sterling Warehouse Management System integrates with the Carrier Adapter
using the following APIs:
v openManifest API: The openManifest API is used to open a manifest for a

carrier server. This API calls the openManifest API in the Carrier Adapter. For
field level mapping details between these APIs, see "Field-Level Mapping
Between the openManifest API on the Sterling Warehouse Management System
and the openManifest API on the Carrier Adapter".

© Copyright IBM Corp. 1999, 2011 69

v addContainertToManifest API: The addContainerToManifest API is used to add
a container to a manifest. This API calls the shipCarton API in the Carrier
Adapter. For field level mapping details between these APIs, see "Mappings
Between the addContainerToManifest API on the Sterling Warehouse
Management System and the shipCarton API on the Carrier Adapter".

v removeContainerFromManifest API: The removeContainerFromManifest API is
used to delete a carton from a manifest. This API calls the deleteCarton API on
the Carrier Adapter. For field level mapping details between these APIs, see
"Mapping Between the removeContainerFromManifest API on the Sterling
Warehouse Management System and the deleteCarton API on the Carrier
Adapter".

v closeManifest API: The closeManifest API is used to close a manifest. This API
calls the closeManifest API on the Carrier Adapter. For field level mapping
details between these APIs, see "Mapping Between the closeManifest API on the
Sterling Warehouse Management System and the closeManifest API on the
Carrier Adapter".

Note: For the FedEx carrier, the Carrier Adapter supports label prints when a
container is added to a manifest if the FedEx Printer is configured on the FedEx
Carrier Server. For the UPSN carrier, the Carrier Adapter supports label prints
when a container is added to a manifest or a manifest is closed. For more
information about Label Prints, see the Sterling Selling and Fulfillment Foundation:
Warehouse Management System User Guide.

Field-Level Mapping Between the openManifest API on the Sterling
Warehouse Management System and the openManifest API on the
Carrier Adapter

This is the input XML for the field-level mapping between the openManifest API
on the Sterling Warehouse Management System and the openManifest API on the
Carrier Adapter:

Field Name Comments Platform

Carrier Required YFS_Manifest.SCAC

ManifestNumber Required YFS_MANIFEST.manifest_no (as
entered by the user. If not
entered, posted with one
upsequence number generated)

PickupSummaryNumber Required for UPSN YFS_MANIFEST.pickup_summary
_no (as entered by the user)

ShipperAccountNumber Required YFS_MANIFEST.shipper_
account_no (as entered by
the user)

PickupDate Required YFS_MANIFEST.manifest_
date (as entered by the user)

No output XML is generated for the openManifest API. A confirmation message is
displayed on success, while an error message is displayed in the event of a failure.

70 Sterling Selling and Fulfillment Foundation: Integration Guide

Mappings Between the addContainerToManifest API on the Sterling
Warehouse Management System and the shipCarton API on the Carrier
Adapter

This is the input XML for the field-level mapping between the
addContainerToManifest API on the Sterling Warehouse Management System and
the shipCarton API on the Carrier Adapter:

Field Name Comments Platform

UPSPLD

Carrier Required YFS_SHIPMENT.scac

PackageLevelDetail The Package Level Detail Record (0100) - is written
for every package shipped. This is a mandatory
record for both domestic and international
shipments.

ManifestNumber Required YFS_MANIFEST.manifest_no
(open manifest as obtained by
packShipment API for a given
shipnode and carrier)

ShipId Required YFS_SHIPMENT_CONTAINER
.container_no.

PickupDate Required YFS_MANIFEST.manifest_date

ShipperAccountNumber Required YFS_MANIFEST.shipper
_account_no

BookNumber Required YFS_MANIFEST.pickup_
summary_no (substring 0-7)

PageNumber Required YFS_MANIFEST.pickup_
summary_no (substring 8-10)

ShipmentNumber Required YFS_SHIPMENT.shipment_no

PackageTrackingNumber Required <spaces>

SPFVersion Required Default 0505

Acctnumber Conditional Computed based on
YFS_FREIGTH_TERMS.charges
_paid_by. It can be
YFS_SHIPMENT.Custcarrier
_Account_No/YFS_SCAC_
Ex.account1.

CompanyName Required YFS_PERSON_INFO.company
corresponding to
YFS_SHIPMENT.to_address_key.

ConsigneeAttn Conditional YFS_PERSON_INFO.first_name +
YFS_PERSON_INFO.middle_
name + YFS_PERSON_INFO.
last_name corresponding
to YFS_SHIPMENT.
to_address_key.

CAddr1 Required YFS_PERSON_INFO.address_
line1 corresponding to
YFS_SHIPMENT.to_address_key.

Chapter 6. Integrating with Parcel Carrier Adapters 71

Field Name Comments Platform

CAddr2 Optional YFS_PERSON_INFO.address_
line2 corresponding to
YFS_SHIPMENT.to_address_key.

CAddr3 Optional YFS_PERSON_INFO.address_
line3 corresponding to
YFS_SHIPMENT.to_address_key.

CCity Required YFS_PERSON_INFO.city
corresponding to
YFS_SHIPMENT.to_address
_key.

CStateProv Conditional YFS_PERSON_INFO.state
corresponding to
YFS_SHIPMENT.to_address_key.

CPostalCode Conditional YFS_PERSON_INFO.zip_code
corresponding to
YFS_SHIPMENT.to_address_key.

CPhone Conditional YFS_PERSON_INFO.day_phone
corresponding to
YFS_SHIPMENT.to_address_key.

ShipmentChgType Required Computed based on
YFS_FREIGHT_TERMS.charges_
paid_by and corresponding
YFS_SCAC_Ex entry.
Possible values are COL,TPB,
PRE.

CWTInd Conditional Set to '0' (zero) to indicate
Not HunderedWeight.

ServiceType Required YFS_SCAC_AND_SERVICE.
electronic_code corresponding to
YFS_SHIPMENT.scac and
YFS_SHIPMENT.carrier_service_
code.

Packagetype Required 02" to indicate Package.

DeliveryZone Optional <spaces>

Actualweight Required YFS_SHIPMENT_CONTAINER.
container_gross_weight after
applying the carrier locale
weight UOM.

PkgpublishedDimWt Required Computed

UOMWeight Optional Weight UOM of the Ship|
Node

UOMDim UOM Dim Dimension UOM of the Ship
Node

CODAmount Required 0

CODFundsInd Conditional <spaces>

Currencycode Required YFS_SHIPMENT.currency.

CallTag_ARSInd Required 0 - to indicate no call tag.

Calltag_ARSSchedulePickDate Optional <spaces>

MerchandiseDescription Conditional <spaces>

72 Sterling Selling and Fulfillment Foundation: Integration Guide

Field Name Comments Platform

SatDeliveryInd Required 0" for not opting for this service.

SaturdayPickupInd Required 0" for not opting for this service.

OversizePackageInd Required YFS_SHIPMENT_CONTAINER.
oversized_flag is Y, then
indicator is passed as 1, or
else 0.

DeclaredValueInsurance Required YFS_SHIPMENT_CONTAINER
.declared_value

ResInd Required YFS_PERSON_INFO.company
corresponding to
YFS_SHIPMENT.to_address_key
is nonblanks, it is assumed to
be 0 to indicate commercial
or else 1 for residential.

DCISType Conditional <spaces>

CustomerRefNumberType1 Optional <spaces>

CustomerRefNumber1 Optional <spaces>

CustomerRefNumberType2 Optional <spaces>

CustomerRefNumber2 Optional <spaces>

ShipmentReferenceNoType1 Optional <spaces>

ShipmentReferenceNo1 Optional <spaces>

ShipmentReferenceNoType2 Optional <spaces>

ShipmentReferenceNo2 Optional <spaces>

CODControlNumber Optional <spaces>

CallTag_ARSNumber Optional <spaces>

CODInd Required <spaces>

CODCurrencycode Conditional <spaces>

IncrementalPldInd Required <spaces>

DocInd Required Default to ‘3' to indicate non
document/package.

ShipperEIN Optional <spaces>

ShipperCountry Required YFS_PERSON_INFO.country
corresponding to
YFS_SHIPMENT.shipnode_key's
YFS_SHIP_NODE.shipnode_
address_key.

SenderName Optional <spaces>

ConsigneeTagID Optional <spaces>

ConsigneeCountry Required YFS_PERSON_INFO.country
corresponding to
YFS_SHIPMENT.to_address_key.

CalculatedRatesInd Required <spaces>

SourceTypeCode Required Default to ‘20' to indicate host
access.

AccessorialRecord AccessorialRecord (0200) is valid for both domestic
and international shipments. This record is written
only when UPS special services are used.

Chapter 6. Integrating with Parcel Carrier Adapters 73

Field Name Comments Platform

ShipperCreditCardNo Required <spaces>

ShipperCreditCardExpDate Required <spaces>

AdditionalHandlingInd Required Default to ‘0'.

ExtendedDestInd Required <spaces>

HazMat Required YFS_SHIPMENT.hazardous
material is Y, then indicator is 1,
else 0.

HoldForPickupInd Required Default to '0' (do not hold for
pickup).

ModifyInd Required Default to ‘0'.

OCAIndicator Required Default to ‘0'.

VoidInd Required 0

PackageLength Required YFS_SHIPMENT_CONTAINER
.container_length

PackageWidth Required YFS_SHIPMENT_CONTAINER
.container_width

PackageHeight Required YFS_SHIPMENT_CONTAINER
.container_height

SpecialInstructions Optional <spaces>

VerbalConfirmationName Conditional YFS_PERSON_INFO.first_name +
YFS_PERSON_INFO.middle_
name + YFS_PERSON_INFO
.last_name corresponding to
YFS_SHIPMENT.to_address_key.

VerbalConfirmationPhone Conditional YFS_PERSON_INFO.day_phone
corresponding to
YFS_SHIPMENT.to_address_key.

EarliestDeliveryTime Optional <spaces>

ShipmentCreditCardNumber Conditional <spaces>

ShipmentCreditCardExpDate Conditional <spaces>

ConsigneeNumber Optional <spaces>

ConsigneeCreditCardNo Required <spaces>

ConsigneeCreditCardExpDate Required <spaces>

DCISNumber Optional <spaces>

ConsigneeFaxDestinationInd Optional <spaces>

ConsigneeFax Optional <spaces>

ExperssCODTrackingNumber Required <spaces>

CustomerReferenceNumberType3 Optional <spaces>

CustomerReferenceNumber3 Optional <spaces>

CustomerReferenceNumberType4 Optional <spaces>

CustomerReferenceNumber4 Optional <spaces>

CustomerReferenceNumberType5 Optional <spaces>

CustomerReferenceNumber5 Optional <spaces>

PackageTrackingNumber Required YFS_Shipment_Container.
Tracking_No

74 Sterling Selling and Fulfillment Foundation: Integration Guide

Field Name Comments Platform

AlternatePartyRecord AlternateParty Record (0300) is valid for both
domestic and international shipments. For domestic,
this record is written only when freight term is
'Third Party Billing'. For International shipments,
this record is written for Importer and Exporter
Address.

AlternatePartyType Required For domestic shipments: This
field is set to '03'/'04'.

For international shipments: This
field is set to '02' always.

ID_AcctNumber Conditional YFS_SCAC_EX.account1

PODReplyType Conditional <spaces>

APCompanyName Required YFS_PERSON_INFO.company
corresponding to
YFS_SHIPMENT.enterprise_code's
billing_address_key.

APAttention Conditional YFS_PERSON_INFO.first_name
+ YFS_PERSON_INFO.|
last_name corresponding
to YFS_SHIPMENT.
enterprise_code's billing
_address_key.

APAddr1 Required YFS_PERSON_INFO.address_
line1 corresponding to
YFS_SHIPMENT.enterprise_
code's billing_address_key.

APAddr2 Optional YFS_PERSON_INFO.address_
line2 corresponding to
YFS_SHIPMENT.enterprise_
code's billing_address_key.

APAddr3 Optional YFS_PERSON_INFO.address_
line3 corresponding to
YFS_SHIPMENT.enterprise_
code's billing_address_key.

APCity Required YFS_PERSON_INFO.city
corresponding to
YFS_SHIPMENT.enterprise_code's
billing_address_key.

APStateProv Conditional YFS_PERSON_INFO.state
corresponding to
YFS_SHIPMENT.enterprise_code's
billing_address_key.
Note: This field value can only
contain a maximum of 5
characters.

APPostalCode Conditional YFS_PERSON_INFO.zip_code
corresponding to
YFS_SHIPMENT.enterprise_code's
billing_address_key.

Chapter 6. Integrating with Parcel Carrier Adapters 75

Field Name Comments Platform

APcountry Required YFS_PERSON_INFO.country
corresponding to
YFS_SHIPMENT.enterprise_code's
billing_address_key. If
International it is hardcoded to
'US'.

Filler1 Required

APPhone Conditional YFS_PERSON_INFO.day_
phone_no corresponding to
YFS_SHIPMENT.enterprise
_code's billing_address_key

APFaxDestInd Conditional <spaces>

APFax Optional <spaces>

LangCode Optional <spaces>

CreditCardNo Required <spaces>

CreditCardExpDate Required <spaces>

TaxId Optional <spaces>

AddrType Required <spaces>

PackageTrackingNumber Required YFS_Shipment_Container.
Tracking_No

AdvisoryInformationRecord AdvisoryInformationRecord (0400) is required for
E-mail or Fax Shipment Notification.

AdvisoryInfoLevel Required Default to 'P'.

SNFaxDestInd1 Conditional If
YFS_PERSON_INFO.day_fax_no
!= "" set this field to 0. US, PR,
CA, and VI Fax/Phone only 1
Fax/Phone to all other countries.

SNFaxNumber1 Conditional YFS_PERSON_INFO.day_fax_no
corresponding to
YFS_SHIPMENT.to_address_key.

SNLangCode Optional <spaces>

SNCompName1 Optional YFS_PERSON_INFO.company
corresponding to
YFS_SHIPMENT.to_address_key.

SNAttnName1 Conditional YFS_PERSON_INFO.first_name
+ YFS_PERSON_INFO.middle

_name + YFS_PERSON_
INFO.last_name corresponding
to YFS_SHIPMENT.to_address
_key.

SNContactPhone1 Conditional YFS_PERSON_INFO.day_phone
corresponding to
YFS_SHIPMENT.to_address_key.

SNFaxDestInd2 Conditional <spaces>

SNFaxNumber2 Conditional <spaces>

SNLangCode2 Optional <spaces>

SNCompanyName2 Optional <spaces>

76 Sterling Selling and Fulfillment Foundation: Integration Guide

Field Name Comments Platform

SNAttnName2 Conditional <spaces>

SNContactPhone2 Conditional <spaces>

AltrofileAccessNumber Required <spaces>

SNTypeDestination1 Required <spaces>

SNEmailAddrDest1 Conditional YFS_PERSON_INFO.email_id
corresponding to
YFS_SHIPMENT.to_address_key.

SNTypeDestination2 Required Set to ‘0'

SNEmailAddrDest2 Conditional <spaces>

SNMemo Optional <spaces>

PackageTrackingNumber Required YFS_Shipment_Container.
Tracking_No

InternationalRecord InternationalRecord (0500) is required if Importer,
Exporter, Shipper To Consignee, or Commodity
information is provided and whenever shipper and
consignee countries are not the same. This record is
written once for one shipment. If a shipper has 3
packages, only one 0500 record is written, whereas
three 0100 records are written.

RecordType Required 0500

InvoiceDate Optional YFS_MANIFEST.manifest_date
(manifest no from
YFS_SHIPMENT).

WaybillPrintInd Conditional 0

InvoiceLineTotals Required YFS_CONTAINER_DETAILS.
quantity * YFS_ORDER_
LINE * unit_price
(for all lines in the container).

InvoiceCurrencyCode Conditional YFS_SHIPMENT.currency

ShipmentInsuranceDeclaredValue Required YFS_MANIFEST.manifest_date
(manifest no from
YFS_SHIPMENT).

ConsolidatedClearQty Required 0

UltimateDestCountry Conditional YFS_PERSON_INFO.country
corresponding to
YFS_SHIPMENT.to_address_key.

Filler <spaces>

SEDCode Optional <spaces>

ShipmentSEDCASNum Optional <spaces>

InvoiceNumber Optional YFS_SHIPMENT.shipment_no

PONumber Optional <spaces>

DescriptionOfGoods Required YFS_ITEM.nmfc_code. Item_Id
taken from CONTAINER_
DETAILS.item_id with
YFS_SHIPMENT_
CONTAINER.container_
no (leadpackage) as criteria.

SpecialInstructions Optional <spaces>

Chapter 6. Integrating with Parcel Carrier Adapters 77

Field Name Comments Platform

PartiesToTrans Conditional <spaces>

TermsOfShipment Optional <spaces>

PaymentTerms Optional <spaces>

Filler <spaces>

FreightCharges Required 0

InsuranceCharges< Required 0

DiscountRebate Required 0

OtherCharges Required 0

WaybillNumber/BrokerageID Conditional YFS_SHIPMENT.shipment_no

COCode Optional <spaces>

OtherDocCode Optional <spaces>

ReasonForExport Optional <spaces>

InvoiceSubTotal Required <spaces>

TotalInvoiceAmount Required <spaces>

BrokerCode Optional <spaces>

DestinationControl Conditional <spaces>

ShipmentCommodityOrigin Conditional <spaces>

Filler3 Required

PackageTrackingNumber Required <spaces>

CommodityRecord CommodityRecord (0600) contains commodity
information that is used for rating and customs
clearance purposes. It is required if the shipment
travels within the European Union and contains
“Goods Not in Free Circulation”. One 0600 record is
written for each line in the shipper. If a shipper on
the Sterling Warehouse Management System has 4
records in the YFS_SHIPMENT_DTL table, four 0600
records are written.

RecordType Required 0600

InvoiceLineNumber Required YFS_SHIPMENT_LINE.prime
_line_no for the corresponding
YFS_CONTAINER_
DETAILS record.

CommodityCode Optional YFS_ITEM.harmonized_code of
YFS_CONTAINER_
DETAILS.item_id
(catalog org and uom).

PartNumber Optional YFS_ITEM.item_id of
YFS_CONTAINER_
DETAILS.item_id
(catalog org and uom).

LineOriginCountry Required YFS_ITEM.country_of_origin of
YFS_CONTAINER_DETAILS.
item_id (catalog org and uom).

LineCurrencyCode Optional YFS_SHIPMENT.currency

78 Sterling Selling and Fulfillment Foundation: Integration Guide

Field Name Comments Platform

ECCN Optional YFS_ITEM.eccn_no of
YFS_CONTAINER_DETAILS
.item_id (catalog org and uom).

LineUnitAmtPrice Required YFS_ORDER_LINE.line_price of
YFS_CONTAINER_DETAILS.
order_line_key * YFS_
CONTAINER_DETAILS.quantity.
If its shipment container, we
compute by getting item object
from shipment and shipment
container.

LineQuantity Required sum(YFS_CONTAINER_
DETAIL.quantity) for
every unique item.

LineQtyUOM Required YFS_CONTAINER_DETAILS.uom

LineLicenseInfo Conditional YFS_SHIPMENT_CONTAINER.
export_license_no

LineLicenseExpDate Conditional YFS_SHIPMENT_CONTAINER.
export_license_exp_date

LineMerchDesc1 Required YFS_ITEM.item_desc of
YFS_CONTAINER_DETAILS.
item_id (catalog org and uom).

LineMerchDesc2 Optional <spaces>

LineMerchDesc3 Optional <spaces>

CertOfOriginNo Optional YFS_SHIPMENT.shipment_no

CertOfOriginCode Conditional <spaces>

AgreementType Optional <spaces>

CommodityRemarks Optional <spaces>

QuantityScheduledUnits Conditional YFS_CONTAINER_DETAIL.
quantity

Marks&Numbers Optional <spaces>

CommodityWeight Required YFS_ORDER_LINE.item_weight
of YFS_CONTAINER_DETAILS.
order_line_key *
YFS_CONTAINER_DETAILS.
quantity. If its shipment
container, we compute by
getting the item object
from shipment and
shipment container.

NumberOfPackagesPerCmmdty Conditional <spaces>

SEDLineAmt Required YFS_ORDER_LINE.line_price of
YFS_CONTAINER_DETAILS.
order_line_key * YFS_
CONTAINER_DETAILS.quantity.
If its shipment conatainer, we
compute by getting the item
object from shipment and
shipment container.

COType Required Defaulted to 0.

Chapter 6. Integrating with Parcel Carrier Adapters 79

Field Name Comments Platform

SEDInd Required Defaulted to 0.

LineExtendedAmt Required YFS_ORDER_LINE.line_price of
YFS_CONTAINER_DETAILS.
order_line_key * YFS_
CONTAINER_DETAILS.quantity.
If its shipment conatainer, we
compute by getting the item
object from shipment and
shipment container.

Filler <spaces>

PackageTrackingNumber Required YFS_Shipment_Container.
Tracking_No

AdditionalCommentsRecord AdditionalCommentsRecord (0700) contains
additional statements and information for an
international shipment.

RecordType Required 0700

DeclarationStatement Optional <spaces>

AdditionalComments Optional <spaces>

Filler1 <spaces>

PackageTrackingNumber Required <spaces>

SpecialServicesRecord SpecialServicesRecord contains SpecialService child
elements for each of the special service the
shipment/order have.

Service Optional YFS_SPECIAL_SERVICE_REF.
service_code

ExtraFieldsRecord ExtraFieldsRecord contains statements and
information extra fields.

LableFormatValue Optional <spaces>

ReferenceNotes Optional YFS_SHIPMENT.shipment_no+
YFS_SHIPMENT_CONTAINER.|
container_Scm.

SunDeliveryInd Optional <spaces>

ThermalLabelPrinterID Optional Determined by calling
getPrinterId.

Output XML for a Field-Level Mapping

This is the output XML for the field-level mapping between the
addContainerToManifest API on the Sterling Warehouse Management System and
the shipCarton API on the Carrier Adapter:

Field Name Platform

TotalErrors The total number of errors returned by the Carrier
Server

ErrorCode The error code returned by the Carrier Server

ErrorDescription The description of the error code returned by the
Carrier Server.

80 Sterling Selling and Fulfillment Foundation: Integration Guide

Field Name Platform

CODReturnTrackingNo YFS_SHIPMENT_CONTAINER.COD_
Return_tracking_No

TrackingNumber YFS_SHIPMENT_CONTAINER.tracking_no

TotalSurchargeAmt YFS_SHIPMENT_CONTAINER.
special_services_surcharge

NetCharge YFS_SHIPMENT_CONTAINER.actual_freight_charge

BilledWeight YFS_SHIPMENT_CONTAINER.applied_weight

PrintBuffer The print buffer returned by the Carrier Server.

DeliveryDay YFS_SHIPMENT_CONTAINER.delivery_day

UPS_Routing_Code YFS_SHIPMENT_CONTAINER.UPS_Routing_Code

Mapping Between the removeContainerFromManifest API on the
Sterling Warehouse Management System and the deleteCarton API on
the Carrier Adapter

This is the mapping between the removeContainerFromManifest API on the
Sterling Warehouse Management System and the deleteCarton API on the Carrier
Adapter:

Field Name Comments Platform

Carrier Required YFS_SHIPMENT.scac

MeterNo Required only for
FedEx

YFS_SCACEx.portal_account_2

TrackingNumber Required YFS_SHIPMENT_CONTAINER.
tracking_no of the package that
is being unpacked or removed
from the manifest.

No output XML is generated for the removeContainerFromManifest API. A
confirmation message is displayed on success, while an error message is displayed
in the event of a failure.

Mapping Between the closeManifest API on the Sterling Warehouse
Management System and the closeManifest API on the Carrier Adapter

This is the input XML for the field-level mapping between the closeManifest API
on the Sterling Warehouse Management System and the closeManifest API on the
Carrier Adapter:

Field Name Comments Platform

Carrier Required YFS_SHIPMENT.scac

ManifestNumber Required YFS_MANIFEST.manifest_no (as
generated on the platform for the
ship node and carrier
combination)

PickupSummaryNumber Required for UPSN YFS_MANIFEST.pickup_summary
_no (as keyed in from the user)

Chapter 6. Integrating with Parcel Carrier Adapters 81

Field Name Comments Platform

ShipperAccountNumber Required YFS_MANIFEST.shipper_account
_no

No output XML is generated for the closeManifest API. A confirmation message is
displayed on success, while an error message is displayed in the event of a failure.

Integration Dependencies
Sterling Warehouse Management System integration with the Carrier Adapter is
dependent on the following:
v Carrier Adapter APIs are called only if SCAC Integration is required for the

Shipment. This is set up at Node/SCAC level.

82 Sterling Selling and Fulfillment Foundation: Integration Guide

Chapter 7. Integrating with Material Handling Equipment

Overview of Material Handling Equipment Integration
The Sterling Warehouse Management System can integrate with various material
handling equipment (MHE).

The automation enabled through the integration enables increased efficiency in
various processes of a warehouse, like Receiving, Picking, Packing, Putaway or
Replenishment, Outbound QC, VAS, Manifesting, Weighing, Item Measurements,
and Trailer Loading.

The material handling equipment that the Sterling Warehouse Management System
can integrate with includes the following:
v Pick-to-Light
v Put-to-Light
v Carousels or Automated Storage & Retrieval Systems (ASRS)
v Automatic Guided Vehicles (AGV)
v Inbound Sorters
v Pack Sorters
v Shipping Sorters
v Cube-a-Scans
v Weighing Scales

Integrating with Pick-to-Light Systems
The Sterling Warehouse Management System integrates with the pick-to-light
systems after the Sterling Warehouse Management System allocates and creates
pick/move tasks.
1. For tasks that are in the pick-to-light zone, details regarding

shipment/batch/carton (reference tag) level that indicate item and quantity to
pick are sent to the system.

APIs involved are:
v createTask()
v changeTask()
v createBatch()
v getTaskList()
v cancelTask()

The following event is raised by the createTask() API:
v CREATE_TASK.TASK_CREATED

The following events are raised by the changeTask() API:
v CHANGE_TASK.TASK_CHANGED
v CHANGE_TASK.TASK_PUT_ON_HOLD
v CHANGE_TASK.TASK_RELEASED_FROM_HOLD

© Copyright IBM Corp. 1999, 2011 83

The following event is raised by the createBatch() API:
v CREATE_BATCH.BATCH_CREATED

The following event is raised by the cancelTask() API:
v CANCEL_TASK.TASK_CANCELED

For more information about the APIs, see the Sterling Selling and Fulfillment
Foundation: Javadocs.
1. References are scanned in the pick-to-light system and appropriate slots are lit

indicating quantity to pick.
2. Upon pick completion, status information is sent from the pick-to-light system

to the Sterling Warehouse Management System. All serial/tag number level
information required for pick completion is also passed back to the Sterling
Warehouse Management System.

The APIs involved are:
v registerTaskCompletion()
v registerBatchCompletion()
v changeTask()

The following events are raised by the registerTaskCompletion() and
registerBatchCompletion() APIs:
v COMPLETE_TASK.TASK_COMPLETED
v COMPLETE_BATCH.BATCH_COMPLETED

The following events are raised by the changeTask() API:
v CHANGE_TASK.TASK_CHANGED
v CHANGE_TASK.TASK_PUT_ON_HOLD
v CHANGE_TASK.TASK_RELEASED_FROM_HOLD

For more information about the APIs, see the Sterling Selling and Fulfillment
Foundation: Javadocs.

Integrating with Put-to-Light Systems
The Sterling Warehouse Management System integrates with the put-to-light
systems after the Sterling Warehouse Management System allocates and creates
pick/move tasks after wave release.
1. For tasks that are in the put-to-light zone, details regarding shipment/order

level that indicate item and quantity to pick are sent to the system. The Sterling
Warehouse Management System is configured to create the required number of
shipments in a wave, to match the number of slots.

The APIs involved are:
v getShipmentDetails()
v createTask()
v changeTask()
v createBatch()
v getTaskList()
v cancelTask()

84 Sterling Selling and Fulfillment Foundation: Integration Guide

The following event is raised by the createTask() API:
v CREATE_TASK.TASK_CREATED

The following events are raised by the changeTask() API:
v CHANGE_TASK.TASK_CHANGED
v CHANGE_TASK.TASK_PUT_ON_HOLD
v CHANGE_TASK.TASK_RELEASED_FROM_HOLD

The following event is raised by the createBatch() API:
v CREATE_BATCH.BATCH_CREATED

The following event is raised by the cancelTask() API:
v CANCEL_TASK.TASK_CANCELED

For more information about the APIs, see the Sterling Selling and Fulfillment
Foundation: Javadocs.
1. Item Ids are scanned in the put-to-light system, and appropriate slots are lit

indicating quantity to be placed.
2. Container numbers are associated to each slot, and the container is closed. This

information is sent back to the Sterling Warehouse Management System.

The APIs involved are:
v registerTaskCompletion()
v registerBatchCompletion()
v addToContainer()
v changeTask()

The following events are raised by the registerTaskCompletion() and
registerBatchCompletion() APIs:
v COMPLETE_TASK.TASK_COMPLETED
v COMPLETE_BATCH.BATCH_COMPLETED

The following events are raised by the addToContainer() API:
v CREATE_CONTAINER.ON_SUCCESS
v ADD_TO_CONTAINER.ON_SUCCESS
v ADD_TO_CONTAINER.ON_CONTAINER_PACK_COMPLETE
v ADD_TO_CONTAINER.ON_CONTAINER_PACK_PROCESS_COMPLETE
v ADD_TO_CONTAINER.ON_SHIPMENT_PACK_COMPLETE
v ADD_TO_CONTAINER.ON_SHIPMENT_PACK_PROCESS_COMPLETE

The following events are raised by the changeTask() API:
v CHANGE_TASK.TASK_CHANGED
v CHANGE_TASK.TASK_PUT_ON_HOLD
v CHANGE_TASK.TASK_RELEASED_FROM_HOLD

For more information about the APIs, see the Sterling Selling and Fulfillment
Foundation: Javadocs.
1. Quantities at the shipment level (each slot) are taken to appropriate packing

locations to complete packing steps.

Chapter 7. Integrating with Material Handling Equipment 85

Integrating with Carousel or Automated Storage and Retrieval Systems

Integration When a Product is Being Put Away
When a product is being put away, the Sterling Warehouse Management System
integrates with Carousels or Automated Storage and Retrieval Systems (ASRS) as
follows:
1. The first step task brings the product to the drop-off location attached to the

carousel/ASRS location. Upon completion of this task secondary step tasks are
created. These secondary tasks based on task type and zone are sent to the
carousel system.

The APIs involved are:
v createTask()
v createBatch()

The following event is raised by the createTask() API:
v CREATE_TASK.TASK_CREATED

The following event is raised by the createBatch() API:
v CREATE_BATCH.BATCH_CREATED

For more information about the APIs, see the Sterling Selling and Fulfillment
Foundation: Javadocs.
1. User scans item for putaway into carousel system, which retrieves appropriate

location/bin to the user station. Product is placed in the bin.
2. Upon the location/bin being placed in appropriate slot, the task completion

information is sent to WMS. All serial/tag number level information required
for pack completion is also passed back to WMS

The APIs involved are:
v registerTaskCompletion()
v registerBatchCompletion()
v changeTask()

The following events are raised by the registerTaskCompletion() and
registerBatchCompletion() APIs:
v COMPLETE_TASK.TASK_COMPLETED
v COMPLETE_BATCH.BATCH_COMPLETED

The following events are raised by the changeTask() API:
v CHANGE_TASK.TASK_CHANGED
v CHANGE_TASK.TASK_PUT_ON_HOLD
v CHANGE_TASK.TASK_RELEASED_FROM_HOLD

For more information about the APIs, see the Sterling Selling and Fulfillment
Foundation: Javadocs.

Integration When a Product is Being Retrieved
When a product is being retrieved, the Sterling Warehouse Management System
integrates with Carousels or Automated Storage and Retrieval Systems (ASRS) as
follows:

86 Sterling Selling and Fulfillment Foundation: Integration Guide

1. Tasks created to retrieve product from the carousel/ASRS are sent from the
Sterling Warehouse Management System.

The APIs involved are:
v createTask()
v createBatch()

The following event is raised by the createTask() API:
v CREATE_TASK.TASK_CREATED

The following event is raised by the createBatch() API:
v CREATE_BATCH.BATCH_CREATED

For more information about the APIs, see the Sterling Selling and Fulfillment
Foundation: Javadocs.
1. User initiates retrieval on carousel system and selects task for retrieval. On

retrieval, system sends completion of task from bin/location to drop-off
location at user station.

The APIs involved are:
v registerTaskCompletion()
v registerBatchCompletion()
v changeTask()

The following events are raised by the registerTaskCompletion() and
registerBatchCompletion() APIs:
v COMPLETE_TASK.TASK_COMPLETED
v COMPLETE_BATCH.BATCH_COMPLETED

The following events are raised by the changeTask() API:
v CHANGE_TASK.TASK_CHANGED
v CHANGE_TASK.TASK_PUT_ON_HOLD
v CHANGE_TASK.TASK_RELEASED_FROM_HOLD

For more information about the APIs, see the Sterling Selling and Fulfillment
Foundation: Javadocs.
1. Secondary step tasks are automatically created by the Sterling Warehouse

Management System to putaway quantity to final destination location.

Integration When a Product is Being Counted
When a product is being counted, the Sterling Warehouse Management System
integrates with Carousels or Automated Storage and Retrieval Systems (ASRS) as
follows:
v User on the Sterling Warehouse Management System is given location to count.
v This is entered on carousel system for location retrieval.
v Count is completed on the Sterling Warehouse Management System.

Chapter 7. Integrating with Material Handling Equipment 87

Integrating with Automatic Guided Vehicles
The Sterling Warehouse Management System integrates with Automatic Guided
Vehicles (AGV) to complete putaway or pick. These interfaces are task-based
integrations.

The APIs involved are:
v createTask()
v changeTask()
v createBatch()
v getTaskList()
v cancelTask()

The following event is raised by the createTask() API:
v CREATE_TASK.TASK_CREATED

The following events are raised by the changeTask() API:
v CHANGE_TASK.TASK_CHANGED
v CHANGE_TASK.TASK_PUT_ON_HOLD
v CHANGE_TASK.TASK_RELEASED_FROM_HOLD

The following event is raised by the createBatch() API:
v CREATE_BATCH.BATCH_CREATED

The following event is raised by the cancelTask() API:
v CANCEL_TASK.TASK_CANCELED

For more information about the APIs, see the Sterling Selling and Fulfillment
Foundation: Javadocs.

Upon completion of task the confirmation is sent back to the Sterling Warehouse
Management System.

The APIs involved are:
v registerTaskCompletion()
v registerBatchCompletion()
v changeTask()

The following events are raised by the registerTaskCompletion() and
registerBatchCompletion() APIs:
v COMPLETE_TASK.TASK_COMPLETED
v COMPLETE_BATCH.BATCH_COMPLETED

The following events are raised by the changeTask() API:
v CHANGE_TASK.TASK_CHANGED
v CHANGE_TASK.TASK_PUT_ON_HOLD
v CHANGE_TASK.TASK_RELEASED_FROM_HOLD

For more information about the APIs, see the Sterling Selling and Fulfillment
Foundation: Javadocs.

88 Sterling Selling and Fulfillment Foundation: Integration Guide

Integrating with Inbound Sorters
Inbound Sorters are typically used when expected LPN information is available on
WMS.

The Sterling Warehouse Management System integrates with the inbound sorters
as follows:
1. A shipment/ASN captures expected quantities. User indicates start of receipt of

the ASN when container/truck pulls into the dock door. Information for the
ASN is sent to sorter system along with lane sorting information, if applicable.

The APIs involved are:
v startReceipt()
v getShipmentDetails()
v getActivityDemand()

The following event is raised by the startReceipt() API:
v START_RECEIPT.ON_START_RECEIPT

For more information about the APIs, see the Sterling Selling and Fulfillment
Foundation: Javadocs.
1. LPNs are sorted to respective destination zones based on QC profiling and

product characteristics.
2. The Sterling Warehouse Management System is notified when LPN reaches

destination.

The API involved is:
v receiveOrder()

The following events are raised by the receiveOrder() API:
v RECEIVE_RECEIPT.ON_SUCCESS
v RECEIVE_RECEIPT.ON_SKU_RECEIPT
v RECEIVE_RECEIPT.ON_CASE_RECEIPT
v RECEIVE_RECEIPT.ON_PALLET_RECEIPT
v RECEIVE_ORDER.INVENTORY_COST_CHANGE
v RECEIVE_ORDER.INVENTORY_COST_WRITEOFF
v RECEIVE_ORDER.INVENTORY_VALUE_CHANGE

For more information about the APIs, see the Sterling Selling and Fulfillment
Foundation: Javadocs.
1. Putaway task is automatically generated on the Sterling Warehouse

Management System.

Integrating with Pack Sorters
Pack sorters are used when loose items are picked and need to be sent to pack
stations.

The Sterling Warehouse Management System integrates with pack sorters as
follows:
1. A tag indicating the shipment is associated with the pick before placing on the

conveyor system.

Chapter 7. Integrating with Material Handling Equipment 89

2. Data is published to sorter on wave release with association of shipment to a
pack location.

The APIs involved are
v releaseWave()
v getShipmentDetails()

The following events are raised by the releaseWave() API:
v RELEASE_WAVE.ON_SUCCESS
v RELEASE_WAVE.SHORTAGES_DETECTED

For more information about the APIs, see the Sterling Selling and Fulfillment
Foundation: Javadocs.
1. Information from outbound sorter regarding cartons diverted or quantity

diverted can update a status value in the pipeline.

The APIs involved are:
v changeShipmentContainer()
v changeShipmentStatus()

The following events are raised by the changeShipmentContainer() API:
v CHANGE_CONTAINER.ON_SUCCESS
v CHANGE_CONTAINER_STATUS.ON_SUCCESS

The following event is raised by the changeShipmentStatus() API:
v CHANGE_SHIPMENT_STATUS.ON_SUCCESS

For more information about the APIs, see the Sterling Selling and Fulfillment
Foundation: Javadocs.

Integrating with Shipping Sorters
Outbound Sorters are typically used during high volume pick, pack ship
operations.

The Sterling Warehouse Management System integrates with outbound sorters as
follows:
1. For pre-pick containerization, carton level information is sent after wave

release. For loose items, data interfaced after post-pick containerization is
completed.

2. Wave release level information is sent to sorter containing lane information.

The APIs involved are:
v releaseWave()
v getShipmentDetails()

The following events are raised by the releaseWave() API:
v RELEASE_WAVE.ON_SUCCESS
v RELEASE_WAVE.SHORTAGES_DETECTED

For more information about the APIs, see the Sterling Selling and Fulfillment
Foundation: Javadocs.

90 Sterling Selling and Fulfillment Foundation: Integration Guide

1. Information from outbound sorter regarding cartons diverted or quantity
diverted can update a status value in the pipeline.

The APIs involved are:
v changeShipmentContainer()

The following events are raised by the changeShipmentContainer() API:
v CHANGE_CONTAINER.ON_SUCCESS
v CHANGE_CONTAINER_STATUS.ON_SUCCESS

For more information about the APIs, see the Sterling Selling and Fulfillment
Foundation: Javadocs.

Integrating with Cube-a-Scans
A cube-a-scan is typically used during inbound operations to determine the
dimensions or properties of an item/SKU.

The Sterling Warehouse Management System integrates with cube-a-scan by
updating the item details in the Sterling Warehouse Management System.

The API involved is:
v manageItem()

The following events are raised by the manageItem() API:
v ITEM_DEFINITION.AFTER_MODIFY_ITEM
v ITEM_DEFINITION.AFTER_DELETE_ITEM

For more information about the APIs, see the Sterling Selling and Fulfillment
Foundation: Javadocs.

Integrating with Weighing Scales
A weighing scale is an equipment that returns the weight of a container placed on
it. Weighing scales are typically used in manifest stations for parcel shipments. For
more information about setting up a weighing scale, see the Sterling Selling and
Fulfillment Foundation: Warehouse Management System Configuration Guide.

Integrating with Mettler Toledo Weighing Scales
The Sterling Warehouse Management System supports out-of-the-box integration
with the Mettler Toledo PS Weighing Scale, which is compatible with various
shipping systems including UPS and FedEx.

For more information about installing the Mettler Toledo Weighing Scale, see the
Sterling Selling and Fulfillment Foundation: Installation Guide.

For more information about configuring the Mettler Toledo Weighing Scale on the
Sterling Warehouse Management System, see the Sterling Selling and Fulfillment
Foundation: Warehouse Management System Configuration Guide.

Chapter 7. Integrating with Material Handling Equipment 91

Integrating with Other Weighing Scales
Additional weighing scale connectors can be built by implementing the
YCPWeighingScaleConnector interface available in the package
com.yantra.ycp.ui.io in the Java Archive File platform_afc.jar.

The following is a sample code for implementing the YCPWeighingScaleConnector
interface:
public class CustomScaleConnector implements YCPWeighingScaleConnector {

private YFCSerialIO sio;
/* This assumes that the weighing scale is connected through serial port.
You will need to write custom code to support other ports such as USB.*/
private YFCPortConfig config;

public CustomScaleConnector() {
}

public void init(YFCElement configEle) {
sio = new YFCSerialIO();
String portId = configEle.getAttribute("PortId");
config = new YFCPortConfig(PortId);
}

public double getWeight() {
sio.openConnection(config);
sio.write("W"); // command to get weight from the scale
sio.waitForResponse(20, 1000); // sleep 20ms. every time and timeout out
after 1 sec.
String response = sio.read();
return processResponse(response);
}

private double processResponse(String response) {
double weight = -1;
// process the response appropriately
return weight;
}

public void resetScale() {
// send reset command if required
}

}

During initialization, the init method is called once by the YCPWeighingFactory
interface.

At init time, a config XML is passed to the CustomScaleConnector. This XML is
stored in the Sterling Selling and Fulfillment Foundation config database (in Device
Configuration) with the class name CustomScaleConnector.

The config XML format used for the Mettler Toledo Weighing Scale is as follows:
<DeviceParamsXML>

<Attributes>
<Attribute Name="ClassName" Value="" />
<Attribute Name="PortId" Value="" />
<Attribute Name="BaudRate" Value="" />
<Attribute Name="DataBits" Value="" />
<Attribute Name="StopBits" Value="" />
<Attribute Name="Parity" Value="" />
<Attribute Name="FlowIn" Value="" />
<Attribute Name="FlowOut" Value="" />
<!-- other extended attributes specific to weighing scale

92 Sterling Selling and Fulfillment Foundation: Integration Guide

connector implementations -->
<Attribute Name="" Value="" />

</Attributes>
</DeviceParamsXML>

The config XML can be configured using the Device Configuration of Type
‘Weighing Scale' in the Applications Manager. For more information see the Sterling
Selling and Fulfillment Foundation: Warehouse Management System Configuration Guide.

Note: The implementation of the YCPWeighingFactory interface must ensure that an
instance can be reused across invocations. The YCPWeighingFactory interface calls
init once during initialization, and subsequently reuses the initialized instance.

For more details about integrating the Sterling Warehouse Management System
with other weighing scales, see Java Doc referring to the com.yantra.ycp.ui.io
package.

Chapter 7. Integrating with Material Handling Equipment 93

94 Sterling Selling and Fulfillment Foundation: Integration Guide

Chapter 8. Integrating with Enterprise Resource Planning
Systems

Overview of Integration with ERP Components
An Enterprise Resource Planning (ERP) system is a packaged business software
system that allows a company to automate and integrate the majority of its
business processes. This enables the company to share common data and practices
across the entire enterprise, and to produce and access information in a real-time
environment.

The Sterling Warehouse Management System can integrate with an ERP system to
utilize any additional functions that are available in the existing environment. The
Sterling Warehouse Management System can be integrated with one or more of the
following components of an ERP system:
v Order Management
v Purchasing
v Inventory
v WIP
v Returns

For example, the Sterling Warehouse Management System can integrate with an
ERP system to enable users to:
v Enter information in one system and ensure the accessibility and accuracy of the

same information across the other application, if necessary, without duplication
of data entry.

v Maintain the data entry and ownership at one point, the source module.
Synchronize reference (common) data based on the static or dynamic nature of
the data, and/or, as deemed necessary in a business environment.

v Perform the necessary business functions involving data sharing and transfer
without having to be aware of the system links, the transfer mechanism and the
programming details.

v Define and maintain the implementation setup of the integration to suit specific
business needs. Typically, the user-definable parameters correspond to the
modules installed, the active interfaces, frequency of data synchronization and
real time or batch data transfer options.

© Copyright IBM Corp. 1999, 2011 95

Integration Data Flow Diagram

Integration Protocol
Sterling Selling and Fulfillment Foundation provides APIs to integrate the Sterling
Warehouse Management System with ERP applications, and transfer data from an
ERP system to the Sterling Warehouse Management System. These APIs can be
invoked from the Service Definition Framework.

Data Exchange from an ERP System to the Sterling Warehouse
Management System

Data exchange from an ERP application to the Sterling Warehouse Management
System can be carried out using the Service Definition Framework in two modes:
v Asynchronous Mode (DB, JMS, MSMQ)
v Synchronous Mode (HTTP, EJB, LOCAL)

For more information about configuring these modes to facilitate integration, see
the Programming Transactions chapter in the Sterling Selling and Fulfillment
Foundation: Extending Transactions.

Data Exchange from the Sterling Warehouse Management
System to an ERP System

The Sterling Selling and Fulfillment Foundation APIs raise Events, which can be
configured to transfer data from the Sterling Warehouse Management System to an
ERP application.

For more information about configuring Events, see the Programming Transactions
chapter in the Sterling Selling and Fulfillment Foundation: Extending Transactions.

96 Sterling Selling and Fulfillment Foundation: Integration Guide

ERP Integration Specification: Order Management

Customer Download from an ERP System to the Sterling
Warehouse Management System

Vendor information is downloaded from an ERP system to the Sterling Warehouse
Management System.

The API involved is:
v manageCustomer()

For more information about APIs, see the Sterling Selling and Fulfillment Foundation:
Javadocs.

Shipment/Order Release Download from an ERP System to the
Sterling Warehouse Management System

Order releases or Shipment requests are downloaded from an ERP system to the
Sterling Warehouse Management System.

The APIs involved are:
v createShipment()
v consolidateToShipment()

For more information about APIs, see the Sterling Selling and Fulfillment Foundation:
Javadocs.

Shipment Confirmation Upload from the Sterling Warehouse
Management System to an ERP System

Order releases or Shipment requests are uploaded from the Sterling Warehouse
Management System to an ERP system.

The API involved is:
v confirmShipment()

The following events are raised by the confirmShipment() API:
v CONFIRM_SHIPMENT.ON_SUCCESS
v CREATE_CONFIRM_SHIPMENT.ON_SUCCESS
v SHIP_SHIPMENT.ON_SHIP_CONFIRM_POST_VOID
v SHIP_ORDER.ON_SHIP_CONFIRM_POST_VOID
v INVENTORY_CHANGE.ON_CHANGE
v INVENTORY_COST_CHANGE.INVENTORY_VALUE_CHANGE

For more information about the APIs, see the Sterling Selling and Fulfillment
Foundation: Javadocs.

Chapter 8. Integrating with Enterprise Resource Planning Systems 97

ERP Integration Specification: Purchasing

Vendor Download from an ERP System to the Sterling
Warehouse Management System

Vendor information is downloaded from an ERP system to the Sterling Warehouse
Management System.

The API involved is:
v manageVendor()

For more information about the APIs, see the Sterling Selling and Fulfillment
Foundation: Javadocs.

Purchase Order Download from an ERP System to the Sterling
Warehouse Management System

Purchase Orders are created on an ERP system and downloaded to the Sterling
Warehouse Management System. PO modifications are also downloaded to the
Sterling Warehouse Management System.

The APIs involved are:
v createOrder()
v changeOrder()

For more information about the APIs, see the Sterling Selling and Fulfillment
Foundation: Javadocs.

Purchase Order Closure Download from an ERP System to the
Sterling Warehouse Management System

When a PO or PO line is closed on an ERP system, it is downloaded to the Sterling
Warehouse Management System.

The API involved is:
v shortOrder()

For more information about the APIs, see the Sterling Selling and Fulfillment
Foundation: Javadocs.

ASN Download from an ERP System to the Sterling
Warehouse Management System

When an ASN is created on an ERP system, it can be downloaded to the Sterling
Warehouse Management System.

The API involved is:
v confirmShipment()

For more information about the APIs, see the Sterling Selling and Fulfillment
Foundation: Javadocs.

98 Sterling Selling and Fulfillment Foundation: Integration Guide

Receipt Upload from the Sterling Warehouse Management
System to an ERP System

Receipt information can be uploaded as and when a receipt is made or when a
receipt is closed.

The APIs involved are:
v closeReceipt() or
v receiveOrder()

The following event is raised by the closeReceipt() API:
v RECEIPT_COMPLETE.ON_RECEIPT_COMPLETE

The following events are raised by the receiveOrder() API:
v RECEIVE_RECEIPT.ON_SUCCESS
v RECEIVE_RECEIPT.ON_SKU_RECEIPT
v RECEIVE_RECEIPT.ON_CASE_RECEIPT
v RECEIVE_RECEIPT.ON_PALLET_RECEIPT
v INVENTORY_COST_CHANGE.INVENTORY_COST_CHANGE
v RECEIVE_ORDER.INVENTORY_COST_WRITEOFF
v RECEIVE_ORDER.INVENTORY_VALUE_CHANGE

For more information about the APIs, see the Sterling Selling and Fulfillment
Foundation: Javadocs.

ERP Integration Specification: Inventory

Item Download from an ERP System to the Sterling
Warehouse Management System

New items are created on an ERP system and then downloaded to the Sterling
Warehouse Management System. Typically, the ERP system is the master. However,
several attributes of items required for warehouse operations are maintained in the
WMS after the download of item information from the ERP system.

The API involved is:
v manageItem()

For more information about the APIs, see the Sterling Selling and Fulfillment
Foundation: Javadocs.

Item Attributes Upload from the Sterling Warehouse
Management System to an ERP System

Some of the item attributes, such as item dimensions and weight, can be
maintained in the Sterling Warehouse Management System and then uploaded to
an ERP system.

The API involved is:
v manageItem()

Chapter 8. Integrating with Enterprise Resource Planning Systems 99

The following events are raised by the manageItem() API:
v ITEM_DEFINITION.AFTER_MODIFY_ITEM
v ITEM_DEFINITION.AFTER_DELETE_ITEM

For more information about the APIs, see the Sterling Selling and Fulfillment
Foundation: Javadocs.

Inventory Change Upload from the Sterling Warehouse
Management System to an ERP System

Inventory changes from the Sterling Warehouse Management System are uploaded
to an ERP system.

The API involved is:
v adjustInventory()

The following events are raised by the adjustInventory() API:
v INVENTORY_CHANGE.INVENTORY_CHANGE
v INVENTORY_CHANGE.SUPPLY_CHANGE
v INVENTORY_COST_CHANGE.INVENTORY_VALUE_CHANGE

For more information about the APIs, see the Sterling Selling and Fulfillment
Foundation: Javadocs.

Inventory Snapshot Upload from the Sterling Warehouse
Management System to an ERP System

Inventory snapshot information may need to be uploaded from the Sterling
Warehouse Management System to an ERP system.

The APIs involved are:
v getInventoryMismatch()
v getInventorySnapshot()

For more information about the APIs, see the Sterling Selling and Fulfillment
Foundation: Javadocs.

ERP System Integration Specification: WIP

BOM Download from an ERP System to the Sterling
Warehouse Management System

Bill of Materials (BOM) information can be maintained on an ERP system and
downloaded to the Sterling Warehouse Management System.

The API involved is:
v manageItem()

For more information about the APIs, see the Sterling Selling and Fulfillment
Foundation: Javadocs.

100 Sterling Selling and Fulfillment Foundation: Integration Guide

Work Order Download from an ERP System to the Sterling
Warehouse Management System

Work Orders can be downloaded from an ERP system to the Sterling Warehouse
Management System for execution.

The API involved is:
v createWorkOrder()

For more information about the APIs, see the Sterling Selling and Fulfillment
Foundation: Javadocs.

Work Order Demand Upload for Manually Created Work
Orders from the Sterling Warehouse Management System to
ERP

When work orders are created manually in the Sterling Warehouse Management
System, work order information needs to be uploaded to an ERP system so that
component items are allocated on the ERP system.

The APIs involved are:
v createWorkOrder()
v cancelWorkOrder()
v modifyWorkOrder()

The following event is raised by the createWorkOrder() API:
v CREATE_WORK_ORDER.ON_SUCCESS

The following events are raised by the cancelWorkOrder() API:
v CANCEL_WORK_ORDER.ON_SUCCESS
v CANCEL_WORK_ORDER.WORK_ORDER_ACTIVITIES_COMPLETED

The following event is raised by the modifyWorkOrder() API:
v MODIFY_WORK_ORDER.ON_SUCCESS

For more information about the APIs, see the Sterling Selling and Fulfillment
Foundation: Javadocs.

Work Order Confirmation Upload from the Sterling Warehouse
Management System to an ERP System

When a Work Order is confirmed, information needs to be uploaded to the ERP
system indicating quantity of work order confirmed or built.

With some ERP systems, this data may not be uploaded as and when quantity
built. Instead, only work order closure is uploaded to the ERP system, indicating
total quantity built for the work order.

The API involved is:
v confirmWorkOrderActivity()

Chapter 8. Integrating with Enterprise Resource Planning Systems 101

The following events are raised by the confirmWorkOrderActivity() API:
v CONFIRM_WORK_ORDER.ON_SUCCESS
v CONFIRM_WORK_ORDER.WORK_ORDER_ACTIVITIES_COMPLETED
v CONFIRM_WORK_ORDER.LPN_ACTIVITIES_COMPLETED
v CONFIRM_WORK_ORDER.SKU_ACTIVITIES_COMPLETED
v CONFIRM_WORK_ORDER.SNO_ACTIVITIES_COMPLETED

For more information about the APIs, see the Sterling Selling and Fulfillment
Foundation: Javadocs.

Close Work Order from the Sterling Warehouse Management
System to an ERP System

When all quantities for a work order is completed or the remaining quantity is
canceled, data needs to be published to the ERP system indicating that work order
is complete.

The API involved is:
v changeWorkOrderStatus()

The following event is raised by the changeWorkOrderStatus() API:
v CHANGE_WORK_ORDER_STATUS.ON_SUCCESS

For more information about the APIs, see the Sterling Selling and Fulfillment
Foundation: Javadocs.

ERP Integration Specification: Returns

Return Order Download from ERP to the Sterling Warehouse
Management System

Return Orders are created on an ERP system and downloaded to the Sterling
Warehouse Management System. Return Order modifications are also downloaded
to the Sterling Warehouse Management System.

The APIs involved are:
v createOrder()
v changeOrder()

For more information about the APIs, see the Sterling Selling and Fulfillment
Foundation: Javadocs.

Return Order Closure Download from an ERP System to the
Sterling Warehouse Management System

When a return is closed on the host system, it is downloaded to the Sterling
Warehouse Management System. Typically, one return is one receipt. Hence, when
a receipt is closed, return may be marked as Closed without a separate integration
from host system.

The API involved is:

102 Sterling Selling and Fulfillment Foundation: Integration Guide

v shortOrder()

For more information about the APIs, see the Sterling Selling and Fulfillment
Foundation: Javadocs.

Receipt Upload from the Sterling Warehouse Management
System to an ERP System

Typically, return information is uploaded only when receipt is closed.

The APIs involved are:
v closeReceipt() or
v receiveOrder()

The following event is raised by the closeReceipt() API:
v RECEIPT_COMPLETE.ON_RECEIPT_COMPLETE

The following events are raised by the receiveOrder() API:
v RECEIVE_RECEIPT.ON_SUCCESS
v RECEIVE_RECEIPT.ON_SKU_RECEIPT
v RECEIVE_RECEIPT.ON_CASE_RECEIPT
v RECEIVE_RECEIPT.ON_PALLET_RECEIPT
v RECEIVE_ORDER.INVENTORY_COST_CHANGE
v RECEIVE_ORDER.INVENTORY_COST_WRITEOFF
v RECEIVE_ORDER.INVENTORY_VALUE_CHANGE

Chapter 8. Integrating with Enterprise Resource Planning Systems 103

104 Sterling Selling and Fulfillment Foundation: Integration Guide

Chapter 9. Point of Sale System Integration

Integrating with Point of Sale Systems
Sterling Selling and Fulfillment Foundation enables you to integrate with point of
sale systems used in stores for product check-outs and returns from customers.
When a sales transaction is posted to the Sterling Warehouse Management System
from a point of sale (POS), the location from which inventory has to be deducted
may not be known, and hence not passed. Under such circumstances, the Sterling
Warehouse Management System deducts the inventory from one or more locations
that are configured for the purpose of adjustment (that is, for an Adjustment
Reason Code). Depending on the availability at each location, the location is
appropriately adjusted and then the next location is considered, if required. If a
virtual location is one of the locations in the sequence, the inventory availability at
the location is not checked and such a location is allowed to go negative.

For more information about the IBM Sterling Warehouse Management System, see
the Sterling Selling and Fulfillment Foundation: Warehouse Management System
Concepts Guide.

API Invoked During Point of Sale Integration
The API invoked during the integration of the Sterling Warehouse Management
System with Point Of Sale Systems is adjustLocationInventory().

This API adjusts location inventory. In point of sale systems, it is typically called
with an inventory reason code associated with an adjustment sequence, without a
Location ID. It can also be called with both the Location ID and the inventory
reason code associated with an adjustment sequence. The transaction does not go
through if the Location ID is not passed and the inventory reason code passed
does not have an adjustment sequence associated with it.

If the adjustLocationInventory API is called with an inventory reason code
associated with an adjustment sequence and the Location ID is not passed:
v Inventory is deducted consecutively from the locations or zones specified in the

adjustment sequence.
v Within a zone, inventory is deducted according to the pick sequence of the

locations in the zone. For locations having the same pick sequence number,
inventory is deducted in the alphabetical order of the Location ID.

v Inventory in non-virtual locations is deducted only to the extent of the available
quantity of loose SKU (inventory in LPN is not considered). Available inventory
is deducted consecutively from the configured locations until a virtual location,
if configured in the adjustment sequence, is reached. The balance of the
demanded quantity is then adjusted from this virtual location. If any other
locations have been configured in the adjustment sequence after the virtual
location, they are ignored.

v The transaction does not go through if there is insufficient inventory in the
locations or zones specified in the adjustment sequence and a virtual location
has not been configured in the adjustment sequence.

When the adjustLocationInventory API is called with a Location ID and an
inventory reason code associated with an adjustment sequence, the inventory is

© Copyright IBM Corp. 1999, 2011 105

adjusted in the specified location and the adjustment sequence is ignored. The
transaction does not go through if there is insufficient inventory at the specified
location.

When the adjustLocationInventory API is called for serialized items, the location
sequence associated with an inventory reason code is always ignored.
v If the adjustLocationInventory API is called with a Location ID, inventory is

deducted from that location. The transaction does not go through if the serial
number is not found in the specified location.

v If the adjustLocationInventory API is called without a Location ID, inventory is
deducted from any location where the serial number is found. The transaction
does not go through if the specified serial number is not found in any location
of the node.

106 Sterling Selling and Fulfillment Foundation: Integration Guide

Chapter 10. Integrating User and Item Data with External
Systems

External System Integration Overview
Sterling Selling and Fulfillment Foundation enables you to integrate with external
systems used to sell products, through multiple channels. This integration enables
information on orders, availability, products, and customers to be passed between
the external system and Sterling Selling and Fulfillment Foundation.

Triggering Data Synchronization

You can trigger synchronization of this data in three ways: near real-time,
on-demand, and batch. These methods are described in the following table:

Table 9. Triggering Data Synchronization

Method Description

Near real-time Changes are communicated to the
appropriate system as soon as they are
processed.
Note: This is applicable to both user and
product synchronization.

On-demand Occurs as a result of a customer manually
triggering the synchronization from an
external system.

Batch Occurs at a specified time and automatically
determines which items or customers need
to be synchronized

Order Management Integration
The integration of Sterling Selling and Fulfillment Foundation order management
with external systems enables the following:
v Order integration - Orders placed in the external system can be tracked and

maintained in Sterling Selling and Fulfillment Foundation.
v Order details - When order details are viewed in the external system, they are

retrieved in real time from Sterling Selling and Fulfillment Foundation.
v Order change and cancellation - Details about order changes or cancellations are

communicated between systems.

APIs Invoked During Order Management Integration
The following APIs are invoked during order management integration:
v createOrder()
v changeOrder()
v getSalesOrderDetails()

For more information about these APIs, see the Sterling Selling and Fulfillment
Foundation: Javadocs.

© Copyright IBM Corp. 1999, 2011 107

User and Item Synchronization
The synchronization of user and item data with an external system enables you to
integrate the following:
v Users - User synchronization involves synchronizing a defined set of users,

including details such as address and payment information.
v Items - Item synchronization involves synchronizing all the relevant item

information.

For both users and items, services are provided to send and receive changes. These
services are:
v SendItemChanges
v ReceiveItemChanges
v SendCustomerChanges
v ReceiveCustomerChanges

These services function by either placing or retrieving information from a JMS
queue, and then passing this information to an internal or external API or service.

Item Synchronization Services in Sterling Selling and Fulfillment
Foundation

Sterling Selling and Fulfillment Foundation has two main services for the
synchronization of items. These services leverage APIs as well as other services in
order to send or receive changes to items.

SendItemChanges Service
The sendItemChanges service is used to relay changes made to items in Sterling
Selling and Fulfillment Foundation to the external system. This service is triggered
as soon as an update or change to an item is made. The following figure shows the
process flow of the sendItemChanges service.

The following steps are described in the figure:

Table 10. SendItemChanges Service

Step Description

1. Is the item valid for synching? If the item is valid for synchronization, the
service continues; if it is not, the service
ends. Items are deemed valid for
synchronization if the ItemGroupCode is
equal to PROD and the item is not a
dynamic physical kit or a logical kit.

108 Sterling Selling and Fulfillment Foundation: Integration Guide

Table 10. SendItemChanges Service (continued)

Step Description

2. Generic JMS queue The Generic JMS queue stores messages
until they can continue through the service.
Note: When configuring the
SendItemChanges service, the Provider URL
for both the JMS Sender and JMS Receiver
must be manually configured. The queue
name for both must also be set to
ItemSyncQueue. For more information about
configuring services, see the Sterling Selling
and Fulfillment Foundation: Application
Platform Configuration Guide.

3. sendItemChangesTOExternalSystem This service contains modules that provide
an XSL translation to create a common XML
file for the item, and send the XML to the
external system.
Note: The Java class name for the external
client must be specified in the
sendItemChangesTOExternalSystem service's
API component.

4. Is the action a delete? If the change being made to the item is
deletion, the service ends. If it is not, the
service continues.

5. Make manageItem input to SyncTS An XSL translation takes place which adds a
timestamp for when the synchronization
took place.
Note: SyncTS is the only column change
that can occur in this XSL.

6. manageItem API The item XML is passed to the manageItem
API which commits the changes to Sterling
Selling and Fulfillment Foundation.

Note: For more information about the SendItemChanges service, see the Sterling
Selling and Fulfillment Foundation: Application Platform Configuration Guide.

ReceiveItemChanges Service
The receiveItemChanges service accepts changes made to items in the external
system and commits them to Sterling Selling and Fulfillment Foundation, if
running in near-real-time mode. If batch mode is used, the service is called after
the item synchronization cron job is run. The following figure shows the process
flow of the receiveItemChanges service:

The following table describes the ReceiveItemChanges service:

Chapter 10. Integrating User and Item Data with External Systems 109

Table 11. ReceiveItemChanges Service

Step Description

1. Generic JMS queue The Generic JMS queue stores messages
until they can continue through the service.
Note: When configuring the
ReceiveItemChanges service, the Provider
URL for the JMS Receiver must be manually
configured. The queue name must also be
set to ItemSyncReceiveItemChangesQueue. For
more information about configuring services,
see the Sterling Selling and Fulfillment
Foundation: Application Platform Configuration
Guide.

2. Make receiveItemChanges input from
common XML

The XSL translation takes the common XML
from the external system and removes all
synchronization related data as well as
transforms the XML into a format that can
be read by Sterling Selling and Fulfillment
Foundation.
Note: By default, items are deleted from
Sterling Selling and Fulfillment Foundation
when a message for deletion is received
from the external system. This can be
avoided by modifying the XSL translator in
this step by changing Action="Delete" to
Action="Modify" and placing the item into a
custom status.

3. receiveItemChanges API The receiveItemChanges API accepts the
item XML from the external system and
invokes the functionality of the manageItem
API.

Customer Synchronization Services in Sterling Selling and Fulfillment
Foundation

Sterling Selling and Fulfillment Foundation has two main services for the
synchronization of customers. These services leverage APIs as well as other
services in order to send or receive changes to customers.

SendCustomerChanges Service
The sendCustomerChanges service communicates changes made to customers in
Sterling Selling and Fulfillment Foundation to the external system. The following
figure illustrates a process flow of the sendCustomerChanges service:

110 Sterling Selling and Fulfillment Foundation: Integration Guide

The following table describes the sendCustomerChanges service:

Table 12. SendCustomerChanges Service

Step Description

1. Is the customer valid for synching? If the customer is valid for synchronization,
the service continues; if it is not, the service
ends. Customers are deemed valid for
synchronization if they are a consumer, have
a user ID that is not blank, and have an
IsSyncRequired flag set to 'Y'.

2. Generic JMS queue The Generic JMS queue stores messages
until they can continue through the service.
Note: When configuring the
sendCustomerChanges service, the URL for
both the JMS Sender and JMS Receiver must
be manually configured. The queue name
for both must also be set to
CustomerSyncQueue. For more information
about configuring services, see the Sterling
Selling and Fulfillment Foundation: Application
Platform Configuration Guide.

3. sendCustomerChangesTOExternalSystem This service contains modules that provide
an XSL translation to create a common XML
file for the customer, and send the XML to
the external system.
Note: The Java class name for the external
client must be specified in the
sendCustomerChangesTOExternalSystem
service's API component.

4. Is the operation a delete? If the change being made to the customer is
deletion, the service ends. If it is not, the
service continues.

5. Make manageCustomer input to SyncTS An XSL translation takes place which adds a
timestamp for when the synchronization
took place.
Note: SyncTS is the only column change
that can occur in this XSL.

6. manageCustomer API The customer XML is passed to the
manageCustomer API, which commits the
changes to Sterling Selling and Fulfillment
Foundation.

Note: For more information about the SendCustomerChanges service, see the
Sterling Selling and Fulfillment Foundation: Application Platform Configuration Guide.

ReceiveCustomerChanges Service
The receiveCustomerChanges service accepts changes made to customers in the
external system and commits them to Sterling Selling and Fulfillment Foundation.
This service is triggered as soon as an update or change to an customer is made.
The following figure illustrates a process flow for the receiveCustomerChanges

service:

Chapter 10. Integrating User and Item Data with External Systems 111

The following table explains more about the receiveCustomerChanges service:

Table 13. ReceiveCustomerChanges Service

Step Description

1. Generic JMS queue The Generic JMS queue stores messages
until they can continue through the service.
Note: When configuring the
sendCustomerChanges service, the URL for
both the JMS Sender and JMS Receiver must
be manually configured. The queue name
for both must also be set to
CustomerSyncQueue. For more information
about configuring services, see the Sterling
Selling and Fulfillment Foundation: Application
Platform Configuration Guide.

2. Make receiveCustomerChanges input
from common XML

The XSL translation takes the common XML
from the external system and removes all
synchronization related data as well as
transforms the XML into a format that can
be read by Sterling Selling and Fulfillment
Foundation.

3. receiveCustomerChanges API The receiveCustomerChanges API accepts
the item XML from the external system and
invokes the functionality of the manageItem
API.

Modifying Customer Event Templates
About this task

Manual changes to the customer event template XML files are required to enable
customer synchronization. To modify the customer event template XML files:

Procedure
1. Navigate to the <OF_INSTALL_DIR>/repository/xapi/template/merged/event/

directory.
2. Locate the CUSTOMER_DEFINITION.AFTER_CREATE_CUSTOMER.xml,

CUSTOMER_DEFINITION.AFTER_DELETE_CUSTOMER.xml, and
CUSTOMER_DEFINITION.AFTER_MODIFY_CUSTOMER.xml files.

3. Copy the files mentioned in 2 to the <OF_INSTALL_DIR>/extensions/global/
template/event directory.

4. Modify the customer event templates listed in 2 to match the common XML
provided in “Customer Data Mapping” on page 113.

5. Add the following attributes to the <Customer> element in the files mentioned
in 2.
v IsSyncRequired=""

v MaxModifyTS=""

v SyncTS=""

Results

For more information about modifying template XML files, see the Sterling Selling
and Fulfillment Foundation: Customizing APIs.

112 Sterling Selling and Fulfillment Foundation: Integration Guide

Data Mapping
This is the mapping that takes place during the synchronization of items and
customers between an external system and Sterling Selling and Fulfillment
Foundation.

Customer Data Mapping
The following common XML is used to communicate with external systems:
<Customer OrganizationCode="" Operation="" CustomerType="">

<CustomerContactList >
<CustomerContact DayFaxNo="" DayPhone="" EmailID=""

EveningFaxNo=""
EveningPhone="" FirstName="" LastName="" MobilePhone=""
Title="" UserID="">

<CustomerAdditionalAddressList Reset="y" >
<CustomerAdditionalAddress

CustomerAdditionalAddressID="" IsShipTo=""
IsBillTo="" IsSoldTo="" IsDefaultShipTo="" IsDefaultBillTo=""
IsDefaultSoldTo="">

<PersonInfo AddressLine1="" AddressLine2=""
AddressLine3="" City="" Country=""
State="" ZipCode="" />

</CustomerAdditionalAddress>
</CustomerAdditionalAddressList>
<CustomerPaymentMethodList Reset="Y">

<CustomerPaymentMethod CreditCardExpDate=""
FirstName=""
MiddleName="" LastName="" CreditCardNo="" CreditCardType=""
PaymentType="" IsDefaultMethod="" />

</CustomerPaymentMethodList>
</CustomerContact>

</CustomerContactList>
</Customer>

Database Fields for Customer Data Mapping

These are the database fields for Customer Data Mapping:

Sterling Selling and Fulfillment Foundation Database Fields

YFS_CUSTOMER_CONTACT.USER_ID

YFS_CUSTOMER_CONTACT.LAST_NAME

YFS_CUSTOMER_CONTACT.FIRST_NAME

YFS_CUSTOMER_CONTACT.TITLE

YFS_CUSTOMER_CONTACT.EMAILID

YFS_CUSTOMER_PAYMENT_METHOD.PAYMENT_TYPE

YFS_CUSTOMER_PAYMENT_METHOD.CREDIT_CARD_NO

YFS_CUSTOMER_PAYMENT_METHOD.CREDIT_CARD_EXP_DATE

YFS_CUSTOMER_PAYMENT_METHOD.CREDIT_CARD_TYPE

YFS_CUSTOMER_PAYMENT_METHOD.FIRST_NAME

YFS_CUSTOMER_PAYMENT_METHOD.MIDDLE_NAME

YFS_CUSTOMER_PAYMENT_METHOD.LAST_NAME

YFS_CUSTOMER.ORGANIZATION_CODE

YFS_PERSON_INFO.ADDRESS_LINE1

Chapter 10. Integrating User and Item Data with External Systems 113

Sterling Selling and Fulfillment Foundation Database Fields

YFS_PERSON_INFO.ADDRESS_LINE2

YFS_PERSON_INFO.ADDRESS_LINE3

YFS_PERSON_INFO.CITY

YFS_PERSON_INFO.ZIP_CODE

YFS_PERSON_INFO.STATE

YFS_PERSON_INFO.COUNTRY

YFS_CUSTOMER_ADDNL_ADDRESS.IS_SOLD_TO

YFS_CUSTOMER_ADDNL_ADDRESS.IS_SHIP_TO

YFS_CUSTOMER_ADDNL_ADDRESS.IS_BILL_TO

YFS_CUSTOMER_ADDNL_ADDRESS.IS_DEFAULT_SOLD_TO

YFS_CUSTOMER_ADDNL_ADDRESS.IS_DEFAULT_SHIP_TO

YFS_CUSTOMER_ADDNL_ADDRESS.IS_DEFAULT_BILL_TO

YFS_CUSTOMER_CONTACT.<tablename>

Note: The <table_name> column is determined by the value of the
CMGT_PHONES.PHONE_TYPE_CODE column. The customer phone number is then
stored in this column.

Note: Extended attributes can be provided under the /Item/@Extn element.

Item Data Mapping
The following common XML is used to communicate with external systems:
<Item Action="Create/Modify/Delete" ItemID="" UnitOfMeasure=""
OrganizationCode="" ShortDescription="" ExtendedDescription=""
BundleFulfillmentMode="" LeadTime="" MinOrderQuantity="" IsModelItem="" Model=""
ModelItemUnitOfMeasure="" KitCode="" ConfiguredModelKey="" IsConfigurable=""
IsPreConfigured="">

<ItemInstructionList Reset="">
<ItemInstruction InstructionText="" SeqNo=""

InstructionType="ORDERING"/>
</ItemInstructionList>
<Components Reset="">

<Component ComponentItemID="" ComponentOrganizationCode=""
ComponentUnitOfMeasure="" KitQuantity=" "/>

</Components>
</Item>

Database Fields for Item Data Mapping

These are the database fields for the attributes for Item Data Mapping:

Attribute
Order Fulfillment Database
Field Comment

Item

ItemID YFS_ITEM.ITEM_ID

UnitOfMeasure YFS_ITEM.UOM Note: The values in this field
must be manually kept in synch
between the two applications.

OrganizationCode YFS_ITEM.ORGANIZATION_
CODE

Assume that the catalog is
maintained at the hub level.

114 Sterling Selling and Fulfillment Foundation: Integration Guide

Attribute
Order Fulfillment Database
Field Comment

ShortDescription YFS_ITEM.SHORT_
DESCRIPTION

This field is required to avoid
errors.

Extended Description YFS_ITEM.EXTENDED_
DESCRIPTION

BundleFulfillment
Mode

YFS_ITEM.BUNDLE_
FULFILLMENT_MODE

This value should be based on the
following:

v 01" for ShipTogether when the
configurable item is a
non-container only item.

v 02" for Ship Independently
when the configurable item is a
container only item.

LeadTime YFS_ITEM.LEAD_TIME

MinOrderQuantity YFS_ITEM.MIN_ORDER_
QUANTITY

Model YFS_ITEM.MODEL The existing MODEL field is used
to store the parent SKU to
represent the aggregate item. Do
not confuse with
CONFIGURED_MODEL_KEY of
the configurable item.

ModelItemUnitOf
Measure

YFS_ITEM.MODEL_ITEM_
UOM

This field stores the unit of
measure of the parent SKU.

IsModelItem YFS_ITEM.IS_MODEL_ITEM The value stored in this field
should be "Y" if the product is of
the type "Aggregate".

KitCode YFS_ITEM.KIT_CODE The value for this field is based on
the following:

v PK" if the product is of the type
"ASSEMBLY" and the

CMGT_PRODUCT.
COMPONENT_SUB_
TYPE
field indicates that the product
is a physical kit.

v BUNDLE" if the product is of
the type "ASSEMBLY" and the

CMGT_PRODUCT.
COMPONENT_SUB_
TYPE
field indicates that the product
is a bundle.

v BUNDLE" if product is of the
type "CONFIGURABLE"

ConfiguredModelKey YFS_ITEM.CONFIGURED_
MODEL_KEY

IsConfigurable YFS_ITEM.IS_
CONFIGURABLE

The value of this field should be
"Y" if the product is of the type
"CONFIGURABLE".

Chapter 10. Integrating User and Item Data with External Systems 115

Attribute
Order Fulfillment Database
Field Comment

IsPreConfigured YFS_ITEM.IS_PRE_
CONFIGURED

ItemInstructionList/ItemInstruction

InstructionText YFS_ITEM_INSTRUCTION.
INSTRUCTION_TEXT

InstructionType YFS_ITEM_INSTRUCTION.
INSTRUCTION_TYPE

SeqNo YFS_ITEM_INSTRUCTION.
SEQ_NO

Components/Component

ComponentItemID YFS_KIT_ITEM.COMPONENT_
ITEM_KEY

Based on ComponentItemID,

ComponentOrganizationCode,

and

ComponentUnitOfMeasure.

Component
OrganizationCode

YFS_KIT_ITEM.COMPONENT
_IT

Based on ComponentItemID,
ComponentOrganizationCode,
ComponentUnitOfMeasure

Assume that the catalog is
maintained at the hub level.

ComponentUnitOf
Measure

YFS_KIT_ITEM.COMPONENT
_ITEM_KEY

Based on ComponentItemID,
ComponentOrganizationCode,
ComponentUnitOfMeasure

Unit of measure of the config line
(configurable) or part (assembly)

KitQuantity YFS_KIT_ITEM.KIT_
QUANTITY

Note: Extended attributes can be provided under the /Item/@Extn element.

Note: Product item statuses must be manually kept in sync between the external
system and Sterling Selling and Fulfillment Foundation.

There are two scenarios in which statuses are updated during product item
synchronization:
v A new product item is added to either the external system or Sterling Selling

and Fulfillment Foundation. During synchronization, the product item is added,
and the status updated to Held in Sterling Selling and Fulfillment Foundation or
In Creation in the external system.

v If a product item is deleted in Sterling Selling and Fulfillment Foundation, the
status in the external system is updated to Blocked. In addition, when that
product item is retrieved in the UI of the external system, text is displayed in
the UI to indicate that this product has been deleted in Sterling Selling and
Fulfillment Foundation.

116 Sterling Selling and Fulfillment Foundation: Integration Guide

v If a product is deleted from the external system, a message is sent to Sterling
Selling and Fulfillment Foundation. By default, items are removed from the
database. This can be avoided by modifying the XSL translator in this step by
changing Action="Delete" to Action="Modify" and placing the item into a
custom status.

Chapter 10. Integrating User and Item Data with External Systems 117

118 Sterling Selling and Fulfillment Foundation: Integration Guide

Chapter 11. Integrating with JMS Systems

Introduction to Integrating with JMS
In order for some service nodes to communicate with external applications,
external message queueing software must be configured. The following third-party
message queueing applications are supported:
v Oracle WebLogic JMS
v IBM WebSphere MQ
v IBM WebSphere Default Messaging
v JBoss Messaging JMS
v TIBCO JMS

Configuring Oracle WebLogic JMS
About this task

For information specific to using WebLogic, see the documentation provided by
Oracle.

To configure WebLogic JMS:

Procedure
1. Invoke the WebLogic console by entering the URL for Application Consoles.

For example, http://<IP address of machine where weblogic is
installed>:<port>/console.

2. Log in as Administrator.
3. In the left-hand panel, click Services > JDBC > Connection Pools.
4. If message persistence or paging is required, right-click Connection Pools and

choose configure a new JDBCConnectionPool.
5. Configure the new JDBC pool with the following values:

v Name - Any name, for example, MyJDBCPool
v URL - jdbc:oracle:thin:@<IPAddress>:1521:<SID>
v DriverClassName - oracle.jdbc.OracleDriver
v Properties -

– user=<username>
– password=<password>

6. Select the Targets tab. In the left-hand panel, select one or more servers.
(Several choices may appear if your server is in a clustered environment.)
Then click the right arrow button to move the servers you have selected to the
panel on the right.

7. In the left-hand panel, right-click JMS > ConnectionFactories to configure a
new Connection Factory.
The JNDIName must match the QCFlookup value in the Applications
Manager for the WebLogic JMS Transport Type.

© Copyright IBM Corp. 1999, 2011 119

8. Select the Targets tab. In the left-hand panel, select one or more servers.
(Several choices may appear if your server is in a clustered environment.)
Then click the right arrow button to move the selected server to the window
on the right.

9. If message persistence or paging is required, right-click Stores, and configure a
new JMSJDBCStore or Filestore.
a. If you choose JDBCStore, using the Connection Pool drop-down list, select

your connection pool.
b. Right-click Servers and configure a new JMS server.
c. Select the store from the drop-down list.

10. Select the Targets tab. In the left-hand window, select one server. (Several
choices may appear if your server is in a clustered environment; you can
select only one of them.). Then click the right arrow button to move the
selected server to the window on the right.

11. Within the newly configured JMS server, click Destinations and configure all
required JMS Queues. Now all of the JMS queues are configured.
When configuring services that use WebLogic JMS, use the JNDI Name value
from the WLS configuration as the message queue name.

12. Restart the WebLogic server for these new settings to take effect.
13. Launch the integration server by running startIntegrationServer.sh (or

.cmd) in <INSTALL_DIR>/bin.
14. If you need to run multiple servers, repeat 13 for each additional server.

WebLogic Time-Out Considerations for Transacted Sessions
When using WebLogic JMS as a messaging system to receive messages in
transactional mode and no messages are received for a period of time equal to the
WebLogic transaction time-out value (defaults to 3600 seconds), the following error
message appears in the integration server. After this error message appears, no
messages can be processed and you must relaunch the adapter in order to process
any messages that recently arrived.
<date-time> [Thread-6] ERROR services.jms.JMSConsumer -Could not successfully
process message
weblogic.jms.common.TransactionRolledBackException:

at weblogic.rmi.internal.BasicOutboundRequest.sendReceive
(BasicOutboundRequest.java:85)
at weblogic.rmi.internal.BasicRemoteRef.invoke(BasicRemoteRef.java:135)
at weblogic.rmi.internal.ProxyStub.invoke(ProxyStub.java:35)
at $Proxy2.dispatchSyncNoTranFuture(Unknown Source)
at weblogic.jms.dispatcher.DispatcherWrapperState.dispatchSyncNoTran
(DispatcherWrapperState.java:341)
at weblogic.jms.client.JMSSession.receiveMessage(JMSSession.java:347)
at weblogic.jms.client.JMSConsumer.receive(JMSConsumer.java:333)
at weblogic.jms.client.JMSConsumer.receive(JMSConsumer.java:279)
at com.yantra.interop.services.jms.JMSConsumer.run(JMSConsumer.java:204)
at java.lang.Thread.run(Thread.java:512)

For help with choosing an appropriate transaction time-out value for your system,
see your WebLogic documentation.

120 Sterling Selling and Fulfillment Foundation: Integration Guide

Before You Begin Configuring IBM WebSphere MQ
For information specific to using WebSphere MQ, see the documentation provided
by IBM.

These directions assume that the following have been successfully installed:
v WebSphere MQ software
v WebSphere MQ Java classes
v WebSphere MQ JMS support pack

Creating the Queue Manager and Queues for IBM WebSphere
MQ

About this task

In Windows, you can use the MQSeries® Explorer, or follow the directions below.

To create the Queue Manager and Queues:

Procedure
1. Log in as the WebSphere MQ user or as a user belonging to the mqm user

group.
2. Navigate to the directory where WebSphere MQ has been installed. Typically

the location is as follows:
v If you are using UNIX - /opt/mqm/bin
v If you are using Windows - <WebSphere MQ Install Directory>\bin

3. Run the dspmq command to find out which queue managers, if any, exist.
v If a suitable queue manager exists, start it using the strmqm <qmgr>

command. The queue manager can be stopped by using the endmqm <qmgr>
command.

v If no queue manager exists, use the crtmqm <MYQMGR> command to create
one.

4. Run the runmqsc command to send commands for creating queues. For
examples of these commands, see below:

runmqsc MYQMGR
DEFINE QLOCAL (’getATP’);
DEFINE QLOCAL (’createOrder’);
END

Note: WebSphere MQ converts all characters to upper case, which causes
errors. To use mixed case names, enclose them within single quotation marks,
for example, DEFINE QLOCAL ('getATP').

Configuring a Queue Manager to Client Connection for IBM
WebSphere MQ

In order to send messages to a WebSphere MQ queue on another computer, the
QManager must be configured for the server and the client computer.

When a new queue is created in WebSphere MQ, the following default values are
assigned to it:
v MAXDEPTH - Maximum number of messages that a queue can hold. Defaults to

5000.

Chapter 11. Integrating with JMS Systems 121

v MAXMSGL - Maximum size of a message. Defaults to 4 MB.

These settings may need to be adjusted depending on the load and speed of the
third-party application that submits the messages, as opposed to the third-party
application that retrieves the messages.

Creating JMS Bindings in IBM WebSphere MQ
Procedure
1. On the server computer, create a QueueManager <QManagerName>.
2. On the server computer's command line, run the following executable:

<MQInstallDir>/bin/runmqlsr -m <QManagerName> -t TCP -p <PORT>

3. On the client computer, edit the JMSAdmin.config properties file to contain the
following lines:

INITIAL_CONTEXT_FACTORY=<JNDI_ICF>
PROVIDER_URL=<JNDI_URL>

where <JNDI_ICF> is the Initial Context Factory (ICF) class for use with the
JNDI you have chosen. For example,
com.sun.jndi.fscontext.RefFSContextFactory. <JNDI_URL> is the path of the
provider URL which is provided in the format expected by the JNDI server and
ICF.

4. On the client computer, create a .scp command file that contains the following
parameters:

def qcf(<QCFName>) qmgr(<QManagerName>) transport(CLIENT) host(<ipaddress
of Server>) channel(SYSTEM.DEF.SVRCONN) port(<PORT>)
def q(getATP) qu(getATP)
def q(reply_getATP) qu(reply_getATP)
def q(createOrder) qu(createOrder)
end

5. On the client computer, pass the .scp file to the WebSphere MQ JMSAdmin
class using the following syntax:

java com.ibm.mq.jms.admin.JMSAdmin < intsetup.scp

This creates a .bindings file in the directory specified for the provider URL. All
the JAR files in <MQ_HOME>/java/lib/ directory should be listed in your
CLASSPATH environment variable.

Removing JMS Bindings in IBM WebSphere MQ
About this task

To unbind the queues from JNDI

Procedure

Create a .scp command file and pass it into the WebSphere MQ JMSAdmin
program.
The following are example commands:

del qcf(ivtQCF)
del q(’getATP’)
del q(’reply_getATP’)
del q(’createOrder’)
end

Archive Files
Since the example configuration uses the client transport, the com.ibm.mqbind.jar
file is not necessary. However, the client does use the following MQ-specific JAR
files:

122 Sterling Selling and Fulfillment Foundation: Integration Guide

v /mqclient/java/lib/com.ibm.mq.jar
v /mqclient/java/lib/com.ibm.mqjms.jar
v /mqclient/java/lib/connector.jar
v /mqclient/java/lib/fscontext.jar
v /mqclient/java/lib/jms.jar
v /mqclient/java/lib/jndi.jar
v /mqclient/java/lib/jta.jar
v /mqclient/java/lib/providerutil.jar

Configuring Sterling Selling and Fulfillment Foundation to Use
WebSphere MQ Queues

About this task

When configuring Sterling Selling and Fulfillment Foundation to use the
WebSphere MQ queues, see the WebSphere MQ node in the Sterling Selling and
Fulfillment Foundation: Application Platform Configuration Guide.

To configure a service definition:

Procedure
1. Log in to Sterling Selling and Fulfillment Foundation as the user who belongs

to the mqm user group (otherwise, the WebSphere MQ adapter does not
launch).

2. Use the Applications Manager to configure the service. While configuring a
WebSphere MQ service, enter the following:
v The initial Context Factory com.sun.jndi.fscontext.RefFSContextFactory,

and
v A provider URL as file:/<pathOfTheProviderURL>

Note: The values for the Context Factory and the Provider URL must match
those in the JMSadmin.config file.

3. Launch the integration server by running startIntegrationServer.sh (or cmd)
in <INSTALL_DIR>/bin.

4. If you need to run multiple servers, repeat 3 for each additional server.

Configuring IBM WebSphere MQ for Access by WebSphere's
JNDI Namespace

About this task

You can configure the WebSphere MQ queues for access by WebSphere's JNDI
namespace rather than the typical file URL.

For information about the version of WebSphere MQ which includes MQ JMS
client software, see Sterling Selling and Fulfillment Foundation: Installation Guide.

If needed, see the IBM Technical Tip "Setting up MQ Java Message Service (JMS)
Support in WebSphere Application Server".

To configure WebSphere MQ:

Chapter 11. Integrating with JMS Systems 123

Procedure
1. You should set the shared library path for UNIX and LINUX systems as

follows:
set <Shared_Library_Path_Name>=<mqjava_install_path>/lib

where the <Shared_Library_Path_Name> is the shared library path environment
variable for your operating system. For example:
v In AIX® it is LIBPATH.
v In HP-UX it is SHLIB_PATH.
v In Sun and Linux it is LD_LIBRARY_PATH.

2. Modify the <mqjava_install_path>/bin/JMSAdmin.config file as follows:
INITIAL_CONTEXT_FACTORY=com.ibm.websphere.naming.WsnInitialContextFactory
PROVIDER_URL=CORBAloc:://<WAS_admin_IP_address>:<WAS_bootstrap_port>

3. Create an ivtsetup.scp command file that contains the following parameters:
def qcf(<QCFName>) qmgr(<QManagerName>) transport(CLIENT) host(<ipaddress
of Server>) channel(SYSTEM.DEF.SVRCONN) port(<PORT>)
def q(JNDINameOfQueue) qu(QueueName)

In the following example, a QueueConnectionFactory is created with the JNDI
name ivtQCF. This QueueConnectionFactory is configured to access the Queue
Manager SYSTEM.TEST. Using the 'CLIENT' (network based) transport on the
computer 127.0.0.1,through port 1414 (WebSphere MQ default), through the
server connection channel named SYSTEM.DEF.SVRCONN (WebSphere MQ
default).
Next, a queue object is created with the JNDI name getATP, which is
configured to work with the getATP queue on QueueManager SYSTEM.TEST.
(Of course, you must ensure that you have created this queue on the queue
manager as well.)
Finally, an end command is issued to shut down JMSAdmin.
Note that the .scp file can have any name, but the convention is ivtsetup.scp
(ivt=installation verification test).

def qcf(ivtQCF) qmgr(SYSTEM.TEST) transport(CLIENT) host(127.0.0.1)
CHANNEL(SYSTEM.DEF.SVRCONN) port (1414)

def q(getATP) qu(getATP) QMGR(SYSTEM.TEST)
end

4. Set the PATH and CLASSPATH in the JMSAdmin script as follows:
MQJAVA_PATH=<path to ma88 installation>
PATH=$MQJAVA_PATH
CLASSPATH=$MQJAVA_PATH/lib:$MQJAVA_PATH/lib/com.ibm.mq.jar:$MQJAVA_PATH/lib/
com.ibm.mqjms.jar:$MQJAVA_PATH/lib/jms.jar

For information about WebSphere JARs, see IBM documentation
5. Pass the .scp file to the WebSphere MQ JMSAdmin class using the following

syntax:
java com.ibm.mq.jms.admin.JMSAdmin < intsetup.scp

Inside the Applications Manager
Configure a service that contains a WebSphere MQ node. Ensure that the link
properties of the node match the Initial Context Factory, Provider URL, and the
JNDI name specified for the desired queue.

The WebSphere MQ and WebSphere JAR files are also required for the
IntegrationAdapter program and whatever client is putting the messages into the
queue(s).

124 Sterling Selling and Fulfillment Foundation: Integration Guide

Inside the WebSphere Admin Console
In order to put messages into the WebSphere MQ queues from inside Sterling
Selling and Fulfillment Foundation, as the Release agent needs to do or for services
invoked by Actions and Events, follow the instructions provided in the IBM
Technical Tip "Configuring MQ JMS support in the WebSphere J2EE Environment".

If you are running on an IBM AIX system, include the following line in the script
that launches the IntegrationAdapter:

export LDR_CNTRL=MAXDATA=0x30000000

Configuring IBM WebSphere Default Messaging
These directions assume that the following have been successfully installed:
v WebSphere Application Server with support for Default Messaging
v WebSphere Default Messaging Java classes
v WebSphere Default Messaging support pack

For more information specific to using the WebSphere Default Messaging, see the
documentation provided by IBM.

Configuring Sterling Selling and Fulfillment Foundation to Use
WebSphere Default Messaging

About this task

When configuring Sterling Selling and Fulfillment Foundation to use the
WebSphere Default Messaging queues, see the WebSphere Default Messaging
Queue section in the Sterling Selling and Fulfillment Foundation: Application Platform
Configuration Guide.

For information about the version of WebSphere Default Messaging that includes
the Default Messaging client software, see Sterling Selling and Fulfillment Foundation:
Installation Guide.

To configure WebSphere Default Messaging:

Procedure
1. Set the shared library path for UNIX and LINUX system as follows:

set <Shared_Library_Path_Name>=<dm_java_install_path>/lib

where <Shared_Library_Path_Name> is the shared library path environment
variable for your operating system.
For example:
v On AIX it is: LIBPAT
v On Linux it is: LD_LIBRARY_PATH

2. If Agent or Integration Servers communicate with the WebSphere Default
Messaging, install the WAS client. The WAS client needs to be the exact
version, including fix pack as the WAS server.

3. Add the following command to the startIntegrationServer.sh script prior to
the java line:
${WAS_CLIENT_HOME}/bin/setupClient.sh

where ${WAS_CLIENT_HOME} is the installation location of the WAS client.

Chapter 11. Integrating with JMS Systems 125

4. Edit the startIntegrationServer.sh script to run the Agent or Integration
Server to add the following system property:
-Djava.ext.dirs=$WAS_EXT_DIRS $SERVER_ROOT $CLIENTSAS.

5. Ensure that the following changes are made to the startIntegrationServer.sh
(or cmd) startup script located in the <INSTALL_DIR>/bin directory to include
the changes made in 3 on page 125 and 4.
WAS_CLIENT_HOME=<path of where WAS client installation>
export WAS_CLIENT_HOME
${WAS_CLIENT_HOME}/bin/setupClient.sh

java -Djava.ext.dirs=$WAS_EXT_DIRS $SERVER_ROOT $CLIENTSAS

${BOOTCLASSPATH} ${JAVA_OPTIONS} -cp ${CLASSPATH}
com.yantra.integration.adapter.IntegrationAdapter "$1"

JBoss Messaging JMS

Creating Queues in JBoss Messaging JMS
About this task

To create a Queue in JBoss Messaging JMS:

Procedure

Edit the <JBOSS_HOME>/server/<SERVER_NAME>/deploy/jboss-messaging.sar/
destination_service.xml file to configure a queue. The following table provides a
list of attributes to use to configure a queue.

Table 14. JBoss JMS Attributes

Attribute Description

DestinationManager Specify the object name of the DestinationManager where the
queue is deployed.

SecurityManager Specify the object name of the SecurityManager where the
SecurityConf is deployed.

SecurityConf Specify the configuration interpreted by the SecurityManager.

JNDIName Specify the JNDI binding of the queue. If you specify none,
the system looks for a jmx attribute "name" in the queue's
object name.

MaxDepth Specify the maximum depth of the queue.

InMemory When set to true, messages are not persisted. It also avoids
message softening when NullPersistenceManager is used.

RedeliveryLimit Specify the maximum number of times a message must not
be acknowledged before it is sent to DLQ. Valid values are:

v 0 - indicates do not redeliver

v n - indicates redeliver n times

RedeliveryDelay Specify the time (in milliseconds) to wait before a message is
redelivered after it is not acknowledged.

MessageCounterHistory
DayLimit

Specify the number of days you want to keep the
MessageCounter history.

ReceiversImpl Specify the class you want to use for the receivers
implementation.

126 Sterling Selling and Fulfillment Foundation: Integration Guide

Table 14. JBoss JMS Attributes (continued)

Attribute Description

RecoveryRetries Specify the recovery retries for the queue. By default, the
value is set to 0 (zero). Specifies the number of times
uncommitted transactions must be resolved before failing.

Sample Code for Queue Configuration
The following is a sample code for queue configuration:

<mbean code="org.jboss.jms.server.destination.QueueService"
name="jboss.messaging.destination:service=Queue,name=testQueue"
xmbean-dd="xmdesc/Queue-xmbean.xml">

<depends optional-attribute-name="ServerPeer">jboss.messaging:service=
ServerPeer</depends>

<depends>jboss.messaging:service=PostOffice</depends>
<attribute name="SecurityConfig">

<security>
<role name="guest" read="true" write="true"/>
<role name="publisher" read="true" write="true" create="false"/>
<role name="noacc" read="false" write="false" create="false"/>

</security>
</attribute>

</mbean>

Configuring Sterling Selling and Fulfillment Foundation to Use
JBoss Messaging Queues

About this task

When configuring Sterling Selling and Fulfillment Foundation to use JBoss
Messaging queues, see the section about the JBoss Messaging node in the Sterling
Selling and Fulfillment Foundation: Application Platform Configuration Guide.

Note: You must install JBoss messaging for using JBoss messaging queues. JBoss
Messaging is supported with JBoss 4.2.0 or higher. However, for earlier versions of
JBoss, only JBoss MQ is supported as a JMS.

To configure a service definition:

Procedure
1. Log in to Sterling Selling and Fulfillment Foundation as an admin user.
2. Use the Applications Manager to configure the service. While configuring a

Generic JMS service, enter the following:
v The initial Context Factory org.jnp.interfaces.NamingContextFactory, and
v A provider URL as jnp://<IP address and port of the JBoss instance>

3. Set up the CLASSPATH for the startIntegrationServer script by adding the
required jars to the CLASSPATH. For more information about setting up the
classpath, see the section on Setting Up the Classpath for the Runtime Utilities
in Sterling Selling and Fulfillment Foundation: Installation Guide.

4. Launch the integration server by running startIntegrationServer.sh (or cmd)
in <INSTALL_DIR>/bin.

5. If you need to run multiple servers, repeat 4 for each additional server.

Chapter 11. Integrating with JMS Systems 127

Configuring TIBCO JMS
TIBCO JMS can be configured as the messaging system for Sterling Selling and
Fulfillment Foundation. For information about using TIBCO JMS, see the
documentation provided by TIBCO.

TIBCO JMS Attributes
The tibemsadmin command is a command line utility used to create JMS objects,
and to configure user and group permissions in TIBCO. This tool is available in the
<TIBCO>/ems/5.0/bin directory.

The following table provides a list of attributes used to create JMS objects,
configure users, groups, and permissions in the TIBCO Enterprise Messaging
Server using the tibemsadmin command.

Table 15. TIBCO JMS Attributes

Attribute Description

tibemsd The command used to start TIBCO server.

tibemsadmin The command used to start the TIBCO admin tool.

create factory <Connection
Factory Name> <Connection
Factory Type>

The command used to create a Queue Connection Factory.
Example: create factory secureqcf queue

addprop factory <Connection
Factory Name>
url=<url-string>

The command used to set up an URL to listen to an
external address such that the Queue Connection Factory
is accessible from other hosts. Example: addprop factory
secureqcf url=tcp://devhost:7222

addprop queue <queuename>
<propertyname>=<value>

Enables you to add a property to an existing queue.
Example:

addprop queue myqueue prefetch=1

Where:

- the queue is called myqueue

- the property is prefetch

- the property value to assign is "1"

create queue <queue-name> The command used to create a queue. Example: create
queue scurequeue. Note: When creating a queue, you can
specify properties to be set as part of the commend by
adding <propertyname>=<value> after the queue name.
Example: create queue securequeue prefetch=1

create user <username> The command used to create a user. Example: create user
secureuser

set password <username> <
new password>

The command used to create a password for a user.
Example: set password secureuser securepassword.

create group <groupname> The command used to create a group. Example: create
group securegroup

add member <group name>
<user to be added>

The command used to add a user to a group. Example:
add member securegroup secureuserser

128 Sterling Selling and Fulfillment Foundation: Integration Guide

Table 15. TIBCO JMS Attributes (continued)

Attribute Description

grant queue <queuname>
group = <groupname>
<permission>

The cammand used to set the requisite permissions on a
queue for a group.

Example:

grant queue securequeue group=securegroup send

grant queue securequeue group=securegroup receive

grant queue securequeue group=securegroup browse

addprop queue <queuename>
secure

The command used to enable authorization for a queue.
Example: addprop queue securequeue secure

setprop queue <queue-name>
prefetch=1

If queue name is myQueue, then the command is
setprop queue myQueue prefetch=1

Configuring TIBCO JMS as an Agent Queue
When configuring a TIBCO JMS for an agent queue, you must set the prefetch
parameter for the queue to “1.” If you fail to set the prefetch parameter to 1 for an
agent queue, it will cause agents to attempt to process messages more than once,
resulting in job execution failures and wasted processing power. You may also see
multiple trigger messages in queues causing severe performance degradation.

To set the prefetch parameter, use either the create queue command or the addprop
command. See “TIBCO JMS Attributes” on page 128 for details on using the
commands.

Requirements for Configuring a JMS Client on TIBCO
The following parameters must be configured to connect to an unsecured queue on
TIBCO:
v URL: tcp://<hostname>:<port>

Example: tcp://tibserver:7222
v ICF: com.tibco.tibjms.naming.TibjmsInitialContextFactory
v QCF: The name of the Queue Connection Factory created during setup.

If you need to connect to a secured queue, you must pass a username and
password for both JNDI and "queuebased" security.

The following properties must be configured for use with the Service Definition
Framework (SDF):
v sci.queuebasedsecurity.userid
v sci.queuebasedsecurity.password
v java.naming.security.principal
v java.naming.security.credentials

Chapter 11. Integrating with JMS Systems 129

Configuring the Sterling Selling and Fulfillment Foundation To
Use TIBCO Messaging Queues

About this task

When configuring the Sterling Selling and Fulfillment Foundation to use TIBCO
Messaging queues, see the section about the TIBCO Messaging node in the Sterling
Selling and Fulfillment Foundation: Application Platform Configuration Guide.

To configure a service definition:

Procedure
1. Log in to Sterling Selling and Fulfillment Foundation as an admin user.
2. Use the Applications Manager to configure the service. While configuring a

Generic JMS service, enter the following:
v The initial Context Factory

com.tibco.tibjms.naming.TibjmsInitialContextFactory, and
v A provider URL as tcp://<IP address and port of the TIBCO instance>

3. Set up the CLASSPATH for the startIntegrationServer script by adding the
required jars to the CLASSPATH. For more information about setting up the
classpath, see the section on Setting Up the Classpath for the Runtime Utilities
in Sterling Selling and Fulfillment Foundation: Installation Guide.

4. Launch the integration server by running startIntegrationServer.sh (or cmd)
in <INSTALL_DIR>/bin.

5. If you need to run multiple servers, repeat 4 for each additional server.

130 Sterling Selling and Fulfillment Foundation: Integration Guide

Chapter 12. Integrating with Financial Systems

Requirements for Financial System Integration
To use the data captured using the Sterling Selling and Fulfillment Foundation
Inventory Cost Management feature with your financial system, you must load the
initial inventory cost data and configure process-specific events.

Load Initial Inventory Cost Data
Sterling Selling and Fulfillment Foundation provides an API to load the initial
inventory value of an item at a ship node for a given quantity. The
loadInventoryNodeCost API supports multiple items to be given in the input with
inventory cost data for each ship node under that.

The loadInventoryNodeCost API validates the Quantity passed with the actual
inventory supply information available for that item/ship node. This API only
considers the supply types which are specified as on-hand and cost maintained.
For more information about the input XML attributes, see the Sterling Selling and
Fulfillment Foundation: Javadocs.

This API is called for the initial load of cost data at system start up time. This API
should not be used after going into production with the Inventory Costing
Management feature implemented.

The following query can be run to get the initial onhand supply quantity:
SELECT B.ORGANIZATION_CODE, B.ITEM_ID, B.UOM, B.PRODUCT_CLASS, A.SHIPNODE_KEY
SHIP_NODE, SUM(QUANTITY) QUANTITY
FROM YFS_INVENTORY_SUPPLY A,YFS_INVENTORY_ITEM B
WHERE A.INVENTORY_ITEM_KEY = B.INVENTORY_ITEM_KEY
AND SUPPLY_TYPE IN (
SELECT SUPPLY_TYPE FROM YFS_INVENTORY_SUPPLY_TYPE
WHERE ONHAND_SUPPLY = ’Y’ AND COSTING_REQUIRED = ’Y’)
GROUP BY B.ORGANIZATION_CODE, B.ITEM_ID, B.UOM, B.PRODUCT_CLASS, A.SHIPNODE_KEY

Configuring Process-Specific Events
In order to interface with your financial system and use the Sterling Selling and
Fulfillment Foundation Inventory Costing data, you must configure the applicable
events for the processes described in this section.

Receipt Process
From the General Process Type, configure the following two receipt process events
for the INVENTORY_COST_CHANGE Transaction ID.

Receipt Process - INVENTORY_COST_CHANGE
When Is This Event Raised?

This event is raised for any order receipt such as a purchase order, return order
and so on. For example, at the time of purchase order receipt this event is raised
from the inventory management module for each receipt line containing details of
a single receipt line to generate G/L level postings in a financial application. One

© Copyright IBM Corp. 1999, 2011 131

event is published for each purchase order line as a receipt is recorded against it. If
a purchase order line is received in multiple receipts, multiple events are raised.

For more information about the data published by the event, see the Sterling Selling
and Fulfillment Foundation: Javadocs.

What Are the Expected Updates on the Financial System?

This event can be used to update general ledger entries for accounts payable
accruals and inventory value accounts.

Receipt Process - INVENTORY_COST_WRITEOFF
When Is This Event Raised?

When doing a receipt against an item or node that has a negative on-hand balance,
Inventory Value and Average Cost calculations need to be modified. The
application generates this second event to accompany the standard inventory cost
change event (INVENTORY_COST_CHANGE). This second event publishes the
delta between recalculated inventory value and the write off amount details. For
more information about the data published by the event, see the Sterling Selling and
Fulfillment Foundation: Javadocs.

What Are the Expected Updates on the Financial System?

This event can be used to update general ledger entries for variance and inventory
value accounts.

Sales Order Creation Process
The unit cost for an order line is stored as the unit cost stored for the item master.
If the unit cost was manually entered at the item level in the product master tables,
the order line uses the manually entered unit cost. If no manual entry was made,
the order line uses the computed unit cost stored at the item level. If no such cost
was stored, the cost is reflected as $0.00 on the sales order line and the
ORDER_CREATE.ON_ZERO_UNIT_COST event is triggered.

If the item definition is not stored in Sterling Selling and Fulfillment Foundation,
the getItemDetails user exit may be implemented to return unit cost from an
external source. For more information about the getItemDetails user exit, see the
Sterling Selling and Fulfillment Foundation: Javadocs.

Shipment Confirmation Process
From the General Process Type, configure the following event for the
INVENTORY_COST_CHANGE Transaction ID.

Shipment Confirmation Process - INVENTORY_VALUE_CHANGE
When Is This Event Raised?

When a sales order is shipped this event is raised from the inventory management
module for each shipment line with the inventory value change information for the
fulfillment location. For more information about the data published by the event,
see the Sterling Selling and Fulfillment Foundation: Javadocs.

132 Sterling Selling and Fulfillment Foundation: Integration Guide

What Are the Expected Updates on the Financial System?

This event can be used to update general ledger entries for cost of goods sold,
inventory value, and variance accounts.

Invoice Process
Using the CREATE_ORDER_INVOICE.0003 Transaction ID for returns or the
CREATE_SHIPMENT_INVOICE.0001 Transaction ID for shipments, configure the
following event for the Invoice process.

Invoice Process - ON_INVOICE_CREATION
When Is This Event Raised?

During invoice creation, this event is raised for each invoice created. This event
publishes the details about the invoice created. For more information about the
data published by the event, see the Sterling Selling and Fulfillment Foundation:
Javadocs.

What Are the Expected Updates on the Financial System?

This can be used to post sales and account receivables general ledger entries.

Work Order Confirmation Process
From the General Process Type, configure the following three work order
confirmation process events for the INVENTORY_COST_CHANGE Transaction ID.

Work Order Confirmation Process - INVENTORY_COST_CHANGE
When Is This Event Raised?

During work order processing, when the production of a kit parent item is
reported, this event is raised from the inventory management module for the
parent with the inventory cost change information for the production location. For
more information about the data published by the event, see the Sterling Selling and
Fulfillment Foundation: Javadocs.

What Are the Expected Updates on the Financial System?

This event can be used to update general ledger entries on the financial system.

Work Order Confirmation Process -
INVENTORY_COST_WRITEOFF
When Is This Event Raised?

When reporting production of a kit parent item that has a negative on-hand
balance at the production location, Inventory Value and Average Cost calculations
need to be modified. The application generates this second event to accompany the
standard inventory cost change event (INVENTORY_COST_CHANGE). This second
event publishes the delta between recalculated inventory value and the write off
amount details. For more information about the data published by the event, see
the Sterling Selling and Fulfillment Foundation: Javadocs.

What Are the Expected Updates on the Financial System?

This event can be used to update general ledger entries on the financial system.

Chapter 12. Integrating with Financial Systems 133

Work Order Confirmation Process
-INVENTORY_VALUE_CHANGE
When Is This Event Raised?

When reporting production of a kit, this event is raised for each kit component.For
more information about the data published by the event, see the Sterling Selling and
Fulfillment Foundation: Javadocs.

What Are the Expected Updates on the Financial System?

This event can be used to update general ledger entries for cost of goods sold,
inventory value, and variance accounts.

Inventory Adjustment Process
From the General Process Type, configure the following event for the
INVENTORY_COST_CHANGE Transaction ID.

Inventory Adjustment Process - INVENTORY_VALUE_CHANGE
When Is This Event Raised?

When an inventory adjustment is done for an item at a fulfillment location, this
event is raised from the inventory management module with the inventory value
change information for the fulfillment location. For more information about the
data published by the event, see the Sterling Selling and Fulfillment Foundation:
Javadocs.

What Are the Expected Updates on the Financial System?

This event can be used to update variance and inventory value accounts in the
financial system.

Return Order Process
From the General Process Type, configure the following event for the
INVENTORY_COST_CHANGE Transaction ID.

Return Order Process - INVENTORY_VALUE_CHANGE
When Is This Event Raised?

At the time of return order receipt, this event is raised from the inventory
management module for each return receipt line with the inventory value change
information for the return location. For more information about the data published
by the event, see the Sterling Selling and Fulfillment Foundation: Javadocs.

What Are the Expected Updates on the Financial System?

This event can be used to update variance and inventory value accounts in the
financial system.

Callback from Financial System for Inventory Value
Adjustment

This interface is implemented as a call to the updateInventoryCost API in Sterling
Selling and Fulfillment Foundation. This should be used whenever the Accounts
Payable application generates a variance between expected PO cost and the actual
cost on the Payables Invoice. The variance amount should be passed back to

134 Sterling Selling and Fulfillment Foundation: Integration Guide

Sterling Selling and Fulfillment Foundation to be reflected in the inventory value.
Sterling Selling and Fulfillment Foundation then tries to adjust the inventory value
and re-compute the average cost. If the total on-hand is less than the purchase
quantity (due to subsequent shipments or issues), the total variance is prorated and
applied to the remaining on-hand inventory. An additional event is raised to adjust
the difference in the financial system. For more information about the input
attributes for the interface, see the Sterling Selling and Fulfillment Foundation:
Javadocs.

What are the Expected Updates on Sterling Selling and
Fulfillment Foundation?

Inventory value is adjusted by the variance amount. Average cost is recomputed. If
the total on-hand is less than what has to be adjusted, the total variance is prorated
and applied on the remaining on-hand inventory. The amount not applied is
passed back to the financial application so that it can be stored in an appropriate
variance account.

Using the INVENTORY_COST_UPDATE Transaction ID, configure the following
event for the Callback from Financial System process.

Callback from Financial System Process -
COULD_NOT_APPLY_INV_VALUE_CHANGE
When Is This Event Raised?

The amount not applied on Sterling Selling and Fulfillment Foundation is passed
back to the financial application by raising this event which publishes the variance
amount details. For more information about the data published by the event, see
the Sterling Selling and Fulfillment Foundation: Javadocs.

What Are the Expected Updates on the Financial System?

This event can be used to update the appropriate variance account on the financial
system.

Chapter 12. Integrating with Financial Systems 135

136 Sterling Selling and Fulfillment Foundation: Integration Guide

Chapter 13. Rapid Deployment Features

Rapid Deployment Feature Overview
The Sterling Selling and Fulfillment Foundation Rapid Deployment Tool (RDT) can
be utilized for the rapid deployment of Sterling Selling and Fulfillment
Foundation.

The rapid deployment features include:
v Interface Field Mapping Documents
v Initial Data Loading

In addition to these rapid deployment features, Sterling Selling and Fulfillment
Foundation provides a mechanism to create a new IBM Sterling Warehouse
Management System node from an existing node.

For more information about Copying an Existing Node to a New Node,
Onboarding an Enterprise to a Node, Offboarding an Enterprise from a Node, and
Deleting the Current Node, refer to the Sterling Selling and Fulfillment Foundation:
Warehouse Management System Configuration Guide.

Interface Field Mapping Documents
An Interface Field Mapping Document specifies integration mapping between
Sterling Selling and Fulfillment Foundation and an external system. Typically, it is
a Microsoft Excel document based on the input and output XMLs of the Sterling
Selling and Fulfillment Foundation APIs or custom APIs written at the
implementation phase of a project.

This feature describes the methodology to generate a Microsoft Excel-compatible
XML spreadsheet file from the input/output XML file of an API, which can be
used to create the Interface Field Mapping Document.

Note: The Interface Field Mapping Template generation tool can only be used in
Microsoft Windows environment.

Generating Interface Field Mapping Template Documents
Sterling Selling and Fulfillment Foundation provides a tool to generate Interface
Field Mapping Template documents from input/output XMLs.

The input XML for this generation could be an Input/Output XML from a Sterling
Selling and Fulfillment Foundation-exposed API or an XML for a custom API,
which allows the generation of Interface Field Mapping Template documents for
custom APIs created during implementation.

The tool generates the Interface Field Mapping Template document as a Microsoft
Excel XML spreadsheet document that can be opened in Microsoft Excel and
modified to specify the mapping details.

© Copyright IBM Corp. 1999, 2011 137

Generating Interface Field Mapping Template Documents Using
the Generation Tool
About this task

To generate the XML spreadsheet:

Procedure

Use the following command line tool:
generateExcelXML {INXML} {INXSL} {OUTXML} {HTML} {TITLE}

Results

where,
v INXML – Name of the XML file for which the XML spreadsheet should be

generated
v INXSL – Name of the XSL file which is used to generate the XML spreadsheet
v OUTXML – Name of the XML spreadsheet file to be generated
v HTML – Name of the HTML file which contains the description of the Input

XML attributes.

Note: If you are running the RDT in a Unix environment, you must insert an
extra "\" for every "\" that you use in the HTML file name attribute. For
example, if the filename is \\server\directory\file.html, you must specify the
filename as \\\\server\\directory\\file.html.

v TITLE - The title that is displayed after you generate the XML spreadsheet.

This tool is located in <INSTALL_DIR>/bin directory. This can also be used to
generate XML spreadsheets for custom APIs.

Using Interface Field Mapping Template Documents
About this task

The XML spreadsheet generated using the command line tool can be opened and
edited using Microsoft Excel (Versions 2002 and above).

The XML spreadsheet provides the Attribute Name, Mapping, and Remarks for
each attribute. The following is a sample:

Procedure
1. Click on an attribute name to launch the relevant datatype and description.
2. Modify the integration field mappings as applicable and save.

138 Sterling Selling and Fulfillment Foundation: Integration Guide

Initial Data Loading
Sterling Selling and Fulfillment Foundation provides a initial data-loading tool for
loading configuration data from legacy or ERP systems. The Initial Data Loading
(IDL) tool utilizes the bare minimum information required by the warehouse to be
functional.

Initial Data-Loading Services
The Initial Data Loading (IDL) tool works based on the Service Definition
Framework (SDF).

The IDL tool provides services to create the following configuration data:
v Items
v Shipping Cartons
v Locations
v SKU Dedications
v Location Inventory

To use the services provided for IDL, the configuration data to be loaded from the
legacy or ERP systems should be made available in a comma delimited flat file.

The IDL tool uses services to convert the data into the XML format, required by
the corresponding APIs to create or modify the relevant information in the
warehouse. The following figure illustrates a sample service as displayed in the
Applications Manager:

To begin the initial data loading process, the integration server should be started
by navigating <runtime>/bin folder and entering the following command:

<runtime>/bin/startIntegrationServer.sh <servername>

For more information about running the Sterling Selling and Fulfillment
Foundation Integration Server, refer to the Sterling Selling and Fulfillment
Foundation: Installation Guide.

The RDTConfigDataFormat.xls file located in the <runtime>/repository/xapi/
template/merged/RDTConfigSchemas folder contains the data sequence and the
headers required for the corresponding service provided in the IDL module of the
RDT.

All Sterling Selling and Fulfillment Foundation services follow the predefined
sequence specified in the RDTConfigDataFormat.xls file for calling the components:
v The File IO Receiver is used to read the data from the delimited flat file
v The Text Translator component is used to convert the delimited data to XML

format
v The XSL Translator component is used to convert the XML into a format that is

the input to an API, and

Chapter 13. Rapid Deployment Features 139

v The API component is used to call the business API for creating or modifying
the data.

Each service reads the input data line by line from the delimited flat files. Thus, all
the details required for a configuration should be provided in a single line,
separated by commas, and in a fixed sequence. The first item in each line is the
header, and it is fixed for each service. If the first item is anything other than the
header then that row is not considered for processing.

Error Handling in Initial Data Loading (IDL) Tool
The error handing for Initial Data Loading services is undertaken at two levels:
1. When there is an error in translating the flat file into an xml file as per the

defined schema, the file is pushed to the working directory and an error file
indicating the error is added to the error directory. The error may now be fixed
and the modified flat file reprocessed.

2. When the API throws an exception for a record, it is sent to the default
exception queue where it can be viewed in the exception console by searching
for exceptions in initial status. The input xml may now be modified by
providing the right input, and reprocessed using the reprocess button.

Item Configuration Data-Loading

This service enables you to create an item or modify the attributes of an existing
item for which inventory is stored in the warehouse. It calls the manageItem() API.

The following table explains the format of the headers and the sequence of items
to be provided for this service. For more information, see the Sterling Selling and
Fulfillment Foundation: Javadocs.

Attribute Description Sequence Data Type Size

ITEMHEDR The item header identifier 1 String 6

ItemID The unique identifier for an item
that belongs to a catalog
organization

2 String 40

OrganizationCode The code of the organization
whose product information is
being stored

3 String 24

UnitOfMeasure The unit of measure for item
quantity

4 String 40

GlobalItemID The unique global identifier used
to cross reference an item with
another catalog organization

5 String 128

Description A localized description 6 String 200

ProductLine The product line of an item 7 String 100

KitCode The kit code of an item. Value
'LK' indicates a logical kit, while
PK indicates a physical kit

8

ItemGroupCode The code of the item group. This
is used to identify whether the
item is a Product, Provided
Service, Provided Service Option,
Delivery Service, or Delivery
Service Option

9 String 20

140 Sterling Selling and Fulfillment Foundation: Integration Guide

Attribute Description Sequence Data Type Size

UnitCost The cost of one unit of the item 10 Decimal 19

CostCurrency The currency in which the item's
cost is defined

11 String 20

CountryOfOrigin The item's country of origin or
manufacture

12 String 40

ItemType The generic type of the item 13 String 40

UnitWeight The weight of one unit of the
item

14 Decimal 14

WeightUOM The unit of measure in which the
item's weight is defined

15 Decimal 14

UnitHeight The height of one unit of the item 16 Decimal 14

UnitLength The length of one unit of the item 17 Decimal 14

UnitWidth The width of one unit of the item 18 Decimal 14

SerializedFlag This indicates whether the item is
serialized

19 Boolean 1

TagControlFlag This indicates whether the item is
tag controlled

20 Boolean 1

TimeSensitive This indicates whether the item is
time sensitive

21 Boolean 1

IsFifoTracked This indicates whether the item is
FIFO tracked

22 Boolean 1

IsSerialTracked This indicates whether the item is
serial tracked

23 Boolean 1

HarmonizedCode The harmonized code of the item 24 String 40

NMFCCode The NMFC code of the item 25 String 40

VelocityCode The velocity code of the item 26 String 40

ECCNNo The ECCN number of the item 27 String 40

HazmatClass The hazardous material
classification of the item

28 String 40

CommodityCode The commodity code of the item 29 String 40

StorageType The storage type of the item 30 String 40

AddName1 The name of the first additional
attribute

31 String 20

AddValue1 The value of the first additional
attribute

32 String 2000

AddName2 The name of the second
additional attribute

33 String 20

AddValue2 The value of the second
additional attribute

34 String 2000

LotNumber The lot number of the item. This
indicates whether this attribute
can be used as a Tag Identifier or
a Tag Descriptor. Valid values
are:
01 - Use as Tag Descriptor
02 - Use as Tag Identifier
03 - Not used

35 String 2

Chapter 13. Rapid Deployment Features 141

Attribute Description Sequence Data Type Size

LotAttribute1 The lot attribute of the item. This
indicates whether this attribute
can be used as a Tag Descriptor.
Valid values are:
01 - Use as Tag Descriptor
03 - Not Use

36 String 2

LotAttribute2 The lot attribute of the item. This
indicates whether this attribute
can be used as a Tag Descriptor.
Valid values are:
01 - Use as Tag Descriptor,
03 - Not used.

37 String 2

CaseQuantity The quantity of one case of the
item

38 Decimal 14

CaseWeight The weight of one case of the
item

39 Decimal 14

CaseLength The length of one case of the
item

40 Decimal 14

CaseWidth The width of one case of the item 41 Decimal 14

CaseHeight The height of one case of the
item

42 Decimal 14

PalletQuantity The quantity of one pallet of the
item

43 Decimal 14

PalletWeight The weight of one pallet of the
item

44 Decimal 14

PalletLength The length of one pallet of the
item

45 Decimal 14

PalletWidth The width of one pallet of the
item

46 Decimal 14

PalletHeight The height of one pallet of the
item

47 Decimal 14

DimensionUOM The unit of measure that define
the dimensions of the item

48 String 40

Schema Files Used

The schema files used by each component of the service and the API called by the
service are as follows:
v Service Name: Items
v Service Group: InitialDataLoad
v Text Translator: ModifyItemSchema
v XSL Translator: ModifyItem
v API: manageItem
v Server Name: ItemLoader

Shipping Carton Data-Loading

This service creates shipping cartons (modelled as items) that are stored in the
warehouse. It calls the createItem() API.

142 Sterling Selling and Fulfillment Foundation: Integration Guide

The following table explains the format of the headers and the sequence of items
to be provided for this service. For more information, see the Sterling Selling and
Fulfillment Foundation: Javadocs.

Attribute Description Sequence Data Type Size

ITEMHEDR The item header identifier 1 String 6

ItemID The unique identifier for an item
that belongs to a catalog
organization

2 String 40

OrganizationCode The code of the organization
whose product information is
being stored

3 String 24

UnitOfMeasure The unit of measure for item
quantity

4 String 40

UnitWeight The weight of one unit of the
item

5 Decimal 14

UnitHeight The height of one unit of the item 6 Decimal 14

UnitLength The length of one unit of the item 7 Decimal 14

UnitWidth The width of one unit of the item 8 Decimal 14

MaxCntrWeight The maximum weight of the
carton

9

Schema Files Used

The schema files used by each component of the service and the API called by the
service are as follows:
v Service Name: ShippingCartons
v Service Group: InitialDataLoad
v Text Translator: ShippingCartonSchema
v XSL Translator: ShippingCarton
v API: createItem
v Server Name: ShippingCartonLoader

Location Data-Loading

This service creates locations in a zone within a node in the warehouse. These
locations specify the physical space where inventory is stored. It calls the
manageLocation() API.

The following table explains the format of the headers and the sequence of items
to be provided for this service. For more information, see the Sterling Selling and
Fulfillment Foundation: Javadocs.

Attribute Description Sequence Data Type Size

LOCAHEDR The location header identifier 1 String 8

LocationId The unique identifier for the
location. This in conjunction with
NODE_KEY identifies a unique
location in the node

2 String 40

Node The node to which the location
belongs.

3 Key 24

Chapter 13. Rapid Deployment Features 143

Attribute Description Sequence Data Type Size

LocationType The system defined classification
of location to aid association of
locations of certain types for
certain other operations with
WMS. The supported types are:
INTRANSIT (Mobile locations),
STAGING, VIRTUAL, REGULAR
and DOCK. For example, all
equipment locations should be of
type INTRANSIT. If LocationType
is passed blank or passed
unallowed values then default
LocationType is taken as
REGULAR

4 String 40

ZoneId The zone to which the location
belongs. This in conjunction with
the node key identifies a unique
zone within the node.

5 String 40

AisleNumber The aisle number of the location.
Locations belong to zones, which
have travel aisle's between them.
A zone could belong to multiple
aisles and multiple zones could
belong to an aisle. But a location
in a zone belongs to one and only
one aisle.

6 Integer 9

LevelLocation The level number of the location.
This indicates the height of the
location (y-co-ordinate of the
location from the floor) classified
as levels. Level attribute of the
location is used in arriving at
locations nearest to the dedicated
locations algorithm used in put
away. Typically, the level attribute
is contained within the location
ID.

7 Integer 9

BayNumber The bay number of the location.
Typically, the aisle, level and bay
put together gives the physical
location of the location in the node
if they are based on coordinate
system. Bay attribute of the
location (x-coordinate from the
beginning of the aisle) is used in
arriving at locations nearest to the
dedicated locations algorithm used
in put away. Typically, the bay
attribute is contained within the
location ID.

8 Integer 9

144 Sterling Selling and Fulfillment Foundation: Integration Guide

Attribute Description Sequence Data Type Size

MoveInSequence
Number

The move in sequence number of
the location. This is used by task
management for location
suggestion while moving in
inventory (put away). The put
away location selection algorithm
uses this information to select
locations amongst a list of
locations based on its move in
sequence.

9 Integer 9

MoveOut
SequenceNumber

The move out sequence number of
the location. This is used by task
management for location
suggestion while moving out
inventory (picking). The pick
location selection algorithm uses
this information to select locations
amongst a list of locations based
on its move in sequence.

10 Integer 9

InStaging
LocationId

The in staging location id indicates
the Drop off location (For moves
coming into a location, they may
be dropped here)

11 String 40

OutStaging
LocationId

The out staging location id
indicates the Out Drop off
Location (Location where moves
originated at this location, may be
dropped).

12 String 40

Chapter 13. Rapid Deployment Features 145

Attribute Description Sequence Data Type Size

VelocityCode The velocity code of the location
classifies items as A, B or C class
items based on whether they are
fast selling, not so fast selling and
low selling item. These item
classifications are typically
followed by all enterprises to
optimize certain operations such
as sourcing and stocking. The
reason we have locations
preferring certain velocity codes is
that, we could have locations
closer to dock stocking A class
items, and locations furthest away
from the dock stocking C class
items. Velocity code is a preference
on the location and not a
constraint. If A class items fill up
all locations meant for A class
items, then they can go in to B and
then C. Similarly C can go to B
and then A for lack of space in the
respective locations preferred for a
specific velocity code. B class items
go into C and then into A. If
VelocityCode is passed blank or
passed unallowed values then
default VelocityCode is taken Last
VelocityCode in the alphabetic
sequence in common code of type
VELOCITY_CODE.

13 String 40

LocationSize
Code

The location size code defines the
capacity of a location. All locations
having the same size (dimensions
and ability to hold the same
weight) are classified under the
same size code. This maps to the
primary key attribute of the
YFS_LOCATION_SIZE_CODE
table.

14 String 40

StorageCode Storage code is an attribute of the
location that allows the warehouse
to store items that have the same
storage profile as that of the
location. For example, hazardous
inflammable items need locations
close to fire extinguishers. In this
case the locations are marked as
having a storage code, which is
suitable for storing Inflammable
items. This ensures that only
inflammable items get to these
locations.

15 String 40

X Co-ordinate X Co-ordinate for a location in the
warehouse

16 Number 14

Y Co-ordinate Y Co-ordinate for a location in the
warehouse

17 Number 14

146 Sterling Selling and Fulfillment Foundation: Integration Guide

Attribute Description Sequence Data Type Size

Z Co-ordinate Z Co-ordinate for a location in the
warehouse

18 Number 14

Schema Files Used

The schema files used by each component of the service and the API called by the
service are as follows:
v Service Name: Locations
v Service Group: InitialDataLoad
v Text Translator: LocationSchema
v XSL Translator: Location
v API: manageLocation
v Server Name: LocationLoader

SKU Dedication Data-Loading

This service modifies the attributes of a location, and is basically used to dedicate a
location as a dedicated location. A dedicated location is one that stores inventory
for a particular item only. It calls the modifyLocation() API.

Note: This service require 9 attributes. If you are giving 8 commas to separate
these 9 attributes, you have to make sure that the last attribute is non-blank. If it is
blank, you have to close it with an extra comma, which means the 9th comma. In
this case, 9 commas does not mean that there are 10 attributes.

The following table explains the format of the headers and the sequence of items
to be provided for this service. For more information, see the Sterling Selling and
Fulfillment Foundation: Javadocs.

Attribute Description Sequence Data Type Size

SKUDEDIC The SKU Dedication header
identifier

1 String 8

LocationId The identifier for the location. This
in conjunction with NODE_KEY
identifies a unique location in the
node

2 String 40

Node The node to which the location
belongs to

3 Key 24

EnterpriseCode The code of the enterprise to
which the location is dedicated

4 String 40

ItemId The item identifier of the SKU 5 String 40

UnitOfMeasure The unit of measure of the SKU 6 String 40

ProductClass The product class of the SKU 7 String 40

SegmentType SKUs are sometimes custom made.
This field stores the customization
details.

8 String 40

Chapter 13. Rapid Deployment Features 147

Attribute Description Sequence Data Type Size

Segment SKUs are sometimes custom made.
This field stores the customization
details. When inventory is
customized for a specific order, it
needs to be tracked separately so
that it can be allocated to that
order

9 String 40

Schema Files Used

The schema files used by each component of the service and the API called by the
service are as follows:
v Service Name: SkuDedications
v Service Group: InitialDataLoad
v Text Translator: SkuDedicationSchema
v XSL Translator: SkuDedication
v API: modifyLocation
v Server Name: SkuDedicationLoader

Location Inventory Data-Loading

This service adds the inventory for the previously created items and locations in
the warehouse. It calls the adjustLocationInventory() API.

The following table explains the format of the headers and the sequence of items
to be provided for this service. For more information, see the Sterling Selling and
Fulfillment Foundation: Javadocs.

Table 16. Format of Headers and Sequence of Items for this Service

Attribute Description Sequence Data Type Size

ALOCINVN The inventory header identifier 1 String 8

EnterpriseCode The Inventory Organization Code.
This indicates the Enterprise
whose product information is
being stored.

2 String 24

Node The Business key or unique
identifier for a ship node.

3 String 24

CaseId The identifier for a case. This gives
the LPN information for
adjustment.

4 String 40

LocationId The identifier for a location. This
forms unique key of this table in
conjunction with NODE_KEY.
Indicates the location from where
the inventory is being adjusted.
LocationId becomes mandatory, if
CaseId/PalletId is not passed.

5 String 40

PalletId The identifier for a pallet. This
gives the LPN information for
adjustment.

6 String 40

148 Sterling Selling and Fulfillment Foundation: Integration Guide

Table 16. Format of Headers and Sequence of Items for this Service (continued)

Attribute Description Sequence Data Type Size

InventoryStatus The inventory status gives the
status of the inventory. Only one
level InventoryStatus transitions
happen for the inventory for
positive adjustments. Negative
adjustments do not take care of
InventoryStatus transitions. If not
passed, the status is taken as
blank.

7 String 10

SegmentType The segment type for particular
enterprise or organization.
SegmentType becomes mandatory
if Segment is passed.

8 String 40

Segment The segment for particular
enterprise or organization.
Segment becomes mandatory if
SegmentType is passed.

9 String 40

Quantity This gives the adjustment quantity
for the inventory. The negative
quantity specifies negative
adjustment and positive quantity
denotes positive adjustment.
Quantity becomes mandatory if
SerialDetail does not provide
quantity for adjustment.

10 Decimal 14

ItemID The item identity for the inventory 11 String 40

UnitOfMeasure The unit of measure for the item 12 String 40

ProductClass The product class for the item 13 String 40

LotNumber The lot number for the inventory 14 String 40

LotAttribute1 The lot attribute for the inventory 15 String 40

LotAttribute2 The lot attribute for the inventory 16 String 40

ShipByDate The date by which the inventory
has to be shipped

17 Date 10

SerialNo The unique identifier for each
serial

18 String 40

Chapter 13. Rapid Deployment Features 149

Table 16. Format of Headers and Sequence of Items for this Service (continued)

Attribute Description Sequence Data Type Size

ReasonCode The reason code for the inventory
transaction. The business
significance of this reason code is
that inventory bins are tied to this
reason code, which is used to
adjust inventory (for global
inventory visibility purposes) on
host systems. This is mandatory if
inventory is getting updated. Some
Sterling Selling and Fulfillment
Foundation APIs doing inventory
adjustments expect some
adjustment reason codes to be
configured in the system. These
are RECEIPT used by Receiving,
PACK used by Packing functions
and SHIP used by Shipment.
PACK should have a bin
associated while RECEIPT and
SHIP should not have bin location
associations.

19 String 40

Schema Files Used

The schema files used by each component of the service and the API called by the
service are as follows:
v Service Name: Inventory
v Service Group: InitialDataLoad
v Text Translator: AdjustLocationInventorySchema
v XSL Translator: AdjustLocationInventory
v API: adjustLocationInventory
v Server Name: InventoryLoader

150 Sterling Selling and Fulfillment Foundation: Integration Guide

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not grant you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte character set (DBCS) information,
contact the IBM Intellectual Property Department in your country or send
inquiries, in writing, to:

Intellectual Property Licensing

Legal and Intellectual Property Law

IBM Japan Ltd.

1623-14, Shimotsuruma, Yamato-shi

Kanagawa 242-8502 Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be

© Copyright IBM Corp. 1999, 2011 151

incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Corporation

J46A/G4

555 Bailey Avenue

San Jose, CA 95141-1003

U.S.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

All IBM prices shown are IBM's suggested retail prices, are current and are subject
to change without notice. Dealer prices may vary.

152 Sterling Selling and Fulfillment Foundation: Integration Guide

This information is for planning purposes only. The information herein is subject to
change before the products described become available.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. The sample
programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work, must
include a copyright notice as follows:

© IBM 2011. Portions of this code are derived from IBM Corp. Sample Programs. ©
Copyright IBM Corp. 2011.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

Trademarks

IBM, the IBM logo, and ibm.com® are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the Web at “Copyright and
trademark information” at http://www.ibm.com/legal/copytrade.shtml.

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered
trademarks or trademarks of Adobe Systems Incorporated in the United States,
and/or other countries.

IT Infrastructure Library is a registered trademark of the Central Computer and
Telecommunications Agency which is now part of the Office of Government
Commerce.

Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo,
Celeron, Intel Xeon, Intel SpeedStep, Itanium, and Pentium are trademarks or
registered trademarks of Intel Corporation or its subsidiaries in the United States
and other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both.

Notices 153

http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

ITIL is a registered trademark, and a registered community trademark of the Office
of Government Commerce, and is registered in the U.S. Patent and Trademark
Office.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Oracle and/or its affiliates.

Cell Broadband Engine is a trademark of Sony Computer Entertainment, Inc. in the
United States, other countries, or both and is used under license therefrom.

Linear Tape-Open, LTO, the LTO Logo, Ultrium and the Ultrium Logo are
trademarks of HP, IBM Corp. and Quantum in the U.S. and other countries.

Connect Control Center®, Connect:Direct®, Connect:Enterprise™, Gentran®,
Gentran®:Basic®, Gentran:Control®, Gentran:Director®, Gentran:Plus®,
Gentran:Realtime®, Gentran:Server®, Gentran:Viewpoint®, Sterling Commerce™,
Sterling Information Broker®, and Sterling Integrator® are trademarks or registered
trademarks of Sterling Commerce™, Inc., an IBM Company.

Other company, product, and service names may be trademarks or service marks
of others.

154 Sterling Selling and Fulfillment Foundation: Integration Guide

����

Printed in USA

	Contents
	Chapter 1. Integration Overview
	Integrating with Sterling Selling and Fulfillment Foundation
	Application Integration Architecture
	Integration with Warehouse Management Systems
	Integration with Parcel Carrier Adapters
	Integration with the Loftware Print Server and Label Manager
	Integration with Material Handling Equipment
	Integration with Enterprise Resource Planning Systems
	Integration with Point of Sale Systems
	Integration with JMS Systems
	Integration with Financial Systems
	Rapid Deployment Features

	Chapter 2. Integrating with the Distribution Center System
	Introduction to Distribution Center System Integration
	DCS Purchase Order Interface Function
	Purchase Order Workflow
	Understanding Purchase Order Transactions
	Supply Type Behavior
	Creating a Purchase Order
	Modifying a Purchase Order
	Splitting a Purchase Order
	Canceling a Purchase Order or Line
	Receiving Goods into Inventory
	Configure the Overage Receipt Percentage
	Sterling Selling and Fulfillment Foundation and DCS Received Quantity Mapping

	Configuring Purchase Order Time-Triggered Transactions
	Configuring the Purchase Order Pipeline
	DCS Purchase Order Interface
	POHDR - Purchase Order Download Header
	PODTL - Purchase Order Download Detail
	Sample Receive Order Output XML
	RCPHDR - Purchase Order Receipt Header
	RCPDTL - Purchase Order Receipt Detail
	Receive Order Input XML Mapping

	DCS Shipment Interface
	Understanding Order Transactions
	Configuring DCS Shipment Time-Triggered Transactions
	DCS Order Release Interface
	Setting a Ship Node as a WMS Ship Node
	Send Release Transaction Supported Record Types
	ORDHDR – Order Release Order Header
	ORDDTL – Order Release Order Detail
	ORDADR – Order Release Order Address
	ORDINS – Order Release Order Instruction
	ORDBOM – Order Release Order Bill of Materials
	ORDNAM – Order Release Order Name

	DCS Shipment Confirmation
	PCKHDR – Shipment Confirmation Pickticket Header
	CARHDR – Shipment Confirmation Carton Header
	PCKINF – Shipment Confirmation Pick Information
	CNCDTL – Shipment Confirmation Cancel Detail
	SRLDTL - Pick Ticket Serial Record

	DCS Inventory Interface
	DCS Inventory Upload
	TRNDTL – Inventory Change Upload Record

	DCS Inventory Download
	Configuring an Inventory Download Service
	INVCHG - Inventory Change Download Record

	DCS Returns Interface
	Return Order Integration Workflow
	Determining the Enterprise Code for Blind Return During Upload
	Configuring Return Order Integration with DCS
	Configuring Return Release Download to DCS
	Configuration for Receiving Blind RMA

	Return Order Interface Data Mapping
	RMAHDR - Return Release Download Header
	RMADTL - Return Release Download Detail
	RMACMT- Return Release Download Comments
	Return Receipt Upload Data Mapping

	Assumptions and Limitations

	Chapter 3. Integrating with Stand-Alone Sterling Warehouse Management System
	Limitation on Use of Services with Stand-Alone Sterling Warehouse Management System
	Installing Integration Pack for Receipt and Inventory Change Upload Interfaces on a Sterling Warehouse Management System Inst
	Installing Integration Pack for Receipt and Inventory Change Upload Interfaces on a Sterling Distributed Order Management Ins
	Uploading Receipts
	Uploading Receipt Information
	ReceiptUpload-751 Service
	Configuring the ReceiptUpload-751 Service

	Uploading Receipt Adjustment Information
	AdjustReceiptUpload-751 Service

	Loading Receipt Information from a Node
	LoadReceiptInfo-751 Service

	Loading Receipt Adjustment Information from a Node
	LoadReceiptAdjustments-751 Service

	Uploading Inventory Changes at a Node
	Uploading Updated Inventory Information
	InventoryChangeUpload-751 Service
	Configuring the Updated Inventory Information from a Node

	Loading Inventory Information from a Node
	LoadWMSInventoryChangeInfo-751 Service

	Uploading Inventory Snapshots
	Generating Inventory Snapshot Files

	Chapter 4. Integrating with Third-Party Warehouse Management Systems
	Introduction to Third-Party Warehouse Management System Integration
	Third-Party Warehouse Management Systems
	Third-Party Shipment Advice
	Third-Party Inventory Change

	Chapter 5. Integrating with the Loftware Print Server and Label Manager
	Overview of Loftware Print Server and Label Manager Integration
	Printing Standard Labels

	Designing Custom Labels
	Displaying Page Numbers
	File Naming Conventions for Custom Labels
	File Design Conventions for Labels
	Creating a New Label Format
	Copying the Custom Label
	Generating a Mapping XML File for a Label
	XML File Settings Generated by GenLabelMappingXML.java
	Editing and Relocating the Map File Generated for a Label

	Defining Custom Print Services
	Configuring a Print Pack List Service
	Example of Typical XSL for PrintDocumentSet()
	Printing a Packing Slip with the GetPackListData Service

	Chapter 6. Integrating with Parcel Carrier Adapters
	Overview of Parcel Carrier Adapter Integration
	APIs Invoked During Parcel Carrier Adapter Integration
	Field-Level Mapping Between the openManifest API on the Sterling Warehouse Management System and the openManifest API on the
	Mappings Between the addContainerToManifest API on the Sterling Warehouse Management System and the shipCarton API on the Car
	Mapping Between the removeContainerFromManifest API on the Sterling Warehouse Management System and the deleteCarton API on t
	Mapping Between the closeManifest API on the Sterling Warehouse Management System and the closeManifest API on the Carrier Ad
	Integration Dependencies

	Chapter 7. Integrating with Material Handling Equipment
	Overview of Material Handling Equipment Integration
	Integrating with Pick-to-Light Systems
	Integrating with Put-to-Light Systems
	Integrating with Carousel or Automated Storage and Retrieval Systems
	Integration When a Product is Being Put Away
	Integration When a Product is Being Retrieved
	Integration When a Product is Being Counted

	Integrating with Automatic Guided Vehicles
	Integrating with Inbound Sorters
	Integrating with Pack Sorters
	Integrating with Shipping Sorters
	Integrating with Cube-a-Scans
	Integrating with Weighing Scales
	Integrating with Mettler Toledo Weighing Scales
	Integrating with Other Weighing Scales

	Chapter 8. Integrating with Enterprise Resource Planning Systems
	Overview of Integration with ERP Components
	Integration Data Flow Diagram
	Integration Protocol
	ERP Integration Specification: Order Management
	Customer Download from an ERP System to the Sterling Warehouse Management System
	Shipment/Order Release Download from an ERP System to the Sterling Warehouse Management System
	Shipment Confirmation Upload from the Sterling Warehouse Management System to an ERP System

	ERP Integration Specification: Purchasing
	Vendor Download from an ERP System to the Sterling Warehouse Management System
	Purchase Order Download from an ERP System to the Sterling Warehouse Management System
	Purchase Order Closure Download from an ERP System to the Sterling Warehouse Management System
	ASN Download from an ERP System to the Sterling Warehouse Management System
	Receipt Upload from the Sterling Warehouse Management System to an ERP System

	ERP Integration Specification: Inventory
	Item Download from an ERP System to the Sterling Warehouse Management System
	Item Attributes Upload from the Sterling Warehouse Management System to an ERP System
	Inventory Change Upload from the Sterling Warehouse Management System to an ERP System
	Inventory Snapshot Upload from the Sterling Warehouse Management System to an ERP System

	ERP System Integration Specification: WIP
	BOM Download from an ERP System to the Sterling Warehouse Management System
	Work Order Download from an ERP System to the Sterling Warehouse Management System
	Work Order Demand Upload for Manually Created Work Orders from the Sterling Warehouse Management System to ERP
	Work Order Confirmation Upload from the Sterling Warehouse Management System to an ERP System
	Close Work Order from the Sterling Warehouse Management System to an ERP System

	ERP Integration Specification: Returns
	Return Order Download from ERP to the Sterling Warehouse Management System
	Return Order Closure Download from an ERP System to the Sterling Warehouse Management System
	Receipt Upload from the Sterling Warehouse Management System to an ERP System

	Chapter 9. Point of Sale System Integration
	Integrating with Point of Sale Systems
	API Invoked During Point of Sale Integration

	Chapter 10. Integrating User and Item Data with External Systems
	External System Integration Overview
	Order Management Integration
	APIs Invoked During Order Management Integration

	User and Item Synchronization
	Item Synchronization Services in Sterling Selling and Fulfillment Foundation
	SendItemChanges Service
	ReceiveItemChanges Service

	Customer Synchronization Services in Sterling Selling and Fulfillment Foundation
	SendCustomerChanges Service
	ReceiveCustomerChanges Service

	Modifying Customer Event Templates
	Data Mapping
	Customer Data Mapping
	Item Data Mapping

	Chapter 11. Integrating with JMS Systems
	Introduction to Integrating with JMS
	Configuring Oracle WebLogic JMS
	WebLogic Time-Out Considerations for Transacted Sessions

	Before You Begin Configuring IBM WebSphere MQ
	Creating the Queue Manager and Queues for IBM WebSphere MQ
	Configuring a Queue Manager to Client Connection for IBM WebSphere MQ
	Creating JMS Bindings in IBM WebSphere MQ
	Removing JMS Bindings in IBM WebSphere MQ
	Archive Files

	Configuring Sterling Selling and Fulfillment Foundation to Use WebSphere MQ Queues
	Configuring IBM WebSphere MQ for Access by WebSphere's JNDI Namespace
	Inside the Applications Manager
	Inside the WebSphere Admin Console

	Configuring IBM WebSphere Default Messaging
	Configuring Sterling Selling and Fulfillment Foundation to Use WebSphere Default Messaging

	JBoss Messaging JMS
	Creating Queues in JBoss Messaging JMS
	Sample Code for Queue Configuration

	Configuring Sterling Selling and Fulfillment Foundation to Use JBoss Messaging Queues

	Configuring TIBCO JMS
	TIBCO JMS Attributes
	Configuring TIBCO JMS as an Agent Queue
	Requirements for Configuring a JMS Client on TIBCO

	Configuring the Sterling Selling and Fulfillment Foundation To Use TIBCO Messaging Queues

	Chapter 12. Integrating with Financial Systems
	Requirements for Financial System Integration
	Load Initial Inventory Cost Data
	Configuring Process-Specific Events
	Receipt Process
	Receipt Process - INVENTORY_COST_CHANGE
	Receipt Process - INVENTORY_COST_WRITEOFF

	Sales Order Creation Process
	Shipment Confirmation Process
	Shipment Confirmation Process - INVENTORY_VALUE_CHANGE

	Invoice Process
	Invoice Process - ON_INVOICE_CREATION

	Work Order Confirmation Process
	Work Order Confirmation Process - INVENTORY_COST_CHANGE
	Work Order Confirmation Process - INVENTORY_COST_WRITEOFF
	Work Order Confirmation Process -INVENTORY_VALUE_CHANGE

	Inventory Adjustment Process
	Inventory Adjustment Process - INVENTORY_VALUE_CHANGE

	Return Order Process
	Return Order Process - INVENTORY_VALUE_CHANGE

	Callback from Financial System for Inventory Value Adjustment
	Callback from Financial System Process - COULD_NOT_APPLY_INV_VALUE_CHANGE

	Chapter 13. Rapid Deployment Features
	Rapid Deployment Feature Overview
	Interface Field Mapping Documents
	Generating Interface Field Mapping Template Documents
	Generating Interface Field Mapping Template Documents Using the Generation Tool
	Using Interface Field Mapping Template Documents

	Initial Data Loading
	Initial Data-Loading Services
	Error Handling in Initial Data Loading (IDL) Tool
	Item Configuration Data-Loading
	Shipping Carton Data-Loading
	Location Data-Loading
	SKU Dedication Data-Loading
	Location Inventory Data-Loading

	Notices

