
Sterling Selling and Fulfillment Foundation

Performance Management Guide
Release 9.1.0.18

���

Sterling Selling and Fulfillment Foundation

Performance Management Guide
Release 9.1.0.18

���

Note
Before using this information and the product it supports, read the information in “Notices” on page 147.

Copyright

This edition applies to the 9.1 Version of IBM Sterling Selling and Fulfillment Foundation and to all subsequent
releases and modifications until otherwise indicated in new editions.

© Copyright IBM Corporation 1999, 2012.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Chapter 1. Performance Management
Overview 1
Lifecycle 1
System Components and Roles 1
Principles 2

Balancing Performance and Architectural
Attributes 2
Keep It Simple Strategy. 3
Your Mileage May Vary. 3
System Test Before Going Live 3
Measure Thrice, Check Twice, Cut Once 4

Only the Facts, Jack 5
About the Performance Recommendations Graveyard 5

Chapter 2. Performance Checklist . . . 7
Planning Checklist 7
Architectural Checklist 7
Computer Node Implementation Checklist 8
Java Virtual Machine Implementation Checklist. . . 8
Application Server Checklist. 10
Sterling Selling and Fulfillment Foundation
Checklist 11
IBM Sterling Warehouse Management System
Application Checklist 11
Database Checklist 12
Oracle Database Checklist 12
DB2 Database Checklist 12
Monitoring Checklist 13
Performance Recommendations Graveyard 14

Chapter 3. Computer Systems. 15
Planning for Computer Systems 15

Supported Configurations 15
Time Synchronization 15
Data Center Network 16

IBM AIX 17
Page Space Allocation Policy 17
Asynchronous I/O 18
Auto-Negotiation 19

Sun Solaris 20
Auto-Negotiation 20

HP HP-UX11i. 21
Auto-Negotiation 21
HP HP-UX11i: Asynchronous I/O 21

Linux 23
Auto-Negotiation 23

Chapter 4. Java Virtual Machines . . . 25
General JVM Recommendations 25

JVMs: Supported Configuration 25
HotSpot JVM 30

Implementation 30
IBM J9 JVM 39

Recommendations for Implementing IBM J9 JVM 40
Heap Memory and Garbage Collection 41

Garbage Collection Statistics 42
IBM Pattern Modeling and Analysis Tool for Java
Garbage Collector 43
Heapdump 44

Oracle JRockit 44
Implementation 44

Chapter 5. Application Servers 47
WebSphere Tuning 47

WebSphere Queuing Network 47
WebSphere Connection Pool 47
WebSphere Tuning: JSP Pre-Compilation. . . . 49
WebSphere: HTTP Load-Balancing. 50
WebSphere: Monitoring 50

Oracle's WebLogic Tuning Recommendations . . . 51
Work Manager 51
Application Server Instances. 51
WebLogic Connection Pool 52
WebLogic Tuning: JSP Pre-Compilation 53
WebLogic Server Cluster 54
WebLogic: HTTP Load-Balancing 54
WebLogic: Monitoring 55

JBoss Tuning 55
JBoss Tuning Considerations. 56
JSP Tuning: JSP Pre-Compilation 56
JBoss: HTTP Load-Balancing. 57

Chapter 6. Database Management
System 59
Supported Configurations 59
Server Sizing 59

Disk Technology. 59
Sterling Selling and Fulfillment Foundation Schema 60
DB2: Implementation 61

Recommended DB2 dbset Registry Variables . . 61
Recommended DB CFG Parameters 63
DB2 Event Monitors 65
Sterling Selling and Fulfillment Foundation
Schema: DB2 Index Monitoring and Tuning . . 66

Oracle: Implementation 67
Recommended Oracle Parameters 67
Automatic Storage Management (ASM) 71
Redo Logs 71
Server Mode 72
Sterling Selling and Fulfillment Foundation
Schema: Oracle Index Monitoring and Tuning . . 72

Microsoft SQL Server 76
Microsoft SQL Server Implementation:
Parameters 76

DB2 PureScale 77
Oracle Real Application Cluster Database 78

Supported DB Platforms 78
Sterling Selling and Fulfillment Foundation Specific
Tuning Using Key Randomizer 82

© Copyright IBM Corp. 1999, 2012 iii

Chapter 7. Java Message Services . . . 85
Java Message Services Overview 85

Persistence 85
Dedicated Queues 86
JMS Queue File Placement: Performance. . . . 87

WebLogic JMS Recommendations 87
Dedicated JMS Server 87
WebLogic JMS: Message and Byte Paging . . . 88

WebSphere MQ Parameters 88
Placement of MQ Log and Data Files 89

Chapter 8. Selling and Fulfillment
Foundation 91
General Recommendations 91

Scalability Requirements 91
User Interfaces 92
Integration Adapters/Agents 100
Java Message Service 102
Performance Feature - Reference Data Caching 104
Monitoring 127
Audits. 129

Sterling Distributed Order Management 129

Schedule Agent for Backorder Efficiency . . . 130
Real-Time Inventory Availability Monitor for
ATP Efficiency 130
Getters with Enterprise Code 131
Sort Order and Deadlocks 131
Agent Throughput 132

Sterling Warehouse Management System 135
Property File 135
WMS Agents 136

IBM Sterling Web 140
Optimizing Static Content for Sterling Web . . 140

Chapter 9. Performance Tuning
Considerations for BI (Business
Intelligence) 143

Chapter 10. References 145

Notices 147

Index 151

iv Sterling Selling and Fulfillment Foundation: Performance Management Guide

Chapter 1. Performance Management Overview

This document is the Performance Management Guide for the IBM® Sterling
Selling and Fulfillment Foundation Release 9.1.

Performance Management is defined as all the activities one performs to ensure
responsive service and processing throughput that meet the business needs at an
acceptable cost.

Lifecycle
Performance Management activities occur throughout the project lifecycle. They
could range from initial hardware sizing studies during the pre-sales phase,
architectural trade-off studies and risk mitigation studies during the design phase,
load or system tests prior to implementation, to continual system monitoring and
tuning in production.

System Components and Roles
Performance Management activities are wide-ranging and affect all aspects of the
system ranging from computer nodes, network, disks, application servers to
Sterling Selling and Fulfillment Foundation.

One person (or role) may be responsible for one, several or all of the components.
Some typical roles include:
v Hardware Engineer
v System Administrator
v Local Area Network Engineer
v Wide Area Network Engineer
v Application Server Administrator
v Database Administrator
v Sterling Selling and Fulfillment Foundation Administrator
v Capacity Planner
v Performance Analyst
v Architect/Planner

Given the diversity of interest and responsibilities, we have arranged this
document into the following parts.

For example, the sections in Chapter 3, “Computer Systems,” on page 15 present
the steps needed to configure the computer system nodes for Sterling Selling and
Fulfillment Foundation. This section should be of interest to the Hardware
Engineers, System Administrators, Local Area Network Engineers, and Wide Area
Network Engineers.

The sections in “General JVM Recommendations” on page 25 explain how to
configure the Java Virtual Machine (JVM). The JVM is the operating environment
for Java applications which include the IBM WebSphere®, Oracle WebLogic, JBoss
application server, the Sterling Selling and Fulfillment Foundation Agent/Monitor

© Copyright IBM Corp. 1999, 2012 1

Servers, and so on. This information should be of interest to the Application Server
Administrators and Sterling Selling and Fulfillment Foundation Administrators.

The sections in “Oracle's WebLogic Tuning Recommendations” on page 51 present
the steps needed to configure the IBM WebSphere, Oracle WebLogic, and JBoss
application servers. This component provides the runtime environment for Sterling
Selling and Fulfillment Foundation. This information should be of interest to the
Application Server Administrators.

The sections in Chapter 6, “Database Management System,” on page 59 discusses
the key recommendations for the IBM DB2®, Oracle, and Microsoft SQL Server
database servers.

“Oracle Real Application Cluster Database” on page 78 discusses the
recommendations for implementing Oracle Real Application Cluster for scalability
and high availability.

“General Recommendations” on page 91 discusses how to configure Sterling
Selling and Fulfillment Foundation. This section should be of interest to the
Sterling Selling and Fulfillment Foundation Administrator.

The Performance Analyst or the person who is responsible for monitoring the
Sterling Selling and Fulfillment Foundation system in production should read all
chapters.

The Architect or Planner who is responsible for architecting and designing the
entire system should read all the chapters.

Principles
When performing the performance management activities, you should keep in
mind the following principles.

Balancing Performance and Architectural Attributes
Performance and scalability are critical architectural attributes. In an ideal world,
we would have the luxury of configuring systems with an infinite number of the
latest and fastest system components. In reality, we have to construct systems that
balance performance with other architectural attributes such as availability,
affordability, security, maintainability, operability, interoperability, scalability.

Take for example the following simple trade-off study between only three
attributes - affordability, scalability and maintainability. If you want to configure a
database with very fast I/O (maximize scalability) with a limited software budget
(maximize affordability), you could implement your database files on raw devices
which, to some, can be more difficult to manage. However, if you think that
approach comes with unacceptable maintainability and operability burdens, you
could implement the database files on the regular Unix file system. This approach
would improve maintainability and operability at no additional cost but may not
scale under high transaction volumes. If performance is important, you may opt to
implement a specialized file system that provides raw-device performance and the
maintainability of file systems. Here you would choose to maximize performance
and maintainability at the expense of additional cost - you must purchase this
specialized software.

2 Sterling Selling and Fulfillment Foundation: Performance Management Guide

The example above is a fairly simple trade-off study. Recognizing this reality, this
document identifies major decision junctures, provides the context of how they fit
within the overall system, provides rationale for our recommendations, and assists
you in arriving at your own decision that is relevant to your organization's needs.

The planning sections are not recipe books. We do not provide a specific set of
instructions that you can blindly follow to completion because we recognize that
you may have unique business or operational requirements.

Keep It Simple Strategy
There are a large number of settings that can be tuned in a complex system. On
HP-UX, there are over 100 TCP/IP, UDP and IP settings, over 50 HP-UX kernel
parameters, close to 550 undocumented Oracle parameters, and over 250
documented Oracle parameters. The permutations and combinations of these
settings are staggering. Some adjustments are beneficial - some not. Some may
negate the benefit of others.

This Performance Management Principle proposes that systems be implemented
with their default settings and that changes only be made when necessary.

This document identifies those adjustments that we believe are critical or
beneficial. These include connection pooling, reusable SQL, Java heap settings. We
identify the parameters which we believe are optional and that you can set when
there is a clear need.

Your Mileage May Vary
One day, an inquisitive little girl asked her mother why she trimmed the sides of
the roast before putting it into the oven. The mother said that was how her mother
cooked. The little girl, still curious, asked the grandmother. After finishing
laughing, the grandmother explained to the little girl that a long time ago, she had
a tiny oven. She had to trim the side of the roast to prevent it from touching the
side of the oven.

You should not take our recommendations (or recommendations from any book) as
absolute truths. Recommendations may apply to most but not all systems. We
identify those recommendations that we believe are critical. We highly recommend
that you understand the context and the implications of each recommendation. We
also highly recommend that you test each recommendation prior to production.

System Test Before Going Live
We cannot overemphasize the importance of system tests before going live. This
recommendation can be seen throughout this document. Your system is different
from other Sterling Selling and Fulfillment Foundation systems because:
v It has its own unique set of external systems that it connects to.
v It has groups of users performing work that is specific to your business, and so

forth.
v It is configured differently from other systems, and so forth.
v It has different levels of customization.
v It may have some screens or processes that, although are optimized for general

use, may not be optimal for your specific use.

Chapter 1. Performance Management Overview 3

As a result, we strongly encourage all our customers to system test the entire
system, which is made up of the Sterling Selling and Fulfillment Foundation
system and all the external systems, under anticipated peak transaction volumes
prior to implementation into production.

Cascading Failure
A defense logistics officer, once gruffly reminded a group of young pilots that their
new fighter jet was nothing more than 50,000 parts flying in tight formation.

This message has many parallels to any large computing systems. A large
application system has many working components ranging from physical disk
drives, operating systems, interfaces to external systems, application servers to
database. All of these highly interconnected and dependent components must work
well for the system to perform.

Lets us assume that a Sterling Selling and Fulfillment Foundation transaction calls
out to an external system to check on item availability. If that external system is
unable to scale or performs poorly, that Sterling Selling and Fulfillment Foundation
transaction waits, which results in a thread being blocked. If there are many
requests for that transaction, the system could become stalled when all the threads
become blocked. As a result, a poorly tuned system could have a ripple effect on
integrated systems.

This document presents some of these interdependencies along with approaches to
monitoring them.

Measure Thrice, Check Twice, Cut Once
An old adage in carpentry is to Measure Thrice, Check Twice and Cut Once.

In the heat of a performance problem, it is very tempting to try different tuning
parameters without fully understanding the root-cause of the problem. Some
changes or combination of changes can have a negative impact on the system.
After trying many tuning changes, it is possible that some of the non-beneficial
changes are not rolled back.

From past experiences, we found that system optimization is often more effective
and efficient if the problem is correctly analyzed and the root cause clearly
identified. An approach that we have adopted is as follows:
v (measure) Measure the system to establish the baseline performance and

throughput.
v (measure) Measure the system when performance issues arise.
v (check) Given the symptoms, formulate theories as to the root-cause of the

problem and the potential tuning changes.
v (check) Ensure you can explain why certain tuning recommendations can help

alleviate the problem and to formulate the expected behavior if the tuning
change is applied.

v (cut) Make one (or a few) tuning change at a time - in some cases, multiple
changes could negate the benefit of other changes.

v (measure) Measure the system and see if the system gained the intended
benefits.

4 Sterling Selling and Fulfillment Foundation: Performance Management Guide

Only the Facts, Jack
This document does not attempt to rewrite the vast body of tuning knowledge
found in the public domain. This document also does not serve as a substitute for
third party vendor training such as IBM and Oracle. Instead, this document
provides recommendations that supplement or deviate from conventional
recommendations or recommendations that are specific to Sterling Selling and
Fulfillment Foundation. We have liberally referenced many excellent sources of
information - the Web, books, magazine articles, and so forth - that we found
useful. A list of these references is found in Chapter 10, “References,” on page 145.

About the Performance Recommendations Graveyard
Technology changes rapidly. Processors double in speed every eighteen months.
There are major performance enhancements every software release. As a result,
recommendations that were at one time critical to a particular release of Sterling
Selling and Fulfillment Foundation can become deprecated. In addition, to apply
the recommendations, you may at times have to remove the obsolete
recommendations.

In conjunction with the Keep It Simple Strategy and the Your Mileage May Vary
Principles, you should:
v Apply tuning optimization changes when needed but only after testing.
v Capture these changes in a formal change management system.
v Document the changes from the default settings and why they were deemed

necessary.
v Question their applicability as the system evolves - for example, during

upgrades, operating system changes, and so forth.

We present a list of deprecated recommendations in “Performance
Recommendations Graveyard” on page 14.

Chapter 1. Performance Management Overview 5

6 Sterling Selling and Fulfillment Foundation: Performance Management Guide

Chapter 2. Performance Checklist

This chapter provides a list of some of the recommendations found in this
document in a checklist format. We encourage you to fully understand the
rationale behind these recommendations and their implications to the overall
system.

In the following tables, the columns "Dev" and "Prod" indicate whether the
recommendations are Recommended (R), Critical (C) or Not Applicable (NA) in a
Development or Production environment respectively.

Planning Checklist

The following are long-lead time planning elements. For example, you need to ask
for a server node sizing in order to know how much computer resources to
acquire. Some configurations could have more than one month lead-time.

Table 1. Planning Recommendations

Recommendation Section Dev Prod Comments

Server Node Sizing “Pre-Sales
Server Sizing”
on page 15

“Capacity
Plan” on page
15

NA C You must ensure you have sufficient
computing capacity to process peak transaction
volumes.

Database Disk Sizing “Database Disk
Sizing” on
page 15

NA C You must have sufficient disk space for
database server

Architectural Checklist

The following recommendations are architectural or design related.

Table 2. Planning Recommendations

Recommendation Section Dev Prod Comments

Ensure user exit or event
processing times are
minimal when holding on to
critical locks.

“User Exits
and Events” on
page 111

C C When defining or coding user exits or events,
make sure you are aware of locks held and the
amount of time you could spend in the exit or
event.

Record Sorting Strategy to
avoid deadlocks

“Sort Order
and
Deadlocks” on
page 126

C C Apply this recommendation to custom code or
the manner in which records are locked to
avoid deadlocks.

© Copyright IBM Corp. 1999, 2012 7

Computer Node Implementation Checklist
Table 3. Computer Server Node Implementation Recommendations

Recommendation Section Dev Prod Comments

OS Version and OS Kernel
Parameters

“Supported Configurations”
on page 15

C C Make sure you install the Sterling
Selling and Fulfillment Foundation
system on certified OS versions and
levels.

Network Speed and Duplex
Negotiation

“Auto-Negotiation” on page
16

C C Make sure your network cards are
operating at the highest speeds. The
network interface card and the
network switch can negotiate to lower
speed and duplex. When that happens,
performance degrades noticeably, even
under low transaction volumes.

AIX® Recommendations

Page Space Allocation “Page Space Allocation
Policy” on page 17

C C The AIX default page space allocation
policy does not reserve swap space
when processes allocate memory
allocations. This could lead to swap
space overcommitment which forces
AIX to kill processes when it runs out
of swap space. Either:

v Ensure sufficient swap space or

v Set the environment variables:
PSALLOC=EARLY
NODISCLAIM=TRUE

AIX/Oracle Recommendations

asynchronous I/O parameters “Asynchronous I/O” on
page 18

NA C The default asynchronous I/O
parameters are set too low.

WebLogic / AIX Recommendations

udp_sendspace “Asynchronous I/O” on
page 18

C C WebLogic's multicast packets are larger
than the AIX udp_sendspace buffers.
At the default level, you may get
multicast errors.

Set udp_sendspace to 32768

Java Virtual Machine Implementation Checklist
Table 4. JVM Implementation Recommendations

Recommendation Section Dev Prod Comments

JVM Version “JVMs: Supported
Configuration” on
page 25

C C Make sure you install the Sterling Selling and
Fulfillment Foundation system on certified
JVM versions and levels.

Add -showversion to the JVM
command line

“Java Version” on
page 26

R R During the JVM startup, the JVM version and
mode are displayed. This simple step helps
eliminate cases where the wrong JVM is
used.

8 Sterling Selling and Fulfillment Foundation: Performance Management Guide

Table 4. JVM Implementation Recommendations (continued)

Recommendation Section Dev Prod Comments

Verbose GC Statistics “JVM
Recommendations:
Garbage Collection
Statistics” on page
26

NA C Enable verbose GC statistics collection.
Understanding the "health" of GCs for each
JVM is critical for performance.

Defer distributed garbage
collection to a long interval by
setting
-Dsun.rmi.dgc.server.gcInterval

“JVM
Recommendations:
Garbage Collection
Statistics” on page
26

NA C The default distributed garbage collection
setting unnecessarily forces expensive Full
Garbage Collections every minute. The
impact is noticeable especially for large heaps
that are larger than 600MB.

You should set this parameter on both the
Sterling Selling and Fulfillment Foundation
agents and the application servers.

Monitor for Paging “Memory and
Paging” on page 28

C C The JVM heap must be resident in memory.
Performance degrades noticeably if the OS
has to page portions of the heap out to disk.

Monitor for OutOfMemory
exceptions

“OutOfMemory
Exceptions” on
page 28

C C OutOfMemory exceptions can cause
unpredictable application behaviors. As a
safety measure, Sterling Selling and
Fulfillment Foundation stops the JVM when
it catches an OutOfMemory exception.

For HotSpot JVMs

For Sun JDK, run with
-XcompressedOops if you do not
need heaps up to 32GB. This will
provide better memory utilization,
increase performance, and reduce
the overall footprint, as well.

IBM J9 JVM

For IBM JDK, use
-Xcompressedrefs option.

JVM VM modes “Virtual Machine
Mode” on page 30

C C

For HotSpot JVMs running
WebLogic, set
-XX:MaxPermSize=768m

“Permanent
Generation” on
page 31

C C The default permanent generation space
setting is too small for Sun and HP JVMs. If
you don't increase this setting, the JVM fails
and throw a cryptic java.lang.OutOfMemory
exception.

For HP JVMs, ensure amount of
free space in the Old Generation is
larger than the combined size of
the Eden plus the occupied space
in the survivor space.

“Young Generation
Guarantee” on page
34

C C Sun and HP JVMs implement a conservative
policy called the Young Generation
Guarantee, specifying that the amount of free
space in the Old must be larger than the eden
and survivor space on the chance that every
object is still alive after the GC. If the Old
free is too small, the JVM reverts to Full GCs.

Customers migrating from JDK 1.3.1 may
have to increase their overall heap size or
decrease the eden.

Chapter 2. Performance Checklist 9

Table 4. JVM Implementation Recommendations (continued)

Recommendation Section Dev Prod Comments

Heap Size “Starting
Recommendations”
on page 34

C C Configuring the JVM Heap correctly is not
only critical for performance but also for
availability. If the heap is sized too big, the
GC pauses could be very long. If the heap is
larger than physical memory, the system
could "thrash". If the heap is too small, the
JVM could experience outOfMemory
exceptions.

Application Server Checklist
Table 5. Application Server Implementation Recommendations

Recommendation Section Dev Prod Comments

Connection Pool “WebLogic
Connection Pool” on
page 52

“WebSphere
Connection Pool” on
page 47

“JSP Tuning: JSP
Pre-Compilation” on
page 56

C Database connection establishments are very
expensive operations. If connection pooling is
not enabled in the application servers,
transactions from application server does not
scale.

The Sterling Selling and Fulfillment Foundation
agents are automatically started with a
connection pool that is implemented in the
agent infrastructure.

Assign each Sterling Selling
and Fulfillment Foundation
agent to its own JMS
destination

“Dedicated Queues”
on page 86

NA C For production, dedicated JMS queues are
critical for performance. They are also easier to
monitor. For ease of configuration and
deployment in development, you can continue
to use the single DefaultAgentQueue for all
agents.

Assign integration- based
queues to a separate JMS
server

“Integration Queues”
on page 85

NA C Put integration-based queues (e.g., queues used
to receive orders from an external system) into
a separate JMS server especially if the number
of messages in that queue could grow to large
numbers.

Precompile the JSPs “WebLogic Tuning:
JSP Pre-Compilation”
on page 53

“WebSphere Tuning:
JSP Pre-Compilation”
on page 49

R C The application servers compile JSPs the first
time they are used. The compilation phase can
take over 30 seconds which could lead users to
perceive poor user interface response times.

Note: For WebLogic, we recommend the use of
weblogic.appc over the use of weblogic.jspc.

10 Sterling Selling and Fulfillment Foundation: Performance Management Guide

Sterling Selling and Fulfillment Foundation Checklist
Table 6. Sterling Selling and Fulfillment Foundation Implementation Recommendations

Recommendation Section Dev Prod Comments

Reference Data Cache “Performance
Feature -
Reference Data
Caching” on
page 104

C Reference Data Caching is critical for scalability
for customers who have high transaction
volumes.

Reference Data Caching is also critical for UI
screen responsiveness.

Starting in Yantra 5x 5.0 SP2, the reference data
cache is enabled by default.

For Development or non-production
environments that are memory constrained, you
can selectively enable Reference Data Caching.
For example, for responsive UI, you need to, at
a minimum, cache the yfs_resource and
yfs_resource_permissions tables.

Search Catalog Index
Memory Usage

R C Set JVM size to be sufficiently large to
accommodate enabling an item index for use by
IBM Sterling Web and IBM Sterling Call Center
applications. You will need you to increase JVM
heap settings. For more information, see the
section on configuring cache for catalog search
indexes in the Sterling Selling and Fulfillment
Foundation: Properties Guide.

Agents and Messaging
Configuration

“Agent Thread
Levels” on
page 102

C For production, configure the optimum
threading level, the assignment of agents to
message queues or destinations, and the
placement of message destinations on message
servers.

Statistics “Statistics” on
page 128

NA R Sterling Selling and Fulfillment Foundation
generates statistics for internal product use as
well as use by IBM personnel. These statistics
can be used to monitor throughput and to assist
in performance diagnosis.

We recommend leaving statistics generation on
and regularly purging old statistics (e.g., greater
than 3 weeks).

Please be aware that the content and/or
structure of the metrics can change without
warning.

IBM Sterling Warehouse Management System Application Checklist
Table 7. Sterling Warehouse Management System Application Checklist

Recommendation Section Dev Prod Comments

Increase Java stack size for
create wave and batch wave
agents if you want to
process waves with large
number of shipments

NA C These agents need large stack sizes to perform
wave optimization calculations.

Chapter 2. Performance Checklist 11

Table 7. Sterling Warehouse Management System Application Checklist (continued)

Recommendation Section Dev Prod Comments

Run WMS Task Purge on a
daily basis

“WMS Agents:
Purge” on
page 138

NA C Purge moves completed YFS_TASK records to
the YFS_TASK_H history table.

RCP clients “Rich Client
Program
Interface” on
page 97

NA C Modify locations.ycfg to set the SSL and
compression features. For remote users, we
strongly recommend setting compression.

Database Checklist
Table 8. Database Checklist

Recommendation Section Dev Prod Comments

Monitor and adjust indexes “Sterling
Selling and
Fulfillment
Foundation
Schema” on
page 60

C C The Sterling Selling and Fulfillment Foundation
schema comes with a default set of indexes for
general use. In some cases, the indexes may not
apply to your operational environment.

Regularly monitor the resource cost of frequently
used queries. See if additional indexes are
needed. Also monitor if indexes can be deleted.

Oracle Database Checklist
Table 9. Oracle Database Checklist

Recommendation Section Dev Prod Comments

Set cursor_sharing=FORCE “cursor_sharing” on
page 69

C C This parameter makes dynamic SQL reusable, which
reduces contention on the shared pool.

Oracle: Check if histograms
are needed

“Index and Table
Statistics” on page
74

NA C As you start to populate the database, check to see
if there are indexed columns that have skewed data
distribution - for example, most rows have the same
value (e.g., space). These could include fields like
derived_from_order_header_key,
chained_from_order_header_key,
derived_from_order_line_key,
chained_from_order_line_key.

If there are skewed columns, add a histogram. The
performance impact is very noticeable. One
customer saw a query that took 30 seconds drop to
sub-second.

DB2 Database Checklist
Table 10. DB2 Database Checklist

Recommendation Section Dev Prod Comments

Optimizer Statistics “Index and Table Statistics”
on page 66

NA C Regularly run runstats to keep table and
index statistics up to date to ensure the
DB2 optimizer picks appropriate
execution plans.

12 Sterling Selling and Fulfillment Foundation: Performance Management Guide

Table 10. DB2 Database Checklist (continued)

Recommendation Section Dev Prod Comments

Parameters governing DB2
locking strategy

“Recommended DB2 dbset
Registry Variables” on page
61

C C Set DB2_EVALUNCOMMITTED,
DB2_SKIPDELETED and
DB2_SKIPINSERTED to reduce lock
contention.

Parameters governing DB2
memory

“Recommended DB CFG
Parameters” on page 63

C C Set parameters to manage various
memory structures such as the
LOCKLIST, SORTHEAP, etc. at
AUTOMATIC.

Set self_tuning_mem parameter to ON to
enable the DB2 self-tuning memory
features.

Volatile Table “Volatile Tables” on page 74 NA C Mark tables that change significantly as
volatile.

Monitoring Checklist
Table 11. Monitoring Recommendations

Recommendation Section Dev Prod Comments

Monitor CPU utilization NA C Monitor CPU utilization to ensure there are no
CPU contention.

Monitor Swap Usage C C If there is not enough space left on the swap
device (or paging file), the OS could prevent
another process from starting or in some cases
be forced to kill running processes.

Monitor Paging “Memory and
Paging” on
page 28

C C The Java Virtual Machines and Database
Management Systems rely on large memory
buffers or heaps and are sensitive to paging.
Performance degrades noticeably if there is not
enough memory to keep the JVM heap in
memory - even in Development.

Monitor paging levels using standard
operating system or third party measurement
tools. For example:

v On Unix and Linux, you could use SAR.

v

v On Windows, use System Monitor.

Monitor Heap Garbage
Collection Performance

C Monitoring heap GC performance is critical for
performance and availability. For example, if
the amount of heap free after a GC is
continually increasing and approaching the
maximum heap size, the JVM could experience
outOfMemory exceptions.

Chapter 2. Performance Checklist 13

Performance Recommendations Graveyard

This section lists performance recommendations that were deprecated by this
release.

Table 12. Deprecated Performance Recommendations

Deprecated In Deprecated Recommendations Comments

Sterling Selling and
Fulfillment Foundation 8.0

Removed recommendations on how to
diagnose and tune JVM fragmentation.

The new IBM JDK 1.5 (J9) JVM was
redesigned to eliminate the fragmentation
caused by pinned and dosed objects.

Sterling Supply Chain
Applications 7.9

Removed setting specific values for
DB2 LOCKLIST, MAXLOCKS,
PCKCACHESZ, SHEAPTHRES_SHR,
SORTHEAP, NUM_IOCLEANERS,
NUM_IOSERVERS,
DFT_PREFETCH_SZ, MAXAPPLS and
AVG_APPLS.

Rather than specifying specific values, we
recommend allowing DB2 to automatically
manage these parameters.

Sterling Supply Chain
Applications 7.9

Oracle cursor_sharing=SIMILAR Use cursor_sharing=FORCE.

Yantra 7x, 7.7 in Oracle10g Oracle Parameters - shared_pool_size Use Oracle10g/11g Automatic Memory
Management (AMM) sga_max_size, sga_target
and pga_aggregate_target.

Yantra 7x, 7.7 in Oracle10g Statistics gathering Oracle10g/11g automatically schedules
statistics gathering during its maintenance
window. See new recommendations in “Index
and Table Statistics” on page 74

Yantra 7x, 7.5 and
Oracle10g RAC

In the past, we adhered to Oracle's
recommended setting for
max_commit_propagation_delay of 700
centiseconds (or 7 seconds). Oracle has
revised its recommendation to 0
effectively disabling the Lamport
scheme.

For existing Oracle instances, reset
max_commit_propagation_delay so that the
default value is 0.

hpux_sched_noage 178

14 Sterling Selling and Fulfillment Foundation: Performance Management Guide

Chapter 3. Computer Systems

This chapter provides recommendations on how to plan, implement, configure,
monitor, and tune the operating system and the computer nodes.

Generally speaking, from a performance perspective, the server nodes for Sterling
Selling and Fulfillment Foundation fit into two broad categories:
v Database server node
v Mid-tier server nodes that run Sterling Selling and Fulfillment Foundation, for

example, agents and application servers.

Planning for Computer Systems
The computer systems have long lead time planning elements such as developing
the configuration specifications, soliciting bids, procuring the configuration. The
lead time to delivery and set up could take up to a month.

The choice of hardware and vendors is typically dictated by your organization
although that choice must conform to the Sterling Selling and Fulfillment
Foundation-certified technology stack.

Supported Configurations
Refer to the Sterling Selling and Fulfillment Foundation: System Requirements Guide for
a list of the support operating systems and computer servers.

Pre-Sales Server Sizing
Early in the sales phase, you can request a Sterling Selling and Fulfillment
Foundation Server Sizing study to get an estimate of the processor, memory and
network requirements for the standard/baseline Sterling Selling and Fulfillment
Foundation.

Capacity Plan
Once you have fully developed the system, you can also engage IBM Professional
Services to conduct a capacity plan study of your system. This involves measuring
your system and using the measurements to forecast resource requirements at
anticipated peak periods.

The benefit of this approach is that the forecasting model is based on your system
which includes all your customization, and your specific configuration.

Database Disk Sizing
The size of the database disk subsystem could range widely from a few hundred
gigabytes to terabytes. The size depends on the business order transaction
volumes, the complexity of each order, the length of time you want to keep the
orders in the active and the history database. The Sterling Selling and Fulfillment
Foundation: Installation Guide has a section to help you estimate the space
requirements for your database.

Time Synchronization
Although this is not a performance recommendation, we strongly recommend that
you keep the system time synchronized across all computer nodes using a time

© Copyright IBM Corp. 1999, 2012 15

synchronization protocol such as Network Time Protocol (NTP). Keeping the
system time synchronized allows you to perform the following tasks:
v Correlate events in the database, Sterling Selling and Fulfillment Foundation,

and the application server logs
v Correlate workload arrival, as recorded in the application server's access.log to

system measurements (such as SAR, vmstat, and so forth)

Data Center Network
The performance of the Sterling Selling and Fulfillment Foundation system is
critically dependent on the performance of the data center network. Here are some
areas to consider:
v Correct auto-negotiation to the optimum bandwidth and with full duplex
v Network bandwidth

Auto-Negotiation
By design, Ethernet network interface cards (NIC) automatically negotiate the best
speed and duplex with the switch that it is connected to. Generally,
auto-negotiation work. We have, however, seen many cases where auto-negotiation
drops the connection to sub-optimal levels (e.g., 10mps half-duplex) after a server
boot.

The impact of an incorrectly negotiated network card is dramatic. For example, at
one customer, application servers took over 20 minutes to start when the network
card on the administration server negotiated the wrong settings.

If both the network interface card and the switch are capable of full-duplex
100mbps or 1000mbps, you can let then auto-negotiate. Alternatively, you can
manually set the higher speed and duplex as described in subsequent
"Auto-negotiation" sections.

An easy way to check the NIC negotiation is to FTP, SCP or RCP a large file (e.g.,
256MB) file from a test node to all other nodes.

From the database server node, create a 256MB file using the following command:
dd if=/dev/zero of=/tmp/egg bs=16384 count=16384

Assuming that you have three nodes (applservernode1 to applservernode3) and
you can rcp or scp into each node, issue the following:

export ALLHOSTS="applservernode1 applservernode2 applservernode3"
for i in $ALLHOSTS
do
time rcp /tmp/egg $i:/tmp/egg
done

If you cannot rcp or scp, you can issue an FTP transfer.

The time to transfer the 256MB file should be around 20 seconds for 100mbps Fast
Ethernet and around 5 seconds for 1Gbps networks (for FTP). You likely have a
network negotiation problem if the transfer times are much slower (for example
200 seconds).

Please see the following sections on how to monitor and set the network speed
and bandwidth:
v AIX - See “Auto-Negotiation” on page 19.
v HP-UX11i - See “Auto-Negotiation” on page 21.

16 Sterling Selling and Fulfillment Foundation: Performance Management Guide

v Red Hat Linux - See “Auto-Negotiation” on page 23.
v Solaris - See “Auto-Negotiation” on page 20.

Network Bandwidth
The network cards on the nodes running Sterling Selling and Fulfillment
Foundation must be configured with at least a 100 Mbps full-duplex link. In some
cases, for example, you may have to implement gigabit network cards if you have
high enough transactions going through the network. Our Pre-Sales Server Sizing
(see “Pre-Sales Server Sizing” on page 15) specifies the anticipated minimum
network speeds.

In production, you should monitor the network bandwidth utilization. One
approach is to monitor the traffic utilization at the switch.

The application stops scaling when the network is the bottleneck.

IBM AIX

Page Space Allocation Policy
AIX, by default, implements a late page space allocation policy. When a program asks
for a large memory allocation, AIX grants the virtual memory allocation but does
not allocate the space on the backing store (or swap) until it is actually used. In
contrast, early page space allocation first allocates the space in swap before granting
the virtual memory.

With late page space allocation, AIX could successfully start many processes.
However, as these processes use their virtual memory, AIX could run low on swap.
When this happens, AIX chooses the youngest process to kill. The following
message on the application server's console indicates that it was killed:

./startManagedWebLogic.sh[216]: 13550 Killed

The following error message is shown in the AIX error log if your application
server instance was killed because of late page space allocation:

Date/Time: Thu May 30 17:35:37
Sequence Number: 39
Machine Id: 000F257F4C00
Node Id: ibm04
Class: S
Type: PERM
Resource Name: SYSVMM

Description
SOFTWARE PROGRAM ABNORMALLY TERMINATED

Probable Causes
SYSTEM RUNNING OUT OF PAGING SPACE

Failure Causes
INSUFFICIENT PAGING SPACE DEFINED FOR THE SYSTEM
PROGRAM USING EXCESSIVE AMOUNT OF PAGING SPACE

Recommended Actions
DEFINE ADDITIONAL PAGING SPACE
REDUCE PAGING SPACE REQUIREMENTS OF PROGRAM(S)

Detail Data
PROGRAM
java

Chapter 3. Computer Systems 17

USER’S PROCESS ID:
19194

PROGRAM’S PAGING SPACE USE IN 1KB BLOCKS
295388

You can reduce the likelihood of a late page space allocation kill by increasing the
amount of swap space. However, the recommended approach is to selectively turn
on early page space allocation by exporting the following environment variables:

export PSALLOC=early
export NODISCLAIM=true

The NODISCLAIM environment variable will eliminate a call to the disclaim()
system routine when a free() call is issued. You will experience high CPU
utilization (due to system calls) if you use early page allocation but do not set this
variable.

You can increase swap and page space requirements significantly if you set these
two variables for all workloads. As a result, we recommend you only set these two
variables for your JVMs and not across the system for all other workloads.

For Sterling Selling and Fulfillment Foundation agents and WebLogic application
servers, you can issue the commands in the startup scripts. For WebSphere, you
can define the environment variables in the Environment dialog box in the
administrative client.

If you make that change and not increase the swap space, the following error
message is shown immediately on startup:

Unable to alloc heap of requested size, perhaps the maxdata value is too
small - see README.HTML for more information.

Unable to allocate an initial java heap of 1073741824 bytes.
Out of memory, aborting

*** panic: JVMST016: Cannot allocate memory for initial java heap

The exception above is actually the desired behavior because AIX is stating that it
is unable to guarantee that there is enough swap space for all potential
requirements.

Asynchronous I/O
AIX supports both kernelized asynchronous I/O to raw devices or Veritas Quick
I/O devices and threaded asynchronous I/O to filesystem files (e.g., JFS). With
KAIO, the Oracle process queues I/O requests in the kernel and are notified of
I/O completion by an interrupt. In contrast, threaded asynchronous I/O uses
multiple threads with each thread issuing a synchronous I/O to simulate the
asynchronous I/O.

If you are going to implement your database files on filesystems like JFS or JFS2,
you may have to monitor and tune the asynchronous I/O tunable parameters. By
default, these parameters may be set too low for Oracle Databases on large systems
with 4 CPUs or more if you are using threaded asynchronous I/O.

The asynchronous I/O parameters are too low in your configuration if you find
the following messages in the DBWR, CKPT, or LGWR files in the
ORACLE_BASE/admin/<dbname>/bdump directory:

Warning: lio_listio returned EAGAIN
Performance degradation may be seen

18 Sterling Selling and Fulfillment Foundation: Performance Management Guide

The EAGAIN from the lio_listio function indicates that "the resources necessary to
queue all the I/O requests were not available" (see lio_listio subroutine
documentation in the AIX Technical Reference: Base Operating System and
Extensions Volume 1).

You can find out the current asynchronous I/O settings by issuing the following
command:

> lsattr -El aio0
autoconfig available STATE to be configured at system restart True
fastpath enable State of fast path True
kprocprio 39 Server PRIORITY True
maxreqs 4096 Maximum number of REQUESTS True
maxservers 10 MAXIMUM number of servers per cpu True
minservers 1 MINIMUM number of servers True

Configuring Asynchronous I/O in AIX
About this task

You can change the asynchronous I/O parameters with the following command:
chdev -l aio0 -a minservers=x -a maxservers=y -a maxreqs=z

The minservers and maxservers are at the CPU or processor level.

Monitoring Asynchronous I/O in AIX
About this task

Monitor the actual number of aioservers started during a typical workload using
the following command:

pstat -a | grep aioserver

You may have to increase the number of aioservers if:
v The actual number of active aioservers is equal to the maxservers and
v The CPU utilization of all the aioservers appear to be even (indicating that all

aioservers are used)
v You continue to see the Warning: lio_listio returned EAGAIN messages

The MetaLink Notes discusses the issue and provide recommendations for
maxreqs, minservers and maxservers:
v Oracle MetaLink Note:443368.1 - How does Oracle use AIO servers and what

determines how many are used?

Auto-Negotiation
About this task

See “Auto-Negotiation” on page 16 for a general discussion on network
negotiations.

On AIX, you can check the link using SMIT. In SMIT, go to Devices >
Communication > Ethernet Adapter > Adapter > Change / Show Characteristics of
an Ethernet Adapter. Select the network interface. The link speed and mode
configuration is displayed in the Media Speed field.

Alternatively, you can issue the following commands:

Chapter 3. Computer Systems 19

$ lsparent -C -k ent
ent0 Available 40-58 IBM 10/100 Mbps Ethernet PCI Adapter (23100020)

$ lsattr -E -l ent0 -a media_speed
media_speed Auto_Negotiation Media Speed True

To find out the actual negotiated speed and duplex, issue the following command:
$ netstat -v ent0 | grep Media
Media Speed Selected: Auto negotiation
Media Speed Running: 100 Mbps Full Duplex

If the auto-negotiation failed, you can set the NIC from SMIT or by issuing the
following commands:

$ chdev -l ent0 -a media_speed=100_Full_Duplex -P
ent0 changed

reboot

Sun Solaris

Auto-Negotiation
About this task

See “Auto-Negotiation” on page 16 for a general discussion on network
negotiations.

On Solaris, you can check a gigabit (GE), Quad-Fast Ethernet (QFE) and
Fast-Ethernet (HME) links with the following process:

#ifconfig -a
lo0: flags=1000849<UP,LOOPBACK,RUNNING,MULTICAST,IPv4> mtu 8232 index 1

inet 127.0.0.1 netmask ff000000
hme0: flags=1000843<UP,BROADCAST,RUNNING,MULTICAST,IPv4> mtu 1500 index 2

inet 10.10.10.10 netmask ffffff00 broadcast 10.10.10.255

In the example above, the server has a single HME interface. To query the HME
settings, issue the following commands:

ndd -get /dev/hme link_speed
1
ndd -get /dev/hme link_mode
1

For QFE or GE, substitute in /dev/qfe or /dev/ge respectively.

The results of the commands above are as follows:

Table 13. NDD Results

NDD Variable Results

link_speed 0 = 10mps

1 = 100mps

link_mode 0 = half-duplex

1 = full-duplex

20 Sterling Selling and Fulfillment Foundation: Performance Management Guide

If the auto-negotiation failed, you can manually set the NIC by issuing the
following commands:

ndd -set /dev/hme instance 0
ndd -set /dev/hme adv_100T4_cap 0 disables T4 cabling
ndd -set /dev/hme adv_100fdx_cap 1 enables 100mps full duplex
ndd -set /dev/hme adv_100hdx_cap 0 disables 100mps half duplex
ndd -set /dev/hme adv_10fdx_cap 0 disables 10mps full duplex
ndd -set /dev/hme adv_10hdx_cap 0 disables 10mps half duplex
ndd -set /dev/hme adv_autoneg_cap 0 disables autonegotiation

You can preserve the commands above across reboot by adding the following
commands to /etc/system:

set hme:hme_adv_autoneg_cap=0
set hme:hme_adv_100T4_cap=0
set hme:hme_adv_100fdx_cap=1
set hme:hme_adv_100hdx_cap=0
set hme:hme_adv_10fdx_cap=0
set hme:hme_adv_10hdx_cap=0

You also need to manually set the switch ports to 100mps full-duplex. Please see
your switch documentation.

HP HP-UX11i
This section provides recommendations on how to plan, implement, configure,
monitor, and tune HP HP-UX11i server nodes running on HP PA-RISC or Itanium
processors.

Auto-Negotiation
About this task

See “Auto-Negotiation” on page 16 for a general discussion on network
negotiations.

On HP-UX, you can check the link by issuing the following commands:
$ lanscan
Hardware Station Crd Hdw Net-Interface NM MAC HP-DLPI DLPI
Path Address In# State NamePPA ID Type Support Mjr#
0/0/0/0 0x00306E09612B 0 UP lan0 snap0 1 ETHER Yes 119

$ lanadmin -x 0
Current Speed = 100 Full-Duplex Auto-Negotiation-ON

If the auto-negotiation failed, you can manually set the NIC by issuing the
following commands:

$ lanadmin -X 100FD 0

WARNING: an incorrect setting could cause serious network problems!!!

Driver is attempting to set the new speed
Reset will take approximately 11 seconds

HP HP-UX11i: Asynchronous I/O
About this task

Asynchronous I/O is very important to performance especially on high transaction
volume processing environments. In summary, processes that issue synchronous
read() or write() I/O calls must wait for the I/O to complete before it can

Chapter 3. Computer Systems 21

continue. In contrast, processes can issue multiple asynchronous (non-blocking)
aio_read() or aio_write() I/O calls in parallel without waiting.

HP-UX does not enable asynchronous I/O by default. HP-UX also only supports
asynchronous I/O on files that reside on raw devices and not on filesystems. If
you don't enable asynchronous I/O, workloads such as Oracle will try to run
multiple DBWRs processes to get a limited amount of I/O parallelism.

To enable asynchronous I/O on HP-UX, you have to:
v Create the /dev/async character device.
v Grant MLOCK privilege to the Oracle group.
v Implement asynchronous I/O to the kernel.
v To create the /dev/async character device:

/sbin/mknod /dev/async c 101 0x104
chown oracle:dba /dev/async
chmod 660 /dev/async

ls -l /dev/async
crw-rw-rw- 1 bin bin 101 0x000104 May 29 2011 /dev/async

In order to use asynchronous I/O, the OS group (typically dba) that the Oracle
user belongs to must be granted the MLOCK privilege. You can check if the group
has the privileges by issuing the following command:

/usr/bin/getprivgrp dba
dba: RTPRIO MLOCK RTSCHED

v To grant the privilege (along with RTPRIO and RTSCHED), add the following string
to the /etc/privgroup file:

dba RTPRIO RTSCHED MLOCK

v Then run the following command to enact the new privileges:
/usr/bin/setprivgrp -f /etc/privgroup

v Next, you have to configure the asynchronous disk driver into the HP-UX
kernel. To do this:
– Launch the system administration manager (sam) and
– Navigate to Kcweb (Kernel Configuration) > Modules
– Select asynchdsk to be loaded into the kernel

v Next, you need to ensure the max_async_ports is at least as high as the
maximum number of connections (which is dictated by processes). The
max_async_ports controls how many processes can open the /dev/async device
at any given time. When the maximum is reached, subsequent processes will
drop down to using synchronous (blocked) I/O. To find out the current settings,
issue:

kctune -v max_async_ports
Tunable max_async_ports
Description Maximum number of open asyncdsk ports
Module io
Current Value 600
Value at Next Boot 600
Value at Last Boot 600
Default Value 50
Can Change At Next Boot Only

v To change the max_async_ports settings, go to sam > Kernel Configuration >
Tunables.

22 Sterling Selling and Fulfillment Foundation: Performance Management Guide

Linux

Auto-Negotiation
About this task

See “Auto-Negotiation” on page 16 for a general discussion on network
negotiations.

For Linux, you can check the link speed and duplex by issuing the following
command. The "FD" in the following output denotes full-duplex:

$ mii-tool
eth0: negotiated 100baseTx-FD flow-control, link ok
eth1: no link

Chapter 3. Computer Systems 23

24 Sterling Selling and Fulfillment Foundation: Performance Management Guide

Chapter 4. Java Virtual Machines

General JVM Recommendations
This chapter provides general recommendations on how to plan, implement,
configure and tune Java Virtual Machines that is applicable to all the supported
JVM families. Family-specific JVM recommendations, such as Permanent
Generation settings for SunSoft JVMs and Wilderness settings for IBM JVMs are
found in the following JVM-specific sections:
v “HotSpot JVM” on page 30
v “IBM J9 JVM” on page 39
v “Oracle JRockit” on page 44

The Java language is designed to be "Written Once and Run Anywhere" (WORA).
When you compile a Java source, you get an intermediate Java file called the Java
class. The class file is made up of bytecodes representing abstract instruction codes.
These codes are not directly executable by any computer processor. In contrast,
languages like C compile their source code to native instructions for a specific
processor.

To run a Java program, you start a JVM and pass the class file to the JVM. The
JVM provides many services including loading the class file and interpreting
(executing) the byte codes. The JVM is the core technology that provides the
runtime environment in which a Java application runs in.

Each Java program or application runs in its own JVM. For example, if you
configured an application server cluster with ten managed server instances that is
controlled by one administrative instance, your configuration runs eleven JVM
processes.

Since the JVM is the underlying processing engine for Sterling Selling and
Fulfillment Foundation, it is critical that the JVMs are optimally configured and
running efficiently. Incorrect JVM settings could cause poor application
performance. At worse, it could lead to JVM outages.

Note: The JVM recommendations provided in this guide should be used only as a
starting point in the JVM tuning for your Sterling Selling and Fulfillment
Foundation application. You should increase these values as and when required.

JVMs: Supported Configuration
The applications are tested and certified for use on a specific set of JVMs and JVM
versions and releases. See theSterling Selling and Fulfillment Foundation: System
Requirements Guide for the list of supported configurations.

To find out the JVM version, issue the following command:
$JAVA_HOME/bin/java -version

Recommended JVM Command Line Options
We recommend that you specify the following command line options on all JVMs:
v JVM identifier using the -D option
v Java version using -showversion

© Copyright IBM Corp. 1999, 2012 25

v Garbage Collection Statistics
v Distributed Garbage Collection interval

JVM Identifier: You may have to run many JVMs in a large Sterling Selling and
Fulfillment Foundation configuration. From experience, we have found it useful to
tag JVMs with an identifier so that they are easy to identify and therefore to
monitor and manage. One approach to tagging is to use the JVM -D option. The -D
option lets you set a system property variable as a name/value pair. For example:

java -Dyfsag=SCHEDULE <class name> and
java -Dyfsas=server01 <class name>

In the example above, we use the -D option to set a name/value pair to help
identify the purpose of the JVM. The names, yfsag and yfsas, indicate the type of
workload - in this case, a Sterling Selling and Fulfillment Foundation agent and an
application server respectively. The values, SCHEDULE and server01, indicate the
instance of the workload. If you issue the following command:

ps -ef | grep java | grep Dyfs

you will see:
UID PID PPID C STIME TTY TIME CMD

user03 6420 6418 2 08:20:21 pts/29 0:04 java -Dyfsag=SCHEDULE -server
user03 6456 6443 2 08:23:32 pts/29 0:23 java -Dyfsas=server01 -server

The tagging and some simple scripting allows you to automate a lot of
management tasks. For example, to generate a thread dump on all the application
servers, you could issue the following command:

for i in 'ps -ef | grep Dyfsas | awk ’{print $2}’'
do
kill -3 $i
echo "Issued thread dump for pid=$i"
done

or

ps -ef | grep Dyfsas | awk ’{print $2}’ | xargs kill -3

Java Version: A common but difficult problem to diagnose is one where the
wrong JVM version or level was started. You can easily spot this problem if you
start the JVM with the -showversion option. If you ran the following command on
an IBM JVM on Linux:

> java -showversion <class name>

the following output is seen in your application log:
java version "1.6.0"
Java(TM) SE Runtime Environment (build pap6460sr7ifix-20100220_01(
SR7+IZ70326))
IBM J9 VM (build 2.4, JRE 1.6.0 IBM J9 2.4 AIX ppc64-64 jvmap6460
sr7-20100219_54049 (JIT enabled, AOT enabled)
J9VM - 20100219_054049
JIT - r9_20091123_13891
GC - 20100216_AA)
JCL - 20091202_01

We recommend setting the -showversion option for all JVMs. This simple and
inexpensive step provides valuable information that can help ensure that the
correct JVM version and mode are used.

JVM Recommendations: Garbage Collection Statistics: Garbage collection
statistics are critical for managing and monitoring JVMs. We strongly recommend

26 Sterling Selling and Fulfillment Foundation: Performance Management Guide

enabling garbage collection statistics in production. The statistics is the only
window you have into the behavior of the JVM heap management and the
efficiency of the JVM.

Please see the JVM-specific sections on recommendations on how to enable
garbage collection statistics.

Optional JVM Command Line Settings: Stack Size: Each time a method is
called, a stack frame is created and pushed on to the thread's stack. The stack
frame contains, at a minimum, the method's local variables and the method
arguments. You can get a java.lang.StackOverflowError exception if you reach the
maximum allowable stack limit of a thread. This can happen if:
v The method call depth is very deep (for example, in the Create Wave agent, the

wave optimizer call depth is roughly equal to the number of shipments assigned
to a shipment group).

v The stack frame is very large.

You can set the -Xss option to increase the maximum stack size per thread.

See related section “Java Stack Size” on page 139 if you are running the IBM
Sterling Warehouse Management System.

Hanging Threads/Deadlocks/Infinite Loops
In some rare exceptions, the JVM may have threads that are not progressing,
possibly because of one of the following reasons:
v Threads are deadlocked.
v Threads are in an infinite loop.
v Threads are waiting for an external event.
v JVM bug.

You can often find these offending threads by taking several successive thread
dumps and seeing if there are any threads that seem "stuck" in the same
processing point. On Unix and Linux, issue the following command where pid is
the process id of the JVM:

kill -3 pid

In Windows, you have to press the CTRL+BREAK keys on the command window
that started the JVM.

If you have a hanging or deadlocked thread, in the best case, all they do is tie up a
number of scarce worker (execute) threads. There currently isn't any way to kill
hung or deadlock threads except to schedule a restart of the JVM.

In the worst case, these offending threads hold on to crucial shared resources (such
as database record locks) and are blocking other threads in this or other JVMs. This
situation could lead to a system-wide slowdown as more and more threads block
behind these offending threads.

If you have infinite looping threads, at best, all they do is make the server node
busier. In the worst case, they start to impact the performance of transaction
running in that node or they hold critical resources needed by other threads.

Recommendations:

If you suspect a JVM has a hung or looping thread:

Chapter 4. Java Virtual Machines 27

v Take three thread dumps for that JVM. Space the thread dumps a minute apart.
v Look at the stacktrace for the Default Queue in the successive thread dumps -

see if there are any threads that are active and in the same code path in each
thread dump.

v The IBM Thread and Monitor Dump Analyzer for Java is an excellent tool for
analyzing the thread dumps. You can download the tool from
http://www.alphaworks.ibm.com/tech/jca.
The download page contains excellent information about using the tool for
analysis and troubleshooting.

If you suspect transactions are slow across many JVMs:
v Look in your database for blocking chains - specifically, what sessions are

blocking whom. Find out what servers the root blockers are coming from, the
types of locks that they are holding and what was the latest SQL run.

v Identify the JVMs that have the root blockers. You may have to shutdown those
JVMs if the blocking sessions are spreading to a system-wide shutdown.

Note: Since thread dumps are invaluable diagnostic tools, you should be very
comfortable taking thread dumps when the need arises. For example, you
should occasionally take thread dumps from all JVMs (e.g., all application server
instances, all agent/monitor servers) during non-peak processing periods. This
gives you a chance to find out where the thread dumps are written to and how
to read the thread dumps.

Memory and Paging

Note: The JVM performs very badly, even in low transaction volume environments
if the OS has to continually page the JVM heap to disk.

You must make sure paging levels are minimal. The JVM manages its heap with
the assumption that the entire heap is in memory. If significant portions of the
heap are on the swap devices, the node could find itself in a "thrashing" situation
where it spends most of its time shuffling pages between real memory and swap.
This situation could arise for many reasons including:
v Starting a JVM with a heap size that is larger than physical memory
v Starting too many JVMs and other workloads such that the combined working

set size is larger than the physical memory

OutOfMemory Exceptions

Note: Sterling Selling and Fulfillment Foundation stops a JVM that throws an
OutOfMemory exception.

JVMs throw OutOfMemory exceptions when they cannot find enough space for a
new object allocation request. From our experience, OutOfMemory exceptions are
primarily due to the following reasons:
v The JVM heap does not have enough total free space in the heap for the new

object, or
v In the case of IBM JVMs, the heap may have enough total free but not enough

contiguous free space for the new object.

The JVMs try to recover gracefully when OutOfMemory exceptions occur -
unfortunately, the outcome of the recovery can be unpredictable. We have seen
situations where threads have disappeared (they don't show up in the thread

28 Sterling Selling and Fulfillment Foundation: Performance Management Guide

dumps), threads have gone into infinite loops, or database connections from failed
threads remain opened and in some cases, hold on to record locks.

For these and many other reasons, Sterling Selling and Fulfillment Foundation
deliberately stops the JVMs that encounter OutOfMemory exceptions. When that
occurs, you should see the following message in the application log:

java.lang.OutOfMemoryError
Yantra encountered Java Virtual Machine Error, verify your JVM settings
Halting the system................

This measure is preferable to potentially unpredictable application behaviors.

In production, you should periodically check for the occurrence of this message in
the Sterling Selling and Fulfillment Foundation log and to take appropriate actions,
including alerting the application administrator or restarting the JVM.

Low on Total Free Memory: A JVM may run low on total free memory when
there is a memory leak, the JVM heap was sized too small or there was a
temporary abnormally high memory requirement (possibly for a very large order
or wave). If you encounter an outOfMemory exception, we recommend you
perform the following:
v Restart the JVM with a much larger heap (for example, 1.5GB).
v Monitor the amount of space used. For Sun and HP HotSpot JVMs, you need to

look at the heap used after Full GCs. If you see this value steadily growing and
never shrinking, you may likely have a memory leak. If the heap used increases
by a large value (larger than your original heap setting) but eventually drops
down to its original level, you may have encountered a large order or wave. You
may want to investigate the nature of that order to see if the order was an
anomaly or if it is going to be recurring. You can use the GC statistics to set you
JVM heap sizes.

If you believe you have a memory leak, you can do the following:
v For IBM JVMs, generate a heapdump and use the IBM Memory Dump

Diagnostic tool to identify the memory leak. We have found this tool to be easy
to use and easy to identify memory leaks. The IBM JVM automatically generates
the heapdump when it runs into an OutOfMemory exception. You can also
request a heapdump using a Kill -3 by first setting the following environment
variables:

export IBM_HEAPDUMP=true
export IBM_HEAP_DUMP=true
export IBM_HEAPDUMPDIR=<directory to store the heap dumps>

v For Sun and HP HotSpot, try generating the hprof memory dump - the IBM
Memory Dump Diagnostic tool is capable of analyzing hprof dumps. Otherwise,
you may have to resort to using a tool like Quest JProbe Memory Debugger.

v For Oracle JRockit, you can use the Oracle JRockit Memory Leak Detector which
is part of the JRockit Management Console. The Memory Leak Detector tells you
which object is growing the fastest, what percentage of the heap they are
occupying, and the number of instances.

Causes of OOM: There can be many reasons why transactions use a lot of
memory. Some of the typical reasons include:
v Calling APIs with the default output XML template - Sterling Selling and

Fulfillment Foundation allows you to specify an output XML template to specify
the amount of data to return. The effect can be dramatic. Calling the

Chapter 4. Java Virtual Machines 29

getOrderDetail API without an output template could result in a very large XML
(over 40MB) depending on the order complexity. Trimming the XML could
reduce the size to a few hundred bytes.

v DEBUG and VERBOSE tracing - The DEBUG and VERBOSE traces are
invaluable development and debugging tools, for example printing out the API
input and output XMLs. In order to print the XML, the tracing facility has to
create a String representation of the XML, which for very large XML document
can result in very large StringBuffer objects. As a result, you should be careful
about enabling these traces in production.

HotSpot JVM
This section provides recommendations on how to plan, implement, configure,
monitor, and tune the HotSpot Java Virtual Machines.

The Sun HotSpot JVM is used when you deploy Sterling Selling and Fulfillment
Foundation with the WebLogic or the WebSphere application servers on a Sun
Solaris operating system running on Sun UltraSPARC processor-based servers.

The HP HotSpot JVM is used when you deploy Sterling Selling and Fulfillment
Foundation with the WebLogic application servers on a HP-UX11i operating
system running on HP PA-RISC processor-based servers.

Note: Oracle no longer supports the use of SunSoft JVM on Linux in production.

Implementation
It is a mixed blessing that HotSpot JVMs provide many tuning parameters because
tuning the JVMs can appear to be part art and part guess work. There isn't a
golden set of JVM settings that apply to all customers and conditions. The settings,
especially memory settings (which we discuss below) are highly dependent on the
transaction mix, the amount of data cached, the complexity of the transactions,
concurrency levels, and so forth.

Fortunately, the HotSpot JVMs provide good measurement feedback that allows
you to measure the effectiveness of the settings.

As a starting point, we recommend you configure your JVMs with the following
initial values and to review and adjust the settings as you run the JVMs under
representative workloads and traffic volumes.

Starting Recommendations

As a starting point, you should configure the JVMs as follows:
v Set the JVM mode to server mode.
v Set the permanent generation to 768MB for application servers, and 256MB for

agents and integration servers.

Virtual Machine Mode
The Java language is designed to be platform independent. When you compile a
Java source, you get an intermediate Java class which is made up of bytecodes
representing abstract instructions. In contrast, languages like C compile to native
binary code that a specific hardware processor can run. To run the program, you
start a JVM and pass the class file to the JVM. The JVM loads the class file and
interpret (execute) the byte codes.

30 Sterling Selling and Fulfillment Foundation: Performance Management Guide

Interpretation and execution of bytecodes is much slower than the executing code
that has been compiled to the native instruction set of the host processor.

For speed and performance, the HotSpot JVM will, on-the-fly or just-in-time (JIT),
compile frequently used methods into native code. See The Java HotSpot Performance
Engine Architecture, (Sun Microsystems, http://java.sun.com/products/hotspot/
whitepaper.html) and extensive Java SE Hotspot information on
http://www.oracle.com/technetwork/java/javase/tech/index-jsp-136373.html for
more detail.

The HotSpot JVMs support two different compiler modes: -client and -server. Each
supports differing levels of optimization.

The server VM mode is designed to maximize performance of long running
workloads by applying more aggressive optimizations. The client VM mode, in
contrast, is designed to reduce application startup time and memory footprint. The
client VM mode is typically better suited for applets running in browsers.

To run the JVM in the server mode, you need to add the -server directive when
starting up the JVM. For example, to start WebLogic in server mode, issue:

java -server weblogic.Server

To run WebLogic in the client mode, issue the following command:
java -client weblogic.Server

Permanent Generation
The HotSpot JVM sets aside an area, called permanent generation, to store the
JVM's reflective data such as class and method objects. The size of this area is set
to 64MB by default. Due to the number of classes used by application servers, you
must set the permanent generation space setting to at least 768MB. If you use the
default values, an OutOfMemory exception is more likely to occur during
application server initialization.

To increase the permanent generation space for application servers, issue the
following command:

java -server -XX:MaxPermSize=768m java_class

To increase the permanent generation space for agents and integration servers,
issue the following command:

java -server -XX:MaxPermSize=256m java_class

This recommendation applies to the application server JVM as well as the Sterling
Selling and Fulfillment Foundation agents.

Note: The agent server JVM requires only 256MB of permanent space.

Heap Memory and Garbage Collection
The JVM runtime environment uses a large memory pool called the heap for object
allocation. The JVM automatically invokes garbage collections in order to clean up
the heap of unreferenced or dead objects. In contrast, memory management in
legacy programming languages like C++ was left to the programmer.

If the JVM heap settings are not set correctly, the garbage collection overhead can
make the system appear unresponsive. In the worst case, your transactions or the
JVM could abort due to outOfMemory exceptions (please see “OutOfMemory
Exceptions” on page 28).

Chapter 4. Java Virtual Machines 31

http://www.oracle.com/technetwork/java/javase/tech/index-jsp-136373.html

In the past, garbage collection overhead was quite substantial and the impact to
end-user response times noticeable. Many garbage collection techniques have been
proposed and implemented - all with their own strengths and weaknesses.
Garbage collection techniques are constantly being improved. For example, the Sun
JVM supports a mainly "stop-the-world" garbage collector - all transactions have to
pause in a safe point for the entire duration of the garbage collection. The Sun JVM
supports a parallel concurrent collector where transactions can continue running
during most of the collection.

Sun and HP-UX Generational Collectors: The Sun and HP JVM organized its
heap into generations to improve the efficiency of its garbage collection, and to
reduce the frequency and duration of user-perceivable garbage collection pauses.
The premise behind generational collection is that memory is managed in
generations or in pools of memory with different ages (see Figure 1).

New objects are allocated in the eden. When the eden fills up, the JVM issues a
scavenge GC or minor collection to move the surviving objects into one of the two
survivor or semi spaces. The JVM does this by first identifying and moving all
referenced objects in the eden to one of the survivor space. At the end of the
scavenge GC, the eden is empty (since all the referenced objects are now in the
survivor space) and ready for object allocation.

The scavenge GC's efficiency depends on the amount of referenced objects it has to
move to the survivor space and not on the size of the eden. The higher the amount
of referenced objects, the slower the scavenge GC. Studies, however, have shown
that most Java objects live a very short time. Since most objects live for a short
time, one can typically create large edens.

Referenced objects in the survivor space bounce between the two survivor spaces
at each scavenge GC until it either becomes unreferenced or the number of
bounces has reached the tenuring threshold. If the tenuring threshold is reached, that
object is migrated up to the old heap.

When the old heap fills up, the JVM issues a Full GC or major collection. In a Full
GC, the JVM has to first identify all the referenced objects. When that is done, the
JVM sweeps the entire heap to reclaim all free memory (for example, because the
object is now dead). Finally, the JVM then moves referenced objects in order to
defragment the old heap. The efficiency of the Full GC is dependent on the
amount of referenced objects and the size of the heap. For more information see
The Java HotSpot Performance Engine Architecture, (Sun Microsystems,

Figure 1. Heap Layout

32 Sterling Selling and Fulfillment Foundation: Performance Management Guide

http://java.sun.com/products/hotspot/whitepaper.html) and extensive Java SE
Hotspot information on http://www.oracle.com/technetwork/java/javase/tech/
index-jsp-136373.html.

Heap Settings

It is both a curse and a blessing that the SunSoft based JVMs provide many
parameters to control the JVM heap configuration. Tuning the SunSoft generational
collectors can be part art and part guess work. You may opt for the Keep It Simple
Strategy Principle. In the following example, only specify the starting (-Xms) and
maximum (-Xmx) heap size:

java -server -Xms358m -Xmx358m weblogic.Server

When choosing the JVM settings, you should keep the following in mind:
v Set the initial and max heap size the same - This eliminates the need of the JVM

to decide when to expand or shrink the heap. This could also prevent a class of
outOfMemory exceptions where there is not enough swap space when the JVM
needs to expand the overall heap.

v By default, the Sterling Selling and Fulfillment Foundation caches reference data
for performance. Depending on your data setup, you may have to increase the
heap size or reduce the numbers of cached records. See “Performance Feature -
Reference Data Caching” on page 104 for more information on the caching
feature.

v Ensure that the node has enough physical memory so that portions of the heap
are not paged out.

Note: Please make sure you test your JVM heap settings with representative
workloads and data under anticipated peak processing rates. In addition, you
should run these tests for a number of days. Depending on your processing mix,
the JVM heap settings could be different for the JVMs running the agents, the
application servers and the JMS servers.

When setting the young heap, keep the following recommendations in mind:
v Set the initial and max eden size the same - This eliminates the need of the JVM

to decide when to expand or shrink the eden.
v The cost of a scavenge GC is dependent on the amount of active objects that has

to be moved to the survivor space and not on the size of the eden. Therefore,
one can usually allocate a large eden.

v Allocate the eden large enough so that the scavenge GCs are not occurring too
frequently (e.g., less than once per minute) and the collection service time is
reasonably short (e.g., less than 0.3 seconds).

v Alternatively, create more JVMs to spread out the load. This reduces the amount
of active objects in a JVM which, in turn, reduces the frequency and the duration
of the scavenge GC.

Keep in mind the following when configuring the survivor spaces:
v The survivor spaces must be large enough to store all the active objects coming

from the eden as well as the sum of active objects that have an age that is less
than the tenuring threshold.

Keep in mind the following when configuring the old heap:
v The amount of free space in the old heap must be larger than both the eden size

plus one of the survivor space. If the free space is less, the JVM resorts to using
Full GCs (see “Young Generation Guarantee” on page 34 below).

Chapter 4. Java Virtual Machines 33

http://www.oracle.com/technetwork/java/javase/tech/index-jsp-136373.html
http://www.oracle.com/technetwork/java/javase/tech/index-jsp-136373.html

v The cost of a Full GC is dependent on the amount of active objects as well as the
size of the old heap. A Full GC is typically a lot more noticeable to the end user
than a scavenge GC. A Full GC on a 256MB old heap can take up to three
seconds.

v Keep in mind that Sterling Selling and Fulfillment Foundation provides the
ability to cache records. If you activate this feature, you should monitor the
occurrence of full GC to see if the old generation is large enough. See
“Performance Feature - Reference Data Caching” on page 104 for more
information on the caching feature.

Therefore, you should allocate the old heap large enough so that Full GCs are not
occurring too frequently (e.g., more than once in 15 minutes) and the collection
service time is less than 2 seconds

Young Generation Guarantee

Starting in JDK 1.3.1_05, the Sun/HP JDKs implemented a conservative garbage
collection policy called the Young Generation Guarantee. Before starting a GC, the
JVM checks if the free space in the old heap (OLD FREE) is larger than the sum of
the eden. The premise is that it is possible (though highly unlikely) that every
object in the eden (remains alive and uncollected) the collection and has to be
promoted to the old heap. If that ever happens, the Young Generation Guarantee
ensures that there is enough free space in the old heap for all the promoted objects.

Please see extensive Java SE Hotspot information on http://www.oracle.com/
technetwork/java/javase/tech/index-jsp-136373.html for a detailed description of
the Young Generation Guarantee.

Starting Recommendations

We recommend that you try the default generational settings with a 384M and a
768M heap for your agents and application servers respectively:

java -server -Xms768m -Xmx768m \
-XX:MaxPermSize=256m \
weblogic.Server

Another approach is to set the overall heap to 1024MB with a 200MB young
generation. For Solaris, you would issue the following command:

java -server -Xms1024m -Xmx1024m \
-XX:NewSize=200m -XX:MaxNewSize=200m \
-XX:MaxPermSize=256m \
weblogic.Server

For HP-UX, you would issue the following command:
java -server -Xms1024m -Xmx1024m \

-Xmn200m \
-XX:MaxPermSize=256m \
weblogic.Server

You have to regularly monitor the "health" of the garbage collection and adjust
accordingly. For example:
v If you notice that the amount of heap free after a Full GC is approaching 500MB

(the capacity of the old heap), you could eventually get java.lang.OutOfMemory
exceptions. You should investigate why your JVM is keeping that many live
objects. For example, with your data, you may have large reference data caches
(see “Performance Feature - Reference Data Caching” on page 104).

34 Sterling Selling and Fulfillment Foundation: Performance Management Guide

http://www.oracle.com/technetwork/java/javase/tech/index-jsp-136373.html
http://www.oracle.com/technetwork/java/javase/tech/index-jsp-136373.html

v Conversely, if the amount of heap free after a Full GC is much smaller than the
old heap (and the load test is representative), you may consider reducing the old
heap.

v Increase the overall heap size - However, make sure the Full GC takes less than
2 seconds.

v You must ensure that the node has enough physical memory so that portions of
the heap are not paged out.

The optimum JVM heap setting depends on your workload characteristics, your
workload concurrency levels, your workload complexity, and so forth. The JVM
heap setting can be (and often is) different between the application servers and
agents. In addition, the settings may be different between some agents. As a result,
you must periodically check the effectiveness of each JVM's heap setting.

Garbage Collection Statistics

We recommend that you continuously collect garbage collection statistics for all
JVMs even in production. The collection overhead is minor compared to the
benefit. With the statistics, you can tell if:
v A JVM has or is about to run into a memory leak.
v The garbage collection is efficient.
v Your JVM heap settings are optimal.

For a Sun JVM, the following statistics are displayed if you enable
-XX:+PrintGCDetails, -XX:+PrintGCTimeStamps, and -Xloggc:

0.000: [GC 0.001: [DefNew: 32192K->511K(33152K), 0.0383176 secs]
32192K->511K(101440K), 0.0385223 secs]

1.109: [GC 1.110: [DefNew: 32703K->198K(33152K), 0.0344874 secs]
32703K->697K(101440K), 0.0346844 secs]

For an HP JVM, the following statistics are shown if you enable -Xverbosegc:file:
<GC: 1 0 13848.360276 8 16400 31 429520056 0 429522944 0 2328104 53673984

100687544 100687544 536870912 69787968 69787968 69992448 0.162748 >
<GC: 1 0 73541.610471 9 48 31 429522944 0 429522944 2328104 9051392 53673984

100687544 100687544 536870912 70708000 70708000 70778880 0.249739 >

Note: Create the GC log file name with the name of the workload and the starting
time. In the example below the -XX:+PrintGCTimeStamps directive provides relative
times of the GC from the time the JVMs started for the WebLogic server. The
starting time in the file name allows you to determine when the GCs occurred:

WORKLOAD=SCHEDULE
gclog_file=${WORKLOAD}_'date +%Y%m%d-%H%M%S'
java -verbosegc -XX:+PrintGCTimeStamps -Xloggc:${gclog_file}

weblogic.Server

Note: For Windows, format the example appropriately.

HotSpot JVM: Garbage Collection Statistics
In our opinion, garbage collection statistics are critical and should be enabled in
production. The statistics is the only window you have into the behavior of the
JVM heap management and the efficiency of the JVM.

This section describes three types of garbage collection statistics:
v The first is a comprehensive set from HP’s JVM.
v The second is a terse statistics from both the HP and Sun JVM.

Chapter 4. Java Virtual Machines 35

Comprehensive HP GC Logs: At every garbage collection, the HP JVM prints out
a statistic record with 20 fields in the following format:

At every garbage collection, the following 20 fields are printed:
<GC: %1 %2 %3 %4 %5 %6 %7 %8 %9 %10 %11 %12 %13 %14 %15 %16 %17 %18 %19 _

>

%1: Indicates the type of the garbage collection.
1: represents a Scavenge (GC of New Generation only)

%2: indicates if this is a parallel scavenge.
0: non-parallel scavenge
n(>0): parallel scavenge, n represents the number of

parallel GC threads

2: represents an Old Generation GC or a Full GC
%2: indicates the GC reason:

1: Allocation failure, followed by a failed scavenge,
leading to a Full GC

2: Call to System.gc
3: Tenured Generation full
4: Permanent Generation full
5: Scavenge followed by a Train collection
6: CMS Generation full
7: Old generation expanded on last scavenge
8: Old generation too full to scavenge
9: FullGCAlot
10: Allocation profiler triggered

3: represents a complete background CMS GC
%2: indicates the GC reason:

1: Occupancy > initiatingOccupancy
2: Expanded recently
3: Incremental collection will fail
4: Linear allocation will fail
5: Anticipated promotion

4: represents an incomplete background CMS GC
(exited after yielding to foreground GC)

%2: n.m
n indicates the GC reason:

1: Occupancy > initiatingOccupancy
2: Expanded recently
3: Incremental collection will fail
4: Linear allocation will fail
5: Anticipated promotion
6: Incremental CMS

m indicates the background CMS state when yielding:
0: Resetting
1: Idling
2: InitialMarking
3: Marking
4: FinalMarking
5: Precleaning
6: Sweeping

%3: Program time at the beginning of the collection, in seconds

%4: Garbage collection invocation. Counts of background CMS GCs
and other GCs are maintained separately

%5: Size of the object allocation request that forced the GC,
in bytes

%6: Tenuring threshold - determines how long the new born object
remains in the New Generation

36 Sterling Selling and Fulfillment Foundation: Performance Management Guide

The report includes the size of each space:
Occupied before garbage collection (Before)
Occupied after garbage collection (After)
Current capacity (Capacity)

All values are in bytes

Eden Sub-space (within the New Generation)
%7: Before
%8: After
%9: Capacity

Survivor Sub-space (within the New Generation)
%10: Before
%11: After
%12: Capacity

Old Generation
%13: Before
%14: After
%15: Capacity

Permanent Generation (Storage of Reflective Objects)
%16: Before
%17: After
%18: Capacity

%19: The total stop-the-world duration, in seconds.

_: The total time used in collection, in seconds.

HP provides a graphical tool called HPjtune to help you visualize the HP JVM
garbage collection activities. This tool is free and can be downloaded. See HPjtune
- visualization tool for HP JVM GC activities - http://www.hp.com.

The following are additional recommendations that add on to HP's excellent
documentation.

Capacity

When the JVM is in steady state, check %9 (Eden Capacity), %12 (Survivor
Sub-space Capacity), %15 (Old Generation Capacity), and %18 (Permanent
Generation Capacity) to make sure you have allocated the JVM heap correctly.

Things to Monitor

In a healthy heap:
v During steady state, you should see mostly Scavenge GCs (%1=1) and the

occasional Full GC caused by allocation failures (%1=2, %2=1).
v The sum of the GC times (%19 and _) should not exceed 3% of the measurement

interval - for example, in a 1-hour measurement interval, the time taken for all
GCs should not be more than 108 seconds.

v If you see continuous Full GCs (%2=1), check to see if the free space in the old
heap (%15 - %13) is less than the sum of %7 and %10. If it is, the JVM uses Full
GCs even though there may be lots of free space in the heap (see “Young
Generation Guarantee” on page 34). This could be due to the amount of
long-lived objects in the heap (see %14 after Full GCs), the old space (%15) is too
small for the amount of long-lived objects or the eden (%9) is too big.

v If the amount of long-lived objects (%14 after Full GCs) is large (e.g., greater
than 350MB) and has been steadily growing, you may have a memory leak. If

Chapter 4. Java Virtual Machines 37

http://www.hp.com

%14 continues to grow, that JVM eventually fails with an outOfMemory
exception (see “OutOfMemory Exceptions” on page 28).

SUN
When the following flags are set:

-verbose:gc -XX:+PrintGCTimeStamps -XX:+PrintGCDetails -Xloggc:filename

The Sun JVM produces the following garbage collection statistics:
0.000: [GC 0.001: [DefNew: 32192K->511K(33152K), 0.0383176 secs]

32192K->511K(101440K), 0.0385223 secs]
1.109: [GC 1.110: [DefNew: 32703K->198K(33152K), 0.0344874 secs]

32703K->697K(101440K), 0.0346844 secs]
2.408: [GC 2.409: [DefNew: 32390K->403K(33152K), 0.0227843 secs]

32889K->902K(101440K), 0.0231518 secs]

Please see extensive Java information on http://www.oracle.com/technetwork/
java/javase/tech/index-jsp-136373.html for examples of how to diagnose GC
problems.

SUN JVM: Potential Memory Leak: After running the JVM for a while, check the
amount of objects remaining after a Full GC to see if there are potential memory
leaks (please see “OutOfMemory Exceptions” on page 28).

Old Heap Too Small

If you see successive Full GCs and the "heap after GC" number is consistently
larger than the size of the Old Generation, the amount of live objects is larger than
the Old Generation.

GC Times

Watch for GC times that take over 2-5 seconds. Recall that all threads are paused
for the duration of the GC. A transaction that normally takes 1 second grows to 3-6
seconds. More importantly, blocked threads that are holding on to database locks
could start to block other threads in other JVMs.

PrintGCStats Script

Sun has developed a script, PrintGCStats, to interpret the results from the output
file generated by "-Xloggc:filename". The PrintGCStats script can be downloaded
from http://java.sun.com/developer/technicalArticles/Programming/turbo/.

Note: The PrintGCStats script can only produce meaningful results of the
-Xloggc:filename output if the JVM is started with the "-verbose:gc
-XX:+PrintGCTimeStamps -XX:+PrintGCDetails" flags.

An example output of the script is as follows:
what count total mean max stddev
gen0(s) 9 0.591 0.06563 0.297 0.0870
gen0t(s) 9 0.600 0.06665 0.305 0.0895
gen1t(s) 9 7.890 0.87667 1.637 0.4381
GC(s) 18 8.490 0.47166 1.637 0.5175
alloc(MB) 9 721.889 80.20985 80.312 0.3079
promo(MB) 9 0.000 0.00000 0.000 0.0000

alloc/elapsed_time = 721.889 MB / 4045.460 s = 0.178 MB/s
alloc/tot_cpu_time = 721.889 MB / 32363.680 s = 0.022 MB/s
alloc/mut_cpu_time = 721.889 MB / 32295.761 s = 0.022 MB/s

38 Sterling Selling and Fulfillment Foundation: Performance Management Guide

http://www.oracle.com/technetwork/java/javase/tech/index-jsp-136373.html
http://www.oracle.com/technetwork/java/javase/tech/index-jsp-136373.html

promo/elapsed_time = 0.000 MB / 4045.460 s = 0.000 MB/s
promo/gc0_time = 0.000 MB / 0.600 s = 0.000 MB/s
gc_seq_load = 67.919 s / 32363.680 s = 0.210%
gc_conc_load = 0.000 s / 32363.680 s = 0.000%
gc_tot_load = 67.919 s / 32363.680 s = 0.210%

The following table describes what each of the tags in the above excerpt means.

Table 14. PrintGCStats Output Statistics

Item Name Description

gen0(s) Young generation collection time in seconds

cmsIM(s) CMS initial mark pause in seconds

cmsRM(s) CMS remark pause in seconds

GC(s) All stop-the-world GC pauses in seconds

cmsCM(s) CMS concurrent mark phase in seconds

cmsCS(s) CMS concurrent sweep phase in seconds

alloc(MB) Object allocation in young generation in MB

promo(MB) Object promotion to old generation in MB

elapsed_time(s) Total wall clock elapsed time for the application run in
seconds

tot_cpu_time(s) Total CPU time = no. of CPUs * elapsed_time

mut_cpu_time(s) Total time that was available to the application in seconds

gc0_time(s) Total time used by GC during young generation pauses

alloc/elapsed_time(MB/s) Allocation rate per unit of elapsed time in MB/seconds

alloc/tot_cpu_time(MB/s) Allocation rate per unit of total CPU time in MB/seconds

alloc/mut_cpu_time(MB/s) Allocation rate per unit of total application time in
MB/seconds

promo/gc0_time(MB/s) Promotion rate per unit of GC time in MB/seconds

gc_seq_load(%) Percentage of total time spent in stop-the-world GCs

gc_conc_load(%) Percentage of total time spent in concurrent GCs

gc_tot_load(%) Total percentage of GC time (sequential and concurrent)

There are two statistics generated by this script that are very useful in tuning the
JVM. The statistic gc_seq_load generates the total stop the world GC time as a
percent of total application time. The statistic gc_tot_load is the total GC time for
both full and scavenge GCs as a percentage of total application time. When making
changes to the JVM this script should be run before and after to see if there is a
positive change in these numbers. It is important to note that by lowering the
gc_tot_load, and increasing the gc_seq_load, there would be a degradation in
performance of the application overall. The reason for this is that the gc_seq_load
is the total time the application spends in "Stop the World" GCs during which all
threads are stopped.

IBM J9 JVM
This section provides recommendations on how to plan, implement, configure,
monitor, and tune the IBM Java Virtual Machine.

The IBM J9 JVM is used when you deploy Sterling Selling and Fulfillment
Foundation with WebSphere application servers on:

Chapter 4. Java Virtual Machines 39

v IBM AIX operating system on POWER_PC based servers or
v Red Hat Enterprise Linux operating system on Intel processor based systems

Recommendations for Implementing IBM J9 JVM
In addition to the general recommendations in “General JVM Recommendations”
on page 25, you should configure the IBM JVM as follows:
v Set JIT and MMI on (by default)
v Set PSALLOC=EARLY and NODISCLAIM=TRUE (IBM AIX only)
v Set the JVM to use the Generational Concurrent Garbage Collector

(-Xgcpolicy:gencon).

JIT and MMI
As we mentioned in “General JVM Recommendations” on page 25, the Java
language is interpreted. Interpretation and execution of bytecodes is much slower
than the executing code that has been compiled to the native instruction set of the
host processor. The IBM JVM uses mixed-mode interpretation (MMI) where
initially bytecodes are interpreted. When the MMI detects that bytecodes have been
interpreted multiple times, it invokes a just-in-time (JIT) compiler to compile those
bytecodes to native instructions.

For performance, you should ensure the JIT and MMI are enabled. The JVM
performance degrades significantly if JIT is disabled. Some third party vendors
may recommend disabling certain portions of the JIT compiler. In those specific
situations, we recommend you run controlled performance tests with and without
that specific JIT option to understand the impact to performance.

The JDK 1.5 Diagnostic Guide (see Sumit Chawla, Fine-Tuning Java Garbage
Collection Performance, How to detect and troubleshoot garbage collection issues with the
IBM Java Virtual Machine, IBM). This provides an excellent description of the JIT
compiler and the MMI.

PSALLOC and NODISCLAIM (AIX only)
IBM AIX implements, by default, a late page allocation policy. When you start a
JVM with a large heap, AIX does not guarantee that there is sufficient page space
to back the heap. AIX only allocates space on the page device when you use the
heap. In some cases, AIX may have to kill JVMs when it is low on free space on
the page devices.

To prevent this, we recommend setting the following environment variables prior
to starting the JVM:

PSALLOC=EARLY
NODISCLAIM=TRUE

Please see “Page Space Allocation Policy” on page 17 for more information.

Generational Concurrent Garbage Collector
The Generational Concurrent Garbage Collector can be activated using the
-Xgcpolicy:gencon command line option. By doing so, the garbage collector
behaves the same as that for the SUN JDK, as described in “Sun and HP-UX
Generational Collectors” on page 32. The Generational Concurrent Garbage
Collector helps when application allocates many short-lived objects. Because of the
transactional nature of the Sterling Selling and Fulfillment Foundation application,
a large majority of the objects in the transaction do not survive beyond the
transaction commit and can be garbage collected quickly.

40 Sterling Selling and Fulfillment Foundation: Performance Management Guide

During internal tests, we have noticed a 30% improvement in elapsed time with a
1-5% increase in CPU consumption when using the gencon GC policy over the
default GC policy (-Xgcpolicy.optthruput).

Heap Memory and Garbage Collection
The JVM runtime environment uses a large memory pool called the heap for object
allocation. The JVM automatically invokes garbage collections in order to clean up
the heap of unreferenced or dead objects. In contrast, memory management in
legacy programming languages like C++ was left to the programmer.

JVM is the foundation or engine on which Sterling Selling and Fulfillment
Foundation and the WebLogic or WebSphere application server runs. If the JVM
heap settings are not set correctly, the garbage collection overhead can make the
system appear unresponsive. In the worst case, your transactions or the JVM could
abort due to outOfMemory exceptions (please see “OutOfMemory Exceptions” on
page 28).

The optimal JVM heap settings depends on many factors such as the type of
processing. For example, a JVM dedicated to servicing short lived transactions has
different demands than one that services a few but very large transactions.

Heap Settings

The default heap settings are appropriate for small applications. By default, the
heap on AIX starts at 4MB and can grow to 64MB. You must adjust the heap
settings for your environment.

Fortunately, the IBM JVM was designed to work with most scenarios with little
tuning. From past experiences, we generally only set the initial and maximum
heap size. The IBM JVM also provides good statistics to help monitor and tune the
JVMs. See Mattias Persson, Holly Cummins, Java technology, IBM Style, Part 2,
Garbage collection with the Extensible Verbose Toolkit, IBM for an excellent article on
monitoring the JVM performance.

Starting Recommendations

We recommend you configure the IBM JVMs with the following starting
recommendations and test the JVMs under representative workloads and traffic
volumes prior to going live in production.

As a starting point, you should configure the JVMs running the Sterling Selling
and Fulfillment Foundation agents and application servers with a 384MB, 1024MB,
or larger heap respectively. The following are two sample configurations to start
the Sterling Selling and Fulfillment Foundation Schedule agent and a WebLogic
application server:

export PSALLOC=EARLY # AIX Only
export NODISCLAIM=TRUE # AIX Only

java -Xms384m -Xmx384m \
-Dsun.rmi.dgc.server.gcInterval=3600000 \
-verbosegc \
com.yantra.integration.adapter.IntegrationAdapter

java -Xms1024m -Xmx1024m \
-Dsun.rmi.dgc.server.gcInterval=3600000 \
-verbosegc \
weblogic.Server

Chapter 4. Java Virtual Machines 41

The -Xms and -Xmx set the initial and maximum heap size. When setting these
values, keep the following guidelines in mind:
v Set the initial (-Xms) and maximum (-Xmx) heap size the same - This eliminates

the need of the JVM to decide when to expand or shrink the heap. This could
also prevent the situation where there is not enough swap space when the JVM
needs to expand the overall heap.

v By default, Sterling Selling and Fulfillment Foundation caches reference data for
performance. Depending on your data setup, you may have to increase the heap
size or reduce the numbers of cached records. See “Performance Feature -
Reference Data Caching” on page 104 for more information on the caching
feature.

v You must ensure that the node has enough physical memory so that portions of
the heap are not paged out.

v You must ensure there is enough swap space to back the virtual address space
requirement for all concurrently running JVMs or, if you are on AIX, ensure the
JVMs are started with PSALLOC=EARLY and NODISCLAIM=TRUE (see “Page Space
Allocation Policy” on page 17).

Garbage Collection Statistics

We recommend that you continuously collect garbage collection statistics for all
JVMs especially in production. The collection overhead is minor compared to the
benefit. With the statistics, you can tell if:
v A JVM has or is about to run into a memory leak.
v The garbage collection is efficient.
v Your JVM heap settings are optimal.

To enable GC statistics, set the -verbosegc option. The JDK 1.5 Diagnostic Guide
(IBM Developer Kit and Runtime Environment, Java Technology Edition,
Diagnostic Guide, Version 5.0, SC34-6650) provides very good guidance on how to
interpret the garbage collection statistics.

Garbage Collection Statistics
Garbage collection statistics are critical and should be enabled in production. The
statistics can be used to understand the behavior of the JVM heap management
and the efficiency of the JVM.

This section describes the garbage collection statistics.

IBM provides excellent documentation on their garbage collector and how to
interpret their GC statistics (see IBM Developer Kit and Runtime Environment,
Java Technology Edition, Diagnostic Guide, Version 5.0, SC34-6650).

Here is a sample of the GC log:
<af type="tenured" id="100" timestamp="Sun Nov 25 15:56:09 2007"

intervalms="120245.593">
<minimum requested_bytes="10016" />
<time exclusiveaccessms="0.045" />
<tenured freebytes="2704" totalbytes="1073741824" percent="0" >

<soa freebytes="2704" totalbytes="1073741824" percent="0" />
<loa freebytes="0" totalbytes="0" percent="0" />

</tenured>
<gc type="global" id="100" totalid="100" intervalms="120245.689">

<refs_cleared soft="0" threshold="32" weak="0" phantom="0" />
<finalization objectsqueued="0" />

42 Sterling Selling and Fulfillment Foundation: Performance Management Guide

<timesms mark="35.301" sweep="5.074" compact="0.000" total="40.426" />
<tenured freebytes="808526296" totalbytes="1073741824" percent="75" >

<soa freebytes="808526296" totalbytes="1073741824" percent="75" />
<loa freebytes="0" totalbytes="0" percent="0" />

</tenured>
</gc>
<tenured freebytes="808516280" totalbytes="1073741824" percent="75" >

<soa freebytes="808516280" totalbytes="1073741824" percent="75" />
<loa freebytes="0" totalbytes="0" percent="0" />

</tenured>
<time totalms="40.569" />

</af>

In the example above, <af type="tenured" id="100" indicates that this is the 100th
time an attempt to allocate memory failed and as a result, a GC was initiated. An
allocation failure is not an error in the system or code. When there is not enough
free space in the heap, the JVM automatically initiate a garbage collection. The last
time an allocation failure occurred was 120245.593 ms ago (or 120.245 seconds).

The lines starting with <gc type="global" id="100" provides information on the
collection process. In the example above, garbage collection initiated the mark and
sweep phases which completed in 35.301 and 5.074 milliseconds respectively. The
JVM determined that the heap was not fragmented and hence did not require to
compact the heap. At the end of the GC, the heap became 808,516,280 bytes free.

Frequency of GC Health Check

You should check how often GCs are occurring by looking at the time between
allocation failures.

GC Times

You should monitor the amount of time the JVM spends in GC. Typically, your
JVM should:
v Spend less than 0.5 seconds in each GC cycle.
v The percentage of time in garbage collection should be less than 3% - This

percentage can be calculated by dividing the sum of the garbage collection times
over an interval by the interval. The interval could be a fixed 20 minutes or the
last 20 GCs.

Potential Memory Leak

If the JVM is running for a while and the percentage free is continually decreasing
with each successive GC, that JVM could be heading to an outOfMemory
condition. This could indicate that either the Java application is keeping a lot of
active objects (e.g., reference data caching) or there is a memory leak.

By default, the IBM JVM produces a HeapDump when it runs out of memory. You
can also configure the IBM JVM to produce a HeapDump on a signal. See
“Heapdump” on page 44 below.

IBM Pattern Modeling and Analysis Tool for Java Garbage
Collector

IBM provides an excellent tool called the IBM Pattern Modeling and Analysis Tool
for Java Garbage Collector (pmat) to help you visualize the GC statistics such as
pause times, amount of space requested, etc. The pmat is available for download

Chapter 4. Java Virtual Machines 43

from IBM's alphaworks website at http://www.alphaworks.ibm.com/tech/pmat.
The download page contains excellent information about using the tool for analysis
and troubleshooting.

Heapdump
For IBM JVMs, generate a heapdump and use the IBM Memory Dump Diagnostic
tool to identify the memory leak. We have found this tool to be easy to use and
easy to identify memory leaks. The IBM JVM automatically generates the
heapdump when it runs into an OutOfMemory exception. You can also request a
heapdump using a Kill -3 by first setting the following environment variables:

IBM_HEAPDUMP=true
IBM_HEAPDUMP_OUTOFMEMORY=true
IBM_HEAPDUMPDIR=<directory to store the heap dumps>

The IBM Memory Dump Diagnostic is an excellent tool for analyzing the
heapdump. You can download the Memory Dump Diagnostic from
http://www.alphaworks.ibm.com/tech/heapanalyzer.

You can read up on IBM heapdumps (and a lot more) in the IBM JDK 5.0/6.0
Diagnostic Guides (see IBM Developer Kit and Runtime Environment, Java
Technology Edition, Diagnostic Guide, Version 5.0, SC34-6650).

Oracle JRockit
This section provides recommendations on how to plan, implement, configure,
monitor, and tune the Oracle JRockit Java Virtual Machine.

The JRockit JVM is used when you deploy Sterling Selling and Fulfillment
Foundation with WebLogic application servers on either the Red Hat Enterprise
Linux or Windows operating system on Intel processor-based systems.

Implementation
The Oracle JRockit was designed for server-side applications. One distinguishing
feature of JRockit is its adaptability. During the life of the JVM, JRockit could
change the type of garbage collector used or the size of the heap.

Starting Recommendations

To exploit the adaptivity of the JRockit JVM, we recommend the simple starting
JVM settings:

java -Xms384m -Xmx384m \
-Dsun.rmi.dgc.server.gcInterval=3600000 \
-Xverbosetimestamp -verbosegc \
com.yantra.integration.adapter.IntegrationAdapter

java -Xms768m -Xmx768m \
-Dsun.rmi.dgc.server.gcInterval=3600000 \
-Xverbosetimestamp -verbosegc \
weblogic.Server

Heap Settings

The -Xms and -Xmx sets the initial and maximum heap size. When setting these
values, keep the following guidelines in mind:

44 Sterling Selling and Fulfillment Foundation: Performance Management Guide

v Set the initial (-Xms) and maximum (-Xmx) heap size the same - This eliminates
the need of the JVM to decide when to expand or shrink the heap. This could
also prevent the situation where there is not enough swap space when the JVM
needs to expand the overall heap.

v By default, Sterling Selling and Fulfillment Foundation caches reference data for
performance. Depending on your data setup, you may have to increase the heap
size or reduce the numbers of cached records. See “Performance Feature -
Reference Data Caching” on page 104 for more information on the caching
feature.

v You must ensure that the node has enough physical memory so that portions of
the heap are not paged out.

Garbage Collection Statistics

We recommend that you continuously collect garbage collection statistics for all
JVMs even in production. The collection overhead is minor compared to the
benefit. With the statistics, you can tell if:
v A JVM has or is about to run into a memory leak.
v The garbage collection is efficient.
v Your JVM heap settings are optimal.

To enable GC statistics, set the -verbosegc option.

Chapter 4. Java Virtual Machines 45

46 Sterling Selling and Fulfillment Foundation: Performance Management Guide

Chapter 5. Application Servers

WebSphere Tuning
This section assumes that you:
v Are familiar with and have installed WebSphere application server in a network

deployment
v Have read the IBM WebSphere Application Server Tuning Guide.

This section elaborates on the recommendations found in the IBM WebSphere
Application Server Tuning Guide.

WebSphere Queuing Network
The IBM WebSphere Application Server Tuning Guide describes transactions to
WebSphere as being processed in a network of interconnected queues that includes
the network, Web Server, Web Container, EJB container, data source, connection
pool, and the database sessions.

IBM then recommends that the queues closest to the client be large (e.g, the
network) and that downstream queues (e.g., EJB container, data source) grow
progressively smaller as it gets further from the client. One of the reasons offered
is that an application that spends 90% of its time in a complex servlet and only
10% of its time making short JDBC queries would require a significantly smaller
database connection queue than the Web Container queue.

We agree with the first statement that the network queue can be large because it is
preferable to queue in the network and not in the application server. However,
from our experience, the downstream queues should be set to the same size if not
larger.

In database-intensive applications, such as Sterling Selling and Fulfillment
Foundation, when a transaction enters the Web Container, the APIs almost always
require a database connection. If one were to allow 20 concurrent transactions (by
setting Maximum Thread Size in the Web Container Services) to run against a
connection pool of 12, there is a possibility that at peak processing periods, 8
transactions would either be forced to wait for a connection or throw an exception
because it can't get a connection.

Using the same argument, the database instance should be able to create more
sessions than the sum of all the connections possible from all the WebSphere
instances combined. You also need additional database sessions for standalone Java
applications that need database services (for example, the Sterling Selling and
Fulfillment Foundation agents or monitors), real-time performance monitors,
database utilities and so forth.

WebSphere Connection Pool

Creating database connections are very expensive operations. For performance,
Sterling Selling and Fulfillment Foundation takes advantage of the WebSphere
connection pool.

To enable connection pooling, you need to:

© Copyright IBM Corp. 1999, 2012 47

v Define a data source to Sterling Selling and Fulfillment Foundation.
v Define a connection pool in WebSphere and then associate the connection pool

to the datasource name in Sterling Selling and Fulfillment Foundation.
v IBM recommends that data sources do not participate in container managed

persistence (CMP). For configuration, go to the data sources setup in WebSphere
and clear the Use this data source in container managed persistence (CMP)
field while creating the data source.

WebSphere Connection Pool: Define Data Source in Sterling
Selling and Fulfillment Foundation
To define the datasource name to Sterling Selling and Fulfillment Foundation, add
the following entry in the <INSTALL_DIR>/properties/
customer_overrides.properties file (see “Property File” on page 114):

yfs.yfs.dblogin.datasource.name=yfsdbsourceperf

For additional information about overriding properties using the
customer_overrides.properties file, see the Sterling Selling and Fulfillment
Foundation: Properties Guide.

At initialization, Sterling Selling and Fulfillment Foundation uses the datasource
name to find the connection pool in WebSphere. In the example above, the
datasource name is yfsdbsourceperf.

IBM recommends that you benchmark your application before migration to
production to ensure that these values are set optimally. IBM also recommends that
you continually monitor the connection pool usage levels to ensure that these
parameters are set optimally.

Define a Connection Pool in WebSphere
In the WebSphere administrative console, create a new connection pool with the
following attributes.

Table 15. Connection Pool - Connection Settings

Attribute Value

Minimum pool size Initial number of connections to create for the connection
pool. If the pool is allowed to shrink, it does not shrink
below this number. See below for recommendations.

Maximum pool size Maximum number of connections that can be created for this
pool. See below for recommendations.

Statement cache size The maximum number of prepared statements to cache for
the data source.

IBM recommends that you benchmark your application before migration to
production to ensure that these values are set optimally. IBM also recommends that
you continually monitor the connection pool usage levels to ensure that these
parameters are set optimally.

Minimum Pool Size

Bear in mind the following guidelines when setting the minimum pool size
attribute:
v You should set the minimum pool size to satisfy your daily average connection

requirements. This level can be derived by monitoring your actual pool usage
levels.

48 Sterling Selling and Fulfillment Foundation: Performance Management Guide

v You may want to set the minimum pool size to a higher number if your system
experiences frequent traffic bursts.

v You may not want to set minimum pool size to a very high number because
both WebSphere and the database server needs to maintain a high number of
connections.

Maximum Pool Size

This attribute sets the maximum number of connections the pool can grow to
within a single WebSphere instance. If you set this value to 20 and you have ten
WebSphere instances, in theory, WebSphere could create 200 database connections.

Bear in mind the following guidelines when setting the maximum pool size
attribute:
v If you are not using the multi-schema feature, each Sterling Selling and

Fulfillment Foundation transaction generally requires one connection. Therefore,
you need one connection per active thread. In practice, set the maximum
capacity to be around the active thread count plus a small number (for example,
2 or 5) for a safety buffer.

v If you are using the multi-schema feature, each Sterling Selling and Fulfillment
Foundation transaction requires up to four connections. These are required for
the metadata schema, configuration schema, transaction schema and the statistics
schema. You will need to establish separate pools for each one of these schemas.
Therefore, you need one connection per pool per active thread. In practice, it is
recommended to set the maximum capacity to be equal to the active thread
count plus a small number (for example, 2 or 5) for a safety buffer.

v Monitor your application in production to confirm that the ratio of connection
usage follows the guidelines mentioned.

v Benchmark your application to see if custom code, user exits, and so forth
require additional connections.

Statement Cache Size

This attribute tells WebSphere to create a cache at the data source level to store
prepared statements up to the value specified.

Prepared statements are precompiled SQL statements that can be repeatedly
invoked with different parameter values. Prepared statements reduce the need to
compile the SQL statements.

To disable prepared statement caching, set the prepared statement cache size to 0.
To use the cache, you can set a value to a higher value.

WebSphere Tuning: JSP Pre-Compilation
When users call a JSP page the first time, WebSphere automatically compiles that
JSP. JSP compilations, however, can take a long time, which could lead to the
perception that the system is slow. Some JSPs can take over a minute to compile.
You can avoid this problem by precompiling the JSPs before or after deployment.

To do this, use the JspBatchCompiler script from your WebSphere install's
${WAS_ROOT}/bin.

For precompiling prior to deployment, use:

Chapter 5. Application Servers 49

./JspBatchCompiler.sh -ear.path <ear location>/<EAR name> -forceCompilation true
-compileToDir <path>

You can then deploy this precompiled EAR as usual through the WebSphere
Administration console. It is possible that WebSphere may need more memory
when deploying this EAR. The advantage in precompiling before deployment is
that you will not have to precompile on every single node after deployment.

For precompiling after deployment, use:
./JspBatchCompiler.sh \
-enterpriseapp.name ${appName} \
-cell.name <customer cell name> \
-node.name <customer node name> \
-server.name <customer server name> \
-profileName <profile name> \
-keepgenerated true

Note: For Windows, format the example appropriately.

Note: The customer cell name, customer node name, customer server name, and
customer profile name parameters refer to the WebSphere instance where the EAR
was deployed.

For additional information about how to use the JspBatchCompiler, use the -help
option to the command or refer to WebSphere's Infocenter documentation.

WebSphere: HTTP Load-Balancing
The Sterling Selling and Fulfillment Foundation HTTP screens are stateful in the
sense that a screen preserves state information for subsequent screens. As a result,
you have to set up proxy servers or load-balancers to load-balance HTTP requests
with a “sticky” load-balancing policy. This ensures HTTP requests go back to the
server that have the session states.

Load-balancing can improve performance for large number of HTTP users because
the user population is serviced by multiple application servers that are managed as
a cluster. Load-balancing can be implemented with a variety of technologies
ranging from the Apache proxy servers to hardware-based load balancers.

HTTP Session Replication

Sterling Selling and Fulfilment Foundation supports HTTP session replication with
WebSphere 7.0. See the application server documentation (info center) for the OS
version to set up session replication. Testing has been performed with
memory-to-memoryreplication for peer-to-peer mode.

WebSphere: Monitoring
You should monitor the following on a regular basis:
v Execute Thread Count

– Track the average and maximum number of active execute threads through
third-party tools or custom-developed JMX-based programs.

– Correlate that number to the workload level issued to the application servers.
– Either using mathematical projections or system tests, estimate the number of

concurrent threads expected during your peak operational periods. As a
general rule, you should plan to keep the average active threads to 15 or less.

v Garbage Collection

50 Sterling Selling and Fulfillment Foundation: Performance Management Guide

– Monitor the frequency and health of the JVM's heap management. Please see
the section relevant to your JVM in “General JVM Recommendations” on
page 25.

v Connection Pool Usage
– Check if Connection High is equal to the JDBC pool size - The Connection

High is the highest number of connections ever reached. Recall, the JDBC
pool to be equal to the maximum possible transaction concurrency level plus
a safety buffer of two. The Connection High should not be the same as the
JDBC pool size.

Oracle's WebLogic Tuning Recommendations
This section assumes that you:
v Are familiar with and have installed WebLogic application server in a clustered

mode
v Have read Oracle's WebLogic Server Performance and Tuning which can be found

in http://www.oracle.com/technology/documentation/index.html

In keeping with our performance management principles, this section augments
the recommendations found in Oracle's WebLogic Server Performance and Tuning
when needed. You should carefully review Oracle's recommendations because not
all apply. As always, you should test any changes from their default settings to see
if the changes benefit your configuration. Some of our recommendations that
deviate from Oracle's include:
v Do not use Oracle's one-way message send performance feature that was

introduced in WebLogic 9.2. The one-way send feature allow message producers
to send messages to queues without waiting for a corresponding response or
acknowledgement. This feature improves performance at the cost of lowering
reliability. The Sterling Selling and Fulfillment Foundation workloads, JMS
interactions are transactional and require an acknowledgement.

Work Manager
The Sterling Selling and Fulfillment Foundation workloads run in WebLogic's
default work manager. You should monitor the default work manager's pool size
over time to see if the pool size is sufficient.

If the pool size climbs to 25 or more threads, you may want to consider =
configuring additional WebLogic Server instances instead of increasing the thread
count.

Application Server Instances
Please keep in mind the following when determining the number of WebLogic
instances:
v Configure at most one WebLogic Server instance per processor - If you have a

4-way node (4 processors), then configure at most 4 WebLogic Server instances
on that node.

v Plan for a single WebLogic Server instance to be able to use at most 4
(preferably 2) processors. If you have an 8-way node, you should not implement
one WebLogic Server instance and expect it to effectively use all processors. With
this rule, to fully utilize the node, you should plan for two to four WebLogic
Server instances.

Chapter 5. Application Servers 51

WebLogic Connection Pool
Creating database connections are very expensive operations. For performance,
Sterling Selling and Fulfillment Foundation takes advantage of the WebLogic
connection pool.

To enable connection pooling, you need to:
v Define a data source to Sterling Selling and Fulfillment Foundation.
v Define a connection pool in WebLogic.
v Define a data source in WebLogic that ties the data source in Sterling Selling and

Fulfillment Foundation to the connection pool in WebLogic.

WebLogic Connection Pool: Define Data Source in Sterling
Selling and Fulfillment Foundation
To define the data source name to Sterling Selling and Fulfillment Foundation, add
the following entry in the <INSTALL_DIR>/properties/
customer_overrides.properties file (see “Property File” on page 114):

yfs.yfs.dblogin.datasource.name=yfsdbsourceperf

For additional information about overriding properties using the
customer_overrides.properties file, see the Sterling Selling and Fulfillment
Foundation: Properties Guide.

At initialization, Sterling Selling and Fulfillment Foundation uses the datasource
name to find the connection pool in WebLogic. In the example above, the
datasource name is yfsdbsourceperf.

IBM recommends that you benchmark your application before migration to
production to ensure that these values are set optimally. IBM also recommends that
you continually monitor the connection pool usage levels to ensure that these
parameters are set optimally.

Initial Capacity

Bear in mind the following guidelines when setting the initial capacity attribute:
v You should set the initial capacity to satisfy your daily average connection

requirements. This level can be derived by monitoring your actual pool usage
levels.

v You may want to set the initial capacity to a higher number if your system
experiences frequent traffic bursts.

v You may not want to set initial capacity to a very high number because both
WebLogic and database server need to maintain a high number of connections.
For example, assume you have 8 managed server instances, each with 15 execute
threads. If you set initial and maximum connection at 17, WebLogic creates and
maintain 136 database connections.

Note: The Oracle WebLogic Server Performance and Tuning manual (see Tune the
Number of Database Connections) recommends setting the initial connection pool
capacity equal to the maximum capacity. Unfortunately, if you to follow that
recommendation, you can not determine the current pool usage levels since the
pool usage would be equal to the initial and the maximum. As a result:
v You can not determine if there is a connection leak - for example, if the current

connection pool usage is higher than your work manager thread utilization.

52 Sterling Selling and Fulfillment Foundation: Performance Management Guide

v You can not know if your current connection pool usage is close to the
maximum capacity.

For that reason, we prefer to keep the initial capacity lower than the maximum
capacity.

Maximum Capacity

This attribute sets the maximum number of connections your pool can grow to
within a single WebLogic Server instance. If you set this value to 27 and you have
eight WebLogic Server instances, in theory, WebLogic could create up to 216
database connections.

Bear in mind the following guidelines when setting the maximum capacity
attribute:
v If you are not using the multi-schema feature, each Sterling Selling and

Fulfillment Foundation transaction generally requires one connection. Therefore,
you need one connection per active thread. In practice, set the maximum
capacity to be around the active thread count plus a small number (for example,
2 or 5) for a safety buffer.

v If you are using the multi-schema feature, each Sterling Selling and Fulfillment
Foundation transaction requires up to four connections. These are required for
the metadata schema, configuration schema, transaction schema and the statistics
schema. You will need to establish separate pools for each one of these schemas.
Therefore, you need one connection per pool per active thread. In practice, it is
recommended to set the maximum capacity to be equal to the active thread
count plus a small number (for example, 2 or 5) for a safety buffer.

v Monitor your application in production to confirm that the ratio of connection
usage follows the guidelines mentioned.

v Benchmark your application to see if custom code, user exits, and so forth
require additional connections.

Allow Shrinking and Shrink Frequency

This attribute pair informs WebLogic to release inactive connections if they have
been idle for the period as specified by "shrink frequency". This has the advantage
of releasing resources both at the WebLogic and database server end.

Prepared Statement Cache Size

This attribute tells WebLogic to create a cache for each database connection that
can store prepared statements up to the value specified.

Prepared statements are precompiled SQL statements that can be repeatedly
invoked with different parameter values. Prepared statements reduce the need to
compile the SQL statements.

We recommend disabling the cache. To disable prepared statement caching, set the
prepared statement cache size to 0.

WebLogic Tuning: JSP Pre-Compilation
When users call up a JSP page the first time, WebLogic automatically translates the
JSP file into a servlet and then compiles that servlet. This process can take over 30
seconds, which could lead to user dissatisfaction. Further, this process is performed

Chapter 5. Application Servers 53

serially even on a multiprocessor node - if you have multiple users hitting five
different pages, WebLogic compiles these pages one at a time. As a result, we
strongly recommend precompiling the JSP pages prior to deployment into
production.

To precompile, you need to build the Sterling Selling and Fulfillment Foundation
enterprise archive file (smcfs.ear). See the Sterling Selling and Fulfillment Foundation:
Installation Guide.

When you have the ear, issue the following:
WL_HOME=The Weblogic server directory
INSTALL_DIR=Sterling Selling and

Fulfillment Foundation
installation directory

WLS_JARS=${JAVA_HOME}/lib/tools.jar:\
${WL_HOME}/lib/weblogic_sp.jar:\
${WL_HOME}/lib/weblogic.jar:\
${WL_HOME}/lib/ojdbc6.jar:\
${JAVA_HOME}/jre/lib/rt.jar:\
${WL_HOME}/lib/webservices.jar
STERLING_CLASSPATH="${WLS_JARS}:${CLASSPATH}"
APPC_CLASSPATH=${WL_HOME}/lib/weblogic.jar:\
${JAVA_HOME}/lib/tools.jar:\
${JAVA_HOME}/bin/java -Xms1024m -Xmx1024m \
-classpath ${APPC_CLASSPATH} weblogic.appc \
-output ${INSTALL_DIR}/external_deployments/smcfs.ear \
-forceGeneration \
-O \
-verbose \
-classpath ${STERLING_CLASSPATH} \
${INSTALL_DIR}/external_deployments/smcfs.ear

Note: For Windows, format the example appropriately.

The precompiled JSPs are stored back into the smcfs.ear file.

WebLogic Server Cluster
For operational simplicity, you could implement the WebLogic Server as a single
(non-clustered) instance. However, for availability and performance, many
installations implement a WebLogic cluster over separate physical nodes. When
creating the cluster, consider the following:
v For performance, multiple WebLogic instances in a cluster generally out-perform

a single WebLogic instance on a large SMP node.
v For availability, multiple WebLogic instances spread over multiple physical

nodes reduce the impact of losing a node.
v For performance, multiple WebLogic instances spread over multiple physical

nodes reduce the impact of garbage collection on response times to users.
v For maintainability, set aside a bank of consecutive IP addresses for the cluster

so that you can multi-home the network cards. Each WebLogic instance requires
a unique IP address.

WebLogic: HTTP Load-Balancing
The Sterling Selling and Fulfillment Foundation HTTP screens are stateful, in the
sense that a screen preserves state information for subsequent screens. As a result,
you have to set up proxy servers or load-balancers to load-balance HTTP requests
with a “sticky” load-balancing policy. This ensures HTTP requests go back to the
server that have the session states.

54 Sterling Selling and Fulfillment Foundation: Performance Management Guide

Load-balancing can improve performance for large number of HTTP users because
the user population is serviced by multiple application servers that are managed as
a cluster. Load-balancing can be implemented with a variety of technologies
ranging from the Apache proxy servers to hardware-based load balancers.

HTTP Session Replication

Sterling Selling and Fulfillment Foundation supports HTTP in-memory session
replication in the following configuration:
v WebLogic
v Apache 2.0.44 with the WebLogic plug-in as the proxy server with idempotent

set to 'OFF'

See the Sterling Selling and Fulfillment Foundation: Installation Guide for instructions
on how to set up WebLogic in-memory session replication.

Note: The Apache or load-balancer idempotent flag must be set to OFF. In rare
cases, for example, when a transaction completes and commits but was unable to
post the response to the proxy server, the proxy server could retransmit the
transaction. For some update transactions, this could result in duplicate update
entries.

WebLogic: Monitoring
You should monitor the following on a regular basis:
v Work Manager Thread Utilization

– Track the average and maximum number of active execute threads through
third-party tools or custom-developed JMX-based programs.

– Correlate that number to the workload level issued to the application servers.
– Either using mathematical projections or system tests, estimate the number of

concurrent threads expected during your peak operational periods. As a
general rule, you should plan to keep the average active threads to 15 or less.

v Garbage Collection
– Monitor the frequency and health of the JVM's heap management. Please see

the section relevant to your JVM in “General JVM Recommendations” on
page 25.

v Connection Pool Usage
– Check if Connection High is equal to the JDBC pool size - the Connection

High is the highest number of connections ever reached. Recall, the JDBC
pool to be equal to the maximum possible transaction concurrency level plus
a safety buffer of two. The Connection High should not be the same as the
JDBC pool size.

JBoss Tuning
This section assumes that you:
v Are familiar with and have installed the JBoss application server in a clustered

mode.
v Have read the Jboss admin and development guide (JBoss Enterprise Application

Platform Documentation Library – http://www.redhat.com/docs/en-US/
JBoss_Enterprise_Application_Platform/EAP_4_3_Portal.html#EAP4_3_Rel).

Chapter 5. Application Servers 55

This section elaborates on the recommendations found in JBoss Enterprise
Application Platform Documentation Library (http://www.redhat.com/docs/en-US/
JBoss_Enterprise_Application_Platform/EAP_4_3_Portal.html#EAP4_3_Rel).

JBoss Tuning Considerations
v Disable scanning for hot deployments.
v Set up prepared statement cache and connection pooling.
v Precompile the EAR (See section "JSP Tuning: JSP Pre-Compilation) and disable

compilation checks in production.
v Set Web container thread pools accordingly. Watch the currentThreadsBusy

parameter. If this increases, watch the threadpool and the connectionPool.
v Trim log4j settings (turn off console appender; reduce severity from WARN to

ERROR)
v Turn off development mode in your server/slim/jbossweb-tomcat50.sar/conf/

web.xml.
v Disable mail service.
v Disable hypersonic database (not to be used in production).
v If you are not using JBossMQ or JBoss JMS, disable the same.
v Disable XA datasource (Sterling Supply Chain applications do not use XA

datasources).
v Disable scheduler service if not needed.

JBOSS Connection Pooling
Creating database connections are very expensive operations. For performance,
Sterling Selling and Fulfillment Foundation takes advantage of the connection
pooling feature in JBoss.

To enable connection pooling, you need to:
v Define a data source to Sterling Selling and Fulfillment Foundation.
v Define a connection pool in JBoss.
v Define a data source in JBoss that ties the data source in Sterling Selling and

Fulfillment Foundation to the connection pool in JBoss.

JSP Tuning: JSP Pre-Compilation
When users invoke a JSP page for the first time, JBoss automatically compiles the
JSP. The JSP compilation may take a long time. Some JSPs may take more than one
minute to finish compilation. Due to this, it appears as though the system
performance is slow. To improve the system performance, ensure that you
precompile JSPs before building the Sterling Selling and Fulfillment Foundation
enterprise archive file (smcfs<application_name>.ear).

To precompile JSPs:
v Add the following lines to the properties/sandbox.cfg file to request

precompilation. By default, the JSPs for JBoss are not precompiled:
JBOSS_PRECOMPILE_JSP=TRUE
JBOSS_DIR=<JBOSS_HOME>

v From <INSTALL_DIR>/bin, run the command to rebuild your property files:
setupfiles.sh

v Build the Sterling Selling and Fulfillment Foundation enterprise archive file
(smcfs<application_name>.ear) using instructions from the Sterling Selling and
Fulfillment Foundation: Installation Guide.

56 Sterling Selling and Fulfillment Foundation: Performance Management Guide

The precompile scripts expects the JBoss server to be the default name of "all". See
the Sterling Selling and Fulfillment Foundation: Installation Guide.

You can increase the amount of JVM heap that the JSP compiler runs in by
changing the following parameters in the <INSTALL_DIR>/bin/build.properties:

jboss.PRECOMPILE_MAX_MEMORY=2048m
jboss.PRECOMPILE_MIN_MEMORY=512m

JBoss: HTTP Load-Balancing
The Sterling Selling and Fulfillment Foundation HTTP screens are stateful in the
sense that a screen preserves state information for subsequent screens. As a result,
you have to set up proxy servers or load-balancers to load-balance HTTP requests
with a “sticky” load-balancing policy. This ensures HTTP requests go back to the
server that have the session states.

Load-balancing can improve performance for large number of HTTP users because
the user population is serviced by multiple application servers that are managed as
a cluster. Load-balancing can be implemented with a variety of technologies
ranging from the Apache proxy servers to hardware-based load balancers.

HTTP Session Replication

Please refer to the JBoss application server documentation (http://
www.redhat.com/docs/en-US/JBoss_Enterprise_Application_Platform/
EAP_4_3_Portal.html#EAP4_3_Rel) for details to set up HTTP Session replication.
Testing was performed with CacheMode set to REPL_ASYNC (the default value) in
jboss-service.xml under the ~/deploy/jbossweb-cluster.sar/META-INF/ directory.

Chapter 5. Application Servers 57

58 Sterling Selling and Fulfillment Foundation: Performance Management Guide

Chapter 6. Database Management System

Sterling Selling and Fulfillment Foundation uses a database server as a repository
for the transactional, reference, and history data generated and used by Sterling
Selling and Fulfillment Foundation.

This chapter provides planning elements that have to be completed prior to the
implementation phase. The key planning tasks include, at a minimum:
v Selecting a certified database management server software and version.
v Determining the size and configuration of the database server node
v Determining the size and configuration of the database disk subsystem
v Determining the disk technology

Supported Configurations
See the Sterling Selling and Fulfillment Foundation: System Requirements Guide for a
list of the supported configurations.

Server Sizing
At appropriate times in the project lifecycle, you can request a Server Sizing study
from your Professional Services Project Manager or a IBM Sales Executive. This
study starts with the Sterling Selling and Fulfillment Foundation Server Sizing
Questionnaire. IBM Performance Engineering creates a sizing document that
provides an estimated processor, memory, and network requirement for the
standard/baseline Sterling Selling and Fulfillment Foundation. You need to factor
in additional requirements such as other workloads on the same node (for
example, additional third party software, customization, performance monitors,
and so forth).

Disk Technology
Your disk capacity requirement is a very important input to the disk configuration
planning process. This is not a simple process that involves many other factors
including:
v Survivability

– Configure the disks with the ability to survive single or multiple disk failures
(e.g., RAID-1 or RAID-10).

– Configure the disk array with multiple I/O paths to the server to survive I/O
path failures.

– Configure the disks to be accessible from multiple server nodes to tolerate a
single node failure.

v Manageability
– If you have very short time windows to backup the database, select disk

arrays that allow you to take logical backups (e.g., array snapshots).
v Scalability/performance

– Configure the disk array with many small disks instead of a few large disks
so that you can increase the number of I/O paths.

– Configure the disk array with large NVRAM cache to improve read and write
performance.

© Copyright IBM Corp. 1999, 2012 59

– Configure the disks with stripping (e.g., RAID-0 or RAID-10).

Let's take for example that you need 900GB and you have disk arrays or storage
area networks (SAN) that are made up of 93GB disks. The following table
summarizes the trade-off choices for the common disk organizations. Let's further
assume that the database is implemented over ninety 10GB data files.

Table 16. Disk Organization - Trade-Off

Tech Scalability Survivability Maintainability Num Disks

JBOD Poor - Subject to
throughput of
individual disks

Poor - Single disk
failure creates outage
and require database
recovery

Poor - High disk
utilization skew

10

RAID-0 Excellent - Striping
N disks provides
read/write
throughput at N
times a single disk

Poor - Single disk
failure creates outage
and require database
recovery

Excellent - expect
near uniform disk
utilization within a
logical unit.
Potential LUN
utilization skew.

10

RAID-1 Poor - similar
performance to JBOD

Better - Could
survive multiple disk
failures in different
mirrored sets

Poor - High disk
utilization skew

20

RAID-5 Excellent for read -
similar to RAID-0.
Potentially poor for
write performance.

Better - Able to
survive a single disk
failure. Multiple disk
failures creates an
outage and require
database recovery.

Excellent - low disk
util skew. Possible
LUN utilization
skew.

11

RAID-01 Excellent read/write
performance.

Could tolerate up to
two disk failures as
long as both failures
are not in the same
mirrored set.

Excellent - low disk
util skew. Possible
LUN utilization
skew.

20

RAID-10 Excellent read/write
performance.

Could tolerate up to
N disk failures as
long as there isn't
two failures in a
mirrored set

Excellent - low disk
util skew. Possible
LUN utilization
skew.

20

Sterling Selling and Fulfillment Foundation Schema
The Sterling Selling and Fulfillment Foundation: Installation Guide provides directions
on how to create the Sterling Selling and Fulfillment Foundation database, the
Sterling Selling and Fulfillment Foundation tables, and their associated indexes.

These DDL statements are intended to allow you to create a simple schema that is
suitable for general use. You need to review and possibly modify these statements
for production. Specifically:
v The DDL statements create a minimal set of indexes for general Sterling Selling

and Fulfillment Foundation use. You may need to create additional or modify
existing indexes for your business practice.

v The DDL statements create a single tablespace with a large data file. You may
want to create additional tablespaces for manageability as well as additional
data files for I/O load balancing.

60 Sterling Selling and Fulfillment Foundation: Performance Management Guide

Indexes

Most customers use a subset of the broad functionality in Sterling Selling and
Fulfillment Foundation. As a result, the base Sterling Selling and Fulfillment
Foundation database schema with the default or starting set of indexes may have
to be adjusted for your specific use. Therefore, you should validate the starting
index set to see if they support your workloads.

As a suggestion, prior to production, you should conduct a system test where all
the key screens, agents and APIs run against a copy of the production database.
During this test, you can check if additional indexes are required and if there are
any unused indexes you can disable or drop.

Please see the following sections on how to enable index monitoring:
v For Oracle, see “Sterling Selling and Fulfillment Foundation Schema: Oracle

Index Monitoring and Tuning” on page 72.
v For DB2, see “Sterling Selling and Fulfillment Foundation Schema: DB2 Index

Monitoring and Tuning” on page 66.
v For Microsoft SQL Server, see “Microsoft SQL Server Index Monitoring and

Tuning” on page 77.

Custom Indexes

Please follow the following convention when you create a new index:

First, make sure the index name does not end with the following suffix:
v _PK" - This suffix is reserved for indexes that are the primary key for the

underlying table. For example, the index, yfs_order_header_pk, is the primary
key index for the yfs_order_header table.

v _Inn" where nn is an integer value from 0 to 99 - This suffix is reserved for
secondary or alternate indexes for the underlying table. For example, the index,
yfs_order_header_i1, is a secondary index for the yfs_order_header table.

The convention above prevents situations where new base Sterling Selling and
Fulfillment Foundation indexes have the same name as one of your custom index.

Secondly, to further differentiate custom indexes from the base, the custom index
should start with EXTN_ as a prefix and Xnn in the index name. For example, if you
add two indexes to the YFS_ORDER_HEADER table, the index names should be
EXTN_ORDER_HEADER_X1 and EXTN_ORDER_HEADER_X2.

DB2: Implementation
This section provides guidelines on the implementation, configuration and tuning
of DB2 9.7.

Recommended DB2 dbset Registry Variables
The following registry variables are recommended for performance.

Table 17. db2set registry variables

db2set registry variables Value

DB2_USE_ALTERNATE_PAGE_CLEANING ON

DB2_EVALUNCOMMITTED ON

Chapter 6. Database Management System 61

Table 17. db2set registry variables (continued)

db2set registry variables Value

DB2_SKIPDELETED ON

DB2_SKIPINSERTED ON

DB2_PARALLEL_IO See below for recommendations

DB2_SELECTIVITY ALL

DB2LOCK_TO_RB STATEMENT

DB2_EVALUNCOMMITTED

Enabling this variable can reduce the amount of unneeded lock contention from
read share and next-key share. By default, DB2 requests share locks on the index or
record before it checks if the record satisfies the query predicate. Queries that scan
a set of records in tables with high frequency of inserts or updates can
unnecessarily block on records that do not belong to its result set.

When you set DB2_EVALUNCOMMITTED=ON, DB2 performs an uncommitted read on the
record to perform the predicate check. If the record satisfies the predicate, DB2
then requests a share lock on that record.

DB2_SKIPDELETED

Enabling this variable allows index-range or table-scan queries to skip over records
that are in an uncommitted delete state. This reduces the amount of lock
contention from read share and next-key share locks from range queries in tables
with a high frequency of deletes.

When enabled, allows, where possible, table or index access scans to defer or avoid
row locking until a data record is known to satisfy predicate evaluation. With this
variable enabled, predicate evaluation may occur on uncommitted data.

It is applicable only to statements using either Cursor Stability or Read Stability
isolation levels. For index scans, the index must be a type-2 index. Furthermore,
deleted rows are skipped unconditionally on table scan access while deleted keys
are not skipped for type-2 index scans unless the registry variable
DB2_SKIPDELETED is also set.

DB2_SKIPINSERTED

Enabling this parameter allows SELECTs with cursor stability or read stability
isolation levels to skip over uncommitted inserted rows. This parameter setting can
reduce record lock contention on tables with heavy insert rates.

DB2_PARALLEL_IO

Enabling this variable changes the way in which DB2 calculates I/O parallelism to
the tablespace. By default, DB2 sets I/O parallelism to a tablespace to be the
number of containers in that tablespace. For example, if the tablespace has four
containers, prefetches to that tablespace are performed as four extent-sized prefetch
requests.

You should set the DB2_PARALLEL_IO variable if you implement containers on
stripped devices (e.g., RAID-5, RAID-10 or RAID-01).

62 Sterling Selling and Fulfillment Foundation: Performance Management Guide

If you set DB2_PARALLEL_IO=ON or DB2_PARALLEL_IO=*, DB2 assumes that containers
are implemented on a RAID 5 (6+1) configuration - six data disks plus 1 parity
disk. Using the example above, prefetches to the four-container tablespace above
are performed in 24 extent-sized prefetch requests.

You should monitor the unread_prefetch_pages and prefetch_wait_time monitor
element from the snapshot_database monitor to assess the effectiveness of your
prefetch parallel I/O settings. The unread_prefetch_pages monitor element tracks
the number of prefetch pages that were evicted from the buffer pool before it was
used. A continually growing number could indicate that the prefetch requests are
too large either because the prefetch size is larger than the pages needed or that
the prefetch activities are bringing in too many pages for the capacity of the buffer
pool. In either case, you may want to consider reducing the prefetch size.

The application could be waiting for pages if you have high prefetch_wait_time
values.

DB2_SELECTIVITY

Enabling this variable allows the selectivity clause to be used in the where clause.
Without setting DB2_SELECTIVITY=ALL, Db2only allows the selectivity clause to
be used for User Defined Functions (UDFs).

DB2LOCK_TO_RB

This registry variable specifies whether lock timeouts cause an entire transaction or
only the current statement to be rolled back. If DB2LOCK_TO_RB is set to
STATEMENT, locked timeouts cause only the current statement to be rolled back.
Any other setting results in transaction rollback.

Recommended DB CFG Parameters
For performance, we recommend setting the following parameters.

Table 18. db cfg Parameters

db cfg parameters Value

SELF_TUNING_MEM ON

DATABASE_MEMORY AUTOMATIC (for Windows and AIX)

COMPUTED (for Linux, HP-UX and Solaris)

LOCKLIST AUTOMATIC

MAXLOCKS AUTOMATIC

PCKCACHESZ AUTOMATIC

SHEAPTHRES_SHR AUTOMATIC

SORTHEAP AUTOMATIC

NUM_IOCLEANERS AUTOMATIC

NUM_IOSERVERS AUTOMATIC

DFT_PREFETCH_SZ AUTOMATIC

MAXAPPLS AUTOMATIC

AVG_APPLS AUTOMATIC

DBHEAP 5,000 or higher

LOGFILSIZ 262144

Chapter 6. Database Management System 63

Table 18. db cfg Parameters (continued)

db cfg parameters Value

LOGPRIMARY more than 15

LOGSECOND 0

NUM_LOG_SPAN LOGPRIMARY - safety buffer

DFT_DEGREE 1

CUR_COMMIT ON

STMT_CONC LITERALS

SELF_TUNING_MEM

Setting this parameter to ON enables the DB2 self-tuning memory manager
(STMM) to automatically and dynamically set memory allocations to the memory
consumers such as buffer pools, lock lists, package cache and sort heap.

DATABASE_MEMORY

Setting DATABASE_MEMORY to AUTOMATIC (for AIX or Windows) or
COMPUTED (for Linux, HP-UX or Solaris) allows DB2 to adjust the amount of
database memory depending on load, memory pressures, etc.

LOCKLIST, MAXLOCKS, PCKCACHESZ, SHEAPTHRES_SHR,
SORTHEAP

Setting these parameters to AUTOMATIC allows STMM to dynamically manage
their memory allocations.

DBHEAP

The default DBHEAP is too small. You should set it anywhere from 5,000 or higher
depending on the amount of memory available and the traffic volume.

LOGFILSIZ, LOGPRIMARY, LOGSECOND

You should size your transaction logs based on your transaction volumes. As a
starting point, you could configure four transaction logs (LOGPRIMARY=4) of 1GB
(LOGFILSIZ=262144 4K-pages) for high transaction volume. You may want to
increase this value to 15 or higher.

You should adjust these settings as needed.

You should track the following monitor element to assess the effectiveness of these
settings:
v total_log_used and tot_log_used_top to see how much of the logs are used.

You should investigate which workloads are consuming or holding the
transaction logs when this value approaches the total primary log capacity. If
needed, you may have to adjust the LOGPRIMARY higher.

64 Sterling Selling and Fulfillment Foundation: Performance Management Guide

NUM_LOG_SPAN

Setting this parameter limits the number of logs a transaction can span, which
prevents situations where DB2 cannot switch transaction logs because all
transaction logs are active. For example:
v Somebody could update a record in Control Center but forget to commit the

change.
v There could be software bug that updates one or more database records but not

commit the work.

This parameter should be set to at least 3 so that valid long running transactions
(e.g., WMS Create Wave agent) are not prematurely forced. This parameter should
be set to at most LOGPRIMARY minus a safety buffer (e.g., 2). For example, if you
have set LOGPRIMARY=10, then set NUM_LOG_SPAN=8.

DFT_DEGREE

This parameter sets the default degree of parallelism for intra-partition parallelism.
In general, online transactional applications such as Sterling Selling and Fulfillment
Foundation, typically experiences high volume of short queries that do not benefit
from parallel queries. As a result, we recommend setting DFT_DEGREE=1 which
disables intra-partition parallelism.

Parallelism can benefit long running, resource-intensive operations such as creating
indexes on a large table. To enable parallelism, you need to:
v Enable INTRA_PARALLEL (see “Recommended DB CFG Parameters” on page

63
v Override the default degree of parallelism in the application (connection) prior

to performing the operation. For example, issue the following command to set
the degree of parallelism to 8:

db2 set current degree = ’8’

DB2 Event Monitors
Sterling Selling and Fulfillment Foundation is written to minimize the occurrence
of deadlocks. For example, critical database records such as inventory records are
always obtained in the same order. However, deadlocks can still happen for many
reasons including:
v Custom code may obtain records in a different order.
v DB2 may choose an access plan that retrieves records in a different order.

To help diagnose deadlocks, we recommend setting the following event monitor:
MON=<monitor name - e.g., DLMON>
OUTDIR=<directory to store deadlock information>

db2 -v create event monitor $MON for deadlocks with details \
write to file $OUTDIR buffersize 64 nonblocked

db2 -v set event monitor $MON state = 1

When a deadlock occurs, issue the following:
db2 flush event monitor $MON
db2evmon -path $OUTDIR

The flush ensures deadlock records in the buffers are written out. The db2evmon
formats the deadlock information.

Chapter 6. Database Management System 65

CLI Packages
If you configure a service as a string of API calls, all performing under a single
transaction commit boundary, that service may fail with a SQL0805N error with a
package NULLID.SYSLN203.

This happens when the number of cursors opened by a given SQL statement goes
beyond the capacity defined for the small and large CLI packages (which are used
by JDBC). In such a case, you should first check to see if there was a cursor leak. If
you are certain there isn’t a cursor leak, you can then either break up the service
into smaller chunks or increase the number of packages bound.

The syntax for adding extra packages is:

db2 bind ../sqllib/bnd/db2clipk.bnd clipkg 10

The number of packages required can differ depending on individual situations.
You should test your application under expected peak concurrency levels and
transaction rates to ensure you have sufficient packages.

Sterling Selling and Fulfillment Foundation Schema: DB2
Index Monitoring and Tuning

As we mentioned in “Indexes” on page 61, you may have to adjust the base
starting index set to suit your operational environment. You can find out what
indexes are used (and by corollary, which ones are not used) You can use DB2's
Design Advisor to monitor index usage. The Design Advisor recommends
additional indexes as well as indexes that are not used.

Index and Table Statistics

The database optimizers rely on up-to-date accurate table and index statistics to
generate optimal access plans.

In addition, columns, such as enterprise_key in the yfs_order_header, can exhibit
high skew - for example, there could be many orders for one enterprise and a few
orders for another enterprise. Columns such as derived_from_order_header_key in
the yfs_order_header table could have very high skew, which results in low
cardinality because they only contain spaces. This can happen when customers
have small numbers of derived orders.

Queries, such as the one below, against columns with high skew and/or low
cardinality:

select *
from yfs_order_header
where derived_from_order_header_key = ’2011012412213801928344’;

can result in table scans even if the columns are indexed. The example above was
from an actual case (see below).

From the optimizer's perspective, the queries against these columns either return a
small or a very large result set. To err on the side of caution, the optimizer
generally chooses a table scan over an index range scan.

You can get the optimizer to choose a more optimal access plan by providing
additional statistics in the form of histograms.

66 Sterling Selling and Fulfillment Foundation: Performance Management Guide

Issue the following command to create histograms in DB2:
db2 runstats on table <table name> on key columns with distribution on key

columns and sampled detailed indexes all allow read access

Oracle: Implementation
This section assumes that you have read the following Oracle documents that are
applicable to your platform:
v Release notes specific to your platform
v Quick Installation Guide for your platform
v Installation Guide for your platform
v Performance Tuning Guide

These documents can be found in the Oracle Technology Network site at
http://otn.oracle.com.

This section provides the recommendations that we found useful or critical to the
Sterling Selling and Fulfillment Foundation performance.

Recommended Oracle Parameters
The following table summarizes the recommended choices:

Table 19. init.ora Parameters

Parameters Oracle

db_block_size 8KB

processes Must be greater than the number of connections needed by
the (a) application servers, (b) the agents/monitors and (c)
operational management tools.

compatible 10.2.0.1 (or the appropriate Oracle Rel 2 level)
11.2.0.1 (or the appropriate Oracle Rel 1 level)

sga_max_size,

sga_target,

pga_aggregate_target

1GB to 4GB depending on the amount of physical memory
on your database node

cursor_sharing FORCE

timed_statistics True

optimizer_mode ALL_ROWS

open_cursors Default (higher if prepared statement caching used)

query_rewrite_enabled True (if using the Sterling Warehouse Management System
application)

query_rewrite_integrity Trusted (if using the Sterling Warehouse Management
System application)

HP-UX Only

disk_asynch_io True

memory_target 4GB minimum. It can be increased depending on the
amount of physical memory on your database node

Chapter 6. Database Management System 67

processes

This parameter sets the limit on the number of database connections. You have to
pick a reasonably high enough number so that the combined connection
requirements from the application servers, agents, and so forth do not exceed the
connection limit during peak processing periods. If you do, you must restart the
Oracle instance to increase this limit.

Fortunately, with the use of connection pooling in application servers, the number
of database connections is less than the number of users logged in to Sterling
Selling and Fulfillment Foundation. Depending on your anticipated peak workload
traffic, this parameter could range from a small number like 25 to a large number
in the thousands.

You must regularly monitor the number of concurrent connections in production
(and especially during peak periods) to ensure that it does not reach the
maximum. When the maximum session is reached, Oracle refuses to establish new
connection requests.

See WebLogic connection pooling discussions in “WebLogic Connection Pool” on
page 52.

See WebSphere connection pooling discussions in “WebSphere Connection Pool”
on page 47.

Guidelines for Estimating Number of Connections.

You can roughly estimate the number of concurrent users required by Sterling
Selling and Fulfillment Foundation with the following formula:

where:
v A = Maximum number of agents transaction threads that run concurrently (see

“Agent Thread Levels” on page 102.
v B = Maximum application server connection pool size times the number of

application server instances. See Maximum Capacity.
v C = Any additional connections that are opened by customized code or user

exits that do not go through the application server connection pool. This
connection requirement is specific to your implementation.

v D = Number of asynchronous adapters (Service Definition Framework) times the
number of connections per adapter.

The Sterling Selling and Fulfillment Foundation agents and monitors are long-
running Java applications that open and use one Oracle connection per thread.

Example: Lets assume that you plan to configure a system with the following
characteristics:
v Six application server instances where each application server instance can run

up to a maximum of twenty-five (25) transactions concurrently.
v Twelve agent threads
v Four asynchronous adapters where each could have up to four threads

68 Sterling Selling and Fulfillment Foundation: Performance Management Guide

v Maximum ten connections for operational tools such as Oracle OEM or Quest
SpotLight

Lets further assume that each transaction in the application server only requires
one database connection. Specifically, user exits do not open their own database
connection. As a result, for the example above, you need:
v In the worst case, 25 x 6 or 150 database connections from the application

servers during the peak period if there is a possibility that all application server
threads become active. This of course would not be a desirable state - if there
ever is such a possibility, you should configure more application server
instances.

v 12 database connections for the agents/monitors
v 4 x 4 or 16 database connections from the asynchronous adapters
v 10 database connections from your operational monitors

As a result, you should plan for at least 150 + 12 + 16 + 10 or 188 database
connections.

As always, we strongly recommend that you benchmark your system to validate
these assumptions and estimates prior to a production implementation. During the
test, you should monitor the connection pool usage levels in each of the WebLogic
Server instances, the number of agents that you need to run in order to meet your
processing and service levels and the actual Oracle connections established.

compatible

You should set the compatible parameter to the four level release number that
your Oracle software is running at in order to take advantage of the latest
optimizer features. An example of the release number is 10.2.0.3 or 11.2.0.1.

sga_max_size, sga_target, pga_aggregate_target

In Oracle, setting sga_target allows Automatic Storage Memory Management to
manage the memory inside the System Global Area (SGA). You can dynamically
change the sga_target up to the value specified by sga_max_size.

As a result, you could either set sga_target to be equal to or less than the value of
sga_max_size.

cursor_sharing

With cursor_sharing enabled, Oracle converts dynamic (non-reusable) SQL into
reusable SQL by changing literal values into bind variables. Enabling cursor
sharing significantly reduces shared pool and library cache contention.

Setting cursor_sharing to FORCE will also enable adaptive cursor sharing in
Oracle, which allows the optimizer to peek at bind variables and choose optimal
execution plans for queries that are bind sensitive.

For optimal performance, you must set cursor_sharing=FORCE.

optimizer_mode

Starting in Oracle10g, the optimizer mode of CHOOSE has been deprecated. You
should set the optimizer_mode to the default of ALL_ROWS.

Chapter 6. Database Management System 69

open_cursors

This parameter limits the number of cursors an Oracle session can keep open at
any time. Generally, the default is sufficient unless you set a high prepared
statement cache size (see Prepared Statement Cache Size in “WebLogic Connection
Pool: Define Data Source in Sterling Selling and Fulfillment Foundation” on page
52).

To find out the number of cursors opened by sessions, issue the following query:
select a.value, s.username, s.sid, s.serial# from v$sesstat a, v$statname b,
v$session s where a.statistic# = b.statistic# and s.sid=a.sid and b.name =
’opened cursors current’;

For additional details regarding monitoring open database cursors, please refer to
metalink note ID 753605.1.

query_rewrite_enabled and query_rewrite_integrity

If you are using the Sterling Warehouse Management System application, you
have to create at least one function-based index as part of the application
installation. As a result, the Sterling Selling and Fulfillment Foundation schema
must have QUERY REWRITE privilege. In addition, in order for Oracle to use the
function-based indexes in queries, you have to set the Oracle parameters:
v QUERY_REWRITE_ENABLED to true and
v QUERY_REWRITE_INTEGRITY to trusted.

max_async_ports, disk_asynch_io

Asynchronous I/O is very important to performance especially on high transaction
volume processing environments. In summary, processes that issue synchronous
read() or write() I/O calls must wait for the I/O to complete before it can
continue. In contrast, processes can issue multiple asynchronous (non-blocking)
aio_read() or aio_write() I/O calls in parallel without waiting.

HP-UX does not enable asynchronous I/O by default. HP-UX also only supports
asynchronous I/O on files that reside on raw devices and not on filesystems. If
you don't enable asynchronous I/O, you will have to run multiple DBWRs (up to
20) to get a limited amount of I/O parallelism.

Please see:
v “Asynchronous I/O” on page 18 to enable asynchronous I/O on AIX.
v “HP HP-UX11i: Asynchronous I/O” on page 21 to enable asynchronous I/O on

HP-UX.

After enabling asynch I/O in HP-UX, you need to set the Oracle parameter,
disk_asynch_io, to true in spfile.

memory_target introduced in Oracle 11g

In Oracle 11g, the memory_target and memory_max_target parameters specify the
amount of memory that the Automatic Memory Management can dynamically
allocate to the PGA and SGA. The AMM can reduce or increase the SGA and PGA,
up to the memory_target, as needed. You can only change the memory_target
value to the value specified in memory_max_target. As a result, you can set the
memory_target to be equal or less than the value of memory_max_target.

70 Sterling Selling and Fulfillment Foundation: Performance Management Guide

If the sga_target and pga_aggregate_target is also set, the AMM uses these values
as the minimum size for their respective areas. To allow Oracle to take full control
of the memory management, these parameters should be set to zero.

Automatic Storage Management (ASM)
We recommend managing your database storage in Oracle's Automatic Storage
Management. Some of the benefits of using ASM include:
v Improved I/O performance and scalability
v Simpler database administration tasks
v Automatic I/O tuning
v Reduction in number of objects to manage

We strongly encourage you to read the many ASM whitepapers and documents on
Oracle's web-site. In addition, most storage vendors have written best practice
papers on how to configure ASM for their storage products.

The following are specific ASM recommendations that we have found to be critical
for performance:
v For HP-UX, we recommend importing only raw-devices into ASM. As we

discussed in “max_async_ports, disk_asynch_io” on page 70 above, HP-UX only
supports asynchronous I/O on files that are on raw devices and not filesystems.

v For high volume processing environments, ensure ASM is configured with "disk"
devices from high-performance disk storage arrays. Some characteristics that you
should look for include large NVRAM caches to buffer disk reads and writes,
efficient RAID implementation, etc.

v Configure ASM with "External Redundancy" so that redundancy is provided by
your storage array instead of being implemented by Oracle. This setting will
eliminate the extra overhead in Oracle to maintain redundancy.

Redo Logs
Redo logs are critical for database and instance recovery. Proper redo log
configuration is also critical for performance. Some recommendations for redo logs
configuration include:
v Implement redo logs in Automatic Storage Management (ASM).
v We strongly discourage implementing redo logs on file systems. If you prefer file

systems, you should implement redo logs on file systems that are configured to
perform I/O in small data blocks to avoid partial block writes.
Redo log buffers are typically small. If redo logs are implemented on file
systems that are configured as 8KB blocks, some redo log writes requires the file
system to read in the block, append the log buffer to that block and then write
out the block to disk.
If you are using a file system on Solaris or AIX, the redo log file system should
be configured for 512 byte blocks. For HP-UX, the file system block size should
be 1024 bytes. See http://www.ixora.com.au/tips/use_raw_log_files.htm.

v If the redo logs are placed on file systems, enable direct I/O - specifically avoid
the situation where the writes are buffered in the file system cache before
written out to disk.

v Consider implementing redo logs on dedicated disk devices.
v Consider implementing redo log group log files on alternating disks.

Chapter 6. Database Management System 71

Redo File Size

Your choice of redo file size depends on your trade-off between performance and
availability, specifically the time needed to recover the Oracle instance in the event
of a failure. For performance, some installations opt to create large redo logs to
reduce the frequency of log switches. However, doing so means that there are
potentially more transactions in the redo logs that have to be replayed during
recovery. The general rule for sizing redo log files is to look at the time it takes to
switch log files. By issuing the following query you can see how often the redo log
files are changing. As a general rule the logs should not be switching more that
once every twenty to thirty minutes:

select * from v$loghist
order by first_time desc

The following is an example of the output:
THREAD# SEQUENCE# FIRST_CHANGE# FIRST_TIME SWITCH_CHANGE#

1 97 7132082 10/20/2011 11:47:53 PM 7155874
1 96 7086715 10/20/2011 11:32:04 PM 7132082
1 95 7043684 10/20/2011 11:15:07 PM 7086715
1 94 6998984 10/20/2011 11:00:57 PM 7043684
1 93 6950799 10/20/2011 10:48:03 PM 6998984

In the example above, the logs switched every fifteen minutes.

Server Mode
You should create Oracle to use dedicated servers (instead of shared servers).
Shared servers can be useful in two-tier client/server configurations where a large
number of users need to access the database directly.

In Sterling Selling and Fulfillment Foundation, the WebLogic or WebSphere
Application Server serves as a transaction manager to multiplex large number of
users into a finite number of connections to the Oracle instance. Long running
processes such as Agent Servers, by design, maintain a single, dedicated
connection to Oracle. As a result, in both cases, dedicated servers are
recommended.

Sterling Selling and Fulfillment Foundation Schema: Oracle
Index Monitoring and Tuning

As we mentioned in “Indexes” on page 61, you may have to adjust the base
starting index set to suit your operational environment. You can find out what
indexes are used (and by corollary, which ones are not used) through index
monitoring. To enable index monitoring, issue the following commands, one for
each index:

...
alter index yfs_order_header_pk monitoring usage;
alter index yfs_order_header_i1 monitoring usage;
alter index yfs_order_header_i2 monitoring usage;
...

You can generate the command above by issuing the following query:
select ’alter index ’ || index_name || ’ monitoring usage;’
from user_indexes;

Periodically, as you run your functionality and system test, you can run the
following query to see if which indexes have been used and which have not yet
been used:

72 Sterling Selling and Fulfillment Foundation: Performance Management Guide

select index_name, monitoring, used, start_monitoring
from v$object_usage;

INDEX_NAME MONITORING USED START_MONITORING
------------------- ---------- ---- -------------------
YFS_ORDER_HEADER_I1 YES YES 01/29/2011 01:23:03

To turn off index monitoring, issue the following command:
alter index yfs_order_header_i1 nomonitoring usage;

Oracle Table Partitioning
You can use Oracle partitioning to aid the maintainability of large tables. You
should not view partitioning as a performance tool to achieve higher throughput;
under certain circumstances it may increase throughput, but these circumstances
are rare in Sterling Selling and Fulfillment FoundationApplication. However, as a
tool to improve the maintainability of the largest tables, partitioning can be
valuable. Before implementing any partitions in a production environment, it is
essential that you test the changes with the expected production workflows.
Sterling has tested and developed the following points with regard to Oracle
partitioning and the Sterling Selling and Fulfillment Foundation application:
v With the careful selection of tables based on workflow analysis, and using

Global Indexes, table partitioning did not cause an appreciable degradation of
throughput compared to non-partitioned tables.

v Converting the Global Indexes to Local (non-prefixed) Indexes showed a
minimal I/O increase. Application throughput dropped minimally. These tables
were accessed only by the purge agents and at low access volumes. General
industry consensus is to use Global Indexes for high query volumes, though
local indexes on low access volumes may maintain acceptable performance.

v Table partition compression can save up to 85% of the disk space used. We
recommend this only on low volume access tables such as the history tables.

Table partitions should ideally be set up on the initial installation. Tables may be
partitioned once loaded. We have used and recommend testing Oracle's
"dbms.redefinition" package. This package is well documented by Oracle in the
Oracle® Database PL/SQL Packages and Types Reference and the Oracle®

Database Administrator's Guide.

Oracle does not support LONG columns in table partitions. Any LONG columns
need to be converted to CLOB before attempting to partition a table. The LONG to
CLOB conversion can be performed by the "dbms.redefinition" package at the same
time as the table partitioning.

Oracle Table Partition Compression
As mentioned in “Oracle Table Partitioning,” partition compression can save up to
85% of the disk space usage.

We recommend that only low access volume table partitions are compressed after
testing with production-like workflows and loads.

Tablespaces
Prior to production, you should plan the overall storage strategy.

Since there are strong preferences, the DDLs to create temporary tablespaces and
data tablespaces are left to the discretion of the customer.

We instead provide the following recommendations for your consideration:

Chapter 6. Database Management System 73

v You should implement tablespaces with automatic space management by
specifying segment space management auto.

v With LMTs, you may want to consider creating tablespaces that store small
reference tables with the autoallocate extent allocation model:

create tablespace yt1
datafile ’/u03/dbs/pyantradb/yt1_001.dbf’ size 2047m
extent management local autoallocate
segment space management auto;

v If you have very large tables, you may want to consider putting those tables into
their own tablespace and to use the uniform extent allocation model:

create tablespace yfs_order_header_t1
datafile ’/u03/dbs/pyantradb/y_order_header_t1_001.dbf’ size 2002m
extent management local uniform size 1000m
segment space management auto;

v You should create your temporary tablespace as a temporary data file (temp
files). Temp files are used to store intermediate results (e.g., from large sort
operations). Changes to temp files are not recorded in the redo logs:

create temporary tablespace yfs_temp
tempfile ’/u03/dbs/pyantradb/yfs_temp_01.dbf’ size 1024m
extent management local
uniform size 1m;

Tables

After creating the tablespaces, you can create a set of DDL scripts using the
dbverify.sh script and the -applyddl parameter set to false, as follows:

dbverify.sh (or .cmd) -applyddl false

This creates all the necessary CREATE TABLE and CREATE INDEX statements.
You may then edit these scripts to map to your tablespaces.

Index and Table Statistics
Database optimizers rely on "relatively" up-to-date table and index statistics to
generate optimal access plans. Oracle does not need the statistics to be absolutely
correct or current, just relatively correct and representative. As a result, you don't
have to gather statistics every day for every table especially if your database is
already large (in the terabyte range).

Starting in Oracle10g, Oracle by default automatically gathered statistics during its
maintenance window for tables that underwent sufficient changes. Oracle bypasses
statistics generation for tables that have not changed significantly.

Volatile Tables

The following tables change significantly during the day and are not candidates for
automatic statistics gathering:
v YFS_TASK_Q
v YFS_TASK
v YFS_EXPORT
v YFS_IMPORT

For example, the YFS_TASK_Q table represents task that are in different state of
processing. That table grows and shrinks throughout the day. At night, when order
processing has completed, the table will have few in-progress records. When

74 Sterling Selling and Fulfillment Foundation: Performance Management Guide

automatic statistics gathering run during the maintenance window, the statistics
will incorrectly present this table as a small table.

We recommend either one of the two options below for these tables:
v Delete statistics for these table and then lock down the statistics.
v Manually collect statistics during the day when the table is large and then lock

down the statistics.

In the first option, in the absence of statistics, Oracle will assume a large table. The
commands for the first options are:

exec dbms_stats.delete_table_stats(<schema owner>,’YFS_TASK_Q’)

exec dbms_stats.lock_table_stats(<schema owner>,’YFS_TASK_Q’)

The commands for the second option are:
exec dbms_stats.gather_table_stats (ownname => ’YANTRA’, -
tabname=>’YFS_TASK_Q’, -
estimate_percent => dbms_stats.auto_sample_size)

exec dbms_stats.lock_table_stats(<schema owner>,’YFS_TASK_Q’)

Skewed Columns and Histograms

As part of generating the statistics, Oracle generates histograms for skewed
columns.

Skewed columns are columns that have a non-uniform distribution of values. For
example, the enterprise_key column in the YFS_ORDER_HEADER table may be
made up of a few values where one value may be more prevalent. In contrast,
columns such as the order_no is more uniformly distributed.

Given basic statistics such as number of rows and the number of distinct column
values, Oracle tends to choose a full table scan when faced with a query, such as
the one below, against columns with high skew and/or low cardinality:

select *
from yfs_order_header
where derived_from_order_header_key = ’2011012412213801928344’;

can result in table scans even if the columns are indexed. The example above was
from an actual case (see below).

Note: Customer reported that the Order Detail screen took over 4 minutes. The
query that checks if the order is a derived order resulted in a table scan of the
YFS_ORDER_HEADER table. When customer ran dbms_stats to create histograms,
Order Detail screen dropped to 1 second.

From the optimizer's perspective, the queries against these columns either return a
small or a very large result set. To err on the side of caution, the optimizer
generally chooses a table scan over an index range scan.

You can get the optimizer to choose a more optimal access plan by providing
additional statistics in the form of histograms.

By default, Oracle creates histograms as part of the statistics generation. You can
verify if a column has histograms by issuing the following command:

Chapter 6. Database Management System 75

select table_name,column_name,histogram
from user_tab_columns

TABLE_NAME COLUMN_NAME HISTOGRAM
YFS_ORDER_LINE CHAINED_FROM_ORDER_LINE_KEY NONE
YFS_ORDER_LINE CHAINED_FROM_ORDER_HEADER_KEY NONE
YFS_ORDER_LINE DERIVED_FROM_ORDER_LINE_KEY FREQUENCY
YFS_ORDER_LINE DERIVED_FROM_ORDER_HEADER_KEY FREQUENCY

In the example above, Oracle created histograms for the two DERIVED_FROM
columns but not the CHAINED_FROM columns. To manually create the
histograms for the CHAINED_FROM columns, issue the following command:

exec dbms_stats.gather_table_stats (ownname => ’YANTRA’, -
tabname=>’YFS_ORDER_LINE’, -
estimate_percent => dbms_stats.auto_sample_size, -
method_opt=>’for columns size auto CHAINED_FROM_ORDER_LINE_KEY,

CHAINED_FROM_ORDER_HEADER_KEY’);

When you rerun the histogram query, you should now get:

TABLE_NAME COLUMN_NAME HISTOGRAM
YFS_ORDER_LINE CHAINED_FROM_ORDER_LINE_KEY FREQUENCY
YFS_ORDER_LINE CHAINED_FROM_ORDER_HEADER_KEY FREQUENCY
YFS_ORDER_LINE DERIVED_FROM_ORDER_LINE_KEY FREQUENCY
YFS_ORDER_LINE DERIVED_FROM_ORDER_HEADER_KEY FREQUENCY

In the example above, the method_opt with the auto parameter lets Oracle decide
whether histograms are to be created based on the column's data distribution and
the way the columns are being used by the application.

Identifying Skewed Columns

The following query helps you identify columns with skewed data distribution:
select ui.table_name,ui.index_name, column_name, column_position, num_rows,

distinct_keys as dist_keys
from user_indexes ui, user_ind_columns uic
where ui.table_name = uic.table_name and

ui.index_name = uic.index_name and
ui.num_rows > 0 and
ui.distinct_keys/ui.num_rows < 0.1

order by table_name, index_name, column_position

TABLE_NAME INDEX_NAME COLUMN_NAME NUM_ DIST
ROWS _KEYS

YFS_ORDER_LINE YFS_ORDER_LINE_I3 CHAINED_FROM_ORDER_HEADER_KEY 6552586 1
YFS_ORDER_LINE YFS_ORDER_LINE_I4 DERIVED_FROM_ORDER_HEADER_KEY 6357590 1
YFS_ORDER_LINE YFS_ORDER_LINE_I5 DERIVED_FROM_ORDER_LINE_KEY 6624191 1
YFS_ORDER_LINE YFS_ORDER_LINE_I6 CHAINED_FROM_ORDER_LINE_KEY 6534969 1
YFS_ORDER_LINE YFS_ORDER_LINE_I7 DEPENDENT_ON_LINE_KEY 6457481 1

In the example above, the customer does not use derived or chained orders.

You should ensure that histograms are added to indexed columns if the absence of
histograms causes Oracle to choose an inefficient plan.

Microsoft SQL Server

Microsoft SQL Server Implementation: Parameters
Set the following collation setting to support case-insensitive sorts needed by
Sterling Selling and Fulfillment Foundation.

76 Sterling Selling and Fulfillment Foundation: Performance Management Guide

Table 20. Microsoft SQL Server Installation Decision Points

Description Recommendation

Collation Settings SQL Collation: Dictionary order, case-insensitive,
for use with any Character Set

Microsoft SQL Server Index Monitoring and Tuning
In Microsoft SQL Server, you can use the Index Tuning Wizard to recommend new
indexes as well as indexes that are not used.

Statistics

By default, Microsoft SQL Server automatically creates statistics on indexed fields
when the index is created. If deemed beneficial, Microsoft SQL Server also creates
statistics on non-indexed fields that are used in joins or filter criteria. The
information on the column's data distribution could help the Query Optimizer
choose the optimum execution plan. Although this feature can be disabled, we
recommend leaving it on. To check if automatic statistics creation is enabled, issue
the following query:

select databasepropertyex(’ywinss01’,’IsAutoCreateStatistics’)

The result is 1 if enabled and 0 if disabled.

Microsoft SQL Server also automatically manages the statistics based on the
amount of changes to the table. When the number of changes exceed a threshold,
Microsoft SQL Server automatically generates new statistics. Although this feature
can be disabled, we recommend leaving it on. To check if automatic statistics
update is enabled, issue the following query:

select databasepropertyex('ywinss01','IsAutoUpdateStatistics')

The result is 1 if enabled and 0 if disabled.

Applications Manager: The Applications Manager is a Java applet that is used to
configure the Sterling Selling and Fulfillment Foundation rules. You may have to
start the applet with more memory if you are modifying a large or complex
configuration. You can change the memory settings in the JVM/JRE plug-in control
panel in Microsoft Windows. Go to Start > Control Panel > Java Plug-In >
Advanced. In the Java Runtime Properties, put in "-mx356m". In this example, the
JRE's heap is allowed to grow to 356MB.

DB2 PureScale
DB2 pureScale is a powerful database technology that allows customers to cluster
multiple DB2 members together for performance, scalability, and availability.

This topic provides DB2 pureScale tuning or configuration information that is
specific or applicable to the Sterling Selling and Fulfillment Foundation. For
general installation and tuning recommendations, refer to IBM DB2 pureScale
documentation, training, and support.

DB2 pureScale: Supported DB Platforms

The Sterling Selling and Fulfillment Foundation, Release 9.1 is certified with DB2
pureScale on, AIX 6 running on IBM Power 7 processors.

Chapter 6. Database Management System 77

DB2 pureScale: Support Limitations

The Sterling Selling and Fulfillment Foundation is limited to 4-member DB2
pureScale configurations.

To seek any clarification, you can contact Technical Support.

Sequences

Sterling Selling and Fulfillment Foundation uses the create sequence
<sequence-name>cycle cache 10000 no order sequence number to ensure that the
generated primary key values are unique.

The cache option tells DB2 to pre-allocate a set of sequences in memory for
better?? performance. With a cache of 10000, the first request fetches the first
sequence number from the disk. The next 9999 requests are satisfied in memory.
Without the cache option, all requests are goes to disk.

Default NO ORDER option, allows each DB2 pureScale member to cache their own
set of sequence numbers.

High Availability

For detailed instructions, refer the Sterling Selling and Fulfillment Foundation: High
Availability Guide.

Implicit Rollback

For implicit rollback, set the jdbcService.db2Pool.prop_implicitRollbackOption=2.

Oracle Real Application Cluster Database
This section provides limited guidelines on implementing, configuring and tuning
Oracle Real Application Cluster (RAC). RAC is a powerful technology offered by
Oracle. This section presents information that is specific or applicable to Sterling
Selling and Fulfillment Foundation. Installation and tuning RAC in general is
beyond the scope of this document.

Consult Oracle documentation, technical support, and training for all questions
pertaining to RAC and the associated technologies such as HP ServiceGuard that
are integral to the RAC solution.

Oracle RAC is a technology that allows you to cluster multiple Oracle instances to
acts as one Oracle instance.

Supported DB Platforms
The Sterling Selling and Fulfillment Foundation Release 9.1 has been tested with
Oracle RAC on the following database server platforms:
v Red Hat Enterprise Linux 5.5 Server running on Intel Xeon EM64T/AMD64

(64-bit) processors.

Supported Filesystems
The Oracle RAC database data files can be implemented on clustered filesystems
or raw devices managed in Oracle Automatic Storage Management (ASM).

78 Sterling Selling and Fulfillment Foundation: Performance Management Guide

The filesystem is an important operating system component that is critical for both
performance and data integrity. IBM requires that Sterling Selling and Fulfillment
Foundation be configured and deployed only on filesystems that are approved and
certified for use with RAC by the Oracle Corporation.

Sterling Selling and Fulfillment Foundation has been tested with Oracle RAC
running with:
v Raw devices
v Oracle Cluster File System (running on Red Hat Enterprise Linux)

Sterling Selling and Fulfillment Foundation does not support systems that run on
non-Oracle RAC-supported filesystems such as the Sistina GFS.

Support Limitations
There are practical limits to any technology. One should not expect every
technology to scale infinitely. At this time, Sterling Selling and Fulfillment
Foundation supports up to 4-node RAC configurations.

Sterling Selling and Fulfillment Foundation has, till date, been either tested or
deployed on:
v 2-node (HP RP7410 eight-way processors each for a total of 16 processors)
v 2-node (HP Itanium2-based servers)
v 4-node (DELL PowerEdge M600 two quad core processors each for a total of 32

processors)

Call Technical Support if you have questions.

OLTP Applications and Oracle RAC Concerns

For Online Transaction Processing (OLTP) applications, including Sterling Selling
and Fulfillment Foundation, one common concern is high insertion rates and the
effect on index maintenance. In high volume OLTP applications, index leaf blocks
have to be maintained and passed among the multiple nodes to keep them all in
sync. Generally, when new records, like orders, are being indexed, they are being
written to the right most part of the index. In very high transaction volumes,
concurrent insertions could wait while a similar request is handled by a different
node. The index leaf block for the right most part of the index cannot be released
to another node until the request is completed. This forces more sequenced rather
than simultaneous processing and is likely to drag significantly on performance.

Another example is the frequency with which inventory records are being accessed
and updated.

Research suggests that other OLTP app vendors are generally aware of these issues
— some only certifying for a maximum number of nodes and other articles
suggesting optimal node / CPU configurations for Oracle RAC.

Some industry literature suggest using hash partition or reverse indexes to reduce
or eliminate contention to enable OLTP applications for RAC. What isn't stated is
that these techniques can negatively affect application performance which could
slow down query response times. At this point of time, Sterling Selling and
Fulfillment Foundation has not been tested for, and nor do we support the use of
reverse indexes or hash partitions for Oracle RAC enablement. Check with
Technical Support for the latest information.

Chapter 6. Database Management System 79

Database Sequence Numbers
Sterling Selling and Fulfillment Foundation uses Oracle sequence numbers to
quickly generate unique numbers. If you are upgrading from pre Yantra 5x 5.0 SP2
versions, ensure the seq_yfs_task_key sequence is created with the NOORDER
parameter. If the ORDER option is enabled, RAC disables the CACHE option.

The SQL command to create sequence is as follows:
create sequence seq_yfs_table_key
increment by 1 start with 1
maxvalue 9999999999
minvalue 1
cycle
cache 500 noorder ;

In the example above, the CACHE option pre-allocates and stores 500 sequence
numbers in the instance's SGA for fast access. When those sequence numbers are
used up, Oracle pre-allocates another group of sequence numbers. The CACHE
option should be set to a value so that sequence requests for one to two seconds
during the peak period can be satisfied if memory is critical for performance (see
Oracle 11g SQL Reference and Oracle 11g Real Application Cluster (RAC)
Administration.)

For example, if the sequence cache is set to 500, the last_sequence_number in
user_sequences table should not grow by more than 500 every two seconds or
30,000 every minute. You should monitor this value periodically during the peak
hour.

The NOORDER option allows each RAC instance to preallocate its own group of
sequence numbers. The NOORDER option is enabled by default. If the NOORDER
option is disabled (or if the ORDER option is selected), Oracle disables the CACHE
option.

Enabling the CACHE option with a sufficiently high value and the NOORDER
option are critical for Oracle RAC performance.

You can issue the following command to check whether the ORDER option is
disabled:

select sequence_name, order_flag, cache_size,last_number
from user_sequences
where sequence_name = ’SEQ_YFS_TABLE_KEY’

If the ORDER_FLAG is set to "N", the NOORDER option is enabled:
SEQUENCE_NAME ORDER_FLAG CACHE_SIZE LAST_NUMBER
------------------------------ ---------- ---------- -----------
SEQ_YFS_TABLE_KEY N 500 422838694

High Availability
Refer to the Sterling Selling and Fulfillment Foundation: High Availability Guide for
more detailed instructions.

From a performance perspective, you need to configure the Sterling Selling and
Fulfillment Foundation system so that it can quickly discover the Oracle failure
and to quickly recover the connections.

The Sterling Selling and Fulfillment Foundation system is made up of client
programs that connect to the Oracle instance. These include:
v Oracle WebLogic, IBM WebSphere, or JBoss AS application servers

80 Sterling Selling and Fulfillment Foundation: Performance Management Guide

v Sterling Selling and Fulfillment Foundation agents or monitors

WebLogic Connection Pool Properties

In WebLogic, we recommend setting the following Connection Pool properties so
that WebLogic can detect stale or dead connections faster.

Table 21. WebLogic Connection Pool Properties

Parameter Value

Test Frequency 120

Test Table Name SQL SELECT 1 FROM DUAL

Test Reserved Connections Enable

Initial Capacity 3

Maximum Capacity See “WebLogic Connection Pool: Define Data Source in
Sterling Selling and Fulfillment Foundation” on page
52

Shrink Frequency Leave at the default of 900 seconds

With the settings above, the WebLogic connection pool manager tests idle
connections every Test Frequency seconds by issuing a Select statement to Test
Table Name. Connections that do not pass the test are closed and a new connection
reestablished. This setting helps the connection pool manager to get rid of dead or
stale connections.

Additionally, when you set Test Connections On Reserve to true, the connection
pool manager tests connections before the pool manager gives the connection to
transactions. This test adds a small delay to each connection request.

You must set Test Table Name. The settings above are invalid without the Test
Table Name setting.

The Initial Capacity and Maximum Capacity settings should be set to your
operational requirements (see “WebLogic Connection Pool: Define Data Source in
Sterling Selling and Fulfillment Foundation” on page 52). You should not set
Initial Capacity to zero - when WebLogic shrinks the connection pool (at every
ShrinkPeriodMinutes minutes), it aggressively shrinks all currently unused
connections, even connections that were recently active.

You may not want to set Test Created Connections and Test Released
Connection especially if you already have enabled Test Connections On Reserve.
The probability that a connection has died after it was created or after it was
released should be very low.

Using a SCAN address in a datasource is not supported in WebLogic server prior
to 10.3.4. You must configure a MultiDataSource for your RAC database pool in
Weblogic Server 10.3.2.

TCP/IP

The default time for a connection request to an unavailable node to timeout is
deliberately set to a high value. This value allows connection requests (e.g., telnet
connections) the opportunity to find the node on the Internet. This setting is less
applicable in a high-speed switched network.

Chapter 6. Database Management System 81

On Solaris, a telnet to a nonexistent node takes about 2.75 minutes to timeout. On
HPUX11, the timeout is around 75 seconds.

The connection timeout value can be tuned down by issuing the following ndd
commands:

ndd -set /dev/tcp tcp_ip_abort_cinterval 1000
ndd -set /dev/tcp tcp_rexmit_interval_initial 200
ndd -set /dev/tcp tcp_rexmit_interval_max 5000

This known phenomenon is described in the SunSolve article found in Document
01363, How to reduce the time-out period for telnet connections (http://
sunsolve.sun.com/search/document.do?assetkey=1-30-01363-1.) The settings are
applicable to both Solaris and HP-UX.

Fast Application Notification Support

Fast Application Notification (FAN) provides RAC the ability to inform the client
programs the status of the cluster. With FAN, the client programs, especially those
with connection pools, can drop stale connections to failed nodes.

Sterling Selling and Fulfillment Foundation does not support Fast Application
Notification.

Sterling Selling and Fulfillment Foundation Specific Tuning Using Key
Randomizer

The Sterling Selling and Fulfillment Foundation applications, by default, generates
primary key with one of the following formats:
v YYYYMMDDHHmmSSSSSSqqqqqqqq (non multi-schema)
v ccYYMMDDHHmmSSSSSSqqqqqqqq (multi-schema)

Where;
v YYYY or YY is the four or two digit year
v cc represents a two digit schema id (for multi-schema)
v MM is the two digit month
v DD is the two digit day of the month
v HH is the two digit hour (24 hour)
v mm is the two digit minute of the hour
v SSSSSS is the seconds and milliseconds
v qqqqqqqq is a sequence number

Although, the key format is easy to use, the fact that the key values are only ever
increasing can be a performance bottleneck. As key values are added to the
primary key index, the database stores the value in the right sequential order.
Since, the key values are ever increasing the index values will be added to the high
end of the index, which is also commonly known as the right hand block. At very
high transactional rates, that index block can become a bottleneck as transactions
contend to insert values into that block.

If you expect sufficiently high transaction volumes, you can use the Sterling key
randomizer to reduce the amount of traffic between node members. To do this, add
the following attribute (keyType) to the entity.xml and regenerate the entities. For

82 Sterling Selling and Fulfillment Foundation: Performance Management Guide

http://sunsolve.sun.com/search/document.do?assetkey=1-30-01363-1
http://sunsolve.sun.com/search/document.do?assetkey=1-30-01363-1

example, to add random digits to the primary key for the
YFS_ORDER_RELEASE_STATUS table, add the
<Entity
Description="This table stores status-quantity break up for

each line-schedule." EntityType="TRANSACTION" HasHistory="Y"
Module="omp" KeyType="Random" Name="Order_Release_Status"
Prefix="YFS_" TableName="YFS_ORDER_RELEASE_STATUS"
TableType="TRANSACTION" GenerateIndexedListMethods="true"
XMLName="OrderStatus">

<Attributes>
<Attribute ColumnName="ORDER_RELEASE_STATUS_KEY"

DataType="Key" DefaultValue="’ ’ "
Description="The primary key for the

YFS_ORDER_RELEASE_STATUS table."
Name="Order_Release_Status_Key" Nullable="false"
XMLName="OrderReleaseStatusKey"/>

,Attribute ColumnName="ORDER_RELEASE_KEY"
DataType="Key"
Description="The order release that is associated with this

order release status record."
Name="Order_Release_Key" Nullable="true"
XMLName="OrderReleaseKey"/>

...
</Attributes>
</Entity>

After extending the appropriate entity XML files, you can rebuild your
entities.jar by running the deployer.sh. For more information about how to run
the deployer.sh, see the Sterling Selling and Fulfillment Foundation: Customization
Basics Guide.

Currently, you can randomize the primary keys for the following tables:
v yfs_order_release_status
v yfs_order_line_schedule

Chapter 6. Database Management System 83

84 Sterling Selling and Fulfillment Foundation: Performance Management Guide

Chapter 7. Java Message Services

Java Message Services Overview
This chapter provides guidelines on implementing, configuring and tuning for Java
Message Services (JMS) in general.

Sterling Selling and Fulfillment Foundation uses JMS extensively. For example:
v The Sterling Selling and Fulfillment Foundation agents use JMS as a source of

work.
v The Sterling Selling and Fulfillment Foundation integration servers use JMS as a

means to communicate with external systems.

Agent Queues

The Sterling Selling and Fulfillment Foundation agents are designed to issue a
"getter" to look for work that needs to be processed and to create the appropriate
messages into a queue. For example, the Schedule agent on startup checks the
Schedule JMS queue. If that queue is empty, it automatically fires a "getter" query
against the YFS_TASK_Q table looking for tasks that need to be processed by the
Schedule transaction. A JMS message is created for each eligible task. Similarly, the
Sterling Selling and Fulfillment Foundation order or inventory monitors fire
"getters" to look for orders or inventory items in a particular state (for which they
are being monitored for). As above, the appropriate messages are put into the JMS
queue.

By default, the getter creates up to 5,000 messages even when there are more
eligible work. The default is generally sufficient. You can change the limit if you
find that the agent is spending more time retrieving work and creating the
messages than in processing. This could happen if you have a high number of
processing threads or if the retrieval cost is high. You can change the limit by
changing the "Number of Records to Buffer" in the agent's Transaction Detail (in
IBM Sterling Application Platform > Process Modeling) > Agent Criteria Definition
> Agent Criteria Details > Criteria Parameter. See the Sterling Selling and Fulfillment
Foundation: Application Platform Configuration Guide for more information.

Integration Queues

In contrast, integration queues are used for external communication. For example,
one could architect the system where multiple sales channels capture orders. These
orders are passed to Sterling Selling and Fulfillment Foundation through an
integration queue.

Similarly, Sterling Selling and Fulfillment Foundation can pass messages to external
systems when transactions are processed.

Persistence
You can define queues as being persistent or nonpersistent. Messages in
nonpersistent queues are lost after the queue is restarted. For example, if you have
100 messages in the queue, all those messages are lost when the WebLogic JMS
server or the WebSphere MQ queue manager is restarted. In contrast, messages in

© Copyright IBM Corp. 1999, 2012 85

persistent queues are preserved after a restart. Using the same example from
above, the same 100 messages are in the queue after a restart.

In general, the following recommendations apply:
v All queues used by the Sterling Selling and Fulfillment Foundation agent should

be defined as nonpersistent. As we described above, the agents can easily
recreate the messages if lost.

v All integration queues used for external communications, either for messages
coming from external systems to Sterling Selling and Fulfillment Foundation or
for messages going from Sterling Selling and Fulfillment Foundation to external
systems, must be defined as persistent. In most cases, recreating integration
messages can be difficult especially when the information in two or more
systems have to be re-synchronized.

Dedicated Queues
We strongly recommend you define a dedicated queue for each agent and service
that uses JMS for work because of:
v Performance
v Monitoring

For both the WebLogic JMS and IBM WebSphere MQ, the cost of pulling up a
message is proportional to the number of messages the JMS server or queue
managers have to interrogate.

In the current WebLogic JMS implementation, a request for a message with a
certain selector results in a sequential search through the JMS queue until a
message with the specified selector is found. The JMS manager could use a lot of
CPU searching for messages if there are lots of messages in the queue. Putting
high volume messages into a separate JMS destination eliminates the search - the
JMS manager either finds that there are no messages in that destination or it finds
the message immediately.

Similarly, in the current IBM MQSeries® JMS implementation, the consumer (client)
uses the supplied mq.jar to connect to the MQSeries queue manager. When the
client asks for a message, the client code in com.ibm.mq.jar retrieves messages
from the queue and checks whether the message has the specific selector. The
mq.jar continues to do this until it has found the appropriate message or there are
no more messages in the queue. When there are no more messages, the mq.jar
sleeps for 5 seconds and repeats the polling cycle. Putting messages into its own
JMS destination means that the mq.jar either finds the message immediately or
sleep for 5 seconds.

In some extreme cases, the performance and cost is very noticeable. Take the case
of a queue with messages for multiple agents and 100,000 integration messages.
When a message for the Schedule transaction is created, that message is added
after the existing 100,000 messages. When the Schedule transaction getter runs, the
getter needs to walk through the entire queue looking for Schedule messages.

An exception to the above is development and possibly test environments. In those
cases, to ease configuration and management overhead, it may be acceptable to put
all the JMS destinations into a single JMS queue.

86 Sterling Selling and Fulfillment Foundation: Performance Management Guide

JMS Queue File Placement: Performance
The WebSphere MQ logs and files and the WebLogic JMS file and paging stores
can be implemented on an internal disk. Message queues on a single internal disk
should be able to provide from 150K to 200K messages per hour. Obviously, many
factors can affect the message throughput including the size of the message
content, the burstiness of the traffic, and so forth).

For high transaction systems, for example, a nightly upload of global inventory
visibility messages or the import of point-of-sales orders, you should consider
placing the WebSphere MQ logs and files and the Oracle WebLogic JMS file and
paging stores on a SAN RAID-10 LUN, possibly with a large NVRAM cache. The
striping component in the RAID-10 spreads the message I/Os over multiple disks.
The NVRAM cache could reduce the number of physical disk I/Os.

In extremely high transaction volume scenarios, you may have to consider
implementing multiple WebLogic JMS servers or MQ queue managers. This is
applicable to solutions where the message order is not important.

Availability

For failover and high availability, you should consider placing the WebSphere MQ
logs and files and the WebLogic JMS file stores for persistent queues on an external
SAN. In the event of a node failure, a standby node could attach to the SAN to
access the files. In addition, you could replicate the content of the SAN to prevent
message loss in the event of a data center disaster. See the Sterling Selling and
Fulfillment Foundation: High Availability Guide for more information.

Parameters

Please see the following chapters for specific recommendations:

“WebLogic JMS Recommendations”

“WebSphere MQ Parameters” on page 88

WebLogic JMS Recommendations
This section provides guidelines on implementing, configuring and tuning the
WebLogic JMS.

Dedicated JMS Server
You should consider running the JMS server on one or more dedicated WebLogic
servers that is outside the Sterling Selling and Fulfillment Foundation WebLogic
cluster. These server instances should only provide JMS services. The benefits of
isolating the JMS server on its own server include:
v Easier to monitor and manage
v Easier to diagnose issues - Issues that arise, such as OutOfMemory exceptions,

must be related to JMS services or JMS messages.

Integration Queues

In addition, you should consider putting integration queues into their own
dedicated WebLogic JMS servers running on separate JVMs especially if these
queues can grow unbounded or at a fast rate.

Chapter 7. Java Message Services 87

These integration queues should be configured as persistent so that messages can
be recovered after JMS failures. Recovering integration messages can be difficult
especially if they involve reconciling when there are many systems or applications
involved in processing the messages.

You should consider implementing controls so that producers cannot significantly
create messages faster than consumers can process messages. In extreme cases,
high number of messages in the queue could consume most of the JMS servers's
JVM heap resulting in degraded or loss of service.

The benefits of implementing dedicated JMS servers for integration queues include:
v Isolating integration-based message queues that could grow unbounded from

the more predicable queues used by the Sterling Selling and Fulfillment
Foundation agents.

v The ability to configure, manage, and monitor the queues to the expected
message traffic - for example, you may want to create JVMs with 1GB heap for
integration-based JMS servers and smaller heaps for the Sterling Selling and
Fulfillment Foundation agents.

WebLogic JMS: Message and Byte Paging
For WebLogic JMS, you should enable message and/or byte paging on JMS queues
that could grow unbounded (for example, integration-based queues. With this
facility, the message bodies (not the message headers) are paged out of the JVM
memory on to the local file system when the paging thresholds are exceeded. This
can reduce the amount of JVM heap space used, which could prevent service
degradation or loss.

Note: In extreme cases, excessively high number of message headers can still lead
to outOfMemory exceptions.

WebSphere MQ Parameters
This section provides specific guidelines on implementing, configuring and tuning
WebSphere MQ.

Depending on your processing volumes and the number of MQ queue consumers
and producers you expect to start, you may have to change the log and channel
parameters in the qm.ini or mqs.ini file.

Channel

Each thread started that reads from or writes to the MQ queues requires a channel.
If you were to start 20 JVMs with 5 threads each, you need at least 100 channels
(which is the default). You may also have to increase the number of channels if
you have workloads that open and close the JMS connections rapidly.

If you experience messages indicating that the max channels have been reached, do
the following:
v Check to see if there is a connection or channel leak. Run the following

command to see how many active channels are used:
echo "dis chs(*)" | runmqsc | grep RUNNING | wc -l

v You may have to run each workload at peak production loads in your test
environment to diagnose channel leaks.

88 Sterling Selling and Fulfillment Foundation: Performance Management Guide

v If you suspect that channels are not getting reclaimed fast enough or if your
TCP/IP connection is not reliable, you should set the following parameters. The
KeepAlive parameter tells the queue manager to check the existence of the
client. If the client is not there, the queue manager reclaims the channel. The
MaxChannels defaults to 100. In production settings, that parameter could grow
to a much higher number like 300 or 500:

TCP:
KeepAlive=YES

Channels:
MaxChannels=300
MaxActiveChannels=100

Log Files

MQ uses log files to maintain message integrity in the event of a queue manager
restart or a media failure.

The number of log files depends on your configuration, the size of the messages,
the logging type, and the message volumes. You should performance test your
application at or above peak production loads to see if the default MQ log settings
are sufficient. If you are using CIRCULAR logging, the following may be
reasonable starting values:

Log:
LogPrimaryFiles=4
LogSecondaryFiles=2
LogFilePages=65535
LogType=CIRCULAR
LogBufferPages=0

If you use LINEAR logging (for example, to be able to survive media failure), you
must set LogPrimaryFiles higher.

Placement of MQ Log and Data Files
If your system has to be able to process a high message rate, you may should
consider placing your MQ log and data files on a fast SAN, preferably configured
with a large NVRAM and RAID-10. A single internal disk should have sufficient
capacity to allow up to 150K to 200K messages per second. Files on a RAID-10
LUN should be able to get up to around 1.5M to 2.0M messages per hour. Beyond
that message rate, you may want to consider implementing multiple queue
managers with separate data and log files.

Chapter 7. Java Message Services 89

90 Sterling Selling and Fulfillment Foundation: Performance Management Guide

Chapter 8. Selling and Fulfillment Foundation

General Recommendations
This chapter provides recommendations on how to plan, implement, configure,
monitor, and tune Sterling Selling and Fulfillment Foundation in general, that
transcends both the Sterling Distributed Order Management and the Sterling
Warehouse Management System applications.

Sterling Selling and Fulfillment Foundation with the default factory (data) settings
provides a simple configuration that is suitable for development, training, or
product familiarization. That configuration is not suitable for production except for
customer with very low transaction volumes. This chapter guides you through the
components that you have to configure for higher transaction volumes.

This chapter assumes that you:
v Are familiar with the installation of Sterling Selling and Fulfillment Foundation

and have read the Sterling Selling and Fulfillment Foundation: Installation Guide

v Are familiar with the basic functionality of Sterling Selling and Fulfillment
Foundation

v Have read the Sterling Selling and Fulfillment Foundation: Release Notes -- Known
Issues

Scalability Requirements
An important aspect of planning the implementation and configuration of your
Sterling Selling and Fulfillment Foundation system for production is determining
your workload and business processing characteristics, and your performance
requirements. This includes (at a minimum) the following:
v Identifying the key or high transaction volume use case scenarios - for example,

in retail environments, you may have an order capture, order returns, order
modification and order authorization use case scenarios. For each use case
scenario, you should determine:
– The workloads (both custom-developed and IBM-supplied) that are carried

out
– The forecasted peak transaction volumes
– When the peak processing periods occur during the year
– The external systems the Sterling Selling and Fulfillment Foundation system

is integrated with

When choosing use case scenarios, you should include:
v Workloads with anticipated high transaction volumes
v Workloads that are complex (for example, orders with large number of order

lines)
v Workloads/transactions that have to traverse long network distances (for

example, user and data center in different continents)
v High volume transactions that are integrated with external systems

For each use case scenario, you should:
v Perform load testing to at least the anticipated peak workload volumes.

© Copyright IBM Corp. 1999, 2012 91

v Measure the computing resource cost at different workload traffic volumes.
v Estimate the computing cost per unit work.
v Identify and tune expensive workloads - This could include ensuring all SQL are

supported by appropriate indexes (“Custom Indexes” on page 61), custom code,
and so forth.

v Incorporate the cost per unit work into a resource capacity forecasting or
planning model.

v Project out the resource requirements for the peak periods.

If you have remote users, you have to test use case scenarios that involve screens
or network based transactions across a real or simulated wide-area network. These
include:
v The use of the Sterling Selling and Fulfillment Foundation screens (for example,

to enter or modify orders)
v RF transactions (for example, users at a warehouse in Asia interacting with the

WMS application in North America)

The answers to the questions above are critical to how you configure Sterling
Selling and Fulfillment Foundation.

System Test

We strongly advise that you schedule time and resources to test Sterling Selling
and Fulfillment Foundation system (including all custom code, integrated external
systems, and so forth) prior to implementation. IBM tests Sterling Selling and
Fulfillment Foundation to common or general usage patterns. Your configuration
may differ greatly:
v Custom code - Need to ensure your custom code scales and does not have

longevity issues. These are issues that show up after running the system for
many days - for example, memory or connection leaks.

v Integration to external systems - Need to ensure that external systems can scale
along with Sterling Selling and Fulfillment Foundation. In the right conditions,
slow external systems could tie up the Sterling Selling and Fulfillment
Foundation resource and could lead to a system slow down.

v Configuration - Need to test the Sterling Selling and Fulfillment Foundation
system with representative data. For example, your configuration may have
much larger catalogs and ship nodes than most customers.

v User locations - Need to ensure users get responsive service. For example, you
may have large customer groups located in a different continent from Sterling
Selling and Fulfillment Foundation. You may also have customers who dial in to
access Sterling Selling and Fulfillment Foundation. You need to ensure that all
users get appropriate screen response times.

User Interfaces
Out of the box, Sterling Selling and Fulfillment Foundation provides the following
graphical interfaces to allow users to interact with the application:
v Application Console - a thin HTML-based client to view and manage orders
v Applications Manager and System Management Console - a thick client built on

Java Swing to manage the application configuration
v Rich Client Platform - this is a Java/SWT thick client built on the Eclipse RCP

framework

92 Sterling Selling and Fulfillment Foundation: Performance Management Guide

The user interface provides the means for users to interact with Sterling Selling
and Fulfillment Foundation Applicationto view, create, modify and delete
information.

Application Console
An Application Console is an HTML-based interface. Microsoft Internet Explorer is
used to render the screens of the Application Console.

Customization: Sterling Selling and Fulfillment Foundation allows you to create
or customize the screens of the Application Console. You may want to do so for
the following reasons:
v You want to reduce processing or the screen size - From the usage scenario

studies above, you may find that your users need a subset of a detail screen (e.g.,
order detail). Further, you expect a very large number of users to be located at a
remote call center in a different continent. To reduce server processing and the
amount of bytes send across the network, you can create a new screen that only
has the information needed.

v In conjunction with simplifying the screens, you can also customize an APIs
output XML using templates. This not only reduces the number of bytes
returned but can also reduce server and database processing. See “API Output
XML Files” on page 111.

v You may want to control the types of searches that the general users can issue.
The default search facility allows users to build up searches by picking different
criteria. For example, the order search allows users to look for orders based on
many criteria including status, enterprise code, and so forth. Some permutation
of criteria can result in queries that require a lot of resources. You can create a
search screen for general use that has a list of searches that you and the DBA
have tested and have deemed to be "safe" for general use. You can further
develop a screen with greater search capabilities for supervisors or application
administrators. This search screen could mandate entering the enterprise code
and a date range for the search to limit the number of records returned.
Additionally, you may want to remove certain searches such as looking for
orders in a particular status.

See the Sterling Selling and Fulfillment Foundation: Customizing the Swing Interface for
more information on how to extend or customize screens.

HTML Compression: You should consider HTML compression if you have users
who are connected to Sterling Selling and Fulfillment Foundation over high latency
or low bandwidth network links. HTML compression can reduce the size of the
HTML pages by up to 85%.

Currently, the Sterling Selling and Fulfillment Foundation Console UIs have been
tested with F5 Big-IP v9 as an off-board HTML compression engine.

If you were to use a Big-IP, you should be aware of the following Big-IP specific
configuration requirements in the HTTP Profile configuration tab:
v You need to set the response chunking parameter to rechunk. The default is

preserve. The reason is that Sterling Selling and Fulfillment Foundation does not
set the content length in the HTTP headers when sending out the response. With
the default setting of preserve, the Big-IP does not attempt to compress HTML
pages that do not have content lengths set. With the rechunk setting, Big-IP
compresses the response chunks as they are received. More importantly, the
Big-IP can forward along the compressed chunks without waiting for the entire
HTML page to be compressed.

Chapter 8. Selling and Fulfillment Foundation 93

v Big-IP allows you to specify the amount of compression processing that it
attempts. The setting can range from Level 1 which tries a minimal compression
in favor of processing speed to Level 9 which tries to find the most compression.
We found that Level 1 compression was able to get up to 85% compression and
that the benefits from Level 9 undetectable. As a result, we defaulted to testing
with Level 1 compression.

v We set the compression buffer size to 128KB instead of the default of 4KB. The
general thought is that the buffer size should be able to store the entire
compressed response in order to set the content header length. In our testing, we
didn't see any appreciable differences between 4KB and 128KB. This may be due
to the fact that we had already set response chunking to rechunk - as a result,
the Big-IP does not have to set the content length on the compressed response.
However, we were advised to set the buffer size to at least 128KB.

We recognize that there are other HTML compression technologies available
including Apache deflate module and Juniper DX application acceleration devices.
Please keep in mind that we have, to date, only tested against the F5 Big-IP v9.

Please also keep in mind that the compression is only certified for the Application
Console. The Applications Manager and the System Management Console do not
support compression. The nWMS radio frequency and VT220 terminal screens are
small and should not require compression.

Temporary Internet Files: You can reduce the number of hits against the
application servers for static content by enabling temporary Internet file cache in
Microsoft Internet Explorer. This improves your UI response times. To enable the
cache:
v Go to the Internet Options dialog box.
v In Microsoft Internet Explorer, go to Tools > Internet Option:

– Click on the Settings button in the Temporary Internet Files panel.
– Enable the “Check for newer version of stored pages” radio button to

Automatically.
– Make sure there is sufficient disk space to store temporary Internet files (e.g.,

500MB or higher).

SSL Acceleration: If you have many users and are planning on encrypting the
Sterling Selling and Fulfillment Foundation screens with SSL, you should consider
the use of off-board hardware-based SSL accelerators. SSL encryption/decryption
are expensive operations and can reduce application server throughput by over
30%.

Currently, we have tested the use of an F5 Big-IP v9 as an off-board SSL
acceleration engine and as an SSL Proxy. As an SSL Proxy, all page requests going
to the F5 are sent as HTTPS. The Big-IP performs all the SSL processing and
forwards all the requests to the applications servers in the "clear".

If you plan to use a Big-IP, you should be aware of the following Big-IP specific
configuration requirements in the HTTP Profile configuration tab:
v If you use WebLogic application servers, you have to set the header insert

parameter to WL-Proxy-SSL: true. This header directive informs WebLogic that
there is an SSL Proxy sitting in front of the application server.

v If you use WebSphere application servers, you need to configure the redirect
rewrite parameter to ALL.

94 Sterling Selling and Fulfillment Foundation: Performance Management Guide

We recognize that there are other SSL acceleration technologies available. Please
keep in mind that we have, to date, only tested against the F5 Big-IP v9.

Also keep in mind that SSL acceleration is targeted towards the Sterling Selling
and Fulfillment Foundation Console. The Applications Manager and the System
Management Console do not require SSL.

Search Screens: Sterling Selling and Fulfillment Foundation provides a flexible
search facility that allows users to look for orders, shipments and audit records
with a wide range of criteria. Some search combinations are more expensive than
others.

We recommend that you work with the user community to identify search
combinations that are likely to be used in production. Each search combination
should be tested to ensure they are optimized and acceptable in a production
setting. When testing these searches, you need to make sure the tables searched are
sufficiently large (e.g., over 1 million records). Inefficient queries may not be
evident in small databases. In addition, ensure the tables are populated with an
appropriate data mix. For example, if the query is looking for orders with certain
attributes in the closed state, you should ensure that these attributes and the
number of closed orders are representative. Database optimizers picks search paths
that it believe are optimal for the data distribution.

It is likely that some search combinations require indexes to be created (see
“Indexes” on page 61).

Case-insensitive Search

The Sterling Selling and Fulfillment Foundation Search feature supports
case-insensitive searches against the YFS_PERSON_INFO table on the following
columns:
v FIRST_NAME
v LAST_NAME
v EMAILID
v ADDRESS_LINE1
v ADDRESS_LINE2
v CITY
v STATE
v ZIP_CODE
v COUNTRY

The data continues to be stored in the database in mixed-case (mixture of upper
and lower case).

Oracle

To support case-insensitive searches in Oracle, you must add function-based
indexes on the searched columns. To create a function-based index that supports
case-insensitive searches on the emailid column, issue the following:

create index yfs_person_info_cust1 on yfs_person_info(upper(emailid))

Note: Creating an index does not result in case-insensitive searches. The index
only helps in the speedy retrieval of records when a query is fired on email id. For

Chapter 8. Selling and Fulfillment Foundation 95

information about enabling case-insensitive searches, refer to the Sterling Selling and
Fulfillment Foundation: Extending the Database.

DB2

For DB2, you have to add a generated column for each searched column and an
index on that generated column. For example, as in the example above, you need
to perform the following:

set integrity for yfs_person_info off

alter table yfs_person_info
add column emailid_up generated always as (upper(emailid))

set integrity for yfs_person_info
immediate checked force generated

create index extn_per_info_i1
on yfs_person_info(emailid_up)

select *
from yfs_person_info
where upper(emailid) = ’SMITH’

In the example above, a generated column (emailid_up) was defined as a
generated column and indexed.

Microsoft SQL Server

In Microsoft SQL Server, searches are case-insensitive by default so there are no
changes needed.

JSP Precompilation: Precompiling the JSPs when you "build" the application is
very important for user interface response times. If the JSPs are not precompiled,
the application servers compile the JSP on-the-fly the first time it is used. These
compiles can take up to 30 seconds or more and could lead to the perceptions of a
badly performing system.

Please see “WebLogic Tuning: JSP Pre-Compilation” on page 53 on precompiling
JSPs in WebLogic application servers.

Please see “WebSphere Tuning: JSP Pre-Compilation” on page 49 on precompiling
JSPs in WebSphere application servers.

HTML Limitations: The view screens (for example, the Order Detail and
Shipment Detail screens) present the order or shipment entity and related records
in their entirety. The HTML page for large orders or shipments can be very large
and could take a long time to display especially over a wide area network. For
example, the view screen for a 200 line order could be up to 500KB. Displaying
this screen over a 128kbps line could take 30 seconds or more.

If your enterprise regularly process large orders, you may want to consider the
following:
v As we mentioned above, consider customizing the screens to only return the

data needed, implementing HTML/HTTP compression, using output templates
to reduce the size of the output, and so forth.

96 Sterling Selling and Fulfillment Foundation: Performance Management Guide

Applications Manager
The Applications Manager is a Java applet that is used to configure the Sterling
Selling and Fulfillment Foundation rules. You may have to start the applet with
more memory if you are modifying a large or complex configuration. You can
change the memory settings in the JVM/JRE plug-in control panel in Microsoft
Windows. Go to Start > Control Panel > Java Plug-In > Advanced. In the Java
Runtime Properties, put in "-mx356m". In this example, the JRE's heap is allowed
to grow to 356MB.

Rich Client Program Interface
The Rich Client Platform is a Java/SWT thick client built on the Eclipse RCP
framework. A number of Sterling Selling and Fulfillment Foundation Packaged
Composite Application (PCAs), such as IBM Sterling Call Center and IBM Sterling
Store and Store Operations, use this graphical interface.

Enabling Content Compression

The Rich Client Platform client supports content compression for both the request
and the response to and from the application server. The compression will reduce
the application bytes by around 85%.

You can enable compression in the locations.ycfg parameter file. See the Sterling
Selling and Fulfillment Foundation: Installation Guide for more information on how to
configure the locations.ycfg file.

You may want to consider developing multiple locations.ycfg files with different
settings. For example, you can define a locations.ycfg file for local users without
content compression and a locations.ycfg file for remote users with compression
enabled. This gives you the flexibility to deploy the appropriate locations.ycfg
file to different user groups.

In the following example, the REMOTE location has compression enabled by setting
the CompressionEnabled attribute to Y:

<Locations>
<Location id = "DEFAULT" proxyServer="yourproxyserver.com"

proxyPort="8080" updateType ="pull">
<Config Name = "DEFAULT" Protocol = "https" BaseUrl = "localhost"

PortNumber = "7001" ApiUrl
="/smcfs<application_name>/RcpServlet"

CompressionEnabled = "N"
</Config>

</Location>
<Location id = "REMOTE" proxyServer="yourproxyserver.com"

proxyPort="8080" updateType ="client">
<Config Name = "DEFAULT" Protocol = "https"

BaseUrl = "localhost" PortNumber = "7001"
ApiUrl ="/smcfs<application_name>/RcpServlet"
CompressionEnabled = "Y"

</Config>
</Location>

</Locations>

Images

To improve the performance of the screens, the RCP client has the ability to
retrieve and display images in a separate background thread. This can be beneficial
when you are displaying large orders. For example, when you display the order

Chapter 8. Selling and Fulfillment Foundation 97

detail screen in COM PCA and you display small images of the item at the order
line level, the main thread will paint the order detail screen and its content. A
separate thread will paint the icons.

To improve the performance further, the images are cached on your local drive
after they have been retrieved. The cache could eliminate requests back to the
application server for images. The cache is deleted when you restart the RCP client
to ensure that you have the latest images.

For performance, you might want to consider the following:
v You can specify an image server that is separate from the application server. For

example, in the following example, the images come from http://
yantraimg.acme.com. This will steer static image retrieval to specialized image
servers:

<Locations>
...
<Location id = "REMOTE" proxyServer="yourproxyserver.com"

proxyPort="8080" updateType ="client">
<Config Name = "DEFAULT" Protocol = "https"

BaseUrl = "localhost" PortNumber = "7001"
ApiUrl ="/smcfs<application_name>/RcpServlet"
CompressionEnabled = "Y"

</Config>
<Config Name = "IMAGE" Protocol = "http"

BaseUrl = "yantraimg.acme.com" PortNumber = "7001"
ApiUrl="/smcfs<application_name>/icons/rcp/$param1$.gif"
CompressionEnabled = "N"

<Config Name = "IMAGE_SMALL" Protocol = "http"
BaseUrl = "yantraimg.acme.com" PortNumber = "7001"
ApiUrl="/smcfs<application_name>/icons/rcp/$param1$_small.gif"
DefaultApiUrl="/smcfs<application_name>/icons/rcp/404.gif"
CompressionEnabled = "N"

</Config>
...

</Location>
</Locations>

v You can disable images for users on limited or slow networks by removing the
IMAGE, IMAGE_SMALL and IMAGE_BIG Config elements from your
locations.ycfg file.

v You can specify the same icon for items or groups of items. Subsequent request
for this icon will be served from cache.

Guidelines for Processing Large Orders
This section describes the best practices and system design considerations that
should be taken into account when you have to process orders or shipments that
have a large number of order lines.

That number varies depending on many factors, such as order complexity. As a
general guideline, we recommend that you consult Sterling Support if you have to
process orders that have over 200 lines. These could, for example, be large,
planned purchase orders in B2B associations.

Best Practices

Customers have used numerous strategies to handle large orders. Some of these
strategies are described here for your consideration. Their applicability will,
however, depend on your business requirements:
v Build a custom screen to view large orders.

98 Sterling Selling and Fulfillment Foundation: Performance Management Guide

You can develop a custom, HTML-based user interface to display the order in
smaller sections.
For example, you can create a custom screen that calls the getOrderDetails API
with a selective output template to display only the order header information
(and not the order line information). This will significantly reduce the amount of
data that is to be retrieved from the database, and the size of information to be
displayed on the HTML screen. This HTML screen can have a button to allow
the user to get a list of the order lines. When the user clicks this button, the
getOrderLineList API is called to get a list of order lines. Again, through the use
of the output template, you can control the amount of data retrieved and
displayed. Finally, when the user clicks a specific line, the getOrderLineDetails
API is called to get all the information relating to that line.
There are many variations to this technique. The actual implementation is
dependent on your use case scenarios.

v Break up large orders into smaller, but manageable orders.
Some customers have opted to break their large orders into smaller chunks for
manageability. One approach is to develop a front end process to split the orders
based on business rules, prior to the orders entering the Sterling Distributed
Order Management application. The procurement analyst can use the Master
Order field, for example, to find all the related orders.

v Decouple heavy processing from the user interaction.
Decoupling long-running processes from user interaction can result in a faster
response.
For example, let us assume that you have to receive a large shipment of
serialized items on a single pallet. This could be, for example, a pallet of 10,000
gift cards, each having its own serial number. As part of the receipt process, each
item is assigned to one serial number.
In this case, you may want to consider implementing custom screens to allow
users to view the shipment, serial numbers, and a button to trigger the receipt
and serial number registration in the background. This can be achieved by
having a button, which, when clicked, will send a message to a background
agent to process the receipt and serial numbers.
Thus, the user will be able to continue working when the receipt and serial
number processing is being performed in the background.

v Test the application with large orders.
Ensure that you include the largest anticipated orders into your testing. Plan the
test with orders larger than your largest orders. For example, if you expect
1,000-line orders, test with orders containing 1,200 lines.

Other Architectural Considerations

The system design or architectural approaches described in this section typically
yield sub-optimal performance when working with large orders:
v Using the HTML-based Order Detail screen to display a large order.

As described earlier, the standard, product Order Detail screen retrieves both the
order header and order line information. This approach is not optimum for large
orders because the screen has to retrieve and display all the details of the order.

v Displaying large amount of data across slow networks.
Customers who are connected to low-bandwidth connections (for example, 56
kbps modems) or high-latency connections (for example, connected through
satellite links) should impose a constraint on the amount of data that is to be
displayed.

Chapter 8. Selling and Fulfillment Foundation 99

A general industry rule is to keep the actual network payload to 50 KB.
Customers who have to send a lot of data should compress the output stream.
Devices such as F5 Big-IP load balancers have built-in compression that can
reduce the payload by 80%. With compression, you can generate screens that are
up to 250 KB in size because the resulting compressed screen will be about 50
KB.
In practice, you should, as mentioned earlier, understand your use case
scenarios. Displaying the data in smaller chunks may be more appropriate
because it is unlikely that you will need all the data from all the lines.

v Test with representative conditions.
Your testing environment should reflect the actual production conditions. For
example, as mentioned earlier, if users are located at remote locations on
high-latency networks with low bandwidth connections, you should not test the
user interfaces on fast, local area networks. You should, at a minimum, run tests
from the actual remote locations. If this is not feasible, you should consider
simulated WANs. For example, you can run your tests through Shunra devices
to assess the impact of slower networks. The URL for Shunra Software Ltd. is
given below:
http://www.shunra.com
Similarly, you should test the application with representative, production
database sizes.

v Performing too much processing per order line.
When retrieving and processing the list of order lines, be aware of the
processing required for each order line. Although the processing required may
be low for each line, the processing can be significant when there are many
lines.
For example, assume that you want to calculate the cost of the items associated
with each line. Further, assume that you need to call an external system to get
the price, and the pricing call takes 200 milliseconds. If you have to display a list
with 600 lines, the pricing calls could take 120 seconds. In some cases, it may be
better to call the pricing engine once with 600 items, especially if the cost of the
call represents the majority of the time. Alternatively, you can consider
providing a button to allow the user to reprice the lines if repricing is needed.

Integration Adapters/Agents
Agent Servers or Integration Adapters are Java applications that run time-triggered
(agent) transactions (see the Sterling Selling and Fulfillment Foundation: Distributed
Order Management Configuration Guide). Transactions process orders or shipments
such as moving orders from one state to another.

Out of the box, all time-triggered (agent) transactions are configured to run in a
single Agent Server (called the DefaultAgent). This simple setup is convenient for
training, development or product demos. This setup is not suitable for production
because all the processing threads will run in one JVM.

Agent Criteria
The Applications Manager allows you to configure your transactions. See the
Sterling Selling and Fulfillment Foundation: Application Platform Configuration Guide
for detailed instructions on how to configure the Agent Criteria.

100 Sterling Selling and Fulfillment Foundation: Performance Management Guide

http://shunra.com

The example above defines the agent criteria for the Schedule time-triggered
(agent) transaction. The Schedule transactions run in an Agent Server which we
have called the ScheduleSalesOrderServer server. When you start an Agent Server
with the Criteria ID of schedule_sales_order, that server is instructed to run five
threads of the Schedule transaction. If you need more processing threads, you can
either increase the number of threads or run more instances of this Agent Server.
Please see “Agent Thread Levels” on page 102 for recommendations on how to
estimate your threading levels.

All time-triggered (agent) transactions are driven by tasks in their message queue.
A queue may serve one or more transactions. We strongly recommend you
configure one queue for each high volume transaction.

Agent Getters
Work tasks are placed into the messaging queue by a getter. A getter’s job is to put
qualified orders (in this example, orders that are in the Scheduled state) into the
ScheduleSalesOrderQueue queue. You can specify how many orders the getter picks
up each time it runs. By default, the getter picks up 5,000 orders.

Like the time-triggered (agent) transactions, a getter is also driven by work tasks in
the queue - in this case, by a getter work task instead of a transaction work task.
The getter work task is created by a trigger server.

You should consider the following recommendations when configuring the Agent
Servers:
v Agent thread levels
v Getters that can accept enterprise code as an additional parameter
v For JMS Servers:

– Dedicated JMS Servers
– Excessive agent scheduling

Chapter 8. Selling and Fulfillment Foundation 101

– Dedicated JMS Destinations
– Running JMS servers in client VM mode
– Enabling message and byte paging

Agent Thread Levels
You should derive the optimum number of Agent Servers to run and the number
of transaction threads for each Agent Server. The Agent Server's throughput
depends on many factors such as the amount of customization or user exits, the
amount of data contention, the size and capacity of the agent servers, and so forth.

One approach you can use to derive your agent's effective throughput is:
v Allow work to queue up. Make sure there are at least one to two hours worth of

work queued up.
v Run a single transaction thread and record the total (running) elapse time.
v Determine the total amount of work performed by the transaction thread for

sample monitoring scripts).
v Calculate the effective throughput of that agent thread by dividing total amount

of work by elapse time. The throughput rate is specified in terms of work per
unit time (e.g., order lines per hour or order lines per minute).

During the test, you should make sure there are no significant system bottlenecks
impeding the Agent Server's performance. Some of the performance indicators you
should watch for include:
v Excessive JVM garbage collection activities (especially Full GCs)
v Excessive database waits (e.g., I/O, latches, and so forth)
v Inefficient queries (e.g., missing indexes)
v Data lock contention
v Excessive thread synchronization

Make sure the Agent Server is running optimally before calculating its potential
throughput rate.

You can schedule multiple agent threads if your average processing level is greater
than the effective throughput for a single agent thread. For the reasons mentioned
above, more threads (beyond a reasonable level) does not always mean higher
throughput.

Excessive Agent Scheduling

You should not over-aggressively schedule the time-triggered (agent) transactions -
for example, configuring a time-triggered transaction to run on many Agent
Servers with high threading levels when you expect to a low traffic volume for
that transaction. If you schedule the agents too aggressively, you could end up
with a situation where the agents (consumers) are outpacing the producers. As a
result, the queue typically has a few transactions which are quickly processed.
When processed, the Agent Server schedules another getter -- the frequent getter
tasks could cause unnecessary overheads as it looks for work to do.

In this case, "more does not necessarily mean more".

Java Message Service
Sterling Selling and Fulfillment Foundation uses JMS extensively. For example:

102 Sterling Selling and Fulfillment Foundation: Performance Management Guide

v The Sterling Selling and Fulfillment Foundation agents use JMS as a source of
work.

v The Sterling Selling and Fulfillment Foundation integration servers use JMS as a
means to communicate with external systems.

Integration Queues
Integration-based queues are queues for inbound external messages (such as orders
from external partners or inventory adjustments from external warehouse
management systems) or outbound external messages (such as alert messages to an
e-mail system).

You should consider putting these queues into one or more dedicated JMS servers
especially if these queues can grow unbounded. In addition, these JMS destinations
should be configured as persistent so that messages can be recovered after JMS
failures.

You should consider implementing controls so that producers cannot significantly
create messages faster than consumers can process messages. In extreme cases,
high number of messages in the queue could consume most of the JMS servers's
JVM heap resulting in degraded or loss of service.

The benefits of implementing dedicated JMS servers for integration queues include:
v Isolating integration-based message queues that could grow unbounded from

the more predicable queues used by the Sterling Selling and Fulfillment
Foundation agents

v The ability to configure, manage and monitor the queues to the expected
message traffic - for example, you may want to create JVMs with 1GB heap for
integration-based JMS servers and smaller heaps for the Sterling Selling and
Fulfillment Foundation agents

Dedicated JMS Destination
You should configure a dedicated JMS Destination for each time-triggered (agent)
transaction for the following reasons:
v Ease of monitoring - With dedicated destinations, it is easier to see the number

of messages coming into a destination, the number of messages that require
processing, the maximum number of messages that ever existed in that
destination. With that information, you can also calculate the messaging inflow
and outflow rates.

v Performance - With dedicated JMS destinations, the selector is able to quickly
find the message with the specified selector/filter.

In a common JMS destination with lots of messages (e.g., greater than 20K
messages), the selector could take several seconds to find the appropriate message.

JMS Persistence
Many of the Sterling Selling and Fulfillment Foundation agents find work to
process from message queues. These work requests are kept in nonpersistent
message queues. These messages are recreated, either when an external or internal
agent trigger is issued.

Integration messages (e.g., createOrder messages from external systems) must be
kept in persistent message queues. JMS reads the messages back into memory from
the persistent store when the JMS server is restarted.

Chapter 8. Selling and Fulfillment Foundation 103

You should implement persistent JMS queues on a RAID-10 or RAID-5 disk array
for performance and availability. These RAID disk arrays, especially for RAID-5,
should be supported by a non-volatile cache to ensure fast I/O write operations.
For high persistent message volumes, local disk queues can become an I/O
bottleneck.

Performance Feature - Reference Data Caching
Reference Data Caching is critical for performance and scalability. From experience,
UI login time could jump to 30 seconds if the YFS_RESOURCE and
YFS_RESOURCE_PERMISSION tables are not cached correctly. The application's
overall throughput will drop significantly if caching is not enabled.

Reference Data Caching Overview
So, what is reference data caching? Simplistically, when a transaction issues a
database SELECT and returns ten records, the ten records are cached in the JVM.
We will go into further details below.

Starting in Yantra 5x 5.0 SP2, caching is enabled by default. The cached records are
stored in the JVM heap. Typically, around 350MB will be used by caching during
steady-state. Of course, the actual amount could depend on your operations. As a
result, with caching enabled, you should monitor the health of the JVM heap
garbage collections. For memory constrained environments, you may want to
enable caching on specific tables.

Cache Management
The Sterling Selling and Fulfillment Foundation reference data caching is
implemented by a local, simple, lazy-loading, asynchronous-refresh cache manager. The
cache manager is a lazy-loader in the sense that it does not read in the cacheable
reference tables at start up but would instead only cache records as they are being
read. The benefit of the lazy-loading strategy is that data is only cached where
they are needed.

The cache manager implements a simple cache management policy. Data that is
cached remains in the cache until the cache manager is instructed to flush the
cache. This could happen because the cache has reached a certain size limit or a
reference data record was changed from a standard Sterling Selling and Fulfillment
Foundation API. The cache manager does not implement cache management
policies, such as record flushing using a least recently used algorithm, in order to
avoid cache management overheads. In our controlled test, this simple cache
manager provides significant performance benefits with little management
overhead.

In keeping with the simple cache strategy, when a reference data record is changed
by a Sterling Selling and Fulfillment Foundation API, the local cache manager
notifies all the other cache managers to flush the reference data table. There is a
small time-lag between when the reference data is changed to when the last cache
manager is notified.

When the cache managers receive the change notification, the cache managers
flushes all the cached entries for the affected table. As a result, you should cache
tables that are infrequently changed. More importantly, this notification comes
from the Sterling Selling and Fulfillment Foundation APIs. As a result, you should
ensure that reference data is never changed via database tools like SQL*Plus.

Recommendations:

104 Sterling Selling and Fulfillment Foundation: Performance Management Guide

v You should enable reference data caching when you need the extra performance
boost.

v You should ensure that the reference data is not subject to frequent updates.

Caching Strategies
As we stated above, with caching, you introduce the possibility of data consistency
issues. This data inconsistency may occur when an API changes a reference data
record in one JVM while another transaction is using another copy of that
reference data in another JVM.

That said, caching is a widely used technique that favors scalability, performance
and affordability against possibly maintainability, data consistency, and accuracy.

In this section, we describe strategies you can use to mitigate the data consistency
issues.

Strategy 1 - Trade-off Performance and Affordability against Data Consistency

In this strategy, you may ask yourself the question. First, does the possibility of
data consistency exist? Since the refreshes are done asynchronously, the answer is
yes. The next question is, what is the probability of a data consistency? One of the
factors that this answer depends on is the transaction volume. There may be more.
For example, if you were to make the reference data changes at night when
transaction volumes are low, you may decide that the probability of data
consistency is potentially low. The last question you need to ask is, what is the
impact of an inconsistent data? If you determine that the impact is insignificant,
then you may decide to go with this strategy. The decision is yours to make.

Strategy 2 - Trade-off Performance and Affordability against Maintainability while
keeping Data Consistency

In this strategy, you control updates against the cacheable reference data to
eliminate any possibility of data consistency. One approach is to place the
cacheable reference tables into a separate tablespace.

In addition, with Oracle, using the following command, you alter the tablespace to
only allow reads:

alter tablespace <tablespace name> read only;

Oracle ensures that these tables are not modified without your knowledge. To
modify the cached reference data, you then alter the tablespace back to read/write
and modify the reference data through the Applications Manager. To be safe, you
would probably do this when there is very little transactional activity on the
system. When you are done, you can then mark that tablespace as read only with
the following command:

alter tablespace <tablespace name> read write;

Automatically Refreshing Data Cache

When a record of a cached table is modified by a Sterling Selling and Fulfillment
Foundation API, the local cache manager sends change notification messages to all
the other cache managers in the Sterling Selling and Fulfillment Foundation
system. These messages are sent sequentially - going from one cache manager to
the next. The time to notify all cache managers is dependent on the number of
cache managers - the more managers, the longer the notification process.

Chapter 8. Selling and Fulfillment Foundation 105

Manually Refreshing Data Cache

You can use the System Management Console to manually refresh the Sterling
Selling and Fulfillment Foundation cache for an application server. Go to the
Details page for each application server or the Sterling Selling and Fulfillment
Foundation agent instance and press the "Clear Cache" icon. The cache for the
application server is cleared.

List of Cache Managers

The list of cache managers are dynamically maintained in the YFS_HEARTBEAT
database table. Sterling Selling and Fulfillment Foundation servers, integration
servers or agents automatically register themselves into this table when they start
and deregister themselves when they stop. In addition, they also update their
status in the YFS_HEARTBEAT table on a regular basis. At any time, the heartbeat
table has a record for every running Sterling Selling and Fulfillment Foundation
server instances and integration server/agents.

The "Cache Clear Count" column in the System Management Console > Table
Level Cache List screen provides statistics on the number of times the cache was
cleared at the table level.

Cleaning Up the Cache Managers List

A JVM may not be able to deregister its entry from the YFS_HEARTBEAT table if it
died abruptly. This could lead to stale entries that point to non-existent JVMs. You
can clean up these stale entries by running the Health Monitor agent (see Sterling
Selling and Fulfillment Foundation: System Management and Administration Guide) for
more detail.

Enabling Reference Data Caching
By default, Sterling Selling and Fulfillment Foundation enables reference data
caching for:
v Application server instances
v Sterling Selling and Fulfillment Foundation agents and monitors

The caching feature and the tables that are cached are governed by the
dbclassCache.properties file that is located in the <INSTALL_DIR>/properties
directory. You can change the cache settings by adding override parameters into
the customer_overrides.properties file. For example, you can disable caching for
the YFS_ACTION table by adding the following line to the
customer_overrides.properties file:

YFS_ACTION.enabled=false

For additional information about overriding properties using the
customer_overrides.properties file, see the Sterling Selling and Fulfillment
Foundation: Properties Guide.

Currently, there are about 140 reference tables that are cacheable.

The System Management Console allows you to confirm that tables are cached.

106 Sterling Selling and Fulfillment Foundation: Performance Management Guide

Controlling the Size of the Cache

When a transaction issues a SELECT against a cacheable table, the cache manager
saves the retrieved records as well as the SELECT WHERE clause. The
WHERE-clause is used as a hash key to quickly determine the existence of cached
records.

The cache manager stores four distinct components:
v The cached record (which the cache manager calls "OBJECT")
v The query WHERE clauses that returned one or zero database record (which the

cache manager refers to as "SELECT")
v The query WHERE clauses that returned zero or more database records (which

the cache manager calls "LIST") and
v The results of COUNT queries and their WHERE clause (which the cache

manager calls "COUNT").

Note: In case you are wondering, the use of the terms "SELECT", "LIST" and
"COUNT" is historical and refers to the fact that the WHERE clauses were used
by the selectWithWhere(), listWithWhere and the countWithWhere() database
methods. Knowing these terms will help you set the cache limits later in this
document.

Take for example the following queries against the cacheable
YFS_ORGANIZATION table. The first query (using the selectWithWhere() method)
returns one record (call this record ORG-3):

select *
from yfs_organization
where organization_code = ’ORG-3’

At the end of the query, the cache manager stores the ORG-3 record into a Java
Map which the cache manager refers to as OBJECT. Next, the cache manager stores
the WHERE clause ("where organization_code = ’ORG-3’") in the SELECT Java
Map (see diagram below). The SELECT Map associates the WHERE clause (which
is a hash key) to the cached record.

The second query (using the listWithWhere() method) to the same table returns six
records (ORG-1 and ORG-6):

select *
from yfs_organization
where catalog_organization_code = ’ACME’

At the end of that query, the cache manager stores the second WHERE clause into
the LIST Java Map and the ORG-1, ORG-2, ORG-4, ORG-5 and ORG-6 records into
OBJECT along with a structure that associates the six cached record to the WHERE
clause. The cache manager does not add ORG-3 because it was already added to
the OBJECT Map from the first query.

Finally, the WHERE clause and the count results from the third query (using the
countWithWhere() method) is stored in the COUNT Map:

select count(*)
from yfs_organization
where catalog_organization_code = ’ACME’

The following diagram depicts a simplified version of the cache structure:

Chapter 8. Selling and Fulfillment Foundation 107

By default, the cache manager uses the following parameters from the
dbclassCache.properties file to control how many COUNT results, SELECT
WHERE clause, LIST WHERE clauses and OBJECT (cached records) can be stored
for each table:

sci.globalcache.count.size=10000
sci.globalcache.select.size=10000
sci.globalcache.list.size=10000
sci.globalcache.object.size=10000

As a result, a cacheable table can at most store in the JVM:
v Up to 10,000 cached records (in the OBJECT Map)
v Up to 10,000 SELECT WHERE clauses
v Up to 10,000 LIST WHERE clauses and
v Up to 10,000 COUNT results and their WHERE clauses.

You can use the customer_overrides.properties file to override the settings. For
example, you can increase the cache limit for the number of YFS_RESOURCE
records to 30,000 with the following parameter:

YFS_RESOURCE.objects=30000

For additional information about overriding properties using the
customer_overrides.properties file, see the Sterling Selling and Fulfillment
Foundation: Properties Guide.

The "Objects Cached" column in the System Management Console > Table Level
Cache List provides the number of records cached for each table.

Please keep the following in mind if you change the default settings:
v Each cached record occupies space in the JVM heap. If you increase the number

of records cached, you must ensure garbage collections are still effective and
"healthy".

v Conversely, do not set the cache limit too low such that the Sterling Selling and
Fulfillment Foundation cache has to continually flush the cached tables

108 Sterling Selling and Fulfillment Foundation: Performance Management Guide

The UI login process takes over 30 seconds if you set the cache limit for the
YFS_RESOURCE and YFS_RESOURCE_PERMISSION tables too low (e.g., 1,000).
These two tables have over 3 thousand records which are read as part of the UI
login process. By setting a low cache limit (less than the number of records in these
two tables), the Sterling Selling and Fulfillment Foundation cache must flush out
earlier cache records when the cache fills up. As a result, the next login must read
the records again.

To minimize the amount of cache management overhead, the caching mechanism
implements a simple space management strategy - when the number of cached
records for a table hits the limit specified above, the cache manager initializes (or
refresh) that table's cache to being empty.

Strategies for Enabling Reference Data Caching
The following are some suggestions to consider if you decide to cache some or all
of the reference tables:
v Cache tables that have very low write or update activities. When a record is

changed, the local cache manager has to notify the other active cache manager to
flush that table.

v Monitor the frequency at which the cache tables are flushed:
– If a table is being flushed frequently because the records are being changed,

you may want to consider not caching these tables. For example, your process
may involve updating records in that table en mass. If that is the case, the
cost of the large number of cache flush notifications could out weigh the
benefits of caching that table.

– If a table is being flushed frequently because the number of OBJECTS is
hitting the cache limit, you should study the number of records cached and
the cache hit ratio. You may, for example, not want to cache the table if the
table has a very large number of cacheable records (e.g., during the day,
transactions will range through all the records) and the potential cache hit
ratio is low. Conversely, you may want to increase the OBJECTS limit if the
potential cacheable records is just slightly over the limit.

v Cache queries that are expensive.
v Monitor heap garbage collection to make sure that the garbage collection

overhead is not significant. We recommend you keep the garbage collection
overheads (which we define as the amount of time spent in garbage collection
over an interval) to less than 3%.

Monitoring Cache: The number of records a JVM caches depend on many factors
including the type of transaction, the data that it retrieves, the breadth of
functionality used, and possibly seasonality.

For example, an agent that is configured to Schedule Orders only caches records
that is used by the Schedule transaction. An application server, in contrast, serves a
broad range of transactions and typically requires more memory for the cache. An
application server that services both Sterling Distributed Order Management
(DOM) and Sterling Warehouse Management System (WMS) likely caches more
records than one that only services DOM.

You can monitor cache usage from the System Management Console. Go to the
Detail page for an application server or the Sterling Selling and Fulfillment
Foundation agent. Press the "Table Level Cache" button.

Chapter 8. Selling and Fulfillment Foundation 109

Cache Drop Messages

The cache manager produces the following message, at the log4j WARN level, to
report cache flushes:

2011-02-11 13:10:44,753:WARN :main: Clearing cache. Number
cached=7787,Lists cached=2,Singletons cached=2: YFS_ResourceDBCacheHome

The "number cached" refers to the cached records (OBJECTS). The "Lists cached"
refers to the LIST WHERE clauses. The "Singletons cached" refers to the "SELECT
WHERE clauses".

YFS_HEARTBEAT

Sterling Selling and Fulfillment Foundation records an entry into the
YFS_HEARTBEAT table for each application server and each Sterling Selling and
Fulfillment Foundation server that starts up. These entries enable Sterling Selling
and Fulfillment Foundation to manage servers and to broadcast cached data
updates to them. When a Sterling Selling and Fulfillment Foundation server is shut
down normally, the corresponding YFS_HEARTBEAT record is removed.

When a Sterling Selling and Fulfillment Foundation server ends abnormally (or
whenever an application server ends) the corresponding record can remain in the
YFS_HEARTBEAT table even though it no longer points to a valid running server.
These pointers to servers that are no longer running are known as "stale entries."
Large number of stale entries could slow down the management of the servers. For
example, the cache refresh broadcast will have to try to notify the servers pointed
by the stale entries.

Periodically, each JVM updates its status in its YFS_HEARTBEAT record. By
default, that refresh interval is set to yantra.statistics.persist.interval / 2 or 5
minutes.

To eliminate stale entries from the JNDI tree, you should run the Health Monitor
agent (see Sterling Selling and Fulfillment Foundation: System Management and
Administration Guide) for more detail.

Services
Sterling Selling and Fulfillment Foundation provides certain standard
out-of-the-box services, which could be used on actions configured from events.
These services have been provided in synchronous mode. Some of these services
like Receipt Closure, may require to be changed to asynchronous mode to
maximize performance.

To make them asynchronous, you would need to copy the current supplied service
to another service flow, and change the starting point to one of the asynchronous
transports like WebLogic JMS, MQ, and so forth.

In events where the originally supplied service flows are configured to call
synchronously, you would need to create a custom service which would publish
the Input XML to an asynchronous transport component like WebLogic JMS,
MSMQ, and so forth.

For more information on defining service definitions, see the Sterling Selling and
Fulfillment Foundation: Application Platform Configuration Guide.

110 Sterling Selling and Fulfillment Foundation: Performance Management Guide

APIs
Sterling Selling and Fulfillment Foundation provides an extensive list of APIs that
client programs can invoke. Here are some recommendations for you to consider.

API Output XML Files

The Sterling Selling and Fulfillment Foundation APIs, such as getOrderDetails,
return data based on the specification of the following two XMLs files:
v Output XML file
v Template XML file

The output XML file defines all the possible elements and attributes that the API is
capable of returning. The template XML file allows you to specify a subset of the
elements and attributes that the API returns.

For performance, especially for high volume APIs, you should optimize the
template XML file. Refer to the Sterling Selling and Fulfillment Foundation: Extending
the Database for recommendations.

In the template XML, strive not to use the TotalNumberOfRecords attribute. Coding
this attribute makes the application issue a separate count query against the
database. The count query can be expensive if there is a large number of records
that qualify.

List APIs

List APIs allow you to retrieve sets of data from the Sterling Selling and
Fulfillment Foundation database. These APIs are typically labeled getXXXList - for
example, getItemList, getLocationList, and getOrganizationList. In some cases, the
list API could "find" a large number of records which would cause the API to
return a very large output XML. If unchecked, the output XML could consume a
large portion of the Java heap.

Developers can, and should, limit the number of records returned by setting the
attribute MaximumRecords in the list XML. For example, the following input XML
returns at most 2 records:

<Item MaximumRecords="2" />

You can also enforce a system-wide limit by setting yantra.app.maxrecords (see
“API Control” on page 115).

User Exits and Events

APIs give you the ability to add your own custom code in user exits or events at
well-defined points in the processing. The user exits and events are defined in the
Sterling Selling and Fulfillment Foundation API Javadocs and in the Sterling Selling and
Fulfillment Foundation: Extending Transactions.

When using user exits and events, keep the following in mind:
v Ensure the processing time in the exit and events are short. Long exit or event

processing times increases transaction response time which could result in
lowered throughput.

v Ensure that call-out (requests) to external systems can scale beyond anticipated
peak processing rates. Unscalable or degraded call-outs can significantly
elongate user exit or event processing times.

Chapter 8. Selling and Fulfillment Foundation 111

v Ensure that you do not hold critical record locks during the call out. Critical
record locks are defined as those records, such as the YFS_INVENTORY_ITEM,
YFS_LOCATION, YFS_LOCATION_INVENTORY, YFS_ORDER_HEADER, and
so forth that are potentially needed by other transactions. Please see below.

You need to be aware of whether you are holding record locks when invoking user
exits or events, especially exits or events that could take a long time to process. For
example, if your transaction is holding YFS_INVENTORY_ITEM locks and your
exit takes a minute to process, you could potentially block other inventory
processing transactions that requires that lock.

You can find out whether you are holding on to locks during a call out by review
VERBOSE traces. Look for any SELECT... FOR UPDATE statements issued prior to
the call out.

Calling a user exit while holding on to locks may not be an issue if you are certain
the user exit or event completes quickly (e.g., less than 100ms). For example, you
may have coded a user exit to publish an ON_SUCCESS message to a message
queue. The call out response time is less certain if your exit calls out to an external
system. We have seen many cases at customer sites where external systems call
outs either failed to return or have taken over two minutes.

Wildcard Characters
Oracle, DB2 and Microsoft SQL Server use the underscore character ("_") as a
single character wildcard and the percent character ("%") as a wildcard character
that can match zero or more characters. If possible, you should avoid using these
two characters in indexed fields. Take for example the case where you have a
record with ORDER_NO equal to E1_DIV01_03215466.

The following query is fast because only records with 'E1_DIV01_03215466'
qualifies:

select order_header_key
from yfs_order_header
where order_no = ’E1_DIV01_03215466’;

But the following query can be very slow, especially if you have millions of records
that start with "E1%":

select order_header_key
from yfs_order_header
where order_no like ’E1_DIV01_0321546%’;

In the example above, records with ORDER_NO equal to E11DIV0110321546,
E11DIV01A0321546 and so on qualifies. As a result, the database server has to find
every qualifying record with ORDER_NOs ranging from E1<low value>DIV01<low
value>0321546% to E1<high value>DIV01<high value>0321546%.

If you use wildcards as part of the column value, you can escape the wildcards as
shown in the following example:

select order_header_key
from yfs_order_header
where order_no like ’E1_DIV01_0321546%’
escape ’\’;

log4j Logging
The Sterling Selling and Fulfillment Foundation: Installation Guide provides more
detail on how to configure log4j. Logs are important because they provide
information to help you detect:

112 Sterling Selling and Fulfillment Foundation: Performance Management Guide

v Application problems - for example, application errors during development
v Order processing exceptions - for example, the inventory levels of an item are

low and is causing orders to backorder

Logging Level

The Sterling Selling and Fulfillment Foundation's implementation of logging
provides the following four application logging levels:
v ERRORDTL
v ERROR
v WARN
v INFO

and the following four diagnostic logging levels:
v TIMER
v SQLDEBUG
v DEBUG
v VERBOSE

You can turn on all or a combination of some of these levels. You can also
designate different log destinations.

For production, you should enable either the INFO or WARN logging level. The
application logging levels are cumulative. If you enable INFO, you get all four
levels from INFO to ERRORDTL. If you enable WARN, you get three levels from
WARN to ERRORDTL.

When needed, you can enable diagnostic logging levels for short periods of time in
production. The DEBUG and VERBOSE consume large amount of computing
resource and generate large amount of log entries. Enabling VERBOSE logging also
enables all diagnostic logging levels from VERBOSE to TIMER as well as all
application logging from INFO to ERRORDTL. VERBOSE logs prints out lots of
information including the input, intermediate and resulting XMLs, debug
information, and so forth.

The TIMER logging level produces a one-line trace entry to record when certain
processing sections are entered and exited. This diagnostic logging level is useful
for identifying areas for tuning.

The SQLDEBUG diagnostic logging level produces log entries for each SQL
statement processed. In addition, SQLDEBUG also enables the TIMER logging
level. This logging level is useful if you suspect that there are slow SQL statements.

You can control the log4j logging levels by using any one of the following
methods:
v log4jconfig.xml.
v System Management Console or modifyTraces API call.

The logging level defined in the log4jconfig.xml is restrictive. Therefore, you can
define the maximum logging levels allowed for a particular class using the
log4jconfig.xml.

Chapter 8. Selling and Fulfillment Foundation 113

You can also set the logging level criteria either through the System Management
Console or by calling the modifyTraces API.

If you do not define a logging level criteria through the System Management
Console, the logging level is set to 'INFO' or the value defined in
thelog4jconfig.xml is considered. However, the system will consider the lowest
value.

Log Destinations

By default, the log4jconfig.xml.sample file defines a ROLLINGFILE_APPENDER with a
hard coded destination of /application_path/log/sci.log. If you were to start
multiple JVMs (e.g., multiple agents and/or application servers), they all write to
the same file. In some cases, the log messages from multiple JVMs could be
interleaved.

To avoid this, you can use a parameter to define a separate log file for each JVM.
This can be accomplished as follows:
v In the log4jconfig.xml, set the ROLLINGFILE_APPENDER as follows:

<appender name="ROLLINGFILE_APPENDER"
class="org.apache.log4j.RollingFileAppender">

<param name="MaxFileSize" value="2048KB" />
<param name="MaxBackupIndex" value="2" />
<param name="File" value="${LOGFILE}" />
<layout class="org.apache.log4j.PatternLayout">
<param name="ConversionPattern" value="%d:%-7p:%t: %-60m: %-25c{1}%n"/>
</layout>
</appender>

Note: For Windows, format the example appropriately.
v Pass in the LOGFILE parameter when starting up the JVM. In the following

example, the log file has the agent or application server name followed by the
node name and a date and time:

AGENT_LOGFILE=${LOG_DIR}/${AGENT_NAME}_{$HOSTNAME}-’date +%Y%m%d%-H%M%S`.log
java -DLOGFILE=${AGENT_LOGFILE} \
com.yantra.integration.adapter.IntegrationAdapter

Note: For Windows, format the example appropriately.

Property File
For additional information about overriding properties using the
customer_overrides.properties file, see the Sterling Selling and Fulfillment
Foundation: Properties Guide.

Application Server Connection Pool Parameters

Sterling Selling and Fulfillment Foundation components (e.g., EJB, servlets) that
run in the application servers use the Application Server Connection Pool
parameters to find the connection pool. Refer to “WebLogic Connection Pool” on
page 52 if you are using WebLogic or “WebSphere Connection Pool” on page 47 if
you are using WebSphere for more detail.

The Application Server Connection Pool parameters are not applicable to agents
and the asynchronous adapters because they do not run in the application server.

Note: If Sterling Selling and Fulfillment Foundation running in an application
server cannot get a connection through the connection pool, it tries to establish a

114 Sterling Selling and Fulfillment Foundation: Performance Management Guide

connection through the Direct Connection parameters. If you do not like this
behavior, you can comment out the Direct Connection parameters in the
application server-specific yfs.properties file. The application server transactions
that cannot get a connection aborts with an exception.

Reference Data Cache Parameters

Reference data caching is critical for performance and scalability. By default, the
cache is enabled. Please see “Performance Feature - Reference Data Caching” on
page 104 for more detail, recommendations and strategies.

User Interface Control

The UI Control parameters are only applicable to the screen workloads (e.g., JSPs)
running in the application servers. They provide system level controls to the
application administrators.

yfs.ui.maxRecords

For more information about user interface control, see the Sterling Selling and
Fulfillment Foundation: Properties Guide. In addition to this control, the List screens
have a Maximum Record field which is currently defaults to 30. Therefore,
out-of-the-box, if the user issues a search that has 1,000 records, only 30 are
displayed. The user can, at their discretion, change the value of Maximum Record
up to the value specified by yfs.ui.MaxRecords.

There is an important points that you need to be aware of:

The yfs.ui.MaxRecords only controls the number of records (e.g., orders or items)
that can be displayed in a list. It does not control the amount of work the database
has to perform to get those records. For example, a user can issue a very inefficient
query by asking for all orders that "contains" the letter "Z" in the order number or
in the customer's e-mail id. Those queries typically result in a full table scan of
potentially large tables.

yfs.ui.queryTimeout

For more information about this parameter, see the Sterling Selling and Fulfillment
Foundation: Properties Guide.

API Control

yantra.app.maxrecords

This parameter serves as a safe guard to limit records returned by LIST APIs to
5,000 records. Please see “List APIs” on page 111.

Statistics

By default, Sterling Selling and Fulfillment Foundation generates application-level
statistics every 10 minutes. The statistics generation is governed by the following
parameters:

yantra.statistics.collect=y
yantra.statistics.persist.interval=10m

Chapter 8. Selling and Fulfillment Foundation 115

For more information, see the Sterling Selling and Fulfillment Foundation: Properties
Guide. The System Management Console (see “System Management Console and
Health Monitor Agent” on page 127) relies on these statistics.

Please see “Statistics” on page 128 for more information.

Caution: The time that JVMs refresh their YFS_HEARTBEAT status is set to
yantra.statistics.persist.interval / 2. Therefore, by default, the
YFS_HEARTBEAT refresh interval is set to 5 minutes. We recommend that you do
not increase the yantra.statistics.persist.interval parameter because of its
secondary effect on the YFS_HEARTBEAT refresh interval.

Hot SKU Feature

Please see “Hot SKU Controls” on page 123 for information on the Hot SKU
control parameters.

yfs.inventory.sortandlock

To prevent deadlocks, Sterling Selling and Fulfillment Foundation sorts the order
or shipment lines by the items at the line level (see “Sort Order and Deadlocks” on
page 126) prior to processing. As the application processes the line, it locks the
YFS_INVENTORY_ITEM record. For example, given the following four line order
where:
v Line 1, item A
v Line 2, item G
v Line 3, item F
v Line 4, item E

Sterling Selling and Fulfillment Foundation locks the items and process the lines in
the following sequence:
v Lock item A, process line 1
v Lock item E, process line 4
v Lock item F, process line 3
v Lock item G, process line 2

Transactions that follow this convention reduces the likelihood of deadlocks. The
exception is when orders has kits. Using the example above, assume that item G in
line 2 is a kit that is made up of the following kit items D, B, and C. Since the
application sorts the item at the line level, the application still processes lines 1, 4,
3, and 2 as above. However, when the transaction processes item G, it potentially
locks the kit items out of sequence. Using the example above, the locking sequence
is as follows:
v Lock item A, process line 1
v Lock item E, process line 4
v Lock item F, process line 3
v Lock items B, C, and D, process line 2

If you are processing kits and are experiencing deadlocks, you can set the
yfs.inventory.sortandlock parameter to Y. With the parameter enabled, the
application first sorts and locks all the line item and kit items prior to processing
the transaction. Using the example above, if you enable
yfs.inventory.sortandlock, the application performs the following:

116 Sterling Selling and Fulfillment Foundation: Performance Management Guide

v Lock item A, B, C, D, E and F first
v Process line 1
v Process line 4
v Process line 3
v Process line 2

Note: Setting the yfs.inventory.sortandlock increases the amount of time the
YFS_INVENTORY_ITEM locks are held. That increase may not be noticeable in
small orders (for example, five line orders). However, that increase could be
noticeable if the number of lines is large (for example, over 100 or 200 lines).

Warning: You should not set this parameter if you do not process kits. Setting this
parameter does not add any value to non-kit orders.

See Related Sections:
v “Sort Order and Deadlocks” on page 126

Performance Feature - Hot SKU
Sterling Selling and Fulfillment Foundation locks the inventory item record for an
item before manipulating that item's supply or demand information. That
inventory item lock is held until the transaction is finished.

Determining The Amount Of Inventory Lock Contention: Transactions that hold
inventory item record locks can block other transactions that need the same record.
A certain amount of lock contention is acceptable especially if transactions are
blocked infrequently or for short periods of time and if there is no material impact
on processing throughput or end-user response times.

Determining Level of Lock Contention in Oracle

You can determine the level of inventory lock contention with the following
techniques. In Oracle:
v Use AWR to calculate the amount of lock contention.
v In Oracle, query the v$session table to understand the extent of the lock

contention.

AWR reports provide a measure of the total amount of time (in seconds) all
transactions waited for record locks. This metric is found in the "Wait Events for
DB" section (page 2) of a AWR report. In the following example, transactions
waited for enqueues for a total of 741 seconds in that 30-minute measurement
interval:
Wait Events for DB: YRAC05 Instance: YRAC051 Snaps: 15202 -15203

Avg
Total Wait wait Waits

Event Waits Timeouts Time (s) (ms) /txn
---------------------------- ------------ ---------- ---------- ------ --------
db file sequential read 903,826 0 6,246 7 3.0
db file scattered read 879,659 0 4,281 5 2.9
enqueue 3,542 6 741 209 0.0
library cache pin 375 231 719 1918 0.0
buffer busy waits 116,687 0 449 4 0.4
log file sync 129,571 0 134 1 0.4

Dividing that number of enqueue wait times (741 seconds) by the measurement
interval (30 minutes) shows that the enqueue contention was on average 0.41
blocked seconds per second. From a statistical point of view, one transaction was

Chapter 8. Selling and Fulfillment Foundation 117

blocked 41% of the time every second. If you have ten concurrently running
transactions, at one extreme, this statistic could be interpreted as all transaction
was blocked 4.1%. At the other extreme, one transaction could have been
completely blocked for 719 seconds.

In the example above, the lock contention is minimal. As a guideline, high lock
contention situations are characterized as:
v Enqueue wait seconds per second is greater than 5 second per second or
v Enqueue wait is the top wait

If enqueue wait times are significant, run the following query to identify the
sessions that are blocked, the amount of time that they were blocked for, and the
objects they are blocked on:

select sid,last_call_et, sql_text
from v$session vs, v$sqlarea sa
where last_call_et > 0 and

vs.sql_hash_value = sa.hash_value and
vs.lockwait > ’ ’

order by last_call_et desc;

SID LAST_CALL_ET SQL_TEXT
13 1 SELECT /*YANTRA*/ YFS_ORDER_HEADER.*

FROM YFS_ORDER_HEADER YFS_ORDER_HEADER
WHERE ENTERPRISE_KEY =:"SYS_B_0" AND

ORDER_NO = :"SYS_B_1" FOR UPDATE

In the example above, session (SID=31) blocked for 1 second while trying to lock a
YFS_ORDER_HEADER record.

We suggest you look at the following:
v Determine the objects that transactions are blocked on (e.g., are transactions

blocked on YFS_INVENTORY_ITEM or some other table).
v Determine the amount of time these transactions block for - If the blocks are for

a few seconds (e.g., 1-2 seconds) and the number of order lines per order are
small, the level of contention may be acceptable.

This query, along with the contention level derived from AWR, lets you determine
the extent of the lock contention.

Determining the Level of Lock Contention in DB2

For UDB, check the following monitor elements:
v lock_wait_time to determine the amount of lock contention. If you divide this

number by the measurement interval, you get the average lock wait (in
milliseconds) per second.

v Check the table_name monitor element in the snapshot_lockwait monitor to see
where most of the lock contention are coming from.

v For each blocked agent, check the stmt_text and uow_lock_wait_time monitor
elements in the snapshot_statement monitor.

We suggest you look at the following:
v Determine the objects that transactions are blocked on (e.g., are transactions

blocked on YFS_INVENTORY_ITEM or some other table).

118 Sterling Selling and Fulfillment Foundation: Performance Management Guide

v Determine the amount of time these transactions block for - if the blocks are for
a few seconds (e.g., 1-2 seconds) and the number of order lines per order are
small, the level of contention may be acceptable.

Conditions For Inventory Lock Contention: The following three conditions must
exist together for high inventory lock contention:
v Sufficiently high number of concurrent transactions that require inventory locks
v Sufficiently long inventory lock-holding times
v Presence of a few common inventory (SKU) in the orders of the concurrently

running transactions

If the transaction volume is low and only one transaction is running, this
transaction does not experience any inventory lock contention. The likelihood of
inventory lock contention grows as the number of concurrently running inventory
processing transactions (e.g., createOrder, schedule, release, and so forth) increases.

The impact of lock contention may be minimal if the lock-holding times are very
short. Blocked transactions eventually get and lock the inventory item they need to
process.

If there are no common SKUs, all the concurrently running transactions are able to
process without blocking.

Optimization: If the inventory lock contention level is high, relative to your
processing concurrency levels, or if you feel that your processing throughput or
end-user response times are impacted, we suggest the following course of action.

Look at the lock-holding times. Run each inventory processing transaction with
SQLDEBUG traces or possibly VERBOSE traces. VERBOSE traces provides more
data but can be more intrusive than SQLDEBUG:
v See how long, on average, the transactions take.
v See when the first inventory locks are obtained (and as a result, how long they

are held) within that transaction boundary. The goal is to keep lock-holding
times short.

v See if there are places in the transaction that take a long time to process and the
processing occurs when inventory item locks are held. For example:
– The transaction may have a user-exit that calls out to external systems. If that

external system slows down or is unable to scale, the user-exit time increases.
This elongates the lock-holding times.

– There may be SQL statements that run for a long time and can be optimized
with better database statistics or an additional index.

– Look at the GC logs - Make sure the transaction is not slowed down by long
costly garbage collection pauses.

Reducing lock-holding times can have compounding effects - as lock-holding times
decreases, transactions finish faster and, as a result, lower concurrency levels.

Hot SKU Feature: If inventory lock contention is still unacceptably high after you
have applied the optimization from above, you have two options that can
potentially reduce the level of inventory item lock:
v Hot SKU Feature
v Hot SKU Feature (without lock request timeout)

Chapter 8. Selling and Fulfillment Foundation 119

Hot SKU Feature (without lock request timeout)

In a nutshell, the Hot SKU feature tracks the time to lock inventory item records. If
a lock request for an item (called SKUA) is longer than the
yfs.hotsku.secondsToClassifyAsAbnormalTime threshold, the Hot SKU feature
increments the number of "abnormal" lock attempts for SKUA. If the number of
"abnormal" attempts in a monitoring window is more than the
yfs.hotsku.secondsToClassifyAsAbnormalTime threshold, the Hot SKU feature
considers SKUA a Hot SKU.

In the example below, the first transaction was able to obtain the SKUA lock
immediately.

As a result, the number of abnormal lock attempts (which we assume to have
started at zero) stays at zero. The second transaction blocked but eventually got the
lock within the abnormal lock time period. Since the request completed within the
"abnormal" time, the request was not considered abnormal - as a result, the
number of abnormal lock attempts is left at zero and SKUA is not considered a
Hot SKU.

The next three transactions try to obtain the lock and were blocked for longer than
the abnormal lock time window. Each "abnormal lock" attempt increases the
abnormal lock count within that monitoring window. SKUA turns hot when the
count reaches the yfs.hotsku.numRequestsInTrackingWindowToKeepAsHotSku
threshold (which defaults to 3).

A Hot SKU is downgraded to a normal SKU if the number of references to that
SKU is less than the yfs.hotsku.numRequestsInTrackingWindowToKeepAsHotSku
threshold in a monitoring window.

Hot SKU detection and enablement occurs at each JVM. For example, a sudden
high burst of demand for a single SKU could result in the createOrder adapter to

120 Sterling Selling and Fulfillment Foundation: Performance Management Guide

consider that SKU hot. Later, as the downstream agents process those orders, they
independently detect and enable those SKUs as Hot SKUs if they encounter
sufficient number of "abnormal" locks.

When an inventory item is upgraded to Hot SKU status, transactions do not lock
that inventory item before manipulating its demand or supply information.
Instead, the transactions insert the demand or supply information into two new
tables, YFS_INVENTORY_DEMAND_ADDNL or
YFS_INVENTORY_SUPPLY_ADDNL respectively. As a result, demand or supply
information can be recorded in a non-blocking manner because inserts do not
block other transactions from proceeding. Transactions continue in this mode until
the inventory items have been downgraded to the normal status.

Inventory demand queries automatically check both the
YFS_INVENTORY_DEMAND and YFS_INVENTORY_DEMAND_ADDNL tables.
Similarly, inventory supply queries checks the YFS_INVENTORY_SUPPLY and
YFS_INVENTORY_SUPPLY_ADDNL tables.

The quantities in the inventory additional records are consolidated back to their
base inventory tables by the Consolidate Additional Inventory agent.

Hot SKU Feature with Lock Request Timeout option

The lock request timeout option in the Hot SKU feature may be useful in reducing
the amount of lock holding time by limiting the time the lock request blocks. This
can be useful when you are primarily processing large orders (for example, over 50
lines per order) where the transactions could block for a very long time.

Using the previous example, with the same transaction arrival times and
processing times, we see that Transaction 1 immediately obtains SKUA's record
lock and processes SKUA without the Hot SKU feature. Transaction 2 comes in and
blocks on the Transaction 1 but eventually gets the lock within the abnormal time.
As a result, Transaction 2 also processes SKUA without the Hot SKU feature.

Chapter 8. Selling and Fulfillment Foundation 121

Transaction 3 starts and is blocked by Transaction 1. Eventually, Transaction 3's
lock request times out. When that happens, the transaction increments SKUA's
abnormal lock attempt count to 1 and reissues the lock request.

Similarly, Transaction 4 is blocked by Transaction 1 until its lock request times out.
This transaction increments the abnormal lock attempt count to 2.

When Transaction 3 times out its second lock request, the Hot SKU feature
upgrades SKUA to Hot SKU status. When that has happened, Transaction 3 can
process SKUA even though Transaction 2 still has the SKUA record lock.

Similarly, when Transaction 4 times out, it is able to process SKUA.

More importantly, when Transaction 5 comes in, it sees that SKUA is already a Hot
SKU and does not attempt to lock the SKUA record.

One important benefit to lock request timeout is in situations where the blocker
could be holding on to locks for a long time. With the timeout option enabled, the
blocked transactions has to wait up to a maximum of abnormal lock count
(yfs.hotsku. numberOfAbnormal LocksForSwitchTo HotSKU) times the abnormal
lock timeout (yfs.hotsku. secondsToClassifyAs AbnormalTime) before the
transaction starts to process the SKU as a Hot SKU.

Consolidate Additional Inventory Agent: If you enable the Hot SKU feature, you
must run the Consolidate Additional Inventory agent (see the Sterling Selling and
Fulfillment Foundation: Application Platform Configuration Guide). This agent
consolidates the quantity in the demand and supply additional records back into
the base YFS_INVENTORY_DEMAND or YFS_INVENTORY_SUPPLY tables. The
additional demand and supply records are deleted after the quantities are
consolidated.

122 Sterling Selling and Fulfillment Foundation: Performance Management Guide

Typically, you should configure this agent to run continuously with one thread.
You don't need to overly aggressively schedule this agent - if you do, the agent
consolidates a small number of additional records. At the same time, you do not
want to run for long periods without this agent - if you do, you could accumulate
a large number of inventory additional records which can slow down inventory
queries.

If you are using the DB2 database server, you need to set the parameter
DB2_SKIPINSERTED to ON and mark the YFS_INVENTORY_SUPPLY_ADDNL
and YFS_INVENTORY_DEMAND_ADDNL tables as volatile. These settings reduce
lock contention. Please see the following sections for more information:
v “Recommended DB2 dbset Registry Variables” on page 61
v “Volatile Tables” on page 74

Hot SKU Activity Monitoring: The following messages are logged by the Hot
SKU feature:

Thread-8:2011-06-02 13:50:06,336:INFO : Turning/retaining Item:
[Acme:SKUA:EACH:A] into a hot sku as abnormal lock count has increased now
to:4: YFSAvailHotSKUItem

Thread-7:2011-06-02 16:14:44,871:INFO : Turning Item: [Acme:SKUA:EACH:A]
into a cold SKU as total requests in last 2 windows were :2 and 2:
YFSAvailHotSKUItem

In the example above, the inventory item, SKUA, for the Acme organization, with
UOM EACH and product class A, was upgraded to Hot SKU status because the
Hot SKU feature encountered four abnormal lock attempts in a monitoring period.
Later, SKUA was downgraded to normal status when there was only 2 lock
requests in the last two monitoring windows.

If you see multiple "turning hot" messages for a particular SKU (for example
SKUA in the following example), you ran into a situation where multiple threads
tried to lock an inventory item, which was at that time not considered a hot SKU,
and was blocked. When those threads eventually get the lock, it prints the message
indicating that it encountered an "abnormal" lock and has decided to turn that item
hot:

Thread-8:2011-06-02 13:50:06,336:INFO : Turning/retaining Item:
[Acme:SKUA:EACH:A] into a hot sku as abnormal lock count has increased now
to:4: YFSAvailHotSKUItem

Thread-10:2011-06-02 13:50:06,417:INFO : Turning/retaining Item:
[Acme:SKUA:EACH:A] into a hot sku as abnormal lock count has increased now
to:5: YFSAvailHotSKUItem

Thread-7:2011-06-02 13:50:06,423:INFO : Turning/retaining Item:
[Acme:SKUA:EACH:A] into a hot sku as abnormal lock count has increased now
to:6: YFSAvailHotSKUItem

That item was likely successfully converted to a hot SKU if you do not see any
more subsequent "turning hot" messages for that item.

On the other hand, if you continue to see "turning hot" messages for the same SKU
in the same window, you may have a "Hot" SKU that has low inventory. When a
SKU's inventory level is below a safety level, the Hot SKU feature continues to
lock that inventory item to calculate the items availability (see “Limitations” on
page 125 below).

Hot SKU Controls:

Chapter 8. Selling and Fulfillment Foundation 123

Note: The Hot SKU component is a very powerful feature that you can deploy if
your organization is experiencing true high Hot SKU contention. These parameters
may cause performance problems if set incorrectly. Read this document carefully.
Verify that you have true Hot SKU contention before enabling this feature or
changing any settings. If in doubt, call Technical Support.

In your customer_overrides.properties file, specify the Hot SKU Control
parameters. For additional information about overriding properties using the
customer_overrides.properties file, see the Sterling Selling and Fulfillment
Foundation: Properties Guide.

Table 22. Hot SKU Control

Parameter Description

In the customer_overrides.properties file, add the following entries:

yfs.yfs.hotsku. useHotSKUFeature Control used to enable/disable the Hot SKU feature.

By default, this parameter is set to "N".

yfs.yfs.hotsku.useTimeOutLocking Control used to enable or disable the lock request timeout
option in the Hot SKU feature. By default, the parameter is set
to "N".

yfs.yfs.hotsku. secondsToClassifyAs AbnormalTime Threshold used to determine when a lock request is
"abnormal".

If a lock request exceeded this threshold, that lock request is
counted as an "abnormal" lock request.

Defaults to 0.5 seconds.

yfs.yfs.hotsku.windowTimeInMinutes Interval of one tracking window during which "abnormal" lock
requests are tracked. A subsequent window begins once the
first window ends.

Default interval is 10 minutes.

yfs.yfs.hotsku. numberOfAbnormalLocks
ForSwitchTo HotSKU

Threshold used to determine when to promote an inventory
item to Hot SKU status.

If the number of "abnormal" lock requests for an item exceeds
this value within the tracking window, that item is promoted to
Hot SKU status.

see “Three Usage Scenarios” on page 125 for recommended
settings.

yfs.yfs.hotsku.numRequestsInTrackingWindow
ToKeepAsHotSku

Minimum number of requests needed within the tracking
window to keep the item in Hot SKU status.

yfs.yfs.hotsku.showExtraMessagesAsInfo Enables extra messages to be displayed at info logging level.

Default value is "N".

yfs.yfs.hotsku.itemMapPurgeLeadTime This parameter is used when the number of Hot SKU items in
the cache has reached its limit (specified by
yfs.yfs.hotsku.maxItem MapSizeInMemory). When cache is full,
eject Hot SKU if it has not been accessed in
yfs.hotsku.itemMapPurgeLeadTime minutes. Default value is
10.

For Sterling Selling and Fulfillment Foundation Internal Use Only

yfs.yfs.hotsku.qtyMultiplier Defaults to 30. Do not modify without IBM guidance.

yfs.yfs.hotsku.highRequest QuantityMultiplier Defaults to 2. Do not modify without IBM guidance.

124 Sterling Selling and Fulfillment Foundation: Performance Management Guide

Table 22. Hot SKU Control (continued)

Parameter Description

yfs.yfs.hotsku.maxItem MapSizeInMemory Defaults to 1000. Do not modify without IBM guidance.

Three Usage Scenarios:

Currently we envisage three scenarios for the Hot SKU feature.

Table 23. Hot SKU Usage Scenarios

Scenario Description Parameters

Not Enabled Inventory lock contention is minimal.
The Hot SKU feature is not needed.

yfs.hotsku.useHotSKUFeature=N

Small Orders Inventory lock contention is
sufficiently high and is caused by a
high volume of small orders (around
1-5 order lines per order)

yfs.hotsku.useHotSKUFeature=Y

yfs.hotsku.numberOfAbnormalLocksForSwitchTo
HotSKU=3

yfs.hotsku.windowTimeInMinutes=20.0

yfs.hotsku.numRequestsInTrackingWindowToKeepAs
HotSku=3

Large Orders Inventory lock contention is
sufficiently high and is caused by a
high volume of large orders (more
than 50 order lines per order)

yfs.hotsku.useHotSKUFeature=Y

yfs.hotsku.useTimeOutLocking=Y
yfs.hotsku.numberOfAbnormalLocksForSwitchTo
HotSKU=3

yfs.hotsku.windowTimeInMinutes=5.0

yfs.hotsku.numRequestsInTrackingWindowToKeepAs
HotSku=5

Limitations: There are four situations where Sterling Selling and Fulfillment
Foundation continues to lock the YFS_INVENTORY_ITEM records even when the
item is considered a Hot SKU.

First, the following APIs always lock the YFS_INVENTORY_ITEM records during
supply adjustment:
v updateFutureInventory
v getInventoryMismatch

Second, Sterling Selling and Fulfillment Foundation always locks
YFS_INVENTORY_ITEM records for tag-controlled items if the request is for
specific tag criteria.

Third, Sterling Selling and Fulfillment Foundation locks the
YFS_INVENTORY_ITEM records for an item that is currently a Hot SKU in order
to calculate availability if the inventory for that item is below a safety level.

Note: The reserveItemInventory API checks the safety level availability of Hot
SKU items, however, it does not load an availability picture for Hot SKU items. A
prior call to one of the promising APIs such as findInventory is required to load
the availability picture for Hot SKU items.

Fourth, if the ‘Summarize and Maintain Total Supply and Demand Values For Tag
Controlled Items' Installation Rule is enabled, the Hot SKU logic is not used, and

Chapter 8. Selling and Fulfillment Foundation 125

the values of the TotalOnhandSupply, TotalOtherSupply and TotalDemand fields
are updated accordingly. For more information on defining additional inventory
rules, refer to the Sterling Selling and Fulfillment Foundation: Global Inventory
Visibility Configuration Guide.

Sort Order and Deadlocks
Deadlocks occur when two or more sessions mutually block each other to the point
where neither session can progress. As a result, these sessions continue to block
until the database management system kills one of the deadlocked sessions in
order for the others to continue.

Deadlocks occur when two or more sessions obtain resource locks in an arbitrary
fashion. For example, the following is a classic example:

Txn 1 Txn 2
Locks Record A Locks Record B
Tries to Lock Record B (blocked) Tries to Lock Record A (blocked)

In the example above, Txn 1 holds the lock for Record A and Txn 2 holds the lock
for Record B. When Txn 1 tries to lock Record B, it becomes blocked. When Txn 2
tries to lock Record A, it also becomes blocked. Now, neither session can progress
unless one of the transaction is killed.

If the resource locks were obtained in a consistent order, the deadlock does not
occur. For example, all transactions agree to lock the records in ascending order
(Record A then Record B).

Replaying the example above, we now have:
Txn 1 Txn 2
Locks Record A Tries to Lock Record A (blocked)
Locks Record B
commits

Locks Record A
Locks Record B
commits

In the example above, Txn 2 is delayed but not deadlocked. Both transactions
eventually complete.

Sort Order

When you develop custom code, you should be aware that Sterling Selling and
Fulfillment Foundation obtains YFS_INVENTORY_ITEM locks in the following sort
order:

Item ID, Product Class and UOM

If you adopt this sort order, you should greatly minimize the chance of deadlocks.

Precompiling JSPs
The Sterling Selling and Fulfillment Foundation UI is made up Java Server Pages
(JSPs). When users call up a JSP the first time, the application server automatically
translates and compiles the JSP file. This process can over 30 seconds, which could
lead to the perception of an unresponsive system. Further, this process is
performed serially even on a multiprocessor node - if you have multiple users
hitting five different pages, WebLogic compiles these pages one at a time. As a
result, we strongly recommend precompiling the JSP pages prior to deployment
into production.

126 Sterling Selling and Fulfillment Foundation: Performance Management Guide

You should ensure your application server administrator precompiles the JSPs as
part of the application deployment.

Please see “WebLogic Tuning: JSP Pre-Compilation” on page 53 on precompiling
JSPs in WebLogic application servers.

Please see “WebSphere Tuning: JSP Pre-Compilation” on page 49 on precompiling
JSPs in WebSphere application servers.

MS Internet Explorer: Temporary Internet Files
About this task

You can reduce the number of hits against the application servers for static content
by enabling temporary Internet file cache in Microsoft Internet Explorer. This
improves your UI response times. To enable the cache:
v Go to the Internet Options dialog box.
v In Microsoft Internet Explorer, go to Tools > Internet Option:

– Click on the Settings button in the Temporary Internet Files panel.
– Enable the “Check for newer version of stored pages” radio button to

Automatically.
– Make sure there is sufficient disk space to store temporary Internet files (e.g.,

500MB or higher).

Monitoring
You can monitor the status and progress of Sterling Selling and Fulfillment
Foundation with the following tools or techniques:
v System Management Console
v Throughput Queries
v Sterling Selling and Fulfillment Foundation Statistics
v YFS_INBOX
v Application Logs

System Management Console and Health Monitor Agent
The System Management Console is an application monitor. Some of the areas you
can monitor include:
v The processing throughput, response time, the amount of pending work, and the

number of errors generated at the API and agent level
v The status of the application servers
v The number of messages in JMS queues

In addition, the System Management Console allows you to:
v Shut down, suspend, or resume agent and integration servers.
v Clear reference data cache for a single or all cached tables.
v Enable/disable API, agents, user exits, services, and the application consoles

application traces.

The companion Health Monitor agent can be configured to alert system
administrators when problems occur such as when an application server crashes or
agent servers are not processing tasks.

Chapter 8. Selling and Fulfillment Foundation 127

The System Management Console’s functionality, screens, and related tasks are
documented in detail in the Sterling Selling and Fulfillment Foundation: System
Management and Administration Guide.

Statistics
The System Management Console gets most of its measurements from data found
in the YFS_STATISTICS_DETAIL table. These statistics are described in the Sterling
Selling and Fulfillment Foundation: Application Platform Configuration Guide.

Sterling Selling and Fulfillment Foundation Statistics records, by default, are
generated every 10 minutes for each active API and transaction running in each
application server or Integration Adapter. For example, if the Schedule transaction
was active in 3 Integration Adapters, you have 3 sets of statistics for each
measurement interval.

Time-triggered transactions, at a minimum, generate the following four metrics:
v The GetJobsProcessed metric indicates how many times Get Jobs were issued to

look for work for this transaction.
v The ExecuteMessageCreated metric indicates how many records were selected for

processing.
v The ExecuteMessageSuccess metric indicates how many messages were

successfully processed.
v The ExecuteMessageFailure metric conversely indicates how many messages

were not successfully processed.

With these four metrics, you could:
v Track ExecuteMessageSuccess to see how much work the application is

processing throughout the day.
v Track the ratio of ExecuteMessageSuccess divided by ExecuteMessageCreated to

get an idea of the effectiveness. For example, a ratio of 0.8 means that only 80%
of the orders are successfully processed. If the effectiveness ratio is consistently
low, it could indicate that the application is encountering a large number of
work (or orders) that repeatedly fail. This could lead to extra processing
overhead.

v Calculate the resource cost per unit work processed by correlating the number of
worked processed against the CPU consumed. You could track this to see if the
cost per unit work is changing. This metric is useful for identifying areas to
optimize. It is also the basis for computing resource capacity forecasting or
planning.

In addition, some transactions produce transaction specific statistics. For example,
some of the metrics the Schedule transaction generates includes
NumOrdersBackordered, NumWorkOrdersCreated, and so forth.

Inbox
You should monitor the number of active alerts in the YFS_INBOX table. Sterling
Selling and Fulfillment Foundation alerts come from the following source:
v Transactions that are configured to raise alerts
v Monitor (such as the order monitor)

Users subscribed to queues with large number of open alerts can experience slow
logins. Very large YFS_INBOX tables can impact login times for all users.

128 Sterling Selling and Fulfillment Foundation: Performance Management Guide

You can find out the number of active and non-active alerts by issuing the
following query:

select active_flag,count(*)
from yfs_inbox
group by active_flag

You can find out the distribution of alerts by queue name and inbox type by
issuing the following query:

select queue_name, inbox_type, active_flag, count(*)
from yfs_inbox inb,yfs_queue q
where inb.queue_key = q.queue_key
group by queue_name, inbox_type, active_flag

You can find out the hourly rate of alert creation for July 4, 2011 by issuing the
following query:

select substr(inbox_key,1,10),count(*)
from yfs_inbox
where inbox_key > ’20110704000000’ and

inbox_key < ’20110704999999’
group by substr(inbox_key,1,10);

Application Logs
You should regularly monitor Sterling Selling and Fulfillment Foundation and
application server logs for, at a minimum, the following:
v Application errors or business exception conditions - for example, invalid input

XML to APIs, and so forth.
v System errors - e.g., Java OutOfMemory or NullPointer exceptions

Audits
In the entity XMLs for a table, the out-of-the-box attribute “AuditRequired” is
turned on for many entities, such as Pricing and Entitlement rule related entities.
This flag results in maintaining YFS_AUDIT records for all changes that are made
to these tables.

It is recommended that you turn this flag to off for the initial data load of
entitlement rules. If the flag is left on, there is a performance overhead of 2ms per
record YFS_ENTITLE_RULE_DTL_ITEM entity.

It is also recommended that you evaluate whether you really need this audit for all
entities for which you will be performing large data updates, for example,
copyPriceList and manageEntitlementRule. Unless absolutely required, the audit of
pricing and entitlement entities should be turned off.

For information about how to turn off the AuditRequired attribute, refer to the
"Generating Audit References for Entities" section of the Sterling Selling and
Fulfillment Foundation: Extending the Database.

Sterling Distributed Order Management
This section provides recommendations on how to plan, implement, configure,
monitor, and tune the IBM Sterling Distributed Order Management system with
the default factory (data) settings, which provide a simple configuration that is
suitable for development, training or product familiarization. That configuration is
not suitable for production except for customer with very low transaction volumes.
This section guides you through the components that you have to configure for
higher transaction volumes.

Chapter 8. Selling and Fulfillment Foundation 129

This section assumes that you:
v Are familiar with the basic functionality of the Sterling Distributed Order

Management
v Have read the common Sterling Selling and Fulfillment Foundation performance

concepts in “General Recommendations” on page 91
v Have read and followed all the instructions found in the Sterling Selling and

Fulfillment Foundation: Installation Guide

v Have read the Sterling Selling and Fulfillment Foundation: Release Notes -- Known
Issues

Schedule Agent for Backorder Efficiency
The SCHEDULE transaction schedules orders to specific ship nodes making sure
that the scheduled ship nodes have enough inventory to process the order. An
order line is put into a backordered state when there is insufficient inventory to be
retried at a later time. By default, the retry interval is set to five hours. This setting
should be applicable to most customers. In some cases, your SCHEDULE agent
may be spending a lot of time reprocessing backorders. For example, your
warehouses may only restock once a week and you have a large number of
backorders. If you have a large number of backordered orders and the backorders
can last a few days, you may want to consider one or both of the following:
v Increase the backorder reprocess interval (possibly to a day) in the Scheduling

Rule Details screen (see the Sterling Selling and Fulfillment Foundation: Distributed
Order Management Configuration Guide)

v Create a separate SCHEDULE agent to only process backorders. The benefit of
this approach is you can reduce the frequency when you trigger the backorder
Schedule agent. For example, you could continue to automatically trigger your
main SCHEDULE agent once a minute (if you have very strict end-to-end order
processing service level agreements) and your backorder SCHEDULE agent
every two hours or after inventory supply updates.

Real-Time Inventory Availability Monitor for ATP Efficiency
The Real-Time Inventory Availability Monitor is used to alert external systems
when inventory availability crosses predefined thresholds. When items are flagged
for real-time availability monitoring, a record is inserted into the
YFS_INVENTORY_ACTIVITY table by inventory transactions that update supply
or demand information.

This monitor checks inventory availability based on information in the
YFS_INVENTORY_ACTIVITY table. The activity records associated with an item
are deleted after the inventory check.

If you plan to use the real-time inventory availability monitor, we suggest you start
with 5 threads and monitor the number of records in the
YFS_INVENTORY_ACTIVITY table. It is highly recommended that you
aggressively monitor the YFS_INVENTORY_ACTIVITY table. Additionally, we also
recommend that you set this agent to be auto triggered with an interval of 5
minutes.

The following query can be used to monitor build up in the
YFS_INVENTORY_ACTIVITY table. This query tells you the oldest activity record
in the table:

130 Sterling Selling and Fulfillment Foundation: Performance Management Guide

select sysdate, min(inventory_activity_key) "Min Datetime"
from yfs_inventory_activity

SYSDATE Min Datetime
12/22/2011 3:57:57 PM 20111222155659187360102

In the example above, the query was issued at 15:57:57 and the oldest inventory
activity record was created at 15:56:59. Therefore, the monitor is keeping up by
about 1 minute.

If the time gap between the current time and the oldest record keeps increasing
over time, we recommend starting additional JVMs of this agent.

Note: Although described as 'real-time', availability changes may not be triggered
immediately as inventory changes occur if the agent has a backlog of messages to
process. Furthermore, this monitor exists as a time-triggered transaction, and thus
monitors availability of inventory items only when the monitor is triggered based
on the configured runtime properties.

Getters with Enterprise Code
The getters for the following time-triggered (agent) transactions can take enterprise
code as an additional parameter:
v Order monitor
v Shipment monitor
v Negotiation monitor
v Payment collection

When the Agent Server processes a default getter task (a getter task that picks up
work for any enterprise), the server turns around and creates a getter message for
each enterprise. Each of these getters by default pick up their own 5,000 orders.
Therefore, if you have four defined enterprises, the first getter message results in
the creation of four enterprise-specific getter messages. Those four getter messages
could potentially create up to 20,000 task messages. If you have many enterprises,
you may want to consider:
v Lowering the number of orders a getter puts into the message queue or
v Explicitly scheduling getters with enterprise codes (instead of using the default

getter which gets orders for all enterprises).

Sort Order and Deadlocks
Deadlocks occur when two or more sessions mutually block each other to the point
where neither session can progress. As a result, these sessions continue to block
until the database management system kills one of the deadlocked sessions in
order for the others to continue.

Deadlocks occur when two or more sessions obtain resource locks in an arbitrary
fashion. For example, the following is a classic example:

Txn 1 Txn 2
Locks Record A Locks Record B
Tries to Lock Record B (blocked) Tries to Lock Record A (blocked)

In the example above, Txn 1 holds the lock for Record A and Txn 2 holds the lock
for Record B. When Txn 1 tries to lock Record B, it becomes blocked. When Txn 2
tries to lock Record A, it also becomes blocked. Now, neither session can progress
unless one of the transaction is killed.

Chapter 8. Selling and Fulfillment Foundation 131

If the resource locks were obtained in a consistent order, the deadlock does not
occur. For example, all transactions agree to lock the records in ascending order
(Record A then Record B).

Replaying the example above, we now have:
Txn 1 Txn 2
Locks Record A Tries to Lock Record A (blocked)
Locks Record B
commits

Locks Record A
Locks Record B
commits

In the example above, Txn 2 is delayed but not deadlocked. Both transactions
eventually complete.

Sort Order
When you develop custom code, you should be aware that Sterling Selling and
Fulfillment Foundation obtains YFS_INVENTORY_ITEM locks in the following sort
order:

Item ID, Product Class and UOM

If you adopt this sort order, you should greatly minimize the chance of deadlocks.

Agent Throughput
In addition to the data provided by the System Management Console and the
Sterling Selling and Fulfillment Foundation Statistics, you can also get application
processing statistics by data mining the Sterling Selling and Fulfillment Foundation
database. This technique takes advantage of the following application
characteristics:
v A record is created in yfs_order_header for every new order.
v A record is created in yfs_order_line for every order line.
v A record is created in yfs_order_release_status each time the order line moves

through the various states in its lifecycle.
v An audit record is created in yfs_order_audit each time an order or order line is

modified.
v An audit record is created in yfs_inventory_audit each time an inventory item is

modified.
v Each record has a primary key whose value is made up of two parts:

– A date/time component in the form of year, month, date, hours, minutes, and
seconds. For example, a record that was created on September 21, 2011 at
4:20:14 pm has 20110921162014 as the first part of the key).

– A monotonically-increasing sequence number.

Order Creation Throughput
For example, in Oracle, to calculate the rate at which orders were created on a
specific date (e.g., July 4, 2011), you can issue the following query:

select substr(order_header_key,1,10) time, count(*) as count
from yfs_order_header
where order_header_key > ’20110704000000’ and

order_header_key < ’20110704999999’
group by substr(order_header_key,1,10);

This query produces a listing like this:

132 Sterling Selling and Fulfillment Foundation: Performance Management Guide

TIME COUNT
------------------------ ----------
2011070406 3333
2011070407 3366
2011070408 3333

Note: For DB2, you should issue throughput queries as uncommitted reads. By
default, queries run at the cursor stability level. As a result, DB2 has to obtain a
read share lock on the record it is reading. Queries against tables with high insert
or update activities block behind records with update or exclusive locks.

For DB2 to issue the query above at the uncommitted read lock level, issue the
query with the "WITH UR" option:

select substr(order_header_key,1,10) time, count(*) as count
from yfs_order_header
where order_header_key > ’20110704000000’ and

order_header_key < ’20110704999999’
group by substr(order_header_key,1,10)
with UR;

In Microsoft SQL Server, issue the following:
-- number of order headers
select substring(order_header_key,1,12) "Orders", count(*) "Meas. Minute

Rate"
from yfs_order_header
where order_header_key like ’20110704%’
group by substring(order_header_key,1,12);

-- number of order lines created
select substring(order_line_key,1,12) "Order Lines", count(*) "Meas. Minute

Rate"
from yfs_order_line
where order_line_key like ’20110704%’
group by substring(order_line_key,1,12);

Order LifeCycle Throughput
Similarly, you can calculate the throughput of orders going through its various
lifecycle states with the following example:

select pipeline_key, status, substr(order_release_status_key,1,10) time,
count(*) count

from yantra.yfs_order_release_status
where order_release_status_key > ’20110704000000’ and

order_release_status_key < ’20110704999999’
group by pipeline_key,

status,
substr(order_release_status_key,1,10);

PIPELINE_KEY STATUS TIME COUNT
------------------------ --------------- ------------------------ ----------

2011070409425525425230 1100 2011102906 13333
2011070409425525425230 1100 2011102907 13464
2011070409425525425230 1100 2001102908 13333
2011070409425525425230 1300 2011102906 50
2011070409425525425230 1300 2011102907 23
2011070409425525425230 1300 2011102908 50
2011070409425525425230 3200 2011102906 13234
2011070409425525425230 3200 2011102907 13477
2011070409425525425230 3200 2011102908 13290

The definition of the STATUS is found in YFS_STATUS and PIPELINE_KEY in
YFS_PIPELINE. For example, status of 1100 indicates order lines being created. In

Chapter 8. Selling and Fulfillment Foundation 133

the example above, there were 13,333 order lines created for one pipeline and
another 4,333 order lines created in another pipeline.

Note: You should baseline the throughput of individual agents and key APIs to
get an idea of the potential throughput. You should then monitor the agents in
production against the baseline. This continual monitoring may reveal issues - for
example, a credit authorization agency providing slower response times, issues
with the database, and so forth.

Note: You can monitor the flow of the orders on an hourly basis by pivoting the
data so that STATUS is in the column and TIME is in the row. For example, the
data above can be displayed as follows:

Time 1100 1300 3200
2011070406 13333 50 13234
2011070407 13464 23 13447
2011070408 13333 50 13290

In the pivot example above, 13,333 order lines were created on 2011/07/04 at
06am. At that same time period, 50 order lines went to Backorder and 13,234 were
Released. More importantly, one may conclude that the flow of the orders through
the pipeline is good because order releases are keeping pace with order creation.

There are many ways to create pivot tables including Microsoft Excel (use Data >
PivotTable and PivotChart Report...).

Order Kit Line Creation Throughput
To calculate Kit Line creation, issue the following example:

select substr(order_kit_line_key,1,10) time,
count(*) count

from yfs_order_kit_line
where order_kit_line_key > ’20110704000000’ and

order_kit_line_key < ’20110704999999’
group by substr(order_kit_line_key,1,10);

This query produces a listing like this:
TIME COUNT
------------------------ ----------
2011070406 3333
2011070407 3366
2011070408 3333

Throughput Query Limitations
As we discussed above, the throughput queries provides processing rates by
counting the number of records created. If you run the throughput query against
the YFS_ORDER_RELEASE_STATUS table, you get rates at which order lines move
through the pipeline statuses.

Reprocessing

The throughput queries do not report "unsuccessful" work and as a result can
appear skewed if you have a lot of order reprocessing. You can, however, augment
these throughput queries with data from the Sterling Selling and Fulfillment
Foundation Statistics (see “Statistics” on page 128).

For example, assume there are 10,000 orders available for scheduling. When the
Schedule agent processes the 10,000 orders, it finds that 9,000 orders cannot be
scheduled because they are either awaiting authorization or items are backordered.
The throughput query reports that the Schedule agent successfully scheduled 1,000

134 Sterling Selling and Fulfillment Foundation: Performance Management Guide

orders but does not indicate that it tried to but was unable to schedule the other
9,000 orders. In these extreme cases, the Schedule agents appear to consume a lot
of computing resources for the amount of work (as reported by the throughput
query) performed.

In addition to tracking the order flow, you should also track the number of
exceptions using the exception query below (see “Inbox” on page 128).

Maximum Potential Throughput

The throughput query reports actual work done within each measurement or
reporting period. The rates can be less than the maximum throughput when there
are idle agent threads during the reporting period - for example, when there is not
enough work for the agents to process.

To calculate your agent configuration's maximum throughput, you need to create a
queue of work so that all agent threads are busy the entire reporting period and
the amount of reprocessing is normal or representative of your peak day.

Sterling Warehouse Management System
This section provides recommendations on how to plan, implement, configure,
monitor, and tune the Sterling Warehouse Management System. Sterling Warehouse
Management System' default factory (data) settings provide a simple configuration
that is suitable for development, training or product familiarization. That
configuration is not suitable for production except for customer with very low
transaction volumes. This section guides you through the components that you
have to configure for higher transaction volumes.

This section assumes that you:
v Are familiar with the basic functionality of Sterling Warehouse Management

System
v Have read the common Sterling Selling and Fulfillment Foundation performance

concepts in “General Recommendations” on page 91
v Have read and followed all the instructions found in the Sterling Selling and

Fulfillment Foundation: Installation Guide

v Have read the Sterling Selling and Fulfillment Foundation: Release Notes -- Known
Issues

Property File
The following parameters are used to influence the Sterling Warehouse
Management System processing:

Table 24. yfs.properties

Parameters Value

In the customer_overrides.properties file, add the following entries:

yfs.yfs.solver.iterations.wavecreate 1

yfs.yfs.containerization.maxshipmentsinoneround 75

The Create Wave transaction uses an efficient constraint-based optimization engine
to assign shipments to waves. This engine iteratively assigns shipments to waves
and recalculate cost. Suboptimal wave assignments are discarded and another

Chapter 8. Selling and Fulfillment Foundation 135

solution set attempted. You can limit the number of iterations by editing
<INSTALL_DIR>/properties/customer_overrides.properties file and the following
entry:

yfs.yfs.solver.iterations.wavecreate=< number of iterations >

For additional information about overriding properties using the
customer_overrides.properties file, see the Sterling Selling and Fulfillment
Foundation: Properties Guide.

We recommend testing the Create Wave transaction for your warehouse at the
default iteration level (1) and at a higher level (e.g., iteration of 5) to see if there is
an appreciable difference in processing times and shipment wave assignment. In
some cases, setting yfs.solver.iterations.wavecreate to a lower number results
in marginal differences in the wave assignment but a significant reduction in
processing times.

One way to test the efficacy of the yfs.solver.iterations.wavecreate setting is to
run controlled tests in your QA environment. For example, an approach is to:
v Create a reasonable number of shipments that are ready for the Create Wave

processing.
v Take a backup so that you can repeat the test.
v Run the Create Wave with increasing values and assess the resulting waves.
v Restore the database and repeat above.

The yfs.containerization.maxshipmentsinoneround parameter sets the number of
shipments considered for containerization per iteration. The default is 75. With that
setting, 75 shipments at a time are containerized and committed. This process
reduces the number of record locks held.

WMS Agents
This section describes the runtime or performance characteristics of the Sterling
Warehouse Management System agents or transactions.

Scheduling Using Agent Criteria Group
About this task

Sterling Warehouse Management System customers with a large number of small
warehouses that require wave planning may want to use the "agent criteria group"
wave scheduling feature. By default, the wave processing agents (e.g., Create
Wave, Release Wave) are triggered individually for each node.

You could use utilities such as CRON on Unix to automatically trigger each of the
nodes at some interval. However, if you have a 100 nodes and you would like to
issue the triggers every hour, you would need to set up CRON for the 100 nodes
for each agent.

An alternative is to use agent criteria groups. This can be accomplished in the
following steps:
v First define an agent criteria group in the Sterling Application Platform > System

Administration > Agent Criteria Groups.
v Next, assign one or more nodes to the appropriate agent criteria group in the

Sterling Application Platform > Participant Modeling. For each node, go to the
Organization Details > Roles & Participation dialog box. Select the appropriate
agent criteria group.

136 Sterling Selling and Fulfillment Foundation: Performance Management Guide

v Next, in the Sterling Application Platform > Process Modeling > Wave >
Outbound Picking process model, select Transaction on the left screen. Select the
appropriate transaction (e.g., Create Wave, Release Wave, and so forth).

v Create a new Agent Criteria Definition. In that Agent Criteria Details > Criteria
Parameter, assign the agent criteria group to the appropriate parameter.

When you start the agent and trigger for this agent criteria, you start the
transaction for the agent criteria group. This in turn starts the transaction for each
of the nodes assigned to that agent criteria group.

For example, you may define a node group by time zones or regional groups.

You may want to continue scheduling the wave agents for large warehouse nodes
(those with high shipment volumes) individually. Putting large nodes in node
groups causes nodes could result in nodes waiting for the large nodes to complete
their processing.

See the Sterling Selling and Fulfillment Foundation: Application Platform Configuration
Guide for more information.

WMS Agents: Processing Concurrency
For scalability, the Sterling Selling and Fulfillment Foundation agents are designed
to run in multiple parallel threads. Some of the Sterling Warehouse Management
System agents, by design, run single threaded for a given warehouse node. These
agents include the:
v Create Wave
v Release Wave

WMS Agents: Create Wave: The Create Wave agent assigns eligible shipments
and shipment lines for a warehouse node into optimum waves. By design, only
one Create Wave transaction can concurrently run for a warehouse node.

You can, however, run multiple Create Wave transactions concurrently if you have
multiple warehouse nodes - provided, as stated above, only one Create Wave
transaction is running per warehouse node. This restriction is enforced by the
application.

You can specify the number of threads in the Applications Manager (see
“Integration Adapters/Agents” on page 100).

WMS Agents: Release Wave: The Release Wave transaction creates pick tasks
from shipment lines in a wave. As part of the processing, this transaction serializes
access to inventory item records for that node by locking
YFS_TRANSACTION_LOCK records to prevent concurrent updates to inventory
items during Release Wave processing. There is a YFS_TRANSACTION_LOCK
record for each inventory item/node combination.

As a result, you should only run one Release Wave thread per warehouse node.

Allocate Task Agent

You may want to use the Allocate Task agent if you process large waves (for
example, over 500 line waves). The Release Wave acquires locks on the
YFS_LOCATION_INVENTORY record before managing the inventory at those
locations. For large waves, the locks held by the Release Wave agent could impact

Chapter 8. Selling and Fulfillment Foundation 137

other transactions, such as picks, moves, etc., that also need
YFS_LOCATION_INVENTORY record locks.

You can direct the Release Wave agent to defer inventory location updates. This
allows the Release Wave agent to complete its processing without acquiring these
locks. A subsequent agent, the Allocate Task, acquires the
YFS_LOCATION_INVENTORY record locks and update the inventory at the
location on a task basis. The amount of time that the record lock is held is much
shorter (essentially for the duration of processing that task).

For more information about AllocateTask agent, refer to the Sterling Selling and
Fulfillment Foundation: Warehouse Management System Configuration Guide.

Agents Between Create Wave to Release Wave: In general, all the agents from
Create Wave through to Release Wave inclusive, including all custom agents,
should be run in a single threaded fashion for each agent criteria group (see
“Scheduling Using Agent Criteria Group” on page 136) or for each node if you
want to ensure the waves are released in the order that they are created.

For example, assume you have 10 nodes - N01 to N10. Assume also that:
v Nodes N01 to N03 are assigned to agent criteria group 1.
v Nodes N04 to N08 are assigned to agent criteria group 2.
v N09 and N10 are scheduled individually.

Then for a given agent (say 'Assign Lane') you should run 4 JVMs (one for each
agent criteria group and one each for nodes N09 and N10). Each of these JVMs
have to be configured to run with only one thread per transaction. These agents
and transactions can run in parallel.

As we mentioned above, this is only necessary if you need your waves to be
released in the order in which the waves were created. If the ordering is
unnecessary, you can run these transactions in parallel.

WMS Agents: Purge
We strongly recommend running the WMS Task Purge agent on a daily basis. This
agent is used to keep the YFS_TASK table small by moving completed YFS_TASK
records to the YFS_TASK_H history table. YFS_TASK table that grows unchecked
could affect the performance of WMS task-based transactions, such as next task
suggestion.

Long Running Transactions in DB2
The WMS application is made of both short and long running transactions. Short
transactions are characterized by a small number of database records read and
possibly updated within a short processing time under a single unit of work. At
the end of the processing (or unit of work), the workload commits the transaction.
Database locks are released.

In contrast, some workloads, by their nature, are long running transactions. For
example, the Create Wave transaction groups eligible shipments and shipment
lines into optimum waves based on customer-specified wave constraints. The
length of the processing time depends on many factors such as the number of
shipments, the complexity of the optimization, the wave constraints, and so forth.

You should consider the following when configuring a DB2 database:

138 Sterling Selling and Fulfillment Foundation: Performance Management Guide

v Monitor the amount of transaction log usage - specifically monitor
TOTAL_LOG_USED, TOTAL_LOG_USED_TOP, SEC_LOG_USED_TOP, and
SEC_LOGS_ALLOCATED monitor elements. You should ensure that the amount of log
used does not approach the capacity of the primary logs and that DB2 is not
spilling over to secondary logs.

v Monitor the APPL_ID_OLDEST_XACT monitor element - see which transaction holds
the oldest transaction log entry.

v Enable NUM_LOG_SPAN parameter to safeguard against a long running transaction
holding too many logs that could result in a situation where all the transaction
logs are full. Please see NUM_LOG_SPAN discussion in “Recommended DB CFG
Parameters” on page 63.

Java Stack Size
You have to increase the Java stack size if you plan to create waves or batch waves
with more than 4,000 shipment lines that are assigned to a single shipment group.
You can use the following table as a guideline.

Table 25. Stack Size Recommendations for Create Wave/Batch Wave

Shipment Lines per Shipment Group Stack Size

4,000 2MB

10,000 4MB

15,000 6MB

20,000 8MB

25,000 10MB

Note: Since there are various factors that govern the JVM's stack size, you should
increase the JVM stack size argument when you encounter a
java.lang.StackOverflowError exception.

Please see “Optional JVM Command Line Settings: Stack Size” on page 27 for
instructions on how to set the Java thread stack size.

Sterling Selling and Fulfillment Foundation UI Console: Asynchronous Manifest
Closure: Sterling Warehouse Management System allows you to close manifests
from the Sterling Selling and Fulfillment Foundation UI synchronously or
asynchronously. By default, in synchronous mode, the user has to wait for the
request to complete. Depending on the number of shipments in a manifest, the
manifest close operation can take a long time and may result in users believing the
UI is "locked up".

Sterling Warehouse Management System allows you to configure the system so
that manifests are closed asynchronously. In this mode, the request from the UI
creates a message for the CLOSE_MANIFEST agent. The screen is released to the
user after the message is created. To change to the asynchronous manifest close
mode, edit <INSTALL_DIR>/properties/customer_overrides.properties file and the
following entry:

yfs.yfs.closemanifest.online=N

If this property is set, the user needs to configure the CLOSE_MANIFEST agent for
processing manifest closures requests. Users also need to check for alerts/errors in
the Alert Console. The manifest status "Closure Failed" indicates occurrence of
errors while closing a manifest. For additional information about overriding

Chapter 8. Selling and Fulfillment Foundation 139

properties using the customer_overrides.properties file, see the Sterling Selling
and Fulfillment Foundation: Properties Guide.

WMS User Interfaces: Asynchronous Batch Confirmation
Sterling Warehouse Management System allows you to confirm batch sheets from
the Sterling Selling and Fulfillment Foundation UI synchronously or
asynchronously. By default, in the synchronous mode, you have to wait for the
request to complete. Depending on the number of tasks in the batch, the batch
confirmation operation can take a long time and may result in users believing the
UI is "locked up".

Sterling Warehouse Management System allows you to configure the system so
that batches are confirmed asynchronously. In this mode, the request from the UI
creates a message for the REQ_BATCH_COMPLETION agent. The screen is
released to the user after the message is created. To change to the asynchronous
confirm batch mode, edit <INSTALL_DIR>/properties/
customer_overrides.properties file and the following entry:

yfs.yfs.confirmbatch.online=N

If this property is set, the user needs to configure the REQ_BATCH_COMPLETION
agent for processing the batch confirmation requests. The users also need to check
for alerts/errors in the Alert Console. The batch status "Completion Failed"
indicates occurrence of errors while confirming a batch. For additional information
about overriding properties using the customer_overrides.properties file, see
the Sterling Selling and Fulfillment Foundation: Properties Guide.

Mobile Devices
The Sterling Warehouse Management System application supports two mobile
device displays - a VT100 character-based display and a Microsoft PocketPC
Graphical UI display. The PocketPC display interacts with the Sterling Warehouse
Management System with HTML. The VT100 display sends VT100 characters.

You may want to consider using the VT100 RF display if you have limited network
bandwidth.

IBM Sterling Web

Optimizing Static Content for Sterling Web
To optimize the application server performance, you may want to allow redirection
to your HTTP server to serve up static content such as images. Sterling Selling and
Fulfillment Foundation contains the ability to configure items with an alternate
URL to point to the image file.

To configure item images in Sterling Selling and Fulfillment Foundation, you can
use the IBM Sterling Business Center module. Follow the steps in the IBM Sterling
Business Center Item Administration Guide to specify the location of the server and
the path to the image file.

Enabling Compression for Sterling Web Pages
IBM Sterling Web pages may be up to 1 MB in size, due to extensive JavaScript
libraries needed to support EXT-JS. You can deploy Apache HTTP proxy with
compression enabled in order to accelerate the page loading time of the
application. Apache proxy server may be configured to perform gzip compression,

140 Sterling Selling and Fulfillment Foundation: Performance Management Guide

providing an inexpensive software alternative to onboard compression. For more
information on software compression, consult Apache's documentation on the
mod_deflate module.

Alternately, hardware compression may be deployed to reduce the size of HTTP
and HTTPS content. For more details on setting up hardware compression using
the F5 Big-IP device, see “HTML Compression” on page 93.

API Security for Sterling Web
IBM Sterling Web may require an increased number of JDBC connections when
API Security is enabled. By default, API security is disabled. If enabled, monitor
the maximum usage of JDBC connections and resize the connection pool
accordingly.

Application Server Heap Sizing
For Sterling Web, follow the guidelines given in the “Starting Recommendations”
section of the respective application server JVM section, and tune the heap
parameters for your maximum expected application load. See the Sterling Selling
and Fulfillment Foundation: Catalog Management Concepts Guide for further
information. As a guideline, IBM has used 4 GB heaps for its tests with item index
caching and default reference data caching turned on.

Chapter 8. Selling and Fulfillment Foundation 141

142 Sterling Selling and Fulfillment Foundation: Performance Management Guide

Chapter 9. Performance Tuning Considerations for BI
(Business Intelligence)

This chapter will be provided in the next release of the product.

© Copyright IBM Corp. 1999, 2012 143

144 Sterling Selling and Fulfillment Foundation: Performance Management Guide

Chapter 10. References

Some of the books referenced in this document and that we strongly recommend
include the following:

Oracle

v Oracle11g SQL Reference, Oracle
v Oracle11g Real Application Cluster (RAC) Administration, Oracle

IBM DB2

Refer to the IBM Information Center for DB2 planning, administrative,
performance, and implementation information:

http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/index.jsp

Sun Java Virtual Machine

v The Java HotSpot Performance Engine Architecture, Sun Microsystems,
http://java.sun.com/products/hotspot/whitepaper.html

v Refer to extensive Java SE Hotspot information on http://www.oracle.com/
technetwork/java/javase/tech/index-jsp-136373.html

HP Java Virtual Machine

v HPjtune - visualization tool for HP JVM GC activities - http://www.hp.com

IBM Java Virtual Machine

v Mattias Persson, Java technology, IBM Style, Garbage Collection Policies, Part 1, IBM
v Mattias Persson, Holly Cummins, Java technology, IBM Style, Part 2, Garbage

collection with the Extensible Verbose Toolkit, IBM
v Sumit Chawla, Fine-Tuning Java Garbage Collection Performance, How to detect and

troubleshoot garbage collection issues with the IBM Java Virtual Machine, IBM
v IBM Developer Kit and Runtime Environment, Java Technology Edition,

Diagnostic Guide, Version 5.0, SC34-6650

Oracle WebLogic

v Oracle WebLogic Server Performance and Tuning 10g Release 3 (10.3)
http://download.oracle.com/docs/cd/E12840_01/wls/docs103/perform/
index.html

v System Administration for Oracle WebLogic Server 10g Release 3 (10.3) -
http://download.oracle.com/docs/cd/E12840_01/wls/docs103/admin.html

IBM WebSphere

v IBM WebSphere Application Server Tuning Guide, IBM
v Mark Endrei, IBM WebSphere V7 Handbook, IBM Redbook
v WebSphere InfoCenter for Version 7.0

JBoss

© Copyright IBM Corp. 1999, 2012 145

http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/index.jsp
http://www.oracle.com/technetwork/java/javase/tech/index-jsp-136373.html
http://www.oracle.com/technetwork/java/javase/tech/index-jsp-136373.html
http://www.hp.com
http://download.oracle.com/docs/cd/E12840_01/wls/docs103/perform/index.html
http://download.oracle.com/docs/cd/E12840_01/wls/docs103/perform/index.html
http://download.oracle.com/docs/cd/E12840_01/wls/docs103/perform/index.html
http://download.oracle.com/docs/cd/E12840_01/wls/docs103/admin.html

v JBoss Enterprise Application Platform Documentation Library
http://www.redhat.com/docs/en-US/JBoss_Enterprise_Application_Platform/
EAP_4_3_Portal.html#EAP4_3_Rel

146 Sterling Selling and Fulfillment Foundation: Performance Management Guide

http://www.redhat.com/docs/en-US/JBoss_Enterprise_Application_Platform/EAP_4_3_Portal.html#EAP4_3_Rel
http://www.redhat.com/docs/en-US/JBoss_Enterprise_Application_Platform/EAP_4_3_Portal.html#EAP4_3_Rel
http://www.redhat.com/docs/en-US/JBoss_Enterprise_Application_Platform/EAP_4_3_Portal.html#EAP4_3_Rel

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not grant you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte character set (DBCS) information,
contact the IBM Intellectual Property Department in your country or send
inquiries, in writing, to:

Intellectual Property Licensing

Legal and Intellectual Property Law

IBM Japan Ltd.

1623-14, Shimotsuruma, Yamato-shi

Kanagawa 242-8502 Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be

© Copyright IBM Corp. 1999, 2012 147

incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Corporation

J46A/G4

555 Bailey Avenue

San Jose, CA 95141-1003

U.S.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

All IBM prices shown are IBM's suggested retail prices, are current and are subject
to change without notice. Dealer prices may vary.

148 Sterling Selling and Fulfillment Foundation: Performance Management Guide

This information is for planning purposes only. The information herein is subject to
change before the products described become available.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. The sample
programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work, must
include a copyright notice as follows:

© IBM 2011. Portions of this code are derived from IBM Corp. Sample Programs. ©
Copyright IBM Corp. 2011.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

Trademarks

IBM, the IBM logo, and ibm.com® are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the Web at “Copyright and
trademark information” at http://www.ibm.com/legal/copytrade.shtml.

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered
trademarks or trademarks of Adobe Systems Incorporated in the United States,
and/or other countries.

IT Infrastructure Library is a registered trademark of the Central Computer and
Telecommunications Agency which is now part of the Office of Government
Commerce.

Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo,
Celeron, Intel Xeon, Intel SpeedStep, Itanium, and Pentium are trademarks or
registered trademarks of Intel Corporation or its subsidiaries in the United States
and other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both.

Notices 149

http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

ITIL is a registered trademark, and a registered community trademark of the Office
of Government Commerce, and is registered in the U.S. Patent and Trademark
Office.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Oracle and/or its affiliates.

Cell Broadband Engine is a trademark of Sony Computer Entertainment, Inc. in the
United States, other countries, or both and is used under license therefrom.

Linear Tape-Open, LTO, the LTO Logo, Ultrium and the Ultrium Logo are
trademarks of HP, IBM Corp. and Quantum in the U.S. and other countries.

Connect Control Center®, Connect:Direct®, Connect:Enterprise®, Gentran®,
Gentran®:Basic®, Gentran:Control®, Gentran:Director®, Gentran:Plus®,
Gentran:Realtime®, Gentran:Server®, Gentran:Viewpoint®, Sterling Commerce™,
Sterling Information Broker®, and Sterling Integrator® are trademarks or registered
trademarks of Sterling Commerce™, Inc., an IBM Company.

Other company, product, and service names may be trademarks or service marks
of others.

150 Sterling Selling and Fulfillment Foundation: Performance Management Guide

Index

A
agent criteria 101
agents/monitors

implications of excessive
scheduling 102

AIX 17
early page space allocation 17
late page space allocation 17
page space allocation policy 17
PSALLOC 18

asynchronous I/O 18
auto-negotiation. See network interface

card 16, 19, 20, 21, 23

C
capacity plan 15

See also sizing tools 15
cascading failure 4
checklists

application server 10
computer node implementation 8
JVM implementation 9
planning 7

computer systems
overview 15
planning 15

connection pool
See IBM WebSphere tuning 47
See Oracle WebLogic tuning 52

Consolidate Additional Inventory
agent 122

cursor_sharing. See Oracle, init.ora
parameters 67

D
database disk sizing 15

E
early page space allocation. See AIX 17

H
hot SKU feature 116

I
IBM

WebSphere
JSP precompilation 49

implementation
time-synchronization 15

init.ora parameters. See Oracle 67
inventory locks 116

J
JBoss

JSP precompilation 56

L
late page space allocation. See AIX 17
log4j logging 112

N
network connectivity

auto-negotiation 16
data center network 16

network interface card
auto-negotiation

incorrect negotiation 16

O
Oracle

dedicated servers 72
init.ora parameters

cursor_sharing 67
recommendations 67

redo log 71
WebLogic, tuning

connection pool 52
prepared statement cache 53

OutOfMemory exceptions 28

P
performance management principles 2
pre-sales server sizing 15

See sizing tools 15
PSALLOC. See AIX 18

R
RAID (Redundant Array of Independent

Disks) 59
redundant array of independent disks.

See RAID 59
reference data caching

caching strategies 105
enabling data cache 106
limiting records cached 107
manually refreshing cache 106

S
Selling and Fulfillment Foundation

System Management Console 127
server nodes

mid-tier 15
sizing tools

capacity plan 15

sizing tools (continued)
server node 15

Sterling Selling and Fulfillment
Foundation

logging. See log4 logging 112
Sterling Selling and Fulfillment

Foundation Hot SKU Feature
Consolidate Additional Inventory

agent 122
System Management Console 127

T
time-synchronization 15
time-triggered transactions 101

W
WebLogic

tuning
execute thread count 51

tuning recommendations 51, 55

© Copyright IBM Corp. 1999, 2012 151

152 Sterling Selling and Fulfillment Foundation: Performance Management Guide

����

Printed in USA

	Contents
	Chapter 1. Performance Management Overview
	Lifecycle
	System Components and Roles
	Principles
	Balancing Performance and Architectural Attributes
	Keep It Simple Strategy
	Your Mileage May Vary
	System Test Before Going Live
	Cascading Failure

	Measure Thrice, Check Twice, Cut Once

	Only the Facts, Jack
	About the Performance Recommendations Graveyard

	Chapter 2. Performance Checklist
	Planning Checklist
	Architectural Checklist
	Computer Node Implementation Checklist
	Java Virtual Machine Implementation Checklist
	Application Server Checklist
	Sterling Selling and Fulfillment Foundation Checklist
	IBM Sterling Warehouse Management System Application Checklist
	Database Checklist
	Oracle Database Checklist
	DB2 Database Checklist
	Monitoring Checklist
	Performance Recommendations Graveyard

	Chapter 3. Computer Systems
	Planning for Computer Systems
	Supported Configurations
	Pre-Sales Server Sizing
	Capacity Plan
	Database Disk Sizing

	Time Synchronization
	Data Center Network
	Auto-Negotiation
	Network Bandwidth

	IBM AIX
	Page Space Allocation Policy
	Asynchronous I/O
	Configuring Asynchronous I/O in AIX
	Monitoring Asynchronous I/O in AIX

	Auto-Negotiation

	Sun Solaris
	Auto-Negotiation

	HP HP-UX11i
	Auto-Negotiation
	HP HP-UX11i: Asynchronous I/O

	Linux
	Auto-Negotiation

	Chapter 4. Java Virtual Machines
	General JVM Recommendations
	JVMs: Supported Configuration
	Recommended JVM Command Line Options
	Hanging Threads/Deadlocks/Infinite Loops
	Memory and Paging
	OutOfMemory Exceptions

	HotSpot JVM
	Implementation
	Virtual Machine Mode
	Permanent Generation
	Heap Memory and Garbage Collection
	HotSpot JVM: Garbage Collection Statistics
	SUN

	IBM J9 JVM
	Recommendations for Implementing IBM J9 JVM
	JIT and MMI
	PSALLOC and NODISCLAIM (AIX only)
	Generational Concurrent Garbage Collector

	Heap Memory and Garbage Collection
	Garbage Collection Statistics
	IBM Pattern Modeling and Analysis Tool for Java Garbage Collector
	Heapdump

	Oracle JRockit
	Implementation

	Chapter 5. Application Servers
	WebSphere Tuning
	WebSphere Queuing Network
	WebSphere Connection Pool
	WebSphere Connection Pool: Define Data Source in Sterling Selling and Fulfillment Foundation
	Define a Connection Pool in WebSphere

	WebSphere Tuning: JSP Pre-Compilation
	WebSphere: HTTP Load-Balancing
	WebSphere: Monitoring

	Oracle's WebLogic Tuning Recommendations
	Work Manager
	Application Server Instances
	WebLogic Connection Pool
	WebLogic Connection Pool: Define Data Source in Sterling Selling and Fulfillment Foundation

	WebLogic Tuning: JSP Pre-Compilation
	WebLogic Server Cluster
	WebLogic: HTTP Load-Balancing
	WebLogic: Monitoring

	JBoss Tuning
	JBoss Tuning Considerations
	JBOSS Connection Pooling

	JSP Tuning: JSP Pre-Compilation
	JBoss: HTTP Load-Balancing

	Chapter 6. Database Management System
	Supported Configurations
	Server Sizing
	Disk Technology

	Sterling Selling and Fulfillment Foundation Schema
	DB2: Implementation
	Recommended DB2 dbset Registry Variables
	Recommended DB CFG Parameters
	DB2 Event Monitors
	CLI Packages

	Sterling Selling and Fulfillment Foundation Schema: DB2 Index Monitoring and Tuning

	Oracle: Implementation
	Recommended Oracle Parameters
	Automatic Storage Management (ASM)
	Redo Logs
	Server Mode
	Sterling Selling and Fulfillment Foundation Schema: Oracle Index Monitoring and Tuning
	Oracle Table Partitioning
	Oracle Table Partition Compression
	Tablespaces
	Index and Table Statistics

	Microsoft SQL Server
	Microsoft SQL Server Implementation: Parameters
	Microsoft SQL Server Index Monitoring and Tuning

	DB2 PureScale
	Oracle Real Application Cluster Database
	Supported DB Platforms
	Supported Filesystems
	Support Limitations
	Database Sequence Numbers
	High Availability

	Sterling Selling and Fulfillment Foundation Specific Tuning Using Key Randomizer

	Chapter 7. Java Message Services
	Java Message Services Overview
	Persistence
	Dedicated Queues
	JMS Queue File Placement: Performance

	WebLogic JMS Recommendations
	Dedicated JMS Server
	WebLogic JMS: Message and Byte Paging

	WebSphere MQ Parameters
	Placement of MQ Log and Data Files

	Chapter 8. Selling and Fulfillment Foundation
	General Recommendations
	Scalability Requirements
	User Interfaces
	Application Console
	Applications Manager
	Rich Client Program Interface
	Guidelines for Processing Large Orders

	Integration Adapters/Agents
	Agent Criteria
	Agent Getters
	Agent Thread Levels

	Java Message Service
	Integration Queues
	Dedicated JMS Destination
	JMS Persistence

	Performance Feature - Reference Data Caching
	Reference Data Caching Overview
	Cache Management
	Caching Strategies
	Enabling Reference Data Caching
	Strategies for Enabling Reference Data Caching
	Services
	APIs
	Wildcard Characters
	log4j Logging
	Property File
	Performance Feature - Hot SKU
	Sort Order and Deadlocks
	Precompiling JSPs
	MS Internet Explorer: Temporary Internet Files

	Monitoring
	System Management Console and Health Monitor Agent
	Statistics
	Inbox
	Application Logs

	Audits

	Sterling Distributed Order Management
	Schedule Agent for Backorder Efficiency
	Real-Time Inventory Availability Monitor for ATP Efficiency
	Getters with Enterprise Code
	Sort Order and Deadlocks
	Sort Order

	Agent Throughput
	Order Creation Throughput
	Order LifeCycle Throughput
	Order Kit Line Creation Throughput
	Throughput Query Limitations

	Sterling Warehouse Management System
	Property File
	WMS Agents
	Scheduling Using Agent Criteria Group
	WMS Agents: Processing Concurrency
	WMS Agents: Purge
	Long Running Transactions in DB2
	Java Stack Size
	WMS User Interfaces: Asynchronous Batch Confirmation
	Mobile Devices

	IBM Sterling Web
	Optimizing Static Content for Sterling Web
	Enabling Compression for Sterling Web Pages
	API Security for Sterling Web
	Application Server Heap Sizing

	Chapter 9. Performance Tuning Considerations for BI (Business Intelligence)
	Chapter 10. References
	Notices
	Index
	A
	C
	D
	E
	H
	I
	J
	L
	N
	O
	P
	R
	S
	T
	W

