
Sterling Configurator

Application Guide
Release 9.1.0.52

���

Sterling Configurator

Application Guide
Release 9.1.0.52

���

Note
Before using this information and the product it supports, read the information in “Notices” on page 73.

Copyright

This edition applies to the 9.1 Version of IBM Sterling Configurator and to all subsequent releases and modifications
until otherwise indicated in new editions.

© Copyright IBM Corporation 1999, 2011.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Chapter 1. What is Sterling
Configurator? 1

Chapter 2. Item Configuration:
Implementation 3
Item Configuration: Solution 3

Item Configuration: Tabbed and Normal Layout . 5
Item Configuration: Step-Wise Layout 7

Item Configuration: End-User Impact 9
Item Configuration: Implementation 10

Chapter 3. Deploying with WebSphere
Commerce or third party applications . 13
Create and Deploy the Sterling Web EAR Package 13
Calling Sterling Configurator 14
How end customers access Sterling Configurator in
the production environment 16

Chapter 4. Localizing Sterling
Configurator - An Overview 17
Prerequisites to Localizing the Sterling Configurator 17

Localizing Resource Bundles. 17
Localize Resource Bundles 18
Localizing Factory Setup Data 19

Chapter 5. Customizing Sterling
Configurator: An Overview 21

Chapter 6. Customize Actions 23
Action Definition Customization Checklist 23
Customize Action Classes 24

Chapter 7. Customize Themes. 25
Theme Customization Checklist 25
Customization examples 25

Theme Customization for a Storefront 25

Chapter 8. Customize Controls 27
Customizing an Existing Control 27

Create a new control 28

Chapter 9. Customize Control Handlers 29

Chapter 10. Customize Function
Handlers 31
Function Handler Example 32

Chapter 11. Data Validation 35
Data Validation 35
Customize Data Validation 43

Chapter 12. Deploying your
customizations 45

Chapter 13. Sterling Configurator Best
Practices 47
Designing Models 48
Properties 51
Rules 55
Modular Development. 58
Tools 58
Performance 61
Development and Maintenance 61

Chapter 14. Definitions for
Out-of-the-box Functions 63

Chapter 15. Definitions for
Out-of-the-box Configurator Properties . 65

Notices 73

Index 77

© Copyright IBM Corp. 1999, 2011 iii

iv Sterling Configurator: Application Guide

Chapter 1. What is Sterling Configurator?

The IBM® Sterling Configurator is an application that is used to display
configurable items to customers, thus enabling customers to select the
configurations that best meet their needs. A configurable item offers various
options from which a customer can select before purchasing the item. Based on
how the model item has been created, Sterling Configurator is used to display the
various configurations available for the item. This enables a user to select the
configurations that best meet their needs.

For example, let us suppose that the product catalog contains an item, Bicycle. The
item, Bicycle, represents a model created using a modeler such as the Sterling
Configurator Visual Modeler. This item has four frame types, three wheel types,
and so on. At the time of purchase, the customer can select one of the four frame
types, one of the three wheel types, and so on. This enables the customer to select
the configuration that best meets the customer's needs.

Summarize the big picture: install / build EAR & deploy to test / customize,
localize / build EAR & deploy to production. Revise to summarize the 2
deployment scenarios, with Suite and with WC/third party.

© Copyright IBM Corp. 1999, 2011 1

2 Sterling Configurator: Application Guide

Chapter 2. Item Configuration: Implementation

This section explains the configurations for this functionality:
v To enable a user to configure an item, the item must be created as a configurable

item or a preconfigured item and then associated with a model using the
Sterling Business Center application.

v You can configure whether to display the tabbed configuration page, normal
configuration page, or step-wise configuration page by defining the UI: JSP
FILENAME display property in the Sterling Configurator Visual Modeler.

v When an order is purged, the corresponding order lines and the saved
configurations are also purged. For more information about order purge, refer to
the Sterling Selling and Fulfillment Foundation: Distributed Order Management
Configuration Guide.

v To configure the BOM validations during checkout, ensure that the Validate
Configurable Items When Viewing a Cart rule is enabled in the Channel
Applications Manager. For more information about configuring the Validate
Configurable Items When Viewing a Cart rule, refer to the Sterling Selling and
Fulfillment Suite: Applications Configuration Guide.

v To configure the BOM validations during the submission of a request to the
server, ensure that the Validate Configurable Items During Checkout rule is
configured in the Channel Applications Manager. For more information about
configuring the Validate Configurable Items During Checkout rule, refer to the
Sterling Selling and Fulfillment Suite: Applications Configuration Guide.

v To enable sub model validation, ensure that the CONFIG: VALIDATE
SUBMODEL property is set in the Sterling Configurator Visual Modeler. For
more information about setting the CONFIG: VALIDATE SUBMODEL property
in Sterling Configurator Visual Modeler, refer to the Visual Modeler:
Administration Guide.

v To disable BOM validations during the checkout process or order submission, set
the SkipBOMValidations attribute to Y in either the changeOrder API or the
createOrder API. For more information about the changeOrder API and the
createOrder API, refer to the Sterling Selling and Fulfillment Foundation: Javadocs.

v To display the images of option items available under an option class, you must
set the UI: SHOW ITEM IMAGES property to "true" at the option class level in
the Sterling Configurator Visual Modeler, and specify the image for the option
items by setting the UI: ITEM IMAGE NAME property, in the image URL field
at the option item level, appropriately. For more information about working with
display properties, refer to the Visual Modeler: Administration Guide.

v A user can set UI controls, create constraints, set model groups, models, option
classes, option items, and rules. For more information, refer to the Visual Modeler:
Administration Guide.

Item Configuration: Solution
Channel applications such as IBM Sterling Field Sales, IBM Sterling Web, and IBM
Sterling Call Centerand IBM Sterling Storeenable a user to configure items through
the Sterling Configuratorbefore adding the items to a cart, quote, or an order. You
can offer users the complete range of options available, including preconfigured
items containing predefined choices. Users can purchase the preconfigured items as
is or use them as the starting point for performing additional configurations.

© Copyright IBM Corp. 1999, 2011 3

The sic_properties.zip file located in the <INSTALL_DIR>/repository/external
folder contains the .properties files that are utilized by the Sterling Configurator.
These .properties files must be placed in the appropriate folder as configured in
the Applications Manager.

The following files are located in the properties folder.
v configurator.properties — This file comprises the basic properties that can be

used to modify the functionality of Sterling Configurator. For example, the
number of models that can be cached by Sterling Configurator can be modified
by making appropriate changes to this file. This file comprises the pricingType
property that defines whether the price of an item is taken from the pricelist or
from a model. The valid values that can be defined for the pricingType property
are as follows:
– STATIC_PRICING — To pick the price of an item from the model.
– DYNAMIC_PRICING — To pick the price of an item from the price list.
– OVERRIDE_PRICING — To pick the price from the price list. If the price for

the item is not found in the price list, the price defined for the model is used.

Note: If the price of an item is not configured as part of the price list
configuration in the IBM Sterling Business Center application, the price of the
item displayed in the Sterling Configurator will be based on the price
configured in the Visual Modeler. To use the same price as configured in the
Visual Modeler for either a cart or an order, the CONFIG: PRICE LOCKED
property must be set as 1 for the corresponding option item in the Visual
Modeler.

v controls.properties — This file defines the set of controls that are available for
Sterling Configurator. A user can control the functionality of the option classes
and option items displayed in the UI.

Note: DynamicInstantiationControlHandler is a control handler class that
dynamically adds child option items to a model when it is retrieved from the
cache and removes the dynamic items when the model is returned to the model
cache.

v functionHandlers.properties — The function handlers are declared in this file.
Sterling Configurator provides a rule engine that is used to evaluate the rules
defined for each model. The rule engine can invoke custom functions to handle
scenarios where existing functions are unable to solve a configuration
specification. The lookupValues.properties file is used by the sample
LookupFunctionHandler. The webServiceLookup.properties file is used by the
sample WebServiceLookup handler.

v pagetypes.properties — This file is used to determine the type of page that
should be displayed when the Sterling Configurator is launched. The UI page
templates that control how a model is rendered are defined in this file. Valid
page templates are NORMAL, TABBED, and STEPWISE.

All the paths comprising the location where the models, .properties files, and
rules are stored, are configured in the Applications Manager. The following JAR
files are located in the <INSTALL_DIR>/jar/smcfs/<current_version> folder and
must be copied to the folder specified in the path configured for the rules:
v cmgt-rulesEngine.jar

v cmgt-configuredItem.jar

v cmgt-configurator.jar

4 Sterling Configurator: Application Guide

For more information about configuring the Sterling Configurator rules, refer to the
Sterling Selling and Fulfillment Foundation: Application Platform Configuration Guide.

Based on the way the user interface display property of the model item is
configured in the Visual Modeler, the configuration page is displayed in one of the
following layouts:
v Tabbed
v Normal
v Step-Wise

For more information about working with display properties, refer to the Visual
Modeler: Administration Guide.

Note:

v To configure an item using the Sterling Configurator, ensure that the item's
Effective Start Date and Effective End Date are configured in the Sterling
Business Center application.

v The image of a selected item is displayed only when you select the radio button
or the check box next to it in the step-wise configuration page.

Item Configuration: Tabbed and Normal Layout
In the Tabbed configuration layout, the option classes for a model are displayed
under the respective tabs, with the corresponding option items listed under each
option class. In the Normal configuration layout, the option classes are displayed
on a single page along with the corresponding option items. Whenever an action is
performed in the configuration page of the Sterling Configurator, a request is sent
to the server from the configuration page and the ConfiguratorController is called
to handle that action.

Depending on the action that is called in the configuration page, the system first
performs one or many of the following operations, which are also referred to as
initializeConfigurations, using the Configurator business object:
v Get and process existing XMLs
v Get prices
v Apply pricing
v Apply picks
v Fire rules
v Compute prices
v Get list of controls
v Get list of existing tabs

Following are the actions that can be called in the Tabbed configuration and the
Normal configuration page:
v configure — This is the main action handled by the Sterling Configurator. This

action is called when the Sterling Configurator is launched, a customer clicks on
a tab, or a customer selects an option item in the configuration page. This action
takes the results of the initializeConfiguration operation as the input, sets the
appropriate attributes on request, and sets the value of the configURL parameter
to display the appropriate page.

v addToCart — This action is called when a customer adds a configurable item to
either a cart or an order. This action takes the results of the
initializeConfiguration operation and builds the bill of material (BOM) that is

Chapter 2. Item Configuration: Implementation 5

passed to the cart. The control is passed to the URL specified in the returnURL
parameter. During the checkout process or when a user submits an order, BOM
validations are disabled if the SkipBOMValidations attribute is set to Y in either
the changeOrder API or the createOrder API. BOM validations are not
performed if an order is in Draft status. The BOM validations can be activated
or deactivated during the submission of a request or when a customer performs
a checkout. To configure the BOM validations during checkout, ensure that the
Validate Configurable Items When Viewing a Cart rule is configured in the
Channel Applications Manager. To configure the BOM validations during the
submission of a request to the server, ensure that the Validate Configurable
Items During Checkout rule is configured in the Channel Applications Manager.

v To configure the BOM validations during the submission of a request to the
server, ensure that the Validate Item rule is configured in the Applications
Manager.

v summary — This action is called when a user clicks the Summary button. It
builds the Sterling Configurator BOM based on the results of the
initializeConfiguration operation and sets the request attributes required to
display the Summary page.

v subModelConfig — This action is called when a user navigates from a parent
model to a submodel. This action gets the submodel, sets the necessary input
properties from the parent model and the attributes required to display the
submodel, and displays the submodel for configuration.

v subModelReturn — This action handles the transition from a parent model to a
sub model. It takes the set of output properties from the submodel, adds them to
the parent model, and displays the parent model again. A parent model is
configured with a sub model through the Sterling Configurator Visual Modeler.
A customer can specify sub model validation by setting the CONFIG:
VALIDATE SUBMODEL property.

v showRuleTrace — This action is called when a user clicks the Debug button
when the Sterling Configurator is run in debug mode. It sets the property pool
and trace messages based on the results of the initializeConfiguration operation,
and sets the attributes necessary to display the rule trace.

v resolveConflict — This action is called when a user clicks the Resolve button to
resolve a constraint violation. It collects information about the item that caused
the constraint violation and builds the set of alternatives that can be used to
resolve the constraint. These alternatives are displayed on the Resolver page.

v conflictResolution — This action is called from the Resolver page to resolve a
constraint violation. The resolution selected by the user is applied to the model
by removing the item that caused the constraint violation and selecting the item
that the user specified in the Resolver page.

v testCart — This action is used to display the Test Cart page. When a model is
launched from the Catalog page, the returnURL specifies the standard Add to
Cart action which adds the configuration to the cart. However, when the Sterling
Configurator is launched through the Sterling Configurator Visual Modeler, a
different returnURL is provided. This action transfers the control to a page that
simulates the task of adding the configuration to the cart, with additional
functionality available for debugging.
The Test Cart page comprises the following tabs:
– Test Cart — This tab displays the BOM to be displayed in the cart.
– Launch New Model — This tab enables the Sterling Configurator Visual

Modeler to launch a new configuration model by passing the state of the
existing model.

– BOM Details — This tab displays the BOM comprising the hidden items.

6 Sterling Configurator: Application Guide

– Editable BOM — This tab displays the actual XML representation of the BOM,
which can be used by the Visual Modeler for modifying the model with the
modified BOM. The generateConfigurationBOM API is called to build the
XML representation of the BOM.

v configstatus — This action displays the Configuration Status page. This page is
available only when the Sterling Configurator is run in the debug mode. This
action allows a customer to see the state of the cached configuration models and
clear the cache, if required.

Item Configuration: Step-Wise Layout
In the step-wise configuration layout, each step involved in configuring an item is
displayed as a tab. Each tab comprises option classes pertaining to that step. You
can associate images with models, option classes, and option items. Under each
tab, the corresponding option classes are displayed as icons and have an image
and description associated with them. If no image is provided, a default image is
displayed. If there are multiple option classes, a user can scroll to view the
additional option classes. The step-wise configuration can be launched by calling
the getConfigurationModel API. The Sterling Configurator is launched by a user by
invoking the /configurator/configure.action. This action passes the name of the
model to be configured as the parameter and calls the
ConfiguratorService.managePicks API to get the set of picks to be displayed in the
Sterling Configurator.

The ConfiguratorService.managePicks API retrieves the following information:
v The tabs that are displayed for the model.

After the Sterling Configurator is loaded, an AJAX call is made to retrieve and
display the tabs. The Sterling Configurator controller processes the AJAX call
and generates a list of tabs and details such as tab name, guiding text, and the
status of the tab. Whenever the AJAX call is processed, the controller verifies
from the cache whether the tab information is available for this model. If the
information is available, the controller retrieves the cached information and
builds the JSON response.
The information used to build this response is based on the cached tabs and
messages retrieved from the last call to the Configurator Service. After all the
tabs are retrieved, the first tab on the user interface is activated. When a tab is
activated, an AJAX call is made to retrieve the list of option classes associated
with that tab. When the controller processes the AJAX call, a JSON object
containing the list of option classes for a given tab is created. For each option
class, the option class name, icon, and status are returned. When processing this
call, the controller retrieves the requested information from the controller's cache.
The user can view the selected tabs with the help of visual cues. Each tab
comprises the guiding text at the top of the page that is displayed when the tab
is selected. The guiding text for the tabs is stored as a list property defined in
the model for an item. The Sterling Configurator reads this property and
constructs the tab objects to set the guiding text for each tab. A tab within a tab
configuration displays a collection of option classes and option items. When a
new tab is selected, a request is sent to the server to render the contents of the
new tab and return it back to the client. Each time a user navigates between
tabs, the configuration page is reloaded to display the current tab. getTabs is the
name of the action that retrieves the tab names and message indicators, if any, to
be displayed. If any of the messages pertains to an item pertaining to an option
class, a message indicator corresponding to the tab is set on that tab.

v The list of top-level option classes defined in the model.

Chapter 2. Item Configuration: Implementation 7

To retrieve the list of option classes, an asynchronous call is made to the server.
After the list of option classes is retrieved, the Sterling Configurator saves the
information and renders only those option classes that are associated with the
selected tab. By default, the first option class on the page is active and
highlighted with a visual cue. All the option items under pertaining to this
option class are displayed under a tab. The Help me decide hyperlink displays
detailed information for each of the option item available within the selected
option class. The user must then click the Submit button to submit the selection.
Whenever a user selects an option or enters a value in a text box, the selection is
added to the current pick. The managePicks action manages the selection and
removal of an option item by invoking the processConfigurationPicks API.

v The property pool that determines how certain elements of the model are
displayed.
The property pool is used while rendering the option items within an option
class. The properties in the property pool decide whether an item is visible or
not, whether an image is displayed or not, and so on.

v The list of messages displayed in the messages panel.
The getMessage action retrieves the list of messages displayed in the messages
panel. Each message comprises the type of message, the text of the message, and
the information necessary to allow the Sterling Configurator to navigate to the
source of the message

v The summary displayed in the summary panel.
Whenever a user selects an option item, the page makes an AJAX call to the
server to retrieve the summary information. If this call was made in the past, the
controller retrieves the summary information cached from the previous call. The
controller processes this request and retrieves the summary information specified
for the selected model. The getPricingSummary action returns pricing summary
details such as the base price, order-level pricing discounts, and so on. The
summary panel displays the price of the selected items after applying the
pricing rules, if any. If any item-level pricing rule has been applied to the
selected item, the adjustments resulting from the pricing rule are displayed.
However, these adjustments are displayed only if the pricingType property is set
to DYNAMIC_PRICING or OVERRIDE_PRICING. The pricing information is
calculated when a pick is added to a configuration and is cached on the server.
The getPricingSummary action retrieves the cached information and sends it to
the JSON object to be displayed on the user interface.

For each option class that has been selected by the user, the corresponding option
items are displayed with their price. An image of the option item that is currently
selected is also displayed. If the user moves the pointer over an option item, the
image of this option item is displayed. However, the image will not be displayed if
you have configured not to display the image in the Visual Modeler. The
displayChildren action invokes the getConfigurationModel API to get the option
items of an option class.

On the configuration page, if a user selects a single selection control, the addPick
action is invoked. This action removes the previous pick and adds the new pick. If
the user selects a check box or a multiselect control, the previous selection is not
removed and the addPick action is invoked to pick a new selection. When a
selection is made in an option class, the Sterling Configurator calls the
processConfigurationPicks API with the new pick information. This API comprises
a new set of picks cached along with messages resulting from the call. This cached
information is available for responding to any asynchronous calls made to the
server.

8 Sterling Configurator: Application Guide

The following information can be cached:
v Tabs

By default, the first option class for a model is active, highlighted with a visual
cue, and is displayed under a tab. Whenever a tab is selected, it displays the
corresponding option items.

v Picks
The selections made by a user on the option class are defined as picks.

v Messages
The messages are displayed in the message panel, in the user interface, based on
the rules that are fired on the model.

v Summary Rail Information
The Sterling Configurator displays the summary of selections made by a user in
the Summary Rail area. The summary is updated every time the user selects a
new option item. Users can view their selections. Additionally, buyer users can
save the selections and purchase the configured item. You can specify the
duration of time for which saved configurations will be available to the users
using a cron job. This enables you to clean up old and outdated configurations.
The Summary Rail displays the summary of option item selections under
different headers. The summary headers are displayed based on the way they
are configured in the Visual Modeler. You can configure the summary headers
by defining a list property and attaching it to the root node of the model. If no
property is set on the root node of the model, the model's tabs will be displayed
as summary headers.

A pick made by the user in the Sterling Configurator may result in a constraint.
The constraint table is used in a model to specify the valid configurations. All the
information required to resolve the constraint is stored as properties for an item.
For example, a model can be designed to support a 150 GB hard disk with 512 MB
RAM. If a user selects a 256 MB RAM and a 150 GB hard disk, a constraint will
occur. When an error occurs because of a constraint violation, the user can resolve
the constraint by clicking on the error message. A Constraint Resolution page is
displayed which enables the user to select a different combination of items and
resolve the constraint. The resolveConstraint action sends the control to the
Constraint Resolution page. If the user does not want to resolve any constraint, the
user can click the Cancel button.

A user can navigate between pages by clicking the Next and Previous buttons. The
getNextPreviousButtons action retrieves the text that should be displayed on the
Next and Previous buttons. The text to be displayed on the Next and Previous
button is determined by traversing the list of option classes retrieved by the
processPicks action. The option class names in the list can be searched and then
the next and previous names in the list are returned.

Note: Dynamic instantiation is not supported in the step-wise configuration
layout.

Item Configuration: End-User Impact
This section explains the end-user impact of this functionality:
v Based on the configuration, the Sterling Configurator displays the tabbed,

normal, or the step-wise configuration page.
v When an administrator launches the Sterling Configurator with the DEBUG

parameter set to TRUE, the following buttons are visible:

Chapter 2. Item Configuration: Implementation 9

– Show Rule Trace
– Test Cart
– Debug mode
– Clear cache

v A customer cannot launch the Sterling Configurator from the step-wise
configuration page.

v BOM validations are not performed on an order when the order is in the Draft
status.

v Whenever a customer performs a configuration in the step-wise configuration
page, the Sterling Configurator updates the screen automatically. The submit to
server functionality is not supported in the step-wise layout configuration.

v A customer can view the consolidated list of items selected during configuration
for tabbed and normal configurations by clicking the Summary button in the
configuration page. A customer can view the consolidated list of items selected
during configuration for step-wise configuration by clicking the Review And
Buy button in the configuration page.

v The Instant Savings value is displayed in the step-wise configuration page
when an item-level pricing rule is applied to the price of an item only if the
pricingType property is set to DYNAMIC_PRICING or OVERRIDE_PRICING.

Item Configuration: Implementation
This section explains the configurations for this functionality:
v To enable a user to configure an item, the item must be created as a configurable

item or a preconfigured item and then associated with a model using the
Sterling Business Center application.

v You can configure whether to display the tabbed configuration page, normal
configuration page, or step-wise configuration page by defining the UI: JSP
FILENAME display property in the Visual Modeler.

v When an order is purged, the corresponding order lines and the saved
configurations are also purged. For more information about order purge, refer to
the Sterling Selling and Fulfillment Foundation: Distributed Order Management
Configuration Guide.

v To configure the BOM validations during checkout, ensure that the Validate
Configurable Items When Viewing a Cart rule is enabled in the Channel
Applications Manager. For more information about configuring the Validate
Configurable Items When Viewing a Cart rule, refer to the Sterling Selling and
Fulfillment Suite: Applications Configuration Guide.

v To configure the BOM validations during the submission of a request to the
server, ensure that the Validate Configurable Items During Checkout rule is
configured in the Channel Applications Manager. For more information about
configuring the Validate Configurable Items During Checkout rule, refer to the
Sterling Selling and Fulfillment Suite: Applications Configuration Guide.

v To enable sub model validation, ensure that the CONFIG: VALIDATE
SUBMODEL property is set in the Visual Modeler. For more information about
setting the CONFIG: VALIDATE SUBMODEL property in Visual Modeler, refer
to the Visual Modeler: Administration Guide.

v To disable BOM validations during the checkout process or order submission, set
the SkipBOMValidations attribute to Y in either the changeOrder API or the
createOrder API. For more information about the changeOrder API and the
createOrder API, refer to the Sterling Selling and Fulfillment Foundation: Javadocs.

10 Sterling Configurator: Application Guide

v To display the images of option items available under an option class, you must
set the UI: SHOW ITEM IMAGES property to "true" at the option class level in
the Visual Modeler, and specify the image for the option items by setting the UI:
ITEM IMAGE NAME property, in the image URL field at the option item level,
appropriately. For more information about working with display properties, refer
to the Visual Modeler: Administration Guide.

v A user can set UI controls, create constraints, set model groups, models, option
classes, option items, and rules. For more information, refer to the Visual Modeler:
Administration Guide.

Chapter 2. Item Configuration: Implementation 11

12 Sterling Configurator: Application Guide

Chapter 3. Deploying with WebSphere Commerce or third
party applications

Create and Deploy the Sterling Web EAR Package
About this task

To deploy the Sterling Web application, you must create the IBM Sterling Selling
and Fulfillment Foundation EAR and the Sterling Web EAR. After configuring the
appropriate property files pertaining to Sterling Web, the Enterprise ARchive
(EAR) package must be deployed on the application servers. The Sterling Selling
and Fulfillment Foundation EAR server and the Sterling Web EAR packages are
deployed on two different servers. Sterling Web supports deployment on the
Oracle® WebLogic, IBM® WebSphere®, and JBoss application servers. For
information about creating and deploying EAR on Oracle WebLogic, IBM
WebSphere, and JBoss, refer to the Sterling Selling and Fulfillment Foundation:
Installation Guide.

To make the Sterling Web application available for use, you must perform the
following tasks:

Procedure
1. Set up the application server appropriately for deploying the application. For

more information about setting up the application server, refer to the Sterling
Selling and Fulfillment Foundation: Installation Guide.

2. Create the Sterling Selling and Fulfillment Foundation EAR. To create the
Sterling Selling and Fulfillment Foundation EAR, run the following command:
.\buildear.sh (.cmd for Windows) -Dappserver=<application server>
-Dwarfiles=smcfs,sbc -Dearfile=smcfs.ear

3. When Sterling Selling and Fulfillment Foundation EAR is created, the EARs
located in <INSTALL_DIR>/external_deployments are deleted. To avoid the
deletion of EARs, ensure that you create a backup of the external_deployments
folder.

4. Create the Sterling Web EAR. To create the Sterling Web EAR, run the
following command:
.\buildear.sh (.cmd for Windows) -Dappserver=<application server>
-Dwarfiles=swc -Dearfile=swc.ear

Results

After creating the EAR files, you must deploy the EAR files on the application
servers so that the Sterling Web application is ready for use. For more information
about deploying the EAR file, refer to the Sterling Selling and Fulfillment Foundation:
Installation Guide.

After deploying the Sterling Web application, a user must create an organization
(also referred as storefront in Sterling Web application), create guest user, and
generate catalog search index through Applications Manager to bring up the
Sterling Web application. For more information about these tasks, refer to the
Sterling Selling and Fulfillment Foundation: Application Platform Configuration Guide.

© Copyright IBM Corp. 1999, 2011 13

Calling Sterling Configurator
Sterling Configurator can be integrated into an existing application so that
customers can select products, configure them, and add the configured products to
their cart as a seamless experience.

To enable customers to call into the Sterling Configurator, the configure struts
action must be invoked with a URL of this form:

http://<machine_name:port>/<context>/configurator/configure.action

The following information must be part of the inbound post into the Sterling
Configurator:

Input Type Description Comments

Model The name of the model that Sterling
Configurator must invoke.

Either
ConfigurationKey
or Model is
mandatory

ReturnURL URL used to return the configured
product to the calling application.

Mandatory

OrganizationCode The organization code or storefront used
to fetch models, prices and entitlements.

Mandatory

ThemeId The CSS theme used for Sterling
Configurator. By default, the application
uses the theme associated with the
organization.

Optional

CancelURL URL used to return to the calling
application on canceling the
configuration.

Optional

ConfigXML Information about a current configuration
in XML. This must conform to the DTD
described in the input XML of
manageConfiguration API for
ConfiguratorBOM element.

Optional

Currency Currency in which the prices are fetched
by the application, based on the logged in
customer profile.

EnterpriseCode The enterprise used for pricing. Optional

ConfigurationDate The date and time, passed in the format
same as that of XML APIs. Example:
"2014-10-29T00:00:00-04:00". This date is
used to fetch prices, entitlements, rules
and constraints of model. The date
defaults to current date if the
ConfigurationDate is not passed or if it
does not exist in the session. To remove
configurationDate from the session, pass
ConfigurationDate as “”.

LocaleCode Locale in which the configuration should
be launched, based on the locale from the
logged in customer profile

Optional

14 Sterling Configurator: Application Guide

Input Type Description Comments

CustomerId Customer identifier for pricing and
entitlement queries. CustomerID is
derived based on the logged in customer
id (corresponds to the customer contact
id).

Optional

DoneButton Text for the button to exit after successful
configuration. Example: AddToCart.

Optional

DEBUG Launches the configurator in debug mode
that displays the values for the properties
assigned and also the rule and constraint
execution status.

Optional

ConfigurationKey The identifier of the configuration. Either
ConfigurationKey
or Model is
mandatory

DisplayFooter The struts action that displays the footer. Optional

DisplayHeader The struts action that displays the header. Optional

IgnoreCustomerEntitlements If passed as “Y” or “true” customer
entitlement checks are disabled.
(“IsForOrdering” flag is passed as “N” to
getItemListForOrdering API internally).
Default value is “N”.

Optional

SaveConfiguration If passed as “true”, the configuration is
saved when Done/AddToCart button is
clicked.

Optional

BuyerUserID Additional call in parameter is exposed so
applications can pass. The attribute
exposed across API's to identify UserID in
WebSphere Commerce

A sample html submit form that calls into Sterling Configurator, hosted on
localhost at port 9020 is provided below:

<form id="home" name="home" action="http://localhost:9020/sicapp/
configurator/configure.action" method="POST>

<input type=’hidden’ name="organizationCode" value="allnet" />

<input type=’hidden’ name="currency" value="USD" />

<input type=’hidden’ name="DEBUG" value="true" />

<input type=’hidden’ name="Model" value="Matrix/PCs/Desktops/MXDS_002D7500"
/>

<input type=’hidden’ name="ReturnURL" value="/sicapp/test/testCart.action"
/>

<input type=’hidden’ name="themeId" value="green" />

<input type="submit" value="Submit" />

</form>

Chapter 3. Deploying with WebSphere Commerce or third party applications 15

How end customers access Sterling Configurator in the production
environment

A user is a person who can perform certain functions depending on the role the
user plays in the corresponding organization. Sterling Configurator provides Guest
user or anonymous user support to enable users from external systems such as
WebSphere Commerce to call into the application. A Guest user is provided as part
of the Sterling Configurator factory setup.

A guest user is a customer who can access the Sterling Configurator without
logging into the application. To enable guest user access, a guest user is created in
the profile manager, with Login ID and Password as guest. The item prices and
entitlements fetched by the application are for the anonymous/guest customer. For
more information , see API Javadocs.

16 Sterling Configurator: Application Guide

Chapter 4. Localizing Sterling Configurator - An Overview

The Sterling Configurator is an internationalized application, which can be used by
customers from different locales to configure an item. In such a scenario, it is
important to localize the user interface components of the application in the
language and format that is specific to a customer's locale. It is also important to
ensure that the fixed descriptive text displayed in the user interface (UI) fits the
Web page area assigned to it. Sterling Configurator supports only left to right and
top to bottom text layouts. Therefore, only the languages with this orientation are
supported for localization.

The default locale for the Sterling Configurator application is en_US, which implies
that the default language is English and the default country or region is the United
States. If a UI component cannot be translated into the language of a given locale,
the symbol will be displayed in the US-English format.

The Sterling Configurator application is dependent on IBM Sterling Selling and
Fulfillment Foundation for localizing the formatting of currency values, date
values, and numbers. For more information about understanding the concept of
localization and localizing components, refer to the Sterling Selling and Fulfillment
Foundation: Localization Guide.

The Sterling Configurator application is dependent on Sterling Business Center for
localizing the following:
v Description and value of an item in the user interface.
v Information pertaining to catalogs.

A customer can modify the ExtnCatalogSearchConfigProperties.xml file to localize
the catalog search. For more information about extending the catalog search, refer
to the Sterling Selling and Fulfillment Foundation: Extending the Database.

For more information about localizing item descriptions and values, refer to the
Sterling Business Center: Localization Guide.

Prerequisites to Localizing the Sterling Configurator
Before you start localizing the Sterling Configurator, ensure that you have read all
the prerequisites. For more information about the prerequisites to localizing the
application, refer to the Sterling Selling and Fulfillment Foundation: Localization Guide.

Localizing Resource Bundles
A resource bundle is a file that comprises resource bundle keys and their
corresponding values. The values pertaining to these resource bundle keys are
translated as part of localization. Each field in the user interface (UI) has a key
associated with it. To display the translated literal for a field in the UI, the
localized value of the key associated with the field is fetched from the bundle file.

A property resource bundle is a collection of property files that are accessed as
Java™ resources. In Sterling Configurator, the resource bundle is named as
package.properties. The package.properties file is located under the
com/comergent/reference/apps/configurator directory.

© Copyright IBM Corp. 1999, 2011 17

You can use the package.properties file to localize the following:
v Error and warning messages displayed on the user interface.
v Descriptions pertaining to labels, panels and headings displayed in the user

interface.
v Sentences displayed in the user interface.
v Dynamic data within a literal. For example, the user interface may have to

display a literal that informs a user that an input value cannot exceed a certain
number of characters, and that the number of characters is dynamic. In this case,
if the maximum character length for a description is set at 428 characters, 428 is
the value of the parameter. The corresponding bundle entry is defined as
"b_MaxCharLengthExceeded":"The value cannot exceed {0} characters".

Note: As per localization specifications, translators can increase the width of
values in the package.properties file by an additional 25% and expect the page
to look reasonable. If the field length is increased beyond 25%, other JSP level
customizations may be necessary.

The package.properties file is provided to a third party for translation. The
package.properties file contains the keys required to translate the literals in the
configuration page, and their language-specific translation. Duplicate keys can exist
between the files, but you must ensure that there are no duplicate literals within a
file.

The package.properties file contained in the sic.jar file located in the
<INSTALL_DIR>/repository/eardata/sic/war/WEB-INF/lib folder is the base
property file for the resource bundle. If the localized resource bundle file cannot be
located, the system will use the base property file contained in the sic.jar file to
display the literal on the user interface. The base property file contains the en_US
(English-United States) mapping for each key. This file is named according to the
resource bundle name with the .properties extension. For example,
com/comergent/reference/apps/configurator/package.properties is the name of
the base property file for the Sterling Configurator resource bundle. The translated
property file has the same name, but the locale name is interposed between the
resource bundle name and the .properties extension. Thus, the
package_fr.properties file located under the com/comergent/reference/apps/
configurator directory is the translated property file for the fr_FR (French_France)
locale.

Sterling Configurator supports all the Java resource bundle localization techniques.
Java resource bundle localization defines a locale by language, country or region.
However, it is recommended that you localize a resource bundle file to the
broadest category. For example, instead of creating a translation for French-France
(fr_FR), create a translation for French (fr) only. This translation is equally
applicable in France, Canada, Switzerland, Niger, Algeria, Mali, and so on, where
French is spoken. For country or region specific terms that differ from this
translation, you can create smaller translation files.

Localize Resource Bundles
About this task

To localize resource bundles, perform the following steps:

18 Sterling Configurator: Application Guide

Procedure
1. Extract the package.properties file from the sic.jar file located in the

<INSTALL_DIR>/repository/eardata/sic/war/WEB-INF/lib folder and save the
file in a temporary folder.

2. The resource bundle contains a <key>=<value> pair, where key is the resource
key and value is the literal displayed for the corresponding locale. Replace
<value> with the translated value.

3. Save the modified file. If the file is in UTF-8 format, convert it to ASCII by
running the native2ascii command as follows:
native2ascii -encoding UTF-8 <source file> <target file>

4. The translated file should be renamed in the following format:
package_<2 letter code for language as given by ISO 639>_<2 letter code
for territory as given by ISO 3166>.properties

Here, <2 letter code for territory as given by ISO 3166> is required
only if the translation is specific to a language and a country or
region.

5. Create a JAR file of the files that have been translated.
6. Run the following command from the <INSTALL-DIR>/bin folder to install the

JAR file:
For Windows:
install3rdParty.cmd

For Linux/UNIX:
install3rdParty.sh

For more information about installing third-party JAR files, refer to the Sterling
Selling and Fulfillment Foundation: Installation Guide.

7. Rebuild the Sterling Selling and Fulfillment Foundation Enterprise ARchive
(EAR).
For more information about localizing resource bundles, refer to the Sterling
Selling and Fulfillment Foundation: Localization Guide.

Localizing Factory Setup Data
Besides storing your transactional data, the database also stores configuration data,
such as error codes and item descriptions of various attributes. This means that the
database may have to store values in a language-specific format. If these database
literals are not localized, screen literals are displayed inconsistently, with some
being displayed in the localized language, and others being displayed in English.

For a multilanguage installation, you can localize the database factory default
values. For more information about localizing factory setup, refer to the Sterling
Selling and Fulfillment Foundation: Localization Guide.

Chapter 4. Localizing Sterling Configurator - An Overview 19

20 Sterling Configurator: Application Guide

Chapter 5. Customizing Sterling Configurator: An Overview

The Sterling Configurator can be customized based on your business requirements.
You can make changes in the way information is displayed in the item
configuration page in the user interface (UI). For example, you can change the UI
look-and-feel or hide certain items that belong to a model when a customer
belonging to a particular customer group logs in and navigates to that model.

This topic provides an overview of the types of customization possible in the
Sterling Configurator application.

The Sterling Configurator application uses the Apache Struts 2 framework for page
construction and request management between pages. Sterling Configurator
customizations can be performed by selectively overriding the action definitions.
Struts 2 action definitions bind together a collection of resources required to fulfill
any type of request from the Web. Custom action definitions can selectively
overlay a portion of the action namespace.

The following components can be customized in Sterling Configurator:
v Controls - You can add or modify controls.
v Function Handlers - You can add new function handler classes.
v Struts extensions — Defining new struts and overriding the existing struts.

For more information about creating and extending a struts XML file, refer to
the Sterling Selling and Fulfillment Foundation: Customizing the Web UI Framework.

v Mashup extensions — Customizing the input XML and the output template of
an API call. Additionally, you can perform the following functions with
mashups:
– Define new mashups
– Override the existing mashup using override extensibility
– Extend the mashups using differential extensibility

For more information about how to override extensibility and extending
mashups using differential extensibility, refer to the Sterling Selling and
Fulfillment Foundation: Customizing the Web UI Framework.
Notes:

– You can extend the mashups specific to a storefront by defining the mashup
in the customized struts action and including the corresponding mashup file
to the customization folder created by you. However, you can extend
mashups by following the approach specified in the Sterling Selling and
Fulfillment Foundation: Customizing the Web UI Framework. For more
information about extending mashups, refer to the Sterling Selling and
Fulfillment Foundation: Customizing the Web UI Framework.

v Action class extensions — You can extend action classes. For more information
about extending action classes, refer to the topic, “Customizing Action Classes”.

v JSP — Creating new JSPs and overriding the existing JSPs.
v Themes — CSS and image files pertaining to the application's look and feel are

organized in a directory hierarchy, with the theme name as the root. By default,
each storefront is assigned a theme. The CSS files pertaining to a theme are used
in construction of pages.

© Copyright IBM Corp. 1999, 2011 21

For information about customization basics, refer to the Sterling Selling and
Fulfillment Foundation: Customization Basics.

If you add a new field in the JSP, you may have to extend the database table to
add a corresponding database column. In such a scenario, the database is extended
to include a corresponding column. The new column that is added in the database
must be exposed to the corresponding APIs. For more information about extending
the database, refer to the Sterling Selling and Fulfillment Foundation: Extending the
Database.

22 Sterling Configurator: Application Guide

Chapter 6. Customize Actions

Action Definition Customization Checklist
About this task

When customizing the action definitions that are a part of Sterling Configurator,
follow the sequence in which the tasks are listed in the following checklist.

Procedure
1. Create the root folder for the customization project. For more information

about how you can structure the folders for customizations, see the topic,
“Customization Examples”.

2. Under the Customization project create a customization folder, say Cust1.
3. Determine the Struts file you want to customize. To identify the files that

require customization, it is important to know the relevant resources such as
the action name, mashup XML, and JSP file that are defined as part of the
corresponding Struts file.

4. As part of customization, you can either introduce a new Struts file in the
customization project or modify the existing Struts file by copying it to the
customization project with a different name.

5. To introduce a new Struts file, perform the following steps:
a. Add a new action name.
b. Add a new JSP page.
c. Add a new mashup XML file.
d. Add a new XML binding file. The binding files bind the XAPI variables

with the JSP components and JAVA attributes with the API attributes.
To modify the existing Struts file, perform the following steps:

e. Copy the existing action name to the customization project and modify it.
f. Copy the existing JSP page to the customization project and modify it.
g. Copy the existing mashup XML file to the customization project and

modify it.
h. Copy the existing XML binding file to the customization project and

modify it.
Based on the requirement, you must either add or update the appropriate
files defined in the customized Struts file.

6. Include the newly added or modified Struts file into custom_struts.xml file
placed under the customization project.

7. Include the custom_struts.xml file in to the sic_struts.xml.sample file
located in the <INSTALL_DIR>/repository/eardata/sic/extn folder.

8. Rename the sic_struts.xml.sample file to sic_struts.xml file.
9. Build the JAR file of the customization project.

10. Install the JAR file using the installService utility.
11. Create the EAR and deploy the EAR.

© Copyright IBM Corp. 1999, 2011 23

Customize Action Classes
About this task

The Sterling Configurator application enables you to add new action classes. You
may need to add new action classes in certain customization scenarios such as
adding a new functionality which involves a complex sequence of mashup calls.
The Sterling Configurator class files are located in the <INSTALL-DIR>/repository/
eardata/sic/war/WEB-INF/classes directory.

To add a new action class:

Procedure
1. Create a new class file for the customization, and define the class as part of a

package. It is recommended that you include an indication of the enterprise for
which the customization is being performed in the new class. For example, if
the enterprise is ABC, the class may be defined as
''com.abc.webchannel.orders.OrderChangeAction''.

2. The new class should extend the
''com.sterlingcommerce.webchannel.core.WCMashupAction'' action.

3. Map the action to the new action class in the custom_struts.xml file by
following similar steps as described in the section, “Overriding an Existing
Functionality”.

24 Sterling Configurator: Application Guide

Chapter 7. Customize Themes

Theme Customization Checklist
Procedure
1. Create the root folder for the customization project. For more information about

how you can structure the folders for customizations, see the topic,
“Customization Examples”.

2. Under the customization project, create a customization folder, say Cust1.
3. Create a new theme, say, theme1 or assign an existing theme to the enterprise

that must be customized.
4. Add the customized CSS, js, and image files to the customization folder. Ensure

that the files are placed in the appropriate folder. For example, the CSS file
must be placed in the customization/src/main/webapp/sic/css/theme folder.
For more information about how you must structure the folders for
customizations, see the topic, “Customization Examples”.

5. Build the JAR file of the customization project.
6. Install the JAR file using the installService utility.
7. Create the EAR and deploy the EAR.

Customization examples
This topic provides a few examples of customization to provide a better
understanding of the customization process. Apart from the examples provided
here, you can perform customizations based on your requirements.

Theme Customization for a Storefront
About this task

Note: The theme name assigned to a storefront and the storefront ID are
case-sensitive.

Alternatively, you can customize the theme for a storefront by adding the
appropriate files in the customization project by performing the steps mentioned
below:

Procedure
1. Create the root folder for customization say, customization.
2. The name of the customized theme can be abc_cust.
3. In the following folders, replace the {custom_theme} attribute with the storefront

theme name:
v customization/src/main/webapp/sic/css/theme/{custom_theme}

v customization/src/main/webapp/sic/js/theme/{custom_theme}

v customization/src/main/webapp/sic/images/theme/{custom_theme}

The following table lists the files and the corresponding location required for
implementing the theme customization:

File Name
Location

© Copyright IBM Corp. 1999, 2011 25

theme-1.css
customization/src/main/webapp/swc/css/theme/abc_cust

theme.js
customization/src/main/webapp/swc/js/theme/abc_cust

All the images pertaining to the theme are stored in the
customization/src/main/webapp/swc/images/theme/abc_cust folder.

4. Ensure that you deploy the customized JAR by performing the steps mentioned
in the “Postcustomization Deployment” topic.

26 Sterling Configurator: Application Guide

Chapter 8. Customize Controls

Controls are used to determine how the option classes and option items are
displayed and behave in the user interface (UI). You can modify an existing control
or add a new control.

In the base model, the Sterling Configurator Visual Modeler supports the following
choice of controls:
v Radio button
v Checkbox
v Drop down list
v Listbox
v Multiple Selection Listbox
v Display All Children
v User Entered Values
v Tabular Display

When Modelers are creating the model for configurations, they determine which
control is used for an option class by selecting it from the Control drop-down list
on the Display tab of the option class detail page.

Each control corresponds to a JSP page and the behavior of the option items. This
correspondence is defined in the controls.properties configuration file under the
Comergent/WEB-INF/properties folder in the deployment directory.

Following is a sample entry defined in the controls.properties file:
RADIO.name=Radio Button
RADIO.jsp=controls/radio.jsp
RADIO.behavior=single

In this example, for the radio button control, the radio.jsp JSP page is used to
render the option class in the UI. The behavior property determines how the
Sterling Configurator handles picks in this control. Based on how the behavior
property is defined, the Sterling Configurator handles picks as follows:
v entry — used for user-entered controls.
v expand — expand all the children of this control if the control itself is picked.
v multiple — allow one or more option items to be picked from this control.
v single — if an option item is picked, then remove any previous picks from this

option class.

Customizing an Existing Control
You can customize an existing control by modifying the corresponding JSP page or
by creating a new JSP page and modifying the control.properties file to point to
the new JSP page.

© Copyright IBM Corp. 1999, 2011 27

Create a new control
About this task

You can define a new control by adding the name of the control to the list of
controls declared.

For example, to add a MATRIX_CUSTOM control:
controls=MATRIX_CUSTOM,RADIO,CHECKBOX,COMBOBOX,LISTBOX,MULTISELLISTBOX,ALLPICKED,UEV,DISPLAY

Then declare the properties of the new control as follows:
MATRIX_CUSTOM.name=Matrix Custom Control
MATRIX_CUSTOM.jsp=controls/MatrixCustom.jsp
MATRIX_CUSTOM.behavior=single

Customizing and modifying controls does not require a server restart because this
file is read each time a Sterling Configurator Visual Modeler or Sterling
Configurator session is launched.

To customize controls, perform the following steps:

Procedure
1. If you have already customized the controls in the Sterling Configurator Visual

Modeler, save the customized controls.properties file in the directory where
the properties are stored. The path to the location where the properties are
stored is configured in the Applications Manager.

2. Edit the controls.properties file, as required. For more information about
modifying the controls.properties file, refer to the Sterling Configurator Visual
Modeler: Implementation Guide

3. Save the customized JSP files in the <INSTALL_DIR>/repository/eardata/sic/
extn directory.

28 Sterling Configurator: Application Guide

Chapter 9. Customize Control Handlers

Control handlers are a mechanism for invoking Java code to handle special actions
that may be difficult to handle in a JSP page alone. For example, the
DynamicInstantiationControlHandler class dynamically adds child option items to
a model when it is retrieved from the cache and removes them (the dynamic items)
when the model is returned to the model cache.

The control handlers must implement the IControlHandler interface (typically they
extend the StandardControlHandler class). They implement (or override the
implementation of a base class) the methods:
v public void initializeControl(IModelBean model,

IOptionClassBeanoptionClass)

v public void resetControl(IModelBean model, IOptionClassBeanoptionClass)

v public void handleComergentRequest(IModelBeanmodel,ComergentRequest
request,Map picks)

The 1 method is called just after the model is fetched from the cache. The 2 method
is called just before the model is returned to the cache. The3 method is called to
construct the picks map used to apply picks.

1. initializeControl()

2. resetControl()

3. handleComergentRequest()

© Copyright IBM Corp. 1999, 2011 29

30 Sterling Configurator: Application Guide

Chapter 10. Customize Function Handlers

About this task

The Sterling Configurator application enables you to customize function handler
classes. The function handler classes are Java classes that are used to define custom
functions that can be invoked by the Sterling Configurator rule engine.

The function handlers are defined in the functionHandlers.properties
configuration file inside the cmgt-configurator.jar file located under the
<INSTALL-DIR>/jar/smcfs/9.1 directory. This file includes a name for each
function handler and the directory in which the function handler class is located.

Following is a sample fragment of the functionHandlers.properties file:
WEB-INF/classes/com/comergent/apps/configurator/functionHandlers=
CheckLookupFunctionHandler,ChildSum,CountFunctionHandler,IsSelectedHandler,
LengthFunctionHandler,ListFunctionHandler,LookupFunctionHandler,
MaxFunctionHandler,MinFunctionHandler,ParentFunctionHandler,
PropValHandler,SumFunctionHandler,ValueFunctionHandler,WebServiceLookup
CheckLookupFunctionHandler=
com.comergent.apps.configurator.function-Handlers.CheckLookupFunctionHandler

To customize the function handler class in the Sterling Selling and Fulfillment
Foundation, perform the following steps:

Procedure
1. Create a new Java class with the

com.comergent.apps.configurator.functionHandlers package declaration. The
class declaration must declare that the class extends the
AbstractRuleFunctionHandler class.
The new Java class should implement the following methods:
v public String getFuncName(): return the function name, such as ''sum'' or

''max''. This is case-sensitive: you can use different function handlers to
manage ''sum'' and ''SUM''.

v public int getType(): return the type of value returned by the function. This
should be a constant defined in the
com.comergent.api.appsservices.rulesEngine.Value class. The
AbstractRuleFunctionHandler class method returns Value.STRING. Therefore,
you must override this method if the function returns any other type.

v public Value handle(State state, String prop): return the Value calculated for
the function.

v public boolean isPublicHandler(): return true if the function handler may be
used by any client application; otherwise return false. The
AbstractRuleFunctionHandler class method returns true. Therefore, you must
only override this method if the function handler is private.

2. Create a new JAR file containing the customized function handler class and
functionHandlers.properties file.

Note: The JAR file must be present in the application classpath of the Sterling
Selling and Fulfillment Foundation. The functionHandlers.properties file is
instantiated by a servlet. Therefore, the JAR file must be added to the root of
the EAR.

© Copyright IBM Corp. 1999, 2011 31

For example, create a new sic_customization.jar file containing the following
files:
v com/comergent/apps/configurator/functionHandler/

AvgFunctionHandler.class
v com/cust/functionHandlers.properties

3. Modify the web.xml file of the application that is using Sterling Configurator to
provide the relative path and name of the customized
functionHandlers.properties file.
Following is a sample web.xml file:
<servlet id="Servlet_1">

<servlet-name>InitializationServlet</servlet-name>
<servlet-class>com.comergent.reference.apps.configurator.InitializationServlet
</servlet-class>

<init-param>
<param-name>ObjectMap</param-name>
<param-value>ObjectMap.properties</param-value>

</init-param>
<init-param>

<param-name>EhCache</param-name>
<param-value>EhCache.xml</param-value>

</init-param>
<init-param>

<param-name>CacheTypes</param-name>
<param-value>cacheTypes.properties</param-value>

</init-param>
<init-param>

<param-name>FunctionHandler</param-name>
<param-value>
/com/<customization_folder>/functionHandlers.properties
</param-value>

</init-param>
<load-on-startup>1</load-on-startup>

</servlet>

Function Handler Example
The following example of function handler class implements the “max” function:
package com.comergent.apps.configurator.functionHandlers;
import com.comergent.api.appservices.rulesEngine.*;
import com.comergent.apps.configurator.model.*;
import java.util.*;
/**
* Handles the logics of <i>Max</i> function for a <code>Property
* </ code>, given the <code>State</code>.
*
* @author Comergent Technologies
* @version 1.0
*
* @see Value
* @see Property
* @see State
*/
public class MaxFunctionHandler extends AbstractRuleFunctionHandler
{
/**
* Name of the function, this particular handler serves.
*/
private static final String m_name = "max"/*I18NOK:23c81106*/;
/**
* Return the name of the function this handler supports
* @return the function name
*/
public String getFuncName()

32 Sterling Configurator: Application Guide

{
return m_name;
}
/**
* Return the value type this particular function handler
* returns.
* Returns <code>Value.NUMERIC</code>, as the type.
* @return the numeric value.
* @see Value the container for different types.
*/
public int getType()
{
return IValue.NUMERIC;
}
/**
* Return the <i>Maximum</i> value asigned to the property,
* given <code>State</code>.
* <code>Value</code> is returned as a result.
* Extracts all the matching properties given the name, and
* sorts them and extracts
* the maximum value.
*
* Returns <i>null</i>, if the requested <code>Property</code>
* does not exist.
*
* @param state the property pool
* @param prop the property to evaluate the function.
* @return Value the <code>Property</code>, that contains
* the maximum value.
*/
public IValue handle(IState state, String prop)
{
//double max = 0;
double <] propList = state.getMatchingNumericProperties(prop);
if (propList <= null)
{
Arrays.sort(propList);
return new ConfigValue(new Double(
propList<propList.length -1]),IValue.NUMERIC);
}
return null;
}
}}

In this example, the4method calculates the maximum value of a property by
sorting the list of property values and then returns the last value in the sorted
array. The function returns a number of type IValue.NUMERIC. It is a public
function handler.

Web Service Function Handlers

You can write function handlers that invoke Web services. These classes should
extend the com.comergent.api.apps.configurator.IConfigWebService interface.
They make use of the webServiceLookup.properties configuration file: this file
specifies how the handler should invoke the Web service. These fragment functions
reference Web services:

5: this determines whether the correct properties exist to call the Web service

4. handle()

5. checkwslookup()

Chapter 10. Customize Function Handlers 33

6: invokes the Web service An example function handler is provided by
com.comergent.reference.apps.configurator.SampleWebService.

6. wslookup()

34 Sterling Configurator: Application Guide

Chapter 11. Data Validation

Data Validation
The Sterling Configurator application provides the data validation functionality for
validating and sanitizing request inputs and outputs. You can use the data
validation functionality to, explicitly define the characteristics in the input and
output requests, and drop all the other data. You can define your own validation
rules for validating different request parameters. You can also encode the data
before sending it back to the user interface.

Data validation or sanitization can be performed for various kinds of inputs such
as parameter name, parameter value, cookie name, cookie value, and so on.
Sterling Configurator supports regular expression based validation.

Input Validator

The Sterling Selling and Fulfillment Foundation Input Validator finds all the
validation rules that are registered for a particular input, and invokes the
validation. The Sterling Configurator validator is called by a request wrapper to
validate request inputs.

Validation Rule

A validation rule performs validation and sanitization of the input. A validation
rule contains a property as input identifier for which validation has to happen. A
validation is invoked whenever the corresponding input request is accessed. A
validation rule must specify the name of the input, it has to validate. For example,
if you want to validate the value of a particular parameter, the validation rule
must specify the name of that parameter. Multiple inputs with the same name can
exist. All the validation rules must be registered with the Input Validator in order
to validate the corresponding input.

Note: No validation rules are defined for a given input. The default validation
rules specified earlier will be used to validate the input.

You can define the following types of validation rules:
v Regular Expression-Based Validation Rule—This type of validation rule is

designed to perform regular expression-based validations. This validation rule
type supports multiple whitelist and blacklist regular expressions.

v Java-Based Validation Rule—This type of validation rule is designed to perform
Java-based validation and sanitization of inputs. This validation rule type
validates an input and then calls the getValidInput() method of the
implementation class.

Disabling Data Validation

By default, data validation that is enabled on all input requests will be validated
against the registered validation rules. You can disable the data validation on input
requests by adding a context parameter in the module configuration file. To disable
data validation, in the web.xml file located in your EARFILE/WARFILE/WEB-INF folder
add an entry for the context-param element as follows:

© Copyright IBM Corp. 1999, 2011 35

<context-param>
<param-name>scui-suppress-request-validation</param-name>
<param-value>TRUE</param-value>

</context-param>

Bypassing Data Validation for an URI

By default, data validation is enabled on all input requests. You can, however,
bypass data validation on input requests for some specific universal resource
indicators (URIs) by adding bypass URI as context parameters in the module
configuration file.

To bypass data validation, in the web.xml file located in your EARFILE/WARFILE/WEB-
INF folder add an entry for the config-param element for each such URI, for
example:
<context-param>

<param-name>request.validation.bypass.uri.1</param-name>
<param-value>/console/login.jsp</param-value>

</context-param>
<context-param>

<param-name>request.validation.bypass.uri.2</param-name>
<param-value>/console/start.jsp</param-value>

</context-param>
<context-param>

<param-name>request.validation.bypass.uri.endswith.1</param-name>
<param-value>.js</param-value>

</context-param>
<context-param>

<param-name> request.validation.bypass.uri.regex.1</param-name>
<param-value>^.*test.jsp$</param-value>

</context-param>

These context parameters can have names starting with
request.validation.bypass.uri, or request.validation.bypass.uri.endswith, or
request.validation.bypass.uri.regex, as described in the following list. You can
define multiple entries for these context parameters.
v request.validation.bypass.uri—Any request with an URI that is the same as the

value specified in the param-value element of the context parameter will be
bypassed and not validated.

v request.validation.bypass.uri.endswith—Any request with an URI that ends with
the value specified in the param-value element of the context parameter will be
bypassed and not validated.

v request.validation.bypass.uri.regex—Any URI request that matches the regular
expression, as specified in the param-value element of the context parameter,
will be bypassed and not validated.

Implementing Data Validation

To implement data validation, perform the following tasks:
v Create a Validation Rule
v Register a Validation Rule
v Use an URI-Based Validation Rule
v Defining an Adapter to Find Validation Rules
v Delete the Registered Validation Rules

36 Sterling Configurator: Application Guide

Create a Validation Rule

A validation rule performs validation and sanitization of the input. A validation
rule contains a property as input identifier for which validation has to be
performed. Validation is performed whenever a specified input is accessed.

To create a validation rule, implement the ISCValidationRule interface and
implement the following interface methods:
v getName()—Returns the name of the input for which this validation rule should

be applied.
v isValid(String context, String input)—should do the actual validation
v getSafe(String context, String input)—should return the safe output after

removing all the unwanted characters from the input.
v getTypeName()

You can use _global_ and _default_ as names for the global and default rules
respectively.

Sterling Configurator provides two implementation classes of the
ISCValidationRule interface. These implementation classes validate input based on
regular expressions or Java calls. You can use these implementation classes based
on your requirement.

SCRegexValidationRule Implementation Class

This implementation class of the ISCValidationRule interface helps in validating an
inputs based on regular expression whitelists and blacklists. You can use this class
for creating validation rules that are based on regular expressions.

To create a validation rule using this implementation class:
1. Create an instance of the SCRegexValidationRule class. For example:

ISCValidationRule SCRegexValidationRule newValRule =
new SCRegexValidationRule();

2. Set the name of the validation rule as follows:
v If you are defining the validation rule for a parameter value, set the name of

the validation rule as parameter name. For example:
newValRule.setName("<parameter_name>");

v If you are defining the validation rule for a parameter name, set the name of
the validation rule as follows:
newValRule.setName(newValRule.RULE_NAME_GLOBAL);

Note: You can use _global_ and _default_ as names for the global and default
rules respectively.
1. Add the whitelist pattern of regular expression against which you want to

validate the parameter name. For example:
newValRule.addWhitelistPattern("^[a-zA-Z0-9.\\-\\/+=_ :]*$");

2. Set the AllowNull value. For example:
newValRule.setAllowNull(true);

3. Register this new validation rule with the Input Validator. For more
information about registering validation rules, refer to the topic, Register a
Validation Rule.

Chapter 11. Data Validation 37

SCJavaValidationRule Implementation Class

This abstract class of the ISCValidationRule interface helps in validating an input
based on the Java call. You can implement this abstract class for creating a
validation rule that requires a Java call to validate inputs.

To create a validation rule using this abstract class, implement this abstract class
and the getValidInput() and getSafe() methods of this abstract class.

Register a Validation Rule

In order to be able to validate inputs, you must register the validation rules that
you created in the Input Validator.

Note: Global rules are applied on all inputs for an inputType. Default rules are
applied on an inputType if no other rules either specific or global are found for an
inputType. If invalid input is found, either an SCValidationException is thrown, or
the exception is added to the passed SCValidationErrorList. For more information
about exception handling during data validation, refer to the topic, Exception
Handling.

To register a validation rule:
1. Get the Application ID:

v If you are using an application that is based on the Web UI framework, use
for the getApplicationId() method of the SCUIUtils class. For example:
String appId = SCUIUtils.getApplicationId(config.getServletConext());
If you are using an application that is based on the HTML UI framework,
use the getConsoleApplicationId() method of the YFCContextParams class.
For example:
String appId =
YFCContextParams.getInstance(config).getConsoleApplicationId()

Note: Ensure that the same application ID is defined as context parameter in
the web.xml file located in your EARFILE/WARFILE/WEB-INF folder. For
example:
<context-param> <param-name>console-application-id</param-name>

<param-value><Application ID></param-value> </context-param>

v Get an instance of the SCValidator using the getInstanceFor() method with
the Application ID. For example:
SCValidator validator = SCValidator.getInstanceFor(appId);

2. Register the validation rule with the SCValidator instance that you created.
v If you are defining the validation rule for a parameter value, use the

INPUT_TYPE_PARAMETER_VALUE constant. For example:
validator.addRule(newValRule,
SCUIWebValidationConstants.INPUT_TYPE_PARAMETER_VALUE);

v If you are registering the validation rule for a parameter name, use the
INPUT_TYPE_PARAMETER_NAME constant. For example:
validator.addRule(newValRule,
SCUIWebValidationConstants.INPUT_TYPE_PARAMETER_NAME);

Note: When you register the validation rules for inputs, the following
inputTypes constants must be used:
– INPUT_TYPE_PARAMETER_VALUE

38 Sterling Configurator: Application Guide

– INPUT_TYPE_PARAMETER_NAME
– INPUT_TYPE_COOKIE_VALUE
– INPUT_TYPE_COOKIE_NAME
– INPUT_TYPE_HEADER_VALUE
– INPUT_TYPE_HEADER_NAME
– INPUT_TYPE_SCHEME
– INPUT_TYPE_SERVER_NAME
– INPUT_TYPE_CONTEXT_PATH
– INPUT_TYPE_PATH
– NPUT_TYPE_QUERY_STRING
– INPUT_TYPE_URI
– INPUT_TYPE_URL
– INPUT_TYPE_JSESSIONID
– INPUT_TYPE_SERVLET_PATH

Registering a Validation Rule for the Parameter Value Input Using
datatypes.xml

This is an optional task. You can also register a validation rule using the datatypes
file. This method of registering a validation rule can only be used for parameter
value inputs. The datatype for a parameter is deduced using the datatypes map,
and the parameter value is validated by using the validation rules registered
against that datatype.

Applications based on the HTML UI framework can register a regular
expression-based or Java-based validation rule in the datatypes.xml file in the
following manner:
<DataType Name="Address" Size="70" Type="NVARCHAR">

<UIType Size="30" UITableSize="30"/>
<Validation>

<Regex JavaPattern="<pattern>" JSPattern="<pattern>"/>
<Impl JavaClass="com.sterlingcommerce.test.MyRuleClass"
JSFunctionName="myJavascriptFunction"/>

</Validation>
</DataType>

By default, for a <Regex> element, the maximum size of the validation rule is set
to the size of the datatype. You can override the maximum size of the validation
rule by using the MaxLength attribute. Also, you can set the minimum size of the
validation rule by using the MinLength attribute. For example:
<DataType Size="5" Name="Foo" Type="Bar">

<Validation>
<Regex MaxLength="200" MinLength="3"
JavaPattern="^[a-zA-Z0-9.,!\-/+=_ :]*$"
JSPattern="^[a-zA-Z0-9.,!\-/+=_ :]*$"/>

</Validation>
</DataType>

Note: A Java-based validation rule class must have a fully qualified class name,
and this class must implement the ISCValidationRule interface.

In the datatypes.xml file, you can also define Javascript patterns and functions to
validate the input on the client itself. These client side validations will be fetched
on the client and all the corresponding inputs will be validated against these client
side validations.

Chapter 11. Data Validation 39

Use an URI-Based Validation Rule

An URI-based validation rule can be used to suppress certain rules for certain
input requests. To use an URI-based validation rule, perform the following tasks:
1. Create a validation rule. For more information about creating a validation rule,

refer to the topic Create a Validation Rule.
2. Create an instance of the ISCValidationRuleKey using the

SCUIURIContextValidationRuleKey(String uri, String name) class. For example:
SCUIURIContextValidationRuleKey key =
new SCUIURIContextValidationRuleKey(uri, name);
Here, URI refers to the input path on which the rule should be applied. The
URI should not contain the context path and should start with "/". name is the
name of the input that has to be validated. You can use
ISCValidationRule.RULE_NAME_GLOBAL and
ISCValidationRule.RULE_NAME_DEFAULT as names to make a rule either a
global rule or a default rule respectively.

3. Register the validation rule that you created along with the validation rule key.
For example:
SCValidator.getInstanceFor(SCUIWebValidationUtils.
getApplicationID(servletContext)).addRule(key, rule,
SCUIWebValidationConstants.INPUT_TYPE_PARAMETER_VALUE);

Defining an Adapter to Find Validation Rules

This is an optional task. You can define an adapter to find the validation rules that
will be used to validate the parameter values. This adapter class must implement
the ISCUIInputValidationAdapter interface, and must be registered with the
application as a context parameter. For example:
<context-param>

<param-name>scui-param-value-validation-adapter</param-name>
<param-value>test.MyParamValueValidationAdapter</param-value>

</context-param>

You must implement the getValidationRules() method of the
ISCUIInputValidationAdapter interface and pass the parameter name in the name
argument.

When validating a parameter value, the system will call the registered adapter to
find the rules against which the parameter value should be validated. The
getValidationRules() method can either return all the rules registered for the passed
parameter name, or have some logic to find other rules too. If no adapter is
registered, the system will use all the rules registered for the given parameter
name, along with the global rules or the default rules, to validate the parameter
value.

Delete the Registered Validation Rules

You can delete the registered validation rules by calling any of the following
methods:
v removeDefaultRules(String inputType)

v removeGlobalRules(String inputType)

v removeRules(String name, String inputType)

v removeRules(ISCValidationRuleKey name, String inputType)

40 Sterling Configurator: Application Guide

Exception Handling

While validating a request, if an invalid input is found, an
SCUIRequestValidationException is thrown. You can override this default behavior
by adding the scui-suppress-validation-exception context parameter with the value
as TRUE in the web.xml file located in your EARFILE/WARFILE/WEB-INF folder. For
example:
<context-param>

<param-name>scui-suppress-validation-exception</param-name>
<param-value>TRUE</param-value>

</context-param>

When you set this parameter's value as TRUE, all the validation exceptions are
added to a list, the list can be accessed by running:

ArrayList< SCUIRequestValidationException>
SCUIWebValidationUtils.getValidaionErrorList(HttpServletRequest request)

You can also define a global exception handler. If any validation exception has not
been detected, and it goes back to the SCUISafeRequestFilter, the request is sent to
the corresponding global error handler servlet container.

This global exception handler and the request method can be defined as context
parameters in the web.xml file, located in your EARFILE/WARFILE/WEB-INF folder. For
example:
<context-param>

<param-name>scui-global-validation-exception-handler-path</param-name>
<param-value><path_to_global_exception_handler></param-value>

</context-param>
<context-param>

<param-name>scui-global-validation-exception-handler-method</param-name>
<param-value>FORWARD|INCLUDE|REDIRECT</param-value>

</context-param>

For applications that are based on the Web UI framework, Sterling Configurator
provides /jsps/datavalidationerror.jsp as the default exception handler.

For applications that are based on the HTML UI framework, Sterling Configurator
provides /sic/sic_app/jsp/datavalidationerror.jsp as the default exception
handler.

The Web UI framework has also added a Struts action result,
"DATAVALIDATIONERROR", which is returned to the exception handler if the
request is invalid. You can define this result type and the corresponding path, say,
/jsps/datavalidationerror.jsp, for the Struts actions.

By default, the global exception handler method is set to FORWARD.

Default Validation Rules in Sterling Configurator

By default, Sterling Configurator provides and registers validation rules for specific
parameters and rules pertaining to requests, based on specific inputs.

To validate the request inputs (such as parameter value, parameter name, etc.), the
input validator uses following regular expressions:
v HTTPScheme=^(http|https)$
v HTTPServerName=^[a-zA-Z0-9_.\\-]*$

Chapter 11. Data Validation 41

v HTTPParameterName=^[a-zA-Z0-9_\\-\\.]*$
v HTTPParameterValue=^[a-zA-Z0-9.!\\-\\/+=_]*$
v HTTPCookieName=^[a-zA-Z0-9\\-_\\.]*$
v HTTPCookieValue=^[a-zA-Z0-9.!\\-\\/+=_:]*$
v HTTPHeaderName=^[a-zA-Z0-9\\-_]*$
v HTTPHeaderValue=^[a-zA-Z0-9()\\-=*\\.\\?;,+\\/:&_\"]*$
v HTTPContextPath=^[a-zA-Z0-9.\\-_/]*$
v HTTPPath=^[a-zA-Z0-9.\\-_\\/!]*$
v HTTPURI=^[a-zA-Z0-9()\\-=*\\.\\?;,+\\/:&_ !\\$]*$
v HTTPURL=^.*$
v HTTPJSESSIONID=^[a-zA-Z0-9!_:\\-]*$
v HTTPQueryString=The HTTPQueryString will be validated based on the

individual parameter names and values.

These validation rules are invoked for all the inputs of the same kind. For
example, all HTTP Header names are validated against "HTTPHeaderName"
regular expression.

Sterling Configurator also overrides the above validation rules for specific
parameters and specific input-types by providing entries in the following property
files:
v sic_ParamValue_ValidationRules.properties: This file is located in the

EARFILE/sic.jar/com/comergent/security/xss folder. It contains validation rules
that are specific to the request-input HTTPParameterValue for specific request
parameter.

v sic_InputType_ValidationRules.properties: This file is located in the
EARFILE/sic.jar/com/comergent/security/xss folder. It contains validation rules
that are specific to any of the request inputs.

v sicapp_ParamValue_ValidationRules.properties: This file is located in the
EARFILE/sic_app.jar/com/sterlingcommerce/webchannel/core/security/xss
folder. It contains validation rules that are specific to the request-input
HTTPParameterValue for specific request parameter.

v sicapp_InputType_ValidationRules.properties: This file is located in the
EARFILE/sic_app.jar/com/sterlingcommerce/webchannel/core/security/xss
folder. It contains validation rules that are specific to any of the request inputs.

Data Validation Failure

Data validation fails can fail if a customer provides invalid input. In such a
scenario, Sterling Configurator enables a customer to identify it by the way of
displaying appropriate error message.

For example, if a customer enters <script> as one of the basic search criteria in the
Sterling Configurator Home page, the basic search field is validated. In such a
scenario, the input validation fails because <script> is not a valid input. The details
pertaining to validation failure are logged in the server log file. A customer can
view the server log file to understand the cause of validation failure, and verify
whether it was an authentic validation failure. If required, a user can create
validation rules based on the customer's requirements.

The following is an example of an error trace generated in the server log:

42 Sterling Configurator: Application Guide

3415041 [qtp0-5] WARN DataValidationLogger - SECURITY-FAILURE -
Input does not conform to pattern:
context=HTTP parameter value (Name:searchTerm),
pattern=^[a-zA-Z0-9\:.\-\/\+=_\@\x11\x12\x13\x14\=\&\!\?;\"\(\)*\’\[\]]*$,
Input=<script/>

ValidationException @ com.sterlingcommerce.security.dv.SCValidationException.
<init>(SCValidationException.java:76)

This is a minimal response page with the 500 response status and Multipurpose
Internet Mail Extensions (MIME) type set to either text or plain. Because the
response status is sent as 500 and the MIME type is set as either text or plain,
some versions of the Internet Explorer browser may replace this error page with
the browser's custom error page. This is because of the preferences that have been
set using Internet Options > Advanced tab to display user friendly HTTP error
messages.

Note: By default, Sterling Configurator provides validation rules that are specific
to en_US locale. To support validation rules that are specific to a different locale,
the corresponding user must customize the validation rules.

Customize Data Validation
About this task

You can customize data validation rules by creating new validation rules and
deleting existing validation rules. Ensure that data validation is enabled for
Sterling Web in the web.xml file located in the EARFILE/WARFILE/WEB-INF folder.

To customize data validation rules:

Procedure
1. Include the following property files in the class path of the application server.

These files are an extension to the property files provided by Sterling Web:
v swc_InputType_ValidationRules_extn.properties
v swc_ParamValue_ValidationRules_extn.properties

For more information about the property files with default validation rules
provided by Sterling Web, refer to the Sterling Web: Implementation Guide

2. Define customized validation rules by providing entries in the property files
mentioned previously. For information about implementing data validations,
refer to the Sterling Web: Implementation Guide.

3. Restart the application server.

Note: By default, Sterling Web provides validation rules specific to the en_US
locale. If you want to support a different locale, you must add characters
pertaining to that locale. Validation rules are not specific to a locale and are
generic and common across all the locales.

Chapter 11. Data Validation 43

44 Sterling Configurator: Application Guide

Chapter 12. Deploying your customizations

About this task

After the customizations are performed, you must deploy the changes in the
application by performing the following steps:
v Generate the customization JAR file.
v Install the customization JAR file using the installService utility. In the

customization JAR file, ensure that the customized files have been placed in the
appropriate locations, as described in the tables below.

v Deploy the customizations by creating and deploying the SWC EAR file.

For example, if you are adding or overriding a functionality, the customized files
must be placed in the appropriate locations as mentioned below:

Files Location

3rd party jar files
The path generated by install3rdparty utility. For more information about
the install3rdparty utility, refer to the Sterling Selling and Fulfillment
Foundation: Installation Guide.

Java Server Page
\sic\files\repository\eardata\sic\war\<user defined folder>

Javascript
\sic\files\repository\eardata\sic\war\<user defined folder>

Mashup definitions
\sic\\files\repository\eardata\sic\war\mashupxmls\webchannel\<user
defined folder>

Static image files
\sic\files\repository\eardata\sic\war\<user defined folder>

If you are customizing the theme and logo, the customized files must be placed in
the appropriate locations as mentioned below:

Files Location

Image for logo
\sic\files\repository\eardata\sic\war\swc\images\logo

CSS files
\sic\files\repository\eardata\sic\war\sic\css\theme

JS files
\sic\files\repository\eardata\sic\war\sic\js\theme

The DCL.xml file is the common file required for all customizations. This file is
included in the \swc\jars\ path in the customization JAR. The DCL.xml file must
have an entry of the JAR file comprising the customized Java classes and resources.
The name of the JAR files is case-sensitive. For example, the customization JAR file
generated for the storefront ABC will be ABC_CUST.jar and the jar file comprising
the customized Java classes and resources will be abc_cust.jar. You must generate
the abc_cust.jar file and add it to the \swc\jars\abc_cust\
<user_defined_version>\ path in the ABC_CUST.jar file.

© Copyright IBM Corp. 1999, 2011 45

In the above example, the DCL.xml file has the entry for the abc_cust.jar as
follows:
<dcl>
<vendor>
<name>abc_cust/<user_defined_version>/abc_cust.jar</name>
<target>DCL|APP</target>
</vendor>
</dcl>

To deploy the customizations to the application, you must perform the following
steps:

Procedure
1. To generate the customization jar file, run the following command from the

path to the directory where the customization script file is located. Ensure that
the customization jar file comprises the DCL.xml file:
ant -f <customization script file> <target>

2. To install the customization jar file, run the following command from the
<INSTALL_DIR>/bin folder:
For Windows:
InstallService.cmd <location of customized jar>

For Linux or Unix:
InstallService.sh <location of customized jar>

3. Navigate to the <INSTALL_DIR>/repository/eardata/{custname}/extn folder
and rename the struts.xml.sample file as struts.xml.

4. Add the entry of the custom_struts.xml in the struts.xml file. This must be
done for all the new customized action definitions.
<struts>
<include file="sic_struts.xml"/>
<include file="scuiimpl_struts.xml"/>
...
<include file="custom_struts.xml"/>
...
</struts>

5. Build and deploy the SWC EAR file. For more information about deploying
EAR and WAR files, refer the Sterling Selling and Fulfillment Foundation:
Installation Guide.

46 Sterling Configurator: Application Guide

Chapter 13. Sterling Configurator Best Practices

Mapping eBusiness requirements to the features provided by Sterling Configurator
can be daunting. Understanding how Sterling Configurator works in a variety of
circumstances and studying examples demonstrating common usage patterns can
help.

About Absolute and Relative Paths

This chapter refers to the use of absolute or relative paths to specify entities such
as properties and rules. Paths have the following form: <model group root
node>.<path to the option item that has the property or rule>.<property name or
rule name>

For example, consider the following absolute path to the property
memoryProvided:

MXDS-7500.memory.sim256.memoryProvided

The model group's root node is MXDS-7500. The path to the option item that has
the property memoryProvided is memory.sim256 and memoryProvided is the
property name.

If you plan to use a property or rule in more than one model, you can use special
symbols to specify relative paths. For example, the "*" in the following path
indicates that the path begins at the root of the model group hierarchy:

*.memory.sim256.memoryProvided

Beginning the path with a period (.) indicates “from the attachment point of the
rule”. For example, the "." in the following path indicates that "an option item
called sim256 in an option class called memory in the current model".

.memory.sim256

Model Planning Considerations

A model represents a configurable item. When you sit down to plan a Sterling Web
implementation, you start by considering how to design a model of the item. There
is no one “right” way to model a particular item. On the other hand, there are an
endless number of ways to create models that, while technically correct, are
inefficient and hard to maintain.

The following are among the trade-offs to keep in mind:
v Cost factors: creation, maintenance, and performance. You must balance the cost

of creating the model, compared with the cost of maintaining it, compared with
its expected performance. The cost of creating the model represents the one-time
effort expended to develop it; the cost of maintaining the model represents the
effort expended over time to maintain and enhance it, while the performance
represents the execution speed of the model on a particular hardware platform.
You can optimize for any one of these factors, but be mindful that trying to
optimize for more than one of them means, in most cases, that you have

© Copyright IBM Corp. 1999, 2011 47

competing goals. For example, a complex model might run fast, but would be
hard to maintain. For an overview of models and best practice design principles,
refer to the "Designing Models" topic.

v Implementers' roles: model builder only, model builder and maintainer, model
maintainer only. The implementer's role influences their bias. For example, a
consultant given a month to implement a model which will then be handed off
to another group for maintenance may focus on designing the model quickly,
rather than designing a model that will be easy to maintain. If the implementer
will also maintain the model, the model may take longer to design and perhaps
not run as fast, but will be easy to maintain long-term. Whatever your role, your
goal should be to set up a model that will avoid problems down the road.

Designing Models
This section covers model design considerations and provides examples of designs
that work, compared with designs that work best.

Make Models as Small and Simple as Possible

Model size matters. Large models take longer to render in the browser, are harder
to maintain, and during configuration the Sterling ConfiguratorConfigurator
"walks" the model structure a number of times to get prices, fire rules, and so on.
Keeping the model size as small as possible through the use of subassemblies and
other techniques described in this chapter improves performance and decreases
maintenance costs.

For example, suppose that you have a number of cable suppliers, each of which
supplies a number of different lengths of cables. You want to allow the user to
select the quantity, length and cable supplier.

One way to do this is to create option items in your model to represent every
single one of the available options, as shown in the following figure:

This approach will work, although it may be a bit tedious to implement and
maintain and creates a model with many options that will never be of interest to
the end user. An alternative approach might be to implement the different cable

48 Sterling Configurator: Application Guide

length option items as an option item group, then include the cable length option
item group under each of the manufacturers. This would ease maintenance: the
modeler would have to look in only one place to update the cable option item
information. However, this approach presents the end user with a huge list of
cables to choose from and does not improve performance since there's still a large
model to walk. A better alternative is to create a submodel that allows the user to
select a cable manufacturer and length, then use dynamic instantiation to let the
user add as many different cable types and lengths as necessary, as shown in the
following figure:

The following figure shows a sample cable selection UI that uses dynamic
instantiation to allow end users to configure their cable selections.

As you can see, this approach keeps the model small. Maintaining this model will
be easier since the modeler no longer has to deal with a huge number of duplicate
option items, performance is better since the model is smaller, and configuration is
easier for the end user since there isn't a long list of cable types and manufacturers
to look through in order to find the right one.

Use popup-qty Controls for Entering Quantity

Sometimes the modeler wants to allow users to select an item, then enter the
number of items they want. The best way to do this is to set the Option Class
Display to popup-qty. When the end user selects an item, a quantity box will
display, allowing the end user to enter the number of items they want. Some
modelers do not like the placement of the quantity box, so instead use the User
Entered Values (UEV) control to display an edit field next to the item in which

Chapter 13. Sterling Configurator Best Practices 49

users can enter a quantity. The problem is that the behavior of the popup-qty
control differs significantly from the behavior of UEV controls: the popup-qty
control has quantity processing built in, while UEV controls require additional
work.

When an end user enters a quantity in a popup-qty box, the application
automatically selects the quantity of the selected item. Any properties attached to
the item are included in the configurator state (property pool), and the values of
any numeric properties are multiplied by the quantity entered. UEV controls were
designed to capture some additional information from the user. To get the UEV to
behave as a quantity, the modeler must write an expansion rule that takes the
value entered in the UEV control and picks that many of the selected item. Using
the value entered in the UEV control to set the _quantity property using an
assignment rule will not work as expected, since this does not automatically create
instances of the item's properties in the property pool.

To display a popup-qty box beside the item selected, use the popup-qty Option
Class Display style and one of the tabular displays with quantity controls. This will
ensure the correct number of items are selected and the correct properties are
copied to the property pool.

For example, the following figure shows how to set up a popup-qty control using
the Visual Modeler. From the Models and Groups panel, select the model you wish
to modify, then click the Edit Model icon. The Model navigation page is displayed.
Click the option group you wish to modify, click the Display tab, then select
Multi-select Tabular Display from the UI Control drop-down list, as shown in the
following figure:

Scroll to the bottom of the page and enter the Column Headings, Column
Properties, and Column Alignment settings. The following figure shows sample
settings:

50 Sterling Configurator: Application Guide

Finally, compile and test the model. You should see a popup-qty control placed as
you specified on the Product Configurator page.

Properties
Properties are common in the Sterling Configurator. Modelers attach properties to
models, option classes and option items and then write rules that work on these
properties in order to display messages, show, hide, or select items, and even set
the values of other properties. Considering the important part that properties play
in modeling a configurable item, some care should be given to how properties are
defined and used. This section outlines some useful tips and procedures to follow
when defining and attaching properties.

Use Meaningful Property Names

When developing a model, under severe time constraints, the modeler is tempted
to take shortcuts in order to speed the development process. One of the most
common shortcuts is to create properties with short, and often vague or cryptic,
names. This may speed the development of the model in the short term, but
dramatically increases the amount of effort required to maintain the model. The
modeler should always design their models so that it is immediately obvious what
a given property represents. The more meaningful the name you give to a
property, the easier it will be to search, debug and maintain the model.

Consider the following example:

Chapter 13. Sterling Configurator Best Practices 51

At first glance it may not be obvious what the properties assigned to this model
are trying to accomplish. With a little more time spent creating meaningful names
it becomes much easier to grasp the essence of all the properties and how they
relate to one another.

Do Not Use the Same Property to Mean Two Different Things

Modelers may reuse an existing property instead of creating a new property
designed specifically for the problem at hand. This has two possible implications:
v The model may be harder to understand if the existing property name bears no

relation to the problem at hand.
v Re-use of the property name may actually cause errors if the re-use conflicts

with the property's original use.

Let us revisit our example from the previous section. Suppose that the modeler
created a property to store memory required and called it memory (see previous
section for why that was a bad choice to begin with). The modeler needs a
property to store memory provided, and notices a property called memory and
decides to use it instead of creating a new property. Now, at first glance, it looks
like all option items require some amount of memory, instead of two items
requiring memory and two providing it. Not only that, but our
total_memory_required property will no longer have the correct value, since it now
performs a sum of both memory required and memory provided. If modeled in
this fashion, then the modeler will have to do extra work to separate out the
specific instances of the properties required: such as using full or relative paths to
the items containing the appropriate property instances. (See Rules on why using
paths to specific instances of properties can be a bad idea.)

Define Properties at the Appropriate Level in the Model Hierarchy

Properties may defined at any level in the model group hierarchy, from the root
model group level to the individual model level. Where a property is defined
determines which models can see and make use of the property. A little thought
during the design of your models will speed model development and help prevent
property clutter. Use the following guidelines to determine where a property
should be defined:
v If a property will only be used in a particular model, then define the property at

the model level.

52 Sterling Configurator: Application Guide

v If a property will be used in more than one model within a particular model
group, then define the property at that model group level.

v If a property will be used in models that span model groups, then define the
property in the first model groups that contains all of the model groups whose
models will use the property.

v As a last resort, define the property at the root model group node.

Using Multiple Properties with the Same Value

Multiple properties with the same value can sometimes make a model easier to
build and maintain. For example, suppose that you are building a model that
allows the user to choose from a selection of disks arrays. Each type of disk array
has some number of disks associated with it. The user can choose multiple disk
arrays of any type. One of the pieces of information that you need to calculate is
the total number of disks that the user has selected (see below).

Now let us assume that you realize that you also need to know the number of
100GB disk arrays and the number of 250GB disk arrays. Instead of calculating
these values by specifying item paths to the properties that we want, or writing
rules that have to be attached at a particular point in the model, or re-working all
the disk and total_disk properties, we can simply define a couple of new
properties that have the same values as our old disk property (see below).

Chapter 13. Sterling Configurator Best Practices 53

Now, if we want the total disks, we can still get sum(disks). If we want the
individual values, then we can get those without specifying paths to individual
properties or modifying the work that we had already done.

Use Worksheets to Simplify Property Assignment

When developing a model, it is often necessary to assign the same set of properties
to multiple option classes or option items. Worksheets are very useful in this case,
since they allow you to rapidly set the values for a particular property on any
number of option classes or items. This is especially true when using a formula to
set the value of a property in multiple places. The modeler can simply copy and
paste the formula onto all the items required. For example, we have some display
properties that are set for each item within a tabular display. We use a worksheet
to allow us to easily cut and paste the formulas for col1 and col2 to each item in
the option class.

An added benefit of using worksheets is that can provide a concise picture of a
section of the model. With a little thought and planning, a worksheet can provide
an overview of a particular section of the model or a complete representation of
the solution to a particular problem. Below is a different view of the same option
class. In this case, we are interested in seeing all the min and max properties that
are set for each of the option items.

54 Sterling Configurator: Application Guide

Avoid Chaining Property Formulas

Properties attached to an item do not have any notion of sequence. By this we
mean that, when using formulas to set property values, we cannot rely on any
particular order of evaluation of the formulas. If property A contains a formula
and property B contains a formula that relies on property A, then we have no
guarantee that the rule created from formula B will fire after the rule created for
formula A. In order to get around this issue, the modeler has two choices:
v Turn the first formula into a rule that fires before the second formula is

evaluated. All rules generated from formulas have a priority of 50. By creating a
rule for the first formula, and setting its priority to be less than 50, we ensure
that the value of property A will be set before the value of property B is
calculated.

v Turn on repeat rule firing. In this case the first phase of rule-firing will calculate
the value for property A. The second pass of the rule-firing loop will calculate
the value of property B based on the value of property A computed in the first
pass.

Note: Massive amounts of chaining of formulas in this way may result in
degradation of performance due to the number of passes through the rule-firing
loop necessary to satisfy all the conditions. For this reason, we recommend the first
alternative and advocate limiting formula chaining as much as possible.

Rules
Rules affect the efficiency and ease of maintenance of your model. This section
describes considerations to keep in mind when writing rules.

Rule firing conditions

Rule conditions are created by applying boolean operations to relational
expressions. A relational expression is the comparison of one function/property
pair with another function/property pair using relational operations such as less
than, equal to, greater than, in, not in, and so on. The result is either true or false.
Boolean operators like AND and OR wrap sets of these relational expressions. The
relational expressions are called fragments, as they are fragments of a rule. The
left-hand-side of the relational operator is often abbreviated LHS, while RHS
stands for right-hand-side.

Order rule fragments so that rules fire only when necessary

The evaluation of rule fragments determines when a rule fires, so the order in
which fragments appear in a rule is important. The more quickly the model can
determine whether a rule is true or false, the more efficient the model can be.
Placing rule fragments in order, from most likely to prevent the rule from firing to
least likely to prevent the rule from firing, can improve performance.

Chapter 13. Sterling Configurator Best Practices 55

Always test your rules to ensure that they fire only when appropriate. Knowing
under what circumstances a rule's results are or are not be used is also important.
For example, an expansion rule that always fires but the quantity formula results
in zero, or if there are not any matches for the formula in the > and <= fields in
the expansions section, is very inefficient.

Create general-purpose rules

Whenever possible, write rules that are as general as possible. Consider where the
messages should be displayed when writing rules. A rule attached directly to a
product will trigger at that Option Item and the message will be displayed in that
Option Class.

For example, the following rule can be attached to any item to which the
productType and handsetType properties are attached:
If propval(productType) != value(selectProductType)
and propval(handsetType) != value(phonePreference)
set _isVisible=0

This rule fires only for items where the productType property is attached AND
does not match the selected product types AND if the selected phone preferences
do not match the current item's preferences. A general rule such as this one can
replace dozens of other specific rules such as the following specific ones:
If propval(productType) == literal("handset")
and propval(handsetType) != literal("camera")
and value(phonePreference) == literal("camera")
set _isVisible=0
If propval(productType) == literal("handset")
and propval(handsetType) != literal("flip")
set _isVisible=0

Use formulas where appropriate

In many circumstances, formulas can be used instead of rules. During modeling,
formulas are maintained as attached properties that have as their value an
expression that is evaluated at runtime. If any of the functions referenced in the
expression cannot be evaluated, the formula acts like a rule that hasn't fired. If
multipass rule firing is turned on, the formula is reevaluated during each firing
pass until rule firing ends or until the formula produces its result. Use a formula
rather than a rule when the only condition for requiring that you compute a result
is that the function/properties used in the formula have values.

For example, suppose that you want to compute the turning radius for truck
components such as axel and wheelbase to ensure that a customer's choice of truck
components makes sense. You might attach a formula to the relevant truck
components to compute the turningRadius as follows:
turningRadius = value(axelTurnFactor) * value(wheelBaseTurnFactor)* sum(turningElements)

This formula fires when each of the value(axelTurnFactor),
value(wheelBaseTurnFactor), and sum(turningElements) expressions all produce
numeric results. The equivalent rule is as follows:
if (value(axelTurnFactor) >= 0 or value(axelTurnFactor) < 0)
and (value(wheelBaseTurnFactor)>= 0 or value(wheelBaseTurnFactor)< 0)
and (sum(turningElements) >=0 or sum(turningElements) <0)
turningRadius = value(axelTurnFactor) * value(wheelBaseTurnFactor)* sum(turningElements)

56 Sterling Configurator: Application Guide

The condition portion of the rule is quite long and seems to always evaluate to
true. However, functions can return NULL if a property that they reference does
not exist, so this rule is really checking that the result is non-NULL by evaluating
whether a returned value is >= 0 or < 0.

Avoid writing rules

Writing rules can be avoided in the following situations:
v Pricelist eligibility conditions

If the requirement is to make certain option available or hidden, or to make
different prices available based on customer profile, pricelists may be used
instead of rules

v Model Structure
While restructuring the option class, building block, or submodel.

Avoid specifying paths to instances of items or properties

The left hand side (LHS) and right hand side (RHS) of a rule fragment consist of a
function and a property name. The property name can contain both relative and
absolute path information. However, specifying a property's path information in a
rule fragment can result in the rule becoming inoperable if the path information or
option classes change.

For example, the following rule references wheelSize and wellSize using fully
specified path information. If the modeler ever needs to rename either the wheels
or fender option classes, or wishes to reuse the rule in some other model, the rule
may not operate correctly.
If value(*.wheels.wheelSize) == literal("17in")
and value(*.fender.wellSize) < literal(17)
set _isVisible=0

Use path information only if you want to access one specific instance of a property,
and then only if it isn't possible to make a new property type to hold this value. If
you must reference a property's path name, it is often better to use relative
pathnames rather than absolute pathnames.

Constraint tables vs. rules

This section explains the trade-off between using constraint tables to limit customer
choices versus using rules. Constraint tables limit a customer's choice of one or
more option items based on the customer's choice of another option item. For
example, the choice of an exterior color for a car might limit the choice of interior
colors.

Constraint tables work best for simple validation. For example, an option item
does or doesn't work with another option item. Simple constraint tables are easier
to maintain than rules. However, large, complex constraint tables can be hard to
maintain and can lead to performance issues.

Constraint tables are turned into rules internally.

Rules are best for expressing complex validation issues, and are more versatile
than constraint tables. While both constraint tables and rules can display error
messages, you can also create rules to set properties or make choices.

Chapter 13. Sterling Configurator Best Practices 57

Modular Development
This section explains some of the techniques for simplifying model creation and
maintenance. Selecting the appropriate technique may have a significant impact on
model performance.
v Using Option Class Groups, Option Item Groups, and Sub-assemblies:

This technique works well when a group of options is repeated in many
different models. For example, suppose that every computer you sell includes a
list of hard drives that the user can choose from. Creating Option Class Groups,
Option Item Groups, and Sub-assemblies allows the modeler to create and
maintain common information in one place, then use it in many places.
One drawback is that this technique can lead to overly large models if a
sub-assembly is included in the same model many times.

v Sub-model punch-in and punch-out:
This technique is useful when a configuration contains a selection that is also
configurable. You can use sub-model punch-in and punch-out to nest complex
configurations within one overall selling model.
One drawback is that all copies of the configured item will have the same
configuration.

v Dynamic instantiation:
This technique allows multiple instances of a configured item within a single
model. Each instance can have a different configuration.

Tools
Modeling can be a time consuming and tedious exercise, but in the end the
correctness of the modeling and the scalability of the created solution are key to
the success of the project. To aid in creating scalable and correct models, we have
developed a collection of tools that can be used in various phases of development
to guide the modeler. During development, the trace log and the model reporting
tool can help the modeler determine which models to debug. Before pushing
models into production, their scalability and stability can be tested using the load
testing platform. Finally, during execution, the model cache status page can
provide insights into the model's usage of the system, and the log analyzer can be
used to make sense out of megabytes worth of log information.

Using the Trace Log

The trace log shows the execution of the rules engine. This is often, though not
always, the most time consuming part of each request that the configurator makes
to the server. The trace log is designed to provide the information necessary to
debug rules that are misbehaving and to track the execution time of rules, so
always start your debugging by reviewing the trace log. You create trace logs using
the Visual Modeler. To do so:
1. Go to Model Group navigation and navigate to the model you wish to debug.
2. Select the model from the Models and Groups panel.
3. The model displays in the Model Preview tab.
4. Click the Test icon.
5. Click Debug.

58 Sterling Configurator: Application Guide

The trace log appears in a separate window. The log consists of two sections. The
first section is the rule firing trace and the second section is the property pool as it
exists at the end of rule firing. The following illustration shows a section of a
sample rule firing trace.

The rule firing trace has three columns:
v A sequence number, useful for communicating with others about rule issues. It's

easy to tell someone, "See line 42 where it says Xxx?"
v Elapsed time. This logs how long it took from the time the log entry was made

until the start of rule firing.
v The body of the trace log. This shows aspects of the rule firing, such as a

condition being evaluated, an assignment occurring, the start of a rule or the
conclusion of a rule, and so on. The log shows the number of milliseconds
needed to fire a rule after each rule firing entry. The total number of
milliseconds needed to run the model is logged at the end of the rule firing
trace.

The property pool trace also presents three columns:
v Name is the full path name to the item and the property on that item.
v Type is the property type for the named property, such as Numeric, List, or

String.
v Value is the value of the property after the rule has fired.

The following illustration shows a section of a sample property pool trace:

Chapter 13. Sterling Configurator Best Practices 59

Use this log "single user" to get a feel for how extensive the rules are per click.
Check how long is it taking to fire the rules. If the answer is more than 100-200ms
you may have scalability problems. If you do, use the trace log to figure out if any
particular rules are performing badly. Make sure there are no java exceptions in the
debug trace. A java exception causes all rules to stop firing at that point forward in
the sub-assembly or model.

Using the Model Reporting Tool

The model reporting tool can provide an overview of a model's size relative to
other models. Use it to help make decisions about which models to test. You can
track the test results over time so that you can determine the amount of change to
the model.

Using Load Testing Tools

Load testing tools help you determine how your model will perform once
deployed. Before using the load testing tools:
v Understand what is being tested.

60 Sterling Configurator: Application Guide

v Isolate your test cases so that you know what the impact means (local vs. remote
LAN testing with and without clustering, with and without web fronting, and so
on).

v Understand that as models change, so must any scripts that you use to perform
testing and replay test scenarios.

v cmd=configstatus shows the current contents of the cache.

Performance
Rules
v A rule that adds memory by:

totalMem = value(*.adapter.1.memory) + value(*.adapter.2.memory)
+ value(*.adapter.3.memory) + value(*.adapter.4.memory)

will perform much more slowly than:
totalMem = sum(memory)

v If the memory property exists in other places for other uses so that
sum(memory) would produce the wrong value, then introduce additional
properties on the adapter items 1-4 called adapterMemory, and use:
totalMem = sum(adapterMemory).

This is much less maintenance effort that maintaining:
totalMem = value(*.adapter.1.memory) + value(*.adapter.2.memory)
+ value(*.adapter.3.memory) + value(*.adapter.4.memory)

v Write rules to fire only when they are needed:
A rule that assigns totalMem = sum(mem) only needs to fire if count(mem) > 0

Properties
v Define properties at the correct position in the model group hierarchy:

– If they are local only to this model, then define them in the model.
– If they are more global than the current model group, then define them at the

lowest point in the model group tree that is an ancestor of a model where
you wish to use the property.

Development and Maintenance
There could be several modelers in a team sharing the same model, have multiple
releases to address and many models to work on. This section outlines some useful
tips to follow during development and maintenance:

Personal Environment

In personal environment modelers cannot share their models. They work on a local
copy of models and export them. Problems occur when the same model is
modified by other modelers. Hence, personal environments are preferred by
modelers for training and experimental purposes.

Shared Environment

In shared environments modelers can share the models for a release. Conflicts
occur when many modelers make changes to the same model. It could also occur
when rules, properties are used by many models, or by attaching models to other
models. Conflicts are avoided by assigning specific models to each modeler, avoid
sharing rules and properties. It is a good practice to keep the XML files separate.

Chapter 13. Sterling Configurator Best Practices 61

Real-time Version Control System

A real-time version control system is useful in situations when we want to move to
a previous version. For example, if a modeler deletes a model by mistake we can
step back to the previous version.

62 Sterling Configurator: Application Guide

Chapter 14. Definitions for Out-of-the-box Functions

The following table lists the functions supported by Visual Modeler:

Table 1. Functions supported by Visual Modeler

Functions Definition

checkwslookup Check if the correct properties exist to invoke a Web service.

childsum Sum of the specified property values defined at this node and any of
the node's children (and recursively down to children of child nodes
and so on).

count Counts the number of objects (selected option items, models, or
groups) having the specified property.

isselected Returns true if the option item is selected; otherwise returns false.
length

length Returns the length of a string property. If there are more than one
instance of that property in the property pool, length function returns
the length of the first one it finds. To restrict the search to the parent
hierarchy of the item to which the rule is attached, use the
parentlength function.

list Used with the operators in and not in to check if a property value is
included or not in a specified list of values.

literal Exact match of the literal value.

lookup Used to look up values specified by name from a properties file: the
lookupValues.properties configuration file. A string property containing
the key is used to find the entry in the property file. This entry defines
the properties for this key and the values that each of these properties
should be set to when the function is invoked. For example, Suppose
the following is defined in the properties file:

Color=blue,green,red

Color.blue=#0000FF

Color.green=#00FF00

Color.red=#FF0000

Then if the lookup<Color> function is invoked, the corresponding
properties blue, green, and red will be attached at the appropriate
node.

max Returns the maximum property value from all selected items with the
specified property.

min Returns the minimum property value from all selected items with the
specified property.

parent This function walks up the tree from the current location to see if the
property has been defined anywhere at or above the current location.

For example, if the rule is attached at an option item level, then the
property will be looked for on the option item itself. If it is not defined
there, then the option class to which the option item belongs will be
looked at to see if the property is defined there.

© Copyright IBM Corp. 1999, 2011 63

Table 1. Functions supported by Visual Modeler (continued)

Functions Definition

path Returns the relative path of a property from the root node of the
model. The root node is replaced with an asterix (*).

For example: if the path to the property is
MXDS7500.Software.Applications.MSOffice.MX75_Mem_Required path
returns *.Software.Applications.MSOffice.MX75_Mem_Required.

parentlength Returns the length of a string property, after checking for properties in
the current item's parent hierarchy. For example, In the following
scenario:

Model

|

|-- OC1 - prop = "short"

|

|-- item1 (rule if (parentLength(prop) > 6), do something)

|-- OC2 - prop = "string that is exactly 42 characters long!"

|

|-- item2 (rule if (parentLength(prop) > 6), do something)

When the rule attached to item2 is evaluated, parentLength will return
42 and, since 42 is greater than 6, the action "do something" will be
taken.

propval Returns the value of a property even if the option item has not been
selected.

propval Returns the value of a property even if the option item has not been
selected.

rawpath Returns the actual path of the property without stripping off the root
node. For example: If the path to the property is
MXDS7500.Software.Applications.MSOffice.MX75_Mem_Required ,
rawpath returns
MXDS7500.Software.Applications.MSOffice.MX75_Mem_Required.

sum Sum of the property values from all selected items having the specified
property

value Uses the property value for comparison. If multiple items exist on the
order with the given property, then the maximum value is used.

64 Sterling Configurator: Application Guide

Chapter 15. Definitions for Out-of-the-box Configurator
Properties

Built-In Properties

The Built-In properties are listed in the table below:

Table 2. Built-In Properties

Property Data Type Description

CONFIG: FIRST
FIRE

numeric 1 if this is the first time firing rules, 0 otherwise. Value will
be 1 at the start of the user session, and therefore when
used in rules fragments a high priority (i.e. a low number
such as “5” or “10”) will ensure that the rule is run at the
beginning of the session.

CONFIG:
POOL SIZE

numeric This property is used to assign the number of copies of a
model to keep in the model pool.

CONFIG:
REPEAT
FIRING

string "yes" or "true" turns on looping in the rule engine, causing
rules to fire as long as the current state keeps changing.
Since rules are removed from the rule list whenever they
fire, this is not an infinite loop.

CONFIG:
SUBMODEL
NAME

string The encoded name of another model. Encoding replaces
potentially unsafe file system characters with _XXXX where
XXXX is the hex representation of their Unicode character
code. For example, a space is represented by "_0020".

CONFIG:
SUBMODEL
RETURN

string "yes" or "true": When punching into a submodel specified
by CONFIG: SUBMODEL NAME, returns back the the
parent model the BOM of the child model

_cacheKey string Use on a model node to contain the key used to store the
model in the model cache.

_description string The property has the description of an item.

_errorCount numeric Number of errors encountered during rule firing.

_fileSize string Size of the model XML file (a Long value represented as a
String)

_lastModified string Last modified date for a model as a string (number of
seconds since some important date).

_modelTabs list List of tab names for the model.

_name string The name of an option item, option class, or model.

_parent. <item
names>

varies Properties inherited by a submodel from the parent.

_pickItems list Used internally to keep track of picked items.

_pickmap.
<itemKey>

string Mapping of an item to an option class.

_picks list Used internally to keep track of picked items.

_quantity integer Quantity selected, if >0 the item is picked. Note: Setting
_quantity in the assignment action of a rule is prohibited.

_sequence numeric Rule firing sequence. If 0, this is the first time through the
loop, 1 is the second, and so on.

© Copyright IBM Corp. 1999, 2011 65

Table 2. Built-In Properties (continued)

Property Data Type Description

_sku string The item ID assigned to the model, option class, or option
item in the Configurator model group. Note: When used in
the “for each” rule fragment, the loop will return more
items that we often want it to. Instead, use a property other
than _sku that can filter out more items.

_tabMembers <
tab number >

list Where <#> is a tab number (0...N), these properties contains
the names of the root level option classes that are part of
the tab whose index is <#>

CONFIG: ON
UNSELECT
SKIP CHILD
RULE AND
CURR RULE
FIRING

string "yes" or "true" skips the rules attached to the node and its
subtree, if the node is not selected.

CONFIG: ON
UNSELECT
SKIP CHILD
RULE FIRE
BUT FIRE
CURR RULE

string "yes" or "true" skips the rules attached to the node's subtree
but fires the rules attached to the node, if the node is not
selected.

CONFIG:
DISABLE
SUBMODEL
VALIDATION
ON
SUBMODEL
RETURN

string "yes" or "true" skips the validation of cached sub-model
configuration present in the parent model on sub-model
return. Relevant only if CONFIG: SUBMODEL RETURN is
enabled.

User Interface (UI) Properties

The User Interface (UI) properties are listed in the table below:

Table 3. User Interface Properties

Property Data Type Description

UI:
ADDITIONAL
DESCRIPTION

string You can use this property to add additional descriptive text
to an option class. Use this property in conjunction with the
UI: DISPLAY RESULTS property.

UI:
ALIGNMENT

string The "Horizontal" or "Vertical" options control layout of
radio buttons and check box controls.

UI:
AUTOMATIC
POST

string Selecting "yes" or "true" turns on automatic posting for an
option class. After a customer makes a pick of an option
item, you want the server to re-display the page so that
rules can be fired and any changes to the available option
classes can be displayed. However, if you do not want picks
in an option class to cause a re-display, then set this
property to "no" or "false". This is equivalent to selecting
On User Request from the Submit to Server Display
property drop-down list. The option class is displayed with
Update button; after making a pick in this option class, a
user can click the Update button to request a re-display of
the page from the server.

66 Sterling Configurator: Application Guide

Table 3. User Interface Properties (continued)

Property Data Type Description

UI: CLASS
DISPLAY
NAME

string Use this property at the model level to determine what is
displayed as the displayed name of option classes. By
default, this property takes the
value ${expand("_description")} which means that the
value of the option class's Description field is displayed. For
example, if you want to display option class names instead
of descriptions, then set this property to
${expand("_name")}. You can overwrite this value at a
single class by using the UI: DISPLAY NAME property.

UI: COLUMN
ALIGNMENT

string Use this property in the tabular display control to specify
the alignment of the values in the column. The tabular
display control uses the ";" character to separate entries
from each other. The format of this column is something
like: "left;left;center;right".

UI: COLUMN
HEADINGS

string Use this property in the tabular display control to specify
the titles of columns. Each title is separated from each other
with the ";" character. For example:
"Speed;Pins;Manufacturer".

UI: COLUMN
PROPERTIES

string A semi-colon-separated list of property names used in the
tabular display of properties. For example:
"SPEED;NOPINS;SUPPLIER", where SPEED, NOPINS, and
SUPPLIER are properties defined on option items in an
option class

UI: COLUMN
SPAN

numeric This property controls how many columns an option class
requires for its display in the customer-facing display of the
model. This is the same as entering a number for the
Number of Columns field on the Display tab.

UI: CONFIG
CELL HTML
CLASS

string This sets the CSS class attribute in the HTML. Use this
property to control the look-and-feel of cells. The Visual
Modeler uses the internal.css CSS file when you test
models.

UI: CONSTANT
GUIDING TEXT

string This property defines the guiding text that will always be
shown for an option class. This is the same as entering text
for the Constant Guiding Text field on the Display tab.

UI: CONTROL string This is the name of the JSP fragment used to render an
option class. Do not use UI: JSP FILENAME at the option
class level.

UI: DEFAULT
SELECTION

string Selecting "true" or "yes" on an item makes the item a
default selection within its parent option class

UI: DISPLAY
ADDITIONAL
INFO

string When using dynamic instatiation, displays in a parent
model user interface some information from the submodel.
UI: DISPLAY ADDITIONAL INFO be used to provide
descriptive information specific to each instance of a
sub-model. For example, attach this property to the root
node of a submodel, and pass it as an output property to
the parent model. The information will be displayed next to
the item in the parent model. Because each intance of a
dynamically instatiated submodel is configured differently,
you may want to provide some distinguishing information
about each instance upon returning from the submodel to
the parent.

Chapter 15. Definitions for Out-of-the-box Configurator Properties 67

Table 3. User Interface Properties (continued)

Property Data Type Description

UI: DISPLAY
NAME

string Use this property to determine what is displayed as the
displayed name of the option class. By default, this
property takes the value ${expand("_description")} which
means that the value of the option class's Description field
is displayed.

UI: DISPLAY
RESULTS

string This property is deprecated. A property that is displayed
along with the description of items. This special property
also allows the usage of text expansion macros. Currently
we support:
${expand(propname[,defaultValue[,pictureString]])} but the
name of this "function", expand in this case, is accessed via
the object manager. An example usage is to set a
description string in the UI: ADDITIONAL DESCRIPTION
property, and then set the value of this property to
${expand("UI: ADDITIONAL DESCRIPTION")}. To add
additional macros, define a new class that implements the
IExpansionHandler interface, and put a reference to it into
the object manager.

UI: HELP URL string This URL is used to turn an option class description into a
hyperlink, typically used to provide additional information
about what that option class is for. It could also be a
datasheet or any other hyperlink. Clicking on the hyperlink
will bring up the page in a new window. This is the same
as entering text for the Help URL field on the Display tab

UI: ICON
GRAPHIC

string Use this property with an option class to display a picture
along with the description of the option class. This is the
same as entering text for the Image field on the Display tab

UI: IGNORE IN
QUOTE

string When set to "yes" or "true", the item to which this property
is attached to is filtered out of the summary page. It is also
flagged as not visible in the BOM transfer to the shopping
cart.This is the same as checking Ignore in Quote on the
Display tab. This field is used to ensure that only selected
option items are displayed in shopping carts. It suppresses
option classes in the list of items in a shopping cart.

UI: ITEM
DISABLE

string “yes”, “no”. Used to prevent the user from selecting an
option item while still displaying it on the UI

UI: JSP
FILENAME

string The name of the JSP page that will render the model:
Configurator_Tabbed.jsp or configurator.jsp. This property
is added to support easier customization and eventually to
allow different presentations per model. Using the built-in
customization elements of Sterling Configurator, it is
possible to dynamically change pages as well.

UI: LEAD TIME numeric This property is attached to items in the model. It is used to
build a maximum lead time for the entire model by finding
the largest lead time of all items currently selected.

UI: NUMBER
OF COLUMNS

numeric This property shows the number of columns to divide the
end-user configurator presentation. It is defined at the
model level to manage how many columns are used to
display the option classes for a model. This property in
conjunction with UI: COLUMN SPAN, UI: ROW SPAN, and
UI: SKIP COLUMNS controls how option classes are
arranged on the page. This property is the same as setting
the Number of Columns property in the Display tab.

68 Sterling Configurator: Application Guide

Table 3. User Interface Properties (continued)

Property Data Type Description

UI: OPTION
CLASS
REQUIRED

string Setting this property to "yes" or "true" causes Sterling
Configurator to require that a selection be made for an
option class. For radio buttons this causes the None
selection to be removed.

UI: OPTION
CLASS SELECT

string This property is used to specify what UI control should be
used when no specific UI: CONTROL value is specified. It
is used to support importing models from external
configuration systems or from earlier releases of the
application. It takes "single" or "multiple" as values. It is
only used in the absence of a UI: CONTROL property to
determine if a radio button or check box control should be
shown for an option class.

UI: OPTION
CLASS VIEW

string This controls the display behavior of an option class.

POPUP: Show a standard option class.

POPUP-QTY: Show a quantity box for each selected item
within that control.

INVISIBLE: Prevent the display of the control. Use
INVISIBLE to hide option classes until other picks made by
the customer requires the class to be displayed.

UI:
POPUP-QTY
ALLOWED
VALUES

string This controls what values are available for a selection in a
popup drop-down list. Use this at the option class level, in
conjunction with setting UI: OPTION CLASS VIEW to
POPUP-QTY. A "," separated list of allowed values. Ranges
can be specified with "-", so 1-4,7-9 is the same as
1,2,3,4,7,8,9. If you leave this field blank, then a text field is
displayed with the current value; otherwise a drop-down
list with the allowed values is displayed.

UI: POST PICK
GUIDING TEXT

string A guiding text message displayed with an option class
description if the user has made at least one pick from
within the option class. This is the same as entering text for
the Pre-Pick Guiding Text field on the Display tab. This
property is not displayed until a customer makes a pick.

UI: PRE PICK
GUIDING TEXT

string A guiding text message displayed with an option class
description if the user has not made a pick from within the
option class. This is the same as entering text for the
Post-Pick Guiding Text field on the Display tab. Once a pick
has been made, then this property is no longer displayed.

UI: PREVENT
SELECTION

string Selecting "yes" or "true" causes the Sterling Configurator to
prevent the user from selecting items that would violate a
constraint table rule. If the Constraint Selections display
property is set to "Hide constrained items", then this
property is set to "yes".

UI: PRICE numeric The price for an item that will be used if STATIC_PRICING
or OVERRIDE_PRICING is set in the business rules. In the
case of OVERRIDE_PRICING, this value will be used if a
price cannot be found for the item in the price list.

UI: PRICING
SKU

string The SKU to use when looking up the item in the price list.
Note that if you set a product ID value for this property,
then it overrides the value of the Assigned Product ID in
determining prices.

Chapter 15. Definitions for Out-of-the-box Configurator Properties 69

Table 3. User Interface Properties (continued)

Property Data Type Description

UI: PRICING
STYLE

string This property is used at the option class level. It controls
how prices of option items are displayed to the end user as
follows:

NONE: Do not display prices as user configures product.

ABSOLUTE: Display prices next to option items as absolute
prices.

DELTA: Display prices next to option items as their effect
on the price of the whole configured product.

This property is the same as setting Pricing Style in the
Display tab.

UI: PRODUCT
ID

string If you associate a product with the node of a model, this
property can be used to retrieve the product ID of the
associated product. The value of this property is resolved at
compile time. If the product ID is changed, you must
re-compile the model for the change to take effect.

UI: PRODUCT
NAME

string If you associate a product with the node of a model, this
property can be used to retrieve the product name of the
associated product. The value of this property is resolved at
compile time. If the product name is changed, you must
re-compile the model for the change to take effect.

UI: PRODUCT
DESCRIPTION

string If you associate a product with the node of a model, this
property can be used to retrieve the description of the
associated product. The value of this property is resolved at
compile time. If the product description is changed, you
must re-compile the model for the change to take effect.

UI: ROW SPAN numeric This property controls how many rows an option class
requires for its display in the end-user presentation of the
page. In conjunction with UI: NUMBER OF COLUMNS and
UI: COLUMN SPAN, this property controls the layout of
the page viewed by end-users. This is the same as entering
a number for the Number of Rows field on the Display tab.

UI: SHOW
ITEM IMAGES

string Selecting "yes" or "true" controls whether item images are
shown.

UI: SKIP
COLUMNS

numeric This shows the number of columns to skip after this class.
It is used to add to the count variable that is tracking how
many cells are being used to lay out the option classes. This
is the same as entering a number for the Number of
Columns to Skip field on the Display tab. If you have used
the UI: COLUMN SPAN property or UI: ROW SPAN for
another option class, then use this property to account for
table cells in the layout that the multiple span class uses.

UI: SUPPRESS
NAME
DISPLAY

string Selecting "yes" or "true" causes Sterling Configurator to not
display the names of option classes

UI: SUPPRESS
NONE
SELECTION

string Selecting "yes" or "true" suppresses the NONE selection
value for radio buttons..

70 Sterling Configurator: Application Guide

Table 3. User Interface Properties (continued)

Property Data Type Description

UI: SUPPRESS
UEV NONE
VALUE

string Selecting "yes" or "true" suppresses the NONE selection for
UEV combo boxes. Use this in conjunction with UI: UEV
ALLOWED VALUES property. For example, you have
specified that a user-entered value field can only take the
values Red, Green and Blue. If the value of this property is
set to "yes", then None will not appear in the drop-down
list of selectable values. If you set the value of this property
to "no", or do not attach this property, then None will be a
selectable value.

UI: UEV
ALLOWED
VALUES

string Comma-separated list of values for a combination box UEV
control. Suppose that you want to allow customers to enter
only one color from a small list of colors. Enter the list as
follows: Black,Blue,Green,Red,White When this property is
set, the user-entered value option item is displayed as a
drop-down list of these values. None is also displayed as a
selectable option, unless you set the UI: SUPPRESS UEV
NONE VALUE property to "yes". This property is the same
as setting values in the Allowed Values display property.

UI: UEV
ASSIGNMENT
PROPERTY

string The name of a property where a UEV will store its value.
This property should be of the correct type to contain the
UEV. Numeric properties can be used to hold INTEGER
UEVs as well as NUMERIC UEVs. If the value of this
property is just a property name, then the property will be
set on the current item. If the value contains a path to a
property as well as the property name, then the property
will be set on the item referenced by the path if it exists.
Once a user makes their pick in the user-entered value
field, then the assigned property can be used by rules or in
the display of the model, just like any other property. This
property is the same as setting a value in the Assign Value
to Property display property.

UI: UEV
INTEGER
VALUE

integer The engine fills in this value when an integer UEV has a
value in it. This provides you with a way to reference the
value of the field without assigning it to another property.

UI: UEV LIST
VALUE

list The engine fills in this value when a list UEV has a value in
it (not currently used). This provides you with a way to
reference the value of the field without assigning it to
another property.

UI: UEV
NUMERIC
VALUE

numeric The engine fills in this value when a numeric UEV has a
value in it. This provides you with a way to reference the
value of the field without assigning it to another property.

UI: UEV
POSTFIX

string A string of text displayed after the UEV entry field. This
property is the same as setting a value in the Text After
Entry Field display property.

UI: UEV
PREFIX

string A string of text displayed before a UEV entry field. This
property is the same as setting a value in the Text Before
Entry Field display property.

UI: UEV
STRING
VALUE

string Filled in by the engine when a string UEV has a value in it.
This provides you with a way to reference the value of the
field without assigning it to another property. See UI: UEV
ASSIGNMENT PROPERTY to use another property.

UI: UEV TYPE string These are the options for the types of UEV control; "string",
"integer", or "numeric".

Chapter 15. Definitions for Out-of-the-box Configurator Properties 71

Miscellaneous Properties

The following table summarizes some of the available properties for assignment :

Table 4. Miscellaneous Properties

Property Data Type Description

_constraintMessage string A message on an item
because it is constrained

_constraintType

integer

Type of constraint; 0 is
suggest, 1 is warn, and 2 is
error

_description string An items description

_amEntitled integer 0 false, 1 true

_isConstrained integer 0 false, 1 true

_isSelected integer 0 false, 1 true

_isViewable integer 0 false, 1 true

_itemKey integer Database key of the item

_pickOverride integer 0 false, 1 true; pick was
overridden by a rule

_quantity integer Quantity; 0 quantities are not
in the rule pool.
Note: Setting _quantity in
the assignment action of a
rule is prohibited.

_ratio numeric Ratio of this item to its
children, computed if nested
within another parent .

_rawRatio numeric Raw ratio used in previous
computation

_rulePick integer 0 false, 1 true

_tabLevel integer Depth of this item

72 Sterling Configurator: Application Guide

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not grant you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte character set (DBCS) information,
contact the IBM Intellectual Property Department in your country or send
inquiries, in writing, to:

Intellectual Property Licensing

Legal and Intellectual Property Law

IBM Japan Ltd.

19-21, Nihonbashi-Hakozakicho, Chuo-ku

Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be

© Copyright IBM Corp. 1999, 2011 73

incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Corporation

J46A/G4

555 Bailey Avenue

San Jose, CA 95141-1003

U.S.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

All IBM prices shown are IBM's suggested retail prices, are current and are subject
to change without notice. Dealer prices may vary.

74 Sterling Configurator: Application Guide

This information is for planning purposes only. The information herein is subject to
change before the products described become available.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. The sample
programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work, must
include a copyright notice as follows:

© IBM 2013. Portions of this code are derived from IBM Corp. Sample Programs. ©
Copyright IBM Corp. 2013.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

Trademarks

IBM, the IBM logo, and ibm.com® are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the Web at “Copyright and
trademark information” at http://www.ibm.com/legal/copytrade.shtml.

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered
trademarks or trademarks of Adobe Systems Incorporated in the United States,
and/or other countries.

IT Infrastructure Library is a registered trademark of the Central Computer and
Telecommunications Agency which is now part of the Office of Government
Commerce.

Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo,
Celeron, Intel Xeon, Intel SpeedStep, Itanium, and Pentium are trademarks or
registered trademarks of Intel Corporation or its subsidiaries in the United States
and other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both.

Notices 75

http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

ITIL is a registered trademark, and a registered community trademark of the Office
of Government Commerce, and is registered in the U.S. Patent and Trademark
Office.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Oracle and/or its affiliates.

Cell Broadband Engine is a trademark of Sony Computer Entertainment, Inc. in the
United States, other countries, or both and is used under license therefrom.

Linear Tape-Open, LTO, the LTO Logo, Ultrium and the Ultrium Logo are
trademarks of HP, IBM Corp. and Quantum in the U.S. and other countries.

Connect Control Center®, Connect:Direct®, Connect:Enterprise®, Gentran®,
Gentran®:Basic®, Gentran:Control®, Gentran:Director®, Gentran:Plus®,
Gentran:Realtime®, Gentran:Server®, Gentran:Viewpoint®, Sterling Commerce™,
Sterling Information Broker®, and Sterling Integrator® are trademarks or registered
trademarks of Sterling Commerce®, Inc., an IBM Company.

Other company, product, and service names may be trademarks or service marks
of others.

76 Sterling Configurator: Application Guide

Index

A
action classes

extending 24

C
customization

examples 25
customization checklist

action definition 23
theme and logo 25

D
data validation

customizing 43

F
factory setup

localizing 19

M
Multipurpose Internet Mail Extensions

(MIME) 43

P
post customization

deployment 45

R
resource bundle localization 17
resource bundles

localizing 18

S
Sterling Web EAR

creating, deploying 13

U
users

Sterling Configurator 16

V
validation

data 35
validation rules 41

customizing 43

© Copyright IBM Corp. 1999, 2011 77

78 Sterling Configurator: Application Guide

����

Printed in USA

	Contents
	Chapter 1. What is Sterling Configurator?
	Chapter 2. Item Configuration: Implementation
	Item Configuration: Solution
	Item Configuration: Tabbed and Normal Layout
	Item Configuration: Step-Wise Layout

	Item Configuration: End-User Impact
	Item Configuration: Implementation

	Chapter 3. Deploying with WebSphere Commerce or third party applications
	Create and Deploy the Sterling Web EAR Package
	Calling Sterling Configurator
	How end customers access Sterling Configurator in the production environment

	Chapter 4. Localizing Sterling Configurator - An Overview
	Prerequisites to Localizing the Sterling Configurator
	Localizing Resource Bundles
	Localize Resource Bundles
	Localizing Factory Setup Data

	Chapter 5. Customizing Sterling Configurator: An Overview
	Chapter 6. Customize Actions
	Action Definition Customization Checklist
	Customize Action Classes

	Chapter 7. Customize Themes
	Theme Customization Checklist
	Customization examples
	Theme Customization for a Storefront

	Chapter 8. Customize Controls
	Customizing an Existing Control
	Create a new control

	Chapter 9. Customize Control Handlers
	Chapter 10. Customize Function Handlers
	Function Handler Example

	Chapter 11. Data Validation
	Data Validation
	Customize Data Validation

	Chapter 12. Deploying your customizations
	Chapter 13. Sterling Configurator Best Practices
	Designing Models
	Properties
	Rules
	Modular Development
	Tools
	Performance
	Development and Maintenance

	Chapter 14. Definitions for Out-of-the-box Functions
	Chapter 15. Definitions for Out-of-the-box Configurator Properties
	Notices
	Index
	A
	C
	D
	F
	M
	P
	R
	S
	U
	V

