
Visual Modeler

Implementation Guide

Release 9.1

© IBM Corporation 2011 1

Copyright

This edition applies to the 9.1 Version of Visual Modeler and to all subsequent releases and
modifications until otherwise indicated in new editions.

Before using this information and the product it supports, read the information in Notices on page 107.

Licensed Materials - Property of IBM
Visual Modeler
© Copyright IBM Corp. 1999, 2011. All Rights Reserved.
US Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP
Schedule Contract with IBM Corp.
© IBM Corporation 2011 2

Contents

Introduction . 8
Implementation Methodology . 8

Implementing the Visual Modeler Integration . 9
Implementation Steps . 10
Integrating the Visual Modeler with IBM Sterling Selling and Fulfillment Foundation 12

Configuring the Visual Modeler Properties . 12
Configuring the IBM Sterling Configurator Rules . 13

Introduction to J2EE Web Applications . 14
Architecture . 14
Web Applications . 14
web.xml File . 14
JSP Pages . 15
Model 2 Architecture . 16
Controllers. 17
Model . 18
View . 18
Further Reading . 18

System Architecture . 19
Visual Modeler Web Application . 19
Processing Requests . 20

Overriding MessageType Definitions . 21
Default Elements . 21

Key Java Classes . 22
Wrapper Classes. 22

ComergentContext . 22
ComergentDispatcher. 22
ComergentRequest . 22
ComergentResponse . 22
ComerentSession . 22

Servlets . 23
Controller Classes. 23

Custom Controllers. 23
SimpleController . 24
MessagingController. 24

DataBean Classes . 24
ObjectManager and OMWrapper Classes . 25

Creating Objects. 25
Mapping Object Names to Object Classes. 25
Restrictions. 26
© IBM Corporation 2011 3

Passing Parameters . 26
Object Pooling . 27

AppExecutionEnv Class . 28
AppsLookupHelper Class . 28
ComergentAppEnv Class . 29
Global Class . 29
GlobalCache Interface . 29
LegacyFileUtils Class . 30
OutOfBandHelper Class . 30
Preferences Class. 31
Transactions . 32
Support for Lookup Codes . 32

What lookup support does the Visual Modeler provide? . 32
Are string values localized? . 32
How do I define a code to string mapping? . 32
Are lookups performed for XML messages? . 32
How is the lookup cache loaded?. 33

Platfform Modularity. 34
Overview . 35
Platform Modules . 35
Module Interfaces . 36

Invoking Interfaces . 36
Platform Module Descriptions . 36
Access Policy . 36
Authentication . 36
Base64 . 36
Classpath Appender . 36
Cryptography Service . 37
Data Services . 37
Dispatch Authorization . 37
Dispatch Framework . 37
Email Service . 37
Event Service . 37
Exception Service . 37
Global Cache Service . 37
Help. 37
Initialization Service . 38
Internationalization . 39
Logging . 40

Configuration . 40
Loggers . 40

Appenders . 41
Layouts . 41

Memory Monitor . 42
Message Type Entitlement . 42
Object Manager. 42
Out Of Band Response. 42
Preferences Service . 42
Tag Libraries . 43
Thread Management. 43

API and Usage . 44
© IBM Corporation 2011 4

XML Message Converter . 44
XML Message Service . 44
XML Services . 45

Introducing Data Beans and Business Objects . 46
What are Data Beans? . 46
Life Cycle of a Data Bean . 46
Defining a Data Bean . 47
Defining the Structure of a Data Object . 47

Extending Data Objects . 47
Data Bean and Business Object Creation. 48
DataContext . 48

What is the DataContext class? . 48
What behavior can be controlled? . 49
What are the Cache Id methods for? . 49
How do Max Results and Num Per Page work? . 49
How do I instantiate a DataContext instance? . 50
What are the Default Settings for a new DataContext? . 50

List Data Beans. 51
Application, Entity, and Presentation Beans . 51
Using Stored Procedures . 52
Data Bean Methods . 52
IData Methods. 52
IRd and IAcc Interface Methods . 53
Restoring and Persisting Data . 54

restore() Method . 54
persist() Method . 55

Miscellaneous Methods. 55
getBizObj() Method. 55
writeExternal() Method . 56

Child Data Objects . 56
Extending Data Objects . 56
Data Bean Example . 58
DsElement Tree . 62
DsElements. 62
DsElement MetaData . 63
BusinessObject Methods . 64

restore() Method . 64
persist() Method . 64

Logging . 66
Overview . 66
log4j.debug System Property . 66
Auditing Changes to Data Objects . 67

Modularity and Generated Interfaces . 69
Modules . 70

Module Interfaces . 70
Invoking Interfaces . 71

Using the Object Manager . 71
Using Factory Classes . 72

Generated Interfaces. 73
Example of a Generated Interface . 73

Implementing Logic Classes . 75
© IBM Corporation 2011 5

Key Concepts . 75
Application Logic Classes . 75
Business Objects . 76
XML Schema. 76
Naming Service. 76
NamingService Example. 77

Software Development Kit . 78
Project Organization . 78
Project File and Directory Locations . 78
Java Source Files . 78
JSP Pages . 79
Schema Files . 79

Visual Modeler Localization. 81
Overview . 81
Supporting Locales . 81
Presentation and Session Locales . 81
JSP Pages and Properties Files . 82

Debugging . 84
Failover Behavior . 84

Resource Bundles . 84
JSP Pages . 85

Methods to Retrieve Locales. 85
Using Properties Files in Code . 85
Data for Internationalization . 86
Email Templates . 87
HTML Pages . 87
Images . 87
Javascript . 88
JSP Pages . 88
Calendar Widget . 89
Style Sheets . 90
System Properties. 90
Resource Bundles and Formats . 90
PropertyResourceBundles and Properties Files . 90
ResourceBundles . 90
NumberFormats and DateFormats . 91

Customize Controls . 92
Modify a Control . 92
Add a Control . 93

Customize Function Handlers . 94
Add a Function Handler Class . 94

Exceptions . 95
ComergentException Hierarchy . 95

Exception Root . 95
Subsystem Grouping. 95
Subsystem by Subsystem Exception Policy . 96
Exception Chaining . 96
When to Throw Exceptions . 97
Throwing Runtime or Compile Time Exceptions . 97
Catch Clauses and Throws Declarations . 97
Logging Exceptions. 97
© IBM Corporation 2011 6

Displaying Exceptions . 98
Implementing Cron Jobs . 99

Overview . 99
CronManager and CronScheduler . 99
CronJob Interface . 99

Filters. 103
Filters Overview . 103
Available Filters. 103
DosFilter . 103
WSDLFilter . 104

Managing and Displaying Constrained Fields . 105
Options . 105
Criteria. 105

Notices 107

Trademarks . 109

Index 111
© IBM Corporation 2011 7

© IBM Corporation 2011 8

Introduction
The topics in this section of the guide provide information required for you to implement the Visual
Modeler at your enterprise.

Implementation Methodology
The Visual Modeler implementation methodology consists of phases that ensure that implementation
can be planned and tracked through to completion.

The Visual Modeler Implementation Methodology table provides a summary of the phases and the
activities to complete in each phase. A standard set of documents can be used to track each phase.

Implementation phase Description

Plan Plan the implementation: set a timeline, milestones, and identify risks and
dependencies

Analyze Organization and administration, define business rules, user interface,
messaging protocols, data sources, e-commerce flow planning, training
needs, rollout strategy, environment preparation, operations planning

Design and configure Installation, configuration, integration, unit testing, and training development

Test and deploy Testing server configuration, enterprise to partner communication, partner to
enterprise communication; cut over to production systems, distributor training,
documentation delivery, support

Improve Ongoing enhancement activities, partner training, and support

© IBM Corporation 2011 9

Implementing the Visual Modeler Integration
The Visual Modeler is designed to integrate channel partners into an e-commerce network. Organizations
in the network act as enterprises and partners. Each organization acting as an enterprise installs their copy
of the enterprise server to transfer information to their channel partners seamlessly.

Each reseller or distributor may work with more than one enterprise, and their installation of the enterprise
server must be able to receive and respond to messages from different enterprise servers.

The following table summarizes the main activities for an implementation of the Visual Modeler:

Implementation phase Task

Plan Project analysis

Analyze Configuration analysis

Integration analysis

Requirements analysis

Design and configure Preparation of servlet container environment

Installation of Knowledgebase

Knowledgebase setup

Visual Modeler configuration

Role and security definition

System administrator authentication

XML schema creation

Customizing of BizAPIs, BLCs, and controllers

Customizing JSP pages

Testing and deployment Product integration

Testing server configuration

Testing enterprise to partner communication

Testing partner to enterprise communication

Release to production systems

Improve Assess and enhance

Implementation Steps
The main tasks you perform in implementing Visual Modeler are:

Project analysis: Agree to a schedule for the implementation project that sets a timeline. Identify
milestones to measure the progress of the implementation and identify dependencies and risks that
might prevent the implementation from completing on time.
Configuration analysis: Determine a suitable Visual Modeler configuration (the number of machines
to be used and their location on internal networks in relation to firewalls and proxy servers). See "High
Availability and Load Balancing" for further details about a clustered implementation.
Integration analysis: Identify integration points with existing e-commerce systems.
Requirements analysis: Check hardware and software requirements to make sure that the machines are
sufficiently powerful to support the anticipated traffic and response times required.
Installation of Visual Modeler: Install the Visual Modeler on the designated machine(s). See
"Installation Overview" for more information.
Knowledgebase setup:
a. Installation of Knowledgebase: Install the Knowledgebase schema in the designated database

server.
b. Knowledgebase setup: Check connectivity to the Knowledgebase database server and populate it

with all your e-commerce-related information. This must include the partner profiles for your
partners, your product catalog, and price list information.
See the following sections for more information:
"Gathering the Database Information"
"Creating the Knowledgebase Schema"
"Populating the Knowledgebase"
"Logging in to the Visual Modeler"

Visual Modeler configuration: Modify configuration files to define the system configuration in your
production environment.
Role and security definition: Define groups and roles and modify configuration files and ACL scripts
accordingly. These determine the security privileges for your enterprise server users.
Schema creation: Create the business object schema to provide data source information. The data layer
manages access between the enterprise server and the external systems.
Customizing BLCs and controllers: Modify business logic and controller classes to support your
business logic. In some cases, you need to modify the Java classes in order to implement business
processes specific to your organization.
Customizing JSP pages: Modify templates to meet your “look-and-feel”, search, and static page
requirements. The JSP pages provided by the Visual Modeler are used to display the browser pages
and may be customized to meet the needs of your organization.
Product integration: Import product information into the Knowledgebase or provide punch-out
integration. If your implementation is to support product ordering from a non-Sterling product, then
you need to provide a means of integrating the product data with the Visual Modeler.
© IBM Corporation 2011 10

Testing server configuration: Before you deploy the Visual Modeler, thoroughly test the system. We
provide a number of scripts to test the chief functional components.
Testing enterprise to partner communication: Send test messages from the enterprise server to other
enterprise servers.
Testing partner to enterprise communication: Send test messages from other enterprise servers to your
enterprise server.
Assess and enhance: Once the Visual Modeler is deployed, you must plan for an ongoing process of
analyzing its usage and performance.
© IBM Corporation 2011 11

Integrating the Visual Modeler with IBM Sterling Selling and
Fulfillment Foundation
In some instances, complex products may have to be configured before they can be bought by customers.
In some other instances, such products may have optional components that customers can configure
based on their requirements. Visual Modeler enables you to create models that define the configurable
options of a product, and to associate products to these models. The IBM® Sterling Configurator is a
tool that is used to display the configurable products along with the available options to the end user.

The integration between the Visual Modeler and IBM® Sterling Selling and Fulfillment Foundation is
necessary to enable them to exchange information. The integration is required to ensure that the correct
product information, as maintained in Sterling Selling and Fulfillment Foundation, is used for defining
the models in the Visual Modeler. The prices applied on the products are based on the price list and the
currency associated with the guest user. For more information about associating the price list, refer to
the Sterling Business Center: Pricing Administration Guide.

To integrate the Visual Modeler with Sterling Selling and Fulfillment Foundation, you must perform
certain configurations in the Visual Modeler application and the Applications Manager.

Configuring the Visual Modeler Properties
You must configure the values of certain properties in the Visual Modeler in order to enable it to obtain
the correct product information from Sterling Selling and Fulfillment Foundation.

To configure the properties in the Visual Modeler:

1. Point your browser to the following URL:
http://<hostname>:<port>/<context_root>/en/US/enterpriseMgr/admin

Here, hostname is the IP address, port is the listening port of the machine in which the Visual
Modeler is installed, and context_root is the context root of the hosted Visual Modeler application.
The Login page is displayed.

2. Log in as an administrator by entering your login ID and password, and clicking Log In.
3. Click the System Services hyperlink. The System properties page is displayed.
4. Click the Fulfillment hyperlink. The Properties for Fulfillment page is displayed.
5. Set the Sterling Order Fulfillment System URL property to

http://<hostname>:<port>/smcfs/interop/InteropHttpServlet. This URL pertains
to the Interop servlet of the Sterling Selling and Fulfillment Foundation.
© IBM Corporation 2011 12

6. Set the Sterling Configurator URL property to:
http://<hostname>:<port>/sbc/configurator/configure.action

Here, hostname is the IP address of the machine in which the Sterling Selling and Fulfillment
Foundation is installed, and port is the listening port of the machine in which the Sterling Selling and
Fulfillment Foundation is installed.

7. Set the following properties appropriately:
User name for the Sterling Fulfillment system
Password for the Sterling Fulfillment system

The values of these properties determine the user name and password that will be used to communicate
with the Sterling Selling and Fulfillment Foundation server.

Configuring the IBM Sterling Configurator Rules
To enable the Sterling Configurator to obtain the model information of the products from the Visual
Modeler, you must specify the location of the models, properties, and rules pertaining to models in the
Applications Manager.

To configure the Sterling Configurator rules:

1. In the Sign In page, log in as an administrator by entering your login ID and password, and clicking
Sign In. The Application Console home page is displayed.

2. From the menu bar, navigate to Configurations > Launch Applications Manager. The Applications
Manager is launched in a new browser window.

3. From the Applications Manager menu bar, navigate to Applications > Application Platform. The
Application Rules side panel is displayed.

4. In the Application Rules side panel, select System Administration > Item Configurator.
5. Specify the paths to the location where the models, properties files, and rules are stored.

Notes:

All the paths specified in the Applications Manager for the model repository are shared by the Sterling
Selling and Fulfillment Foundation and the Visual Modeler. If the Sterling Selling and Fulfillment
Foundation and the Visual Modeler reside on different machines, the paths should be mounted on a
drive that is accessible to both. For more information about model repository, refer to the Sterling
Selling and Fulfillment Foundation: Application Platform Configuration Guide.
In IBM® Sterling Business Center, a model can be assigned to the item definition of a bundle item.
The model name is saved in the item definition. If you change the model name at any point of time
after it has been saved to the item definition, the item definition needs to be changed to point to the
modified model name. This situation could arise when a user edits the model definition in Visual
Modeler.
© IBM Corporation 2011 13

Introduction to J2EE Web Applications
This topic presents an overview of the Java 2 Platform, Enterprise Edition (J2EE) and how it is used
to deploy Web applications. If you are already familiar with this architecture, then you can skip this
topic.

Architecture
The Visual Modeler is designed to conform to the Java 2 Platform, Enterprise Edition (J2EE)
architecture as defined in Java 2 Platform Enterprise Edition Specification, v 1.2 published by Sun
Microsystems, Inc.

The Visual Modeler is deployed as a Web application that comprises a set of Java classes together
with accompanying configuration files, HTML templates, and JSP (JavaServer Pages) pages. It must
be installed into a servlet container that conforms to the J2EE standard.

Web Applications
A J2EE Web application is built to conform to a J2EE specification. You add Web components to a
J2EE servlet container in a package called a Web application archive (WAR) file. A WAR file is a
JAR (Java archive) file compressed file.

A WAR file usually contains other resources besides Web components, including:

Server-side utility classes
Static web resources (configuration files, HTML pages, image and sound files, and so on)
Client-side classes (applets and utility classes)

The directory and file structure of a Web application deployed as a WAR file conforms to a precise
structure. A WAR file has a specific hierarchical directory structure. The top-level directory of a
WAR file is the document root of the application. The document root is the directory under which
JSP pages, client-side classes and archives, and static Web resources are stored. The document root
contains a subdirectory called WEB-INF/, which contains the following files and directories:

web.xml: the Web application deployment descriptor. It describes the structure of the Web
application.
Tag library descriptor files.
classes/: a directory that contains server-side classes: servlet, utility classes, and Java Beans
components.
lib/: a directory that contains JAR archives of libraries (tag libraries and any utility libraries
called by server-side classes).

web.xml File
Every Web application deployed in a servlet container must have a web.xml file present in its
WEB-INF/ directory. The structure of every web.xml conforms to a DTD published as part of the
J2EE specification.

The purpose of the web.xml is to specify the general configuration of the Web application as
required by the J2EE standard. Specifically:

initialization parameter values are provided for the Web application
servlet classes used by the Web application may be declared and given names
© IBM Corporation 2011 14

each servlet class is mapped to one or more URL patterns: when the servlet container receives a
request whose URL matches a pattern defined in the web.xml file, then the corresponding servlet is
used to process the request
initialization parameter values are provided for each servlet if required
session information (such as time out)
the location of custom tag libraries used by the JSP pages

JSP Pages
Early Java-based Web applications used only servlets to generate the HTML that was sent back to users’
Web browsers. Over time, template mechanisms were introduced that enabled Web developers to generate
dynamic content by using templates to generate the HTML. Several such template systems are available,
however the J2EE architecture has settled on the use of JSP (JavaServer pages) pages to display content.

When a J2EE application receives a request from a user’s browser, it first processes the request to extract
parameters from the request and to perform business logic initiated by the request. Once the processing is
complete, the Web application must dispatch the request to a JSP page: it does this by using a request
dispatcher. Typically, the servlet context invokes a request dispatcher by passing the target JSP page to the
dispatcher and then the request and response objects are forwarded by the request dispatcher.

A JSP page comprises a combination of HTML, JSP tags, and scripting elements such as scriptlets.
HTML: a JSP page can include any amount of normal HTML. This content is passed right through to
the browser page without change.
JSP tags: tags populate the dynamically-generated HTML with values calculated as the page is being
generated. There are standard JSP tags such as <jsp:getProperty>, <jsp:include>, and <jsp:forward>.
These are available to anyone creating a JSP page. In addition, you can specify that your Web
application uses one or more custom tag libraries. Each custom tag library must be declared in the
web.xml file for the Web application and the declaration must specify both the URI for the tag library
and the location of the tag library descriptor (TLD) file.
Note: In the Visual Modeler, the use of the tag libraries is now deprecated. For performance reasons,
we suggest that you use scriptlets. JSP tags can still be used in some existing applications or
specialized integration tasks.
Scripting elements: You can intersperse the HTML and JSP tags in a JSP page with Java code that is
contained between the scriptlet opening tag <% (or <jsp:scriptlet>) and the closing tag %> (or
</jsp:scriptlet>). Scriptlets are most commonly used to manage complex flow control in a JSP page.
© IBM Corporation 2011 15

Note that most JSP scripting elements can be invoked using a shorter form as described in the following
table:

.

Data is passed to a JSP page using a variety of mechanisms, the most important of which are implicit objects
and beans.

Implicit objects: Every JSP page provides the Web developer with objects that can be used to display
data on the generated HTML page. The most important of these are the page, request, session, config,
and application objects.
Beans: Most of the data generated by the business logic of the application is passed to the JSP page by
adding Java beans to one of the implicit objects listed above.

Model 2 Architecture
The Visual Modeler is designed to conform to Sun’s “Model 2” architecture. In this architecture, three
functional components referred to as the Model, View, and Controller (MVC) partition the functionality of
the Web application into logically distinct components.

The following figure illustrates the arcitecture of the model:

Model: this component manages the data and business objects that are used by the system.
View: this component is responsible for generating the content displayed to the user.
Controller: this component determines the logical flow of the application. It determines what actions
are performed on the model and manages the communication between model and view components.

Short form XML form

<% <jsp:scriptlet>

<%= <jsp:expression>

<%! <jsp:declaration>

<%@ <jsp:directive>
© IBM Corporation 2011 16

Controllers
In the Model 2 architecture, controllers are Java classes intended to manage the processing of an inbound
request and then to forward the request to an appropriate JSP page. The basic structure of a Visual Modeler
controller follows this form:

public class GenericController extends Controller
{

public void execute() throws Exception
{

//Dispatch some business logic
BizObjs resultBizObjects = calculate();
//Generate the beans
Vector beans = generateBeans(resultBizObjs);
//Attach the beans to the request
attachBeans(beans);
// Dispatch to JSP page
String pageName = choosePageLogic();
// Dispatch to JSP page
Dispatcher rd = request.getDispatcher(pageName);
rd.forward(request, response);

}

protected BizObjs calculate() throws Exception
{

//do some processing
return resultBizObjs;

}

protected Vector generateBeans(BizObjs bizObjs)
{

//create beans from business objects
return beans;

}

protected void attachBeans(Vector beans)
{

Iterator it = beans.iterator();
while (it.hasNext())
{

DataBean bean= (DataBean) it.next();
request.setAttribute (beanName, bean);

}
}

protected String choosePageLogic()
{

//logic to determine where to forward the request
return pageString;

}
}

© IBM Corporation 2011 17

Model
In the Model 2 architecture, the objects that represent data in the system are maintained by the model
component. It is common to distinguish the business objects from the beans used in the JSP pages.

Once the business logic finishes creating and transforming the business objects, the controller class
transforms the business objects into their corresponding beans. The beans are then passed to the JSP page
for presentation.

View
The user interface of the Web application is served to the browser using JSP pages. Data is passed to each
JSP page in the form of beans. These are classes with defined accessor methods that enable the logic on the
JSP page to retrieve values using tags of the general form:

<%
DataBean dataBean = request.getAttribute("nameOfBean");
String stringProperty =
dataBean.getNamedProperty("nameOfProperty");
%>

Note that it is possible to use a combination of scriptlets, simple JSP tags, and more sophisticated custom
tags to manage page layout and the display of data.

Further Reading
The published literature on Web applications, J2EE, servlets, and JSP pages is vast. The following are
recommended books for further reading:

Hall, Core Servlets and JavaServer Pages, Second Edition, Prentice Hall, 2003
Hunter, Java Servlet Programming, Second Edition, O’Reilly, 2001
Fields and Kolb, Web Development with JavaServer Pages, Second Edition, Manning, 2001
© IBM Corporation 2011 18

System Architecture
This topic describes the Visual Modeler architecture and introduces some of the important Java classes that
the Visual Modeler and its applications use. It assumes a thorough understanding of the J2EE architecture.

This topic is intended to help you to modify or extend existing applications or write new applications. Note
that not all parts of the Visual Modeler conform to this architectural description.

The following figure displays theVisual Modeler Architecture.

Visual Modeler Web Application
When you install the Visual Modeler into your servlet container, it installs as a WAR file, Sterling.war.
When the WAR file deploys, it unjars into a directory called Sterling/. The WEB-INF/ sub-directory
contains the web.xml file for the application.

The most important configuration settings in this file are:

The definition of the InitServlet and DispatchServlet:
InitServlet loads when the servlet container starts. InitServlet reads in all of the configuration
information for the Visual Modeler using the value of the propertiesFile element: by default this is
Comergent.xml.
© IBM Corporation 2011 19

DispatchServlet is the main servlet used to process inbound requests. Most of the URLs defined in
the servlet mapping section resolve to the DispatchServlet.

The servlet mapping section maps most URL patterns to the DispatchServlet. Note that “/msg/*” is
used to map requests to the MessagingServlet: this ensures that inbound XML messages are processed
by this servlet class.
The session configuration element sets a session timeout value of 30 (minutes). Each implementation
of the Visual Modeler must carefully consider an appropriate value for this parameter. Bear in mind the
following:

End users of the system may leave their browsers unattended while they step away from their
desks. If an unscrupulous user can access the browser when a session is still valid, then they can
access the system.
End users may punch out to other external systems in the course of using the Visual Modeler. The
session timeout value must give enough time for users to punch out and return.
Each session uses system resources. The greater the session timeout value, then the greater the
memory usage of the system.

The location of the Comergent tag library descriptor (TLD) file is provided.

Processing Requests
When the Visual Modeler receives a request from a user’s browser, it must determine how to process the
request and how to display the result to the user. It does this using the MessageTypes.xml configuration
files. These files determine the mapping between a request and the logic processing classes and JSP pages
used.

1. When a request is received, the message type is identified and the appropriate controller invoked.
2. Additional business logic may be invoked using a business logic or bizAPI class.
3. The controller then forwards the request to the specified JSP page to render the output back to the

user’s browser.

The messageTypeFilename element of the GeneralObjectFactory element of the Comergent.xml file
specifies the comma-delimited list of MessageTypes.xml file used to specify the message types. Each
MessageTypes.xml file declares a list of message types organized by message group.

Each request specifies the message type as the cmd parameter. For example, if the URL is of the form:

../Sterling/catalog/matrix?cmd=search

then the name of the message type is “search”.

Each message type is identified by the Name attribute of its MessageType element. The Name attribute
identifies which message type is being requested when a user clicks a URL.

Note: You must make sure that each message group and message type have a unique name. You must check
the collection of MessageTypes.xml files to ensure that you have not defined message groups and
message types with the same name. See "Overriding MessageType Definitions" for an exception to
this rule.We suggest that you list message types alphabetically by name within message groups as a
means of quickly identifying the duplication of message type names.

MessageType elements have one or more of the following child elements:
© IBM Corporation 2011 20

BizletMapping: used for message processing, it associates a Bizlet class and a method of this class to
process the message.
ControllerMapping: associates a controller to be used to process the request. For message processing,
you can specify a BizRouter class to invoke a Bizlet class to process the message.
JSPMapping: associates a JSP page to be used to display the result of processing the request.

A MessageType element may specify any combination of these three elements.

If no ControllerMapping element is specified, then, by default, the ForwardController class is used.
This class simply forwards the request to the JSP page specified by the JSPMapping element. If no
JSPMapping element is found or if the specified JSP page is missing, then an error page is displayed.
If a custom controller is specified, it may process the request itself (see "Controller Classes"), or it can
invoke a business logic class using the runAppJob() method of the AppExecutionEnv class (see
"AppExecutionEnv Class").
If no JSPMapping element is specified, then the business logic class or controller must specify which
JSP page is to be used.

Each request or message is validated against the entitlements system to verify that the user can execute the
message type. Not all users can execute all message types.

Overriding MessageType Definitions
The MessageType element has an optional attribute: IsOverlay. If this attribute is set to “true”, then the
MessageType definition overrides any previous definition of this message type given in any earlier
MessageTypes.xml file listed in the messageTypeFilename element.

If two or more definitions are given for the same message type without one specifying the isOverlay
attribute, then an initialization error is displayed and the first definition of the message type is used.

Note that the IsOverlay attribute does not change the location of the MessageType: this is still determined
by the message group to which the first definition belongs or by the MessageTypeRef element that
references the message type.

 For example, to override the definition of the adirectLogin message type, you can define an element as
follows:

<MessageType Name="adirectLogin" IsOverlay="true">
<ControllerMapping>
com.comergent.apps.common.controller.MyLoginController
</ControllerMapping>
<JSPMapping>../common/adirectPageLoader.jsp</JSPMapping>

</MessageType>

The IsOverlay attribute can also be used for MessageGroup declarations so that you can overwrite the
definition of a message group, but its use is not recommended.

Default Elements
For each message group, you can specify default BizletMapping, ControllerMapping, and JSPMapping
elements. These are used when no mapping is specified for a message type that belongs to the message
group.
© IBM Corporation 2011 21

In general, if no default mapping is specified in a message group, then the system looks for a default
mapping in the parent message group of the current message group. If no mapping is found anywhere in the
message group tree, then values specified in the MessageGroupDefaults message group are used.

Key Java Classes
At a schematic level, the Visual Modeler applications all have the same structure: they are composed of
controllers, business objects and bizlets, and JSP pages.

Wrapper Classes
Several of the standard classes used in J2EE Web applications have been wrapped in wrapper classes to
manage any minor idiosyncrasies among the supported servlet containers:

ComergentContext
This class is used to wrap the servlet container context. You can use it to retrieve the Env object for
environment information. Note that any context attribute that is set must be serializable. An exception is
thrown if you attempt to set a non-serializable attribute.

It provides the getResourceAsStream() method: this method can be used to access a file as a stream for
read-only access. You must use the adjustFileName() method of the LegacyFileUtils class for write access
to a file.

ComergentDispatcher
This class is a lightweight wrapper of the standard RequestDispatcher class: it provides forward() and
include() methods.

ComergentRequest
This class wraps the standard HttpRequest class and provides helper methods to parse the inbound requests
and messages.

ComergentResponse
This class wraps the standard HttpResponse class. It provides a localRedirect() method to pass a request
with a new message type. For example, you may want a controller to process a request, and then to pass the
result on to another controller: you do this by calling:

response.localRedirect(request, "messageType");

This has the effect of submitting the request to the DispatchServlet as if it had been received as an HTTP
request.

ComerentSession
This class wraps the standard HttpSession class. When a user first logs in, a User data bean is created and
added to the ComergentSession object. You can access user information through the ComergentSession
getUser() method.
© IBM Corporation 2011 22

For example:

session.getUser().getUserKey()

will return the current user’s key; and

session.getUser().getPartnerKey()

returns the key of the partner to whom the user belongs.

The ComergentSession object is used to store information that must be persistent for more than one request
of a user’s session. Use the setAttribute(String s, Object o) method to set an object in the session and
getSession(String s) to retrieve it. Objects stored in the session must implement the Serializable interface:
all generated data beans implement this interface and so these may be stored in the session.

The ComergentSession class also provides a logout() method: invoking this method immediately invalidates
the servlet container session.

Servlets
The main servlets used are:

InitServlet: this servlet loads when the servlet container starts. Its init(ServletConfig config) method
initializes the ComergentAppEnv class.
DispatchServlet: this servlet is used to service almost all requests processed by the Visual Modeler. Its
principle method call is:
void dispatch(HttpServletRequest request, HttpServletResponse response)

This method creates a controller to handle the request with:

Controller controller createController(ComergentRequest comergentRequest)

and then invokes:

controller.init(comergentContext, comergentSession,
comergentRequest, comergentResponse);

controller.execute();

Note that the instance of the Controller class created by the createController() method is a function of
the request. The request message type determines the Controller class because the controller is created
by the GeneralObjectFactory class. The GeneralObjectFactory uses the MessageTypes.xml file to map
from the request message type to a Controller class.
DebsDispatchServlet: this servlet is used to process XML messages posted from another system to the
Visual Modeler. If the content type of the request starts with “application/x-icc-xml” or “text/xml”,
then it invokes the MessagingController to process the request.

Controller Classes
The Visual Modeler offers two different ways of using controllers to process requests:

Custom Controllers
You can write your own Controller class by extending the com.comergent.dcm.caf.controller.Controller
class. When you do this, you must provide the application logic to determine the JSP page to which the
request should be forwarded. For example:
© IBM Corporation 2011 23

boolean processingSuccess = false;
/*
 *
 * Business logic processes request and sets processingSuccess to
 * true if successful.
*/

if (processingSuccess)
{
callJSP("SuccessMessageType");
}
else
{
callJSP("FailureMessageType");
}

protected void callJSP(String messageType) throws
ControllerException, ICCException, IOException
{
String resource = getJSPName(messageType);
ComergentDispatcher rd =
request.getComergentDispatcher(resource);
rd.forward(request, response);
}

protected String getJSPName(String messageType) throws ICCException
{
JSPObjectID id = new JSPObjectID(messageType);
return GeneralObjectFactory.getGeneralObjectFactory().-
getMapping(id);
}

SimpleController
You can extend the SimpleController class to process the request if there is only one exit point from the
application logic. The SimpleController uses the message type of the request to determine the JSP page to
which the request is forwarded once the application logic is finished. To extend the SimpleController class,
overwrite the calculate() method.

MessagingController
This class is used to process XML requests (such as price and availability or shopping cart transfer requests
from other systems).

DataBean Classes
Access to data in the Visual Modeler is managed through data objects: these are XML documents that
describe the business entities such as partners, users, products, and so on. They describe the fields of the
data object together with information about how they map to database tables in the Knowledgebase. Each
data object XML file is used to generate a corresponding DataBean Java class.
© IBM Corporation 2011 24

The DataBean classes are the main classes used to represent each business entity in the Visual Modeler.
Each business entity such as a user, partner, product, and so on, is represented in memory by an instance of
the appropriate DataBean class. See "Introducing Data Beans and Business Objects" topic for more
information. Some legacy application may still use the BusinessObject class, but in general the use of the
BusinessObject class is deprecated.

DataBean classes are also used to pass data to JSP pages. Any data object definition in the Visual Modeler
XML schema may be used to generate a DataBean class by running the generateBean target (see the
"Software Development Kit" topic for more details).

The DataBean class is a general abstract class and all generated data bean classes extend this class. Each
DataBean class provides restore() and persist() methods that retrieve and save data in the database
respectively.

Some applications make use of application beans: see "Application, Entity, and Presentation Beans" topic
for a discussion of how these beans are used.

ObjectManager and OMWrapper Classes
You should not instantiate DataBean classes by using their constructors. Instead use the ObjectManager and
OMWrapper classes to create new instances of objects as your applications require them. These classes
follow the Factory pattern in that they provide a class designed to generate object instances as they are
required. They enable you to switch from one object class to another without changing the application code
that creates and uses the objects.

Creating Objects
In general, you should use the OMWrapper class rather than the ObjectManager class, but both can be used.
You use these classes to create objects with the following methods:

ObjectClass temp_ObjectClass =
(ObjectClass) OMWrapper.getObject("ObjectName");

or

ObjectManager temp_ObjectManager = ObjectManager.getInstance();
ObjectClass temp_ObjectClass =
(ObjectClass) temp_ObjectManager.getObject("ObjectName");

Mapping Object Names to Object Classes
The ObjectManager and OMWrapper classes use the ObjectMap.xml configuration file (located in
debs_home/Sterling/WEB-INF/properties/) to determine which type of object is created from the object
name provided in the getObject() method.

Note: Do not add comments to the ObjectMap.xml file: these can cause errors on initialization.

Each Object element is of the form:

<Object ID="ObjectName">
<ClassName>ObjectClass</ClassName>
</Object>
© IBM Corporation 2011 25

When the getObject("ObjectName") method is invoked, an instance of the ObjectClass class is returned.
The ObjectName must be the name of a Java class or interface and the ObjectClass must be a subclass of
the ObjectName class (possibly itself) or a class that implements the ObjectName interface.

If the ObjectMap.xml file does not have an Object element whose ID attribute matches the ObjectName
parameter, then the ObjectManager or OMWrapper creates an instance of the ObjectName class. That is, it
behaves as if there is an element of the form:

<Object ID="ObjectName">
<ClassName>ObjectName</ClassName>
</Object>

For example, suppose that the ObjectMap.xml file contains the element:

<Object ID="com.comergent.bean.productMgr.ProductBean">
<ClassName>
com.comergent.bean.productMgr.MatrixProductBean
</ClassName>
</Object>

Then the following method invocation will create an instance of the MatrixProductBean class:

ProductBean temp_ProductBean = (ProductBean)
OMWrapper.getObject("com.comergent.bean.productMgr.ProductBean");

Note that the MatrixProductBean must extend the ProductBean class: otherwise a ClassCastException
would be thrown at runtime. However, if there is no element whose ID attribute is
com.comergent.bean.productMgr.ProductBean, then the same call would return an instance of the
com.comergent.bean.productMgr.ProductBean class.

Restrictions
Note that you cannot create Object definitions so that the class specified in the ClassName element in one
Object element is the ID attribute in another Object element. The only exception to this rule is when the
class is used both as the ID and ClassName values for a single Object element. In particular, if you extend
a data object (see "Extending Data Objects"), then:

1. Define an Object element that maps the extended class to the extending class:
<Object ID="<Extended class>">

<ClassName><Extending class></ClassName>

</Object>

2. Make sure that you replace any reference to the extended data object in any ClassName elements to the
extending data object.

Passing Parameters
If you need to pass parameters to the object constructors, then the following OMWrapper method is also
available:

ObjectClass temp_ObjectClass = (ObjectClass)
OMWrapper.getObjectArg("ObjectName", Object arg1, ... ,
Object arg10);
© IBM Corporation 2011 26

In this form, you can pass up to ten parameters as Objects into the method invocation. The following
OMWrapper and ObjectManager method calls enable you to pass in an unlimited number of parameters as
an array of objects:

ObjectClass temp_ObjectClass = (ObjectClass)
OMWrapper.getObject("ObjectName", Object[] args);

or

ObjectClass temp_ObjectClass = (ObjectClass)
temp_ObjectManager.getObject("ObjectName", Object[] args);

For example, suppose that the ObjectMap.xml file contains the element:

<Object ID="com.comergent.bean.productMgr.OrderBean">
<ClassName>com.comergent.bean.matrix.MatrixOrderBean</ClassName>
</Object>

Here, the MatrixOrderBean class is a subclass of the OrderBean class. Suppose that the MatrixOrderBean
has a constructor of the form MatrixOrderBean(CartBean cb).

Then the following method invocation will create an instance of the OrderBean class using an instance of
the CartBean class as a parameter:

Cart temp_CartBean = (CartBean)
OMWrapper.getObject("com.comergent.bean.partnerMkt.CartBean");
/*
Code that processes the cart bean object
*/
OrderBean temp_OrderBean = (OrderBean)
OMWrapper.getObjectArg("com.comergent.bean.productMgr.OrderBean",
temp_CartBean);

Object Pooling
If you expect some classes of object to be created and used frequently, then you can use the ObjectManager
and OMWrapper classes to create a pool of objects. The parent object (identified by the ID attribute) must
implement the poolable interface. This interface is a part of the com.comergent.dcm.objmgr package. It
declares one method reset() that you must implement.

When you are finished with a poolable object, you can return it to the object pool by using the return()
method as follows:

1. In the ObjectMap.xml entry for a pooled class, set the MaxPoolSize attribute to the number of objects
you want created in the pool:

<Object ID="ObjectName" MaxPoolSize="n">
<ClassName>ObjectClass</ClassName>
</Object>

2. Create instances of the object class using OMWrapper and ObjectManager as described above.
3. When you are finished with the object, then return the instance to the pool using:
OMWrapper.return(temp_ObjectClass);

4. or
temp_ObjectManager.return(temp_ObjectClass);
© IBM Corporation 2011 27

Note that if you create an object by passing in parameters as described in "Passing Parameters", then a new
object is created rather than re-using an object from the pool.

AppExecutionEnv Class
The AppExecutionEnv class can be used to run business logic classes. However, the use of business logic
classes is deprecated, so use this class only to support legacy applications. You use the static methods
runAppObj() to invoke the creation of a business logic class and to execute its prolog and service methods.

In its most common form, you can use:

AppExecutionEnv.runAppObj(String messageType, BizObjTable bizObjects)

The AppExecutionEnv class invokes the business logic class determined by the messageType string and
which takes the BizObjTable vector of business objects as the input business objects.

AppsLookupHelper Class
There are many situations in the Visual Modeler where the status of a data object is managed using a lookup
code. For example, the order status of an order can change several times through the placing of an order.
There are also several examples of display fields such as the Title of a user which can take several
well-defined values and which need to be managed for different locales. This data is stored in the
CMGT_LOOKUPS table of the Knowledgebase database schema.

For each lookup type, there can be one or more lookup codes and each code has an associated description
string. For example:

You can use the AppsLookupHelper class to map a lookup code to a description string. By invoking the
appropriate method of the AppsLookupHelper class, pass in the lookup code as a parameter and the
corresponding String is returned. Depending on which lookup type you are interested in, you choose the
appropriate method for that lookup type. The method used determines which lookup type is used to retrieve
the lookup code from the CMGT_LOOKUPS table. For example, to retrieve an order status code string, you
can write:

String orderStatusString =
AppsLookupHelper.getOrderStatusForCode(orderStatusCode);

Conversely, you can retrieve the lookup code using:

int orderStatusCode =
AppsLookupHelper.getCodeForOrderStatus(orderStatusString);

Most, though not all, lookup types have helper methods defined. Check the Java doc for the
AppsLookupHelper class for details. For further information, see "Support for Lookup Codes".

Lookup Type Lookup Code Description

AddressType 10 Billing

AddressType 20 Shipping
© IBM Corporation 2011 28

ComergentAppEnv Class
Use the ComergentAppEnv class to provide your code with environment information specific to the
application. It provides the following useful methods:

adjustFileName(): this method has been moved to the LegacyFileUtils class. See "LegacyFileUtils
Class".
 constructExternalURL(): use this method to construct a URL that enables a client to be re-directed
back to the server. Primarily, you use this method to generate a redirect URL to enable the server to
restore session information.
getEnv(): this method returns the environment object.
getContext(): this method returns the application context.

Global Class
The use of this class is deprecated. Its logging function has been replaced by the log4j API: see "Logging"
topic for more information. Its support for retrieving the values of properties has been replaced by the
Preferences mechanism. If you need to continue to use code that uses the Global class, then replace each
usage by the LegacyPreferences class.

GlobalCache Interface
Use this interface to define a cache that provides access to cached objects used by all Visual Modeler
applications. It can be used to support a clustered environment in which the Visual Modeler is running on
more than one machine.

To use a cache class that implements the GlobalCache interface, you must implement the methods of the
interface. The cache class is loaded when the InitServlet init() method is invoked. You must provide the
name of the class as the General.globalCacheImplClass element of the Comergent.xml file. A default
implementation is provided with Visual Modeler: com.comergent.dcm.cache.impl.AppContextCache.

You access the implementation of the GlobalCache interface by:

GlobalCache globalCache = GlobalCacheManager.getGlobalCache();

The interface supports the following methods:

public String store(Serializable entry): stores an object in the global cache, which remains until the
application cleans it up.
public boolean store(String id, Serializable entry): stores an object in the global cache, which remains
until the application cleans it up.
public String cache(Serializable entry): stores an object in the global cache. The object is available as
long as the application is using it, but the cache system cleans it up automatically.
public String cache(Serializable entry, long lease)
public boolean cache(String id, Serializable entry)
public boolean cache(String id, Serializable entry, long lease)
public boolean contains(String id): checks if the cache contains the specific object.
© IBM Corporation 2011 29

public Object get(String id): retrieves the cacheable object.
public Object remove(String id): removes a cacheable object.
public boolean gc(): This method should be called by a Cron job so the cache can clean up unused
entries.

LegacyFileUtils Class
The LegacyFileUtils class provides helper methods for working with files. Its use is deprecated, but it
provides support for methods previously provided by the ComergentAppEnv class:

adjustFileName(): It returns the real path name of a file. Use this method to access files for either
reading or writing: do not use the getRealPath() method because this can return null.. In a clustered
envrionment, the adjustFileName() method ensures that all members of the cluster access the same
file. You must use this method with four parameters:
adjustFileName(String fileName, boolean share, boolean xPublic,

boolean xLoadable);

Use of the one-parameter form of this method is deprecated. The boolean parameters are used to
determine the location of the file using the configuration parameters specified in the WritableDirectory
element of the web.xml file.

OutOfBandHelper Class
The OutOfBandHelper class provides a means to generate an output stream using a JSP page as a template.
An example of its use is given here:

ComergentRequest request = ComergentAppEnv.getRequest();
ComergentResponse response = ComergentAppEnv.getResponse();
ByteArrayOutputStream stream = new ByteArrayOutputStream();
OutOfBandHelper outOfBandHelper = new OutOfBandHelper(request,
response, stream);
outOfBandHelper.getRequest().setAttribute(
ComergentRequest.COMERGENT_SESSION_ATTR,
request.getComergentSession());
outOfBandHelper.callJSP(messageType);
/*
 * Initialize SendSMTP and use the stream to to set the body of the
 * message
*/
String mimeType = "text/html";
String smtpHost = Global.getString(
"C3_Commerce_Manager.SMTP.SMTPHost");
SendSMTP smtp = new SendSMTP(smtpHost);
StringBuffer sb = new StringBuffer(subject);
String message = null;
String enc = ComergentI18N.getComergentEncoding();
message = stream.toString(enc);
//Send the mail
smtp.send(from, to, cc, subject, message, mimeType);
© IBM Corporation 2011 30

In this example, you can see how the OutOfBandHelper class is initialized using the existing request and
response objects and an output stream. Its callJSP() method, generates the output stream by passing the
request and response objects to the JSP page determined by the message type parameter, and the output
stream can be used by the application to retrieve the content.

The OutOfBandHelper class makes use of session and context information when mapping a message type
to a JSP page. Consequently, you can use different JSP pages for different locales in the same way as you
do for processing browser requests and the OutOfBandHelper class will resolve which locale’s JSP page to
use and apply the same failover logic.

Preferences Class
The Preferences module provides the mechanism for accessing Visual Modeler properties. It is one of the
modules provided in the platform modules: see "Preferences Service" for more information. The basic usage
of the Preferences API is as follows:

private static Preferences temp_Preferences =
Preferences.getPreferences();

String temp_MyPropertyString =
temp_Preferences.getString("MyProperty");

The main methods it supports to retrieve properties are:

public String getString(String key, String def)
public boolean getBoolean(String key, boolean def)
public double getDouble(String key, double def)
public float getFloat(String key, float def)
public int getInt(String key, int def)
public long getLong(String key, long def)

There are corresponding putType() methods for each getType() method: for example:

public void putString(String key, String value)
If you invoke the getPreferences() method without a parameter, then you retrieve the singleton Preferences
object that the Visual Modeler supports. If you pass in the name of a class (for example
getPreferences(MyClass.class)), then the object you retrieve is scoped: that is, the name of the properties
whose values you retrieve using the Preferences object have the package path of the class prepended to the
property name you provide.

For example, suppose that MyClass is in the com.comergent.myApplication package. Then the following
fragments of code are equivalent:

private static Preferences temp_Preferences =
Preferences.getPreferences();

String temp_MyPropertyString =
temp_Preferences.getString("com.comergent.myApplication.MyProperty");

and:
© IBM Corporation 2011 31

private static Preferences temp_Preferences =
Preferences.getPreferences(com.comergent.myApplication.MyClass.class);

String temp_MyPropertyString =
temp_Preferences.getString("MyProperty");

Transactions
The Visual Modeler provides support for transactions: database actions that span one or more atomic
operations. In general, you use the Transaction class to manage situations in which several data objects must
be persisted together, and if one fails, then they should all fail.

Support for Lookup Codes
The Visual Modeler uses lookup codes to provide a mechanism for maintaining and displying
locale-specific strings to users. For each lookup type, you can define one or more lookup codes, and for each
lookup code, you can define a string for each supported locale.

What lookup support does the Visual Modeler provide?
The Visual Modeler has the capability of automatically providing lookups between code values and their
corresponding strings and from lookup code strings to code values.

If the “code” DsElement is set, then the “string” is automatically populated from the lookup cache. If the
“string” value is set, then the “code” is looked up using the string value.

Are string values localized?
Yes. For a code-to-string lookup, the mechanism uses the user’s locale to determine which string value to
use. For a string-to-code lookup, the mechanism uses the user’s locale when searching on a string value to
find a corresponding code.

How do I define a code to string mapping?
Code-to-string relationships are defined in the DsDataElement.xml schema file. If both of the “code” and
“string” DsDataElements are then used in a data object, then the code-to-string mapping is handled
automatically.

The following is an example of a DataElement code-string pair.

<DataElement Name="OrderStatus" Description="Order Status"
DataType="LONG" MaxLength="20" LookupType="OrderStatus"
LookupString="OrderStatusString"/>
<DataElement Name="OrderStatusString" Description="Order Status"
DataType="STRING" MaxLength="260" LookupType="OrderStatus"
LookupCode="OrderStatus"/>

Are lookups performed for XML messages?
Yes. If a dataobject used for messaging contains a code-string pair, then the string value will automatically
be used to look up the code.
© IBM Corporation 2011 32

How is the lookup cache loaded?
The lookup cache is loaded at system startup.
© IBM Corporation 2011 33

Platfform Modularity
The Visual Modeler modular architecture is designed to make implementations easy to customize and
upgrade. This topic provides an overview of modular architecture, platform modules, and the module
interfaces, and descibes each module. It covers the following topics:

• Overview

• Platform Modules

• Access Policy

• Authentication

• Base64

• Classpath Appender

• Cryptography Service

• Data Services

• Dispatch Authorization

• Dispatch Framework

• Email Service

• Event Service

• Exception Service

• Global Cache Service

• Help

• Initialization Service

• Internationalization

• Logging

• Memory Monitor

• Message Type Entitlement

• Object Manager

• Out Of Band Response

• Preferences Service

• Tag Libraries

• Thread Management
© IBM Corporation 2011 34

• XML Message Converter

• XML Message Service

• XML Services

Overview
The Visual Modeler platform architecture enables building the platform in a more modular way, so that
changes and upgrades to the platform can be made more quickly and simply, and so that the modules can
be re-used to support different products built using them.

The benefits of providing a means of delivering platform functionality in platform modules and requiring
that modules make calls to other modules only through their external interfaces areas follows:

It is easier to compartmentalize the functionality of applications.
It is easier to understand and manage the dependencies between parts of the Visual Modeler.
It is easier to contain the customizations to single modules and understand what effect changes made in
a module have on the whole system.
Modules can be more easily upgraded independently of each other, minimizing the effect that an
upgrade may have.
Upgrades to modules that have not been customized will not affect customizations made in other
modules.
New functionality can be delivered in the form of a module that may be dropped into an existing
deployment of the Visual Modeler.

Platform Modules
The Visual Modeler platform is developed as a set of interdependent modules that conform to a common
organizational structure. In general, each platform module corresponds to a functional component of the
Visual Modeler such as a service or a component of the Visual Modeler platform. The platform modules
provide a Java API to other modules. Some modules provide a set of “helper” classes which are used by a
number of other modules.

In general, each platform module has the following structure:

Java classes: organized into the following trees. At build time, the directories for the module are
assembled into a single JAR file.

com.comergent.api.module: external API interfaces: used by other modules to access functionality
provided by the module. In general, when one module makes a call to another module’s class, it
must do so through the other module’s external API. This is the com.comergent.api package for
the module.
com.comergent.module: implementation classes: the implementation of the external API
interfaces. When another module makes a call to the module’s external API, then the actual classes
used are the implementing classes of the module’s interface. The implementation packages may
include internal classes: used by the implementation classes, but not exposed to the outside world
and not part of the supported Javadoc.
© IBM Corporation 2011 35

Configuration files specific to the module such as properties files. These are intended to live in the
class hierarchy so that they can be referenced through getResource() calls.

Module Interfaces
Each platform module must provide an external interface so that all calls to Java classes and interfaces
within the module are invoked through the interface. This external interface provides a comprehensive set
of Javadoc pages so that writers of other modules can use the external interface reliably and easily.

The external interfaces are organized under the following main packages:

com.comergent.api: this package has all the external APIs supported by the modules. These are organized
by module: com.comergent.api.converter, com.comergent.api.logging, and so on.

Invoking Interfaces
You can invoke an interface from a Java class by casting any object or child interface to the interface and
then invoke any method that the interface declares. Each module uses one or other of these techniques, but
not both. As you work on an existing module or create a new one, be consistent in how you invoke the
interfaces. It will make it easier for your colleagues to work on the same module.

In general, you should always try to work with interfaces provided by the com.comergent.api packages:
these are the interfaces that the platform modules will support from one release to the next, even though the
underlying implementations of the interfaces may change.

Platform Module Descriptions
This section provides a brief description of the purpose of each platform module and examples of its use.

Access Policy
This module provides the service used to check access policies.

Authentication
This module provides the APIs used to authenticate credentials and users.

Base64
This module provides the classes used to convert data to and from Base 64 notation.

Classpath Appender
This module provides classes used to add paths to the classpath.
© IBM Corporation 2011 36

Cryptography Service
This module provides the services used to encrypt and decrypt data.

Data Services
This module provides a re-packaging and clean-up of the existing data services functionality. Its API has
been moved out to a separate com.comergent.api.dataservices package. Data services now uses the same
preferences mechanism as the rest of the Visual Modeler to manage its properties. Connection pooling has
been unified into one pool, and is tunable. Pagination has been updated, and no longer relies on pbtagination
files being written to the file system.

Dispatch Authorization
This module manages access checking that enusres that each user sees only those parts of the application to
which they have been granted access.

Dispatch Framework
This module manages the dispatch framework of the Visual Modeler classes that wrap the servlet request,
response, context, and session classes together with the base controller classes used by the dispatch
mechanism.

Email Service
This module provides the basic APIs to initiate sending email from the Visual Modeler.

Event Service
This module provides the classes used by the EventBus and Events.

Exception Service
This module provides the basic exception framework and classes used by the Visual Modeler.

Global Cache Service
This module provides the APIs to be used to access the cache.

Help
This module provides the ComergentHelpBroker class: this is a simple wrapper class to the
ServletHelpBroker class of the JavaHelp 2.0 implementation.
© IBM Corporation 2011 37

Initialization Service
The Initialization module provides the Initialization service. This is a package that helps you initialize the
Visual Modeler using a consistent framework of classes and methods.

The Initialization Manager provides a focal point in which:

Initialization tasks can be defined
Policy on failed initialization can be enforced
Configuration fragments can be aggregated

The Initialization Manager main responsibility is to act on a list of initialization tasks in a well-defined and
predictable manner. That implies an ordered list which:

either, can be defined programatically
or, can be specfied as an XML-format file

The following code extract provides a typical example of using the InitManager class.

InitManager initManager = InitManager.getInitManager();
try
{
String resourceName = args[0];
initManager.init(resourceName);
// or programatically created
//List modules = initModules();
//ResourceLocator resourceLocator = createNewResourceLocator();
//initManager.init(modules, resourceLocator);
}
catch (InitManagerException ime)
{
log.error(ime, ime);
System.exit(1);
}
// Initialization completed. OK to go on //
...

You can specify the initialization process using an configuration file. Here is a sample file:

<?xml version="1.0" encoding="UTF-8"?>
<initializationManager>
<resourceLocator>
<path>/a/b/c</path>
<path>.</path>
<path>CLASSPATH</path>
</resourceLocator>
<module name=”ObjectManager”
initClass=”com.comergent.objectManager.InitHelper>
<config name="Preferences">
/com/comergent/objectManager/preferences.xml
</config>
<init-param name=”param0”>param0Value</init-param>
</module>
<module name=”module1” initClass=”com.comergent.module1.InitHelper>
© IBM Corporation 2011 38

<config name="ObjectManager">
/com/comergent/module1/objectMap.xml
</config>
<config name="MessageTypes">
/com/comergent/module1/messageTypes.xml</config>
<config name="Preferences">
/com/comergent/modules1/preferences.xml
</config>
<init-param name=”param1”>param1Value</init-param>
</module>
<module name=”module2” initClass=”com.comergent.module2.InitHelper>
<config name="ObjectManager">
/com/comergent/module2/objectMap.xml
</config>
<config name="MessageTypes">
/com/comergent/module2/messageTypes.xml
</config>
<config name="Preferences">
/com/comergent/modules2/preferences.xml
</config>
<init-param name=”param2”>param2Value</init-param>
</module>
<!-- it is allowable to have no initClass -->
<module name=”custom1” >
<config name="ObjectManager">
/com/comergent/module1/overlay/objectMap.xml
</config>
</module>
</initializationManager>

In this example, when the following method is called by the Initialization Manager:

com.comergent.objmgr.ObjManagerInitHelper.init(initParams,
configFragments, resourceLocator)

the following information is available:

initParams has a list of key-value pairs: param0-param0Value
configFragments has a list of:

/com/comergent/module1/objectMap.xml

/com/comergent/module12/objectMap.xml

resourceLocator can find the resource along the path of: /a/b/c, current, and the current classpath.

Internationalization
This module provides basic support for the internationalization capabilites provided by the Visual Modeler.
© IBM Corporation 2011 39

Logging
This module provides access to the logging service used to record activity in the Visual Modeler. Its
property file, log4j.properties, is used to configure the behaviour of the logging service. The module is
based on the log4j open source project and uses the same syntax for its configuration as follows:

Log4j has the following main components: loggers, appenders, and layouts. These three types of
components work together to enable developers to log messages according to message type and level, and
to control at runtime how these messages are formatted and where they are reported.

Configuration
You configure the logging platform module using the log4j.properties configuration file by specifying the
properties of its loggers, appenders, and layout. For example, the following snippet is used to configure the
root logger and the CMGT appender:

Set root category priority

#log4j.rootCategory=info, CMGT

log4j.rootCategory=info, STDOUT

#log4j.rootCategory=info, CMGT, RTS

START - CMGT

CMGT appender

log4j.appender.CMGT=com.comergent.logging.ComergentRollingFileAppender

#log4j.appender.CMGT=com.comergent.logging.ComergentDailyRollingFileAppender

#log4j.appender.CMGT.layout=org.apache.log4j.PatternLayout

log4j.appender.CMGT.layout=com.comergent.logging.ConversionPattern

The log format defaults to the "classic" format. This format is

recommended for actual deployment to allow a log analyzer to

work correctly.

log4j.appender.CMGT.layout.ConversionPattern=%d{yyyy.MM.dd HH:mm:ss:SSS}
Env/%t:%p:%c{1} %m%n

Loggers
Loggers are named entities. Logger names are case-sensitive and they follow the hierarchical naming rule:
a logger is said to be an ancestor of another logger if its name followed by a dot is a prefix of the descendant
logger name. A logger is said to be a parent of a child logger if there are no ancestors between itself and the
descendant logger.

For example, the logger named “com.foo” is a parent of the logger named “com.foo.Bar”. Similarly, “java”
is a parent of “java.util” and an ancestor of “java.util.Vector”. This naming scheme should be familiar to
most developers.

The root logger resides at the top of the logger hierarchy. It is exceptional in two ways:
© IBM Corporation 2011 40

It always exists;
It cannot be retrieved by name.

Invoking the class static Logger.getRootLogger() method retrieves it. All other loggers are instantiated and
retrieved with the class static Logger.getLogger(String name) method.

This method takes the name of the desired logger as a parameter.

Loggers may be assigned levels. The set of possible levels, that is DEBUG, INFO, WARN, ERROR and
FATAL are defined in the org.apache.log4j.Level class. If a given logger is not assigned a level, then it
inherits one from its closest ancestor with an assigned level. More formally:

Level Inheritance: the inherited level for a given logger, is equal to the first non-null level in the logger
hierarchy, starting at the logger and proceeding upwards in the hierarchy towards the root logger.

To ensure that all loggers can eventually inherit a level, the root logger always has an assigned level.

Appenders
The ability to selectively enable or disable logging requests based on their logger is only part of the picture.
More than one appender can be attached to a logger.

The addAppender method adds an appender to a given logger. Each enabled logging request for a given
logger will be forwarded to all the appenders in that logger as well as the appenders higher in the hierarchy.
In other words, appenders are inherited additively from the logger hierarchy. For example, if a console
appender is added to the root logger, then all enabled logging requests will at least print on the console. If
in addition a file appender is added to a logger, then enabled logging requests for the logger and its children
will print on a file and on the console. It is possible to override this default behavior so that appender
accumulation is no longer additive by setting the additivity flag to false.

The rules governing appender additivity are summarized below:

The output of a log statement of logger C will go to all the appenders in C and its ancestors. This is the
meaning of the term "appender additivity".
However, if an ancestor of logger has the additivity flag set to false, then logger’s output will be
directed to all its appenders and its ancestors up to and including the ancestor, but not the appenders in
any of the ancestors the ancestor.
Loggers have their additivity flag set to true by default.

Layouts
Sometimes, you may wish to customize not only the output destination but also the output format. This is
accomplished by associating a layout with an appender. The layout is responsible for formatting the logging
request according to your wishes, whereas an appender takes care of sending the formatted output to its
destination. The PatternLayout, part of the standard log4j distribution, lets you specify the output format
according to conversion patterns similar to the C language printf function.

For example, the PatternLayout with the conversion pattern:

%r [%t] %-5p %c - %m%

will output something like this:

176 [main] INFO Translator - got current date: 10/22/2005.
© IBM Corporation 2011 41

The first field is the number of milliseconds elapsed since the start of the program. The second field is the
thread making the log request. The third field is the level of the log statement. The fourth field is the name
of the logger associated with the log request. The text after the “-” is the message of the statement.

Memory Monitor
This module provides classes used to monitor and log memory consumption.

Message Type Entitlement
This module provides the service that checks the entitlement of users to invoke message types.

The interfaces are defined in the com.comergent.api.dispatchAuthorization package. This package contains
factory classes, interfaces, and exceptions needed for the service. The implementation classes are in the
com.comergent.dispatchAuthorization package.

The main entry point for this module is the class EntitlementRepository. An instance of this class is obtained
from the EntitlementFactory class. Applications can create named instances of the the
EntitlementRepository class. Named instances will facilitate unit testing, and may be useful for alternative
deployment environments.

An application needing to specify dispatch rules or other message type entitlement objects will execute logic
similar to the following:

import com.comergent.api.dispatchAuthorization.EntitlementRepository;
import com.comergent.api.dispatchAuthorization.EntitlementFactory;
import javax.xml.dom.Document;
…
Document document = ...;
…
EntitlementRepository repository =
EntitlementFactory.getEntitlementRepository();
repository.setRules(document);

Object Manager
This module provides the classes used to instantiate objects: see "ObjectManager and OMWrapper Classes"
for details.

Out Of Band Response
This module is used to send output to output streams other than the standard JSP pages.

Preferences Service
The Preferences module is used to retrieve and set configuration properties used by the Visual Modeler. You
can retrieve properties along these lines:
© IBM Corporation 2011 42

private static final Preferences prefs =
Preferences.getPreferences(MyClass.class);
// implict scope of "com.comergent.apps.module.MyClass"
int max = prefs.getInt("PromotionManager.maxValue", 100);
int min = prefs.getInt("PromotionManager.minValue", 1);

The second parameter in the getInt() calls specify the value to return if no property with that name is found.
The configuration file in which the property is defined is assumed to be on the classpath: for example in the
file com.comergent.apps.module.Preferences.xml. If the XML properties file is read in using the
Preferences service, then make sure that the XML file uses the Comergent root element. For example:

<Comergent>
<PromotionManager>
<maxValue>50</maxValue>
<minValue>20</minValue>
</PromotionManager>
</Comergent>

You can ensure that the Preferences service is used to initialize the properties by customizing the
WEB-INF/properties/init.xml configuration file by adding an element along these lines:

<module name="PromotionMgr">
<config name="Preferences">
com/comergent/reference/apps/mktMgr/controller/Init.xml
</config>
</module>

The Preferences class provides methods to get and put property values. For example:

prefs.putInt("PromotionManager.maxValue", 25);
prefs.putObject("currentShoppingCart", cartBean);

When using the putObject() method, the object must meet the requirements of the XMLEncoder API:
essentially, that the object’s fields must provide getter and setter methods.

Tag Libraries
The tag libraries provided by the Visual Modeler are produced as a platform module.

Thread Management
This module provides a centralized facility for handling threads: their creation, obtaining their status, and
re-use. It is provided by the backport-util-concurrent.jar library. In general, an application developer will no
longer have to invoke:

Thread t = new Thread(new MyRunnable());

Instead, having a centralized facility will allow you to:

Pool and re-use thread when appropriate
Track all running threads to help provide better accounting for CPU and resource usage.
Provide simple status reporting (scoreboard strategy: central shared location where running thread can
report its status).
© IBM Corporation 2011 43

Provide simple aborting and interrupt signal via Thread.interrupt() invocations to allow long running
(but looping) thread to quit early.

The module provides the following functionality:

1. Transparently provide pooling and re-use of thread.
2. For administrative functionality, provide means to query all running threads tracked by the thread

manager.
3. For user of thread service, provide means to report current thread status to a common scoreboard.
4. Provide guidance to following simple loop or check interrupted status protocol to allow a long running

or looping thread to quit early.
5. Provide a timer facility to allow running thread to be notified when a timer expired. This can be used to

implement a simple time-out or timeshare policy.

API and Usage
The API will continue to follow the Runnable() pattern: the application obtains a Thread-like object and use
it to execute.

Excutor executor = ExecutorFactory.getPooledExecutor();

executor.execute(new MyComergentRunnable());

XML Message Converter
This module provides a facility for converting XML documents from one message category (family and
version) to another. The package name for the API is com.comergent.api.converter and
com.comergent.converter for the implementation classes.

The API package includes:

ConverterFactory: this is the Factory class to create converters.
Converter: this is the class that converts a document from one message category to another. It can take
either documents or streams as the source and targets for conversion.

XML Message Service
This module is used to create and post outbound messages as XML documents. The API includes
MsgContext interface, MsgService interface, MsgServiceFactory class, and theMsgServiceException
classes in the com.comergent.api.msgService package and the implementation classes are in the
com.comergent.msgService package.

The MsgService interface contains a generic service() method to post a databean and an XML document as
specified in the message context.

The general usage pattern is as follows:

1. create a MsgContext instance using the MsgContextFactory;
2. set appropriate attributes on the context object;
3. create a MsgService instance for the target message family;
© IBM Corporation 2011 44

4. post a message by invoking the service method with a data bean and message context.

For example:

MsgContext ctx = new MsgContext();
ctx.setMessageType("ERPOrderCreateRequest");
ctx.setURL("http://www.server.com");
ctx.setMessageCategory("ERPOrderCreateRequest");
ctx.setContentType("text/xml");
ctx.setRemoteUser(username);
ctx.setRemotePassword(password);
MsgService msgService =
MsgServiceFactory.getMsgService(ctx.getMessageCategory());
resultBean = msgService.service(requestBean, ctx);

XML Services
This module encapsulates functionality for XML parsing, XSL transformation, DOM wrappers, and utility
classes.
© IBM Corporation 2011 45

Introducing Data Beans and Business Objects
This topic presents a brief tutorial that demonstrates how you can use the Visual Modeler to work easily with
data beans and business objects.

Note: In Release 6.4 and later, the use of business objects is not supported. You should use data beans
wherever possible.

What are Data Beans?
A data bean is a data source-independent representation of a real-world entity in the Visual Modeler. The
Visual Modeler uses an external schema (defined as a set of XML files) to define the structure of each type of
data bean. For example, data beans are used as data structures for users, product inquiry lists, partners,
products, and workspaces.

Use the OMWrapper and ObjectManager classes to create instances of the DataBean classes. See
"ObjectManager and OMWrapper Classes" for more information.
You can create a DataBean using the DataManager. Invoke the DataManager method
getDataBean(String beanName) to create a DataBean of the named type. This method throws an
InvalidBizobjException if no such DataBean class exists

Note: The use of this method is deprecated because it does not support extensions of the data object.

Life Cycle of a Data Bean
In general, the basic flow of working with a data object is:

1. Instantiate a data bean object using the OMWrapper class.
2. Add data to the bean by using the set methods to directly insert values into the data fields.
3. Persist the data bean to save the new data object to its data source for the first time.
4. Subsequently, you can retrieve the same data object by setting the value for key fields, and then

performing a restore() on the data bean to retrieve the current data field values from its data source.
5. Perform any business logic required on the data bean. This may change the in-memory values of fields,

but not the values stored in the data bean’s data source.
6. Save the changes to the data bean by persisting the data bean to its data source.
7. Later, you may want to delete the data object if it is no longer in use.
8. Eventually, you may want to remove the data from the data source entirely by erasing the data object.

In the case of data objects whose underlying data source is a database, the following table summarizes the Java
method calls and the corresponding SQL methods called:

Step Java Method SQL Method

Instantiate data object OMWrapper.getObject()

Populate data fields setDataField()

Populate data fields setDataField()

Persist for the first time persist() INSERT

Retrieve data object restore() SELECT
© IBM Corporation 2011 46

Note: The Delete operation updates the ACTIVE_FLAG column of the underlying database table row: it
does not remove the record from the table.

Defining a Data Bean
Data beans are defined using an XML schema. Data beans provide accessor methods to get and set values
of particular data fields. In general, you should use data beans when customizing Visual Modeler
applications.

Defining the Structure of a Data Object
Each data object must have a defined structure to enable the Visual Modeler to create an instance of the data
object. The structure of a data object is defined in its schema XML file: it specifies what fields the data
object has and whether it has child objects.

Each data object corresponds to a Java class that extends the DataBean class. We refer to these as data bean
classes. The data bean classes are generated automatically as part of the SDK merge process. When you
generate the corresponding data bean class, it provides methods that access the fields and child data beans
that are declared in the data object XML file.

You can change the definition of the XML schema and hence of data objects and their corresponding data
bean classes by editing the XML schema files.

The DsRecipes.xml configuration file is used to link each data object and its data source. It also specifies
whether the ordinality of the data object is “1” or “n”. The data object file is used to specify the precise
structure of the data object, and the DsDataElements.xml configuration file is used to specify the data type
(LIST, LONG, STRING, and so on) of each element.

Extending Data Objects
When you define a data object with an XML schema file, you can declare that it extends another data object
by using the Extends attribute. This capability is used in two ways:

You can use one data object as the parent of several different extending data objects which all share a
common set of data fields. For example, many data objects in the Visual Modeler extend the
C3PrimaryRW data object: this data object provides the basic OwnedBy and AccessKey data fields
used to manage access control.

Business logic that updates field
values

getDataField()
setDataField()

Save changes persist() UPDATE

Delete data object delete() UPDATEa

Erase data object erase() DELETE

a.

Step Java Method SQL Method
© IBM Corporation 2011 47

You can customize a data object by creating a data object that extends it. By adding data fields to the
extending data object, you can add attributes that you need to use as part of your customization. By
using the ObjectManager, you can ensure that the extending data object is created when the system is
called upon to create a data object of the extended type. Provided that existing code uses the
ObjectManager to instantiate instances of the extended data object, then when this code is invoked,
instances of the extending data object are created, but these still support the extended data object’s
interfaces, and so the existing code will continue to work.

The DataManager uses a recipe and a data object to determine the element structure of the data bean or
business object and the location of the data source that provides the element values. When you change the
definition of data objects or create new definitions, you must re-run the generateDTD and generateBean
SDK targets to create and compile the DataBean classes. See "Software Development Kit" topic for more
details. See "Extending Data Objects" section for alternate ways to extend data objects.

Data Bean and Business Object Creation
The Visual Modeler’s ObjectManager and OMWrapper classes create data beans, and business logic classes
and controllers process them. See "ObjectManager and OMWrapper Classes" topic for more information.

Business logic classes are invoked by controllers: each controller is responsible for determining which
business logic class (if any) must be created in response to a message and its message type.

The use of business objects and the BusinessObject class is deprecated. Where possible, you should use data
bean classes, and use business objects only to maintain legacy code.

DataContext
The restore() method takes an instance of the DataContext class as a parameter. The DataContext class is
used to specify information about the context in which the restore() operation is being performed. It can be
used to specify the maximum number of results to be returned and for determining the number of results on
each page (pagination). It can also be used to specify whether an access check should be performed on the
results of the restore() operation. By default, an access check is performed.

For example, the following code snippet creates a DataContext, sets some context values, and then uses the
context and a query to restore a data bean:

DataContext temp_DataContext = new DataContext();
temp_DataContext.setMaxResults(DsConstants.NO_LIMIT);
temp_DataContext.setNumPerPage(-1);
skuMappingListBean.restore(temp_DataContext, query);

When a DataContext object is initialized, it retrieves from the configuration files values of the
DataServices.General.MaxResults and DataServices.General.NumPerCachePage element to set these
parameters for the restore operation. By default, no limit is set on either. There are accessor methods
available if the behavior of the DataContext needs to be modified. See the DataContext Javadoc for further
information.

The DataContext class provides a setCacheId(String cacheId) method to support pagination: it identifies the
particular cache being used.

What is the DataContext class?
© IBM Corporation 2011 48

The DataContext class is used to control the behavior of restore and persist operations.

What behavior can be controlled?
A DataContext instance can control the following:

How many query results appear on a page.
The maximum number of query results that will be processed.
The use of multiple page sets per Data Bean type and Session.

What are the Cache Id methods for?
The Cache Id methods allow an application to specify a unique identifier for pagination of result sets. This
new capability allows an application to maintain multiple distinct result sets for a given Data Bean and
Session.

If an application does not specify a Cache Id then a combination of Bean name and Session Id are used to
identify the cache. In this case any subsequent attempt to restore the same Data Bean within the same session
will overwrite any results.

The DataContext class provides the following methods to control Cache Id on Data Bean restore requests:

void setCacheId(String cacheId): Sets a new cache id. This string is used in combination with the Bean
name and session id to generate a unique identifier.
String getCacheId(): Returns the current cache id (or null if it is not set).

How do Max Results and Num Per Page work?
The setting of Max Results determines the maximum number of records that can be retrieved during a
restore. When that number is reached the request is freed.

The setting of Num Per Page determines how many records are saved in each result cache page. If the
number found is less than Num Per Page, then no result cache is created.

Note that this combination of attributes allow the application to retrieve a set of paginated results while still
specifying a maximum number of records to retrieve.

The DataContext class provides the following methods to Max Results and Num Per Page on Data Bean
restore and persist requests:

void setMaxResults(int maxResults) sets the maximum number of results returned for non-paginated
results
int getMaxResults() gets the maximum number of results to return for non-paginated results
void setMaxPaginatedResults(int maxResults) sets the maximum number of results returned for
paginated results
int getMaxPaginatedResults() gets the maximum number of results to return for paginated results
void setNumPerPage(int numPerPage)
int getNumPerPage()

If an application wants to use the data services default limits, the appropriate property in DataContext must
be set to DsConstants.USE_DEFAULT. The following are the default values:
© IBM Corporation 2011 49

maxResults: 125
maxPaginatedResults: 125
numPerPage: 25

If the application does not specify a value for numPerPage, then the value specified in prefs.xml will be
used. If a value is not set by the application nor the prefs.xml file, a value of -1 will be used, which means
the request will not be paginated.

In addition, the following methods provide result set limits that are passed directly to the database as part of
the SQL query. Since the Visual Modeler may discard results as part of its access policy checking (for
example, does the user have the right to see this data?), these methods allow you to set a higher result set
limit.

public void setDBResultLimit(int limit)
public int getDBResultLimit()

You can also set the DataServices.General.LimitDBResults preference. If LimitDBResults is set to true,
results are automatically limited to the number allowed by MaxResults (or by MaxPaginatedResults for
paginated results). Access policies must be expressed as SQL to use this mechanism. For Oracle databases,
do not set the LimitDBResults preference to true.

Our access policies are handled in one of two ways. Many are converted to SQL WHERE clauses that are
applied to the query. This allows the database to handle the access policy. If the policy is too complex (for
example, it relies on a hierarchy of partners), then the access policy can be applied only when processing
the results from the database. Such policies cannot be converted to SQL.

With Oracle, there are some cases in which the SQL generation will require that column aliases be defined
in the XML schema. This is necessary only when the query joins multiple tables that use the same column
name. This is not an issue for SQL Server or DB2.

How do I instantiate a DataContext instance?
A new DataContext instance is currently instantiated using the standard “new” mechanism:

DataContext dc = new DataContext();

What are the Default Settings for a new DataContext?
When “new DataContext()” is invoked, the attributes receive the following default values:

Attribute Default Value

doAccessCheck true

maxResults DataServices.xml maxResults property

numPerPage DataServices.xml numPerPage property

CacheId null

doAccessCheck true
© IBM Corporation 2011 50

List Data Beans
A special class of business objects are called list data beans and list business objects. You use these classes
to manage a list of data objects of the same type. Whenever a data object element is declared with ordinality
“n” in a Recipe element, then a list data bean is created. Access entitlements are still managed at the level
of the singular business object

Note: Earlier versions of data objects defined ordinality in the data object definition file. Now it is the
recipe file that determines the ordinality of a data object. In Version 6.0 data objects, the ordinality
attribute is still used to declare child, reference, and included data objects.

In general, you do not need to create DataBeans for list data objects: they are created automatically. See
"DataBean Classes" for more information. They support automatically generated methods that return a list
of the data objects. For example, the following code fragment demonstrates how to restore a list of users. A
DataContext object identified by “context” and a DsQuery object identified as “query” are used to restrict
the users returned by the restore() call:

UserListBean userList = (UserListBean)
OMWrapper.getObject("com.comergent.bean.simple.UserListBean");
// Restore the list.
userList.restore(context, query);
// Return immediately if no results found.
if (userList.getUserCount() == 0)
{
return;
}
// At least one user in list, so walk through the list of users
ListIterator userIterator = userList.getUserIterator();
while (userIterator.hasNext())
{
UserBean user = (UserBean) userIterator.next();
// Perform any business logic on each user.
}

Note: The use of the DataContext and DsQuery parameters in the restore() method: these are used to
manage how the query is executed against the Knowledgebase.

Application, Entity, and Presentation Beans
There are several main sorts of data beans used in the Visual Modeler: data beans, application beans, entity
beans, and presentation beans. This section describes the main differences between them.

Data beans are the Java classes created automatically from the XML schema description of the
business objects. Running the generateBean SDK target generates the source code for each data bean.
These beans comprise the com.comergent.bean.simple package.
Where possible, you should you use the instanceof command to determine the class of a data bean rather
than querying for the business object type.

Application beans are Java classes created to add functionality that simple beans do not support. For
example, an application bean may provide extra methods that cannot be automatically generated, or it
may combine two or more simple beans to pass data to a JSP page. The application beans are
© IBM Corporation 2011 51

organized by application and each application has a package for its application beans whose name is
com.comergent.apps.<application name>.bean
Application beans can be subclasses of simple beans, but more often they are Java classes that contain
one or more simple beans as member variables.
For example, the com.comergent.appservices.productService.productMgr.BizProductBean application
bean class is a Java class that contains a member variable that implements the
com.comergent.bean.simple.IDataProduct interface. The BizProductBean application bean class
delegates methods such as getProductID() to the com.comergent.bean.simple.IDataProduct member
variable, but in addition it provides methods to retrieve a product’s features, its supersession chain, and
prices. Note the use of the IDataProduct interface rather than the ProductDataBean itself: this is an
example of using a generated interface rather than the class. See "Generated Interfaces" for more
information on the generation and use of these interfaces.
By convention, if you create an application bean to wrap a data bean, then you must provide a method
called getDataBean() that retrieves the data bean.
Presentation beans are also used to pass data to JSP pages: typically, they differ from application beans
in that they do not provide business logic. They may aggregate several data beans into a single class for
ease of use, or provide formatting information. As with application beans, presentation beans must
provide a method to provide access to the underlying data bean. For example, the IPresProduct
interface provides the getIRdProduct() method: this returns the IRdProduct interface and you can
downcast this to the underlying data bean or extended data bean if need be.
Entity beans were used in prior releases of the Visual Modeler. They performed the same role as
application beans. Their use is deprecated.

Using Stored Procedures
You can make use of stored procedures to restore data objects. The name of the stored procedure is declared
in the ExternalName element of the data object.

When you define data objects, take care to specify the SourceType attribute. It can take the following values:

“1”: the underlying data source uses a table. This is the default value.
“2”: the underlying data source uses a stored procedure.

If no SourceType attribute is defined, then the default value means that a table is the underlying source type
for the data object.

Data Bean Methods
In general, you should make use of the generated interfaces that each data bean provides: these organize the
accessor and data methods to help you manage access to the data objects during their life cycle. See
"Generated Interfaces" for more information.

Use the access policy security mechanism to provide access control.

IData Methods
The IData interface has these important methods:
© IBM Corporation 2011 52

copyBean(): this method can be used to copy the values of data fields from one bean to another. It takes
one argument: this must be a bean that is either an instance of the same class or a sub-class of the bean
invoking this method.
delete(): this method marks the corresponding data object as deleted: the ACTIVE_FLAG column of
the database table corresponding to this data object is set to “N” when the object is persisted. Note that
you must call persist() after calling delete(): if you do not, then the deletion does not take effect.
erase(): this method removes the database record corresponding to the business object. Note that
removing records from database tables can lead to data integrity problems if other tables refer to keys
that have been deleted. In general, you should use this method only if you can account for all usages of
the record and its keys and can delete the corresponding records from other tables.
generateKeys(): this method populates the key fields of the data bean. You can call this method
without invoking persist(). By invoking this method, you can use the generated keys to create other
objects that require the keys.
setDataContext(): this method sets the data context so that restore() and persist() calls use the right
values for parameters such as the number of results per page in a paginated data set. See "DataContext"
for more information on the DataContext class.
persist(): this method saves the data in the data bean to its data source.
prune(): this method is used to mark the bean for deletion in memory. Calling restore() after prune()
has no effect on the bean’s underlying data source.
restore(): this method retrieves the data for the data bean from its data source. See "DataContext" for
information on the use of the DataContext class in the restore() method.
update(): this method updates the database record corresponding to this business object.

Note that any method calls that change state must be followed by a persist() call to actually make the change
to the database record.

The IData interface also provides the methods, isRestorable() and isPersistable(), that check whether a data
object may be restored or persisted respectively.

IRd and IAcc Interface Methods
The IRd interface provides the read-only accessor methods to the data object fields. The IAcc interface
extends the IRd interface by adding the set accessor methods for each data field. Distinguishing between
these two interfaces provides you with the ability to pass a read-only object to a client application or JSP
page.

For example, suppose that in the Condition data object file, Condition.xml,a DataField element is specified
as follows:

<DataField Name="ControlType"
Writable="y" Mandatory="y"
ExternalFieldName="CONTROL_TYPE"/>

Then, in the automatically-generated IRdCondition interface, there is a method called:

public Long getControlType()

In the automatically-generated IAccCondition interface, there is a method called:

public void setControlType(Long value) throws ICCException
© IBM Corporation 2011 53

The signatures of these accessor methods is determined by the corresponding DataElement definition in the
DsDataElements.xml file:

<DataElement Name="ControlType" DataType="LONG"
Description="Condition Control Type" MaxLength="20" />

Note: If you set the Writable attribute of a data field to “n”, then the corresponding setDataField()
method is not generated.

Restoring and Persisting Data
These important operations may be performed on a data object: delete(), persist(), and restore().

By calling the delete() method on a data object, you mark this object as deleted, and no other
application will retrieve this data object. The ACTIVE_FLAG column of the underlying database table
has its value set to ’N’. Note that the data object data is not deleted from the data source. If the
underlying database table for data object does not have an ACTIVE_FLAG column, then do not use
the delete() method. You can still use the erase() method to remove such data objects from the
Knowledgebase.
When you persist a data bean, the Visual Modeler saves the data held in the data object’s DsElement
tree to its external data source(s). Note that the Visual Modeler manages both the update of existing
data objects and the creation of new data objects with the persist() method.
When you restore a data bean or business object the Visual Modeler retrieves its data from its external
data source(s). If no query object is specified in the restore() method, then all of the data objects whose
values in the key fields match those in the data bean are restored.

Note that if you call restore() on a non-list data bean, then you should expect that its data is
uniquely retrievable from the values set in its key fields. When the restore() call is issued, no check
is performed to verify that only one record is retrieved, and so the first record retrieved will be
used to populate the data bean. If no record is retrieved, then the restore() call throws an
ICCException.
When you call restore() on a list data bean, then you must usually specify a DsQuery. If no
DsQuery is specified, then the restored list data bean will contain all the data beans of this type.

restore() Method
This section provides description of the main forms of the DataBean restore() method.
public void restore(DataContext dataContext, DsQuery dsQuery)

The principal form of the restore() method. Use the dsQuery parameter to specify query to be executed by
the restore operation. The dataContext parameter determines the maximum number of objects returned, and
for pagination the number of results per page. Use the dataContext parameter to specify whether to check
that the current user has the correct entitlements to perform this operation. By default, an access check is
performed, so you have to override the access check if you do not want this to be done, using the
disableAccessCheck() method.

public void restore(DataContext dataContext)

This is equivalent to calling restore(dataContext, null).

Here is an example of using the DataContext and DsQuery classes together to manage the restore() call:
© IBM Corporation 2011 54

try
{
DataContext dataContext = new DataContext();
if (doAccessCheck == true)
{
dataContext.enableAccessCheck();
}
else
{
dataContext.disableAccessCheck();
}
dataContext.setNumPerPage(pageSize);
DsQuery dsQuery = QueryHelper.newWhereClause("PartnerKey",
DsConstants.EQUALS, partnerKey);
LightWeightPartnerBean partnerBean =
(com.comergent.bean.simple.LightWeightPartnerBean)
com.comergent.dcm.util.OMWrapper.getObject(
"com.comergent.bean.simple.LightWeightPartnerBean");
partnerBean.restore(dataContext, dsQuery);
QueryHelper.freeQuery(dsQuery);
return partnerBean;
}
catch (ICCException e)
{
throw (new ProfileMgrException(e));
}

persist() Method
This section provides description of the main forms of the DataBean persist() method.

public void persist(DataContext dataContext)

If the dataContext specifies that an access check should be performed, then this form of the persist() method
performs an access check before performing the operation. If the user does not have the appropriate
entitlement, then the operation is not performed.

Miscellaneous Methods

getBizObj() Method
If you want to retrieve a business object representation of the data object and its data, then you can invoke
the getBizObj() method. This is useful if you want to display the internal structure of the object. For
example:

BusinessObject bo = bean.getBizobj();
ComergentDocument doc = bo.serializeToXml();
doc.prettyPrint();

Note that this is now a deprecated method.
© IBM Corporation 2011 55

writeExternal() Method
Use this method to write out an XML representation of the data bean and its data.

Child Data Objects
Many data objects declare child data objects using the ChildDataObject element. For example, the
ShoppingCart data object declares LineItem as a child data object as follows:

<DataObject Name="ShoppingCart" Extends="C3PrimaryRW"
ExternalName="CMGT_CARTS" ObjectType="JDBC" Version="6.0">
...
<ChildDataObject Access="RWID" Name="LineItem">
<Relationship CascadeDelete="y" CascadeErase="n"
ChangeUpdatesParent="y">
<JoinKeys>
 <JoinKey DstJoinField="ShoppingCartKey"
SrcJoinField="ShoppingCartKey"/>
</JoinKeys>
</Relationship>
</ChildDataObject>
...
</DataObject>

Its Relationship element has attributes that describe how child objects should be managed when the parent
is updated and whether to update the parent when a child is changed. The JoinKey elements describes how
to restore the child data objects: typically, by specifying how values in the parent data object are used to set
values in the child data object.

When the parent data bean is generated, it generates a method called getChildDataObjectIterator() which
returns an ListIterator object containing the child data beans. By iterating through the objects, you can
examine each child data bean in turn and access its fields using the standard accessor methods.

For example, the ShoppingCartBean class supports the getLineItemIterator() method. The following lines
of code demonstrate how to retrieve a field of a line item:

/*
shoppingCartBean is a ShoppingCartBean object that has already been restored
*/
ListIterator lineItemIterator =
shoppingCartBean.getLineItemIterator();
LineItemBean lineItemBean =
(LineItemBean) lineItemIterator.getLineItemBean(0);
Long quantity = lineItemBean.getQuantity();

When a parent data object is restored, the child data objects are not restored. They are restored only when
the application accesses the children as described above.

Extending Data Objects
It is common for any implementation of the Visual Modeler to need to add data fields to data objects or to
create data objects that extend existing data objects.
© IBM Corporation 2011 56

We recommend storing the additional data in a new database table. A new DataObject should then be
defined that accesses the new table. Another new DataObject is then defined that extends the original
DataObject by adding a new IncludeDataObject.

For example, suppose that you need to add a new data field to the Order data object to track “hosted” orders:
orders that are placed at storefront partners. The extra data field is the partner key of the storefront partner.
The recommended approach is as follows:

1. Create a new data object called HostedPartner that has exactly two fields: an OrderKey and a
PartnerKey. Set it up to point to a two-column table: CMGT_ORDER_X_PARTNER with columns
ORDER_KEY and PARTNER_KEY.
<?xml version="1.0"?>
<DataObject Name="HostedPartner"

ExternalName="CMGT_ORDER_X_PARTNER" ObjectType="JDBC"
Version="6.0">
<KeyFields>
<KeyField Name="OrderKey" ExternalName="ORDER_KEY"/>
<KeyField Name="PartnerKey" ExternalName="PARTNER_KEY"/>
</KeyFields>
<DataFieldList>
<DataField Name="OrderKey" ExternalFieldName="ORDER_KEY"
Mandatory="n" Writable="y"/>
<DataField Name="PartnerKey"
ExternalFieldName="PARTNER_KEY"
Mandatory="n" Writable="y"/>
</DataFieldList>

</DataObject>

2. Create a new data object called HostedOrder that extends Order. The HostedOrder.xml file looks like
this:
<?xml version="1.0"?>
<DataObject Name="HostedOrder" Extends="Order" ObjectType="JDBC"

Version="6.0">
<IncludedDataObject Access="RWID" Name="HostedPartner"

Ordinality="1">
<Relationship CascadeDelete="y" CascadeErase="n"

ChangeUpdatesParent="y">
<JoinKeys>

<JoinKey DstJoinField="OrderKey"
SrcJoinField="OrderKey"/>

</JoinKeys>
</Relationship>

</IncludedDataObject>
</DataObject>

There are three basic approaches that can be used:

3. You can use extension to simply add any additional DataFields and override the table name. This
allows you to include all of the data in a new table. This approach is most useful when you need the
same data, but need a distinct copy of it. (Perhaps you maintain a snapshot of how an Order looked
before it was turned into a HostedOrder)
© IBM Corporation 2011 57

4. You can extend Order to add an IncludedDataObject for HostedOrder, where HostedOrder only
defines additional data for storage in another table. This means that changes to the original Order
DataFields will still be persisted to the Order table, but the additional data for HostedOrder will be
persisted to a different table. This is the recommended approach described above.

5. You can define HostedOrder specifying that Order is a IncludedDataObject. This accomplishes the
same thing as the second alternative. The problem with this approach is that a HostedOrder does not
extend Order, and can no longer be treated as an Order by application code.

Note: Using two tables has a slight disadvantage in performance, but query execution has not been a
problem area. Using two tables may reduce data redundancy (depending on your requirements).

If you only occasionally reference the customer extension, then you may want to use a ChildDataObject to
take advantage of the lazy link mechanism.

Data Bean Example
This section presents the process of defining and using a data object. Suppose that you want to use a data
object to represent a simple enquiry from a customer. This will comprise:

an email address for the customer
the date the enquiry was made
the date a response was returned (optional)
the content of the enquiry
the content of the response (optional)
the product ID of the product about which the enquiry was made (optional)

To Create a Data Object Definition

1. Create the business object element Enquiry and add it to the DsBusinessObjects.xml file.
<BusinessObject Name="Enquiry" Version="6.0"

Description="Customer enquiry"/>

Use the Version attribute to manage different versions of business objects that may be in use simultaneously.
Note that the Version attribute is also used to determine whether access checks are performed automatically
(Version 5.0 or higher) or not.

2. Create the recipe for this business object and add it to the DsRecipes.xml file.
<Recipe Name="Enquiry" Version="6.0" Ordinality="n"

Description="Customer enquiry">
<DataObjectList>

<DataObject Name="Enquiry"
DataSourceName="ENTERPRISE" />

</DataObjectList>
</Recipe>

The Name attribute of the recipe must match exactly (it is case-sensitive) to the Name of the business object.
In Release 9.0, each recipe may have more than one data object defined in the data object list, but only one
may be a writable data object. The data objects define the data source names as an attribute of each data
object element. It is these entries that determine the sources from which the business object retrieves its data
and the source to which the business object may be persisted.
© IBM Corporation 2011 58

3. Create a file called Enquiry.xml to define the data object. The Name of the data object element must
match exactly (it is case-sensitive) the Name attribute defined in the DataObject entry of the recipe
element.
In this example, the data for these data objects is held in a database table called CMGT_ENQUIRY,
and the ExternalFieldName attribute of each DataField element specifies which column is to be used to
retrieve the DataField value. For example, the EMAIL_ADDRESS column of the CMGT_ENQUIRY
table holds the email address value associated with an enquiry.
<?xml version="1.0"?>
<DataObject Name="Enquiry" Extends="C3PrimaryRW" Version="6.0"

ExternalName="CMGT_ENQUIRY"
Access="R" ObjectType="JDBC">
<KeyFields>

<KeyField Name="Key" ExternalName="ENQUIRY_KEY"/>
</KeyFields>
<DataFieldList>

<DataField Name="EnquiryKey"
Writable="n" Mandatory="y"
ExternalFieldName="ENQUIRY_KEY"/>

<DataField Name="EmailAddress"
Writable="n" Mandatory="y"
ExternalFieldName="EMAIL_ADDRESS"/>

<DataField Name="EnquiryDate"
Writable="n" Mandatory="y"
ExternalFieldName="ENQUIRY_DATE"/>

<DataField Name="ResponseDate"
Writable="n" Mandatory="n"
 ExternalFieldName="RESPONSE_DATE"/>

<DataField Name="TimeToRespond"
Writable="n" Mandatory="n"/>

<DataField Name="EnquiryContent"
Writable="n" Mandatory="y"
ExternalFieldName="ENQUIRY_CONTENT"/>

<DataField Name="ResponseContent"
Writable="y" Mandatory="n"
ExternalFieldName="RESPONSE_CONTENT"/>

<DataField Name="SKU"
Writable="n" Mandatory="n"
ExternalFieldName="SKU"/>

</DataFieldList>
</DataObject>

Note the definition of the TimeToRespond data field: it has no ExternalFieldName attribute because it
does not correspond to a database column. Values for this field are calculated at runtime and are set in
the EnquiryBean so that its value can be displayed.

4. Define Enquiry and EnquiryList DataElements in DsDataElements.xml:
<DataElement Name="Enquiry" Description="Enquiry"

DataType="HEADER"/>
<DataElement Name="EnquiryList" Description="Enquiry list"

DataType="LIST"/>
© IBM Corporation 2011 59

1. Define a DataElement for each DataField in DsDataElements.xml. DataElements provide data type information
used by the DataManager when it is retrieving or saving data for this business object type. For example:

<DataElement Name="EnquiryKey" LongName="Enquiry Key"
DataType="LONG"MaxLength="20" />

<DataElement Name="EnquiryDate" LongName="Enquiry Date"
DataType="DATE" />

<DataElement Name="ResponseDate" LongName="Response Date"
DataType="DATE" />

<DataElement Name="EnquiryContent" LongName="Enquiry content"
DataType="STRING" MaxLength="256" />

<DataElement Name="ResponseContent" LongName="Response content"
DataType="STRING" MaxLength="256" />

Note that we have not included a DataElement for EmailAddress and SKU. The DataElements for
these DataFields are already defined and you can re-use DataElements any number of times (as long as
the data type is the same in each occurrence).

5. Create entries in the ObjectMap.xml file for this data bean. For example:
<Object ID="com.comergent.bean.simple.EnquiryBean">

<ClassName>com.comergent.bean.simple.EnquiryBean</ClassName>
</Object>
<Object ID="com.comergent.bean.simple.IRdEnquiry">

<ClassName>com.comergent.bean.simple.EnquiryBean</ClassName>
</Object>
<Object ID="com.comergent.bean.simple.IAccEnquiry">

<ClassName>com.comergent.bean.simple.EnquiryBean</ClassName>
</Object>
<Object ID="com.comergent.bean.simple.IDataEnquiry">

<ClassName>com.comergent.bean.simple.EnquiryBean</ClassName>
</Object>

6. Finally, define a data source element to correspond to the DataSourceName attribute defined in the
DataObject element. This data source is defined in the DsDataSources.xml file as part of the schema.
In most cases, this data source will already be defined: You only need define a new one if you are using
a different database or other data source than the rest of the Knowledgebase. For example:
<DataSource Name="ENTERPRISE" Version="2.0">

<Primary Type="SQL" DataService="JdbcService"
SubType="ORACLE"
ConnectionString="jdbc:<driver>:<server>:<port>:<sid>"
UserId="userid" Password="password" />

<Alternate Type="SQL" DataService="JdbcService"
SubType="MSSQL"
ConnectionString="jdbc:<driver>:<server>:<port>:<sid>"
UserId="userid" Password="password" />

</DataSource>

The DataService attribute of the Primary and Alternate elements determine which class is used to process
the EnquiryBean restore() and persist() methods. The remaining attributes determine exactly how the
external source is accessed.
© IBM Corporation 2011 60

7. Run the generateBean SDK target to generate the source code for the new EnquiryBean and
EnquiryListBean data beans and the corresponding interfaces. See "Generated Interfaces" for more
information on these interfaces.

You can now use Enquiry data beans and its interfaces in business logic classes. To create an instance of an
Enquiry data bean, you invoke a method of the form:

OMWrapper().getObject("com.comergent.bean.simple.EnquiryBean")

This returns an EnquiryBean data bean and its structure is as specified in the Enquiry DataObject. Once you
have an instance of the QueryBean class, then populate its key fields and restore the bean to retrieve its data:

int queryIndex = 0;
try
{
String queryKey = request.getParameter("querykey");
queryIndex = Integer.parseInt(queryKey);
}
catch (Exception e)
{
//Throw exception if parameter not valid
}
QueryBean queryBean = (QueryBean)
OMWrapper().getObject("com.comergent.bean.simple.EnquiryBean");
queryBean.setKey(queryIndex);
queryBean.restore();

To retrieve a list of enquiries:

// Use default settings for DataContext parameters
DataContext context = new DataContext();
// Retrieve enquiries relating to a particular product ID, MXWS-7000
DsQuery query =
QueryHelper.newWhereClause("SKU", DsQueryOperators.EQUALS,
"MXWS-7000");
EnquiryListBean enquiryList = (EnquiryListBean)
OMWrapper.getObject("com.comergent.bean.simple.EnquiryListBean");
// Restore the list.
enquiryList.restore(context, query);
// Walk through the list...
ListIterator enquiryIterator = enquiryList.getEnquiryIterator();
while (enquiryIterator.hasNext())
{
boolean isModified = false;
EnquiryBean enquiry = (EnquiryBean) enquiryIterator.next();
// Process each enquiry
}

In general, you should try to ensure that applications that use the EnquiryBean use one of the generated
interfaces rather than the data bean itself. This will enable the application to separate out the implementation
of the data object from its interface and let you manage what access the application has to the object’s data.
To retrieve an instance of a class that implements the IAccEnquiry interface, you can use:
© IBM Corporation 2011 61

IAccEnquiry temp_IAccEnquiry = (IAccEnquiry)
OMWrapper.getObject("com.comergent.bean.simple.IAccEnquiry");

DsElement Tree
This section describes methods to retrieve metadata about databeans. It also describes the DsElement tree
used to store data in the data object and business object classes. It is covered here only to support legacy
applications: all new applications that use the data bean classes should not need to be concerned with it.

Data objects are created as objects of data bean classes. Each data object holds its content as a tree of
components called DsElements (see "DsElements"). Their content is retrieved from external systems using
the XML schema, and the recipes and data sources defined in the XML schema. The following figure
displays the business object:

.

When the DataManager creates a data bean or business object, it uses the XML schema to determine the
structure of its DsElement tree. The DsElement tree is the Java representation of the structure of the business
object. The schema also determines the data types that may be inserted at leaf nodes and whether constraints
are placed on the values of the node. You access the DsElement tree by invoking the business object method
getRootElement().

DsElements
Each DsElement contains data and a DataMap that defines how its data corresponds to its data source. A
DsElement may be the child of another DsElement (its parent). A DsElement tree is a collection of
© IBM Corporation 2011 62

DsElements, all but one of which have another element in the tree as its parent. By definition, the DsElement
with a null parent is the root DsElement. The following figure displays the DsElements methods:

The DsElement class provides various additional methods to support navigating through a DsElement tree,
notably children() that returns an Iterator of the child DsElements of a given DsElement. As well as
getRootElement(), the business object class also provides the getElementByName() method to access
directly a named DsElement in its tree.

All DsElements that have the same name, for example child_name, and which are children of a DsElement
must have a parent whose name is <child_name>List. The XML schema identifies such elements by
defining their ordinality to be “n” as opposed to “1”. A DsElement maintains its children in a Vector called
m_children.

The DsElement has these important methods:

addChild(): adds a new DsElement defined by the DataMap of this DsElement.
cloneDsElement(): returns a copy of this DsElement.
delete(): sets the DsElemState to DsElemState.DELETED.
deleteChild(): removes a child from the vector m_children by specifying it as a DsElement.
getName(): returns the name of the element as defined by its MetaData.
getParent(): returns the parent of this DsElement.
getType(): returns the type of the element as defined by its DataMap.

DsElement MetaData
It is sometimes useful to retrieve information about a data field and its underlying DsElement. You can use
the IData interface method getMetaData(String elementName) to this. It returns an object that implements
the IMetaData interface. This interace supports the following methods:
© IBM Corporation 2011 63

public int getDataType(): returns values as defined in DsDataTypes
public long getMaxLength(): returns maximum length in bytes
public long getMaxCharLength(Locale locale): returns maximum length in characters
public Object getMinValue(): returns the minimum allowed value (or null if there is no minimum)
public Object getMaxValue(): returns the maximum allowed value (or null if there is no maximum)
public int getCountAllowedValues()
public ListIterator getAllowedValueIterator()
public Object getDefaultValue()

Note: Each generated DataBean class implements the IData interface, and so these methods are available
to all the generated data beans.

BusinessObject Methods
Use of business objects is deprecated. This section provides information about some business object
methods for reference only.

restore() Method
This section provides description of the main forms of the BusinessObject restore() method.

public void restore(BusinessObject queryObj, int maxResults,
boolean accessCheck)

The principal form of the restore() method. Use the queryObj parameter to specify query to be executed by
the restore operation. The maxResults parameter determines the maximum number of objects returned. Use
the accessCheck parameter to specify whether to check that the current user has the correct entitlements to
perform this operation. Once the access check has been performed, then the restore(BusinessObject
queryObj, int maxResults) is called.

public void restore(BusinessObject queryObj, int maxResults)

This method calls the restore() method restore(this, queryObj, maxResults, false)of the underlying data
object.

public void restore(BusinessObject queryObj)

This is equivalent to calling restore(queryObj, 0).
public void restore()

This form of the method calls the restore(null, 0) method.

persist() Method
This section provides descriptions of the main forms of the BusinessObject persist() method.

public void persist(boolean synch, boolean commit,
boolean accessCheck)
© IBM Corporation 2011 64

The boolean parameters determine respectively whether the persist operation is synchronized, should be
committed to the underlying data source, and whether an access check should be performed prior to
persisting.

public void persist(boolean synch, boolean commit)

This form of the method is equivalent to persist(synch, commit, false) for business objects whose Version
attribute is 4.0 or less. It is equivalent to persist(synch, commit, true) for business objects whose Version
attribute is 5.0 or more.

public void persist()

This form of the method calls persist(false, true).

The BusinessObject class also has these methods:

delete(): empties the business object by deleting its DsElement tree.
getRootElement(): returns the root DsElement of the DsElement tree.
getType(): returns the name of the root element of the DsElement tree. This is the type of the business
object.
setRootElement(): sets the root element of this business object.
© IBM Corporation 2011 65

Logging
This topic describes the logging mechanism provided by the Visual Modeler. It enables application
writers to log activity in the Visual Modeler. It uses the log4j API and log4j.properties
configuration files to configure the logging behavior.

The logging capability also provides support for auditing changes to data objects. See "Auditing
Changes to Data Objects" for more information.

Overview
The log4j API provides a flexible and extensible logging framework to manage the logging
behavior of the Visual Modeler. This section describes the use of the framework as you customize
and extend the Visual Modeler.

Note that this framework replaces the previous framework used by the Visual Modeler: this used
the Global class and its logLevel() methods. These are now deprecated.

To use the log4j API, you should create a Logger class in each class file along these lines:

private static final org.apache.log4j.Logger log =
org.apache.log4j.Logger.getLogger(NameOfClass.class);

When you want to make a log entry call:

log.info("This is a log entry");

The method you call depends on the logging level at which you want to record the message. You
can use the following methods:

debug()
error()
fatal()
info()
warning()

You can also use log(priority, message), but in general the listed methods should be sufficient.

log4j.debug System Property
By setting the log4j.debug system property to true, you can echo out the current log settings. For
example, include the following in the servlet container startup script:

-Dlog4j.debug=true

On startup, you should see logging output like this:

log4j: Trying to find [log4j.xml] using context classloader
sun.misc.Launcher$AppClassLoader@136228.

log4j: Trying to find [log4j.xml] using
sun.misc.Launcher$AppClassLoader@136228 class loader.
© IBM Corporation 2011 66

log4j: Trying to find [log4j.xml] using ClassLoader.getSystemResource().

log4j: Trying to find [log4j.properties] using context classloader
sun.misc.Launcher$AppClassLoader@136228.

log4j: Using URL
[jar:file:/home/hle/ws/32-cmgt-modules/modules.cryptography-tool/target/cmgt-c
ryptography-tool-2.0.0-SNAPSHOT-app.jar!/log4j.properties] for automatic log4j
configuration.

log4j: Reading configuration from URL
jar:file:/home/hle/ws/32-cmgt-modules/modules.cryptography-tool/target/cmgt-cr
yptography-tool-2.0.0-SNAPSHOT-app.jar!/log4j.properties

log4j: Parsing for [root] with value=[WARN, A1].

log4j: Level token is [WARN].

log4j: Category root set to WARN

log4j: Parsing appender named "A1".

log4j: Parsing layout options for "A1".

log4j: Setting property [conversionPattern] to [%-4r [%t] %-5p %c %x - %m%n].

log4j: End of parsing for "A1".

log4j: Parsed "A1" options.

log4j: Finished configuring.

Auditing Changes to Data Objects
In many implementations, you may want to provide an audit trail that tracks changes made to data in the
Visual Modeler. You can do this by logging any changes made to data objects. If you set the logging level
to INFO or higher in any DataBean class, then whenever persist() is invoked on an instance of this class, a
log message is written out to the Logger for the class. For example: the following is a sample line that is
written out when a change is made to a partner:

2006.01.18 13:41:05:546 Env/http-8080-Processor23:INFO:PartnerBean Updating:
com.comergent.bean.simple.PartnerBean KeyFields - PartnerKey: 301 Changes
-PartnerKey -> old: 301 new: 301PartnerName -> old: Scalar2 new: Scalar2
LegalName -> old: null new: null ParentCompany -> old: null new: nullStatus ->
old: A new: A DunBradID -> old: null new: nullBusinessID -> old: Scalar2-001
new: Scalar2-001PartnerTypeCode -> old: 10 new: 10PartnerLevelCode -> old: 20
new: 20XMLMessageVersion -> old: dXML 4.0 new: dXML 4.0BusinessTransaction ->
old: SELL new: SELL NetWorth -> old: null new: null NumEmployees -> old: null
new: null PotRevCurrFy -> old: null new: null PotRevNextFy -> old: null new:
null ReferenceUseFlag -> old: null new: null CotermDayMonth -> old: null new:
nullURL -> old: http:///www.scalar.com new: http:///www.scalar2.com LogoURL ->
old: null new: null DistiAccess -> old: null new: null YearEstd -> old: null
new: null AnalysisFy -> old: null new: null FyEndMonthCode -> old: null new:
null AccountManagerKey -> old: null new: null MessageURL -> old: null new: null
EmailAddress -> old: null new: nullCommerceCategory -> old: 2 new: 2
PartnerRefNum -> old: null new: null ParentKey -> old: null new: null
RootPartnerKey -> old: null new: null ParentCode -> old: null new: null
CustomField1 -> old: null new: null CustomField2 -> old: null new: null
© IBM Corporation 2011 67

CustomField3 -> old: null new: null CustomField4 -> old: null new: null
CustomField5 -> old: null new: null PartnerCom -> old: null new: null Storefront
-> old: null new: null URLName -> old: null new: null ContentType -> old: null
new: nullPartnerStatusCode -> old: 10 new: 10OrganizationType -> old:
DirectPartner new: DirectPartner InheritedPartnerStatusCode -> old: null new:
nullCreditLimit -> old: 0.0000 new: 0.00AvailableCredit -> old: 0.0000 new:
0.0000CreditCurrencyCode -> old: 23 new: 23 MaxAssignableReps -> old: null new:
null RemotePrices -> old: null new: null RemotePriceExpiryInterval -> old: null
new: nullCoopPercentage -> old: 0.000000 new: 0.000CoopAccountMax -> old:
0.000000 new: 0.00 PartnerID -> old: null new: nullOwnedBy -> old: 0 new:
0AccessKey -> old: 5601 new: 5601UpdateDate -> old: 2006-01-18 13:39:33.0 new:
2006-01-18 13:41:05.484UpdatedBy -> old: 0 new: 0CreateDate -> old: 2006-01-04
13:19:38.0 new: 2006-01-04 13:19:38.0CreatedBy -> old: 0 new: 0

You can dynamically change the logging level for any class in the Visual Modeler through the
administration UI. However, if you do this, then the change to the logging level is not persistent, and will
be lost if the servlet container is restarted. In addition, the logging is written out to the standard Appender
which may not be secure.

You should specify any audit logging by customizing the log4j.properties configuration file: this ensures
that the auditing will continue to be done even if the servlet container is restarted, and you can specify a
custom Appender to process the audit information. For example, you can specify that the Appender posts
the logging message to a remote Web server which can be secured independently of the Visual Modeler.

As an example, the following entries in the log4j.properties configuration file ensure that all changes to the
UserContact data object are audited:

log4j.logger.com.comergent.bean.simple.UserContactBean=info

log4j.appender.com.comergent.bean.simple.UserContactBean=com.comergent.logging
.ComergentRollingFileAppender

log4j.appender.com.comergent.bean.simple.UserContactBean.layout =
org.apache.log4j.PatternLayout

If you want to specify that a remote log server can connect asa client in order to save audit information from
the Visual Modeler, then you could specify:

log4j.appender.com.comergent.bean.simple.UserContactBean=org.apache.log4j.net.
SocketHubAppender

log4j.appender.com.comergent.bean.simple.UserContactBean.port=4321
© IBM Corporation 2011 68

© IBM Corporation 2011 69

Modularity and Generated Interfaces
The Visual Modeler has the following features which are designed to make implementations
easier to customize and upgrade:

Modules
Generated Interfaces

These features are related in that the interfaces are organized by modules and that changes to
interfaces may be contained to changes within individual modules.

By providing a means of delivering functionality in modules and by requiring that modules
make calls to other modules only through their external interfaces, the following benefits are
achieved:

It is easier to compartmentalize the functionality of applications.
It is easier to understand and manage the dependencies between parts of the Visual
Modeler.
It is easier to contain the customizations to single modules and understand what effect
changes made in a module have on the whole system.
Modules can be more easily upgraded independently of each other, minimizing the effect
that an upgrade may have.
Upgrades to modules that have not been customized will not effect customizations made
in other modules.
New functionality can be delivered in the form of a module that may be dropped into an
existing deployment of the Visual Modeler.

© I
Modules
The Visual Modeler is developed as a set of interdependent modules that conform to a
common organizational structure. In general, each module corresponds to a functional
component of the Visual Modeler such as an application or a component of the Visual Modeler
platform. Some modules may support both a Java API and a user interface whereas other may
just support a Java API provided to other modules. Some modules provide a set of “helper”
classes, JSP pages, and other files such as Javascript files and images which are used by a
number of other modules.

In general, each module has the following structure:

Java classes: organized into three trees. At build time, the directories for all of the
modules are assembled in to a single tree under the com.comergent package.

external API interfaces: used by other modules to access functionality provided by
the module. In general, when one module makes a call to another module’s class, it
must do so through the other module’s external API. This is the com.comergent.api
package for the module. Additionally, the
com.comergent.appservices.appServiceUtils.OFApiHelper is used to call the Sterling
Selling and Fulfillment Foundation XAPIs.
implementation classes: the implementation of the external API interfaces. When
another module makes a call to the module’s external API, then the actual classes
used are the implementing classes of the module’s interface. The implementation
packages may include internal classes: used by the implementation classes, but not
exposed to outside world and not part of the supported Javadoc. This is the
com.comergent.apps or com.comergent.appservices package for the module.
reference components: Controller classes and JSP pages always comprise part of the
reference implementation and their source is provided with the Visual Modeler.
Resource bundles are also provided as part of the reference. This is the
com.comergent.reference package for the module.

JSP pages: possibly organized into directories depending on the organization of the
module. They should always access other modules’ classes through the external APIs
exposed by the other modules. This ensures that JSP pages can be re-used from release to
release provided that the external APIs are supported.
Resource bundles, Javascript, and static files (such as images and HTML fragments).
Configuration files specific to the module such as MessageTypes.xml files and business
rules.

Module Interfaces
Each module must provide an external interface so that all calls to Java classes and interfaces
within the module are invoked through the interface. This external interface provides a
comprehensive set of Javadoc pages so that writers of other modules can use the external
interface reliably and easily.
BM Corporation 2011 70

The external interface for each module will typically be a combination of handcrafted interfaces and
automatically-generated interfaces. Most modules provide handcrafted interfaces for presentation beans
that enable presentation beans to manipulate data beyond the simple accessor methods of the generated data
bean interfaces. The presentation beans usually wrap a data bean and implement the same interfaces, but in
addition they implement helper methods and some business logic.

The external interfaces are organized under the following main packages:

com.comergent.api: this package has all the module external APIs. These are organized into:
apps: these are the application hand-crafted APIs. Typically, these are presentation bean interfaces,
utility interfaces, and factory classes.
appservices: these are the packages provided by the service modules used by other applications.
dcm: these are the external APIs offered by the Visual Modeler platform.

com.comergent.bean.simple: this package has all the automatically-generated bean interfaces and the
data bean classes themselves.

The generated interfaces are provided for each of the data objects declared in the XML schema files. These
are organized to provide appropriate levels of access to the data fields of the underlying data beans. This
helps to ensure that there is a clearer separation between presentation and business logic in the Visual
Modeler. See "Generated Interfaces" for more information about the generated interfaces.

Invoking Interfaces
You can invoke an interface from a Java class by casting any object or child interface to the interface and
then invoke any method that the interface declares. In the Visual Modeler, use one of the following
techniques to do this:

Using the Object Manager
Using Factory Classes

Each module uses one or other of these techniques, but not both. As you work on an existing module or
create a new one, be consistent in how you invoke the interfaces. It will make it easier for your colleagues
to work on the same module.

In general, you should always try to work with interfaces provided by the com.comergent.api packages:
these are the interfaces that the modules will support from one release to the next, even though the
underlying implementations of the interfaces may change.

Using the Object Manager
You can use the ObjectManager class to return an appropriate interface as follows. Suppose that you want
to retrieve the IAccProduct interface to set the data fields of a product. Then make a call along these lines:

IAccProduct temp_IAccProduct =

(com.comergent.bean.simple.IAccProduct)
com.comergent.dcm.util.OMWrapper.getObject(

"com.comergent.bean.simple.IAccProduct");
© IBM Corporation 2011 71

Provided that there is an entry in the ObjectMap.xml file that specifies the object to be returned and
provided that the object implements the IAccProduct interface, then this call will succeed and methods on
the interface can be invoked. For example, if the ObjectMap.xml file contains:

<Object ID="com.comergent.bean.simple.IAccProduct">
<ClassName>com.comergent.bean.simple.ProductBean</ClassName>

Then, the ObjectManager returns a com.comergent.bean.simple.ProductBean object and this can be cast to
the IAccProduct interface because the com.comergent.bean.simple.ProductBean class implements the
com.comergent.bean.simple.IAccProduct interface.

Using Factory Classes
Calls to an interface can be provided by Factory classes that return an instance of the interface. For example,
the package com.comergent.api.apps.commerce provides a public interface IInquiryListFactory. If another
module needs an instance of this Factory interface, then it calls the CommerceAPI class’s getFactory(int i)
method. The int parameter determines what sort of Factory class is returned. In turn, the calling module can
now invoke methods on the IInquiryListFactory to return inquiry list interfaces of the appropriate type. For
example, getInquiryList(Long listKey, boolean bFillPrices) returns an object that implements the
IInquiryList interface.
© IBM Corporation 2011 72

© I
Generated Interfaces
When you need to access data on a particular data object, you must use the generated interfaces
that each data object provides. These generated interfaces are created and compiled when the
SDK generateBean target is run as part of the deployment of your Visual Modeler.

For each data object declared as a DataObject within the DsRecipes.xml file, and for any
parent, reference, or child data objects, the following classes and interfaces are generated and
compiled in the com.comergent.bean.simple package:

<Name>.java: this is the data bean class. It implements the interfaces listed here. In
addition, if the data object extends another data object, then the bean extends the
<Parent>.java bean.
IAcc<Name>.java: this interface extends the IRd<Name>.java by providing the write
(set) accessor methods on all of the data fields of the data object. In addition, if the data
object extends another data object, then the IAcc interface extends the
IAcc<Parent>.java interface.
IData<Name>.java: this interface extends the IAcc<Name>.java by providing restore()
and persist() methods on the data object. In addition, if the data object extends another
data object, then the IData interface extends the IData<Parent>.java interface.
IRd<Name>.java: this interface provides the read-only (get) accessor methods to the
data fields of the data object. In addition, if the data object extends another data object,
then the IRd interface extends the IRd<Parent>.java interface.
In addition, list beans also implement the IData<Name>List.java interface. Each list
interface extends the IDataList.java interface as well as the list interface of any parent
object.

In general, you should use the IRd interface for any objects to be passed to JSP pages so that
the objects are effectively read-only. Only use objects that implement the IData interface when
you know that you need to either restore or persist the data object.

Example of a Generated Interface
Consider the ACL data object: the ACL.xml file reads:

<?xml version="1.0"?>
<DataObject Name="ACL" Extends="C3PrimaryRW"

ExternalName="CMGT_ACLS"
Access="RWID" Ordinality="1"
ObjectType="JDBC" Version="5.0">
<KeyFields>
<KeyField Name="AccessKey" ExternalName="ACL_KEY"
KeyGenerator="ACLKey"/>
</KeyFields>
<DataFieldList>
<DataField Name="AccessKey"

Writable="n" Mandatory="n"
ExternalFieldName="ACL_KEY"/>
BM Corporation 2011 73

<DataField Name="ACLName"
Writable="y" Mandatory="n"
ExternalFieldName="NAME"/>

</DataFieldList>
<ChildDataObject Name="Access" />

</DataObject>

Consequently, the IRdACL.java class declares:

public interface IRdACL extends IRdC3PrimaryRW

and exposes the methods:

public Long getAccessKey();
public String getACLName();

The IAccACL.java class declares:

public interface IAccACL extends IAccC3PrimaryRW, IRdACL

and exposes the methods:

public void setACLName(String value) throws ICCException;
public void addAccess(AccessBean bean) throws ICCException;

The IDataACL.java class declares:

public interface IDataACL extends IAccACL,IDataC3PrimaryRW, IData

In general, this interface may declare no additional methods beyond those declared in the IData interface
because all the standard methods to read and write data from external data sources are declared in this
interface.
© IBM Corporation 2011 74

Implementing Logic Classes
This topic and the next two topics present a description of how to implement business logic classes (BLCs)
at an implementation of the Visual Modeler. Before reading this topic, you must have a working
understanding of the basic architecture of the Visual Modeler and of Java.

Note: The use of BLCs is deprecated. In general, new applications should use bizlets, controllers, and
BizAPIs to implement their business logic.

Key Concepts
To understand fully how the Visual Modeler works as an application, you must understand its architecture.

An installation of Visual Modeler processes requests as they are received from users’ browsers, and
messages from other Visual Modelers and from external systems. You must configure the Visual Modeler
to process each type of request and message.

The core of the Visual Modeler is the Sterling Commerce Manager. This powerful and flexible server is
designed to seamlessly integrate a network of channel partners and the external systems that make up the
e-commerce environment of each partner.

Each Visual Modeler server in the network of sales partners works both as a server in relation to inbound
requests from browsers and as a client as it retrieves information from other Visual Modeler servers and
external systems.

To customize the Visual Modeler in your environment, you need to consider how the system retrieves data
from your external systems. In general, you can use the schema and Service classes to retrieve data from a
local database source or from another Visual Modeler server by exchanging messages. However, you have
to produce custom BLCs to retrieve information from an external system other than these.

Application Logic Classes
Application logic classes are implemented as bizAPI, business logic , or controller classes.

bizAPI classes are used to manage the business logic of business objects. Conceptually, each bizAPI
class corresponds to a business object and its methods correspond to the actions that can be performed
on the business object. For example, the OrderInquiryList bizAPI class provides the following
methods: duplicate(), copyLineItem(), and changeOwner() which correspond to actions that can be
performed on a product inquiry list. It implements the
com.comergent.api.apps.orderMgmt.oil.IOrderInquiryList interface.
The bizAPI classes are defined in the com.comergent.apps.<application>.bizAPI packages. Typically, they
implement an interface declared in the corresponding com.comergent.api.apps.<application> package.
For example, the Order bizAPI class is in the com.comergent.apps.orderMgmt.orders.bizAPI package. It
extends the OrderInquiryList class and implements the com.comergent.api.apps.orderMgmt.orders.IOrder
interface.

Each BLC is a subclass of the BLC abstract class. This class implements the ApplicationObject
interface. BLCs perform the business logic of your implementation of the Visual Modeler. Each BLC
contains a table of business objects such as session, user, and shopping cart for example. In executing
the service() method of a BLC, it invokes the persist() and restore() methods of these business objects
© IBM Corporation 2011 75

Note: In general, the use of BLC classes is deprecated. You should use either controllers or bizAPI classes
to manage your business logic.

Some Visual Modeler use controller classes to perform business logic. These classes are to be found in
the com.comergent.reference.apps.<application>.controller packages for each application.

The Visual Modeler comes with a number of standard bizAPI classes, BLCs, controllers, and JSP pages.
However, you may need to create new logic classes or modify the existing classes.

Business Objects
See "Introducing Data Beans and Business Objects" topic for more information.

XML Schema
You should manage data access using the the schema and Service classes.

Naming Service
To retrieve parameters at runtime, the Visual Modeler provides a naming service to access either a flat file
or a database to recover parameters.

Application logic classes can invoke a naming service by calling the static class NamingManager methods
getInstance() and getInstance(int i). Both these methods return an object that implements the
NamingService interface.

If no integer argument is provided, then an object of default type is created, either a
NamingServiceProperties object or a NamingServiceDatabase object.
If the integer argument is the constant NamingManager.DATABASE, then a NamingServiceDatabase
object is created.
If the integer argument is the constant NamingManager.PROPERTIES, then a
NamingServiceProperties object is created.
If the integer argument is not one of these two, then an object of default type is created.

In all cases, the Visual Modeler accesses the Comergent.xml file to determine exactly how the
NamingService object should be created:

If a NamingServiceDatabase object is to be created, then the NamingManager.database entries are
used to specify the connection to the database.
If a NamingServiceProperties object is to be created, then the NamingManager.properties entry is used
to determine which properties file holds the parameter values.

Once the NamingService object is created, you use the methods listed below to retrieve the parameters as a
NamingResult class:

public NamingResult get(int key)
public NamingResult get(Long key)
public NamingResult get(String key)
© IBM Corporation 2011 76

The key parameter provides a means of retrieving only those parameters whose name begins with the key
string.

The NamingResult class provides the get(String parameter) method to return the value of the parameter.

NamingService Example
For example the following code fragment recovers the value of the message URL parameter for a distributor
referred to by its partner key.

NamingService namingService = NamingManager.getInstance();
NamingResult namingResult = namingService.get(partnerKey);
String url = namingResult.get(NamingResult.MESSAGE_URL);

Note: By default, the type of NamingService created is a NamingServiceDatabase object because in
Comergent.xml the NamingManager defaultType element is set to "database".
© IBM Corporation 2011 77

Software Development Kit
You can use the Visual Modeler Software Development Kit (SDK) to install and customize your
implementation of the Visual Modeler. The HTML documentation provided with each version of the
SDKprovides an overview of how the SDK works and how to use it to manage projects. This topic describes
the basic structure of a customization project. Follow the guidelines here to organize your project so that it
follows the customizations guidelines.

Project Organization
Each project built using the SDK is created on top of a release of the Visual Modeler. When you create the
project using the newproject target, the SDK creates a set of project files that are suitable for that release.
All of the customizations that you make in the project are made by adding files to the project. Files can be
added to the project in these ways:

Use the customize target to copy a file from the release into the project. When you use the customize
target, the file is automatically copied into the appopriate sub-directory of the project.
Create the file manually in the appopriate sub-directory of the project.

See "Project File and Directory Locations" for information about where files must be located.

Project File and Directory Locations
In this section, we assume that you created a project called project, and that you have a project directory
called sdk_home/projects/project/. Ensure that each of the project files is in the appropriate location under
the project directory as follows:

Java source files: these must be placed under the project/src/ directory, and follow the package
organization for the Visual Modeler.
JSP pages: these are organized by module and locale under the project/WEB-INF/web/ directory.
Schema files: these comprise the data object files and the supporting data services files. All your
customizations should be maintained under the project/WEB-INF/schema/custom/ directory. Make
sure that the schemaRepositoryExtn element is set to “WEB-INF/schema/custom”.

Java Source Files
In the project/src/ directory, follow these guidelines to organize your customizations to the Visual Modeler:

Use the com/comergent/api/ packages to add your extensions to the Visual Modeler API. In general,
you should create new classes that extend the existing API: do not overwrite the release API because
that can affect any upgrade.
Use the com/comergent/apps/ and com/comergent/appservices/ packages to add implementation
classes: these may be entirely new classes or new classes that extend existing implementation classes.
Use the com/comergent/reference/ packages for controller classes. You can customize existing
controller classes or create new controller classes.
© IBM Corporation 2011 78

JSP Pages
In the project/WEB-INF/web/ directory, follow these guidelines to organize your customizations to the
Visual Modeler:

Where appropriate, use the existing organization of JSP pages to add new JSP pages or to customize
existing ones.
If you are adding a new functionality module, then create a new directory under the appropriate
locale(s) for the module, and follow the same naming conventionas you do for Java classes created for
the module.

Schema Files
In the project/WEB-INF/schema/custom/ directory, follow these guidelines to organize your
customizations to the Visual Modeler:

To add new data objects:
Put the XML definition of the data object in project/WEB-INF/schema/custom/. For example,
create the file project/WEB-INF/schema/custom/CustComment.xml
Modify project/WEB-INF/schema/custom/DsBusinessObjects.xml by adding the new business
object. For example:

<?xml version="1.0"?>
<Schema Name="project" Description="project Custom Schema"

Version="6.0">
<BusinessObject Name="CustComment" Version="6.0"

Description="CustComment BusinessObject"/>
</Schema>

Modify project/WEB-INF/schema/custom/DsDataElements.xml by adding the new data
elements for the header and list data objects, together with any new fields declared by the data
object. For example:

<?xml version="1.0"?>
<Schema Name="project" Description="project Custom Schema"

Version="6.0">
<DataElement Name="CustComment" Description="Customer Comment data

object"
DataType="HEADER"/>

<DataElement Name="CustCommentList" Description="Customer Comment list
data

object" DataType="HEADER"/>
<DataElement Name="CustCommentKey" Description="Customer Comment Key"

DataType="LONG" MaxLength="20"/>
</Schema>

Modify project/WEB-INF/schema/custom/DsRecipes.xml by adding a recipe element. For
example:

<Schema Name="project" Description="project Custom Schema"
Version="6.0">
© IBM Corporation 2011 79

<Recipe Name="CustComment" BusinessObject="CustComment"
Description="Default Approvals List Recipe" Version="6.0">

<DataObjectList>

<DataObject Name="CustComment" Access="RWID"
DataSourceName="ENTERPRISE" Ordinality="n"
Version="6.0"/>

</DataObjectList>
</Recipe>

</Schema>

Modify the appropriate key generator file, for example
project/WEB-INF/schema/custom/OracleKeyGenerators.xml, by adding any new keys
required:

<?xml version="1.0"?>

<Schema Description="project Custom Schema" Name="project"
Version="6.0">

<KeyGenerator Name="CustCommentKey" KeyProcedureName="CUSTCOMMENTKEY"
GeneratorType="PROCEDURE" />

</Schema>
© IBM Corporation 2011 80

Visual Modeler Localization
This topic describes localization issues to consider while you work on Visual Modeler applications.

Overview
The Visual Modeler has built-in support for:

multiple currencies
multiple languages
number and date formats
character sets

You can also manage other aspects of localization for specific markets such as:

local laws and regulations
currency processing
shipping and export information
taxes

Support for internationalization is managed using locales. Each locale identifies a language and country. By
identifying which locale is to be used when displaying information to a user, you ensure that the user sees
information that is both specific to their locale and presented as they would expect to see it.

When users log in to the Visual Modeler, a locale is assigned to the session: this is the preferred locale
specified in the user’s profile. Users can change their preferred locale in their user profile and the change
takes take effect the next time they log in. User administrators can change a user’s preferred locale just as
they can change other aspects of a user’s profile.

The system default locale is specified in the Internationalization.xml configuration file using the
defaultSystemLocale element. You can specify a default locale for each language: see "Failover Behavior"
for more information.

The Visual Modeler offers full Unicode support for data entry and display.

A significant amount of localization can be performed using Java ResourceBundles: see "Resource Bundles
and Formats" for more details.

Supporting Locales
If you plan to implement the Visual Modeler to provide support for more than the en_US locale, then you
must produce pages to reflect local language and other locale-specific information (such as office locations).

Presentation and Session Locales
When a user logs in to the Visual Modeler, the authentication process retrieves their preferred locale: this
is defined in their user profile. The system makes use of two logically distinct locales:
© IBM Corporation 2011 81

session locale: this determines what data is retrieved for data objects from the Knowledgebase.
presentation locale: this determines what JSP pages and resource bundles are used to render HTML
pages to the user.

In general, the set of locales that you support as presentation locales must be a subset of the possible session
locales. For example, you choose to maintain fr_CA, fr_CH, and fr_FR as session locales, but only support
fr_FR and fr_CA as presentation locales.

When a user first logs in, the system calculates a presentation locale for the user session as follows:

1. If the user’s preferred locale is declared in the Visual Modeler web.xml file, then set this to be the
presentation locale.

2. If not, then consult the Internationalization.xml file: if the useCountryDefaulting element is set to
"true", then identify the default country locale for the language of the user’s preferred locale. Check to
see if the default country locale is declared in the web.xml file. If it is, then set the presentation locale
to this.

3. If either the useCountryDefaulting element is set to "false" or the default country locale is not present
in the web.xml file, and if the useGeneralDefaulting element is set to "true", then set the user’s
presentation locale to the default system locale specified by the defaultSystemLocale element.

4. If the Defaulting elements are set to false or if no locale is identified that is declared in the web.xml
file, then the presentation locale is set to the session locale.

This presentation locale is used to determine the user’s experience as they navigate through the Visual
Modeler by controlling which JSP pages and properties files are used to render the Web pages that they see.
At the same time, the preferred locale is also set as their session locale: this session locale is used to
determine what data is retrieved from the database when localized data objects are displayed to the user.

Note: You must make sure that every locale you create in the database either has a corresponding set of
entries in the web.xml file or that its default country locale has entries in the web.xml file and you
enable country defaulting. If you do not do this, then some users may not be able to access the
system.

JSP Pages and Properties Files
1. For each JSP page, there must be at least one JSP page located in the appropriate module sub-directory

under the system default locale directory. When you first install the Visual Modeler, the default system
locale is set to en_US. Consequently a full set of JSP pages is provided under
debs_home/SterlingWEB-INF/web/en/US/. If you change the default system locale, then take care to
fully populate the corresonding directories for the new locale.

2. All visible text on each page is declared using the Comergent tag library text tag or the corresponding
cmgtText() method. For example:
<cmgt:text
id='cmgt_channelMgmt/channelCartDisplay/ChannelCartDisplayData_7'
bundle='channelMgmt.channelCartDisplay.ChannelCartDisplayDataResources'>Bui
© IBM Corporation 2011 82

ld Product List
</cmgt:text>

or

String title =
cmgtText("cmgt_commerce/search/AdvancedSearchBody_2",
"Inquiry Lists Search");

The bundle attribute must correspond to a file in the com.comergent.reference.jsp package of the class
tree. For the example above, there must be a file called
ChannelCartDisplayDataResource.properties in the
debs_home/Sterling/WEB-INF/classes/com/comergent/reference/jsp/channelMgmt/channelCart
Display/ directory. The id attribute must be unique within the properties file. For the example above,
there should be a line of the form:
cmgt_channelMgmt/channelCartDisplay/ChannelCartDisplayData_7=Build Product
List

3. For each additional supported locale (say, la_CO), you must copy the following directories from
debs_home/Sterling/WEB-INF/web/en/US/ to debs_home/Sterling/WEB-INF/web/la/CO/:

cic/
common/

home/
4. For each additional supported locale (say, la_CO) and for each JSP page, you must:

a. Either create a new JSP page for the locale and put it in the corresponding directory location in the
Web application: a directory under debs_home/Sterling/WEB-INF/web/la/CO/. If the same page
can be used for more than one locale in the same language (for example, fr_FR and fr_CA), then
make sure that you put it in the default locale for the language. See "Failover Behavior" for more
information about default locales for languages.

b. Or prepare a properties file that contains the appropriate text for each id. These properties files are
organized so that there is one for each JSP page and JSP fragment.
HTML and Javascript characters such as "<", ">", "’", and so on must not be included in the
property values. These characters must be escaped using the HTML or Javascript mechanisms to
escape characters. For example: use "<" for "<" in HTML and "\’" for "’" in Javascript.
The properties files must conform to the Java standard for properties files used by resource
bundles. Specifically, they should follow this naming convention: <Name of JSP
page>Resources_la_CO.properties. They must be text files in which each line should take this
form:
cmgt_module/package/JSPname_n=Display text for this locale

For example:

cmgt_channelMgmt/channelCartDisplay/
ChannelCartDisplayData_7=Build Product List

The properties files are all located in the
debs_home/Sterling/WEB-INF/classes/com/comergent/reference/jsp/ directory and are organized by
module within this directory in the same way that the module JSP pages are organized within a module. Note
© IBM Corporation 2011 83

that if you want to change the location of these resource bundles, then you must customize the text tag to
retrieve the resource bundles from their new location.

If you add text to a JSP page, then take care to update the corresponding locale JSP pages or properties files,
either with amended text for an existing tag id or by adding a new id.

Note the following:

The length of the translated text can be significantly different: this can affect the layout of a Web page.
Drop-down lists and Javascript functions can have text that if translated will affect the logic of the
Visual Modeler. See "Javascript" and "JSP Pages".
Local regulations can effect the display of information (such as the display of prices in both Euros and
a local currency).
Take particular care if the logical flow of pages must change to reflect local practice (such as the
display of an export notice or tax information).

Debugging
You can use the debugJSPResouceBundle element of the Internationalization.xml configuration file to
help you identify missing strings. Set this element to "true" and if a string is missing from the referenced
resource bundle, then an error message is displayed on the browser page. You should set this value to "false"
in your production systems.

Failover Behavior
This section describes what happens when resources (JSP pages or properties) are not defined for the user’s
current presentation locale. Note that the failover behaviors are slightly different for JSP pages and resource
bundles:

JSP pages can fail over from a specific locale to the default country for the language locale and then to
the system default locale. For example: fr_CA to fr_FR to en_US.
Resource bundles fail over according to the Java specification: *_fr_CA.properties to *_fr.properties
to *.properties.

Two properties in the Internationalization.xml configuration file are used to manage failover behavior for
JSP pages:

useCountryDefaulting: if this is set to true, then default to the country specifed in the appropriate
language element if no resource is present for the presentation locale.
useGeneralDefaulting: if this is set to true, then default to the system locale if no resource is available
for the presentation locale.

Resource Bundles
You do not need to translate all text strings into each locale. If a text string is not present for a given id in a
resource bundle properties file, then the standard Java failover process is followed. For example, if the
ChannelCartDisplayDataResource_fr_CA.properties does not define the
cmgt_channelMgmt/channelCartDisplay/ChannelCartDisplayData_7 string, then, if it exists the
ChannelCartDisplayDataResource_fr.properties file is consulted. If this file does not exist or does not
have an entry for this id, then the ChannelCartDisplayDataResource.properties file is consulted.
© IBM Corporation 2011 84

JSP Pages
Not all the JSP pages need be available for all supported locales. For example, you may choose to use en_US
pages for all but a small number of pages viewed by en_CA users. This section describes what happens
when a message type is processed:

The request is forwarded to the JSP page specified by the JSPMapping element of the message type in the
appropriate MessageTypes.xml.

1. If the JSP page does exist for the current locale, then this page is used to generate the Web page.
2. If the JSP page does not exist for the current locale, then the failover mechanism identifies the default

locale for the language of the current locale. This is declared as the defaultCountry element for the
language in the Internationalization.xml configuration file.

3. If a JSP page exists in the language-default locale, then this page is used to generate the Web page. For
example, the following element in Internationalization.xml specifies that US is the default country
for the en language locales, and so if a JSP page is not present for the en_CA locale, then the
corresponding en_US JSP page is used.

4. <en visible="false">
<defaultCountry ...>US</defaultCountry>
</en>

5. If there does not exist a JSP page for the default country, then the failover mechanism identifies the
default system locale. This is declared as the value of the defaultSystemLocale element of the
Internationalization.xml file. If a JSP page exists in the system default locale, then this page is used
to generate the Web page.

6. Finally, if no JSP page exists in the default system locale, then an exception is thrown and an error
page is displayed.

Methods to Retrieve Locales
Most of the time you should be able to make use of the Visual Modeler’s built-in support to display
appropriate content to users for their locales. If you do need to manually access locales, then the
ComergentI18N class can be used. It provides the following methods:

getDefaultLocale(): returns the system default locale.
getComergentLocale(boolean b): if b is true, then returns the user’s presentation locale; otherwise
returns the user’s session locale.
findPresentationLocale(Locale sessionLocale): used to calculate what presentation locale should be
used for a given session locale.

Using Properties Files in Code
You can make use of properties files in your Java code too. For example, to retrieve the locale-specific
String that corresponds to the String keyString defined in the
com.comergent.reference.jsp.AdvisorBodyResources.properties file, use:

String temp_NamedPopertiesFile =
"com.comergent.reference.jsp.AdvisorBodyResources.properties";
© IBM Corporation 2011 85

ResourceBundle temp_ResourceBundle =
com.comergent.dcm.util.ComergentI18N.-
getBundle(temp_NamedPopertiesFile);

String temp_LocalisedString =
temp_ResourceBundle.getString("keyString");

This uses the current locale of the user as stored in the user’s session. If you want to force the use of a
different locale, then use:

Locale specific_Locale = new Locale("fr", "CA");
String temp_NamedPopertiesFile =

"com.comergent.reference.jsp.AdvisorBodyResources.properties";
ResourceBundle temp_ResourceBundle =

com.comergent.dcm.util.ComergentI18N.-
getBundle(temp_NamedPopertiesFile, specific_Locale);

String temp_LocalisedString =
temp_ResourceBundle.getString("keyString");

Data for Internationalization
If you expect enterprise users and end-users to be entering data in multi-byte characters, then you need to
consider the length of data fields and their corresponding database table columns. In our experience, data
entered into the Visual Modeler that uses multi-byte characters can be up to three times as long in the
database as the strings used for the en_US locale. Consequently, you should review the length of fields in
which you expect data to be entered that will take multi-byte characters: notably name and description
fields.

If you want to change the length of fields, then bear in mind that you have to both change them in the
DsDataElements.xml configuration file and make the corresponding change to the SQL script that is used
to generate the Knowledgebase schema.

For example, to make the Description field of the Product data object suitably long for multi-byte characters,
you must do the following:

1. Identify the data field that is used to hold product descriptions. Because the Product data object is a
localizable data object (Localized=“y”), this is the Description field of the ProductLocale data object.
Its corresponding database table and column is CMGT_PRODUCT_LOCALE.DESCRIPTION.
<DataField Name="Description" ExternalFieldName="DESCRIPTION"

Mandatory="n" Writable="y"/>

2. Suppose that you want to allow for descriptions that are up to 240 characters long:
<DataElement Name="Description" DataType="STRING"

Description="Description" MaxLength="240" />
3. Change the corresponding SQL statement that creates the CMGT_PRODUCT_LOCALE table so that

the DESCRIPTION column is set to VARCHAR2(720):
DESCRIPTION VARCHAR2(720) DEFAULT 'Not available',

4. Run the appropriate SDK targets (merge and createDB) to make the changes to your implementation of
the Visual Modeler.
© IBM Corporation 2011 86

Note that in this example, the Description data field is widely used by many different data objects and so
changing its definition in the DsDataElements.xml configuraton file can have unanticipated side-effects
elsewhere. An alternative approach is to create a new data field called ProductDescription and to use this in
the ProductLocale data object. Thus, you could put in the ProductLocale.xml file:

<DataField Name="ProductDescription"
ExternalFieldName="DESCRIPTION" Mandatory="n" Writable="y"/>

Then put in the DsDataElements.xml configuration file:

<DataElement Name="ProductDescription" DataType="STRING"
Description="This is the product description field"
MaxLength="240" />

Note: If you provide a Javascript methods to validate that users have entered valid data in fields, then when
you check for length of fields, check for the length specified in the corresponding DataElement.

Email Templates
If your system supports languages other than English and your installation of the Visual Modeler uses email
templates to generate messages that are sent to users, then bear in mind that these need to be translated.

Release 6.4 has introduced the ability to use JSP pages to generate email messages: This provides support
for internationalizing email messages by using the existing framework for internationaizing JSP pages.

For legacy applications, you can use the default templates provided by the Visual Modeler: these are located
in debs_home/Sterling/WEB-INF/templates/.

HTML Pages
Static HTML pages must be translated where appropriate. If you want to provide support for multiple
languages simultaneously, then you should take care to produce pages for each language. Provided that you
maintain the location of these pages consistently across your locale directory structure, then the relative
references to these pages will always resolve correctly to the correct HTML page.

For example, the following JSP fragment will dynamically generated URLs to point to a locale-specific
Example.html page:

<A HREF="<cmgt:link app="catalog">
/static/Example.html
</cmgt:link>">
resourceBundle.getString("ExamplePage")

In this example, a resource bundle is used to determine the displayed text for the link.

Images
In general, use images that do not have embedded text. Doing so, ensures that you can use the same images
in more than one locale: thereby reducing the cost of localization and maintenance.
© IBM Corporation 2011 87

However, where necessary you should provide localized versions of images. Just as for static HTML pages,
you can use relative URLs to ensure that locale-specific images are retrieved from the correct location
relative to the JSP page.

In particular, remember that all of the buttons in externally facing pages are image buttons with text. Where
necessary, you should create localized versions of each button. The image source URLs can then be
generated as follows:

<IMG ALT="Locale-specific alternate text goes here"
SRC="../images/button.gif">

Javascript
Take care to localize displayed text used in your Javascript. For example, alert dialog boxes should reflect
the user’s locale in the displayed text.

Some Javascript files are included in the Web pages along these lines:
<script language='JavaScript' src='../js/genericUtil.js'>
</script>

You must maintain these Javascript files for each locale so that the browser can correctly include these
in the generated Web pages.
When Javascript is defined within a JSP page or an included JSP fragment, then display text must be
wrapped in the text tag. For example:
alert("<cmgt:text id="*">Product ID is missing.</cmgt:text>");

When these tags are processed as part of the SDK tool, then the id attribute is changed into a unique
ID, and the ID and body of the tag are added to the resource bundle for the JSP page or fragment.

JSP Pages
In general, all localization for labels, explanatory text, populated lists, and locale-specific formatting for
dates and currencies should be reflected in the JSP pages created for a locale.

A useful organizing principle is to create a HashMap of all localized strings on page, and then to refer to
this throughout the rest of the page. For example:

HashMap localized = new HashMap();
localized.put("TaskListHeader",

cmgtText("cmgt_taskMgr/TaskWorkspaceData_3","Task List:"));
localized.put("QuickSearchTitle",

cmgtText("cmgt_taskMgr/TaskWorkspaceData_4","Search for Tasks"));
localized.put("TaskID",

cmgtText("cmgt_taskMgr/TaskWorkspaceData_5","ID"));
localized.put("TaskName",

cmgtText("cmgt_taskMgr/TaskWorkspaceData_6","Name"));
localized.put("Status",

cmgtText("cmgt_taskMgr/TaskWorkspaceData_7","Status"));
localized.put("Priority",

cmgtText("cmgt_taskMgr/TaskWorkspaceData_8","Priority"));
localized.put("CreateDate",
© IBM Corporation 2011 88

cmgtText("cmgt_taskMgr/TaskWorkspaceData_9","Create Date"));
request.setAttribute("localized", localized);

You can reference these strings using the scripting capabilities along these lines:

<cic:span css="banner" value="${localized['TaskListHeader']}"/>

This technique has the advantages that JSP pages are more readable, that you can re-use localized strings
easily, and it is closer to the JSF model.

See "Calendar Widget" for information about localizing this UI component. For example, populate a
drop-down list of days of the week for a French-language locale as follows:

<SELECT Name="DayOfWeek">
<OPTION VALUE=0>dimanche</OPTION>
<OPTION VALUE=1>lundi</OPTION>
<OPTION VALUE=2>mardi</OPTION>
<OPTION VALUE=3>mercredi</OPTION>
<OPTION VALUE=4>jeudi</OPTION>
<OPTION VALUE=5>juin</OPTION>
<OPTION VALUE=6>vendredi</OPTION>
<OPTION VALUE=7>samedi</OPTION>
</SELECT>

You can also use resource bundles to manage locale-specific display information. For example, this would
be an alternate method for populating a drop-down list of days of the week in the Gregorian calendar:

<SELECT Name="DayOfWeek">
<OPTION VALUE=0><%= resourceBundle.getString("Sunday") %></OPTION>
<OPTION VALUE=1><%= resourceBundle.getString("Monday") %></OPTION>
<OPTION VALUE=2><%= resourceBundle.getString("Tuesday") %></OPTION>
<OPTION VALUE=3><%= resourceBundle.getString("Wednesday") %></OPTION>
<OPTION VALUE=4><%= resourceBundle.getString("Thursday") %></OPTION>
<OPTION VALUE=5><%= resourceBundle.getString("Friday") %></OPTION>
<OPTION VALUE=6><%= resourceBundle.getString("Saturday") %></OPTION>
</SELECT>

Calendar Widget
When you use the calendar widget in a JSP page, then it must be localized. You do this by customizing the
I18N.js Javascript file to be found in the locale directory
debs_home/Sterling//la/CO/js/. For example, to support the de_DE locale, create a file called
debs_home/Sterling/de/DE/js/I18N.js that reads:

// DEFAULT LOCALE (English)
var MONTH_NAMES = new Array('Januar', 'Februar', 'Maerz', 'April', 'Mai',
'Juni', 'Juli', 'August', 'September', 'Oktober', 'November', 'Dezember',
'Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Okt', 'Nov',
'Dez');
var DAYOFWEEK_HEADER_NAMES = new Array("So","Mo","Di","Mi","Do","Fr","Sa");
var WEEK_START_DAY = 0;
// Create CalendarPopup object
var popupCal = new CalendarPopup();
© IBM Corporation 2011 89

Style Sheets
The Visual Modeler uses cascading style sheets to set the formatting of HTML elements. If you use fonts
for a specific locale, then make sure that you create a style sheet that specifies these fonts. For each locale
save this locale-specific style sheet in the same relative location.

In JSP pages, you can include a locale-specific cascading style sheet, say customer.css, with the following:

<LINK rel="stylesheet" href="../css/customer.css" type="text/css">

System Properties
In general, the configuration files only present data to administrators. To localize these files, you should not
need to change the names or values of elements, but you should consider changing the Help text for
elements. Note that there is only one set of configuration files for each Visual Modeler, and so you should
use the language of the default system locale for these files.

Resource Bundles and Formats

PropertyResourceBundles and Properties Files
The Visual Modeler makes extensive use of properties files to manage locale-specific data. These have
replaced the use of ResourceBundle Java classes. See "Supporting Locales" for more details.

ResourceBundles
A useful mechanism to manage localization is the use of Java ResourceBundles

Note: The use of resource bundles classes in the Visual Modeler is deprecated. You should use properties
files as described in "Supporting Locales".

These are classes that manage locale-specific information. ResourceBundle classes used in the Visual
Modeler all extend the ListResourceBundle. These define the mapping between name Strings and the value
Strings returned when the getString (String nameString) method is invoked.

By following the naming convention for ResourceBundles, you can create locale-specific ResourceBundles
for all of the locales you need to support. For example, you can create the following ResourceBundles to be
used in a new application called Inventory:

InventoryResourceBundle
InventoryResourceBundle_fr
InventoryResourceBundle_fr_FR
InventoryResourceBundle_fr_CA

The following scriptlet can retrieve the appropriate resource bundle for use in a JSP page:

<%
String baseName = "AdvisorResourceBundle";
ResourceBundle resourceBundle =
© IBM Corporation 2011 90

AdvisorResourceBundle.getBundle (baseName,
session.getLocale());

%>

NumberFormats and DateFormats
You can use the NumberFormat class to help you display numbers in locale-specific ways. You create an
instance of a NumberFormat by passing in the locale to the constructor.

For example, the following scriptlet displays the total number of shopping carts in a format appropriate to
the locale:

<%
NumberFormat numberFormat =
NumberFormat.getInstance(session.getLocale());
int number = request.getParameter("ShoppingCartsTotal");
%>
<P>The number of active shopping carts in use is:
<%= numberFormat.format(number) %>
</P>

Similarly, use the DateFormat class to help you display date in locale-specific ways. You create an instance
of a DateFormat by passing in the locale to the constructor.

For example, the following scriptlet displays the current date in a format appropriate to the locale:

<%
DateFormat dateFormat =
DateFormat.getInstance(session.getLocale());
Date todaysDate = new Date();
%>
<P>It is now:
<%= dateFormat.format(todaysDate) %>
</P>
© IBM Corporation 2011 91

Customize Controls
Controls are used to determine how the option classes and option items are displayed and behave in the user
interface (UI). You can modify an existing control or add a new control.

Each control corresponds to a JSP page and the behavior of the option items. This correspondence is defined
in the controls.properties configuration file under the Comergent/WEB-INF/properties folder
located in the deployment directory.

Following is a sample entry defined in the controls.properties file:

RADIO.name=Radio Button

RADIO.jsp=controls/radio.jsp

RADIO.behavior=single

In this example, for the radio button control, the radio.jsp JSP page is used to render the option class in
the UI. The behavior property determines how the Sterling Configurator™ will handle picks in this
control. Based on how the behavior property is defined, the Sterling Configurator handles picks as
follows:

entry - used for user-entered controls.
expand - expand all the children of this control if the control itself is picked.
multiple - allow one or more option items to be picked from this control.
single - if an option item is picked, then remove any previous picks from this option class.

Modify a Control
You can customize an existing control by modifying the corresponding entry in the
controls.properties file.

To modify an existing control:

1. Run the following target to retrieve the controls.properties file for customization:
sdk customize WEB-INF/properties/controls.properties

Running this target places the controls.properties file in your customization project.
2. Modify the entries in the controls.properties file, as required.
3. Run the following target to merge the customizations into the build:

sdk merge

4. If you are deploying the Visual Modeler application as a WAR file, perform the following steps:
a. Run the following target to re-create the WAR file:

sdk distWar

b. Deploy the .war file on your application server.

After these steps are completed, you must perform the required modifications in the Sterling Selling and
Fulfillment Foundation. For more information, refer to the Sterling Configurator: Application Guide.
© IBM Corporation 2011 92

Add a Control
You can define a new control by adding the name of the control to the list of controls declared, and then
defining the properties of the new control.

To add a new control:

1. Run the following target to retrieve the controls.properties file for customization:
sdk customize WEB-INF/properties/controls.properties

Running this target places the controls.properties file in your customization project.
2. Add the name of the new control to the comma-separated list of values for the controls attribute

For example, to add a new ABC_CUSTOM control, the controls attribute may be defined as
follows:
controls=ABC_CUSTOM,RADIO,CHECKBOX,COMBOBOX,LISTBOX,MULTISELLISTBOX,ALLPICK
ED,UEV,DISPLAY

3. Define the properties of the new control. For example, you may define the properties of the new
ABC_CUSTOM control as follows:
ABC_CUSTOM.name=Matrix Custom Control

ABC_CUSTOM.jsp=controls/ABCCustom.jsp

ABC_CUSTOM.behavior=single

4. Run the following target to merge the customizations into the build:
sdk merge

5. If you are deploying the Visual Modeler application as a WAR file, perform the following steps:
a. Run the following target to re-create the WAR file:

sdk distWar

b. Deploy the .war file on your application server.

After these steps are completed, you must perform the required modifications in the Sterling Selling and
Fulfillment Foundation. For more information, refer to the Sterling Configurator: Application Guide.
© IBM Corporation 2011 93

© IBM Corporation 2011 94

Customize Function Handlers
Function handler classes are Java classes that are used to define custom functions that can be invoked by the
Sterling Configurator rule engine. You can customize function handler classes.

The function handlers are defined in the functionHandlers.properties configuration file under the
Comergent/WEB-INF/properties folder located in the deployment directory. This file includes a name
for each function handler and the directory in which the function handler class is located.

Following is a sample fragment of the functionHandlers.properties file:

WEB-INF/classes/com/comergent/apps/configurator/functionHandlers=CheckLookupFu
nctionHandler,ChildSum,CountFunctionHandler,IsSelectedHandler,LengthFunctionHa
ndler,ListFunctionHandler,LookupFunctionHandler,MaxFunctionHandler,MinFunction
Handler,ParentFunctionHandler,PropValHandler,SumFunctionHandler,ValueFunctionH
andler,WebServiceLookupCheckLookupFunctionHandler=com.comergent.apps.configura
tor.function-Handlers.CheckLookupFunctionHandler

Add a Function Handler Class
You can add a new function handler class.

To add a new function handler class:

1. Run the following target to retrieve the functionHandlers.properties file for customization:
sdk customize WEB-INF/properties/functionHandlers.properties

Running this target places the functionHandlers.properties file in your customization project.
2. Create a new Java class with the com.comergent.apps.configurator.functionHandlers package

declaration. The class declaration must declare that the class extends the AbstractRuleFunctionHandler
class.
Note: The new Java class must be provided in the classpath of the Visual Modeler application.
The new Java class should implement the following methods:

public String getFuncName(): return the function name, such as ''sum'' or ''max''. This is
case-sensitive: you can use different function handlers to manage ''sum'' and ''SUM''.
public int getType(): return the type of value returned by the function. This should be a constant
defined in the com.comergent.api.appsservices.rulesEngine.Value class. The
AbstractRuleFunctionHandler class method returns Value.STRING. Therefore, you must override
this method if the function returns any other type.
public Value handle(State state, String prop): return the Value calculated for the function.
public boolean isPublicHandler(): return true if the function handler may be used by any client
application; otherwise return false. The AbstractRuleFunctionHandler class method returns true.
Therefore, you must only override this method if the function handler is private.

After these steps are completed, you must perform the required modifications in the Sterling Selling and
Fulfillment Foundation. For more information, refer to the Sterling Configurator: Application Guide.

Exceptions
This topic describes the framework for exception handling in the Visual Modeler. You should
follow this to ensure consistency across your implementation of the system, and to help other people
working on the implementation.

ComergentException Hierarchy

Exception Root
ComergentException

All compile time exception classes declared in the production software should inherit ultimately
from com.comergent.dcm.util.ComergentException class. This class extends java.lang.Exception
to provide chaining and an independent user message.

ICCExeption

ICCException provides a convenience subclass of ComergentException. Rather than create a set of
exception classes for a subsystem, you can use the ICCException class uniformly across a
subsystem.

ComergentRuntimeException

All runtime exception classes should inherit from
com.comergent.dcm.util.ComergentRuntimeException, which extends
java.lang.RuntimeException to provide identical functionality.

Subsystem Grouping
A subsystem of the Visual Modeler is defined to be either a distinct and separable application, or
an application level or a system level service. A subsystem is a logical organization. It may span
multiple packages in the Java package hierarchy or comprise part of a package.

Each logical subsystem is expected to declare its own exception root class. This root inherits from
ComergentException and is the parent class of all compile time exceptions within the subsystem.
The subsystem is defined to be either a distinct and separable application, or an application level or
a system level service. A subsystem is a logical organization. It may span multiple packages in the
Java package hierarchy or comprise part of a package, although you should organize your package
structure in conformance with the logical subsystem organization.

For example, suppose there is a subsystem named Foo. There should be a class FooException:

public class FooException extends ComergentException
{

public FooException(String msg)
{
super(msg);
}

public FooException(String msg, Exception ex)
{

© IBM Corporation 2011 95

super(msg, ex);
}

}

Suppose Foo responds to a bad initialization state by throwing
BadInitializationException for all subsequent requests. This exception
would inherit from FooException:

public class BadInitializationException extends FooException
{

...
}

Subsystem by Subsystem Exception Policy
Each subsystem should implement a consistent policy for differentiating exceptions. Either it should
subclass the subsystem exception class for each distinct exception type (this is the standard Java style
policy) or the subsystem's root exception should inherit from ICCException, and should set the status
parameter to differentiate exceptions (this is the ICCException policy).

For example, if subsystem Foo chooses a Java style exception policy, then FooException should extend
ComergentException. If subsystem Bar chooses an ICCException policy, then FooException should extend
ICCException (which in turn extends ComergentException).

public class BarException extends ICCException
{

...
}

Exception Chaining
Each subsystem is expected to throw only exceptions from its own subsystem to its caller. If an underlying
service throws an exception that a given subsystem cannot handle, then it is expected to catch that exception
and rethrow an exception that is meaningful in its own context. The new exception should use a chaining
constructor to include the original exception, so that when the exception is finally handled and logged, the
original exception is not lost.

For example, suppose subsystem Foo attempts to open a property file and could incur an IO exception. If it
implements a Java style exception policy, then it may declare a new exception class,
FooPropertyFileException, which extends FooException. The IO Exception catch statement would throw a
new FooPropertyFileException with a constructor that passes a message and the original I/O exception.

try
{

...
Properties props = new Properties();
props.load(input);
...

}
catch (IOException ex)
{

// chain the io exception
© IBM Corporation 2011 96

throw new FooPropertyFileException("Loading file" + filename, ex);
}

When to Throw Exceptions
Exceptions should be thrown when the contract between a method and its caller cannot be fulfilled. This is
the usage identified in the Java Language Specification. Unfortunately, this provides only a little guidance
since the contract can be defined so broadly that exceptions are unnecessary, or defined so narrowly that
exceptions occur frequently. As a general rule of thumb, exception usage should balance the following two
opposing goals:

Exceptions should not be the norm.

They involve the creation of an additional object, so, if only from a performance standpoint, it is
problematic if exceptions can occur frequently.
Mixing data and control should be avoided. The alternative to throwing an exception is often returning
a null value from a method. This means that the return value encapsulates two meanings (success or
failure and whatever the data means when present). It is good programming practice to avoid this
usage where possible.
If null is a reasonable value for the stated purpose of a method, or if a method is expected to fail often
in the normal course of operation, then it is reasonable to return null to indicate failure; otherwise it is
better to throw an exception.

Throwing Runtime or Compile Time Exceptions
According to the Java Language Specification, runtime exceptions should be thrown when the caller has
provided erroneous input (in essence, breached the method contract) and it would be burdensome to declare
a compile time exception. For example, if a caller invokes a method passing a negative value for a parameter
that is an array index, it is reasonable to throw a runtime exception. Otherwise throw compile time
exceptions.

Catch Clauses and Throws Declarations
Catch clauses and throws declarations should avoid being overly general. If the called method throws, for
example, FileNotFoundException, then the caller should catch FileNotFoundException, not Exception or
Throwable. The reason for this is that if the underlying code changes to throw a new exception, or ceases
throwing this exception, then it is desirable that the change produces a compilation error to signal to the
programmer to consider the new situation.

There are exceptions to this rule where practicality should prevail. If the variety of exceptions that can be
thrown is large and our response is the same in all cases, then there is no reason to catch each individually.

Logging Exceptions
If a method catches an exception and handles it (that is, does not rethrow it) then it should log it. Presumably
this method knows the significance of the exception, and knows whether to log it with an error severity or
some other lower level severity. Empty catch statements should be regarded with great suspicion.
© IBM Corporation 2011 97

Never do this:

catch (SomeException ex)
{

}

Do this:

catch (SomeException ex)
{

Global.logVerbose(ex);
}

Or this:

catch (SomeException ex)
{

ex.printStackTrace(Global.debugStream);
}

When exceptions from underlying subsystems or third party packages are caught and chained to a new
exception, there is no need to log the exception. Some process further up the hierarchy will eventually catch
and handle it, and the process will know how to log it.

Displaying Exceptions
In general, users of the Visual Modeler should not see exceptions: the appropriate subsystem must handle
the exception gracefully by responding appropriately to the error condition.

The Visual Modeler error pages place the exception stack trace between HTML comments. By viewing the
source of the displayed Web page, you can read the stack trace.

If an exception stack trace is passed to the JSP page, then bear in mind that the buffer limits of the JSP page
may prevent a full exception message from being passed to the Web page. If a long exception stack trace is
passed to a JSP page, then you can display it by modifying the buffer of the JSP page. Use the buffer tag as
follows:

<%@ page buffer=1024kb %>

Once the error condition has been diagnosed and fixed, then you should remove this tag because it impacts
performance.
© IBM Corporation 2011 98

Implementing Cron Jobs
This topic describes the creation of cron jobs that run as part of the Visual Modeler.

Overview
Certain tasks within an implementation of the Visual Modeler are not initiated in response to user
input. For example, the hourly synchronization of order data with an external system or the weekly
import of catalog data from a third party is best done without user intervention. These jobs can be
scheduled to run at suitable intervals using the Job Scheduler functionality provided by the Visual
Modeler.

Cron jobs can be defined either as system cron jobs or as application cron jobs.

A system cron job is run by the Visual Modeler and is not associated with any user. A system
cron job calls Visual Modeler classes directly. A system cron job must be run by a class that
extends the SystemCron abstract class. Typically, system cron jobs perform tasks such as
cleaning the cache.
Each application cron job is run as a user: the username and password of the user are provided
when the cron job is created using the Job Scheduler user interface. Application cron jobs
work by posting XML messages to the Visual Modeler which are then processed by the
system. An application cron job must be run by a class that extends the ApplicationCron
abstract class. Typically, you use application cron jobs to perform necessary administrative
tasks that touch user or product data such as order synchronization

Note: A system cron job should not attempt restore() and persist() operations itself. There is no
user associated with the cron job class and so the access checking built in to the data access
methods will throw an exception.

CronManager and CronScheduler
The definition and creation of cron jobs is managed by the CronManager class. Cron job
configuration information is represented in memory by the CronConfigBean data bean. The
definition of cron jobs are maintained in the Knowledgebase.

The scheduling and running of cron jobs is managed by the CronScheduler class. This singleton
class is instantiated at server startup time.

CronJob Interface
Each cron job is a Java class that implements the CronJob interface:

public interface CronJob extends java.lang.Runnable
{

/**
 * Specify the Cron Configuration bean object.
 *
 * @param config Cron configuration bean object.
 */
public void setCronConfiguration(CronConfigBean config);
© IBM Corporation 2011 99

/**
 * Return the Cron Configuration bean object.
 *
 * @return CronConfigBean object.
 */
public CronConfigBean getCronConfiguration();

 /**
 * Initialization function. This function is called
 * immediately after the object is created.
 *
 * @return true if initialization success, false otherwise.
 */
public boolean init();

/**
 * Return the current scheduled time.
 *
 * @return Current schedule time in Calendar object.
 */
public Calendar getSchedule();

/**
 * Reschedule the cron to reflect the changes made to the
 * cronfiguration parameter. This function is called by the
 * Cron Manager whenever cron configuration changes.
 */
public void reschedule();

/**
 * Whether the job needs to be run again. This function is
 * useful if there is some problem in the current run and you
 * want to retry at specified time.
 *
 * @return true if the job is allowed to retry if the job
 * did not run successfully
 * on the last time of execution
 */
public boolean retry();

/**
 * Determines whether to stop this cron job from running.
 *
 * @return true if the job has been slated to not run again
 */
public boolean stopRun();

/**
 * Compute next cron run time: this is usually based on the cron
 * run interval.
© IBM Corporation 2011 100

 */
public void computeNextSchedule();

/**
 * Check to determine if the cron job is
 * in a good state to run before triggering the thread to run.
 *
 * @return true or false. True means ready to run.
 */
public boolean isOKtoRun();

/**
 * Is called when the thread starts.
 *
 * @return false if the job needs to be stopped. Return true to
 * continue running.
*/
public boolean service();

/**
 * Checks whether the next run time is later than the end run date.
 *
 * @return true if next run time greater than end run time
 */
public boolean isExpired();

}

To create a new cron job, follow these steps:

1. Write a CronJob class: you must extend either the SystemCron or ApplicationCron classes. Both these
classes are abstract and they both extend the abstract class AbstractCronJob.
The only method that you need to implement is service(). This is the method that processes the
inbound post initiated by the CronScheduler.

If the job is passed parameters that are defined using the Job Scheduler user interface, then you can
retrieve the parameters using the getParameter(String s) and getParameters() methods of the
AbstractCronJob class. These methods behave identically to the corresponding methods of the
HttpServletRequest class.
If you want the result of the job to be saved to the database, then the service() method must call the
setExecutionOutcome(String s) method.
You can specify that the cron job should be re-executed at a later time by calling the
setRetry(Calendar c) method of the AbstractCronJob class. Use the Calendar parameter to specify
when the job should be re-executed.

2. Using the Job Scheduler user interface provided as part of the system administration application,
define the cron job by specifying the cron job class, the schedule to determine when it is run, and any
© IBM Corporation 2011 101

parameters to be passed to the cron job at runtime. If the cron job is to run as an application cron job,
then you must also provide the username and password of the user.
Parameters are passed in to the cron job using the same syntax as for HTTP request parameters. For
example: Name1=Value1&Name2=Value2.
© IBM Corporation 2011 102

Filters
This topic describes how you can use filters. It covers:

Filters Overview
Available Filters

Filters Overview
A filter is an object that performs filtering tasks on either the request to a resource (a servlet or static
content), or on the response from a resource, or both. They are defined as part of the J2EE 2.3
specification.

Filters perform filtering in the doFilter() method. Every Filter has access to a FilterConfig object
from which it can obtain its initialization parameters, a reference to the ServletContext which it can
use, for example, to load resources needed for filtering tasks.

Filters are configured in the deployment descriptor of a Web application. Examples of typical filters
include:

Authentication Filters
Logging and Auditing Filters
Image conversion Filters
Data compression Filters
Encryption Filters
Tokenizing Filters
Filters that trigger resource access events
XSLT filters
Mime-type Chain Filters

Available Filters
This section describes some of the filters provided in the Visual Modeler. All the filters are part of
the com.comergent.dcm.core.filters package. It covers:

DosFilter
WSDLFilter

DosFilter
This filter can be used as the basis for filters to protect the Web application from denial-of-service
attacks.

To use this filter, write a class that extends the com.comergent.dcm.core.filters.DosFilter class, and
in it, override the isRequestDenied() method to implement the logic you want to use to identify and
block denial-of-service attacks.
© IBM Corporation 2011 103

Then, modify the web.xml configuration file, to declare your implementing class as a filter like this:

<filter>
<filter-name>DosFilter</filter-name>
<filter-class>
com.comergent.dcm.messaging.CustomDosFilter
</filter-class>

</filter>

and

<filter-mapping>

<filter-name>DosFilter</filter-name>

<url-pattern>/*</url-pattern>

</filter-mapping>

WSDLFilter
The WSDLFilter class is used to transform the Web service WSDLs if they are accessed using the standard
URLs: http://server:port/s/dXML/5.0/OrderInterface.wsdl, and so on.
© IBM Corporation 2011 104

http://server:port/s/dXML/5.0/OrderInterface.wsdl

Managing and Displaying Constrained Fields
This topic covers the topic of managing constrained data fields which can take only one of a number
of values: we called these data fields constrained. Examples include partner levels (such as “Gold”,
“Silver”, and so on), partner territories (such as “North-west”, “Benelux”, and so on), and skill
levels (such as “Expert”, “Certified”, and so on). You can manage these data fields in different ways
in the Visual Modeler. Your choice depends on how they are to be maintained and used.

Options
You have the following options to specify a constrained data field and the permitted data fields:

Maintain the data field as a set of values in a database table. Assign values to business objects
either by a cross-reference table or by references to a key for each value in the business object
table.
Maintain the values as a constraint element in the XML schema (declared in the
DsConstraints.xml file). Specify the constraint as an attribute of the DataElement associated
with the data field.
Embed the permitted values as values of a <SELECT> form element in an HTML template.

We recommend that you maintain the permitted values for a field as a database table unless:

the values are not going to be modified at run-time
the data field may take only one value in each business object
the values can be displayed in a natural order that is determined by the values themselves such
as their alphabetical order.

We recommend against using the third option for the following reasons:

It becomes a maintenance problem to update templates or application code if you want to
modify the list of permitted data values.
It represents a security problem because users may modify the HTML to pass back forbidden
values. You have to either add Javascript (that a user can remove) to validate the selection or
validate the returned value as part of the business logic.

Criteria
Your selection depends on the functionality of the data field. Ask yourself these questions to
determine how the data field is being used:

1. Can you assign a business object only one or multiple values of a constrained data field?
If your answer is that multiple values may be assigned to the same business object (example: a
partner that may operate in multiple territories), then you must use a database table for the field
values and a cross-reference table to assign values to the business object.

2. Can you enter new values of the data field when creating a new business object or do you need
to verify that a value entered for the data field is a valid member of the constraint set?
If only single values are permitted, and your answer to Question 2 is that new values are
permitted, then you must use a database table to hold the field values. However, you do not
have to use a cross-reference table to assign data field values to business objects. You cannot
© IBM Corporation 2011 105

dynamically add values to the list of permitted values of a constraint element through the current
Visual Modeler interface.
Are the possible values that the constrained data field may take maintained dynamically or are they
read once at start-up?

3. If your answer to Question 1 was single value, and your answer to Question 2 is that new values are
not permitted, but you do require dynamic updating, then you must use a database table. If the
constrained values are unchanged once the Visual Modeler has started, then you can use a constraint
element.
Do you need to sort the constrained data values for display? If yes, then is it sorted by value (say,
alphabetically) or by some defined order that cannot be inferred from the values themselves?

4. Finally, if the data field values need to be sorted by an order not inherent in the values themselves, then
this ordering information must be maintained in a database table. However, if you only order the
values using some self-evident ordering (such as alphabetical), then you can use the constraint element
choice.
© IBM Corporation 2011 106

Notices

This information was developed for products and services offered in the U.S.A.
IBM may not offer the products, services, or features discussed in this document in other
countries. Consult your local IBM representative for information on the products and services
currently available in your area. Any reference to an IBM product, program, or service is not
intended to state or imply that only that IBM product, program, or service may be used. Any
functionally equivalent product, program, or service that does not infringe any IBM intellectual
property right may be used instead. However, it is the user's responsibility to evaluate and verify
the operation of any non-IBM product, program, or service.
IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not grant you any license to these patents. You
can send license inquiries, in writing, to:
IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.
For license inquiries regarding double-byte character set (DBCS) information, contact the IBM
Intellectual
Property Department in your country or send inquiries, in writing, to:
Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
1623-14, Shimotsuruma, Yamato-shi
Kanagawa 242-8502 Japan
The following paragraph does not apply to the United Kingdom or any other country where
such provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES
CORPORATION PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF
ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
© IBM Corporation 2011 107

FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or implied
warranties in certain transactions, therefore, this statement may not apply to you.
This information could include technical inaccuracies or typographical errors. Changes are
periodically made to the information herein; these changes will be incorporated in new editions of
the publication. IBM may make improvements and/or changes in the product(s) and/or the
program(s) described in this publication at any time without notice.
Any references in this information to non-IBM Web sites are provided for convenience only and
do not in any manner serve as an endorsement of those Web sites. The materials at those Web sites
are not part of the materials for this IBM product and use of those Web sites is at your own risk.
IBM may use or distribute any of the information you supply in any way it believes appropriate
without incurring any obligation to you.
Licensees of this program who wish to have information about it for the purpose of enabling: (i)
the exchange of information between independently created programs and other programs
(including this one) and (ii) the mutual use of the information which has been exchanged, should
contact:
IBM Corporation
J46A/G4
555 Bailey Avenue
San Jose, CA__95141-1003
U.S.A.
Such information may be available, subject to appropriate terms and conditions, including in some
cases, payment of a fee.
The licensed program described in this document and all licensed material available for it are
provided by IBM under terms of the IBM Customer Agreement, IBM International Program
License Agreement or any equivalent agreement between us.
Any performance data contained herein was determined in a controlled environment. Therefore,
the results obtained in other operating environments may vary significantly. Some measurements
may have been made on development-level systems and there is no guarantee that these
measurements will be the same on generally available systems. Furthermore, some measurements
may have been estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.
Information concerning non-IBM products was obtained from the suppliers of those products,
their published announcements or other publicly available sources. IBM has not tested those
products and cannot confirm the accuracy of performance, compatibility or any other claims
related to non-IBM products. Questions on the capabilities of non-IBM products should be
addressed to the suppliers of those products.
All statements regarding IBM's future direction or intent are subject to change or withdrawal
without notice, and represent goals and objectives only.
This information is for planning purposes only. The information herein is subject to change before
the products described become available. This information contains examples of data and reports
used in daily business operations. To illustrate them as completely as possible, the examples
include the names of individuals, companies, brands, and products. All of these names are
© IBM Corporation 2011 108

ficticious and any similarity to the names and addresses used by an actual business enterprise is
entirely coincidental.
COPYRIGHT LICENSE:
This information contains sample application programs in source language, which illustrate
programming techniques on various operating platforms. You may copy, modify, and distribute
these sample programs in any form without payment to IBM, for the purposes of developing,
using, marketing or distributing application programs conforming to the application programming
interface for the operating platform for which the sample programs are written. These examples
have not been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or imply
reliability, serviceability, or function of these programs. The sample programs are provided "AS
IS", without warranty of any kind. IBM shall not be liable for any damages arising out of your use
of the sample programs.
Each copy or any portion of these sample programs or any derivative work, must include a
copyright notice as follows:
© IBM 2011. Portions of this code are derived from IBM Corp. Sample Programs.
© Copyright IBM Corp. 2011.
If you are viewing this information softcopy, the photographs and color illustrations may not
appear.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International
Business Machines Corp., registered in many jurisdictions worldwide. Other product and service
names might be trademarks of IBM or other companies. A current list of IBM trademarks is
available on the Web at “Copyright and trademark information” at
www.ibm.com/legal/copytrade.shtml.
Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered trademarks or
trademarks of Adobe Systems Incorporated in the United States, and/or other countries.
IT Infrastructure Library is a registered trademark of the Central Computer and
Telecommunications Agency which is now part of the Office of Government Commerce.
Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo, Celeron, Intel
Xeon, Intel SpeedStep, Itanium, and Pentium are trademarks or registered trademarks of Intel
Corporation or its subsidiaries in the United States and other countries.
Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.
Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft
Corporation in the United States, other countries, or both.
ITIL is a registered trademark, and a registered community trademark of the Office of Government
Commerce, and is registered in the U.S. Patent and Trademark Office.
UNIX is a registered trademark of The Open Group in the United States and other countries.
Java and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle
and/or its affiliates.Cell Broadband Engine is a trademark of Sony Computer Entertainment, Inc. in
the United States, other countries, or both and is used under license therefrom.
© IBM Corporation 2011 109

www.ibm.com/legal/copytrade.shtml

Linear Tape-Open, LTO, the LTO Logo, Ultrium and the Ultrium Logo are trademarks of HP, IBM
Corp. and Quantum in the U.S. and other countries.
Connect Control Center®, Connect:Direct®, Connect:Enterprise, Gentran®, Gentran:Basic®,
Gentran:Control®, Gentran:Director®, Gentran:Plus®, Gentran:Realtime®, Gentran:Server®,
Gentran:Viewpoint®, Sterling Commerce™, Sterling Information Broker®, and Sterling
Integrator® are trademarks or registered trademarks of Sterling Commerce, Inc., an IBM
Company.
Other company, product, and service names may be trademarks or service marks of others.
© IBM Corporation 2011 110

Index
A
AbstractCronJob class 101

access entitlements 51

accessor methods
effect of Writable attribute 54

ACTIVE_FLAG column 54
use to mark objects as deleted 53

addChild method 63

adjustFileName method 22, 29, 30

Alternate element 60

AppContextCache class 29

AppExecutionEnv class 21, 28

application beans 25, 51, 52

ApplicationCron class 99, 101

AppsLookupHelper class 28

attributes
DataService 60
DataSourceName 60
ExternalFieldName 59
ID 26
IsOverlay 21
MaxPoolSize 27
Name 20, 58, 59
Version 58, 65

audit trail 67

B
bizAPI classes 75

Bizlet class 21

BizletMapping
default value for message group 21

BizletMapping element 21

BizRouter class 21

BLC abstract class 75

bundle attribute 83

business logic classes 48, 75
implementation 46, 75

business objects
lists 51
User 22

BusinessObject class 65

C
C3PrimaryRW data object 47

calendar 89

calendar widget
localizing 89

callJSP method 31

cascading style sheets 90

character sets 81

child data objects 56

ChildDataObject element 56

children method 63

classes 23
AbstractCronJob 101
AppExecutionEnv 21, 28
ApplicationCron 99, 101
Bizlet 21
BizobjBean 51
BizRouter 21
BusinessObject 65
ComerentSession 22
ComergentAppEnv 23, 29
ComergentContext 22
ComergentDispatcher 22
ComergentException 95
ComergentRequest 22
ComergentResponse 22
ComergentRuntimeException 95
CronConfigBean 99
DataBean 25
© IBM Corporation 2011 111

DataContext 48
DataManager 60, 62
DataMap 63
DataService 60
DebsDispatchServlet 23
DispatchServlet 19, 23
DsElement 63
Env 22
Exception 95
GeneralObjectFactory 23
HttpRequest 22
HttpResponse 22
HttpServletRequest 101
HttpSession 22
ICCException 95
InitServlet 19, 23, 29
MessagingController 23, 24
MetaData 63
NamingManager 76
NamingResult 76
NamingServiceDatabase 76
NamingServiceProperties 76
ObjectManager 25, 46, 48
OMWrapper 25, 46
RequestDispatcher 22
ResourceBundle 90
RuntimeException 95
SimpleController 24
SystemCron 99, 101

ClassName element 25, 26

cloneDsElement method 63

clustered environment 29

clustered implementation 10

CMGT_LOOKUPS table 28

cmgtText method 82

code examples
using locale properties files 85

com.comergent.api.dataservices package 37

com.comergent.api.dispatchAuthorization package 42

com.comergent.api.msgservice package 44

com.comergent.dcm.caf.controller.Controller class 23

com.comergent.dcm.core.filters package 103

com.comergent.dcm.objmgr package 27

com.comergent.dispatchAuthorization package 42
© IBM Corporation 2011 112

com.comergent.msgservice package 44

com.comergent.reference.jsp package 83

Comergent.xml configuration file 20

ComergentAppEnv class 23, 29

ComergentContext class 22

ComergentDispatcher class 22

ComergentHelpBroker class 37

ComergentI18N class 85

ComergentRequest class 22

ComergentResponse class 22

ComergentSession class 22

command
instanceof 51

configuration files 10, 14
Comergent.xml 19, 20
DsBusinessObjects.xml 58
DsConstraints.xml 105
DsRecipes.xml 58
Internationalization.xml 81
MessageTypes.xml 20, 23
ObjectMap.xml 25
web.xml 14, 15, 19

constrained data field 105

content type 23

context
setting attributes 22

Controller classes 23
as part of reference implementation 70

ControllerMapping
default value for message group 21

ControllerMapping element 21

ConverterFactory class 44

copyBean method 53

createController method 23

cron jobs 99

CronConfigBean class 99

CronJob interface 99

CronManager class 99

CronScheduler class 99
© IBM Corporation 2011 113

currencies 81, 88

custom tag libraries 15

customize target 78

D
data fields metadata 63

data objects 48
accessing child data objects 56
customizing 48
extending 26, 47
ordinality 47
stored procedures 52

DataBean class 25

DataContext class 48, 53
use in restore 51

DataField element 59

DataObject element 60

DataService attribute 60

DataService class 60

DataServices.General.LimitDBResults preference 50

DataSourceName attribute 60

dates 88

DebsDispatchServlet class 23

debug method 66

debugging JSP resource bundles 84

debugJSPResouceBundle element 84

default locale
failover mechanism 85

defaultCountry element 85

defaultSystemLocale element 81, 82, 85

defaultType element 77

delete method 53, 63, 65

deleteChild method 63

deployment files
Sterling.war 19

disableAccessCheck method 54

DispatchServlet class 23

doFilter method 103
© IBM Corporation 2011 114

DosFilter class 103

DsDataElements.xml configuration file
setting the lengths of data fields 86

DsElement
child 62
parent 62
root 63

DsElement tree 62
legacy applications only 62

DsElements 62

DsQuery class 54
use in restore 51

E
elements

Alternate 60
BizletMapping 21
ControllerMapping 21
DataElements 60

re-use 60
DataField 59, 60
DataObject 60
defaultSystemLocale 81
ExternalName 52
GeneralObjectFactory 20
globalCacheImplClass 29
JSPMapping 21
MessageType 20
messageTypeFilename 20
Primary 60
propertiesFile 19

email templates 87
location 87

EntitlementFactory class 42

entity beans 51

Env class 22

erase method 53

error method 66

exception handling 95

Exceptions 95
displaying 98

Extends attribute 47
© IBM Corporation 2011 115

ExternalFieldName attribute 59

ExternalName element 52

F
Factory pattern 25

failover behavior 84

failover mechanism for JSP pages 85

failover mechanism for resource bundles 84

fatal method 66

filters
J2EE filters 103

findPresentationLocale method 85

fonts 90

function handler class
adding 94

G
GeneralObjectFactory class 23

GeneralObjectFactory element 20

generateBean target 25, 48, 51, 61, 73

generated interfaces
use in application beans 52

generateDTD target 48

generateKeys method 53

get method 76, 77

getAllowedValueIterator method 64

getBizObj method 55

getBoolean method 31

getCacheId method 49

getComergentLocale method 85

getCountAllowedValues method 64

getDataBean method 52

getDataType method 64

getDefaultLocale method 85

getDefaultValue method 64

getDouble method 31

getElementByName method 63
© IBM Corporation 2011 116

getFloat method 31

getInstance method 76

getInt method 31, 43

getIRdProduct method 52

getLong method 31

getMaxCharLength method 64

getMaxLength method 64

getMaxPaginatedResult 49

getMaxResults method 49

getMaxValue method 64

getMetaData method 63

getMinValue method 64

getName method 63

getNumPerPage method 49

getObject method 25

getParameter method 101

getParameters method 101

getParent method 63

getPreferences method 31

getRealPath method 30

getResourceAsStream method 22

getRootElement method 62, 63, 65

getSession method
ComergentSession class 23

getString method 31

getType method 63, 65

Global class
deprecated use for logging 66
replaced by Preferences 29

GlobalCache interface 29

H
HttpRequest class 22

HttpResponse class 22

HttpServletRequest class 101

HttpSession class 22
© IBM Corporation 2011 117

I
IAcc interface 53

ID attribute 26

id attribute
used in text tag 83

IData interface 52, 53
accessing metadata 63

IMetaData interface 63

info method 66

InitManager class 38

InitServlet class 23

instanceof command 51

interfaces
GlobalCache 29
IAcc 53
IData 52
Ird 53
NamingService 76
poolable 27

internationalization
cascading style sheets 90
failover mechanism for JSP pages 85
failover mechanism for resource bundles 84

Internationalization.xml configuration file 81, 84, 85

IRd interface 53

IsOverlay attribute 21

isPersistable method 53

isRequestDenied method 103

IsRestorable method 53

J
J2EE 14

Java 2 Platform, Enterprise Edition 14

JoinKey element 56

JSP pages 14
as part of reference implementation 70
debugging localization 84
localization 88
page buffer 98
used in email templates 30
© IBM Corporation 2011 118

JSPMapping
default value for message group 21

JSPMapping element 21, 85

K
Knowledgebase 99

L
languages 81

LegacyFileUtils class 22, 30

LegacyPreferences class 29

length of data fields 86

list business objects 51

locales
preferred locale 81
presentation 82
session 82

localization 81
images 87
Javascript 88

localRedirect method 22

log method 66

log4j API 66

log4j.debug system property 66

log4j.properties configuration file 66

logging methods
debug 66
error 66
info 66
log 66
warning 66

logLevel methods 66

logout method 23

lookup codes 28, 32
mapping to strings 28

lookup types 28, 32

M
MaxPoolSize attribute 27
© IBM Corporation 2011 119

MaxResults element 48

message groups 20
used to specify default mappings 21

message types 20

messages 75

MessageType element 20
child elements 20

messageTypeFilename element 20, 21

MessageTypeRef element 21

MessageTypes.xml configuration file 20

MessagingController 23

MessagingController class 23, 24

MessagingServlet class 20

metadata
for data fields 63

methods
addChild 63
adjustFileName 29
calculate 24
children 63
cloneDsElement 63
constructExternalURL 29
copyBean 53
createController 23
delete 53, 63, 65
deleteChild 63
dispatch 23
erase 53
forward 22
generateKeys 53
get 76, 77
getContext 29
getDataBean 52
getElementByName 63
getEnv 29
getInstance 76
getName 63
getObject 25
getParameter 101
getParameters 101
getParent 63
getPartnerKey 23
getRootElement 62, 63, 65
getType 63, 65
getUser 22
© IBM Corporation 2011 120

getUserKey 23
include 22
init 23, 29
isPersistable 53
IsRestorable 53
persist 25, 53, 55, 60, 64, 75
prune 53
reset 27
restore 25, 53, 54, 60, 64, 75
return 27
runAppJob 21
runAppObj 28
service 75, 101
setCacheId 48
setDataContext 53
setRetry 101
setRootElement 65
update 53

methods setExecutionOutcome 101

MsgContext interface 44

MsgService interface, 44

MsgServiceException class 44

MsgServiceFactory class 44

multi-byte characters 86

N
Name attribute 20, 58, 59

naming service 76

NamingManager class 76

NamingResult class 76

NamingServiceDatabase 76

NamingServiceDatabase class 76

NamingServiceProperties class 76

newproject target 78

number and date formats 81

NumPerCachePage element 48

O
Object element 25, 26

object pools 27

ObjectManager class 25, 46, 48
© IBM Corporation 2011 121

ObjectMap.xml configuration file 25

OMWrapper class 25, 46

org.apache.log4j.Level class 41

OutOfBandHelper class 30

P
packages

com.comergent.dcm.objmgr 27

persist method 25, 53, 55, 60, 64, 75
call after delete method 53

poolable interface 27

pooling objects 27

Preferences API 31

presentation beans 51

presentation locale 82

Primary element 60

prune method 53

putInt method 43

putString method 31

R
Recipe element

declaring ordinality 51

recipes 48

redirecting a request 22

Relationship element 56

request dispatcher 15

RequestDispatcher class 22

requests 75

requirements 10

reset method 27

resource bundles 83

restore method 25, 53, 54, 60, 64, 75
example using DataContext and DsQuery 54
stored procedures 52
use in list beans 51

return method 27
© IBM Corporation 2011 122

roles 10

runAppJob method 21

S
schemaRepositoryExtn element 78

scripting elements 15

scriptlets 15

SDK 78

security 10

serializable context attributes 22

Serializable interface 23

service method 44, 75, 101

servlet context
setting attributes 22

session locale 82

setAttribute method
ComergentSession class 23

setCacheId method 48, 49

setDataContext method 53

setExecutionOutcome method 101

setMaxPaginatedResult 49

setMaxResults method 49

setNumPerPage method 49

setRetry method 101

setRootElement method 65

SimpleController class 24

Software Development Kit 78

SourceType attribute 52

stored procedures 52

subsystem 95

SystemCron class 99, 101

T
tag libraries 15

tag library descriptor 15, 20

targets
generateBean 25, 48, 51, 61, 73
© IBM Corporation 2011 123

generateDTD 48

text tag 82

TLD. See tag library descriptor

Transaction class 32

U
UI control

adding new 93
modifying 92

Unicode support 81

update method 53

URL patterns
mapping to servlets 15

useCountryDefaulting element 82, 84

useGeneralDefaulting element 82, 84

users 22
retrieving from session 22

using JSP pages as templates 30

using restore in list beans 51

V
Version attribute 65

W
warning method 66

web.xml configuration file 104

Writable attribute 54

WritableDirectory element 30

writeExternal method 56

WSDLFilter class 104

X
XML messages 23

XML representations of data beans 56

XML schema 62
© IBM Corporation 2011 124

	Contents
	Introduction
	Implementation Methodology

	Implementing the Visual Modeler Integration
	Implementation Steps
	Integrating the Visual Modeler with IBM Sterling Selling and Fulfillment Foundation
	Configuring the Visual Modeler Properties
	Configuring the IBM Sterling Configurator Rules

	Introduction to J2EE Web Applications
	Architecture
	Web Applications
	web.xml File
	JSP Pages
	Model 2 Architecture
	Controllers
	Model
	View
	Further Reading

	System Architecture
	Visual Modeler Web Application
	Processing Requests
	Overriding MessageType Definitions
	Default Elements

	Key Java Classes
	Wrapper Classes
	ComergentContext
	ComergentDispatcher
	ComergentRequest
	ComergentResponse
	ComerentSession

	Servlets
	Controller Classes
	Custom Controllers
	SimpleController
	MessagingController

	DataBean Classes
	ObjectManager and OMWrapper Classes
	Creating Objects
	Mapping Object Names to Object Classes
	Restrictions
	Passing Parameters
	Object Pooling

	AppExecutionEnv Class
	AppsLookupHelper Class
	ComergentAppEnv Class
	Global Class
	GlobalCache Interface
	LegacyFileUtils Class
	OutOfBandHelper Class
	Preferences Class
	Transactions
	Support for Lookup Codes
	What lookup support does the Visual Modeler provide?
	Are string values localized?
	How do I define a code to string mapping?
	Are lookups performed for XML messages?
	How is the lookup cache loaded?

	Platfform Modularity
	Overview
	Platform Modules
	Module Interfaces
	Invoking Interfaces

	Platform Module Descriptions
	Access Policy
	Authentication
	Base64
	Classpath Appender
	Cryptography Service
	Data Services
	Dispatch Authorization
	Dispatch Framework
	Email Service
	Event Service
	Exception Service
	Global Cache Service
	Help
	Initialization Service
	Internationalization
	Logging
	Configuration

	Loggers
	Appenders
	Layouts

	Memory Monitor
	Message Type Entitlement
	Object Manager
	Out Of Band Response
	Preferences Service
	Tag Libraries
	Thread Management
	API and Usage

	XML Message Converter
	XML Message Service
	XML Services

	Introducing Data Beans and Business Objects
	What are Data Beans?
	Life Cycle of a Data Bean
	Defining a Data Bean
	Defining the Structure of a Data Object
	Extending Data Objects

	Data Bean and Business Object Creation
	DataContext
	What is the DataContext class?
	What behavior can be controlled?
	What are the Cache Id methods for?
	How do Max Results and Num Per Page work?
	How do I instantiate a DataContext instance?
	What are the Default Settings for a new DataContext?

	List Data Beans
	Application, Entity, and Presentation Beans
	Using Stored Procedures
	Data Bean Methods
	IData Methods
	IRd and IAcc Interface Methods
	Restoring and Persisting Data
	restore() Method
	persist() Method

	Miscellaneous Methods
	getBizObj() Method
	writeExternal() Method

	Child Data Objects
	Extending Data Objects
	Data Bean Example
	DsElement Tree
	DsElements
	DsElement MetaData
	BusinessObject Methods
	restore() Method
	persist() Method

	Logging
	Overview
	log4j.debug System Property
	Auditing Changes to Data Objects

	Modularity and Generated Interfaces
	Modules
	Module Interfaces
	Invoking Interfaces
	Using the Object Manager
	Using Factory Classes

	Generated Interfaces
	Example of a Generated Interface

	Implementing Logic Classes
	Key Concepts
	Application Logic Classes
	Business Objects
	XML Schema
	Naming Service
	NamingService Example

	Software Development Kit
	Project Organization
	Project File and Directory Locations
	Java Source Files
	JSP Pages
	Schema Files

	Visual Modeler Localization
	Overview
	Supporting Locales
	Presentation and Session Locales
	JSP Pages and Properties Files
	Debugging

	Failover Behavior
	Resource Bundles
	JSP Pages

	Methods to Retrieve Locales
	Using Properties Files in Code
	Data for Internationalization
	Email Templates
	HTML Pages
	Images
	Javascript
	JSP Pages
	Calendar Widget
	Style Sheets
	System Properties
	Resource Bundles and Formats
	PropertyResourceBundles and Properties Files
	ResourceBundles
	NumberFormats and DateFormats

	Customize Controls
	Modify a Control
	Add a Control

	Customize Function Handlers
	Add a Function Handler Class

	Exceptions
	ComergentException Hierarchy
	Exception Root

	Subsystem Grouping
	Subsystem by Subsystem Exception Policy
	Exception Chaining
	When to Throw Exceptions
	Throwing Runtime or Compile Time Exceptions
	Catch Clauses and Throws Declarations
	Logging Exceptions
	Displaying Exceptions

	Implementing Cron Jobs
	Overview
	CronManager and CronScheduler
	CronJob Interface

	Filters
	Filters Overview
	Available Filters
	DosFilter
	WSDLFilter

	Managing and Displaying Constrained Fields
	Options
	Criteria

	Notices
	Trademarks

	Index

