
Sterling Configurator Visual Modeler

Implementation Guide
Release 9.2

���

Sterling Configurator Visual Modeler

Implementation Guide
Release 9.2

���

Note
Before using this information and the product it supports, read the information in “Notices” on page 125.

Copyright

This edition applies to the 9.2 Version of IBM Sterling Configurator Visual Modeler and to all subsequent releases
and modifications until otherwise indicated in new editions.

© Copyright IBM Corporation 2007, 2012.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Chapter 1. Implementation Methodology 1

Chapter 2. Implementing the Sterling
Configurator Visual Modeler Integration . 3

Chapter 3. Implementation Steps 5

Chapter 4. Integration between Visual
Modeler and Sterling Selling and
Fulfillment Foundation 7
Integrating the Sterling Configurator Visual Modeler
with Sterling Selling and Fulfillment Foundation . . 7
Configure the Sterling Configurator Visual Modeler
Properties 7
Configure the Sterling Configurator Rules 8

Chapter 5. Introduction to J2EE Web
Applications 11

Chapter 6. System Architecture 17
Sterling Configurator Visual Modeler Web
Application 17
Processing Requests 18

Overriding MessageType Definitions 19
Default Elements 20

Key Java Classes. 20
Wrapper Classes 20

ComergentContext 20
ComergentDispatcher 20
Comergent Request 20
ComergentResponse 20
ComergentSession 21

Servlets 21
Controller Classes 21
DataBean Classes 23
ObjectManager and OMWrapper Classes 23
AppExecutionEnv Class 26
AppsLookupHelper Class 26
ComergentAppEnv Class 27
Global Class 27
GlobalCache Interface 27
LegacyFileUtils Class 28
OutOfBandHelper Class 28
Preferences Class 29
Transactions 30
Support for Lookup Codes 30

Chapter 7. Platform Modularity 33
Introduction to Sterling Configurator Visual
Modeler Platform Modularity 33
Platform Modules 33
Platform Modularity: Module Interfaces 34
Platform Module Descriptions 34

Configuring the Logging Module 37
Loggers. 38
Appenders 38
Layouts. 39

Memory Monitor 39
Message Type Entitlement 39
Object Manager 40
Out Of Band Response 40
Preferences Service 40
Tag Libraries 41
Thread Management 41
XML Message Converter 42
XML Message Service 42
XML Services 42

Chapter 8. Introducing Visual Modeler
Data Beans and Business Objects . . . 43
Data Beans in Sterling Configurator Visual Modeler 43
Life Cycle of a Data Bean. 43
Defining a Data Bean 44
Defining the Structure of a Data Object 44
Data Bean and Business Object Creation 45
DataContext 45
List Data Beans 48
Application, Entity, and Presentation Beans 48
Using Stored Procedures 49
Data Bean Methods. 50
IData Methods 50
IRd and IAcc Interface Methods 50
Restoring and Persisting Data 51

DataBean restore() Method 52
DataBean persist() Method 52
Miscellaneous Methods 53

Child Data Objects 53
Extend Data Objects 54
Data Bean Example. 55

Create a Data Object Definition 56
DsElement Tree 59
DsElements 60
DsElement MetaData 60
BusinessObject Methods 61

BusinessObject restore() Method 61
BusinessObject persist() Method 61

Chapter 9. Logging in Visual Modeler 63
Logging in Sterling Configurator Visual Modeler:
An Overview 63
log4j.debug System Property 63
Auditing Changes to Data Objects 64

Chapter 10. Modularity and Generated
Interfaces 67

Chapter 11. Modules in Visual Modeler 69

© Copyright IBM Corp. 2007, 2012 iii

Modules: An Overview 69
Module Interfaces 69
Invoking Interfaces 70

Chapter 12. Generated Interfaces . . . 73

Chapter 13. Logic Classes in Visual
Modeler 75
Implementing Logic Classes 75
Key Concepts of Logic Classes 75

Application Logic Classes 75
XML Schema 76

Naming Service 76

Chapter 14. Visual Modeler Software
Development Kit 79
Using the Software Development Kit to Customize
Sterling Configurator Visual Modeler
Implementation 79
Project Organization 79

Project File and Directory Locations 79
Java Source Files. 79
JSP Pages 80
Schema Files 80

Chapter 15. Visual Modeler Localization 83
Sterling Configurator Visual Modeler Localization
Overview 83
Presentation and Session Locales 83
JSP Pages and Properties Files 84
Failover Behavior 86

Failover Behavior: Resource Bundles 86
Failover Behavior: JSP Pages. 86

Methods to Retrieve Locales 87
Using Properties Files in Code 87
Data for Internationalization. 88
Email Templates 89
HTML Pages 89
Images 89
Javascript 90
Sterling Configurator Visual Modeler Localization:
JSP Pages 90
Style Sheets 91
System Properties 92
Resource Bundles and Formats 92

Chapter 16. Customizing Controls . . . 95
Modify a Control 95

Add a Control 96
Create an Enterprise Specific UI Control 97

Chapter 17. Customizing Function
Handlers 99
Add a Function Handler Class 99
Create an Enterprise Specific Function Handler . . 100

Chapter 18. Modify System Property
Settings. 103

Chapter 19. Modify Job Scheduler
Settings. 105

Chapter 20. Exceptions 107
ComergentException Hierarchy 107
Subsystem Grouping 107
Subsystem by Subsystem Exception Policy . . . 108
Exception Chaining 108
Throwing, Catching, and Logging Exceptions. . . 109

When to Throw Exceptions 109
Throwing Runtime or Compile Time Exceptions 109
Catch Clauses and Throws Declarations . . . 109
Logging Exceptions 109
Displaying Exceptions 110

Chapter 21. Cron Jobs 111
Implementing Sterling Configurator Visual Modeler
Cron Jobs 111
CronManager and CronScheduler. 111
CronJob Interface 111
Create a Sterling Configurator Visual Modeler Cron
Job 113

Chapter 22. Filters Overview 115

Chapter 23. Sterling Configurator
Visual Modeler Filters 117

Chapter 24. Managing and Displaying
Constrained Fields 119

Index 121

Notices 125

iv Sterling Configurator Visual Modeler: Implementation Guide

Chapter 1. Implementation Methodology

The Sterling Configurator Visual Modeler implementation methodology consists of
phases that ensure that implementation can be planned and tracked through to
completion.

The Sterling Configurator Visual Modeler Implementation Methodology table
provides a summary of the phases and the activities to complete in each phase. A
standard set of documents can be used to track each phase.

Implementation phase Description

Plan Plan the implementation: set a timeline,
milestones, and identify risks and
dependencies

Analyze Organization and administration, define
business rules, user interface, messaging
protocols, data sources, e-commerce flow
planning, training needs, rollout strategy,
environment preparation, operations
planning

Design and configure Installation, configuration, integration, unit
testing, and training development

Test and deploy Testing server configuration, enterprise to
partner communication, partner to enterprise
communication; cut over to production
systems, distributor training, documentation
delivery, support

Improve Ongoing enhancement activities, partner
training, and support

© Copyright IBM Corp. 2007, 2012 1

2 Sterling Configurator Visual Modeler: Implementation Guide

Chapter 2. Implementing the Sterling Configurator Visual
Modeler Integration

The Sterling Configurator Visual Modeler is designed to integrate channel partners
into an e-commerce network. Organizations in the network act as enterprises and
partners. Each organization acting as an enterprise installs their copy of the
enterprise server to transfer information to their channel partners seamlessly.

Each reseller or distributor may work with more than one enterprise, and their
installation of the enterprise server must be able to receive and respond to
messages from different enterprise servers.

The following table summarizes the main activities for an implementation of the
Sterling Configurator Visual Modeler:

Implementation phase Task

Plan Project analysis

Analyze v Configuration analysis

v Integration analysis

v Requirements analysis

Design and Configure v Preparation of servlet container
environment

v Installation of Knowledgebase

v Knowledgebase setup

v Sterling Configurator Visual Modeler
configuration

v Role and security definition

v System administrator authentication

v XML schema creation

v Customizing of BizAPIs, BLCs, and
controllers

v Customizing JSP pages

Testing and deployment v Product integration

v Testing server configuration

v Testing enterprise to partner
communication

v Testing partner to enterprise
communication

v Release to production systems

Improve Assess and enhance

© Copyright IBM Corp. 2007, 2012 3

4 Sterling Configurator Visual Modeler: Implementation Guide

Chapter 3. Implementation Steps

The main tasks you perform in implementing Visual Modeler are:
v Project analysis: Agree to a schedule for the implementation project that sets a

timeline. Identify milestones to measure the progress of the implementation and
identify dependencies and risks that might prevent the implementation from
completing on time.

v Configuration analysis: Determine a suitable Sterling Configurator Visual Modeler
configuration (the number of machines to be used and their location on internal
networks in relation to firewalls and proxy servers). See High Availability and
Load Balancing in Sterling Configurator Visual Modeler: Installation Guide for further
details about a clustered implementation.

v Integration analysis: Identify integration points with existing e-commerce systems.
v Requirements analysis: Check hardware and software requirements to make sure

that the machines are sufficiently powerful to support the anticipated traffic and
response times required.

v Installation of Sterling Configurator Visual Modeler: Install the Sterling Configurator
Visual Modeler on the designated machine(s). See Installation Overview in Sterling
Configurator Visual Modeler: Installation Guide for more information.

v Knowledgebase setup :
1. Installation of Knowledgebase: Install the Knowledgebase schema in the

designated database server.
2. Knowledgebase setup: Check connectivity to the Knowledgebase database

server and populate it with all your e-commerce�related information. This
must include the partner profiles for your partners, your product catalog,
and price list information.
See Sterling Configurator Visual Modeler: Installation Guide for more
information.

v Visual Modeler configuration: Modify configuration files to define the system
configuration in your production environment.

v Role and security definition: Define groups and roles and modify configuration
files and ACL scripts accordingly. These determine the security privileges for
your enterprise server users.

v Schema creation: Create the business object schema to provide data source
information. The data layer manages access between the enterprise server and
the external systems.

v Customizing BLCs and controllers: Modify business logic and controller classes to
support your business logic. In some cases, you need to modify the Java classes
in order to implement business processes specific to your organization.

v Customizing JSP pages: Modify templates to meet your “look-and-feel”, search,
and static page requirements. The JSP pages provided by the Sterling
Configurator Visual Modeler are used to display the browser pages and may be
customized to meet the needs of your organization.

v Product integration: Import product information into the Knowledgebase or
provide punch-out integration. If your implementation is to support product
ordering from a non-IBM product, then you need to provide a means of
integrating the product data with the Sterling Configurator Visual Modeler.

© Copyright IBM Corp. 2007, 2012 5

v Testing server configuration: Before you deploy the Sterling Configurator Visual
Modeler, thoroughly test the system. We provide a number of scripts to test the
chief functional components.

v Testing enterprise to partner communication: Send test messages from the enterprise
server to other enterprise servers.

v Testing partner to enterprise communication: Send test messages from other
enterprise servers to your enterprise server.

v Assess and enhance: Once the Sterling Configurator Visual Modeler is deployed,
you must plan for an ongoing process of analyzing its usage and performance.

6 Sterling Configurator Visual Modeler: Implementation Guide

Chapter 4. Integration between Visual Modeler and Sterling
Selling and Fulfillment Foundation

Integrating the Sterling Configurator Visual Modeler with Sterling
Selling and Fulfillment Foundation

In some instances, complex products may have to be configured before they can be
bought by customers. In some other instances, such products may have optional
components that customers can configure based on their requirements. Sterling
Configurator Visual Modeler enables you to create models that define the
configurable options of a product, and to associate products to these models. The
IBM® Sterling Configurator is a tool that is used to display the configurable
products along with the available options to the end user.

The integration between the Sterling Configurator Visual Modeler and IBM Sterling
Selling and Fulfillment Foundation is necessary to enable them to exchange
information. The integration is required to ensure that the correct product
information, as maintained in Sterling Selling and Fulfillment Foundation, is used
for defining the models in the Sterling Configurator Visual Modeler. The prices
applied on the products are based on the price list and the currency associated
with the guest user. For more information about associating the price list, refer to
the Business Center: Pricing Administration Guide.

To integrate the Sterling Configurator Visual Modeler with Sterling Selling and
Fulfillment Foundation, you must perform certain configurations in the Sterling
Configurator Visual Modeler application and the Applications Manager.

Configure the Sterling Configurator Visual Modeler Properties
About this task

You must configure the values of certain properties in the Sterling Configurator
Visual Modeler in order to enable it to obtain the correct product information from
Sterling Selling and Fulfillment Foundation.

To configure the properties in the Sterling Configurator Visual Modeler:

Procedure
1. Point your browser to the following URL:

http://<hostname>:<port>/<context_root>/en/US/enterpriseMgr/admin

Here, hostname is the IP address, port is the listening port of the machine in
which the Sterling Configurator Visual Modeler is installed, and context_root is
the context root of the hosted Visual Modeler application.
The Login page is displayed.

2. Log in as an administrator by entering your login ID and password, and
clicking Log In.

3. Click the System Services hyperlink. The System properties page is displayed.
4. Click the Fulfillment hyperlink. The Properties for Fulfillment page is

displayed.

© Copyright IBM Corp. 2007, 2012 7

5. Set the Sterling Order Fulfillment System URL property to
http://<hostname>:<port>/smcfs/interop/InteropHttpServlet. This URL
pertains to the Interop servlet of the Sterling Selling and Fulfillment
Foundation.

6. Set the Sterling Configurator URL property to the following when you are
deploying Sterling Configurator with WebSphere® Commerce or any other
third-party application:
http://<machine>:<port>/sic/configurator/configure.action

Here, machine is the IP address in which the Sterling Selling and Fulfillment
Foundation is installed, and port is the listening port of the machine in which
the Sterling Selling and Fulfillment Foundation is installed.

7. Set the Sterling Configurator URL property to the following when you are
deploying Sterling Configurator with Sterling Business Center:
http://<machine>:<port>/sbc/sbc/item/VM-Test-Configure.action

8. Set the following properties appropriately:
v User name for the Sterling Fulfillment system
v Password for the Sterling Fulfillment system

The values of these properties determine the user name and password that
will be used to communicate with the Sterling Selling and Fulfillment
Foundation server.

Configure the Sterling Configurator Rules
About this task

To enable the Sterling Configurator to obtain the model information of the
products from the Sterling Configurator Visual Modeler, you must specify the
location of the models, properties, and rules pertaining to models in the
Applications Manager.

To configure the Sterling Configurator rules:

Procedure
1. In the Sign In page, log in as an administrator by entering your login ID and

password, and clicking Sign In. The Application Console home page is
displayed.

2. From the menu bar, navigate to Configurations > Launch Applications
Manager. The Applications Manager is launched in a new browser window.

3. From the Applications Manager menu bar, navigate to Applications >
Application Platform. The Application Rules side panel is displayed.

4. In the Application Rules side panel, select System Administration > Sterling
Configurator.

5. Specify the paths to the location where the models, properties files, and rules
are stored.

Results

Notes:

v All the paths specified in the Applications Manager for the model repository are
shared by the Sterling Selling and Fulfillment Foundation and the Sterling
Configurator Visual Modeler. If the Sterling Selling and Fulfillment Foundation
and the Sterling Configurator Visual Modeler reside on different machines, the

8 Sterling Configurator Visual Modeler: Implementation Guide

paths should be mounted on a drive that is accessible to both. For more
information about model repository, refer to the Sterling Selling and Fulfillment
Foundation: Configuration Guide.

v In IBM Sterling Business Center, a model can be assigned to the item definition
of a bundle item. The model name is saved in the item definition. If you change
the model name at any point of time after it has been saved to the item
definition, the item definition needs to be changed to point to the modified
model name. This situation could arise when a user edits the model definition in
Sterling Configurator Visual Modeler.

Chapter 4. Integration between Visual Modeler and Sterling Selling and Fulfillment Foundation 9

10 Sterling Configurator Visual Modeler: Implementation Guide

Chapter 5. Introduction to J2EE Web Applications

This topic presents an overview of the Java 2 Platform, Enterprise Edition (J2EE)
and how it is used to deploy Web applications. If you are already familiar with
this architecture, then you can skip this topic.

Architecture

The Sterling Configurator Visual Modeler is designed to conform to the Java 2
Platform, Enterprise Edition (J2EE) architecture as defined in Java 2 Platform
Enterprise Edition Specification, v 1.2 published by Sun Microsystems, Inc.

The Sterling Configurator Visual Modeler is deployed as a Web application that
comprises a set of Java classes together with accompanying configuration files,
HTML templates, and JSP (JavaServer Pages) pages. It must be installed into a
servlet container that conforms to the J2EE standard.

Web Applications

A J2EE Web application is built to conform to a J2EE specification. You add Web
components to a J2EE servlet container in a package called a Web application
archive (WAR) file. A WAR file is a JAR (Java archive) file compressed file.

A WAR file usually contains other resources besides Web components, including:
v Server-side utility classes
v Static web resources (configuration files, HTML pages, image and sound files,

and so on)
v Client-side classes (applets and utility classes)

The directory and file structure of a Web application deployed as a WAR file
conforms to a precise structure. A WAR file has a specific hierarchical directory
structure. The top-level directory of a WAR file is the document root of the
application. The document root is the directory under which JSP pages, client-side
classes and archives, and static Web resources are stored. The document root
contains a subdirectory called WEB-INF/, which contains the following files and
directories:
v web.xml: the Web application deployment descriptor. It describes the structure

of the Web application.
v Tag library descriptor files.
v classes/: a directory that contains server-side classes: servlet, utility classes, and

Java Beans components.
v lib/: a directory that contains JAR archives of libraries (tag libraries and any

utility libraries called by server-side classes).

web.xml File

Every Web application deployed in a servlet container must have a web.xml file
present in its WEB-INF/ directory. The structure of every web.xml conforms to a
DTD published as part of the J2EE specification.

© Copyright IBM Corp. 2007, 2012 11

The purpose of the web.xml is to specify the general configuration of the Web
application as required by the J2EE standard. Specifically:
v initialization parameter values are provided for the Web application
v servlet classes used by the Web application may be declared and given names
v each servlet class is mapped to one or more URL patterns: when the servlet

container receives a request whose URL matches a pattern defined in the
web.xml file, then the corresponding servlet is used to process the request

v initialization parameter values are provided for each servlet if required
v session information (such as time out)
v the location of custom tag libraries used by the JSP pages

JSP Pages

Early Java-based Web applications used only servlets to generate the HTML that
was sent back to users' Web browsers. Over time, template mechanisms were
introduced that enabled Web developers to generate dynamic content by using
templates to generate the HTML. Several such template systems are available,
however the J2EE architecture has settled on the use of JSP (JavaServer pages)
pages to display content.

When a J2EE application receives a request from a user's browser, it first processes
the request to extract parameters from the request and to perform business logic
initiated by the request. Once the processing is complete, the Web application must
dispatch the request to a JSP page: it does this by using a request dispatcher.
Typically, the servlet context invokes a request dispatcher by passing the target JSP
page to the dispatcher and then the request and response objects are forwarded by
the request dispatcher.
v A JSP page comprises a combination of HTML, JSP tags, and scripting elements

such as scriptlets.
v HTML: a JSP page can include any amount of normal HTML. This content is

passed right through to the browser page without change.
v JSP tags: tags populate the dynamically-generated HTML with values calculated

as the page is being generated. There are standard JSP tags such as
<jsp:getProperty>, <jsp:include>, and <jsp:forward>. These are available to
anyone creating a JSP page. In addition, you can specify that your Web
application uses one or more custom tag libraries. Each custom tag library must
be declared in the web.xml file for the Web application and the declaration must
specify both the URI for the tag library and the location of the tag library
descriptor (TLD) file.

Note: In the Sterling Configurator Visual Modeler, the use of the tag libraries is
now deprecated. For performance reasons, we suggest that you use scriptlets.
JSP tags can still be used in some existing applications or specialized integration
tasks.

v Scripting elements: You can intersperse the HTML and JSP tags in a JSP page
with Java code that is contained between the scriptlet opening tag <% (or
<jsp:scriptlet>) and the closing tag %> (or </jsp:scriptlet>). Scriptlets are most
commonly used to manage complex flow control in a JSP page. Note that most
JSP scripting elements can be invoked using a shorter form as described in the
following table:

Short form
XML form

12 Sterling Configurator Visual Modeler: Implementation Guide

<% <jsp:scriptlet>

<%= <jsp:expression>

<%! <jsp:declaration>

<%@ <jsp:directive>

.

Data is passed to a JSP page using a variety of mechanisms, the most important of
which are implicit objects and beans.
v Implicit objects: Every JSP page provides the Web developer with objects that

can be used to display data on the generated HTML page. The most important
of these are the page, request, session, config, and application objects.

v Beans: Most of the data generated by the business logic of the application is
passed to the JSP page by adding Java beans to one of the implicit objects listed
above.

Model 2 Architecture

The Sterling Configurator Visual Modeler is designed to conform to Sun's “Model
2” architecture. In this architecture, three functional components referred to as the
Model, View, and Controller (MVC) partition the functionality of the Web
application into logically distinct components.

The following figure illustrates the architecture of the model:

v Model: this component manages the data and business objects that are used by
the system.

v View: this component is responsible for generating the content displayed to the
user.

v Controller: this component determines the logical flow of the application. It
determines what actions are performed on the model and manages the
communication between model and view components.

Chapter 5. Introduction to J2EE Web Applications 13

Controllers

In the Model 2 architecture, controllers are Java classes intended to manage the
processing of an inbound request and then to forward the request to an
appropriate JSP page. The basic structure of a Sterling Configurator Visual Modeler
controller follows this form:
public class GenericController extends Controller
{

public void execute() throws Exception
{

//Dispatch some business logic
BizObjs resultBizObjects = calculate();
//Generate the beans
Vector beans = generateBeans(resultBizObjs);
//Attach the beans to the request
attachBeans(beans);
// Dispatch to JSP page
String pageName = choosePageLogic();
// Dispatch to JSP page
Dispatcher rd = request.getDispatcher(pageName);
rd.forward(request, response);

}

protected BizObjs calculate() throws Exception
{

//do some processing
return resultBizObjs;

}

protected Vector generateBeans(BizObjs bizObjs)
{

//create beans from business objects
return beans;

}

protected void attachBeans(Vector beans)
{

Iterator it = beans.iterator();
while (it.hasNext())
{

DataBean bean= (DataBean) it.next();
request.setAttribute (beanName, bean);

}
}

protected String choosePageLogic()
{

//logic to determine where to forward the request
return pageString;

}
}

Model

In the Model 2 architecture, the objects that represent data in the system are
maintained by the model component. It is common to distinguish the business
objects from the beans used in the JSP pages.

Once the business logic finishes creating and transforming the business objects, the
controller class transforms the business objects into their corresponding beans. The
beans are then passed to the JSP page for presentation.

14 Sterling Configurator Visual Modeler: Implementation Guide

View

The user interface of the Web application is served to the browser using JSP pages.
Data is passed to each JSP page in the form of beans. These are classes with
defined accessor methods that enable the logic on the JSP page to retrieve values
using tags of the general form:

<%
DataBean dataBean = request.getAttribute("nameOfBean");
String stringProperty =
dataBean.getNamedProperty("nameOfProperty");
%>

Note that it is possible to use a combination of scriptlets, simple JSP tags, and
more sophisticated custom tags to manage page layout and the display of data.

Further Reading

The published literature on Web applications, J2EE, servlets, and JSP pages is vast.
The following are recommended books for further reading:
v Hall, Core Servlets and JavaServer Pages, Second Edition, Prentice Hall, 2003
v Hunter, Java Servlet Programming, Second Edition, O'Reilly, 2001
v Fields and Kolb, Web Development with JavaServer Pages, Second Edition,

Manning, 2001

Chapter 5. Introduction to J2EE Web Applications 15

16 Sterling Configurator Visual Modeler: Implementation Guide

Chapter 6. System Architecture

This topic describes the Sterling Configurator Visual Modeler architecture and
introduces some of the important Java classes that the Sterling Configurator Visual
Modeler and its applications use. It assumes a thorough understanding of the J2EE
architecture.

This topic is intended to help you to modify or extend existing applications or
write new applications. Note that not all parts of the Sterling Configurator Visual
Modeler conform to this architectural description.

The following figure displays the Sterling Configurator Visual Modeler
Architecture.

Sterling Configurator Visual Modeler Web Application
When you install the Sterling Configurator Visual Modeler into your servlet
container, it installs as a WAR file, Sterling.war. When the WAR file deploys, it
unjars into a directory called Sterling/. The WEB-INF/ sub-directory contains the
web.xml file for the application.

The most important configuration settings in this file are:
v The definition of the InitServlet and DispatchServlet:

– InitServlet loads when the servlet container starts. InitServlet reads in all of
the configuration information for the Sterling Configurator Visual Modeler
using the value of the propertiesFile element: by default this is
Comergent.xml.

© Copyright IBM Corp. 2007, 2012 17

– DispatchServlet is the main servlet used to process inbound requests. Most of
the URLs defined in the servlet mapping section resolve to the
DispatchServlet.

v The servlet mapping section maps most URL patterns to the DispatchServlet.
Note that “/msg/*” is used to map requests to the MessagingServlet: this
ensures that inbound XML messages are processed by this servlet class.

v The session configuration element sets a session timeout value of 30 (minutes).
Each implementation of the Sterling Configurator Visual Modeler must carefully
consider an appropriate value for this parameter. Bear in mind the following:
– End users of the system may leave their browsers unattended while they step

away from their desks. If an unscrupulous user can access the browser when
a session is still valid, then they can access the system.

– End users may punch out to other external systems in the course of using the
Sterling Configurator Visual Modeler. The session timeout value must give
enough time for users to punch out and return.

– Each session uses system resources. The greater the session timeout value,
then the greater the memory usage of the system.

v The location of the Comergent tag library descriptor (TLD) file is provided.

Processing Requests
When the Sterling Configurator Visual Modeler receives a request from a user's
browser, it must determine how to process the request and how to display the
result to the user. It does this using the MessageTypes.xml configuration files.
These files determine the mapping between a request and the logic processing
classes and JSP pages used.
1. When a request is received, the message type is identified and the appropriate

controller invoked.
2. Additional business logic may be invoked using a business logic or bizAPI

class.
3. The controller then forwards the request to the specified JSP page to render the

output back to the user's browser.

The messageTypeFilename element of the GeneralObjectFactory element of the
Comergent.xml file specifies the comma-delimited list of MessageTypes.xml file
used to specify the message types. Each MessageTypes.xml file declares a list of
message types organized by message group.

Each request specifies the message type as the cmd parameter. For example, if the
URL is of the form:
../Sterling/catalog/matrix?cmd=search

then the name of the message type is “search”.

Each message type is identified by the Name attribute of its MessageType element.
The Name attribute identifies which message type is being requested when a user
clicks a URL.

Note: You must make sure that each message group and message type have a
unique name. You must check the collection of MessageTypes.xml files to ensure
that you have not defined message groups and message types with the same
name. See “Overriding MessageType Definitions” on page 19 for an exception to

18 Sterling Configurator Visual Modeler: Implementation Guide

this rule. We suggest that you list message types alphabetically by name within
message groups as a means of quickly identifying the duplication of message type
names.

MessageType elements have one or more of the following child elements:
v BizletMapping: used for message processing, it associates a Bizlet class and a

method of this class to process the message.
v ControllerMapping: associates a controller to be used to process the request. For

message processing, you can specify a BizRouter class to invoke a Bizlet class to
process the message.

v JSPMapping: associates a JSP page to be used to display the result of processing
the request.

A MessageType element may specify any combination of these three elements.
v If no ControllerMapping element is specified, then, by default, the

ForwardController class is used. This class simply forwards the request to the
JSP page specified by the JSPMapping element. If no JSPMapping element is
found or if the specified JSP page is missing, then an error page is displayed.

v If a custom controller is specified, it may process the request itself (see
“Controller Classes” on page 21), or it can invoke a business logic class using
the runAppJob() method of the AppExecutionEnv class (see “AppExecutionEnv
Class” on page 26).

v If no JSPMapping element is specified, then the business logic class or controller
must specify which JSP page is to be used.

Each request or message is validated against the entitlements system to verify that
the user can execute the message type. Not all users can execute all message types.

Overriding MessageType Definitions
The MessageType element has an optional attribute: IsOverlay. If this attribute is
set to “true”, then the MessageType definition overrides any previous definition of
this message type given in any earlier MessageTypes.xml file listed in the
messageTypeFilename element.

If two or more definitions are given for the same message type without one
specifying the isOverlay attribute, then an initialization error is displayed and the
first definition of the message type is used.

Note that the IsOverlay attribute does not change the location of the MessageType:
this is still determined by the message group to which the first definition belongs
or by the MessageTypeRef element that references the message type.

For example, to override the definition of the adirectLogin message type, you can
define an element as follows:

<MessageType Name="adirectLogin" IsOverlay="true">
<ControllerMapping>
com.comergent.apps.common.controller.MyLoginController
</ControllerMapping>
<JSPMapping>../common/adirectPageLoader.jsp</JSPMapping>
</MessageType>

Chapter 6. System Architecture 19

The IsOverlay attribute can also be used for MessageGroup declarations so that
you can overwrite the definition of a message group, but its use is not
recommended.

Default Elements
For each message group, you can specify default BizletMapping,
ControllerMapping, and JSPMapping elements. These are used when no mapping
is specified for a message type that belongs to the message group.

In general, if no default mapping is specified in a message group, then the system
looks for a default mapping in the parent message group of the current message
group. If no mapping is found anywhere in the message group tree, then values
specified in the MessageGroupDefaults message group are used.

Key Java Classes
At a schematic level, the Sterling Configurator Visual Modeler applications all have
the same structure: they are composed of controllers, business objects and bizlets,
and JSP pages.

Wrapper Classes
Several of the standard classes used in J2EE Web applications have been wrapped
in wrapper classes to manage any minor idiosyncrasies among the supported
servlet containers:

ComergentContext
This class is used to wrap the servlet container context. You can use it to retrieve
the Env object for environment information. Note that any context attribute that is
set must be serializable. An exception is thrown if you attempt to set a
non-serializable attribute.

It provides the getResourceAsStream() method: this method can be used to access a
file as a stream for read-only access. You must use the adjustFileName() method of
the LegacyFileUtils class for write access to a file.

ComergentDispatcher
This class is a lightweight wrapper of the standard RequestDispatcher class: it
provides forward() and include() methods.

Comergent Request
This class wraps the standard HttpRequest class and provides helper methods to
parse the inbound requests and messages.

ComergentResponse
This class wraps the standard HttpResponse class. It provides a localRedirect()
method to pass a request with a new message type. For example, you may want a
controller to process a request, and then to pass the result on to another controller:
you do this by calling:
response.localRedirect(request, "messageType");

This has the effect of submitting the request to the DispatchServlet as if it had been
received as an HTTP request.

20 Sterling Configurator Visual Modeler: Implementation Guide

ComergentSession
This class wraps the standard HttpSession class. When a user first logs in, a User
data bean is created and added to the ComergentSession object. You can access
user information through the ComergentSession getUser() method.

For example:

session.getUser().getUserKey()

will return the current user’s key; and

session.getUser().getPartnerKey()

returns the key of the partner to whom the user belongs.

The ComergentSession object is used to store information that must be persistent
for more than one request of a user’s session. Use the setAttribute(String s, Object o)
method to set an object in the session and getSession(String s) to retrieve it. Objects
stored in the session must implement the Serializable interface: all generated data
beans implement this interface and so these may be stored in the session.

The ComergentSession class also provides a logout() method: invoking this method
immediately invalidates the servlet container session.

Servlets
The main servlets used are:
v InitServlet: this servlet loads when the servlet container starts. Its

init(ServletConfig config) method initializes the ComergentAppEnv class.
v DispatchServlet: this servlet is used to service almost all requests processed by

the Sterling Configurator Visual Modeler. Its principle method call is:
void dispatch(HttpServletRequest request, HttpServletResponse response)

This method creates a controller to handle the request with:

Controller controller createController(ComergentRequest comergentRequest)

and then invokes:

controller.init(comergentContext, comergentSession,
comergentRequest, comergentResponse);
controller.execute();

Note that the instance of the Controller class created by the createController()
method is a function of the request. The request message type determines the
Controller class because the controller is created by the GeneralObjectFactory
class. The GeneralObjectFactory uses the MessageTypes.xml file to map from the
request message type to a Controller class.

v DebsDispatchServlet: this servlet is used to process XML messages posted from
another system to the Sterling Configurator Visual Modeler. If the content type
of the request starts with “application/x-icc-xml” or “text/xml”, then it invokes
the MessagingController to process the request.

Controller Classes
The Sterling Configurator Visual Modeler offers two different ways of using
controllers to process requests:

Chapter 6. System Architecture 21

Custom Controllers

You can write your own Controller class by extending the
com.comergent.dcm.caf.controller.Controller class. When you do this, you must
provide the application logic to determine the JSP page to which the request
should be forwarded. For example:

boolean processingSuccess = false;
/*
*
* Business logic processes request and sets processingSuccess to
* true if successful.
*/
if (processingSuccess)
{
callJSP("SuccessMessageType");
}
else
{
callJSP("FailureMessageType");
}
protected void callJSP(String messageType) throws
ControllerException, ICCException, IOException
{
String resource = getJSPName(messageType);
ComergentDispatcher rd =
request.getComergentDispatcher(resource);
rd.forward(request, response);
}
protected String getJSPName(String messageType) throws ICCException
{
JSPObjectID id = new JSPObjectID(messageType);
return GeneralObjectFactory.getGeneralObjectFactory().-
getMapping(id);
}

SimpleController

You can extend the SimpleController class to process the request if there is only
one exit point from the application logic. The SimpleController uses the message
type of the request to determine the JSP page to which the request is forwarded
once the application logic is finished. To extend the SimpleController class,
overwrite the calculate() method.

MessagingController

This class is used to process XML requests (such as price and availability or
shopping cart transfer requests from other systems).

22 Sterling Configurator Visual Modeler: Implementation Guide

DataBean Classes
Access to data in the Sterling Configurator Visual Modeler is managed through
data objects: these are XML documents that describe the business entities such as
partners, users, products, and so on. They describe the fields of the data object
together with information about how they map to database tables in the
Knowledgebase. Each data object XML file is used to generate a corresponding
DataBean Java class.

The DataBean classes are the main classes used to represent each business entity in
the Sterling Configurator Visual Modeler. Each business entity such as a user,
partner, product, and so on, is represented in memory by an instance of the
appropriate DataBean class. See “Data Beans in Sterling Configurator Visual
Modeler” on page 43 for more information. Some legacy application may still use
the BusinessObject class, but in general the use of the BusinessObject class is
deprecated.

DataBean classes are also used to pass data to JSP pages. Any data object definition
in the Sterling Configurator Visual Modeler XML schema may be used to generate
a DataBean class by running the generateBean target (see “Using the Software
Development Kit to Customize Sterling Configurator Visual Modeler
Implementation” on page 79 for more details).

The DataBean class is a general abstract class and all generated data bean classes
extend this class. Each DataBean class provides restore() and persist() methods that
retrieve and save data in the database respectively.

Some applications make use of application beans. See “Application, Entity, and
Presentation Beans” on page 48 for a discussion of how these beans are used.

ObjectManager and OMWrapper Classes
You should not instantiate DataBean classes by using their constructors. Instead
use the ObjectManager and OMWrapper classes to create new instances of objects
as your applications require them. These classes follow the Factory pattern in that
they provide a class designed to generate object instances as they are required.
They enable you to switch from one object class to another without changing the
application code that creates and uses the objects.

Creating Objects

In general, you should use the OMWrapper class rather than the ObjectManager
class, but both can be used. You use these classes to create objects with the
following methods:

ObjectClass temp_ObjectClass =
(ObjectClass) OMWrapper.getObject("ObjectName");

or

ObjectManager temp_ObjectManager = ObjectManager.getInstance();
ObjectClass temp_ObjectClass =
(ObjectClass) temp_ObjectManager.getObject("ObjectName");

Chapter 6. System Architecture 23

Mapping Object Names to Object Classes

The ObjectManager and OMWrapper classes use the ObjectMap.xml configuration
file (located in debs_home/Sterling/WEB-INF/properties/) to determine which type
of object is created from the object name provided in the getObject() method.

Note: Do not add comments to the ObjectMap.xml file: these can cause errors on
initialization.

Each Object element is of the form:

<Object ID="ObjectName">
<ClassName>ObjectClass</ClassName>
</Object>

When the getObject("ObjectName") method is invoked, an instance of the
ObjectClass class is returned. The ObjectName must be the name of a Java class or
interface and the ObjectClass must be a subclass of the ObjectName class (possibly
itself) or a class that implements the ObjectName interface.

If the ObjectMap.xml file does not have an Object element whose ID attribute
matches the ObjectName parameter, then the ObjectManager or OMWrapper
creates an instance of the ObjectName class. That is, it behaves as if there is an
element of the form:

<Object ID="ObjectName">
<ClassName>ObjectName</ClassName>
</Object>

For example, suppose that the ObjectMap.xml file contains the element:

<Object ID="com.comergent.bean.productMgr.ProductBean">
<ClassName>
com.comergent.bean.productMgr.MatrixProductBean
</ClassName>
</Object>

Then the following method invocation will create an instance of the
MatrixProductBean class:

ProductBean temp_ProductBean = (ProductBean)
OMWrapper.getObject("com.comergent.bean.productMgr.ProductBean");

Note that the MatrixProductBean must extend the ProductBean class: otherwise a
ClassCastException would be thrown at runtime. However, if there is no element
whose ID attribute is com.comergent.bean.productMgr.ProductBean, then the same
call would return an instance of the com.comergent.bean.productMgr.ProductBean
class.

Restrictions

Note that you cannot create Object definitions so that the class specified in the
ClassName element in one Object element is the ID attribute in another Object
element. The only exception to this rule is when the class is used both as the ID
and ClassName values for a single Object element. In particular, if you extend a
data object (see “Extend Data Objects” on page 54), then:
1. Define an Object element that maps the extended class to the extending class:

24 Sterling Configurator Visual Modeler: Implementation Guide

<Object ID="<Extended class>">
<ClassName><Extending class></ClassName>
</Object>

2. Make sure that you replace any reference to the extended data object in any
ClassName elements to the extending data object.

Passing Parameters

If you need to pass parameters to the object constructors, then the following
OMWrapper method is also available:

ObjectClass temp_ObjectClass = (ObjectClass)
OMWrapper.getObjectArg("ObjectName", Object arg1, ... ,
Object arg10);

In this form, you can pass up to ten parameters as Objects into the method
invocation. The following OMWrapper and ObjectManager method calls enable
you to pass in an unlimited number of parameters as an array of objects:

ObjectClass temp_ObjectClass = (ObjectClass)
OMWrapper.getObject("ObjectName", Object[] args);

or

ObjectClass temp_ObjectClass = (ObjectClass)
temp_ObjectManager.getObject("ObjectName", Object[] args);

For example, suppose that the ObjectMap.xml file contains the element:

<Object ID="com.comergent.bean.productMgr.OrderBean">
<ClassName>com.comergent.bean.matrix.MatrixOrderBean</ClassName>
</Object>

Here, the MatrixOrderBean class is a subclass of the OrderBean class. Suppose that
the MatrixOrderBean has a constructor of the form MatrixOrderBean(CartBean cb).

Then the following method invocation will create an instance of the OrderBean
class using an instance of the CartBean class as a parameter:

Cart temp_CartBean = (CartBean)
OMWrapper.getObject("com.comergent.bean.partnerMkt.CartBean");
/*
Code that processes the cart bean object
*/
OrderBean temp_OrderBean = (OrderBean)
OMWrapper.getObjectArg("com.comergent.bean.productMgr.OrderBean",
temp_CartBean);

Object Pooling

If you expect some classes of object to be created and used frequently, then you
can use the ObjectManager and OMWrapper classes to create a pool of objects. The
parent object (identified by the ID attribute) must implement the poolable interface.
This interface is a part of the com.comergent.dcm.objmgr package. It declares one
method reset() that you must implement.

Chapter 6. System Architecture 25

When you are finished with a poolable object, you can return it to the object pool
by using the return() method as follows:
1. In the ObjectMap.xml entry for a pooled class, set the MaxPoolSize attribute to

the number of objects you want created in the pool:
<Object ID="ObjectName" MaxPoolSize="n">
<ClassName>ObjectClass</ClassName>
</Object>

2. Create instances of the object class using OMWrapper and ObjectManager as
described above.

3. When you are finished with the object, then return the instance to the pool
using:
OMWrapper.return(temp_ObjectClass);

4. or
temp_ObjectManager.return(temp_ObjectClass);

Note that if you create an object by passing in parameters as described in “Passing
Parameters” on page 25, then a new object is created rather than re-using an object
from the pool.

AppExecutionEnv Class
The AppExecutionEnv class can be used to run business logic classes. However,
the use of business logic classes is deprecated, so use this class only to support
legacy applications. You use the static methods runAppObj() to invoke the creation
of a business logic class and to execute its prolog and service methods.

In its most common form, you can use:
AppExecutionEnv.runAppObj(String messageType, BizObjTable bizObjects)

The AppExecutionEnv class invokes the business logic class determined by the
messageType string and which takes the BizObjTable vector of business objects as
the input business objects.

AppsLookupHelper Class
There are many situations in the Sterling Configurator Visual Modeler where the
status of a data object is managed using a lookup code. For example, the order
status of an order can change several times through the placing of an order. There
are also several examples of display fields such as the Title of a user which can
take several well�defined values and which need to be managed for different
locales. This data is stored in the CMGT_LOOKUPS table of the Knowledgebase
database schema.

For each lookup type, there can be one or more lookup codes and each code has
an associated description string. For example:

Lookup Type Lookup Code Description

AddressType 10 Billing

AddressType 20 Shipping

You can use the AppsLookupHelper class to map a lookup code to a description
string. By invoking the appropriate method of the AppsLookupHelper class, pass
in the lookup code as a parameter and the corresponding String is returned.

26 Sterling Configurator Visual Modeler: Implementation Guide

Depending on which lookup type you are interested in, you choose the appropriate
method for that lookup type. The method used determines which lookup type is
used to retrieve the lookup code from the CMGT_LOOKUPS table. For example, to
retrieve an order status code string, you can write:

String orderStatusString =
AppsLookupHelper.getOrderStatusForCode(orderStatusCode);

Conversely, you can retrieve the lookup code using:

int orderStatusCode =
AppsLookupHelper.getCodeForOrderStatus(orderStatusString);

Most, though not all, lookup types have helper methods defined. Check the Java
doc for the AppsLookupHelper class for details. For further information, see
“Support for Lookup Codes” on page 30.

ComergentAppEnv Class
Use the ComergentAppEnv class to provide your code with environment
information specific to the application. It provides the following useful methods:
v adjustFileName(): this method has been moved to the LegacyFileUtils class. See

“LegacyFileUtils Class” on page 28.
v constructExternalURL(): use this method to construct a URL that enables a client

to be re-directed back to the server. Primarily, you use this method to generate a
redirect URL to enable the server to restore session information.

v getEnv(): this method returns the environment object.
v getContext(): this method returns the application context.

Global Class
The use of this class is deprecated. Its logging function has been replaced by the
log4j API: see “Logging in Sterling Configurator Visual Modeler: An Overview” on
page 63 for more information. Its support for retrieving the values of properties
has been replaced by the Preferences mechanism. If you need to continue to use
code that uses the Global class, then replace each usage by the LegacyPreferences
class.

GlobalCache Interface
Use this interface to define a cache that provides access to cached objects used by
all Sterling Configurator Visual Modeler applications. It can be used to support a
clustered environment in which the Sterling Configurator Visual Modeler is
running on more than one machine.

To use a cache class that implements the GlobalCache interface, you must
implement the methods of the interface. The cache class is loaded when the
InitServlet init() method is invoked. You must provide the name of the class as the
General.globalCacheImplClass element of the Comergent.xml file. A default
implementation is provided with Sterling Configurator Visual Modeler:
com.comergent.dcm.cache.impl.AppContextCache.

You access the implementation of the GlobalCache interface by:
GlobalCache globalCache = GlobalCacheManager.getGlobalCache();

Chapter 6. System Architecture 27

The interface supports the following methods:
v public String store(Serializable entry): stores an object in the global cache, which

remains until the application cleans it up.
v public boolean store(String id, Serializable entry): stores an object in the global cache,

which remains until the application cleans it up.
v public String cache(Serializable entry): stores an object in the global cache. The

object is available as long as the application is using it, but the cache system
cleans it up automatically.

v public String cache(Serializable entry, long lease)
v public boolean cache(String id, Serializable entry)
v public boolean cache(String id, Serializable entry, long lease)
v public boolean contains(String id): checks if the cache contains the specific object.
v public Object get(String id): retrieves the cacheable object.
v public Object remove(String id): removes a cacheable object.
v public boolean gc(): This method should be called by a Cron job so the cache can

clean up unused entries.

LegacyFileUtils Class
The LegacyFileUtils class provides helper methods for working with files. Its use is
deprecated, but it provides support for methods previously provided by the
ComergentAppEnv class:
v adjustFileName(): It returns the real path name of a file. Use this method to access

files for either reading or writing: do not use the getRealPath() method because
this can return null.. In a clustered envrionment, the adjustFileName() method
ensures that all members of the cluster access the same file. You must use this
method with four parameters:
adjustFileName(String fileName, boolean share, boolean xPublic,
boolean xLoadable);

Use of the one-parameter form of this method is deprecated. The boolean
parameters are used to determine the location of the file using the configuration
parameters specified in the WritableDirectory element of the web.xml file.

OutOfBandHelper Class
The OutOfBandHelper class provides a means to generate an output stream using
a JSP page as a template. An example of its use is given here:

ComergentRequest request = ComergentAppEnv.getRequest();
ComergentResponse response = ComergentAppEnv.getResponse();
ByteArrayOutputStream stream = new ByteArrayOutputStream();
OutOfBandHelper outOfBandHelper = new OutOfBandHelper(request,
response, stream);
outOfBandHelper.getRequest().setAttribute(
ComergentRequest.COMERGENT_SESSION_ATTR,
request.getComergentSession());
outOfBandHelper.callJSP(messageType);
/*
* Initialize SendSMTP and use the stream to to set the body of the
* message
*/
String mimeType = "text/html";
String smtpHost = Global.getString(

28 Sterling Configurator Visual Modeler: Implementation Guide

"C3_Commerce_Manager.SMTP.SMTPHost");
SendSMTP smtp = new SendSMTP(smtpHost);
StringBuffer sb = new StringBuffer(subject);
String message = null;
String enc = ComergentI18N.getComergentEncoding();
message = stream.toString(enc);
//Send the mail
smtp.send(from, to, cc, subject, message, mimeType);

In this example, you can see how the OutOfBandHelper class is initialized using
the existing request and response objects and an output stream. Its callJSP()
method, generates the output stream by passing the request and response objects
to the JSP page determined by the message type parameter, and the output stream
can be used by the application to retrieve the content.

The OutOfBandHelper class makes use of session and context information when
mapping a message type to a JSP page. Consequently, you can use different JSP
pages for different locales in the same way as you do for processing browser
requests and the OutOfBandHelper class will resolve which locale's JSP page to use
and apply the same failover logic.

Preferences Class
The Preferences module provides the mechanism for accessing Sterling
Configurator Visual Modeler properties. It is one of the modules provided in the
platform modules: see “Preferences Service” on page 40 for more information. The
basic usage of the Preferences API is as follows:

private static Preferences temp_Preferences =
Preferences.getPreferences();

String temp_MyPropertyString =
temp_Preferences.getString("MyProperty");

The main methods it supports to retrieve properties are:
v public String getString(String key, String def)
v public boolean getBoolean(String key, boolean def)
v public double getDouble(String key, double def)
v public float getFloat(String key, float def)
v public int getInt(String key, int def)
v public long getLong(String key, long def)

There are corresponding putType() methods for each getType() method: for
example:
v public void putString(String key, String value)

If you invoke the getPreferences() method without a parameter, then you retrieve
the singleton Preferences object that the Sterling Configurator Visual Modeler
supports. If you pass in the name of a class (for example
getPreferences(MyClass.class)), then the object you retrieve is scoped: that is, the
name of the properties whose values you retrieve using the Preferences object have
the package path of the class prepended to the property name you provide.

Chapter 6. System Architecture 29

For example, suppose that MyClass is in the com.comergent.myApplication
package. Then the following fragments of code are equivalent:

private static Preferences temp_Preferences =
Preferences.getPreferences();

String temp_MyPropertyString =
temp_Preferences.getString("com.comergent.myApplication.MyProperty");

and:

private static Preferences temp_Preferences =
Preferences.getPreferences(com.comergent.myApplication.MyClass.class);

String temp_MyPropertyString =
temp_Preferences.getString("MyProperty");

Transactions
The Sterling Configurator Visual Modeler provides support for transactions:
database actions that span one or more atomic operations. In general, you use the
Transaction class to manage situations in which several data objects must be
persisted together, and if one fails, then they should all fail.

Support for Lookup Codes
The Sterling Configurator Visual Modeler uses lookup codes to provide a
mechanism for maintaining and displying locale-specific strings to users. For each
lookup type, you can define one or more lookup codes, and for each lookup code,
you can define a string for each supported locale.

What lookup support does the Sterling Configurator Visual
Modeler provide?

The Sterling Configurator Visual Modeler has the capability of automatically
providing lookups between code values and their corresponding strings and from
lookup code strings to code values.

If the “code” DsElement is set, then the “string” is automatically populated from
the lookup cache. If the “string” value is set, then the “code” is looked up using
the string value.

Are string values localized?

Yes. For a code-to-string lookup, the mechanism uses the user's locale to determine
which string value to use. For a string-to-code lookup, the mechanism uses the
user's locale when searching on a string value to find a corresponding code.

How do I define a code to string mapping?

Code-to-string relationships are defined in the DsDataElement.xml schema file. If
both of the “code” and “string” DsDataElements are then used in a data object,
then the code-to-string mapping is handled automatically.

The following is an example of a DataElement code-string pair.

30 Sterling Configurator Visual Modeler: Implementation Guide

<DataElement Name="OrderStatus" Description="Order Status"
DataType="LONG" MaxLength="20" LookupType="OrderStatus"
LookupString="OrderStatusString"/>
<DataElement Name="OrderStatusString" Description="Order Status"
DataType="STRING" MaxLength="260" LookupType="OrderStatus"
LookupCode="OrderStatus"/>

Are lookups performed for XML messages?

Yes. If a dataobject used for messaging contains a code-string pair, then the string
value will automatically be used to look up the code.

How is the lookup cache loaded?

The lookup cache is loaded at system startup.

Chapter 6. System Architecture 31

32 Sterling Configurator Visual Modeler: Implementation Guide

Chapter 7. Platform Modularity

Introduction to Sterling Configurator Visual Modeler Platform
Modularity

The Sterling Configurator Visual Modeler modular architecture is designed to
make implementations easy to customize and upgrade. The Sterling Configurator
Visual Modeler platform architecture enables building the platform in a more
modular way, so that changes and upgrades to the platform can be made more
quickly and simply, and so that the modules can be re-used to support different
products built using them.

The benefits of providing a means of delivering platform functionality in platform
modules and requiring that modules make calls to other modules only through
their external interfaces areas follows:
v It is easier to compartmentalize the functionality of applications.
v It is easier to understand and manage the dependencies between parts of the

Sterling Configurator Visual Modeler.
v It is easier to contain the customizations to single modules and understand what

effect changes made in a module have on the whole system.
v Modules can be more easily upgraded independently of each other, minimizing

the effect that an upgrade may have.
v Upgrades to modules that have not been customized will not affect

customizations made in other modules.
v New functionality can be delivered in the form of a module that may be

dropped into an existing deployment of the Sterling Configurator Visual
Modeler.

Platform Modules
The Sterling Configurator Visual Modeler platform is developed as a set of
interdependent modules that conform to a common organizational structure. In
general, each platform module corresponds to a functional component of the
Sterling Configurator Visual Modeler such as a service or a component of the
Sterling Configurator Visual Modeler platform. The platform modules provide a
Java API to other modules. Some modules provide a set of “helper” classes which
are used by a number of other modules.

In general, each platform module has the following structure:
v Java classes: organized into the following trees. At build time, the directories for

the module are assembled into a single JAR file.
– com.comergent.api.module: external API interfaces: used by other modules to

access functionality provided by the module. In general, when one module
makes a call to another module's class, it must do so through the other
module's external API. This is the com.comergent.api package for the module.

– com.comergent.module: implementation classes: the implementation of the
external API interfaces. When another module makes a call to the module's
external API, then the actual classes used are the implementing classes of the
module's interface. The implementation packages may include internal

© Copyright IBM Corp. 2007, 2012 33

classes: used by the implementation classes, but not exposed to the outside
world and not part of the supported Javadoc.

v Configuration files specific to the module such as properties files. These are
intended to live in the class hierarchy so that they can be referenced through
getResource() calls.

Platform Modularity: Module Interfaces
Each platform module must provide an external interface so that all calls to Java
classes and interfaces within the module are invoked through the interface. This
external interface provides a comprehensive set of Javadoc pages so that writers of
other modules can use the external interface reliably and easily.

The external interfaces are organized under the com.comergent.api package. This
package has all the external APIs supported by the modules. These are organized
by module: com.comergent.api.converter, com.comergent.api.logging, and so on.

Invoking Interfaces

You can invoke an interface from a Java class by casting any object or child
interface to the interface and then invoke any method that the interface declares.
Each module uses one or other of these techniques, but not both. As you work on
an existing module or create a new one, be consistent in how you invoke the
interfaces. It will make it easier for your colleagues to work on the same module.

In general, you should always try to work with interfaces provided by the
com.comergent.api packages: these are the interfaces that the platform modules
will support from one release to the next, even though the underlying
implementations of the interfaces may change.

Platform Module Descriptions
This section provides a brief description of the purpose of each platform module
and examples of its use.

Access Policy

This module provides the service used to check access policies.

Authentication

This module provides the APIs used to authenticate credentials and users.

Base64

This module provides the classes used to convert data to and from Base 64
notation.

Classpath Appender

This module provides classes used to add paths to the classpath.

Cryptography Service

This module provides the services used to encrypt and decrypt data.

34 Sterling Configurator Visual Modeler: Implementation Guide

Data Services

This module provides a re-packaging and clean-up of the existing data services
functionality. Its API has been moved out to a separate
com.comergent.api.dataservices package. Data services now uses the same
preferences mechanism as the rest of the Sterling Configurator Visual Modeler to
manage its properties. Connection pooling has been unified into one pool, and is
tunable. Pagination has been updated, and no longer relies on pbtagination files
being written to the file system.

Dispatch Authorization

This module manages access checking that enusres that each user sees only those
parts of the application to which they have been granted access.

Dispatch Framework

This module manages the dispatch framework of the Sterling Configurator Visual
Modeler classes that wrap the servlet request, response, context, and session classes
together with the base controller classes used by the dispatch mechanism.

Email Service

This module provides the basic APIs to initiate sending email from the Sterling
Configurator Visual Modeler.

Event Service

This module provides the classes used by the EventBus and Events.

Exception Service

This module provides the basic exception framework and classes used by the
Sterling Configurator Visual Modeler.

Global Cache Service

This module provides the APIs to be used to access the cache.

Help

This module provides the ComergentHelpBroker class: this is a simple wrapper
class to the ServletHelpBroker class of the JavaHelp 2.0 implementation.

Initialization Service

The Initialization module provides the Initialization service. This is a package that
helps you initialize the Sterling Configurator Visual Modeler using a consistent
framework of classes and methods.

The Initialization Manager provides a focal point in which:
v Initialization tasks can be defined
v Policy on failed initialization can be enforced
v Configuration fragments can be aggregated

Chapter 7. Platform Modularity 35

The Initialization Manager main responsibility is to act on a list of initialization
tasks in a well-defined and predictable manner. That implies an ordered list which:
v either, can be defined programatically
v or, can be specfied as an XML-format file

The following code extract provides a typical example of using the InitManager
class.

InitManager initManager = InitManager.getInitManager();
try
{
String resourceName = args[0];
initManager.init(resourceName);
// or programatically created
//List modules = initModules();
//ResourceLocator resourceLocator = createNewResourceLocator();
//initManager.init(modules, resourceLocator);
}
catch (InitManagerException ime)
{
log.error(ime, ime);
System.exit(1);
}
// Initialization completed. OK to go on //
...

You can specify the initialization process using an configuration file. Here is a
sample file:

<?xml version="1.0" encoding="UTF-8"?>
<initializationManager>
<resourceLocator>
<path>/a/b/c</path>
<path>.</path>
<path>CLASSPATH</path>
</resourceLocator>
<module name=”ObjectManager”
initClass=”com.comergent.objectManager.InitHelper>
<config name="Preferences">
/com/comergent/objectManager/preferences.xml
</config>
<init-param name=”param0”>param0Value</init-param>
</module>
<module name=”module1” initClass=”com.comergent.module1.InitHelper>
<config name="ObjectManager">
/com/comergent/module1/objectMap.xml
</config>
<config name="MessageTypes">
/com/comergent/module1/messageTypes.xml</config>
<config name="Preferences">
/com/comergent/modules1/preferences.xml
</config>
<init-param name=”param1”>param1Value</init-param>
</module>
<module name=”module2” initClass=”com.comergent.module2.InitHelper>

36 Sterling Configurator Visual Modeler: Implementation Guide

<config name="ObjectManager">
/com/comergent/module2/objectMap.xml
</config>
<config name="MessageTypes">
/com/comergent/module2/messageTypes.xml
</config>
<config name="Preferences">
/com/comergent/modules2/preferences.xml
</config>
<init-param name=”param2”>param2Value</init-param>
</module>
<!-- it is allowable to have no initClass -->
<module name=”custom1” >
<config name="ObjectManager">
/com/comergent/module1/overlay/objectMap.xml
</config>
</module>
</initializationManager>

In this example, when the following method is called by the Initialization Manager:

com.comergent.objmgr.ObjManagerInitHelper.init(initParams,
configFragments, resourceLocator)

the following information is available:
v initParams has a list of key-value pairs: param0-param0Value
v configFragments has a list of:

– /com/comergent/module1/objectMap.xml

– /com/comergent/module12/objectMap.xml

v resourceLocator can find the resource along the path of: /a/b/c, current, and the
current classpath.

Internationalization

This module provides basic support for the internationalization capabilites
provided by the Sterling Configurator Visual Modeler.

Logging

This module provides access to the logging service used to record activity in the
Sterling Configurator Visual Modeler. Its property file, log4j.properties, is used to
configure the behaviour of the logging service. The module is based on the log4j
open source project and uses the same syntax for its configuration as follows:

Log4j has the following main components: loggers, appenders, and layouts. These
three types of components work together to enable developers to log messages
according to message type and level, and to control at runtime how these messages
are formatted and where they are reported.

Configuring the Logging Module
You can configure the logging platform module using the log4j.properties
configuration file by specifying the properties of its loggers, appenders, and layout.
For example, the following snippet is used to configure the root logger and the
CMGT appender:

Chapter 7. Platform Modularity 37

Set root category priority
#log4j.rootCategory=info, CMGT
log4j.rootCategory=info, STDOUT
#log4j.rootCategory=info, CMGT, RTS
START - CMGT
CMGT appender
log4j.appender.CMGT=com.comergent.logging.ComergentRollingFileAppender
#log4j.appender.CMGT=com.comergent.logging.ComergentDailyRollingFileAppender

#log4j.appender.CMGT.layout=org.apache.log4j.PatternLayout

log4j.appender.CMGT.layout=com.comergent.logging.ConversionPattern

The log format defaults to the "classic" format. This format is

recommended for actual deployment to allow a log analyzer to
work correctly.
log4j.appender.CMGT.layout.ConversionPattern=%d{yyyy.MM.dd HH:mm:ss:SSS}
Env/%t:%p:%c{1} %m%n

Loggers
Loggers are named entities. Logger names are case-sensitive and they follow the
hierarchical naming rule: a logger is said to be an ancestor of another logger if its
name followed by a dot is a prefix of the descendant logger name. A logger is said
to be a parent of a child logger if there are no ancestors between itself and the
descendant logger.

For example, the logger named “com.foo” is a parent of the logger named
“com.foo.Bar”. Similarly, “java” is a parent of “java.util” and an ancestor of
“java.util.Vector”. This naming scheme should be familiar to most developers.

The root logger resides at the top of the logger hierarchy. It is exceptional in two
ways:
v It always exists;
v It cannot be retrieved by name.

Invoking the class static Logger.getRootLogger() method retrieves it. All other loggers
are instantiated and retrieved with the class static Logger.getLogger(String name)
method.

This method takes the name of the desired logger as a parameter.

Loggers may be assigned levels. The set of possible levels, that is DEBUG, INFO,
WARN, ERROR and FATAL are defined in the org.apache.log4j.Level class. If a
given logger is not assigned a level, then it inherits one from its closest ancestor
with an assigned level. More formally:

Level Inheritance: the inherited level for a given logger, is equal to the first
non�null level in the logger hierarchy, starting at the logger and proceeding
upwards in the hierarchy towards the root logger.

To ensure that all loggers can eventually inherit a level, the root logger always has
an assigned level.

Appenders
The ability to selectively enable or disable logging requests based on their logger is
only part of the picture. More than one appender can be attached to a logger.

38 Sterling Configurator Visual Modeler: Implementation Guide

The addAppender method adds an appender to a given logger. Each enabled
logging request for a given logger will be forwarded to all the appenders in that
logger as well as the appenders higher in the hierarchy. In other words, appenders
are inherited additively from the logger hierarchy. For example, if a console
appender is added to the root logger, then all enabled logging requests will at least
print on the console. If in addition a file appender is added to a logger, then
enabled logging requests for the logger and its children will print on a file and on
the console. It is possible to override this default behavior so that appender
accumulation is no longer additive by setting the additivity flag to false.

The rules governing appender additivity are summarized below:
v The output of a log statement of logger C will go to all the appenders in C and

its ancestors. This is the meaning of the term "appender additivity".
v However, if an ancestor of logger has the additivity flag set to false, then

logger’s output will be directed to all its appenders and its ancestors up to and
including the ancestor, but not the appenders in any of the ancestors the
ancestor.

v Loggers have their additivity flag set to true by default.

Layouts
Sometimes, you may wish to customize not only the output destination but also
the output format. This is accomplished by associating a layout with an appender.
The layout is responsible for formatting the logging request according to your
wishes, whereas an appender takes care of sending the formatted output to its
destination. The PatternLayout, part of the standard log4j distribution, lets you
specify the output format according to conversion patterns similar to the C
language printf function.

For example, the PatternLayout with the conversion pattern:
%r [%t] %-5p %c - %m%

will output something like this:
176 [main] INFO Translator - got current date: 10/22/2005.

The first field is the number of milliseconds elapsed since the start of the program.
The second field is the thread making the log request. The third field is the level of
the log statement. The fourth field is the name of the logger associated with the log
request. The text after the “-” is the message of the statement.

Memory Monitor
This module provides classes used to monitor and log memory consumption.

Message Type Entitlement
This module provides the service that checks the entitlement of users to invoke
message types.

The interfaces are defined in the com.comergent.api.dispatchAuthorization
package. This package contains factory classes, interfaces, and exceptions needed
for the service. The implementation classes are in the
com.comergent.dispatchAuthorization package.

Chapter 7. Platform Modularity 39

The main entry point for this module is the class EntitlementRepository. An
instance of this class is obtained from the EntitlementFactory class. Applications
can create named instances of the EntitlementRepository class. Named instances
will facilitate unit testing, and may be useful for alternative deployment
environments.

An application needing to specify dispatch rules or other message type entitlement
objects will execute logic similar to the following:

import com.comergent.api.dispatchAuthorization.EntitlementRepository;
import com.comergent.api.dispatchAuthorization.EntitlementFactory;
import javax.xml.dom.Document;
...
Document document = ...;
...
EntitlementRepository repository =
EntitlementFactory.getEntitlementRepository();
repository.setRules(document);

Object Manager
This module provides the classes used to instantiate objects: see “ObjectManager
and OMWrapper Classes” on page 23 for details.

Out Of Band Response
This module is used to send output to output streams other than the standard JSP
pages.

Preferences Service
The Preferences module is used to retrieve and set configuration properties used
by the Sterling Configurator Visual Modeler. You can retrieve properties along
these lines:

private static final Preferences prefs =
Preferences.getPreferences(MyClass.class);
// implict scope of "com.comergent.apps.module.MyClass"
int max = prefs.getInt("PromotionManager.maxValue", 100);
int min = prefs.getInt("PromotionManager.minValue", 1);

The second parameter in the getInt() calls specify the value to return if no property
with that name is found. The configuration file in which the property is defined is
assumed to be on the classpath: for example in the file
com.comergent.apps.module.Preferences.xml. If the XML properties file is read in
using the Preferences service, then make sure that the XML file uses the Comergent
root element. For example:

<Comergent>
<PromotionManager>
<maxValue>50</maxValue>
<minValue>20</minValue>
</PromotionManager>
</Comergent>

40 Sterling Configurator Visual Modeler: Implementation Guide

You can ensure that the Preferences service is used to initialize the properties by
customizing the WEB-INF/properties/init.xml configuration file by adding an
element along these lines:

<module name="PromotionMgr">
<config name="Preferences">
com/comergent/reference/apps/mktMgr/controller/Init.xml
</config>
</module>

The Preferences class provides methods to get and put property values. For
example:

prefs.putInt("PromotionManager.maxValue", 25);
prefs.putObject("currentShoppingCart", cartBean);

When using the putObject() method, the object must meet the requirements of the
XMLEncoder API: essentially, that the object's fields must provide getter and setter
methods.

Tag Libraries
The tag libraries provided by the Sterling Configurator Visual Modeler are
produced as a platform module.

Thread Management
This module provides a centralized facility for handling threads: their creation,
obtaining their status, and re-use. It is provided by the backport�util�concurrent.jar
library. In general, an application developer will no longer have to invoke:
Thread t = new Thread(new MyRunnable());

Instead, having a centralized facility will allow you to:
v Pool and re-use thread when appropriate
v Track all running threads to help provide better accounting for CPU and

resource usage.
v Provide simple status reporting (scoreboard strategy: central shared location

where running thread can report its status).
v Provide simple aborting and interrupt signal via Thread.interrupt() invocations to

allow long running (but looping) thread to quit early.

The module provides the following functionality:
1. Transparently provide pooling and re-use of thread.
2. For administrative functionality, provide means to query all running threads

tracked by the thread manager.
3. For user of thread service, provide means to report current thread status to a

common scoreboard.
4. Provide guidance to following simple loop or check interrupted status protocol

to allow a long running or looping thread to quit early.
5. Provide a timer facility to allow running thread to be notified when a timer

expired. This can be used to implement a simple time-out or timeshare policy.

Chapter 7. Platform Modularity 41

The API will continue to follow the Runnable() pattern: the application obtains a
Thread-like object and use it to execute.
Excutor executor = ExecutorFactory.getPooledExecutor();
executor.execute(new MyComergentRunnable());

XML Message Converter
This module provides a facility for converting XML documents from one message
category (family and version) to another. The package name for the API is
com.comergent.api.converter and com.comergent.converter for the implementation
classes.

The API package includes:
v ConverterFactory: this is the Factory class to create converters.
v Converter: this is the class that converts a document from one message category

to another. It can take either documents or streams as the source and targets for
conversion.

XML Message Service
This module is used to create and post outbound messages as XML documents.
The API includes MsgContext interface, MsgService interface, MsgServiceFactory
class, and theMsgServiceException classes in the com.comergent.api.msgService
package and the implementation classes are in the com.comergent.msgService
package.

The MsgService interface contains a generic service() method to post a databean
and an XML document as specified in the message context.

The general usage pattern is as follows:
1. create a MsgContext instance using the MsgContextFactory;
2. set appropriate attributes on the context object;
3. create a MsgService instance for the target message family;
4. post a message by invoking the service method with a data bean and message

context.

For example:

MsgContext ctx = new MsgContext();
ctx.setMessageType("ERPOrderCreateRequest");
ctx.setURL("http://www.server.com");
ctx.setMessageCategory("ERPOrderCreateRequest");
ctx.setContentType("text/xml");
ctx.setRemoteUser(username);
ctx.setRemotePassword(password);
MsgService msgService =
MsgServiceFactory.getMsgService(ctx.getMessageCategory());
resultBean = msgService.service(requestBean, ctx);

XML Services
This module encapsulates functionality for XML parsing, XSL transformation,
DOM wrappers, and utility classes.

42 Sterling Configurator Visual Modeler: Implementation Guide

Chapter 8. Introducing Visual Modeler Data Beans and
Business Objects

Data Beans in Sterling Configurator Visual Modeler
A data bean is a data source-independent representation of a real-world entity in
the Sterling Configurator Visual Modeler. The Sterling Configurator Visual Modeler
uses an external schema (defined as a set of XML files) to define the structure of
each type of data bean. For example, data beans are used as data structures for
users, product inquiry lists, partners, products, and workspaces.
v Use the OMWrapper and ObjectManager classes to create instances of the

DataBean classes. See “ObjectManager and OMWrapper Classes” on page 23 for
more information.

v You can create a DataBean using the DataManager. Invoke the DataManager
method getDataBean(String beanName) to create a DataBean of the named type.
This method throws an InvalidBizobjException if no such DataBean class exists

Note: The use of this method is deprecated because it does not support
extensions of the data object.

Life Cycle of a Data Bean
In general, the basic flow of working with a data object is:
1. Instantiate a data bean object using the OMWrapper class.
2. Add data to the bean by using the set methods to directly insert values into the

data fields.
3. Persist the data bean to save the new data object to its data source for the first

time.
4. Subsequently, you can retrieve the same data object by setting the value for key

fields, and then performing a restore() on the data bean to retrieve the current
data field values from its data source.

5. Perform any business logic required on the data bean. This may change the
in�memory values of fields, but not the values stored in the data bean's data
source.

6. Save the changes to the data bean by persisting the data bean to its data source.
7. Later, you may want to delete the data object if it is no longer in use.
8. Eventually, you may want to remove the data from the data source entirely by

erasing the data object.

In the case of data objects whose underlying data source is a database, the
following table summarizes the Java method calls and the corresponding SQL
methods called:

Step Java Method SQL Method

Instantiate data object OMWrapper.getObject()

Populate data fields setDataField()

Populate data fields setDataField()

Persist for the first time persist() INSERT

© Copyright IBM Corp. 2007, 2012 43

Step Java Method SQL Method

Retrieve data object restore() SELECT

Business logic that updates
field values

getDataField()

setDataField()

Save changes persist() UPDATE

Delete data object delete() UPDATE
Note: The Delete operation
updates the ACTIVE_FLAG
column of the underlying
database table row; it does
not remove the record from
the table.

Erase data object erase() DELETE

Defining a Data Bean
Data beans are defined using an XML schema. Data beans provide accessor
methods to get and set values of particular data fields. In general, you should use
data beans when customizing Sterling Configurator Visual Modeler applications.

Defining the Structure of a Data Object
Each data object must have a defined structure to enable the Sterling Configurator
Visual Modeler to create an instance of the data object. The structure of a data
object is defined in its schema XML file: it specifies what fields the data object has
and whether it has child objects.

Each data object corresponds to a Java class that extends the DataBean class. We
refer to these as data bean classes. The data bean classes are generated
automatically as part of the SDK merge process. When you generate the
corresponding data bean class, it provides methods that access the fields and child
data beans that are declared in the data object XML file.

You can change the definition of the XML schema and hence of data objects and
their corresponding data bean classes by editing the XML schema files.

The DsRecipes.xml configuration file is used to link each data object and its data
source. It also specifies whether the ordinality of the data object is “1” or “n”. The
data object file is used to specify the precise structure of the data object, and the
DsDataElements.xml configuration file is used to specify the data type (LIST,
LONG, STRING, and so on) of each element.

Extending Data Objects

When you define a data object with an XML schema file, you can declare that it
extends another data object by using the Extends attribute. This capability is used
in two ways:
v You can use one data object as the parent of several different extending data

objects which all share a common set of data fields. For example, many data
objects in the Sterling Configurator Visual Modeler extend the C3PrimaryRW
data object: this data object provides the basic OwnedBy and AccessKey data
fields used to manage access control.

44 Sterling Configurator Visual Modeler: Implementation Guide

v You can customize a data object by creating a data object that extends it. By
adding data fields to the extending data object, you can add attributes that you
need to use as part of your customization. By using the ObjectManager, you can
ensure that the extending data object is created when the system is called upon
to create a data object of the extended type. Provided that existing code uses the
ObjectManager to instantiate instances of the extended data object, then when
this code is invoked, instances of the extending data object are created, but these
still support the extended data object's interfaces, and so the existing code will
continue to work.

The DataManager uses a recipe and a data object to determine the element structure
of the data bean or business object and the location of the data source that
provides the element values. When you change the definition of data objects or
create new definitions, you must re-run the generateDTD and generateBean SDK
targets to create and compile the DataBean classes. See “Using the Software
Development Kit to Customize Sterling Configurator Visual Modeler
Implementation” on page 79 for more details. See “Extend Data Objects” on page
54 for alternate ways to extend data objects.

Data Bean and Business Object Creation
The Sterling Configurator Visual Modeler's ObjectManager and OMWrapper
classes create data beans, and business logic classes and controllers process them.
See “ObjectManager and OMWrapper Classes” on page 23 for more information.

Business logic classes are invoked by controllers: each controller is responsible for
determining which business logic class (if any) must be created in response to a
message and its message type.

The use of business objects and the BusinessObject class is deprecated. Where
possible, you should use data bean classes, and use business objects only to
maintain legacy code.

DataContext
The restore() method takes an instance of the DataContext class as a parameter. The
DataContext class is used to specify information about the context in which the
restore() operation is being performed. It can be used to specify the maximum
number of results to be returned and for determining the number of results on
each page (pagination). It can also be used to specify whether an access check
should be performed on the results of the restore() operation. By default, an access
check is performed.

For example, the following code snippet creates a DataContext, sets some context
values, and then uses the context and a query to restore a data bean:

DataContext temp_DataContext = new DataContext();
temp_DataContext.setMaxResults(DsConstants.NO_LIMIT);
temp_DataContext.setNumPerPage(-1);
skuMappingListBean.restore(temp_DataContext, query);

When a DataContext object is initialized, it retrieves from the configuration files
values of the DataServices.General.MaxResults and
DataServices.General.NumPerCachePage element to set these parameters for the
restore operation. By default, no limit is set on either. There are accessor methods

Chapter 8. Introducing Visual Modeler Data Beans and Business Objects 45

available if the behavior of the DataContext needs to be modified. See the
DataContext Javadoc for further information.

The DataContext class provides a setCacheId(String cacheId) method to support
pagination: it identifies the particular cache being used.

What is the DataContext class?

The DataContext class is used to control the behavior of restore and persist
operations.

What behavior can be controlled?

A DataContext instance can control the following:
v How many query results appear on a page.
v The maximum number of query results that will be processed.
v The use of multiple page sets per Data Bean type and Session.

What are the Cache Id methods for?

The Cache Id methods allow an application to specify a unique identifier for
pagination of result sets. This new capability allows an application to maintain
multiple distinct result sets for a given Data Bean and Session.

If an application does not specify a Cache Id then a combination of Bean name and
Session Id are used to identify the cache. In this case any subsequent attempt to
restore the same Data Bean within the same session will overwrite any results.

The DataContext class provides the following methods to control Cache Id on Data
Bean restore requests:
v void setCacheId(String cacheId): Sets a new cache id. This string is used in

combination with the Bean name and session id to generate a unique identifier.
v String getCacheId(): Returns the current cache id (or null if it is not set).

How do Max Results and Num Per Page work?

The setting of Max Results determines the maximum number of records that can
be retrieved during a restore. When that number is reached the request is freed.

The setting of Num Per Page determines how many records are saved in each
result cache page. If the number found is less than Num Per Page, then no result
cache is created.

Note that this combination of attributes allow the application to retrieve a set of
paginated results while still specifying a maximum number of records to retrieve.

The DataContext class provides the following methods to Max Results and Num
Per Page on Data Bean restore and persist requests:
v void setMaxResults(int maxResults) sets the maximum number of results

returned for non-paginated results
v int getMaxResults() gets the maximum number of results to return for

non-paginated results
v void setMaxPaginatedResults(int maxResults) sets the maximum number of

results returned for paginated results

46 Sterling Configurator Visual Modeler: Implementation Guide

v int getMaxPaginatedResults() gets the maximum number of results to return for
paginated results

v void setNumPerPage(int numPerPage)
v int getNumPerPage()

If an application wants to use the data services default limits, the appropriate
property in DataContext must be set to DsConstants.USE_DEFAULT. The
following are the default values:
v maxResults: 125
v maxPaginatedResults: 125
v numPerPage: 25

If the application does not specify a value for numPerPage, then the value
specified in prefs.xml will be used. If a value is not set by the application nor the
prefs.xml file, a value of -1 will be used, which means the request will not be
paginated.

In addition, the following methods provide result set limits that are passed directly
to the database as part of the SQL query. Since the Sterling Configurator Visual
Modeler may discard results as part of its access policy checking (for example,
does the user have the right to see this data?), these methods allow you to set a
higher result set limit.
v public void setDBResultLimit(int limit)
v public int getDBResultLimit()

You can also set the DataServices.General.LimitDBResults preference. If
LimitDBResults is set to true, results are automatically limited to the number
allowed by MaxResults (or by MaxPaginatedResults for paginated results). Access
policies must be expressed as SQL to use this mechanism. For Oracle databases, do
not set the LimitDBResults preference to true.

Our access policies are handled in one of two ways. Many are converted to SQL
WHERE clauses that are applied to the query. This allows the database to handle
the access policy. If the policy is too complex (for example, it relies on a hierarchy
of partners), then the access policy can be applied only when processing the results
from the database. Such policies cannot be converted to SQL.

With Oracle, there are some cases in which the SQL generation will require that
column aliases be defined in the XML schema. This is necessary only when the
query joins multiple tables that use the same column name. This is not an issue for
DB2®.

How do I instantiate a DataContext instance?

A new DataContext instance is currently instantiated using the standard “new”
mechanism:
DataContext dc = new DataContext();

What are the Default Settings for a new DataContext?

When “new DataContext()” is invoked, the attributes receive the following default
values:

Chapter 8. Introducing Visual Modeler Data Beans and Business Objects 47

Attribute Default Value

doAccessCheck true

maxResults DataServices.xml maxResults property

numPerPage DataServices.xml numPerPage property

CacheId null

doAccessCheck true

List Data Beans
A special class of business objects are called list data beans and list business objects.
You use these classes to manage a list of data objects of the same type. Whenever a
data object element is declared with ordinality “n” in a Recipe element, then a list
data bean is created. Access entitlements are still managed at the level of the
singular business object

Note: Earlier versions of data objects defined ordinality in the data object
definition file. Now it is the recipe file that determines the ordinality of a data
object. In Version 6.0 data objects, the ordinality attribute is still used to declare
child, reference, and included data objects.

In general, you do not need to create DataBeans for list data objects: they are
created automatically. See “DataBean Classes” on page 23 for more information.
They support automatically generated methods that return a list of the data
objects. For example, the following code fragment demonstrates how to restore a
list of users. A DataContext object identified by “context” and a DsQuery object
identified as “query” are used to restrict the users returned by the restore() call:

UserListBean userList = (UserListBean)
OMWrapper.getObject("com.comergent.bean.simple.UserListBean");
// Restore the list.
userList.restore(context, query);
// Return immediately if no results found.
if (userList.getUserCount() == 0)
{
return;
}
// At least one user in list, so walk through the list of users
ListIterator userIterator = userList.getUserIterator();
while (userIterator.hasNext())
{
UserBean user = (UserBean) userIterator.next();
// Perform any business logic on each user.
}

Note: The use of the DataContext and DsQuery parameters in the restore() method:
these are used to manage how the query is executed against the Knowledgebase.

Application, Entity, and Presentation Beans
There are several main sorts of data beans used in the Sterling Configurator Visual
Modeler: data beans, application beans, entity beans, and presentation beans. This
section describes the main differences between them.

48 Sterling Configurator Visual Modeler: Implementation Guide

v Data beans are the Java classes created automatically from the XML schema
description of the business objects. Running the generateBean SDK target
generates the source code for each data bean. These beans comprise the
com.comergent.bean.simple package.
Where possible, you should use the instanceof command to determine the class of
a data bean rather than querying for the business object type.

v Application beans are Java classes created to add functionality that simple beans
do not support. For example, an application bean may provide extra methods
that cannot be automatically generated, or it may combine two or more simple
beans to pass data to a JSP page. The application beans are organized by
application and each application has a package for its application beans whose
name is com.comergent.apps.<application name>.bean
Application beans can be subclasses of simple beans, but more often they are
Java classes that contain one or more simple beans as member variables.
For example, the
com.comergent.appservices.productService.productMgr.BizProductBean
application bean class is a Java class that contains a member variable that
implements the com.comergent.bean.simple.IDataProduct interface. The
BizProductBean application bean class delegates methods such as getProductID()
to the com.comergent.bean.simple.IDataProduct member variable, but in
addition it provides methods to retrieve a product's features, its supersession
chain, and prices. Note the use of the IDataProduct interface rather than the
ProductDataBean itself: this is an example of using a generated interface rather
than the class. See Chapter 12, “Generated Interfaces,” on page 73 for more
information on the generation and use of these interfaces.
By convention, if you create an application bean to wrap a data bean, then you
must provide a method called getDataBean() that retrieves the data bean.

v Presentation beans are also used to pass data to JSP pages: typically, they differ
from application beans in that they do not provide business logic. They may
aggregate several data beans into a single class for ease of use, or provide
formatting information. As with application beans, presentation beans must
provide a method to provide access to the underlying data bean. For example,
the IPresProduct interface provides the getIRdProduct() method: this returns the
IRdProduct interface and you can downcast this to the underlying data bean or
extended data bean if need be.

v Entity beans were used in prior releases of the Sterling Configurator Visual
Modeler. They performed the same role as application beans. Their use is
deprecated.

Using Stored Procedures
You can make use of stored procedures to restore data objects. The name of the
stored procedure is declared in the ExternalName element of the data object.

When you define data objects, take care to specify the SourceType attribute. It can
take the following values:
v “1”: the underlying data source uses a table. This is the default value.
v “2”: the underlying data source uses a stored procedure.

If no SourceType attribute is defined, then the default value means that a table is
the underlying source type for the data object.

Chapter 8. Introducing Visual Modeler Data Beans and Business Objects 49

Data Bean Methods
In general, you should make use of the generated interfaces that each data bean
provides: these organize the accessor and data methods to help you manage access
to the data objects during their life cycle. See Chapter 12, “Generated Interfaces,”
on page 73 for more information.

Use the access policy security mechanism to provide access control.

IData Methods
The IData interface has these important methods:
v copyBean(): this method can be used to copy the values of data fields from one

bean to another. It takes one argument: this must be a bean that is either an
instance of the same class or a sub-class of the bean invoking this method.

v delete(): this method marks the corresponding data object as deleted: the
ACTIVE_FLAG column of the database table corresponding to this data object is
set to “N” when the object is persisted. Note that you must call persist() after
calling delete(): if you do not, then the deletion does not take effect.

v erase(): this method removes the database record corresponding to the business
object. Note that removing records from database tables can lead to data
integrity problems if other tables refer to keys that have been deleted. In general,
you should use this method only if you can account for all usages of the record
and its keys and can delete the corresponding records from other tables.

v generateKeys(): this method populates the key fields of the data bean. You can
call this method without invoking persist(). By invoking this method, you can
use the generated keys to create other objects that require the keys.

v setDataContext(): this method sets the data context so that restore() and persist()
calls use the right values for parameters such as the number of results per page
in a paginated data set. See “DataContext” on page 45 for more information on
the DataContext class.

v persist(): this method saves the data in the data bean to its data source.
v prune(): this method is used to mark the bean for deletion in memory. Calling

restore() after prune() has no effect on the bean's underlying data source.
v restore(): this method retrieves the data for the data bean from its data source.

See “DataContext” on page 45 for information on the use of the DataContext
class in the restore() method.

v update(): this method updates the database record corresponding to this business
object.

Note that any method calls that change state must be followed by a persist() call to
actually make the change to the database record.

The IData interface also provides the methods, isRestorable() and isPersistable(), that
check whether a data object may be restored or persisted respectively.

IRd and IAcc Interface Methods
The IRd interface provides the read-only accessor methods to the data object fields.
The IAcc interface extends the IRd interface by adding the set accessor methods for
each data field. Distinguishing between these two interfaces provides you with the
ability to pass a read-only object to a client application or JSP page.

50 Sterling Configurator Visual Modeler: Implementation Guide

For example, suppose that in the Condition data object file, Condition.xml,a
DataField element is specified as follows:

<DataField Name="ControlType"
Writable="y" Mandatory="y"
ExternalFieldName="CONTROL_TYPE"/>

Then, in the automatically-generated IRdCondition interface, there is a method
called:

public Long getControlType()

In the automatically-generated IAccCondition interface, there is a method called:
public void setControlType(Long value) throws ICCException

The signatures of these accessor methods is determined by the corresponding
DataElement definition in the DsDataElements.xml file:

<DataElement Name="ControlType" DataType="LONG"
Description="Condition Control Type" MaxLength="20" />

Note: If you set the Writable attribute of a data field to “n”, then the
corresponding setDataField() method is not generated.

Restoring and Persisting Data
These important operations may be performed on a data object: delete(), persist(),
and restore().
v By calling the delete() method on a data object, you mark this object as deleted,

and no other application will retrieve this data object. The ACTIVE_FLAG
column of the underlying database table has its value set to 'N'. Note that the
data object data is not deleted from the data source. If the underlying database
table for data object does not have an ACTIVE_FLAG column, then do not use
the delete() method. You can still use the erase() method to remove such data
objects from the Knowledgebase.

v When you persist a data bean, the Sterling Configurator Visual Modeler saves
the data held in the data object's DsElement tree to its external data source(s).
Note that the Sterling Configurator Visual Modeler manages both the update of
existing data objects and the creation of new data objects with the persist()
method.

v When you restore a data bean or business object the Sterling Configurator Visual
Modeler retrieves its data from its external data source(s). If no query object is
specified in the restore() method, then all of the data objects whose values in the
key fields match those in the data bean are restored.
– Note that if you call restore() on a non-list data bean, then you should expect

that its data is uniquely retrievable from the values set in its key fields. When
the restore() call is issued, no check is performed to verify that only one record
is retrieved, and so the first record retrieved will be used to populate the data
bean. If no record is retrieved, then the restore() call throws an ICCException.

– When you call restore() on a list data bean, then you must usually specify a
DsQuery. If no DsQuery is specified, then the restored list data bean will
contain all the data beans of this type.

Chapter 8. Introducing Visual Modeler Data Beans and Business Objects 51

DataBean restore() Method
This section provides description of the main forms of the DataBean restore()
method.
public void restore(DataContext dataContext, DsQuery dsQuery)

The principal form of the restore() method. Use the dsQuery parameter to specify
query to be executed by the restore operation. The dataContext parameter
determines the maximum number of objects returned, and for pagination the
number of results per page. Use the dataContext parameter to specify whether to
check that the current user has the correct entitlements to perform this operation.
By default, an access check is performed, so you have to override the access check
if you do not want this to be done, using the disableAccessCheck() method.

public void restore(DataContext dataContext)

This is equivalent to calling restore(dataContext, null).

Here is an example of using the DataContext and DsQuery classes together to
manage the restore() call:

try
{
DataContext dataContext = new DataContext();
if (doAccessCheck == true)
{
dataContext.enableAccessCheck();
}
else
{
dataContext.disableAccessCheck();
}
dataContext.setNumPerPage(pageSize);
DsQuery dsQuery = QueryHelper.newWhereClause("PartnerKey",
DsConstants.EQUALS, partnerKey);
LightWeightPartnerBean partnerBean =
(com.comergent.bean.simple.LightWeightPartnerBean)
com.comergent.dcm.util.OMWrapper.getObject(
"com.comergent.bean.simple.LightWeightPartnerBean");
partnerBean.restore(dataContext, dsQuery);
QueryHelper.freeQuery(dsQuery);
return partnerBean;
}
catch (ICCException e)
{
throw (new ProfileMgrException(e));
}

DataBean persist() Method
This section provides description of the main forms of the DataBean persist()
method.
public void persist(DataContext dataContext)

52 Sterling Configurator Visual Modeler: Implementation Guide

If the dataContext specifies that an access check should be performed, then this
form of the persist() method performs an access check before performing the
operation. If the user does not have the appropriate entitlement, then the operation
is not performed.

Miscellaneous Methods
getBizObj() Method

If you want to retrieve a business object representation of the data object and its
data, then you can invoke the getBizObj() method. This is useful if you want to
display the internal structure of the object. For example:

BusinessObject bo = bean.getBizobj();
ComergentDocument doc = bo.serializeToXml();
doc.prettyPrint();

Note that this is now a deprecated method.

writeExternal() Method

Use this method to write out an XML representation of the data bean and its data.

Child Data Objects
Many data objects declare child data objects using the ChildDataObject element.
For example, the ShoppingCart data object declares LineItem as a child data object
as follows:

<DataObject Name="ShoppingCart" Extends="C3PrimaryRW"
ExternalName="CMGT_CARTS" ObjectType="JDBC" Version="6.0">
...
<ChildDataObject Access="RWID" Name="LineItem">
<Relationship CascadeDelete="y" CascadeErase="n"
ChangeUpdatesParent="y">
<JoinKeys>
<JoinKey DstJoinField="ShoppingCartKey"
SrcJoinField="ShoppingCartKey"/>
</JoinKeys>
</Relationship>
</ChildDataObject>
...
</DataObject>

Its Relationship element has attributes that describe how child objects should be
managed when the parent is updated and whether to update the parent when a
child is changed. The JoinKey elements describes how to restore the child data
objects: typically, by specifying how values in the parent data object are used to set
values in the child data object.

When the parent data bean is generated, it generates a method called
getChildDataObjectIterator() which returns an ListIterator object containing the
child data beans. By iterating through the objects, you can examine each child data
bean in turn and access its fields using the standard accessor methods.

Chapter 8. Introducing Visual Modeler Data Beans and Business Objects 53

For example, the ShoppingCartBean class supports the getLineItemIterator()
method. The following lines of code demonstrate how to retrieve a field of a line
item:

/*
shoppingCartBean is a ShoppingCartBean object that has already been
restored
*/
ListIterator lineItemIterator =
shoppingCartBean.getLineItemIterator();
LineItemBean lineItemBean =
(LineItemBean) lineItemIterator.getLineItemBean(0);
Long quantity = lineItemBean.getQuantity();

When a parent data object is restored, the child data objects are not restored. They
are restored only when the application accesses the children as described above.

Extend Data Objects
About this task

It is common for any implementation of the Sterling Configurator Visual Modeler
to need to add data fields to data objects or to create data objects that extend
existing data objects.

We recommend storing the additional data in a new database table. A new
DataObject should then be defined that accesses the new table. Another new
DataObject is then defined that extends the original DataObject by adding a new
IncludeDataObject.

For example, suppose that you need to add a new data field to the Order data
object to track “hosted” orders: orders that are placed at storefront partners. The
extra data field is the partner key of the storefront partner. The recommended
approach is as follows:

Procedure
1. Create a new data object called HostedPartner that has exactly two fields: an

OrderKey and a PartnerKey. Set it up to point to a two-column table:
CMGT_ORDER_X_PARTNER with columns ORDER_KEY and PARTNER_KEY.
<?xml version="1.0"?>
<DataObject Name="HostedPartner"
ExternalName="CMGT_ORDER_X_PARTNER" ObjectType="JDBC"
Version="6.0">
<KeyFields>
<KeyField Name="OrderKey" ExternalName="ORDER_KEY"/>
<KeyField Name="PartnerKey" ExternalName="PARTNER_KEY"/>
</KeyFields>
<DataFieldList>
<DataField Name="OrderKey" ExternalFieldName="ORDER_KEY"
Mandatory="n" Writable="y"/>
<DataField Name="PartnerKey"
ExternalFieldName="PARTNER_KEY"
Mandatory="n" Writable="y"/>
</DataFieldList>
</DataObject>

54 Sterling Configurator Visual Modeler: Implementation Guide

2. Create a new data object called HostedOrder that extends Order. The
HostedOrder.xml file looks like this:
<?xml version="1.0"?>
<DataObject Name="HostedOrder" Extends="Order" ObjectType="JDBC"
Version="6.0">
<IncludedDataObject Access="RWID" Name="HostedPartner"
Ordinality="1">
<Relationship CascadeDelete="y" CascadeErase="n"
ChangeUpdatesParent="y">
<JoinKeys>
<JoinKey DstJoinField="OrderKey"
SrcJoinField="OrderKey"/>
</JoinKeys>
</Relationship>
</IncludedDataObject>
</DataObject>

There are three basic approaches that can be used:

3. You can use extension to simply add any additional DataFields and override
the table name. This allows you to include all of the data in a new table. This
approach is most useful when you need the same data, but need a distinct copy
of it. (Perhaps you maintain a snapshot of how an Order looked before it was
turned into a HostedOrder)

4. You can extend Order to add an IncludedDataObject for HostedOrder, where
HostedOrder only defines additional data for storage in another table. This
means that changes to the original Order DataFields will still be persisted to
the Order table, but the additional data for HostedOrder will be persisted to a
different table. This is the recommended approach described above.

5. You can define HostedOrder specifying that Order is a IncludedDataObject.
This accomplishes the same thing as the second alternative. The problem with
this approach is that a HostedOrder does not extend Order, and can no longer
be treated as an Order by application code.

Note: Using two tables has a slight disadvantage in performance, but query
execution has not been a problem area. Using two tables may reduce data
redundancy (depending on your requirements).

Results

If you only occasionally reference the customer extension, then you may want to
use a ChildDataObject to take advantage of the lazy link mechanism.

Data Bean Example
This section presents the process of defining and using a data object. Suppose that
you want to use a data object to represent a simple enquiry from a customer. This
will comprise:
v an email address for the customer
v the date the enquiry was made
v the date a response was returned (optional)
v the content of the enquiry
v the content of the response (optional)
v the product ID of the product about which the enquiry was made (optional)

Chapter 8. Introducing Visual Modeler Data Beans and Business Objects 55

Create a Data Object Definition
About this task

To create a data object definition:

Procedure
1. Create the business object element Enquiry and add it to the

DsBusinessObjects.xml file.
<BusinessObject Name="Enquiry" Version="6.0"
Description="Customer enquiry"/>

Use the Version attribute to manage different versions of business objects that
may be in use simultaneously. Note that the Version attribute is also used to
determine whether access checks are performed automatically (Version 5.0 or
higher) or not.

2. Create the recipe for this business object and add it to the DsRecipes.xml file.
<Recipe Name="Enquiry" Version="6.0" Ordinality="n"
Description="Customer enquiry">
<DataObjectList>
<DataObject Name="Enquiry"
DataSourceName="ENTERPRISE" />
</DataObjectList>
</Recipe>

The Name attribute of the recipe must match exactly (it is case-sensitive) to the
Name of the business object. Each recipe may have more than one data object
defined in the data object list, but only one may be a writable data object. The
data objects define the data source names as an attribute of each data object
element. It is these entries that determine the sources from which the business
object retrieves its data and the source to which the business object may be
persisted.

3. Create a file called Enquiry.xml to define the data object. The Name of the data
object element must match exactly (it is case-sensitive) the Name attribute
defined in the DataObject entry of the recipe element.
In this example, the data for these data objects is held in a database table called
CMGT_ENQUIRY, and the ExternalFieldName attribute of each DataField
element specifies which column is to be used to retrieve the DataField value.
For example, the EMAIL_ADDRESS column of the CMGT_ENQUIRY table
holds the email address value associated with an enquiry.
<?xml version="1.0"?>
<DataObject Name="Enquiry" Extends="C3PrimaryRW" Version="6.0"
ExternalName="CMGT_ENQUIRY"
Access="R" ObjectType="JDBC">
<KeyFields>
<KeyField Name="Key" ExternalName="ENQUIRY_KEY"/>
</KeyFields>
<DataFieldList>
<DataField Name="EnquiryKey"
Writable="n" Mandatory="y"
ExternalFieldName="ENQUIRY_KEY"/>
<DataField Name="EmailAddress"
Writable="n" Mandatory="y"
ExternalFieldName="EMAIL_ADDRESS"/>
<DataField Name="EnquiryDate"
Writable="n" Mandatory="y"

56 Sterling Configurator Visual Modeler: Implementation Guide

ExternalFieldName="ENQUIRY_DATE"/>
<DataField Name="ResponseDate"
Writable="n" Mandatory="n"
ExternalFieldName="RESPONSE_DATE"/>
<DataField Name="TimeToRespond"
Writable="n" Mandatory="n"/>
<DataField Name="EnquiryContent"
Writable="n" Mandatory="y"
ExternalFieldName="ENQUIRY_CONTENT"/>
<DataField Name="ResponseContent"
Writable="y" Mandatory="n"
ExternalFieldName="RESPONSE_CONTENT"/>
<DataField Name="SKU"
Writable="n" Mandatory="n"
ExternalFieldName="SKU"/>
</DataFieldList>
</DataObject>

Note the definition of the TimeToRespond data field: it has no
ExternalFieldName attribute because it does not correspond to a database
column. Values for this field are calculated at runtime and are set in the
EnquiryBean so that its value can be displayed.

4. Define Enquiry and EnquiryList DataElements in DsDataElements.xml:
<DataElement Name="Enquiry" Description="Enquiry"
DataType="HEADER"/>
<DataElement Name="EnquiryList" Description="Enquiry list"
DataType="LIST"/>

5. Define a DataElement for each DataField in DsDataElements.xml.
DataElements provide data type information used by the DataManager when it
is retrieving or saving data for this business object type. For example:
<DataElement Name="EnquiryKey" LongName="Enquiry Key"
DataType="LONG" MaxLength="20" />
<DataElement Name="EnquiryDate" LongName="Enquiry Date"
DataType="DATE" />
<DataElement Name="ResponseDate" LongName="Response Date"
DataType="DATE" />
<DataElement Name="EnquiryContent" LongName="Enquiry content"
DataType="STRING" MaxLength="256" />
<DataElement Name="ResponseContent" LongName="Response content"
DataType="STRING" MaxLength="256" />

Note that we have not included a DataElement for EmailAddress and SKU. The
DataElements for these DataFields are already defined and you can re�use
DataElements any number of times (as long as the data type is the same in
each occurrence).

6. Create entries in the ObjectMap.xml file for this data bean. For example:
<Object ID="com.comergent.bean.simple.EnquiryBean">
<ClassName>com.comergent.bean.simple.EnquiryBean</ClassName>
</Object>
<Object ID="com.comergent.bean.simple.IRdEnquiry">
<ClassName>com.comergent.bean.simple.EnquiryBean</ClassName>
</Object>
<Object ID="com.comergent.bean.simple.IAccEnquiry">
<ClassName>com.comergent.bean.simple.EnquiryBean</ClassName>
</Object>

Chapter 8. Introducing Visual Modeler Data Beans and Business Objects 57

<Object ID="com.comergent.bean.simple.IDataEnquiry">
<ClassName>com.comergent.bean.simple.EnquiryBean</ClassName>
</Object>

7. Finally, define a data source element to correspond to the DataSourceName
attribute defined in the DataObject element. This data source is defined in the
DsDataSources.xml file as part of the schema. In most cases, this data source
will already be defined: You only need define a new one if you are using a
different database or other data source than the rest of the Knowledgebase. For
example:
<DataSource Name="ENTERPRISE" Version="2.0">
<Primary Type="SQL" DataService="JdbcService"
SubType="ORACLE"
ConnectionString="jdbc:<driver>:<server>:<port>:<sid>"
UserId="userid" Password="password" />
</DataSource>

The DataService attribute of the Primary and Alternate elements determine
which class is used to process the EnquiryBean restore() and persist() methods.
The remaining attributes determine exactly how the external source is accessed.

8. Run the generateBean SDK target to generate the source code for the new
EnquiryBean and EnquiryListBean data beans and the corresponding interfaces.
See Chapter 12, “Generated Interfaces,” on page 73 for more information on
these interfaces.

Results

You can now use Enquiry data beans and its interfaces in business logic classes. To
create an instance of an Enquiry data bean, you invoke a method of the form:

OMWrapper().getObject("com.comergent.bean.simple.EnquiryBean")

This returns an EnquiryBean data bean and its structure is as specified in the
Enquiry DataObject. Once you have an instance of the QueryBean class, then
populate its key fields and restore the bean to retrieve its data:

int queryIndex = 0;
try
{
String queryKey = request.getParameter("querykey");
queryIndex = Integer.parseInt(queryKey);
}
catch (Exception e)
{
//Throw exception if parameter not valid
}
QueryBean queryBean = (QueryBean)
OMWrapper().getObject("com.comergent.bean.simple.EnquiryBean");
queryBean.setKey(queryIndex);
queryBean.restore();

To retrieve a list of enquiries:

// Use default settings for DataContext parameters
DataContext context = new DataContext();
// Retrieve enquiries relating to a particular product ID, MXWS-7000
DsQuery query =

58 Sterling Configurator Visual Modeler: Implementation Guide

QueryHelper.newWhereClause("SKU", DsQueryOperators.EQUALS,
"MXWS-7000");
EnquiryListBean enquiryList = (EnquiryListBean)
OMWrapper.getObject("com.comergent.bean.simple.EnquiryListBean");
// Restore the list.
enquiryList.restore(context, query);
// Walk through the list...
ListIterator enquiryIterator = enquiryList.getEnquiryIterator();
while (enquiryIterator.hasNext())
{
boolean isModified = false;
EnquiryBean enquiry = (EnquiryBean) enquiryIterator.next();
// Process each enquiry
}

In general, you should try to ensure that applications that use the EnquiryBean use
one of the generated interfaces rather than the data bean itself. This will enable the
application to separate out the implementation of the data object from its interface
and let you manage what access the application has to the object's data. To retrieve
an instance of a class that implements the IAccEnquiry interface, you can use:

IAccEnquiry temp_IAccEnquiry = (IAccEnquiry)
OMWrapper.getObject("com.comergent.bean.simple.IAccEnquiry");

DsElement Tree
This section describes methods to retrieve metadata about databeans. It also
describes the DsElement tree used to store data in the data object and business
object classes. It is covered here only to support legacy applications: all new
applications that use the data bean classes should not need to be concerned with it.

Data objects are created as objects of data bean classes. Each data object holds its
content as a tree of components called DsElements (see “DsElements” on page 60).
Their content is retrieved from external systems using the XML schema, and the
recipes and data sources defined in the XML schema. The following figure displays
the business object:

.

When the DataManager creates a data bean or business object, it uses the XML
schema to determine the structure of its DsElement tree. The DsElement tree is the
Java representation of the structure of the business object. The schema also
determines the data types that may be inserted at leaf nodes and whether

Chapter 8. Introducing Visual Modeler Data Beans and Business Objects 59

constraints are placed on the values of the node. You access the DsElement tree by
invoking the business object method getRootElement().

DsElements
Each DsElement contains data and a DataMap that defines how its data
corresponds to its data source. A DsElement may be the child of another
DsElement (its parent). A DsElement tree is a collection of DsElements, all but one
of which have another element in the tree as its parent. By definition, the
DsElement with a null parent is the root DsElement. The following figure displays
the DsElements methods:

The DsElement class provides various additional methods to support navigating
through a DsElement tree, notably children() that returns an Iterator of the child
DsElements of a given DsElement. As well as getRootElement(), the business object
class also provides the getElementByName() method to access directly a named
DsElement in its tree.

All DsElements that have the same name, for example child_name, and which are
children of a DsElement must have a parent whose name is <child_name>List. The
XML schema identifies such elements by defining their ordinality to be “n” as
opposed to “1”. A DsElement maintains its children in a Vector called m_children.

The DsElement has these important methods:
v addChild(): adds a new DsElement defined by the DataMap of this DsElement.
v cloneDsElement(): returns a copy of this DsElement.
v delete(): sets the DsElemState to DsElemState.DELETED.
v deleteChild(): removes a child from the vector m_children by specifying it as a

DsElement.
v getName(): returns the name of the element as defined by its MetaData.
v getParent(): returns the parent of this DsElement.
v getType(): returns the type of the element as defined by its DataMap.

DsElement MetaData
It is sometimes useful to retrieve information about a data field and its underlying
DsElement. You can use the IData interface method getMetaData(String
elementName) to this. It returns an object that implements the IMetaData interface.
This interface supports the following methods:
v public int getDataType(): returns values as defined in DsDataTypes

60 Sterling Configurator Visual Modeler: Implementation Guide

v public long getMaxLength(): returns maximum length in bytes
v public long getMaxCharLength(Locale locale): returns maximum length in

characters
v public Object getMinValue(): returns the minimum allowed value (or null if

there is no minimum)
v public Object getMaxValue(): returns the maximum allowed value (or null if

there is no maximum)
v public int getCountAllowedValues()
v public ListIterator getAllowedValueIterator()
v public Object getDefaultValue()

Note: Each generated DataBean class implements the IData interface, and so
these methods are available to all the generated data beans.

BusinessObject Methods
Use of business objects is deprecated. This section provides information about
some business object methods for reference only.

BusinessObject restore() Method
This section provides description of the main forms of the BusinessObject restore()
method.

public void restore(BusinessObject queryObj, int maxResults,
boolean accessCheck)

The principal form of the restore() method. Use the queryObj parameter to specify
query to be executed by the restore operation. The maxResults parameter
determines the maximum number of objects returned. Use the accessCheck
parameter to specify whether to check that the current user has the correct
entitlements to perform this operation. Once the access check has been performed,
then the restore(BusinessObject queryObj, int maxResults) is called.

public void restore(BusinessObject queryObj, int maxResults)

This method calls the restore() method restore(this, queryObj, maxResults, false)of the
underlying data object.

public void restore(BusinessObject queryObj)

This is equivalent to calling restore(queryObj, 0).
public void restore()

This form of the method calls the restore(null, 0) method.

BusinessObject persist() Method
This section provides descriptions of the main forms of the BusinessObject persist()
method.

public void persist(boolean synch, boolean commit,
boolean accessCheck)

Chapter 8. Introducing Visual Modeler Data Beans and Business Objects 61

The boolean parameters determine respectively whether the persist operation is
synchronized, should be committed to the underlying data source, and whether an
access check should be performed prior to persisting.

public void persist(boolean synch, boolean commit)

This form of the method is equivalent to persist(synch, commit, false) for business
objects whose Version attribute is 4.0 or less. It is equivalent to persist(synch,
commit, true) for business objects whose Version attribute is 5.0 or more.
public void persist()

This form of the method calls persist(false, true).

The BusinessObject class also has these methods:
v delete(): empties the business object by deleting its DsElement tree.
v getRootElement(): returns the root DsElement of the DsElement tree.
v getType(): returns the name of the root element of the DsElement tree. This is the

type of the business object.
v setRootElement(): sets the root element of this business object.

62 Sterling Configurator Visual Modeler: Implementation Guide

Chapter 9. Logging in Visual Modeler

Logging in Sterling Configurator Visual Modeler: An Overview
The logging mechanism provided by the Sterling Configurator Visual Modeler
enables application writers to log activity in the Sterling Configurator Visual
Modeler. It uses the log4j API and log4j.properties configuration files to configure
the logging behavior. The logging capability also provides support for auditing
changes to data objects. See “Auditing Changes to Data Objects” on page 64 for
more information.

The log4j API provides a flexible and extensible logging framework to manage the
logging behavior of the Sterling Configurator Visual Modeler. This section
describes the use of the framework as you customize and extend the Sterling
Configurator Visual Modeler.

Note that this framework replaces the previous framework used by the Visual
Modeler: this used the Global class and its logLevel() methods. These are now
deprecated.

To use the log4j API, you should create a Logger class in each class file along these
lines:

private static final org.apache.log4j.Logger log =
org.apache.log4j.Logger.getLogger(NameOfClass.class);

When you want to make a log entry call:
log.info("This is a log entry");

The method you call depends on the logging level at which you want to record the
message. You can use the following methods:
v debug()

v error()

v fatal()

v info()

v warning()

You can also use log(priority, message), but in general the listed methods should be
sufficient.

log4j.debug System Property
By setting the log4j.debug system property to true, you can echo out the current
log settings. For example, include the following in the servlet container startup
script:
-Dlog4j.debug=true
On startup, you should see logging output like this:
log4j: Trying to find [log4j.xml] using context classloader
sun.misc.Launcher$AppClassLoader@136228.
log4j: Trying to find [log4j.xml] using sun.misc.Launcher$AppClassLoader@136228
class loader.
log4j: Trying to find [log4j.xml] using ClassLoader.getSystemResource().
log4j: Trying to find [log4j.properties] using context classloader

© Copyright IBM Corp. 2007, 2012 63

sun.misc.Launcher$AppClassLoader@136228.
log4j: Using URL [jar:file:/home/hle/ws/32-cmgt-modules/modules.cryptography-
tool/target/cmgt-cryptography-tool-2.0.0-SNAPSHOT-app.jar!/log4j.properties]
for automatic log4j configuration.
log4j: Reading configuration from URL jar:file:
/home/hle/ws/32-cmgt-modules/modules.
cryptography-tool/target/cmgt-cryptography-tool-2.0.0-SNAPSHOT-app.jar!/
log4j.properties
log4j: Parsing for [root] with value=[WARN, A1].
log4j: Level token is [WARN].
log4j: Category root set to WARN
log4j: Parsing appender named "A1".
log4j: Parsing layout options for "A1".
log4j: Setting property [conversionPattern] to [%-4r [%t] %-5p %c %x - %m%n].
log4j: End of parsing for "A1".
log4j: Parsed "A1" options.
log4j: Finished configuring.

Auditing Changes to Data Objects
In many implementations, you may want to provide an audit trail that tracks
changes made to data in the Sterling Configurator Visual Modeler. You can do this
by logging any changes made to data objects. If you set the logging level to INFO
or higher in any DataBean class, then whenever persist() is invoked on an instance
of this class, a log message is written out to the Logger for the class. For example:
the following is a sample line that is written out when a change is made to a
partner:
2006.01.18 13:41:05:546 Env/http-8080-Processor23:INFO:PartnerBean Updating:
com.comergent.bean.simple.PartnerBean KeyFields - PartnerKey: 301 Changes -PartnerKey ->
old: 301 new: 301PartnerName -> old: Scalar2 new: Scalar2 LegalName ->
old: null new: null ParentCompany -> old: null new: nullStatus ->
old: A new: A DunBradID -> old: null new: nullBusinessID ->
old: Scalar2-001 new: Scalar2-001PartnerTypeCode -> old: 10 new: 10PartnerLevelCode ->
old: 20 new: 20XMLMessageVersion -> old: dXML 4.0 new: dXML 4.0BusinessTransaction ->
old: SELL new: SELL NetWorth -> old: null new: null NumEmployees ->
old: null new: null PotRevCurrFy -> old: null new: null PotRevNextFy ->
old: null new: null ReferenceUseFlag -> old: null new: null CotermDayMonth ->
old: null new: nullURL -> old: http:///www.scalar.com new: http:///www.scalar2.com LogoURL ->
old: null new: null DistiAccess -> old: null new: null YearEstd -> old: null new:
null AnalysisFy -> old: null new: null FyEndMonthCode -> old: null new: null AccountManagerKey ->
old: null new: null MessageURL -> old: null new: null EmailAddress ->
old: null new: nullCommerceCategory -> old: 2 new: 2 PartnerRefNum ->
old: null new: null ParentKey -> old: null new: null RootPartnerKey ->
old: null new: null ParentCode -> old: null new: null CustomField1 ->
old: null new: null CustomField2 -> old: null new: null CustomField3 ->
old: null new: null CustomField4 -> old: null new: null CustomField5 ->
old: null new: null PartnerCom -> old: null new: null Storefront ->
old: null new: null URLName -> old: null new: null ContentType ->
old: null new: nullPartnerStatusCode -> old: 10 new: 10OrganizationType ->
old: DirectPartner new: DirectPartner InheritedPartnerStatusCode ->
old: null new: nullCreditLimit -> old: 0.0000 new: 0.00AvailableCredit ->
old: 0.0000 new: 0.0000CreditCurrencyCode -> old: 23 new: 23 MaxAssignableReps ->
old: null new: null RemotePrices -> old: null new: null RemotePriceExpiryInterval ->
old: null new: nullCoopPercentage -> old: 0.000000 new: 0.000CoopAccountMax ->
old: 0.000000 new: 0.00 PartnerID -> old: null new: nullOwnedBy ->
old: 0 new: 0AccessKey -> old: 5601 new: 5601UpdateDate ->
old: 2006-01-18 13:39:33.0 new: 2006-01-18 13:41:05.484UpdatedBy ->
old: 0 new: 0CreateDate -> old: 2006-01-04 13:19:38.0 new: 2006-01-04 13:19:38.0CreatedBy ->
old: 0 new: 0

You can dynamically change the logging level for any class in the Sterling
Configurator Visual Modeler through the administration UI. However, if you do

64 Sterling Configurator Visual Modeler: Implementation Guide

this, then the change to the logging level is not persistent, and will be lost if the
servlet container is restarted. In addition, the logging is written out to the standard
Appender which may not be secure.

You should specify any audit logging by customizing the log4j.properties
configuration file: this ensures that the auditing will continue to be done even if
the servlet container is restarted, and you can specify a custom Appender to
process the audit information. For example, you can specify that the Appender
posts the logging message to a remote Web server which can be secured
independently of the Sterling Configurator Visual Modeler.

As an example, the following entries in the log4j.properties configuration file
ensure that all changes to the UserContact data object are audited:
log4j.logger.com.comergent.bean.simple.UserContactBean=info
log4j.appender.com.comergent.bean.simple.
UserContactBean=com.comergent.logging.ComergentRollingFileAppender
log4j.appender.com.comergent.bean.simple.
UserContactBean.layout = org.apache.log4j.PatternLayout

If you want to specify that a remote log server can connect asa client in order to
save audit information from the Visual Modeler, then you could specify:
log4j.appender.com.comergent.bean.simple.UserContactBean=org.apache.log4j.net.
SocketHubAppender
log4j.appender.com.comergent.bean.simple.UserContactBean.port=4321

Chapter 9. Logging in Visual Modeler 65

66 Sterling Configurator Visual Modeler: Implementation Guide

Chapter 10. Modularity and Generated Interfaces

The Sterling Configurator Visual Modeler has the following features which are
designed to make implementations easier to customize and upgrade:
v Modules
v Generated Interfaces

These features are related in that the interfaces are organized by modules and that
changes to interfaces may be contained to changes within individual modules.

By providing a means of delivering functionality in modules and by requiring that
modules make calls to other modules only through their external interfaces, the
following benefits are achieved:
v It is easier to compartmentalize the functionality of applications.
v It is easier to understand and manage the dependencies between parts of the

Sterling Configurator Visual Modeler.
v It is easier to contain the customizations to single modules and understand what

effect changes made in a module have on the whole system.
v Modules can be more easily upgraded independently of each other, minimizing

the effect that an upgrade may have.
v Upgrades to modules that have not been customized will not effect

customizations made in other modules.
v New functionality can be delivered in the form of a module that may be

dropped into an existing deployment of the Sterling Configurator Visual
Modeler.

© Copyright IBM Corp. 2007, 2012 67

68 Sterling Configurator Visual Modeler: Implementation Guide

Chapter 11. Modules in Visual Modeler

Modules: An Overview
The Sterling Configurator Visual Modeler is developed as a set of interdependent
modules that conform to a common organizational structure. In general, each
module corresponds to a functional component of the Sterling Configurator Visual
Modeler such as an application or a component of the Sterling Configurator Visual
Modeler platform. Some modules may support both a Java API and a user
interface whereas other may just support a Java API provided to other modules.
Some modules provide a set of “helper” classes, JSP pages, and other files such as
Javascript files and images which are used by a number of other modules.

In general, each module has the following structure:
v Java classes: organized into three trees. At build time, the directories for all of

the modules are assembled in to a single tree under the com.comergent package.
– external API interfaces: used by other modules to access functionality

provided by the module. In general, when one module makes a call to
another module's class, it must do so through the other module's external
API. This is the com.comergent.api package for the module. Additionally, the
com.comergent.appservices.appServiceUtils.OFApiHelper is used to call the
Sterling Selling and Fulfillment Foundation XAPIs.

– implementation classes: the implementation of the external API interfaces.
When another module makes a call to the module's external API, then the
actual classes used are the implementing classes of the module's interface. The
implementation packages may include internal classes: used by the
implementation classes, but not exposed to outside world and not part of the
supported Javadoc. This is the com.comergent.apps or
com.comergent.appservices package for the module.

– reference components: Controller classes and JSP pages always comprise part
of the reference implementation and their source is provided with the Sterling
Configurator Visual Modeler. Resource bundles are also provided as part of
the reference. This is the com.comergent.reference package for the module.

v JSP pages: possibly organized into directories depending on the organization of
the module. They should always access other modules' classes through the
external APIs exposed by the other modules. This ensures that JSP pages can be
re-used from release to release provided that the external APIs are supported.

v Resource bundles, Javascript, and static files (such as images and HTML
fragments).

v Configuration files specific to the module such as MessageTypes.xml files and
business rules.

Module Interfaces
Each module must provide an external interface so that all calls to Java classes and
interfaces within the module are invoked through the interface. This external
interface provides a comprehensive set of Javadoc pages so that writers of other
modules can use the external interface reliably and easily.

The external interface for each module will typically be a combination of
handcrafted interfaces and automatically�generated interfaces. Most modules

© Copyright IBM Corp. 2007, 2012 69

provide handcrafted interfaces for presentation beans that enable presentation
beans to manipulate data beyond the simple accessor methods of the generated
data bean interfaces. The presentation beans usually wrap a data bean and
implement the same interfaces, but in addition they implement helper methods
and some business logic.

The external interfaces are organized under the following main packages:
v com.comergent.api: this package has all the module external APIs. These are

organized into:
– apps: these are the application hand-crafted APIs. Typically, these are

presentation bean interfaces, utility interfaces, and factory classes.
– appservices: these are the packages provided by the service modules used by

other applications.
– dcm: these are the external APIs offered by the Sterling Configurator Visual

Modeler platform.
v com.comergent.bean.simple: this package has all the automatically�generated

bean interfaces and the data bean classes themselves.

The generated interfaces are provided for each of the data objects declared in the
XML schema files. These are organized to provide appropriate levels of access to
the data fields of the underlying data beans. This helps to ensure that there is a
clearer separation between presentation and business logic in the Sterling
Configurator Visual Modeler. See Chapter 12, “Generated Interfaces,” on page 73
for more information about the generated interfaces.

Invoking Interfaces
You can invoke an interface from a Java class by casting any object or child
interface to the interface and then invoke any method that the interface declares. In
the Sterling Configurator Visual Modeler, use one of the following techniques to do
this:
v “Using the Object Manager”
v “Using Factory Classes” on page 71

Each module uses one or other of these techniques, but not both. As you work on
an existing module or create a new one, be consistent in how you invoke the
interfaces. It will make it easier for your colleagues to work on the same module.

In general, you should always try to work with interfaces provided by the
com.comergent.api packages: these are the interfaces that the modules will support
from one release to the next, even though the underlying implementations of the
interfaces may change.

Using the Object Manager

You can use the ObjectManager class to return an appropriate interface as follows.
Suppose that you want to retrieve the IAccProduct interface to set the data fields
of a product. Then make a call along these lines:
IAccProduct temp_IAccProduct =

(com.comergent.bean.simple.IAccProduct)
com.comergent.dcm.util.OMWrapper.getObject(

"com.comergent.bean.simple.IAccProduct");

70 Sterling Configurator Visual Modeler: Implementation Guide

Provided that there is an entry in the ObjectMap.xml file that specifies the object
to be returned and provided that the object implements the IAccProduct interface,
then this call will succeed and methods on the interface can be invoked. For
example, if the ObjectMap.xml file contains:

<Object ID="com.comergent.bean.simple.IAccProduct">
<ClassName>com.comergent.bean.simple.ProductBean</ClassName>

Then, the ObjectManager returns a com.comergent.bean.simple.ProductBean object
and this can be cast to the IAccProduct interface because the
com.comergent.bean.simple.ProductBean class implements the
com.comergent.bean.simple.IAccProduct interface.

Using Factory Classes

Calls to an interface can be provided by Factory classes that return an instance of
the interface. For example, the package com.comergent.api.apps.commerce
provides a public interface IInquiryListFactory. If another module needs an
instance of this Factory interface, then it calls the CommerceAPI class's
getFactory(int i) method. The int parameter determines what sort of Factory class is
returned. In turn, the calling module can now invoke methods on the
IInquiryListFactory to return inquiry list interfaces of the appropriate type. For
example, getInquiryList(Long listKey, boolean bFillPrices) returns an object that
implements the IInquiryList interface.

Chapter 11. Modules in Visual Modeler 71

72 Sterling Configurator Visual Modeler: Implementation Guide

Chapter 12. Generated Interfaces

When you need to access data on a particular data object, you must use the
generated interfaces that each data object provides. These generated interfaces are
created and compiled when the SDK generateBean target is run as part of the
deployment of your Sterling Configurator Visual Modeler.

For each data object declared as a DataObject within the DsRecipes.xml file, and
for any parent, reference, or child data objects, the following classes and interfaces
are generated and compiled in the com.comergent.bean.simple package:
v <Name>.java: this is the data bean class. It implements the interfaces listed here.

In addition, if the data object extends another data object, then the bean extends
the <Parent>.java bean.

v IAcc<Name>.java: this interface extends the IRd<Name>.java by providing the
write (set) accessor methods on all of the data fields of the data object. In
addition, if the data object extends another data object, then the IAcc interface
extends the IAcc<Parent>.java interface.

v IData<Name>.java: this interface extends the IAcc<Name>.java by providing
restore() and persist() methods on the data object. In addition, if the data object
extends another data object, then the IData interface extends the
IData<Parent>.java interface.

v IRd<Name>.java: this interface provides the read-only (get) accessor methods to
the data fields of the data object. In addition, if the data object extends another
data object, then the IRd interface extends the IRd<Parent>.java interface.

v In addition, list beans also implement the IData<Name>List.java interface. Each
list interface extends the IDataList.java interface as well as the list interface of
any parent object.

In general, you should use the IRd interface for any objects to be passed to JSP
pages so that the objects are effectively read-only. Only use objects that implement
the IData interface when you know that you need to either restore or persist the
data object.

Example of a Generated Interface

Consider the ACL data object: the ACL.xml file reads:

<?xml version="1.0"?>
<DataObject Name="ACL" Extends="C3PrimaryRW"
ExternalName="CMGT_ACLS"
Access="RWID" Ordinality="1"
ObjectType="JDBC" Version="5.0">
<KeyFields>
<KeyField Name="AccessKey" ExternalName="ACL_KEY"
KeyGenerator="ACLKey"/>
</KeyFields>
<DataFieldList>
<DataField Name="AccessKey"
Writable="n" Mandatory="n"
ExternalFieldName="ACL_KEY"/>
<DataField Name="ACLName"
Writable="y" Mandatory="n"

© Copyright IBM Corp. 2007, 2012 73

ExternalFieldName="NAME"/>
</DataFieldList>
<ChildDataObject Name="Access" />
</DataObject>

Consequently, the IRdACL.java class declares:
public interface IRdACL extends IRdC3PrimaryRW

and exposes the methods:
v public Long getAccessKey();
v public String getACLName();

The IAccACL.java class declares:
public interface IAccACL extends IAccC3PrimaryRW, IRdACL

and exposes the methods:
v public void setACLName(String value) throws ICCException;
v public void addAccess(AccessBean bean) throws ICCException;

The IDataACL.java class declares:
public interface IDataACL extends IAccACL,IDataC3PrimaryRW, IData

In general, this interface may declare no additional methods beyond those declared
in the IData interface because all the standard methods to read and write data
from external data sources are declared in this interface.

74 Sterling Configurator Visual Modeler: Implementation Guide

Chapter 13. Logic Classes in Visual Modeler

Implementing Logic Classes
This topic and the next two topics present a description of how to implement
business logic classes (BLCs) at an implementation of the Sterling Configurator
Visual Modeler. Before reading this topic, you must have a working understanding
of the basic architecture of the Sterling Configurator Visual Modeler and of Java.

Note: The use of BLCs is deprecated. In general, new applications should use
bizlets, controllers, and BizAPIs to implement their business logic.

Key Concepts of Logic Classes
To understand fully how the Sterling Configurator Visual Modeler works as an
application, you musSterling Configurator Visual Modeler understand its
architecture.

An installation of Sterling Configurator Visual Modeler processes requests as they
are received from users' browsers, and messages from other Modelers and from
external systems. You must configure the Sterling Configurator Visual Modeler to
process each type of request and message.

The core of the Sterling Configurator Visual Modeler is the Manager. This powerful
and flexible server is designed to seamlessly integrate a network of channel
partners and the external systems that make up the e-commerce environment of
each partner.

Each Sterling Configurator Visual Modeler server in the network of sales partners
works both as a server in relation to inbound requests from browsers and as a
client as it retrieves information from other Modeler servers and external systems.

To customize the Sterling Configurator Visual Modeler in your environment, you
need to consider how the system retrieves data from your external systems. In
general, you can use the schema and Service classes to retrieve data from a local
database source or from another Modeler server by exchanging messages.
However, you have to produce custom BLCs to retrieve information from an
external system other than these.

Application Logic Classes
Application logic classes are implemented as bizAPI, business logic , or controller
classes.
v bizAPI classes are used to manage the business logic of business objects.

Conceptually, each bizAPI class corresponds to a business object and its methods
correspond to the actions that can be performed on the business object. For
example, the OrderInquiryList bizAPI class provides the following methods:
duplicate(), copyLineItem(), and changeOwner() which correspond to actions that
can be performed on a product inquiry list. It implements the
com.comergent.api.apps.orderMgmt.oil.IOrderInquiryList interface.
The bizAPI classes are defined in the com.comergent.apps.<application>.bizAPI
packages. Typically, they implement an interface declared in the corresponding
com.comergent.api.apps.<application> package.

© Copyright IBM Corp. 2007, 2012 75

For example, the Order bizAPI class is in the
com.comergent.apps.orderMgmt.orders.bizAPI package. It extends the
OrderInquiryList class and implements the
com.comergent.api.apps.orderMgmt.orders.IOrder interface.

v Each BLC is a subclass of the BLC abstract class. This class implements the
ApplicationObject interface. BLCs perform the business logic of your
implementation of the Sterling Configurator Visual Modeler. Each BLC contains
a table of business objects such as session, user, and shopping cart for example.
In executing the service() method of a BLC, it invokes the persist() and restore()
methods of these business objects

Note: In general, the use of BLC classes is deprecated. You should use either
controllers or bizAPI classes to manage your business logic.

v Some Sterling Configurator Visual Modeler use controller classes to perform
business logic. These classes are to be found in the
com.comergent.reference.apps.<application>.controller packages for each
application.

The Sterling Configurator Visual Modeler comes with a number of standard bizAPI
classes, BLCs, controllers, and JSP pages. However, you may need to create new
logic classes or modify the existing classes.

XML Schema
You should manage data access using the schema and Service classes.

Naming Service
To retrieve parameters at runtime, the Sterling Configurator Visual Modeler
provides a naming service to access either a flat file or a database to recover
parameters.

Application logic classes can invoke a naming service by calling the static class
NamingManager methods getInstance() and getInstance(int i). Both these methods
return an object that implements the NamingService interface.
v If no integer argument is provided, then an object of default type is created,

either a NamingServiceProperties object or a NamingServiceDatabase object.
v If the integer argument is the constant NamingManager.DATABASE, then a

NamingServiceDatabase object is created.
v If the integer argument is the constant NamingManager.PROPERTIES, then a

NamingServiceProperties object is created.
v If the integer argument is not one of these two, then an object of default type is

created.

In all cases, the Sterling Configurator Visual Modeler accesses the Comergent.xml
file to determine exactly how the NamingService object should be created:
v If a NamingServiceDatabase object is to be created, then the

NamingManager.database entries are used to specify the connection to the
database.

v If a NamingServiceProperties object is to be created, then the
NamingManager.properties entry is used to determine which properties file
holds the parameter values.

76 Sterling Configurator Visual Modeler: Implementation Guide

Once the NamingService object is created, you use the methods listed below to
retrieve the parameters as a NamingResult class:
v public NamingResult get(int key)
v public NamingResult get(Long key)
v public NamingResult get(String key)

The key parameter provides a means of retrieving only those parameters whose
name begins with the key string.

The NamingResult class provides the get(String parameter) method to return the
value of the parameter.

Naming Service Example

For example, the following code fragment recovers the value of the message URL
parameter for a distributor referred to by its partner key.

NamingService namingService = NamingManager.getInstance();
NamingResult namingResult = namingService.get(partnerKey);
String url = namingResult.get(NamingResult.MESSAGE_URL);

Note: By default, the type of NamingService created is a NamingServiceDatabase
object because in Comergent.xml the NamingManager defaultType element is set
to "database".

Chapter 13. Logic Classes in Visual Modeler 77

78 Sterling Configurator Visual Modeler: Implementation Guide

Chapter 14. Visual Modeler Software Development Kit

Using the Software Development Kit to Customize Sterling
Configurator Visual Modeler Implementation

You can use the Sterling Configurator Visual Modeler Software Development Kit
(SDK) to install and customize your implementation of the Sterling Configurator
Visual Modeler. The HTML documentation provided with each version of the SDK
provides an overview of how the SDK works and how to use it to manage
projects. This topic describes the basic structure of a customization project. Follow
the guidelines here to organize your project so that it follows the customization
guidelines.

Project Organization
Each project built using the SDK is created on top of a release of the Sterling
Configurator Visual Modeler. When you create the project using the newproject
target, the SDK creates a set of project files that are suitable for that release. All of
the customizations that you make in the project are made by adding files to the
project. Files can be added to the project in these ways:
v Use the customize target to copy a file from the release into the project. When

you use the customize target, the file is automatically copied into the
appropriate sub-directory of the project.

v Create the file manually in the appropriate sub-directory of the project.

See “Project File and Directory Locations” for information about where files must
be located.

Project File and Directory Locations
In this section, we assume that you created a project called project, and that you
have a project directory called sdk_home/projects/project/. Ensure that each of the
project files is in the appropriate location under the project directory as follows:
v Java source files: these must be placed under the project/src/ directory, and

follow the package organization for the Sterling Configurator Visual Modeler.
v JSP pages: these are organized by module and locale under the

project/WEB-INF/web/ directory.
v Schema files: these comprise the data object files and the supporting data

services files. All your customizations should be maintained under the
project/WEB-INF/schema/custom/ directory. Make sure that the
schemaRepositoryExtn element is set to “WEB-INF/schema/custom”.

Java Source Files
In the project/src/ directory, follow these guidelines to organize your
customizations to the Sterling Configurator Visual Modeler:
v Use the com/comergent/api/ packages to add your extensions to the Sterling

Configurator Visual Modeler API. In general, you should create new classes that
extend the existing API: do not overwrite the release API because that can affect
any upgrade.

© Copyright IBM Corp. 2007, 2012 79

v Use the com/comergent/apps/ and com/comergent/appservices/ packages to
add implementation classes: these may be entirely new classes or new classes
that extend existing implementation classes.

v Use the com/comergent/reference/ packages for controller classes. You can
customize existing controller classes or create new controller classes.

JSP Pages
In the project/WEB-INF/web/ directory, follow these guidelines to organize your
customization to the Sterling Configurator Visual Modeler
v Where appropriate, use the existing organization of JSP pages to add new JSP

pages or to customize existing ones.
v If you are adding a new functionality module, then create a new directory under

the appropriate locale(s) for the module, and follow the same naming
conventions you do for Java classes created for the module.

Schema Files
In the project/WEB-INF/schema/custom/ directory, follow these guidelines to
organize your customizations to the Sterling Configurator Visual Modeler:
v To add new data objects:

– Put the XML definition of the data object in project/WEB-INF/schema/
custom/. For example, create the file project/WEB-INF/schema/custom/
CustComment.xml

– Modify project/WEB-INF/schema/custom/DsBusinessObjects.xml by adding
the new business object. For example:
<?xml version="1.0"?>
<Schema Name="project" Description="project Custom Schema"
Version="6.0">
<BusinessObject Name="CustComment" Version="6.0"
Description="CustComment BusinessObject"/>
</Schema>

– Modify project/WEB-INF/schema/custom/DsDataElements.xml by adding the
new data elements for the header and list data objects, together with any new
fields declared by the data object. For example:
<?xml version="1.0"?>
<Schema Name="project" Description="project Custom Schema"
Version="6.0">
<DataElement Name="CustComment" Description="Customer Comment data
object"
DataType="HEADER"/>
<DataElement Name="CustCommentList" Description="Customer Comment list
data
object" DataType="HEADER"/>
<DataElement Name="CustCommentKey" Description="Customer Comment Key"
DataType="LONG" MaxLength="20"/>
</Schema>

– Modify project/WEB-INF/schema/custom/DsRecipes.xml by adding a recipe
element. For example:
<Schema Name="project" Description="project Custom Schema"
Version="6.0">
<Recipe Name="CustComment" BusinessObject="CustComment"
Description="Default Approvals List Recipe" Version="6.0">

<DataObjectList>

80 Sterling Configurator Visual Modeler: Implementation Guide

<DataObject Name="CustComment" Access="RWID"
DataSourceName="ENTERPRISE" Ordinality="n"
Version="6.0"/>
</DataObjectList>
</Recipe>
</Schema>

– Modify the appropriate key generator file, for example project/WEB-INF/
schema/custom/OracleKeyGenerators.xml, by adding any new keys required:
<?xml version="1.0"?>

<Schema Description="project Custom Schema" Name="project"
Version="6.0">

<KeyGenerator Name="CustCommentKey" KeyProcedureName="CUSTCOMMENTKEY"
GeneratorType="PROCEDURE" />

</Schema>

Chapter 14. Visual Modeler Software Development Kit 81

82 Sterling Configurator Visual Modeler: Implementation Guide

Chapter 15. Visual Modeler Localization

Sterling Configurator Visual Modeler Localization Overview

The Sterling Configurator Visual Modeler has built-in support for:
v multiple currencies
v multiple languages
v number and date formats
v character sets

You can also manage other aspects of localization for specific markets such as:
v local laws and regulations
v currency processing
v shipping and export information
v taxes

Support for internationalization is managed using locales. Each locale identifies a
language and country or region. By identifying which locale is to be used when
displaying information to a user, you ensure that the user sees information that is
both specific to their locale and presented as they would expect to see it.

When users log in to the Sterling Configurator Visual Modeler, a locale is assigned
to the session: this is the preferred locale specified in the user's profile. Users can
change their preferred locale in their user profile and the change takes take effect
the next time they log in. User administrators can change a user's preferred locale
just as they can change other aspects of a user's profile.

The system default locale is specified in the Internationalization.xml configuration
file using the defaultSystemLocale element. You can specify a default locale for
each language: see “Failover Behavior” on page 86 for more information.

The Sterling Configurator Visual Modeler offers full Unicode support for data
entry and display.

A significant amount of localization can be performed using Java ResourceBundles:
see “Resource Bundles and Formats” on page 92 for more details.

Supporting Locales

If you plan to implement the Sterling Configurator Visual Modeler to provide
support for more than the en_US locale, then you must produce pages to reflect
local language and other locale-specific information (such as office locations).

Presentation and Session Locales
When a user logs in to the Sterling Configurator Visual Modeler, the authentication
process retrieves their preferred locale: this is defined in their user profile. The
system makes use of two logically distinct locales:
v session locale: this determines what data is retrieved for data objects from the

Knowledgebase.

© Copyright IBM Corp. 2007, 2012 83

v presentation locale: this determines what JSP pages and resource bundles are
used to render HTML pages to the user.

In general, the set of locales that you support as presentation locales must be a
subset of the possible session locales. For example, you choose to maintain fr_CA,
fr_CH, and fr_FR as session locales, but only support fr_FR and fr_CA as
presentation locales.

When a user first logs in, the system calculates a presentation locale for the user
session as follows:
1. If the user's preferred locale is declared in the Sterling Configurator Visual

Modeler web.xml file, then set this to be the presentation locale.
2. If not, then consult the Internationalization.xml file: if the

useCountryDefaulting element is set to "true", then identify the default country
or region locale for the language of the user's preferred locale. Check to see if
the default country or region locale is declared in the web.xml file. If it is, then
set the presentation locale to this.

3. If either the useCountryDefaulting element is set to "false" or the default
country or region locale is not present in the web.xml file, and if the
useGeneralDefaulting element is set to "true", then set the user's presentation
locale to the default system locale specified by the defaultSystemLocale
element.

4. If the Defaulting elements are set to false or if no locale is identified that is
declared in the web.xml file, then the presentation locale is set to the session
locale.

This presentation locale is used to determine the user's experience as they navigate
through the Sterling Configurator Visual Modeler by controlling which JSP pages
and properties files are used to render the Web pages that they see. At the same
time, the preferred locale is also set as their session locale: this session locale is used
to determine what data is retrieved from the database when localized data objects
are displayed to the user.

Note: You must make sure that every locale you create in the database either has a
corresponding set of entries in the web.xml file or that its default country or
region locale has entries in the web.xml file and you enable country or region
defaulting. If you do not do this, then some users may not be able to access the
system.

JSP Pages and Properties Files
1. For each JSP page, there must be at least one JSP page located in the

appropriate module sub-directory under the system default locale directory.
When you first install the Sterling Configurator Visual Modeler, the default
system locale is set to en_US. Consequently, a full set of JSP pages is provided
under debs_home/SterlingWEB-INF/web/en/US/. If you change the default
system locale, then take care to fully populate the corresponding directories for
the new locale.

2. All visible text on each page is declared using the Comergent tag library text
tag or the corresponding cmgtText() method. For example:
<cmgt:text
id=’cmgt_channelMgmt/channelCartDisplay/ChannelCartDisplayData_7’
bundle=’channelMgmt.channelCartDisplay.ChannelCartDisplayDataResources’
>Build Product List </cmgt:text>

or

84 Sterling Configurator Visual Modeler: Implementation Guide

String title = cmgtText("cmgt_commerce/search/AdvancedSearchBody_2",
"Inquiry Lists Search");

The bundle attribute must correspond to a file in the
com.comergent.reference.jsp package of the class tree. For the example above,
there must be a file called ChannelCartDisplayDataResource.properties in the
debs_home/Sterling/WEB-INF/classes/com/comergent/reference/jsp/
channelMgmt/channelCartDisplay/ directory. The id attribute must be unique
within the properties file. For the example above, there should be a line of the
form:
cmgt_channelMgmt/channelCartDisplay/ChannelCartDisplayData_7
=Build Product List

3. For each additional supported locale (say, la_CO), you must copy the following
directories from debs_home/Sterling/WEB�INF/web/en/US/ to
debs_home/Sterling/WEB�INF/web/la/CO/:
v cic/

v common/

v home/

4. For each additional supported locale (say, la_CO) and for each JSP page, you
must:
a. Either create a new JSP page for the locale and put it in the corresponding

directory location in the Web application: a directory under
debs_home/Sterling/WEB�INF/web/la/CO/. If the same page can be used for
more than one locale in the same language (for example, fr_FR and fr_CA),
then make sure that you put it in the default locale for the language. See
“Failover Behavior” on page 86 for more information about default locales
for languages.

b. Or prepare a properties file that contains the appropriate text for each id.
These properties files are organized so that there is one for each JSP page
and JSP fragment.
HTML and Javascript characters such as "<", ">", "'", and so on must not be
included in the property values. These characters must be escaped using the
HTML or Javascript mechanisms to escape characters. For example: use
"<" for "<" in HTML and "\'" for "'" in Javascript.
The properties files must conform to the Java standard for properties files
used by resource bundles. Specifically, they should follow this naming
convention: <Name of JSP page>Resources_la_CO.properties. They must be
text files in which each line should take this form:

cmgt_module/package/JSPname_n=Display text for this locale
For example:

cmgt_channelMgmt/channelCartDisplay/
ChannelCartDisplayData_7=Build Product List

The properties files are all located in the debs_home/Sterling/WEB-INF/classes/
com/comergent/reference/jsp/ directory and are organized by module within this
directory in the same way that the module JSP pages are organized within a
module. Note that if you want to change the location of these resource bundles,
then you must customize the text tag to retrieve the resource bundles from their
new location.

If you add text to a JSP page, then take care to update the corresponding locale JSP
pages or properties files, either with amended text for an existing tag id or by
adding a new id.

Chapter 15. Visual Modeler Localization 85

Note the following:
v The length of the translated text can be significantly different: this can affect the

layout of a Web page.
v Drop-down lists and Javascript functions can have text that if translated will

affect the logic of the Sterling Configurator Visual Modeler. See “Javascript” on
page 90 and “JSP Pages” on page 80.

v Local regulations can effect the display of information (such as the display of
prices in both Euros and a local currency).

v Take particular care if the logical flow of pages must change to reflect local
practice (such as the display of an export notice or tax information).

You can use the debugJSPResouceBundle element of the Internationalization.xml
configuration file to help you identify missing strings. Set this element to "true"
and if a string is missing from the referenced resource bundle, then an error
message is displayed on the browser page. You should set this value to "false" in
your production systems.

Failover Behavior
This section describes what happens when resources (JSP pages or properties) are
not defined for the user's current presentation locale. Note that the failover
behaviors are slightly different for JSP pages and resource bundles:
v JSP pages can fail over from a specific locale to the default country or region for

the language locale and then to the system default locale. For example: fr_CA to
fr_FR to en_US.

v Resource bundles fail over according to the Java specification:
*_fr_CA.properties to *_fr.properties to *.properties.

Two properties in the Internationalization.xml configuration file are used to
manage failover behavior for JSP pages:
v useCountryDefaulting: if this is set to true, then default to the country or region

specified in the appropriate language element if no resource is present for the
presentation locale.

v useGeneralDefaulting: if this is set to true, then default to the system locale if no
resource is available for the presentation locale.

Failover Behavior: Resource Bundles
You do not need to translate all text strings into each locale. If a text string is not
present for a given id in a resource bundle properties file, then the standard Java
failover process is followed. For example, if the
ChannelCartDisplayDataResource_fr_CA.properties does not define the
cmgt_channelMgmt/channelCartDisplay/ChannelCartDisplayData_7 string, then, if
it exists the ChannelCartDisplayDataResource_fr.properties file is consulted. If
this file does not exist or does not have an entry for this id, then the
ChannelCartDisplayDataResource.properties file is consulted.

Failover Behavior: JSP Pages
Not all the JSP pages need be available for all supported locales. For example, you
may choose to use en_US pages for all but a small number of pages viewed by
en_CA users. This section describes what happens when a message type is
processed:

86 Sterling Configurator Visual Modeler: Implementation Guide

The request is forwarded to the JSP page specified by the JSPMapping element of
the message type in the appropriate MessageTypes.xml.
1. If the JSP page does exist for the current locale, then this page is used to

generate the Web page.
2. If the JSP page does not exist for the current locale, then the failover

mechanism identifies the default locale for the language of the current locale.
This is declared as the defaultCountry element for the language in the
Internationalization.xml configuration file.

3. If a JSP page exists in the language-default locale, then this page is used to
generate the Web page. For example, the following element in
Internationalization.xml specifies that US is the default country or region for
the en language locales, and so if a JSP page is not present for the en_CA
locale, then the corresponding en_US JSP page is used.

4. <en visible="false">
<defaultCountry ...>US</defaultCountry>
</en>

5. If there does not exist a JSP page for the default country or region, then the
failover mechanism identifies the default system locale. This is declared as the
value of the defaultSystemLocale element of the Internationalization.xml file. If
a JSP page exists in the system default locale, then this page is used to generate
the Web page.

6. Finally, if no JSP page exists in the default system locale, then an exception is
thrown and an error page is displayed.

Methods to Retrieve Locales
Most of the time you should be able to make use of the Sterling Configurator
Visual Modeler's built�in support to display appropriate content to users for their
locales. If you do need to manually access locales, then the ComergentI18N class
can be used. It provides the following methods:
v getDefaultLocale(): returns the system default locale.
v getComergentLocale(boolean b): if b is true, then returns the user's presentation

locale; otherwise returns the user's session locale.
v findPresentationLocale(Locale sessionLocale): used to calculate what presentation

locale should be used for a given session locale.

Using Properties Files in Code
You can make use of properties files in your Java code too. For example, to retrieve
the locale-specific String that corresponds to the String keyString defined in the
com.comergent.reference.jsp.AdvisorBodyResources.properties file, use:

String temp_NamedPopertiesFile =
"com.comergent.reference.jsp.AdvisorBodyResources.properties";
ResourceBundle temp_ResourceBundle =
com.comergent.dcm.util.ComergentI18N.-
getBundle(temp_NamedPopertiesFile);
String temp_LocalisedString =
temp_ResourceBundle.getString("keyString");

This uses the current locale of the user as stored in the user's session. If you want
to force the use of a different locale, then use:

Chapter 15. Visual Modeler Localization 87

Locale specific_Locale = new Locale("fr", "CA");
String temp_NamedPopertiesFile =
"com.comergent.reference.jsp.AdvisorBodyResources.properties";
ResourceBundle temp_ResourceBundle =
com.comergent.dcm.util.ComergentI18N.-
getBundle(temp_NamedPopertiesFile, specific_Locale);
String temp_LocalisedString =
temp_ResourceBundle.getString("keyString");

Data for Internationalization
If you expect enterprise users and end-users to be entering data in multi�byte
characters, then you need to consider the length of data fields and their
corresponding database table columns. In our experience, data entered into the
Sterling Configurator Visual Modeler that uses multi�byte characters can be up to
three times as long in the database as the strings used for the en_US locale.
Consequently, you should review the length of fields in which you expect data to
be entered that will take multi�byte characters: notably name and description
fields.

If you want to change the length of fields, then bear in mind that you have to both
change them in the DsDataElements.xml configuration file and make the
corresponding change to the SQL script that is used to generate the
Knowledgebase schema.

Example

To make the Description field of the Product data object suitably long for
multi�byte characters, you must perform the following steps:
1. Identify the data field that is used to hold product descriptions. Because the

Product data object is a localizable data object (Localized=“y”), this is the
Description field of the ProductLocale data object. Its corresponding database
table and column is CMGT_PRODUCT_LOCALE.DESCRIPTION.
<DataField Name="Description" ExternalFieldName="DESCRIPTION"
Mandatory="n" Writable="y"/>

2. Suppose that you want to allow for descriptions that are up to 240 characters
long:
<DataElement Name="Description" DataType="STRING"
Description="Description" MaxLength="240" />

3. Change the corresponding SQL statement that creates the
CMGT_PRODUCT_LOCALE table so that the DESCRIPTION column is set to
VARCHAR2(720):
DESCRIPTION VARCHAR2(720) DEFAULT 'Not available',

4. Run the appropriate SDK targets (merge and createDB) to make the changes to
your implementation of the Sterling Configurator Visual Modeler.

Note that in this example, the Description data field is widely used by many
different data objects and so changing its definition in the DsDataElements.xml
configuraton file can have unanticipated side-effects elsewhere. An alternative
approach is to create a new data field called ProductDescription and to use this in
the ProductLocale data object. Thus, you could put in the ProductLocale.xml file:

<DataField Name="ProductDescription"
ExternalFieldName="DESCRIPTION" Mandatory="n" Writable="y"/>

88 Sterling Configurator Visual Modeler: Implementation Guide

Then put in the DsDataElements.xml configuration file:

<DataElement Name="ProductDescription" DataType="STRING"
Description="This is the product description field"
MaxLength="240" />

Note: If you provide a Javascript methods to validate that users have entered valid
data in fields, then when you check for length of fields, check for the length
specified in the corresponding DataElement.

Email Templates
If your system supports languages other than English and your installation of the
Sterling Configurator Visual Modeler uses email templates to generate messages
that are sent to users, then bear in mind that these need to be translated.

Release 6.4 has introduced the ability to use JSP pages to generate email messages:
This provides support for internationalizing email messages by using the existing
framework for internationalizing JSP pages.

For legacy applications, you can use the default templates provided by the Sterling
Configurator Visual Modeler: these are located in debs_home/Sterling/WEB-INF/
templates/.

HTML Pages
Static HTML pages must be translated where appropriate. If you want to provide
support for multiple languages simultaneously, then you should take care to
produce pages for each language. Provided that you maintain the location of these
pages consistently across your locale directory structure, then the relative
references to these pages will always resolve correctly to the correct HTML page.

For example, the following JSP fragment will dynamically generated URLs to point
to a locale-specific Example.html page:

<A HREF="<cmgt:link app="catalog">
/static/Example.html
</cmgt:link>">
resourceBundle.getString("ExamplePage")

In this example, a resource bundle is used to determine the displayed text for the
link.

Images
In general, use images that do not have embedded text. Doing so, ensures that you
can use the same images in more than one locale: thereby reducing the cost of
localization and maintenance.

However, where necessary you should provide localized versions of images. Just as
for static HTML pages, you can use relative URLs to ensure that locale-specific
images are retrieved from the correct location relative to the JSP page.

Chapter 15. Visual Modeler Localization 89

In particular, remember that all of the buttons in externally facing pages are image
buttons with text. Where necessary, you should create localized versions of each
button. The image source URLs can then be generated as follows:

<IMG ALT="Locale-specific alternate text goes here"
SRC="../images/button.gif">

Javascript
Take care to localize displayed text used in your Javascript. For example, alert
dialog boxes should reflect the user's locale in the displayed text.
v Some Javascript files are included in the Web pages along these lines:

<script language=’JavaScript’ src=’../js/genericUtil.js’>
</script>

You must maintain these Javascript files for each locale so that the browser can
correctly include these in the generated Web pages.

v When Javascript is defined within a JSP page or an included JSP fragment, then
display text must be wrapped in the text tag. For example:
alert("<cmgt:text id="*">Product ID is missing.</cmgt:text>");

When these tags are processed as part of the SDK tool, then the id attribute is
changed into a unique ID, and the ID and body of the tag are added to the
resource bundle for the JSP page or fragment.

Sterling Configurator Visual Modeler Localization: JSP Pages
In general, all localization for labels, explanatory text, populated lists, and
locale-specific formatting for dates and currencies should be reflected in the JSP
pages created for a locale.

A useful organizing principle is to create a HashMap of all localized strings on
page, and then to refer to this throughout the rest of the page. For example:

HashMap localized = new HashMap();
localized.put("TaskListHeader",
cmgtText("cmgt_taskMgr/TaskWorkspaceData_3","Task List:"));
localized.put("QuickSearchTitle",
cmgtText("cmgt_taskMgr/TaskWorkspaceData_4","Search for Tasks"));
localized.put("TaskID",
cmgtText("cmgt_taskMgr/TaskWorkspaceData_5","ID"));
localized.put("TaskName",
cmgtText("cmgt_taskMgr/TaskWorkspaceData_6","Name"));
localized.put("Status",
cmgtText("cmgt_taskMgr/TaskWorkspaceData_7","Status"));
localized.put("Priority",
cmgtText("cmgt_taskMgr/TaskWorkspaceData_8","Priority"));
localized.put("CreateDate",
cmgtText("cmgt_taskMgr/TaskWorkspaceData_9","Create Date"));
request.setAttribute("localized", localized);

You can reference these strings using the scripting capabilities along these lines:
<cic:span css="banner" value="${localized[’TaskListHeader’]}"/>

This technique has the advantages that JSP pages are more readable, that you can
re-use localized strings easily, and it is closer to the JSF model.

90 Sterling Configurator Visual Modeler: Implementation Guide

See “Calendar Widget” for information about localizing this UI component. For
example, populate a drop-down list of days of the week for a French-language
locale as follows:

<SELECT Name="DayOfWeek">
<OPTION VALUE=0>dimanche</OPTION>
<OPTION VALUE=1>lundi</OPTION>
<OPTION VALUE=2>mardi</OPTION>
<OPTION VALUE=3>mercredi</OPTION>
<OPTION VALUE=4>jeudi</OPTION>
<OPTION VALUE=5>juin</OPTION>
<OPTION VALUE=6>vendredi</OPTION>
<OPTION VALUE=7>samedi</OPTION>
</SELECT>

You can also use resource bundles to manage locale-specific display information.
For example, this would be an alternate method for populating a drop-down list of
days of the week in the Gregorian calendar:

<SELECT Name="DayOfWeek">
<OPTION VALUE=0><%= resourceBundle.getString("Sunday") %></OPTION>
<OPTION VALUE=1><%= resourceBundle.getString("Monday") %></OPTION>
<OPTION VALUE=2><%= resourceBundle.getString("Tuesday") %></OPTION>
<OPTION VALUE=3><%= resourceBundle.getString("Wednesday") %></OPTION>
<OPTION VALUE=4><%= resourceBundle.getString("Thursday") %></OPTION>
<OPTION VALUE=5><%= resourceBundle.getString("Friday") %></OPTION>
<OPTION VALUE=6><%= resourceBundle.getString("Saturday") %></OPTION>
</SELECT>

Calendar Widget

When you use the calendar widget in a JSP page, then it must be localized. You do
this by customizing the I18N.js Javascript file to be found in the locale directory
debs_home/Sterling//la/CO/js/. For example, to support the de_DE locale, create a
file called debs_home/Sterling/de/DE/js/I18N.js that reads:

// DEFAULT LOCALE (English)
var MONTH_NAMES = new Array(’Januar’, ’Februar’, ’Maerz’, ’April’, ’Mai’,
’Juni’, ’Juli’, ’August’, ’September’, ’Oktober’, ’November’, ’Dezember’,
’Jan’, ’Feb’, ’Mar’, ’Apr’, ’May’, ’Jun’, ’Jul’, ’Aug’, ’Sep’, ’Okt’,
’Nov’, ’Dez’);
var DAYOFWEEK_HEADER_NAMES = new Array("So","Mo","Di","Mi","Do","Fr","Sa");
var WEEK_START_DAY = 0;
// Create CalendarPopup object
var popupCal = new CalendarPopup();

Style Sheets
The Sterling Configurator Visual Modeler uses cascading style sheets to set the
formatting of HTML elements. If you use fonts for a specific locale, then make sure
that you create a style sheet that specifies these fonts. For each locale save this
locale-specific style sheet in the same relative location.

In JSP pages, you can include a locale-specific cascading style sheet, say
customer.css, with the following:
<LINK rel="stylesheet" href="../css/customer.css" type="text/css">

Chapter 15. Visual Modeler Localization 91

System Properties
In general, the configuration files only present data to administrators. To localize
these files, you should not need to change the names or values of elements, but
you should consider changing the Help text for elements. Note that there is only
one set of configuration files for each Sterling Configurator Visual Modeler, and so
you should use the language of the default system locale for these files.

Resource Bundles and Formats
PropertyResourceBundles and Properties Files

The “Modules: An Overview” on page 69 makes extensive use of properties files to
manage locale-specific data. These have replaced the use of ResourceBundle Java
classes. See “Modules: An Overview” on page 69 for more details.

ResourceBundles

A useful mechanism to manage localization is the use of Java ResourceBundles.

Note: The use of resource bundles classes in the Sterling Configurator Visual
Modeler is deprecated. You should use properties files as described in “Modules:
An Overview” on page 69.

These are classes that manage locale-specific information. ResourceBundle classes
used in the Sterling Configurator Visual Modeler all extend the
ListResourceBundle. These define the mapping between name Strings and the
value Strings returned when the getString (String nameString) method is invoked.

By following the naming convention for ResourceBundles, you can create
locale�specific ResourceBundles for all of the locales you need to support. For
example, you can create the following ResourceBundles to be used in a new
application called Inventory:
v InventoryResourceBundle
v InventoryResourceBundle_fr
v InventoryResourceBundle_fr_FR
v InventoryResourceBundle_fr_CA

The following scriptlet can retrieve the appropriate resource bundle for use in a
JSP page:

<%
String baseName = "AdvisorResourceBundle";
ResourceBundle resourceBundle =
AdvisorResourceBundle.getBundle (baseName,
session.getLocale());
%>

NumberFormats and DateFormats

You can use the NumberFormat class to help you display numbers in
locale-specific ways. You create an instance of a NumberFormat by passing in the
locale to the constructor.

92 Sterling Configurator Visual Modeler: Implementation Guide

For example, the following scriptlet displays the total number of shopping carts in
a format appropriate to the locale:

<%
NumberFormat numberFormat =
NumberFormat.getInstance(session.getLocale());
int number = request.getParameter("ShoppingCartsTotal");
%>
<P>The number of active shopping carts in use is:
<%= numberFormat.format(number) %>
</P>

Similarly, use the DateFormat class to help you display date in locale-specific ways.
You create an instance of a DateFormat by passing in the locale to the constructor.

For example, the following scriptlet displays the current date in a format
appropriate to the locale:

<%
DateFormat dateFormat =
DateFormat.getInstance(session.getLocale());
Date todaysDate = new Date();
%>
<P>It is now:
<%= dateFormat.format(todaysDate) %>
</P>

Chapter 15. Visual Modeler Localization 93

94 Sterling Configurator Visual Modeler: Implementation Guide

Chapter 16. Customizing Controls

Controls are used to determine how the option classes and option items display
and behave in the user interface (UI). You can add or modify Custom UI Controls.

You can also create Custom Controls specific for an Enterprise or Storefront. For
more information refer to “Create an Enterprise Specific UI Control” on page 97.

It is also very important to integrate Sterling Configurator Visual Modeler with
IBM Sterling Selling and Fulfillment Foundation and ensure that connection is
established between them for proper functioning of Sterling Configurator Visual
Modeler and custom controls.

Each Control corresponds to a JSP page and the behavior of the option items. This
correspondence is defined in the controls.properties configuration file under the
Comergent/WEB-INF/properties folder located in the deployment directory.

You can specify the path of the controls.properties file either in the
Comergent.xml file or in the Sterling Configurator Visual Modeler User Interface.
For more information refer to Chapter 18, “Modify System Property Settings,” on
page 103.

Following is a sample entry defined in the controls.properties file:
RADIO.name=Radio Button
RADIO.jsp=controls/radio.jsp
RADIO.behavior=single

In this example, for the radio button control, the radio.jsp JSP page is used to
render the option class in the UI. The behavior property determines how the
Sterling Configurator will handle picks in this control. Based on how the behavior
property is defined, the Sterling Configurator handles picks as follows:
v entry - used for user-entered controls.
v expand - expand all the children of this control if the control itself is picked.
v multiple - allow one or more option items to be picked from this control.
v single - if an option item is picked, then remove any previous picks from this

option class.

Modify a Control
About this task

You can customize an existing control by modifying the corresponding entry in the
controls.properties file.

To modify an existing control:

Procedure
1. Run the following target to retrieve the controls.properties file for

customization:
sdk customize WEB-INF/properties/controls.properties

© Copyright IBM Corp. 2007, 2012 95

Running this target places the controls.properties file in your customization
project.

2. Modify the entries in the controls.properties file, as required.
3. Run the following target to merge the customizations into the build:

sdk merge

4. If you are deploying the Sterling Configurator Visual Modeler application as a
WAR file, perform the following steps:
a. Run the following target to re-create the WAR file:

sdk distWar

b. Deploy the .war file on your application server.

Results

After these steps are completed, you must perform the required modifications in
the Sterling Selling and Fulfillment Foundation. For more information, refer to the
Sterling Configurator: Application Guide.

Add a Control
About this task

You can define a new control by adding the name of the control to the list of
controls declared, and then defining the properties of the new control.

To add a new control:

Procedure
1. Run the following target to retrieve the controls.properties file for

customization:
sdk customize WEB-INF/properties/controls.properties

Running this target places the controls.properties file in your customization
project.

2. Add the name of the new control to the comma-separated list of values for the
controls attribute.
For example, to add a new ABC_CUSTOM control, the controls attribute may
be defined as follows:
controls=ABC_CUSTOM,RADIO,CHECKBOX,COMBOBOX,LISTBOX,MULTISELLISTBOX,
ALLPICKED,UEV,DISPLAY

3. Define the properties of the new control.
For example, you may define the properties of the new ABC_CUSTOM control
as follows:
ABC_CUSTOM.name=Matrix Custom Control
ABC_CUSTOM.jsp=controls/ABCCustom.jsp
ABC_CUSTOM.behavior=single

Note: It is recommended to avoid using existing JSPs such as radio.jsp,
listbox.jsp, etc. for defining the JSP property of the new control.

4. Run the following target to merge the customizations into the build:
sdk merge

5. If you are deploying the Sterling Configurator Visual Modeler application as a
WAR file, perform the following steps:
a. Run the following target to re-create the WAR file:

96 Sterling Configurator Visual Modeler: Implementation Guide

sdk distWar

b. Deploy the .war file on your application server.
After these steps are completed, you must perform the required modifications
in the Sterling Selling and Fulfillment Foundation. For more information, refer
to the Sterling Configurator: Application Guide.

Create an Enterprise Specific UI Control
About this task

You can create custom controls specific for an enterprise or storefront by defining
the attribute of OrganizationCode in the controls.properties file.

To create an enterprise specific UI control:

Procedure
1. Run the following target to retrieve the controls.properties file for

customization:
sdk customize WEB-INF/properties/controls.properties

Running this target places the controls.properties file in your customization
project.

2. In the controls.properties file, insert the OrganizationCode entry and specify
the organization code of the enterprise the controls belong to.

Note: The organization code is defined in Sterling Selling and Fulfillment
Foundation.
For example, you can define the custom controls for Matrix Organization as
follows:
OrganizationCode=Matrix
RADIO.name=Radio Button
RADIO.jsp=controls/radio.jsp
RADIO.behavior=single

Note: During modeling at Storefront level, global UI Controls and enterprise
specific UI Controls are available for associating with an option class.
v If the OrganizationCode entry is missing or has a blank value in the

controls.properties file, then the Controls will be defined as global and
available for all the storefronts.

v If the storefront specific control name is similar to global control name, then
the storefront definition will override the global definition.

3. Run the following target to merge the customizations into the build:
sdk merge

4. If you are deploying the Sterling Configurator Visual Modeler application as a
WAR file, perform the following steps:
a. Run the following target to re-create the WAR file:

sdk distWar

b. Deploy the .war file on your application server.
After these steps are completed, you must perform the required modifications
in the Sterling Selling and Fulfillment Foundation. For more information, refer
to the Sterling Configurator: Application Guide.

Chapter 16. Customizing Controls 97

98 Sterling Configurator Visual Modeler: Implementation Guide

Chapter 17. Customizing Function Handlers

Function handler classes are Java classes that are used to define custom functions
that can be invoked by the Sterling Configurator rule engine.

You can create Function Handlers specific for an Enterprise or Storefront. For more
information refer to “Create an Enterprise Specific Function Handler” on page 100.

It is also very important to integrate Sterling Configurator Visual Modeler with
IBM Sterling Selling and Fulfillment Foundation and ensure that connection is
established between them for proper functioning of Sterling Configurator Visual
Modeler and custom function handlers.

The function handlers are defined in the functionHandlers.properties
configuration file under the Comergent/WEB-INF/properties folder located in the
deployment directory. This file includes a name for each function handler and the
directory in which the function handler class is located.

You can specify the path of the functionHandlers.properties file either in the
Comergent.xml file or in the Sterling Configurator Visual Modeler User Interface.
For more information refer to Chapter 18, “Modify System Property Settings,” on
page 103.

Following is a sample fragment of the functionHandlers.properties file:
WEB-INF/classes/com/comergent/apps/configurator/functionHandlers=
CheckLookupFunctionHandler,ChildSum,CountFunctionHandler,
IsSelectedHandler,LengthFunctionHandler,ListFunctionHandler,
LookupFunctionHandler,MaxFunctionHandler,MinFunctionHandler,
ParentFunctionHandler,PropValHandler,SumFunctionHandler,
ValueFunctionHandler,WebServiceLookupCheckLookupFunctionHandler=
com.comergent.apps.configurator.
function-Handlers.CheckLookupFunctionHandler

Add a Function Handler Class
About this task

You can add a new function handler class.

To add a new function handler class:

Procedure
1. Run the following target to retrieve the functionHandlers.properties file for

customization:
sdk customize WEB-INF/properties/functionHandlers.properties

Running this target places the functionHandlers.properties file in your
customization project.

2. Create a new Java class with the
com.comergent.apps.configurator.functionHandlers package declaration. The
class declaration must declare that the class extends the
AbstractRuleFunctionHandler class.

© Copyright IBM Corp. 2007, 2012 99

Note: The new Java class must be provided in the classpath of the Sterling
Configurator Visual Modeler application.
The new Java class should implement the following methods:
v public String getFuncName(): return the function name, such as ''sum'' or

''max''. This is case-sensitive: you can use different function handlers to
manage ''sum'' and ''SUM''.

v public int getType(): return the type of value returned by the function. This
should be a constant defined in the
com.comergent.api.appsservices.rulesEngine.Value class. The
AbstractRuleFunctionHandler class method returns Value.STRING. Therefore,
you must override this method if the function returns any other type.

v public Value handle(State state, String prop): return the Value calculated for
the function.

v public boolean isPublicHandler(): return true if the function handler may be
used by any client application; otherwise return false. The
AbstractRuleFunctionHandler class method returns true. Therefore, you must
only override this method if the function handler is private.

Results

After these steps are completed, you must perform the required modifications in
the Sterling Selling and Fulfillment Foundation. For more information, refer to the
Sterling Configurator: Application Guide.

Create an Enterprise Specific Function Handler
About this task

You can create function handlers specific for an enterprise or storefront by defining
the attribute of OrganizationCode in thefunctionHandlers.properties file.

To create an enterprise specific function handler:

Procedure
1. Run the following target to retrieve the functionHandlers.properties file for

customization:
sdk customize WEB-INF/properties/functionHandlers.properties

Running this target places the functionHandlers.properties file in your
customization project.

2. In the functionHandlers.properties file, insert the OrganizationCode entry and
specify the organization code of the enterprise the controls belong to.

Note: The organization code is defined in Sterling Selling and Fulfillment
Foundation.
For example, you can define the function handlers for Matrix Organization as
follows:
OrganizationCode=Matrix
WEB-INF/classes/com/comergent/apps/configurator/functionHandlers=
CheckLookupFunctionHandler,ChildSum,CountFunctionHandler,
IsSelectedHandler,LengthFunctionHandler,ListFunctionHandler,
LookupFunctionHandler,MaxFunctionHandler,MinFunctionHandler,
ParentFunctionHandler,PropValHandler,SumFunctionHandler,
ValueFunctionHandler,WebServiceLookupCheckLookupFunctionHandler=
com.comergent.apps.configurator.
function-Handlers.CheckLookupFunctionHandler

100 Sterling Configurator Visual Modeler: Implementation Guide

Note: During modeling at storefront level, global function handlers and
enterprise specific function handlers are available for rule authoring purposes.
v If the OrganizationCode entry is missing or has a blank value in the

functionHandlers.properties file, then the function handlers will be defined
as global and available for all the storefronts.

v If the storefront specific function handler name is similar to global function
handler name, then the storefront definition will override the global
definition.

3. Run the following target to merge the customizations into the build:
sdk merge

4. If you are deploying the “Modules: An Overview” on page 69 application as a
WAR file, perform the following steps:
a. Run the following target to re-create the WAR file:

sdk distWar

b. Deploy the .war file on your application server.
After these steps are completed, you must perform the required modifications
in the Sterling Selling and Fulfillment Foundation. For more information, refer
to the Sterling Configurator: Application Guide.

Chapter 17. Customizing Function Handlers 101

102 Sterling Configurator Visual Modeler: Implementation Guide

Chapter 18. Modify System Property Settings

About this task

You can specify the Controls and Function Handler property file location from the
Sterling Configurator Visual Modeler System Administration page.

To specify the path of the property files:

Procedure
1. Log into Sterling Configurator Visual Modeler as an Administrator. The System

Administration page is displayed.
2. Click the System Services link. The System properties page is displayed.
3. Click the Visual Modeler link. The Properties for Sterling Configurator Visual

Modeler page is displayed.
4. In the Custom UI Controls section, specify the location of controls.properties

file. of the organization.
For example, you can specify the controls.properties file of Matrix
organization as follows:
WEB-INF/properties/MatrixControls.properties

Note: When this property is missing, the value defaults to
/WEB-INF/properties/controls.properties .

5. In the Custom Function Handlers section, specify the location of
functionHandlers.properties file of the organization.
For example, you can specify the functionHandlers.properties file of Matrix
organization as follows:
WEB-INF/properties/MatrixFunctionHandlers.properties

Note: When this property is missing, the value defaults to
/WEB-INF/properties/functionHandlers.properties

6. Click Save All and Return to List.

© Copyright IBM Corp. 2007, 2012 103

104 Sterling Configurator Visual Modeler: Implementation Guide

Chapter 19. Modify Job Scheduler Settings

About this task

You can modify the Job Scheduler settings from the Sterling Configurator Visual
Modeler System Administration page.

Note: You must update the Job Scheduler settings for every Storefront.

Procedure
1. Log into Sterling Configurator Visual Modeler as an Administrator. The System

Administration page is displayed.
2. Click the System Services link. The System properties page is displayed.
3. Click the Job Scheduler link. The Properties for Job Scheduler page is

displayed.
4. In the url section, specify the URL of the enterprise as follows:

http://<server:port>/Sterling/msg/<orgcode>

5. Click Save All and Return to List.

© Copyright IBM Corp. 2007, 2012 105

106 Sterling Configurator Visual Modeler: Implementation Guide

Chapter 20. Exceptions

ComergentException Hierarchy
Exception Root

This topic describes the following:
v ComergentException
v ICCException
v ComergentRuntimeException

ComergentException

All compile time exception classes declared in the production software should
inherit ultimately from com.comergent.dcm.util.ComergentException class. This
class extends java.lang.Exception to provide chaining and an independent user
message.

ICCException

ICCException provides a convenience subclass of ComergentException. Rather than
create a set of exception classes for a subsystem, you can use the ICCException
class uniformly across a subsystem.

ComergentRuntimeException

All runtime exception classes should inherit from
com.comergent.dcm.util.ComergentRuntimeException, which extends
java.lang.RuntimeException to provide identical functionality.

Subsystem Grouping
A subsystem of the Sterling Configurator Visual Modeler is defined to be either a
distinct and separable application, or an application level or a system level service.
A subsystem is a logical organization. It may span multiple packages in the Java
package hierarchy or comprise part of a package.

Each logical subsystem is expected to declare its own exception root class. This
root inherits from ComergentException and is the parent class of all compile time
exceptions within the subsystem. The subsystem is defined to be either a distinct
and separable application, or an application level or a system level service. A
subsystem is a logical organization. It may span multiple packages in the Java
package hierarchy or comprise part of a package, although you should organize
your package structure in conformance with the logical subsystem organization.

For example, suppose there is a subsystem named Foo. There should be a class
FooException:

public class FooException extends ComergentException
{
public FooException(String msg)
{

© Copyright IBM Corp. 2007, 2012 107

super(msg);
}
public FooException(String msg, Exception ex)
{
super(msg, ex);
}
}

Suppose Foo responds to a bad initialization state by throwing
BadInitializationException for all subsequent requests. This exception would
inherit from FooException:

public class BadInitializationException extends FooException
{
...
}

Subsystem by Subsystem Exception Policy
Each subsystem should implement a consistent policy for differentiating
exceptions. Either it should subclass the subsystem exception class for each distinct
exception type (this is the standard Java style policy) or the subsystem's root
exception should inherit from ICCException, and should set the status parameter
to differentiate exceptions (this is the ICCException policy).

For example, if subsystem Foo chooses a Java style exception policy, then
FooException should extend ComergentException. If subsystem Bar chooses an
ICCException policy, then FooException should extend ICCException (which in
turn extends ComergentException).

public class BarException extends ICCException
{
...
}

Exception Chaining
Each subsystem is expected to throw only exceptions from its own subsystem to its
caller. If an underlying service throws an exception that a given subsystem cannot
handle, then it is expected to catch that exception and rethrow an exception that is
meaningful in its own context. The new exception should use a chaining
constructor to include the original exception, so that when the exception is finally
handled and logged, the original exception is not lost.

For example, suppose subsystem Foo attempts to open a property file and could
incur an IO exception. If it implements a Java style exception policy, then it may
declare a new exception class, FooPropertyFileException, which extends
FooException. The IO Exception catch statement would throw a new
FooPropertyFileException with a constructor that passes a message and the original
I/O exception.

try
{
...
Properties props = new Properties();
props.load(input);

108 Sterling Configurator Visual Modeler: Implementation Guide

...
}
catch (IOException ex)
{
// chain the io exception
throw new FooPropertyFileException("Loading file" + filename, ex);
}

Throwing, Catching, and Logging Exceptions

When to Throw Exceptions
Exceptions should be thrown when the contract between a method and its caller
cannot be fulfilled. This is the usage identified in the Java Language Specification.
Unfortunately, this provides only a little guidance since the contract can be defined
so broadly that exceptions are unnecessary, or defined so narrowly that exceptions
occur frequently. As a general rule of thumb, exception usage should balance the
following two opposing goals:

Exceptions should not be the norm.
v They involve the creation of an additional object, so, if only from a performance

standpoint, it is problematic if exceptions can occur frequently.
v Mixing data and control should be avoided. The alternative to throwing an

exception is often returning a null value from a method. This means that the
return value encapsulates two meanings (success or failure and whatever the
data means when present). It is good programming practice to avoid this usage
where possible.

v If null is a reasonable value for the stated purpose of a method, or if a method is
expected to fail often in the normal course of operation, then it is reasonable to
return null to indicate failure; otherwise it is better to throw an exception.

Throwing Runtime or Compile Time Exceptions
According to the Java Language Specification, runtime exceptions should be
thrown when the caller has provided erroneous input (in essence, breached the
method contract) and it would be burdensome to declare a compile time exception.
For example, if a caller invokes a method passing a negative value for a parameter
that is an array index, it is reasonable to throw a runtime exception. Otherwise
throw compile time exceptions.

Catch Clauses and Throws Declarations
Catch clauses and throws declarations should avoid being overly general. If the
called method throws, for example, FileNotFoundException, then the caller should
catch FileNotFoundException, not Exception or Throwable. The reason for this is
that if the underlying code changes to throw a new exception, or ceases throwing
this exception, then it is desirable that the change produces a compilation error to
signal to the programmer to consider the new situation.

There are exceptions to this rule where practicality should prevail. If the variety of
exceptions that can be thrown is large and our response is the same in all cases,
then there is no reason to catch each individually.

Logging Exceptions
If a method catches an exception and handles it (that is, does not rethrow it) then
it should log it. Presumably this method knows the significance of the exception,

Chapter 20. Exceptions 109

and knows whether to log it with an error severity or some other lower level
severity. Empty catch statements should be regarded with great suspicion.

Never do this:

catch (SomeException ex)
{
}

Do this:

catch (SomeException ex)
{
Global.logVerbose(ex);
}

Or this:

catch (SomeException ex)
{
ex.printStackTrace(Global.debugStream);
}

When exceptions from underlying subsystems or third party packages are caught
and chained to a new exception, there is no need to log the exception. Some
process further up the hierarchy will eventually catch and handle it, and the
process will know how to log it.

Displaying Exceptions
In general, users of the Sterling Configurator Visual Modeler should not see
exceptions: the appropriate subsystem must handle the exception gracefully by
responding appropriately to the error condition.

The Sterling Configurator Visual Modeler error pages place the exception stack
trace between HTML comments. By viewing the source of the displayed Web page,
you can read the stack trace.

If an exception stack trace is passed to the JSP page, then bear in mind that the
buffer limits of the JSP page may prevent a full exception message from being
passed to the Web page. If a long exception stack trace is passed to a JSP page,
then you can display it by modifying the buffer of the JSP page. Use the buffer tag
as follows:
<%@ page buffer=1024kb %>

Once the error condition has been diagnosed and fixed, then you should remove
this tag because it impacts performance.

110 Sterling Configurator Visual Modeler: Implementation Guide

Chapter 21. Cron Jobs

Implementing Sterling Configurator Visual Modeler Cron Jobs
Certain tasks within an implementation of the Sterling Configurator Visual
Modeler are not initiated in response to user input. For example, the hourly
synchronization of order data with an external system or the weekly import of
catalog data from a third party is best done without user intervention. These jobs
can be scheduled to run at suitable intervals using the Job Scheduler functionality
provided by the Sterling Configurator Visual Modeler.

Cron jobs can be defined either as system cron jobs or as application cron jobs.
v A system cron job is run by the Sterling Configurator Visual Modeler and is not

associated with any user. A system cron job calls Sterling Configurator Visual
Modeler classes directly. A system cron job must be run by a class that extends
the SystemCron abstract class. Typically, system cron jobs perform tasks such as
cleaning the cache.

v Each application cron job is run as a user: the username and password of the
user are provided when the cron job is created using the Job Scheduler user
interface. Application cron jobs work by posting XML messages to the Sterling
Configurator Visual Modeler which are then processed by the system. An
application cron job must be run by a class that extends the ApplicationCron
abstract class. Typically, you use application cron jobs to perform necessary
administrative tasks that touch user or product data such as order
synchronization

Note: A system cron job should not attempt restore() and persist() operations
itself. There is no user associated with the cron job class and so the access
checking built in to the data access methods will throw an exception.

CronManager and CronScheduler
The definition and creation of cron jobs is managed by the CronManager class.
Cron job configuration information is represented in memory by the
CronConfigBean data bean. The definition of cron jobs are maintained in the
Knowledgebase.

The scheduling and running of cron jobs is managed by the CronScheduler class.
This singleton class is instantiated at server startup time.

CronJob Interface
Each cron job is a Java class that implements the CronJob interface:

public interface CronJob extends java.lang.Runnable
{
/**
* Specify the Cron Configuration bean object.
*
* @param config Cron configuration bean object.
*/
public void setCronConfiguration(CronConfigBean config);

© Copyright IBM Corp. 2007, 2012 111

/**
* Return the Cron Configuration bean object.
*
* @return CronConfigBean object.
*/
public CronConfigBean getCronConfiguration();
/**
* Initialization function. This function is called
* immediately after the object is created.
*
* @return true if initialization success, false otherwise.
*/
public boolean init();
/**
* Return the current scheduled time.
*
* @return Current schedule time in Calendar object.
*/
public Calendar getSchedule();
/**
* Reschedule the cron to reflect the changes made to the
* cronfiguration parameter. This function is called by the
* Cron Manager whenever cron configuration changes.
*/
public void reschedule();
/**
* Whether the job needs to be run again. This function is
* useful if there is some problem in the current run and you
* want to retry at specified time.
*
* @return true if the job is allowed to retry if the job
* did not run successfully
* on the last time of execution
*/
public boolean retry();
/**
* Determines whether to stop this cron job from running.
*
* @return true if the job has been slated to not run again
*/
public boolean stopRun();
/**
* Compute next cron run time: this is usually based on the cron
* run interval.
*/
public void computeNextSchedule();
/**
* Check to determine if the cron job is
* in a good state to run before triggering the thread to run.
*
* @return true or false. True means ready to run.
*/
public boolean isOKtoRun();
/**
* Is called when the thread starts.
*

112 Sterling Configurator Visual Modeler: Implementation Guide

* @return false if the job needs to be stopped. Return true to
* continue running.
*/
public boolean service();
/**
* Checks whether the next run time is later than the end run date.
*
* @return true if next run time greater than end run time
*/
public boolean isExpired();
}

Create a Sterling Configurator Visual Modeler Cron Job
About this task

To create a new cron job, perform the following steps:

Procedure
1. Write a CronJob class: you must extend either the SystemCron or

ApplicationCron classes. Both these classes are abstract and they both extend
the abstract class AbstractCronJob.
The only method that you need to implement is service(). This is the method
that processes the inbound post initiated by the CronScheduler.
v If the job is passed parameters that are defined using the Job Scheduler user

interface, then you can retrieve the parameters using the getParameter(String
s) and getParameters() methods of the AbstractCronJob class. These methods
behave identically to the corresponding methods of the HttpServletRequest
class.

v If you want the result of the job to be saved to the database, then the service()
method must call the setExecutionOutcome(String s) method.

v You can specify that the cron job should be re-executed at a later time by
calling the setRetry(Calendar c) method of the AbstractCronJob class. Use the
Calendar parameter to specify when the job should be re-executed.

2. Using the Job Scheduler user interface provided as part of the system
administration application, define the cron job by specifying the cron job class,
the schedule to determine when it is run, and any parameters to be passed to
the cron job at runtime. If the cron job is to run as an application cron job, then
you must also provide the username and password of the user.
Parameters are passed in to the cron job using the same syntax as for HTTP
request parameters. For example: Name1=Value1&Name2=Value2.

Chapter 21. Cron Jobs 113

114 Sterling Configurator Visual Modeler: Implementation Guide

Chapter 22. Filters Overview

A filter is an object that performs filtering tasks on either the request to a resource
(a servlet or static content), or on the response from a resource, or both. They are
defined as part of the J2EE 2.3 specification.

Filters perform filtering in the doFilter() method. Every Filter has access to a
FilterConfig object from which it can obtain its initialization parameters, a
reference to the ServletContext which it can use, for example, to load resources
needed for filtering tasks.

Filters are configured in the deployment descriptor of a Web application. Examples
of typical filters include:
v Authentication Filters
v Logging and Auditing Filters
v Image conversion Filters
v Data compression Filters
v Encryption Filters
v Tokenizing Filters
v Filters that trigger resource access events
v XSLT filters
v Mime-type Chain Filters

© Copyright IBM Corp. 2007, 2012 115

116 Sterling Configurator Visual Modeler: Implementation Guide

Chapter 23. Sterling Configurator Visual Modeler Filters

The Sterling Configurator Visual Modeler provides the following filters, which are
part of the com.comergent.dcm.core.filters package:
v “DosFilter”
v “WSDLFilter”

DosFilter

This filter can be used as the basis for filters to protect the Web application from
denial-of-service attacks.

To use this filter, write a class that extends the
com.comergent.dcm.core.filters.DosFilter class, and in it, override the
isRequestDenied() method to implement the logic you want to use to identify and
block denial-of-service attacks.

Then, modify the web.xml configuration file, to declare your implementing class as
a filter like this:

<filter>
<filter-name>DosFilter</filter-name>
<filter-class>
com.comergent.dcm.messaging.CustomDosFilter
</filter-class>
</filter>

and
<filter-mapping>

<filter-name>DosFilter</filter-name>
<url-pattern>/*</url-pattern>

</filter-mapping>

WSDLFilter

The WSDLFilter class is used to transform the Web service WSDLs if they are
accessed using the standard URLs: http://server:port/s/dXML/5.0/
OrderInterface.wsdl, and so on.

© Copyright IBM Corp. 2007, 2012 117

http://server:port/s/dXML/5.0/OrderInterface.wsdl
http://server:port/s/dXML/5.0/OrderInterface.wsdl

118 Sterling Configurator Visual Modeler: Implementation Guide

Chapter 24. Managing and Displaying Constrained Fields

Constrained data fields can take only one of a number of values. Examples include
partner levels (such as “Gold”, “Silver”, and so on), partner territories (such as
“North-west”, “Benelux”, and so on), and skill levels (such as “Expert”,
“Certified”, and so on). You can manage these data fields in different ways in the
Sterling Configurator Visual Modeler. Your choice depends on how they are to be
maintained and used.

Options

You have the following options to specify a constrained data field and the
permitted data fields:
v Maintain the data field as a set of values in a database table. Assign values to

business objects either by a cross-reference table or by references to a key for
each value in the business object table.

v Maintain the values as a constraint element in the XML schema (declared in the
DsConstraints.xml file). Specify the constraint as an attribute of the DataElement
associated with the data field.

v Embed the permitted values as values of a <SELECT> form element in an
HTML template.

We recommend that you maintain the permitted values for a field as a database
table unless:
v the values are not going to be modified at run-time
v the data field may take only one value in each business object
v the values can be displayed in a natural order that is determined by the values

themselves such as their alphabetical order.

We recommend against using the third option for the following reasons:
v It becomes a maintenance problem to update templates or application code if

you want to modify the list of permitted data values.
v It represents a security problem because users may modify the HTML to pass

back forbidden values. You have to either add Javascript (that a user can
remove) to validate the selection or validate the returned value as part of the
business logic.

Criteria

Your selection depends on the functionality of the data field. Ask yourself the
following questions to determine how the data field is being used:
1. Can you assign a business object only one or multiple values of a constrained

data field?
If your answer is that multiple values may be assigned to the same business
object (example: a partner that may operate in multiple territories), then you
must use a database table for the field values and a cross-reference table to
assign values to the business object.

2. Can you enter new values of the data field when creating a new business object
or do you need to verify that a value entered for the data field is a valid
member of the constraint set?

© Copyright IBM Corp. 2007, 2012 119

If only single values are permitted, and your answer to Question 2 is that new
values are permitted, then you must use a database table to hold the field
values. However, you do not have to use a cross-reference table to assign data
field values to business objects. You cannot dynamically add values to the list
of permitted values of a constraint element through the current Sterling
Configurator Visual Modeler interface.
Are the possible values that the constrained data field may take maintained
dynamically or are they read once at start-up?

3. If your answer to Question 1 was single value, and your answer to Question 2
is that new values are not permitted, but you do require dynamic updating,
then you must use a database table. If the constrained values are unchanged
once the Sterling Configurator Visual Modeler has started, then you can use a
constraint element.
Do you need to sort the constrained data values for display? If yes, then is it
sorted by value (say, alphabetically) or by some defined order that cannot be
inferred from the values themselves?

4. Finally, if the data field values need to be sorted by an order not inherent in the
values themselves, then this ordering information must be maintained in a
database table. However, if you only order the values using some self�evident
ordering (such as alphabetical), then you can use the constraint element choice.

120 Sterling Configurator Visual Modeler: Implementation Guide

Index

A
AbstractCronJob class 113
access entitlements 48
accessor methods

effect of Writable attribute 51
ACTIVE_FLAG column 51

use to mark objects as deleted 50
addChild method 60
adjustFileName method 20, 27, 28
Alternate element 58
AppContextCache class 27
AppExecutionEnv class 19, 26
application beans 23, 48, 49
ApplicationCron class 111, 113
AppsLookupHelper class 26
attributes

DataService 58
DataSourceName 58
ExternalFieldName 56
ID 24
IsOverlay 19
MaxPoolSize 26
Name 18, 56
Version 56, 62

audit trail 64

B
bizAPI classes 75
Bizlet class 19
BizletMapping

default value for message group 20
BizletMapping element 19
BizRouter class 19
BLC abstract class 76
bundle attribute 85
business logic classes 45, 75

implementation 75
business objects

lists 48
User 21

BusinessObject class 62

C
C3PrimaryRW data object 44
calendar 91
calendar widget

localizing 91
callJSP method 29
cascading style sheets 91
character sets 83
child data objects 53
ChildDataObject element 53
children method 60
classes 21

AbstractCronJob 113
AppExecutionEnv 19, 26
ApplicationCron 111, 113
Bizlet 19

classes (continued)
BizobjBean 48
BizRouter 19
BusinessObject 62
ComerentSession 21
ComergentAppEnv 21, 27
ComergentContext 20
ComergentDispatcher 20
ComergentException 107
ComergentRequest 20
ComergentResponse 20
ComergentRuntimeException 107
CronConfigBean 111
DataBean 23
DataContext 45
DataManager 57, 59
DataMap 60
DataService 58
DebsDispatchServlet 21
DispatchServlet 17, 21
DsElement 60
Env 20
Exception 107
GeneralObjectFactory 21
HttpRequest 20
HttpResponse 20
HttpServletRequest 113
HttpSession 21
ICCException 107
InitServlet 17, 21, 27
MessagingController 21, 22
MetaData 60
NamingManager 76
NamingResult 77
NamingServiceDatabase 76
NamingServiceProperties 76
ObjectManager 23, 43, 45
OMWrapper 23, 43
RequestDispatcher 20
ResourceBundle 92
RuntimeException 107
SimpleController 22
SystemCron 111, 113

ClassName element 24
cloneDsElement method 60
clustered environment 27
CMGT_LOOKUPS table 26
cmgtText method 84
code examples

using locale properties files 87
com.comergent.api.dataservices

package 35
com.comergent.api.dispatchAuthorization

package 39
com.comergent.api.msgservice

package 42
com.comergent.dcm.caf.controller.Controller

class 22
com.comergent.dcm.core.filters

package 117
com.comergent.dcm.objmgr package 25

com.comergent.dispatchAuthorization
package 39

com.comergent.msgservice package 42
com.comergent.reference.jsp package 85
Comergent.xml configuration file 18
ComergentAppEnv class 21, 27
ComergentContext class 20
ComergentDispatcher class 20
ComergentHelpBroker class 35
ComergentI18N class 87
ComergentRequest class 20
ComergentResponse class 20
ComergentSession class 21
command

instanceof 49
configuration files 5, 11

Comergent.xml 17, 18
DsBusinessObjects.xml 56
DsConstraints.xml 119
DsRecipes.xml 56
Internationalization.xml 83
MessageTypes.xml 18, 21
ObjectMap.xml 24
web.xml 11, 12, 17

content type 21
context

setting attributes 20
Controller classes 21

as part of reference
implementation 69

ControllerMapping
default value for message group 20

ControllerMapping element 19
ConverterFactory class 42
copyBean method 50
createController method 21
CronConfigBean class 111
CronJob interface 111
CronManager class 111
CronScheduler class 111
currencies 83, 90
custom tag libraries 12
customize target 79

D
data fields metadata 60
data objects 45

accessing child data objects 53
customizing 45
extending 24, 44
ordinality 44
stored procedures 49

DataBean class 23
DataContext class 45

use in restore 48
DataField element 56
DataObject element 58
DataService attribute 58
DataService class 58

© Copyright IBM Corp. 2007, 2012 121

DataServices.General.LimitDBResults
preference 47

DataSourceName attribute 58
dates 90
DebsDispatchServlet class 21
debug method 63
debugging JSP resource bundles 86
debugJSPResouceBundle element 86
default locale

failover mechanism 87
defaultCountry element 87
defaultSystemLocale element 83, 84, 87
defaultType element 77
delete method 50, 60, 62
deleteChild method 60
deployment files

Sterling.war 17
disableAccessCheck method 52
DispatchServlet class 21
doFilter method 115
DosFilter class 117
DsDataElements.xml configuration file

setting the lengths of data fields 88
DsElement

child 60
parent 60
root 60

DsElement tree 59
legacy applications only 59

DsElements 59
DsQuery class 51

use in restore 48

E
elements

Alternate 58
BizletMapping 19
ControllerMapping 19
DataElements 57

re-use 57
DataField 56, 57
DataObject 58
defaultSystemLocale 83
ExternalName 49
GeneralObjectFactory 18
globalCacheImplClass 27
JSPMapping 19
MessageType 18
messageTypeFilename 18
Primary 58
propertiesFile 17

email templates 89
location 89

EntitlementFactory class 40
entity beans 48
Env class 20
erase method 50
error method 63
Exceptions 107

displaying 110
Extends attribute 44
ExternalFieldName attribute 56
ExternalName element 49

F
Factory pattern 23
failover behavior 86
failover mechanism for JSP pages 86
failover mechanism for resource

bundles 86
fatal method 63
filters

J2EE filters 115
findPresentationLocale method 87
fonts 91
function handler class

adding 99

G
GeneralObjectFactory class 21
GeneralObjectFactory element 18
generateBean target 23, 45, 49, 58, 73
generateDTD target 45
generateKeys method 50
get method 77
getAllowedValueIterator method 61
getBizObj method 53
getBoolean method 29
getCacheId method 46
getComergentLocale method 87
getCountAllowedValues method 61
getDataBean method 49
getDataType method 60
getDefaultLocale method 87
getDefaultValue method 61
getDouble method 29
getElementByName method 60
getFloat method 29
getInstance method 76
getInt method 29, 40
getIRdProduct method 49
getLong method 29
getMaxCharLength method 61
getMaxLength method 61
getMaxPaginatedResult 47
getMaxResults method 46
getMaxValue method 61
getMetaData method 60
getMinValue method 61
getName method 60
getNumPerPage method 47
getObject method 24
getParameter method 113
getParameters method 113
getParent method 60
getPreferences method 29
getRealPath method 28
getResourceAsStream method 20
getRootElement method 59, 60, 62
getSession method

ComergentSession class 21
getString method 29
getType method 60, 62
Global class

deprecated use for logging 63
replaced by Preferences 27

GlobalCache interface 27

H
HttpRequest class 20
HttpResponse class 20
HttpServletRequest class 113
HttpSession class 21

I
IAcc interface 50
id attribute

used in text tag 85
ID attribute 24
IData interface 50

accessing metadata 60
IMetaData interface 60
info method 63
InitManager class 36
InitServlet class 21
instanceof command 49
interfaces

GlobalCache 27
IAcc 50
IData 50
Ird 50
NamingService 76
poolable 25

internationalization
cascading style sheets 91
failover mechanism for JSP pages 86
failover mechanism for resource

bundles 86
Internationalization.xml configuration

file 83, 86, 87
IRd interface 50
IsOverlay attribute 19
isPersistable method 50
isRequestDenied method 117
IsRestorable method 50

J
J2EE 11
Java 2 Platform, Enterprise Edition 11
JoinKey element 53
JSP pages 11

as part of reference
implementation 69

debugging localization 86
localization 90
page buffer 110
used in email templates 28

JSPMapping
default value for message group 20

JSPMapping element 19, 87

K
Knowledgebase 111

L
languages 83
LegacyFileUtils class 20, 28
LegacyPreferences class 27
length of data fields 88

122 Sterling Configurator Visual Modeler: Implementation Guide

list business objects 48
locales

preferred locale 83
presentation 84
session 84

localization
images 89
Javascript 90

localRedirect method 20
log method 63
log4j API 63
log4j.debug system property 63
log4j.properties configuration file 63
logging methods

debug 63
error 63
info 63
log 63
warning 63

logLevel methods 63
logout method 21
lookup codes 26, 30

mapping to strings 26
lookup types 26, 30

M
MaxPoolSize attribute 26
MaxResults element 45
message groups 18

used to specify default mappings 20
message types 18
messages 75
MessageType element 18

child elements 19
messageTypeFilename element 18, 19
MessageTypeRef element 19
MessageTypes.xml configuration file 18
MessagingController 21
MessagingController class 21, 22
MessagingServlet class 18
metadata

for data fields 60
methods

addChild 60
adjustFileName 27
calculate 22
children 60
cloneDsElement 60
constructExternalURL 27
copyBean 50
createController 21
delete 50, 60, 62
deleteChild 60
dispatch 21
erase 50
forward 20
generateKeys 50
get 77
getContext 27
getDataBean 49
getElementByName 60
getEnv 27
getInstance 76
getName 60
getObject 24
getParameter 113

methods (continued)
getParameters 113
getParent 60
getPartnerKey 21
getRootElement 59, 60, 62
getType 60, 62
getUser 21
getUserKey 21
include 20
init 21, 27
isPersistable 50
IsRestorable 50
persist 23, 50, 52, 58, 61, 76
prune 50
reset 25
restore 23, 50, 51, 52, 58, 61, 76
return 26
runAppJob 19
runAppObj 26
service 76, 113
setCacheId 46
setDataContext 50
setRetry 113
setRootElement 62
update 50

methods setExecutionOutcome 113
MsgContext interface 42
MsgService interface, 42
MsgServiceException class 42
MsgServiceFactory class 42
multi-byte characters 88

N
Name attribute 18, 56
naming service 76
NamingManager class 76
NamingResult class 77
NamingServiceDatabase class 76
NamingServiceProperties class 76
newproject target 79
number and date formats 83
NumPerCachePage element 45

O
Object element 24
object pools 25
ObjectManager class 23, 43, 45
ObjectMap.xml configuration file 24
OMWrapper class 23, 43
org.apache.log4j.Level class 38
OutOfBandHelper class 28

P
packages

com.comergent.dcm.objmgr 25
persist method 23, 50, 52, 58, 61, 76

call after delete method 50
poolable interface 25
pooling objects 25
Preferences API 29
presentation beans 48
presentation locale 84
Primary element 58

prune method 50
putInt method 41
putString method 29

R
Recipe element

declaring ordinality 48
recipes 45
redirecting a request 20
Relationship element 53
request dispatcher 12
RequestDispatcher class 20
requests 75
requirements 5
reset method 25
resource bundles 85
restore method 23, 50, 52, 58, 61, 76

example using DataContext and
DsQuery 52

stored procedures 49
use in list beans 48

return method 26
roles 5
runAppJob method 19

S
schemaRepositoryExtn element 79
scripting elements 12
scriptlets 12
SDK 79
security 5
serializable context attributes 20
Serializable interface 21
service method 42, 76, 113
servlet context

setting attributes 20
session locale 84
setAttribute method

ComergentSession class 21
setCacheId method 46
setDataContext method 50
setExecutionOutcome method 113
setMaxPaginatedResult 46
setMaxResults method 46
setNumPerPage method 47
setRetry method 113
setRootElement method 62
SimpleController class 22
Software Development Kit 79
SourceType attribute 49
stored procedures 49
subsystem 107
SystemCron class 111, 113

T
tag libraries 12
tag library descriptor 12, 18
targets

generateBean 23, 45, 49, 58, 73
generateDTD 45

text tag 84
TLD. See tag library descriptor 12
Transaction class 30

Index 123

U
UI control

adding new 96, 97, 100
modifying 95

Unicode support 83
update method 50
URL patterns

mapping to servlets 12
usecountry or regionDefaulting

element 84
useCountryDefaulting element 84, 86
useGeneralDefaulting element 84, 86
users 21

retrieving from session 21
using JSP pages as templates 28
using restore in list beans 48

V
Version attribute 62

W
warning method 63
web.xml configuration file 117
Writable attribute 51
WritableDirectory element 28
writeExternal method 53
WSDLFilter class 117

X
XML messages 21
XML representations of data beans 53
XML schema 59

124 Sterling Configurator Visual Modeler: Implementation Guide

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not grant you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte character set (DBCS) information,
contact the IBM Intellectual Property Department in your country or send
inquiries, in writing, to:

Intellectual Property Licensing

Legal and Intellectual Property Law

IBM Japan Ltd.

1623-14, Shimotsuruma, Yamato-shi

Kanagawa 242-8502 Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be

© Copyright IBM Corp. 2007, 2012 125

incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Corporation

J46A/G4

555 Bailey Avenue

San Jose, CA 95141-1003

U.S.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

All IBM prices shown are IBM's suggested retail prices, are current and are subject
to change without notice. Dealer prices may vary.

126 Sterling Configurator Visual Modeler: Implementation Guide

This information is for planning purposes only. The information herein is subject to
change before the products described become available.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. The sample
programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work, must
include a copyright notice as follows:

© IBM 2012. Portions of this code are derived from IBM Corp. Sample Programs. ©
Copyright IBM Corp. 2012.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

Trademarks

IBM, the IBM logo, and ibm.com® are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the Web at “Copyright and
trademark information” at http://www.ibm.com/legal/copytrade.shtml.

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered
trademarks or trademarks of Adobe Systems Incorporated in the United States,
and/or other countries.

IT Infrastructure Library is a registered trademark of the Central Computer and
Telecommunications Agency which is now part of the Office of Government
Commerce.

Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo,
Celeron, Intel Xeon, Intel SpeedStep, Itanium, and Pentium are trademarks or
registered trademarks of Intel Corporation or its subsidiaries in the United States
and other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both.

Notices 127

http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

ITIL is a registered trademark, and a registered community trademark of the Office
of Government Commerce, and is registered in the U.S. Patent and Trademark
Office.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Oracle and/or its affiliates.

Cell Broadband Engine is a trademark of Sony Computer Entertainment, Inc. in the
United States, other countries, or both and is used under license therefrom.

Linear Tape-Open, LTO, the LTO Logo, Ultrium and the Ultrium Logo are
trademarks of HP, IBM Corp. and Quantum in the U.S. and other countries.

Connect Control Center®, Connect:Direct®, Connect:Enterprise®, Gentran®,
Gentran®:Basic®, Gentran:Control®, Gentran:Director®, Gentran:Plus®,
Gentran:Realtime®, Gentran:Server®, Gentran:Viewpoint®, Sterling Commerce™,
Sterling Information Broker®, and Sterling Integrator® are trademarks or registered
trademarks of Sterling Commerce™, Inc., an IBM Company.

Other company, product, and service names may be trademarks or service marks
of others.

128 Sterling Configurator Visual Modeler: Implementation Guide

����

Printed in USA

	Contents
	Chapter 1. Implementation Methodology
	Chapter 2. Implementing the Sterling Configurator Visual Modeler Integration
	Chapter 3. Implementation Steps
	Chapter 4. Integration between Visual Modeler and Sterling Selling and Fulfillment Foundation
	Integrating the Sterling Configurator Visual Modeler with Sterling Selling and Fulfillment Foundation
	Configure the Sterling Configurator Visual Modeler Properties
	Configure the Sterling Configurator Rules

	Chapter 5. Introduction to J2EE Web Applications
	Chapter 6. System Architecture
	Sterling Configurator Visual Modeler Web Application
	Processing Requests
	Overriding MessageType Definitions
	Default Elements

	Key Java Classes
	Wrapper Classes
	ComergentContext
	ComergentDispatcher
	Comergent Request
	ComergentResponse
	ComergentSession

	Servlets
	Controller Classes
	DataBean Classes
	ObjectManager and OMWrapper Classes
	AppExecutionEnv Class
	AppsLookupHelper Class
	ComergentAppEnv Class
	Global Class
	GlobalCache Interface
	LegacyFileUtils Class
	OutOfBandHelper Class
	Preferences Class
	Transactions
	Support for Lookup Codes

	Chapter 7. Platform Modularity
	Introduction to Sterling Configurator Visual Modeler Platform Modularity
	Platform Modules
	Platform Modularity: Module Interfaces
	Platform Module Descriptions
	Configuring the Logging Module
	Loggers
	Appenders
	Layouts

	Memory Monitor
	Message Type Entitlement
	Object Manager
	Out Of Band Response
	Preferences Service
	Tag Libraries
	Thread Management
	XML Message Converter
	XML Message Service
	XML Services

	Chapter 8. Introducing Visual Modeler Data Beans and Business Objects
	Data Beans in Sterling Configurator Visual Modeler
	Life Cycle of a Data Bean
	Defining a Data Bean
	Defining the Structure of a Data Object
	Data Bean and Business Object Creation
	DataContext
	List Data Beans
	Application, Entity, and Presentation Beans
	Using Stored Procedures
	Data Bean Methods
	IData Methods
	IRd and IAcc Interface Methods
	Restoring and Persisting Data
	DataBean restore() Method
	DataBean persist() Method
	Miscellaneous Methods

	Child Data Objects
	Extend Data Objects
	Data Bean Example
	Create a Data Object Definition

	DsElement Tree
	DsElements
	DsElement MetaData
	BusinessObject Methods
	BusinessObject restore() Method
	BusinessObject persist() Method

	Chapter 9. Logging in Visual Modeler
	Logging in Sterling Configurator Visual Modeler: An Overview
	log4j.debug System Property
	Auditing Changes to Data Objects

	Chapter 10. Modularity and Generated Interfaces
	Chapter 11. Modules in Visual Modeler
	Modules: An Overview
	Module Interfaces
	Invoking Interfaces

	Chapter 12. Generated Interfaces
	Chapter 13. Logic Classes in Visual Modeler
	Implementing Logic Classes
	Key Concepts of Logic Classes
	Application Logic Classes
	XML Schema

	Naming Service

	Chapter 14. Visual Modeler Software Development Kit
	Using the Software Development Kit to Customize Sterling Configurator Visual Modeler Implementation
	Project Organization
	Project File and Directory Locations
	Java Source Files
	JSP Pages
	Schema Files

	Chapter 15. Visual Modeler Localization
	Sterling Configurator Visual Modeler Localization Overview
	Presentation and Session Locales
	JSP Pages and Properties Files
	Failover Behavior
	Failover Behavior: Resource Bundles
	Failover Behavior: JSP Pages

	Methods to Retrieve Locales
	Using Properties Files in Code
	Data for Internationalization
	Email Templates
	HTML Pages
	Images
	Javascript
	Sterling Configurator Visual Modeler Localization: JSP Pages
	Style Sheets
	System Properties
	Resource Bundles and Formats

	Chapter 16. Customizing Controls
	Modify a Control
	Add a Control
	Create an Enterprise Specific UI Control

	Chapter 17. Customizing Function Handlers
	Add a Function Handler Class
	Create an Enterprise Specific Function Handler

	Chapter 18. Modify System Property Settings
	Chapter 19. Modify Job Scheduler Settings
	Chapter 20. Exceptions
	ComergentException Hierarchy
	Subsystem Grouping
	Subsystem by Subsystem Exception Policy
	Exception Chaining
	Throwing, Catching, and Logging Exceptions
	When to Throw Exceptions
	Throwing Runtime or Compile Time Exceptions
	Catch Clauses and Throws Declarations
	Logging Exceptions
	Displaying Exceptions

	Chapter 21. Cron Jobs
	Implementing Sterling Configurator Visual Modeler Cron Jobs
	CronManager and CronScheduler
	CronJob Interface
	Create a Sterling Configurator Visual Modeler Cron Job

	Chapter 22. Filters Overview
	Chapter 23. Sterling Configurator Visual Modeler Filters
	Chapter 24. Managing and Displaying Constrained Fields
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X

	Notices

