
IBM Confidential
IBM DATABASE 2 (DB2) for z/OS
Version 8
Multi-Row Insert and Fetch
Line Item 382
Programming Functional Specification (PFS)

LI382 PFS

Chris Crone

Department D3T, 090/B209
DB2 Development
Santa Teresa Laboratory

March 11, 2002
 1

IBM Confidential
2 LI382 PFS

IBM
IBM DATABASE 2 (DB2) for z/OS
Version 8
Multi-Row Insert and Fetch
Line Item 382
Programming Functional Specification
(PFS)

IBM Confidential

 IBM Confidential

IBM Confidential
Document Control Information

Document Owner: Chris Crone

Line Item Owner

Document Owner Node(ID): Chris Crone/Santa Teresa/IBM

Document Owning Department:
D3T

Document Source Location: LI382.ZIP in CMVC

Document Object Location: None.

Document Reviewers:

Document Approvers: document owner and document owning manager

Document Updaters: delegated authority by the owner to update the document

Name Dept, Role <(Optional) reviewer> Node(ID)

Curt Cotner J34, DB2 Development, Optional Curt Cotner/Santa Teresa/IBM

Jay Yothers KIH, DB2 Development, Optional Jay Yothers/Santa Teresa/IBM

Claire McFeely OF2, DB2 Development, Required Claire McFeely/Santa Teresa/IBM

Marion Farber OF2, DB2 Development, Required Marion Farber/Santa Teresa/IBM

Janet Chen FEY, DB2 Quality Assurance , Required Janet Chen/Santa Teresa/IBM

Karelle Cornwell M55, DB2 Development, Required Karelle Cornwell/Santa Teresa/IBM

Ester Mote M55, DB2 Development, Required Ester Mote/Silicon Valley/IBM

Casey Young M60, DB2 Performance, Required Casey Young/Santa Teresa/IBM

Judy Tobias J64, DB2 Information Development,
Required

Judy Tobias/Santa Teresa/IBM

Ching-Sen Tseng OB9, DB2 Quality Assurance, Required Ching-Sen Tseng/Santa Teresa/IBM

Margaret Dong L09, DB2 Development, Required Margaret Dong/Santa Teresa/IBM

Maria Sueli Almeida M05, DB2 System Test, Required Maria Sueli Almeida/Silicon Valley/IBM

Meg Bernal D3T, DB2 Development, Required Meg Bernal/Santa Teresa/IBM

Yumi Tsuji 6SW, DB2 Development, Required Yumi Tsuji/Santa Teresa/IBM

Daya Vivek D3T, DB2 Development, Required Daya Vivek/Silicon Valley/IBM

Hsiuying Cheng 6S7, DB2 Development, Required Hsiuying Cheng/Santa Teresa/IBM

Wendy Koontz L09, DB2 Development, Required Wendy Koontz/Boulder/IBM

Tammie Dang D3T, DB2 Development, Required Tammie Dang/Santa Teresa/IBM

Name Dept, Role Node(ID)

Chris Crone D3T, Line Item Owner Chris Crone/Santa Teresa/IBM

Peter Wu D3T, Development Manager Peter Wu/Santa Teresa/IBM
 iii

 IBM Confidential

Document Distribution: Availability of approved documents is announced
on DB2NEWS.

Document Printing

All files are in CMVC. The document may be printed using:

Name Dept, Role Node(ID)

Line Item Team Members

The hard copy version of this document is FOR REFERENCE ONLY.

It is the responsibility of the user to ensure that they have the current version.
Any outdated hard copy is invalid and must be removed from possible use. It is
also the responsibility of the user to ensure the completeness of this document
prior to use.

NOTE:
 iv LI382 PFS

IBM Confidential
Change History
 v

 IBM Confidential
 vi LI382 PFS

IBM Confidential
Contents

Document Control Information. iii
Document Printing . iv

Change History . v

Chapter 1. Description 1
Abstract. 1
Functional Description . 1

Chapter 2. Usage Reference 5
SQL Statements . 5

Language Elements . 5
Host-Variable-Arrays in C/C++, COBOL, and PL/I 5
DECLARE CURSOR Statement 6
OPEN CURSOR . 7
ALLOCATE CURSOR . 7
FETCH Statement . 8
PREPARE Statement . 24
INSERT Statement . 25
EXECUTE Statement . 32
GET DIAGNOSTICS . 34
Positioned Update . 46
Positioned Delete . 47

Application Programming - Host Language Declarations
49

C and C++ . 49
COBOL . 52
PL/I . 56
ASSEMBLER. 59
Considerations for using LOB host variables in all

languages . 59
SQLVAR entries . 61
SQLCA Description of Fields 62
Distributed Processing . 62

DB2 Commands. 62
Utilities . 62

Chapter 3. Impact on User Tasks 63
Evaluating the Product . 63
Planning for and Administering the Product 63

System Planning and Installing 63
Communicating with Other Systems 63
Database Design and Implementation 63
Security and Auditing . 63
Operation and Recovery . 63
Performance Monitoring and Tuning 63

Application Programming . 64

Chapter 4. User Task Guidance Information
65

Planning for multi-row INSERT statements 65
Example of a multi-row INSERT 65

Planning for multi-row cursors and multi-row FETCH
statements. 66

Example of a multi-row cursor and FETCH 66

Chapter 5. Instrumentation. 69

Chapter 6. Other Interfaces 71
Catalog and Directory. 71
User-Maintained Tables or Databases 71
Installation . 71
Log Records . 71

Chapter 7. Installation, Migration, and
Fallback . 73

Installation . 73
Migration . 73

Incompatibilities after Migration 73
New/Modified SQL Reserved Words. 73

Fallback . 73
Compatibility Mode . 73
Enabling New Function Mode. 73
New Function Mode . 73
Line Item Considerations . 73
Incompatibilities after Fallback . 74
Coexistence . 74

Chapter 8. Messages and Codes 75
New SQL Codes. 75
Revised SQLCODES . 77
New Messages . 78

Chapter 9. Dependencies 79
Function-Dependent Hardware Requirements. 79
Function-Dependent Hardware Requirements. 79
Function-Dependent Program Requirements 79

Chapter 10. Performance 81
Performance Objectives . 81
Expected Improvements/Degradations. 81
Performance Evaluation . 81
Factors Affecting Performance . 81

Chapter 11. Standards. 83

Chapter 12. National Language Support
Considerations. 85

Chapter 13. Implementation Notes. 87

Chapter 14. Terminology. 91

Chapter 15. Sizing 93
 vii

 IBM Confidential
viii LI382 PFS

IBM Confidential
Tables

1. Interaction between row positioned and rowset
positioned FETCH statements 14

2. Data values for :hva1 and :hva2 30
3. Data Types for GET DIAGNOSTICS 44

4. Fields in an occurrence of a base SQLVAR 61
5. Fields of SQLCA . 62
6. Estimated Lines of Code without contingency. . . 93
 ix

 IBM Confidential
x LI382 PFS

IBM Confidential
Figures

1. DECLARE CURSOR Statement 6
2. DECLARE CURSOR - cursor-width. 6
3. FETCH Statement . 10
4. PREPARE Statement. 24
5. INSERT Statement. 26
6. INSERT - multiple-row-insert 27
7. EXECUTE STATEMENT . 32
8. Floating point: . 52
9. Integer and small integer: . 53

10. Decimal: . 53

11. Fixed length character. 53
12. Varying length character . 54
13. Fixed length graphic . 54
14. Varying length graphic. 54
15. LOB and LOB Locator . 55
16. PL/I Numeric host-variable-arrays 56
17. PL/I Character host-variable-arrays 57
18. PL/I Graphic host-variable-arrays. 57
19. PL/I LOB host-variable-arrays. 58
20. PL/I ROWID host-variable-arrays. 58
 xi

 IBM Confidential
xii LI382 PFS

IBM Confidential
Chapter 1. Description

Abstract

This line item deals with implementing multiple-row processing for both the FETCH
and the INSERT statement in DB2 for z/OS. Prior to Version 8, a user would have to
execute a separate SQL FETCH statement for each row of data that the application
required from the database. Likewise if an application needed to insert several rows,
that application would have to execute a separate SQL INSERT statement for each
row being stored into the database. For local processing, the execution cost was the
multiple trips between the application and the database engine. For distributed, the
performance cost would be the multiple trips into the database engine plus the
network cost to send each request. In some cases, block fetching introduced in V2.2
and V2.3 mitigated the network costs for the FETCH statement.

Functional Description

DB2 for z/OS V8 will support multi-row insert and fetch statements. These
statements will be described in detail later in this document. To introduce these
statements we will discuss some examples in this section:

FETCH

Fetch with a host-variable-array:

FETCH FIRST ROWSET STARTING AT ABSOLUTE 10 FROM CURS1

FOR 6 ROWS

INTO :hva1, :hva2;

The multiple-row FETCH is implemented as a static SQL statement.

With this line item, a single FETCH statement can be used to retrieve multiple
rows of data from the result table of a query as a rowset. A rowset is a group of
rows that are grouped together and operated on as set. For example, you may
fetch the next rowset, or update the current rowset. The program or application
controls how many rows are returned on a single FETCH statement. Fetching
multiple rows of data can be done with both serial and scrollable cursors. New
syntax on the FETCH statement allows specification of the number of rows to be
returned in the rowset.

FOR 6 ROWS

This clause specifies that with a single SQL statement in the application program,
DB2 will fetch the stated "6" rows.

INTO :hva1, :hva2;

The first host-variable-array corresponds to the first column's output. The second
host-variable-array corresponds to the second column's output, and so on. A
host-variable-array is an array in which each element of the array corresponds to
a value for a column.

INSERT

In releases prior to DB2 for z/OS V8, SQL INSERT statement inserts one row of
data into a table or view. With this line item, DB2 for z/OS is implementing an
 1

 IBM Confidential
enhanced multi-row INSERT statement that will insert one or more rows into a
table or view with one SQL statement.

There are 2 forms of multiple-row INSERT: one static, and one dynamic form.
Here are some examples:

1. Static INSERT with host-variable-arrays:

INSERT INTO T FOR :n ROWS

VALUES(:hva1, :hva2);

2. Dynamic INSERT with host-variable-arrays:

stmt = 'INSERT INTO T VALUES(?, ?)';

attrvar = ’FOR MULTIPLE ROWS ATOMIC’;

PREPARE my_insert ATTRIBUTES :attrvar FROM :stmt;

EXECUTE my_insert FOR :hv ROWS USING (:hva1, :hva2);

The multiple-row INSERT is implemented as either a static or dynamic SQL
statement. Note that the FOR "n" ROWS clause is supplied on the EXECUTE
statement for the dynamic form of INSERT instead of on the INSERT statement
itself, as it is on the static form of INSERT. If "n" is greater than or equal to 1, then
the parameter marker represents a host-variable-array.

FOR n ROWS

The maximum number of rows that can be inserted with a single INSERT
statement is 32767. The input data for these multiple rows will be provided with
new host-variable-arrays where each array represents the multiple rows of a
single column. The VALUES or USING DESCRIPTOR clause will allow
specification of multiple rows of data. For exampe, assuming :hva1 and :hva2
represent host variable arrays, the following VALUES clause may be used to
specify the multiple values for an insert statement: VALUES (:hva1, :hva2)

ATOMIC or NOT ATOMIC

An option will be provided so that the application can specify if it wants the
multiple-row INSERT to succeed or fail as a unit, or if it wants DB2 to proceed
despite a partial (one or more rows) failure. The SQL clause to do this is ATOMIC
or NOT ATOMIC where ATOMIC specifies that if the insert for any row fails,
then all changes made to the database by any of the inserts, including changes
made by successful inserts are undone. This is the default. When NOT ATOMIC
is specified, the inserts are processed independently. This means that if one or
more errors occurs during the execution of an INSERT statement, then processing
continues and any changes made during the execution of the statement are not
backed out.

Using host-variable-arrays

To use a multiple-row FETCH or INSERT statement with a host-variable-array
per column, the application must define one or more host-variable-arrays that can
be used by DB2. Each language has its own conventions and rules for defining a
host-variable-array.

A host-variable-array corresponds to the values for one column of the result table
for FETCH, or column of data to be inserted for INSERT. The first value in the
array corresponds to the value for that column for the first row, the second value
in the array corresponds to the value for the column in the second row, and so on.
DB2 determines the attributes of the values in the array based on the declaration
of the array.

Host-variable-arrays are used to return the values for a column of the result table
on FETCH, or to provide values for a column on INSERT.
 2 LI382 PFS

IBM Confidential
GET DIAGNOSTICS

The GET DIAGNOSTICS statement will be added to enable applications to
retrieve diagnostics information about statements that have been executed.

This statement compliments and extends the diagnostics that are available in the
SQLCA. The following example demonstrates the use of this new statement:

In an application, use GET DIAGNOSTICS to determine how many rows were
updated.

 long rcount;

 EXEC SQL UPDATE T1 SET C1 =C1 +1;

 EXEC SQL GET DIAGNOSTICS :rcount = ROW_COUNT;

After execution of this code segment, rcount will contain the number of
rows that were updated.

SQLCA

After a multiple-row INSERT or multiple-row FETCH statement, information is
returned to the program through the SQLCA. The SQLCA will be set as follows:

• SQLCODE - SQLCODE of last error

• SQLSTATE - SQLSTATE of last error

• SQLERRD3 - actual number of rows inserted (in the case of INSERT), or the
number of rows returned in the case of a multi-row FETCH

• SQLWARN - accumulation of flags set during any single insert

References to Host Variables

A value of -3 for an indicator variable indicates that values were not returned for
the row because a hole was detected.

The purpose of an indicator variable is to indicate when the associated value is
the null value, or that values were not returned because a hole was detected. The
negative value is:

• -1 if the value selected was the null value

• -2 if the null value was returned due to a numeric conversion or arithmetic
expression error that occurred in the SELECT list of an outer SELECT
statement

• -3 if the null value was returned because a hole was detected for the row on a
multiple row FETCH, and values were not returned for the row. In cases
where -3 is set to indicate a null, SQLSTATE 02502, SQLCODE +222, will also
be returned for that row. The value of -3 is only used for multiple-row
FETCH statements, otherwise the only indication of the hole is the warning
that is returned (SQLSTATE 02502, SQLCODE +222).

If indicator variables are not provided for a multiple-row FETCH statement, and a
hole is detected, an error is returned (SQLSTATE 24519, SQLCODE -247).
 Chapter 1. Description 3

 IBM Confidential
 4 LI382 PFS

IBM Confidential
Chapter 2. Usage Reference

SQL Statements

Language Elements

Add the following terms to the glossary:

• cursor A named control structure used by an application program to point to one
or more specific rows within a set of rows of the result table. The cursor is used to
retrieve rows from the result table (with a FETCH statement), and possibly to
make updates or deletes to corresponding rows in the database. A cursor is
defined with a DECLARE CURSOR statement. A cursor can be defined to always
return a single row, or to possibly return multiple rows depending on what is
specified on the FETCH statement.

• host-variable-array An array in which each element of the array corresponds to a
value for a column. The dimension of the array determines the maximum number
of rows that the array can be used for.

• rowset A set of rows that is retrieved through a multiple-row fetch.

• rowset cursor A cursor defined such that one or more rows can be returned for a
single FETCH statement as a rowset, and the cursor is positioned on the set of
rows fetched. With a rowset cursor when the number specified in the FOR n
ROWS clause of FETCH is greater than 1 the cursor can be positioned on more
than one row. Each row of the cursor position for a rowset cursor can be
referenced in subsequent positioned DELETE and UPDATE statements. A
FETCH statement for a rowset cursor specifies a rowset-positioned fetch
orientation clause, and can indicate the desired number of rows for the rowset.

Host-Variable-Arrays in C/C++, COBOL, and PL/I

A host-variable-array is an array in which each element of the array contains a value
for the same column . The first element in the array corresponds to the first value, the
second element in the array corresponds to the second value, and so on.

A host-variable-array can only be referenced in the SQL FETCH statement when
using a multiple row fetch or in an INSERT statement when using a multiple row
insert. Host-variable-arrays are defined by statements of the host language, as
explained in the Application Programming and SQL Guide.

The form of a host-variable-array reference is similar to the form of a host variable
reference. The reference :COL1 :COL1IND is a host-variable-array reference if COL1
designates an array. If COL1 designates an array, COL1IND must be a one
dimensional array of small integer host variables. The dimension of the host-variable-
array must be less than or equal to the dimension of the indicator array (DSNH5011I).
If an indicator array is not specified, no variable of the host-variable-array has an
indicator variable. The following diagram specifies the syntax for references to a host-
variable-array:

:host-identifier
INDICATOR

:host-identifier

�� ��
 5

 IBM Confidential
In the following example, COL1 is the main host-variable-array and COL1IND is its
indicator array. Assuming that COL1 has 10 elements (for fetching a single column of
data for multiple rows of data), then COL1IND must also have 10 entries.

 EXEC SQL FETCH C1 FOR 5 ROWS

 INTO :COL1 :COL1IND

 END-EXEC.

References to Host Variables

This line item introduces a new value of -3 for indicator variables to indicate that
values were not returned for the row because a hole was detected.

The purposes of the indicator variable is to specify the null value. The negative value
is:

• -1 if the value selected was the null value

• -2 if the null value was returned due to a numeric conversion or arithmetic
expression error that occurred in the SELECT list of an outer SELECT statement.

• -3 if the null value was returned because a hole was detected for the row on a
multiple row FETCH, and values were not returned for the row. The value of -3 is
only used for multiple-row FETCH statements, otherwise the only indication of
the hole is the warning that is returned (SQLSTATE 02502, SQLCODE +222).

DECLARE CURSOR Statement

Figure 1. DECLARE CURSOR Statement

Figure 2. DECLARE CURSOR - cursor-width

SCROLL or NO SCROLL

Specifies whether the cursor is scrollable.

DECLARE cursor-name
NO SCROLL

ASENSITIVE

INSENSITIVE
SENSITIVE STATIC

DYNAMIC

SCROLL

CURSOR
WITH HOLD
WITH RETURN
cursor-width

FOR select-statement
statement-name

�� �

� ��

(1)

Note:

1. The same clause must not be specified more than once.

WITHOUT ROWSET POSITIONING

WITH ROWSET POSITIONING
�� ��

cursor-width
 6 LI382 PFS

IBM Confidential
SCROLL
Specifies that the cursor is scrollable. For a scrollable cursor, whether the cursor
has sensitivity to inserts, updates, or deletes depends on the cursor sensitivity
option in effect for the cursor. If SCROLL is specified and neither ASENSITIVE
nor SENSITIVE is specified, then the cursor is read-only and behaves as
INSENSITIVE.

NO SCROLL
Specifies that the cursor is not scrollable. This is the default.

cursor-width

Specifies whether multiple rows of data can be accessed as a rowset on a single
FETCH statement for this cursor. The default is WITHOUT ROWSET POSITIONING

WITHOUT ROWSET POSITIONING
Specifies that the cursor can only be used to return a single row for each FETCH
statement, and that the FOR n ROWS clause cannot be specified on a FETCH
statement for this cursor (SQLSTATE 24523, SQLCODE -249).1

WITH ROWSET POSITIONING
Specifies that this cursor can be used to return either a single row or multiple
rows, as a rowset, with a single FETCH statement. Cursors declared WITH
ROWSET POSITIONING may also be used with row positioned FETCH
statements.2

Examples

Example 1: Declare C1 as the cursor of a query to retrieve a rowset from the
table DEPT. The prepared statement is MYCURSOR.

EXEC SQL DECLARE C1 CURSOR WITH ROWSET POSITIONING FOR MYCURSOR;

OPEN CURSOR

The OPEN CURSOR statement is changed to return the following information for all
cursors:

rowset accessibility
This information will be returned in DB2_SQL_ATTR_CURSOR_ROWSET which
is available via the GET DIAGNOSTICS statement. The information will be
returned as follows:

• Y = enabled for rowset fetching

• N = rowset fetching not supported

ALLOCATE CURSOR

The ALLOCATE CURSOR statement is changed to return the following information
for all cursors:

rowset accessibility
This information will be returned in DB2_SQL_ATTR_CURSOR_ROWSET which
is available via the GET DIAGNOSTICS statement. The information will be
returned as follows:

1. Note: Single row access (WITHOUT ROWSET POSITIONING) refers to how data is fetched from the database engine. For remote
access, data may be blocked and returned to the client in blocks. This blocking is subject to existing rules and restrictions.

2. Note: ROWSET POSITIONING refers to how data is fetched from the database engine. For remote access, if any row qualifies, at
least 1 row will be returned as a rowset. The size of the rowset depends on the number of rows specified on the FETCH statement,
and on the number of rows that qualify. Data may be blocked and returned to the client in blocks. This blocking is subject to existing
rules and restrictions.
 Chapter 2. Usage Reference 7

 IBM Confidential
• Y = enabled for rowset fetching

• N = rowset fetching not supported

FETCH Statement

The FETCH Statement positions the cursor on a row of the result table. It can return
zero, one, or multiple rows and assigns the values of the rows to host variables if there
is a target specification.

There are two forms of this statement

• single row fetch: retrieves data from a single row of the result table.

• multiple row fetch: retrieves one or more rows from the result table.

Invocation

This statement can only be embedded in an application program. It is an executable
statement that cannot be dynamically prepared. Multiple row fetch is not supported
in REXX, FORTRAN3, or SQL Procedure applications due to the lack of support for
arrays in these languages.

3. ASSEMBLER and other languages are supported, but this support is limited to statements that allow USING DESCRIPTOR. The
precompiler will not recognize host-variable-arrays except in C/C++, COBOL, and PL/I.
 8 LI382 PFS

IBM Confidential
FETCH
INSENSITIVE

SENSITIVE

FROM
cursor-name

BEFORE

AFTER

NEXT

PRIOR
FIRST
LAST
CURRENT
ABSOLUTE host-variable

integer-constant
RELATIVE host-variable

integer-constant

NEXT ROWSET
PRIOR ROWSET
FIRST ROWSET
LAST ROWSET
CURRENT ROWSET
ROWSET STARTING AT ABSOLUTE

RELATIVE
host-variable
integer-constant

�� fetch-orientation
single-row-fetch
multiple-row-fetch

│

row-positioned
rowset-positioned

│

│ │

│ │

��

FETCH

(1)

fetch-orientation:
(2)

(2)

row-positioned:

rowset-positioned:

Note:

1. The default depends on the sensitivity of the cursor. If INSENSITIVE or SENSITIVE is specified,
either a single-row-fetch or multiple-row-fetch clause must be specified (SQLSTATE 42601, SQLCODE
-104).

2. If BEFORE or AFTER is specified then SENSITIVE, or INSENSITIVE must not be specified (SQLSTATE
42601, SQLCODE -199).
 Chapter 2. Usage Reference 9

 IBM Confidential
Figure 3. FETCH Statement

AFTER

Positions the cursor after the last row of the result table, values are not assigned to
host variables. The number of rows of the result table is returned in the SQLERRD1
and SQLERRD2 fields of the SQLCA.

BEFORE

Positions the cursor before the first row of the result table, values are not assigned to
host variables.

row-positioned

Positioning of the cursor with row-positioned fetch orientations NEXT, PRIOR, and
RELATIVE is done in relation to the current cursor position. Following a successful
row-positioned FETCH statement, the cursor is positioned on a single row of data. If
the cursor is enabled for rowsets, positioning is performed relative to the first row of
the current rowset, and the cursor is positioned on a rowset consisting of a single row.

NEXT is the only row-positioned fetch operation that can be explicitly specified for
cursors that are defined as NO SCROLL (SQLSTATE 42872, SQLCODE -225).

NEXT
Positions the cursor on the next row or rows of the result table relative to the
current cursor position, and returns data if a target is specified

INTO

,

host-variable

INTO DESCRIPTOR descriptor-name

FOR host-variable
integer-constant

ROWS

INTO

,

host-variable-array

INTO DESCRIPTOR descriptor-name

│ │

│ │

FETCH

single-row-fetch:

(1)

multiple-row-fetch:
(2)

(1)

Note:

1. “USING DESCRIPTOR” may be used as a synonym for “INTO DESCRIPTOR”

2. This clause is optional. If this clause is not specified, and either a rowset size has not been
established yet, or a row positioned FETCH statement was the last type of FETCH statement issued
for this cursor, the rowset size will implicitly be One. If the last FETCH statement issued for
this cursor was a rowset positioned FETCH statement, and this clause is not specified, the rowset
size will be the same size as the previous rowset positioned FETCH.
 10 LI382 PFS

IBM Confidential
PRIOR
Positions the cursor on the previous row or rows of the result table relative to the
current cursor position, and returns data if a target is specified.

FIRST
For a single row fetch, positions the cursor on the first row of the result table, and
returns data if a target is specified.

LAST
For a single row fetch, positions the cursor on the last row of the result table, and
returns data if a target is specified.

CURRENT
For single row fetch, the cursor position is not changed, data is returned if a target
is specified. If the cursor was positioned on a rowset of more than one row, then
the cursor position is on the first row of the rowset.

ABSOLUTE
Data is returned if the specified position is within the rows of the result table, and
a target is specified.4

RELATIVE
Data is returned if the specified position is within the rows of the result table, and
a target is specified.

rowset-positioned

Positioning of the cursor with rowset-positioned fetch orientations NEXT ROWSET,
PRIOR ROWSET, and ROWSET STARTING AT RELATIVE is done in relation to the
current rowset. The number of rows in the rowset is determined either explicitly or
implicitly. The FOR n ROWS clause in the multiple-row-fetch clause is used to
explicitly specify the size of the rowset. The rowset size is implicitly set to 1 if the
previous FETCH statement did not contain a FOR n ROWS clause, or the previous
FETCH statement was a row positioned FETCH statement. Following a successful
rowset-positioned FETCH statement, the cursor is positioned on all rows of the
rowset.

A rowset-positioned fetch orientation must not be specified if the current cursor
position is not defined to access rowsets (SQLSTATE 24523, SQLCODE -249). NEXT
ROWSET is the only rowset-positioned fetch orientation that can be specified for
cursors that are defined as NO SCROLL (SQLSTATE 42872, SQLCODE -225).

NEXT ROWSET
Positions the cursor on the next rowset of the result table relative to the current
cursor position, and returns data if a target is specified. If a row of the rowset
reflects a hole, a warning is returned (SQLSTATE 02502, SQLCODE +222), data
values are not assigned to host-variable-arrays for that row (i.e., the
corresponding positions in the target host-variable-arrays are untouched) and -3
is returned in all provided indicator variables for that row. If a hole is detected,
and at least one indicator variable is not provided, then an error is returned
(SQLSTATE 24519, SQLCODE -247). If the cursor is not positioned due to a prior
error, values are not assigned to the host-variable-array, and an error is returned
(SQLSTATE 24513, SQLCODE -227). If a row of the result set would be after the
last row of the result table, values are not assigned to host-variable-arrays for that
row and any subsequent requested rows of the result set, and a warning is
returned (SQLSTATE 02000, SQLCODE +100). NEXT ROWSET is the only rowset
positioned fetch orientation that can be explicitly be specified for cursors that are
defined as NO SCROLL (SQLSTATE 42872, SQLCODE -225).

4. Please add this PP between the existing ’If K = 0 ...’ PP and the ’If an absolute position... PPs for the current explanation for
ABSOLUTE.
 Chapter 2. Usage Reference 11

 IBM Confidential
PRIOR ROWSET
Positions the cursor on the previous rowset of the result table relative to the
current position, and returns data if a target is specified. If a row of the rowset
reflects a hole, a warning is returned (SQLSTATE 02502, SQLCODE +222), data
values are not assigned to host variable arrays for that row (i.e., the
corresponding positions in the target host variable arrays are untouched), and -3
is returned in all provided indicator variables for that row. If a hole is detected,
and at least one indicator variable is not provided, then an error is returned
(SQLSTATE 24519, SQLCODE -247). If the cursor is not positioned due to a prior
error, values are not assigned to the host-variable-array, and an error is returned
(SQLSTATE 24513, SQLCODE -227). If a row of the result set would be before the
first row of the result table, values are not assigned to host-variable-arrays for that
row and any requested rows of the result set that logically precede that row, and a
warning is returned (SQLSTATE 02000, SQLCODE +100). The prior rowset is
logically obtained by fetching the row that precedes the current rowset, and
fetching prior rows until the number of rows in the rowset is obtained or the first
row of the result table is reached. Although the rowset is logically obtained by
fetching backwards from before the current rowset, the data is returned to the
application starting with the first row of the rowset, to the end of the rowset.

FIRST ROWSET
Positions the cursor on the first rowset of the result table, and returns data if a
target is specified. If a row of the rowset reflects a hole, a warning is returned
(SQLSTATE 02502, SQLCODE +222), data values are not assigned to host
variable arrays for that row (i.e., the corresponding positions in the target host
variable arrays are untouched), and -3 is returned in all provided indicator
variables for that row. If a hole is detected, and at least one indicator variable is
not provided, then an error is returned (SQLSTATE 24519, SQLCODE -247). If the
result table contains fewer rows than the width of the rowset, values are not
assigned to host-variable-arrays after the last row of the result table, and a
warning is returned (SQLSTATE 02000, SQLCODE +100).

LAST ROWSET
Positions the cursor on the last rowset of the result table and returns data if a
target is specified. If a row of the rowset reflects a hole, a warning is returned
(SQLSTATE 02502, SQLCODE +222), data values are not assigned to host
variable arrays for that row (i.e., the corresponding positions in the target host
variable arrays are untouched), and -3 is returned in all provided indicator
variables for that row. If a hole is detected, and at least one indicator variable is
not provided, then an error is returned (SQLSTATE 24519, SQLCODE -247). If the
result table contains fewer rows than the width of the rowset, the last rowset is
the same as the first rowset, values are not assigned to host-variable-arrays after
the last row of the result table, and a warning is returned (SQLSTATE 02000,
SQLCODE +100). The last rowset is logically obtained by fetching the last row of
the result table and fetching prior rows until the number of rows in the rowset is
obtained or the first row of the result table is reached. Although the rowset is
logically obtained by fetching backwards from the bottom of the result table, the
data is returned to the application starting with the first row of the rowset, to the
end of the rowset.5

CURRENT ROWSET
Retains the position of the cursor on the current rowset, and returns data if a
target is specified. If a row of the rowset reflects a hole, a warning is returned
(SQLSTATE 02502, SQLCODE +222), and data values are not assigned to host-
variable-arrays for that row (i.e., the corresponding positions in the target host-
variable-arrays are untouched) and -3 is returned in all provided indicator
variables for that row. If a hole is detected, and at least one indicator variable is
not provided, then an error is returned (SQLSTATE 24519, SQLCODE -247). If the

5. The end of the rowset in this case is also the end of the result table.
 12 LI382 PFS

IBM Confidential
cursor is not positioned due to a prior error, values are not assigned to the host-
variable-array, and an error is returned (SQLSTATE 24513, SQLCODE -227). If
the current rowset contains fewer rows than the width of the cursor then a
warning is returned (SQLSTATE 02000, SQLCODE +100).

ROWSET STARTING AT ABSOLUTE or RELATIVE host-variable or integer-
constant

Positions the cursor on the rowset beginning at the row of the result table that is
indicated by the ABSOLUTE or RELATIVE specification, and returns data if a
target is specified.

The indicated host-variable or integer-constant is assigned to an integral value k.
If a host-variable is specified, it must be an exact numeric type with scale zero
(SQLSTATE 42618, SQLCODE -5012), and must not include an indicator variable
(SQLSTATE 42601, SQLCODE -104). The possible data types for the host variable
are DECIMAL(n,0), INTEGER, or SMALLINT, where the DECIMAL data type is
limited to DECIMAL(19,0) (SQLSTATE 56051, SQLCODE -20127). If a constant is
specified, the value must be an integer (SQLSTATE 42601, SQLCODE -104).

ABSOLUTE

If k=0, an error is returned (SQLSTATE 42615, SQLCODE -644). If k>0
then the first row of the rowset is row k. If k<0 then the rowset is
positioned on the ABS(k) rows from the bottom of the result table.
Assume that ABS(k) is equal to the number of rows in the result table:

– FETCH ROWSET STARTING AT ABSOLUTE -k is the same as
FETCH LAST ROWSET.

– FETCH ROWSET STARTING AT ABSOLUTE 1 is the same as
FETCH FIRST ROWSET.

RELATIVE

If k=0 and the FOR n ROWS clause does not specify a number different
from the number of rows of the current rowset, then the position of the
cursor does not change (that is, "RELATIVE ROWSET 0" is the same as
"CURRENT ROWSET"). If k=0 and the FOR n ROWS clause specifies a
number different from the number of rows of the current rowset, then the
cursor is repositioned on the specified number of rows, starting with the
first row of the current rowset. Otherwise, RELATIVE repositions the
cursor so that the first row of the new rowset cursor position is on the row
in the result table that is either k rows after the first row of the current
rowset cursor position if k>0, or ABS(k) rows before the first row of the
current rowset cursor position if k<0. Assume that ABS(k) is equal to the
number of rows for the rowset

– FETCH ROWSET STARTING AT RELATIVE -k is the same as
FETCH PRIOR ROWSET.

– FETCH ROWSET STARTING AT RELATIVE k is the same as FETCH
NEXT ROWSET.

– FETCH ROWSET STARTING AT RELATIVE 0 is the same as FETCH
CURRENT ROWSET.

If a row of the rowset reflects a hole, a warning is returned (SQLSTATE 02502,
SQLCODE +222), data values are not assigned to host variable arrays for that row
(i.e., the corresponding positions in the target host variable arrays are untouched),
and -3 is returned in all provided indicator variables for that row. If a hole is
detected, and at least one indicator variable is not provided, then an error is
returned (SQLSTATE 24519, SQLCODE -247). If a row of the result set would be
after the last row or before the first row of the result table, values are not assigned
 Chapter 2. Usage Reference 13

 IBM Confidential
to host-variable-arrays for that row, and a warning is returned (SQLSTATE 02000,
SQLCODE +100).

Row Positioned and Rowset Positioned FETCH
Statement Interaction

Table 1 demonstrates the interaction between row positioned and rowset positioned
FETCH statements.

For the purposes of this example, assume we have the following:

TABLE T1 has 15 rows

CURSOR CS1 is declared as follows:

DECLARE CS1 SCROLL CURSOR WITH ROWSET POSITIONING FOR
SELECT * FROM T1;

an OPEN CURSOR statement has been successfully executed for CURSOR CS1.

Assume that the FETCH statements in the Table are executed in the order they appear
in the table.

Table 1. Interaction between row positioned and rowset positioned FETCH
statements

FETCH Statement Cursor Position

FETCH FIRST Cursor is positioned on row 1.

FETCH FIRST ROWSET Cursor is positioned on a rowset of size 1, consisting
of row 1.

FETCH FIRST ROWSET FOR 5 ROWS Cursor is positioned on a rowset of size 5, consisting
of rows 1, 2, 3, 4, and 5.

FETCH CURRENT ROWSET Cursor is positioned on a rowset of size 5, consisting
of rows 1, 2, 3, 4, and 5.

FETCH CURRENT Cursor is positioned on row 1

FETCH FIRST ROWSET FOR 5 ROWS Cursor is positioned on a rowset of size 5, consisting
of rows 1, 2, 3, 4, and 5.

FETCH

or

FETCH NEXT

Cursor is positioned on row 2.

FETCH NEXT ROWSET Cursor is positioned on a rowset of size 1, consisting
of row 3.

FETCH NEXT ROWSET FOR 3 ROWS Cursor is positioned on a rowset of size 3, consisting
of rows 4,5, and 6.

FETCH NEXT ROWSET Cursor is positioned on a rowset of size 3, consisting
of rows 7,8, and 9.

FETCH LAST Cursor is positioned on row 15.

FETCH LAST ROWSET FOR 2 ROWS Cursor is positioned on a rowset of size 2, consisting
of rows 14 and 15.

FETCH PRIOR ROWSET Cursor is positioned on a rowset of size 2, consisting
of rows 12 and 13.

FETCH ABSOLUTE 2 Cursor is positioned on row 2.
 14 LI382 PFS

IBM Confidential

cursor-name

Identifies the cursor to be used in the fetch operation. The cursor name must identify a
declared cursor, as explained in the description of the DECLARE CURSOR statement,
or an allocated cursor, as explained in "ALLOCATE CURSOR". When the FETCH
statement is executed, the cursor must be in the open state (SQLSTATE 24501,
SQLCODE -501).

If a single-row-fetch or multiple-row-fetch clause is not specified, the cursor position
is adjusted as specified, but no data is returned to the user.

multiple-row-fetch

FOR host-variable or integer ROWS

The indicated host-variable or numeric-constant is assigned to an integral value k. If a
host-variable is specified, it must be an exact numeric type with a scale of zero
(SQLSTATE 42618, SQLCODE -5012), and must not include an indicator variable
(SQLSTATE 42601, SQLCODE -104). Furthermore, k must be in the range,
0<k<=32767 (SQLSTATE 42873, SQLCODE -246). This clause must not be specified for
a cursor that is defined without rowset access (SQLSTATE 24518, SQLCODE -20185).

The cursor is positioned on the row specified by the orientation clause (e.g., NEXT
ROWSET), and those rows are fetched if a target is specified. Then the next k-1 rows
are fetched (moving forward from the cursor position in the result table), until the end
of data condition is returned (SQLSTATE 02000, SQLCODE +100), until k-1 rows have
been fetched, or until an assignment error or warning is returned. The cursor is

FETCH ROWSET STARTING AT
ABSOLUTE 2 FOR 3 ROWS

Cursor is positioned on a rowset of size 3, consisting
of rows 2, 3, and 4.

FETCH RELATIVE 2 Cursor is positioned on row 4.

FETCH ROWSET STARTING AT
ABSOLUTE 2 FOR 4 ROWS

Cursor is positioned on a rowset of size 4, consisting
of rows 2, 3, 4, and 5.

FETCH RELATIVE -1 Cursor is positioned on row 1.

FETCH ROWSET STARTING AT
ABSOLUTE 3 FOR 2 ROWS

Cursor is positioned on a rowset of size 2, consisting
of rows 3 and 4.

FETCH ROWSET STARTING AT
RELATIVE 4

Cursor is positioned on a rowset of size 2, consisting
of rows 7 and 8.

FETCH PRIOR Cursor is positioned on row 6.

FETCH ROWSET STARTING AT
ABSOLUTE 13 FOR 5 ROWS

Cursor is positioned on a rowset of size 3, consisting
of rows 13, 14, and 15.

FETCH FIRST ROWSET Cursor is positioned on a rowset of size 5, consisting
of rows 1, 2, 3, 4, and 5.

Note: Even though the previous FETCH statement
returned only 3 rows because EOF was
encountered, DB2 will remeber that 5 rows
were requested by the previous FETCH
statement.

Table 1. Interaction between row positioned and rowset positioned FETCH statements
(continued)

FETCH Statement Cursor Position
 Chapter 2. Usage Reference 15

 IBM Confidential
positioned on all the rows successfully retrieved. The values from each individual
fetch are placed in data areas described in the INTO or USING clause.

See "Considerations for an SQLCA with a FETCH Statement on Page 18" .

INTO host-variable-array

Identifies for each column of the result table a host-variable-array to receive the data
retrieved with this FETCH statement. If the number of host-variable-arrays is less
than the number of columns of the result table, the SQLQARN3 field of the SQLCA is
set to ’W’. Note that there is no warning if there are more host-variable-arrays than
the number of columns in the result table.

host-variable-array

Each host-variable-array must be defined in the application program in accordance
with the rules for declaring an array (SQLSTATE 42618, SQLCODE -312). See
“Application Programming - Host Language Declarations” on page 49 for more
information regarding the declarations of host-variable-arrays. A host-variable-array
will be used to return the values for a column of the result table. The number of rows
to be fetched must be less than or equal to the dimension of each of the host-variable-
arrays (SQLSTATE 42873, SQLCODE -246).

An optional indicator array can be specified for a host-variable-array. It should be
specified if the SQLTYPE of any SQLVAR occurrence indicates that the column of the
result table is nullable. Additionally, if operations that may result in null values, such
as UPDATE operations that could cause hole rows, are performed in the application,
an indicator arrays should be specified. Otherwise an error will be returned if there
are any null values. The indicators are returned as small integers.

INTO DESCRIPTOR descriptor

Identifies an SQLDA that must contain a valid description of zero or more host-
variable-arrays or buffers into which the values for a column of the result table are to
be returned.

Before the FETCH statement is processed, the user must set the following fields in the
SQLDA:

• SQLN to indicate the number of SQLVAR occurrences provided in the SQLDA.

• SQLABC to indicate the number of bytes of storage allocated for the SQLDA.

• SQLD to indicate the number of variables used in the SQLDA when processing
the statement.

• SQLVAR occurrences to indicate the attributes of an element of the host-variable-
array. Within each SQLVAR:

— SQLTYPE indicates the data type of the elements of the host-variable-array.

— SQLDATA field points to the first element of the host-variable-array.

— the length fields (SQLLEN and SQLLONGLEN) are set to indicate the
maximum length of a single element of the array.

— SQLNAME - The fifth through eighth bytes of the data portion of SQLNAME
must be initialized to a binary integer representation of the dimension of the
host-variable-array. The length of SQLNAME should be set to 8, and the first
two bytes of the data portion of SQLNAME must be initialized to X'0000'6.

The user sets the SQLDATA and SQLIND pointers to the beginning of the
corresponding arrays. The SQLDA must have enough storage to contain all SQLVAR

6. The third and forth bytes of the data portion of the SQLNAME field are interpreted as a CCSID if the sixth byte of SQLDAID = ’+’.
 16 LI382 PFS

IBM Confidential
occurrences (SQLSTATE 07002, SQLCODE -804). Each SQLVAR occurrence describes
a host-variable-array or buffer into which the values for a column in the result table
are to be returned. If any column of the result table is a LOB then two SQLVAR
entries must be provided for each SQLVAR and SQLN must be set to two times the
number of SQLVARS. SQLD must be set to a value greater than or equal to zero and
less than or equal to SQLN.

Using FETCH To Retrieve Multiple Rows of Data

A single FETCH statement can be used to retrieve multiple rows of data from the
result table of a query. The program controls how many rows are returned on a single
FETCH statement by requesting a specific number of rows with the FOR n ROWS
clause of the FETCH statement. The maximum number of rows that can be requested
on a single FETCH statement is 32767. Once the data is retrieved, the cursor is
positioned all the rows retrieved. Fetching stops as soon as an error is returned, all
requested rows are fetched or the end of data condition is reached.7

Multiple row FETCH statements can be written in C and C++, COBOL, and PL/I 8.
Each of these languages allow the application to code host-variable-arrays and
indicator arrays. An indicator array should contain one indicator entry for each row
that is fetched.

Fetching multiple rows of data can be done with both serial and scrollable cursors.
The operations used to define, open, and close a cursor used for fetching multiple
rows of data are the same as for those used for single row FETCH statements. The
differences are that a FETCH statement that returns multiple rows of data includes a
FOR n ROWS clause to indicate the desired number of rows and a clause to specify
the storage where the rows are placed, and the DECLARE CURSOR statement for the
cursor that is being fetched from contains the WITH ROWSET POSITIONING clause.

 Examples of Fetching Multiple Rows with a Single FETCH Statement.

Givent the cursor C1 defined as:

DECLARE C1 CURSOR WITH ROWSET POSITIONING FOR SELECT * FROM EMP;

• Fetch the previous rowset, and have the cursor positioned on that rowset.

FETCH PRIOR ROWSET FROM C1 FOR 3 ROWS INTO....

or

FETCH ROWSET STARTING AT RELATIVE -3 FROM C1 FOR 3 ROWS INTO....

• Fetch 3 rows starting with row 20 regardless of the current position of the cursor,
and cause the cursor to be positioned on that rowset at the end of the fetch
operation.

FETCH ROWSET STARTING AT ABSOLUTE 20 FROM C1 FOR 3 ROWS INTO....

• Fetch the first x rows and leave the cursor positioned on that rowset at the
completion of the fetch.

FETCH FIRST ROWSET FROM C1 FOR :x ROWS INTO...

Considerations for Using the FOR n ROWS Clause with the FETCH FIRST n
ROWS ONLY clause

A clause specifying the desired number of rows can be specified in either the SELECT
statement of the cursor, or on a FETCH statement for the cursor, or in both. However,
these clauses have a different effect:

7. For remote clients, if fetching from a row positioned cursor, multiple rowsets may be returned to the client with one fetch.
8. ASSEMBLER and other languages are supported, but this support is limited to statements that allow USING DESCRIPTOR. The

precompiler will not recognize host-variable-arrays exept in C/C++, COBOL, and PL/I.
 Chapter 2. Usage Reference 17

 IBM Confidential
• in the SELECT statement - a FETCH FIRST n ROWS ONLY clause controls the
maximum number of rows that can be accessed with the cursor. When a FETCH
statement attempts to retrieve a row beyond the number specified in the FETCH
FIRST n ROWS ONLY clause of the SELECT statement then an end of data
condition occurs.

• in a FETCH statement - a FOR n ROWS clause controls the number of rows that
are returned for a single FETCH statement.

Both of these clauses can be specified.

Diagnostics information for rowset positioned FETCH Statement

The SQLCA is used to return information on errors and warnings found while
fetching from a rowset cursor. Processing stops when the end of data is encountered,
or when an error (negative SQLCODE) occurs. The specific error or end of data
condition is returned as a result of the fetch from the rowset cursor.

After each FETCH statement from a rowset cursor, information is returned to the
program through the SQLCA. The SQLCA is set as follows:

• SQLCODE contains the SQLCODE.

• SQLSTATE contains the SQLSTATE.

• SQLERRD3 contains the actual number of rows returned. If SQLERRD3 is less
than the number of rows requested, then an error or end-of-data condition
occurred.

• SQLWARN flags are set to represent all the warnings that were accumulated
while processing the FETCH statement.

Additional information may be obtained about the fetch, including information on all
exception conditions encountered while processing the fetch statement, from the GET
DIAGNOSTICS statement. See xxx on yyyy for further information.

Consider the following examples, where we attempt to fetch 10 rows with a single
FETCH statement.

• Example 1: Assume that an error, SQLCODE -802, is detected on the 5th row.
SQLERRD3 is set to 4 for the 4 returned rows, SQLSTATE is set to 22003,
SQLCODE is set to -802. This information is also available from the GET
DIAGNOSTICS STATEMENT, for example:

GET DIAGNOSTICS :num_rows = ROW_COUNT, :num_cond = NUMBER;

Would result in num_row = 4 and num_cond = 1 (1 condition).

GET DIAGNOSTICS CONDITION 1 :sqlstate = RETURNED_SQLSTATE, :sqlcode =
DB2_RETURNED_SQLCODE, :row_num = DB2_ROW_NUMBER;

Would result in sqlstate = 22003, sqlcode = -802, and row_num = 5.

• Example 2: Assume that an end of data condition is detected on the 6th row, and
that the cursor does not have immediate sensitivity to updates. SQLERRD3 is set
to 5 for the 5 returned rows, SQLSTATE is set to 02000. SQLCODE is set to +100.
This information is also available from the GET DIAGNOSTICS STATEMENT,
for example:

GET DIAGNOSTICS :num_rows = ROW_COUNT, :num_cond = NUMBER;

Would result in num_row = 5 and num_cond = 1 (1 condition).

GET DIAGNOSTICS CONDITION 1 :sqlstate = RETURNED_SQLSTATE, :sqlcode =
DB2_RETURNED_SQLCODE, :row_num = DB2_ROW_NUMBER;

Would result in sqlstate = 02000, sqlcode = 100, and row_num = 6.
 18 LI382 PFS

IBM Confidential
• Example 3: As in Example 2 above, assume that an end of data condition is
detected on the 6th row and that the cursor is sensitive to inserted rows.
SQLERRD3 is set to 5 for the 5 returned rows, SQLSTATE is set to 02000, and
SQLCODE is set to +100. Assume that after the FETCH, 1 more row is inserted
into the table. If an additional FETCH statement is executed, an end of data
condition is detected after the new row has been fetched. SQLERRD3 is set to 1 for
the 1 returned row, SQLSTATE is set to 02000, and SQLCODE is set to +100.

There are some cases where DB2 will return a warning if indicator variables are
provided, or an error if indicator variables are not provided. These errors can be
thought of as data mapping errors that will result in a warning (SQLCODE +802 for
instance) if indicator variables are provided.

• If indicator variables are provided, DB2 returns all rows to the user, marking the
errors in the indicator variables. The SQLCODE and SQLSTATE contain the
warning from the last data mapping error. The GET DIAGNOSTICS statement
may be used to retrieve information about all the data mapping errors that have
occured.

• If some or no indicator variables are provided, all rows are returned as above
until the first data mapping error is detected which does not have indicator
variables. The rows successfully fetched are returned and the SQLSTATE,
SQLCODE, and SQLWARN flags are set if necessary. (The SQLCODE may be 0
or a positive value).

It is possible, if a data mapping error occurrs, for the positioning of the cursor to be
successful. In this case, the cursor is positioned on the rowset that encountered the
data mapping error.

Consider the following examples, which try to fetch 10 rows with a single FETCH
statement.

• Example 1: Assume that indicators have been provided for values returned for
column 1, but not for column 2. The 5th row has a data mapping error (+802) for
column 1 and the 7th row has a data mapping error for column 2 (-802 is returned
because an indicator was not provided for column 2). SQLERRD3 is set to 6 for
the 6 returned rows, SQLSTATE and SQLCODE are set to the error from the 7th
row fetched. The indicator variable for the 5th row column 1 indicates a data
mapping error was found. This information is also available from the GET
DIAGNOSTICS STATEMENT, for example:

GET DIAGNOSTICS :num_rows = ROW_COUNT, :num_cond = NUMBER;

Would result in num_row = 6 and num_cond = 2 (2 conditions).

GET DIAGNOSTICS CONDITION 1 :sqlstate = RETURNED_SQLSTATE, :sqlcode =
DB2_RETURNED_SQLCODE, :row_num = DB2_ROW_NUMBER;

Would result in sqlstate = 01519, sqlcode = +802, and row_num = 5.

GET DIAGNOSTICS CONDITION 2 :sqlstate = RETURNED_SQLSTATE, :sqlcode =
DB2_RETURNED_SQLCODE, :row_num = DB2_ROW_NUMBER;

Would result in sqlstate = 22003, sqlcode = -802, and row_num = 7.

 The resulting cursor position is unknown.

• Example 2: Assume that null indicators are provided, that rows 3 and 5 are holes,
and that data exists for the other requested rows. SQLERRD3 is set to 10 to reflect
that 10 fetches were completed, and that information9 has been returned for 10
rows. SQLSTATE is set to 02502, SQLCODE is set to +222, and all null indicators
for rows 3 and 5 are set to -3 to indicate that a hole was detected. This information
is also available from the GET DIAGNOSTICS STATEMENT, for example:

9. Note that Eight rows actually contain data. For two rows, indicator variables were set to indicate no data was returned for those
rows.
 Chapter 2. Usage Reference 19

 IBM Confidential
GET DIAGNOSTICS :num_rows = ROW_COUNT, :num_cond = NUMBER;

Would result in num_row = 10 and num_cond = 2 (2 conditions).

GET DIAGNOSTICS CONDITION 1 :sqlstate = RETURNED_SQLSTATE, :sqlcode =
DB2_RETURNED_SQLCODE, :row_num = DB2_ROW_NUMBER;

Would result in sqlstate = 02502, sqlcode = +222, and row_num = 3.

GET DIAGNOSTICS CONDITION 2 :sqlstate = RETURNED_SQLSTATE, :sqlcode =
DB2_RETURNED_SQLCODE, :row_num = DB2_ROW_NUMBER;

Would result in sqlstate = 02502, sqlcode = +222, and row_num = 5.

If a null indicator was not provided for any variable in a row that was a hole, then
an error would be returned (SQLSTATE 24519, SQLCODE -247).

SQLCA Usage Summary: For multiple-row-fetch, the fields of the SQLCA are set as
follows:

 20 LI382 PFS

IBM Confidential

Providing indicator variable for error condition: If an error occurs as the result of an
arithmetic expression in the SELECT list of an outer SELECT statement (division by
zero, or overflow) or a numeric conversion error occurs, the result is the null value. As
in any other case of a null value, an indicator variable must be provided and the main
variable is unchanged. In this case, however, the indicator variable is set to -2.
Processing of the statement continues as if the error had not occurred. (However, this
error causes a positive SQLCODE.) If you do not provide an indicator variable, a
negative value is returned in the SQLCODE field of the SQLCA. Processing of the
statement terminates when the error is encountered. No value is assigned to the host
variable or to later variables, though any values that have already been assigned to
variables remain assigned. Additionally, a -3 is returned in all indicators provided by
the application, when a hole was detected for the row on a rowset positioned FETCH,
and values were not returned for the row. Processing of the statement terminates if a
hole is detected and at least one indicator variable was not provided by the
application (SQLSTATE 24519, SQLCODE - 247).

Examples

Example 1: Fetching the Last 5 Rows of the Result Table

Condition
Action: Resulting Values Stored in the SQLCA

Fields

E
rrors

D
A

TA

S
Q

L
S

TA
T

E

S
Q

L
C

O
D

E

S
Q

L
E

R
R

D
3

No(1) Return all requested
rows

00000 0 # rows
requested

No(1) Return data for subset of
requested rows, End of

Data

02000 +100 #rows

No(1) Return all requested
rows

sqlstate(2) sqlcode(2) #rows
requested

Yes(1) Return successfully
fetched rows

sqlstate(3) sqlcode(3) #rows

Yes(1) Return successfully
fetched rows

sqlstate(4) sqlcode(4) #rows

Table notes:

 (1) SQLWARN flags may be set in all cases, even if there are no other warnings or errors
indicated. The warning flags are an accumulation of all warning flags set while
processing the multiple-row-fetch.

 (2) sqlcode is the last positive SQLCODE, and sqlstate is the corresponding SQLSTATE
value.

 (3) Database Server detected error. sqlcode is the first negative SQLCODE encountered,
sqlstate is the corresponding SQLSTATE value

 (4) Client detected error. sqlcode is the first negative SQLCODE encountered, sqlstate is
one of the following SQLSTATEs: 22002, 22008, 22509, 22518, or 55021.
 Chapter 2. Usage Reference 21

 IBM Confidential
Fetch the last 5 rows of the result table using cursor C1:

FETCH ROWSET STARTING AT ABSOLUTE -5

FROM C1 FOR 5 ROWS INTO DESCRIPTOR :MYDESCR;

Example 2: multiple-row-fetch Using host-variable-arrays

Fetch 6 rows starting at row 10 for cursor CURS1, and fetch the data into three host-
variable-arrays:

FETCH ROWSET STARTING AT ABSOLUTE 10

 FROM CURS1 FOR 6 ROWS

 INTO :hav1, :hva2, :hva3;

Alternatively, a descriptor could have been specified in an INTO DESCRIPTOR
clause where the information in the SQLDA reflects the data types of the host-
variable-arrays:

FETCH ROWSET STARTING AT ABSOLUTE 10

 FROM CURS1 FOR 6 ROWS

 INTO DESCRIPTOR descriptor-name;

Example 3: multiple-row-fetch - Using a host-variable-array

Consider a cursor with two columns, one INTEGER (nullable), and one FLOAT (not
nullable). A program could fetch 3 such rows at once with some code like the
following C:

#include "stdlib.h"

main()

{ EXEC SQL

 INCLUDE SQLCA;

 EXEC SQL

 INCLUDE SQLDA;

 long int cola[20];

 float colb[20];

 short inda[20], indb[20];

 long int Num_of_rows = 3;

 long int i;

 EXEC SQL

 DECLARE C1 SCROLL CURSOR WITH ROWSET POSITIONING FOR

 SELECT A, B FROM T;

 EXEC SQL OPEN C1;

 /* 2 variables in each row */
 22 LI382 PFS

IBM Confidential
 EXEC SQL

 FETCH NEXT ROWSET FROM C1

 FOR :Num_of_rows ROWS

 INTO :cola:inda, :colb:indb;

 if (SQLCODE >= 0) { /* no errors */

 {

 EXEC SQL GET DIAGNOSTICS :num_rows = ROW_COUNT;

 for (i=1;i < num_rows;i++)

 {

 ;/* do something with fetch results */

 }

 }

 else
 {

 EXEC SQL GET DIAGNOSTICS :num_cond = NUMBER;

 for (i=0;i < num_cond;i++)

 {

 EXEC SQL GET DIAGNOSTICS CONDITION :i
 :sqlstate = RETURNED_SQLSTATE,
 :sqlcode = DB2_RETURNED_SQLCODE,
 :row_num = DB2_ROW_NUMBER;
 printf
 ("SQL error occurred,
 SQLCODE = %d, SQLSTATE = %s, ROW_NUMBER = %d/n",
 sqlcode, sqlstate, row_num);

 }

 }

 done:

 exit();}

DRDA Considerations

DB2 UDB for z/OS will limit the size of user data and control information to 10M
(except for LOBs which are processed in a different data stream) for a single multiple
row FETCH statement using host variable arrays (SQLSTATE 57011, SQLCODE -904).

WITH and WITHOUT ROWSET POSITIONING refer to how data is fetched at the
server. Data may be blocked, according to existing rules and restrictions for data
fetched using either positioning form.

For remote clients, at least one rowset is always be returned in a network request.
Multiple rowsets may be returned in a single network request subject to existing block
fetch rules and restrictions.
 Chapter 2. Usage Reference 23

 IBM Confidential
Multi-row insert and fetch statements are supported by any requester or server that
supports the DRDA Version 3 protocols. SQLCODE -30005, SQLSTATE 56702 will be
returned if an attempt is made to issue a multi-row insert or fetch statement on a
server that does not support DRDA Version 3 prtocols.

PREPARE Statement

Figure 4. PREPARE Statement

Description

cursor-width: WITHOUT ROWSET POSITIONING or WITH ROWSET
POSITIONING

See “DECLARE CURSOR Statement” on page 6 for a description of these clauses

INSENSITIVE
SENSITIVE STATIC

SCROLL
NO SCROLL
WITH HOLD
WITH RETURN

cursor-width
fetch-first-clause

read-only-clause
update-clause

optimize-clause
isolation-clause

FOR
SINGLE ROW
MULTIPLE ROWS

NOT
ATOMIC

�� ��

attribute-string

(1)

(2)

(3)

(4)

Note:

1. The same clause must not be specified more than once. If the options are not specified, their
defaults are whatever was specified for the corresponding option in an associated DECLARE
CURSOR statement.

2. See the DECLARE CURSOR Statement for more information about the cursor-width clause.

3. The FOR SINGLE ROW or FOR MULTIPLE ROWS clause must only be specified for an INSERT statement
(SQLSTATE 07501, SQLCODE -20186).

4. The ATOMIC or NOT ATOMIC clause must only be specified for an INSERT statement (SQLSTATE 07501,
SQLCODE -20186).
 24 LI382 PFS

IBM Confidential
SCROLL or NO SCROLL

Specifies whether the cursor is scrollable.

SCROLL
Specifies that the cursor is scrollable. For a scrollable cursor, whether the cursor
has sensitivity to inserts, updates, or deletes depends on the cursor sensitivity
option in effect for the cursor. If SCROLL is specified and neither ASENSITIVE
nor SENSITIVE is specified, then the cursor is read-only and behaves as
INSENSITIVE.

NO SCROLL
Specifies that the cursor is not scrollable. This is the default.

FOR SINGLE ROW or FOR MULTIPLE ROWS

Specified whether a variable number of rows of data will be provided for a dynamic
INSERT statement.

FOR MULTIPLE ROWS
Specifies that multiple rows of data may be provided with host variable arrays on
an EXECUTE statement for the statement being prepared. FOR MULTIPLE
ROWS must only be specified for an INSERT statement (SQLSTATE 07501,
SQLCODE -20186).

FOR SINGLE ROW
Specifies that multiple rows of data may not be provided with host variable
arrays on an EXECUTE statement for the statement being prepared. FOR
SINGLE ROW must only be specified for an INSERT statement (SQLSTATE
07501, SQLCODE -20186).

ATOMIC or NOT ATOMIC

Specifies whether all of the rows should be inserted as an atomic operation or not.
This clause is only valid for a static INSERT statement (SQLSTATE 42601, SQLCODE
-104). This clause cannot be used with an INSERT statement that is dynamically
executed, see “PREPARE Statement” on page 24 for more information.

Specifies whether all of the rows should be inserted as an atomic operation or not.

ATOMIC

Specifies that if the insert for any row fails, then all changes made to the database by
any of the inserts, including changes made by successful inserts, are undone. This is
the default.

NOT ATOMIC

Specifies that, regardless of the failure of any particular insert of a row, the EXECUTE
statement will not undo any changes made to the database by the successful inserts of
other rows from the host-variable-arrays, and INSERTs will be attempted for
subsequent rows. However, the minimum level of atomicity is at least that of a single
insert (i.e., it is not possible for a partial insert to complete), including any triggers
that may have been executed as a result of the insert statement.

INSERT Statement

The INSERT statement inserts rows into a table or view. The table or view can be at
the current server or any DB2 subsystem with which the current server can establish a
connection. Inserting a row into a view also inserts the row into the table on which the
view is based.
 Chapter 2. Usage Reference 25

 IBM Confidential
There are three forms of this statement:

• The INSERT via VALUES is used to insert a single row into the table or view
using the values provided or referenced.

• The INSERT via SELECT is used to insert one or more rows into the table or view
using values from other tables, or views, or both.

• The INSERT via FOR n ROWS form is used to insert multiple rows into the table
or view using values provided in the host-variable-array

Figure 5. INSERT Statement

INSERT INTO table-name
view-name

(

,

column-name)

OVERRIDING USER VALUE

VALUES expression
DEFAULT
NULL

(

,

expression
DEFAULT
NULL

)

fullselect
WITH RR

RS
CS

QUERYNO integer

multiple-row-insert

�� �

� ��
 26 LI382 PFS

IBM Confidential
Figure 6. INSERT - multiple-row-insert

multiple-row-insert

FOR integer-constant or host-variable ROWS

Specifies the number of rows to be inserted. This clause is only valid for a static
INSERT statement (SQLSTATE 42601, SQLCODE -104). For a dynamic INSERT
statement, refer to the“EXECUTE Statement” on page 32 for more information.

Evaluates host-variable or integer-constant to an integral value k. If a host-variable is
specified, it must be an exact numeric type with scale zero (SQLSTATE 42618,
SQLCODE -5012), and must not include an indicator variable (SQLSTATE 42601,
SQLCODE -104). Furthermore, k must be in the range, 0<k<=32767 (SQLSTATE
42873, SQLCODE -246). k rows are inserted into the target table from the specified
host-variable-array. This form of the ROWS clause can not be used with an INSERT
statement that is dynamically executed (SQLSTATE 42601, SQLCODE -104).

VALUES (host-variable-array, ...)

Identifies for each column involved in the INSERT a host variable array that contains
the data to be inserted. The number of columns implicitly or explicitly specified in the
INSERT statement must be less than or equal to the total number of host-variable-
arrays specified (SQLSTATE 07001, SQLCODE -313). Each host variable array must be
defined in the application program in accordance with the rules for declaring an array
(SQLSTATE 42618, SQLCODE -312). A host-variable-array contains data for the
column of the table that is a target of the INSERT. The number of rows to be inserted
must be less than or equal to the dimension of each of the host-variable-arrays
(SQLSTATE 42873, SQLCODE -246).

FOR
integer-constant
host-variable

ROWS

VALUES (

,

host-variable-array)
USING DESCRIPTOR descriptor-name

ATOMIC

NOT ATOMIC

�� �

� ��

multiple-row-insert

(1)

(2)

Note:

1. The FOR n ROWS clause must be specified for a static multiple-row-insert. However, this clause
must not be specified for a dynamic INSERT statement (SQLSTATE 42601, SQLCODE -104). For a
dynamic statement, the FOR n ROWS clause is specified on the EXECUTE statement.

2. The ATOMIC or NOT ATOMIC clauses may be specified for a static multiple-row-insert. However,
this clause must not be specified for a dynamic INSERT statement (SQLSTATE 42601, SQLCODE -
104). For a dynamic statement, the ATOMIC or NOT ATOMIC clause is specified as an attribute on
the PREPARE statment.
 Chapter 2. Usage Reference 27

 IBM Confidential
An optional indicator array can be specified for each host-variable-array. It should be
specified if the SQLTYPE of any SQLVAR occurrence indicates that the SQLVAR is
nullable. The indicators must be small integers. The indicator array must be large
enough to contain an indicator for each row of input data(SQLSTATE 42873,
SQLCODE -246).

USING DESCRIPTOR descriptor

Identifies an SQLDA that must contain a valid description of the host-variable-arrays
or buffers which contain the values to be inserted.

The SQLDA must have enough storage to contain a SQLVAR for each target column
for which values are provided, plus an additional SQLVAR entry for use by DB2 UDB
for z/OS (SQLSTATE 07002, SQLCODE -804). Each SQLVAR occurrence, other than
the last one, describes a host variable array or buffer in which the values for a column
of the target table are. An additional SQLVAR entry (i.e., the last one) must be
provided for use by DB2 UDB for z/OS. For example, if the INSERT statement is
providing values for 5 columns of the target table, then 6 SQLVAR entries must be
provided. If any value is a LOB then twice as many SQLVAR entries must be
provided, and SQLN must be set to that number. So, if the INSERT statement is
providing values for 5 columns of the target table, and some of the values to be
inserted are LOBs, then 12 SQLVAR entries must be provided.

Before the multiple row INSERT statement is processed, the user must set the
following fields in the SQLDA:

• SQLN to indicate the number of SQLVAR occurrences provided in the SQLDA.

• SQLABC to indicate the number of bytes of storage allocated for the SQLDA.

• SQLD to indicate the number of variables used in the SQLDA that provide values
for columns that are the target of the INSERT, plus one.10

• SQLVAR occurrences to indicate the attributes of an element of the host variable
array for the SQLVAR entries that correspond to values provided for the target
columns of the INSERT. Within each SQLVAR:

— SQLTYPE to indicate the data type of the elements of the host-variable-array

— SQLDATA field to point to the corresponding host-variable-array

— the length fields (SQLLEN and SQLLONGLEN) set to indicate the maximum
length of a single element of the array.

• SQLNAME - The fifth through eighth bytes of the data portion of SQLNAME
must be initialized to a binary integer representation of the dimension of the host-
variable-array. The length of SQLNAME should be set to 8, and the first two
bytes of the data portion of SQLNAME must be initialized to X'0000'11.

The user sets the SQLDATA and SQLIND pointers to the beginning of the
corresponding arrays. SQLD must be set to a value greater than or equal to zero and
less than or equal to SQLN.

ATOMIC or NOT ATOMIC

Specifies whether all of the rows should be inserted as an atomic operation or not.

ATOMIC

10.The extra entry is for use by DB2 UDB for z/OS to specify the number of rows to be inserted.
11. The third and forth bytes of the data portion of the SQLNAME field are interpreted as a CCSID if the sixth byte of SQLDAID = ’+’.
 28 LI382 PFS

IBM Confidential
Specifies that if the insert for any row fails, then all changes made to the database by
any of the inserts, including changes made by successful inserts, are undone. This is
the default.

NOT ATOMIC

Specifies that, regardless of the failure of any particular insert of a row, the INSERT
statement will not undo any changes made to the database by the successful inserts of
other rows from the host-variable-arrays, and INSERTs will be attempted for
subsequent rows. However, the minimum level of atomicity is at least that of a single
insert (i.e., it is not possible for a partial insert to complete), including any triggers
that may have been executed as a result of the INSERT statement.

Considerations for an SQLCA with an INSERT
Statement for Multiple Rows of Data

When NOT ATOMIC is specified the inserts are processed independently. This
means that if one or more errors occur during the execution of an INSERT of a row,
then processing continues. The row that was being inserted at the time of the error is
not inserted. Execution continues with the next row to be inserted, and any other
changes made during the execution of the multiple row INSERT statement are not
backed out. However, the insert of an individual row is an atomic action.

Otherwise, when ATOMIC is in effect, if an insert value violates any constraints, or if
any other error occurs during the execution of an INSERT of a row, then all changes
made during the execution of the multiple row INSERT statement are backed out. The
SQLCA reflects the last warning encountered.

In either case, after an INSERT statement that inserts multiple rows of data,
information is returned to the program through the SQLCA. The SQLCA is set as
follows:

• SQLCODE contains the SQLCODE.

• SQLSTATE contains the SQLSTATE

• SQLERRD3 contains the number of rows actually inserted. SQLERRD3 is the
number of rows inserted, if this is less than the number of rows requested, then an
error occurred.

• SQLWARN flags are set if they were set during any single insert operation.

The SQLCA is used to return information on errors and warnings found during a
multiple-row-insert. If indicator arrays are provided, the indicator variable values are
used to determine if the value from the host-variable-array, or NULL, will be used.
The SQLSTATE contains the warning from the last data mapping error.

Additionally, when NOT ATOMIC is in effect then status information is available for
each failure or warning that occurred while processing the insert. The status
information for each row is available via the GET DIAGNOSTICS statement. See
“GET DIAGNOSTICS” on page 34 for more information.

DRDA Considerations

DB2 UDB for z/OS will limit the size of user data and control information to 10M
(except for LOBs which are processed in a different data stream) for a single multiple
row INSERT statement using host variable arrays (SQLSTATE 57011, SQLCODE -
904).

Multi-row insert and fetch statements are supported by any requester or server that
supports the DRDA Version 3 protocols. SQLCODE -30005, SQLSTATE 56702 will be
 Chapter 2. Usage Reference 29

 IBM Confidential
returned if an attempt is made to issue a multi-row insert or fetch statement on a
server that does not support DRDA Version 3 prtocols.

Example Insert

Example 1: Inserting a Variable Number of Rows Using host-variable-arrays for
Column Values.

Assume that the T1 table has 1 column. INSERT a variable (:hv) number of rows of
data into the T1 table. The values to be inserted are provided in a host-variable-array
(:hva).

EXEC SQL INSERT INTO T1 FOR :hv ROWS VALUES (:hva:hvind) ATOMIC;

In this example, :hva represents the host-variable-array and :hvind represents the
array of indicator variables.

Example 2: Inserting multiple Rows Using host-variable-arrays for Column Values.

Assume that the T2 table has 2 columns, C1 is a SMALL INTEGER column, and C2 is
an INTEGER column. INSERT 10 rows of data into the T2 table. The values to be
inserted are provided in host-variable-arrays :hva1 (an array of INTEGERS and :hva2
an array of DECIMAL(15,0) values. The data values for :hva1 and :hva2 are
represented in the following table:

EXEC SQL INSERT INTO T2 (C1, C2) FOR 10 ROWS VALUES (:hva1:hvind1,
:hva2:hvind2) NOT ATOMIC;

After execution of the INSERT statement, we will have the following in the SQLCA:

SQLCODE = 0

SQLSTATE = 0

SQLERRD3 = 8

Although we attempted to insert 10 rows, only 8 rows of data were inserted. Further
information can be found by using the GET DIAGNOSTICS statement, for example:

Table 2. Data values for :hva1 and :hva2

Array Entry :hva1 :hva2

1 1 32768

2 -12 90000

3 79 2

4 32768 19

5 8 36

6 5 24

7 400 36

8 73 4000000000

9 -200 2000000000

10 35 88
 30 LI382 PFS

IBM Confidential
GET DIAGNOSTICS :num_rows = ROW_COUNT, :num_cond = NUMBER;

Would result in num_row = 8 and num_cond = 2 (2 conditions).

GET DIAGNOSTICS CONDITION 1 :sqlstate = RETURNED_SQLSTATE, :sqlcode =
DB2_RETURNED_SQLCODE, :row_num = DB2_ROW_NUMBER;

Would result in sqlstate = 22003, sqlcode = -302, and row_num = 4

GET DIAGNOSTICS CONDITION 2 :sqlstate = RETURNED_SQLSTATE, :sqlcode =
DB2_RETURNED_SQLCODE, :row_num = DB2_ROW_NUMBER;

Would result in sqlstate = 22003, sqlcode = -302, and row_num = 8

Example 3: Inserting multiple Rows Using host-variable-arrays for Column Values.

Assume the above table T2, with 2 columns, C1 is a SMALL INTEGER column, and
C2 is an INTEGER column. INSERT 8 rows of data into the T2 table. The values to be
inserted are provided in host-variable-arrays :hva1 (an array of INTEGERS and :hva2
an array of DECIMAL(15,0) values. The data values for :hva1 and :hva2 are
represented in Table 2 on page 30.

EXEC SQL INSERT INTO T2 (C1, C2) FOR 8 ROWS VALUES (:hva1:hvind1,
:hva2:hvind2) NOT ATOMIC;

After execution of the INSERT statement, we will have the following in the SQLCA:

SQLCODE = -302

SQLSTATE = 22003

SQLERRD3 = 6

Although we attempted to insert 8 rows, only 6 rows of data were inserted. Further
information can be found by using the GET DIAGNOSTICS statement, for example:

GET DIAGNOSTICS :num_rows = ROW_COUNT, :num_cond = NUMBER;

Would result in num_row = 6 and num_cond = 2 (2 conditions).

GET DIAGNOSTICS CONDITION 1 :sqlstate = RETURNED_SQLSTATE, :sqlcode =
DB2_RETURNED_SQLCODE, :row_num = DB2_ROW_NUMBER;

Would result in sqlstate = 22003, sqlcode = -302, and row_num = 4

GET DIAGNOSTICS CONDITION 2 :sqlstate = RETURNED_SQLSTATE, :sqlcode =
DB2_RETURNED_SQLCODE, :row_num = DB2_ROW_NUMBER;

Would result in sqlstate = 22003, sqlcode = -302, and row_num = 8

 Chapter 2. Usage Reference 31

 IBM Confidential
EXECUTE Statement

Figure 7. EXECUTE STATEMENT

For host-variable or integer ROWS

Specifies the number of rows to be inserted. The values inserted are specified in the
USING clause.

host-variable or integer-constant is assigned to an integral value k. If a host-variable is
specified, it must be an exact numeric type with a scale of zero (SQLSTATE 42618,
SQLCODE -5012), and must not include an indicator variable (SQLSTATE 42601,
SQLCODE -104). Furthermore, k must be in the range, 0<k<=32767 (SQLSTATE
42873, SQLCODE -246).

USING host-variable-array, ...

 Identifies for each column involved in the INSERT a host-variable-array that contains
the data to be inserted. The number of columns implicitly or explicitly specified in the
INSERT statement must be less than or equal to the total number of host-variable-
arrays specified (SQLSTATE 07001, SQLCODE -313). Each host-variable-array must
be defined in the application program in accordance with the rules for declaring an
array (SQLSTATE 42618, SQLCODE -312). The number of rows to be inserted must be
less than or equal to the dimension of each of the host-variable-arrays (SQLSTATE
42873, SQLCODE -246).

An optional indicator array can be specified for a host-variable-array. It should be
specified if the SQLTYPE of any SQLVAR occurrence indicates that the value for the

EXECUTE statement-name

USING

,

host-variable

USING DESCRIPTOR descriptor-name

FOR host-variable
integer-constant

ROWS USING

,

host-variable-array
USING DESCRIPTOR descriptor-name

��

multiple-row-insert

│ │

��

(1)

(2)

(3)

multiple-row-insert:

Note:

1. The FOR n ROWS clause can not be specified with this variation of the EXECUTE Statement.

2. The FOR n ROWS clause can not be specified with this variation of the EXECUTE Statement.

3. This form can only be specified for a dynamic INSERT statement.
 32 LI382 PFS

IBM Confidential
column is null. The number or elements in the indicator array must be greater than or
equal to the number of rows being inserted (DSNH5011I).

USING DESCRIPTOR descriptor

Identifies an SQLDA that must contain a valid description of the host-variable-arrays
or buffers containing the values to be inserted.

The SQLDA must have enough storage to contain a SQLVAR for each target column
for which values are provided, plus an additional SQLVAR entry for use by DB2 UDB
for z/OS (SQLSTATE 07002, SQLCODE -804). The precompiler will generate code to
fill in the required information for this extra SQLVAR. Each SQLVAR occurrence,
other than the last one, describes a host variable array or buffer in which the values
for a column of the target table are. An additional SQLVAR entry (i.e., the last one)
must be provided for use by DB2 UDB for z/OS. For example, if the INSERT
statement is providing values for 5 columns of the target table, then 6 SQLVAR entries
must be provided. If any value is a LOB then twice as many SQLVAR entries must be
provided, and SQLN must be set to that number. So, if the INSERT statement is
providing values for 5 columns of the target table, and some of the values to be
inserted are LOBs, then 12 SQLVAR entries must be provided.

Before the dynamic multiple row INSERT is processed, the user must set the
following fields in the SQLDA:

• SQLN to indicate the number of SQLVAR occurrences provided in the SQLDA.

• SQLABC to indicate the number of bytes of storage allocated for the SQLDA.

• SQLD to indicate the number of variables used in the SQLDA that provide values
for columns that are the target of the INSERT, plus one.

• SQLVAR occurrences to indicate the attributes of an element of the host variable
array for the SQLVAR entries that correspond to values provided for the target
columns of the INSERT. Within each SQLVAR:

— SQLTYPE indicates the data type of the elements of the host-variable-array

— SQLDATA field points to the corresponding host-variable-array

— the length fields (SQLLEN and SQLLONGLEN) are set to indicate the length
of a single element of the array.

• SQLNAME - The fifth through eighth bytes of the data portion of SQLNAME
must be initialized to a binary integer representation of the dimension of the host-
variable-array. The length of SQLNAME should be set to 8, and the first two
bytes of the data portion of SQLNAME must be initialized to X'0000'12.

The user sets the SQLDATA and SQLIND pointers to the beginning of the
corresponding arrays. SQLD must be set to a value greater than or equal to zero and
less than or equal to SQLN.

Example

Example 1: Inserting a Variable Number of Rows Using host-variable-arrays for
Column Values on EXECUTE

Assume that the IWH.progparm table has 9 columns. Prepare and execute a dynamic
INSERT statement which inserts 5 rows of data into the IWH.progparm table. The
values to be inserted are provided in arrays, where all the values for a column are
provided in an host-variable-array with the EXECUTE statement.

stmt = 'INSERT INTO IWH.progparm (iwhid, updated_by,update_ts,name,

12. The third and forth bytes of the data portion of the SQLNAME field are interpreted as a CCSID if the sixth byte of SQLDAID = ’+’.
 Chapter 2. Usage Reference 33

 IBM Confidential
 short_description, orderNo, parmData,

 parmDataLong, VWProgKey)

VALUES (? , ? , ? , ? , ? , ? , ? , ? , ?);

attrvar = ’FOR MULTIPLE ROWS’;

EXEC SQL PREPARE ins_stmt ATTRIBUTES :attrvar FROM :stmt;

NROWS = 5;

EXEC SQL EXECUTE ins_stmt FOR :NROWS ROWS

 USING :V1, :V2, :V3, :V4, :V5, :V6, :V7, :V8, :V9;

In this example, each host variable in the USING clause represents an array of values
for the corresponding column of the target of the INSERT statement.

GET DIAGNOSTICS

The GET DIAGNOSTIC STATEMENT provides diagnostic information about the last
SQL statement (other than a GET DIAGNOSTICS statement) that was executed.

Invocation

This statement can only be embedded in an application program. It is an executable
statement that cannot be dynamically prepared.

Authorization

None required.
 34 LI382 PFS

IBM Confidential
GET DIAGNOSTICS

,

host-variable1 =

DB2_GET_DIAGNOSTICS_DIAGNOSTICS
DB2_LAST_ROW
DB2_NUMBER_PARAMETER_MARKERS
DB2_NUMBER_RESULT_SETS

DB2_RETURN_STATUS
DB2_SQL_ATTR_CURSOR_HOLD
DB2_SQL_ATTR_CURSOR_ROWSET
DB2_SQL_ATTR_CURSOR_SCROLLABLE
DB2_SQL_ATTR_CURSOR_SENSITIVITY
DB2_SQL_ATTR_CURSOR_TYPE
MORE
NUMBER
ROW_COUNT

CONDITION host-variable2
integer

,

host-variable3 =

�� statement-information
condition-information
combined-information

��

│ statement-information-item-name │

│ │

│

condition-information-item-name
connection-information-item-name

�

� │

statement-information:

statement-information-item-name:

(1)

condition-information:
(2)

Note:

1. RETURN_STATUS can be used as a synonym for DB2_RETURN_STATUS

2. EXCEPTION can be used as a synonym for CONDITION
 Chapter 2. Usage Reference 35

 IBM Confidential
Description

The GET DIAGNOSTICS statement is used to gather diagnostic information about the
execution of a prior SQL statement. This diagnostic information is gathered as the
previous SQL statement is executed, and can logically be thought of as the diagnostics
area. Some of the information available via the GET DIAGNOSTICS statement is also
available in the SQLCA.

There are three main bodies of information in the diagnostics area. These are the
statement-information area, condition-information area, and the combined-
information area. After the execution of an SQL statement, there will be information
about the execution of the statement in the statement-information area, and there will
be at least one instance of the condtion-information area. The number of instances of

CATALOG_NAME
CONDITION_NUMBER
CURSOR_NAME
DB2_ERROR_CODE1
DB2_ERROR_CODE2
DB2_ERROR_CODE3
DB2_ERROR_CODE4
DB2_INTERNAL_ERROR_POINTER
DB2_LINE_NUMBER
DB2_MODULE_DETECTING_ERROR
DB2_ORDINAL_TOKEN_n
DB2_REASON_CODE
DB2_RETURNED_SQLCODE
DB2_ROW_NUMBER
DB2_TOKEN_COUNT
MESSAGE_OCTET_LENGTH
MESSAGE_TEXT
RETURNED_SQLSTATE
SERVER_NAME

│ │
condition-information-item-name:

DB2_AUTHENTICATION_TYPE
DB2_AUTHORIZATION_ID
DB2_CONNECTION_STATE
DB2_CONNECTION_STATUS
DB2_ENCRYPTION_TYPE
DB2_SERVER_CLASS_NAME
DB2_PRODUCT_ID

host-variable4 = ALL

,

STATEMENT

CONDITION
CONNECTION host-variable5

integer

│ │

│ │

connection-information-item-name:

combined-information:

(1)

(2)

Note:

1. STATEMENT can only be specified once.

2. CONDITION and CONNECTION can only be specified once if host-variable5 or
integer is not also specified.
 36 LI382 PFS

IBM Confidential
the condition-information area is indicated by the NUMBER item that is available in
the statement-information area. The combined-information area contains a text
representation of all the information gathered about the execution of the SQL
statement.

statement-information: Information about the last SQL statement Executed.

If a GET DIAGNOSTICS item is not set, then the host variable is set to a default value,
based on its data type: 0 for an exact numeric field, an empty string for a VARCHAR
field and blanks for a CHAR field.

host-variable1

Identifies a variable described in the program in accordance with the rules for
declaring host variables. The data type of the host variable must be the data type
specified in Table 1 - "Data Types for GET DIAGNOSTICS" items for the indicated
item(SQLCODE -301 and SQLSTATE 42895).

statement-information

DB2_GET_DIAGNOSTICS_DIAGNOSTICS
After a GET DIAGNOSTICS statement, if any errors or warnings occurred in the
execution of the GET DIAGNOSTICS statement, contains textual information
about these errors or warnings. The format of the information is similar to what
would be returned by a GET DIAGNOSTICS :hv = ALL statement.

DB2_LAST_ROW
For a multiple-row FETCH statement, contains a value of +100 if the last row
currently in the table is in the set of rows that have been fetched. For cursors that
are not sensitive to updates, there would be no need to do a subsequent FETCH,
since the result would be an end of data indication (SQLSTATE 02000,
SQLCODE=+100). For cursors that are sensitive to updates, a subsequent FETCH
may return more data if a row had been inserted before the FETCH was executed.
For statements other than multiple-row FETCH statements, or for multiple-row
FETCH statements that do not contain the last row, this variable will contain the
value 0.

DB2_NUMBER_PARAMETER_MARKERS
For a PREPARE statement, contains the number of parameter markers in the
prepared statement. For statements other than PREPARE, or PREPARE
statements that contain no paramenter markers, this value will be 0.

DB2_NUMBER_RESULT_SETS
For a CALL statement, contains the actual number of result sets returned by the
procedure. For statements other than CALL, or for CALL statements that do not
return result sets, this value will be 0.

DB2_RETURN_STATUS
Identifies the status value returned from the previous CALL statement if the
procedure was an SQL procedure. If the previous statement is not a CALL
statement that invokes an SQL procedure, the value returned will be 0. For more
information, see the RETURN statement in DCR DJ031.

DB2_SQL_ATTR_CURSOR _HOLD
For an ALLOCATE or OPEN statement, indicates cursor holdability, whether a
cursor can be held open across multiple units of work or not.

• N indicates that this cursor will not remain open across multiple units of
work.

• Y indicates that this cursor will remain open across multiple units of work.

Blank Otherwise
 Chapter 2. Usage Reference 37

 IBM Confidential
DB2_SQL_ATTR_CURSOR_ROWSET
For an ALLOCATE or OPEN statement, indicates rowset accessibility, whether a
cursor can be accesses using rowset positioning or not.

• N indicates that this cursor only supports row positioned operations.

• Y indicates that this cursor supports rowset positioned operations.

Blank Otherwise

DB2_SQL_ATTR_CURSOR_SCROLLABLE
For an ALLOCATE or OPEN statement, indicates cursor scrollability, whether a
cursor can be scrolled forward and backward or not.

• N indicates that this cursor is not scrollable.

• Y indicates that this cursor is scrollable.

Blank Otherwise

DB2_SQL_ATTR_CURSOR_SENSITIVITY
For an ALLOCATE or OPEN statement, indicates cursor sensitivity, whether a
cursor does or does not show updates to cursor rows made by other connections.

• A indicates asensitive.

• I indicates insensitive.

• S indicates sensitive.

Blank Otherwise

DB2_SQL_ATTR_CURSOR_TYPE
For an ALLOCATE or OPEN statement, indicates the type of cursor, whether a
cursor type is forward-only, static, or dynamic.

• D indicates a dynamic cursor.

• S indicates a static cursor.

Blank Otherwise

MORE
N indicates that all the warnings and errors from the previous SQL statement
were stored in the diagnostic area. Y indicates that some of the warnings and
errors from the previous SQL statement were discarded because the amount of
storage needed to record warnings and errors exceeded 65535 bytes.

NUMBER
Returns the number of errors and warnings detected by the execution of the
previous SQL statement into the specified host variable. If the previous SQL
statement returned an SQLSTATE of 00000 or no previous SQL statement has
been executed, the number returned is one.

ROW_COUNT

Identifies the number of rows associated with the previous SQL statement that
was executed.

If the previous SQL statement is a DELETE, INSERT, or UPDATE statement,
ROW_COUNT identifies the number of rows deleted, inserted, or updated by
that statement, excluding rows affected by either triggers or referential integrity
constraints.

If the previous SQL statement is a multiple-row FETCH, ROW_COUNT identifies
the number of rows fetched.

If the previous statement is a PREPARE of a SELECT statement, ROW_COUNT
identifies the estimated number of result rows in the prepared statement.

For DB2 for z/OS, a value of -1 indicates a mass delete from a table in a
segmented table space.
 38 LI382 PFS

IBM Confidential
CONDITION:

host-variable2 or integer

Identifies the diagnostic for which information is requested. Each diagnostic that
occurs while executing an SQL statement is assigned an integer. The value 1 indicates
the first diagnostic, 2 indicates the second diagnostic and so on. The host variable
specified must be a numeric data type or SQLCODE -301 and SQLSTATE 42895 is
returned. An indicator variable is not allowed for this host variable (SQLSTATE
42601, SQLCODE -104). If a value is specified that is less than or equal to zero or
greater than the number of available diagnostics, SQLSTATE 35000 and SQLCODE -
393 is returned.

host-variable3

Identifies a variable described in the program in accordance with the rules for
declaring host variables. The data type of the host variable must be the data type as
specified in Table 3 on page 44 for the indicated condition-information item
(SQLCODE -301 and SQLSTATE 42895).

condition-information: Assigns the values of the specified condition information to
the associated host variables. The host variable specified must be of the data type that
is compatible with the data type of the specified diagnostic-id or SQLCODE -301 and
SQLSTATE 42895 is returned. If the value of the condition is truncated when
assigning it to the host variable, SQLSTATE 01004 and SQLWARN1=’W’ is returned.
If an indicator variable was provided, the length of the value is returned in the
indicator variable.

If a DIAGNOSTICS item is not set, then the host variable is set to a default valued,
based on the data type of the item. The specific value will be 0 for a numeric field, an
empty string for a VARCHAR field, and blanks for a CHAR field.

condition-information-item-name

CATALOG_NAME

If the returned SQLSTATE is:

• class 23 (Integrity Constraint Violation), or

• class 27 (Triggered Data Change Violation), or

• 40002 (Transaction Rollback - Integrity Constraint Violation),

the constraint that caused the error is a referential, check, or unique constraint, the
server name of the table that owns the constraint is returned. Otherwise, the
empty string is returned.

If the returned SQLSTATE is class 42 (Syntax Error or Access Rule Violation), the
server name of the table that caused the error is returned. Otherwise, the empty
string is returned.

If the returned SQLSTATE is class 44 (WITH CHECK OPTION Violation), the
server name of the view that caused the error is returned. Otherwise, the empty
string is returned.

CONDITION_NUMBER

Returns the number of the diagnostic returned.

CURSOR_NAME

If the returned SQLSTATE is class 24 (Invalid Cursor State),the name of the cursor
is returned. Otherwise, the empty string is returned.
 Chapter 2. Usage Reference 39

 IBM Confidential
DB2_ERROR_CODE113

Contains an internal error code. Otherwise, the value 0 is returned.

DB2_ERROR_CODE214

Contains an internal error code. Otherwise, the value 0 is returned.

DB2_ERROR_CODE315

Contains an internal error code. Otherwise, the value 0 is returned.

DB2_ERROR_CODE416

Contains an internal error code. Otherwise, the value 0 is returned.

DB2_INTERNAL_ERROR_POINTER

For some errors, this will be a negative value that is an internal error pointer.
Otherwise, the value 0 is returned.

DB2_LINE_NUMBER

For a CREATE PROCEDURE for an SQL procedure where an error is
encountered parsing the SQL procedure body, contains the line number where
the error was encountered. Otherwise, the value 0 is returned.

DB2_MODULE_DETECTING_ERROR

Contains an identifier indicating which module detected the error. Otherwise,
blanks are returned.

DB2_ORDINAL_TOKEN_n

Returns the nth token. n must be a value from 1 to 100. For example,
DB2_ORDINAL_TOKEN_1 would return the value of the first token,
DB2_ORDINAL_TOKEN_2 the second token, etc... IF there is no value for the
token, the empty string is returned.

DB2_REASON_CODE

Contains the reason code for errors that have a reason code token in the message
text. Otherwise, the value zero is returned.

DB2_RETURNED_SQLCODE

Returns the SQLCODE for the specified diagnostic.

DB2_ROW_NUMBER

For a statement involving multiple rows, and when such information is available,
the row number on which DB2 detected the exception. Otherwise the value 0 is
returned.

DB2_TOKEN_COUNT

Returns the number of tokens available for the specified diagnostic id.

13. SQLERRD1
14. SQLERRD2
15. SQLERRD3
16. SQLERRD4
 40 LI382 PFS

IBM Confidential
MESSAGE_OCTET_LENGTH

The length of the message text (in bytes).

MESSAGE_TEXT

The message text associated with the SQLCODE.

RETURNED_SQLSTATE

Returns the SQLSTATE for the specified diagnostic.

SERVER_NAME
If the previous SQL statement is a CONNECT, DISCONNECT, or SET

CONNECTION, the name of the server specified in the previous statement is

returned. Otherwise, the name of the server where the statement executes is
returned.

connection-information: Information about the last SQL statement executed if it was
a CONNECT.

connection-information-item-name

DB2_AUTHENTICATION_TYPE

Contains an authentication type value of :

• ‘S’ for a server authentication

• ‘C’ for client authentication

• ‘D’ for authentication using DB2 Connect

• ‘E’ for DCE security services authentication

• blank for unspecified authentication

DB2_AUTHORIZATION_ID
Authorization id used by connected server. Because of userid translation and
authorization exits, the local userid may not be the authid used by the server.

DB2_CONNECTION_STATE

Contains a value of -1 if the connection is unconnected; 0 if the connection is local;
1 if the connection is remote. Otherwise, the value zero is returned.

DB2_CONNECTION_STATUS

Contains a value of 1 if committable updates can be performed on the connection
for this unit of work; 2 if no committable updates can be performed on the
connection for this unit of work. Otherwise, the value 0 is returned.

DB2_SERVER_CLASS_NAME
For a CONNECT or SET CONNECTION statement, contains a value of

• QAS for DB2 UDB for iSeries

• QDB2 for DB2 UDB for OS/390 and z/OS

• QDB2/2 for DB2 UDB for OS/2

• QDB2/6000 for DB2 UDB for AIX

• QDB2/6000 PE for DB2 UDB for AIX Parallel Edition

• QDB2/AIX64 for DB2 UDB for AIX 64-bit

• QDB2/HPUX for DB2 UDB for HP-UX

• QDB2/HP64 for DB2 UDB for HP-UX 64-bit
 Chapter 2. Usage Reference 41

 IBM Confidential
• QDB2/LINUX for DB2 UDB for Linux

• QDB2/LINUX390 for DB2 UDB for Linux

• QDB2/LINUXIA64 for DB2 UDB for Linux

• QDB2/LINUXPPC for DB2 UDB for Linux

• QDB2/LINUXPPC64 for DB2 UDB for Linux

• QDB2/LINUXZ64 for DB2 UDB for Linux

• QDB2/NT for DB2 UDB for NT

• QDB2/NT64 for DB2 UDB for NT 64-bit

• QDB2/PTX for DB2 UDB for NUMA-Q

• QDB2/SCO for DB2 UDB for SCO UnixWare

• QDB2/SGI for DB2 UDB for Silicon Graphics

• QDB2/SNI for DB2 UDB for Siemens Nixdorf

• QDB2/SUN for DB2 UDB for SUN Solaris

• QDB2/SUN64 for DB2 UDB for SUN Solaris 64-bit

• QDB2/Windows 95 for DB2 UDB for Windows 95 or Windows 98

• QSQLDS/VM for DB2 for VM and VSE

• QSQLDS/VSE for DB2 for VM and VSE

Otherwise, the empty string is returned.

DB2_ENCRYPTION_TYPE
XXXXX

DB2_PRODUCT_ID

Contains a product signature. If the application server is an IBM relational
database product, the form is pppvvrrm, where:

• ppp identifies the product as follows:

— DSN for DB2 UDB for z/OS
— QSQ for DB2 UDB for iSeries
— SQL for all other DB2 UDB products

• vv is a two-digit version identifier such as ’08’

• rr is a two-digit release identifier such as ‘01’

• m is a one-digit modification level such as ‘0’

For example, if the application server is Version 8 of DB2 UDB for z/OS, the value

would be ‘DSN08010’.

ALL

 Indicates that all diagnostic items that are set for the last SQL statement executed
should be combined into one string. The format of the string is a semi-colon
separated list of all of the available diagnostic information in the form:

<item-name>[(<condition-number>)]=<value-converted-to-character>;...

so for example:

NUMBER=1;RETURNED_SQLSTATE=02000;DB2_RETURNED_SQLCODE=+100;

host-variable4
Identifies a variable described in the program in accordance with the rules for
declaring host variables. The data type of the host variable must be VARCHAR. If
the length of host-variable4 is not sufficient to hold the full returned diagnostic
string, the string is truncated and no warning or error is given.
 42 LI382 PFS

IBM Confidential
STATEMENT
Indicates that all statment-information-item-name diagnostic items that are set for
the last SQL statement executed should be combined into one string. The format
is the same as described above for the ALL option.

CONDITION
Indicates that all condition-information-item-name diagnostic items that are set
for the last SQL statement executed should be combined into one string. If host-
variable4 or integer is supplied after CONDITION, then the format is the same as
described above for the ALL option. If host-variable4 or integer is not supplied,
then the format includes a condition number entry at the beginning of the
information for that condition in the form:

CONDITION_NUMBER=X;<item-name>=<value-converted-to-character>;...
where X is the number of the condition, so for example:

CONDITION_NUMBER=1;RETURNED_SQLSTATE=02000;RETURNED_SQLCODE=100;CONDITIO
N_NUMBER=2;RETURNED_SQLSTATE=01004;

CONNECTION
Indicates that all connection-information-item-name diagnostic items that are set
for the last SQL statement executed should be combined into one string. If host-
variable4 or integer is supplied after CONNECTION, then the format is the same
as described above for the ALL option. If host-variable4 or integer is not supplied,
then the format includes a condition number entry at the beginning of the
information for that condition in the form:

CONNECTION_NUMBER=X;<item-name>=<value-converted-to-character>;...
where X is the number of the condition, so for example:

CONNECTION_NUMBER=1;CONNECTION_NAME=SVL1;DB2_PRODUCT_ID=DSN07010;

host-variable5 or integer
Identifies the diagnostic for which ALL CONDITION or ALL CONNECTION
information is requested. The host variable specified must be a numeric data type
or SQLCODE -301 and SQLSTATE 42895 is returned. An indicator variable is not
allowed for this host variable or SQLSTATE 42601 and a product-specific
SQLCODE is returned. If a value is specified that is less than or equal to zero or
greater than the number of available diagnostics, SQLSTATE 35000 and
SQLCODE -393 is returned.

Rules

The GET DIAGNOSTICS statement does not change the contents of the diagnostics
area (SQLCA). If an SQLSTATE or SQLCODE special variable is declared in the SQL
procedure, these are set to the SQLSTATE or SQLCODE returned from issuing the
GET DIAGNOSTICS statement. The SQLSTATE and SQLCODE values from before
the GET DIAGNOTICS statement was issued are still available in the diagnostics area
by issuing a GET DIAGNOSTICS for RETURNED_SQLSTATE and
DB2_RETURNED_SQLCODE.

Examples

Example 1

In an application, use GET DIAGNOSTICS to determine how many rows were
updated.

long rcount;

EXEC SQL UPDATE T1 SET C1 = C1 + 1;

EXEC SQL GET DIAGNOSTICS :rcount = ROW_COUNT;
 Chapter 2. Usage Reference 43

 IBM Confidential
After execution of this code segment, rcount will contain the number of rows that
were updated.

Example 2

In an application, use GET DIAGNOSTICS to handle multiple SQL Errors.

long numerrors, counter;

char retsqlstate[5];

long hva[5];

EXEC SQL INSERT INTO T1 FOR 5 ROWS VALUES (:hva) NOT ATOMIC;

EXEC SQL GET DIAGNOSTICS :numerrors = NUMBER;

for (i=1;i < numerrors;i++)

 {

 EXEC SQL GET DIAGNOSTICS CONDITION :i :retsqlstate = RETURNED_SQLSTATE;

 printf("SQLSTATE = %s",retsqlstate);

 }

Execution of this code segment, will set and print retsqlstate with the SQLSTATE for
each error that was encountered in the previous SQL statement.

Data Types for GET DIAGNOSTICS Items

Table 3. Data Types for GET DIAGNOSTICS

Item Data Type

Statement Information

DB2_GET_DIAGNOSTICS_DIAGNOSTICS VARCHAR(32672)

DB2_LAST_ROW INTEGER

DB2_NUMBER_PARAMETER_MARKERS INTEGER

DB2_NUMBER_RESULT_SETS INTEGER

 DB2_RETURN_STATUS INTEGER

DB2_SQL_ATTR_CURSOR_HOLD CHAR(1)

DB2_SQL_ATTR_CURSOR_ROWSET CHAR(1)

DB2_SQL_ATTR_CURSOR_SCROLLABLE CHAR(1)

DB2_SQL_ATTR_CURSOR_SENSITIVITY CHAR(1)

DB2_SQL_ATTR_CURSOR_TYPE CHAR(1)

MORE CHAR(1)

NUMBER INTEGER

ROW_COUNT DECIMAL(31,0)

Condition Information
 44 LI382 PFS

IBM Confidential

DRDA Considerations

The GET DIAGNOSTICS statement will be supported from a DB2 UDB for z/OS V8
client, regardless of the level of the server (a DB2 UDB for z/OS V7 or a DB2 UDB for

CATALOG NAME VARCHAR(128)

CONDITION_NUMBER INTEGER

CURSOR_NAME VARCHAR(128)

DB2_ERROR_CODE1 INTEGER

DB2_ERROR_CODE2 INTEGER

DB2_ERROR_CODE3 INTEGER

DB2_ERROR_CODE4 INTEGER

DB2_INTERNAL_ERROR_POINTER INTEGER

DB2_LINE_NUMBER INTEGER

DB2_MODULE_DETECTING_ERROR CHAR(8)

DB2_ORDINAL_TOKEN_n VARCHAR(128)

DB2_REASON_CODE INTEGER

DB2_RETURNED_SQLCODE INTEGER

DB2_ROW_NUMBER DECIMAL(31,0)

DB2_TOKEN_COUNT INTEGER

MESSAGE_OCTET_LENGTH INTEGER

MESSAGE_TEXT VARCHAR(32672)

RETURNED_SQLSTATE CHAR(5)

SERVER_NAME VARCHAR(128)

Connection Information

DB2_AUTHENTICATION_TYPE CHAR(1)

DB2_AUTHORIZATION_ID VARCHAR(128)

DB2_CONNECTION_STATE INTEGER

DB2_CONNECTION_STATUS INTEGER

DB2_ENCRYPTION_TYPE CHAR(8)

DB2_SERVER_CLASS_NAME VARCHAR(128)

DB2_PRODUCT_ID CHAR(8)

Combined Information

ALL VARCHAR(32672)

Table 3. Data Types for GET DIAGNOSTICS (continued)

Item Data Type
 Chapter 2. Usage Reference 45

 IBM Confidential
Windows V7 for instance). When connected to servers that do not support the OPEN
GROUP Version 3 DRDA standard, a diagnostic condition is generated based on the
returned SQLCA. The condition will contain the following information:

• The DB2_RETURNED_SQLCODE is set based on the SQLCODE.

• The RETURNED_SQLSTATE is set based on the SQLSTATE.

• The DB2_GET_DIAGNOSTICS_DIAGNOSTICS item will contain the information
from the SQLCA that came from the server.

 See “GET DIAGNOSTICS” on page 34 for more information on data items returned
from the GET DIAGNOSTICS statement.

Positioned Update

Description

WHERE CURRENT OF cursor-name
When the UPDATE statement is executed, the cursor must be positioned on a row
or rowset of the result table (SQLSTATE 24504, SQLCODE -508).

• If the cursor is positioned on a single row, that row is the one updated.

• If the cursor is positioned on a rowset then all rows corresponding to the rows
of the current rowset are updated.

FOR ROW n OF ROWSET

Specifies which row of the current rowset is to be updated. host-variable or
integer-constant is assigned to an integral value k. If a host-variable is specified, it
must be an exact numeric type with scale zero (SQLSTATE 42618, SQLCODE -
5012), must not include an indicator variable (SQLSTATE 42601, SQLCODE -104),
and k must be in the range of 1 to 32767 (SQLSTATE 428B7, SQLCODE -490). The
cursor must be positioned on a rowset (SQLSTATE 24520, SQLCODE -589), and
the value of host-variable must be a valid value for the set of rows most recently
retrieved for the cursor (SQLSTATE 24521, SQLCODE -248).

If the cursor is positioned on a rowset, and the FOR ROW n OF ROWSET clause is
not specified then all rows corresponding to the rows of the current rowset are
updated.

It is possible for another application process to update a row in the base table of
the SELECT statement so that the specified row of the cursor no longer has a
corresponding row in the base table. An attempt to update such a row results in
an error (SQLSTATE 24510, SQLCODE -222).

Example 1
Assuming Cursor CS1 is positioned on a rowset consisting of 10 rows of table T1,
the following UPDATE statement could be used to UPDATE all 10 rows in the
rowset:

EXEC SQL UPDATE T1 SET C1 = 5 WHERE CURRENT OF CS1;

UPDATE table-name
view-name

SET assignment-clause

WHERE CURRENT OF cursor-name
FOR CURSOR cursor-name FOR ROW host-variable

integer-constant
OF ROWSET

�� �

� ��

positioned-update
 46 LI382 PFS

IBM Confidential
Example 2
Assuming Cusor CS1 is positioned on a rowset consisting of 10 rows of table T1,
the following application code could be used to UPDATE the 4th row of the
rowset:

short ind1, ind2;

int n, updt_value;

stmt = ’UPDATE T1 SET C1 = ? FOR CURSOR CS1 FOR ROW ? OF ROWSET’

ind1 = 0;

ind2 = 0;

n = 4;

updt_value = 5

...

strcpy(my_sqlda.sqldaid,"SQLDA");

my_sqlda.sqln = 2;

my_sqlda.sqld = 2;

my_sqlda.sqlvar[0].sqltype = 497;

my_sqlda.sqlvar[0].sqllen = 4;

my_sqlda.sqlvar[0].sqldata = (int *) &updt_value;

my_sqlda.sqlvar[0].sqlind = (short *) &ind1;

my_sqlda.sqlvar[1].sqltype = 497;

my_sqlda.sqlvar[1].sqllen = 4;

my_sqlda.sqlvar[1].sqldata = (int *) &n;

my_sqlda.sqlvar[1].sqlind = (short *) &ind2;

EXEC SQL PREPARE S1 FROM :stmt;

EXEC SQL EXECUTE S1 USING DESCRIPTOR :my_sqlda;

Positioned Delete

Description

WHERE CURRENT OF cursor-name
When the DELETE statement is executed, the cursor must be positioned on a row
or rowset of the result table (SQLSTATE 24504, SQLCODE -508).

• If the cursor is positioned on a single row, that row is the one deleted, and
after the deletion the cursor is positioned before the next row of its result
table. If there is no next row, the cursor positioned after the last row.

• If the cursor is positioned on a rowset then all rows corresponding to the rows
of the current rowset are deleted, and after the deletion the cursor is
positioned before the next rowset of its result table. If there is no next rowset,
the cursor positioned after the last rowset.

DELETE FROM table-name
view-name

WHERE CURRENT OF cursor-name
FOR CURSOR cursor-name FOR ROW host-variable

integer-constant
OF ROWSET

�� �

� ��

positioned-delete
 Chapter 2. Usage Reference 47

 IBM Confidential
If the cursor is positioned on a rowset then all rows corresponding to the rows of
the current rowset are updated.

FOR ROW n OF ROWSET

Specifies which row of the current rowset is to be deleted. host-variable or
integer-constant is assigned to an integral value k. If a host-variable is specified, it
must be an exact numeric type with scale zero (SQLSTATE 42618, SQLCODE -
5012), must not include an indicator variable (SQLSTATE 42601, SQLCODE -
104), and k must be in the range of 1 to 32767 (SQLSTATE 428B7, SQLCODE -490).
The cursor must be positioned on a rowset (SQLSTATE 24520, SQLCODE -589),
and the value of host-variable must be a valid value for the set of rows most
recently retrieved for the cursor (SQLSTATE 24521, SQLCODE -248).

If the cursor is positioned on a rowset, and the FOR ROW n OF ROWSET clause is
not specified then all rows corresponding to the rows of the current rowset are
deleted.

If the cursor is not positioned on a rowset, the row corresponding to the current
position of the cursor is deleted.

It is possible for another application process to delete a row in the base table of the
SELECT statement so that the specified row of the cursor no longer has a
corresponding row in the base table. An attempt to delete such a row results in an
error (SQLSTATE 24510, SQLCODE -222).

Example 1
Assuming Cursor CS1 is positioned on a rowset consisting of 10 rows of table T1,
the following DELETE statement could be used to DELETE all 10 rows in the
rowset:

EXEC SQL DELETE FROM T1 WHERE CURRENT OF CS1;

Example 2
Assuming Cusor CS1 is positioned on a rowset consisting of 10 rows of table T1,
the following application code could be used to DELETE the 4th row of the
rowset:

short ind1;

int n;

stmt = ’DELETE FROM T1 FOR CURSOR CS1 FOR ROW ? OF ROWSET’

ind1 = 0;

n = 4;

...

strcpy(my_sqlda.sqldaid,"SQLDA");

my_sqlda.sqln = 1;

my_sqlda.sqld = 1;

my_sqlda.sqlvar[0].sqltype = 497;

my_sqlda.sqlvar[0].sqllen = 4;

my_sqlda.sqlvar[0].sqldata = (int *) &n;

my_sqlda.sqlvar[0].sqlind = (short *) &ind1;

EXEC SQL PREPARE S1 FROM :stmt;

EXEC SQL EXECUTE S1 USING DESCRIPTOR :my_sqlda;
 48 LI382 PFS

IBM Confidential
Application Programming - Host Language Declarations

Host-variable-arrays may be specified in C/C++, COBOL, and PL/I. In some cases
there are specific rules regarding the declaration of host-variable arrays that must be
followed or unpredictable results may occur.

For PL/I, the ALIGNED attribute must be specified on arrays of varying length
character or varying length graphic variable declarations that are to be used in multi-
row SQL.

For C/C++, _Packed attribute may not be specified on the structure declarations for
varying length character arrays, varying length graphic arrays, or LOB arrays to be
used in multi-row SQL, and the #pragma pack(1) directive may not be in effect if the
user is planning to use arrays of varchar, vargraphic, or LOBs in multi-row SQL.

C and C++

Using Host-Variable-Arrays

In C and C++ programs, you can define an array. Host-variable-arrays can be used
with the multiple row FETCH and INSERT statements.

Numeric host-variable-arrays

The following figure shows the syntax for valid numeric host-variable-array
declarations.

Array of CHARACTER host-variable-arrays (Nul-
Terminated)

The following figure shows the syntax for valid character host-variable-array
declarations.

auto
extern
static

const
volatile

unsigned
float
double

long
short

int

decimal (integer
, integer

)

,

variable-name [dimension]

= {

,

expr }

;

�� �

� ��
 Chapter 2. Usage Reference 49

 IBM Confidential
Array of VARCHAR host variables arrays:

Array of GRAPHIC host-variable-arrays

The following figure shows the syntax for valid GRAPHIC host-variable-array
declarations.

Array of NUL-terminated GRAPHIC variables:

auto
extern
static

const
volatile

unsigned
char

,

variable-name [dimension] [length]

= {

,

expr }

;

�� �

� ��

auto
extern
static

const
volatile

struct { short
int

var-1 ;

unsigned
char var-2 [length] ; }

,

variable-name [dimension]

= {

,

expr }

;

�� �

� �

� ��

auto
extern
static

const
volatile

unsigned
sqldbchar

,

variable-name [dimension] [length]

= {

,

expr }

;

�� �

� ��
 50 LI382 PFS

IBM Confidential
Array of VARGRAPHIC host variables arrays:

LOBs and LOB locator host variables arrays:

ROWID host variables arrays:

Examples

Example 1:

Declare an integer and varying character array to hold columns retrieved from a
multi-row fetch statement:

auto
extern
static

const
volatile

struct { short
int

var-1 ;

unsigned
sqldbchar var-2 [length] ; }

,

variable-name [dimension]

= {

,

expr }

;

�� �

� �

� ��

auto
extern
static
register

const
volatile

SQL TYPE IS

BINARY LARGE OBJECT
BLOB
CHARACTER LARGE OBJECT
CHAR LARGE OBJECT
CLOB

DBCLOB

(length
K
M
G

)

BLOB LOCATOR
CLOB LOCATOR
DBCLOB LOCATOR

,

variable-name [dimension]

= {

,

expr }

;

�� �

� �

� ��

auto
extern
static
register

const
volatile

SQL TYPE IS ROWID

,

variable-name [dimension] ;�� ��
 Chapter 2. Usage Reference 51

 IBM Confidential
long serial_num[10];

struct {

 short len;

 char data[18];

 } name[10]

EXEC SQL

 DECLARE C1 CURSOR FOR

 SELECT NAME, SERIAL#

 FROM CORPDATA.EMPLOYEE WITH ROWSET POSITIONING;

 ...

EXEC SQL OPEN C1;

EXEC SQL

 FETCH FIRST ROWSET FROM C1 FOR 10 ROWS INTO :name, :serial_num;

COBOL

Using host-variable-arrays

In COBOL programs, you can define an array. Host-variable-arrays can be used with
the multiple row FETCH and INSERT statements.

Numeric host-variable-arrays

The following figure shows the syntax for valid numeric host-variable-array
declarations.

Note: In all of the following, level-1 can be any value from 2 through 48. Also, to
save space, it is not specified whether the constant in the VALUES clause is
numeric, character, or graphic. However, this information should be specified
in the Application Programming and SQL Guide.

Figure 8. Floating point:

level-1 variable-name

USAGE
IS

COMPUTATIONAL-1
COMP-1
COMPUTATIONAL-2
COMP-2

OCCURS dimension
TIMES

VALUE
IS

constant

.

�� �

� ��
 52 LI382 PFS

IBM Confidential
Figure 9. Integer and small integer:

Figure 10. Decimal:

Character string arrays:

The following figure shows the syntax for valid CHARACTER string host-variable-
array declarations.

Figure 11. Fixed length character

level-1 variable-name PICTURE
PIC

IS

S9(4)
S9999
S9(9)
S999999999

USAGE
IS

BINARY
COMPUTATIONAL-4
COMP-4
COMPUTATIONAL
COMP

OCCURS dimension
TIMES

VALUE
IS

constant

.

�� �

� �

� ��

level-1 variable-name PICTURE
PIC

IS
picture-string

USAGE
IS

PACKED DECIMAL
COMPUTATIONAL-3
COMP-3

DISPLAY SIGN
IS

LEADING SEPARATE
CHARACTER

OCCURS dimension
TIMES

VALUE
IS

constant

.

�� �

� �

� ��

level-1 variable-name PICTURE
PIC

IS
picture-string

USAGE
IS

DISPLAY

OCCURS dimension
TIMES

VALUE
IS

constant

.

�� �

� ��
 Chapter 2. Usage Reference 53

 IBM Confidential
Figure 12. Varying length character

Graphic string arrays:

The following figure shows the syntax for valid GRAPHIC string host-variable-array
declarations.

Figure 13. Fixed length graphic

Figure 14. Varying length graphic

level-1 variable-name OCCURS dimension
TIMES

.

49 var-1 PICTURE
PIC

IS
S9(4)
S9999

USAGE
IS

BINARY
COMPUTATIONAL-4
COMP-4

SYNCHRONIZED
SYNC

VALUE
IS

numeric-constant

.

49 var-2 PICTURE
PIC

IS
picture-string

USAGE
IS

DISPLAY

VALUE
IS

constant

.

�� �

� �

� �

� �

� ��

level-1 variable-name PICTURE
PIC

IS
picture-string

USAGE
IS

DISPLAY-1

OCCURS dimension
TIMES

VALUE
IS

graphic-constant

.

�� �

� ��

level-1 variable-name OCCURS dimension
TIMES

.

49 var-1 PICTURE
PIC

IS
S9(4)
S9999

USAGE
IS

BINARY
COMPUTATIONAL-4
COMP-4

SYNCHRONIZED
SYNC

VALUE
IS

numeric-constant

.

49 var-2 PICTURE
PIC

IS
picture-string

USAGE
IS

DISPLAY-1

VALUE
IS

graphic-constant

.

�� �

� �

� �

� �

� ��
 54 LI382 PFS

IBM Confidential
LOBs and LOB locator host variables arrays:

Figure 15. LOB and LOB Locator

ROWID host variables arrays:

Examples

Example 1: Declare a CURSOR C1 and fetch 10 rows using a multi-row FETCH
statement.

 01 OUTPUT-VARS.

 05 NAME OCCURS 10 TIMES.

 49 NAME-LEN PIC S9(4) COMP-4 SYNC.

 49 NAME-DATA PIC X(40).

 05 SERIAL-NUMBER PIC S9(9) COMP-4 OCCURS 10 TIMES.

 PROCEDURE DIVISION.

 EXEC SQL

 DECLARE C1 CURSOR WITH ROWSET POSITIONING FOR

 SELECT NAME, SERIAL#

 FROM CORPORATE.EMPLOYEE

 END-EXEC.

 EXEC SQL

 OPEN C1

 END-EXEC.

level-1 variable-name

USAGE
IS

SQL TYPE IS

BINARY LARGE OBJECT
BLOB
CHARACTER LARGE OBJECT
CHAR LARGE OBJECT
CLOB

DBCLOB

(length
K
M
G

)

BLOB LOCATOR
CLOB LOCATOR
DBCLOB LOCATOR

OCCURS dimension
TIMES

.

�� �

� ��

level-1 variable-name

USAGE
IS

SQL TYPE IS ROWID OCCURS dimension
TIMES

.�� ��
 Chapter 2. Usage Reference 55

 IBM Confidential

 EXEC SQL

 FETCH FIRST ROWSET FROM C1 FOR 10 ROWS

 INTO :NAME, :SERIAL-NUMBER

 END-EXEC.

PL/I

Using host-variable-arrays

In PL/I programs, you can define an array. host-variable-arrays can be used with the
multiple row FETCH and INSERT statements.

Numeric host-variable-arrays

The following figure shows the syntax for valid numeric host-variable-array
declarations.

Figure 16. PL/I Numeric host-variable-arrays

Character arrays:

The following figure shows the syntax for valid character host-variable-array
declarations.

DECLARE
DCL

variable-name

(

,

variable-name)

(dimension)

BINARY
BIN
DECIMAL
DEC

FIXED
(precision

, scale
)

FLOAT (precision)

DECLARE
DCL

variable-name (dimension)

(

,

variable-name (dimension))

BINARY
BIN
DECIMAL
DEC

FIXED
(precision

, scale
)

FLOAT (precision)

�� �

� ��

�� �

� ��

Or:
 56 LI382 PFS

IBM Confidential
Figure 17. PL/I Character host-variable-arrays

The following figure shows the syntax for valid graphic host-variable-array
declarations.

Figure 18. PL/I Graphic host-variable-arrays

DECLARE
DCL

variable-name

(

,

variable-name)

(dimension)

CHARACTER
CHAR

(length)
VARYING ALIGNED
VAR ALIGNED

DECLARE
DCL

variable-name (dimension)

(

,

variable-name (dimension))

CHARACTER
CHAR

(length)
VARYING ALIGNED
VAR ALIGNED

�� �

� ��

�� �

� ��

Or:

DECLARE
DCL

variable-name

(

,

variable-name)

(dimension)

GRAPHIC (length)
VARYING ALIGNED
VAR ALIGNED

DECLARE
DCL

variable-name (dimension)

(

,

variable-name (dimension))

GRAPHIC (length)
VARYING ALIGNED
VAR ALIGNED

�� �

� ��

�� �

� ��

Or:
 Chapter 2. Usage Reference 57

 IBM Confidential
LOBs and LOB locator host variables arrays:

Figure 19. PL/I LOB host-variable-arrays

ROWID host variables arrays:

Figure 20. PL/I ROWID host-variable-arrays

Examples

Example 1:

You can retrieve 10 rows from the table CORPDATA.DEPARTMENT with:

DCL DEPTNO(10) CHAR(3),

 DEPTNAME(10) CHAR(29) VAR,

 MGRNO(10) CHAR(6),

 ADMRDEPT(10) CHAR(3);

DECLARE
DCL

variable-name

(

,

variable-name)

(dimension) SQL TYPE IS

BINARY LARGE OBJECT
BLOB
CHARACTER LARGE OBJECT
CHAR LARGE OBJECT
CLOB

DBCLOB

(length
K
M
G

)

BLOB LOCATOR
CLOB LOCATOR
DBCLOB LOCATOR

DECLARE
DCL

variable-name (dimension)

(

,

variable-name (dimension))

SQL TYPE IS

BINARY LARGE OBJECT
BLOB
CHARACTER LARGE OBJECT
CHAR LARGE OBJECT
CLOB

DBCLOB

(length
K
M
G

)

BLOB LOCATOR
CLOB LOCATOR
DBCLOB LOCATOR

�� �

� ��

�� �

� ��

or::

DECLARE
DCL

variable-name

(

,

variable-name)

(dimension) SQL TYPE IS ROWID

DECLARE
DCL

variable-name (dimension)

(

,

variable-name (dimension))

SQL TYPE IS ROWID

�� ��

�� ��
or:
 58 LI382 PFS

IBM Confidential
DCL IND_ARRAY1(10) BIN FIXED(15);

DCL IND_ARRAY2(10) BIN FIXED(15);

DCL IND_ARRAY3(10) BIN FIXED(15);

DCL IND_ARRAY4(10) BIN FIXED(15);

EXEC SQL

 DECLARE C1 CURSOR WITH MULTIPLE ROW ACCESS FOR

 SELECT *

 FROM CORPDATA.DEPARTMENT;

 ...

EXEC SQL

 FETCH FIRST ROWSET FROM C1 FOR 10 ROWS INTO :DEPTNO :IND_ARRAY1,
 :DEPTNAME :IND_ARRAY2,
 :MGRNO :IND_ARRAY3,
 :ADMRDEPT :IND_ARRAY4;

ASSEMBLER

Assembler support for multi-row FETCH and INSERT is limited to the cases where
USING DESCRIPTOR is allowed. The pre-compiler for Assembler does not recognize
declarations of host-variable-arrays and will not create the proper descriptor
(SQLDA) that is needed for multi-row statements. In the cases where USING
DESCRIPTOR applies, the application programmer is responsible for allocating the
storage correctly and for setting up the DESCRIPTOR according to the rules for
USING DESCRIPTOR . See “USING DESCRIPTOR descriptor” on page 33 for
INSERT and "Using DESCRIPTOR descriptor" on page 16 for FETCH

Considerations for using LOB host variables in all
languages

LOB host variables that are referenced by the precompiler in SQL statements must be
declared using the provisions provided by DB2 to declare LOB host variables (i.e. SQL
TYPE IS ... as appropriate for the host language), or in a manner that is compatible to
what the precompiler generates (that is to say, a LOB host variable contains a 31 bit
length, followed by the data).

LOB host variables that are only referenced by an SQL statement that uses a
DESCRIPTOR may have an alternate form. In this form, sqldatalen (or SQLDATAL,
or SQLDATALEN depending on the language) contains a pointer to the length of the
LOB, and sqldata (or SQLDATA depending on the language) contains a pointer to the
data. For multi-row INSERT or FETCH statements, if this form of declaration for a
LOB is used, sqldatalen should point to an array of integers, and sqldata will point at
the first instance of the LOB data. Each LOB is a maximum of len.sqllonglen (or
SQLLONGL or SQLLONGLEN depending on language) long. That is to say that the
data for the first LOB should start at sqldata, the data for the second LOB should start
at sqldata + len.sqllonglen +1 and so on. For INSERT statements, sqldatalen should
could contain the actual length of the LOB. For FETCH statements, sqldatalen will
 Chapter 2. Usage Reference 59

 IBM Confidential
contain the actual length of the LOB. Please note that when using this form of LOB
declaration, LOB data will not be aligned on any particular boundary.

LOB host variables that are only referenced by an SQL statement that uses a
DESCRIPTOR may have an alternate form. In this form, sqldatalen (or SQLDATAL,
or SQLDATALEN depending on the language) contains a pointer to the length of the
LOB, and sqldata (or SQLDATA depending on the language) contains a pointer to the
data. For multi-row INSERT or FETCH statements, if this form of declaration for a
LOB is used, sqldatalen should point to an array of integers, and sqldata will point at
the first instance of the LOB data. Each LOB is a maximum of len.sqllonglen (or
SQLLONGL or SQLLONGLEN depending on language) long. Although a LOB can
be at most len.sqllonglen, the second LOB will start right after the first LOB in the area
pointed to by sqldata. That is to say that the data for the first LOB should start at
sqldata, the data for the second LOB should start at sqldata + sqldatalen(1) +1, the
data for the third LOB will start at sqldata + sqldatalen(1) + sqldatalen(2) +2 and so
on.

The advantage of this form is that memory will not be wasted for empty space. The
disadvantage of this form is that applications will have to do more processing to
calculate the location of the nth LOB in the memory pointed by sqldata. For INSERT
statements, sqldatalen should could contain the actual length of the LOB. For FETCH
statements, sqldatalen will contain the actual length of the LOB. Please note that
when using this form of LOB declaration, LOB data will not be aligned on any
particular boundary.
 60 LI382 PFS

IBM Confidential
SQLVAR entries

Table 4. Fields in an occurrence of a base SQLVAR

C name
assembler
COBOL, or
PL/I name

Data
type

Usage in DESCRIBE1

and PREPARE INTO
Usage in FETCH, OPEN,
EXECUTE, and CALL

sqlname
SQLNAME

VARCHAR(30) Contains the unqualified name or
label of the column, or a string of
length zero if the name or label does
not exist. If the prepared statement
includes a UNION or UNION ALL
clause, SQLNAME contains the name
or label, if any, of the corresponding
column of the first operand of the
UNION.

For DESCRIBE PROCEDURE,
SQLNAME contains the cursor name
used by the stored procedure to
return the result set. The values for
SQLNAME appear in the order the
cursors were opened by the stored
procedure.

For DESCRIBE INPUT, SQLNAME is
not used.

Can contain CCSID and/or host-
variable-array dimension
information.

DB2 interprets the third and fourth
byte of the data portion of
SQLNAME as the CCSID of the host
variable if all of the following are true:

• The 6th byte of SQLDAID is '+'
(x’4E’)

• SQLTYPE indicates the host
variable is a string variable

• The length of SQLNAME is 8

• The first two bytes of the data
portion of SQLNAME are
X'0000'.

For FETCH, OPEN, INSERT, and
EXECUTE, DB2 interprets the fifth
through eighth bytes of the data
portion of SQLNAME as a binary
integer that represents the dimension
of the host-variable-array, and
corresponding indicator-array if one
is specified, if all of the following are
true:

• The length of SQLNAME is 8

• The first two bytes of the data
portion of SQLNAME are
X'0000'.

Notes:

1. The third column of this table represents several forms of the DESCRIBE statement.

• For DESCRIBE output and PREPARE INTO, the column pertains to columns of the result table.

• For DESCRIBE CURSOR, the column pertains to a result set associated with a cursor.

• For DESCRIBE INPUT, the column pertains to parameter markers.

• For DESCRIBE PROCEDURE, the column pertains to the result sets returned by the stored procedure.
 Chapter 2. Usage Reference 61

 IBM Confidential
SQLCA Description of Fields

Distributed Processing

Distributed Processing: Multi-row input and output processing requires DRDA
SQLAM level 7 (see Open Group Technical Standard, DRDA Version 3).

Multi-row input and output processing and the GET DIAGNOSTICS statement are
not supported in DB2 private protocol (SQLSTATE 56023, SQLCODE -512).

DB2 Commands

There are no Command changes for this line item

Utilities

There are no Utility changes for this line item

Table 5. Fields of SQLCA

assembler,
COBOL, or
PL/I Name

C
Name

Fortran
Name

Data
type Purpose

SQLERRD(3) sqlerrd[2] SQLERR(3) INTEGER Contains the number of rows affected after INSERT,
UPDATE, and DELETE (but not rows deleted as a result
of CASCADE delete). Set to 0 if the SQL statement fails,
indicating that all changes made in executing the
statement were canceled. Set to -1 for a mass delete from
a table in a segmented table space.

For rowset oriented fetch statements, contains the
number of rows returned in the rowset.

For SQLCODES -911 and -913, SQLERRD(3) contains the
reason code for the timeout or deadlock .
 62 LI382 PFS

IBM Confidential
Chapter 3. Impact on User Tasks

The following paragraphs summarize the effects of this line item on the major tasks
involved in using DB2.

Evaluating the Product

See “DECLARE CURSOR Statement” on page 6, “OPEN CURSOR” on page 7,
“ALLOCATE CURSOR” on page 7, “FETCH Statement” on page 8, “PREPARE
Statement” on page 24, “INSERT Statement” on page 25, “EXECUTE Statement” on
page 32, “GET DIAGNOSTICS” on page 34, “Positioned Update” on page 46,
“Positioned Delete” on page 47 and“Application Programming - Host Language
Declarations” on page 49 for further information regarding functionality provided by
this line item.

Planning for and Administering the Product

This category includes the following user tasks:

System Planning and Installing

N/A

Communicating with Other Systems

N/A

Database Design and Implementation

N/A

Security and Auditing

N/A

Operation and Recovery

N/A

Performance Monitoring and Tuning

Multi-row inserts as well as updates and deletes where current of cursor have the
potential of expanding the unit of work within an application without having
intermittent commit processes. This can affect the concurrency of users accessing a
table space. Factors to tune include the size of the array and the use of commits
between inserts, updates and deletes. The type of locking may also have a significant
impact on concurrency and performance if lock escalation occurs.
 63

 IBM Confidential
Application Programming

See details regarding “DECLARE CURSOR Statement” on page 6, “FETCH
Statement” on page 8, “PREPARE Statement” on page 24, “INSERT Statement” on
page 25, “EXECUTE Statement” on page 32, “GET DIAGNOSTICS” on page 34,
“Positioned Update” on page 46, “Positioned Delete” on page 47, and “Application
Programming - Host Language Declarations” on page 49.
 64 LI382 PFS

IBM Confidential
Chapter 4. User Task Guidance Information

In this section we describe

• “Planning for multi-row INSERT statements”

• “Planning for multi-row cursors and multi-row FETCH statements” on page 66

Planning for multi-row INSERT statements

Multi-row insert statements require no special planning.

Example of a multi-row INSERT

The following example demonstrates how a multi-row insert might be used:

Create a table

CREATE TABLE MY_EMP (ID INTEGER,

 NAME VARCHAR(18));

Declare host variables, host variable arrays, and indicator arrays (assuming
a C application)

long hv1[10];

struct {

 short len;

 char data[18]} hv2[10];

short ind1[10], ind2[10], num_rows;

Initialize host variables

num_rows = 7;

for (i=0; i<=10; i++)

 {

 hv1[i] = i;

 ind1[i] = 0;

 imd2[i] = 0;

strcpy(hv2[i].data,"");

 }

strcpy(hv2[1].data,"Chris");

strcpy(hv2[3].data,"Patrick");

strcpy(hv2[5].data,"Terry");

strcpy(hv2[6].data,"Meg");
 65

 IBM Confidential
strcpy(hv2[8].data,"Maureen");

strcpy(hv2[9].data,"Helmut");

strcpy(hv2[10].data,"Peggy");

for (i=0; i<=10; i++)

 {

 hv2[i].len = strlen(hv2[i].data);

 }

Insert data into table

EXEC SQL INSERT INTO MY_EMP FOR :num_rows ROWS VALUES (:hv1:ind1,:hv2:ind2)
ATOMIC;

Seven rows of data will be inserted into table MY_EMP.

Planning for multi-row cursors and multi-row FETCH statements

Multi-row cursor may be used with scrollable cursors. Static scrollable cursors
require that a TEMP database be allocated. No other special planning is required.

Example of a multi-row cursor and FETCH

The following example demonstrates how a multi-row fetch might be used (this
example assumes the above table MY_EMP and seven rows of data)17:

Declare host variables, host variable arrays, and indicator arrays (assuming
a C application)

long hv1[10];

struct {

 short len;

 char data[18]} hv2[10];

short ind1[10], ind2[10], num_rows;

Initialize host variables

num_rows = 20;

for (i=0; i<=10; i++)

 {

 ind1[i] = 0;

 ind2[i] = 0;

strcpy(hv2[i].data,"");

17.Please note that these examples are intended to demonstrate examples of how the functionality in this line item could be used. They
are not intended to endorse programming styles or methods.
 66 LI382 PFS

IBM Confidential
 }

Now declare cursor

EXEC SQL DECLARE CS1 CURSOR WITH ROWSET POSITIONING FOR SELECT * FROM
MY_EMP;

EXEC SQL OPEN CS1;

EXEC SQL FETCH CS1 FOR :num_rows ROWS INTO :hv1:ind1, :hv2:ind2;

The 7 rows are returned in array entries 1-7. SQLCODE + 100 will be issued
and SQLERRD3 will contain 7 (the number of rows returned). If there had been
more than 10 rows in the table, SQLCODE -246 would have been returned after
the fetch for the 10th row because there was no room in the host-variable-
arrays to return the data.

Another example of how to fetch rows using a multi-row cursor follows (again,
assuming the above table MY_EMP, data, and host language definitions):

Initialize host variables

num_rows = 10;

for (i=0; i<=10; i++)

 {

 ind1[i] = 0;

 imd2[i] = 0;

strcpy(hv2[i].data,"");

 }

Now declare cursor

EXEC SQL DECLARE CS1 CURSOR WITH ROWSET POSITIONING FOR SELECT * FROM
MY_EMP;

OPEN CURSOR

EXEC SQL OPEN CS1;

Fetch Ten Rows

EXEC SQL FETCH CS1 ROWSET STARTING AT ABSOLUTE 1 FOR :num_rows ROWS INTO
:hv1:ind1, :hv2:ind2;

The above application segment would fetch the 7 rows from MY_EMP. The first
seven array entries would be filled with data. The SQLCODE would be +100, and
SQLERRD3 would contain 7 (Seven rows returned). The array elements 1-7 would
contain the data that was fetched.
 Chapter 4. User Task Guidance Information 67

 IBM Confidential
 68 LI382 PFS

IBM Confidential
Chapter 5. Instrumentation

There are no changes to instrumentation for this line item.
 69

 IBM Confidential
 70 LI382 PFS

IBM Confidential
Chapter 6. Other Interfaces

Catalog and Directory

N/A

User-Maintained Tables or Databases

N/A

Installation

N/A

Log Records

N/A
 71

 IBM Confidential
 72 LI382 PFS

IBM Confidential
Chapter 7. Installation, Migration, and Fallback

Installation

The install process is unchanged from the prior release.

There are no installation changes for this line item.

Migration

The migration process is unchanged from the prior release.

There are no changes to the migration process for this line item.

Incompatibilities after Migration

There are no incompatibilities after a migration.

There are no incompatibilities after a migration for this Line Item.

New/Modified SQL Reserved Words

VARIABLE will be added as a new SQL reserved word.

Fallback

The fall back process is unchanged from the prior release.

Compatibility Mode

The features of this line item are not available in Compatibility mode.

Enabling New Function Mode

The features of this line item are not available in Enabling New Function Mode.

New Function Mode

The features of this line item first become available in New Function Mode.

Line Item Considerations

n/a.
 73

 IBM Confidential
Incompatibilities after Fallback

There are no incompatibilities in the fallback release.

There are no incompatibilities after a fallback for this Line Item.

Coexistence

Coexistence does not exist in this line item because this function is not available until
we are in New Function Mode.
 74 LI382 PFS

IBM Confidential
Chapter 8. Messages and Codes

New SQL Codes

-227 FETCH fetch-orientation IS NOT
ALLOWED, BECAUSE CURSOR
cursor-name HAS AN UNKNOWN
POSITION (<sqlcode>,<sqlstate>)

Explanation: The cursor position for cursor-name is
unknown. A previous multiple-row-fetch for cursor
cursor-name resulted in an error (SQLCODE sqlcode,
SQLSTATE sqlstate) in the middle of processing multiple
rows retrieved from DB2. One or more of the requested
rows could not be returned to the program following the
error, leaving the position of the cursor unknown.

If an indicator structure had been provided on the
previous multiple row FETCH, a positive SQLCODE
would have been returned and all of the rows retrieved
from DB2 could have been returned to the application
program.

System Action: The statement cannot be processed. The
cursor position is not changed.

Programmer Response: Close and reopen the cursor to
reset the position. For scrollable cursors, you can change
the FETCH statement to specificy one of the other fetch
orientations such as FIRST ROWSET, LAST ROWSET,
ROWSET STARTING AT RELATIVE, or ROWSET
STARTING AT ABSOLUTE to establish a valid rowset
cursor position, and fetch multiple rows of data.

Destination: 24513

-246 STATEMENT USING CURSOR
cursor-name SPECIFIED NUMBER OF
ROWS num-rows WHICH IS NOT
VALID with dimension

Explanation: A multiple-row FETCH or multiple-row
INSERT statement is not valid. The number of rows
specified is not greater than 0 and not less than or equal
to 32767, or is greater than the dimension of one of the
host-variable-arrays or indicator arrays. The number of
rows specified is num-rows , and the dimension of the
array is dimension . If this is a FETCH statement, the
cursor name is cursor-name . Otherwise, the cursor name
is not applicable.

System Action: The statement cannot be processed. The
cursor position is not changed.

Programmer Response: Change the application to either
declare, or allocate a host-variable-array that is large
enough to contain the number of rows specified in the

statement, or update the value of num-rowsto a value
within the valid range.

Destination: 42873

-230 THE NUMBER OF ROWS FOR A
ROWSET FOR CURSOR cursor-name
HAS NOT BEEN SPECIFIED

Explanation: A rowset positioned FETCH statement
with a multiple-row-fetch clause that includes a FOR n
ROWS clause must precede a rowset positioned FETCH
statement that does not have a FOR n ROWS clause in
order to establish the number of rows for a rowset cursor.

System Action: The statement cannot be executed.

Programmer Response: Change the FETCH statement to
specify a FOR n ROWS clause, or change the order of the
processing of the application to ensure that a FETCH
statement with a FOR n ROWS clause is executed before
the current FETCH statement is executed.

Destination: 24523

-247 A HOLE WAS DETECTED ON A
MULTIPLE ROW FETCH
STATEMENT USING CURSOR
cursor-name, BUT INDICATOR
VARIABLES WERE NOT
PROVIDED TO DETECT THE
CONDITION

Explanation: A hole was detected on a FETCH statement
for multiple rows of data, but no indicator variables were
provided to reflect the situation to the application.

System Action: The statement cannot be processed.

Programmer Response: Change the FETCH statement to
provide at least one indicator variable and resubmit the
statement.

Destination: 24519

-248 A POSITIONED DELETE OR
UPDATE STATEMENT FOR
CURSOR cursor-name SPECIFIED
ROW n OF A ROWSET, BUT THE
ROW IS NOT CONTAINED WITHIN
THE CURRENT ROWSET

Explanation: The FOR ROW n OF ROWSET clause was
specified on a positioned DELETE or UPDATE statement,
 75

 IBM Confidential
but row n is not contained within the bound of the
rowset.

System Action: The statement cannot be processed.

Programmer Response: Reissue the positioned UPDATE
or DELETE with a value that is within the bounds of the
rowset, or expand the bounds of the rowset by specifying
that a larger number of rows be contained in the rowset
using the FOR n ROWS clause on FETCH.

Destination: 24521

-249 DEFINITION OF ROWSET ACCESS
FOR CURSOR cursor-name IS
INCONSISTENT WITH THE FETCH
ORIENTATION CLAUSE clause
SPECIFIED

Explanation: The clause specified as the fetch-orientation
for a FETCH statement is inconsistent with the definition
of the cursor. What can be specified for fetch-orientation
depends on whether the cursor was defined for rowset
access:

• A cursor defined WITH ROWSET POSITIONING
can only use rowset positioned fetch orientation
clauses: NEXT ROWSET, PRIOR ROWSET, FIRST
ROWSET, LAST ROWSET, CURRENT ROWSET, or
ROWSET STARTING AT.

• A cursor defined WITHOUT ROWSET
POSITIONING can only use row positioned fetch
orientation keywords: NEXT, PRIOR, FIRST, LAST,
BEFORE, AFTER, CURRENT, or ABSOLUTE,
RELATIVE.

System Action: The statement cannot be processed.

Programmer Response: Correct the fetch orientation, or
redefine the cursor.

Destination: 24523

-589 A POSITIONED DELETE OR
UPDATE STATEMENT FOR
CURSOR cursor-name SPECIFIED A
ROW OF A ROWSET, BUT THE
CURSOR IS NOT POSITIONED ON
A ROWSET

Explanation: The FOR ROW n OF ROWSET clause was
specified on a positioned DELETE or UPDATE statement,
but the cursor is not currently positioned on a rowset.

System Action: The statement cannot be processed.

Programmer Response: Issue a FETCH statement to
position the cursor on the desired rowset, and then
reissue the positioned DELETE or UPDATE statement. If
the cursor is not defined for rowset access, redefine the
cursor first.

Destination: 24520

-20185 CURSOR cursor-name IS NOT
DEFINED TO ACCESS ROWSETS,
BUT A CLAUSE WAS SPECIFIED
THAT IS VALID ONLY WITH
ROWSET ACCESS

Explanation: The FOR n ROWS clause was specified on
a FETCH statement, but the cursor is not defined for
rowset access.

System Action: The statement cannot be processed.

Programmer Response: Remove the FOR n ROWS
clause from the FETCH statement, or redefine the cursor
for multiple row access with the WITH ROWSET
POSITIONING clause on DECLARE CURSOR or
PREPARE.

Destination: 24518

-20186 A CLAUSE WAS SPECIFIED THAT
IS NOT VALID FOR THE
STATEMENT BEING PREPARED OR
EXECUTED

Explanation: A clause was not valid for one of the
following reasons:

• On a PREPARE statement, a FOR SINGLE ROW or
FOR MULTIPLE ROWS clause was specified, but the
statement being prepared is not an INSERT
statement.

• On a PREPARE statement, an ATOMIC or NOT
ATOMIC clause was specified, but the statement
being prepared is not an INSERT statement.

• On an EXECUTE statement, a multiple-row-insert
clause was specified but the statement being
executed is not an INSERT statement.

System Action: The statement cannot be processed.

Programmer Response: Correct the statement by either
removing the WITH or WITHOUT VARYING ROW
COUNT clause, ATOMIC or NOT ATOMIC clause, or
ensure the statement being executed is an INSERT
statement.

Destination: 07501

-30106 INVALID INPUT DATA DETECTED
FOR A MULTIPLE ROW INSERT
OPERATION. INSERT
PROCESSING IS TERMINATED

Explanation: An error was detected with the input data
for one row of a multiple row INSERT operation. No
further rows will be inserted. For an atomic operation, all
inserted rows are rolled back. For a non-atomic
operation, rows inserted successfully before the row
containing the invalid input data was encountered are
not rolled back.

System Action: The statement cannot be processed.
 76 LI382 PFS

IBM Confidential
Programmer Response: Correct the row containing the
invalid input data and submit the multiple-row INSERT
statement again for the rows that did not get inserted.

Destination: 22527

-393 THE CONDITION OR
CONNECTION NUMBER IS
INVALID

Explanation: The value of the CONDITION or
CONNECTION number specified in the GET

DIAGNOSTICS statement is either less than zero, or
greater than the number of available diagnostics.

System Action: The statement cannot be processed.

Programmer Response: Correct the value of the
CONDITION or CONNECTION number, ensuring the
number is between 1 and the value of the NUMBER
statement-information item or GET DIAGNOSTICS.
Resubmit the GET DIAGNOSTICS CONDITION or GET
DIAGNOSTICS CONNECTION statement.

Destination: 35000

Revised SQLCODES

-5012 HOST VARIABLE host-variable IS
NOT AN EXACT NUMERIC WITH
SCALE ZERO

Explanation: A host variable host-variable was specified,
but it is not valid in the context in which it was used.
Host variable host-variable was specified as part of
ABSOLUTE or RELATIVE in a FETCH statement, or in a
FOR n ROWS clause of a FETCH or INSERT statement.
The host variable was not usable for one of the following
reasons:

• It is not an exact numeric type

• The scale is not zero

System Action: The statement cannot be processed.

Programmer Response: Change the host variable to an
exact numeric type with a scale of zero.

Destination: 42618

-225 FETCH STATEMENT FOR CURSOR
cursor-name IS NOT VALID
BECAUSE THE CURSOR IS NOT
DEFINED AS SCROLL

Explanation: A FETCH statement for cursor cursor-name
has been specified and one of the following errors has
occurred:

• PRIOR, FIRST, LAST, BEFORE, AFTER, CURRENT,
ABSOLUTE or RELATIVE was specified as a row-
positioned fetch orientation on FETCH, but the
cursor is not defined as a scrollable cursor. NEXT is
the only row-positioned fetch orientation that can be
specified for cursors that are not scrollable.

• PRIOR ROWSET, FIRST ROWSET, LAST ROWSET,
CURRENT ROWSET, or ROWSET STARTING AT
was specified as a row-positioned fetch orientation
on FETCH, but the cursor is not defined as a
scrollable cursor. NEXT ROWSET is the only

rowset-positioned fetch orientation that can be
specified for cursors that are not scrollable.

System Action: The statement cannot be processed. The
cursor position is unchanged.

Programmer Response: Change the FETCH statement to
remove the fetch orientation clause (i.e., PRIOR, FIRST,
PRIOR ROWSET, FIRST ROWSET etc.), and change it to
NEXT or NEXT ROWSET. Alternatively, you could
change the definition of the cursor to be scrollable.

Destination: 42872

-301 THE VALUE OF INPUT HOST
VARIABLE OR PARAMETER
NUMBER position-number CANNOT
BE USED AS SPECIFIED BECAUSE
OF ITS DATA TYPE

Explanation: DB2 received data that could not be used as
specified in the statement because its data type is
incompatible with the requested operation.

The position-number identifies either the host variable
number (if the message is issued as a result of an INSERT,
UPDATE, DELETE, SELECT, VALUE INTO, or SET
assignment statement), GET DIAGNOSTICS statement,
or the parameter number (if the message is issued as the
result of a CALL statement, or the invocation of a
function).

System Action: The statement cannot be executed.

Programmer Response: Correct the application
program, function or stored procedure. Ensure that the
data type of the indicated input host variable or
parameter in the statement is compatible with the way it
is used.

Destination: 42895
 Chapter 8. Messages and Codes 77

 IBM Confidential
New Messages

DSNH5011I HOST VARIABLE ARRAY host-
variable-array IS EITHER NOT
DEFINED OR IS NOT USABLE

Explanation: Host-variable-array host-variable-array was
specified in a multiple-row FETCH, or multiple-row
INSERT statement. The host-variable-array is not
defined or is not usable for one of the following reasons:

• The host variable is not a valid host-variable-array.

• The host variable is not a dimensioned array.

• The host-variable-array has more than 1 dimension.

• The host-variable-array defines a structure that does
not conform to the rules for defining a host-variable-
array.

• The dimension of the host-variable-array used for
indicators is not equal to the dimension of the main
host-variable-array.

System Action: The statement cannot be processed.

Programmer Response: Correct any of the following and
precompile the program again. Ensure that

• the dimension of the indicator variable array is equal
to the dimension of the main host-variable-array.

• the host-variable-array is a single-dimensional array.

• the host-variable-array or host indicator variable
array do not contain structures that are not
permissible. The only structures that may be defined
in a host-variable-array are those that are

used to define variable length string host variables.

See the DB2 for z/OS Application Programming and SQL
Guide for more language specific information on how to
define the host-variable-arrays in a program.
 78 LI382 PFS

IBM Confidential
Chapter 9. Dependencies

Function-Dependent Hardware Requirements

None.

Function-Dependent Hardware Requirements

n/a.

Function-Dependent Program Requirements

Remote clients or servers will be required to support The Open Group DRDA V3
standard. Additional IBM compliant products: DB2 Connect V8, DB2 V8 Server for
Unix, Windows, and Linux, and JDBC Type 4 Driver.
 79

 IBM Confidential
 80 LI382 PFS

IBM Confidential
Chapter 10. Performance

Performance Objectives

This line item is primarily a functional improvement. There will be changes to the
performance of applications that utilize the function provided by this line item. The
changes are detailed below.

Expected Improvements/Degradations

The following items list expected performance changes:

1. Using a multi-row fetch read should take less time than a cursor open with
multiple fetches.

2. Using a multi-row insert should take less time than multiple inserts.

The above statements apply to local applications. Remote applications should see
better improvement because API crossing is more expensive than it is for local
applications.

Remote applications with updateable cursors should also see an improvement in
performance of fetching on these cursors. The functional changes introduced with
this line item will allow blocking on cursors where no blocking was allowed before.

Performance Evaluation

Performance evaluation will include:

• Comparison of performance improvement/degradation from current method of
fetching or inserting multiple rows to this new method.

• Evaluation of impact to network traffic in a client/server architecture due to a
lack of a blocking factor.

• Impact of multi-row insert and update/delete where current of on concurrency.

• Comparison of cursor open performance in Version 7 vs. cursor open
performance in Version 8.

Factors Affecting Performance

The number of rows being inserted into a table, using a multi-row insert statement,
might affect concurrency.
 81

 IBM Confidential
 82 LI382 PFS

IBM Confidential
Chapter 11. Standards

The functions described in this specification conform to The Open Group Version 3
DRDA Standard.
 83

 IBM Confidential
 84 LI382 PFS

IBM Confidential
Chapter 12. National Language Support Considerations

n/a
 85

 IBM Confidential
 86 LI382 PFS

IBM Confidential
Chapter 13. Implementation Notes

This line item is attempting to meet and resolve the following (sometimes conflicting)
requirements:

1. Our ERP vendors have significant influence on not only what function is
implemented in DB2 but also, how that function is implemented in our product.
Since dynamic processing is key to how well these tools perform, the performance
requirements are geared towards making dynamic processing fast and easy to
use. These requirements are also beneficial to our customer base as well. The
concerns are:

• Dynamic Caching: Vendors require that dynamic statements make as much
use of this feature of DB2 for OS/390 as possible. If the value of "n" rows
changes in a statement or the variables change, it is important that the
statement still qualify for dynamic caching. This reduces the number of
statements (PREPAREs) that an application has to execute, making
application execution time much faster.

• Continue on Error Processing: If a statement is a blocked INSERT and, for
example, 1 row out of a total of 100 multiple-insert rows fails (i.e., due to a
duplicate row error), it is costly for the vendor tool to continually re-work and
re-submit the SQL statement, until all potential duplicates or problems are
found one at a time. Optimally, the multiple-row insert should continue
through errors, and process/insert all the rows that it can.

2. Compatibility with the workstation is another issue that requires consideration
within the context of this line item. Unfortunately, we will be implementing forms
of the multiple-row FETCH/INSERT which are not implemented in the AS/400
or UWO. (For documentation purposes, the AS/400 has implemented a host
structure array and row storage form for multiple-row INSERT. UWO has
implemented a host variable (not array) form of multiple-row INSERT. UWO has
not yet implemented the multiple-row FETCH statement.)

3. Locking: There are two very conflicting reasons for using multiple-row fetch. For
"window" scrolling, a user will want to view a specific set of rows of data, and at
the same time will want to have the ability to change any of the viewed rows. This
implies that the set of rows are "locked" and not able to be changed while this user
holds the n-row set of data. The other type of user that will want to use multiple-
row fetch, is the user that is very performance oriented. This type of application
wants to be able to fetch (both remotely as well as locally) a set number of rows
with only one "trip" into DB2. For this approach, locks should NOT be held on the
set of rows, as no changes to the data are intended. Both of the these methods
have merit (i.e., customer interest). - It was decided, after the DRB tutorial, to
remove the KEEP LOCK clause pending further feedback from the ODBC team.
The lock portion of SQL151 may be DCRed in later.

4. SLC evolution: The formats of the multiple-row SQL statements are not yet set by
the SQL Language Council, and decisions need to be made and agreed to about
the syntax and semantics of these statements. Consequently, we must try to
ensure that the formats we choose will not be incompatible with the final
decisions of the SQL Language Council.

5. Because of resource constraints, and because the syntax of the multiple-row
FETCH and INSERT statements are necessitating a change to host variable
language declarations, we need to implement these changes in the most
popularly used languages for our product. Consequently the declaration changes
to implement the multiple-row statements, will be made for C, C++, COBOL, and
PL/I.
 87

 IBM Confidential
6. This INTERNAL section will be removed from document. It is for documentation
purposes only. Within our product there are certain requirements as well as
limitations:

• Don't change MSIB or internal too much

• Storage considerations when moving in or storing multiple rows of
information

• Limit the number of types of statements

• Possible limitation on the number of languages, especially if implementing
host_struct arrays form.

For documentation purposes the allowable syntax for the multirow FETCH/INSERT
statements are listed

below:

For discussion purposes, the various formats of the multiple-row statements are
shown below.

There are three forms of the multiple-row FETCH statement:

• Fetch with SQLDA and storage area:

FETCH RELATIVE 4 FROM TABLE1 FOR 6 ROWS

USING DESCRIPTOR :*sqlda INTO :*row_area;

• Fetch with a host variable array:

FETCH ABSOLUTE 10

FROM CURS1

FOR 6 ROWS

INTO :hav1, :hva2, :hva3 ;

• Fetch with a host structure array:

FETCH FROM TABLE1 FOR :n ROWS INTO :host_struct_array;

There are 10 forms of multiple-row INSERT.

1. Static INSERT with a host variables (not arrays)

INSERT INTO T :hv1, :hv2;

2. Dynamic INSERT with a host variables (not arrays)

stmt = 'INSERT INTO T VALUES ?,?';

3. Static INSERT with host variables (not arrays):

INSERT INTO T VALUES (1,:a), (:b, :c);

4. Dynamic INSERT with host variables (not arrays):

stmt = 'INSERT INTO T VALUES (1,?), (?,?)';

5. Static INSERT with host variable arrays:

INSERT INTO T FOR :n ROWS

VALUES(:hva1, :hva2);
 88 LI382 PFS

IBM Confidential
6. Dynamic INSERT with host variable arrays:

stmt = 'INSERT INTO T VALUES(?, ?)';

7. Static INSERT with host struct array:

INSERT INTO T FOR :n ROWS

VALUES(:host-struct-array);

8. Dynamic INSERT with host struct array:

stmt = 'INSERT INTO T VALUES(?);

9. Static INSERT with row storage format:

INSERT INTO T FOR :n ROWS USING DESCRIPTOR :sqldaptr

VALUES(:rowArea) NOT ATOMIC SET :diagnostic_array;

10. Dynamic INSERT with row storage format:

attr = ’FOR MULTIPLE ROWS’;

stmt = 'INSERT INTO T1 USING DESCRIPTOR ?

VALUES(?)';

Toronto has implemented forms three and four of the INSERT examples above.
Toronto has not implemented

multiple-row FETCH. The AS/400 has implemented forms nine and ten of the
INSERT examples.
 Chapter 13. Implementation Notes 89

 IBM Confidential
 90 LI382 PFS

IBM Confidential
Chapter 14. Terminology

ATOMIC - Specifies that all of the rows should be treated as a single unit. If any row
of the SQL statement fails, then all fail.

NOT ATOMIC - Specifies that all of the rows should be not be treated as a single unit.
So, regardless of any failure of any particular row, no attempt will be made to undo
other successful actions.

cursor A named control structure used by an application program to point to one or
more specific rows within some ordered set of rows of the result table. The cursor is
used to retrieve rows from the result table (with a FETCH statement), and possibly to
make updates or deletes to corresponding rows in the database. A cursor is defined
with a DECLARE CURSOR statement. A cursor can be defined to always return a
single row, or to possibly return multiple rows depending on what is specified on the
FETCH statement.

multiple row cursor A cursor defined such that multiple rows can be returned for a
single FETCH statement. The FETCH statement indicates how many rows are to be
retrieved.

rowset A set of rows that is retrieved through a multiple-row fetch.

host-variable-array An array in which each element of the array corresponds to a
value for a column. The dimension of the array determines the maximum number of
rows that the array can be used for.
 91

 IBM Confidential
 92 LI382 PFS

IBM Confidential
Chapter 15. Sizing

The total estimated size at line item DR2 exit is xx.x KLOC without contingency and
9.5 KLOC with 50% contingency. The estimate is broken down by component in Table
6.

Table 6. Estimated Lines of Code without contingency. . Sizing broken down by
components

Department Component Resource Description LOC

M55 DM Karelle
Cornwell,
Ester Mote

Support for New ROWSET cursor
concept.

1000

OF2 Parser/Prec
ompiler

Marion
Farber

New Syntax and Statements 2000

D3T Runtime/St
rgen

Daya Vivek,
Helen Tjho,
Andrei
Lurie

STRGEN and Runtime support for New
Statements

4000

D3T EXEC Georgia
Fuller

Executives Support 500

L09 Dist James
Pickel,
Margaret
Dong,
Wendy
Koontz

Support for DRDA function and
performance enhancements

2000

Totals 9500
 93

 IBM Confidential
 94 LI382 PFS

IBM Confidential

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

	Document Control Information
	Document Printing

	Change History
	Chapter 1.� Description
	Abstract
	Functional Description

	Chapter 2.� Usage Reference
	SQL Statements
	Language Elements
	Host-Variable-Arrays in C/C++, COBOL, and PL/I
	References to Host Variables

	DECLARE CURSOR Statement
	SCROLL or NO SCROLL
	cursor-width

	OPEN CURSOR
	ALLOCATE CURSOR
	FETCH Statement
	AFTER
	BEFORE
	row-positioned
	rowset-positioned
	Row Positioned and Rowset Positioned FETCH Statement Interaction
	cursor-name
	multiple-row-fetch
	DRDA Considerations

	PREPARE Statement
	Description
	SCROLL or NO SCROLL
	FOR SINGLE ROW or FOR MULTIPLE ROWS
	ATOMIC or NOT ATOMIC

	INSERT Statement
	ATOMIC or NOT ATOMIC
	Considerations for an SQLCA with an INSERT Statement for Multiple Rows of Data
	DRDA Considerations
	Example Insert

	EXECUTE Statement
	For host-variable or integer ROWS
	USING host-variable-array, ...
	USING DESCRIPTOR descriptor
	Example

	GET DIAGNOSTICS
	Description
	Rules
	Examples
	Data Types for GET DIAGNOSTICS Items
	DRDA Considerations

	Positioned Update
	Positioned Delete

	Application Programming - Host Language Declarations
	C and C++
	Using Host-Variable-Arrays
	Numeric host-variable-arrays
	Array of CHARACTER host-variable-arrays (Nul- Terminated)
	Array of VARCHAR host variables arrays:
	Array of GRAPHIC host-variable-arrays
	Array of VARGRAPHIC host variables arrays:
	LOBs and LOB locator host variables arrays:
	ROWID host variables arrays:
	Examples

	COBOL
	Using host-variable-arrays
	Numeric host-variable-arrays
	Character string arrays:
	Graphic string arrays:
	LOBs and LOB locator host variables arrays:
	ROWID host variables arrays:
	Examples

	PL/I
	Using host-variable-arrays
	Numeric host-variable-arrays
	Character arrays:
	LOBs and LOB locator host variables arrays:
	ROWID host variables arrays:
	Examples

	ASSEMBLER
	Considerations for using LOB host variables in all languages
	SQLVAR entries
	SQLCA Description of Fields
	Distributed Processing

	DB2 Commands
	Utilities

	Chapter 3.� Impact on User Tasks
	Evaluating the Product
	Planning for and Administering the Product
	System Planning and Installing
	Communicating with Other Systems
	Database Design and Implementation
	Security and Auditing
	Operation and Recovery
	Performance Monitoring and Tuning

	Application Programming

	Chapter 4.� User Task Guidance Information
	Planning for multi-row INSERT statements
	Example of a multi-row INSERT

	Planning for multi-row cursors and multi-row FETCH statements
	Example of a multi-row cursor and FETCH

	Chapter 5.� Instrumentation
	Chapter 6.� Other Interfaces
	Catalog and Directory
	User-Maintained Tables or Databases
	Installation
	Log Records

	Chapter 7.� Installation, Migration, and Fallback
	Installation
	Migration
	Incompatibilities after Migration
	New/Modified SQL Reserved Words

	Fallback
	Compatibility Mode
	Enabling New Function Mode
	New Function Mode
	Line Item Considerations
	Incompatibilities after Fallback
	Coexistence

	Chapter 8.� Messages and Codes
	New SQL Codes
	Revised SQLCODES
	New Messages

	Chapter 9.� Dependencies
	Function-Dependent Hardware Requirements
	Function-Dependent Hardware Requirements
	Function-Dependent Program Requirements

	Chapter 10.� Performance
	Performance Objectives
	Expected Improvements/Degradations
	Performance Evaluation
	Factors Affecting Performance

	Chapter 11.� Standards
	Chapter 12.� National Language Support Considerations
	Chapter 13.� Implementation Notes
	Chapter 14.� Terminology
	Chapter 15.� Sizing

