Includes
Examples For:

ORACLE
SQL SERVER
DB2 UDB
SYBASE

Using Granular Access Control

Once upon a time, when we had client-server systems, we would assign a
separate database login for every end user accessing the application. The
application client would log in to the database, and the user model in the
application relied on the database user model and privileges definitions.
Some permissions were managed by the application layer, but others could
be enforced directly within the database.

Along came three-tier architectures, n-tier architecture, and application
servers, and we suddenly found ourselves with multiple user models. The
application user model and the database user model drifted apart. Applica-
tion logins are no longer commonly associated one-for-one with database
logins. Instead, the application server manages a connection pool of data-
base connections. Every time an application thread needs to access the data-
base it requests a connection from the pool, uses it to execute queries and/
or procedures, and then surrenders the connection back to the pool. Each
connection in the pool is logged into the database using the same database
login. Therefore, all of the database authorization mechanisms become triv-
ial and cannot be used effectively (or even used at all!).

This is not a healthy situation, and remedying this issue is the main
focus of this chapter. However, database connection pools are not the
enemy, and you should not try to move away from them, because they sim-
plify the architecture and allow for much better performance. Therefore, in
aligning the user models, I certainly do not mean to suggest that you should
do away with the notion of reusing database connections, getting rid of the
application user model and going back to a one-to-one relationship
between application logins and database logins. Among other reasons, this
is completely impractical in the many Web applications where there could
be hundreds of thousands and even millions of users. Instead, aligning the
user models simply means that when the application gets a connection from
the connection pool, the first thing it should do is to communicate with the

177

178

»

Figure 6.1
Realigning the
database user
model with the
application user
model.,

> 6.1(a)

- 6.1(b)

> 6.1(c)

database to let it know the identity of the application user, on behalf of
whom all queries that will follow on this connection are made. This process
is shown in Figure 6.1: 6.1(a) shows the client/server aligned model, 6.1(b)
shows the user model mismatch, and 6.1(c) shows the crux of reestablishing
alignment by sending the application user information to the database.

Communicating the application user on behalf of whom the current
queries are being sent to the database provides many options for both the
database as well as external security layers—options that can elevate your
overall database security level. You will learn several techniques for commu-
nicating the application user to the databases and how to use this additional

6.1 Align user models by communicating application user information 179

information to implement granular access control. In learning about granu-
lar access control, you will also see some fairly advanced options that have
emerged from security-conscious environments, such as federal agencies.
Finally, you will get an overview of some advanced integration topics that
you may encounter in large enterprises, including the integration with
LDAP repositories and identity management tools.

6.1 Align user models by communicating
application user information

The application user model will always be “broader” than the database user
model. Applications can support hundreds of users, but they sometimes
support thousands and millions of users; the database will not have that
many users—at least not natively. However, you can easily “project” the
application user into the database. At the most basic level, all you need to
do is agree on a database call that will carry this information (i.e., on an
agreed-upon communication pattern that both the application and the
database can understand). You can do this using any procedure or any
query, so long as both the application owner and the database security
owner agree to it.

All the application needs to do is communicate the user information
within the database session (over the database connection). More specifi-
cally, you only need to make an additional SQL call within that database
session and communicate the user information as a data value within that
SQL. This is usually done by calling a database procedure and passing the
application user identifier as an argument to the procedure. If the database
engine is responsible for fine-grained access control, then it can associate
the username it received through the procedure call or the query with the
database login that was used to initiate the connection (and which tags this
session). Section 6.2 will show you how database engine-based fine-grained
access control is accomplished based on this value that is communicated
from the application layer.

Although you will see a database-centric approach in Section 6.2, not
all databases support granular access control within the database. Addi-
tionally, sometimes it will not be practical to do this at the database
level—either because the schema cannot be changed or because the envi-
ronment cannot afford to go through a change. Luckily, communicating
the application user credentials within the session also works well when
using an external security system. Furthermore, using an external system is
always possible, does not require changing the database environment, and

| Chapteré

180

6.1 Align user models by communicating application user information

does not affect database performance. As an example, suppose that you
choose to deploy a SQL firewall similar to that shown in Figure 5.11. This
database security layer inspects each database session and each SQL call
and compares it with a security policy. If a SQL call diverges from the
security policy, it will alert on the call or even deny access to the database.
Such a security system takes each SQL call and associates a set of values
with it. For example, suppose that I sign on to a DB2 instance running on
a server with an IP address of 10.10.10.5 from an application server run-
ning on a server with an IP address of 192.168.1.168. Assume also that I
sign on using APPSRV to issue a SQL call such as UPDATE EMPLOYEE
SET SALARY=SALARY*1.l. In this case the security system will know
the following:

a The request is coming from 192.168.1.168.

m The request is being made on 10.10.10.5.

» The database login name is APPSRV.

» The command being issued is UPDATE.

= The database object being touched is EMPLOYEE.

I can implement a policy easily enough that says that the EMPLOYEE
table cannot be updated by any connection using APPSRV, but what hap-
pens if all access is being done from the application server? What happens
when I have certain users (e.g., managers) who are able to give everyone a
10% raise but other application users (and going forward I will use applica-
tion user with an employee ID of 999) should only be able to select the data
but cannot perform any DML commands on the EMPLOYEE table. In
this case the information that the security system sees is not enough. Luck-
ily, passing the user information in an additional SQL call is exactly what
were missing. Because the database security system is inspecting all SQL
calls made to the database, it can look for the certain procedure call within
the SQL and can extract the value representing the application user. This
extracted value is associated with any SQL call made after this call within
that session—so long as no additional call is made to set another applica-
tion user ID (to imply that the session is now “owned” by another applica-
tion user). In this case the security system has the following information
about the call:

6.1

Align user models by communicating application user information

181

»

Figure 6.2
Database access
rule based on
application user as
implemented
within an external
security layer.

The request is coming from 192.168.1.168.

The request is being made on 10.10.10.5.

The database login name is APPSRV.

The command being issued is UPDATE.

The database object being touched is EMPLOYEE.

The application user identifier.

Using this information you can then go ahead and define a rule, as

shown in Figure 6.2, to alert you whenever a DML command on the
EMPLOYEE table comes from, for example, application user 999.

The methods shown are applicable to every application and every data-

base, but they are based on proprietary handling of the application user ID
and they may require a change at the application level. In some cases, the
database may have built-in capabilities for passing such identifiers, and if
you're really lucky (and yes, this is a long shot) the application may already be
using such built-in capabilities. An example is the CLIENT_IDENTIFIER
attribute supported by the Oracle database.

Rule Definition

\,

Sequence 1 Rule Description [?Pét%‘“;;!’@i:j
Client IP (192.168.1.168 | Client Net Mask [255.255.255.25]
Client IP Group | ———— 5% Groups...
Server IP (10.10.10.5 Server Net Mask [255.255.255 25t
Server IP Group | ——————— i d;iﬁjoypsA..r_’J
sourceProgram [|
DB User Group | ————— = ,,‘:}',EQ'EE",,,J
Application User EEQ_M—‘_}
Object [EMPLOVEE |
Object Group & Groupe.. |
Command o
Command Group | (Public) DML Commands _J _‘!!!E_m‘uup_a__»H
Period — ® © Peiods.._ |
Log
Action [ALERT PEREVENT ¥
Notification Type | MAIL &
Alert Receiver [Ea_rpiaidimm __Vj
& add |
% Concel | o hccent.
A

| Chapter 6

182

6.1 Align user models by communicating application user information

CLIENT_IDENTIFIER is a predefined attribute of Oracle’s built-in
application context namespace USERENV that can be set using the
DBMS_SESSION interface. This interface allows you to associate a client
identifier with an application context, and Oracle keeps this information as
a global mapping within the SGA.

The simplest way to use this identifier is through the built-in USER-
ENV namespace, independently from the global application context. You
can use this only if you are using an OCI driver (including thick JDBC). In
this case the application layer can set the identity of the application user for
use within the database using built-in OCI functions. When the applica-
tion starts making calls on behalf of a user ID of “999,” it can use the ocI-
Attrset function as follows:

OCIAttrSet(session, OCI_HTYPE_SESSION,
(dvoid *)"999", (ub4)strclen("999"),
OCI_ATTR_CLIENT_IDENTIFIER,

OCIError *error_handle);

If you are using a thick Oracle JDBC driver, you can use the encapsulat-
ing methods setClientIdentifier and clearClientIdentifier. After
you call getConnection and receive the connection from the pool, call set-
ClientIdentifier to let the database know that any statements sent to the
database within the session are now made on behalf of the application user.
When youre done, call clearClientIdentifier before surrendering the
connection back to the pool.

A more general approach uses global application contexts supported by
the DBMS_SESSION interface. In this case you can not only align the user
models but also assign additional attributes, which can be used within your

database code. The DBMS_SESSION interfaces available for setting (and

clearing) contexts and identifiers are:

SET_CONTEXT

SET IDENTIFIER
CLEAR_IDENTIFIER
CLEAR_CONTEXT

In order to use this technique, you first need to create a global context:

CREATE CONTEXT sec USING sec.init ACCESSED GLOBALLY

6.1

Align user models by communicating application user information 183

1->

Now you can start assigning additional attributes that will be available
and that can be used once you set the user identity within the database. For
example, if you want to assign a “TOP SECRET” security clearance to be
associated with an application user, you can execute:

DBMS_SESSION.SET CONTEXT('sec', 'clearance', 'TOP SECRET',
'"APPSRV', '999')

In this case APPSRV is the login used by the application server to sign
onto the database. This is the username shared by all connections within
the connection pool, and 999 is the unique identifier of the application
user. You can make the context available for any database login by using:

DBMS_SESSION.SET_CONTEXT('sec', 'clearance', 'TOP SECRET',
NULL, '999')

At this point the application server can retrieve the connection from the
pool and set the application user identifier using a single additional SQL
call:

begin
DBMS_SESSION.SET_IDENTIFIER('999');
end;

As an example, if a servlet running within a J2EE server needs to make
database queries, it can follow these steps:

Retrieve the user identifier using the getUserPrincipal
Get the connection from the pool

Set the identifier within the context

Perform the database operations

Clear the identifier

CANENATEE SR A

Close the connection

Sample code for this sequence is shown as follows:

String identifier = request.getUserPrincipal().getName();
InitialContext ctx = new InitialContext();

DataSource ds

= (DataSource)ctx.lookup("java:/comp/env/oracle");

| Chapter 6

(84 6.1 Align user models by communicating application user information

2-> Connection conn = ds.getConnection();
3-> PreparedStatement stmt =
conn.prepareCall("begin dbms_session.set_identifier(?); end;");
stmt.setString(l, identifier);
stmt.execute();
stmt.close();
4-> // Run application queries here
5-> PreparedStatement stmt =
conn.prepareCall("begin dbms_session.clear_identifier(); end;");
stmt.execute();
stmt.close();
6-> conn.close();

Any code running within the database can now extract the security
clearance using:

SYS CONTEXT('sec', 'clearance’)

Note that this call will first look at the current identifier and then use it
to extract the correct value associated with this identifier. You can assign any
number of attributes to be linked with the application user identifier—
attributes that can help you better secure and limit what the application can
access and how. For example, you can set both an attribute for security
clearance as well as an attribute defining whether access is allowed outside
of normal business hours:

DBMS_SESSION.SET CONTEXT('sec', 'clearance', 'TOP SECRET',
'SCOTT', '999")
DBMS_SESSION.SET CONTEXT('sec’', 'off hours_allowed', 'l1’,
"SCOTT', '999')

This facility is more flexible than using the OCI’s client identifier mech-
anism for several reasons: (1) you have more options and better control; (2)
because this simply uses an additional SQL call, it is not limited to OCI or
thick JDBC—it will run using any driver; and (3) this method can be used
with an external security system. Moreover, using an external security layer
with this facility is actually simpler to implement than using internal
SYS_CONTEXT('sec’, ‘clearance’) calls because you do not make
changes to your database code and because you can support any query,
whereas SYS_CONTEXT(‘sec’, ‘clearance’) is mostly useful within stored
procedures. If you do not want to change your database code but still prefer
doing granular access control within the database (as opposed to an external

6.2 Use row-level security (fine-grained privileges/access control) 185

system), your database needs to support row-level security, as described in
the next section.

6.2 Use row-level security (fine-grained privileges/
access control)

Let’s continue with the topic of using the application user to implement
better database access control—this time within the database engine. One
of the advanced security features available in many databases is that of row-
level security. The vendors have various names for this feature: Oracle calls
it Virtual Private Database (VPD)/Fine-Grained Access Control (FGAC).
DB2 currently only supports this feature on z/OS (i.e., mainframe) and
calls it Multi-Level Security (MLS). SQL Setver only supports this feature
in SQL 2005 and calls it Fine-Grained Privileges. Sybase ASE also calls it
Fine-Grained Access Control—feature introduced in ASE 12.5. These
options are not fully equivalent in terms of functionality, but in all cases
they allow you to implement row-level security. Using row-level security is
generally a good idea when you need to have fine-grained access control, so
this is a good technique to know. Furthermore, some of the databases allow
you to use this feature to implement application user-based access control,
so it fits right in with the topic of this chapter.

Let’s start by looking at DB2’s MLS and then move on to Oracle’s VPD.
After reviewing VPD, you'll complete the example started in the previous
section with Oracle’s context mechanism and see how to use VPD/FGAC
to implement application user-based access control within the database.
Even if your environment is not DB2 or Oracle, you should understand
these concepts; they will probably be relevant to your environment either
today or in the near future.

DB2 UDB 8 Multi-Level Security (MLS) is available for z/OS VIR54
systems and is based on the Resource Access Control Facility (RACF) (and
specifically on the SECLABEL feature of RACF). For non-IBMers, z/OS

means mainframe. For us non-mainframe people, let’s do a two-minute

review of RACE.
RACF was originally developed by IBM in 1976 and is still being used

to manage security within mainframes. RACF has evolved and has been
greatly enhanced over the years and has even been moved off the mainframe
to other environments. RACF manages user authentication, data access
authorization, journaling, DES encryption, and many other security fea-
tures. IBM mainframes are arguably the most secure computing environ-
ments out there—and a lot of that is due to RACE.

| Chapter 6

186 6.2 Use row-level security (fine-grained privileges/access control)

One of the features supported by RACEF is security labels (SECLABEL).
RACEF allows you to associate a security label with every user profile. These
can then be used by RACF to compare the security label of the user with
the security label assigned to a resource. Labels are ordered through rela-
tionships—a label can be equivalent to another, can dominate it, or can be
less than another (reverse dominate). The ordering relationship is com-
pletely flexible, allowing you to represent pretty much any type of security
hierarchy. Label security is discussed further in Section 6.3.

MLS in DB2 UDB for z/OS uses RACF to implement row-level secu-
rity. If you want to implement row-level security for a table, you first need
to add a column that will serve as the security label column. Whenever data
is added to a table (e.g., using INSERT), the security label for the added
row is set to the SECLABEL taken from the user profile for the user making
the INSERT. In the same way, when you try to access a record, your
SECLABEL is compared with whatever is stored within the security label
column, and access is allowed only if your SECLABEL dominates the secu-
rity label of the row you are trying to access.

A second security feature in DB2 was specifically built for WebSphere
application servers, and while it does not support precisely the type of
application user-based access control described in the previous section, it is
somewhat related. DB2 UDB 8 on 2/OS has four special registers (shown
in Table 6.1) that are set by the client when initiating the connection. These
are set by the DB2 JDBC driver used from a WebSphere application server.
You can use the client user ID and/or the application name to enhance your
security policy and/or view management within the database. Unfortu-
nately, the user identifier is only set at connection time and does not change
when the connection is used within another application session, and there-
fore cannot be used for fine-grained access control. However, future ver-

sions of DB2 for z/OS will include this functionality.

>
Table 6.; User identification registers in DB2 UDB 8 for z/0S
Register Name Description
CLIENT ACCTNG Accounting/journaling
CLIENT_APPNAME Application name initiating connection
CLIENT USERID Used identification for the connection
CLIENT_WRKSTNNAME Name of the workstation initiating the connections

6.2 Use row-level security (fine-grained privileges/access control) 187

Next let’s look at Oracle’s Virtual Private Database (VPD) and how it
merges row-level security with application user information to fully support
application user-based access control. VPD brings together server-enforced
fine-grained access control (FGAC) by using the application context mech-
anism. VPD supports the automatic addition of additional predicates to
every SQL statement issued. By allowing this predicate to be based on
application contexts, which can be used to set the application user identi-
fier, these additional predicates can achieve precisely the behavior we want.

VPD enforces fine-grained security on tables, views, and synonyms.
Security policies are attached directly to these database objects and are auto-
matically applied whenever a user accesses these objects. There is no way to
bypass this added security once the policy has been activated; any access to
an object protected with a VPD policy is dynamically modified by the
server by adding potentially more limiting predicates to SELECTS:,
INSERTs, UPDATEs, INDEXs, and DELETE:. It’s a very flexible mecha-
nism: you can define functions that return the predicates that will be added
and implement any kind of access control mechanism you desire.

VPD has two parts: the policy defining the function that returns the
predicate and the runtime that adds the predicate to every SQL. Let’s start
with what the runtime does. Assume that we are accessing the EMP table:

Name Null? Type

EMPNO NOT NULL NUMBER(4)
ENAME VARCHAR2 (10)
JOB VARCHAR2 (9)
MGR NUMBER(4)
HIREDATE DATE

SAL NUMBER(7,2)
COMM NUMBER(7,2)
DEPTNO NUMBER(2)

Assume that you want to build a security policy that defines that users
should only be able to view data about people within their own depart-

ment. If T am a user who belongs to the research department
(DEPTNO=20) and I try to get the data using:

SELECT * FROM EMP;
then the VPD runtime will retrieve the predicate from the security policy
and make sure that the query that is really executed is:

| Chapteré

188

6.2 Use row-level security (fine-grained privileges/access control)

SELECT * FROM EMP WHERE DEPTNO=20;

This is all done transparently and without my knowledge, so effectively
I truly have my own (virtually) private database.

In order for VPD to work, it needs to get the predicate from the security
policy; this is where FGAC comes in. FGAC allows you to attach a security
policy to tables, views, and synonyms. First, you need to create a PL/SQL
function that returns the predicate (as a string) that will be used to restrict
the queries:

create or replace function get_dept id

(
p_schema_name in varchar?,
p_table name in varchar2

)

return varchar2

is
1_deptno number;
begin
select deptno
into 1_deptno
from scott.emp
where empno = sys_context('app_ctx', 'app_userid');
return 'deptno = ' || 1 deptno;
end;

What this function does is the following:

1. It gets an application user ID from an application context (this
context must already be defined as described in the previous sec-
tion). In this case the application user ID is precisely the
employee ID maintained in table EMP.

2. It selects the department number of this employee/application

user. Assume in my case that this is department 20.

3. It returns the string deptno = 20.

This predicate is then added to the select statement by the VPD
runtime as discussed.

6.3 Use label security

189

The last thing left to do is to define the security policy that associates
this function (called a policy function) with the EMP table. This is done
using add_policy within the row-level security package:

begin
dbms_rls.add_policy
(

object_schema => 'APPSRV,

object_name => 'EMP’,

policy name => 'EMP_POLICY',

policy function => 'GET DEPT_ID',

function_schema => 'APPSRV,

statement_types => 'SELECT,UPDATE, INSERT,DELETE',
update_check => true,

enable => true

}i

end;

So now whenever anyone issues SELECT * from EMP the VPD runtime
will see that there is a policy associated with EMD, call the policy function,
which will return (in my case) the string deptno = 20 so that the statement
that will really be executed will be SELECT * FROM EMP WHERE deptno = 20.

Both VPD and FGAC have many features that you can exploit to imple-
ment almost any type of access control. These features are beyond the scope
of this chapter; for more information, see Chapter 13 in the Oracle 10g
Database Security Guide or in an article by Arup Nanda titled “Fine Grained
Access Control” available at www.proligence.com/nyoug_fgac.pdf.

6.3 Use label security

The “bible” of all information security is a U.S. Department of Defense
(DoD) standard titled “Trusted Computer System Evaluation Criteria”
carrying the designation DoD 5200.28-STD. The document dating
August 1983 (with a revision from December 1985) is also nicknamed
“the Orange Book,” and although it is quite old, it is still considered the
origin of many security requirements even today. This is perhaps because
the DoD and agencies such as the National Security Agency (NSA), Cen-
tral Intelligence Agency (CIA), and so on have some of the most stringent
security requirements.

Among the many concepts introduced and mandated by the Orange
Book is the topic of security labels. If you have ever been in any military

| Chapter 6

190

6.3 Use label security

organization or have worked with such an organization, you know that any
document is marked with a classification such as Confidential, Classified,
Top Secret, and so on. These security labels are a core piece of security in
that any piece of information is labeled with its clearance level so that at any
point in time anyone can review whether an individual can have access to
the information (based on clearance level levels assigned to individuals).
The Orange Book mandates this labeling for any type of information and
mandates that this labeling be a part of the security policy defined within
information systems, including data stored in databases. More specifically,
the following extracts from the Orange Book give you an idea of what may
be required of you in such an environment (TCB stands for Trusted Com-
puter Base and is the component of the system responsible for security):

Requirement 1 —SECURITY POLICY-—There must be an explicit
and well-defined security policy enforced by the system. Given iden-
tified subjects and objects, there must be a set of rules that are used by
the system to determine whether a given subject can be permitted to
gain access to a specific object. Computer systems of interest must
enforce a mandatory security policy that can effectively implement
access rules for handling sensitive (e.g., classified) information. These
rules include requirements such as: No person lacking proper person-
nel security clearance shall obtain access to classified information. In
addition, discretionary security controls are required to ensure that
only selected users or groups of users may obtain access to data (e.g.,
based on a need-to-know).

Requirement 2—MARKING—Access control labels must be asso-
ciated with objects. In order to control access to information stored
in a computer, according to the rules of a mandatory security pol-
icy, it must be possible to mark every object with a label that reli-
ably identifies the object's sensitivity level (e.g., classification), and/
or the modes of access accorded those subjects who may potentially
access the object.

Labels—Sensitivity labels associated with each subject and storage
object under its control (e.g., process, file, segment, device) shall be
maintained by the TCB. These labels shall be used as the basis for
mandatory access control decisions. In order to import nonlabeled
data, the TCB shall request and receive from an authorized user the
security level of the data, and all such actions shall be auditable by
the TCB.

6.3 Use label security

(91

»

Figure 6.3
Label-based access
control in Oracle

Label Security.

Label Integrity—Sensitivity labels shall accurately represent security
levels of the specific subjects or objects with which they are associ-
ated. When exported by the TCB, sensitivity labels shall accurately
and unambiguously represent the internal labels and shall be associ-
ated with the information being exported.

Label security is an advanced security option and one that you will prob-
ably need to be familiar with in a military or agency-type environment.
Still, it is always useful to understand such advanced security methodologies
because they may come up elsewhere; for example, I was recently intro-
duced to a project within an investment bank with a focus on data classifi-
cation. More important, label security is usually viewed as an advanced
implementation using row-level security and granular access control. In
fact, you can think of label security as the addition of another column to
every table in your schema—a column that will house a classification label
for every record. You can then use row-level security to ensure that a user
with a Secret classification will be able to access rows with Classified or
Secret labels but not those that have a Top Secret label.

Most of the database vendors can offer functions supporting label security
through the use of row-level security/fine-grained access control. Both DB2
UDB 8 for z/OS and Oracle support label security—DB2 through the
SECLABEL feature in RACF, and Oracle through an advanced offering
called Label Security that is available as part of the Enterprise Edition. Oracle
has a packaged label security solution that is implemented using Oracle’s
VPD and uses sensitivity of data to implement fine-grained access control.
As shown in Figure 6.3, it works by comparing sensitivity labels assigned to
rows with label authorization assigned to users.

'
i

Label-Based = €

Access Control User

I Chapter 6

192

6.3 Use label security

At a high level, a label represents a sensitivity level. At closer look, it has
a few elements and comprises several components. Note that labels do not
have to incorporate every one of these components. Only the sensitivity
level is mandated, but these additional components allow you to finely tune
data-level security. Labels can include:

m A sensitivity level that is usually one of a hierarchy of values (i.e., data
that is top secret is by nature also classified)

s A category or compartment used to segregate data; compartments are
used when data security is based on a “need-to-know basis”

. roup component that can be used to record data ownershi
A group p t th be used t d dat hip

® An inverse group component that can be used to control dissemina-
tion of information

The inverse group component differs from the group component in that
it defines a set of groups to which users must be assigned before they can
access the data. As an example, a row may be labeled with the groups
NAVY, AIR FORCE, meaning that any user belonging to either the NAVY
or the AIR FORCE groups (and having the appropriate sensitivity level)
can access the information. However, if you label a row with the inverse
groups NAVY, AIR FORCE then only users assigned to both of these
groups can access this data; a user belonging to only the NAVY group (even
with the right sensitivity level) will not be able to see this data.

Label security is available through custom installation of Enterprise
Edition. In Oracle 8i this was only available for Solaris, but as of Oracle
9i this is available on all platforms. Once installed you need to use the
database configuration tool to create the necessary data dictionary objects
for label security. The initial database administrator account for label
security is called LBACSYS, and you will need to unlock it after the
installation. You can administer label security by issuing commands in
SQL*Plus (or other tools) logged in as LBACSYS or by using the Policy
Manager (available in the Integrated Management Tools submenu on
Windows or as the oemapp utility in UNIX). Whenever you create a
policy, you will have to specify a column name; this column will be
appended to the application table but can be hidden from describe state-
ments for better security. You should also always create a bitmap index on
the label security column; the percentage of the unique labels compared

6.4 Integrate with enteprise user repositories for multitiered authentication 93

to the number of data rows will almost always be extremely low, making it
an ideal candidate for a bitmap index.

Finally, before leaving the topic of label security, be aware that using
these advanced security features absolutely does not mean that you can
avoid the basics already discussed in previous chapters. For example, in
October 2001, Oracle issued Security Alert #21, which was a mandatory
security patch for Oracle Label Security. This patch (2022108) for Oracle
8.1.7 on Solaris fixes three vulnerabilities (1816589, 1815273, and
2029809), allowing users to gain a higher level of access than authorized by
their labels.

6.4 Integrate with enteprise user repositories for
multitiered authentication

The Lightweight Directory Access Protocol (LDAP) is an open industry
standard that defines methods for accessing and updating information in a
directory. A directory is a database that stores typed and ordered informa-
tion about user objects (e.g., IBM’s SecureWay LDAP server has an
embedded DB2 UDB database, and Oracle Internet Directory [OID] is
built on top of an Oracle database). An LDAP directory is optimized for
read performance, which means it assumes that the user data will be read
far more than it will be changed. LDAP servers base their naming models
on either the X.500 methodology or the DNS naming model. The X.500
methodology sets the root of the directory to an organization and has a
suffix like o=myCompany, c=us. The DNS model uses the domain name as
the suffix like de=myCompany.com. As an example, IBM’s SecureWay uses
an X.500-like methodology and Microsoft’s Active Directory uses the
DNS naming model.

Data in a directory is stored hierarchically in a Directory Information
Tree (DIT) over one or more LDAP server(s). The top level of the LDAP
directory tree is called the base Distinguished Name (DN) or a suffix. Each
directory record has a unique DN and is read backward through the tree
from the individual entry to the top level. The DN is used as a key to the
directory record. For example, in Figure 6.4, Ron’s entry would be accessed
using cn=Ron, ou=Development , dc=myCompany, dc=com.

LDAP servers have become ubiquitous in the enterprise. In fact, they've
become ubiquitous everywhere! On Windows environments this is all-
encompassing, because Microsoft Active Directory server is part of the
Windows 2000 system, and Windows 2000 and 2003 use Active Directory
as the authentication mechanism for Windows. More important, all of the

I Chapter 6

194 6.4 Integrate with enteprise user repositories for multitiered authentication
»
o
Flglfre 6.4 i E
A sample directory L o
naming structure. G [_____
doscom
do=myCompany
ou=Development ouESecurtty
688 IelaphaneNumber. 555-
5651212 5551312
cvDave
5551213 5551214 5881314

main database vendors have interfaces to all LDAP servers—sounds like an
impossible dream-come-true, doesn’t it? This is because LDAP is an indus-
try standard that defines the protocol allowing the database to talk with the
LDAP server. Some examples of common integrations that are often seen
include the following:

= DB2 UDB on Windows integrates with Active Directory. DB2 UDB
8 can be configured to integrate instance and database objects within
Active Directory. Note that in this case all authenticated users in the
domain have read permission to the DB2 instance and any database
object registered with Active Directory (i.e., both authentication
models and authorization models are integrated).

s Not surprisingly, Microsoft SQL Server is integrated with the Active
Directory. In fact, if SQL Server uses Windows Authentication (the
preferred configuration—see Chapter 4), then SQL Server really uses
the Windows operating system for authentication, which, as men-
tioned, uses Active Directory. In addition to authentication, the inte-
gration between SQL Server and Active Directory includes the
following:

6.4 Integrate with enteprise user repositories for multitiered authentication t95

» SQL Server registers itself within Active Directory in order to sup-
port discovery services. You can register instances of SQL Server,
databases, replication publications, and Analysis servers in the
Active Directory.

m SQL Server tools provide a dialog box that supports browsing for
replication publications registered in the Active Directory.

» When registering replication publications in the Active Directory,
the Create Pull Subscription Wizard allows users to search for reg-
istered publications in the Active Directory.

w The sp ActiveDirectory Obj stored procedure supports pro-
grammatically registering databases from T-SQL scripts or from
applications.

» Muldple SQL Server instances that are integrated with Active
Directory create an environment that supports security account
delegation. This means you can connect to multiple servers, and
with each server change, you retain the authentication credentials
of the original login. For example, if I sign on to the finance server
as user FINANCE\ronb, which then connects to the sales server,
then the second server knows that the connection security identity

is FINANCE\ronb.

m Oracle is often integrated with Oracle’s LDAP server Oracle Internet
Directory (OID) but is just as often integrated with the iPlanet
LDAP server and Novell's NDS. You can create a user within Oracle
that is identified with an LDAP name by using:

CREATE USER ronb
IDENTIFIED GLOBALLY AS 'cn=ronb,ou=mycompany,c=us'’

Note that while integration with an LDAP server is effective for enter-
prise authentication and authorization, it can also be used for storing infor-
mation that would otherwise be stored in database configuration files. As an
example, network connectivity information that Oracle usually stores in the
tnsnames.ora file can also be stored in Active Directory.

Let’s look at an example of how an integrated environment can help in
preserving the user identity end-to-end. The example is based on integrat-
ing with Oracle Internet Directory (OID). In this case the database accepts
the connection from the application server but also uses the additional user
information from the application server as a key to user information stored
within OID. The database will access OID to retrieve information such as
roles and shared schemas that should be associated with the user credentials.

] Chapter 6

196

6.4 Integrate with enteprise user repositories for multitiered authentication

Historically, Oracle has merged the concepts of users and schemas, but
in essence a schema is a logical container of database objects, whereas a user
is someone who signs on to the database to do work. These two concepts
must be separated once you move user management out of the database;
after all, different databases may have the same users, and this should not
mean the same access controls and the same schemas. Oracle 9i allows you
to do this. The first step is to create a shared schema, which can be shared
by a large number of OID-managed users:

CREATE USER SHARED_SCHEMA IDENTIFIED GLOBALLY AS '';

Now that we have a schema definition, let’s define a role that will be
used to associate application users defined within OID to permissions.
Roles are important because there are usually many application users—
sometimes too many. The best association is therefore through roles. First,

> . . .
we'll define a role in the database and then attach it to user profiles in OID.
To create the role within the database:

CREATE ROLE APP_USER_ROLE1l IDENTIFIED GLOBALLY;
GRANT CREATE SESSION TO APP_USER _ROLE];

Next, open the Enterprise Security Manager and go to Enterprise
Domains->Enterprise Roles and click Add. This allows you to add an enter-
prise role; specify the role as APP_USER_ROLEI and give the database’s
name. This should reflect a business-level function to represent sets of per-
missions, and note that you can have a single enterprise role that is mapped
to many role/database pairs. This role can then be associated with users
defined within the DIT by using the third tab in the dialog used for creat-
ing or editing a user profile, the Enterprise Roles tab.

At this point you will want to attach the schema created earlier to a set
of users managed within OID. You can do this by using the Enterprise
Security Manager tool, and you can assign it based on any level within the
DIT (i.e., per a set of users or by assigning it to a complete subtree). In
either case, this is done using the Database Schema Mapping by navigating
to Enterprise Domains->Oracle Default Domain, clicking the Database
Schema Mapping, and adding a mapping between the schema and a direc-
tory entry within the DIT. The schema is now associated with an applica-
tion user or a set of application users.

At this point you are all set. When you access the application server con-
nected to the same OID, the authentication stage associates you with a

6.4 Integrate with enteprise user repositories for multitiered authentication 197

node in the DIT. This node is then associated with the role and the schema,
so that when the application server accesses the database it uses
SHARED_SCHEMA and the permissions are defined based on
APP_USER_ROLEI.

Oracle proxy authentication is closely related to this usage of OID and
roles. This feature allows the application user to be communicated in addi-
tion to the database login name over a connection initiated using OCI or
thick JDBC. When using proxy authentication, the end-to-end identifica-
tion process is as follows:

1. The user authenticates with the application server. This can be

done using a username and password or through the use of an
X.509 certificate by means of SSL.

2. The application server uses OID to authenticate the user creden-
tials and gets the DN for the user profile.

3. The application server connects to the database using proxy
authentication. In this process it passes not only the username
and password used to sign onto the database, but also the DN to
the database.

4. The database verifies that the application server has the privileges
to create sessions on behalf of the user.

5. The database gets user information from OID using the DN.

Proxy authentication is a useful feature, and you would think that a lot of
what you learned in this chapter is unnecessary given proxy authentication.
This is not true, mainly because the association between application users is
not dynamic. The first limitation is point number 4, listed previously. In
order for proxy authentication to work, you need to allow the application

server to connect on behalf of the user using GRANT CONNECT:

ALTER USER RONB
GRANT CONNECT THROUGH APPSRV;

This requirement is difficult to maintain for a large number of users,
and many of the techniques you learned earlier in this chapter are often
more scalable in the long run. The second issue is best seen by looking at
what a connection within the application code would look like (in this case
you are using a thick JDBC driver):

| Chapter 6

{98

6.5 Integrate with existing identity management and provisioning solutions

6.5

String userName;

InitialContext initial = new InitialContext();
OracleOCIConnectionPool ds =
(OracleOCIConnectionPool)initial.lookup("jdbc/OracleOciDS");

oracle. jdbc.OracleConnection conn = null;

Properties p = new Properties();
p.setProperty(OracleDataSource.PROXY_USER_NAME, userName);
conn = ds.getProxyConnection(OracleDataSource.PROXYTYPE USER_NAME, p);

Note that proxy authentication occurs during the connection initiation.
This means that while you can pass an application user, you can only do
this once and you cannot dynamically modify the application user on
behalf of which SQL is issued. Therefore, proxy authentication may be
another trick you may want to know about, but it cannot really be used to
align with the application user model.

Finally, Sybase ASE has a slightly different feature that should not be
confused with proxy authentication in Oracle. In Sybase this is called proxy
authorization, and it allows you to impersonate a user with another. It
would seem to be an effective way to implement the dynamic change of
application user, but unfortunately it requires that all users be defined at the
database level, which is not always realistic. The syntax to change the autho-
rization credentials to the user ronb for the session is:

set proxy ronb
set session authorization ronb

You have to first enable the original login name for impersonation:

grant set proxy to rona,ronb
grant set session authorization to rona,ronb

As long as all application users are defined as users in the master data-
base, you can use this mechanism to implement dynamic user-to-session
association.

Integrate with existing identity
management and provisioning solutions

Because of the complexity involved with security features such as authenti-
cation and authorization in environments including many applications and

6.5 Integrate with existing identity management and provisioning solutions 199

information sources, a new category of products has emerged in the past
few years. These products manage repositories of users and their profiles
and implement security policies for authenticating and authorizing access
based on identifying users and mapping them to static or dynamic roles.
These tools allow you to manage a complex entitlement model that spans
multiple applications and sources. Perhaps the most well-known issue that
is handled by these tools is that of single sign-on (SSO). A good SSO envi-
ronment means that once users have authenticated with the system once,
they will not be asked to authenticate again even when they traverse appli-
cation boundaries. A bad SSO implementation (or no SSO implementa-
tion) will constantly ask users for a username and a password, every time
they access a separate application. This, together with the fact that complex
enterprise environments may include tens or hundreds of applications that
users may need to access, is the reason why security and identity manage-
ment tools have been highly successful in the past few years and why a new
category of products has emerged. The main functions supported by secu-
rity and identity management tools are the following:

» Support for heterogeneous environments and servers within a single
and consistent security model

m Ability to manage virtually any resource, including applications and
databases

» Central management of security information

m Central management of user profiles

= Configurable session management (e.g., session timeouts)
» Full support for user provisioning

m Definition of security and access control rules based on users, roles,
dynamic roles, and even through rules that match data in a user con-
text with conditions that determine whether the user should have
access to a particular resource

m Support for personalized Web and portal content using a consistent
rule set regardless of the underlying provider

» Policies and personalization based on IP addresses
m Enhanced security attributes

® Multigrained security (i.e., the ability to define fine-grained access
control on some resources and coarse-grained access at the same time)

| Chapteré

200

6.6 Summary

6.6

» Support for single-sign on

s End-to-end handling of security credentials and security policies

A simple example may convince you much more than a long laundry list
of functions and features. I've had a couple of experiences with companies
that have pretty secure database environments and yet because it takes
almost a week to set up new accounts for new employees or consultants,
they often start working using “borrowed” database logins, so all good secu-
rity intentions practically go out the window. Similar examples involve peo-
ple who are no longer with the company. How many of you have accounts
defined within a production system that are no longer used or that you are
not sure whether they are used? This topic is broader than database security
and is the topic of user provisioning, which is an important piece of security
and identity management.

However, if you are managing a complex and dynamic user environ-
ment and especially if you have managed to align closer to the end user
model, then you may select to integrate your database environment with a
security and identity management solution. If you do, don’t underestimate
the added complexity that this adds and dont underestimate the time you
will have to invest.

Summary

In this chapter you saw that granular access control can only be achieved
through aligning the application user model with the database security sys-
tem (which can be internal within the database engine or implemented as
an external security system). You saw why this is important, what methods
exist to communicate the application user information to the database secu-
rity system, and how to use this information to implement granular access
control. You also saw some broader issues pertaining to user directories and
identity management.

[want to make one brief comment about the techniques you saw in
this chapter. Many of the methods shown here are proprietary and exist on
some databases and not in others. Even when two vendors support the
same basic concept, this is done differently. Another example for this non-
standard implementation is the fact that some of the examples I showed
you in Oracle or DB2 will only work with a thick JDBC driver or OCI,
because the APIs depend on proprietary techniques. This will change over
time. This topic is of primary importance for good database security, and

6.6 Summary

201

more techniques are being built as you read these words. In fact, I know of
Java work being done at IBM (which will then be submitted for accep-
tance to Sun) to support granular access control in a J2EE environment.
Because this is such an important topic, I hope this will happen sooner
rather than later.

The next chapter goes back to the core database engine to discuss some
of the extensions and rich functions that modern databases can do other
than simple persistence and data lookup, and what pitfalls you should be
aware of when you use these advanced functions.

| Chapter b

Computers/Data management/ Security

Implementing Database Security and Auditing

A Guide for DBAs, information security administrators and auditors

Ron Ben Natan

Today, databases house our “information crown jewels”, but database
security is one of the weakest areas of most information security
programs. With this excellent book, Ben-Natan empowers you to close
this database security gap and raise your database security bar!

—Bruce W. Moulton, CISO/VT, Fidelity Investments (1995 - 2001)

It's been said that everyone has their 15 minutes of fame. You
certainly don’t want to gain yours by allowing a security breach in
your database environment or being the unfortunate victim of one.
Information and Data are the currency of On Demand computing,
and protecting their integrity and security has never been more
important. Ron’s book should be compulsory reading for managing
and maintaining a secure database environment.

—Bob Picciano, VP Database Servers, IBM

Let’s start with a simple truth about today’s world: If you have a database
and you make it available to customers, employees, or whomever over a net-
work, that database will be attacked by hackers-probably sooner rather
than later. If you are responsible for that database’s security, then you need
to read this book. No other single source covers all of the many disciplines
and layers involved in protecting exposed databases, and it especially shines
in synthesizing all of its concepts and strategies into very practical and spe-
cific checklists of things you need to do. I've been an Oracle DBA for 15
years, but I'm not embarrassed to admit that five minutes into Chapter One
I was making notes on simple measures I had overlooked.

—Charles McClain, Senior Oracle DBA
North River Consulting, Inc.

This book is about database security and auditing. You will learn
many methods and techniques that will be helpful in securing,
monitoring and auditing database environments. The book covers
diverse topics that include all aspects of database security and
auditing - including network security for databases, authentica-
tion and authorization issues, links and replication, database
Trojans, etc. You will also learn of vulnerabilities and attacks

books.elsevier.com/digitalpress

that exist within various database environments or that have
been used to attack databases (and that have since been fixed).
These will often be explained to an “internals” level. There are
many sections which outline the “anatomy of an attack” before
delving into the details of how to combat such an attack.
Equally important, you will learn about the database auditing
landscape-both from a business and regulatory requirements
perspective as well as from a technical implementation perspective.

¢ Useful to the database administrator and/or security adminis-
trator-regardless of the precise database vendor
(or vendors) that you are using within your organization

¢ Has a large number of examples-examples that pertain to
Oracle, SQL Server, DB2, Sybase and even MySQL..

* Many of the techniques you will see in this book will never be
described in a manual or a book that is devoted to a certain
database product

¢ Addressing complex issues must take into account more than
just the database and focusing on capabilities that are provided
only by the database vendor is not always enough. This book
offers a broader view of the database environment- which is not
dependent on the database platform-a view that is important to
ensure good database security

Ron Ben Natan is CTO at Guardium Inc., a leader in data-
base security and auditing. Prior to Guardium Ron worked
for companies such as Intel, AT&T Bell Laboratories, Merrill
Lynch, J.P. Morgan and ViryaNet. He holds a Ph.D. in the
field of distributed computing from the University of
Jerusalem. Ron is an expert on the subject of distributed
application environments, application security and database
security and has authored nine technical books and numerous
articles on these topics.

Audience: DBA’s, System and Network
Administrators and Auditors

ISBN:1L-55558-334-2
90000

9"781555"58334

Compliments of:

For more information contact:

IBM InfoSphere Guardium
5 Technology Park Drive guardium@us.ibm.com
Westford MA 01886 ibm.com/software/data/guardium

