Includes
Examples For:

ORACLE
SQL SERVER
DB2 UDB
SYBASE

4

Authentication and Password Security

In Chapter 1, you learned about secure installations of your database and
that you should fully understand and use the built-in mechanisms within
your database—mechanisms that help you authorize and enforce activities
within your database. However, in order to authorize and enforce, you
must be able to first identify the party that is requesting the action. This
identification process is closely linked to the authentication process—the
process in which the server can prove to itself that the requesting party is
who it claims to be. Authentication and various related topics are the sub-
ject of this chapter.

Authentication forms the basis of any security model, as shown in Fig-
ure 4.1. If you cannot authenticate a user, how can you assign any privi-
leges? The SANS glossary (www.sans.org/resources/glossary.php) defines
authentication as “the process of confirming the correctness of the claimed
identity”—it is the process where an entity provides proof that it is who it is
claiming to be. The issue of identity is separate from authentication, and
several methods are used to define an identity. Methods by which you can
identify a party include the following:

m Something that the party knows (e.g., username and password)

» Something that the party possesses (e.g., a badge, smart card, or cer-
tificate)

» Some biometric attribute that the party has (e.g., fingerprints or a ret-
inal pattern)

The focus of this chapter is on the authentication process, and I will
always use the username/password identity-creating method. Usernames
and passwords are by far the most common methods you will encounter.

95

96 4.1 Choose an appropriate authentication option
Figure 4.1
Authentication as
the base of the

security model.

Also, from your perspective, there really is no difference what identity
method your organization is using, and the differences will be transparent
to the database environment, because they will all be taken care of in lower
levels of the software stack. The identity is merely something that the party
signing on has, and the authentication process is that in which you inspect
what the entity has and decide if this proves that they are who they say
they are.

The first part of this chapter introduces you to the various authentica-
tion categories that the main database vendors support. You will learn what
authentication options make your environment inherently insecure and
what type of authentication options you should consider. You should
always remember that if your authentication setup is insecure, nothing else
matters. Once you understand how to configure for strong authentication,
you will also learn what activities you should perform on an ongoing basis
to ensure that authentication and identities remain secure.

4.1 Choose an appropriate authentication option

Every database has an authentication procedure—the procedure by which
a user is challenged to provide a set of credentials and in which the data-
base verifies whether the user is who they claim to be. Once authenti-
cated, the database knows who the user is and can assign a set of
privileges, but this is already outside the scope of authentication and is
part of the authorization mechanism.

4.1 Choose an appropriate authentication option 97

4.1.1

Anatomy of the vulnerability: Weak
authentication options

Most databases will allow you to control how authentication is done. This
means that if you're not careful and don’t understand all the implications,
you could end up with rather weak authentication (i.e., a gaping hole in the
security of your database).

Let’s look at an example from the world of DB2 UDB. DB2 allows you
to choose among several authentication options. One of the options is
called CLIENT, but it may as well have been called “no authentication.”
CLIENT authentication in DB2 UDB means that the database performs
no authentication on the server. If it gets a connection request, it assumes
that authentication has already happened on the client and accepts the cre-
dentials from the client without doing any further authentication. This is a
bad assumption because it allows me to plug into the network and almost
instantaneously connect to the DB2 instance without anyone having really
checked me out.

CLIENT authentication in DB2 assumes that people protect the client
workstations—a bad assumption. It has a concept of TRUSTED CLI-
ENTS representing all clients that have a “true” operating system, which
can perform authentication. For example, a Windows 9x machine will
never be a trusted client. However, the issue is not so much whether the OS
can authenticate or not (it may have been so seven years ago, but no more);
the issue is that workstations and laptops are not always a good security
environment, and it is dangerous to rely on authentication at the endpoints
for your database security. Just out of interest, I recently went around the
group I am working with at a client to see what their passwords were like. I
asked five people in sales and eleven people in technical support. Four of
the five people in sales had a Windows account with no password whatso-
ever. The support people were a little better in their own accounts, but all
the machines they were working on had a privileged account with the same
password that was well known and easy to guess. The support people used
this because they all had a need to sign on to each other’s machines to run
tests or troubleshoot issues. The system administrator passwords on these
machines were good, but two of the support people had the password writ-
ten on a sticky note stuck to the monitor because it was so difficult to
remember. Do you really want to trust your database to that kind of an
authentication environment?

| Chapter+4

98

4.1 Choose an appropriate authentication option

4.1.2

»

Figure 4.2

A Windows user is
created when
installing DB2 in
Windows, because
DB2 UDB uses the
operating system to
authenticate users.

Implementation options: Understand what
authentication types are available and choose
strong authentication

Most databases have more than one authentication option that you can set
up and use. Some databases have a very large set from which you can
choose. Choice is generally a good thing, but it does put the burden on you
to choose wisely. What you should take away from the example in the previ-
ous subsection is that it is very important that you know what authentica-
tion options are available within your database environment and use one
that truly authenticates users trying to access the database.

Let’s continue with the DB2 UDB example started in the previous sub-
section and see what a better authentication option might look like. But
first a quick word on the DB2 UDB authentication layer. DB2 UDB does
not have its own authentication implementation (as do Oracle, SQL Server,
and Sybase). DB2 UDB must rely on an external authentication system,
most commonly the operating system. For example, when you install DB2
UDB on a Windows system, it automatically creates a new Windows user
for the database administrator, as shown in Figure 4.2. At first this may
seem limiting to you, especially if you're used to another database environ-
ment. As it turns out, most vendors (including Oracle and Microsoft) actu-
ally recommend operating system—based authentication because it is usually
a stronger authentication model and usually provides better overall security.

DB2 UDB CLIENT authentication should never be considered plausi-
ble—at least not with its related defaults. Two additional attributes can help
you refine CLIENT authentication. The first, TRUST ALLCLNTS, can be set

J db2admin

!
ey
| J

Windows

To begin, click your user name

4.1 Choose an appropriate authentication option 99

to a value of DRDAONLY, which means that the server will authenticate all cli-
ents except those coming from z/OS, OS/390, VM, VSE, and iSeries operat-
ing systems—environments considered to be far more secure and controlled
than clients on Windows or UNIX. The second parameter is called
TRUST_CLNTAUTH, and it determines where a password should be checked
when clients are authenticated. The parameter can be set to SERVER or
CLIENT, and the value determines if the passwords are checked on the client
(where the DB2 driver runs) or the server. If you have decided to go with
CLIENT authentication, I strongly suggest you set TRUST_ALLCLNTS to DRD-
AONLY and TRUST CLNTAUTH to SERVER. Unfortunately, TRUST_ALLCLNTS
is set to YES by default, meaning that if you do set the authentication mode
to CLIENT, your DB2 instance will trust all connections.

CLIENT is not the default authentication option for DB2 UDB, so you
have to explicitly change it to this weak mode. I know I'm being repetitive,
but please don't use CLIENT authentication.

The default authentication mode used by DB2 UDB is called sErRVER
authentication. This option specifies that authentication occurs on the
database server and uses the server’s operating system security layer. Note
that because the database server’s operating system is used to authenticate
the user, any local connection (i.e., one initiated from the database server)
does not go through any authentication phase at the database level—there
just is no point. SERVER is not only the default authentication option, it is

also by far the most common. Other authentication options supported by
DB2 UDB 8.2 are as follows:

® SERVER_ENCYPT. Authentication happens at the server but requires the
client to pass encrypted usernames and passwords.

= KERBEROS. Used when the operating systems of both the client and
the server support the Kerberos security protocol. Kerberos is an
important authentication system and one that has gained widespread
usage in the industry for a variety of systems. (See Appendix 4.A for
an overview of Kerberos.)

m KRB _SERVER ENCRYPT. Used to allow the server to accept either Ker-
beros authentication or encrypted server authentication.

® DATA ENCRYPT. Authentication is exactly like SERVER_ENCRYPT,
but the entire session is encrypted over the wire. Note that this fea-
ture is new to UDB 8.2 and was not available previously.

| Chapter4

100

4.1 Choose an appropriate authentication option

m DATA ENCRYPT CMP. Authentication is like SERVER_ENCRYPT, and com-
munication will use DATA_ENCRYPT if the client supports it with a fall-
back to unencrypted communications if the client does not.

» GsSPLUGIN. This is also a new feature in UDB 8.2 allowing an exten-
sible authentication approach. You can plug in any authentication
mechanism that conforms to the GSS API to become UDB’s authen-
tication provider.

B GSS_SERVER ENCRYPT. Authentication is either GSSPLUGIN or
SERVER_ENCRYPT.

You've now seen that DB2 UDB uses the server OS for authentication,
and I mentioned that this is often also the recommended authentication
option in other database environments. The main reason that operating sys-
tem authentication is a good option is that it solves the credentials manage-
ment issue; it allows you to let the operating system take care of credential
management rather than having to carefully consider where and how you
store user credentials. Let’s move on to look at the authentication options

for SQL Server and Oracle.

Microsoft SQL Server has two authentication modes: Windows
authentication and mixed authentication. Windows authentication is the
default mode and the one recommended by Microsoft. Windows authenti-
cation means that SQL Server relies exclusively on Windows to authenti-
cate users and associate users with groups. Mixed authentication means
that users can be authenticated either by Windows or directly by SQL
Server. In this case SQL Server still uses Windows to authenticate client
connections that are capable of using NTLM (NT LAN Manager) or Ker-
beros, but if the client cannot authenticate, then SQL Server will authenti-
cate it using a username and password stored directly within SQL Server.
NTLM is an authentication protocol used in various Microsoft network
protocol implementations and is used throughout Microsoft’s systems as
an integrated single sign-on mechanism.

Let’s move on to Oracle. Oracle also has many authentication options,
including native Oracle authentication, which uses Oracle tables to main-
tain passwords, and operating system authentication. Let’s start by under-
standing how native authentication works using a simple example showing
an interaction between a client using OCI and an Oracle server.

The native authentication process starts when a client asks you for a
username and password and calls the OCI layer. At this point the Transpar-
ent Network Substrate layer (TNS) is called. TNS makes a network call to

4.1 Choose an appropriate authentication option 101

the server and passes it some client identifiers, like the hostname and an
operating system name. It does not pass the username and password yet;
rather, it calls a system call at the operating system level and retrieves the
operating system user that is being used. The database does not try to
authenticate this operating system username; it just accepts this informa-
tion and proceeds to negotiate an authentication protocol with the database
(all within the TNS layer). When the two agree to an authentication
method, the client sends the login name and password to the database using
the Oracle Password Protocol (also called O3LOGON)—a protocol that
uses DES encryption to ensure that the password cannot be easily retrieved
by an eavesdropper.

Note that this means that for every connection, the database knows the
user not only at the database level but also at the operating system level.
This information may be important to you for audit or security purposes,
and you can retrieve it from v$sESSION. For example, the following data
fields are taken from v$sESSION and can be useful when you want to better
categorize who is logged into the database:

USERNAME : SYSTEM

OSUSER: RON-SNYHR85G9DJ\ronb
MACHINE: WORKGROUP\RON-SNYHR85G9DJ
MODULE: SQL*Plus

There is more information regarding the authentication process in
V$SESSION_CONNECT_INFO; for example, the right-most column of Table 4.1
lists additional authentication information for my SQL*Plus session. Note
that the authentication type is native (DATABASE):

Table 4.1 Contents of v$SESSION_CONNECT INFO Matching the Logon Information in V$SESSION
AUTHENTICATION

SID _TYPE OSUSER NETWORK_SERVICE_BANNER

138 DATABASE RON-SNYHR85G9DJI\ronb Oracle Bequeath NT Protocol Adapter
for 32-bit Windows: Version 10.1.0.2.0 —
Production

138 DATABASE RON-SNYHR85G9DJI\ronb Oracle Advanced Security: authentica-
tion service for 32-bit Windows: Version
10.1.0.2.0 — Production

| Chapter4

(02 4.1 Choose an appropriate authentication option
Table 4.1 Contents of v$SESSION CONNECT INFO Matching the Logon Information in v$SESSION
AUTHENTICATION
SID _TYPE OSUSER NETWORK_SERVICE_BANNER
138 DATABASE RON-SNYHR85GIDJ\ronb Oracle Advanced Security: NTS authen-
tication service adapter for 32-bit Win-
dows: Version 2.0.0.0.0
138 DATABASE RON-SNYHR85GIDJI\ronb Oracle Advanced Security: encryption
service for 32-bit Windows: Version
10.1.0.2.0 — Production
138 DATABASE RON-SNYHR85G9DJ\ronb Oracle Advanced Security: crypto-check-
summing service for 32-bit Windows:
Version 10.1.0.2.0 — Production

It turns out that on Windows, Oracle also suggests that you use operating
system authentication as a best practice. When using operating system
authentication, Oracle has several parameters you can use to fine-tune the
authentication process. These are initially set up in init.ora, but you can
look at the values by selecting from V$PARAMETER or by signing on to
SQL*Plus and running s#ow PARAMETERS. This lists all of the current param-
eters. The following four parameters (with the default values in a 10g instal-
lation) are relevant in the context of using operating system authentication:

remote_os_authent boolean FALSE
remote_os_roles boolean FALSE
os_authent_prefix string OPS$

os_roles boolean FALSE

The first parameter—remote_os_authent—is equivalent to the CLIENT
authentication for DB2, and you should always set it to FALSE. If set to
true, it means that the server trusts that the client has authenticated the
user on the remote operating system and does not require further authenti-
cation. In the same spirit, remote_os_roles should be set to FALSE,
because this parameter allows a client authenticated remotely to enable
operating system roles. The os_authent_prefix controls the mapping
between operating system users on the server to database users. Users who
have already been authenticated by the server’s operating system can sign
onto Oracle without entering a password. The question is how the user-
names in both systems are related. This parameter is appended as a prefix
to the username used by the operating system and is useful in situations
where you may have the same usernames in the database as in the operat-

4.1 Choose an appropriate authentication option 103

ing system but do not necessarily want them mapped to one another. For
example, I can have an operating system user named Scott, and this is per-
haps someone who never uses the database, so I therefore don’t want this
OS user to be able to automatically sign onto the database. This is why the
default is not an empty string. In some cases, you may want to change this
value to an empty string to simplify the mapping between users. Finally,
os_roles allows you to control which roles are granted through the oper-
ating system rather than through the database and should be used when
you want the operating system to control not only authentication but also
parts of the authorization process.

Windows-based authentication in Oracle means that Oracle uses Win-
dows API calls to verify the identity of the connection request. This only
works when both the client and the server are running on Windows. You will
also need to set the following in your $ORACLE HOME\network\admin\
sqlnet.ora (which is the default value when you install Oracle on
Windows):

SQLNET .AUTHENTICATION_SERVICES=(NTS)

If you set this value, you are telling the Oracle server that it should first
try to perform Windows authentication, and only if that is not possible it
should fall back on native authentication.

Let’s see what takes place when such a connection is attempted when
starting up SQL*Plus on the client machine. In this case, you enter the
username, password, and service name in the SQL*Plus sign-on screen. The
TNS layer sees that you have NTS authentication configured on the client
side (by looking at sqlnet.ora), and therefore the client sends a connection
request to the server specifying that you would like to use NTS authentica-
tion. If the server is also configured to use Windows authentication, it will
accept the request; the client and server have negotiated to use Windows
authentication. You can actually see this action take place in the communi-
cation stream (for more on how to use packet sniffers and what these packet
dumps mean, please see Chapter 10). For example, if you inspect the net-
work conversations between two Windows machines, you will constantly
see TNS packets marked as SNS (Secure Network Services), which is used
in the authentication process within TNS. You can see an example in Figure
4.3 (Windows authentication elements are highlighted in all three panes):

If you were to look at an authentication process with your client con-
necting to a UNIX or Linux machine, some of these packets would be miss-
ing because the server would immediately answer that it cannot do

| Chapter4

104 4.1 Choose an appropriate authentication option
n > © (Untitled) - Etheraal NE=
Figure 4.3)
Captureof the | BH*®RS Q+4s 9 F2 Q@ PDEX @
TNS connection | Bo=|] dcomen | o] ¥ o]
s Im- [sourca [Pratocal_[1rf0 1=

setup process using
Windows
authentication.

22 2.999558 157.168.1.8 ca: ARP who has 192.168,1.19%7 Tell 157.168.1.8
23 3.999352 2.16 ARP who has 192.168.1,1997 Tell 192.168.1.8
24 4 037 n’)ﬁ n-spmse Data (6), SNS

Respmse Cata (ﬁ) SNS

l'.u 4 UJ‘JH‘J

27 4.040063 TNS Reguest, Data ’63 SNS.
28 4.040932 NS Request, Data (6), Data
29 4.041926 P 1521 > 4379 [ACK] Seq=365 Ack=1086 Win=64450 Len=0
TNS Response, Data,(f’). Data]

30 4.U41“:‘3

v Frame 25
b Ethernet 6:
b Internet Pr 168) Dst Addr: 192.168.2.20 (192.168.2.20)

), Dst Port: 1521 (1521), Seq: 671, Ack: 204, Len: 155

ocy
b Transmission Col ntrel Protocol

o Tr anspar ent Network ;utetrate Protoco]
et Length: 155

Checksum: 0x0000

Reserved Byte:
Hearer Checksum: 0x0000

‘UU” 00 10 cb 4b Je /4 00 Od %

JPTesT 16 M0

Windows authentication. If you look inside the packet in the Windows-to-
Windows scenario shown earlier, you can see that authentication is going to

use NTLMSSP.

0000 00 10 db 46 3e 74 00 0d 56 b2 05 34 08 00 45 00 «..F>t.. V..4..E.
0010 01 07 a2 73 40 00 80 06 d2 70 c0 a8 01 a8 cO0 a8 c.e88.00 Pereeas
0020 02 14 11 1b 05 f1 46 6f 7b c8 22 4d 2f 84 50 18 Fo {."M/.P.

0050 02 00 00 00 00 00 04 00 Ol b4 00 00 00 00 b4 00 ceennnne
0060 Ol 4e 54 4c 4d 53 53 50 00 03 00 00 00 18 00 18 NTLMSSP
0070 00 84 00 00 00 18 00 18 00 9c 00 00 00 le 00 le ce eeesseee

00a0 a0 52 00 4f 00 4e 00 2d 00 53 00 4e 00 59 00 48 -R.O.N.- .S.N.Y.H
00b0 00 52 00 38 00 35 00 47 00 39 00 44 00 4a 00 72 .R.8.5.G .9.D.J.r
00c0 00 6f 00 6e 00 62 00 52 00 4f 00 4e 00 2d 00 53 o.n.b.R .0.N.-.S
00d0 00 4e 00 59 00 48 00 52 00 38 00 35 00 47 00 39 .N.Y.H.R .8.5.G.9

00£0 00 00 00 00 00 00 00 00 00 00 00 00 00 33 94 30 Ceeseeee deaen 3.0
0100 d7 £5 c6 4a 5f 41 b9 aa 4b aa 31 35 df ¢5 25 9d »ooJ_A.. K.15..%.
0110 56 70 22 72 9d vp'r.

NTLMSSP stands for the NTLM Security Support Provider, and
NTLM stands for NT LAN Manager. NTLM is an authentication protocol
used in various Microsoft network protocol implementations and sup-
ported by the NTLM Security Support Provider (NTLMSSP). Originally
used for authentication and negotiation of secure DCE/RPC, NTLM is
also used throughout Microsofts systems as an integrated single sign-on

4.1 Choose an appropriate authentication option 105

mechanism. NTLMSSP is common, but other mechanisms could be
used—one good example being Kerberos.

At this point the client needs to send the entered credentials to the
server, so the username and password are sent to the server. The password is
not sent in the clear (some of the packet contents have been omitted). The
actual password hashing mechanism is beyond the scope of this chapter; if
you are interested in this detail, please refer to the Oracle Security Handbook
by Theriault and Newman (McGraw-Hill, 2001).

0000 00 10 db 46 3e 74 00 0d 56 b2 05 34 08 00 45 00 o F>t.. V..4..E.
0010 03 53 a2 77 40 00 80 06 d0 20 cO0 a8 01 a8 <0 a8 SeWBLl 0 seiaen
0020 02 14 11 1b 05 f1 46 6f 7d d7 22 4d 30 eb 50 18 Fo }."M0.P.
0030 £8 1d 6f 52 00 00 03 2b 00 00 06 00 00 00 00 0O s eOReeet sevrnene
0040 03 73 03 Oc a2 el 00 05 00 00 00 01 01 00 00 6c cSecenee aasnans 1
0050 b0 12 00 07 00 00 00 24 ad 12 00 b0 b2 12 00 05 $ teeiesnn
0060 73 63 6f 74 74 0d 00 00 00 0d 41 55 54 48 5f 50 scott... ..AUTH_P
0070 41 53 53 57 4f 52 44 20 00 00 00 20 31 38 30 31 ASSWORD ... 1801

0080 36 43 31 31 37 32 35 46 44 38 37 32 30 36 42 30 6C11725F D87206B0
0090 44 37 36 42 32 37 37 30 31 43 42 44 00 00 00 00 D76B2770 1CBD....

00a0 0d 00 00 00 0d 41 55 54 48 Sf 54 45 52 4d 49 de AUT H_TERMIN
00b0 41 4c Of 00 00 00 Of 52 4f 4e 2d 53 4e 59 48 52 AL..... R ON-SNYHR
00cO 38 35 47 39 44 4a 00 00 00 00 Of 00 00 00 Of 41 85G9DJT.. A
00d0 55 54 48 5f 50 52 4f 47 52 41 4d 5f 4e 4d Oc 00 UTH_PROG RAM_NM..
00e0 00 00 Oc 73 71 6¢c 70 6c 75 73 77 2e 65 78 65 00 ...s8qlpl usw.exe.
00£f0 00 00 00 Oc 00 00 00 Oc 41 55 54 48 5f 4d 41 43 AUTH_MAC
0100 48 49 4e 45 la 00 00 00 1la 57 4f 52 4b 47 52 4f HINE.... .WORKGRO
0110 55 50 5¢ 52 4f 4e 2d 53 4e 59 48 52 38 35 47 39 UP\RON~S NYHR85G9
0120 44 4a 00 00 00 00 00 08 00 00 00 08 41 55 54 48 DIeaceanAUTH
0130 5f 50 49 44 0b 00 00 00 Ob 35 36 32 38 34 3a 35 _PID.... .56284:5
0140 36 32 38 38 00 00 00 00 08 00 00 00 08 41 55 54 6288.c00 ceenn AUT
0150 48 5f 41 43 4c 04 00 00 00 04 34 34 30 30 00 00 H_ACL... ..4400..
0160 00 00 12 00 00 00 12 41 55 54 48 5f 41 4c 54 45 A UTH_ALTE
0170 52 5f 53 45 53 53 49 4f 4e dc 01 00 00 fe ff 41 R_SESSIO N...... A

One word of caution regarding passwords in clear text: While the sign-
on process does not transit passwords in clear text, changing a password
usually does. This means that if someone is eavesdropping on your commu-
nications, they will be able to see passwords if they are changed. All data-
bases that can manage passwords have this potential vulnerability. Here are
two examples:

To change a password in SQL Server, you can execute sp_password giv-
ing the old password and the new password:

exec sp password 'password', 'n3wp2sswédrd’

go

Both passwords are sent in the clear over the network:
0000 00 10 db 46 3e 74 00 0d 56 b2 05 34 08 00 45 00 ...F>t.. V..4..E.
0010 00 88 be 9d 40 00 80 06 b6 c4 c0 a8 01 a8 cO a8 8ee. +oouenn.
0020 02 15 10 Oe 05 99 e8 2c d8 6d 8d 18 7b £3 50 18 oome.{.P.
0030 £6 46 25 5a 00 00 01 01 00 60 00 00 01 00 65 00 .F$Z....e.

| Chapter 4

106

4.1 Choose an appropriate authentication option

X.e.C. . S.p._.p.
0050 61 00 73 00 73 00 77 00 6f 00 72 00 64 00 20 00 a.s.s.w. o.r.d. .
0060 27 00 70 00 61 00 73 00 73 00 77 00 6f 00 72 00 '.p.a.S. S.W.0.r.
0070 64 00 27 00 2c 00 20 00 27 00 6e 00 33 00 77 00 d.'.,. . '.n.3.w.
0080 70 00 32 00 73 00 73 00 77 00 34 00 72 00 64 00 p.2.5.S. w.4.r.d.
0090 27 00 0d 00 Oa 00 L

The same is true for Oracle; executing:
alter user scott identified by n3wp2sswird;

generates the following network communication:
0000 00 10 db 46 3e 74 00 0d 56 b2 05 34 08 00 45 00 F>t.. V..4..E
0010 00 ef d3 £4 40 00 80 06 al 07 c0 a8 01 a8 c0 a8 e e,
0020 02 14 11 fd 05 £1 £6 eb c8 8f 53 01 76 42 50 18 S.vBP
0030 £6 ba 2c 7c 00 00 00 c7 00 00 06 00 00 00 00 00 e e,
0040 11 69 20 b0 3f el 00 01 00 00 00 02 00 00 00 03 .i .2ee. sevunen.
0050 5e 21 21 80 00 0O 00 00 00 00 £0 99 €2 00 2a 00 “!l..... .u.... *.
0060 00 00 d8 de el 00 Oc 00 00 00 00 00 00 00 08 df .evevern vuvvrnns
0070 el 00 00 00 00 00 01 00 00 00 00 00 00 00 00 00 .euevuvs wuvennnn
0080 00 00 00 00 0O 00 00 00 00 00 00 00 00 00 00 00 +evuevrs seeevnn.
0090 00 00 00 00 00 00 0a df el 00 cc 9d €2 00 00 00 .eeuvevr weeevrn.
00a0 00 00 2a 61 6c 74 65 72 20 75 73 65 72 20 73 63 ..*alter user sc
00b0 6f 74 74 20 69 64 65 6e 74 69 66 69 65 64 20 62 ott iden tified b
00cO 79 20 6e 33 77 70 32 73 73 77 34 72 64 01 00 00 y n3wp2s swdrd...
00d0 00 01 00 00 00 00 00 00 00 00 00 00 00 00 00 00 +evevuer wueernnn
00e0 00 00 00 00 00 00 00 00 00 07 00 00 00 00 00 00 weueeues wueevnns
00£0 00 00 00 00 00 00 00 00 00 00 00 00 00 .evuvern wunn

Chapter 10 shows you how you can protect yourself from this type of
vulnerability by encrypting the communications stream. Also, if you are
using operating system authentication, you can avoid this database issue
because the password change does not really occur by communicating with
the database—it happens at the operating system level.

Let’s go back to Windows authentication in Oracle. You now understand
how the client connects to the server and how the server uses the Windows
APIs for authentication. The next step in terms of the sign-on process is for
the server to associate the authenticated user with an Oracle user. If I have an
operating system user called ronb, for example, I would use:

CREATE USER "OPS$RONB\WORKGROUP" IDENTIFIED EXTERNALLY;

IDENTIFIED EXTERNALLY tells Oracle that authentication is done outside
the database, and that’s why I don’t need to specify a password when doing
so. The opss is the prefix defined by the os_authent_prefix attribute men-
tioned a few paragraphs ago. One of the advantages of this approach is that
you would never change this user’s passwords using ALTER USER—you
would change the password in Windows.

4.1

Choose an appropriate authentication option 107

Before moving on to the next topic, one last word on using the operat-
ing system for authentication. When the operating system provides authen-
tication services, it may also be used to associate the user signing onto the
database with groups. This is a part of the authorization layer and can have
a broader impact on database security. For example, the same application
may behave differently when accessing a database deployed on a UNIX sys-
tem versus the same database deployed on a Windows system. Furthermore,
any change to the user definitions at the operating system level may change
not only whether the user can sign onto the database but also what they are
entitled to do. This is a serious statement, and many people view this as giv-
ing away too much control.

An example of this behavior can occur in DB2 UDB on Windows.
When you sign on using SERVER authentication, Windows not only han-
dles authentication, but it also returns an access token that includes infor-
mation about the groups the user belongs to, potentially including local
groups, global groups, domain local groups, and universal groups. You
can control the process of group lookup through the pB2_GRP_LOOKUP
variable that can be set using the db2set utility. The values that this vari-
able can take are as follows:

m TOKEN. Association is done based on the domain at which the user is

defined.

® TOKENLOCAL. Association is done based on local groups at the database
server.

® TOKENDOMAIN. Association is done based on all domain groups that
the user belongs to.

When you use the db2set utility to set this configuration, you can use
these three values to define either local groups, domain groups, or both:

db2set DB2_GRP_LOOKUP=LOCAL, TOKENLOCAL
db2set DB2_GRP_LOOKUP=DOMAIN, TOKENDOMAIN
db2set DB2_GRP_LOOKUP=, TOKEN

| Chapter4

108 4.2 Understand who gets system administration privileges

4.2 Understand who gets system
administration privileges

At this point you may be confused, and you are probably not alone. The
authentication and group association models become fairly complex, and
the relationship between the operating system security model and the data-
base security model do not make it easier. If you feel this way only because
the concepts introduced in this chapter are new to you, then it’s no big deal
(maybe you need to read more on the subject and maybe you need to reread
the previous sections). However, if you are confused about how all this is
implemented within your own database environment, then you should put
down this book and perform a comprehensive review of your security envi-
ronment. There is absolutely nothing worse than a misunderstanding in
this area.

When doing a review, it is helpful to follow these steps:

Review the authentication model
Review group association
Review role association

Review privilege association

Perform a “dry run”

S

Carefully inspect system administration privileges

Don't underestimate the benefit of item 5. When you go through an
end-to-end process, you start to fully understand what is going on. In doing
the dry run, you need to take a sample user trying to sign on to the database
through the different layers and ask yourself to simulate what the OS and
the database will do. You should do this process four times—once for a gen-
eral user and once for an administrator user, each one both with local access
and networked access.

Finally, in addition to paying special attention to administration users as
part of the dry run, you should make sure you understand the effect the
operating system can have on who gets system administration privileges to
your database. For example, if you authenticate and associate groups
through Windows, then any user account belonging to the local administra-
tor group and potentially domain users belonging to the administrator

4.3 Choose strong passwords 109

group at the domain controller will all have system administration privileges.
Many people find this too risky, but the first step is to understand this.

4.3 Choose strong passwords

4.3.1

Passwords are your first line of defense and sometimes your only line of
defense, so make sure you can count on them. Passwords are far too often
left as defaults, often far too easy to guess, and often far too easy to crack.
On the flip side, making sure you use strong passwords is probably one of
the simplest things you can do and one of the best return-on-investments
you can hope for.

Anatomy of the vuilnerability: Guessing and
cracking passwords

The simplest vulnerability in terms of weak passwords has to do with
default and even empty passwords. While this seems trivial, you cannot
begin to imagine the damage that this silly oversight has created and the
cost to various IT organizations that can be directly attributed to empty
passwords.

The most well-known vulnerability of this type involves Microsoft’s
SQL Server, and the attack is best known as the Spida worm or as SQL
Snake. Spida came to the forefront in May 2002, when it attacked a large
percentage of SQL Server systems all having an empty password for the sa
account (the administrator account). See CERT incident note IN-2002-04
for more details (www.cert.org/incident_notes/IN-2002-04.html). The
Spida worm scans for systems listening on port 1433 (the default port SQL
Server listens on), and then tries to connect as the sa account using a null
or simple password. If it gains access, it uses the xp_cmdshell extended pro-
cedure to enable and set a password for the guest account. If successful, the
worm then does the following:

1. Assigns the guest user to the local Administrator and Domain
Admins groups
2. Copies itself to the Windows operating system

Disables the guest account

Sets the sa password to the same password as the guest account

] Chapter 4

110

4.3 Choose strong passwords

5. Executes at the operating system level—and begins scanning for

other systems to infect—thus propagating itself in an exponential
manner as do most worms

6. Attempts to send a copy of the local password (SAM) database,

network configuration information, and other SQL server config-
uration information to a fixed e-mail address (ixtld@pos-
tone.com) via e-mail

Through step 5 the worm propagated itself rather quickly through many
corporate environments. The success of the infection is completely depen-
dent on the use of an empty sa password. Given that this was one of the
most successful worms of all time, you can understand how prevalent this
bad practice was (and hopefully is no longer). In fact, while this is no longer
true today, SQL Server used to ship with an empty sa password. It is there-
fore not too surprising that this worm was so successful, especially given
that this vulnerability also exists in SQL Server’s “baby brother” Microsoft
Data Engine (MSDE), which runs embedded on so many workstations. Its
success has earned it a “respectable” contribution to make SQL Server the
fourth place in the SANS top 10 Windows vulnerabilities (see
www.sans.org/top20 for more information).

Interestingly enough, Microsoft published an article more than six
months before the eruption of Spida citing a new worm code-named “Voy-
ager Alpha Force” that also uses a blank sa password. In Article 313418,
Microsoft says:

A worm, code-named “Voyager Alpha Force,” that takes advantage of
blank SQL Server system administrator (sa) passwords has been
found on the Internet. The worm looks for a server that is running
SQL Server by scanning for port 1433. Port 1433 is the SQL Server
default port. If the worm finds a server, it tries to log in to the default
instance of that SQL Server with a blank (NULL) sa password.

If the login is successful, it broadcasts the address of the unpro-
tected SQL Server on an Internet Relay Chat (IRC) channel, and
then tries to load and run an executable file from an FTP site in the
Philippines. Logging in to SQL Server as sa gives the user administra-
tive access to the computer, and depending on your particular envi-
ronment, possibly access to other computers.

4.3 Choose strong passwords (11

4.3.2

It is unfortunate that this awareness did not help circumvent Spida. It is
also unfortunate that in the same article Microsoft continues to say:

Important: There is no bug in SQL Server that permits this penetration; it
is a vulnerability that is created by an unsecured system.

This may be important to Microsoft, but it certainly is not important to
Microsoft’s customers. Furthermore, one can claim that shipping with an
empty password IS a bug and after Spida, Microsoft quickly changed the
shipping password for sa, and today Microsoft is far more proactive in
making sure that its customers are better protected even if it is “not a
Microsoft bug.”

Incidentally, weak default passwords also exist in other database prod-
ucts. Before version 9i R2, Oracle shipped with a password of MANAGER for
the SySTEM account and a password of CHANGE ON_INSTALL for the sys
account—both accounts providing elevated privileges.

The next type of attack you should be aware of uses password crackers.
These tools automate the process of signing onto your database and use a
file of words to guess passwords. They iterate through all of the words in the
files, and if your password is included in this list, they will eventually man-
age to sign onto the database.

An example of such as tool is SQLdict, which you use to run a dictio-
nary attack on a SQL Server instance; you can download the tool from
www.ntsecurity.nu/toolbox/sqldict. To use it, you first need to get a pass-
word file—a great place for those is ftp://ftp.ox.ac.uk/pub/wordlists/.
Once you have the file(s), open the tool, point it at the target SQL Server,
enter the target account, load a password file, and click the Start button, as
shown in Figure 4.4. If your password is in the dictionary file, it will even-
tually be cracked.

SQLdict is a simple tool that a hacker may use. As a DBA testing the
strength of your passwords, you will typically use another form of tools
mentioned in the next subsection.

Implementation options: Promote and verify the
use of strong passwords

Resolving the issues detailed in the previous subsection is easy. Don't use
empty passwords. Don't leave any default passwords. Audit your passwords.
Use password best practices. Use a password cracker tool—after all, the

| Chapter4

12 4.3 Choose strong passwords
Figure 4.4 SOL dict
Using SQLdict ro

run a dictionary
attack on the sa
account in SQL

Server.

SOLdict 2.1 - The SOL Server Dictionary Attacker
copyright [c] 2000, Arne Vidstrom
arne. vidstrom{@ntsecurity.nu - http://ntsecurity. nu

Target server IP: |192.168.2.21 ;

Target account: ISB

Load Password File | |

Start Stop ! Exit I

Tiying user "sa"" with password "Adler"...

hackers will probably try that as well. And finally, track for failed login
attempts to alert you in case a password cracking tool is used.

Here are some simple dos and dont’s:

Do:
s Use a password with mixed-case letters.

s Use numbers in your passwords. I like the method that takes vowels
and replaces them with numbers—it is good and easy to remember.
For example, take a word such as malicious and replace vowels with
numbers to get the password m211c108s. Don't use only this method,
though, because a human hacker can try to guess at these if they see
that you always use this method. Also, don’t map the vowels to num-
bers always in the same way.

» Use punctuation marks within your passwords.

m Use passwords with at least six characters, and a minimum of eight is
even better.

s If possible, choose a password that can be typed quickly and that can-
not be easily guessed if someone looks over your shoulder.

4.3 Choose strong passwords 113

»

Figure 4.5
A good password
gone bad.

Don’t:

Use the same password (even if it is strong) all over the place. At some
point in time you will probably give it to someone, and if you use it
in 50 different systems you have just given access to all 50 systems;
you are also less likely to be willing to change all 50 passwords.

Use the username as the password or any permutation of the login
name (e.g., username spelled backward).

Use words that can be looked up in a dictionary because they will
appear in password cracker files.

Use information that is easily obtained, such as your mother’s maiden
name, your children’s names, or your pet’s name.

Use dates (such as your hiring date).

One other word of caution: you should strive for a strong password that

you can remember. If you cannot remember your passwords, you will end
up posting it on a sticky note or writing it down next to your computer, in
which case you're back to square one. Figure 4.5 is a photo I took showing a
“strong” database password that a developer found difficult to remember
(which I blurred and marked out for obvious reasons). This, of course,
never happens in your environment. ©

| Chapter4

114

4.3 Choose strong passwords

Let’s move on to password checking tools. You can use a tool such as
SQLdict, but this is not very effective. It is slow and it creates a lot of
“noise” (e.g., if you are alerting based on excessive failed logins, you will be
spending the next five years deleting e-mails). From a performance stand-
point, going through a dictionary with 100,000 words could take almost a
full day. Instead, you can use a class of tools that run within the database
and that use the fact that they have access to the database table where the
password hashes are stored.

If you are running SQL Server, you can use the SQL Server Password
Auditing Tool, which is available at www.cqure.net.tools.jsp?id=10. The
tool assumes that you give it a text file with the usernames and password
hashes as stored in the sysxlogins table. After downloading the tool, you
should extract this information using:

select name, password from master..sysxlogins

and export it to a comma-delimited text file called hashes.txt. You then run
the tool from the command line using:

sqlbf -u hashes.txt -d dictionary.dic -r out.rep

The tool is very fast. On my machine it made more than 200,000
guesses per second. You can also run a brute-force attack instead of a dictio-
nary attack by running:

sqlbf -u hashes.txt — default.cm -r out.rep

The —c flag tells the tool that the .cm file is a character set file. The
default English file has the following character set, and you can change it if
you have another locale:

ABCDEFGHIJKLMNOPQRSTUVXYZ0123456789

If you have an Oracle environment, you also have an abundance of
tools. You can use any of the following tools to do password checking:

® Oracle Auditing Tools (OAT) is a set of tools that you can download
from www.cqure.net.tools.jsp?id=7. Among the tools is OracleP-
WGuess, which is a dictionary attack tool.

4.3 Choose strong passwords 115

Figure 4.6
Report showing
Jailed login

information.

m Oracle Password Cracker by Adam Martin seems to be no longer
available, but if you can find the download site, it is a nice tool to
have.

» Oracle Password Cracker by Bead Dang is downloadable from
www.petefinnigan.com/tool.htm and is a PL/SQL-based brute-force
attack tool.

Note that these tools will only work if you are not using operating sys-
tem authentication, because if you are using operating system authentica-
tion, the passwords are stored by the operating system and not the database.
In this case you can use operating system—level password checkers (e.g., the
Ripper password cracker: www.openwall.com/john).

Finally, you should always monitor failed login errors issued by the data-
base. In a well-running environment, failed logins should occur only as a
result of typing errors by users. Applications never have failed logins
because they use coded usernames and passwords, and while users who log
in using tools can have typing errors, these are the exception rather than the
norm. By monitoring failed logins, you can easily identify suspicious behav-
ior that may be a password attack.

When monitoring failed logins, you first need a simple way to create a
list of all such occurrences. Once you have this information, you have two
choices: you can either periodically look at a report that shows you all failed
logins (as shown in Figure 4.6), or you can use this information to alert you
when the number of failed logins goes over a certain threshold (as shown in

ePE@8|
i Source Address User Name Destination Address Count of Exceptions |
Login Failsd 2004-10-14 09:30:35 192.168.1.168 sa 192.168.2.21 1
Login Failed 2004-10-14 09:30:47 192.168.1,168 sa 192.188.2.21 1
Login Failed 2004-10-14 09:30:48 192.168.1,168 s3 192,168.2.21 1
Login Failed 2004-10-14 09:30:50 192.168.1,168 sa 192.168.2.21 4 |
Login Failad 2004-10-14 09:30:53 192.168.1.168 guast 12,2 1
Login Failed 2004-10-14 U9:30:55 192.168.1.168 guast i
Login Failsd 2004-10-14 09:30:56 192.168.1.168 guast 192.168.2.21 1
Login Failed 2004-10-14 U9:30:57 192.168.1.168 guest 192.168.2.21 1
ogin Failed 2004-10-14 09:30:59 192.168.1.168 guest 1
Login Failed 2004-10-14 09:31:02 192.168.1.168 ronb 1
Login Failed 2004-10-14 09:31:04 192,168.1.168 ronb 1
Login Failad 2004-10-14 09:31:05 192.168.1.168 ronb 1
Login Failed 2004-10-14 09:31:06 192.168.1.168 ronb 192.168.2.21 .
Login Failsd 2004-10-14 09:31:15 192.168.1.160 sa 192.160.2.21 1
Login Failad 2004-10-14 09:31:16 192.168.1.168 sa 192.168.2.21 1
Login Failad 2004-10-14 09:31:18 192 .168.1.168 sa 192.168.2.21 1
Login Failed 2004-10-14 09:31:52 192.168.1.168 sa 1
Login Failed 2004-10-14 09:31:53 192.168.1.168 sa 1
Login Failad 2004-10-14 09:31:54 192,168.1.168 sa 1
Login Failad 2004-10-14 09:31:55 192.168.1.168 sa .168.2. 1
Records: 1To20 From 41 O &5 b B O
Show Aliases: OFF

| Chapter 4

116

4.3 Choose strong passwords

»

Figure 4.7
Creating an alert
that sends an e-
mail when failed
logins go over a

threshold of five.

[Modify Alcrt

Name |Failed login alert

Description ISend email notification when there are more than 5 failedEl
Run Frequency D {minutes)

Active

Alert Definition
Query | Failed Logins ,.j]

Accumulation Interval {minutes)

Alert Threshold

Threshold |S.0 O per report ® per line
® As absolute limit
As percentage change within period:

Frnm[E} Tu| E

Alert when value is threshold

Notification

Notification Frequency (minutes)

Notify as Urgent

Alert Receivers Add Receiver..

MAIL dba dba Remove
G Cancel | €5 Roles...] o Save ! Dane IR I
™, o

Figure 4.7). Figure 4.7 shows a definition of an alert that is based on count-
ing failed login events (the query) over a period of one hour and sending an
e-mail notification to the DBA (the alert receiver) whenever the number of
failed logins goes over a defined threshold (in this case the number is five).
Regardless of whether you want active notification or whether you'll just
periodically look at a report, you need a simple way to monitor these
events. This can be done inside the database using native audit or trace fea-
tures or by using an external security monitor that looks at all SQL calls and
status codes communicated between clients and servers.

4.4 Implement account lockout after failed login attempts 117

4.4

Implement account lockout after failed
login attempts

In order to combat login attempts that are performed by hackers or people
who do not own the account, you can choose to disable or lock out an
account after a certain number of failed login attempts. This is especially
useful to alleviate false logins by someone who watches over your shoulder
when you type in your password and manages to get most of it but perhaps
not all of it.

Account lockout can sometimes be implemented by the database (if
the vendor supports it) and can always be implemented by an external
security system. An example for doing this within the database is Oracle’s
support of the FAILED LOGIN ATTEMPTS attribute. Oracle can define
security profiles (more on this in the next section) and associate them with
users. In Oracle, one of the items you can set in a profile is the number of
failed logins. In addition, you can set the number of days that the account
will be locked out once the threshold for failed logins is exceeded. For
example, to lock out Scott’s account for two days in case of five failed
login attempts, do:

SQL> CREATE PROFILE SECURE_PROFILE LIMIT
2 PAILED LOGIN_ATTEMPTS 5;

Profile created.

SQL> ALTER PROFILE SECURE_PROFILE LIMIT
2 PASSWORD_LOCK_TIME 2;

Profile altered.
At this point you can look at your profile by running:

SELECT RESOURCE_NAME, LIMIT
FROM DBA PROFILES
WHERE PROFILE='SECURE PROFILE'

RESOURCE_NAME LIMIT

COMPOSITE_LIMIT DEFAULT
SESSIONS_PER_USER DEFAULT
CPU_PER_SESSION DEFAULT
CPU_PER_CALL DEFAULT

_ | Chapter4

18

4.4 Implement account lockout after failed login attempts

4.4.1

LOGICAL_ READS_PER SESSION DEFAULT
LOGICAL_READS_PER_CALL DEFAULT
IDLE_TIME DEFAULT
CONNECT TIME DEFAULT
PRIVATE_SGA DEFAULT
FAILED LOGIN ATTEMPTS 5

PASSWORD_LIFE_TIME DEFAULT
PASSWORD REUSE_TIME DEFAULT
PASSWORD_REUSE_MAX DEFAULT
PASSWORD_VERIFY FUNCTION DEFAULT
PASSWORD_LOCK_TIME 2

PASSWORD GRACE_TIME DEFAULT

Finally, associate the profile with the user:
ALTER USER SCOTT PROFILE SECURE_PROFILE;

If your database does not support this function, you can use an external
security system, as shown in Figure 4.7. You can cause a database operation
to be invoked rather than a notification. Following the example of the pre-
vious section, instead of sending a notification to the DBA that the thresh-
old is exceeded, you can configure the alert to sign onto the database server
using an administrator account and lock out an account using built-in
stored procedures. For example, if you are running a Sybase ASE server, the
external system can call the sp_locklogin procedure.

Anatomy of a related vulnerability: Possible
denial-of-service attack

One thing you should realize when implementing account lockout after a
certain number of failed logins is that it can be used against you, in the
form of a denial-of-service attack (DoS attack). A DoS attack is one where
the attacker does not manage to compromise a service, gain elevated privi-
leges, or steal information. Instead, he or she brings the service down or
cripples it to a point that legitimate users of the service cannot use it effec-
tively. This is the hacker’s equivalent of vandalism.

If you implement account lockout after five failed login attempts to a
certain account within an hour, a hacker can create a DoS§ attack based on
trying to sign on to the database using legitimate usernames and bad pass-
words. Any password will do, because the attack is simply based on the fact
that if T have a list of usernames (or can guess them), then I can quickly

4.5 Create and enforce password profiles 119

4.4.2

cause every single one of these accounts to be locked out within a matter of
minutes (even with a simple tool such as SQLdict).

Implementation options for DoS vulnerability:
Denying a connection instead of account lockout

There is an inherent problem here: the DoS attack uses precisely the same
scenario for which the account lockout was created. You can achieve a lot
by blocking and denying connection attempts rather than locking out an
account, especially if you can block a connection based on many parame-
ters rather than just the login name. This can usually only be done using
an external security system such as a database firewall. In this case a failed
login event has additional qualifiers other than the login name, such as
the IP address from which the request is coming. For example, the denial
rule shown in Figure 4.8 will deny all access after five failed login
attempts, but will do so only to requests coming from the client IP
address and going to the server IP address on which the failed login
attempts occurred. In this scenario, a hacker who tries to mount a DoS
attack will only succeed in making sure that all connection attempts from
his/her workstation are denied but will not cause any harm to legitimate
users (and their workstations).

4.5 Create and enforce password profiles

Continuing with the example profile from the previous section, some data-
bases allow you to enforce good password management practices using pass-
word profiles. You already saw how Oracle uses profiles to enforce account
lockout, but you can set additional limits per profile:

m PASSWORD_LIFE_TIME. Limits the number of days the same password
can be used for authentication

m PASSWORD_REUSE_TIME. Number of days before a password can be
reused

m PASSWORD_REUSE MAX. Number of password changes required before
the current password can be reused

m PASSWORD_GRACE_TIME. Number of days after the grace period begins
during which a warning is issued and login is allowed

® PASSWORD_VERIFY_FUNCTION. Password complexity verification script

| Chapter 4

120 4.6 Use passwords for all database components
»
Ll
Figure 4.8 Policy Rules
Dem'al rule in Rule definitions for Policy: Production
[1L) 1 Exception Rule: deny after 5 failed logins
dﬂtﬂbﬂseﬁrfwﬂll to Client IP Server IP Src App. DB User Group App. User
shut down ANY ANY ANY ANY ANY
. b d Exception Type Period Min, Ct. Reset Int. Action Rec. Yals. Cont.
connections pase LOGIN_FAILED ANY 5 10 Ti] 0
onﬁzzled logm-" Select Al Unselect All 3 Remove & Buk Modiy ok Add Acess Aule. 4 Add Exception Rule..
Rule minimum count: |0 Minimum number of occurrences: |1 Suggest Rules Suggest from DB ACL
© Cancal Done M

Although Oracle is on of the most advanced in terms of setting such
profiles, many of these functions exist in other databases as well. For exam-
ple, Sybase ASE 12.5 allows you to require the use of digits in all passwords:

exec sp configure "check password for digit", 1

4.6 Use passwords for all database components

4.6.1

Your database may have components of which you may not even be aware,
and those components may need to be password-protected. Examples
include embedded HTTP servers or even application servers that are some-
times bundled with the latest versions. These certainly must be secured with
passwords, but even the core database engine often has such components.
Therefore, it is critical that you review the architecture of your database
server, understand the different components that are deployed, and make
sure you use passwords to secure them.

Anatomy of the vulnerability: Hijacking the
Oracle listener

Let’s look at an example from the Oracle world. In the previous chapter you
saw various vulnerabilities that exist within the Oracle listener—let’s look at
another issue. Default Oracle installations do not set a password on the lis-
tener, and many people don’t even know that this is supported or that it is
needed. This creates a set of serious vulnerabilities, all of which can be
avoided by setting a strong password for the listener (in addition and unre-
lated to the passwords set for user accounts).

The Oracle installation comes with a utility called 1snrctl. This utility
is used to configure the listener and can be used to configure a remote lis-

4.6 Use passwords for all database components (21

tener. If ’'m a hacker I can install Oracle on my laptop and use the utility to
connect to a remote listener. All I need to do is update listener.ora on
my machine to include an alias for the remote server, and then I can fire up
the 1snrctl utility. If the remote listener is not protected with a password,
I can connect to it remotely!

Once I'm connected to a remote listener, I can do the following damage:

» [can stop the listener, making the database unreachable for any net-
worked application. This in effect means I can bring the database
down.

m [can get at information that is available to the listener, which will
help me in hacking other parts of the database.

m [can write trace and log files that can impact the database or even the
operating system.

The first attack type is self-explanatory and serious. I can even write a
tiny script that runs in a loop and tries to connect to the remote listener
every second. If it sees an active listener, it can then proceed to stop it. This
can drive a DBA crazy because it seems like the listener can never start up. 1
can mix this up with another 1snrctl command— set
startup waittime—that causes the listener to wait before it starts up. In
this case my script will certainly stop the listener before it has had a chance
to start.

The second vulnerability is based on the fact that the listener can tell me
many things about the system. For example, if I run the services com-
mand, I can learn of the services running on the server, including path and
environment variables.

The third vulnerability is based on the fact that I can cause log files to be
written to disk in any location open to the operating system user with
which Oracle was installed. I can initiate traces that would be placed in
directories that I could access. I can write to any location to which the Ora-
cle user has permissions and can even overwrite files that affect the data-
base’s operations and even the Oracle account (e.g., .rhosts .cshrc .profile)
on UNIX. I can place files under the root of a Web server and then down-
load the file using a browser. Because the trace files are detailed, they can be
used to steal information or mount an additional attack on the database.

| Chapter4

122 4.7 Understand and secure authentication back doors
»
Figl.lre 4 9 *% Oracle Net Manager - C:\orac le\product10g\10.1.0\Db_1\NETWORK\ADMIN\
: Eile Edit Command Help
Using the Oracle k! i i

Net manager to set

4.7

the listener
password.

4.6.2

2l %2 Oracle Net Configuration

%Lucal

Profile
E@ Service Naming
Listeners

¢

Implementation options: Set the
listener password

You should always set a password for your listener. This is easy and simple,
and you should do it using the 1snrctl utility or the Oracle Net Manager
in versions 9i and 10g (you can also do it by modifying the listener.ora
file, but in this case the password will be in clear text). To change the pass-
word in lsnrctl, use the change password command. To set it, use the
set password command. Then save the change using save_config. To set
the password using the Oracle Net Manager, open the Oracle Net Configu-
ration->Local->Listeners folder and select the appropriate listener from the
tree view on the left. Then select General Parameters from the pulldown
menu as shown in Figure 4.9. Click on the Require a Password for Listener
Operations radio button and enter your password.

In the general case, you must understand the various services you are
running and make sure they are all protected with a password.

Understand and secure authentication
back doors

Although security is always of the utmost importance, protecting you from
shooting yourself in the foot is also something that many database vendors
care about. As such, there are often hidden back doors that are placed to
allow you to recover from really bad mistakes. You should read up on these
and make sure you take extra steps to secure them so they are not used as a
starting point of an attack.

4.8 Summary

123

Let’s look at an example from the world of DB2 UDB authentication.
This particular back door was introduced for cases in which you inadvert-
ently lock yourself when changing authentication configurations, especially
when you are modifying the configuration file. Because the configuration
file is protected by information in the configuration file (no, this is not a
grammatical error), some errors could leave you out—permanently.

And so while back doors are a big no-no in the security world, being
locked out of your own database forever is probably worse, and IBM chose
to put in a special back door. This back door is available on all platforms
DB2 UDB runs on, and it is based on a highly privileged local operating
system security user that @/ways has the privilege to update the database
manager configuration file. In UNIX platforms this is the user owning the
instance, and in Windows it is anyone who belongs to the local administra-
tors group.

All vendors have such hidden back doors, and you need to know about
them. You should assume that hackers certainly know about them, and so
you should know what they are, what limitations they have, and what
additional security measures you should take to secure them. For example,
the DB2 UDB back door described previously is limited to local access—it
cannot be used from a remote client. You can therefore introduce addi-
tional security provision at the local OS level or even physical security for
console access.

4.8 Summary

In this chapter you learned about various best practices involving authenti-
cation and user account management. You saw that most database environ-
ments have various authentication options and that some of these can be
sophisticated (and unfortunately, complex). You also saw that all of the ven-
dors can support an authentication model that relies on the operating sys-
tem for authentication and group association. Moreover, all of these
vendors actually recommend this type of authentication model as the stron-
ger authentication option.

After learning about authentication options, you also learned about
password strength and password profiles as well as what user account/pass-
word maintenance you may want to do continuously. The issue of pass-
words will come up again in the next chapter, this time from a standpoint
of serious vulnerabilities that occur when applications do not appropriately
protect usernames and passwords that can be used to access the database.
This discussion is part of a broader discussion of how application security
affects database security, which is the topic of the next chapter.

1 Chapter 4

124 4.A A brief account of Kerberos

4.A A brief account of Kerberos

Kerberos is a distributed authentication system developed and distributed
freely by the Massachusetts Institute of Technology (MIT). It has become a
popular authentication mechanism and can be found in many environ-
ments. Whereas most authentication systems are based on the server requir-
ing the client to present a password that is stored somewhere on the server,
Kerberos asserts that the communication of the password makes the
authentication scheme insecure and prone to an attack. The main principle
implemented by Kerberos is the fact that the client can demonstrate to the
server that it has some secret information (i.e., the password) without
divulging the information. Instead, it relies on authenticating tickets.

Tickets are issued by a Kerberos Authentication Server (AS). In order to
work with Kerberos, both the server and the client need to be registered
with the AS and need to have encryption keys registered with the AS (step 1
in Figure 4.A). When a client wants to talk to a server, it communicates
with the AS and sends it a request of the form “client A wants to talk to
server B” (step 2). When the AS receives this request, it makes a brand-new
encryption key called the session key (step 3). It takes the session key along
with the name “server B” and encrypts it using the client’s key (step 4). It
then takes the session key along with the name “client A” and encrypts it
using the server’s key (step 5); this is called the zickez. Note that all of this is
only possible because in step 1 the AS registers and maintains both keys.

Both the ticket and the encrypted session key are returned to the client
(step 6). The client takes the first encrypted package and decrypts it using
its key, allowing it to extract the session key (step 7) and check that the
name “server B” is in there (avoiding man-in-the-middle replay attacks).
The client then takes the ticket along with the current time and encrypts
this combination using the session key (step 8). This package is called the
authenticator. A timestamp is used to avoid replay attacks given that every
ticket has a limited time frame within which it can be used. The client then
communicates the ticket and the authenticator with the server (step 9).

When the server gets the ticket and the authenticator, it first uses its key
to decrypt the ticket and extracts the session key and the name “client A”
(step 10). It then uses the session key to decrypt the authenticator (step 11)
and extract the timestamp and the ticket. If the timestamp differs from the
servers clock by too much, it rejects the request (note that Kerberos
requires some form of clock synchronization between the entities). If the
decrypted ticket matched the ticket received from the client, the server
authenticated the request as coming from “client A” and can pass this to the

4.A A brief account of Kerberos 125

-
>

Figure 4.A
Conceptual steps in
Kerberos
distributed
authentication

(1 Regete koy—2——) o v Authenticating £7) Regter ey
> .

(2) 1 want 10 talk (o the server. Server

\ € (3)+(4)+(5) Prepare ticket

o

- \' ylG)Sendlcxel 1

>

Client Server

()

(7)+(8) Prepare .
authenticator (10)+(11)
Authenticate
the request

e

authorization layer. Notice that the client did not pass the password (or its
key) to the server at any point in time.

In reality, Kerberos authentication is more complex than the flow shown
in Figure 4.A. For example, in addition to the AS, Kerberos uses another
server called the Ticket Granting Server (TGS), which together with the AS
are called the Key Distribution Center (KDC). When a client wants to con-
nect to a server, it first connects to the AS and requests to be authenticated
with the TGS. It gets a ticket from the TGS (called the Ticket Granting
Ticket, TGT). Every time the client wants to connect to a server, it requests
a ticket from the TGS (and not the AS), and the reply from the TGS is not
encrypted using the client’s key but rather using the session key inside the
TGT. I did not show this step in the flow shown in Figure 4.A, and Ker-
beros flows can be even more complex (e.g., in the context of cross-realm
authentication), but all this is beyond the scope of this book.

I Chapter 4

Computers/Data management/ Security

Implementing Database Security and Auditing

A Guide for DBAs, information security administrators and auditors

Ron Ben Natan

Today, databases house our “information crown jewels”, but database
security is one of the weakest areas of most information security
programs. With this excellent book, Ben-Natan empowers you to close
this database security gap and raise your database security bar!

—Bruce W. Moulton, CISO/VT, Fidelity Investments (1995 - 2001)

It's been said that everyone has their 15 minutes of fame. You
certainly don’t want to gain yours by allowing a security breach in
your database environment or being the unfortunate victim of one.
Information and Data are the currency of On Demand computing,
and protecting their integrity and security has never been more
important. Ron’s book should be compulsory reading for managing
and maintaining a secure database environment.

—Bob Picciano, VP Database Servers, IBM

Let’s start with a simple truth about today’s world: If you have a database
and you make it available to customers, employees, or whomever over a net-
work, that database will be attacked by hackers-probably sooner rather
than later. If you are responsible for that database’s security, then you need
to read this book. No other single source covers all of the many disciplines
and layers involved in protecting exposed databases, and it especially shines
in synthesizing all of its concepts and strategies into very practical and spe-
cific checklists of things you need to do. I've been an Oracle DBA for 15
years, but I'm not embarrassed to admit that five minutes into Chapter One
I was making notes on simple measures I had overlooked.

—Charles McClain, Senior Oracle DBA
North River Consulting, Inc.

This book is about database security and auditing. You will learn
many methods and techniques that will be helpful in securing,
monitoring and auditing database environments. The book covers
diverse topics that include all aspects of database security and
auditing - including network security for databases, authentica-
tion and authorization issues, links and replication, database
Trojans, etc. You will also learn of vulnerabilities and attacks

DIGITAL
PRESS

books.elsevier.com/digitalpress

that exist within various database environments or that have
been used to attack databases (and that have since been fixed).
These will often be explained to an “internals” level. There are
many sections which outline the “anatomy of an attack” before
delving into the details of how to combat such an attack.
Equally important, you will learn about the database auditing
landscape-both from a business and regulatory requirements
perspective as well as from a technical implementation perspective.

¢ Useful to the database administrator and/or security adminis-
trator-regardless of the precise database vendor
(or vendors) that you are using within your organization

¢ Has a large number of examples-examples that pertain to
Oracle, SQL Server, DB2, Sybase and even MySQL..

* Many of the techniques you will see in this book will never be
described in a manual or a book that is devoted to a certain
database product

¢ Addressing complex issues must take into account more than
just the database and focusing on capabilities that are provided
only by the database vendor is not always enough. This book
offers a broader view of the database environment- which is not
dependent on the database platform-a view that is important to
ensure good database security

Ron Ben Natan is CTO at Guardium Inc., a leader in data-
base security and auditing. Prior to Guardium Ron worked
for companies such as Intel, AT&T Bell Laboratories, Merrill
Lynch, J.P. Morgan and ViryaNet. He holds a Ph.D. in the
field of distributed computing from the University of
Jerusalem. Ron is an expert on the subject of distributed
application environments, application security and database
security and has authored nine technical books and numerous
articles on these topics.

Audience: DBA’s, System and Network
Administrators and Auditors

ISBN:1L-55558-334-2
90000

9"781555"58334

Compliments of:

For more information contact:

IBM InfoSphere Guardium
5 Technology Park Drive guardium@us.ibm.com
Westford MA 01886 ibm.com/software/data/guardium

