E43
XML Storage in IMS: What's Next

Christopher Holtz

IMS |

= technical conference
Las Vegas, NV September 15 — September 18, 2003

© I1BM Corporation 2003

Abstract and Title for thistalk is a bit misleading because at the time of writing it
was not for sure that this code was going to make version 9.

Overview IMS

¢ Introduction
— What is XMS?
— What is XML?
— What are XML Schemas?
« XMS Methodology
— Decomposed Storage
— Intact Storage
XMS Tooling
— Metadata Generation
+ XMS Java Implementation
— SQL UDF Interface
— Future

© IBM Corporation 2003 IMS Technical Conference

What is XMS IMS

* A methodology for storing and retrieving XML documents
into and out of standard IMS databases

Language Independent Design

— XML Schema Metadata (Structural Metadata)
— DL/I Metadata (Physical Metadata)

— Two storage types

« XMS Javais the Java enablement of XMS using an
extended IMS Java JDBC interface

[lomn]]
]
i
il

"l‘
L

© IBM Corporation 2003 IMS Technical Conference

We will talk about the IMS XML Database methodology. This methodology istied to no
specific language, just as DL/I segments and fields are not tied to any particular language.

The XML Schema metadata is used to map the between the structure of DL/I Segments and
fields and the structure of XML elements and attributes.

The DL/I Metadata (IM S Java Metadata for Java) describes physical characteristics of the

database (Name aliases, DL/I type storage (COMP-1, COMP-2, PIC Strings, etc.), Segment
Sizes, etc.

XMS Javais a Java JDBC implementation building upon IMS Java.

Why use XMS IMS

A World-wide movement towards XML as the standard data
interchange language.

» Retrieve existing IMS data in standard, easily exchangeable XML
format

» Store, Index, Search and Retrieve valid new XML documents into
new or existing IMS databases

» 35 years of storage and management of Hierarchical data
» 35 years of performance, stability and reliability

[lomn]]

© IBM Corporation 2003 IMS Technical Conference

Exponential growth of XML data in transactions, purchase orders, invoices, etc. Growing
need to store and manage all this data.

Y ou don’t want to split your data manage two databases: IMS and an XML database.
Especially, when this datais so tightly bound (could be impossible without serious
replication or migration)

What is XML IMS

e A Standardized, Simple, and Self-Describing Markup Language for
documents containing structured or semi-structured information.

<A>
<f1> ~~—~~</f1>
<f2> ~~~r</f2>
<f3> /\/\f\</f3>

<f4>~~—~</f4>
<f5> < /f5>

<f4> ~"~~</f4>
<f5>~~—"~"</f5>

© IBM Corporation 2003 IMS Technical Conference

[lomn]]

"li
L

Everyone should have some idea already about XML.

An XML Document is nothing more than a structured document. A means of separating
datafrom presentation.

It is so successful because @) it is an agreed upon standard b) it handles encoding problems
and byte ordering c) it is easily parsable

Why is XML... IMS

e Standard Internet Data Exchange Format
— Handles encoding

<xml? version="1.1" encoding="ebcdic-cp-us’ ?>
— Handles byte ordering
<OrderNumber>110203</OrderNumber>

— Human Legible?
— Easily Parsed
— Standard

© IBM Corporation 2003 IMS Technical Conference

What is XML IMS

« Data-centric
— Highly structured
— Limited size and strongly typed data elements
— Order of elements generally insignificant
— Invoices, purchase orders, etc.
» Document-centric
— Loosely structured
— Unpredictable sizes with mostly character data
— Order of elements significant
— Newspaper articles, manuals, etc.

[lomn]]

© IBM Corporation 2003

IMS Technical Conference

We are going to hit on this data vs. document centric concept often.
Data-centric: invoices, purchase orders, parts listings,

Document-centric: newspaper articles, manuals, Shakespeare (all his plays have been
converted to XML on the Web — like what HTML did for Lewis Carol)

Well formed vs. Valid XML Document IMS

* Well formed — Obeys the XML Syntax Rules
— must begin with the XML declaration
— must have one unique root element
— all start tags must match end-tags
— XML tags are case sensitive
— all elements must be closed
— all elements must be properly nested
— all attribute values must be quoted
— XML entities must be used for special characters

* Valid — Conforms to a specific XML Schema

[lomn]]

© IBM Corporation 2003 IMS Technical Conference

Well formed — follows the XML syntax rules (analogy: no more compiler errors — however,
doesn’t mean your program works)

Valid — Data matches the template (XML Schema) including structure, types, etc.

The XML Schema Definition Language IMS

An XML language for defining the legal building
blocks of avaid XML document

An XML Schema:

— defines elements and attributes that can appear in a document
defines which elements are child elements
defines the order and number of child elements
defines whether an element is empty or can include text
defines data types for elements and attributes
defines default and fixed values for elements and attributes

Defines an agreed upon communication contract
for exchanging XML documents

© IBM Corporation 2003 IMS Technical Conference

[l
Il

[
Iy
-l

"l‘
L

It isthe XML blueprints defining the full set of XML instance documents.

XML Schema's are themselves XML documents (therefore, thereis an XML Schema that
describes what an XML Schema can look like — and its like 4 pages |ong).

An XML Schema can be handed to a supplier or consumer saying “ Thisiswhat | expect, or
thisiswhat you can expect from me”

XML Schema can be as specific or flexible as you could possible want (an XML Schema
that only allows one possible XML document, an XML Schema that allows anything
(“any”) keyword).

XML Schema Example

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schemaxmlns:xsd="http://www.w3.0rg/2001/X ML Schema"
xmins="http://www.myNamespace.net"

targetNamespace="http://www.myNamespace.net"
elementFormDefault="qualified">

<xsd:element name="A">
<xsd:complexType>
<xsd:sequence>

<xsd:element name="Ainteger" type="xsd:int"/>
<xsd:element name="Astring" type="xsd:string"/>

</xsd:element>

<xsd:element name="B" minOccurs="0" maxOccurs="unboun
<xsd:element name="Bfield" type="xsd:string"/>

;e(b\/

<xsd:element name="C" minOccurs="0" maxOccurs="unbounded”>
</xsd:element>

<xsd:element name="D" minOccurs="0" maxOccurs="unbounded”>
</xsd:schema>

[lomn]]
)

[[LU

L

© IBM Corporation 2003

Things to point out:

IMS Technical Conference

XML header —required. Showsthisisawell-formed XML document.
elements with a namespace tag.

xmins:xsd — designates the XML Schema Namespace

xmin — designates default Namespace. So we don’t need to refer to its
for.

targetNamespace — designates which Namespace we are defining a structure
be qualified.

elementFormDefault — simply means everything in the instance doc needs to
The A element is made up of a sequence of elements, including anint, a
string (restricted to be 30 char max), and B, and C elements.
The C element has D element.

Particularly notice unbounded 1:n relationships vs. 1:1 relationships
Extra detail has been |eft off.

10

XML Storagein IMS IMS

¢ Natural mapping between hierarchic XML data and
hierarchic IMS database definitions.

XML Schema

<

[lomn]]

© IBM Corporation 2003 IMS Technical Conference

Natural mapping (kind of —what about fairly generic XML Schemas? Especially document-
centric XML)...but almost a no-brainer for fairly rigid XML Schema's, like good ole’ data-
centric. Go back and look at the XML Schematalk about how unbounded means another
segment.

IMSto XML mapping metadata IMS
« Physical Metadata
— Segment Hierarchy (field relationships — 1-to-1, 1-to-n) i Definedin
— DBD Defined Fields . DBD
— Application Defined Fields
— Field Type, Type Length, Byte Ordering, Encoding, etc Defined in
3 . . . - Copylibs
Offer Field/Segment Renaming (lift 8 char restriction) (IMS Java)
e Logical Metadata
— XML layout for fields (field relationships must still match)
— Element vs. Attribute (names must match) Defined in
- . XML Schema
— Type Restrictions, Enumerations, etc.

L

© IBM Corporation 2003

IMS Technical Conference

Physical Metadata— is often broken down into two groups (Type Layout, Type
Length, byte ordering etc...would be for hardware metadata),

12

Decomposed XML Retrieval in IMS IMS
Composed XML XML Schema/
Metadata
<A> P e
<f1> </f1> >
<f3> </f3>

<f4 </f4>

<f5 /£5>

<C>
<f6> </f6>
<D>
<f8> /f8>
S 7
</D>
</C>

© IBM Corporation 2003

IMS Technical Conference

Show how XML documents are created from traditional data

Decomposed vs. Intact Sorage IMS

e Decomposed (data-centric storage)
— XML tags are stripped from XML data
— Identical as current IMS storage
— Strict data-centric XML Schema validated data
— EBCDIC encoding
— Searching on IMS Search Fields

¢ Intact (document-centric storage)
— Entire XML document is stored (including tags)
— Relaxed un-validated data
— Any desired encoding is possible

— Searching is through XPath specified and generated Secondary Indexed
Side Segments

[lomn]]

© IBM Corporation 2003 IMS Technical Conference

Two different storage types for two different types of XML Schemas (notice we say two
different types of XML Schemas and not two different types of XML documents — you may
have extremely rigid and narrow data-centric XML documents, but all we have to go off of
isthe XML Schema...so if the XML Schemaallows alot of flexibility we have to allow for

it).

Decomposed Storage IMS

« XML document must be parsed and validated.

« Data must be converted to traditional IMS types
— COMP-1, COMP-2, etc.
— EBCDIC CHAR, Picture Strings

¢ Stored data is searchable by IMS and transparently
accessible by non-XML enabled applications.

[lomn]]
|||

II
pll
)

© IBM Corporation 2003

1

1
Iy
-l

"l‘
L

IMS Technical Conference

Parsing and especialy validation is low — in inverse implies recomposition is a'so slow.
Encoding and type conversions are slow.

Huge plus —the datais easily searchable and accessible to legacy applications. Both XML
and legacy, non-XML can play together

Decomposed XML Storage in IMS

Incoming XML

<A>

e </f1>
e </f2>
<f3> b g

<f4 </f4>

<f4D/f4>
<f5 /5>

<C>
<f7> </f7>
<D>
el
<f9 </f9>
</D>

</C>

ST et e A"
<xatconpledype>
<t

e lement rame="fied1" type="xdint />
et rame="id2">

XML Schema/
Metadata

© IBM Corporation 2003

IMS Technical Conference

16

Intact Storage IMS

* No (or little) XML Parsing or Schema validation
— Storage and Retrieval Performance

¢ No (or little) data type conversions
— Unicode storage

« Stored documents are no longer searchable by IMS and
only accessible to XML-enabled applications
— XPath side segments

[lomn]]

© IBM Corporation 2003 IMS Technical Conference

Both the top two mean better storage and retrieval.
Bottom one is natural consequence

The“(or little)” refer to possible XPath side segments.
We will discuss these secondary indexed side segments | ater.

17

Intact XML Storage in IMS

Incoming XML

|

flo]
KK
i

© IBM Corporation 2003

IMS Technical Conference

Although we don’'t need the XML Schemafor validation (optionally) we do need it to
indicate the document is stored intact.

18

Intact Sorage Secondary Indexing

XPath expression identifying Side Segments
segment.

— Side segment is converted to traditional data type and copied into

Side Segments are secondary indexed with documents root
as target.

Example:

XPath="/Dealer/DealerName”

XPath="/Dealer/Model[Y ear>1995]/Order/L astName’

© IBM Corporation 2003

IMS Technical Conference

19

Intact XML Storagein IMS IMS

Incoming XML

B I R
Example:
XPath="/A/B/f4"
XPath="/A/E/f1"

© IBM Corporation 2003 IMS Technical Conference

Although we don’'t need the XML Schemafor validation (optionally) we do need it to
indicate the document is stored intact.

When using Side Segments for XML indexing, we need a Schemato at least validate the
XPath expressions used for indexing.

Overview

Introduction

— What is XMS?
— What is XML?

— What are XML Schemas?
XMS Methodology

— Decomposed Storage
— Intact Storage
XMS Tooling

— Metadata Generation

XMS Java Implementation
— SQL UDF Interface
— Future

© IBM Corporation 2003

IMS Technical Conference

21

DL/l Mode! Utility IMS
Control statements: COBOL D
copybook
1) Choose PSBs/DBDs members
2) Choose copybook -
members DBD
3) Aliases, data types,
new fields. \ /
DL/l Model
Utility
XMI 1.2
/ \ IMS Java
IMS Java report
XML Schema(s) classes
E © IBM Corporation 2003

IMS Technical Conference

XMl isthe future of the physical DL/I metadata.

The XML Schemaisthe structural XML / DL/l metadata mapping

22

[lomn]]

DL/l Model Schema Generation IMS

¢ Additional Control Statements Keywords

OPTIONS PSBds=PSB.SOURCE.PDS DBDds=DBD.SOURCE.PDS

GenJavaSource=YES JavaSourcePath=output/dir
Package=test.db.psb4 ReportPath=output/dir
GenXMLSchema=YES XMLSchemaPath=output/dir \

Outpath=output/dir

PSB psbName=AUTPSB4 Javaname=AutoDealershipDatabase
PCB PCBName=PCB1 JavaName=MyXMLView|GenXMLSchema=YES ‘

/I Physical Segments for DEALERDB

SEGM DBDName=DEALERDB SegmentName=DEALER
FIELD Name=DLRNO JavaType=INTEGER JavaName=DealerNo
FIELD Name=DLRNAME JavaType=CHAR JavaName=DealerName

© IBM Corporation 2003 IMS Technical Conference

23

Logical Metadata (XML Schema)

<?ml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/X M L Schema"
xmins="http://www.ibm.com/ims/PSBName/PCBName"
targetNamespace="http://wwwv.ibm.com/ims/PSBName/PCBName"
elementFormDefault="qualified">

<xsd:element name="A">
<xsd:complexType>
<xsd:sequence>

<xsd:element name="field1" type="xsd:int"/>
<xsd:element name="field2">
<xsd:simpleType>

<xsd:restriction base="xsd:string">

<xsd:maxLength value="30"/>
</xsd:restriction>
</xsd:simpleType>
<xsd:element name="B" minOccurs="0" maxOccurs="unbounded”>
</xsd:element>
<xsd:element name="C" minOccurs="0" maxOccurs="unbounded”>
<xsd:element name="D" minOccurs="0" maxOccurs="unbounded”>
</xsd:element>
</xsd:schema>
E © IBM Corporation 2003
Things to point out:

IMS Technical Conference

XML header —required. Showsthisisawell-formed XML document.
xmins:xsd — designates the XML Schema Namespace
elements with a namespace tag.

xmin — designates default Namespace. So we don’t need to refer to its

targetNamespace — Target Namespace is PSB and PCB (is unique per IMYS)
be qualified.

elementFormDefault — simply means everything in the instance doc needs to
The A element is made up of a sequence of elements, including anint, a
string (restricted to be 30 char max), and B, and C elements.

The C element has D element.
Extra detail has been |eft off.

24

XMS Java Interface

[[n]]
i
iy

© IBM Corporation 2003

IMS Technical Conference

from the Database and File system.

Thisisthe applications point of view that it is now storing and retrieving XML documents

25

XMS Java Interface IMS

Adds 2 User Defined Funtions (UDF) to the IMS Java
JDBC SQL interface

— retrieveXML()

— storeXML()

Runs as an IMS Java Application
— JDR (IJMP, JBP)

— DB2 Stored Procedure

- CICS

— WebSphere

© IBM Corporation 2003 IMS Technical Conference

26

RetrieveXML() UDF

SELECT retrieveXML(B)
FROM C

WHERE C.fieldA ='35’

© IBM Corporation 2003

IMS Technical Conference

27

SoreXML() UDF

INSERT INTO B (storeXML())

VALUES (?)
WHERE A fieldA ='62000’

AN N N s N N

*Insert Statement must be a Prepared Satement

© IBM Corporation 2003

IMS Technical Conference

28

Execute Query

public void processMessage(String deal er Narme) {
obtain connection...

String query =

retrieveXML() call

“ SELECT Deal er Segnment . Deal er Nane,
“ FROM Deal er. Deal er Segnent” +

“ WHERE Deal er Segnent . Deal er Nane = + deal er Nane +
St atement statenent = connection.createStatenment();

process results...

Resul t Set results = statement.executeQuery(query);
cl ose connection
}

retrieveXM. (Deal er Segnent) AS Deal er XM.Doc”

+

© IBM Corporation 2003

IMS Technical Conference

We handle the front end the same as always per environment

We create a connection the same way (either Managed or Non-managed)
But...weissue anew SQL and process the results differently.

29

Process Results IMS

getClob() call

public void processMessage(String deal er Name) {

obtain connection...
execute query. .

while (results.next()) {
Clob xm Doc = results. get Cl ob("“Deal er XM_Doc");

saveC obToFi | e(xml Doc, results.getString(“Deal erNane"));
}

cl ose connection...

© IBM Corporation 2003 IMS Technical Conference

30

Process Results IMS

getCharacterStream() or

getAsciiStream()

public void saveCl obToFile(Clob cl ob,},ﬂ/ng fileName) throws | OException {

Reader reader = clob. getCharacterStrean();
FileWiter witer = new FileWiter(fileName + “.xni");

char[] line = new char[1024];
int x = reader.read(line, 0,1024);
while (x = -1) {

witer.wite(line,O0,Xx);
x = reader.read(line,0,1024);
}

reader. cl ose();
writer.close();

© IBM Corporation 2003 IMS Technical Conference

31

XMS Java Interface Future IMS

*« SQL is areally poor XML/IMS interface
— Hierarchical DB
— Hierarchical Data
— Relational Query Language??

e SQL/XML
— Sitill relational

¢« XQuery
— Only query right now
— Still under development

[lomn]]
]
i
ity

L

© IBM Corporation 2003 IMS Technical Conference

Clearly thisisbad....but it was fast and makes this available now rather than later.

SQL/XML stems from the inability to map XML queries (initially XQuery) directly onto
relational, so it started itsown track. Itsfairly well developed and allows you to

dynamically build an XML document out of the underlying data (notice it assumes the
underlying datais not already XML)

XQuery is till under development and not a completed standard, however it is more the
direction of XMS for the future, and we (IMS) are involved in its review (have access to
team room and discussions, since it is mostly being developed here at IBM).

32

Hypothetical Bank DB IMS

» Every month send
customer statements

* On-line Account access
« etc.

© 1BM Corporation 2003 IMS Technical Conference

33

Current tedious design IMS

*Application must query al needed DL/I
segments and gather needed data for each
customer

« Application lays out datain desired output
W format for statement or web page.
< Query DB
M and
Build *There is no separation of data and
Statement presentation, so
*Any change to the way the dataisto be
presented means a change to the application

(The Build Statement Module).

Statements

© IBM Corporation 2003 IMS Technical Conference

New XML design IMS

Bventually XQuery « Retrieve customer datain XML format

« Does not affect other apps
¢ XSLT transforms XML based on style
sheet to...text, html, PDF, etc.

«Clear division of data (XML from DB) and
presentation (XSL)

*Any change to the way the dataisto be
presented is only change to style sheet (no
recompile)

© IBM Corporation 2003 IMS Technical Conference

35

Extended DB with Intact Sorage

Extend Customer with
intact XML for each
customers own
personalized style
sheet

|
i

© IBM Corporation 2003

IMS Technical Conference

36

New XML design IMS

Eventually XQuery

* Retrieve customer datain XML format
« And retrieve personalized X SL

« Customers can change their own Bank
Statement format

© IBM Corporation 2003

IMS Technical Conference

37

Possible further extension IMS

* Generate Schema for
transactions and
distribute to suppliers.

© 1BM Corporation 2003 IMS Technical Conference

38

New XML storage and retrieval IMS

« Transactions comein as XML (SOAP)
« Normal Tran processing
« Store Transaction directly into database.
. Other apps do not need to change.
Transaction

Processing

Transaction

« Full document easily retrieved or searched

© IBM Corporation 2003

IMS Technical Conference

39

End

© IBM Corporation 2003

IMS Technical Conference

40

