
Informix Internet Foundation.2000
For UNIX, Linux, and Windows NT

T E C H N I C A L B R I E F

A B O U T I N F O R M I X I N T E R N E T

F O U N D A T I O N . 2 0 0 0

The Internet has become a major defining

force in the success of today’s businesses.

Implemented correctly, a business can gain

significant competitive edge, enabling it

to expand its market, improve operating

efficiencies, and retain valuable customers.

However, the Internet has brought about

a data management problem. Complex and

dynamic data types such as video, image,

sound, and other complex data are the norm

of the Internet. To implement a successful

Internet strategy, businesses need to choose the

right database management solution—one

that is capable of storing, retrieving, and man-

aging rich data types and performing compli-

cated operations such as keyword searches

and aggregations on this non-traditional

data quickly and efficiently. Furthermore,

the database management solution must be

easily extended to the Web—providing the

ability to publish, transact, and analyze

business data—at a low cost.

The Informix Internet Foundation.2000 is

the smartest Internet solution in the market

today. It combines the best features of

Informix’s industry-leading relational

database management system (RDBMS)

technology with the flexibility and power

of Informix’s advanced object-relational

technology to produce a first-in-its-class

data engine for the next generation of

Internet computing. As such, Informix

Internet Foundation.2000 lets businesses

quickly and reliably extend their enterprise to

the Web with the same degree of performance

and reliability as traditional OLTP applications.

At the core of Informix Internet

Foundation.2000 is Informix Dynamic

Server.2000™, Informix’s powerful, multi-

threaded data engine designed to deliver

breakthrough database scalability, manage-

ability, and performance. Informix Dynamic

Server.2000 takes database technology to

the next level by incorporating extensibility

directly into the database, allowing users to

manage business logic, create non-traditional

data types, and define complex database

functions in an integrated, intelligent infor-

mation management system. With Informix

Dynamic Server.2000, users benefit from the

performance and scalability offered by tradi-

tional relational database, while gaining all

the advantages of object-oriented technology

and unlimited extensibility.

Informix® Internet Foundation.2000™ combines the performance and scalability of Informix’s

proven relational database technology with the extensibility and flexibility of object-oriented

technology. Specifically designed for the Internet, Informix Internet Foundation.2000

enables companies to quickly and efficiently integrate dynamic data types such as video,

image, HTML, geospatial, and other complex data. It offers sophisticated tools to extend

the transactional engine to the Web, incorporating server-managed rich data with Java and

XML programmability. With Informix Internet Foundation.2000, Informix lets businesses

handle any type of information to do just about anything imaginable—it is the smartest data

engine for the Internet.

Developed specifically to handle the complex

needs of the Internet, Informix Internet

Foundation.2000 provides unparalleled

power to publish, transact, and analyze

business application data. It is designed to

publish business data on the Internet through

delivering relevant and timely content to

customers and to consistently capture critical

information about customers. Informix

Internet Foundation.2000 is also an Internet

transaction and analysis engine that powers

secure, reliable, and highly available Web

applications for business-to-consumer and

business-to-business systems. With Informix

Internet Foundation.2000, businesses are

provided with the ability to analyze Internet

transactions to better understand customers,

market trends, and demographics, allowing

them to make critical business decisions to

succeed in today’s competitive climate.

Informix Internet Foundation.2000 supports

all Internet programming standards such

as Java and XML. These programming

languages have been tightly integrated

with the database server to deliver maximum

performance and scalability, making Informix

Internet Foundation.2000 an ideal platform

for hosting scalable Internet application

development and deployment. By incor-

porating extensibility directly into its core

server, Informix provides businesses with

unlimited capacity to grow and adapt to

ever-changing needs.

With Informix Internet Foundation.2000,

organizations now have the best platform

to rapidly and easily move their business

to the Internet.

I N F O R M I X I N T E R N E T

F O U N D A T I O N . 2 0 0 0

A D V A N T A G E S

Key advantages of Informix Internet

Foundation.2000 include:

• support for any kind of data imaginable,

whether they are complex data types

such as spatial, time-series, or 3-D, or

user-defined data types which empower

customers to define data structures

according to their business needs;

• DataBlade® modules manage newly

defined data types with the same flexibility

and reliability as built-in data types;

• application programming standards such as

Java and XML server programmability are

tightly integrated with the database server;

• single database architecture across all

operating environments (UNIX, Linux,

and Windows NT) ensures maximum

performance, transactional consistency,

and data integrity;

• full RDBMS functionality across all

hardware architectures (uniprocessor,

symmetric multiprocessing, and clustered

systems) enables seamless migration of

applications, data, and skills;

• maximum performance and scalability

through a superior multithreaded parallel

processing architecture;

• high database availability for supporting a

wide range of business-critical applications

on open systems platforms;

• dynamic, distributed on-line system

administration for monitoring tasks

and distributing workloads.

2

Support for Any Kind of Data

Imaginable

Informix Internet Foundation.2000 lets orga-

nizations support a universal spectrum of

emerging data types (including images,

sound, video, HTML pages, 2-D and 3-D

spatial data, text documents, etc.) along with

unanticipated information types (including

reporting period, profit, cost per unit, etc.)

that are unique to a specific business require-

ment. Moreover, these rich data types are

stored in the database as native data types,

providing users with unprecedented flexibility

for publishing content-rich Web sites. Further-

more, by supporting complex data as native

type, Informix Internet Foundation.2000 is

less expensive to deploy and support.

Add New Functionality Through

DataBlade Module Technology

DataBlade modules are Informix’s exclusive

technology that lets developers add new intel-

ligence to Informix Internet Foundation.2000.

DataBlade modules can be viewed as object-

oriented “packages” that encapsulate special-

ized data types, operations that process the

data, and access methods that index the

data. They can be “plugged” into the data

engine to do anything with any data.

DataBlade modules can be used to encapsulate

existing application code to enable more effi-

cient execution, as well as offer the flexibility

to run the application code wherever it will

best perform: within the database server,

within an application server, or within the

client. While multidata type queries run best

on the database server, users are provided

with the flexibility to place the logic wherever

it makes most sense.

3

Figure 1: Informix Internet Foundation.2000 supports all kinds of data.

Chu rn
Ra t i o

Pho to s F i lm

Mov ing
Ave rageDocuments HTML

Map/
G IS

P ro ce s s
F l ow

Supports Internet Application

Development Standards

Informix Internet Foundation.2000 supports

Internet application development standards

such as Java, XML, and HTML, and lowers

total cost of ownership by leveraging existing

standards in development tools, systems

infrastructure, and customer skill sets. By

providing an Internet-ready data engine,

Informix Internet Foundation.2000 is capable

of hosting scalable Internet application devel-

opment and deployment for new business

process applications such as e-commerce

and media asset management.

Single-Server Architecture

Informix Internet Foundation.2000 employs

a single-server architecture across UNIX,

Linux, and Windows NT, providing customers

complete freedom to select the operating

environment that best meets their current

information needs. To accommodate future

growth, Informix provides feature parity for

all supported operating systems, ensuring

ease of database and application migration.

Additionally, all components of Informix

Internet Foundation.2000 are tightly integrated

with each operating environment, making

application services a simple and natural

extension to LAN and OS services. For

example, on Windows NT, Informix Internet

Foundation.2000 fully exploits native

Windows NT threads, asynchronous disk

and network I/O drivers, and is integrated

with Windows NT Registry, Event Log,

and various other Windows NT services.

On Linux, Informix Internet Foundation.2000

supports features such as Apache integration,

HOWTO, RPM, ESQL/C, ODBC, etc.

By implementing a single-server architecture,

Informix Internet Foundation.2000 can be

extended to integrate any type of data and

function. This centralized server implemen-

tation ensures transactional consistency

and data integrity, as well as simplifies data

administration and management tasks.

Furthermore, since only one server is

involved, the optimizer can efficiently

determine the optimum execution path

for multi data type queries, thus resulting

in better query performance.

4

Figure 3: Informix Internet Foundation.2000
supports popular Internet development standards
such as Java, XML, and HTML.

Java XML

Figure 2: Informix DataBlade technology lets
Informix Internet Foundation.2000 do anything
with any data.

Bus i ne s s L og i c

Web Page s

Do cumen t s

P r e s en ta t i on s

Image s

Other competitive database management

systems rely on middleware to link multiple

servers managing different data types. This

type of solutions not only compromises per-

formance but also transactional consistency

and integrity, as problems with the network

can lead to problem with the data.

Seamless Migration

Informix Internet Foundation.2000 allows

customers to migrate their database across

computing environments (uniprocessors,

SMP, and clusters) and operating systems

(UNIX, Linux, and Windows NT). As such,

data, applications, and skills developed from

one Informix database environment can be

easily transferred to a different hardware and

operating environment without a tedious

migration process.

Informix is unique in its support of applica-

tion transparency, which is achieved through

isolating parallelism at the database server

level. The server functions based on an

automated determination of how the data

is distributed and the amount of processing

resources that are available to complete

a query. It then automatically determines

whether the SQL statement can be parallel-

ized and, if so, the degree of parallelism.

Applications do not need to be tailored

to the specific platform they will run on.

Therefore, as users outgrow their current

hardware environments, they can easily

move to more powerful systems without

worrying about recoding their applications.

Maximum Performance and Scalability

At the core of Informix Internet

Foundation.2000 is Informix Dynamic

Server.2000, Informix’s premier data engine.

Informix Dynamic Server.2000 is based on

a parallel database architecture, which has

been built from the ground up to provide

core internal parallelism, enabling all major

database operations, such as I/O, complex

queries, index builds, log recovery, and back-

ups and restores to execute in parallel across

all available system resources. This parallel

database architecture provides the unique

ability to intelligently optimize performance

and fully exploit the inherent processing

power of any hardware.

High Availability

To respond to the increasing need for higher

availability, a multitude of features are pro-

vided to ensure round-the-clock database

processing. These features include on-line

administrative utilities for dynamic tuning,

backup and recovery, and table reorganization;

functionality such as enterprise replication

that promotes fault resilience; cluster and

data failover, and software mirroring; and

enhancements that enable Informix technical

support to diagnose problems quicker.

Together, these features minimize planned

downtime by allowing administrators to

perform database maintenance operations

online and reduce unplanned downtime by

working around any faults that may occur,

delivering a highly available database envi-

ronment for all types of mission- and business-

critical processing.

5

Dynamic, On-Line Administration Tools

Informix delivers a suite of mainframe-

caliber administration/management tools that

are optimized for performance, availability,

and ease of use. To ensure regular adminis-

trative tasks are executed in the fastest time

possible, many utilities have been parallelized

to maximize performance. Informix also

offers a complete set of on-line utilities to

maximize availability. And through Informix

Enterprise Command Center (IECC),

administrators are provided with the

flexibility to manage multiple remote

databases from a single, centralized console,

hence significantly reducing the amount of

work associated with managing databases

in a distributed environment.

C O M P O N E N T S O F I N F O R M I X

I N T E R N E T F O U N D A T I O N . 2 0 0 0

Informix Internet Foundation.2000 consists

of a core database engine, the Informix

Dynamic Server.2000 and a set of tools for

facilitating Internet application development

and deployment.

Informix Dynamic Server.2000

Informix Dynamic Server.2000 is designed to

deliver unprecedented flexibility and extensi-

bility. This is accomplished through Informix

Dynamic Server.2000’s object-oriented tech-

nology, which provides support for rich new

content by the way of defining new data

types as objects and manipulating them

through user-defined functions. Leveraging

Informix’s advanced, extensible DataBlade

technology, newly defined data types and

functions can be encapsulated into a reusable

plug-in package, ensuring management of

any kind of data and function with fully

optimized relational access.

Informix Dynamic Server.2000’s core archi-

tecture was designed from the ground up to

provide built-in multithreading and parallel-

processing capabilities. Multithreading is

achieved through managing user requests in

the form of lightweight mechanisms called

threads, which are scheduled and processed

via a pool of database processes (called

virtual processors). Parallel processing is

achieved through dividing large user tasks

into subtasks, thus enabling processing to

be distributed across all available resources.

Together, multithreading and parallel pro-

cessing ensure the most efficient use of all

system resources, delivering the scalability

and performance needed for all types of

database processing.

Object-Relational Extensibility
Informix Dynamic Server.2000 provides a

complete set of features to extend the database

server. They include support for new data

types, database routines, access methods,

DataBlade module support, server-side

application programming interfaces (APIs),

and client-side APIs.

Data Types
Informix Dynamic Server.2000 supports

three data-type categories: built-in data types,

user-defined data types, and complex data

types. Built-in data types are standard RDBMS

data types (such as alphanumeric, integer,

etc.) User-defined and complex data types

allow data to be more intelligently stored

and processed in a way that meet a company’s

true business objective. They are new data

types that are defined to support an applica-

tion domain. Once defined, they are treated

like standard data types managed by the server

to provide the highest level of performance

and scalability. Values of complex and user-

defined types may be stored, examined using

queries or function calls, passed as arguments

to database functions, and indexed in the

same way as the core built-in types.

6

Built-In Data Types
Built-in data types are data types supported

in traditional relational database servers. The

following are examples of built-in data types:

• character data types such as CHAR,

VARCHAR, and LVARCHAR;

• numeric data types such as DECIMAL,

MONEY, SMALLINT, INTEGER, and

FLOAT;

• large-object data types including simple-

large-object types such as TEXT and

BYTE and smart-large-object types

such as CLOB and BLOB;

• time data types such as DATE,

DATETIME, and INTERVAL; and,

• miscellaneous data type such as

BOOLEAN.

User-Defined Data Types
User-defined data types allow customers to

define the data structures according to their

business needs. These data types are treated

like standard data types such that they can

be indexed and optimized as any other type

of data, and standard calculations can be

performed against them. User-defined data

types can be either OPAQUEor DISTINCT :

• OPAQUEtypes allow any data that can

be represented in C or C++ to be natively

stored and processed by the server. This

allows applications already implement data

types as C structures to be easily encap-

sulated in a DataBlade module. OPAQUE

types provide developers complete control

over how the data is stored and processed,

enabling highly efficient performance

through specialized access. Like other

types, OPAQUEtypes still gain the proven

manageability and integrity of Informix’s

database architecture. Furthermore,

OPAQUEtype data is fully and automati-

cally recoverable and managed by all the

same database facilities as built-in types.

• DISTINCT types provide a fast way to cre-

ate new data types that are structurally

equivalent to an existing type (including

other user-defined types) but, additionally,

have customized processing characteristics.

For example, PROFIT could be a

DISTINCT type created with the same

representation as REAL. All routines that

operate on REAL values have database

server-simulated counterparts for PROFIT

values. However, PROFIT values and

REAL values cannot be added, subtracted,

or compared with one another without

converting one data type to another data

type. Additionally, because PROFIT is a

DISTINCT type, it cannot be confused with

any other type, even if it is numeric in

nature, such as temperature.

Complex Data Types
Complex data types is a composite of other

existing data types. For example, it may

consist of built-in types, opaque types,

distinct types, or other complex types.

A key differentiator of complex types is that

individual components of a complex data

type can be accessed and manipulated using

SQL statements. Two complex data types are

supported: ROWand COLLECTION.

A ROWtype can be thought of as a row of

columns, of varying data types, stored in a

single database table column or row. ROW

types follow essentially the same rules as

database tables. The columns within a ROW

type are called fields. They can be almost

any data type, including other complex

types, and can be access individually.

For example, address information can be

composed of several columns such as street,

city, state, and zip code. These columns can

be combined into a single column for more

rapid access. Composed of built-in or user-

defined data types, this data type can stream-

line database design, reduce application time,

and allow applications to run more efficiently.

7

Instead of having additional columns in the

EMPLOYEE table, the ROWtype groups data that

is most often accessed together in one column.

The table EMPLOYEE consists of the columns

Name(VARCHAR(30)), Address(address_t),

and Contact_info(SET(LVARCHAR)).

The ROWtype address_t consists of the

named fields Street(VARCHAR(20)),

City(VARCHAR(20)), State(CHAR(2)),

and Zip_code(CHAR(5)).

COLLECTIONtypes are like a nested table

within a column. This data type avoids the

costly duplication of key values and frequent

joins caused by a typical normalization

approach. It solves the problem of relational

databases assigning multiple values to a

column for a single record, thereby maximizing

database design efficiency, reducing amount

of coding, and simplifying code management.

Elements within a COLLECTIONcan be

of any type: built-in data types, OPAQUE,

DISTINCT , or ROW. It can be accessed and

updated in much the same way as tables,

using minor extensions to the current SQL

language.

Figure 5 illustrates a collection in a column

called Contact_info.

Instead of putting contact information

in a separate table, all the information is

contained in one row, using a COLLECTION

type. Elements within the COLLECTIONtype

can be added or removed without altering

the table’s columns.

Support for Large Objects
Informix Dynamic Server.2000 supports both

simple large objects (also known as binary

large objects or BLOBs) as well as smart

large data objects (called character large

objects or CLOBs). BLOBs support BYTE

and TEXT data types, which can be used to

store up to two gigabytes of binary data as a

field in a database record. BLOBs are treated

like any other database data and are accessi-

ble through SQL.

Informix Dynamic Server.2000 also supports

smart large objects or CLOBs. Smart large

objects are used to support user-defined data

types such as video and audio clips, pictures,

large text documents, and spatial objects

such as drawings and maps. In essence,

smart large objects provide the ability to

seek, read from, and write to segments

within the object and may be partially read

or written to from the client or the server.

Additionally, smart large objects are recover-

able and obey transaction isolation modes.

8

Figure 4: Sample ROWtype.

EMPLOYEE TABLE

Name Address Contac t_Info

David J . Moore address_t SET(LVARCHAR)

Street C i ty Z ip_code

252 Grand Ave.

Named fields
with varying
data types Oakland

State

CA 94610

ROW type address_t

Inheritance
Inheritance is a process that allows a data

type or a table to acquire the properties of

another type or table, thus simplifying data

design by easing the definition of new objects

from others. Inheritance encourages incremen-

tal modification; a data type or table can

inherit a general set of properties and add

properties that are specific to itself.

For example, an application developer may

be creating a medical information system in

which an orthopedic patient is defined as a

subclass of patient. Using inheritance, the

orthopedic patient class derives much of its

structure and function from the patient class,

adding only what makes it unique, perhaps a

set of X-rays, or other information required

by the orthopedic specialization. This avoids

the need to redesign and recode from scratch

for data types or table.

Typed-Based System
Type system refers to how a database server

handles comparisons among dissimilar data

types. Informix Dynamic Server.2000 is a

strongly typed system, which means that

unlike data types cannot be directly compared

without casting them into a comparable

form. For example, a price quoted in U.S.

dollars will not be directly compared with

a price quoted in Japanese Yen without exe-

cuting a function that looks up the exchange

rate and performs a conversion. This feature

prevents errors common in weakly typed sys-

tem, which allows simple numerical compari-

son on prices quoted in different currencies.

User-Defined Routines
User-defined routines extend the processing

and aggregation functions of the database to

provide new domain-specific capabilities that

are integrated with the server. They can be

used to capture business logic or commonly

used application logic and run that logic in

the server, where there is the greatest pro-

cessing power. By centralizing this logic, the

developer can reduce the time it takes to

develop an application, as well as increase

the application’s speed.

Once defined, a user-defined routine is

registered in the system catalog tables and

is invoked by an SQL statement or another

routine. This routine can either be a function

or a procedure, and can perform a wide vari-

ety of tasks such as encapsulating multiple

SQL statements and support new data types.

User-defined routines can also accomplish

tasks that address new technologies such as

search graphical data and collect data from

Internet end users.

9

Figure 5: Sample COLLECTIONtype.

EMPLOYEE TABLE

Name Contac t_Info

David J . Moore

Street

252 Grand Ave.

C i ty

Oakland

State

CA

Zip_code

94610 SET(LVARCHAR)

“home: 510-555-1234”
“work: 510-555-0000”
fax: 510-555-9999
emai l : abc@col l type.com

Set of f ie lds
of same
data types

As is the case when defining new data

types, there are several ways of defining

new routines. User-defined routines can be

written using Informix’s stored procedure

language (SPL), or third-generation languages

such as C, C++, or Java. SPL routines

contain SQL statements that are parsed,

optimized, and stored in the system catalog

tables in executable format, making it ideal

for SQL-intensive tasks. Routines written in

third-generation languages are compiled and

loaded into a shared object file or dynamic

link library (DLL). The routine and name

of the shared object are declared to the

server and once invoked, the shared object

is linked to the server. Since C, C++, and

Java are powerful, full-function development

languages, routines written in these languages

can carry out much more complicated com-

putations than SPL functions.

User-Defined Aggregates
User-defined routines can be used to extend

the functionality of aggregates in the database

server. Informix Dynamic Server.2000

provides two ways to extend aggregates:

1) extension of built-in aggregates, and

2) creating new aggregates. Extension of

built-in aggregates refers to extending the

capability of system-defined aggregates such

as AVG, SUM, MIN, MAX, and COUNT

to work with user-defined data types. This

functionality allows reuse of existing client

applications because it requires no new SQL

syntax for aggregates.

Informix Dynamic Server.2000 also supports

creation of new aggregates to provide new

aggregate functions that the database server

does not provide. For example, system-

defined aggregates do not offer capability

such as the median employee salary, the

second largest employee salary, and the

standard deviation of employee salaries.

In order to perform such calculation, users

must retrieve a collection of values into a

user program to perform the computation

manually. This may create a serious perfor-

mance bottleneck because a large data set

must be transmitted over a client-server con-

nection. By allowing users to define new

aggregate operations inside the database

server, users can now easily calculate com-

plex operations with one command.

Furthermore, like system-defined aggregates,

user-defined aggregates can be executed

across multiple threads to increase perfor-

mance.

Expensive Function Optimization
Some user-defined routines, such as ones

that perform image processing functions, can

be expensive to evaluate and can affect the

performance of queries that utilizes these

user-defined routines. To improve perfor-

mance, the Informix Dynamic Server.2000

optimizer uses cost and selectivity informa-

tion to estimate the number of rows returned

from a query to calculate the total cost of

executing a query and uses this information

to select the best query plan. The optimizer

also makes sure that expensive user-defined

routines are evaluated last.

10

Parallelizing User-Defined Routines
To enhance performance, a user-defined

routine can be executed across multiple

processors if it is executed within the

context of parallel data query. Two classes of

virtual processors can be used for parallelizing

user-defined routines: the user-defined virtual

processors for routines written in C, and

Java virtual processors for routines written

in Java.

Access Methods
An access method consists of software routines

that access disk storage, retrieve data into

memory, and write data back to permanent

storage. Informix Dynamic Server.2000 sup-

ports two different access methods: primary

and secondary. Developers can also create

their own access method for accessing data

stored in a non-Informix database server.

Primary Access Method
A primary access method provides a

relational-table interface for direct read

and write access. A primary access method

reads directly from and writes directly to

source data. It provides a means to combine

data from multiple sources into a common

relational format that the database server,

users, and application software can use.

Secondary Access Method
A secondary access method provides a means

to index data for alternate or accelerated

access. An index consists of entries, each

of which contains one or more key values

and a pointer to the row in a table that

contains the corresponding value or values.

The secondary access method maintains the

index to coincide with inserts, deletes, and

updates to the primary data.

Informix Dynamic Server.2000 supplies two

secondary access methods: B-tree index and

R-tree index. A B-tree index organizes index

information in a less than, greater than order

and is arranged as a hierarchy of pages. It

is ideal for accelerating queries on linearly

ordered, one-dimensional data. However,

many new kinds of rich data are multidimen-

sional in nature and take advantage of non-

linear ordering. For example, spatial data

can be 2-D or 3-D. To address these rich

data types, Informix Dynamic Server.2000

introduces R-tree index, which can index

points or volumes, in two or more dimensions,

or ranges in a single dimension.

User-Defined Access Methods
Informix Dynamic Server.2000 also provides

the ability to define new access methods.

User-defined access methods provide SQL

access to data in a table in either an external

location or in a smart large object. The

ability to create new access methods allows

Informix Dynamic Server.2000 to unify all

heterogeneous data distributed throughout

an organization (refer to “Server-Side

Application Programming Interface [API]”

for more information).

DataBlade Module Support
A DataBlade module is a collection of data-

base objects and code that extend Informix

Dynamic Server.2000 by enabling developers

to add new functionality attuned to the

needs of a specific application. They can

be viewed as an object-oriented “package”

that encapsulates specialized data types,

operations that process the data, and access

methods that index the data. By doing so,

a DataBlade module lets the server provide

the same level of support new data types that

it provides for built-in data types, thereby

adding greater intelligence to the database

server and enabling users to manage any

kind of information.

11

In addition to specialized data types, routines

that work across those data types, and access

methods to allow specific indexes work on

those types of data, a DataBlade module also

includes a SQL interface to enable DataBlade

modules to interoperate with one another.

Figure 6 illustrates the components of a

DataBlade module.

The SQL interface is a collection of functions

that conforms to a standard and exports

a predictable service, enabling DataBlade

modules to share with each other the services

they rely upon or provide. For example,

a DataBlade module that performs image

matching might allow users to supply text

captions for images. If a keyword search

interface is registered in the database, then

the image matching DataBlade module can

use the keyword search routines to match

on the captions. Informix is standardizing

several DataBlade modules, such as those

for text and image matching, so that they

provide consistent interfaces, enabling

customers to choose the DataBlade module

most appropriate for their needs and allow-

ing DataBlade modules to be combined like

building blocks.

Prepackaged DataBlade Modules
With Informix Dynamic Server.2000, users

can choose from a library of DataBlade

modules written by both Informix and

third-party vendors. These professionally

certified extensions are designed specifically

to enable users to efficiently store, retrieve,

update, and manipulate any new kinds of data.

Each DataBlade module can be easily “snapped”

into the database server and used individually

or in conjunction with other DataBlade

modules, just as a general-purpose utility knife

can be extended to perform different cutting

jobs by inserting special-purpose blades.

DataBlade Development Kit
If a DataBlade module does not exist to fit

the customer’s particular need, the customer

can create his or her own DataBlade modules

using the DataBlade Development Kit. This

level of flexibility lets the database server

accommodate new business requirements

as they evolve, allowing customers to leverage

their existing investments in database technol-

ogy and still preserve the flexibility required

to react competitively in any situation.

Server-Side Application Programming
Interface (API)
Informix Dynamic Server.2000 offers two

server-side APIs for the developing of user-

defined access methods. They include the

virtual table interface and virtual index

interface, and the DataBlade API.

Virtual Table Interface and Virtual Index
Interface
Users can utilize Informix’s Virtual Table

Interface™ (VTI) and virtual index interface

(VII) to create user-defined access methods.

VTI is an open interface for implementing

primary access method in an external or

specialized data source. VII is an open interface

for implementing a secondary access method

in an external or specialized data source.

To increase performance, Informix has inte-

grated query parallelism with user-defined

access method. This feature allows scans on

tables defined via VTI and indices defined

via VII to be performed in parallel, resulting

in faster response time.

12

Figure 6: DataBlade module components.

Da ta
Type s

Da ta
S t r u c t u r e s

Da ta
Behav i o r s

I ndex
S chemes

In t e r f a c e t o
Da taba se

Se r ve r

Rou t i ne s A c c e s s
Me thod s

SQL
In t e r f a c e

DataBlade API
The DataBlade API includes functions and

data structures that enable an application

to add functionality to the database server.

It provides functions that allow developers

to manage database connections, execute

SQL statements, process query results,

manage server events and errors, and

manage database server memory.

Client-Side APIs
Informix Dynamic Server.2000 offers a

set of client APIs to allow programmers

to embed SQL statements directly into pro-

gramming languages. These APIs include:

• the C++ interface, which lets programmers

develop client applications using object-

oriented C++ programming languages

by encapsulating Informix database server

features into an easy-to-use class hierarchy

and extensible object library;

• the Informix JDBC Driver, version 1.x and

2.0, which provide standard connectivity

between Java applications and any

Informix database on all platforms;

• Informix Embedded SQLJ, which allows

developers to embed SQL statements

into Java applications;

• the GLS interface, which allows program-

mers to write programs (or change existing

programs) to handle different languages,

cultural conventions, and code sets;

• the INFORMIX-ESQL/C, which allows

programmers to embed SQL statements

directly into a C program;

• the INFORMIX-ODBC, which enables

programmer to create custom applications

using ODBC for accessing external data

sources; and,

• the Informix OLE DB Provider, which

lets programmers develop OLE DB

applications for accessing Informix

Dynamic Server.2000.

13

Figure 7: Using VTI to access information inside and outside of Informix Dynamic Server.2000.

SQL Eng i ne

In formix
Dynamic Server

2000

Bu i l t - I n A c c e s s Me thod

V i r t ua l Tab l e f o r Spe c i a l i z ed Da ta

V i r t ua l Tab l e f o r Ex t e rna l Da ta

In f o rm ix Tab l e

C l i en t
P rog ram

Use r-
De f i ned
A c c e s s
Me thod

V T I

Multithreading
Within the database server, a configurable

pool of database server processes called

“virtual processors” is used to schedule

and manage user requests. User requests are

represented by lightweight mechanisms called

“threads,” which are a single sequential flow

of control that represents a discrete task

within a database server process. Unlike

other database products that manage user

requests at the operating system process

level, virtual processors manage active

threads at the database level in the form

of multithreading.

Virtual processors are designed with built-in

intelligence to efficiently coordinate among

multiple concurrent threads. Threads are

spawned, queued, and serviced by the first

available virtual processor, ensuring efficient

hardware utilization with no bottlenecks. A

“thread scheduler” is able to take advantage

of in-depth knowledge of database objects

and algorithms, so it can provide “smarter”

scheduling than a general-purpose operating

system scheduler.

When one thread is waiting for a resource,

a virtual processor can work on behalf of

another thread. By providing this flexibility,

only a small number of operating system

processes are required to manage a larger

number of users because each virtual pro-

cessor can respond to multiple user requests.

Although many virtual processors may be

spawned to respond to user requests, to

the user it appears as one database server.

14

Figure 8: Informix Dynamic Server.2000 consists of a configurable pool of database server processes,
called virtual processors, that can respond to any client’s request.

CPU 1 CPU 2 CPU 3 CPU n

DB Bu f f e r Ca che Sha red Da ta

Sha red Memor y

•••

V i r t ua l
P r o c e s s o r s

•••

Because the number of database server

processes required is significantly reduced,

less context switching within the operating

system is required—which enables the

Informix Dynamic Server.2000 to bypass

most performance restrictions and burdens

typically imposed by the operating system.

And with Informix Dynamic Server.2000,

you can take advantage of special scheduling

features provided by hardware vendors

(such as processor affinity), without

adversely affecting your overall system

performance.

Parallel Processing
To ensure most effective utilization of system

resources, large database tasks are broken

into individual subtasks so that they can be

executed in parallel across multiple CPUs

and disks. By dividing tasks into subtasks and

running the subtasks in parallel, Informix

Dynamic Server.2000 can significantly

decrease the execution time of complex

operations. For example, for a processing-

intensive request such as a multitable join,

the task can be divided into multiple database

subtasks and spread across all the available

virtual processors in the system.

In addition to a multithreaded architecture,

parallel processing is facilitated through a

number of features including parallel data

query (PDQ), table partitioning, and special-

ized virtual processor classes.

15

Figure 9: A virtual processor can respond to many user requests.

V i r t ua l
P ro ce s s o r

CPU

Use r
3

Use r
2

Use r
1

Use r
4

Use r
5

Figure 10: Many virtual processors can be spawned
to respond to a user request.

CPU 3CPU 2CPU 1

Use r

VP 2

CPU 1 CPU 2 CPU 3

Virtual
Processor 3

Virtual
Processor 1

Parallel Data Query
As symmetric multiprocessor, loosely coupled

clusters, and massively parallel processor

architectures are utilized for database pro-

cessing, PDQ will take complete advantage

of the underlying CPUs and execute tasks

many times faster than competing database

architectures. In some cases, queries could

complete in minutes instead of hours, or

seconds instead of minutes. This performance

benefit applies to all complex database

operations that require sorting, scanning

large amounts of data, joining tables, and

performing aggregations.

Let’s take a simple join, for example. When

joins happen serially, users have to wait for

one task to finish before the database begins

the next one. In other words, the database

must first scan, then join, then sort, then

send the results to the user. PDQ achieves

two processing economies. First it processes

these tasks concurrently, in parallel. Second,

it breaks each individual task into subtasks,

taking full advantage of the server’s built-in

core parallelism. This ability dramatically

reduces overall processing time.

With PDQ, users can perform all types of

database operations in parallel, whether it

is within an SMP node, or across multiple

loosely coupled SMP or MPP nodes. These

database operations include parallel sort,

scan, insert, delete, join, aggregation, index

build, and a number of database administra-

tion functions. This full functionality ensures

scalability for all database operations and

enables the implementation of very large

databases on open systems for a wide range

of applications including OLTP, e-commerce,

and media asset management.

Table Partitioning
Table partitioning improves parallel processing

performance and high availability. It also

makes managing very large databases

much easier by breaking the database into

smaller sections.

16

Figure 11: Dynamic Scalable Architecture (DSA) is designed to process tasks (such as scan, join, and sort)
concurrently, then break them into subtasks to greatly reduce processing time.

Para l le l Data Query at Work

DSA
p ro ce s s e s

t a sk s
con cu r r en t l y

So r t

J o i n

S can

Se r i a l Pa ra l l e l Pa ra l l e l

DSA
b reak s t a sk s

i n t o
sub ta sk s

Ti
m

e
to

 P
ro

ce
ss

Informix Dynamic Server.2000 allows table

partitions to be set and data distribution

changes to be altered without interrupting

the database server. In addition, partitioning

schemes are transparent to applications and

end users. The partitioning schemes can be

set using simple round robin (every record

goes to the next partition in sequence),

hashed (an algorithm applied to the record

key determines its partition number), or

expression methods (each partition gets a

set of records based on their key values) via

SQL statements such as CREATE TABLE

and ALTER TABLE. These partitions can

be monitored and tuned when necessary.

The ability to divide a single table partition

into two or three new table partitions is

essential in order to reap the benefits of

parallel processing. For instance, by recog-

nizing the scheme by which the data has

been partitioned, the database server is able

to skip partitions that are uninvolved in

a particular query. At the same time, the

database server can skip partitions unavail-

able due to a system crash, maintaining high

availability.

In addition to partitioning data tables,

Informix Dynamic Server.2000 can also

partition indexes to allow for maximum data

layout flexibility, resulting in optimal parallel

processing performance. DBAs can place a

partitioned index on a different partition

than the data. These partitioned indexes can

have their own partitioning scheme, separate

from data tables.

Partitioning is also critical for efficient system

administration. The larger the database, the

more important it becomes for the system

administrator to be able to perform opera-

tions—such as archive and restore, and bulk

load and unload—at the table partition level,

rather than having to archive or restore the

entire database or table. Such operations can

occur in parallel, greatly reducing the time

required to load, unload, or restore data.

Virtual Processor Classes
For efficient execution and versatile tuning,

virtual processors are grouped into classes—

each optimized for a particular function such

as CPU operations, disk I/O, client/server

communication, and administrative tasks.

By delegating the virtual processors into

classes, Informix Dynamic Server.2000 is able

to effectively schedule and prioritize operations.

Threads are transparently scheduled across

the virtual processors in the relevant class.

You can configure your system with enough

virtual processors in each class to handle the

specific type of workload on that particular

system. And, since the pool of virtual proces-

sors can be easily adjusted on line, you can

quickly tune the number within each class,

or make changes to accommodate periods

of heavy activity or load mixes.

While there are many virtual processor

classes, the most important is the CPU class,

which can be increased and decreased as

CPU processing needs dictate. If there is a

long queue for CPU processing, you can

dynamically start up a CPU virtual processor

to alleviate that bottleneck without interrupt-

ing a single user on the system.

17

Since the number of virtual processors

required to handle client requests is often

unpredictable, several virtual processor classes

for client/server communication protocols

(such as IPX/SPX, TCP/IP, and shared

memory) can be implemented to handle

client communication. An optical virtual

processor class can even be added to handle

the I/O processing if you need to add optical

media storage devices to your system.

Dynamic Shared Memory
All memory used by Informix Dynamic

Server.2000 is shared among the pool of

virtual processors. That way, the database

server can be configured to automatically

add more memory to its shared memory

pool in order to process client requests

more expediently.

Data from the read-only data dictionary

(system catalog) and stored procedures

is shared among users rather than copied,

resulting in optimized memory utilization

and fast execution of heavily used procedures.

This feature can provide substantial benefit

in many applications, particularly those

accessing many tables with a large number

of columns and/or many stored procedures.

Informix Dynamic Server.2000 also allocates

an area, called the threads stack, in the virtual

portion of shared memory to store non-shared

data for the functions that a thread executes.

The threads stack tracks the state of a user

session and enables a virtual processor to

protect a thread’s non-shared data from

being overwritten by other threads concurrently

executing the same code. Informix Dynamic

Server.2000 dynamically grows the stack for

certain operations such as recursive stored

procedures.

Informix Dynamic Server.2000’s shared

memory minimizes fragmentation so that

memory utilization does not degrade over

time. Beyond the initial allocation, shared

memory segments are automatically added

in large chunks as needed, but can also be

added by the administrator while the data-

base is running. The memory management

system will also attempt to automatically

18

Figure 12: Virtual processors are grouped into classes which are optimized for a particular function.
Informix Dynamic Server.2000 may be configured with the appropriate number of virtual processors
in each class to handle the specific workload on the system.

Dynami ca l l y Tuneab l e

Pa ra l l e l i z ed
Mu l t i t h r eaded Da taba se
Ope ra t i ng Sy s t em

Fa s t e r Con t ex t
Sw i t c h i ng

Be t t e r S chedu l i ng

Be t t e r L o ck i ng

Dynami c Memor y

CPU VP

A IO VP

Commun i ca t i on
VP (Sha red

Memor y, T CP/ IP,
I PX/SPX)

Database
Server

...

grow the memory segment when it runs out

of memory. When a user session terminates,

the memory it used is freed and reused by

another session. Memory can be reclaimed

by the operating system by freeing the

memory allocated to the database. User

threads can therefore easily migrate among

the virtual processors, contributing to

Informix Dynamic Server.2000’s scalability

as the number of users increase.

Asynchronous I/O
I/O is typically the slowest component of

database processing. Informix Dynamic

Server.2000 uses its own asynchronous

I/O (AIO) package (or the operating system’s

kernel AIO when available) to speed up

I/O processing. Because Informix Dynamic

Server.2000’s virtual processors service

user I/O requests asynchronously, a virtual

processor will never have to wait for an

I/O to complete before beginning work

on another service request.

There are four specific classes of I/O virtual

processors: logical log I/O, physical log I/O,

AIO, and kernel asynchronous I/O (KIO).

Separating I/O into these classes allows for

an efficient prioritization scheme. And since

I/O requests are uniformly scheduled,

Informix Dynamic Server.2000 can effectively

keep all available disks busy. In fact, you can

use Informix Dynamic Server.2000’s System

Monitoring Interface to detect long queues

for reads or writes from disk, then start up

additional virtual processors specializing in

I/O to alleviate I/O bottlenecks.

Read Ahead
For sequential table or index scans, Informix

Dynamic Server.2000 can be configured to

asynchronously read several pages ahead

from disk while the current set of pages in

shared memory is being processed. With this

ability, throughput is maintained, because

applications spend less time waiting for disk

accesses to complete.

Other Performance Features
In addition to parallel processing and data

partitioning, Informix Dynamic Server.2000

provides a host of performance features

designed to improve both OLTP and decision-

support processing.

Memory Grant Manager
The memory grant manager (MGM) allows

DBAs and programmers to control the degree

of parallelism by balancing the priority of

user requests with available system resources.

MGM performs the following:

• adjusts the amount of system resources

needed for PDQ-type tasks;

• sets the priority of each query;

• adjusts the number of complex queries

allowed to run concurrently;

• adjusts the maximum amount of memory

utilization for both decision support and

OLTP; and,

• works in conjunction with the cost-based

optimizer to ensure the fullest degree of

parallelism at all levels.

Memory grant manager’s efficient memory

utilization is the key to optimizing parallel

processing. MGM also enforces aggregate

resource limits for PDQ processing. And

with MGM, all system-wide priority settings

can be changed dynamically.

Cost-Based Optimizer
Informix Dynamic Server.2000’s cost-based

optimizer will automatically determine the

fastest way to retrieve data from a database

table based on detailed information about

the distribution of that data within the table’s

columns. The optimizer collects and calculates

statistics about this data distribution and will

pick the return path that has the least impact

on system resources—in some cases this will

be a parallelized return path, but in others

it might be a sequential process. All that is

needed to control the degree of parallelism

is the memory grant manager.

19

To provide users with a degree of control,

Informix Dynamic Server.2000 offers opti-

mizer directives that let users bypass the

optimizer. Areas which users can control

include:

• Access Methods—This lets users specify

how to access a table. For example, a user

can direct the optimizer to use a specific

index.

• Join Methods—This lets users specify how

to join a table to the other tables in the

query. For example, users can specify that

the optimizer uses a hash join.

• Join Order—This lets users direct the

optimizer to join tables in a specific order.

• Optimization Goal—This lets users specify

whether a query is to be optimized by

response time (which returns the first set

of rows) or by total time (which returns

all rows).

Raw Disk Management
For fast data access, Informix Dynamic

Server.2000 achieves contiguous disk-space

storage through raw disk devices, since the

native UNIX file system does not guarantee

contiguous disk space allocation. Raw disk

space allocation, conversely, makes it possible

for Informix Dynamic Server.2000 to create

its own data storage system.

Data storage on raw disk allows Informix

Dynamic Server.2000 to perform direct mem-

ory access (DMA). DMA writes data directly

from memory to disk, bypassing intermediate

operating system buffering mechanisms that

are required when data storage is performed

through a standard file system. This process

makes it faster to commit transactions to

disk.

Select First N Rows
Many decision support queries call for only

the first few records of a select statement for

analysis. For example, the top 20 selling

products, the worst five performing regions,

the first 100 customers matching the market-

ing profile, etc. To address these decision

support queries, Informix introduces a new

function called Select First N Rows. With

this new feature, users can now limit the

result of a query to the first N rows. This

new function can deliver significant perfor-

mance advantages by minimizing I/Os, and

in some cases, reducing CPU cycles required

since only a fraction of the rows are processed.

Union Within Views
One method for improving performance of

decision-support queries is to create a view

to reduce the amount of data the query has

to access. Views can also be used to decrease

the complexity of the query the user has to

write. Since many decision support queries

involve combining results from several

SELECT statements, incorporating the

UNION function within a view not only

can reduce the complexity of the query but

also speed up execution time. For example,

instead of writing a query that involves

multiple SELECTs, create a view that uses

UNION to merge the results of the SELECT

statements. By doing so, an end user only

needs to issue a simple SELECT statement

against the view.

Memory Resident Tables
To improve performance of frequently

accessed data, users can specify one or

more fragments of a table or index to remain

resident in the Informix shared memory for

as long as possible. Once specified, these

memory resident tables will be considered

last for replacement when a free buffer is

requested. Ideal for small tables that are

accessed frequently but are swapped out

20

of buffer cache due to randomly accessed

tables, memory resident tables can signifi-

cantly improve response time of data access.

Correlated Subquery Enhancements
Informix Dynamic Server.2000 utilizes

several optimization strategies for improving

performance of queries involving subqueries.

These strategies include subquery flattening,

query caching, and prediction promotion.

Subquery flattening refers to combining

query blocks into a single query block, thus

minimizing new table scans, index scans, and

joins. Subquery caching refers to caching the

results of a subquery that is called multiple

times, enabling the optimizer to avoid execu-

tion of the same query. Predicate promotion

refers to substituting the constant value of

a column for the occurrence of the same

column in the correlated subquery, thus

transforming a correlated subquery to an

uncorrelated subquery.

Shared Statement Cache
Informix Dynamic Server.2000 employs a

shared statement cache to cache query plans

of SQL statements, so that they can subse-

quently be used by another user session.

This feature can dramatically reduce memory

consumption for systems with users issuing

identical SQL statements. Additionally, since

sessions executing cached statements will

not have to re-parse or re-optimize the state-

ments, the query is processed much faster.

Long Identifiers
Informix Dynamic Server.2000 lets users

define identifiers that are up to 128 bytes in

length. By supporting long identifiers, users

can easily convert a non-Informix application

to run with Informix Dynamic Server.2000.

This feature eliminates the need to apply a

wrapper to an application, which can slow

down development process as well as the

performance of the application.

64-Bit Support and Large Memory
Addressability
Most UNIX and Windows NT systems

are limited to two gigabytes of memory due

to the limitations of the underlying 32-bit

address space. Such limitations are relaxed

with 64-bit architectures, providing a signifi-

cant breakthrough in database performance.

To take advantage of 64-bit architectures,

Informix Dynamic Server.2000 provides

64-bit support and large memory address-

ability (LMA) to boost performance in both

on-line transaction processing and decision-

support environments. 64-bit support allows

larger database page sizes, which enhance

performance by allowing more data to be

transferred from disk to cache in a smaller

number of physical I/O operations. With

LMA, Informix Dynamic Server.2000 can

now support tens of gigabytes of physical

memory and hundreds of gigabytes of virtual

address space, thus allowing more data to

be cached in memory. Additionally, Informix

Dynamic Server.2000 can support larger

numbers of users and increase database

throughput, as well as reduce swapping

in heavy OLTP environments.

High Availability Features
Informix Dynamic Server.2000 offers a

number of features to minimize both planned

and unplanned downtime. To minimize

planned downtime, Informix Dynamic

Server.2000 supports a complete suite of

administrative utilities that lets administrators

perform virtually all database administrative

tasks on line (features described in the

“Administrative/Management Features”

section). To minimize unplanned downtime,

Informix Dynamic Server.2000 offers

features to make the database server more

resistant to errors. Furthermore, additional

enhancements are provided to enable

Informix Technical Support to diagnose

21

problems more quickly, allowing the server to

be brought back on line as quickly as possible

in the event of an unanticipated failure.

Database and Log Mirroring
Database and log mirroring provides

database administrators with a means of

recovering data, in the event of a media

failure, without having to take the database

server off line. This method is ideal for

protecting critical data that require extreme

reliability. Examples of data that should be

mirrored include root dbspace and logical

and physical log files, where if the media

that stores any of these data fails, the

database is immediately offline.

Fast Recovery
In the event of an unexpected shut down,

Informix Dynamic Server.2000 provides a

utility called “fast recovery” to quickly bring

the system on line without any data loss,

thereby maintaining full data integrity.

Invoked during the system recovery process,

fast recovery applies the transaction logs

to the data files to restore the database to

a state of physical and logical consistency.

During this recovery process, the database

is restored to the state of the last checkpoint.

Next, all the committed transactions since

the last checkpoint are rolled forward and

all of the uncommitted transactions are

rolled back.

Restartable Restore
During a physical or logical restore process,

problems such as an I/O error on the tape

or other errors within the server require that

the entire process of restoration be restarted

from the beginning. The restartable restore

feature allows the restoration to be restarted

close to where it left off. This is achieved by

reducing the granularity of the restore to the

dbspace level. As such, restartable restore

picks up at the dbspace level where the

original restore failed.

Table Reorganization
To enhance high database availability,

Informix Dynamic Server.2000 lets adminis-

trators alter table schema “in-place.” This

means that operations such as adding or

deleting a column to a table, inserting a

column between columns, rearranging

columns, or modifying the data type of a

column, can be performed without making

the table unavailable for normal use.

Performance of the alter table operation is

also increased since it takes only as long as

updating the system catalogs with the new

table definition. Furthermore, the database

does not have to create a second copy of the

table in order for the changes to take place,

thereby significantly minimizing disk-space

usage, especially when large tables are

being altered.

Microsoft Cluster Server Support
Extending high availability support into

the Windows NT environment, Informix

Dynamic Server.2000 is integrating with

Microsoft Cluster Server functionality.

Microsoft Cluster Server supports fail-over

capability for symmetrical multiprocessing

(SMP) systems configured in a cluster, enabling

applications on a server to automatically

fail over to another server in the event of

an unanticipated hardware failure.

Utilizing Microsoft Cluster Server’s capability

for monitoring, failure detection, and failure

communication, Informix Dynamic

Server.2000 will immediately perform data-

base recovery procedures upon a node fail-

ure. Once the database recovery procedures

are completed, Microsoft Cluster Server per-

forms system-level recovery and restarts the

cluster-aware application on the surviving

node. This feature ensures the highest degree

of availability by quickly recovering from

unexpected hardware failure, allowing

database processing to be resumed in the

quickest amount of time.

22

Exception Handling Improvements
To improve server reliability and availability,

Informix Dynamic Server.2000 offers a set

of routines to better handle assertion failures

and warnings within the server. These routines

minimize server downtime by effectively pin-

pointing and diagnosing the problem areas,

and returning appropriate error messages

indicating what has transpired. Should a server

failure be unavoidable, these exception handling

routines provide better diagnostic information

to assist in finding and fixing the problems.

Smarter Diagnostics
To decrease the time it takes to diagnose

and correct problems, Informix Dynamic

Server.2000 offers a set of enhancements

to assist Informix development and support

organizations in the debugging and analysis

of system problems. Smarter diagnostics

consist of enhancements in six areas: event

alarms, fault isolation, shared memory dumps,

stack tracing, additional utility options, and

thread blocking routines. Customers benefit

from this feature through faster turnaround

time for the resolution of reported problems.

Administration/Management Features
Informix Dynamic Server.2000 provides a

set of dynamic system administration tools

that monitor and fine-tune system parameters

such as CPU and memory utilization, asynch-

ronous I/O queuing, decision-support and

batch queuing, available disk space, and effi-

cient partitioning schemes. These mainframe-

caliber administration tools enable database

administrators (DBAs) to perform most system

administration functions on line—without

bringing the system down. Additionally, many

utilities have been parallelized to deliver the

highest performance possible. To enhance

management of distributed databases, a user-

friendly, intuitive administration environment

called IECC is provided, which allows DBAs

to manage multiple, remote databases from a

single, centralized console.

Parallel Load
Informix’s parallel load utility can load and

unload data very quickly due to its ability to

read in data from multiple sources and load

the data into the database in parallel. The

graphical user interface allows the DBA to:

• configure loading for various types of flat

files (such as ASCII, COBOL, or EBCDIC)

or applications such as spreadsheet or

word processing applications, and perform

necessary conversions (e.g., EBCDIC

to ASCII);

• perform mapping between the load file

and the Informix schema;

• perform selective loading; and,

• view the load file.

Two different modes allow the DBA to

decide whether normal load tasks, such as

checking referential integrity, logging, and

index builds, should be performed during

the data load, or after the load is complete

(speeding up the load time).

DBAs can utilize user-defined routines

(UDRs) to perform special functions within

the parallel load utility. For example, a UDR

can be used to transform input data x to

output data xy+1+xz. The Informix parallel

load utility also supports parallel execution

of UDR, which can significantly speed up

the processing of complex UDRs.

Backup and Restore Utility
Informix Dynamic Server.2000 provides

a very sophisticated and well-integrated

backup and restore utility that allows every

facet of backup and recovery to be configured

on the fly—including the ability to perform

on-line, table, and partition-level backups in

parallel. Additionally, the backup and restore

utility are integrated with the Informix enter-

prise system management environment for

assisting administrators with backup and

restore of distributed databases.

23

The backup and restore procedure is separated

into two processes. The first process involves

extracting and restoring the data to and from

Informix Dynamic Server.2000 database using

the backup and restore utility. The second

process involves writing and extracting data

from the storage media using a storage

manager. During a backup, the backup and

restore utility retrieves the data from the

server and passes it to the storage manager.

The storage manager then writes the data

to the storage media. During restore, the

process is reversed. The storage manager

retrieves the data from the storage media

and passes it through the backup and restore

utility, which restores it to the database server.

The Informix backup and restore utility

comes equipped with a storage management

application programming interface (API) that

conforms to the X/Open Backup Services API

(X/BSA) standards. With this API, Informix

allows users to utilize the many third-party

storage management vendor (SMV) subsystems

available today, such as IBM ADSM, HP

Omniback II, and Legato. Using these SMV

subsystems, users can take advantage of

advanced backup and restore operations

such as unattended backups, scheduled

backups, tape and volume management,

encryption and decryption support, compres-

sion and decompression capabilities, as well

as enabling the use of autochanger devices.

For customers who do not need the sophisti-

cation of third-party storage managers, the

backup and restore utility includes a native

storage manager called Informix Storage

Manager (ISM). ISM provides a simple,

easy-to-use environment to assist administra-

tors with performing backup or restore oper-

ations to native tape or disk drives provided

by the hardware vendor.

External Backup/Restore
Informix Dynamic Server.2000 also lets

DBAs create external backups of their data

to further assure data availability in the

event of an unlikely disaster. Unlike the

internal backup provided by the backup

and restore utility (described previously),

an external backup creates simultaneous

multiple copies of data to host-independent,

local, and remote sites using proprietary

hardware and software technologies. This

could be as simple as disconnecting a mirrored

disk and saving it as backup media. By

providing this feature, Informix Dynamic

Server.2000 allows for faster restoring of

data, thereby increasing server availability

and minimizing downtime.

Point-In-Time Recovery
Point-in-time recovery lets administrators

control the degree to which logical logs

are reprocessed, thereby synchronizing the

database to a particular point in time. With

this feature, administrators simply provide a

date or time in which they wish the server to

restore. This date or time is then passed to

the server during the restore process. Once

the server has performed the physical restore,

the server then reprocesses the logical log

records until it finds the first transaction-bound

record that is greater than the specified date

or time. At that point, the server would stop

reprocessing the logical log records and all

transactions that were uncommitted before

the user-specified time would be rolled back.

Informix Enterprise Command Center
The IECC provides administrators the ability

to manage the entire database environment

(UNIX and NT) from a single console.

Its advanced systems management solution

consists of a easy-to-use graphical user inter-

face (GUI); a suite of automated, open, and

24

scalable systems management tools; and

integrated support for third-party systems

management tools and SNMP-based (simple

network management protocol) enterprise-

management frameworks.

IECC allows customers to manage anywhere

from one to thousands of database servers

easily from a central console. It offers a

complete set of database administration

functionality for managing every aspect of

the Informix database environment, including

server management, job management, event

monitoring and resolution, and storage

management. And, with its Java-enabled,

object-oriented, CORBA/IIOP-based

architecture, IECC lets administrators create

“lights-out” systems management automation

and customize application management

objects. IECC also offers users the flexibility

to manage distributed databases from a Web

browser or Microsoft Windows PC, provid-

ing universal systems management from any

desktop—regardless of platform or location.

IECC is a completely open platform designed

to allow third-party systems management

applications and network management tools

to easily interoperate, providing complete

systems management in heterogeneous

environments.

Simple Network Management Protocol
(SNMP)
In providing integration with SNMP-based

technologies such as HP OpenView and IBM

SystemView, Informix Dynamic Server.2000

offers a suite of subagents to provide support

for both public and private management

information bases (MIBs). Conforming to

the Internet Engineering Task Force (IETF)

relational database public MIB standards,

Informix public MIBs provide generic data-

base information such as database vendor,

version number, number of completed trans-

actions, disk utilization, etc. Informix private

MIBs provide a host of database information

specific to Informix Dynamic Server.2000

such as database buffers, locks, and logs,

the number of transactions committed and

rolled back, the time of the last checkpoint,

memory utilization, the date, time, and level

of the last backup, etc. These data enable a

network manager to effectively monitor all of

the Informix databases that are on a network.

The System Monitoring Interface
Informix Dynamic Server.2000 maintains a

system master database—the “sysmaster”—

which keeps track of information about the

database server. A component of the sysmas-

ter is the System Monitoring Interface (SMI),

consisting of a number of tables and pseudo-

tables that provide information on the state

of the database server. These tables can be

queried to identify processing bottlenecks,

determine resource usage, track session or

database server activity, etc. Some of the

information provided includes:

• database names, owners, and logging

status;

• status of users who are waiting for

database resources;

• performance profiling information;

• user and system CPU usage by virtual

processor;

• information about disk space;

• information about transaction log

(logical log) status;

• information about specific regions

of disk space (i.e., dbspace);

• lock usage information; and,

• extent information—continuous segments

of disk space allocated to a tablespace.

25

OnPerf Utility
The OnPerf utility is a graphical tool that lets

DBAs monitor and display performance metrics

in real time. Various levels of metrics can be

monitored, including classes at the database

level, operating system level, CPUs, virtual

processors, individual user sessions, and table-

spaces. Performance data can be saved to a

file and displayed at a later time for simulated

real-time analysis or for trend analysis.

Enterprise Replication
Enterprise replication is designed to meet a

wide spectrum of business and application

requirements. It supports a full peer-to-peer

replication model with update-anywhere

capability. Enterprise replication replicates

data asynchronously among multiple data-

base servers. Updates at one data engine,

including configuration changes to enterprise

replication, are automatically propagated to

other data engines, ensuring all engines have

consistent data.

Enterprise replication employs a log-based

mechanism for capturing updates. This

method minimizes impact on transaction

processing because it operates as part of the

normal database logging process. Only those

records that have been earmarked for repli-

cation are collected and transmitted to other

data engines, thus incurring minimal interfer-

ence to the original transactions. Log-based

capture is much more efficient than trigger-

based capture, which can directly impact the

performance of the original user transaction.

Transmission of replicated data can be

immediate or postponed through managing

enterprise replication connections. A reliable

message delivery mechanism stores data

locally and propagates the data to the remote

server as a separate transaction when a con-

nection is available. In the event of a server

or network failure, the surviving server can

continue to service the users and queue data

for the failed or inaccessible server, providing

26

Figure 13: Screen image, Informix Dynamic Server.2000 (202Kb, GIF).

a high degree of data availability. Once the

failed server or network is operational again,

all changes to the source database are propa-

gated to the database on the affected server.

Through its hierarchical routing feature,

enterprise replication can support large

replication networks consisting of hundreds

or thousands of servers. Unlike replication

methods employed by other vendors, enter-

prise replication’s hierarchical routing feature

eliminates the need of having to physically

connect all the servers in the network, which

can incur large overhead as the number of

servers in the network grows. This capability

is especially important when using replication

to consolidate and/or disseminate data

between a small set of headquarters based

servers and a large set of remotely located

servers such as might be found in retail

stores or branch offices.

Hierarchical routing lets DBAs specify routing

topology through defining servers as one of

three types: root, non-root, and leaf, each

occupying a different place in the network

topology. Once all servers in the network

are defined, information can be delivered

independent of whether the source server is

directly connected to the destination because

enterprise replication servers have the ability

to route and forward data while maintaining

transaction ordering and guaranteeing deliv-

ery. This method can drastically reduce the

administrative effort required to support a

large number of servers.

Data Consistency
While high availability ensures integrity at

the system level, data consistency ensures

consistency at the transaction level. Informix

Dynamic Server.2000 maintains data consis-

tency via transaction logging and internal

consistency checking, and by establishing

and enforcing locking procedures, isolation

levels, and business rules.

Transaction Logging
When an operation is unable to be completed,

the partially completed transaction must be

removed from the database to maintain data

consistency. To remove any partially completed

transaction, Informix Dynamic Server.2000

maintains a historical record of all transac-

tions in the logical logs and automatically

uses these transaction records as a reference

to restore the database to the state prior to

the transaction

Checkpoint
Checkpoint refers to the point in the

database server operation when the pages

on disk are synchronized with the pages in

the shared memory buffer pool. To ensure

data consistency, Informix Dynamic

Server.2000 automatically performs check-

points. Administrators are provided with the

ability to initiate manual checkpoints or

specify the checkpoint interval in order to

control the frequency of the checkpoints.

The database server performs two types

of checkpoints: full checkpoints and fuzzy

checkpoints.

Full Checkpoint
In a full checkpoint, the database server

flushes all modified pages in the shared-

memory buffer pool to disk. When a full

checkpoint completes, all physical operations

are complete and the database server is said

to be physically consistent.

Fuzzy Checkpoint
To speed up checkpoint and improve trans-

action throughput, administrator can utilize

fuzzy checkpoints. In fuzzy checkpoint, the

database server does not flush the modified

pages of certain types of operations. Known

as fuzzy operations, they include inserts,

updates, and deletes. By not flushing these

modified pages, the time for checkpoints

to complete is drastically reduced, thereby

improving database throughput.

27

When a fuzzy checkpoint completes, the

checkpointed pages might not be consistent

with each other because the database server

does not flush all data pages to disk. However,

when necessary, the database server will

perform a full checkpoint to ensure the

physical consistency of all data on disk.

Internal Consistency Checking
Internal consistency checking is designed

to alert the Informix Dynamic Server.2000

administrator to data and system inconsis-

tencies. Informix Dynamic Server.2000 con-

tains a data-level layer of checks that can

detect data inconsistencies that might be

caused by hardware or operating system

errors. If inconsistencies are detected, this

internal mechanism automatically writes

messages to the message log.

In order to better pinpoint the cause of

the inconsistency, Informix Dynamic

Server.2000 administrators can instruct

users to set consistency-checking environment

variables. These variables generate diagnostic

output—for example, contents of shared

memory when the inconsistency occurred—

to help locate the cause of the inconsistency.

Locking and Process Isolation
Other important features for maintaining

data consistency are locking procedures and

process isolation. These security measures

prevent other users from changing data that

is currently being read or modified.

Locks
The database server prevents errors by

imposing a system of locks. A lock is a claim

or reservation that a program can place on a

piece of data. The database server guarantees

that, as long as the data is locked, no other

database server process can modify it. When

another program requests the data being

modified, the database server either makes the

program wait or turns it back with an error.

Informix Dynamic Server.2000 also prevents

deadlocks—a situation where two users have

each locked data that the other user needs.

For example, user A has locked one row and

won’t release it until user A can access the

row locked by user B. Informix Dynamic

Server.2000 detects a deadlock immediately

and returns an error message to the second

program to prevent a standstill.

The throughput of transactions or a specific

table can be affected by the locking strategy

used for the table. Applications that use

strategies of exclusive access to data might

find that other database server processes

are spending time waiting for access to the

data. For this reason Informix Dynamic

Server.2000 provides several locking levels.

The database server can place a lock on a

single row, page, table, or database.

Row- and page-level locking are specified

when the table is created or altered. Table-

and database-level locking is specified in the

user’s application.

Isolation Levels
The isolation level is the degree to which

your read operation is isolated from con-

current actions of other database server

processes: what modifications other processes

can make to the records you are reading,

and what records you can read while other

processes are reading or modifying them.

Isolation levels are only in effect for reads,

they are not used for statements that insert,

update, or delete. Informix Dynamic

Server.2000 has four isolation levels: dirty

read, committed read, cursor stability, and

repeatable read.

28

The simplest isolation level, dirty read,

provides no isolation at all. When a program

accesses a row using a dirty read, it places

no locks and respects none. For dirty reads,

users are able to read all the data—commit-

ted or uncommitted.

The committed read isolation level guarantees

that database server will read only rows that

have been committed to the database. Before

retrieving a row, the database server tests to

see if an updating process has placed a lock

on the row. If no locks have been placed, the

database server accesses the row. The com-

mitted read isolation level ensures that the

database server does not read uncommitted

data because locks are placed on the rows

that have been updated but not committed.

The next level of isolation is cursor stability.

When cursor stability is in effect, the database

server places a lock on the latest row read.

Only one row is locked at a time; each time

a new row is read, the previous lock is

released. This isolation level ensures that

the current record will not change while

the program examines it.

The repeatable read isolation guarantees that

the results obtained during a read operation

would be identical if the read were repeated

later in the same transaction. Not only does

a repeatable read place shared locks on the

records that were read, but it also prohibits

other users from adding records to the data-

base or modifying records if they would have

satisfied the criteria of the read request had

they been in the database earlier.

Retain Update Locks
Repeatable read isolation is the strictest

and the most expensive isolation level since

it locks all rows examined for the duration

of the transaction. To avoid the overhead

of repeatable read isolation level, users can

execute a SET ISOLATION statement with

the RETAIN UPDATE LOCKS clause.

The RETAIN UPDATE LOCKS feature

provides a switch to retain update locks for

isolation levels dirty read, committed read,

and cursor stability such that the locks will

not be released until the end of transaction.

Thus, RETAIN UPDATE LOCKS effectively

achieves the same goal as a repeatable read

isolation level, but without the performance

overhead.

Business Rules
Business rules enforce data consistency at

the column level. They specify possible data

values, column defaults, and column-to-

column relationships.

Business rules must be enforced by all

applications that access or manipulate data.

However, Informix Dynamic Server.2000

does not depend on the application to imple-

ment these business rules. Instead, it enforces

these rules independently. This centralization

of responsibilities removes the burden from

the user applications and guarantees adherence

to business rules.

Informix Dynamic Server.2000 supports

integrity constraints, stored procedures, and

triggers to enforce business rules.

Integrity Constraints
Informix’s implementation of ANSI SQL-

compliant integrity constraints ensures that

information is not improperly deleted and

that inserted data meets column specifications.

Informix Dynamic Server.2000 provides

two types of integrity constraints: referential

integrity and entity integrity.

29

Referential integrity allows users to define and

enforce relationships between columns. For

example, Informix Dynamic Server.2000’s

referential integrity guarantees that informa-

tion about an entry in a master table is not

deleted as long as the corresponding infor-

mation still exists in the detail table. This

prevents users from deleting a customer

record if an order still exists for that customer

in an order table.

Entity integrity enforces acceptable data

values for particular columns. This check

allows the DBA to specify a range of per-

missible values. Default values allow users

to specify a default of any value that is

compatible with the column datatype.

Stored Procedures
Stored procedures are SQL commands and

program statements that are stored in the

database as named procedures to ensure

consistent implementation of commonly

used operations. Stored procedures maintain

common optimized application routines in

the database rather than in the application

program.

Stored procedures reduce the amount of

network traffic for database operations because

stored procedures can handle multiple

tasks—such as insert, update, and delete—

with a single command. After processing the

request, the stored procedure returns only the

result of the request rather than the numerous

result sets for the individual queries.

Triggers
A trigger is an alternate method for invoking a

stored procedure. Rather than the application

program calling a stored procedure to enforce

a business rule, a trigger can be defined that

will cause the database server to automatically

execute a stored procedure (or SQL statement)

when any attempt is made to insert, delete,

or update a field in the table.

Since triggers are stored in the system catalogs,

the need for application programs to main-

tain redundant code has been removed.

Likewise, consistent integrity constraint

enforcement across all transactions is guar-

anteed since triggers cannot be bypassed.

A SELECT trigger is defined on a table

or a column and it fires when the table or

column appears in certain types of SELECT

statements. SELECT triggers can be used by

application developers to enforce application-

specific auditing or accounting rules. For

example, a user can define a SELECT trigger

which inserts an audit record to an audit

table whenever the EMPLOYEE_SALARY

table is selected.

Cascading Deletes
Cascading deletes automatically delete

all child records in a table when a parent

record is deleted, thereby simplifying user

applications. If for any reason the original

delete statement or any of the actions trig-

gered as a result of the delete fail, the entire

delete statement is rolled back.

The ability to perform cascading deletes

not only provides a significant performance

advantage, since Informix Dynamic

Server.2000 automatically deletes rows, but

it also makes the system easier to use and

administer by eliminating the need for pro-

grammers to hard code deletes into the appli-

cation. You also don’t have to spend the time

and effort to code business/referential rules,

which results in better database consistency

as well as cleaner application programs.

Database Security
Informix Dynamic Server.2000 provides two

levels of access privileges to ensure database

security. Database privileges control access to

the database and the privileges for creating

tables and indexes in the database. Table

privileges specify the operations that a user

is allowed to perform against a specified table.

30

Informix Dynamic Server.2000 supports

ALTER, INSERT and DELETE security

at the table level while enforcing SELECT

and UPDATE security at the column level.

Separate privilege statements are used to

grant and revoke the appropriate access level

to users. No separate database login is required

since Informix Dynamic Server.2000 applies

security at the user’s login level.

Stored procedures provide an additional

security mechanism by establishing their

own permissions separately from the data

permissions. The owner of a stored procedure

grants users the right to execute the stored

procedure—allowing the user to perform all

the SQL operations in the procedure, but

restricting other access against the database.

By using stored procedures to prohibit users

from performing operations against the

database, except through authorized stored

procedures, DBAs can elevate security to

the procedure level.

Secure Auditing
Informix Dynamic Server.2000 offers secure

auditing features to provide traceability

and accountability for any database object

manipulated by a user. These features have

been implemented to model after the Class

C2 security requirements set forth by the

U.S. National Computer Security Center.

With Informix Dynamic Server.2000, you

can selectively monitor the activity of users

on the system. The interface for secure audit-

ing is driven from the command line or a

configuration parameter and allows you to

define which activities you wish to monitor

for certain users.

Communications Support Service (CSS)
Communications Support Service (CSS) is an

Informix internal component which provides

greater network security through supporting

third-party security services such as authenti-

cation, message integrity, message privacy,

data compression, etc. CSS accesses plug-in

modules called Communication Support

Modules (CSM) to provide support for

third-party services such as DCE 1.1 security

service via the industry standard API called

the Generic Security Service API (GSS API).

CSM can also be developed by customers to

define their own proprietary security policy.

ANSI SQL92 Entry Level Conformance
Informix Dynamic Server.2000 is the first

commercially available RDBMS for the UNIX

operating system to receive Entry Level SQL

1992 certification from the National Institute

of Standards and Technology (NIST).

Formerly the National Bureau of Standards,

NIST has the only test suites available for

validating SQL standards compliance.

The latest NIST certification states that

Informix Dynamic Server.2000 complies

with the government’s SQL RDBMS Federal

Information Processing Standard (FIPS),

number 127-2. FIPS 127-2 meets the

specifications set by the American National

Standards Institute’s (ANSI) 1992 Entry

Level standard for SQL databases.

Distributed Database and Application Support
With Informix Dynamic Server.2000, distrib-

uted, client/server connectivity is automati-

cally built in—ensuring that any Informix

application using its associated connectivity

libraries can run in client/server mode.

Therefore, there is no need to purchase

any additional networking products to

run Informix Dynamic Server.2000 across

heterogeneous client/server networks.

31

Informix Dynamic Server.2000 can read,

join, and update tables on several different

computer systems within a single transaction.

Its industry-leading optimization methods

ensure that these multisite updates are

handled quickly, while its two-phase

commit recovery procedures ensure that

the updated tables remain consistent even

after a system failure.

Multisite Read, Joins, and Updates
Informix Dynamic Server.2000’s ability

to read, join, and update tables on several

different computer systems within a single

transaction is critical for companies with a

need to share data between multiple databases.

Informix Dynamic Server.2000 also supports

multisite updates within a single transaction

because companies often need to modify

several distributed databases and ensures

consistency between them.

If a system fails during a multisite update,

distributed database products should provide

special recovery procedures to bring the failed

system up to date so that its information is

consistent with that of the other database

servers. Distributed database products should

also implement multisite transactions quickly

without wasting CPU or network resources,

since most transactions are used for time-

critical business applications where wasted

time means lost profits.

Informix Dynamic Server.2000 enables users

to issue multisite updates within a single

transaction. It coordinates changes to dis-

tributed databases using a two-phase commit

protocol, handles system failures through its

automatic recovery procedures, and ensures

fast performance by employing presumed

abort optimization.

Two-Phase Commit Protocol
Two-phase commit protocols ensure data-

base consistency during multisite updates,

and incorporate precommit and commit

phases. When the user first connects to an

Informix Dynamic Server.2000 system, that

system becomes the coordinator for all the

other participant database servers involved

in the multisite update.

The coordinator receives a COMMIT

WORK statement from the user—indicating

that there are no more SQL statements in

the transaction—and sends messages to the

participant database servers asking them to

prepare to commit the transaction, beginning

the precommit phase of the protocol.

If any of the participants reply that they can-

not prepare to commit, or simply don’t reply,

the coordinator aborts the transaction and

requests that the other database servers roll

back their portions of the transaction. If all

the participant database servers send positive

responses, the coordinator asks them to

commit the transaction. Deciding to either

roll back or commit the transaction starts

the commit phase of the two-phase commit

protocol.

Multithreaded Clients
Through INFORMIX-ESQL, developers

can continue to develop applications using

familiar third-generation languages such

as C and COBOL for database access. The

ESQL libraries are re-entrant, or “thread-safe,”

enabling users to develop multithreaded

client applications that can have multiple

active connections to a server concurrently,

thereby taking full advantage of Informix

Dynamic Server.2000’s multithreaded

architecture.

32

Additionally, the ESQL libraries are dyna-

mically linked and shared to significantly

reduce the size of the corresponding exe-

cutables. These shared libraries can be linked

to a number of executing programs during

run time, resulting in greater efficiency and

less memory usage. ESQL includes TP/XA

functionality, linking Informix Dynamic

Server.2000 with transaction managers to

support global transactions—those transac-

tions involving multiple databases and

perhaps multiple database management

systems from different vendors. Informix is

the first RDBMS to provide this standards-

based interface to X/Open XA-compliant

transaction managers.

Application developers can also create multi-

threaded applications using INFORMIX-

ODBC. Conforming to Microsoft’s Open

Database Connectivity (ODBC) specification,

INFORMIX-ODBC supports all ODBC API

calls, datatypes, and SQL syntax as defined

in the specification. For larger, more complex

applications, INFORMIX-ODBC also sup-

ports Microsoft Transaction Server (MTS).

Similarly, developers can use Informix’s

JDBC driver to create multithreaded Java

applications. Informix’s JDBC driver is a

standards-based (JDBC V1 and V2), object-

oriented Java interface that provides full

access to the database server for application

developers and DataBlade module developers.

It achieves optimal performance and robust-

ness because it is a pure Java implementation

and uses a native interface to connect to the

database server.

Heterogeneous Integration
In today’s competitive business climate,

immediate access to information throughout

an organization is often critical in order to

make informed business decisions. Where

companies once stored their data on main-

frames, today the data may be spread across

a variety of different computing platforms

and operating systems, including proprietary

and open, relational, or non-relational

databases. To provide Informix Dynamic

Server.2000 users with access to corporate

data residing on disparate database servers,

Informix offers the Informix Enterprise

Gateway™ product family for transparent

access to data stored within Oracle, Sybase,

IMS, or IBM’s DB2 databases. With these

gateway technologies, Informix Dynamic

Server.2000 users can easily access data

regardless of where that data is located.

Open Database Connectivity
For developers and end users wanting to

deploy applications that require access across

heterogeneous databases, Informix ODBC

is the Informix implementation of the Open

Database Connectivity (ODBC) 2.5 standard.

With Informix ODBC, any ODBC-compliant

application can connect directly to Informix

Dynamic Server.2000. It supports SQL

statements with a library of C-language calls

which enables developers to dynamically

access Informix Dynamic Server.2000

without the need for an SQL preprocessor

or the recompilation of source code for each

independent data source. With hundreds

of ODBC-based applications for accounting,

inventory management, customer tracking,

and more already available, customers have

immediate access to a variety of solutions

for running in a client/server environment.

33

Global Language Support
Informix’s global language support (GLS)

implementation conforms to the GLS level 4

specification, a coding standard that allows

multibyte characters. By providing GLS

support, Informix Dynamic Server.2000 can

collate character strings, print dates, and

accept monetary input in the rules and formats

required by the country in which the products

are being used, without the need to distinguish

between localized versions of Informix soft-

ware. Additionally, GLS provides worldwide

support of database applications, so applica-

tions can be migrated to multiple languages

while maintaining the same functionality.

Internet Application Development

and Deployment

To accommodate the growing popularity of

Internet, Informix Internet Foundation.2000

offers a wide range of Internet-specific features

for supporting key component development

standards such as Java, making it an ideal

database platform for hosting scalable Internet

applications. Specifically, Informix Internet

Foundation.2000 offers the following:

1. Informix J/Foundation;

2. Specialized Java virtual processor; and

3. Web DataBlade module.

Informix J/Foundation
Informix J/Foundation is the Java

cornerstone of the Informix Internet

Foundation.2000. J/Foundation is a

standard, embedded Java environment

that runs directly in the data management

server itself, offering performance,

scalability, and manageability benefits

for Internet applications.

Informix uses standard Java Virtual

Machines from our platform vendor part-

ners, which are embedded directly into the

server process, giving our customers a

completely open and standard environment.

J/Foundation enables user-defined routines

(UDRs) to be written in Java, as well as

complete DataBlade modules, each giving

a new level of performance by moving the

data-intensive business logic close to the data

itself. Development and migration of Java

code into the database is easy since Informix

use the same JDBC driver in the server.

Java is the ideal programming language

for the Internet, and J/Foundation offers a

standard platform for the development of

database-driven Internet solutions in Java.

34

Java Virtual Processor
To improve execution efficiency and perfor-

mance of Java UDRs and Java applications

within J/Foundation, Informix has designed

a specialized class of virtual processor,

called the Java virtual processors (JVPs).

Responsible for executing all Java UDRs and

general-purpose Java applications, JVPs have

the same capabilities as a CPU VPs in that

they can process complete SQL queries.

Each JVP embeds a Java virtual machine

(Java VM) in its code. This embedded VM

architecture avoids the cost of shipping

Java-related queries back and forth between

CPU VPs and Java VPs. Multiple JVPs can

exist in the same database server to enable

parallel execution of Java UDR.

Web DataBlade Module
The Informix Web DataBlade Module provides

the easiest way to Web-enable database

content without programming. Using its

comprehensive feature set, users can construct

anything from a simple query front end to

an interactive Web site that retrieves and

updates any data stored in Informix Dynamic

Server.2000 databases. Through the Web

DataBlade module tags, application developers

no longer need to write low-level gateway

interface code, allowing them to focus on

application flow and design. This saves a

significant amount of time for application

development and maintenance. Furthermore,

Informix Web DataBlade module works with

all standard Web browsers and servers, offer-

ing an open development environment for

creating powerful, interactive Web applications.

35

© 2000 Informix Corporation. All rights reserved. The following are trademarks of Informix Corporation or its affiliates, one or more of which may be registered in the U.S. or
other jurisdictions: Informix®, Informix Internet Foundation.2000™, Informix Dynamic Server.2000™, DataBlade®, Virtual Table Interface™, and Informix Enterprise Gateway™.

Printed in U.S.A. 1/00
000-21932-77 revision 1

4100 Bohannon Drive
Menlo Park, CA 94025
Tel. 650.926.6300
www.informix.com

Internet Foundation.2000

A B O U T I N F O R M I X

Based in Menlo Park, California, Informix

Corporation specializes in advanced infor-

mation management technologies that help

enterprises in the i.Economy get to market

quickly, generate new revenue, build a unique

strategic advantage, and solve their most

complex business problems. Informix offers

customers a complete software infrastructure

for the Web that delivers highly scalable

transaction processing, personalized content

management, integrated business intelligence,

full multimedia capabilities and complete

e-commerce solutions. For more information,

contact the sales office nearest you or visit

our Web site at www.informix.com.

I N F O R M I X R E G I O N A L S A L E S O F F I C E S

Asia Pacific 65 298 1716 Japan 81 3 5562 4500
Canada (Toronto) 416 730 9009 Latin America 305 591 9592
Europe/Middle East/Africa 44 208 818 1000 North America 800 331 1763
Federal 703 847 2900 650 926 6300

