
Informix-NAG Financial DataBlade Module

Abstract

The Informix®-NAG DataBlade® module adds analytical capabilities to the

Informix database server. This has a number of important advantages.

Analysis generally reduces the amount of data, sometimes down to a single

figure, so the sooner this analysis takes place the better. It is the result that

is needed, not the raw data. The Informix-NAG DataBlade module moves

the analysis close to the data. Doing the analysis in the database server also

means that the identical analysis is available to disparate client processes. The

client process (C program, ODBC or JDBC connect programs, Web browser)

can use the same server implemented functions. Consider a simple example

of calculating the variance-covariance matrix for the 100 shares over 1 year

using the daily closing prices. The ratio of input data to output data is 5-to-1.

If the variance-covariance matrix can be produced in the server, then only this

much smaller result needs to be sent to the client. Since the client can be any

program, all the client programs can now share the same analytical functions.

The numerical analysis is performed by functions from the standard NAG

Fortran libraries executed directly by the server process. This gives the best

possible performance by the highest quality numerical functions; you get

speed and mathematical integrity.

The user can now control the analysis with User Defined Routines (UDRs).

These routines can be written in C, Stored Procedure Language (SPL), Java

etc. The mathematically intense processing can be left to the NAG Fortran

functions accessed via the Informix-NAG DataBlade module.

The Informix-NAG DataBlade module is a natural partner of the Informix

TimeSeries DataBlade module. The TimeSeries DataBlade module efficiently

stores and retrieves time stamped data, while the Informix-NAG DataBlade

module has the powerful analytical capabilities for extracting information

from the mountain of raw data.

The accompanying white paper explores the advantages of the Informix-

NAG DataBlade module further.

The list of NAG functions currently supported is included, and this will be

expanded to meet customer requirements.

Table of Contents

Executive Overview

Situation

2 Increasing amounts of data

2 What to do with the data

2 Analysis

Problem

3 Investigative and testing phase

3 Production phase

3 Traditional RDBMS architecture for complex analysis

4 Summary

Solution

5 Accuracy

5 Flexibility

6 Performance

6 Functionality

6 Server solution

Examples

7 Internal Rate of Return

8 Share prices

10 Retail predictions

11 Telecommunications

Summary

14 Informix NAG Finance DataBlade Module – Function List

1

This paper describes the new Informix-NAG

DataBlade module, the module that makes it

possible to do complex analysis accurately

and quickly in the database server. These

accurate, quick, and flexible analytical

capabilities are the benefits of the logical

step of moving the analysis much closer to

the data and not continually moving the

data to the analysis.

This paper contains a brief description of

the current situation, the problems, and the

solutions provided by the Informix-NAG

DataBlade module. The paper finishes with

some simple examples.

Executive Overview

Increasing amounts of data

The costs of data collection and storage

have declined rapidly over the years and are

expected to continue to fall. This has lead to

ever-increasing amounts of data being stored

covering many areas of every day life and

business activity. There have been a number

of factors reducing the cost of data collection.

In the early days of computing, data was

typed in by intermediaries, this is slow,

expensive, and error prone. Much data is

now scanned, generated automatically, or

typed in by the consumer, which is faster,

cheaper and more accurate.

This easy data collection, coupled with low-

cost data storage, faster access, and cheaper

CPU power, mean that all the “raw materials”

for turning the data into competitive business

are available. All that is needed now is an

efficient implementation of the correct analysis.

What to do with the data

There is no advantage in treating data storage

as write only memory. Data only becomes

valuable when it is turned into a business

advantage. This advantage can come from

understanding why things have happened,

and more importantly, to calculate the

probabilities events that will happen.

Analysis

The analysis of the data turns historical

information into future profit. Simple

questions like

• How much risk is there in a

share portfolio?

• How much product should be

made tomorrow?

• When should more capacity be

added to the network?

have simple answers. The answers may be

simple, but they only reveal themselves after

transforming large amounts of data using

complex numerical analysis. This analysis

is becoming more complex as the sources

and complexity of data increases and the

cost of CPU power decreases. There is now

a need for more frequent analysis of the data

as more frequently updated data becomes

easily available.

The results of the analysis need to be presented

in ways that can be used by other processes

or understood and interpreted by humans.

The best and quickest analysis is of no use

if it can’t be used or understood.

Situation

2

3

Turing data into strategic and tactical

business information is a two-stage process.

Analytical techniques need to be evaluated and

proven. Once proven, they can be used with

confidence when making business decisions.

Investigative and testing phase

In the investigative and testing phase, there is

a tight loop involving analysis, evaluation of

the results, and refinement of the analysis.

Figure 1 Figure-Text

The investigative phase of creating an

analytical solution requires flexibility, the

flexibility to quickly access data in different

ways and to analyse the data using different

techniques. The accuracy of the results and

confidence in that accuracy are crucial in

making the correct design decisions. Data

presentation is important in understanding

what is happening.

Production phase

Figure 2 Figure-Text

The main factors in production systems

are the accuracy of (and confidence in) the

results and the efficiency of getting these

results. Good business decision can only be

made with correct results extracted from the

mountain of data, getting the result efficiently

means that it costs less to get the result, or

getting the result earlier, or both.

It is important to have consistency across

all processes using the derived information.

This means either using the same algorithms

in all client processes, which may be difficult,

if not impossible, with many different client

programs and languages, or saving interme-

diate analytical results in the server.

Traditional RDBMS architecture for

complex analysis

The standard RBMS solution is to move

much of the data from the database through

the server to the client process for analysis,

and in many cases storing intermediate data

back in the database.

Figure 3 Figure-Text

Problem

Large amounts of

historical data and

live data feeds
Analysis

Result

Change the

analysis

Evaluate

the result

Small amount

of user data

Large amounts of

historical data and

live data feeds
Analysis Result

Small amount

of user data

Large amounts

of data in

Possibly large

amounts of

generated data

User command

Large amounts of data

transfer between

client and server

Client
User Functions

Database

server

Database

Summary

Devising new analytical procedures needs

flexible data access and analytical procedures.

The results need to be accessible to a wide

range of programs that can manipulate the

results in ways that help with the interpreta-

tion of the results and the evaluation of the

suitability of the analytical techniques.

Speed can be important in developing new

analytical routines and is often crucial in

production systems either to get the results

quickly or to reduce the cost of getting the

result in a given time.

Accuracy, and confidence in the accuracy, are

essential in both investigative and production

systems. If the results are inaccurate, or you

can not be certain they are accurate, then

there is little point in analysing the data in

the first place.

4

5

The object relational technology in Informix

Dynamic Server.2000™ can play a major

part in solving the problems of the complex

analysis of the mountain of data. The

ORDBMS is extensible, i.e. new data types

and functions can be added to the database

server and these types and functions can be

used in SQL statements and in the Stored

Procedure Language (SPL). The functions

themselves can be written in SPL, C, or Java.

The new data types introduced by the

Informix- NAG DataBlade module are

vectors and matrices. These types work closely

with the existing TimeSeries DataBlade

module to provide suitable numerical data

types for analytical work. These types are

used by the Informix interface to the highly

regarded analytical functions from The

Numerical Algorithms Group (NAG) see

http://www.nag.com for more details.

Figure 4 Figure-Text

Accuracy

The problems of writing and testing com-

plex numerical and statistical functions are

elegantly solved by linking in functions

from NAG. This NAG connection has made

available some of the most popular NAG

functions in the database server moving the

mathematical analysis very close to the data.

The NAG algorithms have been implemented

by mathematicians who understand numerical

analysis. NAG have many thousands of users

relying on their 1,000+ functions.

Flexibility

The flexibility of the solution derives

from the ability to use the Informix- NAG

DataBlade module functions in SPL and user

written C functions. SPL is an interpreted

language, which makes it very quick and

easy to change. SPL functions and procedures

can be called from higher level SPL functions

and procedures and from SQL. The SQL

statements and SPL functions and procedures

can be invoked from client programs (SQL

editors, Web browsers, and any application

capable of making ODBC calls, Java via JDBC

calls). Further flexibility and performance

can be gained from writing server functions

in C or Java.

Solution

Possibly large

amounts of

generated data

Large amounts

of data in

User command

Result

Client

Database

Database

server

DataBlades:

User functions

TimeSeries

Informix-NAG

Web

User DataBlade

Performance

There are many performance benefits inherent

in this solution. The TimeSeries DataBlade

module is a natural partner to the Informix-

NAG DataBlade module. Much data is time

based and the TimeSeries DataBlade module

provides a fast and powerful way to store

and access this time-based data.

The new data-types (vector and matrix) in

the Informix- NAG DataBlade module

provide efficient ways of operating on large

amounts of data and quick and easy storage

as “smart large objects.” The vector and

matrix arithmetic used by mathematicians

can be quickly transformed in to analytical

SPL functions.

The NAG functions are accurate and very fast,

this is NAG’s forte, and the Informix-NAG

DataBlade module makes these functions

available in the database server. There is no

passing of the data between processes and no

context switching, the functions have

been moved close to the data so there is

no need to move the data to functions in

a client program.

Functionality

The Informix-NAG DataBlade module

contains two new data types:

• Vector and matrix data types and their

support functions

Many of the most popular functions have

been included in the NAG DataBlade

module with more to follow. The areas

currently include functions from the

following NAG libraries:

• Basic Linear Algebra Subroutines (BLAS)

• Roots of One or More Trancendental

Equations

• Interpolation

• Curve and Surface Fitting

• Matrix Factorizations

• Eigenvalues and Eigenvectors

• Simple Calculations on Statistical Data

• Correlation and Regression Analysis

• Multivariate Methods

• Random Number Generators

• Smoothing in Statistics

• Time Series Analysis

with more to follow. Some business specific

function have also been included. Full descrip-

tions of the types and functions is available

at http://www.informix.com/uk/nag.

Server solution

This is a server solution. The results of these

functions are available to all client processes

providing a common server solution for all

client processes. The client process could be

an SQL editor, ESQL/C program, any pro-

gram supporting ODBC or JDBC, and Web

browsers. The server solution is particularly

important in thin client architectures where

getting data to the client may be slow, and

even the simplest numerical analysis in the

client will be very slow.

6

7

This section uses simple examples from

finance, retail, and telecommunications to

illustrate the flexibility, performance, and

functionality of the Informix-NAG DataBlade

module solution.

Internal Rate of Return

This simple financial example is the

calculation of the present value of a

stream of future payments and illustrates

the flexibility of using the Informix-NAG

DataBlade module. The compounding of

the interest can be treated in two ways,

continuous or discrete. The Informix-NAG

Finance DataBlade module has functions to

calculate the present value both ways:

value = PVCont(rate, amounts,

times)

and:

value = PVDisc(rate, amounts,

times)

where

value = The present value

rate = Interest rate per unit time

amounts = Vector of payments

times = Vector of times of these

payments

A closely related calculation is the internal

rate of return (IRR) of an investment. There

is no function to calculate the IRR, but it

is easy to write one using SPL that calls the

present value functions to calculate the IRR.

The SPL code to calculate the IRR is:

--
-- An SPL function to calculate the

Internal Rate of Return for a stream
-- of payments irr = IRR(amounts, times)
--
-- Inputs: amounts - Vector of cash flows
-- times - Vector times for the cash

flows
-- Return:irr - The internal rate of

return per unit time
-- Exceptions: 100 - The IRR could be

found
--
create function IRR(amounts vecDblType,
times vecDblType)returning float;
define params vecDblType;
define rate, f, float;
define ifail, loop_count int;

let loop_count = 50;
-- Set up the input vector to udrc05axf()
-- params = {initial_guess_at_rate, ind};
-- see documentation for full description

let params = ‘.01, 1’;
-- Loop round until a solution is found

((getNth(params, 1) == 0),
-- for a maximum of 50 iterations
while (loop_count > 0 and getNth(params,
1) != 0)

-- Get the present value for this cashflow
at this rate

let f = PVDisc(getNth(a, 0), amounts,
times);

-- Get the next value of rate to try
let ifail = udrc05axf(a, f, 0.001, 0, 0.1e-
10);

-- Decrement loop count
let loop_count = loop_count - 1;

end while;

-- If ifail isnt = 0 or loop_count >= 50
then there was an error

if (ifail != 0 or loop_count == 0) then
raise exception 100, 0, “IRR not found”;

end if;

-- Return the IRR
return getnth(params, 0);

end function;

Examples

This code is available on the Informix-

NAG Web page. The SPL code uses the NAG

function c05axf() that calculates the “Zero

of continuous function by continuation

method, from given starting value (reverse

communication).” This IRR function could

easily be changed to use the continuous

discounting present value function, just

change PVDisc() to PVCont(). The type

of input parameters can be changed to

TimeSeries and the amounts and times

extracted from the TimeSeries. The method

of calculation of the IRR could be changed

by using the NAG function c05azf() that

calculates “Zero in given interval of a

continuous function by Bus and Dekker

algorithm (reverse communication).” The

function can be made more robust by checking

for multiple zeros of the function.

This illustrates the flexibility of the ORDBS

approach. SPL is a very good language

for controlling functions such as the IRR

calculation. The SPL can easily and quickly

be modified and tested. The NAG functions

do the mathematical work.

Once the IRR() function has been changed

to suit the application, the SPL function

can be used in SQL statements, called from

client programs via ODBC, JDBC, ESQL/C,

ESQL/Cobol etc. The function can be used

in functional indices, e.g, if the function was

changed to work from a time series column

representing cash-flow (cash_flow) in a table

of investments, then the IRR of the investments

can be indexed:

create index example_index on
investments(IRR(cash_flow));

This allows fast, indexed queries, on the

investment table based on the IRR. The

maintenance of the index during insert,

update, and delete of the investment table

is transparent to the user and applications.

Share prices

Share price information is a classic example of

time series data, and the TimeSeries DataBlade

module is a natural and efficient way to

store the data. The tests in this section are

based on a years daily share data, approxi-

mately 250 prices, for a number of shares.

A simple analytical operation might be to:

• Get the price information

• Convert the prices to returns

• Produce a variance-covariance matrix on

the returns

• Save the variance-covariance matrix

• Retrieve the variance-covariance matrix

This sequence of operations can be performed

on any number of shares. If this analysis is

performed on n shares, then there are 250 x

n data items that need to be extracted from

the database and converted to returns. This

results in an n x 249 matrix of stock returns.

This matrix is converted to an n x n symmet-

rical variance-covariance matrix, which can

be stored as n(n+1)/2 data elements.

Traditional solution

The traditional solution is to do the analysis

in a client process, the steps are:

• Select the prices

• Do the analysis

• Insert the result into a table

8

Table 1

The ORDBS solution is up

to 5-times faster than the

traditional solution and

selecting the results for

use in further analysis is

up to 25-times faster.

9

this stored results can then be used by other

client processes by:

• Selecting (from the client) the elements of

the variance-covariance matrix

The problems are the amount of data that

needs to be stored, selected, and shifted

between the server and client.

ORDBS solution

An efficient ORDBS solution can be designed

using the TimeSeries and Informix-NAG

DataBlade modules. The storage of the

stock price data is efficiently handled by the

TimeSeries DataBlade module. The steps in

the ORDBS solution are:

• Select the share prices (held as TimeSeries)

• Convert to vectors of returns, insert into a

matrix, analyse using a NAG function

• Store as a smart large object

This stored smart large object can then be

used by other functions by:

• Selecting the smart large object in the server

This is much more efficient because less

data is extracted from, and inserted into, the

database and all the processing is performed in

the server. The only data passed between the

client and server is the instruction to execute

the procedure and any parameters the

procedure may need.

Timings

A simple test was performed where a variance-

covariance matrix of stock returns was

calculated for different numbers of shares.

The times for the separate stages for the

traditional and ORDBMS solutions outlined

above were recorded.

The relative times for different numbers of

shares are shown in Table 1

Number of shares

10 30 100 300 1000 3000

Traditional solution

Retrieve price data 2 7 22 64 263 789

Do the analysis 0 0 0 3 107 1421

Save results 1 1 5 36 629 4630

Total 3 8 27 103 1000 6840

Retrieve results 1 1 2 13 144 1280

ORDBS solution

Retrieve price data 1 2 5 15 68 226

Do the analysis 0 0 0 3 107 1421

Save results 1 1 1 2 8 122

Total 2 3 6 20 183 1769

Retrieve results 1 1 1 4 9 51

The full test code is available through the

Informix-NAG Web page. The fragment of

SPL code that extracts the share price data

and converts it to a vector of returns is:

let i = 0;
--tsToReturnsVec() converts the TimeSeries
--of prices to a vector of returns

foreach
select

tsToReturnsVec(share_val,1,’A’,’A’,’A’,NULL,
NULL)

into tmpVec
from shares
where share_id >= ip1
and share_id <= ip2

-- Insert vector into matrix
let cc = updateRow(returnsMatrix, t, i);

let i = i + 1;
end foreach;

The fragment of SPL code that calls the

NAG function g02baxf() that “Computes

(optionally weighted) correlation and

covariance matrices” is:

let cc = udrg02bxf(‘U’, returnsMatrix,
NULL::vecDblType,

xbar, std, varCovar, r);

This function also returns the mean of the

price for each share, xbar , standard devia-

tion, std , and the correlation matrix , r .

These examples shows not only the flexibility

of the solution but how much faster it can be

than a traditional RDBMS implementation.

Retail predictions

An example from retail is how many factors

(e.g. weather, advertising, school holidays)

can affect sales of an item. A technique called

multiple linear regression can be used to

link the affected (dependent) variable, in

this case sales of an item, with the causes

(independent variables).

In this example both the cause and effect can

be stored as time series. If 20 independent

variables were used with daily values for

each for approximately 3 months, then the

input data consists of:

1 x 100 values for the dependent variable

20 x 100 values for the independent

variables

and the result is

20 values that express how important the

independent variables are

20 values showing how the dependant

variable is linked to the independent

variable

In the traditional solution 2,100 data items

need to be sent to the client compared

with just the result of 40 data items in the

ORDBS solution. This factor of over 50

difference is crucial if there are 1,000s of

items that need to be analysed separately

for 100s of locations.

10

11

The Informix-NAG function for multiple

linear regression, g02daf() that “Fits a general

(multiple) linear regression model” can be

used for this type of analysis. The fragment

of SPL code that performs the multiple linear

regression analysis is:

let ifail = udrg02daf(‘M’, ‘W’, weatherMat,
isx, salesVec,

weights, params, b, se, cov, res,
h, q, p, tol);

where the important parameters in this

example are:

‘M’ = A mean term needs to

be entered

‘W’ = Weighted least square fit

needs to be used

weatherMat = A matrix of weather details

(or other independent

variables

isx = Which independent variable

need to be used

salesVec = The vector of sales (or

dependent variable)

weights = Vector of weights

(which days to include)

params = Vector of various output

parameters including the

degrees of freedom, residual

sum of squares

b = Vector of least squares

estimates of the parameters

of the model

se = Vector of standard errors in

the least-squares estimates

The Informix-NAG Web page has a simple

example with test data.

This example shows how the Informix-NAG

DataBlade module can cut down the amount

of data transferred by a factor of 50 and

the type of complex analysis (in this case

multiple linear regression) that can now

be performed in the database server.

Telecommunications

A common telecommunications measure

is the “busy hour traffic,” which is (as the

name suggests) the total traffic over the

busiest hour of the day. This busy hour can

move from one day to the next. If the traffic

values are held in a regular time series column,

then the function tsToPeakPeriod() function

can transfer the regular readings to a vector

of daily peak period values. If the network

traffic is recorded every 5 minutes, then

there are 288 (24 x 12) readings per day.

This function returns a single peak period

value from these 288 readings, just one data

item per day. The traditional method is to

return all the readings and calculate the peak

values on the client, which means transferring

288 times as much data to the client.

The SQL statement to extract a vector of

daily peak hour values from a time series col-

umn containing 5 minute readings is:

select tsToPeakPeriod(‘traffic_data’, 1, 12)
from telco_table;

The same function can be used in SPL and to

get the values between 2 dates, e.g.:

select tsToPeakPeriod(clip(traffic_data’,
startDate, endDate), 1, 12)

into busyHourVec
from telco_table;

The vector of peak hour values can be

analyzed further in the engine using SPL,

e.g. weekly and day of week averages with

standard deviations, traffic growth rates,

and with the ErlangB() function, can be

used to predict traffic (and revenue) loss

due to congestion.

The Informix-NAG DataBlade module has

these two simple telecommunications function,

tsToPeakPeriod() and ErlangB(), which

can be used in conjunction with the

TimeSeries DataBlade module, Informix-

NAG data-types and functions to construct

complex analytical routines. This example

is used in the telecommunications white

paper, “Time Series: The Next Step for

Telecommunications Data Management”

http://www.informix.com/informix/

whitepapers-datablade.

12

13

The Informix-NAG DataBlade module can

be used to quickly implement complex server-

side analysis using new data types and func-

tions. The NAG routines in the DataBlade

module are used and trusted by 1,000s of

mathematicians worldwide and are highly

regarded for their accuracy and speed. Using

functions in the server moves the analysis

close to the data instead of moving vast

amounts of raw data to analytical functions

in the client. The data is analyzed first and

the results of the analysis either kept in the

database or returned to the client. This can

be many times more efficient and is particu-

larly powerful when combined with “thin”

clients. This is a flexible solution because

the NAG functions can be called from SPL

functions, which are quick to write and test

and can easily be added (and removed) from

a running database server.

Summary

Informix-NAG Finance DataBlade Module—Function List

The NAG functions that have been included version 1.10 of the DataBlade module are:

Function Description

C05AVF Binary search for interval containing zero of continuous function

(reverse communication)

C05AXF Zero of continuous function by continuation method, from given starting

value (reverse communication)

C05AZF Zero in given interval of continuous function by Bus and Dekker algorithm

(reverse communication)

E01BAF Determines a cubic-spline interpolant to a given set of data.

E02ADF Least-squares curve fit, by polynomials, arbitrary data points

E02AEF Evaluation of fitted polynomial in one variable from Chebyshev series form

(simplified parameter list)

E02AFF Least-squares polynomial fit, special data points

(including interpolation)

E02BAF Least-squares curve cubic spline fit (including interpolation)

F01CKF Matrix multiplication (and vector-matrix, matrix-vector)

F01CRF Matrix transposition

F01ZAF Convert real matrix between packed triangular and square

storage schemes

F02FAF All eigenvalues and eigenvectors of real symmetric matrix (Black Box)

F06EAF Dot product of two real vectors (SDOT/DDOT)

F06EDF Multiply real vector by scalar (SSCAL/DSCAL)

F06FDF Multiply real vector by scalar, preserving input vector

F06JLF Index, real vector element with largest absolute value (ISAMAX/IDAMAX)

F07FDF Cholesky factorization of real symmetric positive-definite matrix

(SPOTRF/DPOTRF)

F07MDF Bunch-Kaufman factorization of real symmetric indefinite matrix

(SSYTRF/DSYTRF)

G01AAF Mean, variance, skewness, kurtosis etc, one variable, from raw data

G01ALF Computes a five-point summary (median, hinges and extremes)

G01DAF Normal scores, accurate values

G01DBF Normal scores, approximate values

G01EAF Computes probabilities for the standard Normal distribution

G01EBF Computes probabilities for Student’s t-distribution

G01FAF Computes deviates for the standard Normal distribution

G02BAF Pearson product-moment correlation coefficients, all variables,

no missing values

14

15

G02BBF Pearson product-moment correlation coefficients, all variables,

casewise treatment of missing values

G02BJF Pearson product-moment correlation coefficients, subset of variables,

pairwise treatment of missing values

G02BUF Computes a weighted sum of squares matrix

G02BXF Computes (optionally weighted) correlation and covariance matrices

G02DAF Fits a general (multiple) linear regression model

G02DKF Estimates and standard errors of parameters of a general linear regression

model for given constraints

G02GBF Fits a generalized linear model with binomial errors

G02HAF Robust regression, standard M-estimates

G03AAF Performs principal component analysis

G03CAF Computes the maximum likelihood estimates of the parameters

of a factor analysis model, factor loadings, communalities and

residual correlations

G05CBF Initialise random number generating routines to give repeatable sequence

G05CCF Initialise random number generating routines to give non-repeatable

sequence

G05DDF Pseudo-random real numbers, Normal distribution

G05FDF Generates a vector of random numbers from a Normal distribution

G10CAF Compute smoothed data sequence using running median smoothers

G13AAF Univariate time series, seasonal and non-seasonal differencing

G13ABF Univariate time series, sample autocorrelation function

G13AUF Computes quantities needed for range-mean or standard

deviation-mean plot

G13BAF Multivariate time series, filtering (pre-whitening) by an ARIMA model

G13CBF Univariate time series, smoothed sample spectrum using spectral smoothing

by the trapezium frequency (Daniell) window

G13DMF Multivariate time series, sample cross-correlation or cross-

covariance matrices

G13DNF Multivariate time series, sample partial lag correlation matrices,

chi-squared statistics and significance levels

M01CAF Sort a vector, real numbers

M01DAF Rank a vector, real numbers

S01BAF ln (1+x) (3 version udrs01baf(double) returns double and

udrs01baf(mat|vec) returns ifail)

X05AAF Return date and time as an array of integers

X05BAF Return the CPU time

There are 30+ vector functions and 30+ matrix functions

The DataBlade module includes some business related functions. This list will be increased

to meet customer requirements.

Function Description

tsToVec Converts a time series to a vector. The user can define how missing values

are handled.

tsToReturnsVec Converts a time series of values into a vector of returns. The user can

define how missing values are handled.

PVCont Calculates the present value of future payments using continuous discounting

PVDisc Calculates the present value of future payments using continuous discounting

ErlangB Calculates the probability that blocking occurs for a given offered traffic

and number of servers

invErlangB Calculates the number of servers necessary to give a probability of blocking

less than the specified value for some level of offered traffic

tsToPeakPeriod Converts a regular time series of readings into a peak period value for the day

csv A range of functions to output vectors and matrices to csv files

16

About Informix

Informix Software is the technology leader in software infrastructure solutions for the Internet—

providing a fast, simple and complete way to bring businesses to the Web. Based in Menlo Park,

Calif., Informix is the first and only company to integrate e-commerce and business intelligence

on a true Internet infrastructure. The company’s highly scalable Web engines, together with its

personalized content management, real-time analytics and media asset management capabilities,

offer customers a unique competitive advantage. For more information, contact the nearest sales

office or visit the Web site at www.informix.com.

© 1999 Informix Corporation. All rights reserved. The following are trademarks of Informix Corporation or its affiliates, one or more of which may be registered in the
U.S. or other jurisdictions: Informix®, way to web™, DataBlade®, and Informix Dynamic Server.2000™.

NAG is a trademark of The Numerical Algorithms Group Limited.

Printed in U.S.A. 6/00
000-22130-70

I N F O R M I X R E G I O N A L S A L E S O F F I C E S

Asia Pacific 65 298 1716 Japan 81 3 5562 4500
Canada (Toronto) 416 730 9009 Latin America 305 591 9592
Europe/Middle East/Africa 44 208 818 1000 North America 800 331 1763
Federal 703 847 2900 650 926 6300

4100 Bohannon Drive
Menlo Park, CA 94025
Tel. 650.926.6300
www.informix.com

