
IBM
®

Net.Data
®

for OS/400

Administration and Programming Guide

���

IBM
®

Net.Data
®

for OS/400

Administration and Programming Guide

���

Note
Be sure to read the information in “Notices” on page 157 before using this information and the product it
supports.

October 2001 Edition

This document contains proprietary information of IBM. It is provided under a license agreement and is protected by
copyright law. The information contained in this publication does not include any product warranties, and any
statements provided in this manual should not be interpreted as such.

Order publications through your IBM representative or the IBM branch office serving your locality or by calling
1-800-879-2755 in the United States or 1-800-IBM-4YOU in Canada.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

This edition applies to:
v IBM HTTP Server for AS/400 (Program 5769-DG1), Version 4 Release 4 Modification 0

v IBM HTTP Server for iSeries (Program 5722-DG1), Version 5 Release 1 Modification 0

and to all subsequent versions, releases and modifications until otherwise indicated in new editions.

© Copyright International Business Machines Corporation 1997, 2001. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Preface. v
About Net.Data v
What’s New in this Release? vi
About This Book vi

Who Should Read This Book vi
About Examples in This Book vii

How to send your comments vii

Chapter 1. Introduction 1
What is Net.Data? 1
Why Use Net.Data? 2

Chapter 2. Configuring Net.Data 5
Copying the Net.Data Program Object to Your
CGI-BIN Library 5
About the Net.Data Initialization File 6
Customizing the Net.Data Initialization File . . 7

Creating an Initialization File. 8
Configuration Variable Statements 9
Path Configuration Statements 20
Environment Configuration Statements . . 24

Setting Up Net.Data Language Environments 27
Setting up the Java Application Language
Environment 27
Setting up the SQL Language Environment 27

Configuring the Web Server. 28
Granting Access Rights to Objects Accessed
by Net.Data 29

Chapter 3. Keeping Your Assets Secure . . 33
Using Firewalls 33
Encrypting Your Data on the Network . . . 35
Using Authentication 36
Using Authorization 37
Using Net.Data Mechanisms 37

Net.Data Configuration Variables 37
Macro Development Techniques 38

Chapter 4. Invoking Net.Data. 43
Invoking Net.Data with a Macro (Macro
Request) 43

HTML Links 45
HTML Forms 46

Invoking a Persistent Macro. 48

Persistent Macro Syntax 48
Examples 49

Chapter 5. Developing Net.Data Macros . . 51
Anatomy of a Net.Data Macro 52

The DEFINE Block 54
The FUNCTION Block 54
HTML Blocks 55
XML Blocks 57

Net.Data Macro Variables 61
Identifier Scope 62
Defining Variables 63
Referencing Variables 65
Variable Types 67

Net.Data Functions. 75
Defining Functions 75
Calling Functions 80
Calling Net.Data Built-in Functions . . . 81

Generating Document Markup 86
HTML and XML Blocks 86
Report Blocks 88

Conditional Logic and Looping in a Macro. . 94
Conditional Logic: IF Blocks 94
Looping Constructs: WHILE Blocks . . . 97

Chapter 6. Using Language Environments 99
Overview of Net.Data-Supplied Language
Environments 100

Calling a Language Environment . . . 100
Guidelines for Handling Error Conditions 101
Security 101

Direct Call Language Environment 101
Calling Programs 101
Passing Parameters to Programs 102
Returning Values from Programs. . . . 105
Direct Call Language Environment
Example 105

Java Application Language Environment . . 106
Calling Java Programs 106
Passing Parameters to Java Programs . . 107
Java Application Language Environment
Example 107

REXX Language Environment. 107
Executing REXX Programs 109
Passing Parameters to REXX programs 110

© Copyright IBM Corp. 1997, 2001 iii

REXX Language Environment Example 112
SQL Language Environment 113

Executing SQL Statements 113
Data Type Considerations 116
Managing Transactions in a Net.Data
Application 120
Managing Multiple Database Connections 121
Stored Procedures. 122
SQL Language Environment Example . . 128

System Language Environment 130
Issuing Commands and Calling Programs 130
Passing Parameters to Programs 130
System Language Environment Example 132

Chapter 7. Transaction Management with
Persistent Macros 133
About Persistent Macros 133
Defining a Transaction 134

Starting a Transaction 135
Specifying the Macro HTML blocks in a
Transaction 136
Ending a Transaction. 139
Defining the Scope of a Variable in a
Transaction 140
Specifying COMMIT and ROLLBACK in
a Transaction 141

Example of a Persistent Macro 142

Chapter 8. Improving Performance . . . 145
Net.Data Caching of Macros 145
Optimizing the Language Environments . . 145

REXX Language Environment. 145
SQL Language Environment 146
System Language Environment 147

Chapter 9. Serviceability Features . . . 149
Net.Data Trace Log 149
Net.Data Error Log 150

Appendix A. Bibliography 151
Net.Data Technical Library. 151
Related Documentation 151

Appendix B. Net.Data Sample Macro . . 153

Notices 157
Trademarks 159

Index 161

iv Net.Data Administration and Programming Guide

Preface

Thank you for selecting Net.Data®, the IBM™ development tool for creating
dynamic Web pages! With Net.Data, you can rapidly develop Web pages with
dynamic content by incorporating data from a variety of data sources and by
using the power of programming languages you already know.

About Net.Data

With Net.Data, you can create dynamic Web pages using data from both
relational and non-relational database management systems (DBMSs),
including DB2 databases that can be accessed through DRDA, and using
applications written in programming languages such as Java, JavaScript, Perl,
C, C++, and REXX.

Net.Data is a macro processor that executes as middleware on a Web server
machine. You can write Net.Data application programs, called macros, that
Net.Data interprets to create dynamic Web pages with customized content
based on input from the user, the current state of your databases, other data
sources, existing business logic, and other factors that you design into your
macro.

A request, in the form of a URL (uniform resource locator), flows from a
browser, such as Netscape Navigator or Internet Explorer, to a Web server that
forwards the request to Net.Data for execution. Net.Data locates and executes
the macro and builds a Web page that it customizes based on functions that
you write. These functions can:
v Encapsulate business logic within applications written in, but not limited to,

C, C++, RPG, COBOL, Java, or REXX programming languages.
v Access databases such as DB2
v Access other data sources such as flat files.

Net.Data passes this Web page to the Web server, which in turn forwards the
page over the network for display at the browser.

Net.Data can be used in server environments that are configured to use
interfaces such as HyperText Transfer Protocol (HTTP) and Common Gateway
Interface (CGI). HTTP is an industry-standard interface for interaction
between a browser and Web server, and CGI is an industry-standard interface
for Web server invocation of gateway applications like Net.Data. Net.Data also
supports a variety of Web server Application Programming Interfaces (APIs)
for improved performance. The Net.Data family of products provide similar

© Copyright IBM Corp. 1997, 2001 v

capablities on the OS/400, OS/390, Windows NT, AIX, OS/2, HP-UX, Sun
Solaris, Linux, and Dynix/PTX operating systems.

What’s New in this Release?

Net.Data for OS/400 provides the following new features in this release:
v New flat file built-in functions: DTWF_COPY(), DTWF_EXISTS(),

DTWF_WRITEFILE(), DTWF_READFILE.
v Flat file function DTWF_OPEN enhanced to allow files to be created in any

CCSID.
v New built-in functions: DTW_EVAL, DTW_DATATYPE, DTW_PAD,

DTW_ISNUMERIC.
v New tracing capabilities.
v New error logging capabilities.
v The ability to write user-specified messages to the Net.Data error log and

the Net.Data trace log through built-in functions and user-written Language
Environments.

v Ability to restrict file searches.
v Ability to override Net.Data error messages.

About This Book

This book discusses administration and programming concepts for Net.Data,
as well as how to configure Net.Data and its components, plan for security,
and improve performance.

Building on your knowledge of programming languages and database, you
learn how to use the Net.Data macro language to develop macros. You learn
how to use Net.Data-provided language environments that access DB2
databases, as well as using RPG, COBOL, and other programming languages
to access your data.

This book may refer to products or features that are announced, but not yet
available.

More information including sample Net.Data macros, demos, and the latest
copy of this book, is available from the following World Wide Web sites:

http://www.ibm.com/software/data/net.data/
http://www.as400.ibm.com/netdata

Who Should Read This Book
This book is intended for people involved in planning and writing Net.Data
applications. To understand the concepts discussed in this book, you should

vi Net.Data Administration and Programming Guide

be familiar with how a Web server works, understand simple SQL statements,
and know HTML tags, including HTML form tags.

The Net.Data macro language, variables, and built-in functions, as well as
operating system differences are described in Net.Data Reference.

About Examples in This Book
Examples used in this book are kept simple to illustrate specific concepts and
do not show every way Net.Data constructs can be used. Some examples are
fragments that require additional code to work.

How to send your comments

Your feedback helps IBM to provide quality information. Please send any
comments that you have about this book or other DB2 documentation. You
can use any of the following methods to provide comments:
v Send your comments by e-mail to db2pubs@vnet.ibm.com and include the

name of the product, the version number of the product, and the number of
the book. If you are commenting on specific text, please list the location of
the text (for example, a chapter and section title, page number, or a help
topic title).

v Send your comments from the Web. Visit the Web site at:

http://www.ibm.com/software/db2os390

The Web site has a feedback page that you can use to send comments.
v Complete the readers’ comment form at the back of the book and return it

by mail, by fax (800-426-7773 for the United States and Canada), or by
giving it to an IBM representative.

v Mail—Print and use the Readers’ Comments form on the next page. To
print the form, select Print or Copy from the Services pull-down menu.
Enter COMMENTS as the topic to be printed or copied. Mail the completed
form to:

IBM Corporation, Department W92/H3
P.O. Box 49023
San Jose, CA 95161-9023
U.S.A.

If you are sending the form from a country other than the United States,
give it to your local IBM branch office or IBM representative for mailing.

v Fax—Print and use the Readers' Comments form at the end of this book
and fax it to this U.S. number: 800-426-7773 or (408) 463-4393. To print the
form, follow the instructions under "Mail".

Preface vii

viii Net.Data Administration and Programming Guide

Chapter 1. Introduction

Net.Data is a server-side scripting language that extends Web servers by
enabling the dynamic generation of Web pages using data from a variety of
data sources. The data sources can include relational and non-relational
database management systems such as DB2, DRDA-enabled databases, and
flat file data. You can build applications rapidly using Net.Data’s simple yet
powerful cripting language. Net.Data allows reuse of existing business logic
by supporting calls to applications written in a variety of programming
languages, including Java, C/C++, RPG, CL, COBOL, REXX and others.

This chapter describes Net.Data and the reasons why you would choose to
use it for your Web applications.
v “What is Net.Data?”
v “Why Use Net.Data?” on page 2

What is Net.Data?

Using Net.Data macros, you can execute programming logic, access and
manipulate variables, call functions, and use report-generating tools. A macro
is a text file containing Net.Data language constructs, which are used to build
an application that can consist of HTML, XML, Javascript, and language
environment statements, such as SQL. Net.Data processes the macro to
produce output that can be displayed by a Web browser. Macros combine the
simplicity of HTML with the dynamic functionality of Web server programs,
making it easy to add live data to static Web pages. The live data can be
extracted from local or remote databases and from flat files, or be generated
by applications and system services.

Figure 1 on page 2 illustrates the relationship between Net.Data for OS/400,
the Web server, and supported data and programming language
environments.

© Copyright IBM Corp. 1997, 2001 1

The Web server invokes Net.Data as a CGI application when it receives a URL
that requests Net.Data services. The URL includes Net.Data-specific
information, including the macro that is to be processed. When Net.Data
finishes processing the request, it sends the resulting Web page to the Web
server. The server passes it on to the Web client, where it is displayed by the
browser.

Why Use Net.Data?

Net.Data is a good choice for creating dynamic Web pages because using the
macro language is simpler than writing your own Web server applications
and because Net.Data lets you use languages that you already know, such as
HTML, SQL, REXX, and JavaScript. Net.Data also provides language
environments that access DB2 databases, or use REXX, Perl, and other
languages for your applications. In addition, changes to a macro can be seen
instantaneously on a browser.

Net.Data complements data management capabilities that already exist on
your operating system by enabling both data and related business logic for
the Web. More specifically, Net.Data:
v Provides a simple, yet powerful macro language that allows for rapid

development of Internet and Intranet applications.
v Permits the separation of data generation logic from presentation logic

within your Web applications. Net.Data does not impose any restrictions on

Figure 1. The Relationship between Net.Data for OS/400, the Web Server, and Supported Data
and Program Sources

2 Net.Data Administration and Programming Guide

the method with which the data is presented (such as HTML or Javascript).
This separation allows users to easily change the presentation of data using
the latest presentation techniques.

v Allows you to use existing skills and business logic to generate Web pages
by providing the ability to interface with programs written in C, C++, RPG,
COBOL, REXX, Java or other languages.

v Provides the ability to develop complex Internet applications quickly, using
a simple macro language.

v Provides high-performance access to data that is stored in DB2 and in any
remote DRDA-enabled database.

v Provides easy migration of macros between all operating systems supported
by the Net.Data family of products.

Interpreted Macro Language

The Net.Data macro language is an interpreted language. When
Net.Data is invoked to process a macro, Net.Data directly interprets
each language statement in a sequential fashion, starting from the top
of the file. Using this approach, any changes you make to a macro can
be immediately seen when you next specify the URL that executes the
macro. No recompilation is required.

Free Format

The Net.Data macro language has only a few rules about
programming format. This simplicity provides programmers with
freedom and flexibility. A single instruction can span many lines, or
multiple instructions can be entered on a single line. Instructions can
begin in any column. Spaces or entire lines can be skipped. Comments
can be used anywhere.

Variables Without Type

Net.Data regards all data as character strings. Net.Data uses built-in
functions to perform arithmetic operations on a string that represents
a valid number, including those in exponential formats. Macro
language variables are discussed in detail in “Net.Data Macro
Variables” on page 61.

Built-in Functions

Net.Data supplies built-in functions that perform various processing,
searching, and comparison operations for both text and numbers.
Other built-in functions provide formatting capabilities and arithmetic
calculations.

Error Handling

When Net.Data detects an error, messages with explanations are
returned to the client. You can customize the error messages before

Chapter 1. Introduction 3

they are returned to a user at a browser. See “Configuration Variable
Statements” on page 9 and the Net.Data Reference for more
information.

4 Net.Data Administration and Programming Guide

Chapter 2. Configuring Net.Data

Net.Data for OS/400 is delivered as a standard part of:
v IBM TCP/IP Connectivity Utilities/400 V3R2, V3R7, V4R1, and V4R2
v IBM HTTP Server for AS/400 V4R3 and subsequent releases

There is nothing extra to buy; and there is no Net.Data software that you need
to download and install.

The AS/400 TCP/IP and HTTP Server software that you need comes standard
with OS/400, but is optionally installed. The following optional software
should be installed on your system for the following versions of the OS/400
operating system:
v For IBM OS/400 operating system Version 3 Release 2, Version 3 Release 7,

and subsequent versions and releases (57xx-SS1):
– IBM TCP/IP Connectivity Utilities/400 (57xx-TC1)

v For IBM OS/400 operating system Version 4 Release 3, and subsequent
versions and releases (57xx-SS1):
– IBM HTTP Server for AS/400 (57xx-DG1)

After installing Net.Data, complete the steps described in the following
sections to configure Net.Data for OS/400. The steps include:
v “Copying the Net.Data Program Object to Your CGI-BIN Library”
v “Creating an Initialization File” on page 8
v “Customizing the Net.Data Initialization File” on page 7
v “Setting Up Net.Data Language Environments” on page 27
v “Configuring the Web Server” on page 28
v “Granting Access Rights to Objects Accessed by Net.Data” on page 29

Copying the Net.Data Program Object to Your CGI-BIN Library

Before using Net.Data, you must copy the Net.Data program object to the
CGI-BIN library and provide access rights to the object.

To copy the Net.Data program object:

1. Using the Create Duplicate Object (CRTDUPOBJ) command, copy the
Net.Data program object, DB2WWW, from the QTCP library to a CGI-BIN
library.

© Copyright IBM Corp. 1997, 2001 5

OS/400 V4R3 users: Use the program object in library QHTTPSVR; the
program object in the QTCP library routes Net.Data requests to the
QHTTPSVR library.

2. Change the DB2WWW program object in the CGI-BIN directory so that
the user profile that CGI programs run under has access to the program
object.
By default, the DB2WWW program object authority for *PUBLIC users is
set to *EXCLUDE. To provide access to the program object, change the
program object’s authority for *PUBLIC users to *USE, or specifically give
the user profile access to the DB2WWW program object.

You can copy the Net.Data program object to multiple libraries for different
applications. This allows you to have more than one version of the Net.Data
initialization file or multiple protection schemes. See “Customizing the
Net.Data Initialization File” on page 7 for more information about the
Net.Data initialization file; see “Using Authentication” on page 36 for
information on authentication.

To copy the Net.Data program object to multiple libraries:

1. Copy the Net.Data program object, DB2WWW, to a library using the steps
listed above.

2. Associate the Net.Data program object with a CL program in each library.
a. Create a CL program that calls the Net.Data program object located in

the library specified in step 1.
b. Copy the CL program to each library.

In effect, the CL program you created becomes the Net.Data program
object. If you do not associate the program object with a CL program, and
copy the Net.Data program object DB2WWW to the different libraries, you
get a -901 SQL code when using the SQL language environment.

In the following sections, the CL program you created should be treated as
the Net.Data program object, if you chose to create the CL program to call
Net.Data.

About the Net.Data Initialization File

Net.Data uses its initialization file to establish the settings of various
configuration variables and to configure language environments and search
paths. The settings of configuration variables control various aspects of
Net.Data operation, such as the following:
v Specifying a SMTP server and a character set for sending e-mail
v Enabling the SQL language environment variable SHOWSQL

6 Net.Data Administration and Programming Guide

The language environment statements define the Net.Data language
environments that are available and identify special input and output
parameter values that flow to and from the language environments. The
language environments enable Net.Data to access different data sources, such
as DB2 databases and system services. The path statements specify the
directory paths to files that Net.Data uses, such as macros and programs.

Creating the Net.Data initialization file is optional with Net.Data for OS/400.
By using an initialization file, you can use shorter URLs and shorter
references to programs and include files within your Net.Data macros.
However, you are required to have an initialization file if you decide to create
your own language environment.

If you do not create an initialization file, Net.Data runs as if you have
configured an initialization file with only the supported language
environment statements (see “Chapter 6. Using Language Environments” on
page 99 to learn about supported language environments). In this case, all
macro, include, and executable references within the macro must be fully
qualified.

Customizing the Net.Data Initialization File

The information contained in the initialization file is specified using three
types of configuration statements, described in the following sections:
v “Configuration Variable Statements” on page 9
v “Path Configuration Statements” on page 20
v “Environment Configuration Statements” on page 24

See “Creating an Initialization File” on page 8 to learn how to create an
initialization file.

The sample initialization file shown in Figure 2 on page 8 contains examples
of these statements.

Chapter 2. Configuring Net.Data 7

The text of each individual configuration statement must all be on one line.
Ensure that the initialization file contains an ENVIRONMENT statement for
each user-defined language environment that you call from your macros. If
you fully qualify all references to files within the macro, you do not need to
specify any of the path configuration statements.

The following sections describe how to create the initialization file and
customize the configuration statements in the initialization file.
v “Configuration Variable Statements” on page 9
v “Path Configuration Statements” on page 20

Creating an Initialization File
Creating an initialization file is optional when using Net.Data for OS/400. You
should create an initialization file if:
v You want to set any of the Net.Data configuration variables to non-default

values.
v You want to define the path statements for macro, include, and executable

program files to shorten references to these files.
v You are using a language environment not supplied by Net.Data.

To create an initialization file:

1. In the library where the DB2WWW program object resides, use the Create
Source Physical File (CRTSRCPF) command to create the initialization file.

File name: INI

Member name: DB2WWW

It is recommended that you create the initialization file with a record
length of 240 because the text of configuration statements must all be on
one line.

1 DTW_SMTP_SERVER 9.5.5.78
2 MACRO_PATH /WWW/MACRO;/QSYS.LIB/WWW.LIB/MACRO.FILE
3 INCLUDE_PATH /WWW/MACRO;/QSYS.LIB/WWW.LIB/MACRO.FILE
4 EXEC_PATH /QSYS.LIB;/QSYS.LIB/WWW.LIB

5 ENVIRONMENT(MYLE1) /QSYS.LIB/LELIB.LIB/MYLE1.SRVPGM
(IN VAR1, OUT VAR2)

v Line 1 sets the
values of the
configuration
variables

v Lines 2- 4 define
paths to the files
that Net.Data needs
to access

v Line 5 specifies a
user-defined
ENVIRONMENT
statement

Figure 2. The Net.Data initialization file

8 Net.Data Administration and Programming Guide

2. Use the Source Entry Utility (SEU) or a workstation editor to add
configuration statements to the file as demonstrated in the sample macro
and in the following sections.

If you create an initialization file and then update it, you do not need to end
or restart the Web server in order for the changes to take effect. Net.Data
reads the initialization file once, during the initial invocation by an HTTP
server job. The configuration data is saved so that on subsequent Net.Data
invocations, Net.Data does not have to read the initialization file. However, if
a change is made to the initialization file, Net.Data detects the change to the
initialization file and reads the initialization file again.

Authorization Tip: Ensure that the user IDs under which Net.Data executes
have the appropriate access rights to this file. See “Granting Access Rights to
Objects Accessed by Net.Data” on page 29 for more information.

Configuration Variable Statements
Net.Data configuration variable statements set the values of configuration
variables. Configuration variables are used for various purposes. Some
variables are required by a language environment to work properly or to
operate in an alternate mode. Other variables control the character encoding
or content of the Web page being constructed. Additionally, you can use
configuration variable statements to define application-specific variables.

The configuration variables you use depend on the language environments
you are using, as well as other factors that are specific to the application.

To update the configuration variable statements:

Customize the initialization file with the configuration variables that are
required for your application. A configuration variable has the following
syntax:
NAME [=] value-string

The equal sign is optional, as denoted by the brackets.

The following sub-sections describe the configuration variables statements that
you can specify in the initialization file:
v “DTW_DEFAULT_ERROR_MESSAGE: Specify Generic Error Messages” on

page 10
v “DTW_ERROR_LOG_DIR: Location of Error Log” on page 11
v “DTW_ERROR_LOG_LEVEL: Level of Error to Log” on page 11
v “DTW_LOB_DIR” on page 11
v “DTW_MACRO_CACHE_SIZE: Macro Cache Size Variable” on page 12

Chapter 2. Configuring Net.Data 9

v “DTW_PAD_PGM_PARMS: Parameter Padding Configuration Variable” on
page 12

v “DTW_REMOVE_WS: Variable for Removing Extra White Space” on
page 13

v “DTW_SHOWSQL: Enable or Disable SHOWSQL Configuration Variable”
on page 13

v “DTW_SMTP_CCSID: E-mail SMTP CCSID Variable” on page 14
v “DTW_SMTP_CHARSET: E-mail SMTP Character Set Variable” on page 14
v “DTW_SMTP_SERVER: E-mail SMTP Server Variable” on page 15
v “DTW_SQL_ISOLATION: DB2 Isolation Variable” on page 16
v “DTW_SQL_NAMING_MODE: SQL Table Naming Variable” on page 17
v “DTW_TRACE_LOG_DIR: Location of Trace File” on page 17
v “DTW_TRACE_LOG_LEVEL: Level of Trace to Log” on page 17
v “DTW_TRACE_MERGE_RECORDS: Merge Trace Records” on page 18
v “DTW_UPLOAD_DIR” on page 18
v “DTW_RESTRICT_PATH_SEARCH: Restrict Path Search” on page 19
v “DTW_PROCESS_REPORT_ON_ERROR: Process Report On Error” on

page 19
v “DTW_JAVA_VMOPTIONS: Java Virtual Machine Options” on page 19
v

DTW_DEFAULT_ERROR_MESSAGE: Specify Generic Error Messages
Use the DTW_DEFAULT_ERROR_MESSAGE configuration variable to specify
a generic error message for applications in production. This variable provides
a generic message for error conditions that are not captured in any MESSAGE
block.

If you still wish to see the actual error messages generated by Net.Data, use
error message logging to capture the messages. See to learn about using the
error log.

If the configuration variable is not specified, Net.Data displays its own
provided message for the error condition.

Syntax:
DTW_DEFAULT_ERROR_MESSAGE [=] "message"

Example: Specifies a generic message
DTW_DEFAULT_ERROR_MESSAGE "This site is temporarily unavailable."

10 Net.Data Administration and Programming Guide

DTW_ERROR_LOG_DIR: Location of Error Log
Sets the directory where the error log is stored. See “Chapter 9. Serviceability
Features” on page 149 for more information on using this configuration
variable.

Syntax:
DTW_ERROR_LOG_DIR [=] full_directory_path

DTW_ERROR_LOG_LEVEL: Level of Error to Log
Sets the level of error logging. See “Chapter 9. Serviceability Features” on
page 149 for more information on using this configuration variable.

Syntax:
DTW_ERROR_LOG_LEVEL [=] OFF|INFORMATION|ERROR|INFORMATION+ERROR|ALL

Where:

OFF Specifies that no error messages are captured in the error message log.
This is the default value.

INFORMATION
Net.Data will only log informational messages. For example,
informational messages include messages that are issued when a URL
is not valid, or when an HTML block is not found.

ERROR
Net.Data will only log error messages that are not handled by a
message block.

INFORMATION+ERROR
Net.Data will log those messages that are logged by error log levels
INFORMATION and ERROR.

ALL All messages are logged, including messages that are handled by
message blocks.

Example:
DTW_ERROR_LOG_LEVEL ERROR

DTW_LOB_DIR
Specifies into which directory Net.Data writes large objects (LOBs).

The DTW_LOB_DIR must specify an IFS directory which is not in the
QSYS.LIB file system.

Syntax:
DTW_LOB_DIR [=] path

Chapter 2. Configuring Net.Data 11

Example: The following example shows the DTW_LOB_DIR configuration
variable in the initialization file.
DTW_LOB_DIR /db2/lobs

When a query returns a LOB, Net.Data saves it in the directory specified in
the DTW_LOB_DIR configuration variable.

Tip: Consider system limitations when using LOBs because they can quickly
consume resources. See for more information.

DTW_MACRO_CACHE_SIZE: Macro Cache Size Variable
Indicates the memory size in megabytes that Net.Data should use when
caching macros. When the cache size is exceeded, Net.Data removes old
cached macros to make room in the cache. Net.Data removes the macros that
have been used the least recently.

Syntax:
DTW_MACRO_CACHE_SIZE [=] size

Where:

size Specifies the cache memory size in number of megabytes. The default
is 5 MB and caching is always enabled. If size is 0, no macros are
cached. If size is 1 - 4, the default of 5 is used.

Example: Specifies a cache size of 16 MB.
DTW_MACRO_CACHE_SIZE 16

DTW_PAD_PGM_PARMS: Parameter Padding Configuration Variable
Indicates to a language environment whether character parameters that are to
be passed to a program or stored procedure are padded with blanks.
Character parameters have a data type of CHARACTER or CHAR.

For IN or INOUT parameters, if the length of parameter value is less than the
specified precision, blanks are inserted to the right of the parameter value
until the length of the parameter value is the same as the precision.

For OUT parameters, the parameter value is set to precision blanks.

After the call to the program or stored procedure, all trailing blanks are
removed from OUT and INOUT parameter values.

Set this variable in the Net.Data initialization file to specify a value for all of
your macros. You can override the value by defining it in the macro. If
DTW_PAD_PGM_PARMS is not defined in the macro, it uses the value in the
initialization file.

12 Net.Data Administration and Programming Guide

DTW_PAD_PGM_PARMS is supported by the Direct Call and SQL language
environments.

Syntax:
DTW_PAD_PGM_PARMS [=] YES|NO

Where:

YES Specifies that all IN and INOUT character parameter values are left
justified and padded with blanks for the defined precision of the
parameter before passing the parameters to a program or stored
procedure. Trailing blanks are removed after the call to a program or
stored procedure.

NO Specifies that no padding is added to character parameter values
(values are NULL-terminated) when passing parameters to programs
or stored procedures. Trailing blanks are not removed after calling a
program or stored procedure. This is the default.

DTW_REMOVE_WS: Variable for Removing Extra White Space
When this variable is set to YES, Net.Data removes extraenneous white space
from the HTML output. By compressing white space, this variable reduces the
amount of data sent to the Web browser, thereby improving performance. The
default is NO.

You can override this variable in the macro by using the DEFINE statement.

Syntax:
DTW_REMOVE_WS [=] YES|NO

DTW_SHOWSQL: Enable or Disable SHOWSQL Configuration Variable
Overrides the effect of setting SHOWSQL within your Net.Data macros.

Syntax:
DTW_SHOWSQL [=] YES|NO

Where:

YES Enables SHOWSQL in any macro that sets the value of SHOWSQL to
YES.

NO Disables SHOWSQL in your macros, even if the variable SHOWSQL is
set to YES. NO is the default.

Table 1 on page 14 describes how the settings in the Net.Data initialization file
and the macro determine whether the SHOWSQL variable is enabled or
disabled for a particular macro.

Chapter 2. Configuring Net.Data 13

Table 1. The Relationship Between Settings in the Net.Data Initialization File and
the Macro for SHOWSQL

Setting of
DTW_SHOWSQL

Setting SHOWSQL SQL statement is
displayed

NO NO NO

NO YES NO

YES NO NO

YES YES YES

DTW_SMTP_CCSID: E-mail SMTP CCSID Variable
Specifies the ASCII coded character set identifier (CCSID) associated with the
Multi-purpose Internet Mail Extensions (MIME) character set specified in
DTW_SMTP_CHARSET. The CCSID is to be used when translating data
specified on the DTW_SENDMAIL function from EBCDIC to ASCII.

If DTW_SMTP_CCSID is specified, you must also specify
DTW_SMTP_CHARSET. When specifying the CCSID, ensure that it is
appropriate for the MIME character set specified in DTW_SMTP_CHARSET
and that the CCSID is supported by the system. Table 2 on page 15 lists
common MIME character sets and the associated ASCII CCSID. If
DTW_SMTP_CCSID is not set, Net.Data uses the CCSID associated with
MIME character set ISO-8859-1, which is 819.

Syntax:
DTW_SMTP_CCSID [=] ascii_ccsid

where ascii_ccsid is the ASCII CCSID (a number between 1-65534) to be used
when translating from EBCDIC to ASCII.

Example:
DTW_SMTP_CCSID 912

This ASCII CCSID corresponds to the MIME character set ISO-8859-2

DTW_SMTP_CHARSET: E-mail SMTP Character Set Variable
Specifies the Multi-purpose Internet Mail Extensions (MIME) character set that
is to be used in the e-mail messages by the DTW_SENDMAIL function. If
DTW_SMTP_CHARSET is specified, you must also specify
DTW_SMTP_CCSID. When specifying the MIME character set, ensure that the
character set is valid because Net.Data does not validate the value specified
for this variable. If DTW_SMTP_CHARSET is not set, Net.Data uses the
MIME character set ISO-8859-1, with the associated CCSID of 819.

14 Net.Data Administration and Programming Guide

Table 2 lists common MIME character sets and the associated ASCII CCSID.

Table 2. Character sets supported by Net.Data

MIME Standard Character
Set

ASCII CCSID Description

US-ASCII 367 US English

ISO-2022-JP 5052 Japan MBCS

ISO-8859-1 819 Latin-1

ISO-8859-2 912 Latin-2

ISO-8859-5 915 Cyrillic

ISO-8859-6 1089 Arabic

ISO-8859-7 813 Greek

ISO-8859-8 916 Hebrew

ISO-8859-9 920 Latin-5

Syntax:
DTW_SMTP_CHARSET [=] character_set

Where character_set is the MIME character set to be used.

Example:
DTW_SMTP_CHARSET iso-8859-2

This MIME character set corresponds to the 912 ASCII CCSID.

DTW_SMTP_SERVER: E-mail SMTP Server Variable
Specifies the SMTP server to use for sending out e-mail messages using the
DTW_SENDMAIL built-in function. The value of this variable can either be a
host name or an IP address. If this variable is not set, Net.Data uses the local
host as the SMTP server.

Syntax:
DTW_SMTP_SERVER [=] server_name

Where server_name is the host name or IP address of the the SMTP server that
is to be used for sending e-mail messages.

Performance tip: Specify an IP address for this value to prevent Net.Data
from connecting to a domain name server when retrieving the IP address of
the specified SMTP server.

Example:

Chapter 2. Configuring Net.Data 15

DTW_SMTP_SERVER 9.5.34.5

DTW_SQL_ISOLATION: DB2 Isolation Variable
The DTW_SQL language environment uses the DTW_SQL_ISOLATION
configuration statement to determine the degree to which the database
operations executed by the DTW_SQL language environment are isolated
from concurrently executing processes.

Syntax:
DTW_SQL_ISOLATION locking_method

Where locking_method is one of the following values:

DTW_SQL_NO_COMMIT
Specifies not to use commitment control. For the OS/400 operating
system, do not specify this value if a relational database is specified in
the relational database directory and the relational database is on a
non-OS/400 system.

DTW_SQL_READ_UNCOMMITTED
Specifies locking for the objects referred to in SQL ALTER,
COMMENT ON, CREATE, DROP, GRANT, LABEL ON, and REVOKE
statements and the rows updated, deleted, and inserted. The objects
are locked until the end of the unit of work (transaction).
Uncommitted changes in other processes can be seen.

DTW_SQL_READ_COMMITTED
Specifies locking for the objects referred to in SQL ALTER,
COMMENT ON, CREATE, DROP, GRANT, LABEL ON, and REVOKE
statements and the rows updated, deleted, and inserted. The objects
are locked until the end of the unit of work (transaction). A row that
is selected, but not updated, is locked until the next row is selected.
Uncommitted changes in other processes cannot be seen.

DTW_SQL_REPEATABLE_READ
Specifies locking for the objects referred to in SQL ALTER,
COMMENT ON, CREATE, DROP, GRANT, LABEL ON, and REVOKE
statements and the rows selected, updated, deleted, and inserted. The
objects are locked until the end of the unit of work (transaction).
Uncommitted changes in other processes cannot be seen.

DTW_SQL_SERIALIZABLE
Specifies locking for the objects referred to in SQL ALTER,
COMMENT ON, CREATE, DROP, GRANT, LABEL ON, and REVOKE
statements and the rows selected, updated, deleted, and inserted. The
objects are locked until the end of the unit of work (transaction).
Uncommitted changes in other processes cannot be seen. All tables
referred to in SELECT, UPDATE, DELETE, and INSERT statements are
locked exclusively until the end of the unit of work (transaction).

16 Net.Data Administration and Programming Guide

DTW_SQL_NAMING_MODE: SQL Table Naming Variable
The DTW_SQL_NAMING_MODE configuration statement specifies how a
table name can be specified in an SQL statement.

Syntax:
DTW_SQL_NAMING_MODE mode

Where mode is one of the following values:

SQL_NAMING
Specifies that tables are qualified by the collection name in the form:
collection.table

where collection is the name of the collection and table is the table
name. The default qualifier is the user ID running the process that
executes the SQL statement and is used when the table name is not
explicitly qualified and the default collection name is not specified.
SQL_NAMING is the default table name.

SYSTEM_NAMING
Specifies that files are qualified by library name in the form:
library/file

where library is the name of the library and file is the table name. The
default search path is the library list (*LIBL) for the unqualified table
name, if the table name (file) is not explicitly qualified and a default
collection name (library) is not specified.

DTW_TRACE_LOG_DIR: Location of Trace File
Sets the directory where the trace log is stored. See “Chapter 9. Serviceability
Features” on page 149 for more information on using this configuration
variable.

Syntax:
DTW_TRACE_LOG_DIR [=] full_directory_path

Example:
DTW_TRACE_LOG_DIR /netdata/error/logs

DTW_TRACE_LOG_LEVEL: Level of Trace to Log
Sets the level of trace logging. See “Chapter 9. Serviceability Features” on
page 149 for more information on using this configuration variable.

Syntax:
DTW_TRACE_LOG_LEVEL [=] OFF|APPLICATION|SERVICE

Chapter 2. Configuring Net.Data 17

Where:

OFF Specifies that no trace data is captured in the trace log. This is the
default value.

Application
Net.Data writes application-level trace messages to the trace log.

Service
Net.Data writes all trace messages to the trace log. This level of trace
should only be used when asked to do so by IBM. The information in
a SERVICE trace will not be helpful in debugging your own
applications and will make reading the trace more difficult than
necessary. You may be asked to set the level to SERVICE to help
resolve product service questions.

Example:
DTW_TRACE_LOG_LEVEL APPLICATION

DTW_TRACE_MERGE_RECORDS: Merge Trace Records
Specifies whether trace records from all threads should be merged into a
single trace log file. See “Chapter 9. Serviceability Features” on page 149 for
more information on using this configuration variable.

Syntax:
DTW_TRACE_MERGE_RECORDS [=] YES|NO

Where:

YES Specifies that trace records are written to one file, NETDATA.TRACE.
This is the default value

NO Specifies that trace records are written to thread-specific file. The file
name is NETDATA.TRACE.xxxxx, where xxxxx is the process/thread
identifier.

Example:
DTW_TRACE_MERGE_RECORDS NO

DTW_UPLOAD_DIR
Specifies into which directory Net.Data will store files uploaded by the client.
When this variable is not set, Net.Data will not accept the files for upload.

Syntax:
DTW_UPLOAD_DIR [=] path

Example:
DTW_UPLOAD_DIR /tmp/uploads

18 Net.Data Administration and Programming Guide

DTW_RESTRICT_PATH_SEARCH: Restrict Path Search
Specifies that Net.Data should restrict file searches to directories specified in
MACRO_PATH, EXEC_PATH and INCLUDE_PATH configuration variables.

Syntax:
DTW_RESTRICT_PATH_SEARCH [=] YES|NO

Where:

YES Specifies that Net.Data will restrict file searches to directories specified
in MACRO_PATH, EXEC_PATH and INCLUDE_PATH configuration
variables.

NO Specifies that if Net.Data does not find a file in directories specified in
MACRO_PATH, EXEC_PATH and INCLUDE_PATH configuration
variables, Net.Data will attempt to use file as-is to determine if it
exists. This is the default.

DTW_PROCESS_REPORT_ON_ERROR: Process Report On Error
Specifies whether the report block should be processed when an error occurs
in a database function. This variable has been introduced in order to be
compatible with Net.Data on other platforms, which do not process report
blocks when an error occurs in a database function.

Syntax:
DTW_PROCESS_REPORT_ON_ERROR [=] YES|NO

Where:

YES Specifies that Net.Data will process the report block when an error
occurs in a database function. This is the default.

NO Specifies that Net.Data will not process the report block when an error
occurs in a database function.

DTW_JAVA_VMOPTIONS: Java Virtual Machine Options
Specifies Java options that is to be applied to the Java environment created by
the Java language environment. The only Java option that Net.Data recognizes
is java.version.

Syntax:
DTW_JAVA_VMOPTIONS [=] java-options

Where:

java-options
Specifies java options to be used.

Chapter 2. Configuring Net.Data 19

Example:
Specify the java.version to use.
DTW_JAVA_VMOPTIONS java.version=1.2

Path Configuration Statements
Net.Data determines the location of files and executable programs used by
Net.Data macros from the settings of path configuration statements. The path
statements are:
v “DTW_ATTACHMENT_PATH”
v “DTW_JAVA_CLASSPATH” on page 21
v “EXEC_PATH” on page 21
v “FFI_PATH” on page 22
v “INCLUDE_PATH” on page 22
v “MACRO_PATH” on page 23

These path statements identify one or more directories that Net.Data searches
when attempting to locate macros, executable files, text files, and include files.
The path statements that you need depend on the Net.Data capabilities that
your macros use.

Update guidelines:

Some general guidelines apply to the path statements. Exceptions are noted in
the description of each path statement.
v Seperate each specified directory in the path statement with a semicolon (;).
v Forward slashes (/) and back slashes (\) are treated the same.
v Each path statement can specify multiple paths. Paths are searched from left

to right in the order specified. This multiple-path capability lets you
organize your files within multiple directories. For example, you can place
each of your Web applications in its own directory.

v It is recommended to use absolute path statements.

The following sections describe the purpose and syntax of each path
statement and provide examples of valid path statements.

DTW_ATTACHMENT_PATH
This path configuration statement specifies the path used to locate
attachments to be sent using DTW_SENDMAIL.

Syntax:
DTW_ATTACHMENT_PATH [=] path

Example:
DTW_ATTACHMENT_PATH /usr/lpp/internet/server_root/pub/upload

20 Net.Data Administration and Programming Guide

DTW_JAVA_CLASSPATH
This path configuration statement specifies the path used to locate Java
classes. Directories are separated by colons.

Syntax:
DTW_JAVA_CLASSPATH [=] path

Example: The following example shows the DTW_JAVA_CLASSPATH
statement in the initialization file.

Net.Data initialization file:
DTW_JAVA_CLASSPATH /directory1/directory2:/QIBM/ProdData/Java400

EXEC_PATH
This path configuration statement identifies one or more directories that
Net.Data searches for an external program that is invoked by the EXEC
statement or an executable variable. If the program is found, the external
program name is appended to the path specification, resulting in a fully
qualified file name that is passed to the language environment for execution.

Syntax:
EXEC_PATH [=] path1;path2;...;pathn

Example: The following example shows the EXEC PATH statement in the
initialization file and the EXEC statement in the macro that invokes an
external program.

Net.Data initialization file:
EXEC_PATH /qsys.lib/programs.lib;/qsys.lib/rexx.lib/rexxpgms.file;

Net.Data macro:
%FUNCTION(DTW_REXX) myFunction() {

%EXEC{ myFunction.mbr %}
%}

If the file myFunction.mbr is found in the /qsys.lib/rexx.lib/rexxpgms.file
directory, the qualified name of the program is
/qsys.lib/rexx.lib/rexxpgms.file/myFunction.mbr.

If the file is not found in the directories specified in the EXEC_PATH
statement:
v If the specified path is absolute, Net.Data searches for the file in the

specified path. For example, if the following EXEC statement were
specified:

Chapter 2. Configuring Net.Data 21

%EXEC{/qsys.lib/programs.lib/rpg1.pgm %}

Net.Data would search for the file rpg1.pgm in the /qsys.lib/programs.lib
directory.

v If the specified path is relative, Net.Data searches the current working
directory. For example, if the following EXEC statement were specified:
%EXEC { rpg1.pgm %}

then Net.Data would attempt to find the file rpg1.pgm in the current
working directory.

FFI_PATH
This path configuration statement identifies one or more directories that
Net.Data searches for a flat file that is referenced by a flat file interface (FFI)
function.

Syntax:
FFI_PATH [=] path1;path2;...;pathn

Example: The following example shows an FFI_PATH statement in the
initialization file.

Net.Data initialization file:
FFI_PATH /u/user1/ffi;/usr/lpp/netdata/ffi;

When the FFI language environment is called, Net.Data looks in the path
specified in the FFI_PATH statement.

Because the FFI_PATH statement is used to provide security to those files not
in directories in the path statement, there are special provisions for FFI files
that are not found. See the FFI built-in functions section in Net.Data Reference.

INCLUDE_PATH
This path configuration statement identifies one or more directories that
Net.Data searches to find a file specified on an INCLUDE statement in a
Net.Data macro. When it finds the file, Net.Data appends the include file
name to the path specification to produce the qualified include file name.

Syntax:
INCLUDE_PATH [=] path1;path2;...;pathn

Example 1: The following example shows both the INCLUDE_PATH
statement in the initialization file and the INCLUDE statement that specifies
the include file.

22 Net.Data Administration and Programming Guide

Net.Data initialization file:
INCLUDE_PATH /u/user1/includes;/usr/lpp/netdata/includes

Net.Data macro:
%INCLUDE "myInclude.txt"

If the file myInclude.txt is found in the /u/user1/includes directory, the
fully-qualified name of the include file is /u/user1/includes/myInclude.txt.

Example 2: The following example shows the INCLUDE_PATH statement and
an INCLUDE file with a subdirectory name.

Net.Data initialization file:
INCLUDE_PATH /u/user1/includes;/usr/lpp/netdata/includes

Net.Data macro:
%INCLUDE "OE/oeheader.inc"

The include file is searched for in the directories /u/user1/includes/OE and
/usr/lpp/netdata/includes/OE. If the file is found in
/usr/lpp/netdata/includes/OE, the fully qualified name of the include file is
/usr/lpp/netdata/includes/OE/oeheader.inc.

If the file is not found in the directories specified in the INCLUDE_PATH
statement:
v If the specified path is absolute, Net.Data searches for the file in the

specified path. For example, if the following INCLUDE statement were
specified:
%INCLUDE "/u/user1/includes/oeheader.inc

then Net.Data would search for the file oeheader.inc in the
/u/user1/includes directory.

v If the specified path is relative, Net.Data searches the current working
directory. For example, if the following INCLUDE statement were specified:
%INCLUDE "oeheader.inc"

then Net.Data would attempt to find the file oeheader.inc in the current
working directory.

MACRO_PATH
This path configuration statement identifies the directories that Net.Data
searches for Net.Data macros. For example, specifying the following URL
requests the Net.Data macro with the path and file name /macro/sqlm.dtw:

Chapter 2. Configuring Net.Data 23

http://server/cgi-bin/db2www/macro/sqlm.dtw/report

Syntax:
MACRO_PATH [=] path1;path2;...;pathn

The equal sign (=) is optional, as indicated by brackets.

Net.Data appends the path /macro/sqlm.d2w/report to the paths in the
MACRO_PATH configuration statement, from left to right until Net.Data finds
the macro. If the macro is not found, Net.Data will execute the macro defined
for the DTW_DEFAULT_MACRO configuration variable, or it will print an
error. See “Chapter 4. Invoking Net.Data” on page 43 for information on
invoking Net.Data macros.

Example: The following example shows the MACRO_PATH statement in the
initialization file and the related link that invokes Net.Data.

Net.Data initialization file:
MACRO_PATH /u/user1/macros;/usr/lpp/netdata/macros

HTML link:
Submit another query.

If the file query.dtw is found in the directory /u/user1/macros, then the
fully-qualified path is /u/user1/macros/query.dtw.

If the file is not found in the directories specified in the MACRO_PATH
statement, Net.Data searches for the file in the root (/) directory. For example,
if the following URL is submitted:
http://myserver/cgi-bin/db2www/myfile.txt/report

and the file myfile.txt was not found in any of the directories specified in
MACRO_PATH, then Net.Data attempts to find the file in the root (/)
directory:
/myfile.txt

Environment Configuration Statements
An ENVIRONMENT statement configures a language environment. A
language environment is a component of Net.Data that Net.Data uses to
access a data source such as a DB2 database or to execute a program written
in a language such as REXX. Net.Data provides a set of language
environments, as well as an interface that allows you to create your own
language environments. These language environments are described in

24 Net.Data Administration and Programming Guide

“Chapter 6. Using Language Environments” on page 99 and the language
environment interface is described in Net.Data Language Environment Interface
Reference.

Net.Data requires that an ENVIRONMENT statement for a particular
language environment exist before you can invoke that language environment.

Net.Data for OS/400 does not require an ENVIRONMENT statement for
language environments that are shipped with Net.Data. However, if a
language environment statement is encountered, it overrides the default that
Net.Data uses. It is recommended that ENVIRONMENT statements for
Net.Data supplied language environments not be added to the Net.Data
configuration file.

You can associate variables with a language environment by specifying the
variables as parameters in the ENVIRONMENT statement. Net.Data implicitly
passes the parameters that are specified on an ENVIRONMENT statement to
the language environment as macro variables. To change the value of a
parameter that is specified on an ENVIRONMENT statement in the macro,
either assign a value to the variable using the DTW_ASSIGN() function or
define the variable in a DEFINE section.

Important: If a variable is defined in a macro but is not specified on the
ENVIRONMENT statement, the macro variable will not be passed to the
language environment.

For example, a macro can define a DATABASE variable to specify the name of
a database at which an SQL statement within a DTW_SQL function is to be
executed. The value of DATABASE must be passed to the SQL language
environment (DTW_SQL) so that the SQL language environment can connect
to the designated database. To pass the variable to the language environment,
you must add the DATABASE variable to the parameter list of the
environment statement for DTW_SQL.

The sample Net.Data initialization file makes several assumptions about
customizing the setting of Net.Data environment configuration statements.
These assumptions may not be correct for your environment. Modify the
statements appropriately for your environment.

To add or update an ENVIRONMENT statement:

ENVIRONMENT statements have the following syntax:
ENVIRONMENT(type) library_name (parameter_list, ...)

Parameters:

v type

Chapter 2. Configuring Net.Data 25

The name by which Net.Data associates this language environment with a
FUNCTION block that is defined in a Net.Data macro. You must specify the
type of the language environment on a FUNCTION block definition to
identify the language environment that Net.Data should use to execute the
function.

v library_name

The name of the service program containing the language environment
interfaces that Net.Data calls.
The service program name is specified with the .SRVPGM extension.

v parameter_list

The list of parameters that are passed to the language environment on each
function call, in addition to the parameters that are specified in the
FUNCTION block definition.
To set and pass the variables in the parameters list, define the variable in
the macro.
You must define these parameters as configuration variables or as variables
in your macro before executing a function that will be processed by the
language environment. The following example specifies the variables in the
ENVIRONMENT statement:
ENVIRONMENT(DTW_SQL) /QSYS.LIB/QTCP.LIB/QTMHSQL.SRVPGM(IN
DATABASE,LOGIN,PASSWORD,TRANSACTION_SCOPE)

If a function modifies any of its output parameters, the parameters keep
their modified value after the function completes.

When Net.Data processes the initialization file, it does not load the language
environment service programs. Net.Data loads a language environment
service program when it first executes a function that identifies that language
environment. The service program then remains loaded for as long as
Net.Data is loaded.

Example: ENVIRONMENT statements for Net.Data-provided language
environments

When customizing the ENVIRONMENT statements for your application, add
the variables to the ENVIRONMENT statements that need to be passed from
your initialization file to a language environment or that Net.Data macro
writers need to set or override in their macros.

On OS/400, ENVIRONMENT statements are not required for Net.Data
language environments and are not recommended. However, this example
shows some of the default ENVIRONMENT statements that Net.Data uses.

26 Net.Data Administration and Programming Guide

1 MACRO_PATH /WWW/MACRO;/QSYS.LIB/WWW.LIB/MACRO.FILE
2 INCLUDE_PATH /WWW/MACRO;/QSYS.LIB/WWW.LIB/MACRO.FILE
3 EXEC_PATH /QSYS.LIB;/QSYS.LIB/WWW.LIB

4 ENVIRONMENT(DTW_REXX) /QSYS.LIB//QTCP.LIB/QTMHREXX.SRVPGM ()
5 ENVIRONMENT(DTW_SQL) /QSYS.LIB/QTCP.LIB/QTMHSQL.SRVPGM (IN DATABASE,

LOGIN, PASSWORD, SHOWSQL, TRANSACTION_SCOPE, DB_CASE,
RPT_MAX_ROWS, START_ROW_NUM, DTW_SET_TOTAL_ROWS,
OUT DTWTABLE, SQL_CODE, TOTAL_ROWS)

6 ENVIRONMENT(DTW_SYSTEM) /QSYS.LIB/QTCP.LIB/QTMHSYS.SRVPGM ()

Required: Each ENVIRONMENT statement must be on a single line.

Setting Up Net.Data Language Environments

After you modify configuration variables and ENVIRONMENT configuration
statements for the Net.Data language environments, some additional setup is
required before the following language environments can function properly.
The following sections describe the steps necessary to set up the language
environments:
v “Setting up the Java Application Language Environment”
v “Setting up the SQL Language Environment”

Setting up the Java Application Language Environment
Before using the Java Application language environment, first introduced in
OS/400 V4R4, complete the following steps:
1. Install the “AS/400 Developer Kit for Java” licensed program, product

identifier 5769JV1. The “AS/400 Developer Kit for Java” must be installed
to run Java applications on the AS/400.

2. Set the DTW_JAVA_CLASSPATH path configuration variable in the
Net.Data initialization file so Java can find the Java application classes. For
more information on this path configuration statement, see
“DTW_JAVA_CLASSPATH” on page 21.

3. Set the DTW_JAVA_VMOPTIONS configuration variable to the JDK level
that is to be used by the Java Application Language Environment. To learn
more about this configuration variable, see “DTW_JAVA_VMOPTIONS:
Java Virtual Machine Options” on page 19.

After setting up the Java Application language environment, see “Java
Application Language Environment” on page 106 to learn how to use the Java
Application language environment.

Setting up the SQL Language Environment
Before using the SQL language environment, complete the following steps:

Chapter 2. Configuring Net.Data 27

1. Create a directory entry for the local database in the relational database
directory (a directory entry with a remote location of *LOCAL), in addition
to any remote databases that the SQL language environment needs to
access.
Add the entry by using the Add Relational Database Directory Entry
(ADDRDBDIRE) command.
If you are accessing a remote database, complete additional configuration
steps, such as setting up communications between the local system and
the remote system. For more information about distributed database
support, see OS/400 Distributed Database Programming.

2. If you are using DataLinks, ensure that TCP/IP is configured on any
systems that used, and that the DataLink File Manager is started and
configured on all systems that will contain objects to be linked. For more
information about DataLinks, see DB2 for 0S/400 SQL Programming

3. If large objects (LOBs) are going to be returned by the SQL language
environment, set the DTW_LOB_DIR configuration variable. To learn more
about this configuration variable, see “DTW_LOB_DIR” on page 11.

4. Add or update configuration variables. The SQL language environment
supports the following configuration variables that can be specified in a
Net.Data initialization file:

DTW_SQL_ISOLATION
Determines the degree to which the database operations
executed by the SQL language environment are isolated
from concurrently executing processes

DTW_SQL_NAMING_MODE
Determines how a table name can be specified in an SQL
statement

DTW_SHOWSQL
Enables the use of the macro variable SHOWSQL

To learn more about the Net.Data configuration variable statements, see
“Configuration Variable Statements” on page 9.

After setting up the SQL language environment, see “SQL Language
Environment” on page 113 to learn how to use the SQL language environment.

Configuring the Web Server

The Common Gateway Interface (CGI) is an industry-standard interface that
enables a Web server to invoke an application program such as Net.Data.
Net.Data’s support for CGI lets you use Net.Data with your favorite Web
server.

28 Net.Data Administration and Programming Guide

Configure Net.Data to use only one interface at a time. For example, if you
configure the Web server to execute Net.Data using CGI, do not also configure
the Web server to execute Net.Data using another interface. If you want to
later run Net.Data using another interface, such as FastCGI, then reconfigure
the Web server solely for the new interface.

Configure the Web server to invoke Net.Data by adding Map, Exec, and Pass
directives to the HTTP configuration file so that Net.Data gets invoked.

For example, assuming the Net.Data program object resides in library CGI,
then the following directives redirect Net.Data requests to
/QSYS.LIB/CGI.LIB/DB2WWW.PGM:
Map /cgi-bin/db2www/* /QSYS.LIB/CGI.LIB/DB2WWW.PGM/*
Map /CGI-BIN/DB2WWW/* /QSYS.LIB/CGI.LIB/DB2WWW.PGM/*
Exec /QSYS.LIB/CGI.LIB/*

Recommendation: Organize the directives in the following order within the
HTTP configuration file to prevent directives from being ignored: Map, Exec,
Pass. For example, if the following Pass directive precedes a Map or Exec
directive, the Map and Exec directives are ignored:
Pass /*

Map directives
The Map directives map entries using the format /cgi-bin/db2www/*
to the library where the Net.Data program resides on your system.
(The asterisk (*) at the end of the string refers to anything that follows
the string.) Both upper- and lower-case map statements are included,
because the directives are case sensitive. In this example, both Map
statements point to the same location.

Exec directives
The Exec directive enables the Web server to execute any CGI
programs in the CGI library. Specify the library where the program
resides (not the program itself) on the directive.

Granting Access Rights to Objects Accessed by Net.Data

Before using Net.Data, you need to ensure that the user IDs under which
Net.Data executes have the appropriate access rights to objects that are
referenced in a Net.Data macro and to the macro that a URL references.

More specifically, ensure that the user IDs under which Net.Data executes
have the following authorizations:
v To read the Net.Data initialization file, INI.FILE/DB2WWW.MBR

Chapter 2. Configuring Net.Data 29

v To execute the Net.Data executable files and service programs, and to
search the directories (libraries) in the paths to the executable files and
service programs

v To read the appropriate Net.Data macros and search the appropriate
directories identified by the MACRO_PATH path configuration statement

v To execute the appropriate files and to search the appropriate directories
identified by the EXEC_PATH path configuration statement

v To read the appropriate files and to search the appropriate directories
identified by the INCLUDE_PATH path configuration statement

v To read and write the appropriate files, and to search the appropriate
directories identified by the FFI_PATH path configuration statement

v To access any object that might be referenced by the target of a language
environment statement. For example SQL language environment runs SQL
statements, and SQL statements access database files, so the user ID that
Net.Data is running under must have authority to the database files.

Examples:

Depending on the file system in which you choose to store your Net.Data
macros, you need to authorize the user profile under which the Net.Data CGI
program is run to the Net.Data macro. The following methods give the
QTMHHTP1 user profile authority (in V3R2 and V3R7, Internet Connection
for AS/400 ran CGI programs only under the QTMHHTP1 user profile.):
v In the root file system, use the Change Authority (CHGAUT) CL command

to give authority to the user profile:
CHGAUT OBJ('/WWW') USER(QTMHHTP1) DTAAUT(*RX)
CHGAUT OBJ('/WWW/macro') USER(QTMHHTP1) DTAAUT(*RX)
CHGAUT OBJ('/WWW/macro/*') USER(QTMHHTP1) DTAAUT(*RX)

You need to give authority to all objects in the path.
v In the library file system (QSYS.LIB), use the Grant Object Authority

(GRTOBJAUT) CL command to give authority to the user profile:
GRTOBJAUT OBJ(WWW) OBJTYPE(*LIB) USER(QTMHHTP1) AUT(*USE)
GRTOBJAUT OBJ(WWW/MACRO) OBJTYPE(*FILE) USER(QTMHHTP1) AUT(*USE)

You need to give authority only to the library and the source physical file.

You can also use the CHGAUT CL command to give authority to objects in
the QSYS.LIB file system as follows:
CHGAUT OBJ('/QSYS.LIB/WWW.LIB') USER(QTMHHTP1) DTAAUT(*RX)
CHGAUT OBJ('/QSYS.LIB/WWW.LIB/MACRO.FILE') USER(QTMHHTP1) DTAAUT(*RX)

30 Net.Data Administration and Programming Guide

Language environment-specific authority considerations are documented in
each language environment section in “Chapter 6. Using Language
Environments” on page 99.

Chapter 2. Configuring Net.Data 31

32 Net.Data Administration and Programming Guide

Chapter 3. Keeping Your Assets Secure

Internet security is provided through a combination of firewall technology,
operating systems features, Web server features, Net.Data mechanisms, and
the access control mechanisms that are part of your data sources.

You must decide on what level of security is appropriate for your assets. This
chapter describes methods you can use for keeping your assets secure and
also provides references to additional resources you can use to plan for the
security of your Web site.

The following sections contain guidelines for protecting your assets. The
security mechanisms described include:
v “Using Firewalls”
v “Encrypting Your Data on the Network” on page 35
v “Using Authentication” on page 36
v “Using Authorization” on page 37
v “Using Net.Data Mechanisms” on page 37

Using Firewalls

Firewalls are collections of hardware, software, and policies that are designed
to limit access to resources in a networked environment.

Firewalls:
v Protect the internal network from infiltration or intrusion
v Protect the internal network from data and programs that are brought in by

internal users
v Limit internal user access to external data
v Limit the damage that can be done if the firewall is breached

Net.Data can be used with firewall products that execute in your
environment.

The following possible configurations provide recommendations for managing
the security of your Net.Data application. These configurations provide
high-level information and assume that you have configured a firewall that
isolates your secure intranet from the public Internet. Carefully consider these
configurations with your organization’s security policies:
v High security configuration

© Copyright IBM Corp. 1997, 2001 33

This configuration creates a subnetwork that isolates Net.Data and the Web
server from both the secure intranet and the public Internet. The firewall
software is used to create a firewall between the Web server and the public
Internet, and another firewall between the Web server and the secured
intranet, which contains DB2 Server. This configuration is shown by
Figure 3.

To set up this configuration:
– Install Net.Data on the Web server machine and ensure that Net.Data can

access DB2 Server inside the intranet by configuring the firewall to allow
DB2 traffic through the firewall. One method is to add a packet filtering
rule to allow DB2 client requests from Net.Data and acknowledge
packets from DB2 Server to Net.Data.

– Allow FTP and Telnet access between the Web server and the secure
intranet. One method is to install a socks server on the Web server
machine.

– In the packet filtering configuration file of the firewall software, specify
that incoming TCP packets from the standard HTTP port can access the
Web server. Also, specify that outgoing TCP acknowledge packets can go
to any hosts on the public Internet from the Web server.

v Intermediate security configuration

In this configuration, firewall software isolates the secured intranet with
DB2 server from the public Internet. Net.Data and the Web server are
outside the firewall on a workstation platform. This configuration is simpler
than the first, but still offers database protection. Figure 4 on page 35 shows
this configuration.

Figure 3. High Security Configuration

34 Net.Data Administration and Programming Guide

The firewall must be configured to allow DB2 client requests to flow from
Net.Data to DB2 and to allow acknowledge packets to flow from DB2 to
Net.Data.

v Low security configuration

In this configuration, DB2 server and Net.Data are installed outside of the
firewall and the secured intranet. They are not protected from external
attacks. The firewall needs no packet filtering rules for this configuration.
Figure 5 shows this configuration.

Encrypting Your Data on the Network

You can encrypt all data that is sent between a client system and your Web
server when you use a Web server that supports Secured Sockets Layer (SSL).
This security measure supports the encryption of login IDs, passwords, and
all data that is transmitted through HTML forms from the client system to the
Web server and all data that is sent from the Web server to the client system.

Figure 4. Intermediate Security Configuration:

Figure 5. Low Security Configuration:

Chapter 3. Keeping Your Assets Secure 35

Using Authentication

Authentication is used to ensure that a user ID making a Net.Data request is
authorized to access and update data within the application. Authentication is
the process of matching the user ID with a password to validate that the
request comes from a valid user ID. The Web server associates a user ID with
each Net.Data request that it processes. The process or thread that is handling
the request can then access any resource to which that user ID is authorized.

In an OS/400 environment, a user ID can become associated with the thread
or process that is handling a Net.Data request in one of three ways:

Client-based authentication
The user is prompted for a local OS/400 user ID and password at the
client. The Web server then authenticates the user. If successfully
authenticated, the supplied user ID is associated with the request. Use
of the special Web server %%CLIENT%% access control user ID
enables this type of authentication.

Client-based authentication is supported by IBM’s HTTP server
starting in OS/400 V4R1.

Server-based authentication
The user ID of the Web server is associated with each request and the
user is not prompted for a user ID or password. Use of the special
Web server %%SERVER%% access control user ID enables this type of
authentication.

By default, IBM’s HTTP server runs CGI programs under the
QTMHHTP1 user ID (user profile). However, if the UserID directive is
in effect or within a protection setup where the UserID subdirective
has been specified, the program is executed under the specified user
ID.

Surrogate authentication
A surrogate user ID that has the authority to access some predefined
collection of resources is associated with the client request. This type
of authentication requires the creation of surrogate user IDs with
access authority that is appropriate for a group of users or class of
requests. Authentication with surrogate user IDs usually uses
validation list objects first introduced in V4R1. For more information
and examples, see OS/400 System API Reference.

The approach that the Web server uses for associating a user ID with a client
request is specified when the Web server is configured. For additional detail
on access control user IDs, on installing the Web server, and on using the
Protect, Protection, DefProt, and UserId directives to configure the Web server,
refer to your Web server documentation.

36 Net.Data Administration and Programming Guide

Tip: To protect Net.Data macros do the following:
1. Add protection directives in the Web server configuration file for the

Net.Data program object.
2. Ensure the user ID that Net.Data will be running under has access

rights to the macros. For more information on granting access rights,
see “Granting Access Rights to Objects Accessed by Net.Data” on
page 29.

Using Authorization

Authorization provides a user with complete or restricted access to an object,
resource, or function. Data sources such as DB2 provide their own
authorization mechanisms to protect the information that they manage. These
authorization mechanisms assume that the user ID associated with the
Net.Data request has been properly authenticated, as explained in “Using
Authentication” on page 36. The existing access control mechanisms for these
data sources then either permit or deny access based on the authorizations
that are held by the authenticated user ID.

Using Net.Data Mechanisms

In addition to the methods described above, you can use Net.Data
configuration variables or macro development techniques to limit the activities
of end users, to conceal corporate assets such as the design of your database,
and to validate user-provided input values within production environments.

Net.Data Configuration Variables
Net.Data provides several configuration variables that can be used to limit the
activities of end users or conceal the design of your database.

Control file access with path statements
Net.Data evaluates the settings of path configuration statements to
determine the location of files and executable programs that are used
by Net.Data macros. These path statements identify one or more
directories that Net.Data searches when attempting to locate macros,
executable files, include files, or other flat files. By selectively
including directories on these path statements, you can explicitly
control the files that are accessible by users at browsers. Refer to
“Chapter 2. Configuring Net.Data” on page 5 for additional detail
about path statements.

You should also use authorization checking as described in “Using
Authorization” and verify that file names cannot be changed in
INCLUDE statements as described in “Macro Development
Techniques” on page 38.

Chapter 3. Keeping Your Assets Secure 37

Disable SHOWSQL for production systems
The SHOWSQL variable allows the user to specify that Net.Data
displays the SQL statements specified within Net.Data functions at a
Web browser. This variable is used primarily for developing and
testing the SQL within an application and is not intended for use in
production systems.

You can disable the display of SQL statements in production
environments using one of the following methods:
v When using versions of Net.Data that support the DTW_SHOWSQL

configuration variable, use this variable in the Net.Data
initialization file to override the effect of setting SHOWSQL within
your Net.Data macros. See “DTW_SHOWSQL: Enable or Disable
SHOWSQL Configuration Variable” on page 13 for syntax and
additional information.

v Use the DTW_ASSIGN() function as described in “Macro
Development Techniques”.

See SHOWSQL in the variables chapter of Net.Data Reference for
syntax and examples for the SHOWSQL Net.Data variable.

Macro Development Techniques
Net.Data provides several mechanisms that allow users to assign values to
input variables. To ensure that macros execute in the manner intended, these
input variables should be validated by the macro. Your database and
application should also be designed to limit a user’s access to the data that the
user is authorized to see.

Use the following development techniques when writing your Net.Data
macros. These techniques will help you ensure that your applications execute
as intended and that access to data is limited to properly authorized users.

Ensure that Net.Data variables cannot be overridden in a URL
The setting of Net.Data variables by a user within a URL overrides
the effect of DEFINE statements used to initialize variables in a macro.
This might alter the manner in which your macro executes. To
safeguard against this possibility, initialize your Net.Data variables
using the DTW_ASSIGN() function.

Example: Instead of using:
%define START_ROW_NUM = "1"

Use:
@DTW_ASSIGN(START_ROW_NUM, "1")

Assigning the variable this way prevents a query string assignment
such as ″START_ROW_NUM=10″ from overriding your macro setting.

38 Net.Data Administration and Programming Guide

Validate that your SQL statements cannot be modified in ways that alter the
intended behavior of your application

Adding a Net.Data variable to an SQL statement within a macro
allows users to dynamically alter the SQL statement before executing
it. It is the responsibility of the macro writer to validate user-provided
input values and ensure that an SQL statement containing a variable
reference is not being modified in an unexpected manner. Your
Net.Data application should validate user-provided input values from
the URL so the Net.Data application can reject invalid input. Your
validation design process should include for the following steps:
1. Identify the syntax of valid input; for example, a customer ID

must start with a letter and can contain only alphanumeric
characters.

2. Determine what potential harm can be caused by allowing
incorrect input, intentionally harmful input, or input entered to
gain access to internal assets of the Net.Data application.

3. Include input verification statements in the macro that meet the
needs of the application. Such verification depends on the syntax
of the input and how it is used. In simpler cases it can be enough
to check for invalid content in the input or to invoke Net.Data to
verify the type of the input. If the syntax of the input is more
complex, the macro developer might have to parse the input
partially or completely to verify whether it is valid.

Example 1: Using the DTW_POS() string function to verify SQL
statements
%FUNCTION(DTW_SQL) query1() {

select * from shopper where shlogid = '$(shlogid)'
%}

The value of the shlogid variable is intended to be a shopper ID. Its
purpose is to limit the rows returned by the SELECT statement to
rows that contain information about the shopper identified by the
shopper ID. However, if the string “smith' or shlogid<>'smith” is
passed as the value of the variable shlogid, the query becomes:
select * from shopper where shlogid = 'smith' or shlogid<>'smith'

This user-modified version of the original SQL SELECT statement
returns the entire shopper table.

The Net.Data string functions can be used to verify that the SQL
statement is not modified by the user in inappropriate ways. For
example, the following logic can be used to ensure that single-quotes
are not used to modify SQL statements:

Chapter 3. Keeping Your Assets Secure 39

@DTW_ADDQUOTE(shlogid, shlogid)
@query1()

The query then becomes:
select * from shopper where shlogid = 'smith'' or shlogid<>''smith'

Ensure that a file name in an INCLUDE statement is not modified in ways
that alter the intended behavior of your application

If you specify the value for the file name with an INCLUDE statement
using a Net.Data variable, then the file to be included is not
determined until the INCLUDE file is executed. If your intent is to set
the value of this variable within your macro, but to not allow a user
at the browser to override the macro-provided value, then you should
set the value of the variable using DTW_ASSIGN instead of DEFINE.
If you do intend to permit the user at a browser to provide a value
for the file name, then your macro should validate the value
provided.

Example: A query string assignment such as filename="../../x" can
result in the inclusion of a file from a directory not normally specified
in the INCLUDE_PATH configuration statement. Suppose that your
Net.Data initialization file contains the following path configuration
statement:
INCLUDE_PATH /usr/lpp/netdata/include

and that your Net.Data macro contains the following INCLUDE
statement:
%INCLUDE "$(filename)"

A query string assignment of filename="../../x" would include the
file /usr/lpp/x , which was not intended by the INCLUDE_PATH
configuration statement specification.

The Net.Data string functions can be used to verify that the file name
provided is appropriate for the application. For example, the
following logic can be used to ensure that the input value associated
with the file name variable does not contain the string ″..″:
@DTW_POS("..", $(filename), result)
%IF (result > "0")

%{ perform some sort of error processing %}
%ELSE
%{ continue with normal processing %}
%ENDIF

Design your database and queries so that user requests do not have access
to sensitive data about other users

Some database designs collect sensitive user data in a single table.

40 Net.Data Administration and Programming Guide

Unless SQL SELECT requests are qualified in some fashion, this
approach may make all of the sensitive data available to any user at a
web browser.

Example: The following SQL statement returns order information for
an order identified by the variable order_rn:
select setsstatcode, setsfailtype, mestname
from merchant, setstatus
where merfnbr = setsmenbr
and setsornbr = $(order_rn)

This method permits users at a browser to specify random order
numbers and possibly obtain sensitive information about the orders of
other customers. One way to safeguard against this type of exposure
is to make the following changes:
v Add a column to the order information table that identifies the

customer associated with the order information within a specific
row.

v Modify the SQL SELECT statement to ensure that the SELECT is
qualified by an authenticated customer ID provided by the user at
the browser.

For example, if shlogid is the column containing the customer ID
associated with the order, and SESSION_ID is a Net.Data variable that
contains the authenticated ID of the user at the browser, then you can
replace the previous SELECT statement with the following statement:
select setsstatcode, setsfailtype, mestname

from merchant, setstatus
where merfnbr = setsmenbr
and setsornbr = $(order_rn)
and shlogid = $(SESSION_ID)

Use Net.Data hidden variables
You can use Net.Data hidden variables to conceal various
characteristics of your Net.Data macro from users that view your
HTML source with their Web browser. For example, you can hide the
internal structure of your database. See “Hidden Variables” on page 69
for more information about hidden variables.

Request validation information from a user
You can create your own protection scheme based on user-provided
input. For example, you can request validation information from a
user through an HTML form and validate it using data that your
Net.Data macro retrieves from a database or by calling an external
program from a function defined in your Net.Data macro.

For more information on protecting your assets, see the Internet security list
of frequently asked questions (FAQ) at this Web site:

Chapter 3. Keeping Your Assets Secure 41

http://www.w3.org/Security/Faq

42 Net.Data Administration and Programming Guide

Chapter 4. Invoking Net.Data

Net.Data for OS/400 is invoked using Common Gateway Interface (CGI) and
using a macro. This type of invocation method is called macro request.
Additionally, you can invoke persistent macros, or macros that contain
functions specifying transaction boundaries. For more information about
persistent macros, see “Chapter 7. Transaction Management with Persistent
Macros” on page 133

This chapter describes invoking Net.Data with a macro.
v “Invoking Net.Data with a Macro (Macro Request)”
v “Invoking a Persistent Macro” on page 48

Invoking Net.Data with a Macro (Macro Request)

A client browser invokes Net.Data by sending a request in the form of a URL.
This section shows you how to invoke Net.Data by specifying a macro in the
URL request.

The request sent to Net.Data has the following form.
http://server/Net.Data_invocation_path/filename/block[?name=val&...]

Parameters:

server Specifies the name and path of the Web server. If the server is the
local server, you can omit the server name and use a relative URL.

Net.Data_invocation_path
The path and filename of the Net.Data executable file. For example,
/cgi-bin/db2www/.

filename
Specifies the name of the Net.Data macro file. Net.Data searches for
and tries to match this file name with the path statements defined in
the MACRO_PATH initialization path variable. See “MACRO_PATH”
on page 23 for more information.

block Specifies the name of the HTML block in the referenced Net.Data
macro.

?name=val&...
Specifies one or more optional parameters passed to Net.Data.

You specify this URL directly in your browser. You can also specify it in an
HTML link or build it using a form as follows:

© Copyright IBM Corp. 1997, 2001 43

v HTML link:
any text

v HTML form:
<form method="method" ACTION="URL">any text</form>

Parameters:

method Specifies the HTML method used with the form.

URL Specifies the URL used to run the Net.Data macro, the parameters of
which are described above.

Examples

The following examples demonstrate the different methods of invoking
Net.Data.

Example 1: Invoking Net.Data using an HTML link:

.
.
.

Example 2: Invoking Net.Data using a form
<form method="post"
action="http://server/cgi-bin/db2www/myMacro.dtw/report">
.
.
.
</form>

Example 3: Invoking Net.Data macros in the qsys.lib file system, using an
HTML link:

.
.
.

Example 4: Invoking Net.Data macros in the qsys.lib file system, using a form:
<form method=post

action="http://server/cgi-bin/db2www/
qsys.lib/mylib.lib/myfile.file/myMacro.mbr/report">

.

44 Net.Data Administration and Programming Guide

.

.
</form>

The following sections describe HTML links and forms and more about how
to invoke Net.Data with them:
v “HTML Links”
v “HTML Forms” on page 46

HTML Links
If you are authoring a Web page, you can create an HTML link that results in
the execution of an HTML block. When a user at a browser clicks on a text or
image that is defined as an HTML link, Net.Data executes the HTML block
within the macro.

To create an HTML link, use the HTML <a> tag. Decide which text or graphic
you want to use as your hyperlink to the Net.Data macro, then surround it by
the <a> and tags. In the HREF attribute of the <a> tag, specify the
macro and the HTML block.

The following example shows a link that results in the execution of an SQL
query when a user selects the text ″List all monitors″ on a Web page.

List all monitors

Clicking on the link calls a macro named listA.dtw, which has an HTML block
named ″report″, as in the following example:
%DEFINE DATABASE="MNS97"

%FUNCTION(DTW_SQL) myQuery(){
SELECT MODNO, COST, DESCRIP FROM EQPTABLE
WHERE TYPE='$(hdware)'
%REPORT{
<h3>Here is the list you requested</h3>
%ROW{
<hr />
$(N1): $(V1), $(N2): $(V2)
<p>$(N3): $(V3)</p>
%}
%}
%}

%HTML (Report){
@myQuery()
%}

The query returns a table that contains model number, cost, and description
information for each monitor that is described within the EQPTABLE table.

Chapter 4. Invoking Net.Data 45

The value of hdware in the SQL statement is taken from the URL input. See
Net.Data Reference for a detailed description of the variables that are used in
the ROW block.

HTML Forms
You can dynamically customize the execution of your Net.Data macros using
HTML forms. Forms allow users to provide input values that can affect the
execution of the macro and the contents of the Web page that Net.Data builds.

The following example builds on the monitor list example in “HTML Links”
on page 45 by letting users at a browser use a simple HTML form to select
the type of product for which information will be displayed.
<h1>Hardware Query Form</h1>
<hr>
<form method="post" action="/cgi-bin/db2www/listA.dtw/report">
<p>What type of hardware do you want to see?</p>

<input type="radio" name="hdware" value="mon" checked /> Monitors
<input type="radio" name="hdware" value="pnt" /> Pointing devices
<input type="radio" name="hdware" value="prt" /> Printers
<input type="radio" name="hdware" value="scn" /> Scanners

<input type="submit" value="submit" />
</form>

After the user at the browser makes a selection and clicks on the Submit
button, the Web server processes the ACTION parameter of the FORM tag,
which invokes Net.Data. Net.Data then executes the macro listA.dtw, which
has an HTML block named ″report″ as listed above.
%DEFINE DATABASE="MNS97"

%FUNCTION(DTW_SQL) myQuery(){
SELECT MODNO, COST, DESCRIP FROM EQPTABLE
WHERE TYPE='$(hdware)'
%REPORT{
<h3>Here is the list you requested</h3>
%ROW{
<hr />
$(N1): $(V1), $(N2): $(V2)
<p>$(N3): $(V3)</p>
%}
%}
%}

%HTML (Report){
@myQuery()
%}

46 Net.Data Administration and Programming Guide

In the above example, the value of hdware in the SQL statement is taken from
the HTML form input. See Net.Data Reference for a detailed description of the
variables that are used in the ROW block.

An input type that is given special treatment by Net.Data is the FILE input
type. With this input type, users can upload a file to the server, which can be
further processed by Net.Data or any other application on the server.

Net.Data tags the files with the correct codepage. The uploaded files are
stored in the directory specified in DTW_UPLOAD_DIR and are given a
unique name, determined using the following rules:

Syntax:

MacroFileName + ’.’ + FormVarName + ’.’ + UniqueIdentifier + ’.’ + FormFileName

MacroFileName
The name of the macro handling the request (the one called in the form).
Only the filename is used, not the complete path.

FormVarName
The name of the variable used to identify the file in the form.

UniqueIdentifier
A string used to ensure uniqueness.

Example:

First, set DTW_UPLOAD_DIR in the Net.Data initialization file:
DTW_UPLOAD_DIR /tmp/uploads

Then, construct a form that invokes a macro and uses at least one input tag of
type file.
<form method="post" enctype="multipart/form-data"

action="/netdatadev/form.dtw/report">
Name: <input type="text" name="name" />

Zip code: <input type="text" name="zipno" />

Resume: <input type="file" name="resume" />

<input type="submit" />
</form>

If a user were to submit the form, specifying the file myresume.txt, the
resulting file would be written on the server with a name similar to:
/tmp/uploads/form.dtw.resume.20010108112341275-6245-021.myresume.txt

Chapter 4. Invoking Net.Data 47

Invoking a Persistent Macro

This section shows you how to invoke persistent macros. These macros
contain functions used for transaction processing. Invoking these macros is
similar to regular macro request, in which you specify a server, macro, and
HTML block. For persistent macros, you also specify a transaction handle,
which identifies the HTML block as part of a transaction.

For more information about persistent macros and transaction processing, see
“Chapter 7. Transaction Management with Persistent Macros” on page 133.

Persistent Macro Syntax
Use the following syntax to invoke a persistent macro:
v HTML link:

<a href="http://server/Net.Data_invocation_path/transaction_handle/filename/
block/[?name=val&...]">any text

v HTML form:
<form method=method ACTION="http://server/Net.Data_invocation_path/
transaction_handle/filename/block/
[?name=val&...]">any text</form>

v URL:
http://server/Net.Data_invocation_path/transaction_handle/filename/block/
[?name=val&...]

Parameters:

server Specifies the name of the Web server. If the server is the local server,
you can omit the server name and use a relative URL.

Net.Data_invocation_path
The path and filename of the Net.Data executable file. For example,
/cgi-bin/db2www/.

transaction_handle
Specifies which URLs are part of a transaction initiated by a Net.Data
macro. This identifier is obtained by calling the DTW_RTVHANDLE
built-in function and must follow the Net.Data_invocation_path.

filename
Specifies the name of the Net.Data macro. Net.Data searches for and
tries to match this file name with the path statements defined in the
MACRO_PATH initialization path variable. See “MACRO_PATH” on
page 23 for more information.

block Specifies the name of the HTML block in the referenced Net.Data
macro.

method Specifies the HTML method used with the form.

48 Net.Data Administration and Programming Guide

?name=val&...
Specifies one or more optional parameters passed to Net.Data.

Examples
The following examples demonstrate how to invoke persistent macros.

Example 1: A URL in a macro:
http://www.mycompany.com/cgi-bin/db2www/$(handle)/mymacro.mac/report1

Example 2: A typical HTML block with links to other macro invocations that
run in the same transaction
@DTW_STATIC()
...
%define handle = ""
@DTW_RTVHANDLE(handle)

%html(report) {
@DTW_ACCEPT(handle)
...
<a href="/cgi-bin/db2www/$(handle)/qsys.lib/mylib.lib/macros.file/

pcgi1.mbr/report2">continue

<a href="/cgi-bin/db2www/$(handle)/qsys.lib/mylib.lib/macros.file/

pcgi1.mbr/quit">quit

%}

Chapter 4. Invoking Net.Data 49

50 Net.Data Administration and Programming Guide

Chapter 5. Developing Net.Data Macros

A Net.Data macro is a text file consisting of a series of Net.Data macro
language constructs that:
v Specify the layout of Web pages
v Define variables and functions
v Call functions that are built-in to Net.Data or defined in the macro
v Format the processing output and return it to the Web browser for display

The Net.Data macro contains two organizational parts: the declaration part
and the presentation part, as shown in Figure 6.

v The declaration part contains the definitions of variables and functions in the
macro.

v The presentation part contains HTML or XML blocks that specify the layout
of the Web page. The HTML or XML blocks are made up of text
presentation statements that are supported by your Web browser, such as
HTML, JavaScript, and well-formed XML.

You can use these parts multiple times and in any order. See Net.Data
Reference for syntax of the macro parts and constructs.

Net.Data Macro File Structure

%{Comment %}

Declaration Part

Presentation Part

%Define…

%Include…

%Function…

%Message…

Output block
.
.
.

Input block
.
.
.

Figure 6. Macro Structure

© Copyright IBM Corp. 1997, 2001 51

Authorization Tip: Ensure that the user ID under which Net.Data executes
has the authorization to read this file. See “Granting Access Rights to Objects
Accessed by Net.Data” on page 29 for more information.

This chapter examines the different blocks that make up a Net.Data macro
and methods you can use for writing the macro.
v “Anatomy of a Net.Data Macro”
v “Net.Data Macro Variables” on page 61
v “Net.Data Functions” on page 75
v “Generating Document Markup” on page 86
v “Conditional Logic and Looping in a Macro” on page 94

Anatomy of a Net.Data Macro

The macro consists of two parts:
v The declaration part, that contains definitions used in the presentation part.

The declaration part uses two major optional blocks:
– DEFINE block
– FUNCTION block

The declaration part can also contain other language constructs and
statements, such as EXEC statements, IF blocks, INCLUDE statements, and
MESSAGE blocks. For more information about the language constructs, see
the chapter about language constructs in Net.Data Reference.

Authorization Tip: Ensure that the user ID under which Net.Data executes
has authorization to read and execute files referenced by EXEC statements
and to read files referenced by INCLUDE statements. See “Granting Access
Rights to Objects Accessed by Net.Data” on page 29 for more information.

v The presentation part defines the layout of the Web page, references
variables, and calls functions using HTML or XML blocks that are used as
entry and exit points from the macro. When you invoke Net.Data, you
specify a block name as an entry point for processing the macro. The
HTML or XML blocks are described in “HTML Blocks” on page 55 and
“XML Blocks” on page 57.

In this section, a simple Net.Data macro illustrates the elements of the macro
language. This example macro presents a form that prompts for information
to pass to a REXX program. The macro passes this information to an external
REXX program called ompsamp.mbr, which echoes the data that the user enters.
The results are then displayed on a second Web page.

First, look at the entire macro, and then each block in detail:

52 Net.Data Administration and Programming Guide

%{ ********************** DEFINE block ************************%}
%DEFINE {

page_title="Net.Data Macro Template"
%}

%{ ********************** FUNCTION Definition block ************************%}
%FUNCTION(DTW_REXX) rexx1 (IN input) returns(result)
{

%EXEC{ompsamp.mbr %}
%}

%FUNCTION(DTW_REXX) today () RETURNS(result)
{

result = date()
%}

%{ ********************** HTML Block: Input ************************%}
%HTML (INPUT) {
<html>
<head>
<title>$(page_title)</title>
</head><body>
<h1>Input Form</h1>
Today is @today()

<form method="post" action="output">
Type some data to pass to a REXX program:
<input name="input_data" type="text" size="30" />
<p>
<input type="submit" value="enter" />
</p>
</form>

<hr>
<p>[Home page]
</body></html>
%}

%{ ********************** HTML Block: Output ************************%}
%HTML (OUTPUT) {
<html>
<head>
<title>$(page_title)</title>
</head><body>
<h1>Output Page</h1>
<p>@rexx1(input_data)
<p><hr>
<p>[Home page |
Previous page]
</body></html>
%}

Chapter 5. Developing Net.Data Macros 53

The sample macro consists of four major blocks: the DEFINE, the FUNCTION,
and the two HTML blocks. You can have multiple DEFINE, FUNCTION, and
HTML blocks in one Net.Data macro.

The two HTML blocks contain text presentation statements such as HTML,
which make writing Web macros easy. If you are familiar with HTML,
building a macro simply involves adding macro statements to be processed
dynamically at the server and SQL statements to send to the database.

Although the macro looks similar to an HTML document, the Web server
accesses it through Net.Data using CGI. To invoke a macro, Net.Data requires
two parameters: the name of the macro to process, and the HTML block in
that macro to display.

When the macro is invoked, Net.Data processes it from the beginning. The
following sections look at what happens as Net.Data processes the file.

The DEFINE Block
The DEFINE block contains the DEFINE language construct and variable
definitions used later in the HTML blocks. The following example shows a
DEFINE block with one variable definition:
%{ ********************** DEFINE Block ************************%}
%DEFINE {

page_title="Net.Data Macro Template"
%}

The first line is a comment. A comment is any text inside %{ and %}.
Comments can be anywhere in the macro. The next statement starts a DEFINE
block. You can define multiple variables in one define block. In this example,
only one variable, page_title, is defined. After it is defined, this variable can
be referenced anywhere in the macro using the syntax, $(page_title). Using
variables makes it easy to make global changes to your macro later. The last
line of this block, %}, identifies the end of the DEFINE block.

The FUNCTION Block
The FUNCTION block contains declarations for functions invoked by the
HTML blocks. Functions are processed by language environments and can
execute programs, SQL queries, or stored procedures.

The following example shows two FUNCTION blocks. One defines a call to
an external REXX program and the other contains inline REXX statements.
%{ ********************** FUNCTION Block **********************************%}
%FUNCTION(DTW_REXX) rexx1 (IN input) returns(result) { <-- This function accepts

one parameter and returns the
variable 'result', which is
assigned by the external REXX
program

%EXEC{ompsamp.mbr %} <-- The function executes an external REXX program

54 Net.Data Administration and Programming Guide

called "ompsamp.mbr"
%}

%FUNCTION(DTW_REXX) today () RETURNS(result) {
result = date() <-- The single source statement for this function is

contained inline.
%}

The first function block, rexx1, is a REXX function declaration that in turn,
runs an external REXX program called ompsamp.mbr. One input variable,
input, is accepted by this function and automatically passed to the external
REXX command. The REXX command also returns one variable called result.
The contents of the result variable in the REXX command replaces the
invoking @rexx1() function call contained in the OUTPUT block. The
variables input and result are directly accessible by the REXX program, as
shown in the source code for ompsamp.mbr:
/* REXX */
result = 'The REXX program received "'input'" from the macro.'

The code in this function echoes the data that was passed to it. You can
format the resulting text any way you want by enclosing the requesting
@rexx1() function call in normal mark-up style tags (like or).
Rather than using the result variable, the REXX program could have written
HTML tags to standard output using REXX SAY statements.

The second function block, also refers to a REXX program, today. However,
the entire REXX program in this case is contained in the function declaration
itself. An external program is not needed. Inline programs are allowed for
both REXX and Perl functions because they are interpreted languages that can
be parsed and executed dynamically. Inline programs have the advantage of
simplicity by not requiring a separate program file to manage. The first REXX
function could also have been handled inline.

HTML Blocks
HTML blocks define the layout of the Web page, reference variables, and call
functions. HTML blocks are used as entry and exit points from the macro. An
HTML block is always specified in the Net.Data macro request and every
macro must have at least one HTML block.

The first HTML block in the example macro is named INPUT. The HTML(INPUT)
contains the HTML for a simple form with one input field.
%{ ********************** HTML Block: Input ************************%}
%HTML (INPUT) { <--- Identifies the name of this HTML block.
<html>
<head>
<title>$(page_title)</title> <--- Note the variable substitution.
</head><body>
<h1>Input Form</h1>

Chapter 5. Developing Net.Data Macros 55

Today is @today() <--- This line contains a call to a function.

<form method="post" action="output"> <--- When this form is submitted,
the "OUTPUT" HTML block is called.<p>

Type some data to pass to a REXX program:
<input name="input_data" <--- "input_data" is defined when the form
TYPE="text" SIZE="30" /> is submitted and can be referenced elsewhere in

this macro. It is initialized to whatever the
user types into the input field.

</p>
<input type="submit" value="enter" />

<hr>
<p>
[
Home page]</p>
</body><html>
%} <--- Closes the HTML block.

The entire block is surrounded by the HTML block identifier, %HTML (INPUT)
{...%}. INPUT identifies the name of this block. The name can contain
underscores, periods, and any alphanumeric character; Net.Data does not
distinguish by case. The HTML <title> tag contains an example of variable
substitution. The value of the variable page_title is substituted into the title
of the form.

This block also has a function call. The expression @today() is a call to the
function today. This function is defined in the FUNCTION block that is
described above. Net.Data inserts the result of the today function, the current
date, into the HTML text in the same location that the @today() expression is
located.

The ACTION parameter of the FORM statement provides an example of
navigation between HTML blocks or between macros. Referencing the name
of another block in an ACTION parameter accesses that block when the form
is submitted. Any input data from an HTML form is passed to the block as
implicit variables. This is true of the single input field defined on this form.
When the form is submitted, data entered in this form is passed to the
HTML(OUTPUT) block in the variable input_data.

You can access HTML blocks in other macros with a relative reference if the
macros are on the same Web server. For example, the ACTION parameter
ACTION="../othermacro.dtw/main" accesses the HTML block called main in
the macro othermacro.dtw. Again, any data entered into the form is passed to
this macro in the variable input_data.

When you invoke Net.Data, you pass the variable as part of the URL. For
example:
Next macro

56 Net.Data Administration and Programming Guide

You can access or manipulate form data in the macro by referencing the
variable name specified in the form.

The next HTML block in the example is the HTML(OUTPUT) block. It contains
the HTML tagging and Net.Data macro statements that define the output
processed from the HTML(INPUT) request.
%{ ********************** HTML Block: Output ************************%}
%HTML (OUTPUT) {
<html>
<head>
<title>$(page_title)</title> <--- More substitution.

</head><body>
<h1>Output Page</h1>
<p>@rexx1(input_data) <--- This line contains a call to function rexx1

passing the argument "input_data".
<p>
<hr>
<p>
[
Home page |
Previous page]
%}

Like the HTML(INPUT) block, this block is standard HTML with Net.Data macro
statements to substitute variables and a function call. Again the page_title
variable is substituted into the title statement. And, as before, this block
contains a function call. In this case, it calls the function rexx1 and passes to it
the contents of the variable input_data, which it received from the form
defined in the Input block. You can pass any number of variables to and from
a function. The function definition specifies the number and the usage of
variables that are passed.

XML Blocks
Whether you want to deliver XML to another processing application or to a
client browser, you can use the XML block structure to deliver XML content.

The XML block works in the same manner as the HTML block; it is an entry
point to the macro. Within the block you can enter XML tags directly,
reference variables, and make function calls.

So that you can customize the generated XML document to your needs, the
XML block does not generate the prolog tags. Enter the prolog information
particular to your enterprise and include a stylesheet of your choice. Included
with Net.Data are three XSL stylesheets that you can use. These stylesheets
contain transforms for all of the XML elements generated by Net.Data. The
stylesheets are examples, however, and you are encouraged to expand on
these or create your own.

Chapter 5. Developing Net.Data Macros 57

When calling an SQL function that returns a default report, Net.Data
generates the result set using a small set of XML elements, as shown in the
following sample Document Type Description (DTD).
<!-->
<!-- The root element of the document. -->
<!-->
<!ELEMENT XMLBlock (RowSet|ShowSQL|Message)*>
<!ATTLIST XMLBlock name CDATA #IMPLIED>

<!-->
<!-- The default presentation format for tables uses -->
<!-- the RowSet, Row, and Column elements. -->
<!-->
<!ELEMENT RowSet (Row)*>
<!ATTLIST RowSet name CDATA #IMPLIED>
<!ELEMENT Row (Column)*>
<!ATTLIST Row name CDATA #IMPLIED

number CDATA #IMPLIED>
<!ELEMENT Column (#PCDATA)>

<!-->
<!-- SQL statements resulting from setting the SHOWSQL -->
<!-- variable are presented with the ShowSQL element. -->
<!-->
<!ELEMENT ShowSQL (#PCDATA)>

<!-->
<!-- Messages are presented with the Message element. -->
<!-->
<!ELEMENT Message (#PCDATA)>

The elements are defined as follows:

%DEFINE SHOWSQL = "yes"

%FUNCTION(DTW_SQL) NewManager(){
select * from staff where job = 'Mgr' and years <= 5
%}

%XML(report) {
<?xml version="1.0" ?>
<?xml-stylesheet type="text/xsl" href="/netdata-xml/ndTable.xsl" ?>

<XMLBlock>
<h1>List of New Managers</h1>
@NewManager()

</XMLBlock>
%}

Figure 7. A macro containing an XML report block

58 Net.Data Administration and Programming Guide

XMLBlock
The root element for the document. This tag must be entered
manually.

RowSet
Contains the rows in a result set. The name attribute of RowSet is
determined as follows:
v For a result set returned from a call to a function that executes an

SQL query, the name of the function is used.
v For a result set returned from a call to a stored procedure, the name

of the result set is used. If the result set is not named, then the
function name is used.

Row Contains the columns of a row and is numbered for identification.

Column
Contains the data value for the particular row and the column by
which it is named.

ShowSQL
Contains the SQL statement for the current query.

Message
Contains any error message produced by Net.Dta or DB2.

Using the elements above, Net.Data would generate the following output
from the macro listed in Figure 7 on page 58.
<?xml version="1.0" ?>
<?xml-stylesheet type="text/xsl" href="/netdata-xml/ndTable.xsl" ?>
<XMLBlock>

<h1>List of New Managers</h1>
<ShowSQL>select * from staff where job = 'Mgr' and years <= 5</ShowSQL>
<RowSet name="NewManager">

<Row number="1">
<Column name="ID">30</Column>
<Column name="NAME">Marenghi</Column>
<Column name="DEPT">38</Column>
<Column name="JOB">Mgr</Column>
<Column name="YEARS">5</Column>
<Column name="SALARY">17506.75</Column>
<Column name="COMM"></Column>

</Row>
<Row number="2">

<Column name="ID">240</Column>
<Column name="NAME">Daniels</Column>
<Column name="DEPT">10</Column>
<Column name="JOB">Mgr</Column>
<Column name="YEARS">5</Column>
<Column name="SALARY">19260.25</Column>

Chapter 5. Developing Net.Data Macros 59

<Column name="COMM"></Column>
</Row>

</RowSet>
</XMLBlock>

Figure 8 and Figure 9 on page 61 show how the above data would appear in a
browser using each of the two stylesheets provided with Net.Data: ndTable.xsl
and ndRecord.xsl.

Figure 8. XML displayed using the ndTable.xsl stylesheet

60 Net.Data Administration and Programming Guide

Net.Data Macro Variables

Net.Data lets you define and reference variables in a Net.Data macro. In
addition, you can pass these variables from the macro to the language
environments and back. The variable names, values, and literal strings that are
passed are called tokens. Net.Data puts no limit on the size of the tokens and
will pass any token that the memory of your system can handle. Individual
language environments, however, might provide restrictions on the token size.

Net.Data variables can be defined depending on the type of variable and
whether it has a predefined value. These variables can be categorized into the
following types, based on how they are defined:
v Explicitly defined variables using the DEFINE statement in the DEFINE

block
v Predefined variables, which are variables that are made available by

Net.Data and are set to a value. This value usually cannot be changed.
v Implicitly defined variables, which are of four types:

– Variables that are not explicitly defined but are instantiated when first
assigned a value.

Figure 9. XML displayed using the ndRecord.xsl stylesheet

Chapter 5. Developing Net.Data Macros 61

– Parameter variables that are part of a FUNCTION block definition and
that can only be referenced within a FUNCTION block.

– Variables that are instantiated by Net.Data and correspond to form data
or query string data.

– Variables that are associated with a Net.Data table and that can only be
referenced within a ROW block or REPORT block.

The following sections describe:
v “Identifier Scope”
v “Defining Variables” on page 63
v “Referencing Variables” on page 65
v “Variable Types” on page 67

Identifier Scope
If an identifier has global scope, then it can be referenced anywhere in a
macro during a single request. The region where an identifier is visible is
called its scope. The five types of scope are:
v Global

An identifier has global scope if you can reference it anywhere within a
macro. Identifiers that have global scope are:
– Net.Data built-in functions
– Form data
– Query string data
– Variables instantiated from within an HTML block

v Macro
An identifier has this scope if its declaration appears outside of any block.
A block starts with an opening bracket ({) and ends with a percent sign and
bracket (%}). (DEFINE blocks are excluded from this definition.) Unlike an
identifier with global scope, one with macro scope can only be referred to
by items in the macro that follow the idenfier’s declaration.

v FUNCTION block or MACRO_FUNCTION block
An identifier has function block scope if:
– The identifier is declared in the parameter list of the function definition.

If an identifier with the same name already exists outside the function
definition, then Net.Data uses the identifier from the function parameter
list within the function block.

– The identifier is instantiated in the function block and is not declared or
instantiated prior to the function call.

An identifier does not have function block scope if it has been declared or
initialized outside of the function and is not declared in the function

62 Net.Data Administration and Programming Guide

parameter list. The value of the identifier within the function block remains
unchanged unless updated by the function.

v REPORT block
An identifier has report block scope if it can be referenced only from within
a REPORT block (for example, table column names N1, N2, ..., Nn). Only
those variables that Net.Data implicitly defines as part of its table
processing can have a report block scope. Any other variables that are
instantiated have function block scope.

v ROW block
An identifier has row block scope if it can only be referenced from within a
ROW block (for example, table value names V1, V2, ..., Vn). Only those
variables that Net.Data implicitly defines as part of its table processing can
have a row block scope. Any other variables that are instantiated have
function block scope.

Defining Variables
There are three ways to define variables in a Net.Data macro:
v Define statement or block
v HTML form tags
v Query string data

A variable value received from form or query string data overrides a variable
value set by a DEFINE statement in a Net.Data macro.
v DEFINE statement or block

The simplest way to define a variable for use in a Net.Data macro is to use
the DEFINE statement. The syntax is as follows:
%DEFINE variable_name="variable value"

%DEFINE variable_name={ variable value on multiple
lines of text %}

%DEFINE {
variable_name1="variable value 1"
variable_name2="variable value 2"

%}

The variable_name is the name you give the variable. Variable names must
begin with a letter or underscore and can contain any alphanumeric
character, an underscore, a period, or a hash (#). All variable names are
case-sensitive, except V_columnName, which is a table variable.

For example:
%DEFINE reply="hello"

The variable reply has the value hello.

Chapter 5. Developing Net.Data Macros 63

Two consecutive quotes alone is equal to an empty string. For example:
%DEFINE empty=""

The variable empty has an empty string.

If your variable contains special characters, such as an end-of-line, use
block braces around the value:
%DEFINE introduction={
Hello,
My name is John.
%}

To include quotes in a string, you can use two quotes consecutively.
%DEFINE HI="say ""hello"""

You can also use block braces to escape the quotes:
%DEFINE HI={ say "hello" %}

To define several variables with one DEFINE statement, use a DEFINE
block:
%DEFINE {

variable1="value1"
variable2="value2"
variable3="value3"
variable4="value4"

%}

v HTML form tags: SELECT, INPUT, and TEXTAREA

You can use HTML FORM tags to assign values to variables, namely the
SELECT, INPUT, and TEXTAREA tags. The following example uses
standard HTML form tags to define Net.Data variables:
<input name="variable_name" TYPE=... />

or
<select name="variable_name">

<option>value one
<option>value two

</select>

To assign a variable that spans multiple lines or contains special characters,
such as quotes, the TEXTAREA tag can be used:
<textarea name="variable_name" ROWS="4">
Please type the multi-line value
of your variable here.
</textarea>

64 Net.Data Administration and Programming Guide

The variable_name is the name you give the variable, and the value of the
variable is determined from the input received in the form. See “HTML
Forms” on page 46 for an example of how this type of variable definition is
used in a Net.Data macro.

v Query string data

You can pass variables to Net.Data through the query string. For example:
http://www.ibm.com/cgi-bin/db2www/stdqry1.dtw/input?field=custno

In the above example, the variable name, field, and the variable value,
custno, specify additional data that Net.Data receives from the query string.
Net.Data receives and processes the data as it would from form data.

Referencing Variables
You can reference a previously defined variable to return its value. To
reference a variable in Net.Data macros, specify the variable name inside $(
and). For example:
$(variableName)
$(homeURL)

When Net.Data finds a variable reference, it substitutes the variable reference
with the value of the variable. Variable references can contain strings, variable
references, and function calls.

You can dynamically generate variable names. With this technique, you can
use loops to process variably-sized tables or input data for lists that are built
at run time, when the number in the list cannot be determined in advanced.
For example, you can generate lists of HTML form elements that are
generated based on records returned from an SQL query.

To use variables as part of your text presentation statements, reference them
in the HTML blocks of your macro.

Invalid variable references: Invalid variable references are resolved to the
empty string. For example, if a variable reference contains invalid characters
such as an exclamation point (!), the reference is resolved to the empty string.

Valid variable names must begin with an alphanumeric character or an
underscore, and they can consist of alphanumeric characters, including a
period, underscore, and hash mark.

Example 1: Variable reference in a link

If you have defined the variable homeURL:
%DEFINE homeURL="http://www.ibm.com/"

Chapter 5. Developing Net.Data Macros 65

You can refer to the home page as $(homeURL) and create a link:
Home page

You can reference variables in many parts of the Net.Data macro; check the
language constructs in this chapter to determine in which parts of the macro
variable references are allowed. If the variable has not yet been defined at the
time it is referenced, Net.Data returns an empty string. A variable reference
alone does not define the variable.

Example 2: Dynamically generated variable references

Assume that you run an SQL SELECT statement with any number of
elements. You can create an HTML form with input fields using the following
ROW blocks:
...
%ROW {
<input type=text name=@dtw_rconcat("I", ROW_NUM) size=10 maxlength=10 />
%}
...

Because you created INPUT fields, you would probably want to access the
values that the user entered when the form is submitted to your macro for
processing. You can code a loop to retrieve the values in a variable length list:
<pre>
...
@dtw_assign(rowIndex, "1")
%while (rowIndex <= rowCount) {
The value entered for row $(rowIndex) is: $(I$(rowIndex))
@dtw_add(rowIndex, "1", rowIndex) %}
...
</pre>

Net.Data first generates the variable name using the I$(rowIndex) reference.
For example, the first variable name would be I1. Net.Data then uses that
value and resolves to the value of the variable.

Example 3: A variable reference with nested variable references and a function
call
%define my = "my"
%define u = "lower"
%define myLOWERvar = "hey"

$($(my)@dtw_ruppercase(u)var)

The variable reference returns the value of hey.

66 Net.Data Administration and Programming Guide

Variable Types
You can use the following types of variables in your macros.
v “Conditional Variables”
v “Environment Variables”
v “Executable Variables” on page 68
v “Hidden Variables” on page 69
v “List Variables” on page 70
v “Table Variables” on page 71
v “Miscellaneous Variables” on page 72
v “Table Processing Variables” on page 73
v “Report Variables” on page 73
v “Language Environment Variables” on page 74

If you assign strings to variables that are defined a certain way by Net.Data,
such as ENVVAR, LIST, condition list variables, the variable no longer
behaves in the defined way. In other words, the variable becomes a simple
variable, containing a string.

See Net.Data Reference for syntax and examples of each type of variable.

Conditional Variables
Conditional variables let you define a conditional value for a variable by
using a method similar to an IF, THEN construct. When defining the
conditional variable, you can specify two possible variable values. If the first
variable you reference exists, the conditional variable gets the first value;
otherwise the conditional variable gets the second value. The syntax for a
conditional variable is:
varA = varB ? "value_1" : "value_2"

If varB is defined, varA="value_1", otherwise varA="value_2". This is
equivalent to using an IF block, as in the following example:
%IF (varB)

varA = "value_1"
%ELSE

varA = "value_2"
%ENDIF

See “List Variables” on page 70 for an example of using conditional variables
with list variables.

Environment Variables
You can reference environment variables that the Web server makes available
to the process or thread that is processing your Net.Data request. When the

Chapter 5. Developing Net.Data Macros 67

ENVVAR variable is referenced, Net.Data returns the current value of the
environment variable by the same name.

The syntax for defining environment variables is:
%DEFINE var=%ENVVAR

Where var is the name of the environment variable being defined.

For example, the variable SERVER_NAME can be defined as environment
variable:
%DEFINE SERVER_NAME=%ENVVAR

And then referenced:
The server is $(SERVER_NAME)

The output looks like this:
The server is www.ibm.com

See Net.Data Reference for more information about the ENVVAR statement.

Executable Variables
You can invoke other programs from a variable reference using executable
variables.

Define executable variables in a Net.Data macro using the EXEC language
construct in the DEFINE block. For more information about the EXEC
language element, see the language constructs chapter in the Net.Data
Reference. In the following example, the variable runit is defined to execute
the executable program testProg:
%DEFINE runit=%EXEC "testProg"

runit becomes an executable variable.

Net.Data runs the executable program when it encounters a valid variable
reference in a Net.Data macro. For example, the program testProg is executed
when a valid variable reference is made to the variable runit in a Net.Data
macro.

A simple method is to reference an executable variable from another variable
definition. The following example demonstrates this method. The variable
date is defined as an executable variable and dateRpt contains a reference to
the executable variable.
%DEFINE date=%EXEC "date"

68 Net.Data Administration and Programming Guide

Wherever $(date) appears in the Net.Data macro, Net.Data searches for the
executable program date, and when it locates it, displays:
Today is Tue 11-07-1999

When Net.Data encounters an executable variable in a macro, it looks for the
referenced executable program using the following method:
1. It searches the directories specified by the EXEC_PATH in the Net.Data

initialization file. See “EXEC_PATH” on page 21 for details.
2. If Net.Data does not locate the program, the system searches the

directories defined by the system PATH environment variable or the
library list. If it locates the executable program, Net.Data runs the
program.

Restriction: Do not set an executable variable to the value of the output of the
executable program it calls. In the previous example, the value of the variable
date is NULL. If you use this variable in a DTW_ASSIGN function call to
assign its value to another variable, the value of the new variable after the
assignment is NULL also. The only purpose of an executable variable is to
invoke the program it defines.

You can also pass parameters to the program to be executed by specifying
them with the program name on the variable definition. In this example, the
values of distance and time are passed to the program calcMPH.
%DEFINE mph=%EXEC "calcMPH $(distance) $(time)"

Hidden Variables
You can use hidden variables to conceal the actual name of a variable from
application users who view your Web page source with their Web browser. To
define a hidden variable:
1. Define a variable for each string you want to hide, after the variable’s last

reference in the HTML block. Variables are always defined with the
DEFINE language construct after they are used in the HTML block, as in
the following example. The $$(variable) variables are referenced and then
defined.

2. In the HTML block where the variables are referenced, use double dollar
signs instead of a single dollar sign to reference the variables. For example,
$$(X) instead of $(X).
%HTML(INPUT) {
<form ...>
<p>Select fields to view:
shanghai<select name="field">
<option value="$$(name)"> Name
<option value="$$(addr)"> Address
...
</form>
%}

Chapter 5. Developing Net.Data Macros 69

%DEFINE {
name="customer.name"
addr="customer.address"
%}

%FUNCTION(DTW_SQL) mySelect() {
SELECT $(Field) FROM customer

%}

...

When a Web browser displays the HTML form, $$(name) and $$(addr) are
replaced with $(name) and $(addr) respectively, so the actual table and
column names never appear on the HTML form. Application users cannot
tell that the true variable names are hidden. When the user submits the
form, the HTML(REPORT) block is called. When @mySelect() calls the
FUNCTION block, $(Field) is substituted in the SQL statement with
customer.name or customer.addr in the SQL query.

List Variables
Use list variables to build a delimited string of values. They are particularly
useful in helping you construct an SQL query with multiple items like those
found in some WHERE or HAVING clauses. The syntax for a list variable is:
%LIST " value_separator " variable_name

Recommendation: The blanks are significant. Insert a space before and after
the value separator for most cases. Most queries use Boolean or mathematical
operators (for example, AND, OR, or >) for the value separator. The following
example illustrates the use of conditional, hidden, and list variables:
%HTML(INPUT) {
<form method="post" action="/cgi-bin/db2www/example2.dtw/report">
<h2>Select one or more cities:</h2>
<input type="checkbox" name="conditions" value="$$(cond1)" />Sao Paolo

<input type="checkbox" name="conditions" value="$$(cond2)" />Seattle

<input type="checkbox" name="conditions" value="$$(cond3)" />Shanghai

<input type="submit" value="submit query" />
</form>
%}

%DEFINE{
DATABASE="custcity"
%LIST " OR " conditions
cond1="cond1='Sao Paolo'"
cond2="cond2='Seattle'"
cond3="cond3='Shanghai'"
whereClause= ? "WHERE $(conditions)"
%}

%FUNCTION(DTW_SQL) mySelect(){
SELECT name, city FROM citylist

70 Net.Data Administration and Programming Guide

$(whereClause)
%}

%HTML(REPORT){
@mySelect()
%}

In the HTML form, if no boxes are checked, conditions is empty, so
whereClause is also empty in the query. Otherwise, whereClause has the
selected values separated by OR. For example, if all three cities are selected,
the SQL query is:
SELECT name, city FROM citylist
WHERE cond1='Sao Paolo' OR cond2='Seattle' OR cond3='Shanghai'

This example shows that Seattle is selected, which results in this SQL query:
SELECT name, city FROM citylist
WHERE cond1='Seattle'

Table Variables
The table variable defines a collection of related data. It contains a set of rows
and columns including a row of column headers. A table is defined in the
Net.Data macro as in the following statement:
%DEFINE myTable=%TABLE(30)

The number following %TABLE is the limit on the number of rows that this
table variable can contain. To specify a table with no limit on the number of
rows, use the default or specify ALL, as shown in these examples:
%DEFINE myTable2=%TABLE
%DEFINE myTable3=%TABLE(ALL)

When you define a table, it has zero rows and zero columns. The only way
you can populate a table with values is by passing it as an OUT or INOUT
parameter to a function or by using the built-in table functions provided by
Net.Data. The DTW_SQL language environment automatically puts the results
of a SELECT statement into a table.

For non-database language environments, such as DTW_REXX or DTW_PERL,
the language environment is also responsible for setting table values.
However, the language environment script or program defines the table
values cell-by-cell. See “Chapter 6. Using Language Environments” on page 99
for more information about how language environments use table variables.

You can pass a table between functions by referring to the table variable
name. The individual elements of the table can be referred to in a REPORT
block of a function or by using the Net.Data table functions. See “Table
Processing Variables” on page 73 for accessing individual elements in a table
within a REPORT block, and see “Table Functions” on page 85 for accessing

Chapter 5. Developing Net.Data Macros 71

individual elements of a table using a table function. Table variables are
usually populated with values in an SQL function, and then used as input to
a report, either in the SQL function or in another function after being passed
to that function as a parameter. You can pass table variables as IN, OUT, or
INOUT parameters to any non-SQL function. Tables can be passed to SQL
functions only as OUT parameters.

If you reference a table variable, the contents of the table are displayed and
formatted based on the setting of the DTW_HTML_TABLE variable. In the
following example, the contents of myTable would be displayed:
%HTML (output) {

$(myTable)
}

The column names and field values in a table are addressed as array elements
with an origin of 1.

Miscellaneous Variables
These variables are Net.Data-defined variables that you can use to:
v Affect Net.Data processing
v Find out the status of a function call
v Obtain information about the result set of a database query
v Determine information about file locations and dates

Miscellaneous variables can either have a predefined value that Net.Data
determines or have values that you set. For example, Net.Data determines the
DTW_CURRENT_FILENAME variable value based on the current file that it
is processing, whereas you can specify whether Net.Data removes extra white
space caused by tabulators and new-line characters.

Predefined variables are used as variable references within the macro and
provide information about the current status of files, dates, or the status of a
function call. For example, to retrieve the name of the current file, you could
use:
%REPORT {

<p>This file is <i>$(DTW_CURRENT_FILENAME)</i>.</p>
}

Modifiable variable values are generally set using a DEFINE statement or
with the @DTW_ASSIGN() function and let you affect how Net.Data processes
the macro. For example, to specify whether white space is removed, you
could use the following DEFINE statement:
%DEFINE DTW_REMOVE_WS="YES"

72 Net.Data Administration and Programming Guide

Table Processing Variables
Net.Data defines table processing variables for use in the REPORT and ROW
blocks. Use these variables to reference values from SQL queries and function
calls.

Table processing variables have a predefined value that Net.Data determines.
These variables allow you to reference values from the result sets of SQL
queries or function calls by the column, row, or field that is being processed.
You can also access information about the number of rows being processed or
a list of all the column names.

For example, as Net.Data processes a result set from an SQL query, it assigns
the value of the variable Nn for each current column name, such that N1 is
assigned to the first column, N2 is assigned to the second column, and so on.
You can reference the current column name for your Web page output.

Use table processing variables as variable references within the macro. For
example, to retrieve the name of the current column being processed, you
could use:
%REPORT {

<p>Column 1 is <i>$(N1)</i>.</p>
}

Table processing variables also provide information about the results of a
query. You can reference the variable TOTAL_ROWS in the macro to show
how many rows are returned from an SQL query, as in the following example:
Names found: $(TOTAL_ROWS)

Some of the table processing variables are affected by other variables or
built-in functions. For example, TOTAL_ROWS requires that the
DTW_SET_TOTAL_ROWS SQL language environment variable be activated so
that Net.Data assigns the value of TOTAL_ROWS when processing the results
from a SQL query or function call as in the following example:
%DEFINE DTW_SET_TOTAL_ROWS="YES"
...

Names found: $(TOTAL_ROWS)

Report Variables
Net.Data displays Web page output generated from the macro in a default
report format. In an HTML block, the default report format displays a table
using <pre> </pre> tags tags or using HTML table tags. In an XML block,
<RowSet>, <Row>, and <Column> tags are used. You can override the default
report by defining a REPORT block with instructions for displaying the
output or by using one of the report variables to prevent the default report
from being generated.

Chapter 5. Developing Net.Data Macros 73

Report variables help you customize how your Web page output is displayed
and how it is used with default reports and Net.Data tables. You must define
these variables before using them with a DEFINE statement or with the
@DTW_ASSIGN() function.

The report variables specify spacing, override default report formats, specify
whether table output should be displayed in HTML or fixed-width characters,
and specify other display features. For example, you can set
DTW_HTML_TABLE to ″yes″ and Net.Data will generate the default report
with HTML table tags instead of as a plain-text formatted table.
%DEFINE ALIGN="YES"
...
<p>Your query was on these columns: $(NLIST)

The START_ROW_NUM report variable lets you determine at which row to
begin displaying the results of a query. For example, the following variable
value specifies that Net.Data will begin displaying the results of a query at
the third row.
%DEFINE START_ROW_NUM = "3"

You can also determine whether Net.Data uses HTML tags for default
formatting. With DTW_HTML_TABLE set to YES, an HTML table is generated
rather than a text-formatted table.
%DEFINE DTW_HTML_TABLE="YES"

%FUNCTION(DTW_SQL){
SELECT NAME, ADDRESS FROM $(qTable)
%}

Language Environment Variables
These variables are used with language environments and affect how the
language environment processes a request.

With these variables, you can perform tasks such as establishing connections
to databases, enabling NLS support, and determining whether the execution
of an SQL statement is successful.

For example, you can use the SQL_STATE variable to access or display the
SQL state value returned from the database.
%FUNCTION (DTW_SQL) val1() {
select * from customer
%REPORT {
...
%ROW {
...
%}
SQLSTATE=$(SQL_STATE)
%}

74 Net.Data Administration and Programming Guide

Net.Data Functions

Net.Data provides built-in functions for use in your applications, such as
word and string manipulation functions or functions that retrieve and set
table variable functions. You can also define functions for use with your
application, for example to call an external program or a stored procedure.

User-defined functions
Those functions that you define for use with your application, for
example to call an external program or a stored procedure.

Net.Data built-in functions
Those functions that Net.Data provides for use in your applications,
such as functions for manipulating words and strings and functions
that get and set table variables.

These sections describe the following topics:
v “Defining Functions”
v “Calling Functions” on page 80
v “Calling Net.Data Built-in Functions” on page 81

Defining Functions
To define your own functions in the macro, use a FUNCTION block or
MACRO_FUNCTION block:

FUNCTION block
Defines a subroutine that is invoked from a Net.Data macro and is
processed by a language environment. FUNCTION blocks must
contain language statements or calls to an external program.

MACRO_FUNCTION block
Defines a subroutine that is invoked from a Net.Data macro and is
processed by Net.Data rather than a language environment.
MACRO_FUNCTION blocks can contain any statement that is
allowed in an HTML block or XML block.

Syntax: Use the following syntax to define functions:

FUNCTION block:
%FUNCTION(type) function-name([usage] [datatype] parameter, ...)

[RETURNS(return-var)] {
executable-statements
[report-block]
...
[report-block]
[message-block]

%}

MACRO_ FUNCTION block:

Chapter 5. Developing Net.Data Macros 75

%MACRO_FUNCTION function-name([usage] parameter, ...) [RETURNS(return-var)] {
executable-statements
[report-block]
...
[report-block]

%}

Where:

type Identifies a language environment that is configured in the
initialization file. The language environment invokes a specific
language processor (which processes the executable statements) and
provides a standard interface between Net.Data and the language
processor.

function-name
Specifies the name of the FUNCTION or MACRO_FUNCTION block.
A function call specifies the function-name, preceded by an at (@) sign.
See “Calling Functions” on page 80 for details.

You can define multiple FUNCTION or MACRO_FUNCTION blocks
with the same name so that they are processed at the same time. Each
of the blocks must all have identical parameter lists. When Net.Data
calls the function, all FUNCTION blocks with the same name or
MACRO_FUNCTION blocks with the same name are executed in the
order they are defined in the Net.Data macro.

usage Specifies whether a parameter is an input (IN) parameter, an output
(OUT) parameter, or both types (INOUT). This designation indicates
whether the parameter is passed into or received back from the
FUNCTION block, MACRO_FUNCTION block, or both. The usage
type applies to all of the subsequent parameters in the parameter list
until changed by another usage type. The default type is IN.

datatype
The data type of the parameter. Some language environments expect
data types for the parameters that are passed. For example, the SQL
language environment expects them when calling stored procedures,
as does the Direct Call language environment when calling programs.
See “Chapter 6. Using Language Environments” on page 99 to learn
more about the supported data types for the language environment
you are using.

parameter
The name of a variable with local scope that is replaced with the
value of a corresponding argument specified on a function call.
Parameters are passed to the language environment and are accessible
to the executable statements using the natural syntax of that language
or as environment variables. Parameter variable references are not
valid outside the FUNCTION or MACRO_FUNCTION blocks.

76 Net.Data Administration and Programming Guide

return-var
Specify this parameter after the RETURNS keyword to identify a
special OUT parameter. The value of the return variable is assigned in
the function block, and its value is returned to the place in the macro
from which the function was called. For example, in the following
sentence, <p>My name is @my_name()., @my_name() gets replaced by the
value of the return variable. If you do not specify the RETURNS
clause, the value of the function call is:
v NULL if the return code from the call to the language environment

is zero
v The value of the return code, when the return code is non-zero.

executable-statements
The set of language statements that is passed to the specified
language environment for processing after the variables are
substituted and the functions are processed. executable-statements can
contain Net.Data variable references and Net.Data function calls.

For FUNCTION blocks, Net.Data replaces all variable references with
the variable values, executes all function calls, and replaces the
function calls with their resulting values before the executable
statements are passed to the language environment. Each language
environment processes the statements differently. For more
information about specifying executable statements or calling
executable programs, see “Executable Variables” on page 68.

For MACRO_FUNCTION blocks, the executable statements are a
combination of text and Net.Data macro language constructs. In this
case, no language environment is involved because Net.Data acts as
the language processor and processes the executable statements.

report-block
Defines one or more REPORT blocks for handling the output of the
FUNCTION or MACRO_FUNCTION block. See “Report Blocks” on
page 88.

message-block
Defines the MESSAGE block, which handles any messages for error
conditions returned by the FUNCTION block. For more information
on how to capture error conditions, see “Message Blocks” on page 79.

Define functions outside of any other block and before they are called in the
Net.Data macro.

Using Special Characters in Functions
When characters that match Net.Data language constructs syntax are used in
the language statements section of a function block as part of syntactically

Chapter 5. Developing Net.Data Macros 77

valid embedded program code (such as REXX or Perl), they can be
misinterpreted as Net.Data language constructs, causing errors or
unpredictable results in a macro.

For example, a Perl function might use the COMMENT block delimiter
characters, %{. When the macro is run, the %{ characters are interpreted as the
beginning of a COMMENT block. Net.Data then looks for the end of the
COMMENT block, which it thinks it finds when it reads the end of the
function block. Net.Data then proceeds to look for the end of the function
block, and when it can’t be found, issues an error.

Use one of the following methods to use COMMENT block delimiter
characters, or any other Net.Data special characters as part of your embedded
program code, without having them interpreted by Net.Data as special
characters:
v Use the EXEC statement to call the program code, rather than putting the

code inline.
v Use a variable reference to specify the special characters.

For example, the following Perl function contains characters representing a
COMMENT block delimiter, %{, as part of its Perl language statements:
%FUNCTION(DTW_PERL) func() {

...
for $num_words (sort bynumber keys %{ $Rtitles{$num} }) {

&make_links($Rtitles{$num}{$num_words});
}
...

%}

To ensure that Net.Data interprets the %{ characters as Perl source code rather
than as a Net.Data COMMENT block delimiter, rewrite the function in either
of the following ways:
v Use the %EXEC statement:

%FUNCTION(DTW_PERL) func() {
%EXEC{ func.prl %}

%}

v Use a variable reference to specify the %{ characters:
%define percent_openbrace = "%{"

%FUNCTION(DTW_PERL) func() {
...
for $num_words (sort by number keys $(percent_openbrace) $Rtitles{$num} } {

&make_links($Rtitles{$num}{$num_words});
}
...

%}

78 Net.Data Administration and Programming Guide

Message Blocks
The MESSAGE block lets you determine how to proceed after a function call,
based on the success or failure of the function call, and lets you display
information to the caller of the function. When processing a message,
Net.Data sets the language environment variable RETURN_CODE for each
function call to a FUNCTION block. RETURN_CODE is not set on a function
call to a MACRO_FUNCTION block.

A MESSAGE block consists of a series of message statements, each of which
specifies a return code value, message text, and an action to take. The syntax
of a MESSAGE block is shown in the language constructs chapter of the
Net.Data Referencebook.

A MESSAGE block can have a global or a local scope. If it is specified at the
outermost macro layer, the MESSAGE block has global scope and is active for
all function calls executed in the Net.Data macro. If you define more than one
global MESSAGE block, the last one defined is active. However, if the
MESSAGE block is defined in a FUNCTION block, its scope is local to that
FUNCTION block (except for Net.Data built-in functions, whose errors are
handled by global message blocks).

Net.Data uses these rules to process the value of the RETURN_CODE or
SQL_STATE variables from a function call:
1. Check the local MESSAGE block for an exact match of the value of the

RETURN_CODE or SQL_STATE; exit or continue as specified.
2. If the value is not 0, check local MESSAGE block for +default or -default;

depending on the sign of the value, exit or continue as specified.
3. If the value is not 0, check local MESSAGE block for default; exit or

continue as specified.
4. Check global MESSAGE block for an exact match of the RETURN_CODE

or SQL_STATE; exit or continue as specified.
5. If the value is not 0, check global MESSAGE block for +default or

-default; depending on the sign of the value, exit or continue as specified.
6. If the value is not 0, check global MESSAGE block for default; exit or

continue as specified.
7. If the value is not 0, issue Net.Data internal default message and exit.

The following example shows part of a Net.Data macro with a global
MESSAGE block and a MESSAGE block for a function.
%{ global message block %}
%MESSAGE {

-100 : "Return code -100 message" : exit
100 : "Return code 100 message" : continue
+default : {

This is a long message that spans more

Chapter 5. Developing Net.Data Macros 79

than one line. You can use HTML tags, including
links and forms, in this message. %} : continue
%}

%{ local message block inside a FUNCTION block %}
%FUNCTION(DTW_REXX) my_function() {

%EXEC { my_command.mbr %}
%MESSAGE {

-100 : "Return code -100 message" : exit
100 : "Return code 100 message" : continue
-default : {

This is a long message that spans more
than one line. You can use HTML tags, including
links and forms, in this message. %} : exit

%}

If my_function() returns with a RETURN_CODE value of 50, Net.Data
processes the error in this order:
1. Check for an exact match in the local MESSAGE block.
2. Check for +default in the local MESSAGE block.
3. Check for default in the local MESSAGE block.
4. Check for an exact match in the global MESSAGE block.
5. Check for +default in the global MESSAGE block.

When Net.Data finds a match, it sends the message text to the Web browser
and checks the requested action.

When you specify continue, Net.Data continues to process the Net.Data
macro after printing the message text. For example, if a macro calls
my_functions() five times and error 100 is found during processing with the
MESSAGE block in the example, output from a program can look like this:
.
.
.
11 May 1997 $245.45
13 May 1997 $623.23
19 May 1997 $ 83.02
return code 100 message
22 May 1997 $ 42.67

Total: $994.37

Calling Functions
Use a Net.Data function call statement to call both user-defined functions and
built-in functions. Use the at (@) character followed by a function name or a
macro function name:
@function_name([argument,...])

80 Net.Data Administration and Programming Guide

function_name
This is the name of the function or macro function to invoke. The
function must already be defined in the Net.Data macro, unless this is
a built-in function.

argument
This is the name of a variable, a quoted string, a variable reference, or
a function call. Arguments on a function call are matched up with the
parameters on a function or macro function parameter list. And, each
parameter is assigned the value of its corresponding argument while
the function or macro function is being processed. The arguments
must be the same number and type as the corresponding parameters.

Quoted strings as arguments can contain variable references and
functions calls.

Example 1: Function call with a text string argument
@myFunction("abc")

Example 2: Function call with a variable and a function call arguments
@myFunction(myvar, @DTW_rADD("2","3"))

Example 3: Function call with a text string argument that contains a variable
reference and a function call
@myFunction("abc$(myvar)def@DTW_rADD("2","3")ghi")

Calling Net.Data Built-in Functions
Net.Data provides a large set of built-in functions to simplify Web page
development. These functions are already defined by Net.Data, so you do not
need to define them. You can call these functions as you would call other
functions.

Figure 10 on page 82 shows how the Net.Data built-in functions and the macro
interact.

Chapter 5. Developing Net.Data Macros 81

Built-in functions can return their results in three ways, depending on its
prefix:
v DTW_, DTWF_, and DTWR_: The results of the call are returned in an

output parameter or no result is returned. (DTWF_ is the prefix for flat file
functions. DTWR_ is the prefix for Web registry functions.)

v DTW_r and DTWR_r: The results of the function call replace the function
call in the macro, in the same way the value of the RETURNS keyword
replaces the function call for a user-defined function which has specified a
RETURNS keyword.

v DTW_m: Multiple results are returned in each of the parameters passed to
the function.

Some built-in functions do not have each type. To determine which type a
particular built-in function has, see the Net.Data built-in functions chapter in
Net.Data Reference.

The following sections provide a high-level overview of the Net.Data built-in
functions. Use these functions to perform general purpose, math, string, word,
or table manipulation functions. Some of these functions require variables to
be set prior to their use or must be used in a specific context. See Net.Data
Reference for descriptions of each function with syntax and examples.
v “General Purpose Functions” on page 83
v “Math Functions” on page 84
v “String Functions” on page 84
v “Word Functions” on page 84

Figure 10. Net.Data Built-in Functions

82 Net.Data Administration and Programming Guide

v “Table Functions” on page 85
v “Flat File Functions” on page 85
v “Java Applet Functions” on page 85
v “Web Registry Functions” on page 86
v “Persistent Functions” on page 86

General Purpose Functions
This set of functions helps you develop Web pages by altering data or
accessing system services. You can use them to send mail, process HTTP
cookies, generate HTML escape codes, and get other useful information from
the system.

For example, to specify that Net.Data should exit a macro if a specific
condition occurs, without processing the rest of the macro, you use the
DTW_EXIT function:
%HTML(sort_page) {

<html>
<head>
<title>This is the page title</title>
</head>
<body>
<center>
<h3>This is the Main Heading</h3>
<!!!>
<! Joe Smith sees a very short page !>
<!!!>
%IF (customer == "Joe Smith")
</body>
</html>

@DTW_EXIT()

%ENDIF

...

</body>
</html>
%}

Another useful function is the DTW_URLESCSEQ function, which replaces
characters that are not allowed in a URL with their escape values. For
example, if the input variable string1 equals "Guys & Dolls",
DTW_URLESCSEQ assigns the output variable to the value
"Guys%20%26%20Dolls".

Chapter 5. Developing Net.Data Macros 83

Math Functions
These functions perform mathematical operations, letting you calculate or
alter numeric data. Besides standard mathematical operations, you can also
perform modulus division, specify a result precision, and use scientific
notation.

For example, the function DTW_POWER raises the value of its first parameter
to the power of its second parameter and returns the result, as shown in the
following example:
@DTW_POWER("2", "-3", result)

DTW_POWER returns ".125" in the variable result

String Functions
These functions let you manipulate characters within strings. You can change
a string’s case, insert or delete characters, assign a string value to another
variable, plus other useful functions.

For example, you can use DTW_ASSIGN to assign a value or to change the
value of a variable. You can also use this function to assign a value to or to
change the value of a variable. In the following example, the variable RC is
assigned to zero.
@DTW_ASSIGN(RC, "0")

Other string functions include DTW_CONCAT, which concatenates strings,
and DTW_INSERT, which inserts strings at a specific position, as well many
other string manipulation functions.

Word Functions
These functions let you manipulate words in character strings. Most of these
functions work similar to string functions, but on entire words. For example,
they let you count the number of words in a string, remove words, search a
string for a word.

For example, use DTW_DELW0RD to delete a specified number of words
from a string:
@DTW_DELWORD("Now is the time", "2", "2", result)

DTW_DELWORD returns the string "Now time".

Other word functions include DTW_WORDLENGTH, which returns the
number of characters in a word, and DTW_WORDPOS, which returns the
position of a word within a string.

84 Net.Data Administration and Programming Guide

Table Functions
You can use these functions to generate reports or forms using the data in a
Net.Data table variable. You can also use these functions to create Net.Data
tables, and to manipulate and retrieve values in those tables. Table variables
contain a set of values and their associated column names. They provide a
convenient way to pass groups of values to a function.

For example, DTW_TB_APPENDROW appends a row to the table. In the
following example, Net.Data appends ten rows to the table, myTable:
@DTW_TB_APPENDROW(myTable, "10")

Additionally, DTW_TB_DUMPH, returns the contents of a macro table
variable, enclosed in <pre></pre> tags, with each row of the table displayed
on a different line. And DTW_TB_CHECKBOX returns one or more HTML
check box input tags from a macro table variable.

Flat File Functions
Use the flat file interface (FFI) functions to open, read, and manipulate data
from flat file sources (text files), as well as store data in flat files.

For example, DTWF_APPEND, writes the contents of a table variable to the
end of a file, and DTWF_DELETE deletes records from a file.

Additionally, the FFI functions allow file locking with DTWF_CLOSE and
DTWF_OPEN. DTWF_OPEN locks a file that so that another request cannot
read or update the file. DTWF_CLOSE releases the file when Net.Data is done
with it, allowing other requests to access the file.

Java Applet Functions
Use the Java Applet functions to easily generate <applet> and <parm> tags to
your web page based on Net.Data variables.

For example, if you have an applet named myApplet, and you want to pass
some parameters to the applet, including a table variable, you could do the
following:
%define REMOTE_USER = %ENVVAR
%define myTable = %TABLE(all)
...
%HTML(report) {
...
@DTWA_myApplet(REMOTE_USER, myTable)
...
%}

This would tell Net.Data to generate an <applet> tag, as well as a <parm> tag
for each of the values in the table and for the value of the REMOTE_USER
environment variable.

Chapter 5. Developing Net.Data Macros 85

In addition, you can pass a single column of a table. For example:
@DTWA_myApplet(REMOTE_USER, DTW_COLUMN(mycol)myTable)

This example passes the mycol column of the Net.Data table variable myTable.

Web Registry Functions
Use the Web registry functions to maintain registries and the entries they
contain. A Web registry is a file with a key maintained by Net.Data to allow
you to add, retrieve, and delete entries easily.

For example, DTWR_ADDENTRY adds entries, while DTWR_DELENTRY
deletes entries. DTWR_LISTSUB returns information about the registry entries
in an OUT table parameter, and DTWR_UPDATEENTRY replaces the existing
values for a specified registry entry with a new value.

Persistent Functions
The persistent macro functions support transaction processing in Net.Data by
helping you define which macro blocks are persistent within a single
transaction. Use these functions to define the start and end of a transaction,
which HTML blocks are persistent throughout the transaction, the scope of the
variables within the transaction, and whether to commit or rollback changes
within the transaction.

For example, DTW_ACCEPT identifies the transaction handle for a
transaction, while DTW_TERMINATE identifies the final HTML block in the
transaction. DTW_RTVHANDLE generates a unique transaction handle for
blocks in the transaction. You can use DTW_COMMIT and DTW_ROLLBACK
to initiate commits and rollbacks during the transaction.

See “Chapter 7. Transaction Management with Persistent Macros” on page 133
for more information. Also see the built-in functions chapter in Net.Data
Reference for a list of valid persistent functions with syntax and examples.

Generating Document Markup

Net.Data dynamically generates HTML or XML documents to be used by a
client application such as a Web browser. The following sections describe the
various constructs you can use to format documents with Net.Data macros.
See the language constructs chapter in Net.Data Reference for the specific
syntax information for each.

HTML and XML Blocks
The client application invokes Net.Data by specifying both the macro name
and the name of one of the macro’s entry points. The entry point to the macro

86 Net.Data Administration and Programming Guide

can be either an HTML or XML block. These blocks contain the Net.Data
language statements and text presentation statements that generate the
resulting page.

Because the entry point block drives the execution of the macro, at least one
entry point must exist in a macro. There can be multiple HTML or XML
blocks, but only one is executed per client request. And, with each request a
single document is returned to the client. To create an application consisting
of many client documents, you can invoke Net.Data multiple times to process
various HTML or XML blocks in various macros using standard navigation
techniques, such as links and forms.

Any text presentation statements can appear in an HTML or XML block, as
long as the statements are valid for the client. For example, HTML blocks can
contain HTML or JavaScript. The JavaScript is not executed by Net.Data, but
is sent along with the rest of the output to the client for execution and
display. In an HTML or XML block, you can also include function calls,
variable references, and INCLUDE statements. The following example shows
a common use of an HTML block in a Net.Data macro:
%HTML(input){
<h1>Hardware Query Form</h1>
<hr/>
<form method="post" action="report">
<dl>
</dt>What hardware do you want to list?
<dd><input type="radio" name="hdware" value="MON" checked />Monitors</ddl>
<dd><input type="radio" name="hdware" value="PNT" />Pointing devices</ddl>
<dd><input type="radio" name="hdware" value="PRT" />Printers</ddl>
<dd><input type="radio" name="hdware" value="SCN" />Scanners</ddl>
</dl>
<hr />
<input type="submit" value="Submit" />
</form>
%}

%FUNCTION(DTW_SQL) myQuery() {
SELECT MODNO, COST, DESCRIP FROM EQPTABLE WHERE TYPE='$(hardware)'
%REPORT{
Here is the list you requested:

%ROW{
<hr />
$(N1): $(V1) $(N2): $(V2)
</p>
$(V3)
%}
%}
%}

%HTML(report){
@myQuery()
%}

Chapter 5. Developing Net.Data Macros 87

You can invoke the Net.Data macro from an HTML link.

List of hardware

When the application user clicks on this link, the Web browser invokes
Net.Data, and Net.Data parses the macro. When Net.Data begins processing
the HTML block specified on the invocation, in this case input, it begins to
process the text inside the block. Anything that Net.Data does not recognize
as a Net.Data macro language construct, it sends to the browser for display.

After the user makes a selection and presses the Submit button, the client
requests the action specified in the action attribute of the HTML form. This
action specifies a call to the output HTML block of the macro. Net.Data then
processes the output HTML block, just as it did with the input HTML block.

Net.Data then processes the myQuery() function call, which in turn invokes the
SQL Language Environment FUNCTION block. After replacing the $(hdware)
variable reference in the SQL statement with the value returned from the
input form, Net.Data runs the query. At this point, Net.Data resumes
processing the report, displaying the results of the query according to the text
presentation statements specified in the REPORT block.

After Net.Data completes the REPORT block processing, it returns to the
output HTML block, and finishes processing.

Report Blocks
Use the REPORT block language construct to format and display data output
from a FUNCTION block. This output is typically table data, although any
valid combination of text, macro variable references, and function calls can be
specified. A table name can optionally be specified on the REPORT block. If
you do not specify a table name, Net.Data uses the table data from the first
output table in the FUNCTION parameter list.

The REPORT block has three parts, each of which is optional:
v Header information, which contains text that is displayed once before the

table row data.
v A ROW block, which contains text and table variables that are displayed

once for each row of the result table.
v Footer information, which contains text that is displayed once after the

table row data.

Example:
%REPORT{
<h2>Query Results</h2>
<p>Select a name for details.
<table border=1>

88 Net.Data Administration and Programming Guide

<tr>
<td>Name</td>
<td>Location</td></tr>

%ROW{
<tr>

<td>
$(V1)

</td>
<td>$(V2)</td>

</tr>
%}

</table>
%}

REPORT Block Guidelines
Use the following guidelines when creating REPORT blocks:
v To avoid displaying any table output from the ROW block, leave the ROW

block empty or omit it entirely.
v Use Net.Data-provided variables inside the REPORT block to access the

data in the Net.Data macro results table. These variables are described in
“Table Processing Variables” on page 73. For additional detail, see the
Report Variables section in the Net.Data Reference.

v To provide header and footer information, provide the text before and after
the ROW block. Net.Data processes everything it finds before a ROW block
as header information. Net.Data processes everything it finds after the
ROW block as footer information. As with the HTML block, Net.Data treats
everything in the header, ROW, and footer blocks that is not recognized as
macro language constructs as text presentation statements and sends these
statements to the browser.

v You can call functions and reference variables in a REPORT block.
v To have Net.Data print a default report using pre-formatted text, do not

include the REPORT block in the macro. The following example shows the
default report format when the function is called in an HTML block:

SHIPDATE | RECDATE | SHIPNO |

25/05/1997 | 30/05/1997 | 1495194B |

25/05/1997 | 28/05/1997 | 2942821G |

v To use the HTML tags instead of the pre-formatted text, set
DTW_HTML_TABLE to YES.

v To disable the printing of the a default report, set
DTW_DEFAULT_REPORT to NO or by specifying an empty REPORT block.
For example:
%REPORT{%}

Chapter 5. Developing Net.Data Macros 89

Example: Customizing a Report
The following example shows how you can customize report formats using
special variables and HTML tags. It displays the names, phone numbers, and
FAX numbers from the table CustomerTbl:
%DEFINE SET_TOTAL_ROWS="YES"
...

%FUNCTION(DTW_SQL) custlist() {
SELECT Name, Phone, Fax FROM CustomerTbl
%REPORT{

<i>Phone Query Results:</i>

=====================

%ROW{
Name: $(V1)

Phone: $(V2)

Fax: $(V3)

%}
Total records retrieved: $(TOTAL_ROWS)

%}
%}

The resulting report looks like this in the Web browser:
Phone Query Results:
====================
Name: Doen, David
Phone: 422-245-1293
Fax: 422-245-7383

Name: Ramirez, Paolo
Phone: 955-768-3489
Fax: 955-768-3974

Name: Wu, Jianli
Phone: 525-472-1234
Fax: 525-472-1234

Total records retrieved: 3

Net.Data generated the report by:
1. Printing Phone Query Results: once at the beginning of the report. This text,

along with the separator line, is the header part of the REPORT block.
2. Replacing the variables V1, V2, and V3 with their values for Name, Phone,

and Fax respectively for each row as it is retrieved.
3. Printing the string Total records retrieved: and the value for TOTAL_ROWS once

at the end of the report. (This text is the footer part of the REPORT block.)

90 Net.Data Administration and Programming Guide

Multiple REPORT Blocks
You can specify multiple REPORT blocks within a single FUNCTION or
MACRO FUNCTION block to generate multiple reports with one function
call.

Typically, you would use multiple REPORT blocks with the DTW_SQL
language environment with a function that calls a stored procedure, which
returns multiple result sets (see “Stored Procedures” on page 122). However,
multiple REPORT blocks can be used with any language environment to
generate multiple reports.

To use multiple REPORT blocks, place a Net.Data table variable in the
function parameter list. If more result sets are returned from the stored
procedure than the number of REPORT blocks you have specified, and if the
Net.Data built-in function DTW_DEFAULT_REPORT = ″MULTIPLE″, then
default reports are generated for each table that is not associated with a report
block. If no report blocks are specified, and if DTW_DEFAULT_REPORT =
″YES″, then only one default report will be generated. Note that for the SQL
language environment only, a DTW_DEFAULT_REPORT value of ″YES″ is
equivalent to a value of ″MULTIPLE″.

Examples: The following examples demonstrate ways in which you can use
multiple report blocks.

To display multiple reports using default report formatting:

Example 1: DTW_SQL language environment
%DEFINE DTW_DEFAULT_REPORT = "MULTIPLE"
%FUNCTION (dtw_sql) myStoredProc (OUT table1, table2) {

CALL myproc %}

In this example, the stored procedure myproc returns two result sets, which are
placed in table1 and table2. Because no REPORT blocks are specified, default
reports are displayed for both tables, table1 first, then table2.

Example 2: MACRO_FUNCTION block. In this example, two tables are
passed into the MACRO_FUNCTION block. When
DTW_DEFAULT_REPORT=″MULTIPLE″ is specified, Net.Data generates
reports for both tables.
%DEFINE DTW_DEFAULT_REPORT = "MULTIPLE"
%MACRO_FUNCTION multReport (INOUT tablename1, tablename2) {
%}

In this example, two tables are passed into the MACRO_FUNCTION
multReport. Again, Net.Data displays default reports for the two tables in the
order in which they appear in the MACRO FUNCTION block parameter list,
table1 first, then table2.

Chapter 5. Developing Net.Data Macros 91

Example 3: DTW_REXX language environment
%DEFINE DTW_DEFAULT_REPORT = "YES"
%FUNCTION (dtw_rexx) multReport (INOUT table1, table2) {

SAY 'Generating multiple default reports...
'
%}

In this example, two tables are passed into the REXX function multReport.
Because DTW_DEFAULT_REPORT=″YES″ is specified, Net.Data displays a
default report for the first table only.

To display multiple reports by specifying REPORT blocks for display
processing:

Example 1: Named REPORT blocks
%FUNCTION(dtw_sql) myStoredProc (OUT table1, table2) {

CALL myproc (table1, table2)

%REPORT(table2) {
...
%ROW { %}
...

%}

%REPORT(table1) {
...
%row { %}
...

%}
%}

In this example, REPORT blocks have been specified for both of the tables
passed in the FUNCTION block parameter list. The tables are displayed in the
order they are specified on the REPORT blocks, table2 first, then table1. By
specifying a table name on the REPORT blocks and the CALL statement, you
can control the order in which the reports are displayed.

Example 2: Unnamed REPORT blocks
%FUNCTION(dtw_sql) myStoredProc (OUT table1, table2) {

CALL myproc

%REPORT {
...
%ROW { %}
...

%}
%REPORT {

...

92 Net.Data Administration and Programming Guide

%ROW { %}
...

%}
%}

In this example, REPORT blocks have been specified for two result sets
returned from myproc. Because there are no table names specified on the
REPORT blocks, the REPORT blocks are executed for the first two result sets
in the order in which they are returned from the stored procedure.

To display multiple reports using a combination of default reports and
REPORT blocks:

Example: A combination of default reports and REPORT blocks
%DEFINE DTW_DEFAULT_REPORT = "MULTIPLE"
%FUNCTION(dtw_system) editTables (INOUT table1, table2, table3) {

%EXEC{ /qsys.lib/mylib.lib/mypgm.pgm %}
%REPORT(table2) {

...
%ROW { %}
...

%}
%}

In this example, only one REPORT block is specified, and because it specifies
a table name of table2, it uses this table to display its report. Because there
are fewer REPORT blocks specified the number of result sets returned from
the stored procedure, default reports are displayed for the remaining for the
remaining result sets: first, a default report for table1; then a default report
for table3.

Guidelines and Restrictions for Multiple REPORT Blocks: Use the
following guidelines and restrictions when specifying multiple REPORT
blocks in a FUNCTION or MACRO_FUNCTION block.

Guidelines:

v You can specify one REPORT block per result set.
v Specify REPORT blocks for multiple tables in the order in which you want

them to be processed.
v To specify default processing when there is not a REPORT block specified

for a table, define DTW_DEFAULT_REPORT = ″MULTIPLE″. When
Net.Data builds the Web page, it displays default reports for tables after it
displays the reports for tables having REPORT blocks. Note that setting
DTW_DEFAULT_REPORT = ″YES″ will result in the generation of a default
report for one table only, when a REPORT block has not been specified. The
exception is in the SQL language environment, where a value of YES will
result in the same processing as MULTIPLE.

Chapter 5. Developing Net.Data Macros 93

v To prevent Net.Data from displaying tables that do not have REPORT
blocks, set DTW_DEFAULT_REPORT = ″NO″.

v When using the DTW_SAVE_TABLE_IN variable with a function that
returns more than one result set, the first result set returned from the
function is assigned to the DTW_SAVE_TABLE_IN table.

v Multiple report blocks can be used with any language environment.

Restrictions:

v The values of all report variables in a function, such as START_R_N and
RPT_M_R, apply to all the REPORT blocks in that function. You cannot
modify the value of a report variable for individual REPORT blocks.

v The MESSAGE block must be located either before or after a list of
REPORT blocks, and not between REPORT blocks.

v If the first report block specifies a table name, then all report blocks must
specify table names.

v If the first report block does not specify a table name, then none of the
report blocks can specify table names.

Conditional Logic and Looping in a Macro

Net.Data lets you incorporate conditional logic and looping in your Net.Data
macros using the IF and WHILE blocks.

IF and WHILE blocks use a condition list that helps you test one or more
conditions, and then to perform a block of statements based on the outcome
of the condition test. The condition list contains logical operators, such as =
and <=, and terms, which are made up of quoted strings, variables, variable
references, and function calls. Quoted strings can contain variable references
and functions calls, as well. You can nest the condition list.

The following sections describe conditional logic and looping:
v “Conditional Logic: IF Blocks”
v “Looping Constructs: WHILE Blocks” on page 97

Conditional Logic: IF Blocks
Use the IF block for conditional processing in a Net.Data macro. The IF block
is similar to IF statements in most high-level languages because it provides
the ability to test one or more conditions, and then to perform a block of
statements based on the outcome of the condition test.

You can specify IF blocks almost anywhere in a macro and can nest them. The
syntax of an IF block is shown in the language constructs chapter in Net.Data
Reference.

94 Net.Data Administration and Programming Guide

IF Block Rules: The rules for IF block syntax are determined by the block’s
position in the macro. The elements allowed in the executable block of
statements of an IF block depend on the location of the IF block itself.
v Any element that is valid in the block containing the IF block is valid

within that IF block. For example, if you specify an IF block inside an
HTML block, any element that is allowed in the HTML block is allowed in
the IF block, such as INCLUDE statements and WHILE blocks.
%HTML block
...

%IF block
...

%INCLUDE
...

%WHILE
...

%ENDIF
%}

v Similarly, if you specify the IF block outside of any other block in the
declaration part of the Net.Data macro, only those elements allowed outside
of any other block (such as a DEFINE block or FUNCTION block) are
allowed in the IF block.
%IF
...

%DEFINE
...

%FUNCTION
...
%ENDIF

v When an IF block is nested within an IF block that is outside of any other
block in the declaration part, it can use any element that the outside block
can use. When an IF block is nested within another block that is in an IF
block, it takes on the syntax rules for the block it is inside.
For example, a nested IF block must follow the rules used when it is inside
an HTML block.
%IF
...

%HTML {
...

%IF
...

%ENDIF
%}

...
%ENDIF

Exception: Do not specify a ROW block in an IF block.

IF Block String Comparison

Chapter 5. Developing Net.Data Macros 95

Net.Data processes the IF block condition list in one of two ways based on the
contents of the terms making up the conditions. The default action is to treat
all terms as strings, and to perform string comparisons as specified in the
conditions. However, if the comparison is between two strings representing
integers, then the comparison is numeric. Net.Data assumes a string is
numeric if it contains only digits, optionally preceded by a ’+’ or ’-’ character.
The string cannot contain any non-digit characters other than the ’+’ or ’-’.
Net.Data does not support numerical comparison of non-integer numbers.

Examples of valid integer strings:
+1234567890
-47
000812
92000

Examples of invalid integer strings:
- 20 (contains blank characters)
234,000 (contains a comma)
57.987 (contains a decimal point)

Net.Data evaluates the IF condition at the time it executes the block, which
can be different than the time it is originally read by Net.Data. For example, if
you specify an IF block in a REPORT block, Net.Data does not evaluate the
condition list associated with the IF block when it reads the FUNCTION block
definition containing the REPORT block, but rather when it calls the function
and executes it. This is true for both the condition list part of the IF block and
the block of statements to be executed.

IF Block Example: A macro containing IF blocks inside other blocks
%{ This macro is called from another macro, passing the operating system

and version variables in the form data.
%}

%IF (platform == "AS400")
%IF (version == "V3R2")

%INCLUDE "as400v3r2_def.hti"
%ELIF (version == "V3R7")

%INCLUDE "as400v3r7_def.hti"
%ELIF (version == "V4R1")

%INCLUDE "as400v4r1_def.hti"
%ENDIF

%ELSE
%INCLUDE "default_def.hti"

%ENDIF

%MACRO_FUNCTION numericCompare(IN term1, term2, OUT result) {
%IF (term1 < term2)

@dtw_assign(result, "-1")
%ELIF (term1 > term2)

@dtw_assign(result, "1")
%ELSE

96 Net.Data Administration and Programming Guide

@dtw_assign(result, "0")
%ENDIF

%}

%HTML(report){
%WHILE (a < "10") {

outer while loop #$(a)

%IF (@dtw_rdivrem(a,"2") == "0")

this is an even number loop

%ENDIF
@DTW_ADD(a, "1", a)

%}
%}

Looping Constructs: WHILE Blocks
Use the WHILE block to perform looping in a Net.Data macro. Like the IF
block, the WHILE block provides the ability to test one or more conditions,
and then to perform a block of statements based on the outcome of the
condition test. Unlike the IF block, the block of statements can be executed
any number of times based on the outcome of the condition test.

You can specify WHILE blocks inside HTML blocks, REPORT blocks, ROW
blocks, MACRO_FUNCTION blocks, and IF blocks, and you can nest them.
The syntax of a WHILE block is shown in the language constructs chapter of
Net.Data Reference.

Net.Data processes the WHILE block exactly the same way it processes the IF
block, but re-evaluates the condition after each execution of the block. And,
like any conditional looping construct, it is possible for processing to go into
an infinite loop if the condition is coded incorrectly.

Example: A macro with a WHILE block
%DEFINE loopCounter = "1"

%HTML(build_table) {
%WHILE (loopCounter <= "100") {

%{ generate table tag and column headings %}
%IF (loopCounter == "1")

<table border>
<tr>
<th>Item #
<th>Description

%ENDIF

%{ generate individual rows %}
<tr>
<td>$(loopCounter)
<td>@getDescription(loopCounter)

%{ generate end table tag %}

Chapter 5. Developing Net.Data Macros 97

%IF (loopCounter == "100")
%ENDIF

%{ increment loop counter %}
@DTW_ADD(loopCounter, "1", loopCounter)

%}
%}

98 Net.Data Administration and Programming Guide

Chapter 6. Using Language Environments

Net.Data supplies language environments that you use to access data sources
and to execute application programs containing business logic. For example,
the SQL language environment lets you pass SQL statements to a DB2
database, and the REXX language environment lets you invoke REXX
programs. You can also use the SYSTEM language environment to execute a
program or issue a command.

With Net.Data, you can add user-written language environments in a
pluggable fashion. Each user-written language environment must support a
standard set of interfaces that are defined by Net.Data and must be
implemented as a service program. For complete details on how to create a
user-written language environment, see the Net.Data Language Environment
Interface Reference.

Figure 11 shows the relationship between the Web server, Net.Data, and the
Net.Data language environments.

The following sections describe the Net.Data language environments and how
to use them in your macros:
v “Overview of Net.Data-Supplied Language Environments” on page 100

Figure 11. The Net.Data Language Environments

© Copyright IBM Corp. 1997, 2001 99

v “Calling a Language Environment”
v “Direct Call Language Environment” on page 101
v “Java Application Language Environment” on page 106
v “REXX Language Environment” on page 107
v “SQL Language Environment” on page 113
v “System Language Environment” on page 130

For information about improving performance when using the language
environments, see “Optimizing the Language Environments” on page 145.

Overview of Net.Data-Supplied Language Environments

Net.Data provides language environments that let you access data and
programming resources for your application.

Table 3 provides a brief description of each language environment.

Table 3. Net.Data Language Environments

Language
Environment

Environment
Name Description

Direct Call DTW_DIRECTCALL The Direct Call language environment supports
calls to external programs that are written using a
high-level programming language such as RPG,
COBOL, and C/C++.

Java
Application

DTW_JAVAPPS Net.Data supports your existing Java applications
with the Java language environment.

REXX DTW_REXX The REXX language environment interprets
internal REXX programs that are specified in a
FUNCTION block of the Net.Data macro, or it can
execute external REXX programs stored in a
separate file.

SQL DTW_SQL The SQL language environment executes SQL
statements through DB2. The results of the SQL
statement can be returned in a table variable. The
results of the ODBC statement can be returned in
a table variable.

System DTW_SYSTEM The System language environment supports
executing commands and calling external
programs.

Calling a Language Environment
To call a language environment:
v Use a FUNCTION statement to define a function that calls the language

environment by supplying language statements or an %EXEC statement.

100 Net.Data Administration and Programming Guide

v Use a function call to the language environment.

For example:
%FUNCTION(DTW_SQL) custinfo() {
select customer, custno from customer.data
%}
...
%HTML(REPORT) {
@custinfo()
%}

Guidelines for Handling Error Conditions
When an error is detected in a language environment function, the language
environment sets the Net.Data RETURN_CODE variable with an error code.

You can use the following resources to handle error conditions:
v The Net.Data-supplied language environments return error codes that are

documented in Net.Data Messages and Codes Reference.
v The database language environments, such as the SQL language

environment set the RETURN_CODE variable to the SQLCODE returned by
the database, and the SQL_STATE variable to the SQLSTATE returned by
the database. See the messages and codes documentation for your DBMS to
learn more about the SQLCODEs and SQLSTATEs used by your DBMS.

Security
Ensure that the user ID Net.Data is running under has the proper authority to
access any object that may be referenced by a language environment
statement. For example, SQL language environment executes SQL statements,
so that the user ID under which Net.Data executes must have the authority to
access the database resources, in order to execute successfully.

Direct Call Language Environment

The Direct Call language environment allows you to call programs that are
written in a high-level language such as C, RPG, COBOL, and CL. Parameters
can be passed to the program, and parameter values can be received from the
program, enabling easy integration of existing programs with Net.Data and
allowing users to use existing programming skills to code complicated
business logic.

Calling Programs
To call a program, define a function that uses the Direct Call
(DTW_DIRECTCALL) language environment and that includes a path to the
program that is to be called in an EXEC statement. For example:
%function(DTW_DIRECTCALL) dc1() {

%EXEC { /QSYS.LIB/NETDATA.LIB/MYPGM.PGM %}
%}

Chapter 6. Using Language Environments 101

You can shorten the path to the program if you use the EXEC_PATH
configuration variable to define paths to directories that contain programs. See
“EXEC_PATH” on page 21 to learn how to define the EXEC_PATH
configuration variable.

Supported Language Environment Variables

The Direct Call language environment supports the DTW_PAD_PGM_PARMS
variable, which indicates whether parameters that are to be passed to a
program are to padded with blanks up to the precision specified. See Net.Data
Reference for description, syntax, and examples for this variable. See “Passing
Parameters to Programs” for more information on passing parameters to
programs.

Passing Parameters to Programs
Pass parameters to a program by specifying on the function definition the
data type of the parameter and whether the parameter to be passed is an
input-only (IN), output-only (OUT), or input/out (INOUT) parameter. For
example:
%function(DTW_DIRECTCALL) dc2(IN CHAR(3) p1,

INOUT INTEGER p2,
OUT DECIMAL(7,2) p3) {

%EXEC { /QSYS.LIB/NETDATA.LIB/MYPGM.PGM %}
%}

In the above example, the Direct Call language environment passes three
parameters, a character variable, an integer, and a packed decimal variable to
the program MYPGM. You can pass up to 50 parameters to the called
program. Only parameters specified with data types are passed to the
program. The Direct Call language environment converts the string
corresponding to the parameter to the internal representation of the data type.
The language environment then passes pointers to the internal representation
of the variables to the called program, in the order specified on the function
definition.

Because pointers to the variables are passed to the program, the program can
change the value of the variable. However, only OUT or INOUT variables that
are changed by the program are reflected back in the macro that called the
language environment.

Supported Data Types
Table 4 on page 103 lists the data types that are supported by the Direct Call
language environment. Not all of the data types are supported by each
high-level language.

102 Net.Data Administration and Programming Guide

Table 4. Direct Call Data Types

Data Type Usage Notes

CHAR(n)
CHARACTER(n)
CHARACTER

A character string. If n is specified, it must be greater than
zero. If the string is not specified, it is assumed to be one
character. Because all strings passed from the Direct Call
language environment are null-terminated, the language
environment allocates n+1 bytes (1 byte for the NULL
terminator). Strings that exceed n are truncated.

VARCHAR(n) A variable-length character string, where n is greater than
zero, and less than or equal to 32740. The string is
null-terminated and the language environment allocates
n+2+1 bytes (2 bytes to store the string length, 1 byte for
the null-terminator). Strings that exceed n are truncated.
The first two bytes of the string contain the string length
(binary value). If the parameter is defined as OUT (output
only), the string length is set to zero before the variable is
passed to the called program.

INTEGER
INT

A signed binary integer, 4 bytes long.

SMALLINT A signed binary integer, 2 bytes long

FLOAT(p,s) A single-precision or double-precision, floating point
number. For single precision, p must be greater than 0 and
less than 25. For double precision, p must be greater than
24 and less than 54. The precision (p) and scale (s) are only
used when converting data to a displayable format; for
example, to a string.

REAL(p,s) A single-precision floating point number. p must be greater
than 0 and less than 25. The precision (p) and scale (s) are
only used when converting data to a displayable format;
for example, to a string.

DOUBLE (p,s)
DOUBLEPRECISION(p,s)

A double-precision floating point number. p must be greater
than 0 and less than 53. The precision (p) and scale (s) are
only used when converting data to a displayable format;
for example, to a string.

NUMERIC(p,s) A zoned decimal number, with precision p and scale s. The
value of p must be greater than 0 and less than 32.

DEC(p,s)
DECIMAL(p,s)

A packed decimal number, with precision p and scale s. The
value of p must be greater than 0 and less than 32.

DTWTABLE A special data type used to pass a Net.Data table to the
called program. The Direct Call language environment
passes a pointer to the table, which can be manipulated
using the Net.Data language environment interface table
functions.

Chapter 6. Using Language Environments 103

Parameters that are defined to be numeric can include the currency symbol
and three-digit separators. The Direct Call language environment removes the
currency symbol and three-digit separators when converting a numeric
variable from string form to its internal form, before passing the variable to
the program. Net.Data retrieves the currency symbol, decimal format, and
three-digit separator characters from the process attributes of the process in
which Net.Data is running.

Null-Terminated String Parameters
If DTW_PAD_PGM_PARMS is set to NO in the configuration file or within
the macro, the Direct Call language environment passes string values to your
program using a null terminator character (value x’00’). This requires you to
write code to handle the string (unless you are using C or C++, which expect
null terminated strings).

For example, if you define the parameter field as CHAR(10), but pass a string
value that is 5 bytes long, Net.Data puts the null terminator after the fifth
byte. Passing the value ″12345″ as a string in a CHAR(10) field yields:
x'F1F2F3F4F500........'

The bytes following the null terminator are undefined (you cannot assume
that the bytes are null or blank).

Because the string is null terminated and contains uninitialized bytes after the
null terminator, you cannot use the string in an RPG or COBOL program. For
example, if you use the string in a comparison operation, the operation does
not yield valid results. The program does not expect the string to contain the
null terminator and expects the string to be padded with blanks at the end.

You can use string handling functions within your program to extract the
string value or use the VARCHAR data type. This method gives the length of
the string in the first two bytes.

If DTW_PAD_PGM_PARMS is set to YES in the configuration file or within
the macro, the Direct Call language environment passes string values to your
program with the values padded to the right with blanks up to the precision
length. Using the same example as above, but with DTW_PAD_PGM_PARMS
set to YES, passing the value ″12345″ as a string in a CHAR(10) field yields:
x'F1F2F3F4F5404040404000'

Because the string has a length of 5, which is less than the specified precision,
blanks are inserted after the value up to the precision length. Programs
written in languages such as RPG can now use the parameter without the
need to handle NULL-terminated strings.

104 Net.Data Administration and Programming Guide

Common Errors when Passing Parameters
The following list describes errors that can occur when calling programs and
passing parameters to the program using the Direct Call language
environment. Tips for avoiding these errors are provided.

Parameter Mismatch Errors
Ensure that the number and order of parameters match the number
and order in which they appear in the parameter list of the called
program.

Data Type Errors
Ensure that the data type specified for a parameter matches the data
type expected by the called program. There might be data types
supported by the Direct Call language environment that are not
supported by the high level programming language used to create the
called program.

Length Errors
Ensure that the lengths defined for parameters are correct and match
the lengths specified in the called program. Specifying a length that is
shorter than the declared length of the called program might corrupt
storage and cause Net.Data not to function properly.

Returning Values from Programs
Some high level programming languages, such as C, can return an integer on
the program call. The integer can be retrieved by specifying the RETURNS
keyword in the function definition, For example:
%function(DTW_DIRECTCALL) dc3(IN CHAR(3) p1) RETURNS(retval) {

%EXEC { /QSYS.LIB/NETDATA.LIB/MYPGM.PGM %}
%}

When the function call completes successfully, the parameter retval contains
the value returned by the program.

Direct Call Language Environment Example
In this example, the macro calls a program and passes several parameters. The
source for the program follows the macro, and is written in RPG and CL. The
program that is called accepts two integer parameters. It copies the first
parameter (the input parameter) to the second parameter (the output
parameter).

Macro:
%define ilepgm = "/QSYS.LIB/NETDATADEV.LIB/TDCCLI01.PGM"
%define out1 = "0"

%FUNCTION(DTW_DIRECTCALL) dcFunction(IN INT inp1,
OUT INT outp2)

{ %EXEC { $(ilepgm) %} %}

Chapter 6. Using Language Environments 105

%HTML(REPORT) {
@dcFunction("123", out1)
The value of out1 is: "$(out1)"
%}

ILE RPG program:
DINP1 S 10I00
DOUTP2 S 10I00
C*
C *ENTRY PLIST
C PARM INP1
C PARM OUTP2
C*
C Z-ADD INP1 OUTP2
C*
C SETON LR

CL program:
PGM PARM(&INP1; &OUTP2;)

DCL VAR(&INP1;) TYPE(*CHAR) LEN(4)
DCL VAR(&OUTP2;) TYPE(*CHAR) LEN(4)

CHGVAR VAR(&OUTP2;) VALUE(&INP1;)
ENDPGM

Java Application Language Environment

The Java Application language environment allows you to call Java programs,
enabling easy integration of Java applications with Net.Data. The Java
Application language environment was first introduced in OS/400 V4R4.

To use the Java Application language environment, complete the configuration
steps documented in “Setting up the Java Application Language
Environment” on page 27.

Calling Java Programs
To call a Java program, define a function that uses the Java Application
(DTW_JAVAPPS) language environment. Specifying a function name that
represents the class name of the Java program.

Example: Calls a Java program helloWorld.java:
%function(DTW_JAVAPPS) helloWorld() { %}

The Java Application language environment expects Java programs to contain
a method identifier for ’main,’ the first method that is run in a Java program.
When the language environment invokes an application, the application has
access to stdin and stdout. There is no form data in stdin because Net.Data
has already read the data.

106 Net.Data Administration and Programming Guide

Important: Before calling Java applications, set the DTW_JAVA_CLASSPATH
path configuration variable so that the Java class can be found. See
“DTW_JAVA_CLASSPATH” on page 21 for the syntax of this variable.

Passing Parameters to Java Programs
Pass parameters to a Java program by specifying the parameters to be passed
on the function definition. Specify only string parameters that are input-only
(IN), or input or output (INOUT).

Example: The IN parameter p1 is to be passed on the function call
%function(DTW_JAVAPPS) jv1(IN p1) { %}

The Java Application language environment does not support Java programs
that update variables because it cannot pass the updated values back to the
macro.

Java Application Language Environment Example
In this example, the Net.Data macro calls a Java program, echoString. The
macro passes two string parameters to the Java language environment. The
first string tells the Java program whether to use italic or bold highlighting for
the second parameter, a text string, before printing the second parameter to
standard output (stdout). Because the program passes ″I″, for italics, the Web
server displays the text string Hello World, in italics, at the browser. The source
for the Java program follows the macro.

Macro:
%FUNCTION(DTW_JAVAPPS) echoString(textAttribute, text){ %}

%HTML(runjava){
@echoString("I","Hello World")
%}

Java program:
class echoString {

public static void main (String args[]) {
if (args[0].equals("I"))

System.out.println("<i>" + args[1] + "</i>");
else

System.out.println("" + args[1] + "");
}

}

REXX Language Environment

The REXX language environment allows you to run REXX programs written
to run in the DTW_REXX environment. The Net.Data REXX Language
Environment provides controls that allow REXX programs to easily return
large amounts of data.

Chapter 6. Using Language Environments 107

Net.Data also provides support for the REXX SAY statement that directs the
output to browser regardless of what Web server environment you use for
Net.Data. If you run native REXX using the Web server FastCGI, GWAPI, or
Servlet configuration, the output from REXX SAY statements are routed to the
Web servers log file instead of the browser. This is not true for REXX
programs that are written to run in the DTW_REXX environment.

Support for Variables: To allow REXX programs to easily return large
amounts of data, Net.Data automatically adds code to the beginning of the
REXX program and appends code to the end of the REXX program. This code
is designed to manipulate variables that were provided on the DTW_REXX
function statement.

Support for REXX SAY Statements (FastCGI, GWAPI, and SERVLET
environments): REXX SAY statements are automatically converted to REXX
assignment statements by Net.Data prior to executing the REXX program.
Net.Data automatically appends code to the REXX program that is designed
to direct the output from the original REXX SAY statements to the browser.
Use of REXX subroutines and functions: Since Net.Data adds code to the front
of the REXX program and appends code to the end of the REXX program, the
main REXX routine must end with the last statement of the REXX program. If
you use REXX subroutines or functions you must insure that the last
statement of the REXX program is associated with the main REXX routine.The
following is an example of using a subroutine and function in a REXX
program that is written to run in the DTW_REXX environment:
%function(DTW_REXX) genData(out s1,s2) {

call subrtn1
s2=funrtn1()
signal rexxEnd /* Go to end of Program */

subrtn1: PROCEDURE EXPOSE s1
string1 = "data for s1"
return 0

funrtn1: PROCEDURE
retvar = "data for s2"
return retvar

rexxEnd: /* End of Main Program */
return 0

%}
%HTML (Report) {

@genData(a,c)

Value for s1: $(a)

Value for s2: $(c)
%}

108 Net.Data Administration and Programming Guide

Use of REXX EXIT and RETURN statements: Net.Data automatically
appends code to REXX programs that provide values for output variables and
directs output from SAY statements to the browser. If the REXX program
issues a RETURN from the main routine or issues an EXIT statement
anywhere but the last statement of the REXX program, the code that was
appended by Net.Data to the REXX program will not be executed. This results
in the lost of output variables and output from SAY statements. If you must
exit a REXX program before reaching the last statement, you should branch to
the last statement in the REXX program that normally exits. If you use the
RETURN or EXIT statement to end the main REXX program, it must be the
last statement in the REXX program. This includes REXX comment statements.
For example:
%function(DTW_REXX) genData(out s1,s2) {
......
If S2 < 0 Then signal rexxEnd
......
......
rexxEnd:
/* This comment must be before the following
RETURN statement */
return 0
%}
%HTML (Report) {
@genData(a,c)
......
%}

Invoking external REXX programs from a DTW_REXX function: You can
invoke a REXX program from a DTW_REXX function using the Net.Data
%EXEC statement or from a REXX program using methods provided by
REXX.

When invoking an external REXX program using the Net.Data %EXEC
statement, Net.Data automatically adds code to the beginning of the REXX
program and appends code to the end of the REXX program to handle Output
variables and direct output from REXX SAY statements to the browser.

When you use methods provided by REXX to invoke a REXX program,
Net.Data does not receive control and doesn’t add code to the REXX program.
The REXX program being invoked must pass output back to the calling REXX
program using standard REXX conventions. When running in GWAPI or
SERVLET environments, Output from REXX SAY statements are sent to the
Web servers log file.

Executing REXX Programs
With the REXX language environment you can execute both in-line REXX
programs or external REXX programs. An in-line REXX program is a REXX

Chapter 6. Using Language Environments 109

program that has the source of the REXX program in the macro. An external
REXX program has the source of the REXX program in an external file.

To execute an in-line REXX program:

Define a function that uses the REXX (DTW_REXX) language environment
and contains the REXX code in the function.

Example: A function that contains a in-line REXX program
%function(DTW_REXX) helloWorld() {

SAY 'Hello World'
%}

To run an external REXX program:

Define a function that uses the REXX (DTW_REXX) language environment
and includes a path to the REXX program that is to be run in an EXEC
statement.

Example: A function that contains an EXEC statement pointing to a the
external program
%function(DTW_REXX) externalHelloWorld() {
%EXEC{ /QSYS.LIB/REXX.LIB/REXXSRC.FILE/HELLOWORLD.MBR%}
%}

You can shorten the path to the program if you use the EXEC_PATH
configuration variable to define paths to directories that contain programs. See
“EXEC_PATH” on page 21 to learn how to define the EXEC_PATH
configuration variable.

Restriction: If you are running OS/400 V3R2 or V3R7 and a REXX program
uses the SAY REXX instruction to write to stdout, then insert 12 blanks at the
start of the string. For example:
SAY ' STARTOFDATA'

The 12 blanks are ignored, but if they are not inserted, unpredictable results
might occur.

Passing Parameters to REXX programs
There are two ways to pass information to a REXX program that is invoked
by the REXX (DTW_REXX) language environment, directly and indirectly.

Directly
Pass parameters directly to an external REXX program using the
%EXEC statement. For example:

110 Net.Data Administration and Programming Guide

%FUNCTION(DTW_REXX) rexx1() {
%EXEC{/QSYS.LIB/NETDATA.LIB/QREXXSRC.FILE/CALL1.MBR $(INPARM1) %}

%}

The Net.Data variable INPARM1 is referenced and passed to the
external REXX program. The REXX program can reference the variable
by using REXX PARSE ARG instruction. The parameters that are
passed to the REXX program using this method are considered input
parameters, and any modification to the values are not reflected back
to Net.Data. (the parameters passed to the program can be used and
manipulated by the program, but changes to the parameters are not
reflected back to Net.Data).

Indirectly

Pass parameters indirectly, by way of the REXX program variable pool.
When a REXX program is started, a space which contains information
about all variables is created and maintained by the REXX interpreter.
This space is called the variable pool.

When a REXX language environment (DTW_REXX) function is called,
any function parameters that are input (IN) or input/output (INOUT)
are stored in the by the REXX language environment prior to
executing the REXX program. When the REXX program is invoked, it
can access these variables directly. Upon the successful completion of
the REXX program, the DTW_REXX language environment
determines whether there are any output (OUT) or INOUT function
parameters. If so, the language environment retrieves the value
corresponding to the function parameter from the variable pool and
updates the function parameter value with the new value. When
Net.Data receives control, it updates all OUT or INOUT parameters
with the new values obtained from the REXX language environment.
For example:
%DEFINE a = "3"
%DEFINE b = "0"
%FUNCTION(DTW_REXX) double_func(IN inp1, OUT outp1){

outp1 = 2*inp1
%}

%HTML (Report) {
Value of b is $(b), @double_func(a, b) Value of b is $(b)
%}

In the above example, the call @double_func passes two parameters, a
and b. The REXX function double_func doubles the first parameter and
stores the result in the second parameter. When Net.Data invokes the
macro, b has a value of 6.

Chapter 6. Using Language Environments 111

You can pass Net.Data tables to a REXX program. A REXX program
accesses the values of a Net.Data macro table parameter as REXX stem
variables. To a REXX program, the column headings and field values
are contained in variables identified with the table name and column
number. For example, in the table myTable, the column headings are
myTable_V.j, and the field values are myTable_V.i.j, where i is the
row number and j is the column number. The number of rows in the
table is myTable_ROWS and the number of columns in the table is
myTable_COLS.

REXX Language Environment Example
The following example shows a macro that calls a REXX function to generate
a Net.Data table that has two columns and three rows. Following the call to
the REXX function, a built-in function, DTW_TB_TABLE(), is called to
generate an HTML table that is sent back to the browser.
%DEFINE myTable = %TABLE
%DEFINE DTW_DEFAULT_REPORT = "NO"

%FUNCTION(DTW_REXX) genTable(out out_table) {
out_table_ROWS = 3
out_table_COLS = 2

/* Set Column Headings */
do j=1 to out_table_COLS

out_table_N.j = 'COL'j
end

/* Set the fields in the row */
do i = 1 to out_table_ROWS

do j = 1 to out_table_COLS
out_table_V.i.j = '[' i j ']'

end
end

%}

%HTML (Report) {
@genTable(myTable)
@DTW_TB_TABLE(myTable)
%}

Results:
<table>
<tr>
<th>COL1</th>
<th>COL2</th>
</tr>
<tr>
<td>[1 1]</td>
<td>[1 2],</td>
</tr>
<tr>

112 Net.Data Administration and Programming Guide

<td>[2 1]</td>
<td>[2 2],</td>
</tr>
<tr>
<td>[3 1]</td>
<td>[3 2],</td>
</tr>
</table>

SQL Language Environment

The SQL language environment allows you to run SQL statements by sending
the SQL statements to a database management system (DBMS).

To use the SQL language environment, ensure you follow the configuration
steps documented in “Setting Up Net.Data Language Environments” on
page 27

Executing SQL Statements
You can execute any SQL statement that is supported by dynamic SQL.

To execute SQL statements, define a function that uses the SQL (DTW_SQL)
language environment and contains the SQL statements in the language
environment executable section of the function.

Example: An SQL function that runs an SQL SELECT statement:
%function(DTW_SQL) getOrders() {

SELECT cust, custid, custorder FROM mylibrary.customers
%}

Commitment Control

The SQL language environment by default runs under commitment control
and follows all rules for governing commitment control.
v Journal all files or tables that are accessed through the DTW_SQL, except

when the SQL statement is SELECT.
v Optionally change the commitment level by specifying

DTW_SQL_ISOLATION in the Net.Data initialization file. See
“DTW_SQL_ISOLATION: DB2 Isolation Variable” on page 16 for details
about the isolation levels that the SQL language environment supports.

For more information on transaction management, see “Managing
Transactions in a Net.Data Application” on page 120.

OUT and INOUT Tables

Chapter 6. Using Language Environments 113

If you specify OUT or INOUT Net.Data tables on the function definition, and
the SQL statement returns result sets, the SQL language environment stores
each result set in the specified tables. You can then use the table later in the
macro. If an OUT table is not specified, the SQL language environment uses a
default table.

Nested SQL Statements

You can call SQL functions within another SQL function. If tables are passed,
then ensure you use unique table names in each of the functions; otherwise,
unpredictable results might occur.

Example: Calls an SQL function from the ROW block of another SQL function
%define mytable1 = %TABLE
%define mytable2 = %TABLE

%FUNCTION(DTW_SQL) sql2 (IN p1, OUT t2) {
select * from NETDATA.STAFFINF where projno='$(p1)'

%REPORT {
%ROW { $(N1) is $(V1) %}
%}
%}

%FUNCTION(DTW_SQL) sql1 (OUT t1) {
select * from NETDATA.STAFFINF

%REPORT {
%ROW { @sql2(V1, mytable2) %}

%}
%}

%HTML(netcall1) { @sql1(mytable1) %}

Supported Language Environment Variables
The SQL language environment supports variables designed to support DB2.
For example, the DATABASE variable specifies the data source that the SQL
language environment connects to when executing an SQL statement. The
following list specifies which variables are supported for the SQL language
environment. See Net.Data Reference for description, syntax, and examples for
these variables.
v DATABASE
v DB_CASE
v DTW_EDIT_CODES
v DTW_PAD_PGM_PARMS
v DTW_SET_TOTAL_ROWS
v LOGIN
v NULL_RPT_FIELD
v PASSWORD

114 Net.Data Administration and Programming Guide

v SHOWSQL
v SQL_STATE
v TRANSACTION_SCOPE

Supported Data Types
The SQL language environment supports the data types listed in Table 5

Table 5. Data Types
BLOB(1) DOUBLE SMALLINT
CHAR DOUBLEPRECISION TIME
CLOB(1) FLOAT TIMESTAMP
DATE GRAPHIC VARCHAR
DBCLOB(1) INTEGER VARGRAPHIC
DECIMAL REAL

(1) These data types cannot be passed as parameters to a stored procedure
call. To learn which data types are support for stored procedures, see “Stored
Procedure Syntax” on page 122

See “Data Type Considerations” on page 116 to learn about special
considerations for the LOBs and DATALINK data types.

SQL Language Environment Restrictions
Consider the following restrictions when planning your environment:
v Do not use the SQL language environment if at least one of the following

conditions exists:
– A user-defined language environment is created that uses the database

access class library or the SQL call level interface (CLI) and the
user-defined language environment is referenced in a macro

– An application that uses the SQL CLI will be running in the same
process as Net.Data

v SQL statements in the inline statement block can be up to 32KB.
v You can use up to 50 local or remote database connections. When using

multiple connection, consider the following restrictions:
– Net.Data does not allow concurrent connections to the same remote

database.
– You cannot change login IDs after you have accessed a remote database

if TRANSACTION_SCOPE=MULTIPLE, which is the default. See
“Managing Transactions in a Net.Data Application” on page 120.

See “Managing Multiple Database Connections” on page 121 for more
information about these restrictions.

Chapter 6. Using Language Environments 115

Data Type Considerations
The following data types supported by the SQL language environment need
special consideration.
v “Using Large Objects”
v “Encoding DataLink URLs in Result Sets” on page 119

Using Large Objects
You can store large object files (LOBs) in DB2 databases and incorporate them
into your dynamic Web pages by using the Net.Data SQL language
environment.

When the language environment executes an SQL SELECT statement or a
stored procedure that returns a LOB, it does not assign the object to a V(n)
table processing variable or a Net.Data table field. Instead, it stores the LOB in
a file that Net.Data creates and returns only the name of the file in the V(n)
table processing variable or a Net.Data table field. In your Net.Data macro
you can use the name to reference the LOB file; for example, you can create
an HTML anchor element with a hypertext reference or an image element
containing a URL for the file. Net.Data places the file containing the LOB in
the directory specified by the DTW_LOB_DIR configuration variable, located
in the Net.Data initialization file (db2www.ini). Write access to the LOB file is
limited to the user ID associated with the Net.Data request that retrieved the
LOB.

The file name for the LOB is dynamically constructed, and has the following
form:
name[.extension]

Where:

name Is a dynamically generated unique string identifying the large object

extension
Is a string that identifies the type of the object. For CLOBs and
DBCLOBs, the extension is .txt. For BLOBs, the SQL language
environment determines the extension by looking for a signature in
the first few bytes of the LOB file. Table 6 shows the LOB extensions
used by the SQL language environment:

Table 6. LOB extensions used in the SQL language environment
Extension Object Type
.bmp bitmap image
.gif graphical image format
.jpg joint photographic experts group (JPEG) image
.tif tagged image file format
.ps postscript

116 Net.Data Administration and Programming Guide

Table 6. LOB extensions used in the SQL language environment (continued)
Extension Object Type
.mid musical instruments digital interface (midi) audio
.aif AIFF audio
.avi audio visual interleave audio
.au basic audio
.ra real audio
.wav windows audio visual
.pdf portable document format
.rmi midi sequence

If the object type for the BLOB is not recognized, no extension is added to the
file name.

When Net.Data returns the name of the file containing a LOB, it prefixes the
file name with the string /tmplobs/ using the following syntax:
/tmplobs/name.[extension]

This prefix permits you to locate your LOB directory in a directory other than
the Web server’s document root directory.

To ensure that references to LOB files are correctly resolved, add the following
Pass directive to your Web server’s configuration file:
Pass /tmplobs/* <full_path>

<full_path> is the value specified for the DTW_LOB_DIR configuration
variable in the Net.Data initialization file.

Planning tip: Each query that returns LOBs results in files being created in
the directory specified by the DTW_LOB_DIR path configuration variable.
Consider system limitations when using LOBs because they can quickly
consume resources. You might want to clean up the directory periodically. It is
recommended that you use DataLinks, which eliminate the need to store files
in directories by the SQL language environment, resulting in better
performance and the use of much less system resources.

Example: The following application uses an MPEG audio (.mpa) file. Because
the SQL language environment does not recognize this file type, an EXEC
variable is used to append the .mpa extension to the file name. A user of this
application must click on the file name to invoke the MPEG audio file viewer.
%DEFINE{
lobpath = "@DTW_RGETINIDATA("DTW_LOB_DIR")"
filename = "@DTW_RREPLACE($(V3), "/tmplobs/", "", "1", "F")"
myFile=%EXEC "REN '$(lobpath)/$(filename)' '$(filename).mpa'"
%}

Chapter 6. Using Language Environments 117

%FUNCTION(DTW_SQL) queryData() {
SELECT Name, IDPhoto, Voice FROM RepProfile
%REPORT{

<p>Here is the information you selected:</p>
%ROW{

$(myFile)
$(V1)

Voice sample<p>
%}

%}
%}

%HTML (Report){
@queryData()
%}

If the RepProfile table contains information about Kinson Yamamoto and
Merilee Lau, then the execution of the REPORT block will add the following
HTML to the Web page being generated:
<p>Here is the information you selected:</p>
Kinson Yamamoto
Voice sample<p>
Merilee Lau
Voice sample<p>

The REPORT block in the previous example uses the implicit table variables
V1, V2, and V3.
v The value of V1 is a person’s name, which is character data.
v The value of V2 is the name of a GIF file containing the photo of the

person. The image is displayed inline within the generated Web page.
v The value of V3 is a sample of the person’s voice in a .mpa file. When the

SQL language environment encounters an unrecognized format, such as a
.mpa file, it writes the file into the directory specified in the
DTW_LOB_DIR configuration variable without a file extension. This
example shows how to handle this file type by adding the extension using
an EXEC variable. When the variable $(V3) is resolved, it has the path
/tmplobs/ added before the file name. For example, /tmplobs/sound2a. In
the example, the EXEC variable renames the file using the REN command,
adding the extension .mpa to the file. Before the file name can be renamed,
the /tmplobs/ is removed from the file name and the full path to the file to
be renamed is retrieved by using the DTW_RGETINIDATA function to
retrieve the path specified in DTW_LOB_DIR. The voice sample is played
when the application user clicks on Voice sample.

Access rights for LOBs:

118 Net.Data Administration and Programming Guide

Ensure that the user ID or user IDs under which Net.Data executes have write
access to the directory specified by DTW_LOB_DIR.

Encoding DataLink URLs in Result Sets
The DataLink data type is one of the basic building blocks for extending the
types of data that can be stored in database files. With DataLink, the actual
data stored in the column is only a pointer to the file. This file can be any
type of file; an image file, a voice recording, or a text file. DataLinks store a
URL to resolve the location of the file.

The DATALINK data type requires the use of DataLink File Manager. For
more information about the DataLink File Manager, see the DataLinks
documentation for your operating system. Before you use the DATALINK
data type, you must ensure that the Web server has access to the file system
managed by the DB2 File Manager Server.

When a SQL query returns a result set with DataLinks, and the DataLink
column is created with FILE LINK CONTROL with READ PERMISSION DB
DataLink options, the file paths in the DataLink column contains an access
token. DB2 uses the access token to authenticate access to the file. Without
this access token, all attempts to access the file fail with an authority violation.
However, the access token might include characters that are not usable in a
URL to be returned to a browser, such as the semi-colon (;) character. For
example:
/datalink/pics/UN1B;0YPVKGG346KEBE;baibien.jpg

The URL is not a valid because it contains semi-colon (;) characters. To make
the URL valid, the semi-colons must be encoded using the Net.Data built-in
function DTW_URLESCSEQ. However, some string manipulation must be
done before applying this function because this function encodes slashes (/),
as well.

You can write a Net.Data MACRO_FUNCTION to automate the string
manipulation and use the DTW_URLESCSEQ function. Use this technique in
every macro that retrieves data from a DATALINK data type column.

Example 1: A MACRO_FUNCTION that automates the encoding of URLs
returned from DB2 UDB
%{ TO DO: Apply DTW_URLESCSEQ to a DATALINK URL to make it a valid URL.

IN: DATALINK URL from DB2 File Manager column.
RETURN: The URL with token portion is URL encoded

%}
%MACRO_FUNCTION encodeDataLink(in DLURL) {

@DTW_rCONCAT(@DTW_rDELSTR(DLURL,

Chapter 6. Using Language Environments 119

@DTW_rADD(@DTW_rLASTPOS("/", DLURL), "1")),
@DTW_rURLESCSEQ(@DTW_rSUBSTR(DLURL,
@DTW_rADD(@DTW_rLASTPOS("/", DLURL), "1"))))

%}

After using this MACRO_FUNCTION, the URL is encoded properly and the
file specified in the DATALINK column can be referenced on any Web
browser.

Example 2: A Net.Data macro specifying the SQL query that returns the
DATALINK URL

%FUNCTION(DTW_SQL)myQuery(){
select name, DLURLCOMPLETE(picture) from myTable where name like '%river%'
%REPORT{

%ROW{
<p> $(V1)

Before Encoding: $(V2)

After Encoding: @encodeDataLInk($(V2))

Make HREF: click here
 <p>

%}
%}

%}

Note that a DataLink File Manager functions is used. The function
dlurlcomplete returns a full URL.

Managing Transactions in a Net.Data Application
When you modify the content of a database using insert, delete, or update
statements, the modifications do not become persistent until the database
receives a commit statement from Net.Data. If an error occurs, Net.Data sends
a rollback statement to the database, reversing all modifications since the last
commit.

The way in which Net.Data sends the commit and possible rollback
statements depend on the setting of TRANSACTION_SCOPE and whether
commit statements are explicitly specified in the macro. The values for
TRANSACTION_SCOPE are MULTIPLE and SINGLE. The default is
MULTIPLE. To set TRANSACTION_SCOPE to SINGLE, use a %DEFINE
statement or a call to @DTW_ASSIGN(), and pass the variable on the
ENVIRONMENT statement for the proper LE. For more information, see
Customizing the Net.Data Initialization File in Chapter 2 of this book.

SINGLE

Specifies that Net.Data issues a commit statement after each successful
SQL statement. If the SQL statement returns an error, a rollback
statement is issued. SINGLE transaction scope secures a database

120 Net.Data Administration and Programming Guide

modification immediately; however, with this scope, it is not possible
to undo a modification using a rollback statement later.

MULTIPLE

Specifies that Net.Data will execute all SQL statements before a
commit statement is issued. Net.Data sends the commit at the end of
the request, and if each SQL statement is issued successfully, the
commit makes all modifications in the database persistent. If any of
the statements returns an error, Net.Data issues a rollback statement at
the point of the error, which sets the database back to its prior state.

By leaving TRANSACTION_SCOPE set to MULTIPLE and issuing commit
statements at the end of those groups of statements that you feel qualify as a
transaction, you the application developer maintain full control over the
commit and rollback behavior in your application.

To issue an SQL commit statement, you can define a function that you can call
in at any point in your HTML block:
%FUNCTION(DTW_SQL) user_commit() {

commit
%}

...

%HTML {
...
@user_commit()
...

%}

Restrictions:

The setting of TRANSACTION_SCOPE cannot be changed after a connection
to the database is made. Therefore, all SQL transactions in a macro are subject
to the same processing.

If you are using Net.Data as part of Net.Commerce, note that Net.Commerce
has its own transaction handling and disables the transaction handling of
Net.Data.

Managing Multiple Database Connections
You can connect to up to 50 local or remote databases at a time. The SQL
language environment keeps the connections active for the life of the Web
server process job that Net.Data is running under. Keeping the connections
active provides fast database access after the initial connection to the database.
You can prevent errors by taking the following issues into consideration:
v Net.Data does not allow concurrent connections to the same remote

database. If a connection exists to a remote database using one user ID (the

Chapter 6. Using Language Environments 121

LOGIN SQL language environment parameter) and another request is made
to connect to the same remote database using a second user ID, the SQL
language environment must first disconnect the existing connection, do a
commit (if commitment control is being used) and then reestablish the
connection using the ’new’ user ID and password. The commit is required
because if the connection is broken, there is no way that a rollback can be
accomplished in case of an error later in the macro.

v You can change login IDs after you’ve accessed a remote database, if
TRANSACTION_SCOPE=SINGLE . The SQL language environment
disconnects the existing connection, does a commit, and reestablishes the
connection using the new user ID and password.

v Do not change login IDs after you have accessed a remote database if
TRANSACTION_SCOPE=MULTIPLE, which is the default. The SQL
language environment automatically rolls back and a SQL_CODE of -752 is
returned, which indicates that the connection could not be changed.

Stored Procedures
A stored procedure is a compiled program stored in a database that can
execute SQL statements. In Net.Data, stored procedures are called from
Net.Data functions using a CALL statement. Stored procedure parameters are
passed in from the Net.Data function parameter list. You can use stored
procedures to improve performance and integrity by keeping compiled SQL
statements with the database server. Net.Data supports the use of stored
procedures with DB2 through the SQL and ODBC language environments.
Oracle stored procedures are supported through the Oracle language
environment. For DB2 in particular, Net.Data supports stored procedures
returning one or more result sets.

This section describes following topics:
v “Stored Procedure Syntax”
v “Calling a Stored Procedure” on page 124
v “Passing Parameters” on page 125
v For DB2 only:“Processing Result Sets from DB2 Stored Procedures” on

page 125

Stored Procedure Syntax
The syntax used for stored procedures includes the FUNCTION statement, the
CALL statement, and optionally a REPORT block.
%FUNCTION function_name ([IN datatype arg1, INOUT datatype arg2,

OUT resultsetname, ...]) {
CALL stored_procedure

[%REPORT [(resultsetname)] { %}]
...

122 Net.Data Administration and Programming Guide

[%REPORT [(resultsetname)] { %}]
[%MESSAGE %}]

%}

Where:

function_name
Is the name of the Net.Data function that initiates the call of the stored
procedure

stored_procedure
Is the name of the stored procedure

datatype
Is one of the database data types supported by Net.Data as shown in and
Table 7. The data types specified in the parameter list must match the data
types in the stored procedure. See your database documentation for more
information about these data types.

For DB2 only: tablename
Is the name of the Net.Data table in which the result set is to be stored
(used only when the result set is to be stored in a Net.Data table. If
specified, this parameter name must match the associated parameter name
for resultsetname.

For DB2 only: resultsetname
Is the name that associates a result set returned from a stored procedure
with a REPORT block and a table name on the function parm list, or both.
The resultsetname on a REPORT block must match a tablename on the
function parameter list.

Table 7. Supported Stored Procedure Data Types
CHAR FLOAT TIME
DATE GRAPHIC TIMESTAMP
DECIMAL INTEGER VARCHAR
DOUBLE REAL VARGRAPHIC
DOUBLEPRECISION SMALLINT

Important: When Net.Data on Windows or Unix calls a stored procedure in
DB2 on OS/390 and OS/400, the stored procedure on these
operating systems must use the host variable type DOUBLE or
FLOAT when retrieving DECIMAL data from the DB2 database.
Using the host variable type DOUBLE or FLOAT will ensure that
the returned data is in readable format.

Chapter 6. Using Language Environments 123

|
|
|
|
|
|

Calling a Stored Procedure
1. Define a function that initiates a call to the stored procedure.

%FUNCTION (DTW_SQL) function_name()

2. (Optional) Specify any IN, INOUT, or OUT parameters for the stored
procedure including the result set name of any result sets that are returned
from the stored procedure.
%FUNCTION (DTW_SQL) function_name (IN datatype
arg1, INOUT datatype arg2,

OUT resultsetname...)

3. Use the CALL statement to identify the stored procedure name.
CALL stored_procedure

4. For DB2: If the DB2 stored procedure is going to generate one result set,
optionally specify a REPORT block to define how Net.Data displays the
result set.
%REPORT {
...
%}

Example:
%FUNCTION (DTW_SQL) mystoredproc (IN CHAR(30) arg1 OUT mytable) {

CALL myproc
%REPORT {
...
%ROW { ... %}
...
%}
%}

5. If the stored procedure is going to generate more than one result set:
v Specify the result sets as OUT parameters in the FUNCTION statement.

The result sets are saved as local tables.
%FUNCTION (DTW_SQL) function_name (OUT tablename, ...)

v Optionally specify one or more REPORT blocks to define how Net.Data
displays the result sets.
%REPORT[(resultsetname1)] {
...
%}

Example:
%FUNCTION (DTW_SQL) mystoredproc (IN CHAR(30) arg1, OUT table1, table2) {

CALL myproc
%REPORT (table1) {

...
%ROW { ... %}
...

%}
%REPORT (table1) {

...

124 Net.Data Administration and Programming Guide

%ROW { ... %}
...

%}
%}

Passing Parameters
You can pass parameters to a stored procedure and you can have the stored
procedure update the parameter values so that the new value is passed back
to the Net.Data macro. The number and type of the parameters on the
function parameter list must match the number and type defined for the
stored procedure. For example, if a parameter on the parameter list defined
for the stored procedure is INOUT, then the corresponding parameter on the
function parameter list must be INOUT. If a parameter on the list defined for
the stored procedure is of type CHAR(30), then the corresponding parameter
on the function parameter list must also be CHAR(30).

Example 1: Passing a parameter value to the stored procedure
%FUNCTION (DTW_SQL) mystoredproc (IN CHAR(30) valuein) {

CALL myproc
...

Example 2: Returning a value from a stored procedure
%FUNCTION (DTW_SQL) mystoredproc (OUT VARCHAR(9) retvalue) {

CALL myproc
...

Processing Result Sets from DB2 Stored Procedures
You can return one or more result sets from a stored procedure. The result
sets can be stored in Net.Data tables for further processing within your macro
or processed using a REPORT block. If a stored procedure generates multiple
result sets, you must associate a name with each result set generated by the
stored procedure. This is done by specifying parameters on the FUNCTION
statement. The name you specify for a result set can then be associated with a
REPORT block or a Net.Data table, enabling you to determine how each result
set is processed by Net.Data. You can:
v Have the result processed in Net.Data’s default report style by not defining

a report block for the result set.
v Associate a result set with a REPORT block to apply your own report style.

In the REPORT block, you can use Net.Data variables, text processing
statements like HTML or JavaScript, or other functions to specify how the
report data is displayed in the browser.

Result sets are always stored in local tables so that another function in the
macro can also access the data. For example, you can pass a Net.Data table to
another function so that it can use the data for calculations and display the
results based on those calculations.

Chapter 6. Using Language Environments 125

See “Guidelines and Restrictions for Multiple REPORT Blocks” on page 93 for
guidelines and restrictions when using multiple report blocks.

To return a single result set and use default reporting:

Use the following syntax:
%FUNCTION (DTW_SQL) function_name (OUT tablename) {

CALL stored_procedure
%}

For example:
%FUNCTION (DTW_SQL) mystoredproc(OUT mytable1) {

CALL myproc
%}

To return a single result set and specify a REPORT block:

Use the following syntax:
%FUNCTION (DTW_SQL) function_name (OUT tablename) {

CALL stored_procedure [(resultsetname)]
%REPORT [(resultsetname)] {
...
%}
%}

Example1:
%FUNCTION (DTW_SQL) mystoredproc (OUT mytable1) {

CALL myproc
%REPORT {

...
%ROW { ... %}
...

%}
%}

Example 2:
%FUNCTION (DTW_SQL) mystoredproc () {

CALL myproc
%REPORT {
...
%ROW { ... %}
...
%}
%}

To return multiple result sets and display them using default report
formatting:

Use the following syntax:

126 Net.Data Administration and Programming Guide

%FUNCTION (DTW_SQL) function_name (OUT tablename1, tablename2) {
CALL stored_procedure

%}

Where no report block is specified.

For example:
%DEFINE DTW_DEFAULT_REPORT = "YES"
%FUNCTION (DTW_SQL) mystoredproc (OUT mytable1, mytable2) {

CALL myproc
%}

To return multiple result sets and specify REPORT blocks for display
processing:

Each result set is associated with its one or more REPORT blocks. Use the
following syntax:
%FUNCTION (DTW_SQL) function_name (OUT tablename1, tablename2, ...) {

CALL stored_procedure
%REPORT (resultsetname1)

...
%ROW { ... %}
...

%}
%REPORT (resultsetname2)

...
%ROW { ... %}
...

%}

...
%}

For example:
%FUNCTION (DTW_SQL) mystoredproc (OUT mytable1, mytable2) {

CALL myproc

%REPORT(mytable1) {
...
%ROW { ... %}
...
%}

%REPORT(mytable2) {
...
%ROW { ... %}
...
%}
%}

Example 2:

Chapter 6. Using Language Environments 127

%FUNCTION(DTW_SQL) mystoredproc(OUT mytable4, OUT mytable3) {
CALL myproc (mytable1, mytable2, mytable3, mytable4)
%REPORT(mytable2) {
...
%ROW { ... %}
...
%}
%REPORT(mytable1) {
...
%ROW { ... %}
...
%}
%REPORT(mytable4) {
...
%ROW { ... %}
...
%}

%}

The result sets mytable2, mytable1, and mytable4 are processed by their
corresponding REPORT blocks, in that order, and are displayed as specified.
The result sets mytable4 and mytable3 are stored into table variables for further
processing. The result set mytable3 will also be displayed using Net.Data’s
default report format after the three REPORT blocks are done processing.

SQL Language Environment Example
The following example shows a macro with a DTW_SQL function definition
that calls an SQL stored procedure. It has three parameters of different data
types. The DTW_SQL language environment converts the character string
values in each parameter to the correct internal format and passes each
parameter by reference to the SQL stored procedure. When the SQL stored
procedure completes processing, the updated internal representation is
converted to a character string and placed in the corresponding parameter.
%{***
**%}
DEFINE {
MACRO_NAME = "TEST ALL TYPES"
DTW_HTML_TABLE = "YES"
Procedure = "NDLIB.TESTTYPE"
parm1 = "1" %{SMALLINT %}
parm2 = "11" %{INT %}
parm3 = "1.1" %{DECIMAL (2,1) %}
%}

%FUNCTION(DTW_SQL) CRTPROC(){
CREATE PROCEDURE $(Procedure)
(INOUT SMALLINT,
INOUT INT,
INOUT DECIMAL(2,1))
EXTERNAL NAME $(Procedure) LANGUAGE C SIMPLE CALL
%MESSAGE{

default : "$(DTW_DEFAULT_MESSAGE) : continuing.
": continue

128 Net.Data Administration and Programming Guide

%}
%}

%FUNCTION(DTW_SQL) myProc
(INOUT SMALLINT parm1,
INOUT INT parm2,
INOUT DECIMAL(2,1) parm3){

CALL $(Procedure)
%}

%HTML(REPORT) {
<head>
<title>Net.Data : SQL Stored Procedure: Example '$(MACRO_NAME)'. <?TITLE>
</head>
<body bgcolor="#bbffff" text="#000000" link="#000000">
<p><p>
Calling the function to create the stored procedure.
<p><p>
@CRTPROC()
<hr>
<h2>
Values of the INOUT parameters
prior to calling the stored procedure:<p>
</h2>
parm1 (SMALLINT)

$(parm1)<p>
parm2 (INT)

$(parm2)<p>
parm3 (DECIMAL)

$(parm3)<p>
<p>
<hr>
<h2>
Calling the function that executes the stored procedure.
</h2>
<p><p>
@myProc(parm1,parm2,parm3)
<hr>
<h2>
Values of the INOUT parameters after
calling the stored procedure:<p>
</h2>
parm1 (SMALLINT)

$(parm1)<p>
parm2 (INT)

$(parm2)<p>
parm3 (DECIMAL)

$(parm3)<p>
</body>
%}

Chapter 6. Using Language Environments 129

System Language Environment

The System language environment supports executing commands and calling
external programs.

Issuing Commands and Calling Programs
To issue a command, define a function that uses the System (DTW_SYSTEM)
language environment that includes a path to the command to be issued in an
EXEC statement. For example:
%FUNCTION(DTW_SYSTEM) sys1() {

%EXEC { /QSYS.LIB/ADDLIBLE.CMD LIB(MYLIBRARY) %}
%}

You can shorten the path to executable objects if you use the EXEC_PATH
configuration variable to define paths to directories that contain the objects
(such as, commands and programs). See “EXEC_PATH” on page 21 to learn
how to define the EXEC_PATH configuration variable.

Example 1: Calls a program
%FUNCTION(DTW_SYSTEM) sys3() {

%EXEC { /QSYS.LIB/MYLIB.LIB/MYPGM.PGM %}
%

Tip: When calling programs, use the Direct Call language environment
because it is more efficient and easier to use.

Passing Parameters to Programs
There are two ways to pass information to a program that is invoked by the
System (DTW_SYSTEM) language environment, directly and indirectly.

Directly
Pass parameters directly on the call to the program. For example:
%DEFINE INPARM1 = "SWITCH1"

%FUNCTION(DTW_SYSTEM) sys1() {
%EXEC{
/QSYS.LIB/NETDATA.LIB/RPGCALL1.PGM ('$(INPARM1)' 'literalstring')
%}
%}

The Net.Data variable INPARM1 is referenced and passed to the
program. The parameters are passed to the program in the same way
the parameters are passed to the program when the program is called
from the command line. The parameters that are passed to the
program using this method are considered input parameters, and any
modification to the values are not reflected back to Net.Data (the

130 Net.Data Administration and Programming Guide

parameters passed to the program can be used and manipulated by
the program, but changes to the parameters are not reflected back to
Net.Data).

Indirectly
Pass parameters indirectly, by using environment variables.
Environment variables are character strings of the form "name=value"
that are stored in an environment space outside of the program. The
strings are stored in a temporary space associated with the process.

When Net.Data calls a DTW_SYSTEM language environment function,
the language environment stores any function parameters that are
input (IN) or input/output (INOUT) in the environment space prior
to executing the statement within the %EXEC block. After the
successful completion of the statement, the DTW_SYSTEM language
environment determines whether there are any output (OUT or
INOUT) function parameters. If so, the language environment
retrieves the value corresponding to the function parameter from the
environment space and updates the function parameter value with the
new value. When Net.Data gets control, it in turn updates all OUT or
INOUT parameters with the new values obtained from the
DTW_SYSTEM language environment.

Set and retrieve environment variables using the APIs described in
Table 8:

Table 8. Environment Variable APIs

ILE Programming
Language

To retrieve, use... To set, use...

C, C++ getenv() putenv()

CL(1), RPG, COBOL QtmhGetEnv()(2) QtmhPutEnv()(3)

1. For OS/400 V3R7 and on, you can also use the CHGENVVAR and ADDENVVAR
CL commands to set an environment variable.

2. QtmhGetEnv() is shipped as part of IBM TCP/IP Connectivity Utilities/400.

3. QtmhPutEnv() was not originally shipped as part of IBM TCP/IP
ConnectivityUtilities/400 for V3R2 and V3R7. It was added later in the cycle and
can be obtained via the V3R2 PTF 5763TC1-SF40953 or the V3R7 PTF
5716TC1-SF40954.

You can pass Net.Data tables to a program called by the System
language environment. The program accesses the values of a Net.Data
macro table parameter by their Net.Data name. The column headings
and field values are contained in variables identified with the table
name and column number. For example, in the table myTable, the
column headings are myTable_N_j, and the field values are

Chapter 6. Using Language Environments 131

myTable_V_i_j, where i is the row number and j is the column
number. The number of rows and columns for the table are
myTable_ROWS and myTable_COLS.

System Language Environment Example
The following example shows a macro that uses the System language
environment to issue the Send Break Message (SNDBRKMSG) command to all
workstation message queues. The text of the message to be sent is constucted
from form data (msgToSend).
%FUNCTION(DTW_SYSTEM) sndbrkmsg () {

%EXEC { /QSYS.LIB/SNDBRKMSG.CMD MSG('$(msgToSend)') TOMSGQ(*ALLWS) %}
%}
%HTML(sndbrkmsg) {
@sndbrkmsg()
%}

132 Net.Data Administration and Programming Guide

Chapter 7. Transaction Management with Persistent
Macros

Net.Data provides support for transaction processing with persistent macros.
A persistent macro is a macro that contains built-in functions that enable the
macro to run as part of a persistent CGI process in the Web server. This
means that multiple blocks of a macro, or multiple macros, can run as part of
a single logical transaction.

With non-persistent macros, Net.Data treats each macro invocation as one
complete transaction. This means that after each response is sent to the
browser, databases are committed, resources are released, and everything is
set to an initial state. The next invocation of the same macro results in
re-establishing the state of the application based on information passed into
the macro as form data or information in the macro itself. There is no
capability to save macro variables across invocations, to rollback database
changes without explicitly undoing the changes made, or to treat database
changes across multiple browser sessions as one complete transaction.

With persistent macros, as an application developer, you can build your
application at a transaction level, invoking one or more macros while
maintaining a persistent connection. This means variable data is persistent
across invocations, so that you no longer need to pass information (such as
user login ID) between macro invocations as hidden variables. This includes
Net.Data table variables, which cannot be passed across invocations in
non-persistent macros. Most important, the application can rollback all the
work if the user decides to cancel out while in the middle of a transaction.

See “Invoking a Persistent Macro” on page 48 to learn about invoking
persistent macros.

This chapter describes the following topics:
v “About Persistent Macros”
v “Defining a Transaction” on page 134
v “Example of a Persistent Macro” on page 142

About Persistent Macros

When using persistent macros, Net.Data runs in a special persistent CGI
process of the Web server, receives input through standard input and
environment variables, and provides data through standard output. However,
after the output is returned to the Web server, The Web server does not have

© Copyright IBM Corp. 1997, 2001 133

to terminate the Net.Data process. Instead, the process remains active, waiting
for a response from the user through the Web browser. Because the process
does not terminate, Net.Data can maintain state information for the macro and
can leave transactions open.

Net.Data communicates to the Web server that it wants to run in a persistent
CGI process by sending the server a new HTTP header. Support for the new
header, “Accept-HTSession”, has been added to the AS/400 HTTP Server in
version 4, release 3 (V4R3). Net.Data decides what HTTP headers to send to
the server when it sends its first output, because the headers must precede the
output. This has the following implications to you when developing a
persistent macro:
v Net.Data must know at the time the first output is generated from the

macro whether or not this is to be a persistent macro.
v Using the new persistent macro built-in functions, you must specify the

macro is persistent before any output is generated.

These restrictions will be noted in the documentation that follows.

The characteristics of persistent Net.Data processes are very similar to those of
standard Net.Data processes with the following exceptions:
v They run in a pseudo-connection-oriented environment. The connection

between Net.Data and the Web server is persistent, but the connection
between the browser and the Web server still has no connection.

v They can have long running transactions. Because a single Net.Data process
can span multiple browser requests, transactions can be left open and
committed or rolled-back as appropriate based on subsequent browser
requests or error conditions.

v A persistent Net.Data process can consume more system resources because
it can remain active for potentially long periods of time. Care must be taken
in the management of those resources.

v Portability is reduced because the Web server must contain support for
persistence.

Defining a Transaction

A transaction can span one HTML block, multiple HTML blocks, or multiple
macros. When you specify that you want the macro to be persistent within a
transaction, you need to define the start and end of the transaction, as well as
which HTML blocks are included in the transaction. Net.Data provides
built-in functions that help you complete the following persistent macro tasks:
v “Starting a Transaction” on page 135
v “Specifying the Macro HTML blocks in a Transaction” on page 136
v “Ending a Transaction” on page 139

134 Net.Data Administration and Programming Guide

v “Defining the Scope of a Variable in a Transaction” on page 140
v “Specifying COMMIT and ROLLBACK in a Transaction” on page 141

Starting a Transaction
You start a transaction by indicating to Net.Data that a macro is persistent in
your macro before any output is sent to the browser. Net.Data then sends a
special HTTP header to the Web server to tell it that the macro requires
persistent CGI support.

To start a transaction:

Use one of the following methods in the macro before any output is sent to
the Web browser:
v Call the DTW_STATIC() built-in function.

The DTW_STATIC() function tells Net.Data that the current macro is
persistent.
Syntax: @DTW_STATIC (["timeout"])

Where timeout is an optional parameter that specifies the number of seconds
the Web server should wait for a response from the browser before ending
the transaction.
Example:
@DTW_STATIC("60")
%DEFINE {

var1 = "val1"
var2 = "val2"
%}

...

%HTML(input){
...

%}

%HTML(report){
...

%}

A timeout value of 60 seconds is specified for this transaction. If a response
is not received within 60 seconds from the browser, the Web server ends the
transaction. This does not affect the current page on the browser. However,
the next page, which would have been part of the transaction, is now part
of a new transaction.

v Define a variable with the STATIC attribute.
Syntax: %DEFINE(STATIC) var1 = "val1"

Example:

Chapter 7. Transaction Management with Persistent Macros 135

%DEFINE(STATIC) var1 = "val1"
%DEFINE var2 = "val2"
...
%HTML(input){
...
%}
%HTML(report){
...
%}

A statically defined variable keeps its value throughout a transaction, which
can span multiple Net.Data invocations.

Specifying the Macro HTML blocks in a Transaction
You define which HTML blocks are a part of your transaction by using an
identifier, called the transaction handle, in the URL request that invokes the
HTML blocks. There are three steps in defining and using a transaction
handle:
1. Define the transaction handle in your macro.
2. Call the DTW_ACCEPT built-in function to pass the handle name to

Net.Data and the Web server.
3. Specify the handle in the URL request to invoke your next HTML block.

To define a transaction handle:

1. Define a variable for the transaction handle in the DEFINE section. For
example:
%DEFINE handle=""

2. Optionally generate a unique transaction handle by specifying the
DTW_RTVHANDLE() built-in function in the DEFINE section.
Syntax: @DTW_RTVHANDLE(handle_name)

Example:
@DTW_STATIC()

%DEFINE handle = ""
@DTW_RTVHANDLE(handle)

The transaction handle can be any valid character string. However, the
DTW_RTVHANDLE() function provides a measure of security by generating a
unique transaction handle, preventing others from invoking a macro which
would run in your transaction.

To specify a transaction handle to Net.Data:

Specify the value of the transaction handle to Net.Data with the
DTW_ACCEPT() built-in function. Because this handle is part of the
information contained in the HTTP headers sent to the server, the

136 Net.Data Administration and Programming Guide

DTW_ACCEPT() function must be called before any output is generated by
the macro. Typically, it will be the first element in your HTML block.

Syntax: @DTW_ACCEPT(handle_name, ["timeout"])

Where timeout is an optional parameter that specifies the number of seconds
the Web server should wait for a response from the browser before ending the
transaction.

You can call DTW_ACCEPT() within an HTML block or outside of any HTML
block. If the function is called outside of any HTML block, the transaction
handle and the optional timeout values apply to all HTML blocks within the
macro.

Example 1: Specifies a transaction handle for subsequent URL requests to run
in this transaction
@DTW_STATIC()

%DEFINE handle = ""
@DTW_RTVHANDLE(handle)

%HTML(Block1){
@DTW_ACCEPT(handle)
...
%}

Important: When you call DTW_ACCEPT() as the first element in the HTML
block, ensure that there is no white space between the line on which the %HTML
statement is specified and the DTW_ACCEPT() call itself. Net.Data considers
the white space as text to send to the browser, and issues an error because the
DTW_ACCEPT() call is not found before data is sent to the browser.

Example 2: Specifies a transaction handle which applies to all HTML blocks in
the macro
@DTW_STATIC()

%DEFINE handle = ""
@DTW_RTVHANDLE(handle)

@DTW_ACCEPT(handle)

%HTML(Block1){
...
%}

%HTML(Block2){
...
%}

Chapter 7. Transaction Management with Persistent Macros 137

To specify the handle when invoking an HTML block that is to run in your
transaction:

After you have generated a transaction handle and called the
DTW_ACCEPT() function, only URLs with that transaction handle can run in
your transaction. The transaction handle must immediately follow the CGI
program name in the URL.

Note: When entering the statements in your code, the URL should be on one
line with no spaces, but it is split on two lines here for display
purposes.

v HTML link:
<a href="http://server/Net.Data_invocation_path/transaction_handle/
filename/block/[?name=val&...]">any text

v HTML form:
<form method=method
ACTION="http://server/Net.Data_invocation_path/transaction_handle/
filename/block/[?name=val&...]">any text</form>

v URL:
http://server/Net.Data_invocation_path/transaction_handle/
filename/block/[?name=val&...]

Parameters:

server Specifies the name of the Web server. If the server is the local server,
you can omit the server name and use a relative URL.

Net.Data_invocation_path
The path and filename of the Net.Data executable file. For example,
/cgi-bin/db2www/.

transaction_handle
Specifies which URLs are part of a transaction initiated by a Net.Data
macro. The identifier is obtained by calling the DTW_RTVHANDLE
built-in function and must follow the Net.Data_invocation_path.

filename
Specifies the name of the Net.Data macro. Net.Data searches for and
tries to match this file name with the path statements defined in the
MACRO_PATH initialization path variable. See “MACRO_PATH” on
page 23 for more information.

block Specifies the name of the HTML block in the referenced Net.Data
macro.

method Specifies the HTML method used with the form. METHOD=POST is
recommended.

138 Net.Data Administration and Programming Guide

?name=val&...
Specifies one or more optional parameters passed to Net.Data.

Typically you will provide HTML links to these URLs or specify the URL on a
form action tag in your macro.

Example 1: A typical HTML block with links to other macro invocations that
run in the same transaction
@DTW_STATIC()
...
%define handle = ""
@DTW_RTVHANDLE(handle)

%html(report) {
@DTW_ACCEPT(handle)
...
<a href="/cgi-bin/db2www/$(handle)/qsys.lib/mylib.lib/

macros.file/pcgi1.mbr/report2">continue

<a href="/cgi-bin/db2www/$(handle)/qsys.lib/mylib.lib/

macros.file/pcgi1.mbr/quit">quit

%}

Example 2: A typical HTML block with a FORM ACTION link to another
macro
@DTW_STATIC()
...
%define handle = ""
@DTW_RTVHANDLE(handle)

%html(input) {
@DTW_ACCEPT(handle)
...
<form method=post action="/cgi-bin/db2www/$(handle)/qsys.lib/
mylib.lib/macros.file/pcgi1.mbr/report2">
<p>What type of hardware do you want to see?
<menu>
<input type="radio" name="hdware" value="MON" checked />Monitors
<input type="radio" name="hdware" value="PNT" />Pointing devices
<input type="radio" name="hdware" value="PRT" />Printers
<input type="radio" name="hdware" value="SCN" />Scanners
</menu>
</form>
%}

Ending a Transaction
You end a transaction by indicating to Net.Data that you no longer want your
macro to be persistent.

To end the transaction:

Chapter 7. Transaction Management with Persistent Macros 139

Use the DTW_TERMINATE() built-in function to specify the end of a
transaction. Like the DTW_ACCEPT() function, this function must be called
before any output is generated by the macro and is typically specified as the
first element in an HTML block. DTW_TERMINATE tells Net.Data that this
invocation is the last invocation in the current transaction.

Syntax: @DTW_TERMINATE()

This function does not accept any parameters.

Example:
%html(quit) {
@DTW_TERMINATE()
...
%}

Defining the Scope of a Variable in a Transaction
You can decide what scope you want a variable to have in a transaction by
specifying the scope as an attribute of the %DEFINE statement. You can
specify

transaction scope
The variable scope is for the entire transaction.

single invocation scope
The variable scope is for a single Net.Data invocation.

To specify transaction scope for a variable:

Specify the attribute STATIC to indicate that the variable has transaction
scope, meaning the value of the variable is saved across all invocations in a
transaction. STATIC is the default for persistent macros. For example:
@dtw_static()
%define(static) var1 = "val1"

To specify single invocation scope for a variable:

Specify the attribute TRANSIENT to indicate that the variable has single
invocation scope, meaning the value of the variable will be re-initialized on
each invocation. TRANSIENT is the default for non-persistent macros. For
example:
@dtw_static()
%define(transient) var1 = "val1"

In a persistent macro:
v All variables that follow the DTW_STATIC() call are STATIC if they are not

explicitly defined as TRANSIENT.

140 Net.Data Administration and Programming Guide

v All variables that precede the DTW_STATIC() call are TRANSIENT if they
are not explicitly defined as STATIC.

Specifying COMMIT and ROLLBACK in a Transaction
In a non-persistent macro, a commit or rollback is done implicitly by Net.Data
at the end of the macro invocation based on the success or failure of the
invocation. With persistent macros, the commit or rollback is now done at the
end of the transaction. However, because a transaction can span many macro
invocations, you might want to commit or rollback changes incrementally
within the transaction.

To commit pending changes during a transaction:

Specify the DTW_COMMIT() built-in function.

This function does not take any parameters and executes all changes pending
in the transaction.

For example:
%html (report) {
@dtw_accept(handle)
...
%IF (action="Enter")
@dtw_commit()
%ENDIF

%}

To rollback pending changes in the transaction:

Specify the DTW_ROLLBACK() built-in function.

This function does not take any parameters and backs out all changes pending
in the transaction.

For example:
%html (report) {
@dtw_accept(handle)
...
%IF (action="Cancel")
@dtw_rollback()
%ENDIF

%}

Chapter 7. Transaction Management with Persistent Macros 141

Example of a Persistent Macro

The following simple macro contains multiple HTML blocks that run in a
single transaction:
@dtw_static()
%define a = "0"
%define(transient) b = "0"
%define handle = ""
@dtw_rtvhandle(handle)

%html(report) {
@dtw_accept(handle)
a = $(a)

b = $(b)

@dtw_add(a, "2", a)
@dtw_add(b, "2", b)

click here to continue

click here to quit

%}

%html(report2) {
@dtw_accept(handle)
a = $(a)

b = $(b)

@dtw_add(a, "2", a)
@dtw_add(b, "2", b)

Click here to continue

Click here to quit

%}

%html(report3) {
@dtw_accept(handle)
a = $(a)

b = $(b)

@dtw_add(a, "2", a)
@dtw_add(b, "2", b)

Click here to quit

%}

%html(quit) {
@dtw_terminate()
a = $(a)

b = $(b)

done
%}

Assuming the first call is to the HTML block report, Net.Data:

142 Net.Data Administration and Programming Guide

1. Calls the DTW_STATIC() function, which indicates that this macro is
persistent.

2. Creates variable a as a STATIC variable because the default for persistent
macros is STATIC.

3. Creates variable b as a TRANSIENT variable because it is explicitly
defined with the TRANSIENT attribute.

4. Calls DTW_RTVHANDLE(), which generates a transaction handle and
puts it in the variable handle.

5. Starts processing the HTML block report and calls DTW_ACCEPT(),
which tells Net.Data what the transaction handle is for this transaction.

6. Finds output to send to the browser, which causes Net.Data to send the
HTTP header to the Web server indicating a transaction is starting.

7. Displays the HTML page. The variables a and b both have a value of 0.

After the first page output is sent to the browser, users can choose to either
continue with the transaction or quit. If they choose to continue, the Web
server invokes URL:
/cgi-bin/db2www/$(handle)/qsys.lib/mylib.lib/macros.file/pcgi1.mbr/report2

The Web server recognizes the transaction handle as the one specified by
Net.Data in the HTTP header. It invokes Net.Data as a persistent CGI
program, which means the macro invocation is part of the current transaction.

When the HTML block report2 is invoked, Net.Data:
1. Calls the DTW_STATIC() function, which indicates this macro is persistent.
2. Recognizes that variable a is a STATIC variable and keeps the current

value rather than re-initializing it to 0.
3. Recognizes that variable b is a TRANSIENT variable, creates a new

instance of the variable, and initializes it to 0.
4. Calls DTW_RTVHANDLE(), which generates a transaction handle and

puts it in the variable handle.
5. Starts processing the HTML block report2 and calls DTW_ACCEPT(),

which tells Net.Data what the transaction handle is for this transaction.
6. Finds output to send to the browser, which causes Net.Data to send the

HTTP header to the server indicating a transaction is continuing.
7. Displays the HTML page. Variable a will have a value of 2 and variable b

will have a value of 0. The value of variable a is saved from the previous
invocation because it is a static variable. The value of variable b is reset to
0.

After the second page is sent to the browser, the user can choose to either
continue with the transaction or quit. If they choose to quit, the Web server
invokes the following URL:

Chapter 7. Transaction Management with Persistent Macros 143

/cgi-bin/db2www/$(handle)/qsys.lib/mylib.lib/macros.file/pcgi1.mbr/quit

The Web server recognizes the transaction handle as the one specified by
Net.Data in the HTTP header, and invokes Net.Data as a persistent CGI
program, which means the macro invocation is part of the current transaction.

When the HTML block quit is invoked, Net.Data:
1. Calls the DTW_STATIC() function, which indicates this macro is persistent.
2. Recognizes that variable a is a STATIC variable and keeps the current

value rather than re-initializing it to 0.
3. Recognizes that variable b is a TRANSIENT variable, creates a new

instance of the variable, and initializes it to 0.
4. Calls DTW_RTVHANDLE(), which generates a transaction handle and

puts it in the variable handle.
5. Starts processing the HTML block quit and calls DTW_TERMINATE(),

which tells Net.Data that this is the last invocation in this transaction.
6. Finds output to send to the browser, which causes Net.Data to send the

HTTP header to the server indicating a transaction is ending.
7. Displays the HTML page. Variable a has a value of 4 and variable b has a

value of 0.
8. Cleans up all variables and other resources that have transaction level

scope, because the DTW_TERMINATE() call has been executed.

144 Net.Data Administration and Programming Guide

Chapter 8. Improving Performance

Improving performance is an important part of tuning your system. This
chapter discusses strategies for improving the performance of Net.Data. The
following topics are discussed:
v Using the web Server APIs
v “Net.Data Caching of Macros”
v “Optimizing the Language Environments”

In addition, ensure that your Web server has been properly tuned. The
performance of your Web server has a direct effect on response time,
independently of how fast Net.Data processes a macro or direct request.

Net.Data Caching of Macros

With Net.Data for OS/400, macro caching is enabled by default and is used to
improve throughput and reduce CPU utilization. When macro caching is
enabled, preprocessed macros are cached in memory when the macros are
first invoked. These preprocessed versions are then available for reuse,
thereby eliminating the costs associated with reading in the macros from HFS
and processing them each time they are requested. The cached version of a
macro is available to a requestor that has read permission for the file
containing the macro.

The amount of memory that the preprocessed version of the macro uses is
approximately twice the size of the macro itself. You can control the amount
of memory that will be used for the caching of macros by using the caching
configuration variable. For more information on using this variable, see
“DTW_MACRO_CACHE_SIZE: Macro Cache Size Variable” on page 12.

Optimizing the Language Environments

The following sections describes techniques you can use to improve
performance when using the Net.Data-provided language environments.
v “REXX Language Environment”
v “SQL Language Environment” on page 146
v “System Language Environment” on page 147

REXX Language Environment
Use the following tips to improve the performance of your Net.Data
application:

© Copyright IBM Corp. 1997, 2001 145

v Combine your REXX programs where possible. Having fewer, larger
programs provides better performance than more smaller programs because
the REXX interpreter is initialized each time a REXX language environment
function is called in the macro.

v Store the REXX program in an external file instead of including the REXX
program inline in the Net.Data macro.

v For external REXX programs, reference the global variables on the
command line in the %EXEC statement.

v Pass input-only parameters directly to a REXX program by defining global
Net.Data variables and referencing the variables. For inline REXX programs,
reference the global variables directly in your REXX source.

v To avoid the overhead of launching the REXX interpreter, consider using
MACRO_FUNCTION blocks as an alternative to REXX programs.

SQL Language Environment
To learn about DB2 performance considerations, see DB2 for 0S/400 SQL
Programming. This publication has a wealth of information, such as effectively
using SQL indexes, improving performance of join queries, and improving
performance when selecting data from more than two tables.

Use the following SQL language environment techniques to improve
performance.
v Reduce the number of user IDs connecting to a database to avoid

reconnecting to the database. The SQL language environment associates a
user-profile and password to any remote connections to databases that it
establishes. If the LOGIN and PASSWORD variables do not match the
user-profile and password associated with an opened connection, the
connection is closed and re-established, and the LOGIN and PASSWORD
values are associated with the re-opened connection.

v Use the START_ROW_NUM and RPT_MAX_ROWS Net.Data variables to
reduce the size of returned tables. If, on a SELECT SQL statement, the
result set contains hundreds of records, return a subset of the result set
back to the browser by using the START_ROW_NUM like a scrollable
cursor and RPT_MAX_ROWS to limits the number of records returned. You
should be aware that Net.Data reissues the query every time since there is
no notion of state. However, you can use Net.Data support for persistent
macros to store the result set in a Net.Data table that persists for the life of
the transaction. See “Chapter 7. Transaction Management with Persistent
Macros” on page 133 to learn more about persistent Net.Data macros.

v When you have SQL statements where the only information that changes is
the input values in a WHERE clause, consider taking advantage of the
DTW_USE_DB2_PREPARE_CACHE feature of Net.Data. Set this value to
″YES″ in the initialization file, or in individual macros if you do not want it
to apply globally. This setting tells Net.Data to use host variables for the

146 Net.Data Administration and Programming Guide

input values, helping DB2 prepare statements more quickly. See (some
section in Chapter 6) for more information on how to use this variable.

v Consider using a stored procedure to handle complex database tasks. Using
embedded SQL and understanding the structure of result sets reduces the
overhead Net.Data uses to dynamically describe results. For more
information on the performance trade-offs when using stored procedures,
see the DB2 Administration Guide.
Note that starting in OS/400 V4R2, the SQL engine has a prepared
statement cache. Using the cache, the SQL engine stores away information
about prepared statements, and keeps this information in system-wide
storage. Then, when the same statement is executed again, even if its by a
different user and a different job, the statement will run much faster. The
system-wide prepared statement cache is part of normal SQL processing
and requires no user action to configure or enable it. The cache may reduce
any performance benefits that the static SQL might have over dynamic SQL.

System Language Environment
Pass input-only parameters directly to the program that the System language
environment is invoking by defining global Net.Data variables and referencing
the variables.

Net.Data for OS/400 has introduced a new language environment called
Direct Call, which provides easier and more efficient interface for calling
programs. Use the System language environment to issue commands; use the
Direct Call language environment to call programs

Chapter 8. Improving Performance 147

148 Net.Data Administration and Programming Guide

Chapter 9. Serviceability Features

The following sections describe tracing and error reporting features for
Net.Data.
v “Net.Data Trace Log”
v “Net.Data Error Log” on page 150

Net.Data Trace Log

Tracing allows you to monitor Net.Data as it processes a macro. As Net.Data
executes a macro, it will write out trace information that includes the
functions being called, the parameters being passed (both input and output),
and the errors that may be encountered.

Tracing is mainly used for service calls, but it can also be used by customers
who are debugging their applications.

To enable tracing, you need to set where the trace log is stored and what level
of trace data Net.Data needs to capture. This is done by setting the
configuration variables DTW_TRACE_LOG_DIR and
DTW_TRACE_LOG_LEVEL, respectively. For more information, see
“DTW_TRACE_LOG_LEVEL: Level of Trace to Log” on page 17 and
“DTW_TRACE_LOG_DIR: Location of Trace File” on page 17.

Net.Data logs trace records to the file, netdata.trace. In order for Net.Data to
successfully write trace records to the trace log file, the user IDs under which
Net.Data executes must have:
v Write authority on the log directory specified in the

DTW_TRACE_LOG_DIR configuration variable.
v Execute authority on all directories in the path, including the log directory.

By default, trace records from the processing of a macro running in one
thread are interleaved with trace records from the processing of a macro
running in another thread. The default works well if you have total control
over what URL is to be invoked against your Web site (as is the case in a
development environment). However, in a high traffic environment, having
the trace records of the processing of other macros interleaved with trace
records that you may be interested in makes it hard to follow the flow of the
processing of a macro. You can indicate to Net.Data whether trace records
should or should not be merged into one file by setting the value of the
configuration variable, DTW_TRACE_MERGE_RECORDS to NO, in which
case Net.Data will log trace records to a file named netdata.trace.XXXX, where

© Copyright IBM Corp. 1997, 2001 149

’XXXX’ is the process/thread identifier. For more information, see
“DTW_TRACE_MERGE_RECORDS: Merge Trace Records” on page 18.

If tracing is enabled, you can write your own trace messages to the Net.Data
trace. To do this, simply pass the message as a parameter to the built-in
function DTW_LOG_TRACEMSG(). See the IBM Net.Data Reference book for
more information on how to use the built-in function
DTW_LOG_TRACEMSG().

Net.Data Error Log

Error logging allows you to have Net.Data errors logged to a file. If you are in
the process of creating or enhancing a Net.Data application, you may want to
log all error messages to ensure that known or expected errors are caught by
message blocks. You may also want to track down unexpected errors. In
production phase, log all uncaught error messages. Uncaught error messages
indicate that something is wrong with your application. Periodically, check the
error log to see if your application is working as expected. If error logging is
disabled, the only way that you can know if something is wrong with your
application is from your users.

To enable error logging, you need to set where the error log is stored and
what level of error messages Net.Data needs to capture. This is done by
setting the configuration variables DTW_ERROR_LOG_DIR and
DTW_ERROR_LOG_LEVEL, respectively. For more information, see
“DTW_ERROR_LOG_LEVEL: Level of Error to Log” on page 11 and
“DTW_ERROR_LOG_DIR: Location of Error Log” on page 11.

Net.Data logs error records to the file, netdata.error.log. In order for
Net.Data to successfully write error records to the error log file, the user IDs
under which Net.Data executes must have:
v Write authority on the log directory specified in the

DTW_ERROR_LOG_DIR configuration variable.
v Execute authority on all directories in the path, including the log directory.

If error logging is enabled, you can write your own error records to the
Net.Data error log. To do this, simply pass the message as a parameter to the
built-in function DTW_LOG_ERRORMSG(). See the IBM Net.Data Reference
book for more information on how to use the built-in function
DTW_LOG_ERRORMSG().

150 Net.Data Administration and Programming Guide

Appendix A. Bibliography

Net.Data Technical Library

The Net.Data Technical Library is available from the Net.Data Web site at
http://www.ibm.com/software/data/net.data/library.html

Document Description

v Net.Data Administration
and Programming Guide
for OS/390

v Net.Data Administration
and Programming Guide
for OS/2, Windows NT,
and UNIX

v Net.Data Administration
and Programming Guide
for OS/400

Contains conceptual and task information about
installing, configuring, and invoking Net.Data. Also
describes how to write Net.Data macros, use Net.Data
performance techniques, use Net.Data language
environments, manage connections, and use Net.Data
logging and traces for trouble shooting and performance
tuning.

Net.Data Reference Describes the Net.Data macro language, variables, and
built-in functions.

Net.Data Language
Environment Interface
Reference

Describes the Net.Data language environment interface.

Net.Data Messages and
Codes Reference

Lists Net.Data error messages and return codes.

Related Documentation

The following documents might be useful when using Net.Data and related
products:
v DB2 for 0S/400 SQL Programming

v OS/400 Distributed Database Programming

Additionally, OS/400 documentation and redbooks, including books about
DB2, are available at the following URL:
http://publib.boulder.ibm.com/html/as400/infocenter.html

© Copyright IBM Corp. 1997, 2001 151

152 Net.Data Administration and Programming Guide

Appendix B. Net.Data Sample Macro

This sample macro application displays a list of employees names from which
the application user can obtain additional information about an individual
employee by selecting the employee’s name from the list. The macro uses the
SQL language environment to query the EMPLOYEE table for both the
employee names and the information about a specific employee.

The macro uses an include file, which contains the DEFINE block for the
macro.

Figure 12 on page 154 shows the sample macro. Figure 13 on page 156 shows
the include file.

© Copyright IBM Corp. 1997, 2001 153

%{************************ Sample Macro *****************************
* FileName = sqlsamp1.dtw *
* Description: *
* This Net.Data macro queries... *
* - The EMPLOYEE table to create a selection list of *
* employees for display at a browser *
* - The EMPLOYEE table to obtain additional information *
* about an individual employee *
* *
**%}
%{***
* Include for global DEFINEs - *
**%}
%INCLUDE "sqlsamp1.hti"
%}
%{**
* Function: queryDB Language Environment: SQL *
* Description: Queries the table designated by the variable myTable and *
* creates a selection list from the result. The value of the variable *
* myTable is specified in the include file sqlsamp1.hti. *
**%}
%FUNCTION(DTW_SQL) queryDB() {
SELECT FIRSTNME FROM EMPLOYEE
%MESSAGE {

-204: {<p>ERROR -204: Table EMPLOYEE not found. </p>
%} : exit

+default: "WARNING $(RETURN_CODE)" : continue
-default: "Unexpected ERROR $(RETURN_CODE)" : exit

%}

%REPORT {
<select name="emp_name">
%ROW{
<option>$(V1)</option>
%}
</select>
%}
%}

%{**
* Function: fname Language Environment: SQL *
* Description: Queries the table designated by the variable myTable for *
* additional information about the employee identified by the *
* variable emp_name. *
**%}
%FUNCTION(DTW_SQL) fname(){
SELECT FIRSTNME, PHONENO, JOB FROM EMPLOYEE WHERE FIRSTNME='$(emp_name)'
%MESSAGE {

-204: "Error -204: Table not found "
-104: "Error -104: Syntax error"
100: "Warning 100: No records" : continue
+default: "Warning $(RETURN_CODE)" : continue
-default: "Unexpected SQL error" : exit

%}
%}

Figure 12. Sample macro (Part 1 of 3)
154 Net.Data Administration and Programming Guide

%{***
* HTML block: INPUT Title: Dynamic Query Selection *
* *
* Description: Queries the EMPLOYEE table to create a selection list *
* of the employees for display at the browser *
**%}
%HTML(INPUT) {
<html>
<head>
<title>Generate Employee Selection List</title>
</head>
<body>
<h3>$(exampleTitle)</h3>
<p>This example queries a table and uses the result to create
a selection list using a %REPORT block. </p>
<hr />
<form method="post" action="report">
@queryDB()
<input type="submit" value="Select Employee" />
</form>
<hr />
</body>
</html>
%}

Figure 12. Sample macro (Part 2 of 3)

Appendix B. Net.Data Sample Macro 155

%{***
* HTML block: REPORT *
* Description: Queries the EMPLOYEE table to obtain additional information *
* about an individual employee *
**%}
%HTML(REPORT) {
<html>
<head>
<title>Obtain Employee Information</title>
</head>
<body>
<h3>You selected employee name = $(emp_name)</h3>
<p>Here is the information for that employee:
<pre>
@fname()
</pre></p>
<hr />Return to previous page
</body>
</html>
%}

%{ End of Net.Data macro 1 %}

Figure 12. Sample macro (Part 3 of 3)

===
%{**************************** Include File *********************************
* FileName = sqlsamp1.hti *
* Description: *
* This include file provides global DEFINEs for the sqlsamp1.dtw *
* Net.Data macro. *
**%}
%define {

emp_name =""
reposition = sign
exampleTitle = "Sample Macro"
%}

%{ End of include file %}

Figure 13. Include file

156 Net.Data Administration and Programming Guide

Notices

This information was developed for products and services offered in the
U.S.A. IBM may not offer the products, services, or features discussed in this
document in other countries. Consult your local IBM representative for
information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or
imply that only that IBM product, program, or service may be used. Any
functionally equivalent product, program, or service that does not infringe
any IBM intellectual property right may be used instead. However, it is the
user’s responsibility to evaluate and verify the operation of any non-IBM
product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give
you any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
500 Columbus Avenue
Thornwood, NY 10594
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the
IBM Intellectual Property Department in your country or send inquiries, in
writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any
other country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY
OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow
disclaimer of express or implied warranties in certain transactions, therefore,
this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will

© Copyright IBM Corp. 1997, 2001 157

be incorporated in new editions of the publication. IBM may make
improvements and/or changes in the product(s) and/or the program(s)
described in this publication at any time without notice.

Any references in this publication to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those
Web sites. The materials at those Web sites are not part of the materials for
this IBM product and use of those Web sites is as your own risk.

Licensees of this program who wish to have information about it for the
purpose of enabling: (i) the exchange of information between independently
created programs and other programs (including this one) and (ii) the mutual
use of the information which has been exchanged, should contact:

IBM Corporation
W92/H3
555 Bailey Avenue
P.O. Box 49023
San Jose, CA 95161-9023
U.S.A.

Such information may be available, subject to appropriate terms and
conditions, including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer
Agreement, IBM International Program License Agreement, or any equivalent
agreement between us.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available
sources. IBM has not tested those products and cannot confirm the accuracy
of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be
addressed to the suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to change
or withdrawal without notice, and represent goals and objectives only.

This information is for planning purposes only. The information herein is
subject to change before the products described become available.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include
the names of individuals, companies, brands, and products. All of these
names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental.

158 Net.Data Administration and Programming Guide

Trademarks

The following terms are trademarks of the IBM Corporation in the United
States or other countries or both:

AIX
AS/400
DB2
DB2 Universal Database
DRDA
DataJoiner
IBM
IMS

Language Environment
MVS/ESA
Net.Data
OS/2
OS/390
OS/400
OpenEdition

The following terms are trademarks of other companies as follows:

Java and all Java-based trademarks and logos are trademarks of Sun
Microsystems, Inc. in the United States and/or other countries.

UNIX is a registered trademark in the United States and/or other countries
licensed exclusively through X/Open Company Limited.

Lotus and Domino Go Webserver are trademarks of Lotus Development
Corporation in the United States and/or other countries.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks or
registered trademarks of Microsoft Corporation in the United States and/or
other countries.

Other company, product, and service names, which may be denoted by a
double asterisk (**), may be trademarks or service marks of others.

Notices 159

160 Net.Data Administration and Programming Guide

Index

A
access rights

for language environments 101
for Net.Data files 29

accessing DB2 113
authentication, security 35
authorization

security 37
specifying access rights to

Net.Data files 29

B
blanks, variable for removing

extra 13
BLOBs 116
blocks, macro 54

C
caching macros, cache size 12
calling

functions 80
Java applications 106
language environments 100
programs, Direct Call 101
programs, System 130
REXX programs 107, 109
stored procedures 122, 124

CGI-BIN library, copying Net.Data
program object 5

CLOBs 116
COMMIT 120
common errors when passing

parameters 105, 121
conditional

logic, IF blocks 94
variables 67

configuration variable statements
configuring in the initialization

file 9
description 9
DTW_DEFAULT_ERROR_MESSAGE 10
DTW_ERROR_LOG_DIR 11
DTW_ERROR_LOG_LEVEL 11
DTW_JAVA_VMOPTIONS 19
DTW_MACRO_CACHE_SIZE 12
DTW_PAD_PGM_PARMS 12
DTW_PROCESS_REPORT_ON_ERROR 19
DTW_REMOVE_WS 13

configuration variable statements
(continued)

DTW_RESRICT_PATH_SEARCH 19
DTW_SHOWSQL 13
DTW_SMTP_CCSID 14
DTW_SMTP_CHARSET 14
DTW_SMTP_SERVER 15
DTW_SQL_ISOLATION 16
DTW_SQL_NAMING_MODE 17
DTW_TRACE_LOG_DIR 17
DTW_TRACE_LOG_LEVEL 17
DTW_TRACE_MERGE_RECORDS 18

configuring Net.Data
access rights to Net.Data files 29
initialization file

configuration variable
statements 9

creating 7
description 6
ENVIRONMENT

statements 24
path statements 20
updating 7

overview 5
setting up language

environments 27
copying Net.Data program object

to CGI-BIN library 5
to multiple libraries 6

creating initialization file 8

D
data types

DATALINK 119
for Direct Call 102
for stored procedures 123
LOBs 116

DATALINK data type
DataLink File Manager 119
Encoding URLs 119

DBCLOBs 116
declaration part, macro structure 51
default reports

printing 89
specifying for stored

procedures 126
DEFINE block

defining variables 63
description 54

defining variables
DEFINE statement or block 63
HTML form SELECT, INPUT,

and TEXTAREA tags 64
query string data 65

Direct Call language environment
calling programs 101
common errors when passing

parameters 105
overview 101
passing parameters 102
returning values from

programs 105
supported data types 102

DTW_ATTACHMENT_PATH 20
DTW_DEFAULT_ERROR_MESSAGE 10
DTW_DEFAULT_REPORT 91
DTW_DIRECTCALL 101
DTW_ERROR_LOG_DIR 11
DTW_ERROR_LOG_LEVEL 11
DTW_JAVA_CLASSPATH 21
DTW_JAVA_VMOPTIONS 19
DTW_JAVAPPS 106
DTW_LOB_DIR 11
DTW_MACRO_CACHE_SIZE 12
DTW_PAD_PGM_PARMS 12
DTW_PROCESS_REPORT_ON_ERROR 19
DTW_REMOVE_WS 13
DTW_RESRICT_PATH_SEARCH 19
DTW_REXX 107
DTW_SHOWSQL 13
DTW_SMTP_CCSID 14
DTW_SMTP_CHARSET 14
DTW_SMTP_SERVER 15
DTW_SQL 113
DTW_SQL_ISOLATION 16
DTW_SQL_NAMING_MODE 17
DTW_SYSTEM 130
DTW_TRACE_LOG_DIR 17
DTW_TRACE_LOG_LEVEL 17
DTW_TRACE_MERGE_RECORDS 18
DTW_UPLOAD_DIR 18, 47
dynamically generating variable

names 65

E
encoding DataLink URLs in result

sets 119
encryption, network 35

© Copyright IBM Corp. 1997, 2001 161

ENVIRONMENT statements
configuring in the initialization

file 24, 25
description 24
example 26
for user-defined language

environments 8
language environment type 25
parameter list 26
service program 26
syntax 25

environment variables 67
error conditions, language

environments 101
executable variables 68
executing commands 130
executing SQL statements 113

F
FFI_PATH 22
files

specifying access rights to
Net.Data 29

uploading 18, 47
firewalls 33
flat file functions 85
footer information, REPORT

block 89
formatting data output 88
forms

in Web pages to invoke
Net.Data 46

invoking Net.Data 44, 48, 138
using the FILE input type 47

FUNCTION block
calling functions 80
description 54
formatting output 88
identifier scope 62

function calls
built-in 81
syntax 80

functions
calling 80
calling stored procedures 122
defining 75
description 75
flat file 85
FUNCTION block syntax 75
general purpose 83
java applet 85
MACRO_FUNCTION block

syntax 75
math 84
persistent 86

functions (continued)
string 84
table 85
user-defined 75
Web Registry 86
word 84

G
general purpose functions 83
global identifier scope 62

H
header information, REPORT

block 89
hidden variables

conceal variable names 69
protecting assets 37

HTML
blocks

description 55
example 87
invoking Net.Data 86
processing 88

FORM Submit button 88
forms

about 46
invoking Net.Data 44, 48,

138
SELECT, INPUT, and

TEXTAREA tags, defining
variables 64

generating in a macro 86
links

about 45
invoking Net.Data 43, 48,

138
tags for tables 89
unrecognized data as 88

I
identifier scope 62
IF blocks 94
improving performance 145
INCLUDE_PATH 22
initialization file

configuration variable
statements 9

creating 7, 8
description 6
ENVIRONMENT statements 24
format 7
path statements 20
updating 7

invoking Net.Data
forms 44, 48, 138
HTML blocks 86

invoking Net.Data (continued)
links 43, 48, 138
overview 43
URLs 44, 48, 138
using CGI 43
with a macro 43

J
java applet functions 85
Java Application language

environment
calling programs 106
overview 106
passing parameters 107
setting up 27

L
language environments

calling 100
configuring ENVIRONMENT

statements 24
configuring in the initialization

file 24
Direct Call 101
examples 24
handling error conditions 101
Java Application 106
REXX 107
security 101
setting up 27
SQL 113
supported 100
System 130
variables 74

large objects (LOBs)
description 116
supported types 116
valid formats 117

links
in Web pages to invoke

Net.Data 45
invoking Net.Data 43, 48, 138

list variables 70
LOBs 116
looping, WHILE blocks 97

M
MACRO_FUNCTION block

calling functions 80
syntax 75

MACRO_PATH 23
macro request

examples 43
syntax 43

macros
anatomy 52

162 Net.Data Administration and Programming Guide

macros (continued)
blocks 54
conditional logic 94
declaration part 51
DEFINE block 54
description 1
developing 51
FUNCTION block 54
functions 75
generating HTML 86
HTML block 55
identifier scope 62
IF blocks 94
looping 97
navigation within and

between 56
persistent 133
presentation part 51
sample 52
variables 61
WHILE blocks 97

math functions 84
MESSAGE block

description 79
example 79
processing 79
scope 79
syntax 79

miscellaneous variables 72
multiple report blocks 91

N
navigation, within and between

macros 56
Net.Data

configuring 5
files, access rights 29
invoking 43
macros, developing 51
overview 1
security mechanisms 37

Net.Data macros. See macros. 1
Net.Data Program Object

copying to CGI-BIN libraries 5
copying to multiple libraries 6

Notices 157

P
parts of a macro

declaration 51
presentation 51

passing parameters
Direct Call language

environment 102

passing parameters (continued)
Java Application language

environment 107
REXX programs 110
stored procedures 125
System language

environment 130
path statements

configuring in the initialization
file 20

DTW_ATTACHMENT_PATH 20
DTW_JAVA_CLASSPATH 21
DTW_LOB_DIR 11
DTW_UPLOAD_DIR 18
EXEC_PATH 21
FFI_PATH 22
INCLUDE_PATH 22
MACRO_PATH 23
protecting assets 37
update guidelines 20

performance
optimizing language

environments 145
REXX language

environment 145
SQL language environment 146
System language

environment 147
persistent functions 86
persistent macros 133
printing, disabling for default

reports 89
processing result sets, stored

procedures 125
protecting assets 33

R
referencing variables 65
REPORT block

stored procedures 126
REPORT blocks

default reports 91
description 88
examples 91
formatting data output 88
guidelines for multiple 93
header and footer

information 89
multiple 91
restrictions 93
scope 63
stored procedures 127

report formats, customizing 90
report variables 73

reports
default 91
generating multiple with one

function call 91
result sets

multiple
default reports 126
guidelines and

restrictions 93
processing, stored

procedures 125
single 126

RETURN_CODE variable 79, 101
returning values from

programs 105
REXX language environment

calling programs 109
overview 107
passing parameters 110

ROW block, identifier scope 63

S
sample macro 153
scope, identifier

FUNCTION block 62
global 62
macro 62
REPORT block 63
ROW block 63

security
authentication 35
authorization 37
firewall 33
language environments 101
Net.Data mechanisms 37
network encryption 35
overview 33
specifying access rights 29, 101

SQL
isolation configuration

variable 16
naming mode configuration

variable 17
SQL language environment

common errors when passing
parameters 121

executing SQL statements 113
overview 113
setting up 27

SQL statements, executing 113
SQLCODEs 101
starting Net.Data 43
stored procedures

calling from macro 122
default reports 126

Index 163

stored procedures (continued)
multiple result sets 126
passing parameters 125
processing result sets 125
REPORT blocks 126, 127
single result sets 126
steps 124
valid data types 123

string functions 84
System language environment

calling programs 130
issuing commands 130
overview 130
passing parameters 130

T
table functions 85
table processing variables 73
table variables 71
token sizes 61
transaction processing 133
TRANSACTION_SCOPE 120
types, variable 67

U
uploading files 18, 47
URLs

defining variables 65
invoking Net.Data 44, 48, 138

user-defined functions 75
user-defined language environments,

ENVIRONMENT statements 8

V
variables

conditional 67
configuration, statements

description 9
DTW_ERROR_LOG_DIR 11
DTW_ERROR_LOG_LEVEL 11
DTW_JAVA_VMOPTIONS 19
DTW_PROCESS_REPORT_ON_ERROR 19
DTW_RESRICT_PATH_SEARCH 19
DTW_TRACE_LOG_DIR 17
DTW_TRACE_LOG_LEVEL 17
DTW_TRACE_MERGE_RECORDS 18
e-mail SMTP CCSID

(DTW_SMTP_CCSID) 14
e-mail SMTP character set

(DTW_SMTP_CHARSET) 14
e-mail SMTP server

(DTW_SMTP_SERVER) 15
initialization file 9
macro cache size

(DTW_MACRO_CACHE_SIZE) 12

variables (continued)
configuration, statements

(continued)
padding parameters with

blanks
(DTW_PAD_PGM_PARMS) 12

removing extra blanks
(DTW_REMOVE_WS) 13

SHOWSQL enablement
(DTW_SHOWSQL) 13

SMTP character sets
(DTW_SMTP_CHARSET) 14

SMTP server
(DTW_SMTP_SERVER) 15

SQL isolation
(DTW_SQL_ISOLATION) 16

SQL naming mode
(DTW_SQL_NAMING_MODE) 17

defining 63
description 61
dynamically-generated

references 65
environment 67
executable 68
generating names

dynamically 65
hidden 69
language environment 74
list 70
miscellaneous 72
referencing 65
report 73
scope 62
table 71
table processing 73
token sizes 61
types 61, 67

W
Web Registry functions 86
WHILE blocks 97
white space, variable for removing

extra 13
word functions 84

164 Net.Data Administration and Programming Guide

����

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

	Contents
	Preface
	About Net.Data
	What's New in this Release?
	About This Book
	Who Should Read This Book
	About Examples in This Book

	How to send your comments

	Chapter 1. Introduction
	What is Net.Data?
	Why Use Net.Data?

	Chapter 2. Configuring Net.Data
	Copying the Net.Data Program Object to Your CGI-BIN Library
	About the Net.Data Initialization File
	Customizing the Net.Data Initialization File
	Creating an Initialization File
	Configuration Variable Statements
	DTW_DEFAULT_ERROR_MESSAGE: Specify Generic Error Messages
	DTW_ERROR_LOG_DIR: Location of Error Log
	DTW_ERROR_LOG_LEVEL: Level of Error to Log
	DTW_LOB_DIR
	DTW_MACRO_CACHE_SIZE: Macro Cache Size Variable
	DTW_PAD_PGM_PARMS: Parameter Padding Configuration Variable
	DTW_REMOVE_WS: Variable for Removing Extra White Space
	DTW_SHOWSQL: Enable or Disable SHOWSQL Configuration Variable
	DTW_SMTP_CCSID: E-mail SMTP CCSID Variable
	DTW_SMTP_CHARSET: E-mail SMTP Character Set Variable
	DTW_SMTP_SERVER: E-mail SMTP Server Variable
	DTW_SQL_ISOLATION: DB2 Isolation Variable
	DTW_SQL_NAMING_MODE: SQL Table Naming Variable
	DTW_TRACE_LOG_DIR: Location of Trace File
	DTW_TRACE_LOG_LEVEL: Level of Trace to Log
	DTW_TRACE_MERGE_RECORDS: Merge Trace Records
	DTW_UPLOAD_DIR
	DTW_RESTRICT_PATH_SEARCH: Restrict Path Search
	DTW_PROCESS_REPORT_ON_ERROR: Process Report On Error
	DTW_JAVA_VMOPTIONS: Java Virtual Machine Options

	Path Configuration Statements
	DTW_ATTACHMENT_PATH
	DTW_JAVA_CLASSPATH
	EXEC_PATH
	FFI_PATH
	INCLUDE_PATH
	MACRO_PATH

	Environment Configuration Statements

	Setting Up Net.Data Language Environments
	Setting up the Java Application Language Environment
	Setting up the SQL Language Environment

	Configuring the Web Server
	Granting Access Rights to Objects Accessed by Net.Data

	Chapter 3. Keeping Your Assets Secure
	Using Firewalls
	Encrypting Your Data on the Network
	Using Authentication
	Using Authorization
	Using Net.Data Mechanisms
	Net.Data Configuration Variables
	Macro Development Techniques

	Chapter 4. Invoking Net.Data
	Invoking Net.Data with a Macro (Macro Request)
	HTML Links
	HTML Forms

	Invoking a Persistent Macro
	Persistent Macro Syntax
	Examples

	Chapter 5. Developing Net.Data Macros
	Anatomy of a Net.Data Macro
	The DEFINE Block
	The FUNCTION Block
	HTML Blocks
	XML Blocks

	Net.Data Macro Variables
	Identifier Scope
	Defining Variables
	Referencing Variables
	Variable Types
	Conditional Variables
	Environment Variables
	Executable Variables
	Hidden Variables
	List Variables
	Table Variables
	Miscellaneous Variables
	Table Processing Variables
	Report Variables
	Language Environment Variables

	Net.Data Functions
	Defining Functions
	Using Special Characters in Functions
	Message Blocks

	Calling Functions
	Calling Net.Data Built-in Functions
	General Purpose Functions
	Math Functions
	String Functions
	Word Functions
	Table Functions
	Flat File Functions
	Java Applet Functions
	Web Registry Functions
	Persistent Functions

	Generating Document Markup
	HTML and XML Blocks
	Report Blocks
	REPORT Block Guidelines
	Example: Customizing a Report
	Multiple REPORT Blocks

	Conditional Logic and Looping in a Macro
	Conditional Logic: IF Blocks
	Looping Constructs: WHILE Blocks

	Chapter 6. Using Language Environments
	Overview of Net.Data-Supplied Language Environments
	Calling a Language Environment
	Guidelines for Handling Error Conditions
	Security

	Direct Call Language Environment
	Calling Programs
	Passing Parameters to Programs
	Supported Data Types
	Null-Terminated String Parameters
	Common Errors when Passing Parameters

	Returning Values from Programs
	Direct Call Language Environment Example

	Java Application Language Environment
	Calling Java Programs
	Passing Parameters to Java Programs
	Java Application Language Environment Example

	REXX Language Environment
	Executing REXX Programs
	Passing Parameters to REXX programs
	REXX Language Environment Example

	SQL Language Environment
	Executing SQL Statements
	Supported Language Environment Variables
	Supported Data Types
	SQL Language Environment Restrictions

	Data Type Considerations
	Using Large Objects
	Encoding DataLink URLs in Result Sets

	Managing Transactions in a Net.Data Application
	Managing Multiple Database Connections
	Stored Procedures
	Stored Procedure Syntax
	Calling a Stored Procedure
	Passing Parameters
	Processing Result Sets from DB2 Stored Procedures

	SQL Language Environment Example

	System Language Environment
	Issuing Commands and Calling Programs
	Passing Parameters to Programs
	System Language Environment Example

	Chapter 7. Transaction Management with Persistent Macros
	About Persistent Macros
	Defining a Transaction
	Starting a Transaction
	Specifying the Macro HTML blocks in a Transaction
	Ending a Transaction
	Defining the Scope of a Variable in a Transaction
	Specifying COMMIT and ROLLBACK in a Transaction

	Example of a Persistent Macro

	Chapter 8. Improving Performance
	Net.Data Caching of Macros
	Optimizing the Language Environments
	REXX Language Environment
	SQL Language Environment
	System Language Environment

	Chapter 9. Serviceability Features
	Net.Data Trace Log
	Net.Data Error Log

	Appendix A. Bibliography
	Net.Data Technical Library
	Related Documentation

	Appendix B. Net.Data Sample Macro
	Notices
	Trademarks

	Index

