
IBM
®

Net.Data
®

for OS/2
®

, Windows NT
®

, and UNIX
®

Administration and Programming Guide

Version 7

���

IBM
®

Net.Data
®

for OS/2
®

, Windows NT
®

, and UNIX
®

Administration and Programming Guide

Version 7

���

Note
Be sure to read the information in “Notices” on page 245 before using this information and the product it
supports.

June 2001 Edition

This edition applies to IBM Net.Data for OS/2, Windows NT, and UNIX, a feature of Version 7.2 of DB2 Universal
Database and to all subsequent releases and modifications until otherwise indicated in new editions.

This document contains proprietary information of IBM. It is provided under a license agreement and is protected by
copyright law. The information contained in this publication does not include any product warranties, and any
statements provided in this manual should not be interpreted as such.

Order publications through your IBM representative or the IBM branch office serving your locality or by calling
1-800-879-2755 in the United States or 1-800-IBM-4YOU in Canada.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1997, 2001. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Preface vii
About Net.Data. vii
What’s New in Version 7.2 viii
About This Book viii

Who Should Read This Book ix
About Examples in This Book ix

How to send your comments ix

Chapter 1. Introduction 1
What is Net.Data? 1
Why Use Net.Data? 2

Chapter 2. Configuring Net.Data 5
About the Net.Data Initialization File 6
About the Net.Data Configuration Files for
Optional Components 7

The Live Connection Configuration File . . 7
The Cache Manager Configuration File . . 8
Common Sections of the Net.Data
Initialization, Control, and Macro Files . . 8

Customizing the Net.Data Initialization File 11
Configuration Variable Statements . . . 13
Path Configuration Statements 22
Environment Configuration Statements . . 26

Setting Up Net.Data Language Environments 29
Setting up the Java Language Environment
with Cliette 30
Setting up the Oracle Language
Environment 30

Configuring Live Connection 33
Configuring the Web Server for Use with CGI 38
General Web Server Parameter Settings . . . 39
Configuring Net.Data for FastCGI. 40
Configuring Net.Data for use with Java
Servlets 42
Configuring Net.Data for Use with the Web
Server APIs 43
Configuring Net.Data with the Net.Data
Administration Tool 46

Before You Begin 46
Starting the Administration Tool 47
Configuring Path Statements 47
Configuring Ports 49
Configuring Cliettes 50
Configuring Language Environments . . 54

Defining Configuration Variables 58
Granting Access Rights to Files Accessed by
Net.Data 59

Chapter 3. Keeping Your Assets Secure . . 61
Using Firewalls 61
Encrypting Your Data on the Network . . . 64
Using Authentication 64
Using Authorization 64
Using Net.Data Mechanisms 65

Net.Data Configuration Variables 65
Macro Development Techniques 67

Chapter 4. Invoking Net.Data. 73
Types of Invocation Requests 73

Invoking Net.Data with a Macro (Macro
Request) 75
Invoking Net.Data without a Macro (Direct
Request) 79

Invoking Net.Data through the Web Server
APIs 85

Chapter 5. Developing Net.Data Macros . . 89
Anatomy of a Net.Data Macro 90

The DEFINE Block 92
The FUNCTION Block 92
HTML Blocks 93
XML Blocks 95

Net.Data Macro Variables 99
Identifier Scope 100
Defining Variables 101
Referencing Variables 103
Variable Types 105

Net.Data Functions 113
Defining Functions 113
Calling Functions 119
Calling Net.Data Built-in Functions . . . 119

Generating Document Markup 124
HTML and XML Blocks 124
Report Blocks 126

Conditional Logic and Looping in a Macro 132
Conditional Logic: IF Blocks 132
Looping Constructs: WHILE Blocks . . . 134

© Copyright IBM Corp. 1997, 2001 iii

||

Chapter 6. Using Language Environments 137
Overview of Net.Data-Supplied Language
Environments 138

Calling a Language Environment . . . 139
Guidelines for Handling Error Conditions 139
Security 140

Relational Database Language Environments 140
ODBC Language Environment 140
Oracle Language Environment 141
SQL Language Environment 142
Using DB2 Parameter Markers 143
Managing Transactions in a Net.Data
Application 144
Using Large Objects 145
Stored Procedures. 149
Encoding DataLink URLs in Result Sets 156
Relational Database Language
Environment Examples 158

Web Registry Language Environment . . . 161
Configuring the Web Registry Language
Environment 162
Calling Web Registry Built-in Functions 162
Example 163

Programming Language Environments. . . 163
Java Application Language Environment 163
Perl Language Environment 167
REXX Language Environment. 171
System Language Environment 177

Chapter 7. Improving Performance . . . 181
Using the Web Server APIs 181
Using FastCGI 181
Managing Connections 182

About Live Connection 182
Live Connection Advantages 183
Should I Use Live Connection? 184
Starting the Connection Manager . . . 184
Net.Data and Live Connection Process
Flow 185

Net.Data Caching 186
About Web Page Caching 187
About Net.Data Caching 187
Net.Data Caching Restrictions. 190
Net.Data Caching Interfaces 190
Planning for the Cache Manager 191
Configuring the Cache Manager and
Net.Data Caches 192
Starting and Stopping the Cache Manager 200
Caching Web Pages 201
The CACHEADM Command 205

The Cache Log. 207
Setting the Error Log Level 210
Optimizing the Language Environments . . 210

REXX Language Environment. 210
SQL Language Environment 211
System and Perl Language Environments 212

Chapter 8. Net.Data Logging 213
Logging Net.Data Error Messages 213

Planning for the Net.Data Error Log . . 214
Controlling the Net.Data Logging Level 214
Types of Net.Data Error Messages Not
Logged 214
Net.Data Error Log File Size and Rotation 215
Net.Data Error Log Format 215

Logging Live Connection Cliette and Error
Messages 216

Planning for the Live Connection Log . . 216
Controlling the Live Connection Logging
Level 217
Types of Live Connection Messages Not
Logged 217
Live Connection Log File Names. . . . 217
Live Connection Log File Size and
Rotation 218
Live Connection Log Format 218

Net.Data Trace Log 220
Configuring Net.Data for Tracing . . . 220
Trace Log Format 221
Access Rights 221

Appendix A. Bibliography 223
Net.Data Technical Library 223

Appendix B. Net.Data for AIX 225
Loading Shared Libraries for Language
Environments 225
Improving Performance in the REXX
Environment 226
NLS Considerations 226

Appendix C. Net.Data Wizards 229
Before You Begin 230
Running the Wizards 230

Appendix D. Building SQL Statements
with Net.Data SQL Assist 233
Before You Begin 233
Running Net.Data SQL Assist 234

iv Net.Data Administration and Programming Guide

||

||

||
||

||
||
||
||

Appendix E. Using NetObjects Fusion
NOF Plug-ins with Net.Data Servlets . . 235
About the NetObjects Fusion Plug-in . . . 235
Installing the NetObjects Fusion Plug-in . . 236
Setting Up the Net.Data Plug-in for
NetObjects Fusion 236
Modifying the Plug-in Properties 237
Publishing Servlets with the NOF Plug-in 240

Appendix F. Net.Data Sample Macro. . . 241

Notices 245
Trademarks 247

Index 249

Contents v

vi Net.Data Administration and Programming Guide

Preface

Thank you for selecting Net.Data®, the IBM™ development tool for creating
dynamic Web pages! With Net.Data, you can rapidly develop Web pages with
dynamic content by incorporating data from a variety of data sources and by
using the power of programming languages you already know.

About Net.Data

With Net.Data, you can create dynamic Web pages using data from both
relational and non-relational database management systems (DBMSs),
including DB2, IMS, and ODBC-enabled databases, and using applications
written in programming languages such as Java, JavaScript, Perl, C, C++, and
REXX.

Net.Data is a macro processor that executes as middleware on a Web server
machine. You can write Net.Data application programs, called macros, that
Net.Data interprets to create dynamic Web pages with customized content
based on input from the user, the current state of your databases, other data
sources, existing business logic, and other factors that you design into your
macro.

A request, in the form of a URL (uniform resource locator), flows from a
browser, such as Netscape Navigator or Internet Explorer, to a Web server that
forwards the request to Net.Data for execution. Net.Data locates and executes
the macro and builds a Web page that it customizes based on functions that
you write. These functions can:
v Encapsulate business logic within Perl scripts, C, C++, or REXX programs.
v Access databases such as DB2
v Access other data sources such as flat files.

Net.Data passes this Web page to the Web server, which in turn forwards the
page over the network for display at the browser.

Net.Data can be used in server environments that are configured to use
interfaces such as HyperText Transfer Protocol (HTTP) and Common Gateway
Interface (CGI). HTTP is an industry-standard interface for interaction
between a browser and Web server, and CGI is an industry-standard interface
for Web server invocation of gateway applications like Net.Data. Net.Data also
supports a variety of Web server Application Programming Interfaces (APIs)
for improved performance. The Net.Data family of products provide similar
capablities on the OS/400, OS/390, Windows NT, AIX, OS/2, HP-UX, Sun

© Copyright IBM Corp. 1997, 2001 vii

Solaris, Linux, and Dynix/PTX operating systems. Net.Data also supports
FastCGI and the major Web server Application Programming Interfaces (APIs)
on multiple operating systems.

A graphical administration tool helps you administer Net.Data configuration
settings for the AIX, Windows NT, and OS/2 operating systems. The
administration tool also assists you in specifying security for your connections
to databases that use Live Connection.

To help you easily access data from your database, Net.Data provides a
variety of tools, including NetObjects Fusion plug-ins and wizards for
Java-based development. These tools work with the Net.Data Java servlets in
the Java environment, allowing you to create applications that are portable
across operating systems. NetObjects Fusion plug-ins allow you to use the
NetObjects Fusion Web development tool to build sophisticated applications
with dynamic data from relational data sources. Net.Data wizards provide a
graphical tool to guide you through creating basic Net.Data macros.

What’s New in Version 7.2

Net.Data Version 7.2 offers all of the functionality of previous releases of
Net.Data and much more! Net.Data for OS/2, Windows NT, and UNIX
provides the following additional features in Version 7.2:
v The ability to call SQL functions from the REPORT and ROW blocks of

other SQL functions such as nested SQL function calls when using Live
Connection.

v Improved performance by taking advantage of the DB2 cache statement.
You can now put parameter markers in the SQL statements of your macros
which allows you to utilize the statement cache effectively.

v New Net.Data built-in functions: DTWF_COPY(), DTWF_EXISTS(),
DTWF_WRITEFILE().

v The ability to call Java functions directly without live connection on AIX,
Sun, Windows NT and Linux.

v Support for Linux S/390
v Support for Oracle Stored Procedures
v Support for Net.Data tracing

About This Book

This book discusses administration and programming concepts for Net.Data,
as well as how to configure Net.Data and its components, plan for security,
and improve performance.

viii Net.Data Administration and Programming Guide

|

|
|
|

|
|
|

|
|
|

|
|

|
|

|

|

|

Building on your knowledge of programming languages and database, you
learn how to use the Net.Data macro language or Java servlets to develop
macros. You learn how to use Net.Data-provided language environments that
access DB2 databases, IMS transactions, as well as use Java, REXX, Perl,and
other programming languages to access your data.

This book may refer to products or features that are announced, but not yet
available.

More information including sample Net.Data macros, demos, and the latest
copy of this book, is available from the following World Wide Web site:

http://www.ibm.com/software/data/net.data/

Who Should Read This Book
This book is intended for people involved in planning and writing Net.Data
applications. To understand the concepts discussed in this book, you should
be familiar with how a Web server works, understand simple SQL statements,
and know HTML tags, including HTML form tags.

The Net.Data macro language, variables, and built-in functions, as well as
operating system differences are described in Net.Data Reference.

About Examples in This Book
Examples used in this book are kept simple to illustrate specific concepts and
do not show every way Net.Data constructs can be used. Some examples are
fragments that require additional code to work.

How to send your comments

Your feedback helps IBM to provide quality information. Please send any
comments that you have about this book or other DB2 documentation. You
can use any of the following methods to provide comments:
v Send your comments by e-mail to db2pubs@vnet.ibm.com and include the

name of the product, the version number of the product, and the number of
the book. If you are commenting on specific text, please list the location of
the text (for example, a chapter and section title, page number, or a help
topic title).

v Send your comments from the Web. Visit the Web site at:

http://www.ibm.com/software/db2os390

The Web site has a feedback page that you can use to send comments.
v Complete the readers’ comment form at the back of the book and return it

by mail, by fax (800-426-7773 for the United States and Canada), or by
giving it to an IBM representative.

Preface ix

v Mail—Print and use the Readers’ Comments form on the next page. To
print the form, select Print or Copy from the Services pull-down menu.
Enter COMMENTS as the topic to be printed or copied. Mail the completed
form to:

IBM Corporation, Department W92/H3
P.O. Box 49023
San Jose, CA 95161-9023
U.S.A.

If you are sending the form from a country other than the United States,
give it to your local IBM branch office or IBM representative for mailing.

v Fax—Print and use the Readers' Comments form at the end of this book
and fax it to this U.S. number: 800-426-7773 or (408) 463-4393. To print the
form, follow the instructions under "Mail".

x Net.Data Administration and Programming Guide

Chapter 1. Introduction

Net.Data is a server-side scripting language that extends Web servers by
enabling the dynamic generation of Web pages using data from a variety of
data sources. The data sources can include relational and non-relational
database management systems such as DB2, DRDA-enabled databases, and
flat file data. You can build applications rapidly using Net.Data’s simple yet
powerful cripting language. Net.Data allows reuse of existing business logic
by supporting calls to applications written in a variety of programming
languages, including Java, C/C++, REXX and others.

This chapter describes Net.Data and the reasons why you would choose to
use it for your Web applications.
v “What is Net.Data?”
v “Why Use Net.Data?” on page 2

What is Net.Data?

Using Net.Data macros, you can execute programming logic, access and
manipulate variables, call functions, and use report-generating tools. A macro
is a text file containing Net.Data language constructs, which are used to build
an application that can consist of HTML, XML, Javascript, and language
environment statements, such as SQL and Perl. Net.Data processes the macro
to produce output that can be displayed by a Web browser. Macros combine
the simplicity of HTML with the dynamic functionality of Web server
programs, making it easy to add live data to static Web pages. The live data
can be extracted from local or remote databases and from flat files, or be
generated by applications and system services.

Figure 1 on page 2 illustrates the relationship between Net.Data, the Web
server, and supported data and programming language environments.

© Copyright IBM Corp. 1997, 2001 1

The Web server invokes Net.Data as a CGI, FastCGI, or Web server
application programming interface (API) by calling Net.Data as a DLL or
shared library when it receives a URL that requests Net.Data services. The
URL includes Net.Data-specific information, including either the macro that is
to be processed or the SQL statement or program that is to be directly
invoked. When Net.Data finishes processing the request, it sends the resulting
Web page to the Web server. The server passes it on to the Web client, where
it is displayed by the browser.

Why Use Net.Data?

Net.Data is a good choice for creating dynamic Web pages because using the
macro language is simpler than writing your own Web server applications
and because Net.Data lets you use languages that you already know, such as
HTML, SQL, Perl, REXX, and JavaScript. Net.Data also provides language
environments that access DB2 databases, execute IMS transactions using IMS
Web, or use REXX, Perl, and other languages for your applications. In
addition, changes to a macro can be seen instantaneously on a browser.

Net.Data complements data management capabilities that already exist on
your operating system by enabling both data and related business logic for
the Web. More specifically, Net.Data:

Figure 1. The Relationship between Net.Data, the Web Server, and Supported Data and Program
Sources

2 Net.Data Administration and Programming Guide

v Provides a simple, yet powerful macro language that allows for rapid
development of Internet and Intranet applications.

v Permits the separation of data generation logic from presentation logic
within your Web applications. Net.Data does not impose any restrictions on
the method with which the data is presented (such as HTML or Javascript).
This separation allows users to easily change the presentation of data using
the latest presentation techniques.

v Allows you to use existing skills and business logic to generate Web pages
by providing the ability to interface with programs written in C, C++,
REXX, Java or other languages.

v Provides the ability to develop complex Internet applications quickly, using
a simple macro language.

v Provides high-performance access to data that is stored in DB2 and in any
remote DRDA-enabled database.

v Provides easy migration of macros between all operating systems supported
by the Net.Data family of products.

Interpreted Macro Language

The Net.Data macro language is an interpreted language. When
Net.Data is invoked to process a macro, Net.Data directly interprets
each language statement in a sequential fashion, starting from the top
of the file. Using this approach, any changes you make to a macro can
be immediately seen when you next specify the URL that executes the
macro. No recompilation is required.

Direct Requests
Simple requests that require the execution of a single SQL statement,
DB2 stored procedure, REXX program, C or C++ program, or Perl
script do not require the creation of a macro. These requests can be
specified directly within the URL that flows from the browser to the
Web server.

Free Format

The Net.Data macro language has only a few rules about
programming format. This simplicity provides programmers with
freedom and flexibility. A single instruction can span many lines, or
multiple instructions can be entered on a single line. Instructions can
begin in any column. Spaces or entire lines can be skipped. Comments
can be used anywhere.

Variables Without Type

Net.Data regards all data as character strings. Net.Data uses built-in
functions to perform arithmetic operations on a string that represents

Chapter 1. Introduction 3

a valid number, including those in exponential formats. Macro
language variables are discussed in detail in “Net.Data Macro
Variables” on page 99.

Built-in Functions

Net.Data supplies built-in functions that perform various processing,
searching, and comparison operations for both text and numbers.
Other built-in functions provide formatting capabilities and arithmetic
calculations.

Error Handling

When Net.Data detects an error, messages with explanations are
returned to the client. You can customize the error messages before
they are returned to a user at a browser. See “Configuration Variable
Statements” on page 13 and the Net.Data Reference for more
information.

4 Net.Data Administration and Programming Guide

Chapter 2. Configuring Net.Data

You can install Net.Data for your operating system by using the instructions
in the README file that accompanied the product. Most configuration steps
are completed during installation; this varies by operating system.

After installing Net.Data for your operating system, modify the Web server
and Net.Data configurations. The configuration tasks include one or more of
the following:
v Customizing the Net.Data initialization (INI) file
v Configuring Net.Data for CGI, FastCGI, one of the supported Web server

APIs (optional), or Net.Data Servlets.
v Customizing the Web server configuration and environment variable files
v Configuring the Cache Manager (optional)
v Configuring Live Connection (optional)
v Setting up the Net.Data language environments
v Specifying access rights

You use the following tools to configure Net.Data:
v A text editor

Use a text editor to edit the initialization file and the Live Connection and
cache manager configuration files on all operating systems. You also use a
text editor to update any Web server configuration files. It is a good idea to
back up the files before you make changes.

v The Net.Data administration tool
The administration tool provides a graphical interface for customizing the
initialization file and the Live Connection configuration file. You can use
the administration tool to configure Net.Data on the OS/2, Windows NT,
and AIX operating systems.

The method you use depends on which components need to be configured
and the operating system Net.Data is running on, as described in Table 1 on
page 6. If you start using one particular method for a configuration task, you
should continue to use that method for the best results.

© Copyright IBM Corp. 1997, 2001 5

Table 1. Comparison of configuration methods with tasks and operating systems. A -
Can be configured with the administration tool or manually. M - Can be configured
manually, only.

Task Operating Systems:

AIX NT OS/2 HP|SUN|Linux

Configure the Net.Data INI file A A A M

Define cliettes ports A A A M

Define cliettes A A A M

Turn on cliette password encryption A A N/A M

Turn on error logging A A A M

Configure Web Server for FastCGI,
CGI, and APIs*

M M M M

Define Cache Manager Ports M M N/A N/A

Configure Cache Manager M M N/A N/A

*Tip: Many Web servers have administration tools that you can use to configure the
Web server.

This chapter describes how to configure Net.Data and how to modify your
configuration of the Web server for use with Net.Data. Additionally, it
describes how to configure optional components.
v “Customizing the Net.Data Initialization File” on page 11
v “Setting Up Net.Data Language Environments” on page 29
v “Configuring Live Connection” on page 33
v “Configuring the Web Server for Use with CGI” on page 38
v “Configuring Net.Data for FastCGI” on page 40
v “Configuring Net.Data for use with Java Servlets” on page 42
v “Configuring Net.Data for Use with the Web Server APIs” on page 43
v “Configuring Net.Data with the Net.Data Administration Tool” on page 46
v “Granting Access Rights to Files Accessed by Net.Data” on page 59

About the Net.Data Initialization File

Net.Data uses its initialization file to establish the settings of various
configuration variables and to configure language environments and search
paths. The settings of configuration variables control various aspects of
Net.Data operation, such as the following:
v The encoding of character data as Unicode
v Whether string and word functions are MBCS enabled
v The name of the DB2 instance for access to database data

6 Net.Data Administration and Programming Guide

v How Net.Data connects and communicates with the language
environments, databases, connection management, and caching

v Whether error logging is activated

The language environment statements define the Net.Data language
environments that are available and identify special input and output
parameter values that flow to and from the language environments. The
language environments enable Net.Data to access different data sources, such
as DB2 databases and system services. The path statements specify the
directory paths to files that Net.Data uses, such as macros, REXX programs,
and Perl scripts.

The Net.Data initialization file, db2www.ini, is located in the Web server’s
document directory. See the README file for your operating system for more
information.

Authorization Tip: Ensure the user ID under which the Web server executes
has authorization to read this file. See “Granting Access Rights to Files
Accessed by Net.Data” on page 59 for more information.

About the Net.Data Configuration Files for Optional Components

The following sections discuss the configuration files for optional components
of Net.Data.

“The Live Connection Configuration File”
“The Cache Manager Configuration File” on page 8
“Common Sections of the Net.Data Initialization, Control, and Macro Files”
on page 8

The Live Connection Configuration File
Live Connection provides connection management on Windows NT, OS/2,
AIX, Linux, and Sun Solaris operating systems to improve performance by
eliminating start-up overhead. The Net.Data Live Connection configuration
file contains information about one or more named cliettes. A cliette is a
long-running process that maintains a connection to a database or a Java
Virtual Machine that endures over Net.Data macro invocations from multiple
users. After a cliette is started, it continues to exist until Net.Data Live
Connection terminates. Multiple cliettes can connect to a single database.

As part of the cliette information in the configuration file, you specify a cliette
name, and the minimum and maximum number of processes. For database
cliettes, you can also specify the database name, login, and password for each
cliette entry.

Chapter 2. Configuring Net.Data 7

Authorization Tip: Ensure that the user ID that starts Connection Manager
has authorization to read this file. See “Granting Access Rights to Files
Accessed by Net.Data” on page 59 for more information.

The Cache Manager Configuration File
The Cache Manager configuration file contains the definitions for the Cache
Manager and each of the caches. Net.Data caching is described in “Net.Data
Caching” on page 186. Configuring the Cache Manager is described in
“Configuring the Cache Manager and Net.Data Caches” on page 192. The
structure of the file is a series of sections, or stanzas:

Cache Manager stanza
This stanza defines the parameters of the Cache Manager itself and
includes network information, logging status, and tracing status. The
stanza is required and must be labeled cache-manager.

Cache definition stanzas
These stanzas define the parameters for each cache; one cache
definition stanza in the configuration file exists for each cache that is
managed by the Cache Manager; this section contains network
information, memory and space requirements, logging status, and
statistics status. The cache definition stanza is required for each cache
that is managed by the Cache Manager.

The Cache Manager configuration file is not managed by the administration
tool and can be updated with any text editor. See “Net.Data Caching” on
page 186 to learn how to define this file.

Authorization Tip: Ensure that the user ID that starts the Cache Manager has
access rights to this file. See “Granting Access Rights to Files Accessed by
Net.Data” on page 59 for more information.

Common Sections of the Net.Data Initialization, Control, and Macro Files
Certain portions of the Net.Data initialization, configuration, and macro files
must be consistent for all components of Net.Data to work as a whole. The
following table summarizes the areas of each of these files that must match.

8 Net.Data Administration and Programming Guide

Table 2. Consistency Requirements for the Net.Data Configuration Files and the Macro

File Common Sections Notes

Net.Data INI File Environment Statement The language environments that use
Live Connection must specify the
database cliette name in their
environment statement

Live Connection
configuration variables

When using Net.Data Live
Connection, specify the Live
Connection port, DTW_CM_PORT.
This variable value must match the
MAIN_PORT value in the Live
Connection configuration file.

Cache configuration
variables

When using Net.Data caching,
optionally include port number and
machine name variables. These
values must match those used in the
Cache Manager configuration file, if
used.

Live Connection
Configuration File

Cliette Definitions Each cliette definition must match a
corresponding definition in the INI
file. Additionally, the MAIN_PORT
value must match the
DTW_CM_PORT variable value in
the INI file.

Cache Manager
Configuration File

Cache Manager
Configuration Variables

When using Net.Data caching, you
can optionally include port number
and machine name variables. These
values must match those used in the
INI file, if used.

The following fragments illustrate the relationship between a macro, a
Net.Data initialization file, and a Live Connection configuration file. Two
cliettes are used by the macro (DTW_SQL:SAMPLE, DTW_SQL:CELDIAL) and access
two DB2 databases, called SAMPLE and CELDIAL. The Live Connection
configuration file contains the cliette names and definitions. The
ENVIRONMENT statement in the Net.Data initialization file refers to the
cliette name. The LOGIN and PASSWORD values are specified in the Live
Connection configuration file.

Figure 2 on page 10 shows a fragment of the macro that contains the
@DTW_ASSIGN statement that defines which cliette is to be used to access a
database.

Chapter 2. Configuring Net.Data 9

Note that the DATABASE configuration variable is substituted into the
ENVIRONMENT statement of the initialization file to generate the cliette
name. This allows you to access multiple databases from the same macro.

Figure 3 shows a fragment of the Net.Data initialization file that contains the
ENVIRONMENT statement and the associated cliette type. There is one
ENVIRONMENT statement for each cliette type in the initialization file. For
each database cliette type, the ENVIRONMENT statement specifies a cliette
name. The name is made up of the cliette type and a variable reference,
$(DATABASE), which is resolved at run time. Each language environment that
uses Live Connection must have a cliette definition in the ENVIRONMENT
statement.

Figure 4 on page 11 shows a fragment of the Live Connection configuration
file, which contains the cliette definitions for DTW_SQL:CELDIAL and
DTW_JAVAPPS.

<³***>
<³** This is an HTML comment **>
<³** Access the SAMPLE database using **>
<³** cliette DTW_SQL:SAMPLE **>
<³***>
@DTW_ASSIGN (DATABASE, ″ SAMPLE ″)
@insert_customer
(customer_name, customer_street, customer_city, customer_state,
customer_country, customer_zip, customer_credit, customer_expiry)

<³***>
<³** This is an HTML comment **>
<³** Process the CELDIAL database using **>
<³** the cliette DTW_SQL:CELDIAL **>
<³***>
@DTW_ASSIGN (DATABASE, ″ CELDIAL ″)
@insert_customer
(customer_name, customer_street, customer_city, customer_state,
customer_country, customer_zip, customer_credit, customer_expiry)

Figure 2. Net.Data Macro Fragment

ENVIRONMENT (DTW_SQL)
(IN DATABASE, LOGIN, PASSWORD, TRANSACTION_SCOPE, SHOWSQL,
ALIGN, START_ROW_NUM, DTW_SET_TOTAL_ROWS)
CLIETTE ″DTW_SQL:$(DATABASE)″

Figure 3. Net.Data Initialization File Fragment

10 Net.Data Administration and Programming Guide

Customizing the Net.Data Initialization File

The information contained in the initialization file is specified using three
types of configuration statements, described in the following sections:
v “Configuration Variable Statements” on page 13
v “Path Configuration Statements” on page 22
v “Environment Configuration Statements” on page 26

The sample initialization file shown in Figure 5 on page 12 contains examples
of these statements and is valid for for OS/2 and Windows NT.

CONNECTION_MANAGER{
MAIN_PORT=7128
ENCRYPTION=key

}

###
This is a comment in a Live Connection configuration file.
Comments start with a pound (hash) character.
Comments terminate at the end of the line and do not continue to
the next line unless another pound (hash) character is specified.
You can include comments at the end of lines containing Live
Connection keywords except on password lines.
You cannot include comments anywhere on lines containing the
password keyword.
You cannot include spaces and pound (hash) characters within any
name, such as cliette name or in database cliette passwords.

###
CLIETTE DTW_SQL:CELDIAL{
MIN_PROCESS=1
MAX_PROCESS=5
EXEC_NAME=./dtwcdb2
DATABASE=CELDIAL
LOGIN=marshall
PASSWORD=encrypted_password
}

CLIETTE DTW_JAVAPPS{
MIN_PROCESS=1
MAX_PROCESS=5
EXEC_NAME=./launchjv
}

Figure 4. Live Connection configuration file fragment

Chapter 2. Configuring Net.Data 11

The text of each individual configuration statement must all be on one line.
Ensure that the initialization file contains an ENVIRONMENT statement for
each language environment that you call from your macros. If you fully
qualify all references to files within the macro, you do not need to specify any
of the path configuration statements.

The following sections describe how to customize the configuration statements
in the initialization file.
v “Configuration Variable Statements” on page 13
v “Path Configuration Statements” on page 22

The following ENVIRONMENT statement changes are required:
v Remove the RETURN_CODE variable from the parameter list of any

ENVIRONMENT statement in which it appears.
v Remove the DTW_DEFAULT, DTW_FILE, and DTW_APPLET

ENVIRONMENT statement.

The following changes should be considered because some configuration
defaults have changed:

1 DTW_CM_PORT 7128
2 DTW_INST_DIR c:\db2www
3 DTW_LOG_DIR c:\db2www\logs
4 DB2INSTANCE DB2
5 DTW_DIRECT_REQUEST NO
6 DTW_SHOWSQL NO
7 DTW_UNICODE NO
8 DTW_MBMODE NO
9 MACRO_PATH c:\DB2WWW\Macro
10 HTML_PATH c:\www\html
11 INCLUDE_PATH c:\db2www\Macro
12 EXEC_PATH c:\db2www\Macro
13 FFI_PATH c:\pub\ffi;pub\ffi\data
14 ENVIRONMENT (DTW_SQL) [DLL path] [Parameter list]
15 ENVIRONMENT (DTW_ORA) [DLL path] [Parameter list]
16 ENVIRONMENT (DTW_ODBC) [DLL path] [Parameter list]
17 ENVIRONMENT (DTW_DEFAULT) [DLL path] [Parameter list]
18 ENVIRONMENT (DTW_APPLET) [DLL path] [Parameter list]
19 ENVIRONMENT (DTW_REXX) [DLL path] [Parameter list]
20 ENVIRONMENT (DTW_PERL) [DLL path] [Parameter list]
21 ENVIRONMENT (DTW_SYSTEM) [DLL path] [Parameter list]
22 ENVIRONMENT (DTW_FILE) [DLL path] [Parameter list]
23 ENVIRONMENT (DTW_WEBREG) [DLL path] [Parameter list]
24 ENVIRONMENT (DTW_JAVAPPS) [DLL path] [Parameter list]
25 ENVIRONMENT (HWS_LE) [DLL path] [Parameter list]

v Lines 1 - 8 define
configuration
variables

v Lines 9 - 13 define
paths to files
required to process
the macro

v Lines 14 - 25 define
the environment
statements that are
available.

Figure 5. The Net.Data initialization file. For complete descriptions of the DLL Path and Parameter List, refer to the
db2www.ini file itself and “Environment Configuration Statements” on page 26.

12 Net.Data Administration and Programming Guide

v If your applications require the use of the variable SHOWSQL, then change
the DTW_SHOWSQL configuration variable to YES. See “DTW_SHOWSQL:
Enable or Disable SHOWSQL Configuration Variable” on page 18 for syntax
and examples.

v If your applications require the use of direct request invocation, then
change the DTW_DIRECT_REQUEST configuration variable to YES. See
“DTW_DIRECT_REQUEST: Enable Direct Request Variable” on page 16 for
syntax and examples.

v If you do not want to store the Net.Data error log or the Net.Data trace in
/usr/lpp/netdata/logs/, then change the DTW_ERROR_LOG_DIR or the
DTW_TRACE_LOG_DIR configuration variables to the appropriate
directories.

Configuration Variable Statements
Net.Data configuration variable statements set the values of configuration
variables. Configuration variables are used for various purposes. Some
variables are required by a language environment to work properly or to
operate in an alternate mode. Other variables control the character encoding
or content of the Web page being constructed. Additionally, you can use
configuration variable statements to define application-specific variables.

The configuration variables you use depend on the language environments,
and databases, you are using, as well as other factors that are specific to the
application.

To update the configuration variable statements:

Customize the initialization file with the configuration variables that are
required for your application. A configuration variable has the following
syntax:
NAME [=] value-string

The equal sign is optional, as denoted by the brackets.

The following sub-sections describe the configuration variables statements that
you can specify in the initialization file:
v “Cache Manager Configuration Variables” on page 14
v “DB2INSTANCE: DB2 Instance Variable” on page 15
v “DTW_CM_PORT: Live Connection Port Number Variable” on page 15
v “DTW_DEFAULT_ERROR_MESSAGE: Specify Generic Error Messages” on

page 16
v “DTW_DIRECT_REQUEST: Enable Direct Request Variable” on page 16
v “DTW_INST_DIR: Net.Data Installation Directory Variable” on page 16
v “HTML_PATH” on page 17

Chapter 2. Configuring Net.Data 13

v “DTW_LOG_DIR and DTW_LOG_LEVEL: Error Log Variables” on page 17
v “DTW_LOG_LEVEL: Error Log Level Variable” on page 17
v “DTW_MBMODE: Native Language Support Variable” on page 18
v “DTW_REMOVE_WS: Variable for Removing Extra White Space” on

page 18
v “DTW_SHOWSQL: Enable or Disable SHOWSQL Configuration Variable”

on page 18
v “DTW_SMTP_SERVER: E-mail SMTP Server Variable” on page 19
v “DTW_UNICODE: Unicode Variable” on page 19
v “DTW_UPLOAD_DIR” on page 21
v “DTW_USE_DB2_PREPARE_CACHE” on page 21
v “DTW_VARIABLE_SCOPE: Variable Scope Variable” on page 21

Cache Manager Configuration Variables
Two optional configuration variables are used if the Cache Manager runs on a
machine other than where the Net.Data macro runs:
v DTW_CACHE_PORT specifies which port number Net.Data uses to connect

to the Cache Manager.
v DTW_CACHE_HOST specifies the TCP/IP host name of the local or remote

machine.

If the Cache Manager runs on the local machine, UNIX-domain sockets or
named pipes are used for communication and no configuration is necessary.

The Cache Manager runs on AIX and Windows NT machines, only. See
“Net.Data Caching” on page 186 to learn about Net.Data caching.

DTW_CACHE_PORT: Cache Manager Port Variable
Specifies the TCP/IP port the Cache Manager is listening on. This port
number must match the port number specified in the Cache Manager
configuration file, so Net.Data can communicate with the Cache
Manager. If not specified, Cache Manager uses the default port 7175.

Syntax:
DTW_CACHE_PORT [=] port_number

Parameter:

port_number
A unique port number assigned to the Cache Manager to
service cache requests. The default value is 7175.

Table 3 on page 15 describes the options for specifying machine IDs
and port numbers for these variables.

14 Net.Data Administration and Programming Guide

Table 3. Cache Manager Configuration Variables: Configuration Options

Default Connection
Manager Values

If the cache machine is
specified ...

If the cache machine is
not specified ...

If the cache port is
specified ...

Net.Data connects to the
Cache Manager on the
specified machine using the
specified port.

Net.Data connects to the
Cache Manager on the
local machine using the
specified port.

If the cache port is not
specified ...

Net.Data connects to the
Cache Manager on the
specified machine using the
default port of 7175.

Net.Data connects to the
Cache Manager on the
local machine using the
default port of 7175.

DTW_CACHE_HOST: Cache Manager Machine ID Variable
Specifies the machine where the Cache Manager resides. If not
specified, Net.Data assumes the correct machine is the local machine.

Syntax:
DTW_CACHE_HOST [=] host_name

Parameter:

host_name
The qualified TCP/IP host name of the local or remote
machine where the Cache Manager runs. The default value is
the local machine’s host name.

DB2INSTANCE: DB2 Instance Variable
Specifies the instance of DB2 used by the SQL language environment. This
variable value is required when Net.Data connects to DB2 running on the
Windows NT, OS/2, and UNIX operating systems.

DB2 on the OS/2, Windows NT, and UNIX operating systems needs
DB2INSTANCE to be defined as an environment variable. If Net.Data detects
that DB2INSTANCE is not defined as an environment variable, it will set the
DB2INSTANCE environment variable to the value of DB2INSTANCE found in
the initialization file before attempting to connect to DB2.

Syntax:
DB2INSTANCE [=] instance_name

DTW_CM_PORT: Live Connection Port Number Variable
Specifies a unique port number that Net.Data uses for Live Connection.

Syntax:
DTW_CM_PORT [=] port_number

Chapter 2. Configuring Net.Data 15

Where port_number specifies the unique port number used for Live
Connection.

DTW_DEFAULT_ERROR_MESSAGE: Specify Generic Error Messages
Use the DTW_DEFAULT_ERROR_MESSAGE configuration variable to specify
a generic error message for applications in production. This variable provides
a generic message for error conditions that are not captured in any MESSAGE
block.

If you still wish to see the actual error messages generated by Net.Data, use
error message logging to capture the messages. See “Chapter 8. Net.Data
Logging” on page 213 to learn about using the error log.

If the configuration variable is not specified, Net.Data displays its own
provided message for the error condition.

Syntax:
DTW_DEFAULT_ERROR_MESSAGE [=] "message"

Example: Specifies a generic message
DTW_DEFAULT_ERROR_MESSAGE "This site is temporarily unavailable."

DTW_DIRECT_REQUEST: Enable Direct Request Variable
Enables or disables Net.Data direct request invocation. By default, direct
request is disabled.

The direct request method of invoking Net.Data allows a user to specify the
execution of an SQL statement or Perl, REXX, or C program directly within a
URL. When direct request is disabled, the user must invoke Net.Data using
the macro request method, allows users to execute only those SQL statements
and functions defined or called in a macro. See “Using Net.Data Mechanisms”
on page 65 for security-related recommendations when using
DTW_DIRECT_REQUEST.

Syntax:
DTW_DIRECT_REQUEST [=] YES|NO

Where:

YES Enables Net.Data direct request.

NO Disables Net.Data direct request. NO is the default.

DTW_INST_DIR: Net.Data Installation Directory Variable
Locates certain files during Net.Data execution. You set this variable at
installation time to specify the home directory, <inst_dir>, where Net.Data is
installed. Do not change this value after installation.

16 Net.Data Administration and Programming Guide

HTML_PATH
Specifies into which directory Net.Data writes large objects (LOBs).

During installation, Net.Data creates a directory called tmplobs, under the
directory specified in the HTML_PATH path configuration variable. Net.Data
stores all LOB files in this directory. If you change the value of HTML_PATH,
create a new subdirectory under the new directory.

Syntax:
HTML_PATH [=] path

Example: The following example shows the HTML_PATH configuration
variable in the initialization file.
HTML_PATH /db2/lobs

When a query returns a LOB, Net.Data saves it in the directory specified in
the HTML_PATH configuration variable.

Tip: Consider system limitations when using LOBs because they can quickly
consume resources. See “Using Large Objects” on page 145 for more
information.

DTW_LOG_DIR and DTW_LOG_LEVEL: Error Log Variables
DTW_LOG_DIR specifies the directory where the error logs are stored.
Logging will not occur unless both this variable and the DTW_LOG_LEVEL
variable are set.

See “Logging Net.Data Error Messages” on page 213 to learn more about these
variables and logging error messages with Net.Data.

Syntax:
DTW_LOG_DIR [=] \inst_dir\path

Example: Initialization file configuration
DTW_LOG_DIR \inst_dir\mylogfiles\

DTW_LOG_LEVEL: Error Log Level Variable
DTW_LOG_LEVEL specifies the level of errors to be recorded in the error
logs. Logging will not occur unless both this variable and the DTW_LOG_DIR
variable are set.

See “Logging Net.Data Error Messages” on page 213 to learn more about these
variables and logging error messages with Net.Data.

Syntax:
DTW_LOG_LEVEL [=] off|warning|error

Chapter 2. Configuring Net.Data 17

Example: Initialization file configuration
DTW_LOG_LEVEL error

DTW_MBMODE: Native Language Support Variable
Activates national language support for word and string functions. When the
value of this variable is YES, all string and word functions correctly process
MBCS characters within strings by treating strings as mixed data (that is, as
strings that potentially contain characters from both single-byte character sets
and double byte character sets). The default value is NO. You can override the
value set in the initialization file by setting the DTW_MBMODE variable in a
Net.Data macro.

This configuration variable works with the DTW_UNICODE configuration
variable. If DTW_UNICODE uses the default value of NO, the value of
DTW_MBMODE is used. If DTW_UNICODE is set to a value other than NO,
its value is used. Table 4 illustrates how the settings of these two variables
determine how built-in functions process strings:

Table 4. Relationship Between the Settings of DTW_UNICODE and DTW_MBMODE

If DTW_UNICODE is set
to

If DTW_MBMODE=YES If DTW_MBMODE=NO

NO Supports MBCS mixed with
SBCS

Supports SBCS only

UTF8 Supports UTF-8 Supports UTF-8

Syntax:
DTW_MBMODE [=] NO|YES

DTW_REMOVE_WS: Variable for Removing Extra White Space
When this variable is set to YES, Net.Data removes extraenneous white space
from the HTML output. By compressing white space, this variable reduces the
amount of data sent to the Web browser, thereby improving performance. The
default is NO.

You can override this variable in the macro by using the DEFINE statement.

Syntax:
DTW_REMOVE_WS [=] YES|NO

DTW_SHOWSQL: Enable or Disable SHOWSQL Configuration Variable
Overrides the effect of setting SHOWSQL within your Net.Data macros.

Syntax:
DTW_SHOWSQL [=] YES|NO

18 Net.Data Administration and Programming Guide

Where:

YES Enables SHOWSQL in any macro that sets the value of SHOWSQL to
YES.

NO Disables SHOWSQL in your macros, even if the variable SHOWSQL is
set to YES. NO is the default.

Table 5 describes how the settings in the Net.Data initialization file and the
macro determine whether the SHOWSQL variable is enabled or disabled for a
particular macro.

Table 5. The Relationship Between Settings in the Net.Data Initialization File and
the Macro for SHOWSQL

Setting of
DTW_SHOWSQL

Setting SHOWSQL SQL statement is
displayed

NO NO NO

NO YES NO

YES NO NO

YES YES YES

DTW_SMTP_SERVER: E-mail SMTP Server Variable
Specifies the SMTP server to use for sending out e-mail messages using the
DTW_SENDMAIL built-in function. The value of this variable can either be a
host name or an IP address. If this variable is not set, Net.Data uses the local
host as the SMTP server.

Syntax:
DTW_SMTP_SERVER [=] server_name

Where server_name is the host name or IP address of the the SMTP server that
is to be used for sending e-mail messages.

Performance tip: Specify an IP address for this value to prevent Net.Data
from connecting to a domain name server when retrieving the IP address of
the specified SMTP server.

Example:
DTW_SMTP_SERVER us.ibm.com

DTW_UNICODE: Unicode Variable
Specifies whether Net.Data supports Unicode in:
v Macros
v Form data

Chapter 2. Configuring Net.Data 19

v Data retrieved from a DB2 database
v Strings processed by Net.Data built-in functions

Net.Data supports UTF-8 Unicode format in macros, form data, and built-in
functions, and the output is always in UTF-8. Net.Data can access a database
that contains UCS-2 data and convert it to UTF-8.

When set to UTF8, DTW_UNICODE tells Net.Data to run in a Unicode
environment. Net.Data then generates pages in UTF-8 and expects any input
data to be in UTF-8 format (or in the case of DB2 database data, UCS-2 is
accepted). The input data includes the content of the macro file, the form data
sent from the browser, and all other data coming from external data sources.

DB2 Unicode database requirement: In addition to setting the
DTW_UNICODE variable, also set the DB2-specific environment variable,
DB2CODEPAGE, to 1208 in the environment in which Net.Data runs. For
example, for the Apache Web server, add the following line to the
HTTPD.CONF file:
SetEnv DB2CODEPAGE 1208

See your Web server documentation to determine how to set environment
variables for CGI scripts, Web server APIs, Fast-CGI programs, or servlets.

Net.Data uses the English message catalog when running in a Unicode
environment.

The DTW_UNICODE configuration variable works with the DTW_MBMODE
configuration variable. The value of the DTW_UNICODE configuration
variable overrides the setting of the DTW_MBMODE variable when
processing word and string built-in functions. But, if DTW_UNICODE is set
to NO or is not set, then the value of DTW_MBMODE is used. Table 4 on
page 18 illustrates how the settings of these two variables determine how
built-in functions process strings:

Syntax:
DTW_UNICODE [=] NO|UTF8

Where:

NO Specifies to defer to the value of the DTW_MBMODE variable. Table 4
on page 18 describes Net.Data support based on the value of

DTW_MBMODE.

UTF8 Specifies to support UTF-8 code page and ignore the value of the
DTW_MBMODE configuration variable. UTF-8 represents characters
by a variable number of bytes and is ASCII safe.

20 Net.Data Administration and Programming Guide

DTW_UPLOAD_DIR
Specifies into which directory Net.Data will store files uploaded by the client.
When this variable is not set, Net.Data will not accept the files for upload.

Syntax:
DTW_UPLOAD_DIR [=] path

Example:
DTW_UPLOAD_DIR /tmp/uploads

DTW_USE_DB2_PREPARE_CACHE
Specifies that Net.Data should take advantage of DB2 prepare cache without
explicitly using parameter markers in the SQL statement of the macro file.
When you want all of your macros to take advantage of this feature, set the
DTW_USE_DB2_PREPARE_CACHE configuration variable to YES in your
Net.Data initialization file. To activate this feature for only the statements in a
particular macro, you can use the DTW_USE_DB2_PREPARE_CACHE macro
variable. See the Net.Data Reference for more information.

Syntax:
DTW_USE_DB2_PREPARE_CACHE [=] YES|NO

Where:

YES Specifies that Net.Data modifies all SQL statements to take advantage
of the prepare cache. You can disable this feature for a particular SQL
statement by setting the macro variable to ″NO″ using %DEFINE or
@DTW_ASSIGN().

NO Specifies that Net.Data leave the SQL statement untouched. This is the
default.

DTW_VARIABLE_SCOPE: Variable Scope Variable
Specifies how Net.Data treats local variable scope: whether local variables
remain local or whether local variables can be used outside the function block
in which they were created. This variable is provided for backward
compatibility with previous versions of Net.Data and is not available with
OS/390 or OS/400 versions of Net.Data.

Syntax:
DTW_VARIABLE_SCOPE [=] LOCAL|GLOBAL

Where:

LOCAL
Specifies that local variables remain local. This behavior was
introduced with Net.Data Version 2.0 and is the default.

Chapter 2. Configuring Net.Data 21

|
|
|
|
|
|
|
|

|

|

|

||
|
|
|

||
|

|

GLOBAL
Specifies that local variables can be used outside the function block
they were created in. It is provided for backward compatibility with
earlier versions of Net.Data; LOCAL is the recommended setting.

Path Configuration Statements
Net.Data determines the location of files and executable programs used by
Net.Data macros from the settings of path configuration statements. The path
statements are:
v “DTW_ATTACHMENT_PATH”
v “EXEC_PATH” on page 23
v “FFI_PATH” on page 24
v “INCLUDE_PATH” on page 24
v “MACRO_PATH” on page 25

These path statements identify one or more directories that Net.Data searches
when attempting to locate macros, executable files, text files, LOB files, and
include files. The path statements that you need depend on the Net.Data
capabilities that your macros use.

Update guidelines:

Some general guidelines apply to the path statements. Exceptions are noted in
the description of each path statement.
v Seperate each specified directory in the path statement with a semicolon (;).
v Each path statement can specify multiple paths, except for the

HTML_PATH, which can have only one path statement. Paths are searched
from left to right in the order specified. This multiple-path capability lets
you organize your files within multiple directories. For example, you can
place each of your Web applications in its own directory.

v It is recommended to use absolute path statements.

The following sections describe the purpose and syntax of each path
statement and provide examples of valid path statements. The examples can
differ from your application, depending on your operating system and
configuration.

DTW_ATTACHMENT_PATH
This path configuration statement specifies the path used to locate
attachments to be sent using DTW_SENDMAIL.

Syntax:
DTW_ATTACHMENT_PATH [=] path

22 Net.Data Administration and Programming Guide

Example:
DTW_ATTACHMENT_PATH /usr/lpp/internet/server_root/pub/upload

EXEC_PATH
This path configuration statement identifies one or more directories that
Net.Data searches for an external program that is invoked by the EXEC
statement or an executable variable. The order of the directories in the path
statement determines the order Net.Data searches for the directories. If the
program is found, the external program name is appended to the path
specification, resulting in a fully qualified file name that is passed to the
language environment for execution.

Syntax:
EXEC_PATH [=] path1;path2;...;pathn

Example: The following example shows the EXEC PATH statement in the
initialization file and the EXEC statement in the macro that invokes an
external program.

Net.Data initialization file:
EXEC_PATH /u/user1/prgms;/usr/lpp/netdata/prgms;

Net.Data macro:
%FUNCTION(DTW_REXX) myFunction() {

%EXEC{ myFunction.cmd %}
%}

If the file myFunction.cmd is found in the /usr/lpp/netdata/prgms directory,
the qualified name of the program is
/usr/lpp/netdata/prgms/myFunction.cmd.

If the file is not found in the directories specified in the EXEC_PATH
statement:
v If the specified path is absolute, Net.Data searches for the file in the

specified path. For example, if the following URL is submitted:
http://myserver/cgi-bin/db2www/usr/user1/prgms/myFunction.cmd

Net.Data searches for the file in the /u/user1/prgms/myFunction.cmd
directory path.

v If the specified path is relative, Net.Data searches the current working
directory. For example, if the following URL is submitted:
http://myserver/cgi-bin/db2www/myFunction.cmd/report

Chapter 2. Configuring Net.Data 23

and the file myFunction.cmd was not found in any of the directories
specified in EXEC_PATH, then Net.Data attempts to find the file in the
current working directory.

FFI_PATH
This path configuration statement identifies one or more directories that
Net.Data searches, in the order in which they are specified, for a flat file that
is referenced by a flat file interface (FFI) function.

Syntax:
FFI_PATH [=] path1;path2;...;pathn

Example: The following example shows an FFI_PATH statement in the
initialization file.

Net.Data initialization file:
FFI_PATH /u/user1/ffi;/usr/lpp/netdata/ffi;

When the FFI language environment is called, Net.Data looks in the path
specified in the FFI_PATH statement.

Because the FFI_PATH statement is used to provide security to those files not
in directories in the path statement, there are special provisions for FFI files
that are not found. See the FFI built-in functions section in Net.Data Reference.

INCLUDE_PATH
This path configuration statement identifies one or more directories that
Net.Data searches, in the order in which they are specified, to find a file
specified on an INCLUDE statement in a Net.Data macro. When it finds the
file, Net.Data appends the include file name to the path specification to
produce the qualified include file name.

Syntax:
INCLUDE_PATH [=] path1;path2;...;pathn

Example 1: The following example shows both the INCLUDE_PATH
statement in the initialization file and the INCLUDE statement that specifies
the include file.

Net.Data initialization file:
INCLUDE_PATH /u/user1/includes;/usr/lpp/netdata/includes

Net.Data macro:
%INCLUDE "myInclude.txt"

24 Net.Data Administration and Programming Guide

If the file myInclude.txt is found in the /u/user1/includes directory, the
fully-qualified name of the include file is /u/user1/includes/myInclude.txt.

Example 2: The following example shows the INCLUDE_PATH statement and
an INCLUDE file with a subdirectory name.

Net.Data initialization file:
INCLUDE_PATH /u/user1/includes;/usr/lpp/netdata/includes

Net.Data macro:
%INCLUDE "OE/oeheader.inc"

The include file is searched for in the directories /u/user1/includes/OE and
/usr/lpp/netdata/includes/OE. If the file is found in
/usr/lpp/netdata/includes/OE, the fully qualified name of the include file is
/usr/lpp/netdata/includes/OE/oeheader.inc.

If the file is not found in the directories specified in the INCLUDE_PATH
statement:
v If the specified path is absolute, Net.Data searches for the file in the

specified path. For example, if the following URL is submitted:
http://myserver/cgi-bin/db2www/u/user1/includes/oeheader.inc

Net.Data searches for the file in the /u/user1/includes/oeheader.inc
directory path.

v If the specified path is relative, Net.Data searches the current working
directory. For example, if the following URL is submitted:
http://myserver/cgi-bin/db2www/my.cmd/report

and the file myFunction.cmd was not found in any of the directories
specified in INCLUDE_PATH, then Net.Data attempts to find the file in the
current working directory.

MACRO_PATH
This path configuration statement identifies the directories that Net.Data
searches for Net.Data macros. For example, specifying the following URL
requests the Net.Data macro with the path and file name /macro/sqlm.dtw:
http://server/cgi-bin/db2www/macro/sqlm.dtw/report

Syntax:
MACRO_PATH [=] path1;path2;...;pathn

The equal sign (=) is optional, as indicated by brackets.

Chapter 2. Configuring Net.Data 25

Net.Data appends the path /macro/sqlm.d2w/report to the paths in the
MACRO_PATH configuration statement, from left to right until Net.Data finds
the macro. If the macro is not found, Net.Data will execute the macro defined
for the DTW_DEFAULT_MACRO configuration variable, or it will print an
error. See “Chapter 4. Invoking Net.Data” on page 73 for information on
invoking Net.Data macros.

Example: The following example shows the MACRO_PATH statement in the
initialization file and the related link that invokes Net.Data.

Net.Data initialization file:
MACRO_PATH /u/user1/macros;/usr/lpp/netdata/macros

HTML link:
Submit another query.

If the file query.dtw is found in the directory /u/user1/macros, then the
fully-qualified path is /u/user1/macros/query.dtw.

If the file is not found in the directories specified in the MACRO_PATH
statement:
v If the specified path is absolute, Net.Data searches for the file in the

specified path. For example, if the following URL is submitted:
http://server/cgi-bin/db2www/u/user1/macros/myfile.txt/report

Net.Data searches for the file in the /u/user1/macros/myfile.txt directory
path.

v If the specified path is relative, Net.Data searches for the file in all
directories, starting with the root (/) directory. For example, if the following
URL is submitted:
http://server/cgi-bin/db2www/myfile.txt/report

and the file myfile.txt was not found in any of the directories specified in
MACRO_PATH, then Net.Data attempts to find the file in the root (/)
directory: /myfile.txt

Environment Configuration Statements
An ENVIRONMENT statement configures a language environment. A
language environment is a component of Net.Data that Net.Data uses to
access a data source such as a DB2 database or to execute a program written
in a language such as REXX. Net.Data provides a set of language
environments, as well as an interface that allows you to create your own
language environments. These language environments are described in

26 Net.Data Administration and Programming Guide

“Chapter 6. Using Language Environments” on page 137 and the language
environment interface is described in Net.Data Language Environment Interface
Reference.

Net.Data requires that an ENVIRONMENT statement for a particular
language environment exist before you can invoke that language environment.

You can associate variables with a language environment by specifying the
variables as parameters in the ENVIRONMENT statement. Net.Data implicitly
passes the parameters that are specified on an ENVIRONMENT statement to
the language environment as macro variables. To change the value of a
parameter that is specified on an ENVIRONMENT statement in the macro,
either assign a value to the variable using the DTW_ASSIGN() function or
define the variable in a DEFINE section.

Important: If a variable is defined in a macro but is not specified on the
ENVIRONMENT statement, the macro variable will not be passed to the
language environment.

For example, a macro can define a DATABASE variable to specify the name of
a database at which an SQL statement within a DTW_SQL function is to be
executed. The value of DATABASE must be passed to the SQL language
environment (DTW_SQL) so that the SQL language environment can connect
to the designated database. To pass the variable to the language environment,
you must add the DATABASE variable to the parameter list of the
environment statement for DTW_SQL.

The sample Net.Data initialization file makes several assumptions about
customizing the setting of Net.Data environment configuration statements.
These assumptions may not be correct for your environment. Modify the
statements appropriately for your environment.

To add or update an ENVIRONMENT statement:

ENVIRONMENT statements have the following syntax:
ENVIRONMENT(type) library_name (parameter_list, ...) [CLIETTE "cliette_name"]

Parameters:

v type

The name by which Net.Data associates this language environment with a
FUNCTION block that is defined in a Net.Data macro. You must specify the
type of the language environment on a FUNCTION block definition to
identify the language environment that Net.Data should use to execute the
function.

v library_name

Chapter 2. Configuring Net.Data 27

The name of the DLL or shared library containing the language
environment interfaces that Net.Data calls.
– In AIX, the name of the shared library is specified with the .o extension.
– In HP-UX, the name of the shared library is specified with the .sl

extension
– In SUN, and LINUX the name of the shared library is specified with the

.so extension
– In OS/2 and Windows NT the shared library name is specified with the

.dll extension.
v parameter_list

The list of parameters that are passed to the language environment on each
function call, in addition to the parameters that are specified in the
FUNCTION block definition.
To set and pass the variables in the parameters list, define the variable in
the macro.
You must define these parameters as configuration variables or as variables
in your macro before executing a function that will be processed by the
language environment. The following example specifies the variables in the
ENVIRONMENT statement:
ENVIRONMENT(DTW_SQL) C:\WINNT\System32\nddb2.dll(IN
DATABASE,TRANSACTION_SCOPE,USERID,PASSWORD)

If a function modifies any of its output parameters, the parameters keep
their modified value after the function completes.

v cliette_name

The name of the cliette. The cliette_name can refer to the Java Application
language environment cliette, or it can be a database cliette. The cliette_name
parameter is used with the CLIETTE keyword, both of which are only used
with Live Connection. CLIETTE and cliette_name are optional and can be
specified only for database and Java application language environments.

Java Application cliette
This cliette name specifies the Java Application language
environment.

Syntax:
CLIETTE "DTW_JAVAPPS"

Database cliette
This cliette name specifies a cliette that is associated with a
database.

Syntax:
CLIETTE "type:db_name"

28 Net.Data Administration and Programming Guide

Parameters:

type The database language environment associated with the
cliette. See page 57 for a list of valid types.

db_name
The database cliette name. This name is often the same as
the database with which the cliette is associated, such as
MYDBASE, but can also be another name. db_name is
optional when using the Oracle language environment.

When Net.Data processes the initialization file, it does not load the language
environment DLLs or shared libraries. Net.Data loads a language environment
DLL or shared library when it first executes a function that identifies that
language environment. The DLL or shared library then remains loaded for as
long as Net.Data is loaded.

Example: ENVIRONMENT statements for Net.Data-provided language
environments

When customizing the ENVIRONMENT statements for your application, add
the variables to the ENVIRONMENT statements that need to be passed from
your initialization file to a language environment or that Net.Data macro
writers need to set or override in their macros.
ENVIRONMENT (DTW_SQL) /net.data/lib/dtwsql.so (IN DATABASE, LOGIN, PASSWORD,

TRANSACTION_SCOPE, ALIGN, START_ROW_NUM, DTW_SET_TOTAL_ROWS)
CLIETTE "DTW_SQL:MYDBASE"

ENVIRONMENT (DTW_ORA) /net.data/lib/dtwora.so (IN DATABASE, LOGIN, PASSWORD,
TRANSACTION_SCOPE, ALIGN, START_ROW_NUM, DTW_SET_TOTAL_ROWS)

ENVIRONMENT (DTW_ODBC) /net.data/lib/dtwodbc.so (IN DATABASE, LOGIN, PASSWORD,
TRANSACTION_SCOPE, ALIGN, DTW_SET_TOTAL_ROWS)

ENVIRONMENT (DTW_APPLET) /net.data/lib/dtwjava.so ()
ENVIRONMENT (DTW_JAVAPPS) /net.data/lib/dtwjavapps.so (OUT RETURN_CODE)

CLIETTE "DTW_JAVAPPS"
ENVIRONMENT (DTW_PERL) /net.data/lib/dtwperl.so (OUT RETURN_CODE)
ENVIRONMENT (DTW_REXX) /net.data/lib/dtwrexx.so (OUT RETURN_CODE)
ENVIRONMENT (DTW_SYSTEM) dtwsys.so (OUT RETURN_CODE)
ENVIRONMENT (HWS_LE) dtwhws.so (OUT RETURN_CODE)

Required: Each ENVIRONMENT statement must be on a single line.

Setting Up Net.Data Language Environments

After you modify configuration variables and ENVIRONMENT configuration
statements for the Net.Data language environments, some additional setup is
required before the following language environments can function properly.
The following sections describe the steps necessary to set up the language
environments:
v “Setting up the Java Language Environment with Cliette” on page 30

Chapter 2. Configuring Net.Data 29

v “Setting up the Oracle Language Environment”

Setting up the Java Language Environment with Cliette
If Live Connection is used to manage connections to the Java Virtual Machine,
the Java language environment requires some additional setup before you can
call functions from a macro:
1. Create a batch file to launch the Java application. Net.Data uses this file to

launch the Java Virtual Machine, which runs your Java function. The batch
file must include the java-classpath statement to ensure the required Java
packages (the standard and application-specific packages) can be found.
For example, the batch file, launchjv.bat, contains the following
java-classpath:
java -classpath %CLASSPATH%;C:\DB2WWW\Javaclas dtw_samp %1 %2 %3 %4 %5 %6

2. Define a cliette to work with the Java language environment in the Live
Connection configuration file, dtwcm.cnf. Specify a batch file name for the
cliette with the EXEC_NAME configuration variable. In the following
example, the Java cliette name is defined as DTW_JAVAPPS and the
EXEC_NAME configuration variable is set to the name of the batch file,
launchjv.bat:
CLIETTE DTW_JAVAPPS{
MIN_PROCESS=1

MAX_PROCESS=1

EXEC_NAME=launchjv.bat

}

When you start the Net.Data Connection Manager, Net.Data starts the Java
cliette specified in the configuration file. The cliette becomes available to
process Java language environment requests from your Net.Data macro
applications.

3. Update the DTW_JAVAPPS ENVIRONMENT statement in the Net.Data
initialization file, db2www.ini, by adding the cliette name to the statement.
For example:
ENVIRONMENT DTW_JAVAPPS (OUT RETURN_CODE) CLIETTE "DTW_JAVAPPS"

Setting up the Oracle Language Environment
Use the following steps to access Oracle databases from a Net.Data macro:
1. Ensure the appropriate components of Oracle are installed and working as

follows:
a. Install SQL*Net on the machine where Net.Data is installed, if it is not

already installed. For more information, see the following URL:
http://www.oracle.com/products/networking/html/stnd_sqlnet.html

30 Net.Data Administration and Programming Guide

b. Verify that the Oracle tnsping function can be used with the same
security authorization that your Web server uses. To verify, log on with
your Web server’s user ID and type:
tnsping oracle-instance-name

Where oracle-instance-name is the name of the Oracle system that your
Net.Data macros access.

You might not be able to verify the tnsping function on Windows NT if
your Web server runs under system authority. If so, skip this step.

c. Verify that the Oracle tables can be accessed with the same security
authorization that your Web server uses. To verify, enter an SQL
SELECT statement, using the SQL*Plus line command tool, to access an
Oracle table with an SQL SELECT statement with the authority of your
Web server. For example:
SELECT * FROM tablename

You might not be able to verify table access on Windows NT if your
Web server runs under system authority. If so, skip this step.

Troubleshooting: Do not proceed if the above steps fail. If any of the steps
fail, check your Oracle configuration.

2. Ensure that the Oracle environment variables are set correctly in your Web
server process.
v For AIX, put the following lines in the /etc/environment file or in the

.profile file for the user ID the Web server is running under:
ORACLE_SID=oracle-instance-name
ORACLE_HOME=oracle-runtime-library-directory

v For Windows NT, use the System Properties Control panel to add the
following environment variables:
ORACLE_SID=oracle-instance-name
ORACLE_HOME=oracle-runtime-library-directory

Hint: You might require additional lines for other Oracle environment
variables, depending on the Oracle facilities you plan to use, such as
national language support and two phase commit. Consult the Oracle
administration documentation for more information on these environment
variables.

3. Test the connection to Oracle from Net.Data. In your Net.Data macro,
specify the appropriate values in the LOGIN and PASSWORD variables.
Do not define the Net.Data DATABASE variable when accessing Oracle
databases. The following is an example of connect statement in a macro:
%DEFINE LOGIN=user_ID@remote-oracle-instance-name
%DEFINE PASSWORD=password

Chapter 2. Configuring Net.Data 31

Local Oracle instances:

If you access the local Oracle instance only, do not specify the
remote-oracle-instance name as part of the login user ID, as in the
following example:
%DEFINE LOGIN=user_ID
%DEFINE PASSWORD=password

Live Connection:

If you use Live Connection, then you can specify the LOGIN and
PASSWORD in the Live Connection configuration file, although it is not
recommended for security purposes. For example:
CLIETTE DTW_ORA:{
MIN_PROCESS=1
MAX_PROCESS=3
EXEC_NAME=./dtwora8
DATABASE=not_used
LOGIN=userid@remote_oracle_instance_name
PASSWORD=password
}

Hint: Do not specify the DATABASE variable for Oracle.
4. Test your configuration by running a CGI shell script to ensure that the

Oracle instance can be accessed from your Web server, as in the following
example:
#! /bin/sh
echo "content-type; text/html
echo
echo "<html><pre>"
set
echo "</pre><p> </p><pre>"
tnsping oracle-instance-name
echo

Alternatively, you can execute tnsping directly from a Net.Data macro, as
in the following example:
%DEFINE testora = %exec "tnsping oracle-instance-name"
%HTML (report){
< P>About to test Oracle access with tnsping.
< hr>
$(testora)
< hr>
< P>The Oracle test is complete.
%}

Troubleshooting:

32 Net.Data Administration and Programming Guide

If the verification step fails, check that all the preceding steps were
successful by verifying the following items:
v Check your Oracle configuration.
v Verify that the Oracle environment variable syntax is correct and that no

variables are missing.
v Check the Oracle connection, ensuring that you have entered the correct

user ID and password.

If the verification step still fails, contact IBM Service.

Example:

After you have completed the accessing verification steps, you can make calls
to the Oracle language environment with functions in the macro, as in the
following example:
%FUNCTION(DTW_ORA) STL1() {
insert into $(tablename) (int1,int2) values (111,NULL)
%}

Configuring Live Connection

Live Connection manages database and Java application connections to
improve performance for Net.Data on the Windows NT, OS/2, AIX, and Sun
Solaris operating systems. Through the use of a Connection Manager and
cliettes, processes that maintain open connections, Live Connection eliminates
the start up overhead of connecting to a database or starting a Java Virtual
Machine.

Live Connection uses a configuration file, dtwcm.cnf, to determine what
cliettes need to be started. It contains administration information and
definitions for each of the cliettes used with Live Connection. See “Managing
Connections” on page 182 to learn more about Live Connection.

The sample configuration file shown in Figure 6 on page 34 contains the
following types of information:
v Connection Manager port information
v SQL cliette information for a DB2 connection
v Java application cliette information

Chapter 2. Configuring Net.Data 33

Before you begin: Read the hints and tips section following these steps before
customizing the Live Connection configuration file.

Configuring Live Connection ports:

The value you choose for MAIN_PORT is the port number that will be used
first. The port numbers that live connection could use can be calculated using
the setting of MAIN_PORT and each cliette’s MAX_PROCESSES. When
loaded, live connection allocates ports starting at the number specified in
MAIN_PORT and incrementally until the cumulative MIN_PROCESSES are
reached. As needed, it will then load ports until the MAX_PROCESSES are
reached. The maximum number of ports used are the sum of the
MAX_PROCESSES settings.

For example, in the configuration in Figure 6, the port numbers allocated
would be 7100, 7101, and 7102, and then up to 7110 as needed.

Important:

v Check with your system administrator to ensure that the port numbers you
plan to use are available.

v Ensure that the value of MAIN_PORT matches the value of
DTW_CM_PORT in the Net.Data initialization file.

Configuring database cliettes:

1. Type the cliette environment statement.

1 CONNECTION_MANAGER{
2 MAIN_PORT=7100
3 }
4
5 CLIETTE DTW_SQL:CELDIAL{
6 MIN_PROCESS=1
7 MAX_PROCESS=5
8 EXEC_NAME=./dtwcdb2
9 DATABASE=CELDIAL
10 LOGIN=marshall
11 PASSWORD=stlpwd
12 }
13
14 CLIETTE DTW_JAVAPPS{
15 MIN_PROCESS=1
16 MAX_PROCESS=5
17 EXEC_NAME=./javaapp
18 }

v Lines 1 - 3 are required for the
configuration file and define
unique port numbers used with
Live Connection.

v Lines 5 - 12 define all database
cliettes, identifying the cliette
name, the number of processes to
be run, database name,, and the
cliette exec file. You can include
additional information, such as a
user ID and password for
connecting to a DB2 database.

v Lines 14 - 18 define all cliettes for
Java applications, identifying the
cliette name, the number of
processes to be run, unique port
numbers, and the cliette exec file.

Figure 6. The Live Connection configuration file

34 Net.Data Administration and Programming Guide

CLIETTE type:db_name

Parameters:

type The name that associates a language environment with a cliette.
See on page 57 for a list of valid types.

db_name
The database cliette name, which is often the same as the database
with which the cliette is associated, such as MYDBASE; however
the db_name can also be another name. db_name is optional when
using the Oracle language environment.

2. Determine values for MIN_PROCESS and MAX_PROCESS.
MIN_PROCESS specifies the number of processes to be started when the
Connection Manager is started. Afterwards, if additional simultaneous
requests arrive, the Connection Manager starts more cliettes, adding one as
needed, until the value specified for MAX_PROCESS is reached.
Type the MIN_PROCESS and MAX_PROCESS statements:
MIN_PROCESS=min_num
MAX_PROCESS=max_num

Parameters:

min_num
The number of cliette processes to be started when the Connection
Manager is started. You must have enough available unique port
numbers for this number of cliettes.

max_num
The maximum number of cliettes that can be run simultaneously.
You must have enough available unique port numbers for this
number of cliettes.

3. Specify the name of the cliette executable file. This file name is specified
as:
EXEC_NAME=./dtwcdbtypeid

Where dbtypeid is the database type identifier. Refer to Table 6 for valid
executable file names:

Table 6. Cliette exec file names

Cliette
Description

Cliette
Type

Names Platform Availability

UNIX Windows
NT or OS/2

AIX NT OS/2 HP SUN PTX

DB2
process
cliette

DTW_SQL dtwcdb2 dtwcdb2.exe Y Y Y Y Y N

Chapter 2. Configuring Net.Data 35

Table 6. Cliette exec file names (continued)

Cliette
Description

Cliette
Type

Names Platform Availability

UNIX Windows
NT or OS/2

AIX NT OS/2 HP SUN PTX

ODBC
process
cliette

DTW_ODBC dtwcodbc dtwcodbc.exeY Y N N N N

Oracle
process
cliette

DTW_ORA dtwcora dtwcora.exe Y Y N N N N

4. Specify the name of the database with which the cliette is associated:
DATABASE=db_name

Where db_name is the name of the database with which the cliette is
associated; for example, MYDBASE.

5. Optional: Change the default values for the LOGIN and PASSWORD
variables to *USE_DEFAULT so that Net.Data uses the same user ID that
started the Connection Manager to connect to the DB2 database. By
specifying these default values, you avoid placing this information in the
configuration file. For example, replace lines 14 and 15, in the sample
configuration file in Figure 6 on page 34 with these lines:
LOGIN=*USE_DEFAULT
PASSWORD=*USE_DEFAULT

Tip: If you define multiple cliette entries in the configuration file, you can
specify various database login and passwords for a particular database.

Configuring Java application cliettes:

1. Type the cliette environment statement:
CLIETTE DTW_JAVAPPS

2. Determine values for MIN_PROCESS and MAX_PROCESS.
MIN_PROCESS specifies the number of processes that are to be started
when the Connection Manager is started. Afterwards, if simultaneous
requests arrive, the Connection Manager starts more cliettes, adding one as
needed, until the value specified for MAX_PROCESS is reached.
Type the MIN_PROCESS and MAX_PROCESS statements.
MIN_PROCESS=min_num
MAX_PROCESS=max_num

Parameters:

min_num
The number of cliette processes started when the Connection

36 Net.Data Administration and Programming Guide

Manager is started. You must have enough available unique port
numbers for this number of cliettes.

max_num
The maximum number of additional cliettes that can be run
simultaneously. You must have enough available unique port
numbers for this number of cliettes.

Hints and tips for configuring Live Connection:

v Cliette names are used by the Connection Manager to uniquely identify a
set of cliettes.

v For database cliettes, you must have one named set of cliettes for each
database you plan to access. For databases that are rarely accessed, you can
set the MIN and MAX number of cliettes to 1. Alternatively, you can also
set MIN to 0, which means processes are not started until a Net.Data
request is made for the cliette.

v The NAME of the cliette must be consistent with the cliette name
referenced in the ENVIRONMENT statement for the cliette type in
initialization file. The cliette name can contain variables, and in the case of
database cliettes, it should include the variable reference $(DATABASE).
The default value for the cliette name in the ENVIRONMENT statement is
DTW_SQL:$(DATABASE). You can use a variable reference in the
initialization file, but not the Live Connection configuration file.
The DATABASE variable is defined in the Net.Data macro. When an SQL
statement in the macro is encountered, the $(DATABASE) variable reference
in the Net.Data initialization file is replaced with the current value of
DATABASE.
You can use this method to access multiple databases. If you have three
databases that you wanted to access in your Net.Data macro (for example,
D1, D2, and D3), and your initialization file has the standard CLIETTE
″DTW_SQL:$(DATABASE)″ line, then you need three sections in the live
connection configuration file such as:
CLIETTE DTW_SQL:D1{ ...}
CLIETTE DTW_SQL:D2{....}
CLIETTE DTW_SQL:D3{....}

v Processes are started but not stopped. If you set the maximum number of
processes to M and at any time M processes are used simultaneously, they
stay active until you shut down the Connection Manager, therefore you do
not want the value of MAX_PROCESS to be so high that you use up all of
your system resources starting processes that are rarely used.
Recommendation: Try using different values for MIN_PROCESS and
MAX_PROCESS to see what works best for your system. If the Connection
Manager receives more requests than the specified maximum value, the last
request is queued until a cliette finishes processing. When a cliette becomes

Chapter 2. Configuring Net.Data 37

available, the queued request is then processed. This process of queuing
requests is transparent to the application user.

v You can use the same type of cliette for different named sections. For
example, all DB2 database sections of the configuration file use the same
cliette type. You cannot have two sections with the same name.

If you are using CGI, and want only some databases to use Live Connection,
simply list the databases you want in the configuration file. When Net.Data is
processing a Net.Data macro and encounters an SQL function, it asks the
Connection Manager for a specific cliette. If the Connection Manager does not
have that type of cliette, it responds with a NO_CLIETTE_AVAIL message.
Net.Data processes the request with a DLL version instead.

Confiring the Connection Manager service to start automatically:

On Windows NT, you can specify to have Connection Manager start as an
Windows NT service, instead of from the command line. Running Connection
Manager as an Windows NT service allows Connection Manager to be
automatically started each time the machine is started.

Important: Start Connection Manager from the command line before setting it
up to start automatically to ensure that the Live Connection configuration file
is correct.
v From the Windows NT task bar, select Start->Settings->Control Panel

->Services.
v Select Net.Data Connection Manager, then click the Startup button.
v Select Automatic startup type, then click on OK.

Configuring the Web Server for Use with CGI

The Common Gateway Interface (CGI) is an industry-standard interface that
enables a Web server to invoke an application program such as Net.Data.
Net.Data’s support for CGI lets you use Net.Data with your favorite Web
server.

Configure Net.Data to use only one interface at a time. For example, if you
configure the Web server to execute Net.Data using CGI, do not also configure
the Web server to execute Net.Data using another interface. If you want to
later run Net.Data using another interface, such as FastCGI, then reconfigure
the Web server solely for the new interface.

Configure the Web server to invoke Net.Data by adding Map, Exec, and Pass
directives to the HTTP configuration file so that Net.Data gets invoked.

38 Net.Data Administration and Programming Guide

Recommendation: Organize the directives in the following order within the
HTTP configuration file to prevent directives from being ignored: Map, Exec,
Pass. For example, if the following Pass directive precedes a Map or Exec
directive, the Map and Exec directives are ignored:
Pass /*

Map directives
The Map directives map entries using the format /cgi-bin/db2www/*
to the library where the Net.Data program resides on your system.
(The asterisk (*) at the end of the string refers to anything that follows
the string.) Both upper- and lower-case map statements are included,
because the directives are case sensitive.

Exec directives
The Exec directive enables the Web server to execute any CGI
programs in the CGI library. Specify the library where the program
resides (not the program itself) on the directive.

General Web Server Parameter Settings

Configure the Web serve to set and/or pass the environment variables needed
by Net.Data. Language environments and operating systems differ in the way
that environment variables are handled. Please see your Web server
documentation for the exact syntax used for your environment and platform.

libpath The LIBPATH environment variable should contain the path to the
directories containing the Net.Data shared libraries or the DLLs that
appear in the ENVIRONMENT statements in the Net.Data
initialization file. If DB2 is accessed, the LIBPATH variable should
contain the path to the DB2 library directory.

For Apache and IBM HTTP Web server:
SetEnv LIBPATH /u/mydir/myserver/lib:/u/mydir/myserver:

/usr/lpp/db2_07_01/lib:/usr/lib

oracle_home
Required when using Oracle. The path and directory of the Oracle
database executable files.

For Apache and IBM HTTP Web server:
SetEnv ORACLE_HOME /home.native/oracle/product/8.1.5

oracle_sid
Required when using Oracle. The instance of the Oracle database. You
must use Live Connection for Oracle.

For Apache and IBM HTTP Web server:
SetEnv ORACLE_SID mvpdb2

Chapter 2. Configuring Net.Data 39

db2instance
Required when using DB2. The instance of the DB2 database.

For Apache and IBM HTTP Web server:
SetEnv DB2INSTANCE wwwinst

REXX_owner_pid
Required when using REXX on AIX. The performance variable is used
with FastCGI and REXX on the AIX operating system. The default is
0. For other products and operating systems, declare this variable in
the Net.Data macro. See “Appendix B. Net.Data for AIX” on page 225
for more information about this variable.

For Apache and IBM HTTP Web server:
SetEnv RXQUEUE_OWNER_PID 0

lang The UNIX locale variable. Use En_US for U.S. English.

For Apache and IBM HTTP Web server:
SetEnv LANG En_US

NLSPATH
Specifies the directory location of the message catalog.

For Apache and IBM HTTP Web server:
SetEnv NLSPATH /usr/lib/nls/msg/%L/%N

Configuring Net.Data for FastCGI

The FastCGI interface is an industry-standard interface that allows an
application to execute in a similar manner to CGI applications, with the
processes remaining active from request-to-request. It provides similar
performance to the other Web API programs with the application isolation of
CGI. Net.Data can execute as a FastCGI process on Apache Web Server and
IBM HTTP Server. FastCGI is supported on the AIX and Sun Solaris operating
systems.

Configure Net.Data to use only one interface at a time. For example, if you
configure the Web server to execute Net.Data using FastCGI, do not also
configure the Web server to execute Net.Data using another interface. If you
want to later run Net.Data using another interface then reconfigure the Web
server solely for the new interface.

Before you use FastCGI, you must install the:
v Apache Web Server 1.2.0
v IBM HTTP Server 1.3.12.0 or later
v HTTP Fast-CGI module

To configure Net.Data for FastCGI:

40 Net.Data Administration and Programming Guide

|

|

|

|

1. Configure the Web server and FastCGI configuration file for your
operating system:

For Apache Web server:
Update the httpd.conf file.
v Declare the new application:

AppClass inst_dir
-processes proc_num
-initial-env LIBPATH=libpath
-initial-env ORACLE_HOME=oracle_path
-initial-env ORACLE_SID=oracle_instance
-initial-env DB2INSTANCE=db2_instance
-initial-env RXQUEUE_OWNER_PID=REXX_perf_var
-initial-env LANG=locale

v Declare the FastCGI module:
<Location /fcgi-bin>
SetHandler fastcgi-script
</Location>

For IBM HTTP Web server:
Enable the FastCGI module and the Net.Data FastCGI module:
v In the httpd.conf file, use the following entries:

– #Load FCGI Module
LoadModule fastcgi_module libex/mod_fastcgi.so

– # Add FCGI Module
AddModule mod_fastgi.c

–
FastCgiServer /usr/HTTPServer/db2www/fcgi-bin/fcgi-bin/db2www
-appConnTimeout 0 -idle-timeout 30 -init-start-delay 1
-listen-queue-depth 100 -processes 3
-restart-delay 5 -port 7125

<Location /fcgi-bin>
SetHandler fastcgi-script

<Location>

Parameters:

inst_dir
The path and directory name for Net.Data’s executable files.

For Apache Web server:
AppClass /u/mydir/apache/fcgi-bin/db2www

For IBM HTTP Web server:
SetEnv /u/mydir/apache/fcgi-bin/db2www

Chapter 2. Configuring Net.Data 41

|
|

|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

|

proc_num
The number of requests that can be handled simultaneously. The
default is 1, but should be increased to improve performance,
based on your application requirements. See “Using FastCGI” on
page 181 for tuning information.

For Apache Web server:
-processes 7

IBM HTTP Web server:
NumProcesses 7

MAXREQUEST
Specifies the number of requests the Net.Data Fast-CGI process
will serve before the Web server recycles the process and starts a
new one.

For Apache Web server:
SetEnv MAXREQUEST 5000

For IBM HTTP Web server:
SetEnv MAXREQUEST 5000

2. For Apache: Add the fcgi-bin directory as a new script alias in the
srm.conf file: ScriptAlias /fcgi-bin/ /u/mydir/apache/fcgi-bin

3. Migrate any hyperlinks in static or dynamically generated Web pages from
CGI-BIN to FCGI-BIN. For example:
<a href="http://server/fcgi-bin/db2www/filename.ext/block
[?name=val&...]">any text

4. Modify end-user documentation for URL invocations of Net.Data with
FCGI-BIN instead of CGI-BIN. For example:
http://server/fcgi-bin/db2www/filename.ext/block[?name=val&...]

Configuring Net.Data for use with Java Servlets

See your Web server documentation for instructions on registering and using
servlets. The Net.Data servlets are contained in the NetDataServlets.jar file.
Your Web server will require that you add inst_dir/servlet-
lib/NetDataServlets.jar and inst_dir/servlet-lib to your CLASSPATH.

Note: Be sure to unjar the NetDataServlets.jar file. Some Web servers require
that all jar files are unjarred before they can be used.

For more information on installing the Web server and on Web server
configuration file directives, refer to your Web server documentation.

42 Net.Data Administration and Programming Guide

|
|

Configuring Net.Data for Use with the Web Server APIs

Using a Web server application programming interface (API) rather than CGI
can improve the performance of Net.Data considerably. Net.Data supports the
following server APIs:
v Apache API (APAPI)
v Microsoft Internet Server API (ISAPI)
v Netscape API (NSAPI)

For more information about each API, see “Using FastCGI” on page 181 and
the README file for your version of Net.Data.

Requirement: To run Net.Data in ISAPI, or NSAPI mode, you must
reconfigure your Web server to use Net.Data DLLs or shared libraries as its
service directives. After reconfiguring, you must restart your Web server so
that any changes you make to the Net.Data initialization file take effect. By
default, Net.Data runs in CGI mode.

Configure Net.Data to use only one interface at a time. For example, if you
configure the Web server to execute Net.Data using FastCGI, do not also
configure the Web server to execute Net.Data using ISAPI or another interface.
If you want to later run Net.Data using another interface, such as NSAPI, then
reconfigure the Web server solely for the new interface.

The following sections describe how to configure Net.Data and the Web server
to run Web server API mode. General steps and examples are provided, but
they might differ for your operating system. Refer to the Net.Data README
file for your operating system for specific instructions.

To configure Apache API:

1. Stop the Web server.
2. Ensure that libmod_db2www.so is in the /opt/netdata/lib directory.
3. For Linux only: Copy libmod_db2www.so (Linux) or mod_db2www.dll

(WinNT) to/apache/modules directory.
4. Add a service statement to your Web server’s configuration file

(httpd.conf) to call the API.
For example:
LoadModule db2www_module /pot/netdata/lib/libmod_db2www.so AddHandler

db2 www_handler .db2www

See the Net.Data README file for your operating system for specific file
and directory names.

5. Restart the Web server.

Chapter 2. Configuring Net.Data 43

APAPI are supported on Windows NT, Linux, and Linux s/390 only.

To configure ISAPI:

1. Stop the Web server.
2. Copy the DLL for ISAPI that comes with Net.Data into the server’s

subdirectory. For example:
/inetsrv/scripts/dtwisapi.filetype

Where filetype is .dll for Window NT and OS/2 and .o for UNIX
operating systems.

See the Net.Data README file for your operating system for specific file
and directory names.

3. Because ISAPI bypasses CGI processing, you do not need to have the
cgi-bin/db2www/ part of the URL in forms and links. Instead, use
dtwisapi.filetype. For example, if the following URL invokes Net.Data as
the CGI program:
http://server1.stl.ibm.com/cgi-bin/db2www/test1.dtw/report

Then you should invoke Net.Data as the ISAPI plug-in with the following
URL:
http://server1.stl.ibm.com/scripts/dtwisapi.dll/test1.dtw/report

4. If you stored your macro test1.dtw in the subdirectory /order/ under one
of the directories specified in MACRO_PATH or current directory of the
Web server, invoke Net.Data in CGI mode using the following URL:
http://server1.stl.ibm.com/cgi-bin/db2www/orders/test1.dtw/report

Then the equivalent URL to invoke Net.Data in ISAPI mode is:
http://server1.stl.ibm.com/scripts/dtwisapi.dll/orders/test1.dtw/report

5. Restart the Web server.

To configure NSAPI:

1. Stop the Web server.
2. Copy the DLL for NSAPI that comes with Net.Data into the server

directory. For example:
/netscape/server/bin/httpd/dtwnsapi.filetype

Where filetype is .dll for Window NT and OS/2 and .o for UNIX
operating systems.

See the Net.Data README file for your operating system for specific file
and directory names.

44 Net.Data Administration and Programming Guide

3. Modify your server configuration file with the changes listed below. See
the Net.Data README file or program directory for your operating
system for operating system differences.

obj.conf Add to the top of the file:

Init fn="load-modules" shlib="<path>dtwnsapi.dll" funcs=dtw_nsapi
obj.conf Add to the Services directive:

Service fn="dtw_nsapi" method=(GET|HEAD|POST)
type="magnus-internal/d2w"

mime.types Add this type, where d2w is the default extension of the macro. You
can specify any three-character combination.

type=magnus-internal/d2w exts=d2w

4. Move the Net.Data macros from the netdata/macro directory to the
server’s root document directory:
/netscape/server/docs/

5. Add the server’s root document directory to the MACRO_PATH statement,
in the initialization file. This change tells Net.Data where to look for the
macros.

6. Because NSAPI bypasses CGI processing, you do not need to have the
cgi-bin/db2www/ part of the URL in forms and links. The server knows
files with a d2w file type are Net.Data macros because you defined it when
you changed the Netscape configuration files. For example, the following
URL invokes Net.Data as the CGI program:
http://server1.stl.ibm.com/cgi-bin/db2www/test1.dtw/report

While the following URL invokes Net.Data as the NSAPI plug-in:
http://server1.stl.ibm.com/test1.dtw/report

7. Restart the Web server.

If you keep your Net.Data macros in several directories, the last three steps
change:
1. Move the directories with the Net.Data macros they contain to the server’s

root document directory.
2. Update the MACRO_PATH variable in the initialization file to include all

of the directories and subdirectories where you macros are located.
3. Modify the links and forms that point to these Net.Data macros, keeping

their directory names. For example, when running in CGI, the following
URL calls a Net.Data macro that is stored in the /orders/ directory:
http://server1.stl.ibm.com/cgi-bin/db2www/orders/test1.dtw/report

The updated URL used to invoke Net.Data in NSAPI mode is shorter, but
keeps the directory name:

Chapter 2. Configuring Net.Data 45

http://server1.stl.ibm.com/orders/test1.dtw/report

Configuring Net.Data with the Net.Data Administration Tool

The Net.Data administration tool helps you to configure and manage the
Net.Data initialization file (DB2WWW.INI) and the configuration file for Live
Connection (dtwcm.cnf) on the Windows NT, AIX, and OS/2 operating
systems. Using this tool, you can complete the following tasks:
v “Starting the Administration Tool” on page 47
v “Configuring Path Statements” on page 47
v “Configuring Ports” on page 49
v “Configuring Cliettes” on page 50
v “Configuring Language Environments” on page 54
v “Defining Configuration Variables” on page 58

See “Before You Begin” to learn about setting up the administration tool and
ensuring your have the correct software prerequisites.

Before You Begin
1. Plan the configuration of Net.Data language environments, databases,

cliettes, ports, and configuration variables.
2. Install Net.Data from CD-ROM.
3. Install the Java run-time libraries (JDK 1.1 and subsequent versions for

each operating systems). Check the Net.Data README file for your
operating system for more information.
Make sure you have classes.zip in your CLASSPATH after installing
JDK.

4. If you have installed the IBM JDBC driver that is packaged with DB2
Universal Database, add the driver directory to your Java CLASSPATH
statement to enable the DB2 login test.

5. Change to the directory where the Net.Data administration tool program is
stored:

For OS/2 and Windows NT:
The inst_dir\connect\admin_directory, where inst_dir is the
directory you specified for Net.Data during installation and
admin_directory is the directory where the administration tool files
exist.

For AIX:
The /usr/lpp/internet/db2www/db2.v2/admin directory, where
admin_directory is the directory where the administration tool files
exist

46 Net.Data Administration and Programming Guide

Starting the Administration Tool
The operating system that you use determines how you start the
administration tool.

For OS/2 and Windows NT:

From the IBM Net.Data folder, select the Net.Data Admin Tool icon.

For AIX:

Change to the Net.Data installation directory (inst_dir). From the command
line, enter ndadmin to start the tool.

The administration tool is launched and the Net.Data Administration
notebook is displayed.

Configuring Path Statements
Use the Path page to add, modify, or delete the path statements for locating
the files the Net.Data needs to process Net.Data macros. These statements are
described in “Path Configuration Statements” on page 22. Figure 7 on page 48
shows the Path page.

Chapter 2. Configuring Net.Data 47

Configuration tip: The HTML file type can have one path, only.

To add a path statement:

1. Start the administration tool.
2. From the Path page, select a file type from the File type, for example,

select Exec.
3. In the Edit directory field, type the new path and click on the Add button.

If the path you specified does not exist, a warning window opens. If no
directory is selected, the new directory is added as the last item in the list.

4. Close the administration tool, or click on another tab to complete
additional configuration tasks.

To modify a path statement:

1. Start the administration tool.
2. From the Path page, select the file type you want to change from the File

type list.
3. Select the path you want to modify in the Directory selection list. The

selected path opens in the Edit directory field.

Figure 7. The Path Page of the Net.Data Administration Tool. Use this page to add, modify or
delete path statements.

48 Net.Data Administration and Programming Guide

4. Modify the path in the Edit directory field and click on the Modify
button. If the path you entered does not exist, a warning window opens.

5. Close the administration tool, or click on another tab to complete
additional configuration tasks.

To delete a path statement:

1. Start the administration tool.
2. From the Path page, select the file type that you want to delete from the

File type list.
3. In the Directory selection field, select the path you want to delete. The

selected path opens in the Edit directory field.
4. Click on the Delete button.
5. Close the administration tool, or click on another tab to complete

additional configuration tasks.

Configuring Ports
Use the Port page to specify the TCP/IP port numbers used by Net.Data.
Figure 8 shows the Port page.

Figure 8. The Port Page of the Net.Data Administration Tool. Use this page to specify ports.

Chapter 2. Configuring Net.Data 49

To specify TCP/IP port numbers:

1. Start the administration tool.
2. From the Port page, type a unique port number in each of the port fields.

The administration tool verifies the port number you type in each field
when you tab to the next field.

3. Close the administration tool, or click on another tab to complete
additional configuration tasks.

Configuring Cliettes
Use the Cliette page to add, modify, or delete Live Connection database
cliettes, and you can also manage database and administrator user IDs and
passwords for database cliettes. More information about cliettes is provided in
“Managing Connections” on page 182. Figure 9 shows the Cliette page.
To add a cliette:

1. Start the administration tool.

Figure 9. The Cliette Page of the Net.Data Administration Tool. Use this page to add, modify, and
delete cliettes.

50 Net.Data Administration and Programming Guide

2. From the Cliette page, select <new...> from the Cliette name list. The Add
a cliette window opens.

If you have enabled encryption, you are prompted for the encryption
password the first time you create or modify a cliette. This password is
saved and you will not ever have to enter it again.

3. Select a cliette type from the Type list.
4. Type a name for the new cliette in the Name field. The name can be the

name of the database or another unique cliette name. For example:
MYCLIETTE.

5. Type the encryption password if the Encryption password field is enabled.
You will not need to type the password again, as the administration tool
saves the password for you.

6. Click on the Add button.
The new cliette is created and is added to the bottom of the cliette list.
Additionally, the new name is highlighted and the default properties for
the cliette are displayed in the Properties group box. You can change these
values to fit your configuration.

7. Close the administration tool, or click on another tab to complete
additional configuration tasks.

To modify a cliette:

1. Start the administration tool.
2. From the Cliette page, select the name of the cliette that you want to

change from the Cliette name list. The properties of the cliette are
displayed in the Properties group box.

3. Modify the properties from the Properties group box, as needed.
a. The Type field displays the type of cliette that is being defined and

corresponds to a language environment type name. Net.Data populates

Figure 10. The Add a Cliette Window of the Net.Data Administration Tool. Use this page to add
cliettes.

Chapter 2. Configuring Net.Data 51

this field when you add a new cliette, and the choices are defined in
the Cliette type list in the Add a Cliette window.

b. The Name field displays the name of the cliette, which is usually the
name of the database. Net.Data populates this field when you add a
new cliette.

c. Type the number of cliette process that can be started when Connection
Manager is started in the Min process field. You need one unique port
address for each process. See “Configuring Live Connection” on
page 33 for more information about MIN Process values.

d. In the Max process field, type the number of cliette processes that can
be run at the same time, in addition to the processes started when
Connection Manager is started. You need one unique port address for
each process. See “Configuring Live Connection” on page 33 for more
information about MAX Process values.

e. Type a unique port number in the Private port field to specify the
starting port number for use with the cliette processes that are started
with the Connection Manager. An additional port number is used for
each of the processes specified by the Min Process value. For example,
if you specify the port number 7012 for Private port and the value 5
for Min process, port numbers 7012-7016 are used and must not
conflict with other port assignments in the system.

f. Type a unique port number in the Public port field to specify the
starting port number used with the cliette processes that are started
when additional processes are started, up to the number specified in
the Max process field. An additional port number is used for each of
the processes For example, if you specify the port number 7020 for
Public port and the value 5 for Max process, port numbers 7020-7024
are used and must not conflict with other port assignments in the
system.

g. The Exec name field displays the name of the cliette executable file.
4. If the cliette is being used with a database, modify the values for the

Database group box, as needed:
a. Specify the database name of the database with which the cliette is

associated Database name field, for example, MYDBASE.
b. The Bind file field contains the name and path of the bind file for the

type of cliette that you are using.
c. The Login field specifies the login user ID used to connect to the

database.
d. The Change password push button opens the Change Database

Password window. Type the encryption password and the new
password, twice. You can encrypt the database password by using the
encryption functions specified in the Security pull-down menu.

5. Select File and then Save to save your changes.

52 Net.Data Administration and Programming Guide

6. Close the administration tool, or click on another tab to complete
additional configuration tasks.

To test the DB2 database logon and connection:

1. From the Cliette page of the administration tool, click on the DB2 test
logon push button. When the test is complete a confirmation window
opens, displaying the status of the connection test.

2. Close the window to continue configuring or close the administration tool.

To delete a cliette:

1. Start the administration tool.
2. From the Cliette page, select the name of the cliette that you want to

delete from the Cliette name list.
3. Click on the Delete button.
4. Close the administration tool, or click on another tab to complete

additional configuration tasks.

To turn on encryption of cliette user IDs and passwords:

Encryption provides security for database connections with cliettes. When
encryption is turned on, all database passwords in the Live Connection
configuration file are encrypted and require an encryption password for access
and decryption.

Requirement: You must use a Net.Data Version 2 Live Connection
configuration file to use encryption.
1. Important: Back up a copy of your Live Connection configuration file,

<path>dtwcm.cnf. You need this file if you lose the encryption password,
or want to decrypt database passwords and need to restore the passwords.

2. From the Cliette page of the administration tool, select the Security ->
Turn encryption on pull-down menu option. The Turn Encryption On
confirmation window opens.

3. Click on Yes to continue. The Encryption Password window opens.
4. Type the password twice for authorization to work with cliettes that have

encrypted passwords.
5. Click on OK to define the new password and encrypt all of the database

passwords for your cliettes.

To turn off encryption of cliette user IDs and passwords:

1. From the Cliette page of the administration tool, select the Security ->
Turn encryption off pull-down menu option. The Turn Encryption Off
confirmation window opens.

Chapter 2. Configuring Net.Data 53

2. Click on Yes to continue. All passwords are set to *USE_DEFAULT for
security reasons. You can restore your passwords from the backup copy of
the Live Connection file, <path>dtwcm.cnf.

To change the password for encryption:

1. From the Cliette page of the administration tool, select the Security ->
Change Encryption Password pull-down menu option. The Change
Encryption Password confirmation window opens.

2. Click on Yes to continue. The Change Encryption Password window
opens.

3. Type the old encryption password once, and the new password twice.
4. Click on OK to change the encryption password.

To change the database password:

1. From the Cliette page of the administration tool, click on the Change
Password push button. The Change Database Password window opens.

2. Type the encryption password once and the new database password twice.
3. Click on OK to change the password and close the window. The changed

database password is encrypted if you have turned encryption on.

Configuring Language Environments
Use the Language Environment page to add, modify, or delete Net.Data
language environments. Language environments are discussed in
“Environment Configuration Statements” on page 26. Figure 11 on page 55
shows the Language Environment page.

54 Net.Data Administration and Programming Guide

To add a language environment:

1. Start the administration tool.
2. From the Language Environment page, select <new...> from the Language

environment list. The Add a new language environment window opens.
3. Type a name of the language environment in the field and click on the

Add button. The Add a Language Environment window opens.

The new language environment is created and its name is added to the
bottom of the language environment list. Additionally, the new name is

Figure 11. The Language Environment Page of the Net.Data Administration Tool. Use this page to
specify language environments.

Figure 12. The Add a Language Environment window of the Net.Data Administration Tool. Use this
page to specify a new language environment.

Chapter 2. Configuring Net.Data 55

highlighted, and the default properties for the language environment are
displayed in the Properties group box. You can change these values to fit
your configuration.

4. Close the administration tool, or click on another tab to complete
additional configuration tasks.

To modify a language environment:

1. Start the administration tool.
2. From the Language Environment page, select the name of the language

environment that you want to change from the Language environment
list. The properties of the cliette are displayed in the Properties group box.

3. Modify the properties in the Properties group box, shown in Figure 12 on
page 55 as needed:
a. Specify the name of the language environment in the Name field; this

name corresponds to the language environment type used to define a
cliette. To change this value, double click on a different name from the
Language environment list. See “Environment Configuration
Statements” on page 26 for more information about language
environment types.

b. Specify the shared library or DLL program name and path for the
language environment in the Shared library or dll name field.

c. Select the DB2 information push button to display the DB2
Information window as shown in Figure 13.

Specify the values for the DB2 environment variables:
1) Type the path and file name of the bind file in the Bind file field.
2) Specify the DB2INSTANCE value for the database associated when

you use the SQL language environment in the DB2 Instance field.

Figure 13. The DB2 Information window of the Net.Data Administration Tool. Use this page to
specify information specifically for DB2 databases.

56 Net.Data Administration and Programming Guide

3) Specify the path directory name for the DB2 product executable
files, usually \SQLLIB, in the DB2 Path field.

4) Click on OK to save your changes and close the window.
d. Specify the input and output parameters that are passed to or from a

language environment each time the language environment is called in
the Parameters group box.
Tip: Do not update these fields unless you are defining your own
language environment.

e. Specify whether to use cliettes and which cliette should be associated
with the language environment in the Live Connection cliettes group
box.
1) Specify whether the cliette for the language environment is active

by checking the Use Live Connection cliette check box. Select this
check box if you want to use the cliette specified in the Cliette field
when calling the language environment.

2) Specify the name of the cliette that is to be run with the language
environment being defined in the Cliette field. The syntax of the
name depends on whether you are configuring a database or the
Java Application language environment. The default is
DTW_SQL:$(DATABASE).
Syntax for Databases:
type:name

Where:

type The language environment type for the cliette. It can be one
of the following values:

For Windows NT:
DTW_ODBC, DTW_ORA, DTW_SQL,
DTW_JAVAPPS

For OS/2:
DTW_SQL, DTW_JAVAPPS

For AIX:
DTW_ODBC, DTW_ORA, DTW_SQL,
DTW_JAVAPPS

name The name of the cliette as defined on the Cliette page. The
default is $(DATABASE).

Syntax for Java Applications:
DTW_JAVAPPS

4. Select File and then Save to save your changes

Chapter 2. Configuring Net.Data 57

5. Close the administration tool, or click on another tab to complete
additional configuration tasks.

To delete a language environment:

Restriction: You can delete only the language environments created by users,
not the language environments that come with Net.Data.
1. Start the administration tool.
2. From the Language Environment page, select the name of the language

environment that you want to delete from the Language environment list.
3. Click on the Delete button.
4. Close the administration tool, or click on another tab to complete

additional configuration tasks.

Defining Configuration Variables
Use the Variables page to specify the home directory for Net.Data and to
select the level of error messages logging. Figure 14 shows the Variables page.
To specify the home directory for Net.Data:

Figure 14. The Variables Page the Net.Data Administration Tool. Use this page to specify
initialization variables.

58 Net.Data Administration and Programming Guide

This variable is also known as the installation directory variable.
1. Start the administration tool.
2. From the Variables page, type the path for the directory where the log file

is to be stored in the Installation directory field. The default
is \inst_dir\logs\. For example: e:\db2www.

3. Close the administration tool, or click on another tab to complete
additional configuration tasks.

To specify the error message logging level for Net.Data:

1. Start the administration tool.
2. From the Variables page, select a level of error logging from the Error

logging group box:
v off

v errors only

v both warnings and errors

3. Close the administration tool, or click on another tab to complete
additional configuration tasks.

Granting Access Rights to Files Accessed by Net.Data

Before using Net.Data, you need to ensure that the user IDs under which
Net.Data executes have the appropriate access rights to files that are
referenced in a Net.Data macro and to the macro that a URL references. This
means that these files must be in directories or libraries to which the Web
server can connect, or to which these user IDs have explicit access rights.

More specifically, ensure that the user IDs under which Net.Data executes
have the following authorizations:
v To read the Net.Data initialization file, db2www.ini
v To execute the Net.Data executable files and DLLs, and to search the

directories in the paths to the executable files and DLLs
v To read the appropriate Net.Data macros and search the appropriate

directories identified by the MACRO_PATH path configuration statement
v To execute the appropriate files and to search the appropriate directories

identified by the EXEC_PATH path configuration statement
v To read the appropriate files and to search the appropriate directories

identified by the INCLUDE_PATH path configuration statement
v To read and write the appropriate files, and to search the appropriate

directories identified by the FFI_PATH path configuration statement
v To read the Live Connection configuration file, dtwcm.cnf
v To read the Cache Manager configuration file, CACHEMGR.CNF

Chapter 2. Configuring Net.Data 59

v To read external Perl and REXX executable files referenced by the language
environments

The methods for granting access to these files depend on the operating system
on which Net.Data is running.

60 Net.Data Administration and Programming Guide

Chapter 3. Keeping Your Assets Secure

Internet security is provided through a combination of firewall technology,
operating systems features, Web server features, Net.Data mechanisms, and
the access control mechanisms that are part of your data sources.

You must decide on what level of security is appropriate for your assets. This
chapter describes methods you can use for keeping your assets secure and
also provides references to additional resources you can use to plan for the
security of your Web site.

The following sections contain guidelines for protecting your assets. The
security mechanisms described include:
v “Using Firewalls”
v “Encrypting Your Data on the Network” on page 64
v “Using Authentication” on page 64
v “Using Authorization” on page 64
v “Using Net.Data Mechanisms” on page 65

Using Firewalls

Firewalls are collections of hardware, software, and policies that are designed
to limit access to resources in a networked environment.

Firewalls:
v Protect the internal network from infiltration or intrusion
v Protect the internal network from data and programs that are brought in by

internal users
v Limit internal user access to external data
v Limit the damage that can be done if the firewall is breached

Net.Data can be used with firewall products that execute in your
environment.

The following possible configurations provide recommendations for managing
the security of your Net.Data application. These configurations provide
high-level information and assume that you have configured a firewall that
isolates your secure intranet from the public Internet. Carefully consider these
configurations with your organization’s security policies:
v High security configuration

© Copyright IBM Corp. 1997, 2001 61

This configuration creates a subnetwork that isolates Net.Data and the Web
server from both the secure intranet and the public Internet. The firewall
software is used to create a firewall between the Web server and the public
Internet, and another firewall between the Web server and the secured
intranet, which contains DB2 Server. This configuration is shown by
Figure 15.

To set up this configuration:
– Install Net.Data on the Web server machine and ensure that Net.Data can

access DB2 Server inside the intranet by:
- Installing Client Application Enabler (CAE) on the Web server

machine.
- Configuring the firewall to allow DB2 traffic through the firewall. One

method is to add a packet filtering rule to allow DB2 client requests
from Net.Data and acknowledge packets from DB2 Server to Net.Data.

– Allow FTP and Telnet access between the Web server and the secure
intranet. One method is to install a socks server on the Web server
machine.

– In the packet filtering configuration file of the firewall software, specify
that incoming TCP packets from the standard HTTP port can access the
Web server. Also, specify that outgoing TCP acknowledge packets can go
to any hosts on the public Internet from the Web server.

v Intermediate security configuration

In this configuration, firewall software isolates the secured intranet with
DB2 server from the public Internet. Net.Data and the Web server are
outside the firewall on a workstation platform. This configuration is simpler
than the first, but still offers database protection. Figure 16 on page 63
shows this configuration.

Figure 15. High Security Configuration

62 Net.Data Administration and Programming Guide

You must install CAE on the Web server to allow Net.Data to communicate
with DB2 server. The firewall must be configured to allow DB2 client
requests to flow from Net.Data to DB2 and to allow acknowledge packets
to flow from DB2 to Net.Data.

v Low security configuration

In this configuration, DB2 server and Net.Data are installed outside of the
firewall and the secured intranet. They are not protected from external
attacks. The firewall needs no packet filtering rules for this configuration.
Figure 17 shows this configuration.

Figure 16. Intermediate Security Configuration:

Figure 17. Low Security Configuration:

Chapter 3. Keeping Your Assets Secure 63

Encrypting Your Data on the Network

You can encrypt all data that is sent between a client system and your Web
server when you use a Web server that supports Secured Sockets Layer (SSL).
This security measure supports the encryption of login IDs, passwords, and
all data that is transmitted through HTML forms from the client system to the
Web server and all data that is sent from the Web server to the client system.
Most Web servers support SSL.

Using Authentication

Authentication is used to ensure that a user ID making a Net.Data request is
authorized to access and update data within the application. Authentication is
the process of matching the user ID with a password to validate that the
request comes from a valid user ID. The Web server associates a user ID with
each Net.Data request that it processes. The process or thread that is handling
the request can then access any resource to which that user ID is authorized.

You can use two types of authentication: one protecting certain directories on
your server and one protecting your database.
v Most Web servers allow you to specify directories on the server to protect.

You can also have your system require a user ID and password for people
accessing files in directories you specify. See the Administrator’s Guide for
your Web server to determine your system’s capabilities.

v DB2 has an authentication system for database access that can restrict
access to tables and columns to certain users. You can use Net.Data’s
special variables, such as LOGIN and PASSWORD, to link to the DB2
authentication routine.

Tip: To protect Net.Data macros do the following:
1. Add protection directives in the Web server configuration file for the

Net.Data program object.
2. Ensure the user ID that Net.Data will be running under has access

rights to the macros. For more information on granting access rights,
see “Granting Access Rights to Files Accessed by Net.Data” on
page 59.

Using Authorization

Authorization provides a user with complete or restricted access to an object,
resource, or function. Data sources such as DB2 provide their own
authorization mechanisms to protect the information that they manage. These
authorization mechanisms assume that the user ID associated with the
Net.Data request has been properly authenticated, as explained in “Using

64 Net.Data Administration and Programming Guide

Authentication” on page 64. The existing access control mechanisms for these
data sources then either permit or deny access based on the authorizations
that are held by the authenticated user ID.

Using Net.Data Mechanisms

In addition to the methods described above, you can use Net.Data
configuration variables or macro development techniques to limit the activities
of end users, to conceal corporate assets such as the design of your database,
and to validate user-provided input values within production environments.

Net.Data Configuration Variables
Net.Data provides several configuration variables that can be used to limit the
activities of end users or conceal the design of your database.

Control file access with path statements
Net.Data evaluates the settings of path configuration statements to
determine the location of files and executable programs that are used
by Net.Data macros. These path statements identify one or more
directories that Net.Data searches when attempting to locate macros,
executable files, include files, or other flat files. By selectively
including directories on these path statements, you can explicitly
control the files that are accessible by users at browsers. Refer to
“Chapter 2. Configuring Net.Data” on page 5 for additional detail
about path statements.

You should also use authorization checking as described in “Using
Authorization” on page 64 and verify that file names cannot be
changed in INCLUDE statements as described in “Macro
Development Techniques” on page 67.

Disable SHOWSQL for production systems
The SHOWSQL variable allows the user to specify that Net.Data
displays the SQL statements specified within Net.Data functions at a
Web browser. This variable is used primarily for developing and
testing the SQL within an application and is not intended for use in
production systems.

You can disable the display of SQL statements in production
environments using one of the following methods:
v When using Net.Data Version 2.0.7 or higher, use the

DTW_SHOWSQL configuration variable in the Net.Data
initialization file to override the effect of setting SHOWSQL within
your Net.Data macros. See “DTW_SHOWSQL: Enable or Disable
SHOWSQL Configuration Variable” on page 18 for syntax and
additional information.

Chapter 3. Keeping Your Assets Secure 65

v Users of Net.Data Version 2.0.5 and earlier can use the
DTW_ASSIGN() function as described in “Macro Development
Techniques” on page 67.

See SHOWSQL in the variables chapter of Net.Data Reference for
syntax and examples for the SHOWSQL Net.Data variable.

Consider whether it is appropriate to enable direct request for production
environments

The direct request method of invoking Net.Data allows a user to
specify the execution of an SQL statement or Perl, REXX, or C
program directly from a URL. The macro request method allows users
to execute only those SQL statements and functions defined or called
in a macro.

You should carefully consider whether to allow the use of direct
request because it might give your users the ability to execute a very
broad set of functions. When enabling this method of invocation,
ensure that user ID under which the Net.Data request is processed has
the appropriate level of authorization.

You can use the DTW_DIRECT_REQUEST configuration variable to
disable direct request. See “DTW_DIRECT_REQUEST: Enable Direct
Request Variable” on page 16 for syntax and additional information.

Password encryption
If you specify LOGIN and PASSWORD in the Live Connection
configuration file (dtwcm.cnf) and/or in Net.Data macros, you should
protect the password by encrypting it.

To enable encryption, such as replacing the plain text password with
an encrypted password:
v For the dtwcm.cnf file:

1. Set ENCRYPTION=<key> .
2. Use ’dtwcm -p’ to generate the encrypted password entry.
3. Cut and paste this encrypted string into the PASSWORD entry

in dtwcm.cnf.
v For macros:

1. Set ENCRYPTION=<key> in the db2www.ini file. This key must
be the same as the one in dtwcm.cnf.

2. Use ’dtwcm -p’ to generate the encrypted password entry.
3. Cut and paste this encrypted password into the PASSWORD

entry in the Net.Data macro.

To disable encryption:
v For the dtwcm.cnf file remove the line with ENCRYPTION.

66 Net.Data Administration and Programming Guide

|
|
|
|

|
|

|

|

|

|
|

|

|
|

|

|
|

|

|

v For macros remove the line with ENCRYPTION in db2www.ini.

Macro Development Techniques
Net.Data provides several mechanisms that allow users to assign values to
input variables. To ensure that macros execute in the manner intended, these
input variables should be validated by the macro. Your database and
application should also be designed to limit a user’s access to the data that the
user is authorized to see.

Use the following development techniques when writing your Net.Data
macros. These techniques will help you ensure that your applications execute
as intended and that access to data is limited to properly authorized users.

Ensure that Net.Data variables cannot be overridden in a URL
The setting of Net.Data variables by a user within a URL overrides
the effect of DEFINE statements used to initialize variables in a macro.
This might alter the manner in which your macro executes. To
safeguard against this possibility, initialize your Net.Data variables
using the DTW_ASSIGN() function.

Example: Instead of using:
%define START_ROW_NUM = "1"

Use:
@DTW_ASSIGN(START_ROW_NUM, "1")

Assigning the variable this way prevents a query string assignment
such as ″START_ROW_NUM=10″ from overriding your macro setting.

Validate that your SQL statements cannot be modified in ways that alter the
intended behavior of your application

Adding a Net.Data variable to an SQL statement within a macro
allows users to dynamically alter the SQL statement before executing
it. It is the responsibility of the macro writer to validate user-provided
input values and ensure that an SQL statement containing a variable
reference is not being modified in an unexpected manner. Your
Net.Data application should validate user-provided input values from
the URL so the Net.Data application can reject invalid input. Your
validation design process should include for the following steps:
1. Identify the syntax of valid input; for example, a customer ID

must start with a letter and can contain only alphanumeric
characters.

2. Determine what potential harm can be caused by allowing
incorrect input, intentionally harmful input, or input entered to
gain access to internal assets of the Net.Data application.

Chapter 3. Keeping Your Assets Secure 67

|

3. Include input verification statements in the macro that meet the
needs of the application. Such verification depends on the syntax
of the input and how it is used. In simpler cases it can be enough
to check for invalid content in the input or to invoke Net.Data to
verify the type of the input. If the syntax of the input is more
complex, the macro developer might have to parse the input
partially or completely to verify whether it is valid.

Example 1: Using the DTW_POS() string function to verify SQL
statements
%FUNCTION(DTW_SQL) query1() {

select * from shopper where shlogid = '$(shlogid)'
%}

The value of the shlogid variable is intended to be a shopper ID. Its
purpose is to limit the rows returned by the SELECT statement to
rows that contain information about the shopper identified by the
shopper ID. However, if the string “smith' or shlogid<>'smith” is
passed as the value of the variable shlogid, the query becomes:
select * from shopper where shlogid = 'smith' or shlogid<>'smith'

This user-modified version of the original SQL SELECT statement
returns the entire shopper table.

The Net.Data string functions can be used to verify that the SQL
statement is not modified by the user in inappropriate ways. For
example, the following logic can be used to ensure that single-quotes
are not used to modify SQL statements:
@DTW_ADDQUOTE(shlogid, shlogid)
@query1()

The query then becomes:
select * from shopper where shlogid = 'smith'' or shlogid<>''smith'

Example 2: Using DTW_TRANSLATE()

Suppose that your application needs to validate that the value
provided in the input variable num_orders is an integer. One way of
accomplishing this is to create a translation table trans_table that
contains all keyboard characters except the numeric characters 0-9 and
to use the DTW_TRANSLATE and DTW_POS string functions to
validate the input:
@DTW_TRANSLATE(num_orders, "x", trans_table, "x", string_out)

@DTW_POS("x", string_out, result)

68 Net.Data Administration and Programming Guide

%IF (result = "0")

%{ continue with normal processing %}

%ELSE

%{ perform some sort of error processing %}

%ENDIF

Note that SQL statements within stored procedures cannot be
modified by users at Web browsers and that user-provided input
parameter values are constrained by the SQL data types associated
with the input parameters. In situations where it is impractical to
validate user input values using the Net.Data string functions, you
can use stored procedures.

Ensure that a file name in an INCLUDE statement is not modified in ways
that alter the intended behavior of your application

If you specify the value for the file name with an INCLUDE statement
using a Net.Data variable, then the file to be included is not
determined until the INCLUDE file is executed. If your intent is to set
the value of this variable within your macro, but to not allow a user
at the browser to override the macro-provided value, then you should
set the value of the variable using DTW_ASSIGN instead of DEFINE.
If you do intend to permit the user at a browser to provide a value
for the file name, then your macro should validate the value
provided.

Example: A query string assignment such as filename="../../x" can
result in the inclusion of a file from a directory not normally specified
in the INCLUDE_PATH configuration statement. Suppose that your
Net.Data initialization file contains the following path configuration
statement:
INCLUDE_PATH /usr/lpp/netdata/include

and that your Net.Data macro contains the following INCLUDE
statement:
%INCLUDE "$(filename)"

A query string assignment of filename="../../x" would include the
file /usr/lpp/x , which was not intended by the INCLUDE_PATH
configuration statement specification.

The Net.Data string functions can be used to verify that the file name
provided is appropriate for the application. For example, the
following logic can be used to ensure that the input value associated
with the file name variable does not contain the string ″..″:

Chapter 3. Keeping Your Assets Secure 69

@DTW_POS("..", $(filename), result)
%IF (result > "0")

%{ perform some sort of error processing %}
%ELSE
%{ continue with normal processing %}
%ENDIF

Design your database and queries so that user requests do not have access
to sensitive data about other users

Some database designs collect sensitive user data in a single table.
Unless SQL SELECT requests are qualified in some fashion, this
approach may make all of the sensitive data available to any user at a
web browser.

Example: The following SQL statement returns order information for
an order identified by the variable order_rn:
select setsstatcode, setsfailtype, mestname
from merchant, setstatus
where merfnbr = setsmenbr
and setsornbr = $(order_rn)

This method permits users at a browser to specify random order
numbers and possibly obtain sensitive information about the orders of
other customers. One way to safeguard against this type of exposure
is to make the following changes:
v Add a column to the order information table that identifies the

customer associated with the order information within a specific
row.

v Modify the SQL SELECT statement to ensure that the SELECT is
qualified by an authenticated customer ID provided by the user at
the browser.

For example, if shlogid is the column containing the customer ID
associated with the order, and SESSION_ID is a Net.Data variable that
contains the authenticated ID of the user at the browser, then you can
replace the previous SELECT statement with the following statement:
select setsstatcode, setsfailtype, mestname

from merchant, setstatus
where merfnbr = setsmenbr
and setsornbr = $(order_rn)
and shlogid = $(SESSION_ID)

Use Net.Data hidden variables
You can use Net.Data hidden variables to conceal various
characteristics of your Net.Data macro from users that view your
HTML source with their Web browser. For example, you can hide the
internal structure of your database. See “Hidden Variables” on
page 107 for more information about hidden variables.

70 Net.Data Administration and Programming Guide

Request validation information from a user
You can create your own protection scheme based on user-provided
input. For example, you can request validation information from a
user through an HTML form and validate it using data that your
Net.Data macro retrieves from a database or by calling an external
program from a function defined in your Net.Data macro.

For more information on protecting your assets, see the Internet security list
of frequently asked questions (FAQ) at this Web site:
http://www.w3.org/Security/Faq

Chapter 3. Keeping Your Assets Secure 71

72 Net.Data Administration and Programming Guide

Chapter 4. Invoking Net.Data

This chapter describes how you invoke Net.Data using the various Web server
interfaces. Before you can use one of the methods of invocation, Net.Data
must first be configured for the specified interface. You can configure
Net.Data to use the following Web server interfaces:
v Common Gateway Interface (CGI)
v FastCGI
v Apache API (APAPI)
v IBM HTTP Server API
v Netscape Server (NSAPI)
v Microsoft Internet Server (ISAPI)
v Java Servlets

See “Chapter 2. Configuring Net.Data” on page 5 to learn more about
configuring Net.Data for these interfaces. By default, the Web server invokes
Net.Data as a CGI program, with each Net.Data request running in a new and
separate process. You determine how Net.Data is invoked when you configure
the Web server.

The following sections describe the types of requests Net.Data accepts and the
methods you can use to invoke Net.Data using the various APIs and Servlets.
v “Types of Invocation Requests”
v “Invoking Net.Data through the Web Server APIs” on page 85

Types of Invocation Requests

Regardless of the method with which you invoke Net.Data, there are two
types of requests that can be specified.

Macro Request
Specifies that Net.Data execute the macro specified.

Direct Request
Specifies that Net.Data execute an SQL statement, stored procedure, or
function.

Web developers who want to write a single SQL query or call a single
function such as a DB2 stored procedure, REXX program, or Perl function can
issue a direct request to the database. A direct request does not have any
complex Net.Data application logic that requires a Net.Data macro, and

© Copyright IBM Corp. 1997, 2001 73

therefore bypasses the Net.Data macro processor. Direct request parameters
are passed to the appropriate language environment for processing for
improved performance.

Figure 18 illustrates the differences between a macro request and a direct
request. A macro request always specifies a macro within the URL for the
request and can also use form data. A direct request never specifies a macro
within the URL, but can still use form data.
The syntax for invoking Net.Data depends on how Net.Data is configured and

the type of request that you make. For both macro and direct requests,
Net.Data is invoked using a URL. The URL can be entered directly by the
user, or it can be coded into the HTML page as an HTML link or an HTML
form. The Web server invokes Net.Data using CGI, FastCGI, or one of the
Web server APIs.

For macro requests, specify within the URL the name of the Net.Data macro
and the name of the HTML block that is to be executed within the Net.Data
macro. For direct requests, specify within the URL the name of the Net.Data
language environment, the SQL statement or the name of the function, and
any additional required parameter values. You specify these values using a
syntax defined by Net.Data.

Web
Server

Language
Environment

Macro Request

Direct Request

Macro

Net.DataNet.Data

Web
Server

Language
Environment

Net.DataNet.Data

URL & Form data

Web Page

URL & Form data

Web Page

Figure 18. Macro Request Versus Direct Request

74 Net.Data Administration and Programming Guide

If you are migrating from CGI to either APAPI or FastCGI, you might need to
take into consideration some REXX language environment issues. See “REXX
Language Environment” on page 171 for more information.

The following sections describe these invocation requests in more detail:
v “Invoking Net.Data with a Macro (Macro Request)”
v “Invoking Net.Data without a Macro (Direct Request)” on page 79

Although the examples specify the syntax to use when invoking Net.Data
using CGI, the concepts apply to all interfaces that are used to invoke
Net.Data. For the exact syntax required for each type of interface, refer to the
section specific to each.
v “Invoking Net.Data through the Web Server APIs” on page 85

Invoking Net.Data with a Macro (Macro Request)
A client browser invokes Net.Data by sending a request in the form of a URL.
This section shows you how to invoke Net.Data by specifying a macro in the
URL request.

The request sent to Net.Data has the following form.
http://server/Net.Data_invocation_path/filename/block[?name=val&...]

Parameters:

server Specifies the name and path of the Web server. If the server is the
local server, you can omit the server name and use a relative URL.

Net.Data_invocation_path
The path and filename of the Net.Data executable file, servlet class,
DLL, or shared library. For example, /cgi-bin/db2www/.

filename
Specifies the name of the Net.Data macro file. Net.Data searches for
and tries to match this file name with the path statements defined in
the MACRO_PATH initialization path variable. See “MACRO_PATH”
on page 25 for more information.

block Specifies the name of the HTML block in the referenced Net.Data
macro.

?name=val&...
Specifies one or more optional parameters passed to Net.Data.

You specify this URL directly in your browser. You can also specify it in an
HTML link or build it using a form as follows:
v HTML link:

any text

Chapter 4. Invoking Net.Data 75

v HTML form:
<form method="method" ACTION="URL">any text</form>

Parameters:

method Specifies the HTML method used with the form.

URL Specifies the URL used to run the Net.Data macro, the parameters of
which are described above.

Examples

The following examples demonstrate the different methods of invoking
Net.Data.

Example 1: Invoking Net.Data using an HTML link:

.
.
.

Example 2: Invoking Net.Data using a form
<form method="post"
action="http://server/cgi-bin/db2www/myMacro.dtw/report">
.
.
.
</form>

The following sections describe HTML links and forms and more about how
to invoke Net.Data with them:
v “HTML Links”
v “HTML Forms” on page 77

HTML Links
If you are authoring a Web page, you can create an HTML link that results in
the execution of an HTML block. When a user at a browser clicks on a text or
image that is defined as an HTML link, Net.Data executes the HTML block
within the macro.

To create an HTML link, use the HTML <a> tag. Decide which text or graphic
you want to use as your hyperlink to the Net.Data macro, then surround it by
the <a> and tags. In the HREF attribute of the <a> tag, specify the
macro and the HTML block.

76 Net.Data Administration and Programming Guide

The following example shows a link that results in the execution of an SQL
query when a user selects the text ″List all monitors″ on a Web page.

List all monitors

Clicking on the link calls a macro named listA.dtw, which has an HTML block
named ″report″, as in the following example:
%DEFINE DATABASE="MNS97"

%FUNCTION(DTW_SQL) myQuery(){
SELECT MODNO, COST, DESCRIP FROM EQPTABLE
WHERE TYPE='$(hdware)'
%REPORT{
<h3>Here is the list you requested</h3>
%ROW{
<hr />
$(N1): $(V1), $(N2): $(V2)
<p>$(N3): $(V3)</p>
%}
%}
%}

%HTML (Report){
@myQuery()
%}

The query returns a table that contains model number, cost, and description
information for each monitor that is described within the EQPTABLE table.
The value of hdware in the SQL statement is taken from the URL input. See
Net.Data Reference for a detailed description of the variables that are used in
the ROW block.

HTML Forms
You can dynamically customize the execution of your Net.Data macros using
HTML forms. Forms allow users to provide input values that can affect the
execution of the macro and the contents of the Web page that Net.Data builds.

The following example builds on the monitor list example in “HTML Links”
on page 76 by letting users at a browser use a simple HTML form to select
the type of product for which information will be displayed.
<h1>Hardware Query Form</h1>
<hr>
<form method="post" action="/cgi-bin/db2www/listA.dtw/report">
<p>What type of hardware do you want to see?</p>

<input type="radio" name="hdware" value="mon" checked /> Monitors
<input type="radio" name="hdware" value="pnt" /> Pointing devices
<input type="radio" name="hdware" value="prt" /> Printers
<input type="radio" name="hdware" value="scn" /> Scanners

Chapter 4. Invoking Net.Data 77

<input type="submit" value="submit" />
</form>

After the user at the browser makes a selection and clicks on the Submit
button, the Web server processes the ACTION parameter of the FORM tag,
which invokes Net.Data. Net.Data then executes the macro listA.dtw, which
has an HTML block named ″report″ as listed above.
%DEFINE DATABASE="MNS97"

%FUNCTION(DTW_SQL) myQuery(){
SELECT MODNO, COST, DESCRIP FROM EQPTABLE
WHERE TYPE='$(hdware)'
%REPORT{
<h3>Here is the list you requested</h3>
%ROW{
<hr />
$(N1): $(V1), $(N2): $(V2)
<p>$(N3): $(V3)</p>
%}
%}
%}

%HTML (Report){
@myQuery()
%}

In the above example, the value of hdware in the SQL statement is taken from
the HTML form input. See Net.Data Reference for a detailed description of the
variables that are used in the ROW block.

An input type that is given special treatment by Net.Data is the FILE input
type. With this input type, users can upload a file to the server, which can be
further processed by Net.Data or any other application on the server.

Net.Data does not perform any conversion on the uploaded files, it is treated
as binary data. The uploaded files are stored in the directory specified in
DTW_UPLOAD_DIR and are given a unique name, determined using the
following rules:

Syntax:

MacroFileName + ’.’ + FormVarName + ’.’ + UniqueIdentifier + ’.’ + FormFileName

MacroFileName
The name of the macro handling the request (the one called in the form).
Only the filename is used, not the complete path.

78 Net.Data Administration and Programming Guide

FormVarName
The name of the variable used to identify the file in the form.

UniqueIdentifier
A string used to ensure uniqueness.

Example:

First, set DTW_UPLOAD_DIR in the Net.Data initialization file:
DTW_UPLOAD_DIR /tmp/uploads

Then, construct a form that invokes a macro and uses at least one input tag of
type file.
<form method="post" enctype="multipart/form-data"

action="/netdatadev/form.dtw/report">
Name: <input type="text" name="name" />

Zip code: <input type="text" name="zipno" />

Resume: <input type="file" name="resume" />

<input type="submit" />
</form>

If a user were to submit the form, specifying the file myresume.txt, the
resulting file would be written on the server with a name similar to:
/tmp/uploads/form.dtw.resume.20010108112341275-6245-021.myresume.txt

Invoking Net.Data without a Macro (Direct Request)
This section shows you how to invoke Net.Data using direct request. When you
use direct request, you do not specify the name of a macro in the URL.
Instead, you specify the Net.Data language environment, the SQL statement or
a program to be executed, and any additional required parameter values
within the URL, using a syntax defined by Net.Data. See
“DTW_DIRECT_REQUEST: Enable Direct Request Variable” on page 16 to
learn how to enable and disable direct request.

The SQL statement or program and any other specified parameters are passed
directly to the designated language environment for processing. Direct request
improves performance because Net.Data does not need to read and process a
macro. The SQL, ODBC, Oracle, Java, System, Perl, and REXX
Net.Data-supplied language environments support direct request, and you can
call Net.Data using a URL, an HTML form, or a link.

A direct request invokes Net.Data by passing parameters in the query string
of the URL or the form data. The following example illustrates the context in
which you specify a direct request.
any text

Chapter 4. Invoking Net.Data 79

Where direct_request represents the direct request syntax. For example, the
following HTML link contains the direct request:

any text

Direct Request Syntax
The syntax for invoking Net.Data with direct request can contain a call to
either a database or a non-database language environment.

Syntax

[[? Database language environment call
HTML Non-database language environment call

DTW_DOCUMENT= XML &
STYLESHEET= filename &

[\

Database language environment call:

]

Form data entry &
LANGENV = dblangenv & [

[]

Form data entry &
[

[SQL= sql_stmt
FUNC= stored_proc_name (Parameter list)

[

[]

& Form data entry

80 Net.Data Administration and Programming Guide

Form data entry:

DATABASE = VALUE
DB_CASE
DTW_HTML_TABLE
LOGIN
PASSWORD
RPT_MAX_ROWS
SHOWSQL
START_ROW_NUM
user_defined_variable

Parameter list:

]

,

IN parm_type parm_value
″ parm_value ″

OUT parm_type parm_name
parm_name

INOUT parm_type parm_name parm_value
parm_name ″ parm_value ″

Non-database language environment call:

LANGENV= lang_env & FUNC = program_name]

,

()
" parm_value "

Parameters

DTW_DOCUMENT
Specifies the type of document that Net.Data should return as output. The
allowable values are XML or HTML. This parameter is optional, and if not
specified then HTML is assumed.

DTW_STYLESHEET
Specifies the stylesheet that Net.Data should use when displaying XML.
This parameter is optional and is only relevant when
DTW_DOCUMENT=XML.

stylesheet
Specifies the filename on the server for the stylesheet.

Database language environment call
Specifies a direct request to Net.Data that invokes a database language
environment.

Chapter 4. Invoking Net.Data 81

Form data entry
Parameters that allow you to specify the settings of SQL variables or
to request simple HTML formatting. See the variables chapter of
Net.Data Reference to learn more about these variables.

DATABASE
Specifies the database to which Net.Data should pass the SQL
request. This parameter is required.

DB_CASE
Specifies the case (upper or lower) for SQL statements.

DTW_HTML_TABLE
Specifies whether Net.Data should return an HTML table or a
pre-formatted text table.

DTW_DOCUMENT
Specifies whether Net.Data should display the results as XML or
HTML. Allowable values are XML or HTML. HTML is the default
when the keyword is not specified.

LOGIN
Specifies the database user ID.

PASSWORD
Specifies the database password.

RPT_MAX_ROWS
Specifies the maximum number of rows that a function should
return in its report.

SHOWSQL
Specifies whether Net.Data should hide or display the SQL
statement being executed.

START_ROW_NUM
Specifies the number of the row where a function should start its
report.

user_defined_variable
Variables that are passed to Net.Data and provide required
information or effect Net.Data behavior. User-defined variables are
variables that you define for your application.

VALUE
Specifies the value of the Net.Data variable.

LANGENV
Specifies the target language environment for the SQL statement or
stored procedure call. If the language environment is one of the
database language environments, the database name must also be
specified.

82 Net.Data Administration and Programming Guide

dblangenv
The name of the database language environment:
v DTW_SQL
v DTW_ODBC
v DTW_ORA

SQL
Indicates that the direct request specifies the execution of an in-line
SQL statement.

sql_stmt
Specifies a string that contains any valid SQL statement that can be
executed using dynamic SQL.

FUNC
Indicates that the direct request specifies the execution of a stored
procedure.

stored_proc_name
Specifies any valid DB2 stored procedure name.

parm_type
Specifies any valid parameter type for a DB2 stored procedure.

parm_name
Specifies any valid parameter name.

parm_value
Specifies any valid parameter value for a DB2 stored procedure.

IN Specifies that Net.Data should use the parameter to pass input data to
the stored procedure.

INOUT
Specifies that Net.Data should use the parameter to both pass input
data to the stored procedure and return output data from the
language environment.

OUT
Specifies that the language environment should use the parameter to
return output data from the stored procedure.

Non-database language environment call
Specifies a direct request to Net.Data that invokes a non-database
language environment.

LANGENV
Specifies the target language environment for the execution of the
function.

lang_env
Specifies the name of the non-database language environment:

Chapter 4. Invoking Net.Data 83

v DTW_PERL
v DTW_REXX
v DTW_SYSTEM

FUNC
Indicates that the direct request specifies the execution of a program.

program_name
Specifies the program containing the function to be executed.

parm_value
Specifies any valid parameter value for the function.

Direct Request Examples
The following examples show the different ways you can invoke Net.Data
while using the direct request method.

HTML Links: The following examples use direct request to invoke Net.Data
through links.

Example 1: A link that invokes the Perl language environment and calls a Perl
script that is in the EXEC path statement of the Net.Data initialization file

any text

Example 2: A link that invokes the Perl language environment, as in the
previous example, but passes a string with URL-encoded values for the
double quote and the space characters
<a href="http://server/cgi-bin/db2www/?LANGENV=DTW_PERL&FUNC=my_perl

(%22Hello+World%22)">any text

Example 3: A URL that results in the execution of an SQL query using the
SQL language environment
<a href="http://server/cgi-bin/db2www/?LANGENV=DTW_SQL&DATABASE=CELDIAL
&SQL=select+*+from+customer">any text

Example 4: A URL that invokes the REXX language environment, calls a
REXX program, and passes parameters to the program
<a href="http://server/cgi-bin/db2www/?LANGENV=DTW_REXX&FUNC=myexec.cmd(parm1,parm2)"

>any text

Example 5: A URL that calls a stored procedure and passes parameters to the
SQL language environment
<a href="http://server/cgi-bin/db2www/?LANGENV=DTW_SQL&FUNC=MY_STORED_PROC

(IN+CHAR(30)+Salaries)&DATABASE=CELDIAL">any text

84 Net.Data Administration and Programming Guide

Tip: You must encode certain characters, such as spaces and double quotes,
within URLs. In this example, the double quotes characters and spaces
within the parameter value must be encoded as %22 or the + character,
respectively. If this link was generated from a macro, you can use the
built-in function DTW_URLESCSEQ to encode any text that must be
encoded witin a URL. For more information on the DTW_URLESCSEQ
function, see its description in Net.Data Reference.

HTML Forms: The following examples use direct request to invoke Net.Data
through forms.

Example: An HTML form that results in the execution of an SQL query using
the SQL language environment, connects to the CELDIAL database, and
queries a table
<form method="post"
action="http://server/cgi-bin/db2www/">
<input type=hidden name="LANGENV" value="dtw_sql" />
<input type=hidden name="database" value="celdial" />
<input type=hidden name="SQL"

value="select * from table1 where col1=$(inputname)" />
Enter Customer name:
<input type=text name="inputname" value="john" />
<input type=submit />
</form>

Invoking Net.Data through the Web Server APIs

Net.Data supports the Web APIs in the following list, depending on your
operating system:

APAPI plug-in
Apache API plug-in

IBM HTTP Server API plug-in
IBM HTTP Server API plug-in

ISAPI plug-in
Microsoft Internet Server API plug-in

NSAPI plug-in
Netscape Server API plug-in

See the operating system reference appendix in Net.Data Reference to
determine which Web server APIs are supported for your operating system.
See “Configuring Net.Data for Use with the Web Server APIs” on page 43 to
learn how to configure Net.Data and the Web server for use with APIs.

Requirements:

Chapter 4. Invoking Net.Data 85

|
|

|
|

|
|

|
|

v If running Net.Data in APAPI, ISAPI or NSAPI mode, restart your Web
server so that the Web server can reload Net.Data and run it as a process.

v If you make changes to the initialization file after the Web server invokes
Net.Data in API mode, you must restart the Web server. Any changes to the
Net.Data initialization file (db2www.ini) have no effect. In API mode,
Net.Data reads the initialization file only once to reduce the performance
overhead.

v When running in API mode, the Oracle and ODBC language environments
require Live Connection.

To invoke the Web server APIs:

For APAPI:

Syntax:
http://server/.db2www/macro_name/block[?name=val&...

Parameters:

server
The name of the server.

macro_name
The relative path name of your macro under the directory
specified by MACRO_PATH.

block
The name of the HTML or XML block in the macro to be
processed.

?name=val&...
Specifies one or more optional parameters passed to Net.Data.

Example:
http://myserver/CGI-BIN/.db2www/mymacro.dtw/report

For ISAPI:

Syntax:
http://server/server_HTML_root_directory/dll_name/macro_name/

block[?name=val&...]

Parameters:

server_name
The name of the server.

server_HTML_root_directory
The Web server HTML root directory name.

86 Net.Data Administration and Programming Guide

|

|

|

|

|
|

|
|
|

|
|
|

|
|

|

|

|

dll_name
Net.Data’s ISAPI .dll file name, dtwisapi.dll.

macro_name
The relative path name of your macro under the directory
specified by MACRO_PATH.

block
The name of the HTML or XML block in the macro to be
processed.

?name=val&...
Specifies one or more optional parameters passed to Net.Data.

Example:
http://myserver/scripts/dtwisapi.dll/mymacro.dtw/report

For NSAPI:

Syntax:
http://server/macro_name/block[?name=val&...]

Parameters:

server
The name of the server.

macro_name
The relative path name of your macro under the directory
specified by MACRO_PATH. The extension of the macro, for
example, .dtw, must be defined in the Web server configuration
file. See “Configuring Net.Data for Use with the Web Server APIs”
on page 43 for more information.

block
The name of the HTML or XML block in the macro to be
processed.

?name=val&...
Specifies one or more optional parameters passed to Net.Data.

Example:
http://myserver/mymacro.dtw/report

Chapter 4. Invoking Net.Data 87

88 Net.Data Administration and Programming Guide

Chapter 5. Developing Net.Data Macros

A Net.Data macro is a text file consisting of a series of Net.Data macro
language constructs that:
v Specify the layout of Web pages
v Define variables and functions
v Call functions that are built-in to Net.Data or defined in the macro
v Format the processing output and return it to the Web browser for display

The Net.Data macro contains two organizational parts: the declaration part
and the presentation part, as shown in Figure 19.

v The declaration part contains the definitions of variables and functions in the
macro.

v The presentation part contains HTML or XML blocks that specify the layout
of the Web page. The HTML or XML blocks are made up of text
presentation statements that are supported by your Web browser, such as
HTML, JavaScript, and well-formed XML.

You can use these parts multiple times and in any order. See Net.Data
Reference for syntax of the macro parts and constructs.

Net.Data Macro File Structure

%{Comment %}

Declaration Part

Presentation Part

%Define…

%Include…

%Function…

%Message…

Output block
.
.
.

Input block
.
.
.

Figure 19. Macro Structure

© Copyright IBM Corp. 1997, 2001 89

Authorization Tip: Ensure that the user ID under which Net.Data executes
has the authorization to read this file. See “Granting Access Rights to Files
Accessed by Net.Data” on page 59 for more information.

This chapter examines the different blocks that make up a Net.Data macro
and methods you can use for writing the macro.
v “Anatomy of a Net.Data Macro”
v “Net.Data Macro Variables” on page 99
v “Net.Data Functions” on page 113
v “Generating Document Markup” on page 124
v “Conditional Logic and Looping in a Macro” on page 132

Anatomy of a Net.Data Macro

The macro consists of two parts:
v The declaration part, that contains definitions used in the presentation part.

The declaration part uses two major optional blocks:
– DEFINE block
– FUNCTION block

The declaration part can also contain other language constructs and
statements, such as EXEC statements, IF blocks, INCLUDE statements, and
MESSAGE blocks. For more information about the language constructs, see
the chapter about language constructs in Net.Data Reference.

Authorization Tip: Ensure that the user ID under which Net.Data executes
has authorization to read and execute files referenced by EXEC statements
and to read files referenced by INCLUDE statements. See “Granting Access
Rights to Files Accessed by Net.Data” on page 59 for more information.

v The presentation part defines the layout of the Web page, references
variables, and calls functions using HTML or XML blocks that are used as
entry and exit points from the macro. When you invoke Net.Data, you
specify a block name as an entry point for processing the macro. The
HTML or XML blocks are described in “HTML Blocks” on page 93 and
“XML Blocks” on page 95.

In this section, a simple Net.Data macro illustrates the elements of the macro
language. This example macro presents a form that prompts for information
to pass to a REXX program. The macro passes this information to an external
REXX program called ompsamp.cmd, which echoes the data that the user enters.
The results are then displayed on a second Web page.

First, look at the entire macro, and then each block in detail:

90 Net.Data Administration and Programming Guide

%{ ********************** DEFINE block ************************%}
%DEFINE {

page_title="Net.Data Macro Template"
%}

%{ ********************** FUNCTION Definition block ************************%}
%FUNCTION(DTW_REXX) rexx1 (IN input) returns(result)
{

%EXEC{ompsamp.cmd %}
%}

%FUNCTION(DTW_REXX) today () RETURNS(result)
{

result = date()
%}

%{ ********************** HTML Block: Input ************************%}
%HTML (INPUT) {
<html>
<head>
<title>$(page_title)</title>
</head><body>
<h1>Input Form</h1>
Today is @today()

<form method="post" action="output">
Type some data to pass to a REXX program:
<input name="input_data" type="text" size="30" />
<p>
<input type="submit" value="enter" />
</p>
</form>

<hr>
<p>[Home page]
</body></html>
%}

%{ ********************** HTML Block: Output ************************%}
%HTML (OUTPUT) {
<html>
<head>
<title>$(page_title)</title>
</head><body>
<h1>Output Page</h1>
<p>@rexx1(input_data)
<p><hr>
<p>[Home page |
Previous page]
</body></html>
%}

Chapter 5. Developing Net.Data Macros 91

The sample macro consists of four major blocks: the DEFINE, the FUNCTION,
and the two HTML blocks. You can have multiple DEFINE, FUNCTION, and
HTML blocks in one Net.Data macro.

The two HTML blocks contain text presentation statements such as HTML,
which make writing Web macros easy. If you are familiar with HTML,
building a macro simply involves adding macro statements to be processed
dynamically at the server and SQL statements to send to the database.

Although the macro looks similar to an HTML document, the Web server
accesses it through Net.Data using CGI, a Web server API, or a Java Servlet.
To invoke a macro, Net.Data requires two parameters: the name of the macro
to process, and the HTML block in that macro to display.

When the macro is invoked, Net.Data processes it from the beginning. The
following sections look at what happens as Net.Data processes the file.

The DEFINE Block
The DEFINE block contains the DEFINE language construct and variable
definitions used later in the HTML blocks. The following example shows a
DEFINE block with one variable definition:
%{ ********************** DEFINE Block ************************%}
%DEFINE {

page_title="Net.Data Macro Template"
%}

The first line is a comment. A comment is any text inside %{ and %}.
Comments can be anywhere in the macro. The next statement starts a DEFINE
block. You can define multiple variables in one define block. In this example,
only one variable, page_title, is defined. After it is defined, this variable can
be referenced anywhere in the macro using the syntax, $(page_title). Using
variables makes it easy to make global changes to your macro later. The last
line of this block, %}, identifies the end of the DEFINE block.

The FUNCTION Block
The FUNCTION block contains declarations for functions invoked by the
HTML blocks. Functions are processed by language environments and can
execute programs, SQL queries, or stored procedures.

The following example shows two FUNCTION blocks. One defines a call to
an external REXX program and the other contains inline REXX statements.
%{ ********************** FUNCTION Block **********************************%}
%FUNCTION(DTW_REXX) rexx1 (IN input) returns(result) { <-- This function accepts

one parameter and returns the
variable 'result', which is
assigned by the external REXX
program

%EXEC{ompsamp.cmd %} <-- The function executes an external REXX program

92 Net.Data Administration and Programming Guide

called "ompsamp.cmd"
%}

%FUNCTION(DTW_REXX) today () RETURNS(result) {
result = date() <-- The single source statement for this function is

contained inline.
%}

The first function block, rexx1, is a REXX function declaration that in turn,
runs an external REXX program called ompsamp.cmd. One input variable,
input, is accepted by this function and automatically passed to the external
REXX command. The REXX command also returns one variable called result.
The contents of the result variable in the REXX command replaces the
invoking @rexx1() function call contained in the OUTPUT block. The
variables input and result are directly accessible by the REXX program, as
shown in the source code for ompsamp.cmd:
/* REXX */
result = 'The REXX program received "'input'" from the macro.'

The code in this function echoes the data that was passed to it. You can
format the resulting text any way you want by enclosing the requesting
@rexx1() function call in normal mark-up style tags (like or).
Rather than using the result variable, the REXX program could have written
HTML tags to standard output using REXX SAY statements.

The second function block, also refers to a REXX program, today. However,
the entire REXX program in this case is contained in the function declaration
itself. An external program is not needed. Inline programs are allowed for
both REXX and Perl functions because they are interpreted languages that can
be parsed and executed dynamically. Inline programs have the advantage of
simplicity by not requiring a separate program file to manage. The first REXX
function could also have been handled inline.

HTML Blocks
HTML blocks define the layout of the Web page, reference variables, and call
functions. HTML blocks are used as entry and exit points from the macro. An
HTML block is always specified in the Net.Data macro request and every
macro must have at least one HTML block.

The first HTML block in the example macro is named INPUT. The HTML(INPUT)
contains the HTML for a simple form with one input field.
%{ ********************** HTML Block: Input ************************%}
%HTML (INPUT) { <--- Identifies the name of this HTML block.
<html>
<head>
<title>$(page_title)</title> <--- Note the variable substitution.
</head><body>
<h1>Input Form</h1>

Chapter 5. Developing Net.Data Macros 93

Today is @today() <--- This line contains a call to a function.

<form method="post" action="output"> <--- When this form is submitted,
the "OUTPUT" HTML block is called.<p>

Type some data to pass to a REXX program:
<input name="input_data" <--- "input_data" is defined when the form
TYPE="text" SIZE="30" /> is submitted and can be referenced elsewhere in

this macro. It is initialized to whatever the
user types into the input field.

</p>
<input type="submit" value="enter" />

<hr>
<p>
[
Home page]</p>
</body><html>
%} <--- Closes the HTML block.

The entire block is surrounded by the HTML block identifier, %HTML (INPUT)
{...%}. INPUT identifies the name of this block. The name can contain
underscores, periods, and any alphanumeric character; Net.Data does not
distinguish by case. The HTML <title> tag contains an example of variable
substitution. The value of the variable page_title is substituted into the title
of the form.

This block also has a function call. The expression @today() is a call to the
function today. This function is defined in the FUNCTION block that is
described above. Net.Data inserts the result of the today function, the current
date, into the HTML text in the same location that the @today() expression is
located.

The ACTION parameter of the FORM statement provides an example of
navigation between HTML blocks or between macros. Referencing the name
of another block in an ACTION parameter accesses that block when the form
is submitted. Any input data from an HTML form is passed to the block as
implicit variables. This is true of the single input field defined on this form.
When the form is submitted, data entered in this form is passed to the
HTML(OUTPUT) block in the variable input_data.

You can access HTML blocks in other macros with a relative reference if the
macros are on the same Web server. For example, the ACTION parameter
ACTION="../othermacro.dtw/main" accesses the HTML block called main in
the macro othermacro.dtw. Again, any data entered into the form is passed to
this macro in the variable input_data.

When you invoke Net.Data, you pass the variable as part of the URL. For
example:
Next macro

94 Net.Data Administration and Programming Guide

You can access or manipulate form data in the macro by referencing the
variable name specified in the form.

The next HTML block in the example is the HTML(OUTPUT) block. It contains
the HTML tagging and Net.Data macro statements that define the output
processed from the HTML(INPUT) request.
%{ ********************** HTML Block: Output ************************%}
%HTML (OUTPUT) {
<html>
<head>
<title>$(page_title)</title> <--- More substitution.

</head><body>
<h1>Output Page</h1>
<p>@rexx1(input_data) <--- This line contains a call to function rexx1

passing the argument "input_data".
<p>
<hr>
<p>
[
Home page |
Previous page]
%}

Like the HTML(INPUT) block, this block is standard HTML with Net.Data macro
statements to substitute variables and a function call. Again the page_title
variable is substituted into the title statement. And, as before, this block
contains a function call. In this case, it calls the function rexx1 and passes to it
the contents of the variable input_data, which it received from the form
defined in the Input block. You can pass any number of variables to and from
a function. The function definition specifies the number and the usage of
variables that are passed.

XML Blocks
Whether you want to deliver XML to another processing application or to a
client browser, you can use the XML block structure to deliver XML content.

The XML block works in the same manner as the HTML block; it is an entry
point to the macro. Within the block you can enter XML tags directly,
reference variables, and make function calls.

So that you can customize the generated XML document to your needs, the
XML block does not generate the prolog tags. Enter the prolog information
particular to your enterprise and include a stylesheet of your choice. Included
with Net.Data are three XSL stylesheets that you can use. These stylesheets
contain transforms for all of the XML elements generated by Net.Data. The
stylesheets are examples, however, and you are encouraged to expand on
these or create your own.

Chapter 5. Developing Net.Data Macros 95

When calling an SQL function that returns a default report, Net.Data
generates the result set using a small set of XML elements, as shown in the
following sample Document Type Description (DTD).
<!-->
<!-- The root element of the document. -->
<!-->
<!ELEMENT XMLBlock (RowSet|ShowSQL|Message)*>
<!ATTLIST XMLBlock name CDATA #IMPLIED>

<!-->
<!-- The default presentation format for tables uses -->
<!-- the RowSet, Row, and Column elements. -->
<!-->
<!ELEMENT RowSet (Row)*>
<!ATTLIST RowSet name CDATA #IMPLIED>
<!ELEMENT Row (Column)*>
<!ATTLIST Row name CDATA #IMPLIED

number CDATA #IMPLIED>
<!ELEMENT Column (#PCDATA)>

<!-->
<!-- SQL statements resulting from setting the SHOWSQL -->
<!-- variable are presented with the ShowSQL element. -->
<!-->
<!ELEMENT ShowSQL (#PCDATA)>

<!-->
<!-- Messages are presented with the Message element. -->
<!-->
<!ELEMENT Message (#PCDATA)>

The elements are defined as follows:

%DEFINE SHOWSQL = "yes"

%FUNCTION(DTW_SQL) NewManager(){
select * from staff where job = 'Mgr' and years <= 5
%}

%XML(report) {
<?xml version="1.0" ?>
<?xml-stylesheet type="text/xsl" href="/netdata-xml/ndTable.xsl" ?>

<XMLBlock>
<h1>List of New Managers</h1>
@NewManager()

</XMLBlock>
%}

Figure 20. A macro containing an XML report block

96 Net.Data Administration and Programming Guide

XMLBlock
The root element for the document. This tag must be entered
manually.

RowSet
Contains the rows in a result set. The name attribute of RowSet is
determined as follows:
v For a result set returned from a call to a function that executes an

SQL query, the name of the function is used.
v For a result set returned from a call to a stored procedure, the name

of the result set is used. If the result set is not named, then the
function name is used.

Row Contains the columns of a row and is numbered for identification.

Column
Contains the data value for the particular row and the column by
which it is named.

ShowSQL
Contains the SQL statement for the current query.

Message
Contains any error message produced by Net.Dta or DB2.

Using the elements above, Net.Data would generate the following output
from the macro listed in Figure 20 on page 96.
<?xml version="1.0" ?>
<?xml-stylesheet type="text/xsl" href="/netdata-xml/ndTable.xsl" ?>
<XMLBlock>

<h1>List of New Managers</h1>
<ShowSQL>select * from staff where job = 'Mgr' and years <= 5</ShowSQL>
<RowSet name="NewManager">

<Row number="1">
<Column name="ID">30</Column>
<Column name="NAME">Marenghi</Column>
<Column name="DEPT">38</Column>
<Column name="JOB">Mgr</Column>
<Column name="YEARS">5</Column>
<Column name="SALARY">17506.75</Column>
<Column name="COMM"></Column>

</Row>
<Row number="2">

<Column name="ID">240</Column>
<Column name="NAME">Daniels</Column>
<Column name="DEPT">10</Column>
<Column name="JOB">Mgr</Column>
<Column name="YEARS">5</Column>
<Column name="SALARY">19260.25</Column>

Chapter 5. Developing Net.Data Macros 97

<Column name="COMM"></Column>
</Row>

</RowSet>
</XMLBlock>

Figure 21 and Figure 22 on page 99 show how the above data would appear in
a browser using each of the two stylesheets provided with Net.Data:
ndTable.xsl and ndRecord.xsl.

Figure 21. XML displayed using the ndTable.xsl stylesheet

98 Net.Data Administration and Programming Guide

Net.Data Macro Variables

Net.Data lets you define and reference variables in a Net.Data macro. In
addition, you can pass these variables from the macro to the language
environments and back. The variable names, values, and literal strings that are
passed are called tokens. Net.Data puts no limit on the size of the tokens and
will pass any token that the memory of your system can handle. Individual
language environments, however, might provide restrictions on the token size.

Net.Data variables can be defined depending on the type of variable and
whether it has a predefined value. These variables can be categorized into the
following types, based on how they are defined:
v Explicitly defined variables using the DEFINE statement in the DEFINE

block
v Predefined variables, which are variables that are made available by

Net.Data and are set to a value. This value usually cannot be changed.
v Implicitly defined variables, which are of four types:

– Variables that are not explicitly defined but are instantiated when first
assigned a value.

Figure 22. XML displayed using the ndRecord.xsl stylesheet

Chapter 5. Developing Net.Data Macros 99

– Parameter variables that are part of a FUNCTION block definition and
that can only be referenced within a FUNCTION block.

– Variables that are instantiated by Net.Data and correspond to form data
or query string data.

– Variables that are associated with a Net.Data table and that can only be
referenced within a ROW block or REPORT block.

The following sections describe:
v “Identifier Scope”
v “Defining Variables” on page 101
v “Referencing Variables” on page 103
v “Variable Types” on page 105

Identifier Scope
If an identifier has global scope, then it can be referenced anywhere in a
macro during a single request. The region where an identifier is visible is
called its scope. The five types of scope are:
v Global

An identifier has global scope if you can reference it anywhere within a
macro. Identifiers that have global scope are:
– Net.Data built-in functions
– Form data
– Query string data
– Variables instantiated from within an HTML block

v Macro
An identifier has this scope if its declaration appears outside of any block.
A block starts with an opening bracket ({) and ends with a percent sign and
bracket (%}). (DEFINE blocks are excluded from this definition.) Unlike an
identifier with global scope, one with macro scope can only be referred to
by items in the macro that follow the idenfier’s declaration.

v FUNCTION block or MACRO_FUNCTION block
An identifier has function block scope if:
– The identifier is declared in the parameter list of the function definition.

If an identifier with the same name already exists outside the function
definition, then Net.Data uses the identifier from the function parameter
list within the function block.

– The identifier is instantiated in the function block and is not declared or
instantiated prior to the function call.

An identifier does not have function block scope if it has been declared or
initialized outside of the function and is not declared in the function

100 Net.Data Administration and Programming Guide

parameter list. The value of the identifier within the function block remains
unchanged unless updated by the function.

v REPORT block
An identifier has report block scope if it can be referenced only from within
a REPORT block (for example, table column names N1, N2, ..., Nn). Only
those variables that Net.Data implicitly defines as part of its table
processing can have a report block scope. Any other variables that are
instantiated have function block scope.

v ROW block
An identifier has row block scope if it can only be referenced from within a
ROW block (for example, table value names V1, V2, ..., Vn). Only those
variables that Net.Data implicitly defines as part of its table processing can
have a row block scope. Any other variables that are instantiated have
function block scope.

Defining Variables
There are three ways to define variables in a Net.Data macro:
v Define statement or block
v HTML form tags
v Query string data

A variable value received from form or query string data overrides a variable
value set by a DEFINE statement in a Net.Data macro.
v DEFINE statement or block

The simplest way to define a variable for use in a Net.Data macro is to use
the DEFINE statement. The syntax is as follows:
%DEFINE variable_name="variable value"

%DEFINE variable_name={ variable value on multiple
lines of text %}

%DEFINE {
variable_name1="variable value 1"
variable_name2="variable value 2"

%}

The variable_name is the name you give the variable. Variable names must
begin with a letter or underscore and can contain any alphanumeric
character, an underscore, a period, or a hash (#). All variable names are
case-sensitive, except V_columnName, which is a table variable.

For example:
%DEFINE reply="hello"

The variable reply has the value hello.

Chapter 5. Developing Net.Data Macros 101

Two consecutive quotes alone is equal to an empty string. For example:
%DEFINE empty=""

The variable empty has an empty string.

If your variable contains special characters, such as an end-of-line, use
block braces around the value:
%DEFINE introduction={
Hello,
My name is John.
%}

To include quotes in a string, you can use two quotes consecutively.
%DEFINE HI="say ""hello"""

You can also use block braces to escape the quotes:
%DEFINE HI={ say "hello" %}

To define several variables with one DEFINE statement, use a DEFINE
block:
%DEFINE {

variable1="value1"
variable2="value2"
variable3="value3"
variable4="value4"

%}

v HTML form tags: SELECT, INPUT, and TEXTAREA

You can use HTML FORM tags to assign values to variables, namely the
SELECT, INPUT, and TEXTAREA tags. The following example uses
standard HTML form tags to define Net.Data variables:
<input name="variable_name" TYPE=... />

or
<select name="variable_name">

<option>value one
<option>value two

</select>

To assign a variable that spans multiple lines or contains special characters,
such as quotes, the TEXTAREA tag can be used:
<textarea name="variable_name" ROWS="4">
Please type the multi-line value
of your variable here.
</textarea>

102 Net.Data Administration and Programming Guide

The variable_name is the name you give the variable, and the value of the
variable is determined from the input received in the form. See “HTML
Forms” on page 77 for an example of how this type of variable definition is
used in a Net.Data macro.

v Query string data

You can pass variables to Net.Data through the query string. For example:
http://www.ibm.com/cgi-bin/db2www/stdqry1.dtw/input?field=custno

In the above example, the variable name, field, and the variable value,
custno, specify additional data that Net.Data receives from the query string.
Net.Data receives and processes the data as it would from form data.

Referencing Variables
You can reference a previously defined variable to return its value. To
reference a variable in Net.Data macros, specify the variable name inside $(
and). For example:
$(variableName)
$(homeURL)

When Net.Data finds a variable reference, it substitutes the variable reference
with the value of the variable. Variable references can contain strings, variable
references, and function calls.

You can dynamically generate variable names. With this technique, you can
use loops to process variably-sized tables or input data for lists that are built
at run time, when the number in the list cannot be determined in advanced.
For example, you can generate lists of HTML form elements that are
generated based on records returned from an SQL query.

To use variables as part of your text presentation statements, reference them
in the HTML blocks of your macro.

Invalid variable references: Invalid variable references are resolved to the
empty string. For example, if a variable reference contains invalid characters
such as an exclamation point (!), the reference is resolved to the empty string.

Valid variable names must begin with an alphanumeric character or an
underscore, and they can consist of alphanumeric characters, including a
period, underscore, and hash mark.

Example 1: Variable reference in a link

If you have defined the variable homeURL:
%DEFINE homeURL="http://www.ibm.com/"

Chapter 5. Developing Net.Data Macros 103

You can refer to the home page as $(homeURL) and create a link:
Home page

You can reference variables in many parts of the Net.Data macro; check the
language constructs in this chapter to determine in which parts of the macro
variable references are allowed. If the variable has not yet been defined at the
time it is referenced, Net.Data returns an empty string. A variable reference
alone does not define the variable. Example 2: Dynamically generated variable
references

Assume that you run an SQL SELECT statement with any number of
elements. You can create an HTML form with input fields using the following
ROW blocks:
...
%ROW {
<input type=text name=@dtw_rconcat("I", ROW_NUM) size=10 maxlength=10 />
%}
...

Because you created INPUT fields, you would probably want to access the
values that the user entered when the form is submitted to your macro for
processing. You can code a loop to retrieve the values in a variable length list:
<pre>
...
@dtw_assign(rowIndex, "1")
%while (rowIndex <= rowCount) {
The value entered for row $(rowIndex) is: $(I$(rowIndex))
@dtw_add(rowIndex, "1", rowIndex) %}
...
</pre>

Net.Data first generates the variable name using the I$(rowIndex) reference.
For example, the first variable name would be I1. Net.Data then uses that
value and resolves to the value of the variable.

Example 3: A variable reference with nested variable references and a function
call
%define my = "my"
%define u = "lower"
%define myLOWERvar = "hey"

$($(my)@dtw_ruppercase(u)var)

The variable reference returns the value of hey.

104 Net.Data Administration and Programming Guide

Variable Types
You can use the following types of variables in your macros.
v “Conditional Variables”
v “Environment Variables”
v “Executable Variables” on page 106
v “Hidden Variables” on page 107
v “List Variables” on page 108
v “Table Variables” on page 109
v “Miscellaneous Variables” on page 110
v “Table Processing Variables” on page 111
v “Report Variables” on page 111
v “Language Environment Variables” on page 112

If you assign strings to variables that are defined a certain way by Net.Data,
such as ENVVAR, LIST, condition list variables, the variable no longer
behaves in the defined way. In other words, the variable becomes a simple
variable, containing a string.

See Net.Data Reference for syntax and examples of each type of variable.

Conditional Variables
Conditional variables let you define a conditional value for a variable by
using a method similar to an IF, THEN construct. When defining the
conditional variable, you can specify two possible variable values. If the first
variable you reference exists, the conditional variable gets the first value;
otherwise the conditional variable gets the second value. The syntax for a
conditional variable is:
varA = varB ? "value_1" : "value_2"

If varB is defined, varA="value_1", otherwise varA="value_2". This is
equivalent to using an IF block, as in the following example:
%IF (varB)

varA = "value_1"
%ELSE

varA = "value_2"
%ENDIF

See “List Variables” on page 108 for an example of using conditional variables
with list variables.

Environment Variables
You can reference environment variables that the Web server makes available
to the process or thread that is processing your Net.Data request. When the

Chapter 5. Developing Net.Data Macros 105

ENVVAR variable is referenced, Net.Data returns the current value of the
environment variable by the same name.

The syntax for defining environment variables is:
%DEFINE var=%ENVVAR

Where var is the name of the environment variable being defined.

For example, the variable SERVER_NAME can be defined as environment
variable:
%DEFINE SERVER_NAME=%ENVVAR

And then referenced:
The server is $(SERVER_NAME)

The output looks like this:
The server is www.ibm.com

See Net.Data Reference for more information about the ENVVAR statement.

Executable Variables
You can invoke other programs from a variable reference using executable
variables.

Define executable variables in a Net.Data macro using the EXEC language
construct in the DEFINE block. For more information about the EXEC
language element, see the language constructs chapter in the Net.Data
Reference. In the following example, the variable runit is defined to execute
the executable program testProg:
%DEFINE runit=%EXEC "testProg"

runit becomes an executable variable.

Net.Data runs the executable program when it encounters a valid variable
reference in a Net.Data macro. For example, the program testProg is executed
when a valid variable reference is made to the variable runit in a Net.Data
macro.

A simple method is to reference an executable variable from another variable
definition. The following example demonstrates this method. The variable
date is defined as an executable variable and dateRpt contains a reference to
the executable variable.
%DEFINE date=%EXEC "date"

106 Net.Data Administration and Programming Guide

Wherever $(date) appears in the Net.Data macro, Net.Data searches for the
executable program date, and when it locates it, displays:
Today is Tue 11-07-1999

When Net.Data encounters an executable variable in a macro, it looks for the
referenced executable program using the following method:
1. It searches the directories specified by the EXEC_PATH in the Net.Data

initialization file. See “EXEC_PATH” on page 23 for details.
2. If Net.Data does not locate the program, the system searches the

directories defined by the system PATH environment variable or the
library list. If it locates the executable program, Net.Data runs the
program.

Restriction: Do not set an executable variable to the value of the output of the
executable program it calls. In the previous example, the value of the variable
date is NULL. If you use this variable in a DTW_ASSIGN function call to
assign its value to another variable, the value of the new variable after the
assignment is NULL also. The only purpose of an executable variable is to
invoke the program it defines.

You can also pass parameters to the program to be executed by specifying
them with the program name on the variable definition. In this example, the
values of distance and time are passed to the program calcMPH.
%DEFINE mph=%EXEC "calcMPH $(distance) $(time)"

Hidden Variables
You can use hidden variables to conceal the actual name of a variable from
application users who view your Web page source with their Web browser. To
define a hidden variable:
1. Define a variable for each string you want to hide, after the variable’s last

reference in the HTML block. Variables are always defined with the
DEFINE language construct after they are used in the HTML block, as in
the following example. The $$(variable) variables are referenced and then
defined.

2. In the HTML block where the variables are referenced, use double dollar
signs instead of a single dollar sign to reference the variables. For example,
$$(X) instead of $(X).
%HTML(INPUT) {
<form ...>
<p>Select fields to view:
shanghai<select name="field">
<option value="$$(name)"> Name
<option value="$$(addr)"> Address
...
</form>
%}

Chapter 5. Developing Net.Data Macros 107

%DEFINE {
name="customer.name"
addr="customer.address"
%}

%FUNCTION(DTW_SQL) mySelect() {
SELECT $(Field) FROM customer

%}

...

When a Web browser displays the HTML form, $$(name) and $$(addr) are
replaced with $(name) and $(addr) respectively, so the actual table and
column names never appear on the HTML form. Application users cannot
tell that the true variable names are hidden. When the user submits the
form, the HTML(REPORT) block is called. When @mySelect() calls the
FUNCTION block, $(Field) is substituted in the SQL statement with
customer.name or customer.addr in the SQL query.

List Variables
Use list variables to build a delimited string of values. They are particularly
useful in helping you construct an SQL query with multiple items like those
found in some WHERE or HAVING clauses. The syntax for a list variable is:
%LIST " value_separator " variable_name

Recommendation: The blanks are significant. Insert a space before and after
the value separator for most cases. Most queries use Boolean or mathematical
operators (for example, AND, OR, or >) for the value separator. The following
example illustrates the use of conditional, hidden, and list variables:
%HTML(INPUT) {
<form method="post" action="/cgi-bin/db2www/example2.dtw/report">
<h2>Select one or more cities:</h2>
<input type="checkbox" name="conditions" value="$$(cond1)" />Sao Paolo

<input type="checkbox" name="conditions" value="$$(cond2)" />Seattle

<input type="checkbox" name="conditions" value="$$(cond3)" />Shanghai

<input type="submit" value="submit query" />
</form>
%}

%DEFINE{
DATABASE="custcity"
%LIST " OR " conditions
cond1="cond1='Sao Paolo'"
cond2="cond2='Seattle'"
cond3="cond3='Shanghai'"
whereClause= ? "WHERE $(conditions)"
%}

%FUNCTION(DTW_SQL) mySelect(){
SELECT name, city FROM citylist

108 Net.Data Administration and Programming Guide

$(whereClause)
%}

%HTML(REPORT){
@mySelect()
%}

In the HTML form, if no boxes are checked, conditions is empty, so
whereClause is also empty in the query. Otherwise, whereClause has the
selected values separated by OR. For example, if all three cities are selected,
the SQL query is:
SELECT name, city FROM citylist
WHERE cond1='Sao Paolo' OR cond2='Seattle' OR cond3='Shanghai'

This example shows that Seattle is selected, which results in this SQL query:
SELECT name, city FROM citylist
WHERE cond1='Seattle'

Table Variables
The table variable defines a collection of related data. It contains a set of rows
and columns including a row of column headers. A table is defined in the
Net.Data macro as in the following statement:
%DEFINE myTable=%TABLE(30)

The number following %TABLE is the limit on the number of rows that this
table variable can contain. To specify a table with no limit on the number of
rows, use the default or specify ALL, as shown in these examples:
%DEFINE myTable2=%TABLE
%DEFINE myTable3=%TABLE(ALL)

When you define a table, it has zero rows and zero columns. The only way
you can populate a table with values is by passing it as an OUT or INOUT
parameter to a function or by using the built-in table functions provided by
Net.Data. The DTW_SQL language environment automatically puts the results
of a SELECT statement into a table.

For non-database language environments, such as DTW_REXX or DTW_PERL,
the language environment is also responsible for setting table values.
However, the language environment script or program defines the table
values cell-by-cell. See “Chapter 6. Using Language Environments” on
page 137 for more information about how language environments use table
variables.

You can pass a table between functions by referring to the table variable
name. The individual elements of the table can be referred to in a REPORT
block of a function or by using the Net.Data table functions. See “Table
Processing Variables” on page 111 for accessing individual elements in a table

Chapter 5. Developing Net.Data Macros 109

within a REPORT block, and see “Table Functions” on page 123 for accessing
individual elements of a table using a table function. Table variables are
usually populated with values in an SQL function, and then used as input to
a report, either in the SQL function or in another function after being passed
to that function as a parameter. You can pass table variables as IN, OUT, or
INOUT parameters to any non-SQL function. Tables can be passed to SQL
functions only as OUT parameters.

If you reference a table variable, the contents of the table are displayed and
formatted based on the setting of the DTW_HTML_TABLE variable. In the
following example, the contents of myTable would be displayed:
%HTML (output) {

$(myTable)
}

The column names and field values in a table are addressed as array elements
with an origin of 1.

Miscellaneous Variables
These variables are Net.Data-defined variables that you can use to:
v Affect Net.Data processing
v Find out the status of a function call
v Obtain information about the result set of a database query
v Determine information about file locations and dates

Miscellaneous variables can either have a predefined value that Net.Data
determines or have values that you set. For example, Net.Data determines the
DTW_CURRENT_FILENAME variable value based on the current file that it
is processing, whereas you can specify whether Net.Data removes extra white
space caused by tabulators and new-line characters.

Predefined variables are used as variable references within the macro and
provide information about the current status of files, dates, or the status of a
function call. For example, to retrieve the name of the current file, you could
use:
%REPORT {

<p>This file is <i>$(DTW_CURRENT_FILENAME)</i>.</p>
}

Modifiable variable values are generally set using a DEFINE statement or
with the @DTW_ASSIGN() function and let you affect how Net.Data processes
the macro. For example, to specify whether white space is removed, you
could use the following DEFINE statement:
%DEFINE DTW_REMOVE_WS="YES"

110 Net.Data Administration and Programming Guide

Table Processing Variables
Net.Data defines table processing variables for use in the REPORT and ROW
blocks. Use these variables to reference values from SQL queries and function
calls.

Table processing variables have a predefined value that Net.Data determines.
These variables allow you to reference values from the result sets of SQL
queries or function calls by the column, row, or field that is being processed.
You can also access information about the number of rows being processed or
a list of all the column names.

For example, as Net.Data processes a result set from an SQL query, it assigns
the value of the variable Nn for each current column name, such that N1 is
assigned to the first column, N2 is assigned to the second column, and so on.
You can reference the current column name for your Web page output.

Use table processing variables as variable references within the macro. For
example, to retrieve the name of the current column being processed, you
could use:
%REPORT {

<p>Column 1 is <i>$(N1)</i>.</p>
}

Table processing variables also provide information about the results of a
query. You can reference the variable TOTAL_ROWS in the macro to show
how many rows are returned from an SQL query, as in the following example:
Names found: $(TOTAL_ROWS)

Some of the table processing variables are affected by other variables or
built-in functions. For example, TOTAL_ROWS requires that the
DTW_SET_TOTAL_ROWS SQL language environment variable be activated so
that Net.Data assigns the value of TOTAL_ROWS when processing the results
from a SQL query or function call as in the following example:
%DEFINE DTW_SET_TOTAL_ROWS="YES"
...

Names found: $(TOTAL_ROWS)

Report Variables
Net.Data displays Web page output generated from the macro in a default
report format. In an HTML block, the default report format displays a table
using <pre> </pre> tags tags or using HTML table tags. In an XML block,
<RowSet>, <Row>, and <Column> tags are used. You can override the default
report by defining a REPORT block with instructions for displaying the
output or by using one of the report variables to prevent the default report
from being generated.

Chapter 5. Developing Net.Data Macros 111

Report variables help you customize how your Web page output is displayed
and how it is used with default reports and Net.Data tables. You must define
these variables before using them with a DEFINE statement or with the
@DTW_ASSIGN() function.

The report variables specify spacing, override default report formats, specify
whether table output should be displayed in HTML or fixed-width characters,
and specify other display features. For example, you can set
DTW_HTML_TABLE to ″yes″ and Net.Data will generate the default report
with HTML table tags instead of as a plain-text formatted table.
%DEFINE ALIGN="YES"
...
<p>Your query was on these columns: $(NLIST)

The START_ROW_NUM report variable lets you determine at which row to
begin displaying the results of a query. For example, the following variable
value specifies that Net.Data will begin displaying the results of a query at
the third row.
%DEFINE START_ROW_NUM = "3"

You can also determine whether Net.Data uses HTML tags for default
formatting. With DTW_HTML_TABLE set to YES, an HTML table is generated
rather than a text-formatted table.
%DEFINE DTW_HTML_TABLE="YES"

%FUNCTION(DTW_SQL){
SELECT NAME, ADDRESS FROM $(qTable)
%}

Language Environment Variables
These variables are used with language environments and affect how the
language environment processes a request.

With these variables, you can perform tasks such as establishing connections
to databases, supplying alternate text for Java applets, enabling NLS support,
and determining whether the execution of an SQL statement is successful.

For example, you can use the SQL_STATE variable to access or display the
SQL state value returned from the database.
%FUNCTION (DTW_SQL) val1() {
select * from customer
%REPORT {
...
%ROW {
...
%}
SQLSTATE=$(SQL_STATE)
%}

112 Net.Data Administration and Programming Guide

This next example shows how to define which database is to accessed.
%DEFINE DATABASE="CELDIAL"

Net.Data Functions

Net.Data provides built-in functions for use in your applications, such as
word and string manipulation functions or functions that retrieve and set
table variable functions. You can also define functions for use with your
application, for example to call an external program or a stored procedure.

User-defined functions
Those functions that you define for use with your application, for
example to call an external program or a stored procedure.

Net.Data built-in functions
Those functions that Net.Data provides for use in your applications,
such as functions for manipulating words and strings and functions
that get and set table variables.

These sections describe the following topics:
v “Defining Functions”
v “Calling Functions” on page 119
v “Calling Net.Data Built-in Functions” on page 119

Defining Functions
To define your own functions in the macro, use a FUNCTION block or
MACRO_FUNCTION block:

FUNCTION block
Defines a subroutine that is invoked from a Net.Data macro and is
processed by a language environment. FUNCTION blocks must
contain language statements or calls to an external program.

MACRO_FUNCTION block
Defines a subroutine that is invoked from a Net.Data macro and is
processed by Net.Data rather than a language environment.
MACRO_FUNCTION blocks can contain any statement that is
allowed in an HTML block or XML block.

Syntax: Use the following syntax to define functions:

FUNCTION block:
%FUNCTION(type) function-name([usage] [datatype] parameter, ...)

[RETURNS(return-var)] {
executable-statements
[report-block]

Chapter 5. Developing Net.Data Macros 113

...
[report-block]
[message-block]

%}

MACRO_ FUNCTION block:
%MACRO_FUNCTION function-name([usage] parameter, ...) {

executable-statements
[report-block]
...
[report-block]

%}

Where:

type Identifies a language environment that is configured in the
initialization file. The language environment invokes a specific
language processor (which processes the executable statements) and
provides a standard interface between Net.Data and the language
processor.

function-name
Specifies the name of the FUNCTION or MACRO_FUNCTION block.
A function call specifies the function-name, preceded by an at (@) sign.
See “Calling Functions” on page 119 for details.

You can define multiple FUNCTION or MACRO_FUNCTION blocks
with the same name so that they are processed at the same time. Each
of the blocks must all have identical parameter lists. When Net.Data
calls the function, all FUNCTION blocks with the same name or
MACRO_FUNCTION blocks with the same name are executed in the
order they are defined in the Net.Data macro.

usage Specifies whether a parameter is an input (IN) parameter, an output
(OUT) parameter, or both types (INOUT). This designation indicates
whether the parameter is passed into or received back from the
FUNCTION block, MACRO_FUNCTION block, or both. The usage
type applies to all of the subsequent parameters in the parameter list
until changed by another usage type. The default type is IN.

datatype
The data type of the parameter. Some language environments expect
data types for the parameters that are passed. For example, the SQL
language environment expects them when calling stored procedures.
See “Chapter 6. Using Language Environments” on page 137 to learn
more about the supported data types for the language environment
you are using.

parameter
The name of a variable with local scope that is replaced with the

114 Net.Data Administration and Programming Guide

value of a corresponding argument specified on a function call.
Parameters are passed to the language environment and are accessible
to the executable statements using the natural syntax of that language
or as environment variables. Parameter variable references are not
valid outside the FUNCTION or MACRO_FUNCTION blocks.

return-var
Specify this parameter after the RETURNS keyword to identify a
special OUT parameter. The value of the return variable is assigned in
the function block, and its value is returned to the place in the macro
from which the function was called. For example, in the following
sentence, <p>My name is @my_name()., @my_name() gets replaced by the
value of the return variable. If you do not specify the RETURNS
clause, the value of the function call is:
v NULL if the return code from the call to the language environment

is zero
v The value of the return code, when the return code is non-zero.

executable-statements
The set of language statements that is passed to the specified
language environment for processing after the variables are
substituted and the functions are processed. executable-statements can
contain Net.Data variable references and Net.Data function calls.
executable-statements includes those executable statements that are
allowed in an HTML block.

For FUNCTION blocks, Net.Data replaces all variable references with
the variable values, executes all function calls, and replaces the
function calls with their resulting values before the executable
statements are passed to the language environment. Each language
environment processes the statements differently. For more
information about specifying executable statements or calling
executable programs, see “Executable Variables” on page 106.

For MACRO_FUNCTION blocks, the executable statements are a
combination of text and Net.Data macro language constructs. In this
case, no language environment is involved because Net.Data acts as
the language processor and processes the executable statements.

report-block
Defines one or more REPORT blocks for handling the output of the
FUNCTION or MACRO_FUNCTION block. See “Report Blocks” on
page 126.

message-block
Defines the MESSAGE block, which handles any messages for error
conditions returned by the FUNCTION block. For more information
on how to capture error conditions, see “Message Blocks” on page 117.

Chapter 5. Developing Net.Data Macros 115

Define functions outside of any other block and before they are called in the
Net.Data macro.

Using Special Characters in Functions
When characters that match Net.Data language constructs syntax are used in
the language statements section of a function block as part of syntactically
valid embedded program code (such as REXX or Perl), they can be
misinterpreted as Net.Data language constructs, causing errors or
unpredictable results in a macro.

For example, a Perl function might use the COMMENT block delimiter
characters, %{. When the macro is run, the %{ characters are interpreted as the
beginning of a COMMENT block. Net.Data then looks for the end of the
COMMENT block, which it thinks it finds when it reads the end of the
function block. Net.Data then proceeds to look for the end of the function
block, and when it can’t be found, issues an error.

Use one of the following methods to use COMMENT block delimiter
characters, or any other Net.Data special characters as part of your embedded
program code, without having them interpreted by Net.Data as special
characters:
v Use the EXEC statement to call the program code, rather than putting the

code inline.
v Use a variable reference to specify the special characters.

For example, the following Perl function contains characters representing a
COMMENT block delimiter, %{, as part of its Perl language statements:
%FUNCTION(DTW_PERL) func() {

...
for $num_words (sort bynumber keys %{ $Rtitles{$num} }) {

&make_links($Rtitles{$num}{$num_words});
}
...

%}

To ensure that Net.Data interprets the %{ characters as Perl source code rather
than as a Net.Data COMMENT block delimiter, rewrite the function in either
of the following ways:
v Use the %EXEC statement:

%FUNCTION(DTW_PERL) func() {
%EXEC{ func.prl %}

%}

v Use a variable reference to specify the %{ characters:
%define percent_openbrace = "%{"

%FUNCTION(DTW_PERL) func() {

116 Net.Data Administration and Programming Guide

...
for $num_words (sort by number keys $(percent_openbrace) $Rtitles{$num} } {

&make_links($Rtitles{$num}{$num_words});
}
...

%}

Message Blocks
The MESSAGE block lets you determine how to proceed after a function call,
based on the success or failure of the function call, and lets you display
information to the caller of the function. When processing a message,
Net.Data sets the language environment variable RETURN_CODE for each
function call to a FUNCTION block. RETURN_CODE is not set on a function
call to a MACRO_FUNCTION block.

A MESSAGE block consists of a series of message statements, each of which
specifies a return code value, message text, and an action to take. The syntax
of a MESSAGE block is shown in the language constructs chapter of the
Net.Data Referencebook.

A MESSAGE block can have a global or a local scope. If it is specified at the
outermost macro layer, the MESSAGE block has global scope and is active for
all function calls executed in the Net.Data macro. If you define more than one
global MESSAGE block, the last one defined is active. However, if the
MESSAGE block is defined in a FUNCTION block, its scope is local to that
FUNCTION block (except for Net.Data built-in functions, whose errors are
handled by global message blocks).

Net.Data uses these rules to process the value of the RETURN_CODE or
SQL_STATE variables from a function call:
1. Check the local MESSAGE block for an exact match of the value of the

RETURN_CODE or SQL_STATE; exit or continue as specified.
2. If the value is not 0, check local MESSAGE block for +default or -default;

depending on the sign of the value, exit or continue as specified.
3. If the value is not 0, check local MESSAGE block for default; exit or

continue as specified.
4. Check global MESSAGE block for an exact match of the RETURN_CODE

or SQL_STATE; exit or continue as specified.
5. If the value is not 0, check global MESSAGE block for +default or

-default; depending on the sign of the value, exit or continue as specified.
6. If the value is not 0, check global MESSAGE block for default; exit or

continue as specified.
7. If the value is not 0, issue Net.Data internal default message and exit.

Chapter 5. Developing Net.Data Macros 117

The following example shows part of a Net.Data macro with a global
MESSAGE block and a MESSAGE block for a function.
%{ global message block %}
%MESSAGE {

-100 : "Return code -100 message" : exit
100 : "Return code 100 message" : continue
+default : {

This is a long message that spans more
than one line. You can use HTML tags, including
links and forms, in this message. %} : continue
%}

%{ local message block inside a FUNCTION block %}
%FUNCTION(DTW_REXX) my_function() {

%EXEC { my_command.cmd %}
%MESSAGE {

-100 : "Return code -100 message" : exit
100 : "Return code 100 message" : continue
-default : {

This is a long message that spans more
than one line. You can use HTML tags, including
links and forms, in this message. %} : exit

%}

If my_function() returns with a RETURN_CODE value of 50, Net.Data
processes the error in this order:
1. Check for an exact match in the local MESSAGE block.
2. Check for +default in the local MESSAGE block.
3. Check for default in the local MESSAGE block.
4. Check for an exact match in the global MESSAGE block.
5. Check for +default in the global MESSAGE block.

When Net.Data finds a match, it sends the message text to the Web browser
and checks the requested action.

When you specify continue, Net.Data continues to process the Net.Data
macro after printing the message text. For example, if a macro calls
my_functions() five times and error 100 is found during processing with the
MESSAGE block in the example, output from a program can look like this:
.
.
.
11 May 1997 $245.45
13 May 1997 $623.23
19 May 1997 $ 83.02
return code 100 message
22 May 1997 $ 42.67

Total: $994.37

118 Net.Data Administration and Programming Guide

Calling Functions
Use a Net.Data function call statement to call both user-defined functions and
built-in functions. Use the at (@) character followed by a function name or a
macro function name:
@function_name([argument,...])

function_name
This is the name of the function or macro function to invoke. The
function must already be defined in the Net.Data macro, unless this is
a built-in function.

argument
This is the name of a variable, a quoted string, a variable reference, or
a function call. Arguments on a function call are matched up with the
parameters on a function or macro function parameter list. And, each
parameter is assigned the value of its corresponding argument while
the function or macro function is being processed. The arguments
must be the same number and type as the corresponding parameters.

Quoted strings as arguments can contain variable references and
functions calls.

Example 1: Function call with a text string argument
@myFunction("abc")

Example 2: Function call with a variable and a function call arguments
@myFunction(myvar, @DTW_rADD("2","3"))

Example 3: Function call with a text string argument that contains a variable
reference and a function call
@myFunction("abc$(myvar)def@DTW_rADD("2","3")ghi")

Calling Net.Data Built-in Functions
Net.Data provides a large set of built-in functions to simplify Web page
development. These functions are already defined by Net.Data, so you do not
need to define them. You can call these functions as you would call other
functions.

Figure 23 on page 120 shows how the Net.Data built-in functions and the
macro interact.

Chapter 5. Developing Net.Data Macros 119

Built-in functions can return their results in three ways, depending on its
prefix:
v DTW_, DTWF_, and DTWR_: The results of the call are returned in an

output parameter or no result is returned. (DTWF_ is the prefix for flat file
functions. DTWR_ is the prefix for Web registry functions.)

v DTW_r and DTWR_r: The results of the function call replace the function
call in the macro, in the same way the value of the RETURNS keyword
replaces the function call for a user-defined function which has specified a
RETURNS keyword.

v DTW_m: Multiple results are returned in each of the parameters passed to
the function.

Some built-in functions do not have each type. To determine which type a
particular built-in function has, see the Net.Data built-in functions chapter in
Net.Data Reference.

The following sections provide a high-level overview of the Net.Data built-in
functions. Use these functions to perform general purpose, math, string, word,
or table manipulation functions. Some of these functions require variables to
be set prior to their use or must be used in a specific context. See Net.Data
Reference for descriptions of each function with syntax and examples.
v “General Purpose Functions” on page 121
v “Math Functions” on page 122
v “String Functions” on page 122
v “Word Functions” on page 122

Figure 23. Net.Data Built-in Functions

120 Net.Data Administration and Programming Guide

v “Table Functions” on page 123
v “Flat File Functions” on page 123
v “Java Applet Functions” on page 123
v “Web Registry Functions” on page 124

General Purpose Functions
This set of functions helps you develop Web pages by altering data or
accessing system services. You can use them to send mail, process HTTP
cookies, generate HTML escape codes, and get other useful information from
the system.

For example, to specify that Net.Data should exit a macro if a specific
condition occurs, without processing the rest of the macro, you use the
DTW_EXIT function:
%HTML(sort_page) {

<html>
<head>
<title>This is the page title</title>
</head>
<body>
<center>
<h3>This is the Main Heading</h3>
<!!!>
<! Joe Smith sees a very short page !>
<!!!>
%IF (customer == "Joe Smith")
</body>
</html>

@DTW_EXIT()

%ENDIF

...

</body>
</html>
%}

Another useful function is the DTW_URLESCSEQ function, which replaces
characters that are not allowed in a URL with their escape values. For
example, if the input variable string1 equals "Guys & Dolls",
DTW_URLESCSEQ assigns the output variable to the value
"Guys%20%26%20Dolls".

Chapter 5. Developing Net.Data Macros 121

Math Functions
These functions perform mathematical operations, letting you calculate or
alter numeric data. Besides standard mathematical operations, you can also
perform modulus division, specify a result precision, and use scientific
notation.

For example, the function DTW_POWER raises the value of its first parameter
to the power of its second parameter and returns the result, as shown in the
following example:
@DTW_POWER("2", "-3", result)

DTW_POWER returns ".125" in the variable result

String Functions
These functions let you manipulate characters within strings. You can change
a string’s case, insert or delete characters, assign a string value to another
variable, plus other useful functions.

For example, you can use DTW_ASSIGN to assign a value or to change the
value of a variable. You can also use this function to assign a value to or to
change the value of a variable. In the following example, the variable RC is
assigned to zero.
@DTW_ASSIGN(RC, "0")

Other string functions include DTW_CONCAT, which concatenates strings,
and DTW_INSERT, which inserts strings at a specific position, as well many
other string manipulation functions.

Word Functions
These functions let you manipulate words in character strings. Most of these
functions work similar to string functions, but on entire words. For example,
they let you count the number of words in a string, remove words, search a
string for a word.

For example, use DTW_DELW0RD to delete a specified number of words
from a string:
@DTW_DELWORD("Now is the time", "2", "2", result)

DTW_DELWORD returns the string "Now time".

Other word functions include DTW_WORDLENGTH, which returns the
number of characters in a word, and DTW_WORDPOS, which returns the
position of a word within a string.

122 Net.Data Administration and Programming Guide

Table Functions
You can use these functions to generate reports or forms using the data in a
Net.Data table variable. You can also use these functions to create Net.Data
tables, and to manipulate and retrieve values in those tables. Table variables
contain a set of values and their associated column names. They provide a
convenient way to pass groups of values to a function.

For example, DTW_TB_APPENDROW appends a row to the table. In the
following example, Net.Data appends ten rows to the table, myTable:
@DTW_TB_APPENDROW(myTable, "10")

Additionally, DTW_TB_DUMPH, returns the contents of a macro table
variable, enclosed in <pre></pre> tags, with each row of the table displayed
on a different line. And DTW_TB_CHECKBOX returns one or more HTML
check box input tags from a macro table variable.

Flat File Functions
Use the flat file interface (FFI) functions to open, read, and manipulate data
from flat file sources (text files), as well as store data in flat files.

For example, DTWF_APPEND, writes the contents of a table variable to the
end of a file, and DTWF_DELETE deletes records from a file.

Additionally, the FFI functions allow file locking with DTWF_CLOSE and
DTWF_OPEN. DTWF_OPEN locks a file that so that another request cannot
read or update the file. DTWF_CLOSE releases the file when Net.Data is done
with it, allowing other requests to access the file.

Java Applet Functions
Use the Java Applet functions to easily generate <applet> and <parm> tags to
your web page based on Net.Data variables.

For example, if you have an applet named myApplet, and you want to pass
some parameters to the applet, including a table variable, you could do the
following:
%define REMOTE_USER = %ENVVAR
%define myTable = %TABLE(all)
...
%HTML(report) {
...
@DTWA_myApplet(REMOTE_USER, myTable)
...
%}

This would tell Net.Data to generate an <applet> tag, as well as a <parm> tag
for each of the values in the table and for the value of the REMOTE_USER
environment variable.

Chapter 5. Developing Net.Data Macros 123

In addition, you can pass a single column of a table. For example:
@DTWA_myApplet(REMOTE_USER, DTW_COLUMN(mycol)myTable)

This example passes the mycol column of the Net.Data table variable myTable.

Web Registry Functions
Use the Web registry functions to maintain registries and the entries they
contain. A Web registry is a file with a key maintained by Net.Data to allow
you to add, retrieve, and delete entries easily.

For example, DTWR_ADDENTRY adds entries, while DTWR_DELENTRY
deletes entries. DTWR_LISTSUB returns information about the registry entries
in an OUT table parameter, and DTWR_UPDATEENTRY replaces the existing
values for a specified registry entry with a new value.

Generating Document Markup

Net.Data dynamically generates HTML or XML documents to be used by a
client application such as a Web browser. The following sections describe the
various constructs you can use to format documents with Net.Data macros.
See the language constructs chapter in Net.Data Reference for the specific
syntax information for each.

HTML and XML Blocks
The client application invokes Net.Data by specifying both the macro name
and the name of one of the macro’s entry points. The entry point to the macro
can be either an HTML or XML block. These blocks contain the Net.Data
language statements and text presentation statements that generate the
resulting page.

Because the entry point block drives the execution of the macro, at least one
entry point must exist in a macro. There can be multiple HTML or XML
blocks, but only one is executed per client request. And, with each request a
single document is returned to the client. To create an application consisting
of many client documents, you can invoke Net.Data multiple times to process
various HTML or XML blocks in various macros using standard navigation
techniques, such as links and forms.

Any text presentation statements can appear in an HTML or XML block, as
long as the statements are valid for the client. For example, HTML blocks can
contain HTML or JavaScript. The JavaScript is not executed by Net.Data, but
is sent along with the rest of the output to the client for execution and
display. In an HTML or XML block, you can also include function calls,
variable references, and INCLUDE statements. The following example shows
a common use of an HTML block in a Net.Data macro:

124 Net.Data Administration and Programming Guide

%HTML(input){
<h1>Hardware Query Form</h1>
<hr/>
<form method="post" action="report">
<dl>
</dt>What hardware do you want to list?
<dd><input type="radio" name="hdware" value="MON" checked />Monitors</ddl>
<dd><input type="radio" name="hdware" value="PNT" />Pointing devices</ddl>
<dd><input type="radio" name="hdware" value="PRT" />Printers</ddl>
<dd><input type="radio" name="hdware" value="SCN" />Scanners</ddl>
</dl>
<hr />
<input type="submit" value="Submit" />
</form>
%}

%FUNCTION(DTW_SQL) myQuery() {
SELECT MODNO, COST, DESCRIP FROM EQPTABLE WHERE TYPE='$(hardware)'
%REPORT{
Here is the list you requested:

%ROW{
<hr />
$(N1): $(V1) $(N2): $(V2)
</p>
$(V3)
%}
%}
%}

%HTML(report){
@myQuery()
%}

You can invoke the Net.Data macro from an HTML link.

List of hardware

When the application user clicks on this link, the Web browser invokes
Net.Data, and Net.Data parses the macro. When Net.Data begins processing
the HTML block specified on the invocation, in this case input, it begins to
process the text inside the block. Anything that Net.Data does not recognize
as a Net.Data macro language construct, it sends to the browser for display.

After the user makes a selection and presses the Submit button, the client
requests the action specified in the action attribute of the HTML form. This
action specifies a call to the output HTML block of the macro. Net.Data then
processes the output HTML block, just as it did with the input HTML block.

Net.Data then processes the myQuery() function call, which in turn invokes the
SQL Language Environment FUNCTION block. After replacing the $(hdware)
variable reference in the SQL statement with the value returned from the

Chapter 5. Developing Net.Data Macros 125

input form, Net.Data runs the query. At this point, Net.Data resumes
processing the report, displaying the results of the query according to the text
presentation statements specified in the REPORT block.

After Net.Data completes the REPORT block processing, it returns to the
output HTML block, and finishes processing.

Report Blocks
Use the REPORT block language construct to format and display data output
from a FUNCTION block. This output is typically table data, although any
valid combination of text, macro variable references, and function calls can be
specified. A table name can optionally be specified on the REPORT block.
Except for SQL and ODBC language environments, if you do not specify a
table name, Net.Data uses the table data from the first output table in the
FUNCTION parameter list.

The REPORT block has three parts, each of which is optional:
v Header information, which contains text that is displayed once before the

table row data.
v A ROW block, which contains text and table variables that are displayed

once for each row of the result table.
v Footer information, which contains text that is displayed once after the

table row data.

Example:
%REPORT{
<h2>Query Results</h2>
<p>Select a name for details.
<table border=1>

<tr>
<td>Name</td>
<td>Location</td></tr>

%ROW{
<tr>

<td>
$(V1)

</td>
<td>$(V2)</td>

</tr>
%}

</table>
%}

REPORT Block Guidelines
Use the following guidelines when creating REPORT blocks:
v To avoid displaying any table output from the ROW block, leave the ROW

block empty or omit it entirely.

126 Net.Data Administration and Programming Guide

v Use Net.Data-provided variables inside the REPORT block to access the
data in the Net.Data macro results table. These variables are described in
“Table Processing Variables” on page 111. For additional detail, see the
Report Variables section in the Net.Data Reference.

v To provide header and footer information, provide the text before and after
the ROW block. Net.Data processes everything it finds before a ROW block
as header information. Net.Data processes everything it finds after the
ROW block as footer information. As with the HTML block, Net.Data treats
everything in the header, ROW, and footer blocks that is not recognized as
macro language constructs as text presentation statements and sends these
statements to the browser.

v You can call functions and reference variables in a REPORT block.
v To have Net.Data print a default report using pre-formatted text, do not

include the REPORT block in the macro. The following example shows the
default report format when the function is called in an HTML block:

SHIPDATE | RECDATE | SHIPNO |

25/05/1997 | 30/05/1997 | 1495194B |

25/05/1997 | 28/05/1997 | 2942821G |

v To use the HTML tags instead of the pre-formatted text, set
DTW_HTML_TABLE to YES.

v To disable the printing of the a default report, set
DTW_DEFAULT_REPORT to NO or by specifying an empty REPORT block.
For example:
%REPORT{%}

Example: Customizing a Report
The following example shows how you can customize report formats using
special variables and HTML tags. It displays the names, phone numbers, and
FAX numbers from the table CustomerTbl:
%DEFINE SET_TOTAL_ROWS="YES"
...

%FUNCTION(DTW_SQL) custlist() {
SELECT Name, Phone, Fax FROM CustomerTbl
%REPORT{

<i>Phone Query Results:</i>

=====================

%ROW{
Name: $(V1)

Phone: $(V2)

Fax: $(V3)

Chapter 5. Developing Net.Data Macros 127

%}
Total records retrieved: $(TOTAL_ROWS)

%}
%}

The resulting report looks like this in the Web browser:
Phone Query Results:
====================
Name: Doen, David
Phone: 422-245-1293
Fax: 422-245-7383

Name: Ramirez, Paolo
Phone: 955-768-3489
Fax: 955-768-3974

Name: Wu, Jianli
Phone: 525-472-1234
Fax: 525-472-1234

Total records retrieved: 3

Net.Data generated the report by:
1. Printing Phone Query Results: once at the beginning of the report. This text,

along with the separator line, is the header part of the REPORT block.
2. Replacing the variables V1, V2, and V3 with their values for Name, Phone,

and Fax respectively for each row as it is retrieved.
3. Printing the string Total records retrieved: and the value for TOTAL_ROWS once

at the end of the report. (This text is the footer part of the REPORT block.)

Multiple REPORT Blocks
You can specify multiple REPORT blocks within a single FUNCTION or
MACRO FUNCTION block to generate multiple reports with one function
call.

Typically, you would use multiple REPORT blocks with the DTW_SQL
language environment with a function that calls a stored procedure, which
returns multiple result sets (see “Stored Procedures” on page 149). However,
multiple REPORT blocks can be used with any language environment to
generate multiple reports.

To use multiple REPORT blocks, place a result set name on the stored
procedure CALL for each result set. If more result sets are returned from the
stored procedure than the number of REPORT blocks you have specified, and
if the Net.Data built-in function DTW_DEFAULT_REPORT = ″MULTIPLE″,
then default reports are generated for each table that is not associated with a

128 Net.Data Administration and Programming Guide

report block. If no report blocks are specified, and if
DTW_DEFAULT_REPORT = ″YES″, then only one default report will be
generated. Note that for the SQL language environment only, a
DTW_DEFAULT_REPORT value of ″YES″ is equivalent to a value of
″MULTIPLE″.

Examples: The following examples demonstrate ways in which you can use
multiple report blocks.

To display multiple reports using default report formatting:

Example 1: DTW_SQL language environment
%DEFINE DTW_DEFAULT_REPORT = "MULTIPLE"
%FUNCTION (dtw_sql) myStoredProc () {

CALL myproc (table1, table2) %}

In this example, the stored procedure myproc returns two result sets, which are
placed in table1 and table2. Because no REPORT blocks are specified, default
reports are displayed for both tables, table1 first, then table2.

Example 2: MACRO_FUNCTION block. In this example, two tables are
passed into the MACRO_FUNCTION block. When
DTW_DEFAULT_REPORT=″MULTIPLE″ is specified, Net.Data generates
reports for both tables.
%DEFINE DTW_DEFAULT_REPORT = "MULTIPLE"
%MACRO_FUNCTION multReport (INOUT tablename1, tablename2) {
%}

In this example, two tables are passed into the MACRO_FUNCTION
multReport. Again, Net.Data displays default reports for the two tables in the
order in which they appear in the MACRO FUNCTION block parameter list,
table1 first, then table2.

Example 3: DTW_REXX language environment
%DEFINE DTW_DEFAULT_REPORT = "YES"
%FUNCTION (dtw_rexx) multReport (INOUT table1, table2) {

SAY 'Generating multiple default reports...
'
%}

In this example, two tables are passed into the REXX function multReport.
Because DTW_DEFAULT_REPORT=″YES″ is specified, Net.Data displays a
default report for the first table only.

To display multiple reports by specifying REPORT blocks for display
processing:

Example 1: Named REPORT blocks

Chapter 5. Developing Net.Data Macros 129

%FUNCTION(dtw_sql) myStoredProc () {
CALL myproc (table1, table2)

%REPORT(table2) {
...
%ROW { %}
...

%}

%REPORT(table1) {
...
%row { %}
...

%}
%}

In this example, REPORT blocks have been specified for both of the tables
passed in the FUNCTION block parameter list. The tables are displayed in the
order they are specified on the REPORT blocks, table2 first, then table1. By
specifying a table name on the REPORT blocks and the CALL statement, you
can control the order in which the reports are displayed.

Example 2: Unnamed REPORT blocks
%FUNCTION(dtw_sql) myStoredProc () {

CALL myproc

%REPORT {
...
%ROW { %}
...

%}
%REPORT {

...
%ROW { %}
...

%}
%}

In this example, REPORT blocks have been specified for two result sets
returned from myproc. Because there are no table names specified on the
REPORT blocks, the REPORT blocks are executed for the first two result sets
in the order in which they are returned from the stored procedure.

To display multiple reports using a combination of default reports and
REPORT blocks:

Example: A combination of default reports and REPORT blocks
%DEFINE DTW_DEFAULT_REPORT = "MULTIPLE"
%FUNCTION(dtw_system) editTables (INOUT table1, table2, table3) {

%REPORT(table2) {
...

130 Net.Data Administration and Programming Guide

%ROW { %}
...

%}
%}

In this example, only one REPORT block is specified. Because the block
specifies table2, and table2 is the second result set listed on the CALL
statement, the second result set is used to display the report. Because there are
fewer REPORT blocks specified than the number of result sets returned from
the stored procedure, default reports are then displayed for the remaining
result sets: first, a default report for the first result set, table1; then a default
report for the third result set, table3. One output table is specified, table1,
which can be used for processing later in the macro.

Guidelines and Restrictions for Multiple REPORT Blocks: Use the
following guidelines and restrictions when specifying multiple REPORT
blocks in a FUNCTION or MACRO_FUNCTION block.

Guidelines:

v You can specify one REPORT block per result set.
v Specify REPORT blocks for multiple tables in the order in which you want

them to be processed.
v To specify default processing when there is not a REPORT block specified

for a table, define DTW_DEFAULT_REPORT = ″MULTIPLE″. When
Net.Data builds the Web page, it displays default reports for tables after it
displays the reports for tables having REPORT blocks.

v To prevent Net.Data from displaying tables that do not have REPORT
blocks, set DTW_DEFAULT_REPORT = ″NO″.

v When using the DTW_SAVE_TABLE_IN variable with a function that
returns more than one result set, the first result set returned from the
function is assigned to the DTW_SAVE_TABLE_IN table.

v Multiple report blocks can be used with any language environment.

Restrictions:

v The values of all report variables in a function, such as START_R_N and
RPT_M_R, apply to all the REPORT blocks in that function. You cannot
modify the value of a report variable for individual REPORT blocks.

v The MESSAGE block must be located either before or after a list of
REPORT blocks, and not between REPORT blocks.

v If the first report block specifies a table name, then all report blocks must
specify table names.

v If the first report block does not specify a table name, then none of the
report blocks can specify table names.

v The maximum number of tables for a single stored procedure is 32.

Chapter 5. Developing Net.Data Macros 131

Conditional Logic and Looping in a Macro

Net.Data lets you incorporate conditional logic and looping in your Net.Data
macros using the IF and WHILE blocks.

IF and WHILE blocks use a condition list that helps you test one or more
conditions, and then to perform a block of statements based on the outcome
of the condition test. The condition list contains logical operators, such as =
and <=, and terms, which are made up of quoted strings, variables, variable
references, and function calls. Quoted strings can contain variable references
and functions calls, as well. You can nest the condition list.

The following sections describe conditional logic and looping:
v “Conditional Logic: IF Blocks”
v “Looping Constructs: WHILE Blocks” on page 134

Conditional Logic: IF Blocks
Use the IF block for conditional processing in a Net.Data macro. The IF block
is similar to IF statements in most high-level languages because it provides
the ability to test one or more conditions, and then to perform a block of
statements based on the outcome of the condition test.

You can specify IF blocks almost anywhere in a macro and can nest them. The
syntax of an IF block is shown in the language constructs chapter in Net.Data
Reference.

IF Block Rules: The rules for IF block syntax are determined by the block’s
position in the macro. The elements allowed in the executable block of
statements of an IF block depend on the location of the IF block itself.
v Any element that is valid in the block containing the IF block is valid

within that IF block. For example, if you specify an IF block inside an
HTML block, any element that is allowed in the HTML block is allowed in
the IF block, such as INCLUDE statements and WHILE blocks.
%HTML block
...

%IF block
...

%INCLUDE
...

%WHILE
...

%ENDIF
%}

v Similarly, if you specify the IF block outside of any other block in the
declaration part of the Net.Data macro, only those elements allowed outside
of any other block (such as a DEFINE block or FUNCTION block) are
allowed in the IF block.

132 Net.Data Administration and Programming Guide

%IF
...

%DEFINE
...

%FUNCTION
...
%ENDIF

v When an IF block is nested within an IF block that is outside of any other
block in the declaration part, it can use any element that the outside block
can use. When an IF block is nested within another block that is in an IF
block, it takes on the syntax rules for the block it is inside.
For example, a nested IF block must follow the rules used when it is inside
an HTML block.
%IF
...

%HTML {
...

%IF
...

%ENDIF
%}

...
%ENDIF

Exception: Do not specify a ROW block in an IF block.

IF Block String Comparison

Net.Data processes the IF block condition list in one of two ways based on the
contents of the terms making up the conditions. The default action is to treat
all terms as strings, and to perform string comparisons as specified in the
conditions. However, if the comparison is between two strings representing
integers, then the comparison is numeric. Net.Data assumes a string is
numeric if it contains only digits, optionally preceded by a ’+’ or ’-’ character.
The string cannot contain any non-digit characters other than the ’+’ or ’-’.
Net.Data does not support numerical comparison of non-integer numbers.

Examples of valid integer strings:
+1234567890
-47
000812
92000

Examples of invalid integer strings:
- 20 (contains blank characters)
234,000 (contains a comma)
57.987 (contains a decimal point)

Net.Data evaluates the IF condition at the time it executes the block, which
can be different than the time it is originally read by Net.Data. For example, if

Chapter 5. Developing Net.Data Macros 133

you specify an IF block in a REPORT block, Net.Data does not evaluate the
condition list associated with the IF block when it reads the FUNCTION block
definition containing the REPORT block, but rather when it calls the function
and executes it. This is true for both the condition list part of the IF block and
the block of statements to be executed.

IF Block Example: A macro containing IF blocks inside other blocks
%{ This macro is called from another macro, passing the operating system

and version variables in the form data.
%}

%IF (platform == "AS400")
%IF (version == "V3R2")

%INCLUDE "as400v3r2_def.hti"
%ELIF (version == "V3R7")

%INCLUDE "as400v3r7_def.hti"
%ELIF (version == "V4R1")

%INCLUDE "as400v4r1_def.hti"
%ENDIF

%ELSE
%INCLUDE "default_def.hti"

%ENDIF

%MACRO_FUNCTION numericCompare(IN term1, term2, OUT result) {
%IF (term1 < term2)

@dtw_assign(result, "-1")
%ELIF (term1 > term2)

@dtw_assign(result, "1")
%ELSE

@dtw_assign(result, "0")
%ENDIF

%}

%HTML(report){
%WHILE (a < "10") {

outer while loop #$(a)

%IF (@dtw_rdivrem(a,"2") == "0")

this is an even number loop

%ENDIF
@DTW_ADD(a, "1", a)

%}
%}

Looping Constructs: WHILE Blocks
Use the WHILE block to perform looping in a Net.Data macro. Like the IF
block, the WHILE block provides the ability to test one or more conditions,
and then to perform a block of statements based on the outcome of the
condition test. Unlike the IF block, the block of statements can be executed
any number of times based on the outcome of the condition test.

134 Net.Data Administration and Programming Guide

You can specify WHILE blocks inside HTML blocks, REPORT blocks, ROW
blocks, MACRO_FUNCTION blocks, and IF blocks, and you can nest them.
The syntax of a WHILE block is shown in the language constructs chapter of
Net.Data Reference.

Net.Data processes the WHILE block exactly the same way it processes the IF
block, but re-evaluates the condition after each execution of the block. And,
like any conditional looping construct, it is possible for processing to go into
an infinite loop if the condition is coded incorrectly.

Example: A macro with a WHILE block
%DEFINE loopCounter = "1"

%HTML(build_table) {
%WHILE (loopCounter <= "100") {

%{ generate table tag and column headings %}
%IF (loopCounter == "1")

<table border>
<tr>
<th>Item #
<th>Description

%ENDIF

%{ generate individual rows %}
<tr>
<td>$(loopCounter)
<td>@getDescription(loopCounter)

%{ generate end table tag %}
%IF (loopCounter == "100")
%ENDIF

%{ increment loop counter %}
@DTW_ADD(loopCounter, "1", loopCounter)

%}
%}

Chapter 5. Developing Net.Data Macros 135

136 Net.Data Administration and Programming Guide

Chapter 6. Using Language Environments

Net.Data supplies language environments that you use to access data sources
and to execute application programs containing business logic. For example,
the SQL language environment lets you pass SQL statements to a DB2
database, and the REXX language environment lets you invoke REXX
programs. You can also use the SYSTEM language environment to execute a
program or issue a command.

With Net.Data, you can add user-written language environments in a
pluggable fashion. Each user-written language environment must support a
standard set of interfaces that are defined by Net.Data and must be
implemented as a dynamic link library (DLL) or a shared library. For
complete details on Net.Data-supplied language environments and on how to
create a user-written language environment, see the Net.Data Language
Environment Interface Reference.

Figure 24 shows the relationship between the Web server, Net.Data, and the
Net.Data language environments.

Figure 24. The Net.Data Language Environments

© Copyright IBM Corp. 1997, 2001 137

The following sections describe the Net.Data language environments and how
to use them in your macros:
v “Overview of Net.Data-Supplied Language Environments”
v “Calling a Language Environment” on page 139
v “Relational Database Language Environments” on page 140
v “Programming Language Environments” on page 163

For configuration information about the Net.Data-provided language
environments, see “Setting Up Net.Data Language Environments” on page 29.

For information about improving performance when using the language
environments, see “Optimizing the Language Environments” on page 210.

Overview of Net.Data-Supplied Language Environments

Net.Data provides language environments that let you access data and
programming resources for your application.

Net.Data provides two types of language environments:
v “Relational Database Language Environments” on page 140
v “Programming Language Environments” on page 163

Table 7 provides a brief description of each language environment. See the
operating system appendix of Net.Data Reference to learn which language
environments are support on what operating system.

Table 7. Net.Data Language Environments

Language
Environment

Environment
Name Description

IMS Web HWS_LE The IMS Web language environment lets you
submit an IMS transaction using IMS Web and
receive the output of the transaction at your Web
browser.

Java
Application

DTW_JAVAPPS Net.Data supports your existing Java applications
with the Java language environment.

ODBC DTW_ODBC The ODBC language environment executes SQL
statements through an ODBC interface for access
to multiple database management systems. The
results of the ODBC statement can be returned in
a table variable.

Oracle DTW_ORA The Oracle language environment lets you directly
access your Oracle data.

138 Net.Data Administration and Programming Guide

Table 7. Net.Data Language Environments (continued)

Language
Environment

Environment
Name Description

Perl DTW_PERL The Perl language environment interprets internal
Perl scripts that are specified in a FUNCTION
block of the Net.Data macro, or it executes
external Perl scripts stored in separate files.

REXX DTW_REXX The REXX language environment interprets
internal REXX programs that are specified in a
FUNCTION block of the Net.Data macro, or it can
execute external REXX programs stored in a
separate file.

SQL DTW_SQL The SQL language environment executes SQL
statements through DB2. The results of the SQL
statement can be returned in a table variable. The
results of the ODBC statement can be returned in
a table variable.

System DTW_SYSTEM The System language environment supports
executing commands and calling external
programs.

Web Registry DTW_WEBREG The Web Registry language environment provides
functions for the persistent storage of
application-related data.

Calling a Language Environment
To call a language environment:
v Use a FUNCTION statement to define a function that calls the language

environment by supplying language statements or an %EXEC statement.
v Use a function call to the language environment.

For example:
%FUNCTION(DTW_SQL) custinfo() {
select CUSTNAME, CUSTNO from ibmuser.customer
%}
...
%HTML(REPORT) {
@custinfo()
%}

Guidelines for Handling Error Conditions
When an error is detected in a language environment function, the language
environment sets the Net.Data RETURN_CODE variable with an error code.

You can use the following resources to handle error conditions:

Chapter 6. Using Language Environments 139

v The Net.Data-supplied language environments return error codes that are
documented in Net.Data Messages and Codes Reference.

v The database language environments, such as the SQL language
environment set the RETURN_CODE variable to the SQLCODE returned by
the database, and the SQL_STATE variable to the SQLSTATE returned by
the database. See the messages and codes documentation for your DBMS to
learn more about the SQLCODEs and SQLSTATEs used by your DBMS.

Security
Ensure that the user ID Net.Data is running under has the proper authority to
access any object that may be referenced by a language environment
statement. For example, SQL language environment executes SQL statements,
so that the user ID under which Net.Data executes must have the authority to
access the database resources, in order to execute successfully.

Relational Database Language Environments

Net.Data provides relational database language environments to help you
access your relational data sources. The SQL statements you provide to access
the relational data are executed as dynamic SQL. For more information on
dynamic SQL, see your database documentation.

The following sections describe the language environments and how to use
them:
v “ODBC Language Environment”
v “Oracle Language Environment” on page 141
v “SQL Language Environment” on page 142
v “Using DB2 Parameter Markers” on page 143
v “Managing Transactions in a Net.Data Application” on page 144
v “Using Large Objects” on page 145
v “Stored Procedures” on page 149
v “Encoding DataLink URLs in Result Sets” on page 156
v “Relational Database Language Environment Examples” on page 158
v “Web Registry Language Environment” on page 161

ODBC Language Environment
The Open Database Connectivity (ODBC) language environment executes SQL
statements through an ODBC interface. ODBC is based on the X/Open SQL
CAE specification, which lets a single application access many database
management systems.

To use the ODBC language environment:

140 Net.Data Administration and Programming Guide

To use the ODBC language environment, first obtain and install an ODBC
driver and a driver manager. Your ODBC driver documentation describes how
to install and configure the ODBC environment.

Verify that a configuration statement like the following is in the Net.Data
initialization file, on one line.

Note: The path in the example below may vary depending on your operating
system.

ENVIRONMENT (DTW_ODBC) d:/net.data/lib/dtwodbc.dll (IN DATABASE, LOGIN, PASSWORD,
TRANSACTION_SCOPE, START_ROW_NUM, DTW_SET_TOTAL_ROWS)

Restrictions:

v The ODBC language encvironment supports stored procedures only when
connecting to DB2.

v When specifying the DATABASE variable, you must specify the same
database as the data source in the ODBC initialization file.

v SQL statements in the inline statement block can be up to 64 KB. DB2
Universal Database has the following restrictions:
– Version 6 or higher: 64 KB
– Version 5 Release 2 or lower: 32 KB

Your database might have different limits; refer to your database
documentation to determine if your database has a different limit.

Oracle Language Environment
The Oracle language environment provides native access to your Oracle data.
You can access Oracle databases from Net.Data when using CGI, FastCGI,
NSAPI, ISAPI, or APAPI. This language environment supports Oracle 8.1.5.

To use the Oracle language environment, verify that the following
configuration statement is in the initialization file, in one line.

Note: The path in this configuration statement may be different depending on
your operating system or setup.

ENVIRONMENT (DTW_ORA) /net.data/lib/dtwora.so (IN DATABASE, LOGIN, PASSWORD,
TRANSACTION_SCOPE, START_ROW_NUM, DTW_SET_TOTAL_ROWS)

See “Setting up the Oracle Language Environment” on page 30 to learn how
to further set up the Oracle language environment.

Restrictions:

v The DATABASE variable is not used to access Oracle databases.

Chapter 6. Using Language Environments 141

|
|
|

|

v The LOGIN variable must contain the Oracle database instance name. For
example, ora73 is the defined instance name in the following LOGIN
variable:
LOGIN=admin@ora73

v You must use Live Connection when using an interface other than CGI.
v A long data type is bundled like a normal string and must not be larger

than 32 KB.
v Net.Data does not support stored procedures in Oracle which return result

sets.

SQL Language Environment
The SQL language environment provides access to DB2 databases. Use this
language environment for optimal performance when accessing DB2.

To use the SQL language environment, verify that the following configuration
statement is in the initialization file, on one line.

Note: The path in this configuration statement may be different depending on
your operating system or setup.

ENVIRONMENT (DTW_SQL) d:/net.data/lib/dtwsql.dll (IN DATABASE, LOGIN, PASSWORD,
TRANSACTION_SCOPE, START_ROW_NUM, DTW_SET_TOTAL_ROWS)

Nested SQL Statements

You can call SQL functions within another SQL function. If tables are passed,
then ensure you use unique table names in each of the functions; otherwise,
unpredictable results might occur.

Example: Calls an SQL function from the ROW block of another SQL function
%define mytable1 = %TABLE
%define mytable2 = %TABLE

%FUNCTION(DTW_SQL) sql2 (IN p1, OUT t2) {
select * from NETDATA.STAFFINF where projno='$(p1)'

%REPORT {
%ROW { $(N1) is $(V1) %}
%}
%}

%FUNCTION(DTW_SQL) sql1 (OUT t1) {
select * from NETDATA.STAFFINF

%REPORT {
%ROW { @sql2(V1, mytable2) %}

%}
%}

%HTML(netcall1) { @sql1(mytable1) %}

142 Net.Data Administration and Programming Guide

|
|
|

|

|

|
|

|
|

Restrictions:

v Nested SQL is not supported by Linux S/390.
v SQL statements in the inline statement block can be up to 64 KB. DB2

Universal Database has the following restrictions:
v Version 6 or higher: 64 KB
v Version 5 Release 2 or lower: 32 KB

Your database might have different limits; refer to your database
documentation to determine if your DBMS has a different limit.

v When nesting SQL statements, the maximum number of result sets that can
be processed at any given time is 32. For example you could nest three
levels, each one returning 10 result sets. Or nest 32 levels, returning one
result set each.

Using DB2 Parameter Markers
When used properly, parameter marker can improve the performance of your
queries by enabling DB2 to utilize its cache. A parameter marker is a question
mark (?) in a SQL statement and indicates a position where an application
supplied value is substituted when the statement is executed. The value is
obtained from a Net.Data variable on the parameter list of the Net.Data SQL
function definition. How these values are obtained is dependant on the way
in which you use parameter markers.

There are two ways that you can use parameter markers:
v Explicitly
v Implicitly

Explicit use of parameter markers:

When you create an SQL statement, you can manually add parameter markers
to your query.

For example:
%FUNCTION (DTW_SQL) select_staff(in id, in dept){

select * from staff
where id = ? and dept = ?
and salary = 35,000%}

For each parameter marker there is a corresponding IN parameter in the
DTW_SQL function. The mapping order is from left to right for both the SQL
and the function parameter list. Function parameters that are not associated
with an SQL parameter marker can be placed at the end of the function
parameter list.

Implicit use of parameter markers:

Chapter 6. Using Language Environments 143

|

|
|
|
|
|
|
|

|

|

|

|

|
|

|

|
|
|
|

|
|
|
|
|

|

Implicit use of parameter markers is enabled by setting the following flag in
the initialization file or in the macro, DTW_USE_DB2_PREPARE_CACHE = YES.
When the DB2 Prepare Cache configuration variable is set to YES, Net.Data
replaces each variable in the SQL statement with a parameter marker. The
data is bound to each parameter marker and is not passed from the Net.Data
parameter list (as is the case with explicit use of parameter markers).

For example:
%FUNCTION (DTW_SQL) select_staff() {

select * from staff
where id = $(ID) and dept = $(dept)
and salary = 35,000%}

Restrictions:

v Parameter markers are only available on DB2.
v For explicit parameter markers, be sure that the configuration variable flag

in DTW_USE_DB2_PREPARE_CACHE is set to NO in the initialization file
or the macro.

v For implicit parameter markers, all Net.Data variables in the SQL statement
must be in the position of a marker. If not, a syntax error will occur because
Net.Data will not know which variable is a legitimate marker.

Managing Transactions in a Net.Data Application
When you modify the content of a database using insert, delete, or update
statements, the modifications do not become persistent until the database
receives a commit statement from Net.Data. If an error occurs, Net.Data sends
a rollback statement to the database, reversing all modifications since the last
commit.

The way in which Net.Data sends the commit and possible rollback
statements depend on the setting of TRANSACTION_SCOPE and whether
commit statements are explicitly specified in the macro. The values for
TRANSACTION_SCOPE are MULTIPLE and SINGLE. The default is
MULTIPLE. To set TRANSACTION_SCOPE to SINGLE, use a %DEFINE
statement or a call to @DTW_ASSIGN(), and pass the variable on the
ENVIRONMENT statement for the proper LE. For more information, see
Customizing the Net.Data Initialization File in Chapter 2 of this book.

SINGLE

Specifies that Net.Data issues a commit statement after each successful
SQL statement. If the SQL statement returns an error, a rollback
statement is issued. SINGLE transaction scope secures a database
modification immediately; however, with this scope, it is not possible
to undo a modification using a rollback statement later.

MULTIPLE

144 Net.Data Administration and Programming Guide

|
|
|
|
|
|

|

|
|
|
|

|

|

|
|
|

|
|
|

|

Specifies that Net.Data will execute all SQL statements before a
commit statement is issued. Net.Data sends the commit at the end of
the request, and if each SQL statement is issued successfully, the
commit makes all modifications in the database persistent. If any of
the statements returns an error, Net.Data issues a rollback statement at
the point of the error, which sets the database back to its prior state.

By leaving TRANSACTION_SCOPE set to MULTIPLE and issuing commit
statements at the end of those groups of statements that you feel qualify as a
transaction, you the application developer maintain full control over the
commit and rollback behavior in your application. For example, issuing
commit statements after each update in your macro can help ensure the
integrity of your data.

To issue an SQL commit statement, you can define a function that you can call
in at any point in your HTML block:
%FUNCTION(DTW_SQL) user_commit() {

commit
%}

...

%HTML {
...
@user_commit()
...

%}

Restrictions:

The setting of TRANSACTION_SCOPE cannot be changed after a connection
to the database is made. Therefore, all SQL transactions in a macro are subject
to the same processing.

If you are using Net.Data as part of Net.Commerce, note that Net.Commerce
has its own transaction handling and disables the transaction handling of
Net.Data.

Using Large Objects
You can store large object files (LOBs) in DB2 databases and incorporate them
into your dynamic Web pages by using the Net.Data SQL or ODBC language
environments.

When the language environment executes an SQL SELECT statement or a
stored procedure that returns a LOB, it does not assign the object to a V(n)
table processing variable or a Net.Data table field. Instead, it stores the LOB in
a file that Net.Data creates and returns only the name of the file in the V(n)
table processing variable or a Net.Data table field. In your Net.Data macro

Chapter 6. Using Language Environments 145

you can use the name to reference the LOB file; for example, you can create
an HTML anchor element with a hypertext reference or an image element
containing a URL for the file. Net.Data places the file containing the LOB in
the directory specified by the HTML_PATH configuration variable, located in
the Net.Data initialization file (db2www.ini). Write access to the LOB file is
limited to the user ID associated with the Net.Data request that retrieved the
LOB.

The file name for the LOB is dynamically constructed, and has the following
form:
name[.extension]

Where:

name Is a dynamically generated unique string identifying the large object

extension
Is a string that identifies the type of the object. For CLOBs and
DBCLOBs, the extension is .txt. For BLOBs, the SQL language
environment determines the extension by looking for a signature in
the first few bytes of the LOB file. Table 8 shows the LOB extensions
used by the SQL language environment:

Table 8. LOB extensions used in the SQL language environment
Extension Object Type
.bmp bitmap image
.gif graphical image format
.jpg joint photographic experts group (JPEG) image
.tif tagged image file format
.ps postscript
.mid musical instruments digital interface (midi) audio
.aif AIFF audio
.avi audio visual interleave audio
.au basic audio
.ra real audio
.wav windows audio visual
.pdf portable document format
.rmi midi sequence

If the object type for the BLOB is not recognized, no extension is added to the
file name.

When Net.Data returns the name of the file containing a LOB, it prefixes the
file name with the string /tmplobs/ using the following syntax:
/tmplobs/name.[extension]

146 Net.Data Administration and Programming Guide

This prefix permits you to locate your LOB directory in a directory other than
the Web server’s document root directory.

To ensure that references to LOB files are correctly resolved, add the following
Pass directive to your Web server’s configuration file:
Pass /tmplobs/* <full_path>/tmplobs/*

<full_path> is the value specified for the HTML_PATH configuration variable
in the Net.Data initialization file.

Planning tip: Each query that returns LOBs results in files being created in
the directory specified by the HTML_PATH path configuration variable.
Consider system limitations when using LOBs because they can quickly
consume resources. You might want to clean up the directory periodically, or
execute the dtwclean daemon. See “Managing Temporary LOBS” on page 148
for more information. It is recommended that you use DataLinks, which
eliminate the need to store files in directories by the SQL language
environment, resulting in better performance and the use of much less system
resources.

Example: The following application uses an MPEG audio (.mpa) file. Because
the SQL language environment does not recognize this file type, an EXEC
variable is used to append the .mpa extension to the file name. A user of this
application must click on the file name to invoke the MPEG audio file viewer.
%DEFINE{
lobdir="/u/IBMUSER/tmplobs""
myFile=%EXEC "rename $(lobdir)$(filename) $(lobdir)$(filename).mpa"
%}
%{ where rename is the command on your operating system to rename files %}
%FUNCTION(DTW_SQL) queryData() {

SELECT Name, IDPhoto, Voice FROM RepProfile
%REPORT{

<p>Here is the information you selected:</p>
%ROW{

@DTW_ASSIGN(filename, @DTW_rSUBSTR(V3, @DTW_rLASTPOS("/", V3)))
$(myFile)
$(V1)

Voice sample<p>
%}

%}
%}

%HTML (Report){
@queryData()
%}

If the RepProfile table contains information about Kinson Yamamoto and
Merilee Lau, then the execution of the REPORT block will add the following
HTML to the Web page being generated:

Chapter 6. Using Language Environments 147

<p>Here is the information you selected:</p>
Kinson Yamamoto
Voice sample<p>
Merilee Lau
Voice sample<p>

The REPORT block in the previous example uses the implicit table variables
V1, V2, and V3.
v The value of V1 is a person’s name, which is character data.
v The value of V2 is the name of a GIF file containing the photo of the

person. The image is displayed inline within the generated Web page.
v The value of V3 is the name of an MPA file containing a sample of the

person’s voice. Because Net.Data does not recognize the MPA file format, it
does not add an extension to the file name when it creates the file for the
LOB in the directory specified by HTML_PATH. This example illustrates the
use of an EXEC variable to add the .mpa extension to the file name. The
voice sample is played when the user clicks on text ″Voice sample″, which
is a hyperlink text.

Access rights for LOBs:

The default tmplobs directory for LOBs is under the directory specified by the
HTML_PATH in the shipped Net.Data initialization file. It is accessible by any
user ID. If the the HTML_PATH value is changed, ensure that the user ID that
the Web server is running under has write access to the directory specified by
HTML_PATH (see “HTML_PATH” on page 17 for more information).
Managing temporary LOBs:

Net.Data stores temporary LOBs in a subdirectory called tmplobs, under the
directory specified in the HTML_PATH path configuration variable. These
files can be large and should be cleaned out periodically to maintain
acceptable performance.

Net.Data provides a daemon called dtwclean that helps you periodically
manage the tmplobs directory. dtwclean uses port 7127.

To run the dtwclean daemon: Enter the following command from the
command line window:
dtwclean [-t xx] [-d|-l]

Where:

-t Is a flag that specifies the interval in which dtwclean cleans the
directory

148 Net.Data Administration and Programming Guide

xx Is the interval, in seconds, at which a file remains in the directory
before dtwclean erases the file. This value does not have a limit. The
default is 3600 seconds.

-d Is a flag that specifies debug mode; trace information is displayed in
the command window.

-l Is a flag that specifies logging mode; trace information is printed to a
log file.

Stored Procedures
A stored procedure is a compiled program stored in a database that can
execute SQL statements. In Net.Data, stored procedures are called from
Net.Data functions using a CALL statement. Stored procedure parameters are
passed in from the Net.Data function parameter list. You can use stored
procedures to improve performance and integrity by keeping compiled SQL
statements with the database server. Net.Data supports the use of stored
procedures with DB2 through the SQL and ODBC language environments.
Oracle stored procedures are supported through the Oracle language
environment. For DB2 in particular, Net.Data supports stored procedures
returning one or more result sets.

This section describes following topics:
v “Stored Procedure Syntax”
v “Calling a Stored Procedure” on page 151
v “Passing Parameters” on page 152
v For DB2 only:“Processing Result Sets from DB2 Stored Procedures” on

page 152

Stored Procedure Syntax
The syntax used for stored procedures includes the FUNCTION statement, the
CALL statement, and optionally a REPORT block.
%FUNCTION (DTW_SQL) function_name ([IN datatype arg1, INOUT datatype arg2,

OUT resultsetname, ...]) {
CALL stored_procedure [(resultsetname, ...)]

[%REPORT [(resultsetname)] { %}]
...
[%REPORT [(resultsetname)] { %}]
[%MESSAGE %}]

%}

Where:

function_name
Is the name of the Net.Data function that initiates the call of the stored
procedure

Chapter 6. Using Language Environments 149

stored_procedure
Is the name of the stored procedure

datatype
Is one of the database data types supported by Net.Data as shown in
Table 9 and Table 10. The data types specified in the parameter list must
match the data types in the stored procedure. See your database
documentation for more information about these data types.

For DB2 only: tablename
Is the name of the Net.Data table in which the result set is to be stored
(used only when the result set is to be stored in a Net.Data table. If
specified, this parameter name must match the associated parameter name
for resultsetname.

For DB2 only: resultsetname
Is the name that associates a result set returned from a stored procedure
with a REPORT block and a table name on the function parm list, or both.
The resultsetname on a REPORT block must match a result set on the
CALL statement.

Table 9. Supported Stored Procedure Data Types for DB2
BIGINT DOUBLEPRECISION SMALLINT
CHAR FLOAT TIME
CLOB1 INTEGER TIMESTAMP
DATE GRAPHIC VARCHAR
DECIMAL LONGVARCHAR VARGRAPHIC
DOUBLE LONGVARGRAPHIC
1 CLOB can only be used as an OUT and INOUT parameter, and Net.Data interprets
the size in bytes. For example, if you specify a variable to be OUT CLOB(20000), a
CLOB of size 20K is to be used as an out parameter.

Table 10. Supported Stored Procedure Data Types for Oracle
BIGINT LONG
CHAR LONG RAW
DATE NUMBER
DECIMAL RAW
FLOAT VARCHAR / VACHAR2
INTEGER

Important: When Net.Data on Windows or Unix calls a stored procedure in
DB2 on OS/390 and OS/400, the stored procedure on these
operating systems must use the host variable type DOUBLE or
FLOAT when retrieving DECIMAL data from the DB2 database.
Using the host variable type DOUBLE or FLOAT will ensure that
the returned data is in readable format.

150 Net.Data Administration and Programming Guide

|
|
|
|
|
|

Calling a Stored Procedure
1. Define a function that initiates a call to the stored procedure.

%FUNCTION (DTW_SQL) function_name()

2. (Optional) Specify any IN, INOUT, or OUT parameters for the stored
procedure. For DB2 stored procedures, the parameter can include a table
variable name for storing a result set in a Net.Data table (you only need to
specify a Net.Data table if you want the result set stored in a Net.Data
table).
%FUNCTION (DTW_SQL) function_name (IN datatype
arg1, INOUT datatype arg2,

OUT resultsetname...)

3. Use the CALL statement to identify the stored procedure name.
CALL stored_procedure

4. For DB2: If the DB2 stored procedure is going to generate one result set,
optionally specify a REPORT block to define how Net.Data displays the
result set.
%REPORT [(resultsetname)] {
...
%}

Example:
%FUNCTION (DTW_SQL) mystoredproc (IN CHAR(30) arg1) {

CALL myproc
%REPORT (mytable){
...
%ROW { ... %}
...
%}
%}

5. If the stored procedure is going to generate more than one result set:
v Specify the result set names on the CALL statement.

CALL stored_procedure[(resultsetname1[, resultsetname2, ...])]

v Optionally specify one or more REPORT blocks to define how Net.Data
displays the result sets.
%REPORT[(resultsetname1)] {
...
%}

Example:
%FUNCTION (DTW_SQL) mystoredproc (IN CHAR(30) arg1, OUT table1) {

CALL myproc (table1, table2)
%REPORT (table2) {

...

Chapter 6. Using Language Environments 151

%ROW { ... %}
...

%}
%}

6. In addition to stored procedures, Oracle also provides stored functions. To
call an Oracle stored function the Net.Data variable DTWORA_RESULT
must be used. After execution, DTWORA_RESULT contains the return
value of the stored function.
Example:
%FUNCTION (DTW_ORA) orastp (IN datatype arg1, OUT datatype arg2,...)

returns (DTWORA_RESULT) {
CALL stored_oracle_function
%}

Passing Parameters
You can pass parameters to a stored procedure and you can have the stored
procedure update the parameter values so that the new value is passed back
to the Net.Data macro. The number and type of the parameters on the
function parameter list must match the number and type defined for the
stored procedure. For example, if a parameter on the parameter list defined
for the stored procedure is INOUT, then the corresponding parameter on the
function parameter list must be INOUT. If a parameter on the list defined for
the stored procedure is of type CHAR(30), then the corresponding parameter
on the function parameter list must also be CHAR(30).

Example 1: Passing a parameter value to the stored procedure
%FUNCTION (DTW_SQL) mystoredproc (IN CHAR(30) valuein) {

CALL myproc
...

Example 2: Returning a value from a stored procedure
%FUNCTION (DTW_SQL) mystoredproc (OUT VARCHAR(9) retvalue) {

CALL myproc
...

Processing Result Sets from DB2 Stored Procedures
You can return one or more result sets from a stored procedure using the SQL
or ODBC language environments. The result sets can be stored in Net.Data
tables for further processing within your macro or processed using a REPORT
block. If a stored procedure generates multiple result sets, you must associate
a name with each result set generated by the stored procedure. This is done
by specifying parameters on the CALL statement. The name you specify for a
result set can then be associated with a REPORT block or a Net.Data table,
enabling you to determine how each result set is processed by Net.Data. You
can:
v Have the result processed in Net.Data’s default report style by not defining

a report block for the result set.

152 Net.Data Administration and Programming Guide

v Associate a result set with a REPORT block to apply your own report style.
In the REPORT block, you can use Net.Data variables, text processing
statements like HTML or JavaScript, or other functions to specify how the
report data is displayed in the browser.

v Store the result sets in Net.Data tables when you want Net.Data to use the
data later in the macro. For example, you can pass the Net.Data table to
another function so that it can use the data for calculations and display the
results based on those calculations.

See “Guidelines and Restrictions for Multiple REPORT Blocks” on page 131
for guidelines and restrictions when using multiple report blocks.

To return a single result set and use default reporting:

Use the following syntax:
%FUNCTION (DTW_SQL) function_name () {

CALL stored_procedure
%}

For example:
%FUNCTION (DTW_SQL) mystoredproc() {

CALL myproc
%}

To return a single result set and specify a REPORT block:

Use the following syntax:
%FUNCTION (DTW_SQL) function_name () {

CALL stored_procedure [(resultsetname)]
%REPORT [(resultsetname)] {
...
%}
%}

Example1:
%FUNCTION (DTW_SQL) mystoredproc () {

CALL myproc
%REPORT {

...
%ROW { ... %}
...

%}
%}

Example 2:
%FUNCTION (DTW_SQL) mystoredproc () {

CALL myproc (mytable1)
%REPORT (mytable1) {

Chapter 6. Using Language Environments 153

...
%ROW { ... %}
...
%}
%}

To store a single result set in a Net.Data table for further processing:

Use the following syntax:
%FUNCTION (DTW_SQL) function_name (OUT tablename) {

CALL stored_procedure [(resultsetname)]
%}

For example:
%DEFINE DTW_DEFAULT_REPORT = "NO"

%FUNCTION (DTW_SQL) mystoredproc (OUT mytable1) {
CALL myproc

%}

Note that DTW_DEFAULT_REPORT is set to NO so that a default report is not
generated for the result set.

To return multiple result sets and display them using default report
formatting:

Use the following syntax:
%FUNCTION (DTW_SQL) function_name () {

CALL stored_procedure [(resultsetname1, resultsetname2, ...)]
%}

Where no report block is specified.

For example:
%DEFINE DTW_DEFAULT_REPORT = "YES"
%FUNCTION (DTW_SQL) mystoredproc () {

CALL myproc
%}

To return multiple result sets and have the result sets stored in Net.Data
tables for further processing:

Use the following syntax:
%FUNCTION (DTW_SQL) function_name (OUT (resultsetname1, resultsetname2, ...) {

CALL stored_procedure (resultsetname1, resultsetname2, ...)
%}

For example:

154 Net.Data Administration and Programming Guide

%DEFINE DTW_DEFAULT_REPORT = "NO"

%FUNCTION (DTW_SQL) mystoredproc (OUT mytable1, mytable2) {
CALL myproc (mytable1, mytable2)

%}

Note that DTW_DEFAULT_REPORT is set to NO so that a default report is not
generated for the result sets.

To return multiple result sets and specify REPORT blocks for display
processing:

Each result set is associated with its one or more REPORT blocks. Use the
following syntax:
%FUNCTION (DTW_SQL) function_name (, ...) {

CALL stored_procedure (resultsetname1, resultsetname2, ...)
%REPORT (resultsetname1)

...
%ROW { ... %}
...

%}
%REPORT (resultsetname2)

...
%ROW { ... %}
...

%}

...
%}

For example:
%FUNCTION (DTW_SQL) mystoredproc () {

CALL myproc (mytable1, mytable2)

%REPORT(mytable1) {
...
%ROW { ... %}
...
%}

%REPORT(mytable2) {
...
%ROW { ... %}
...
%}
%}

To return multiple result sets and specify different display or processing
options for each result set:

Chapter 6. Using Language Environments 155

You can specify different processing options for each result set using unique
parameter names. Example 1:
%FUNCTION (DTW_SQL) mystoredproc (OUT mytable2) {

CALL myproc (mytable1, mytable2, mytable3)

%REPORT(mytable1) {
...
%ROW { ... %}
...
%}
%}

The result set mytable1 is processed by the corresponding REPORT block and
is displayed as specified by the macro writer. The result set mytable2 is stored
in the Net.Data table mytable2 and can now be used for further processing,
such as being passed to another function. The result set mytable3 is displayed
using Net.Data’s default report format because no REPORT block was
specified for it.

Example 2:
%FUNCTION(DTW_SQL) mystoredproc(OUT mytable4, OUT mytable3) {

CALL myproc (mytable1, mytable2, mytable3, mytable4)
%REPORT(mytable2) {
...
%ROW { ... %}
...
%}
%REPORT(mytable1) {
...
%ROW { ... %}
...
%}
%REPORT(mytable4) {
...
%ROW { ... %}
...
%}

%}

The result sets mytable2, mytable1, and mytable4 are processed by their
corresponding REPORT blocks, in that order, and are displayed as specified.
The result sets mytable4 and mytable3 are stored into table variables for further
processing. The result set mytable3 will also be displayed using Net.Data’s
default report format after the three REPORT blocks are done processing.

Encoding DataLink URLs in Result Sets
The DataLink data type is one of the basic building blocks for extending the
types of data that can be stored in database files. With DataLink, the actual

156 Net.Data Administration and Programming Guide

data stored in the column is only a pointer to the file. This file can be any
type of file; an image file, a voice recording, or a text file. DataLinks store a
URL to resolve the location of the file.

The DATALINK data type requires the use of DataLink File Manager. For
more information about the DataLink File Manager, see the DataLinks
documentation for your operating system. Before you use the DATALINK
data type, you must ensure that the Web server has access to the file system
managed by the DB2 File Manager Server.

When a SQL query returns a result set with DataLinks, and the DataLink
column is created with FILE LINK CONTROL with READ PERMISSION DB
DataLink options, the file paths in the DataLink column contains an access
token. DB2 uses the access token to authenticate access to the file. Without
this access token, all attempts to access the file fail with an authority violation.
However, the access token might include characters that are not usable in a
URL to be returned to a browser, such as the semi-colon (;) character. For
example:
/datalink/pics/UN1B;0YPVKGG346KEBE;baibien.jpg

The URL is not a valid because it contains semi-colon (;) characters. To make
the URL valid, the semi-colons must be encoded using the Net.Data built-in
function DTW_URLESCSEQ. However, some string manipulation must be
done before applying this function because this function encodes slashes (/),
as well.

You can write a Net.Data MACRO_FUNCTION to automate the string
manipulation and use the DTW_URLESCSEQ function. Use this technique in
every macro that retrieves data from a DATALINK data type column.

Example 1: A MACRO_FUNCTION that automates the encoding of URLs
returned from DB2 UDB
%{ TO DO: Apply DTW_URLESCSEQ to a DATALINK URL to make it a valid URL.

IN: DATALINK URL from DB2 File Manager column.
RETURN: The URL with token portion is URL encoded

%}
%MACRO_FUNCTION encodeDataLink(in DLURL) {

@DTW_rCONCAT(@DTW_rDELSTR(DLURL,
@DTW_rADD(@DTW_rLASTPOS("/", DLURL), "1")),
@DTW_rURLESCSEQ(@DTW_rSUBSTR(DLURL,
@DTW_rADD(@DTW_rLASTPOS("/", DLURL), "1"))))

%}

After using this MACRO_FUNCTION, the URL is encoded properly and the
file specified in the DATALINK column can be referenced on any Web
browser.

Chapter 6. Using Language Environments 157

Example 2: A Net.Data macro specifying the SQL query that returns the
DATALINK URL

%FUNCTION(DTW_SQL)myQuery(){
select name, DLURLCOMPLETE(picture) from myTable where name like '%river%'
%REPORT{

%ROW{
<p> $(V1)

Before Encoding: $(V2)

After Encoding: @encodeDataLInk($(V2))

Make HREF: click here
 <p>

%}
%}

%}

Note that a DataLink File Manager functions is used. The function
dlurlcomplete returns a full URL.

Relational Database Language Environment Examples
The following examples show how you can call the relational database
language environments from your macros:

ODBC

The following example defines and calls multiple function for the
ODBC language environment.
%DEFINE {

DATABASE="qesq1"
SHOWSQL="YES"
table="int_null"
LOGIN="netdata1"
PASSWORD="ibmdb2"%}

%function(dtw_odbc) sq1() {
create table int_null (int1 int, int2 int)
%}

%function(dtw_odbc) sql2() {
insert into $(table) (int1) values (111)
%}

%function(dtw_odbc) sql3() {
insert into $(table) (int2) values (222)
%}

%function(dtw_odbc) sql4() {
select * from $(table)
%}

%function(dtw_odbc) sql5() {
drop table $(table)
%}

158 Net.Data Administration and Programming Guide

%HTML(REPORT) {
@sql1()
@sql2()
@sql3()
@sql4()
%}

Oracle The following example shows a macro with a DTW_ORA function
definition that queries the Oracle database, udatabase, using a variable
reference to determine the database table to be queried. The
FUNCTION block also contains a MESSAGE block that handles error
conditions. When Net.Data processes the macro, it displays a default
report at the browser.
%DEFINE {

LOGIN="ulogin"
PASSWORD="upassword"
DATABASE=""
table= "utable"

%}

%FUNCTION(DTW_ORA) myQuery(){
select ename,job,empno,hiredate,sal,deptno from $(table) order by ename
%}
%MESSAGE{
100 : "WARNING:

No employee were found that met your search criteria.<p>"
: continue

%}

%HTML (REPORT) {
@myQuery()
%}

SQL

The following example shows a macro with a DTW_SQL function
definition that calls an SQL stored procedure. It has three parameters
of different data types. The DTW_SQL language environment passes
each parameter to the stored procedure in accordance with the data
type of the parameter. When the stored procedure completes
processing, output parameters are returned and Net.Data updates the
variables accordingly.
%{***

DEFINE BLOCK
**%}
%DEFINE {
MACRO_NAME = "TEST ALL TYPES"
DTW_HTML_TABLE = "YES"
parm1 = "1" %{SMALLINT %}
parm2 = "11" %{INT %}

Chapter 6. Using Language Environments 159

parm3 = "1.1" %{DECIMAL (2,1) %}
%}

%FUNCTION(DTW_SQL) myProc
(INOUT SMALLINT parm1,
INOUT INT parm2,
INOUT DECIMAL(2,1) parm3){

CALL TESTTYPE
%}
%HTML(report) {
<head>
<title>Net.Data : SQL Stored Procedure: Example '$(MACRO_NAME)'. </title>
</head>
<body bgcolor="#bbffff" text="#000000" link="#000000">
<p>
Calling the function to create the stored procedure.
<p></p>
@CRTPROC()
<hr/>
<h2>
Values of the INOUT parameters
prior to calling the stored procedure:
</h2>
parm1 (SMALLINT)<p>
$(parm1)

parm2 (INT)
$(parm2)

parm3 (DECIMAL)
$(parm3)
<hr/>
<h2>
Calling the function that executes the stored procedure.
</h2>
<p>
@myProc(parm1,parm2,parm3)
</p><hr/>
<h2>
Values of the INOUT parameters after
calling the stored procedure:<p>
</h2>
<p>parm1 (SMALLINT)

$(parm1)

parm2 (INT)
$(parm2)

parm3 (DECIMAL)
$(parm3)
</p></body>
%}

160 Net.Data Administration and Programming Guide

Web Registry Language Environment

The Net.Data Web registry provides persistent storage for application-related
data. A Web registry can be used to store configuration information and other
data that can be accessed dynamically at run time by Web-based applications.
You can access Web registries only through Net.Data macros using Net.Data
and the Web registry built-in support and from CGI programs written for this
purpose. The Web registry is available on a subset of operating systems. See
Net.Data Reference for description and syntax of the Web registry built-in
function, as well as list of operating systems that support the language
environment.

Standard Web page development requires that URLs be placed directly in the
HTML source for the page. This makes changing links difficult. The static
nature also limits the type of links that can be easily placed on a Web page.
Using a Web registry to store application-related data, for example URLs, can
help in the creation of HTML pages with dynamically set links.

Information can be stored and maintained in a registry by application
developers and Web administrators who have write access to the registry.
Applications retrieve the information from their associated registries at run
time. This facilitates the design of flexible applications and also allows
movement of applications and servers. You can use Net.Data macros to create
HTML pages using dynamically set links.

Information is stored in a Web registry in the form of registry entries. Each
registry entry consists of a pair of character strings: a RegistryVariable string
and a corresponding RegistryData string. Any information that can be
represented by a pair of strings can be stored as a registry entry. Net.Data
uses the variable string as a search key to locate and retrieve specific entries
from a registry.

Table 11 displays a sample Web registry:

Table 11. Sample Web Registry

CompanyName WorldConnect

Server ftp.einet.net

JohnDoe/foreground Green

CompanyURL/IBM Corp. http://www.ibm.com

CompanyURL/Sun Microsystems Corp. http://www.sun.com

CompanyURL/Digital Equipment Corp. http://www.dec.com

JaneDoe/Home_page http://jane.info.net

Reasons to consider using a Web registry:

Chapter 6. Using Language Environments 161

v You can use a Web registry to store aliases for servers and URLs, facilitating
the relocation of applications and servers.

v Application developers can ship their Web-based applications with data,
such as URLs, predefined in the registry. The end user can modify the
registry data to change the behavior of the application.

v A Web registry can be used to perform URL searches based on product
name, national language, manufacturer, and so on.

Indexed entries in the Web Registry are entries whose RegistryVariable strings
have an additional Index string appended to them, using the following
syntax:
RegistryVariable/Index

The user provides the value of the index string in a separate parameter to a
built-in function designed to work with indexed entries. Multiple indexed
registry entries can have the same RegistryVariable string value, but they can
maintain their uniqueness by having different Index string values.

Table 12. Sample Indexed Web Registry

Smith/Company_URL http://www.ibmlink.ibm.com

Smith/Home_page http://www.advantis.com

Even though the above two indexed entries have the same RegistryVariable
string value Smith, the index string is different in each case. They are treated
as two distinct entries by the Web registry functions.

Configuring the Web Registry Language Environment
Verify that the following configuration statement is in the initialization file, on
one line:
ENVIRONMENT (DTW_WEBREG) DTWWEB (OUT RETURN_CODE)

See “Environment Configuration Statements” on page 26 to learn more about
the Net.Data initialization file and language environment ENVIRONMENT
statements.

Calling Web Registry Built-in Functions
Call a Web Registry function as you would any other function. Use a DEFINE
statement to define as variables any of the parameters that you want to pass.
For example:
%DEFINE {

name = "smith"
%}

Then use a function call statement to invoke the function; for example:

162 Net.Data Administration and Programming Guide

@DTWR_ADDENTRY("URLLIST", name, "http://www.ibm.com/software/",
"WORK_URL"

Example
The following example creates a Web registry and adds entries. It then
displays a report containing the entries.
%DEFINE {
RegTable = %TABLE(ALL)
%}

%MESSAGE {
default:"<p>Function Error: Return code: $(RETURN_CODE)." :continue

%}

%FUNCTION(DTW_WEBREG) ListTable(INOUT RegTable) {
%}

%HTML(report) {
@DTWR_CREATEREG("MYREG")
@DTWR_ADDENTRY("MYREG", "Dept. 1", "Payroll")
@DTWR_ADDENTRY("MYREG", "Dept. 2", "Technical Support")
@DTWR_ADDENTRY("MYREG", "Dept. 3", "Research")
@DTWR_LISTREG("MYREG", RegTable)

<p>Report:

@ListTable(RegTable)

%}

Programming Language Environments

Net.Data provides the following language environments for you to use when
calling external programs:
v “Java Application Language Environment”
v “Perl Language Environment” on page 167
v “REXX Language Environment” on page 171
v “System Language Environment” on page 177

Access Rights: Ensure that the user ID under which Net.Data executes has
access rights to execute programs, including any objects that the programs
might access. See “Granting Access Rights to Files Accessed by Net.Data” on
page 59 for more information.

Java Application Language Environment
Net.Data supports your existing Java applications with the Java language
environment. With support for Java applets and Java methods (or
applications), you can access DB2 through the Java Database Connectivity
(JDBC**) API.

Chapter 6. Using Language Environments 163

|

|
|
|
|

Configuring the Java Language Environment
To use the Java language environment, you need to verify the Net.Data
initialization settings and set up the language environment.

Verify that a statement like the following configuration statement is in the
initialization file, on one line:
ENVIRONMENT (DTW_JAVAPPS) /opt/IBMNetData/lib/libdtwjava.so (OUT RETURN_CODE)

{% CLIETTE "DTW_JAVAPPS" %}

In this example, the CLIETTE string at the end of the ENVIRONMENT entry
is commented out. When the CLIETTE string is not commented out, Net.Data
tries to call the Java application through Net.Data Live Connection. Using
Net.Data Live Connection is mandatory when you run Net.Data with an
interface other than CGI and FCGI. If the CLIETTE string is not commented
out and Net.Data Live Connection is not running, Net.Data tries to execute
the Java application directly. However, if you run Net.Data with an interface
other than CGI and FCGI, this can cause unpredictable behavior.

See “Environment Configuration Statements” on page 26 to learn more about
the Net.Data initialization file and language environment ENVIRONMENT
statements.

Important: See “Setting up the Java Language Environment with Cliette” on
page 30 to learn how to set up the Java language environment if you want to
call Java applications through Live Connection.

Calling Java Functions
With Java language environment, you can issue Java function calls from the
Net.Data macro with Net.Data strings used as parameters. These invoked Java
function calls can return a string.

Net.Data provides two methods to call Java functions:
1. Net.Data can start the Java application directly by loading the Java

language environment into the Net.Data process.
This is the simplest method in terms of setup and configuration. It is
recommended if you run Net.Data through CGI or FCGI. This method is
available on Windows, AIX, Linux, and Solaris.

2. Net.Data connects to the Java language environment through Net.Data
Live Connection.
This method is recommended when you run Net.Data as Web server API.
The Java application runs as a separate process from Live Connection and
is ″shielded″ from potential interference with other Java processing taking
place. This method is available on Windows, OS/2, and AIX.

The process of setting up Net.Data to call Java functions is dependant on the
method you utilize.

164 Net.Data Administration and Programming Guide

|
|
|

|
|

|
|

|
|
|
|
|
|
|
|

|
|
|

|
|
|

|
|
|
|

|

|
|

|
|
|

|
|

|
|
|
|

|
|

Calling Java Functions Through Loading the Java Application: To call Java
functions through loading the Java application:
1. Write your Java functions and put the source code into the Net.Data

provided Java function sample file UserFunctions.java.
2. Add the gnu.regexp-1.0.8.jar file to your CLASSPATH setting. For

example in AIX, add the path:
/opt/IBMNetData/bkends/javaapps/gnu.regexp-1.0.8.jar

The gnu.regexp-1.0.8.jar file ships with Net.Data.
3. Create the Java class files:

a. Execute the batch file rebuild in the directory containing file
UserFunctions.java.

b. Upon successful completion, rebuild generates two Java class files,
dtw_getsignature.class and dtw_userfunction.class.

4. Place the Java class files dtw_getsignature.class and
dtw_userfunction.class in a directory where the Net.Data Java language
environment can find it. Typically this is a directory specified in the
CLASSPATH setting.

5. Run the Net.Data macro that invokes the Java language environment. Be
sure that the Java Application language environment entry in the Net.Data
configuration file does not have the cliette string CLIETTE "DTW_JAVAPPS",
or that this cliette string is commented out.

Note: Follow these steps every time your Java function source code changes.
This method is available for Windows, AIX, Linux, and Solaris.

Calling Java Functions through Net.Data Live Connection: To call Java
functions through Live Connection:
1. Write your Java functions.
2. Create a Net.Data cliette for all your Java functions.

Net.Data cliettes launch the Java Virtual Machine where the Java functions
are running.

3. Define a cliette on the Java ENVIRONMENT statement in Live Connection
configuration file.
Each time you introduce new Java functions, you must recreate the Java
cliette.

4. Start Connection Manager.
5. Run the Net.Data macro that invokes the Java language environment.

Defining the Java Language Environment Cliette: Modify the sample file,
makeClas.bat, or create a new .bat file to generate a Net.Data cliette class,

Chapter 6. Using Language Environments 165

|
|

|
|

|
|

|

|

|

|
|

|
|

|
|
|
|

|
|
|
|

|
|

|
|

|

|

|
|

|
|

|
|

|

|

|
|

called dtw_samp.class, for all your Java functions. The following example
shows how the batch file, CreateServer, processes three Java functions:
rem Batch file to create dtw_samp for Net.Data
java CreateServer dtw_samp.java UserFunctions.java myfile.java
javac dtw_samp.java

The batch file processes the following files, along with the Net.Data-supplied
stub file called Stub.java to create dtw_samp.class.
v dtw_samp.java

v UserFunctions.java

v myfile.java

Creating the Java Function: Modify the Java function sample file
UserFunctions.java with your own Java functions:
====================UserFuctions.java====================
import mypackage.*
public String myfctcall(...parameters from macro...)
{
return (mypackage.mymethod(...parameters...));
}

public String lowlevelcall(...parameters...)
{
string result;
.......code using many functions of your package...
return(result)

}

Java Language Environment File Structure
Net.Data creates several directories during the Net.Data installation. These
directories include the files you need to create your Java functions, define the
cliette, and run the macro with the Java language environment:
v A sample Java function called UserFunctions.java.
v A sample file called makeClas. When run, this file creates a Net.Data cliette

class for your Java function.
v A sample file called launchjv used by the Net.Data cliette to launch the

Java Virtual Machine and run your Java function.
v A sample File called rebuild used by Net.Data to build your Java functions

for direct execution through loading the Java language environment.

Table 13 on page 167 describes the directory and file names for the files on
your operating system.

166 Net.Data Administration and Programming Guide

|
|

|
|
|

|
|

|

|

|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|

|

|
|

|
|

|
|

|
|

Table 13. The Files Used for Creating Java Functions

Operating System File name Directory

OS/2 UserFunctions.java javaapps

launchjv.com connect

Windows NT UserFunctions.java javaclas

makeClas.bat javaclas

launchjv.bat connect

AIX UserFunctions.java javaapps

launchjv javaapps

rebuild javaapps

gnu.regexp-1.0.8.jar javaapps

Linux & Solaris User Functions.java javaapps

rebuild javaapps

gnu.regexp-1.0.8.jar javaapps

Java Language Environment Example
After you have created the Java function, defined the cliette class or run the
rebuild, and configured Net.Data, you can run the macro containing
references to the Java function.

The following example macro demonstrates the function definition and the
function call of a Java application function, reverse_line().
%{ to call the sample }
%FUNCTION (DTW_JAVAPPS) reverse_line(str);

%HTML(report){
you should see the string "Hello World" in reverse.
@reverse_line("Hello World")
You should have the result of your function call.
%}

Perl Language Environment
The Perl language environment can interpret inline Perl scripts that you
specify in a FUNCTION block of the Net.Data macro, or it can process
external Perl scripts that are stored in separate files on the server.

Configuring the Perl Language Environment
Verify that the following configuration statement is in the Net.Data
initialization file, on one line:
ENVIRONMENT (DTW_PERL) DTWPERL (OUT RETURN_CODE)

Chapter 6. Using Language Environments 167

||

|||

|||

||

|||

||

||

|||

||

|||

|||

|||

|||

|||
|

|
|
|
|

|
|

|
|
|
|
|
|
|
|

|

See “Environment Configuration Statements” on page 26 to learn more about
the Net.Data initialization file and language environment ENVIRONMENT
statements.

Japanese users: Some characters in the Japanese SJIS character set can be
misinterpreted by Perl as control characters. There is an open
source package called jperl that solves this problem.
Download and install the package, then include the statement
use I18N::Japanese.pm in the header of the Perl script.

Calling External Perl Scripts
Calls to external Perl scripts are identified in a FUNCTION block by an EXEC
statement, using the following syntax:
%EXEC{ perl_script_name [optional parameters] %}

Required: Ensure that perl_script_name, the Perl script name, is listed in a path
specified for the EXEC_PATH configuration variable in the Net.Data
initialization file.
%FUNCTION(DTW_PERL) perl1() {
%EXEC{ MyPerl.pl %}
%}

Passing Parameters
There are two ways to pass information to a program that is invoked by the
Perl (DTW_PERL) language environment, directly and indirectly.

Directly
Pass parameters directly on the call to the Perl script. For example:
%DEFINE INPARM1 = "SWITCH1"

%FUNCTION(DTW_PERL) sys1() {
%EXEC{

MyPerl.pl $(INPARM1) "literal string"
%}
%}

The Net.Data variable INPARM1 is referenced and passed to the Perl
script. The parameters are passed to the Perl script in the same way
the parameters are passed to the Perl script when the Perl script is
called from the command line. The parameters that are passed to the
Perl script using this method are considered input type parameters.
The parameters that are passed to the Perl script using this method
are considered input parameters, and any modification to the values
are not reflected back to Net.Data.

Indirectly

Pass parameters indirectly on the call to the Perl script using one of
the following methods:

168 Net.Data Administration and Programming Guide

v Have Net.Data pass input parameters to the Perl script as
environment variables. The Perl script can then retrieve the
parameters through environment variables.

v Have the Perl script pass output parameters back to the language
environment by writing data to a file whose name Net.Data has
assigned to the environment variable DTWPIPE. The data that the
perl script passes to Net.Data should have the following syntax:
name="value"

For multiple data items, separate each item with a new-line or
blank character.

If a variable name has the same name as an OUT or INOUT
parameter and uses the above syntax, the new value replaces the
current value. If a variable name does not correspond to an OUT or
INOUT parameter, Net.Data ignores it.

The following example shows how Net.Data passes variables from a
macro.
%FUNCTION(DTW_PERL) today() RETURNS(result) {

$date = ′date′;
chop $date;
open(DTW, "> $ENV{DTWPIPE}") || die "Could not open: $!";
print DTW "result = \"$date\"\n";

%}
%HTML(INPUT) {

@today()
%}

If the Perl script is in an external file called today.pl, the same
function can be written as in the next example:
%FUNCTION(DTW_PERL) today() RETURNS(result) {

%EXEC { today.pl %}
%}

You can pass Net.Data tables to a Perl script called by the Perl
language environment. The Perl script accesses the values of a
Net.Data macro table parameter by their Net.Data name. The column
headings and field values are contained in variables identified with
the table name and column number. For example, in the table
myTable, the column headings are myTable_N_j, and the field values
are myTable_V_i_j, where i is the row number and j is the column
number. The number of rows and columns for the table are
myTable_ROWS and myTable_COLS.

Chapter 6. Using Language Environments 169

REPORT and MESSAGE Blocks in FUNCTION Blocks
REPORT and MESSAGE blocks are permitted as in any FUNCTION section.
They are processed by Net.Data, not by the language environment. A Perl
script can, however, write text to the standard output stream to be included as
part of the Web page.

Perl Language Environment Example
The following example shows how Net.Data generates a table by executing
the external Perl script:
%define {
c = %TABLE(20)
rows = "5"
columns = "5"
%}

%function(DTW_PERL) genTable(in rows, in columns, out table) {
open(D2W,"> $ENV{DTWPIPE}");
print "genTable begins ... ";

$r = $ENV{ROWS};
$c = $ENV{COLUMNS};
print D2W "table_ROWS=\"$r\" ";
print D2W "table_COLS=\"$c\" ";
print "rows: $r ";

print "columns: $c";
for ($j=1; $j<=$c; $j++)
{
print D2W "table_N_$j=\"COL$j\" ";
}
for ($i=1; $i<=$r; $i++)
{
for ($j=1; $j<=$c; $j++)
{
print D2W "table_V_$i","_","$j=\"" $i $j "\" ";
}
}
close(D2W);
%}

%message{
default: "genTable: Unexpected Error"
%}
%}

%HTML(REPORT) {
@genTable(rows, columns, c)
return code is $(RETURN_CODE)
%}

Results: genTable generates:

170 Net.Data Administration and Programming Guide

rows: 5 columns: 5
COL1 | COL2 | COL3 | COL4 | COL5 |

--
[1 1] | [1 2] | [1 3] | [1 4] | [1 5] |
--
[2 1] | [2 2] | [2 3] | [2 4] | [2 5] |
--
[3 1] | [3 2] | [3 3] | [3 4] | [3 5] |
--
[4 1] | [4 2] | [4 3] | [4 4] | [4 5] |
--
[5 1] | [5 2] | [5 3] | [5 4] | [5 5] |
--
return code is 0

REXX Language Environment
The REXX language environment allows you to run REXX programs written
to run in the DTW_REXX environment. The Net.Data REXX Language
Environment provides controls that allow REXX programs to easily return
large amounts of data.

Net.Data also provides support for the REXX SAY statement that directs the
output to browser regardless of what Web server environment you use for
Net.Data. If you run native REXX using the Web server FastCGI, GWAPI, or
Servlet configuration, the output from REXX SAY statements are routed to the
Web servers log file instead of the browser. This is not true for REXX
programs that are written to run in the DTW_REXX environment.

Support for Variables: To allow REXX programs to easily return large
amounts of data, Net.Data automatically adds code to the beginning of the
REXX program and appends code to the end of the REXX program. This code
is designed to manipulate variables that were provided on the DTW_REXX
function statement.

Support for REXX SAY Statements (FastCGI, GWAPI, and SERVLET
environments): REXX SAY statements are automatically converted to REXX
assignment statements by Net.Data prior to executing the REXX program.
Net.Data automatically appends code to the REXX program that is designed
to direct the output from the original REXX SAY statements to the browser.
Use of REXX subroutines and functions: Since Net.Data adds code to the front
of the REXX program and appends code to the end of the REXX program, the
main REXX routine must end with the last statement of the REXX program. If
you use REXX subroutines or functions you must insure that the last
statement of the REXX program is associated with the main REXX routine.The
following is an example of using a subroutine and function in a REXX
program that is written to run in the DTW_REXX environment:
%function(DTW_REXX) genData(out s1,s2) {

call subrtn1
s2=funrtn1()

Chapter 6. Using Language Environments 171

signal rexxEnd /* Go to end of Program */
subrtn1: PROCEDURE EXPOSE s1

string1 = "data for s1"
return 0

funrtn1: PROCEDURE
retvar = "data for s2"
return retvar

rexxEnd: /* End of Main Program */
return 0

%}
%HTML (Report) {

@genData(a,c)

Value for s1: $(a)

Value for s2: $(c)
%}

Use of REXX EXIT and RETURN statements: Net.Data automatically
appends code to REXX programs that provide values for output variables and
directs output from SAY statements to the browser. If the REXX program
issues a RETURN from the main routine or issues an EXIT statement
anywhere but the last statement of the REXX program, the code that was
appended by Net.Data to the REXX program will not be executed. This results
in the lost of output variables and output from SAY statements. If you must
exit a REXX program before reaching the last statement, you should branch to
the last statement in the REXX program that normally exits. If you use the
RETURN or EXIT statement to end the main REXX program, it must be the
last statement in the REXX program. This includes REXX comment statements.
For example:
%function(DTW_REXX) genData(out s1,s2) {
......
If S2 < 0 Then signal rexxEnd
......
......
rexxEnd:
/* This comment must be before the following
RETURN statement */
return 0
%}
%HTML (Report) {
@genData(a,c)
......
%}

Invoking external REXX programs from a DTW_REXX function: You can
invoke a REXX program from a DTW_REXX function using the Net.Data
%EXEC statement or from a REXX program using methods provided by
REXX.

172 Net.Data Administration and Programming Guide

When invoking an external REXX program using the Net.Data %EXEC
statement, Net.Data automatically adds code to the beginning of the REXX
program and appends code to the end of the REXX program to handle Output
variables and direct output from REXX SAY statements to the browser.

When you use methods provided by REXX to invoke a REXX program,
Net.Data does not receive control and doesn’t add code to the REXX program.
The REXX program being invoked must pass output back to the calling REXX
program using standard REXX conventions. When running in GWAPI or
SERVLET environments, Output from REXX SAY statements are sent to the
Web servers log file.

Configuring the REXX Language Environment
To use the REXX language environment, you need to verify the Net.Data
initialization settings and set up the language environment.

Verify that the following configuration statement is in the initialization file, on
one line:
ENVIRONMENT (DTW_REXX) DTWREXX (OUT RETURN_CODE)

See the Net.Data Administration and Programming Guide to learn more about the
Net.Data initialization file and language environment ENVIRONMENT
statements.

Executing REXX Programs
With the REXX language environment you can execute both in-line REXX
programs or external REXX programs. An in-line REXX program is a REXX
program that has the source of the REXX program in the macro. An external
REXX program has the source of the REXX program in an external file.

To execute an in-line REXX program:

Define a function that uses the REXX (DTW_REXX) language environment
and contains the REXX code in the language environment-executable section
of the function.

Example: A function that contains a in-line REXX program
%function(DTW_REXX) helloWorld() {

SAY 'Hello World'
%}

To run an external REXX program:

Define a function that uses the REXX (DTW_REXX) language environment
and includes a path to the REXX program that is to be run in an EXEC
statement.

Chapter 6. Using Language Environments 173

Example: A function that contains an EXEC statement pointing to a the
external program
%function(DTW_REXX) externalHelloWorld() {
%EXEC{ helloworld.cmd%}
%}

Required: Ensure that the REXX file name is listed in a path specified for the
EXEC_PATH configuration variable in the Net.Data initialization file. See
“EXEC_PATH” on page 23 to learn how to define the EXEC_PATH
configuration variable.

Passing Parameters to REXX programs
There are two ways to pass information to a REXX program that is invoked
by the REXX (DTW_REXX) language environment, directly and indirectly.

Directly
Pass parameters directly to an external REXX program using the
%EXEC statement. For example:
%FUNCTION(DTW_REXX) rexx1() {

%EXEC{CALL1.CMD $(INPARM) "literal string" %}
%}

The Net.Data variable INPARM1 is referenced and passed to the
external REXX program. The REXX program can reference the variable
by using REXX PARSE ARG instruction. The parameters that are
passed to the REXX program using this method are considered input
parameters, and any modification to the values are not reflected back
to Net.Data. (the parameters passed to the program can be used and
manipulated by the program, but changes to the parameters are not
reflected back to Net.Data).

Indirectly

Pass parameters indirectly, by way of the REXX program variable pool.
When a REXX program is started, a space which contains information
about all variables is created and maintained by the REXX interpreter.
This space is called the variable pool.

When a REXX language environment (DTW_REXX) function is called,
any function parameters that are input (IN) or input/output (INOUT)
are stored in the by the REXX language environment prior to
executing the REXX program. When the REXX program is invoked, it
can access these variables directly. Upon the successful completion of
the REXX program, the DTW_REXX language environment
determines whether there are any output (OUT) or INOUT function
parameters. If so, the language environment retrieves the value
corresponding to the function parameter from the variable pool and
updates the function parameter value with the new value. When

174 Net.Data Administration and Programming Guide

Net.Data receives control, it updates all OUT or INOUT parameters
with the new values obtained from the REXX language environment.
For example:
%DEFINE a = "3"
%DEFINE b = "0"
%FUNCTION(DTW_REXX) double_func(IN inp1, OUT outp1){

outp1 = 2*inp1
%}

%HTML (Report) {
Value of b is $(b), @double_func(a, b) Value of b is $(b)
%}

In the above example, the call @double_func passes two parameters, a
and b. The REXX function double_func doubles the first parameter and
stores the result in the second parameter. When Net.Data invokes the
macro, b has a value of 6.

You can pass Net.Data tables to a REXX program. A REXX program
accesses the values of a Net.Data macro table parameter as REXX stem
variables. To a REXX program, the column headings and field values
are contained in variables identified with the table name and column
number. For example, in the table myTable, the column headings are
myTable_V.j, and the field values are myTable_V.i.j, where i is the
row number and j is the column number. The number of rows in the
table is myTable_ROWS and the number of columns in the table is
myTable_COLS.

Improving Performance for the AIX operating system:
If you have many calls to the REXX language environment on your AIX
system, consider setting the RXQUEUE_OWNER_PID environment variable to
0. Macros that make many calls to the REXX language environment can easily
spawn many processes, swamping system resources.

You can set the environment variable in one of three ways:
v In the macro by using the DTW_SETENV built-in function:

@DTW_rSETENV("RXQUEUE_OWNER_PID", "0")

v In the AIX system environment file by inserting the following statement:
/etc/environment: RXQUEUE_OWNER_PID = 0

This method affects the behavior of REXX for the whole machine.
v In the HTTP Web server environment file; for example, for the Domino Go

Webserver, insert the following statement:
InheritEnv RXQUEUE_OWNER_PID = 0

This method affects the behavior of REXX for the Web server.

Chapter 6. Using Language Environments 175

REXX Language Environment Example
The following example shows a macro that calls a REXX function to generate
a Net.Data table that has two columns and three rows. Following the call to
the REXX function, a built-in function, DTW_TB_TABLE(), is called to
generate an HTML table that is sent back to the browser.
%DEFINE myTable = %TABLE
%DEFINE DTW_DEFAULT_REPORT = "NO"

%FUNCTION(DTW_REXX) genTable(out out_table) {
out_table_ROWS = 3
out_table_COLS = 2

/* Set Column Headings */
do j=1 to out_table_COLS

out_table_N.j = 'COL'j
end

/* Set the fields in the row */
do i = 1 to out_table_ROWS

do j = 1 to out_table_COLS
out_table_V.i.j = '[' i j ']'

end
end

%}

%HTML (Report) {
@genTable(myTable)
@DTW_TB_TABLE(myTable)
%}

Results:
<table>
<tr>
<th>COL1</th>
<th>COL2</th>
</tr>
<tr>
<td>[1 1]</td>
<td>[1 2],</td>
</tr>
<tr>
<td>[2 1]</td>
<td>[2 2],</td>
</tr>
<tr>
<td>[3 1]</td>
<td>[3 2],</td>
</tr>
</table>

176 Net.Data Administration and Programming Guide

System Language Environment
The System language environment supports executing commands and calling
external programs.

Configuring the System Language Environment
Add the following configuration statement to the initialization file, on one
line:
ENVIRONMENT (DTW_SYSTEM) DTWSYS (OUT RETURN_CODE)

See the Net.Data Administration and Programming Guide to learn more about the
Net.Data initialization file and language environment ENVIRONMENT
statements.

Issuing Commands and Calling Programs
To issue a command, define a function that uses the System (DTW_SYSTEM)
language environment that includes a path to the command to be issued in an
EXEC statement. For example:
%FUNCTION(DTW_SYSTEM) sys1() {

%EXEC { ADDLIBLE.CMD %}
%}

You can shorten the path to executable objects if you use the EXEC_PATH
configuration variable to define paths to directories that contain the objects
(such as, commands and programs). See “EXEC_PATH” on page 23 to learn
how to define the EXEC_PATH configuration variable.

Example 1: Calls a program
%FUNCTION(DTW_SYSTEM) sys3() {

%EXEC {MYPGM.EXE %}
%

Passing Parameters to Programs
There are two ways to pass information to a program that is invoked by the
System (DTW_SYSTEM) language environment, directly and indirectly.

Directly
Pass parameters directly on the call to the program. For example:
%DEFINE INPARM1 = "SWITCH1"

%FUNCTION(DTW_SYSTEM) sys1() {
%EXEC{
CALL1.CMD $(INPARM1) "literal string"
%}
%}

The Net.Data variable INPARM1 is referenced and passed to the
program. The parameters are passed to the program in the same way
the parameters are passed to the program when the program is called

Chapter 6. Using Language Environments 177

from the command line. The parameters that are passed to the
program using this method are considered input parameters, and any
modification to the values are not reflected back to Net.Data (the
parameters passed to the program can be used and manipulated by
the program, but changes to the parameters are not reflected back to
Net.Data).

Indirectly
The System language environment cannot directly pass or retrieve
Net.Data variables, so they are made available to programs in the
following manner:
v Net.Data passes input parameters to the program as environment

variables. The program can then retrieve the parameters through
environment variables.

v The program passes output parameters back to the language
environment by writing to a named pipe whose name Net.Data
passes in the environment variable, DTWPIPE. Use the following
syntax to write data to the named pipe:
name="value"

For multiple data items, separate each item with a new-line or
blank character.

If a variable name has the same name as an output parameter and
uses the above syntax, the new value replaces the current value. If a
variable name does not correspond to an output parameter,
Net.Data ignores it.

The following example shows how Net.Data passes variables from a
macro.
%FUNCTION(DTW_SYSTEM) sys1 (IN P1, OUT P2, P3) {

%EXEC {
UPDPGM

%}
%}

You can pass Net.Data tables to a program called by the System
language environment. The program accesses the values of a Net.Data
macro table parameter by their Net.Data name. The column headings
and field values are contained in variables identified with the table
name and column number. For example, in the table myTable, the
column headings are myTable_N_j, and the field values are
myTable_V_i_j, where i is the row number and j is the column
number. The number of rows and columns for the table are
myTable_ROWS and myTable_COLS.

178 Net.Data Administration and Programming Guide

System Language Environment Example
The following example shows a macro that contains a function definition with
three parameters, P1, P2, and P3. P1 is an input (IN) parameter and P2 and P3
are output (OUT) parameters. The function invokes a program, UPDPGM,
which updates the parameter P2 with the value of P1 and sets P3 to a
character string. Prior to processing the statement in the %EXEC block, the
DTW_SYSTEM language environment stores P1 and the corresponding value
in the environment space.
%DEFINE {

MYPARM2 = "ValueOfParm2"
MYPARM3 = "ValueOfParm3"

%}
%FUNCTION(DTW_SYSTEM) sys1 (IN P1, OUT P2, P3) {

%EXEC {
UPDPGM

%}
%}

%HTML(upd1) {
<p>
Passing data to a program. The current value
of MYPARM2 is "$(MYPARM2)", and the current value of MYPARM3 is
"$(MYPARM3)". Now we invoke the Web macro function.
<p>
@sys1("ValueOfParm1", MYPARM2, MYPARM3)

<p>
After the function call, the value of MYPARM2 is "$(MYPARM2)",
and the value of MYPARM3 is "$(MYPARM3)".
<p>
%}

Chapter 6. Using Language Environments 179

180 Net.Data Administration and Programming Guide

Chapter 7. Improving Performance

Improving performance is an important part of tuning your system. This
chapter discusses strategies for improving the performance of Net.Data. The
following topics are discussed:
v Using the web Server APIs
v “Managing Connections” on page 182
v “Net.Data Caching” on page 186
v “Setting the Error Log Level” on page 210
v “Optimizing the Language Environments” on page 210

In addition, ensure that your Web server has been properly tuned. The
performance of your Web server has a direct effect on response time,
independently of how fast Net.Data processes a macro or direct request.

Using the Web Server APIs

You can improve performance by invoking Net.Data with a Web server API,
such as APAPI, instead of CGI. When Net.Data executes using a Web server
API, it executes as a thread within the Web server’s process. The Web server’s
process is multi-threaded, creating an environment in which multiple
Net.Data requests can be processes. These requests are processed concurrently,
within the same address space, eliminating the overhead of invoking Net.Data
as a CGI process.

Consideration: Using a Web server API provides improved performance,
without application isolation. Because Net.Data runs in a
multi-thread environment problems can occur with the Web
server which can potentially bring it down. For example,
user-written language environment errors, improper
invocations, or even database outages. When deciding
whether or not to use one of the Web server APIs, you should
determine if application performance or application isolation
is a higher priority.

Using FastCGI

FastCGI provides improved performance with the application isolation of
CGI. You can use Net.Data with FastCGI on all Web servers that support
FastCGI. For more information about configuring Fast CGI, see “Managing
Connections” on page 182.

© Copyright IBM Corp. 1997, 2001 181

|

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|

|
|

|
|
|
|

You can tune FastCGI to run the appropriate amount of processes in order to
handle the number of incoming requests. For example, to handle 100 requests
per second with each request taking one half of a second to process, you
should set the NumProcessess directive to 50 in the FastCGI configuration file.

FastCGI is supported in all LEs; however, with Oracle and ODBC, Live
Connection is required.

To tune the number of simultaneous processes:

1. Open the configuration file where the configuration parameter for
processes is defined.
For Apache and IBM HTTP this is the httpd.conf file.

2. Change the configuration parameter values that specifies the number of
processes:
v For Apache: Process=num.
v For ISC: NumProcess=num.

Where num is the number of processes.

Managing Connections

Net.Data provides a component called Live Connection to manage database
and Java virtual machine connections. Live Connection maintains persistent
connections to improve performance. Some Net.Data actions require a large
start-up time. For example, before a database query can be issued, the process
must identify itself to the DBMS and connect to the database. This is often a
significant portion of the processing time needed for Net.Data macros that
access a database. Because of the way CGI programs operate, these start-up
costs are paid on every request to the Web server. Net.Data provides Live
Connection on the OS/2, Windows NT, and AIX, Solaris, and Linux operating
systems to maintain persistent connections.

The following sections describe Live Connection.
v “About Live Connection”
v “Live Connection Advantages” on page 183
v “Should I Use Live Connection?” on page 184
v “Starting the Connection Manager” on page 184
v “Net.Data and Live Connection Process Flow” on page 185

About Live Connection
Live Connection can dramatically improve performance by eliminating
start-up overhead. The savings come from continuously running one or more
processes that perform the start up functions. These processes then wait to

182 Net.Data Administration and Programming Guide

|
|
|
|

|
|

|

|
|

|

|
|

|

|

|

service requests. You can run Live Connection if you use Net.Data as a CGI or
FastCGI program, or as a Web server API plug-in.

Live Connection consists of Connection Manager and cliettes. Cliettes are
processes that the Connection Manager starts, and stay active while the server
is running. Cliettes process data and communicate with Net.Data language
environments that you specify in the initialization file with the keyword
CLIETTE. Each type of cliette handles a specific language environment
function, such as the DB2 cliette, which connects to the DB2 database and sets
up operations to perform SQL calls before any Net.Data macros are processed
by Net.Data. The executable file is named in the Live Connection
configuration file, dtwcm.cnf. Figure 25 shows the interaction between Live
Connection, the macro, and the language environments.

The following sections describe Live Connection in more detail. To learn how
to configure Live Connection, see “Configuring Live Connection” on page 33.

Live Connection Advantages
The main advantages to using Live Connection are:
v Improved performance

Reusing connections is more efficient than making new connections.
Generally, if you request small SQL statements (for example, simple queries

Figure 25. Live Connection with Cliettes

Chapter 7. Improving Performance 183

on a database with fewer than 100 000 rows), or if your database
connection is difficult (for example, remote servers), the connect time is
significant.

v Multiple database access

Live Connection enables one Net.Data macro connection to multiple
databases at the same time. This is possible because each database has
unique cliettes, and therefore Net.Data simply communicates with multiple
cliettes.

Should I Use Live Connection?
You can use Live Connection in CGI, FastCGI, or API mode to communicate
with your database or with the Java Virtual Machine. In addition, you might
benefit from Live Connection if your application requires data from multiple
databases.

Live Connection, used together with an API plug-in, improves performance
for many systems, depending on their load and configuration. You should
experiment with your own system to determine the configuration that works
best for you.

Many applications can improve performance without using Live Connection
by using the ACTIVATE DATABASE command to save time establishing
database connections. See your database’s documentation for details on the
command your database uses. Also check your operating system’s
documentation to see if there are additional steps to help improve
performance.

Requirement: The ODBC and Oracle language environments require Live
Connection when running in FastCGI and API modes.

Starting the Connection Manager
The Connection Manager is a separate executable file that is shipped with
Net.Data and named dtwcm. Start the Connection Manager when you start the
Web server.

When you start Connection Manager, it reads a configuration file and starts a
group of processes. In each process, the Connection Manager begins the
execution of a particular cliette. To learn how to configure Live Connection,
see “Configuring Live Connection” on page 33.

To start the Connection Manager with Windows NT and OS/2:

1. From the command line, change to the <inst_dir>\connect\ directory.
2. Enter dtwcm.

Where <inst_dir> is the Net.Data installation directory.

184 Net.Data Administration and Programming Guide

To start the Connection Manager with AIX:

1. From the command line, change to the /usr/lpp/internet/db2www/db2/
directory.

2. Enter dtwcm.

To start the Connection Manager with the messages option:

By default, Connection Manager messages are suppressed. Use the -d option
when starting Connection Manager if you want Connection Manager
messages to be displayed.

From the command line, enter: dtwcm -d

After you use the -d option, you have to restart Connection Manager in order
to suppress the messages again.

To automatically start Connection Manager as a Windows NT service:

On Windows NT, you can specify to have Connection Manager start as an
Windows NT service, instead of from the command line. Running Connection
Manager as an Windows NT service allows Connection Manager to be
automatically started each time the machine is started.

Tip: Start Connection Manager from the command line before setting it up to
start automatically to insure that the Live Connection configuration file is
correct.
1. From the Windows NT task bar, select Start->Settings->Control Panel

->Services.
2. Select Net.Data Live Connection and then click the Startup button.
3. Select Automatic startup type and then click on OK.

Note: By default, the logging is turned off. To turn logging on, from Services
window, select Net.Data Live Connection, enter -l on Startup
Parameters box.

Net.Data and Live Connection Process Flow
After you’ve configured and started the database, Web server, and Connection
Manager, Net.Data processing typically involves these steps when Live
Connection is enabled:
1. The Web server receives a request and starts either a FastCGI, CGI or API

process to run Net.Data.
2. Net.Data starts processing the Net.Data macro.

Chapter 7. Improving Performance 185

|
|

|

|

|
|
|

|

3. When Net.Data encounters a function call that uses Live Connection, it
determines what type of cliette is needed from the initialization file. For
DB2, the cliette type is often a name based on the DB2 database name,
such as DTW_SQL:CELDIAL.

4. Net.Data asks the Connection Manager for a cliette of that type.
5. The Connection Manager looks for available cliettes of that type. If none is

available, the Connection Manager puts the request on a queue and
processes it when the right cliette type is available.

6. When a cliette becomes available, the Connection Manager tells Net.Data
how to communicate with the cliette.

7. Net.Data asks the cliette to process the function.
8. This process is repeated from step 3 until the Net.Data macro processing is

complete.
9. All cliettes are released.

If a cliette is specified in the initialization file but the Connection Manager is
not running, Net.Data loads the DLL and processes the macro. If you use an
API, you are likely to receive errors, and you should start the Connection
Manager.

Net.Data Caching

Caching helps you to improve response times for the application user.
Net.Data stores results from a request to the Web server locally for quick
retrieval, until it is time to refresh the information. This chapter describes
Net.Data caching concepts, tasks, and restrictions.
v “About Web Page Caching” on page 187
v “About Net.Data Caching” on page 187
v “Net.Data Caching Terminology” on page 188
v “Net.Data Caching Concepts” on page 188
v “Net.Data Caching Restrictions” on page 190
v “Net.Data Caching Interfaces” on page 190
v “Planning for the Cache Manager” on page 191
v “Cache Identifiers” on page 192
v “Configuring the Cache Manager and Net.Data Caches” on page 192
v “Starting and Stopping the Cache Manager” on page 200
v “Caching Web Pages” on page 201
v “The CACHEADM Command” on page 205
v “The Cache Log” on page 207

186 Net.Data Administration and Programming Guide

About Web Page Caching
Many software components perform caching for Web applications. Here are
some examples of caching applications:
v A Web browser saves Web pages and related objects such as image and

audio files and Java applets, locally, in memory or on disk to save network
time when its user repeatedly accesses the same pages.

v A Web proxy server cache saves Web pages and related objects on a local
server, near a group of users, to reduce network access time to remote Web
servers, for example to reduce the number of times the Web servers retrieve
requested items. A Web proxy server cache also enables efficient sharing of
commonly accessed pages between multiple users.

v A Web server caches frequently retrieved pages and related objects in
memory to save disk access time when users repeatedly retrieve the same
pages.

v A database management system caches data items, which are usually held
on disk, in memory to save disk access time when repeatedly retrieving the
same data items.

All these components perform their caching independently but the overall
result is improved response times for users. In order to determine when to
refresh a cached item, the Web components (browser, proxy server, and Web
server) usually take into consideration various options including:
v The browser and server configuration options
v The contents of the HTTP headers returned with the Web pages and related

items from the Web server, in particular the expiry date information

About Net.Data Caching
Net.Data itself provides its own caching function for frequently accessed
pages and related data items generated by Net.Data macros. By delivering a
page from the Net.Data cache, you save the time required to run a Net.Data
macro and to access a database in order to create the page.

You can use one Cache Manager per server. Recommendation: Use one Cache
Manager for many instances of Net.Data, and multiple caches per Cache
Manager.

Figure 26 on page 188 shows that Net.Data uses a Cache Manager to manage
the caching of HTML output from a macro. This output can include data from
a database.

Chapter 7. Improving Performance 187

Net.Data Caching Terminology
Net.Data documentation uses the following terms to describe Net.Data
caching.

cache A type of memory that contains recently accessed data, designed to
speed up subsequent access to the same data. The cache is often used
to hold a local copy of frequently-used data that is accessible over a
network. In Net.Data, local memory that contains Net.Data-generated
HTML Web pages for reuse by the Net.Data macro. By having the
pages stored in the cache, Net.Data does not have to regenerate the
information in the cache. Each cache is managed by the Cache
Manager, which can be responsible for multiple caches and can server
multiple instances of Net.Data.

cache ID
A string that identifies a particular cache.

Cache Manager
The program that manages caching for one machine. It can manage
multiple caches.

Cache Manager configuration file
The file containing the settings used by Net.Data to determine settings
for logging, tracing, cache size, and other options. It contains settings
for a Cache Manager and all the cache files managed by a particular
Cache Manager. The file name is cachemgr.cnf when packaged with
Net.Data.

Net.Data Caching Concepts
Depending on how many HTTP servers you have on your system, and
whether each HTTP server runs its own copy of Net.Data (using separate
Net.Data configuration files), you can have all the copies of Net.Data be
associated with one Cache Manager or multiple Cache Managers. One Cache

Figure 26. Net.Data Caching

188 Net.Data Administration and Programming Guide

Manager can support a number of caches in memory, each cache has a cache
identifier called a cache ID. Figure 27 shows one Cache Manager working with
multiple macros and managing two caches.
Any number of items, known as cached pages, can be placed in a cache. Each

cached page has a unique identifier, for example a Uniform Resource Locator
(URL). A page is a segment of or a complete HTML page.

When Net.Data receives a request for cached data (for example, from the
built-in function DTW_CACHE_PAGE), the following steps are taken:
1. Net.Data connects to the Cache Manager.
2. Net.Data checks to see if the data is cached.

v If the data is cached and not expired, Net.Data requests the page from
the Cache Manager, sends it to the browser, and stops executing the
macro.

v If the data is not cached, Net.Data continues processing the macro, then
send the generated HTML page to the Web browser and to the Cache
Manager, where it is cached.

3. Net.Data disconnects from the Cache Manager

The Cache Manager caches HTML output when the macro successfully
completes processing, ensuring that only successfully generated Web pages
are cached. The data is not cached until after it has been sent to the browser,
and the data that the user sees is the same data that is cached.

When Net.Data encounters an error or exits prematurely from the macro, the
Cache Manager:

Figure 27. Cache Manager Works with Multiple macros and Caches

Chapter 7. Improving Performance 189

v Does not accept partial or defective pages
v Preserves existing pages in the cache

Net.Data Caching Restrictions
Net.Data caching has the following restrictions:

Security
Security is not provided by the Cache Manager. For example, if one
database user runs a macro and caches a page of database results.
Another database user can retrieve the cached page.

Direct request
Direct request invocation of Net.Data cannot use Net.Data caching.

Net.Data Caching Interfaces
Net.Data provides a flexible set of interfaces for you to use when configuring
and setting up caching for your application. Table 14 describes the various
options for using the Net.Data caching features and where these features are
described.

Table 14. Net.Data Cache Interfaces

Interface Description Go to ...

Cache Manager
configuration options

You can specify a number
of options for the Cache
Manager such as logging
and tracing, in the Cache
Manager stanza of the
Cache Manager
configuration file.

“Defining the Cache
Manager” on page 192

Cache configuration options Within a single instance of
Net.Data’s Cache Manager,
you can define a number of
caches to hold the cached
items. Each cache has its
own set of characteristics,
such as size and location,
and the cache ID. These
characteristics are defined
in the cache stanza in the
Cache Manager
configuration file. Each
stanza is identified by the
cache ID.

“Defining a Cache” on
page 195

190 Net.Data Administration and Programming Guide

Table 14. Net.Data Cache Interfaces (continued)

Interface Description Go to ...

Net.Data initialization
options

If Net.Data and the
corresponding Cache
Manager run on separate
systems, then you specify
the Cache Manager system
and port number in the
Net.Data initialization file.

“Cache Manager
Configuration Variables” on
page 14

Net.Data cache built-in
functions

You can manipulate the
contents of a Net.Data
cache using the Net.Data
cache built-in functions.
Specify the cache ID in the
appropriate macro function
to select the cache with the
most appropriate
characteristics.

See the built-in functions
chapter of Net.Data
Reference

Planning for the Cache Manager
When planning your use of the Net.Data cache functions you must consider:
v What pages would benefit from caching and the performance

improvements that would be gained
v When to cache the items
v When to refresh the items in the cache and the refresh methods to use

To use Net.Data caching, you need to complete the following steps, which
require knowing how you want to use caching.

Recommendation: Before embarking on a major application that uses caching,
we strongly urge you to plan and prototype your application prior to putting
it into production.
v Install Net.Data, which includes the caching function.
v Configure the Cache Manager. See “Configuring the Cache Manager and

Net.Data Caches” on page 192.
v Determine how you are going to put the Net.Data application into

production.
v Check the various Net.Data cache logs to determine whether improvements

in the use of the cache and the way it is configured should be made.

Cache Errors
The Cache Manager does not cache Web pages when Net.Data encounters
internal errors that cause it to exit the macro before processing is complete.

Chapter 7. Improving Performance 191

Cache Manager does not cache pages that are incomplete or contain Net.Data
errors. These types of errors include macro syntax errors and SQL errors.

Pages with errors can be cached when:
v Net.Data encounters an error and Net.Data continues to execute the macro

because of a CONTINUE configuration variable in a message block and
terminates normally.

v Errors occur outside of the Net.Data’s error determination scope, such as
database rollbacks.

Cache Identifiers
You need to plan for two types of identifiers when designing caching for your
application.
v Identifier for a cache: This identifier is the cache ID and specifies the name

in the configuration file stanza that defines the cache. You can use many
approaches for classifying and naming your caches. For example, you can
name the cache by application. You could have a cache for each of your
Net.Data applications, giving each cache a name that is derived from the
Net.Data macro it serves.

v Identifier for the cached page: This identifier is the cached page ID and
specifies the name of the page to be cached. The cached page ID can be any
string, such as an URL address. You specify the identifier with the
DTW_CACHE_PAGE() built-in function. See the built-in functions chapter
of Net.Data Reference for syntax and examples.

Configuring the Cache Manager and Net.Data Caches
The Cache Manager manages one or more caches in your system. Each of
these caches contains the contents of dynamically generated HTML pages. To
configure the Cache Manager and each of the caches, you update the keyword
values in the Cache Manager configuration file, cachemgr.cnf.

The Cache Manager configuration file contains two types of stanzas: the
Cache Manager stanza and the Cache Definition stanza. The following steps
describe how to customize these two types of stanzas for your application.

Defining the Cache Manager
Define the Cache Manager stanza by specifying values for the allowed
keywords. All of the keywords are optional; you do not need to specify them
unless you don’t want to accept the default value.

To define the Cache Manager:

1. Specify the name of the Cache Manager log file. The log shows activity for
all transactions for all caches and is provided for debugging and problem
analysis.
The default is to write messages to the console.

192 Net.Data Administration and Programming Guide

Syntax:
log=path

Where path is the path and file name of the cache file.

Tip: To specify a log file for each cache, use the tran-log keyword in the
Cache Definition stanza.

2. Specify the TCP/IP port number used by the Cache Manager for incoming
requests. This port number is used only for contacting the Cache Manager
from a remote machine.
This value must match the port number specified by the
DTW_CACHE_PORT configuration variable in the Net.Data initialization
file. The default value is determined in the following manner:
a. The Cache Manager checks the path /etc/services for the value

associated with the name ibm-cachemgrd. If this value is found, the
Cache Manager uses the value. If it is not found, it uses the next
method.

b. The Cache Manager uses the default port, 7175.

Syntax:
port=port_number

Where port_number is a unique TCP/IP port number.
3. Specify the maximum length of time in seconds that the Cache Manager

should allow a pending read to be left active. If this time is exceeded, the
Cache Manager drops the connection.
The default is 30 seconds.
Syntax:
connection-timeout=seconds

Where seconds is the number of seconds used for the length of time a
pending read should be active.

4. Specify whether to log messages.
The default is no or off.
Syntax:
logging=yes|on|no|off

Where:

yes|on
Indicates that logging is required

no|off
Indicates that logging should not be performed.

Chapter 7. Improving Performance 193

5. Specify whether to wrap the log.
The default is no. If specified as yes, the current log is closed when it
reaches its maximum size (see log-size, below), the file has a file type of
.old, and a new log is opened. Only one generation of the log file is
maintained (existing .old files are overwritten).
Syntax:
wrap-log=yes|no

Where:

yes Specifies to wrap the log.

no Specifies not to wrap the log.
6. Specify the maximum size, in bytes, to which a log is allowed to grow, if

wrap-log is specified.
The default is 64000.
Syntax:
log-size=bytes

Where bytes is the number of bytes of the maximum size.
7. Specify the level of messages to be written to the log. These values are set

on when included in the trace_flag_definitions list and do not have any
settings.
The default is to log only the Cache Manager start up and shut down
messages.
Syntax:
trace-flags=trace_flag_definitions

Where:

D_ALL
Enables all trace flags.

D_NONE
Disables all trace flags

Example: Trace flag that specifies all trace flags are enabled:
trace=flags=D_ALL

Stanza example: A valid Configuration Manager stanza:
cache-manager {
port = 7175
connection-timeout = 60
logging = off

194 Net.Data Administration and Programming Guide

log = /local/netdata/cachemgr/logs/cachemgr.log
wrap-log = yes
log-size = 32KB
}

Defining a Cache
Define the Cache Definition stanza by specifying values for the allowed
keywords. Most keywords are optional and do not have to be specified unless
you don’t want to use the default value.

To define a cache:

1. Specify the path and directory name that are to hold the cache pages. On
start up, the file system containing this directory must be at least as large
as the value of fssize (see below); otherwise the cache is not started. This
value can be specified as an absolute path name or as a relative path
name that corresponds to the path in which the Cache Manager was
started.
Required.
Syntax:
root=path_name

Where:

path_name
Is the absolute or relative name of the path and directory where
the cache pages are stored.

2. Specify whether the current cache is active when the Cache Manager
starts.
Not required; the default is yes. If set to no, the cache is defined in the
Cache Manager but not activated. You can activate it later with the
cacheadm command.
Syntax:
caching=yes|no

Where:

yes Indicates that the cache is to be active when the Cache Manager
starts.

no Indicates that the cache is not to be active when the Cache
Manager starts.

3. Specify the maximum space to be used in the file system by pages in the
current cache. When the maximum amount of space is exceeded, the
Cache Manager deletes enough pages, starting with the oldest, to bring
the total space occupied by the cache within the limit. You can effectively

Chapter 7. Improving Performance 195

disable automatic purging of entries by setting this value to a large
number; however, if the physical file system space is exceeded, attempts
to add new pages to cache fail.
Not required; the default is 0 (no caching to disk).
Syntax:
fssize=nnB|nnKB|nnM

Where:

nnB Is the number of bytes; for example 5000B.

nnKB Is the number of kilobytes; for example 640KB.

nnMB Is the number of megabytes; for example 30MB.
4. Specify the maximum amount of memory to be used by all of the pages

in this cache. When the maximum amount of memory is exceeded, the
Cache Manager deletes enough pages, starting with the oldest, to bring
the total memory occupied by the cache within bounds. You can
effectively disable automatic purging of pages by setting this to a large
number; however, if the cachemgrd process consumes too much memory,
the operating system may terminate it.
Not required; the default is 1MB.
Syntax:
mem-size=nnB|nnKB|nnMB

Where:

nnB Is the number of bytes; for example 5000B.

nnKB Is the number of kilobytes; for example 640KB.

nnMB Is the number of megabytes; for example 30MB.
5. Specify the maximum length of time an page can be held in the cache.

When this value is exceeded, the Cache Manager marks the page as
expired but does not delete the page unless the fssize (if it is cached on
disk) or memsize (if it is cached in memory) limits are reached. The
Cache Manager deletes pages that are marked as expired before all other
pages if memsize or fssize limits are reached. You can disable lifetime
checking with the check_expiration keyword.
Required: No; the default is 5 minutes.
Syntax:
lifetime=time_length

Where:

nnS Is the number of seconds; for example, 600S.

196 Net.Data Administration and Programming Guide

nnM Is the number of minutes; for example, 20M.

nnH Is the number of hours; for example, 30H.
6. Specify whether to mark cache pages as expired and to perform lifetime

checking.
Not required; the default is yes, with a default lifetime length of 60
seconds. This value can also be set to a length of time, indicating a yes
value and declaring a maximum length of time an item may be held in
cache. When set to no, cache pages are never marked expired and
lifetime checking is not performed.
Syntax:
check-expiration=yes|nnS|nnM|nnH|no

Where:

yes Indicates that the Cache Manager performs lifetime checking and
cache pages are marked as expired.

nnS Is the number of seconds; for example, 600S.

nnM Is the number of minutes; for example, 20M.

nnH Is the number of hours; for example, 30H.

no Indicates that the Cache Manager does not perform lifetime
checking and cache pages are not marked as expired.

7. Specify the maximum amount of space a cached page can occupy within
the memory cache. If an page is too large for memory, the file cache is
checked. If adequate space exists, the Cache Manager stores the cache
page in the file cache, instead. If the page does not fit in the file cache,
the caching attempt fails. If the page is smaller than
datum_memory_limit value (cacheobj-memory-limit), but if the cache
doesn’t have enough space, the oldest cache pages are deleted from the
memory cache to accommodate the new page.
Not required; the default is 1KB.
Syntax:
datum-memory-limit (cacheobj-memory-limit)=nnB|nnKB|nnMB

Where:

nnB Is the number of bytes; for example 5000B.

nnKB Is the number of kilobytes; for example 640KB.

nnMB Is the number of megabytes; for example 30MB.
8. Specify the maximum amount of space a cache page can occupy within

the file cache. If an page is smaller than datum_disk_limit, but no space

Chapter 7. Improving Performance 197

remains in the file cache, the oldest cache pages are deleted from the file
cache to accommodate the new page.
Not required; the default is 1KB.
Syntax:
datum-disk-limit (cacheobj-space-limit)=nnB|nnKB|nnMB

Where:

nnB Is the number of bytes; for example 5000B.

nnKB Is the number of kilobytes; for example 640KB.

nnMB Is the number of megabytes; for example 30MB.
9. Specify the time between creation of statistics records. If set to 0, no

statistics records are written.
Not required; the default is 0 (no statistics).
Syntax:
stat-interval = nnS|nnM|nnH

Where:

nnS Is the number of seconds; for example, 600S.

nnM Is the number of minutes; for example, 1M.

nnH Is the number of hours; for example, 3H.
10. Specify the name of the path and file that are to be used for logging

statistics for the current cache.
Required when the value for stat-interval is greater than 0.
Syntax:
stat-files=filename

Where filename is the path and name of the logging statistics file.
11. Specify whether statistics counters should be reset to 0 each time they are

written to the log file.
Not required; the default is yes.
Syntax:
reset-stat-counters=yes|no

Where:

yes Resets the statistics counters.

no Does not reset the statistics counters.

198 Net.Data Administration and Programming Guide

12. Define the path and file name to hold the transaction log for each cache.
Cache transaction log files are separate from Cache Manager log files,
which are used to log overall Cache Manager activity.
Required; if not specified, a transaction log for the cache is not created.
Syntax:
tran-log=filename

Where filename is the path and file name of the transaction logs for each
cache.

13. Specify whether to turn on transaction logging for the cache when the
Cache Manager first starts up. This parameter is ignored unless a valid
transaction log file is specified via the tran-log parameter. You can
activate transaction logging while the Cache Manager daemon is running
using the cacheadm command if a valid tran-log value has been specified
in the Cache Manager configuration file.
Not required; the default is no.
Syntax:
tran-logging=yes|on|no|off

Where:

yes|on
Indicates that logging is required.

no|off
Indicates that logging should not be performed.

14. Specify whether the transaction log should be wrapped.
Not required; the default is yes. If specified as yes, the current log is
closed when it reaches the maximum size (see tran-log-size), has file type
of .old, and a new log is opened. Only one generation of the log is
maintained (existing .old files are overwritten).
Syntax:
wrap-tran-log=yes|no

Where:

yes Indicates to wrap the log.

no Indicates to not wrap the log.
15. Specify the maximum size in bytes to which a transaction log is allowed

to grow, if wrap-tran-log is specified.
Not required; the default is 64000.
Syntax:
tran-log-size=bytes

Chapter 7. Improving Performance 199

Where bytes is the number of bytes of the maximum size.

Stanza example: A valid Cache Definition stanza for a cache:
cache0
{
root = /locale/netdata/cachemgr/caches/cache0
caching = on
mem-size = 10MB
fs-size = 1MB
datum-memory-limit = 200KB
datum-disk-limit = 1MB
lifetime = 6000000
check-expiration = 999999
tran-logging = no
tran-log-size = 10000
wrap-tran-log = yes
tran-log = /ocale/netdata/cachemgr/logs/tran.log
}

Starting and Stopping the Cache Manager
The following sections describe how to start and stop the Cache Manager.I
v “Starting the Cache Manager”
v “Stopping the Cache Manager”

Starting the Cache Manager
Use the cachemgrd command to start the Cache Manager daemon.

Syntax:

[[cachemgrd -c config_file [\

Parameters:

cachemgrd
The command keyword.

config_file
Specifies the name of the file where the Cache Manager and each of
the caches managed by the Cache Manager are defined. The
configuration file shipped with the Net.Data product is cachemgr.cnf.

Example:
cachemgrd -c myconfig.cfg

Stopping the Cache Manager
Use the cacheadm command to stop the Cache Manager.

Syntax:

200 Net.Data Administration and Programming Guide

[[cacheadm
hostname hostname port port_num

terminate [\

Parameters:

cacheadm
The command keyword.

hostname
Specifies the name of the machine where the cache is running, if it is
different from the machine where the cacheadm command is issued.

port_num
Specifies the cache port number, if the number is different from the
default (7175).

terminate
Specifies to stop the Cache Manager.

Example:
cacheadm hostname host1 port 7178 terminate

Caching Web Pages
You can use the DTW_CACHE_PAGE built-in function to cache a Web page.
When Net.Data sees the DTW_CACHE_PAGE function in the macro, it
contacts the Cache Manager and begins saving the HTML output for the
macro in memory. After Net.Data successfully processes a macro, the HTML
output is sent to the browser and the Cache Manager caches the output in one
transaction as shown in Figure 28 on page 202.

Chapter 7. Improving Performance 201

Caching a Page
Specify Net.Data-generated pages to be written to the cache using the
Net.Data DTW_CACHE_PAGE() built-in function.

The DTW_CACHE_PAGE() function caches all of the output from the macro
following the function statement, once it determines that the page does not
already exist in the cache or has expired. If the page does not exist in the
cache or is older than the specified age, Net.Data sends the output page back
to the browser, generates new output pages from the macro execution, and
stores the page in the cache.

If the Cache Manager finds the cached page and it is still current, it displays
the cache contents and Net.Data exits out of the macro. This behavior ensures
that no unnecessary processing is done after the Web page has been retrieved
from the cache.

Performance tip: Place DTW_CACHE_PAGE() as the first, or one of the first
statements in a macro, to minimize the cost of executing the macro.

To cache a page:

1. In the HTML block or XML block of a macro, prior to the HTML coding,
insert the following function statement:
@DTW_CACHE_PAGE("cache_id", cached_page_id, "age", status)

Figure 28. DTW_CACHE_PAGE Function Initiates Caching

202 Net.Data Administration and Programming Guide

Use this function to specify that Net.Data is to cache all HTML output
from the macro that follows this statement. Place this statement early in
the macro if you want to cache all HTML output.

Parameters:

cache_id
A string identifying the cache in which the page will be placed.
You can associate cache IDs with macros or groups of macros.

cached_page_id
A string containing an identifier used to identify the page in the
cache in a subsequent @DTW_CACHE_PAGE cache request, for
example the page’s URL.

age A string variable containing a length of time in seconds that
specifies when a page is considered out-of-date. If the requested
page has been in the cache for longer than the value of age,
Net.Data executes the macro, regenerates the page, and caches the
generated page, replacing the out-of-date page. If the requested
page has been in the cache for less than or the same as the value
of age, Net.Data retrieves the page from the cache and sends it to
the browser. In this case, Net.Data ends macro execution
immediately.

status A string variable returned by Net.Data to indicate whether or not
the page was cached successfully.

Example:
%HTML(cache_example) {
%IF (customer == "Joe Smith")
@DTW_CACHE_PAGE("mymacro.dtw", "http://www.mypage.org", "-1", status)
%ENDIF
...
<html>

<head>
<:title>This is the page title</title>
</head>

<body>
<center>
<h3>This is the Main Heading</h3>
<p>It is $(time). Have a nice day!
</body>

</html>
%}

Chapter 7. Improving Performance 203

Advanced Caching: Determining Dynamically Whether to Cache
The DTW_CACHE_PAGE() function initiates caching from its location in the
macro. Normally, you place the function at the beginning of the macro for
better performance and to ensure that all HTML output is cached.

For advanced caching applications, you can place the DTW_CACHE_PAGE()
function in the HTML output sections when you need to make the decision to
cache at a specific point during processing, rather than at the beginning of the
macro. For example, you might need to make the caching decision based on
how many rows are returned from a query or function call.

Example: Places the function in the HTML block or XML block because the
decision to cache depends on the expected size of the HTML output
% DEFINE { ...%}

...

%FUNCTION(DTW_SQL) count_rows(){
select count(*) from customer

%REPORT{
%ROW{
@DTW_ASSIGN(ALL_ROWS, V1)

%}
%}
%}

%FUNCTION(DTW_SQL) all_customers(){
select * from customer

%}

%HTML(OUTPUT) {
<html>
<head>
<title>This is the customer list
</head>
<body>

@count_rows()

%IF (ALL_ROWS > "100")
@DTW_CACHE_PAGE("mymacro.dtw", "http://www.mypage.org", "-1", status)
%ENDIF

@all_customers()

</body>
</html>
%}

In this example, the page is cached or retrieved based on the expected size of
the HTML output. HTML output pages are considered cache-worthy only
when the database table contains more than 100 rows. Net.Data always sends

204 Net.Data Administration and Programming Guide

the text in the OUTPUT block, This is the customer list, to the browser
after executing the macro; the text is never cached. The lines following the
function call, @count_rows(), are cached or retrieved when the conditions of
the IF block are satisfied. Together, both parts form a complete Net.Data
output page.

The CACHEADM Command
Use the CACHEADM command for the following tasks:
v Stopping the Cache Manager
v Flushing a specific cache
v Querying a specific cache
v Enabling or disabling logging
v Logging flags
v Starting and stopping statistics gathering

All parameters can be abbreviated to the minimum unique set of characters.

Syntax:

[[cacheadm
hostname hostname port port_num

[

[activate
deactivate
flags flags
flush
query all

url url
purge url url
statistics off

on
interval interval

terminate

cacheid cache_id
[\

Parameters:

activate
Activates a specified cache. If the cache is already active, Cache Manager
does nothing.

cache_id
A string variable identifying the cache in which the page is located. For
example: cache1.

deactivate
Deactivates a specified cache. If the cache is already inactive, Cache

Chapter 7. Improving Performance 205

Manager does nothing. All pending operations are completed and no new
ones accepted. When the last operation is completed, the Cache Manager
marks the cache as inactive.

flags
Specifies whether the listed flags should be toggled on or off.

D_ALL
Turn on all trace flags.

D_NONE
Turn off all trace flags.

flush
Flushes a cache, specified by the cache_id parameter, which is required by
this parameter. This parameter unconditionally deletes all items from the
specified cache.

hostname
Specifies the name of the machine where the cache is running, if it is
different from the machine where the cacheadm command is issued. For
example: myhost.

port_num
Specifies the cache port number, if the number is different from the
default (7175). This number must be unique within the system.

purge
Specifies that a specific page to be purged from cache. If url is specified,
Cache Manager purges the page with a key matching url. If dependency is
specified, Cache Manager purges all items with the associated dependency
and writes their keys to stdout, the standard output stream.

query
Returns caching data, depending on the parameters you specify:
v Returns information about a cache, if only the cache ID is specified.
v Returns information about a specific cached page if url is specified.
v Returns information about all pages if all is specified.

Other programs use all option to format or interpret the results. Each
line contains the following information:
– Page key
– Page age
– Page length
– Page creation date
– Page expiration date
– Date the page was last referenced

All dates are in standard UNIX integer time format.

206 Net.Data Administration and Programming Guide

Performance tip: The option cache query all can impact performance
and should be used sparingly.

statistics
Enables or disables logging of statistics gathering for a specific cache and
requires cache_id parameter. If an interval is specified with the statistics
parameter set to on, Net.Data sets or resets the interval between updates
to the specified number of seconds.

terminate
Specifies to stop the Cache Manager.

tranlogging
Enables or disables transaction logging for a specific cache and requires
the cache_id parameter. This parameter takes affect only if a valid
transaction log for the cache is specified in the Cache Manager
configuration file with the tran-log parameter.

url The Universal Relative Location (URL) address that specifies the location
of the file on a Web server. For example: http:www.ibm.com/mydir/page1.

The Cache Log
Several types of statistics regarding internal operation are kept and optionally
written to the cache log. A separate log for each cache can be maintained, or
all statistics may be written to the same log. This section discusses the
following cache log topics:
v “Configuring the Log”
v “Cache Log Format” on page 208

Configuring the Log
To log statistics, you must configure the Cache Manager configuration file.

To configure the log:

Specify the stat-files and stat-interval keywords in the cache stanza of
the Cache Manager configuration file.

You can modify statistics settings without stopping, reconfiguring, and
restarting the Cache Manager.

To modify statistics gathering settings:

Specify the cacheadm statistics command. Note however, that changes made
with the cacheadm statistics command are not saved when the Cache
Manager is restarted.

Chapter 7. Improving Performance 207

Cache Log Format
The statistics log is a plain ASCII file that can be processed or imported by
spreadsheets or database programs. Three types of records are written:
v Initialization records document the startup of statistics gathering for a

particular cache. These records have the following format:
mm/dd/yy hh:mm:ss id Initialization: interval n seconds

Where:

mm/dd/yy Is the month, day, and year when statistics gathering starts

hh:mm:ss Is the hour, minute, and second when statistics gathering
starts

id Is the name of the cache associated with the record

n Is the collection interval
v Termination records document the termination of statistics gathering for a

particular cache. These records have the following format:
mm/dd/yy hh:mm:ss id Termination

Where:

mm/dd/yy Is the month, day, and year when statistics gathering stops

hh:mm:ss Is the hour, minute, and second when statistics gathering
stops

id Is the name of the cache associated with the record
v Statistics records are a blank-delimited set of numbers showing activity

within the cache. These records have the following format:
mm/dd/yy hh:mm:ss id statistics

Where:

mm/dd/yy Is the month, day, and year when statistics gathering is
created

hh:mm:ss Is the hour, minute, and second when statistics gathering is
created

id Is the name of the cache associated with the record

<statistics> Is a blank-delimited list of statistics gathered for this cache
as specified in Table 15 on page 209:

208 Net.Data Administration and Programming Guide

Table 15. List of Statistics

Field
Number

Contents Description Counters
Reinitialized
to Zero

1 reads Number of read operations performed
against the cache

Yes

2 writes Number of write operations performed
against the cache

Yes

3 closes Number of close operations performed on
objects in the cache

Yes

4 open read Number of open-read operations
performed on objects in the cache

Yes

5 open write Number of open-write operations
performed on objects in the cache

Yes

6 open write
query

Number of open-write-query operations
performed on objects in the cache

Yes

7 read hits Number of read hits on objects in the
cache

Yes

8 write hits Number of write hits on objects in the
cache

Yes

9 write query
hits

Number of write query hits on objects in
the cache

Yes

10 initializations Number of new sessions established with
this cache

Yes

11 terminations Number of sessions terminated with this
cache

Yes

12 purges Number of objects deleted from this cache No

13 memory used Amount of memory used by objects in the
memory portion of the cache

No

14 disk used Amount of disk space used by objects in
the disk portion of the cache

No

15 memory
available

Amount of memory still available for use
by objects in the memory portion of the
cache

No

16 disk available Amount of disk space still available for
use by objects in the disk portion of the
cache

No

17 memory
object count

Number of objects in the memory portion
of the cache

No

18 file object
count

Number of objects in the disk portion of
the cache

No

Chapter 7. Improving Performance 209

Table 15. List of Statistics (continued)

Field
Number

Contents Description Counters
Reinitialized
to Zero

19 session count Number of sessions currently active
against the cache

No

Setting the Error Log Level

Net.Data provides an error log so that you can monitor errors or performance
problems in your Net.Data system.

When using the Net.Data error log, you might notice an impact on the
performance of your system if many messages are being written to the error
logs. For example, each time a user accesses a macro that Net.Data cannot
find, Net.Data passes a message as output to the error log.

To reduce the impact on performance, check the logging level of the error log
set in a Net.Data macro with the DTW_LOG_LEVEL keyword. If the level is
set to WARNING, consider reducing the level to ERROR for a small
performance gain, or to OFF for a larger performance gain.

Optimizing the Language Environments

The following sections describes techniques you can use to improve
performance when using the Net.Data-provided language environments.
v “REXX Language Environment”
v “SQL Language Environment” on page 211
v “System and Perl Language Environments” on page 212

REXX Language Environment
Use the following tips to improve the performance of your Net.Data
application:
v Combine your REXX programs where possible. Having fewer, larger

programs provides better performance than more smaller programs because
the REXX interpreter is initialized each time a REXX language environment
function is called in the macro.

v Store the REXX program in an external file instead of including the REXX
program inline in the Net.Data macro.

v For external REXX programs, reference the global variables on the
command line in the %EXEC statement.

210 Net.Data Administration and Programming Guide

v Pass input-only parameters directly to a REXX program by defining global
Net.Data variables and referencing the variables. For inline REXX programs,
reference the global variables directly in your REXX source.

v To avoid the overhead of launching the REXX interpreter, consider using
MACRO_FUNCTION blocks as an alternative to REXX programs.

SQL Language Environment
In this section performance techniques for the database and SQL language
environment are described. To learn about DB2 performance considerations,
visit the web at: http://review.ibm.com/software/data/db2/performance

Database Techniques
The following summary outlines some of the most simple database techniques
that can improve database access:
v Activate the database. By issuing the command db2 activate database

databaseName, connections to the database are made in significantly less
time. See DB2 Administration Guide for more information on the DB2
activate database command.

v Avoid numeric conversion. When a column value and a literal value are
being compared, try to specify the same data types and attributes. DB2
does not use an index for the named column if the literal value has a
greater precision than the precision of the column. If the two items being
compared have different data types, DB2 will have to convert one or the
other of the values, which can result in inaccuracies (because of limited
machine precision).
For example, EDUCLVL is a halfword integer value (SMALLINT). Specify:
... WHERE EDUCLVL < 11 AND EDUCLVL >= 2

Instead of:
... WHERE EDUCLVL < 1.1E1 AND EDUCLVL > 1.3

v Avoid character string padding. Try to use the same data length when
comparing a fixed-length character string column value to a literal value.
DB2 does not use an index if the literal value is longer than the column
length.
For example, EMPNO is CHAR(6) and DEPTNO is CHAR(3). Specify:
... WHERE EMPNO > '000300' AND DEPTNO < 'E20'

Instead of:
... WHERE EMPNO > '000300 ' AND DEPTNO < 'E20 '

v Avoid the use of LIKE patterns beginning with % or _. The percent sign
(%), and the underline (_), when used in the pattern of a LIKE predicate,
specify a character string that is similar to the column value of rows you

Chapter 7. Improving Performance 211

want to select. When used to denote characters in the middle or at the end
of a character string, LIKE patterns can take advantage of indexes. For
example:
... WHERE LASTNAME LIKE 'J%SON%'

However, when used at the beginning of a character string, LIKE patterns
can prevent DB2 from using any indexes that might be defined on the
LASTNAME column to limit the number of rows scanned. For example:
... WHERE LASTNAME LIKE '%SON'

Avoid using these symbols at the beginning of character strings, especially
if you are accessing a particularly large table.

SQL Language Environment Techniques
v If a result set contains a large number of rows, you can specify a subset of

the result set that is returned to the browser by using START_ROW_NUM
and RPT_MAX_ROWS. START_ROW_NUM specifies at which row the
returned subset should start, and RPT_MAX_ROWS specifies the number of
rows to be returned to the page. START_ROW_NUM can then be used in a
link to display the next page of results.
Note that Net.Data reissues the query for every page because the cursor
position is not maintained across requests.

v Consider using a stored procedure to handle complex database tasks. Using
embedded SQL with an understanding of the structure of result sets
reduces the overhead that Net.Data uses to dynamically describe results.
For more information on the performance trade-offs when using stored
procedures, see the DB2 Administration Guide.

v When you have SQL statements where the only information that changes is
the input values in a WHERE clause, consider taking advantage of the
DTW_USE_DB2_PREPARE_CACHE feature of Net.Data. Set this value to
″YES″ in the initialization file, or in individual macros if you do not want it
to apply globally. This setting tells Net.Data to use host variables for the
input values, helping DB2 prepare statements more quickly.

System and Perl Language Environments
Pass input-only parameters directly to the program that the System or Perl
language environment is invoking. Do this by defining global Net.Data
variables and referencing them. For external programs and Perl scripts,
reference the variables on the command line in the %EXEC statement. For
inline Perl scripts, reference the variables directly in the Perl source. Also, to
avoid the overhead of launching the perl interpreter, consider using
MACRO_FUNCTION blocks as an alternative to Perl scripts.

212 Net.Data Administration and Programming Guide

Chapter 8. Net.Data Logging

Net.Data provides several logs for you to use when monitoring Net.Data
performance and troubleshooting errors. Net.Data logs include:

Net.Data error message log
Log containing all Net.Data error messages.

Live Connection log
Log containing Live Connection error messages and communication
between Net.Data, Live Connection and the DB2 database. Logging is
available for the DTW_SQL and DTW_ODBC language environments
for DB2 databases.

Net.Data trace log
Log containing all Net.Data trace messages.

The following sections describe Net.Data logging:
v “Logging Net.Data Error Messages”
v “Logging Live Connection Cliette and Error Messages” on page 216
v “Net.Data Trace Log” on page 220

Logging Net.Data Error Messages

Net.Data writes error messages to the Net.Data error log file, netdata.log.
The maximum size of the error log is fixed by Net.Data at 500 KB,
approximately 3000 log entries.

You can browse the error log file, or archived copies, periodically to determine
whether there are problems in your Net.Data system.

To activate the Net.Data error log:

v Set the Net.Data logging configuration variable, DTW_LOG_DIR:
DTW_LOG_DIR path

Where path is the directory where you want the error log file to be stored.
v In the macro, set the Net.Data logging variable, DTW_LOG_LEVEL:

@DTW_ASSIGN(DTW_LOG_LEVEL, "level")

Where level is the level of logging. It can have the following values:

off Net.Data does not log errors. This is the default.

error Net.Data logs error messages.

© Copyright IBM Corp. 1997, 2001 213

|
|

|

This section discusses the following logging topics:
v “Planning for the Net.Data Error Log”
v “Controlling the Net.Data Logging Level”
v “Types of Net.Data Error Messages Not Logged”
v “Net.Data Error Log File Size and Rotation” on page 215
v “Net.Data Error Log Format” on page 215

Planning for the Net.Data Error Log
When logging errors, you need to plan for the following issues:
v Determining disk space:

If you plan to use error logging, you must allow additional disk space for
the error logs.

v Configuring Net.Data:
If you plan to control the error logging for the whole Net.Data system, set
one configuration variable in your Net.Data initialization file:
DTW_LOG_DIR
This variable is required for error logging, even if you have set the
DTW_LOG_LEVEL variable in your macro to error or warning. See
“DTW_LOG_DIR and DTW_LOG_LEVEL: Error Log Variables” on page 17
to learn how to update the initialization file.

v Writing Net.Data macros:
Set the level of logging with the DTW_LOG_LEVEL keyword in your
macro.

v Running Net.Data:
If you are using error logging, then you can check the error logs and
archive files for errors in your Net.Data system.

v Tuning:
Be aware that logging can affect performance. See “Setting the Error Log
Level” on page 210 for information about performance issues.

Controlling the Net.Data Logging Level
You can specify the level of logging with the DTW_LOG_LEVEL variable.
Define this keyword in the Net.Data macro. The variable has three settings:

off Net.Data does not log errors. This is the default.

error Net.Data logs error messages.

warning
Net.Data logs warnings, as well as error messages.

Types of Net.Data Error Messages Not Logged
Net.Data does not log errors explicitly handled by a MESSAGE section in the
macro.

214 Net.Data Administration and Programming Guide

Net.Data Error Log File Size and Rotation
The maximum size of the log file can be 500 KB. At this size, approximately
3000 log entries will fit.

When the log file reaches the maximum size, the file will be archived to
netdata.logMMMDDYYYY_nn

Where:

MMM The month (Jan-Dec)

DD The date

YYYY The year

nn A number from 01 to 99, that uniquely identifies each archive file for
a certain day.

Logging continues in the original file.

Net.Data Error Log Format
Log file entries have the following format:
[DD/MMM/YYYY:HH:MM:SS][MACRO][BLOCK][PID#][TID#]error_message

Parameters:

DD The date

MMM The month (Jan-Dec)

YYYY The year

HH The hour (00-23)

MM The minute (00-59)

SS The number of seconds (00-59)

MACRO
The macro that generated the error message

BLOCK
The name of the HTML block that generated the error message.

PID# The process ID number of the process that generated the error
message. This ID is necessary because multiple Net.Data processes can
be writing to the log file.

TID# The thread ID number of the thread that generated the error message.
This ID is necessary because multiple threads from the same Net.Data
process can be writing to the log file.

Chapter 8. Net.Data Logging 215

error_message
The text of the error message

Logging Live Connection Cliette and Error Messages

Live Connection records messages and communication between Live
Connection, Net.Data, and the DB2 database in the Live Connection log file.
The maximum size of the log is fixed by Net.Data at 1 MB, approximately
1200 log entries.

You can browse the log file, or archived copies, periodically to determine
whether there are problems with your cliettes or the DB2 database.

To activate the Live Connection log:

Start the Connection Manager with the -l attribute:
dtwcm -l [level]

Where level is the level of logging. It can have the following values:

normal
Live Connection logs all cliette activities, related DB2 SQL statements
and status messages, and Live Connection error messages

minimal
Live Connection logs only essential information, such as database
queries and the number of rows in the result set.

This section discusses the following logging topics:
v “Planning for the Live Connection Log”
v “Controlling the Live Connection Logging Level” on page 217
v “Types of Live Connection Messages Not Logged” on page 217
v “Live Connection Log File Names” on page 217
v “Live Connection Log File Size and Rotation” on page 218
v “Live Connection Log Format” on page 218

Planning for the Live Connection Log
When logging messages, you need to plan for the following issues:
v Determining disk space:

If you plan to use error logging, you must allow additional disk space for
the log files.

v Running Connection Manager:
You activate logging by entering an attribute on the dtwcm command. See
“Logging Live Connection Cliette and Error Messages” for syntax.

216 Net.Data Administration and Programming Guide

If you are using logging, then you can check the logs and archive files for
errors in your cliettes.

v Tuning:
Be aware that logging can affect performance. See “Setting the Error Log
Level” on page 210 for information about performance issues and
“Controlling the Live Connection Logging Level”

Controlling the Live Connection Logging Level
You can specify the level of logging on the dtwcm command, while invoking
Connection Manager. The -l attribute of the dtwcm command has two settings:

normal
Live Connection logs all cliette activities, related DB2 SQL statements
and status messages, and Live Connection error messages

minimal
Live Connection logs only essential messages. This options provides
fewer messages in the log.

Types of Live Connection Messages Not Logged
Live Connection does not log Net.Data errors or errors explicitly handled by a
MESSAGE section in the macro.

Live Connection Log File Names
Live Connection creates a log file for the Connection Manager and for each
cliette. The following list describes the name formats:

Connection Manager file
Format:
conman-process_id-DDMMMYYYYHHMMSS.log

Parameters:

process_id
The identifier of the Connection Manager process

DD
The date

MMM
The month (Jan-Dec)

YYYY
The year

HH
The hour, 24–hour clock

MM
The minutes

Chapter 8. Net.Data Logging 217

SS The seconds

Example:
conman-513-01Feb1999095639.log

Cliette file
Format:
cliett-process_id-DDMMMYYYYHHMMSS.log

Parameters:

process_id
The identifier of the cliette thread

DD
The date

MMM
The month (Jan-Dec)

YYYY
The year

HH
The hour, 24–hour clock

MM
The minutes

SS The seconds

Example:
cliett-592-01Feb1999095647.log

Live Connection Log File Size and Rotation
The maximum size of the log file can be 1 MB. At this size, approximately
6000 log entries will fit. When the log file reaches the maximum size, the
process will close the original log file, create a new log file, and continue
logging to the new file.

Log files are located in the same directory as dtwcm and dtwcdb2

Live Connection Log Format
Log file entries have the following format:
--process_type-DD/MMM/YYYY:HH:MM:SS-PID#--
message_text

Parameters:

218 Net.Data Administration and Programming Guide

process_type
Either dtwcm or cliet, depending upon whether the connection
manager or a cliette logged the message.

DD The date

MMM The month (Jan-Dec)

YYYY The year

HH The hour (00-23)

MM The minute (00-59)

SS The number of seconds (00-59)

PID# The process ID number of the process that generated the message.

message_text
The text of the message.

Example 1: A connection manager log entry.
--dtwcm-02/Mar/1999:13:43:07-330--
Creating connection manager ...successfully
Reading configuration info ...
Completing initialization ...
Initializing cm server ... successfully
Initializing NLS environment ... successfully
Detecting cliette ./dtwcdb2 for DTW_SQL:CELDIAL:

Min process(es) = 1,
Priv Port = 7100.

Starting 1 cliettes for DTW_SQL:CELDIAL.
Started: ./dtwcdb2 7128 7100 7200 DTW_SQL:CELDIAL LOG_MAX , pid: 213
1 cliettes for DTW_SQL:CELDIAL started.
...

Example 2: A cliette log entry.
--cliet-02/Mar/1999:13:43:08-335--
Cliette starting ...
Cliette: DTW_SQL:SAMPLE, database: SAMPLE, user: *USE_DEFAULT
Making a new connection to database: SAMPLE, user: *USE_DEFAULT.
Calling SQLAllocHandle for environment ...
Calling SQLAllocHandle for connection ...
Calling SQLSetConnectAttr ...
Calling SQLConnect ...
Connecting to database: SAMPLE sucessfully.
Telling CM the cliette is ready ...
Ready and waiting for command from CM ...

Chapter 8. Net.Data Logging 219

Net.Data Trace Log

Net.Data provides trace data about the execution of your macro that is
recorded in the trace log. You can specify where the trace log is stored and
what level of tracing is recorded. Use the IBM trace information to provide
information when working with your IBM service representative. See Net.Data
Messages and Codes Reference for a list of Net.Data trace messages.

Configuring Net.Data for Tracing
To configure Net.Data for tracing, you need to set configuration variables to
specify where the trace log is stored and what level of trace data Net.Data
needs to capture.
v “Setting the Trace Log Directory”
v “Setting the Level of Trace Logging”

Setting the Trace Log Directory
The name of the trace log is netdata.trace.pid, where pid is the ID of the
process handling the request. Use the DTW_TRACE_LOG_DIR configuration
variable to specify the directory in which the trace file is stored.

Note: Net.Data restricts the log file size to 50 MB. When the log file size
reaches 50 MB, the file is archived as net.data.trace.pid.φ.

Syntax:
DTW_TRACE_LOG_DIR [=] full_ directory_ path

Example:
DTW_TRACE_LOG_DIR /usr/lpp/internet/server_root/logs

Setting the Level of Trace Logging
Determine the level of tracing that Net.Data logs by setting the value of the
configuration variable, DTW_TRACE_LOG_LEVEL.

Syntax:
DTW_TRACE_LOG_LEVEL [=] OFF|APPLICATION|SERVICE

Where:

OFF Specifies that no trace data is captured in the trace log. This is the
default value.

APPLICATION
Net.Data writes application-level trace messages to the trace log.

SERVICE
Net.Data writes all trace messages to the trace log.

220 Net.Data Administration and Programming Guide

|

|
|
|
|
|

|

|
|
|

|

|

|
|
|
|

|
|

|

|

|

|

|
|
|

|

|

|

||
|

|
|

|
|

Example:
DTW_TRACE_LOG_LEVEL SERVICE

Trace Log Format
The format of a trace log entry is:
[DD/MMM/YYYY:HH:MM:SS][macro][PID#][TID#][UID] trace_message

Where:

DD/MMM/YYYY:HH:MM:SS
Is a timestamp indicating when the trace entry was created.

macro Is the name of the macro that generated the trace message.

PID# Is the process ID of the process that generated the trace message.

TID# Is the ID of the thread that generated the trace message.

UID Is the ID of the user that generated the trace message.

trace_message
Is the text of the trace message.

Access Rights
To successfully write trace messages to the trace log file, the user ID under
which Net.Data executes must have:
v Write authority on the log directory specified in the

DTW_TRACE_LOG_DIR configuration variable.
v Execute authority on all directories in the path, including the log directory.

Chapter 8. Net.Data Logging 221

|

|

|

|

|

|

|
|

||

||

||

||

|
|

|

|
|

|
|

|

|

222 Net.Data Administration and Programming Guide

Appendix A. Bibliography

Net.Data Technical Library

The Net.Data Technical Library is available from the Net.Data Web site at
http://www.ibm.com/software/data/net.data/library.html

Document Description

v Net.Data Administration
and Programming Guide
for OS/390

v Net.Data Administration
and Programming Guide
for OS/2, Windows NT,
and UNIX

v Net.Data Administration
and Programming Guide
for OS/400

Contains conceptual and task information about
installing, configuring, and invoking Net.Data. Also
describes how to write Net.Data macros, use Net.Data
performance techniques, use Net.Data language
environments, manage connections, and use Net.Data
logging and traces for trouble shooting and performance
tuning.

Net.Data Reference Describes the Net.Data macro language, variables, and
built-in functions.

Net.Data Language
Environment Interface
Reference

Describes the Net.Data language environment interface.

Net.Data Messages and
Codes Reference

Lists Net.Data error messages and return codes.

© Copyright IBM Corp. 1997, 2001 223

224 Net.Data Administration and Programming Guide

Appendix B. Net.Data for AIX

Details for AIX are included in the README file that is shipped with
Net.Data. The README file includes the following information:
v Requirements
v Installing
v Configuring
v Uninstalling

Loading Shared Libraries for Language Environments

When creating a language environment on the AIX platform, you need to load
shared libraries. On AIX, the language environment is required to provide a
routine that is called by Net.Data and returns the addresses of the language
environment interface routines such as dtw_initialize() and dtw_execute().

Net.Data uses the dtw_fp structure to retrieve pointers to the language
environment interface routines from a language environment in AIX, and has
this format:
typedef struct dtw_fp {

int (* dtw_initialize_fp)(); /* dtw_initialize function pointer */
int (* dtw_execute_fp)(); /* dtw_execute function pointer */
int (* dtw_cleanup_fp)(); /* dtw_cleanup function pointer */

} dtw_fp_t;

This structure is passed to the language environment by Net.Data as a
parameter in the dtw_getFp() routine when the shared library is loaded.

The dtw_fp structure is passed as the only parameter. This structure contains
a field for each supported interface, and it is the language environment’s
responsibility to set these fields. If the language environment is providing the
specified interface, it sets the field to the function pointer of that interface. If it
is not providing the specified interface, it sets the field to NULL. The
dtw_getFp() routine in the program template shows a correct implementation
of this routine.

In order for Net.Data to get the pointer to this routine when the shared library
is loaded, the dtw_getFp routine must be the first entry point specified in the
shared library’s export file. A sample export file for a library called
dtwsampshr.o that supports all available language environment interface
routines looks like this:

© Copyright IBM Corp. 1997, 2001 225

#!dtwsampshr.o
dtw_getFp
dtw_initialize
dtw_execute
dtw_cleanup

Improving Performance in the REXX Environment

If you have many calls to the REXX language environment on your AIX
system, consider setting the RXQUEUE_OWNER_PID environment variable to
0. Macros that make many calls to the REXX language environment can easily
spawn many processes, swamping system resources.

You can set the environment variable in one of three ways:
v In the macro by using the DTW_SETENV built-in function:

@DTW_rSETENV("RXQUEUE_OWNER_PID", "0")

v In the AIX system environment file:
/etc/environment: RXQUEUE_OWNER_PID = 0

This method affects the behavior of REXX for the whole machine.
v In the HTTP Web server environment file; for example, for Domino Go

Webserver, insert the following statement:
InheritEnv RXQUEUE_OWNER_PID = 0

This method affects the behavior of REXX for the Web server.

NLS Considerations

Net.Data runs using the same codepage as the web server. For Net.Data to use
the correct codepage for your Locale, the Web server must be using the
correct codepage. For example, if you are using an IBM Internet Connection
Server and want to use a Korean codepage, stop the server and restart it using
the Korean locale:
stopsrc httpd
startsrc -s httpd -e "LC_ALL=ko_KR"

If your macro contains UTF-8 characters or you are connecting to a DB2
database containing Unicode data, set the DTW_UNICODE configuration
variable in the initialization file to UTF8. Net.Data currently supports UTF-8
characters in the macro, but not UTF-16. However, Net.Data can process DB2
database data that is encoded in either UTF-8 or UCS-2. Net.Data output is
always in UTF-8.

226 Net.Data Administration and Programming Guide

Performance Tip: If you are running in a double-byte locale, and your string
or work built-in functions always process single byte character strings, set
DTW_MBMODE to NO to save unnecessary conversion.

Appendix B. Net.Data for AIX 227

228 Net.Data Administration and Programming Guide

Appendix C. Net.Data Wizards

The Net.Data wizards are designed to provide you with a quick and easy way
to create customized Net.Data applications. Simply select a wizard, answer a
few questions, and Net.Data creates a customized application for you.

Net.Data provides the following SmartGuides for you to use while learning
how to create macros and use Net.Data features:

Drilldown
This SmartGuide takes your existing database tables and creates a
Web-enabled drilldown application that allows you to access different
levels of detail of your data. Optionally, the Drilldown SmartGuide
can connect to your database to collect your database information.
You can customize up to five Web reports. The generated macro uses
primary and foreign key information stored in your database to link
your Web reports automatically.

Stored Procedure
This SmartGuide connects to your database and retrieves a list of all
stored procedures that are registered with your database. Select a
stored procedure and the SmartGuide generates a Net.Data macro for
you that calls your stored procedure. You can then modify the
generated macro or integrate it in your existing Net.Data applications.

Contacts
This SmartGuide generates a Web-enabled address book for storing
names, addresses, phone numbers, and other important contact
information. It comes with a search function that gives you quick
access to your contacts. The generated contacts application can include
either a brief or a detailed report. Additionally, you can include a
customized report.

Check the Net.Data Web site at http://www.ibm.com/software/data/net.data
for the latest version of the Net.Data SmartGuide package.

This appendix discusses the following topics:
v “Before You Begin” on page 230
v “Running the Wizards” on page 230

© Copyright IBM Corp. 1997, 2001 229

Before You Begin

To run the SmartGuides and generate the Net.Data macros, you must have the
following software installed:
v Java Development Kit (JDK) or Java Runtime Environment (JRE) 1.1.x
v Net.Data Version 2 or higher
v IBM Universal Database (UDB) 5.0 or higher
v REXX (required for the Drilldown SmartGuide)

Running the Wizards

The Net.Data wizards are started from the command line and contained in the
file, NetDataSmartGuides.jar.

To start a wizard with the Java Development Kit (JDK):

1. Add the following line to your CLASSPATH environment variable.
[Path]NetDataSmartGuides.jar

where [Path] is the optional path to the NetDataSmartGuides.jar file.
2. If you want to use the database connect feature of the Drilldown and

Stored Procedure wizard, add the UDB JDBC driver to your CLASSPATH
environment variable.
For Windows NT and OS/2 operating systems, add the following line to
your CLASSPATH environment vairable:
[Path]NetDataSmartGuides.jar;[UDBInstallationPath]\java\db2java.zip

For UNIX operating systems, add the following line to your CLASSPATH
environment vairable:
[Path]NetDataSmartGuides.jar:[UDBInstallationPath]\java\db2java.zip

Where [Path] is the optional path to the NetDataSmartGuides.jar file and
[UDBInstallationPath] is the path to your UDB installation, for example
C:\SQLLIB.

3. Start the wizard.
v For UNIX operating systems, type the following command:

java TaskGuide LaunchPad.class

v For Windows NT and OS/2 operating systems, run the following file:
SmartGuides.cmd

A launchpad opens with the list of available wizards as shown in
Figure 29 on page 231.

230 Net.Data Administration and Programming Guide

4. Click on the name of the wizard that you want to run.

To start a wizard with the Java Runtime Environment (JRE):

1. For the Windows NT operating system, choose Start->Programs-
>Net.Data->SmartGuides, which runs a batch file called
SMARTGUIDES.BAT. For other operating systems, type the following
command to run the wizards:
jre -cp [Path]NetDataSmartGuides.jar TaskGuide LaunchPad.class

where [Path] is the optional path to the NetDataSmartGuides.jar file.

A launchpad opens with the list of available wizards as shown in
Figure 29.

2. If you want to use the database connect feature of the Drilldown and
Stored Procedure wizard, type the following command:
For Windows NT and OS/2 operating systems:
jre -cp [Path]NetDataSmartGuides.jar;[UDBInstallationPath]

\java\db2java.zip TaskGuide LaunchPad.class

For UNIX operating systems:
jre -cp [Path]NetDataSmartGuides.jar:[UDBInstallationPath]

\java\db2java.zip TaskGuide LaunchPad.class

Figure 29. The wizard lauchpad

Appendix C. Net.Data Wizards 231

Where [Path] is the optional path to the NetDataSmartGuides.jar file and
[UDBInstallationPath] is the path to your UDB installation, for example
C:\SQLLIB.

3. Click on the name of the wizard that you want to run.

232 Net.Data Administration and Programming Guide

Appendix D. Building SQL Statements with Net.Data SQL
Assist

The Net.Data SQL Assist is a Java-based SQL statement builder that provides
an easy-to-use GUI to guide you through the process of building SQL
statements. With Net.Data SQL Assist you can:
v Build SELECT, INSERT, UPDATE, and DELETE statements (including

SELECT DISTINCT)
v Build multiple conditions using value lookup, AND or OR, and type

sensitive entry fields
v Define table JOINS (inner, right outer, and left outer)
v Select columns to view
v Select the sort order
v Enter user-defined variables to be used in conditions, values, and sorting

After building the SQL statement, you can:
v Save the SQL statement as a file
v Generate and save a macro containing the SQL statement
v Copy the SQL statement or macro to the clipboard

This appendix discusses the following topics:
v “Before You Begin”
v “Running Net.Data SQL Assist” on page 234

Before You Begin

To run the Net.Data SQL Assist, you must have the following software
installed:
v Java Development Kit (JDK) or Java Runtime Environment (JRE) 1.1.x
v A JDBC enabled database

Refer to your database documentation for further details on accessing the data
source through JDBC and any other server start-up that might be required.
For example, when accessing a DB2 UDB v5.0 datasource remotely, the
database server must have the JDBC server (db2jstrt) running.

© Copyright IBM Corp. 1997, 2001 233

Running Net.Data SQL Assist

Net.Data SQL Assist is started from the command line and contained in the
file, {inst_dir}/assist/NetDataAssist.jar.

To start Net.Data Assist with the Java Development Kit (JDK):

Enter the following command to start Net.Data Assist:
java -classpath %CLASSPATH%;{inst_dir}/assist/NetDataAssist.jar NetDataAssist

To start Net.Data Assist with the Java Runtime Environment (JRE):

Enter the command to start Net.Data Assist:
jre -cp %CLASSPATH%;{inst_dir}/assist/NetDataAssist.jar NetDataAssist

Click on the Next button to navigate through the windows used to logon,
construct an SQL statement, and generate a Net.Data macro.

234 Net.Data Administration and Programming Guide

Appendix E. Using NetObjects Fusion NOF Plug-ins with
Net.Data Servlets

Net.Data provides a NetObjects Fusion plug-in for the Net.Data servlets.

You can use NetObjects Fusion (NOF) to integrate your existing Net.Data
macros, which will provide better integration with your Web site management
and an easy-to-use graphical user interface.

This appendix discusses the following topics:
v “About the NetObjects Fusion Plug-in”
v “Installing the NetObjects Fusion Plug-in” on page 236
v “Setting Up the Net.Data Plug-in for NetObjects Fusion” on page 236
v “Publishing Servlets with the NOF Plug-in” on page 240

About the NetObjects Fusion Plug-in

The NetDataServlet.NFX plug-in works with the Net.Data servlets. This NOF
plug-in supports the invocation of an existing Net.Data macro or of a single
Net.Data function. The plug-in generates the HTML to invoke Net.Data as a
servlet or a server-side-include (SSI). When the Web server invokes Net.Data,
the Net.Data macro or function is run. Use the Net.Data servlet plug-in to
embed either of the macro and function servlets into an NOF-managed Web
site, which Figure 30 on page 236 describes. The plug-in provides many of the
basic macro or function parameters, with defaults selected to automate
building a macro. To use the plug-in, you must install and configure NOF and
the plug-in files.

© Copyright IBM Corp. 1997, 2001 235

Installing the NetObjects Fusion Plug-in

Software and Hardware Requirements:

The NOF plug-ins require NetObjects Fusion Version 2.0 or later.

To Install: Copy the <inst_dir>\fx\NetDataServlet.nfx and
<inst_dir>\fx\NetDataServlet.gif to your <NetObjects fusion>\components\
directory.

Setting Up the Net.Data Plug-in for NetObjects Fusion

You can change the properties of the servlet with which you are working
using NOF.
1. Open NetObjects Fusion.
2. From the NetObjects Fusion’s (NOF) Tools palette, select the NetObjects

Components button: The plug-in buttons are displayed on the bottom
of the Tools palette.

Figure 30. Net.Data Servlets Plug-ins

236 Net.Data Administration and Programming Guide

3. From these six Tools palette buttons, select the NetObjects Components

button:
4. On the NOF canvas, mark the area to specify where you want to place the

selected plug-in. This is where the results of the servlet will be displayed.
The Installed Components window opens, displaying a list of plug-ins
from which to choose. If the servlet plug-in is not in the list, use the path
and file name fields to specify the plug-in file name: NetDataServlet.NFX
to use with the macro or function servlet

5. Select the servlet plug-in from the list and click on the OK push button.
The plug-in becomes an object on the NOF canvas.

Modifying the Plug-in Properties

You can modify the macro and function servlets using the Net.Data servlet
plug-in.

To modify the Net.Data servlet with NOF:

1. On the NOF canvas, mark the area to specify where you want to place the
selected plug-in. This is where the results of the servlet will be displayed.
The Installed Components window opens, displaying a list of plug-ins
from which to choose. If the servlet plug-in is not in the list, use the path
and file name fields to specify the plug-in file name, NetDataServlet.NFX
to use with the macro or function servlet.

2. Select the Net.Data servlet plug-in from the list and click on the OK push
button.
The plug-in becomes an object on the NOF canvas.

3. Select and customize the properties of the Net.Data servlet plug-in:
a. Select the Net.Data servlet plug-in on the NOF canvas. The NOF

Properties palette opens, displaying the plug-in properties as shown in
Figure 31 on page 238.

Appendix E. Using NetObjects Fusion NOF Plug-ins with Net.Data Servlets 237

Properties for the Net.Data servlets:

You can customize the following properties:

Servlet name
Select the name of the servlet you want to invoke: Function or
Macro. Depending on which servlet name you select, different
properties are displayed.

Servlet type
Select the type of servlet you want: SSI, HREF, or FORM
Submit Button. Depending on which type of servlet you want,
different properties are displayed.

Submit label
If you select a FORM Submit Button type, specify the text for
the submit label. Otherwise, this property is not displayed.

Server URL
If you select an HREF servlet type, specify the server URL to
the servlet-enabled Web server. If you select SSI, this property
is not displayed.

Figure 31. The Net.Data Servlet Properties Palette

238 Net.Data Administration and Programming Guide

Macro name
If you select the macro servlet name, specify the name of a
existing Net.Data macro to execute. Otherwise, this property is
not displayed.

HTML block name
If you select the macro servlet name, specify the name of
HTML block in the Net.Data macro to run. Otherwise, this
property is not displayed.

Function type
If you select the function servlet name, select the type of
function to execute: Function or SQL. Otherwise, this property
is not displayed.

Language env
If you select the function servlet name, specify the Net.Data
language environment to use. Otherwise, this property is not
displayed.

Statement
If you select the function servlet name, specify the statement to
execute. Otherwise, this property is not displayed.

Database
If you select the function servlet name, specify the name of the
database to use. Otherwise, this property is not displayed.

of other parameters
Specify the number of other parameters to pass to Net.Data
(maximum: 25). For each parameter, enter the name of the
parameter and its value (optional).

Before HREF text
If you select an HREF servlet type, specify the text to appear
before the text to appear before the <a href> HTML tag.
Otherwise, this property is not displayed (optional).

Inside HREF text
If you select an HREF servlet type, specify the text to appear
inside of the <a href> HTML tag. Otherwise, this property is
not displayed (optional).

After HREF text
If you select an HREF servlet type, specify the text to appear
after the text to appear after the <a href> HTML tag.
Otherwise, this property is not displayed (optional).

SQL Reminder!
If you select an HREF servlet type and specify an SQL function
type, a message displays with a reminder that the HREF SQL

Appendix E. Using NetObjects Fusion NOF Plug-ins with Net.Data Servlets 239

statement should use a plus (+) character for any space ()
characters. This text cannot be changed, nor is it displayed
after the page is published. Otherwise, this property is not
displayed.

b. After you have defined the properties for your page, click on the
Publish push button to build and publish the Web pages with the
Net.Data servlet NOF plug-in.

Note: If you select a SSI servlet type, your Web page file extension
should be .shtml. You can set this as your page default from the
NOF Properties palette, selecting the Page notebook tab, clicking
on the Custom names push button, and entering .shtml in the
Extension Type field.

Publishing Servlets with the NOF Plug-in

After you have set the properties for your page, click on the Publish push
button to build and publish the Web pages with the plug-in.

240 Net.Data Administration and Programming Guide

Appendix F. Net.Data Sample Macro

This sample macro application displays a list of employees names from which
the application user can obtain additional information about an individual
employee by selecting the employee’s name from the list. The macro uses the
SQL language environment to query the EMPLOYEE table for both the
employee names and the information about a specific employee.

The macro uses an include file, which contains the DEFINE block for the
macro.

Figure 32 on page 242 shows the sample macro. Figure 33 on page 244 shows
the include file.

© Copyright IBM Corp. 1997, 2001 241

%{************************ Sample Macro *****************************
* FileName = sqlsamp1.dtw *
* Description: *
* This Net.Data macro queries... *
* - The EMPLOYEE table to create a selection list of *
* employees for display at a browser *
* - The EMPLOYEE table to obtain additional information *
* about an individual employee *
* *
**%}
%{***
* Include for global DEFINEs - *
**%}
%INCLUDE "sqlsamp1.hti"
%}
%{**
* Function: queryDB Language Environment: SQL *
* Description: Queries the table designated by the variable myTable and *
* creates a selection list from the result. The value of the variable *
* myTable is specified in the include file sqlsamp1.hti. *
**%}
%FUNCTION(DTW_SQL) queryDB() {
SELECT FIRSTNME FROM EMPLOYEE
%MESSAGE {

-204: {<p>ERROR -204: Table EMPLOYEE not found. </p>
%} : exit

+default: "WARNING $(RETURN_CODE)" : continue
-default: "Unexpected ERROR $(RETURN_CODE)" : exit

%}

%REPORT {
<select name="emp_name">
%ROW{
<option>$(V1)</option>
%}
</select>
%}
%}

%{**
* Function: fname Language Environment: SQL *
* Description: Queries the table designated by the variable myTable for *
* additional information about the employee identified by the *
* variable emp_name. *
**%}
%FUNCTION(DTW_SQL) fname(){
SELECT FIRSTNME, PHONENO, JOB FROM EMPLOYEE WHERE FIRSTNME='$(emp_name)'
%MESSAGE {

-204: "Error -204: Table not found "
-104: "Error -104: Syntax error"
100: "Warning 100: No records" : continue
+default: "Warning $(RETURN_CODE)" : continue
-default: "Unexpected SQL error" : exit

%}
%}

Figure 32. Sample macro (Part 1 of 3)
242 Net.Data Administration and Programming Guide

%{***
* HTML block: INPUT Title: Dynamic Query Selection *
* *
* Description: Queries the EMPLOYEE table to create a selection list *
* of the employees for display at the browser *
**%}
%HTML(INPUT) {
<html>
<head>
<title>Generate Employee Selection List</title>
</head>
<body>
<h3>$(exampleTitle)</h3>
<p>This example queries a table and uses the result to create
a selection list using a %REPORT block. </p>
<hr />
<form method="post" action="report">
@queryDB()
<input type="submit" value="Select Employee" />
</form>
<hr />
</body>
</html>
%}

Figure 32. Sample macro (Part 2 of 3)

Appendix F. Net.Data Sample Macro 243

%{***
* HTML block: REPORT *
* Description: Queries the EMPLOYEE table to obtain additional information *
* about an individual employee *
**%}
%HTML(REPORT) {
<html>
<head>
<title>Obtain Employee Information</title>
</head>
<body>
<h3>You selected employee name = $(emp_name)</h3>
<p>Here is the information for that employee:
<pre>
@fname()
</pre></p>
<hr />Return to previous page
</body>
</html>
%}

%{ End of Net.Data macro 1 %}

Figure 32. Sample macro (Part 3 of 3)

===
%{**************************** Include File *********************************
* FileName = sqlsamp1.hti *
* Description: *
* This include file provides global DEFINEs for the sqlsamp1.dtw *
* Net.Data macro. *
**%}
%define {

emp_name =""
reposition = sign
exampleTitle = "Sample Macro"
%}

%{ End of include file %}

Figure 33. Include file

244 Net.Data Administration and Programming Guide

Notices

This information was developed for products and services offered in the
U.S.A. IBM may not offer the products, services, or features discussed in this
document in other countries. Consult your local IBM representative for
information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or
imply that only that IBM product, program, or service may be used. Any
functionally equivalent product, program, or service that does not infringe
any IBM intellectual property right may be used instead. However, it is the
user’s responsibility to evaluate and verify the operation of any non-IBM
product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give
you any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
500 Columbus Avenue
Thornwood, NY 10594
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the
IBM Intellectual Property Department in your country or send inquiries, in
writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any
other country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY
OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow
disclaimer of express or implied warranties in certain transactions, therefore,
this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will

© Copyright IBM Corp. 1997, 2001 245

be incorporated in new editions of the publication. IBM may make
improvements and/or changes in the product(s) and/or the program(s)
described in this publication at any time without notice.

Any references in this publication to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those
Web sites. The materials at those Web sites are not part of the materials for
this IBM product and use of those Web sites is as your own risk.

Licensees of this program who wish to have information about it for the
purpose of enabling: (i) the exchange of information between independently
created programs and other programs (including this one) and (ii) the mutual
use of the information which has been exchanged, should contact:

IBM Corporation
W92/H3
555 Bailey Avenue
P.O. Box 49023
San Jose, CA 95161-9023
_U.S.A.

Such information may be available, subject to appropriate terms and
conditions, including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer
Agreement, IBM International Program License Agreement, or any equivalent
agreement between us.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available
sources. IBM has not tested those products and cannot confirm the accuracy
of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be
addressed to the suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to change
or withdrawal without notice, and represent goals and objectives only.

This information is for planning purposes only. The information herein is
subject to change before the products described become available.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include
the names of individuals, companies, brands, and products. All of these
names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental.

246 Net.Data Administration and Programming Guide

Trademarks

The following terms are trademarks of the IBM Corporation in the United
States or other countries or both:

AIX
AS/400
DB2
DB2 Universal Database
DRDA
DataJoiner
IBM
IMS

Language Environment
MVS/ESA
Net.Data
OS/2
OS/390
OS/400
OpenEdition

The following terms are trademarks of other companies as follows:

Java and all Java-based trademarks and logos are trademarks of Sun
Microsystems, Inc. in the United States and/or other countries.

UNIX is a registered trademark in the United States and/or other countries
licensed exclusively through X/Open Company Limited.

Lotus and Domino Go Webserver are trademarks of Lotus Development
Corporation in the United States and/or other countries.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks or
registered trademarks of Microsoft Corporation in the United States and/or
other countries.

Other company, product, and service names, which may be denoted by a
double asterisk (**), may be trademarks or service marks of others.

Notices 247

248 Net.Data Administration and Programming Guide

Index

A
access rights

for language environments 140
for Net.Data files 59

accessing DB2 142
accessing ODBC databases 140
accessing Oracle databases 141
administration tool

configuring Net.Data
before you begin 46
cliettes 50
configuration variable

statements 58
Live Connection ports 49
overview 46
path statements 47

encrypting database cliette
passwords, cliettes 53

ENVIRONMENT statements 54
installing Java run-time

libraries 46
AIX, Appendix: Net.Data for 225
Apache Web server, installing 40
APAPI

invoking Net.Data 86
authentication, security 64
authorization

security 64
specifying access rights to

Net.Data files 59

B
Beans

configuring for Net.Data 42
blanks, variable for removing

extra 18
BLOBs 145
blocks, macro 92

C
cache

activating the current 195
definition 188
identifiers 188, 189, 192
path 195
specifying age of pages 196
specifying memory for 196
specifying space for pages 195
stanza, configuring 195

cache ID
definition 188, 189
planning 192

Cache Manager
configuration file 8, 188, 192
configuration variables 14
connection timeout 193
defining 192
defining a cache 195
definition 188
log file

activating 193
for each cache 199
naming 192
trace flags 194

port 193
stanza, configuring 192
starting 200
stopping 200

cache transaction log file 199
cacheadm

stopping the Cache
Manager 200

syntax 205
caching

a page 202
cacheadm command 205
determining configuration 188
flags 205
flushing 205
gathering statistics 205
interfaces 190
introduction 187
logging 193, 205
planning 191
querying a specific cache 205
restrictions 190
sample applications 187
stopping 205
terminology 188

calling
functions 119
Java applications 163, 164
Java applications through Live

Connection 165
language environments 139
Perl scripts 167, 168
programs, System 177
REXX programs 171, 173

calling (continued)
stored procedures 149, 151
Web Registry built-in

functions 162
character sets 18, 19
cliettes

configuring with the
administration tool

adding 50
database information 52
deleting 53
encrypting database

passwords 53
modifying 51
testing DB2 database

logon 53
description 183
exec file names 35
Java language environment 165

CLOBs 145
codepage 226
COMMIT 144
conditional

logic, IF blocks 132
variables 105

configuration variable statements
configuring

with administration tool 58
configuring in the initialization

file 13
DB2INSTANCE 15
description 13
DTW_CACHE_HOST 14
DTW_CACHE_PORT 14
DTW_CM_PORT 15
DTW_DEFAULT_ERROR_MESSAGE 16
DTW_DIRECT_REQUEST 16
DTW_INST_DIR 16, 58
DTW_LOG_DIR 17
DTW_LOG_LEVEL 17, 59
DTW_MBMODE 18
DTW_REMOVE_WS 18
DTW_SHOWSQL 18
DTW_SMTP_SERVER 19
DTW_UNICODE 19
DTW_VARIABLE_SCOPE 21
home directory (inst_dir) 16

configuring Cache Manager 192,
195

© Copyright IBM Corp. 1997, 2001 249

configuring Net.Data
access rights to Net.Data files 59
administration tool

before you begin 46
cliettes 50
configuring variable

statements 58
ENVIRONMENT

statements 54
install Java run-time

libraries 46
overview 46
path statements 47
ports 49

Cache Manager configuration file
description 8
ports 14
stanzas 192, 195

comparison of methods 5
control file comparison 8
FastCGI 40
for use with Java Beans 42
for use with Java Servlets 42
for use with Web server APIs 43
initialization file

configuration variable
statements 13

description 6
ENVIRONMENT

statements 26
path statements 22
updating 11

Live Connection configuration
file 34

description 7
updating 33

manual vs. with administration
tool 5

overview 5
setting up language

environments 29
connection management

configuring 33
performance 182

Connection Manager
activating Live Connection

logging 216
description 183
starting

AIX 184
OS/2 and Windows NT 184
with the messages

option 185
connection timeout, Cache

manager 193

D
data language environments 140
data types

DATALINK 156
for stored procedures 150
LOBs 145

database
cliettes, configuring 50

DATALINK data type
DataLink File Manager 156
Encoding URLs 157

DB2INSTANCE 15
DBCLOBs 145
DBCS 227
declaration part, macro structure 89
default reports

printing 127
specifying for stored

procedures 153, 154
DEFINE block

defining variables 101
description 92

defining variables
DEFINE statement or block 101
HTML form SELECT, INPUT,

and TEXTAREA tags 102
query string data 103

direct request
caching restrictions 190
description 73
examples 84
syntax 80

direct request enablement
(DTW_DIRECT_REQUEST) 16

double-byte character set 227
DTW_ATTACHMENT_PATH 22
DTW_CACHE_HOST 14
DTW_CACHE_PAGE 202
DTW_CACHE_PORT 14
DTW_CM_PORT 15
DTW_DEFAULT_ERROR_MESSAGE 16
DTW_DEFAULT_REPORT 128
DTW_DIRECT_REQUEST 16
DTW_INST_DIR 16, 58
DTW_JAVAPPS 163
DTW_LOG_DIR 17
DTW_LOG_LEVEL 17, 59, 210, 214
DTW_MBMODE 18, 227
DTW_ODBC 140
DTW_ORA 141
DTW_PERL 167
DTW_REMOVE_WS 18
DTW_REXX 171
DTW_SHOWSQL 18
DTW_SMTP_SERVER 19

DTW_SQL 142
DTW_SYSTEM 177
DTW_UNICODE 19, 226
DTW_UPLOAD_DIR 21, 78
DTW_VARIABLE_SCOPE 21
DTW_WEBREG 161
dtwclean daemon, managing

temporary LOBs 148
dtwcm command 184
dynamically generating variable

names 103

E
encoding DataLink URLs in result

sets 156
encryption

database cliette passwords 53
encryption, network 64
ENVIRONMENT statements

cliette name 28
configuring in the initialization

file 26, 27
description 26, 54
DLL or library name 27
example 29
language environment type 27
parameter list 28
syntax 27

environment variables 105
error conditions, language

environments 139
error logging

description 213, 216
DTW_LOG_DIR 17, 214
DTW_LOG_LEVEL 59, 214
Live Connection file names 217
log file

activating 214, 216
format 215, 218
level variable 17
location variable 17
size 213, 216
specify location 17

logging level
impact on performance 210
invocation attribute 217
specifying 59, 214, 217
variable 59, 214

performance considerations 210
planning 214, 216

EXEC_PATH 23, 47
executable variables 106
executing commands 177
executing SQL statements 140, 141

250 Net.Data Administration and Programming Guide

F
FastCGI

configuring for Net.Data
installing Apache Web

server 40
configuring Net.Data 40
supported language

environments 40
FFI_PATH 24, 47
files

specifying access rights to
Net.Data 59

uploading 21, 78
firewalls 61
flat file functions 123
footer information, REPORT

block 127
formatting data output 126
forms

in Web pages to invoke
Net.Data 77

invoking Net.Data 76, 85
using the FILE input type 78

FUNCTION block
calling functions 119
description 92
formatting output 126
identifier scope 100

function calls
built-in 119
syntax 119

functions
calling 119
calling stored procedures 149
defining 113
description 113
flat file 123
FUNCTION block syntax 113
general purpose 121
java applet 123
MACRO_FUNCTION block

syntax 114
math 122
string 122
table 123
user-defined 113
Web Registry 124
word 122

FunctionServlet
NOF plug-in 235

G
general purpose functions 121
global identifier scope 100

H
header information, REPORT

block 127
hidden variables

conceal variable names 107
protecting assets 65

home directory
configuring in the initialization

file 16, 46
configuring with the

administration tool 58
HTML

blocks
description 93
example 124
invoking Net.Data 124
processing 125

FORM Submit button 125
forms

about 77
invoking Net.Data 76, 85
SELECT, INPUT, and

TEXTAREA tags, defining
variables 102

generating in a macro 124
links

about 76
invoking Net.Data 75, 84

tags for tables 127
unrecognized data as 125

HTML_PATH 17, 47

I
identifier scope 100
IF blocks 132
improving performance 181
INCLUDE_PATH 24, 47
initialization file

configuration variable
statements 13

description 6
ENVIRONMENT statements 26
format 11
path statements 22
sample 10
updating 11

inst_dir 46
installation directory configuration

variable
configuring in the initialization

file 16
configuring with the

administration tool 58
invoking Net.Data

APAPI 86

invoking Net.Data (continued)
direct request 73
FastCGI 42
forms 76, 85
HTML blocks 124
ISAPI 86
links 75, 84
macro request 73
NSAPI 87
overview 73
syntax 74
URLs 76
using CGI 73
with a macro 75
without a macro 79

Invoking Net.Data
using Web server APIs 85

ISAPI
configuring for Net.Data 44
invoking Net.Data 86

J
java applet functions 123
Java Application language

environment with cliette
setting up 30

Java applications language
environment

overview 163
Java Beans

configuring for Net.Data 42
Java cliettes, configuring 36
Java language environment

calling functions 164
creating cliettes 165
creating functions 166
file structure 166
invoking 167
Live Connection 165

Java Servlets
configuring for Net.Data 42

L
language environments

calling 139
configuring ENVIRONMENT

statements 26, 54
configuring in the initialization

file 26
configuring with the

administration tool
adding 55
deleting 58
modifying 56

examples 26

Index 251

language environments (continued)
handling error conditions 139
Java applications 163
loading shared libraries on

AIX 225
ODBC 140
Oracle 141
parameter markers 143
Perl 167
prepare cache 143
REXX 171
security 140
setting up 29
SQL 142
supported 138
System 177
variables 112
Web registry 161

large objects (LOBs)
description 145
supported types 146
temporary, managing 148
valid formats 147

links
in Web pages to invoke

Net.Data 76
invoking Net.Data 75, 84

list variables 108
Live Connection

advantages 183
cliettes

configuration files 8
configuring with the

administration tool 50
configuration file

database cliettes 34
database name 36
description 7
format 33
Java cliettes 36
login and password 36
name 34
number of processes 35, 36
process type 35
sample 10
updating 33

determining whether to use 184
improving performance

with 182
ports

configuring in the
initialization file 34

configuring with the
administration tool 49

process flow 185

Live Connection (continued)
starting Connection

Manager 184
Live Connection logging

activating 216
controlling level 216
description 216
file names 217
log file

format 218
size 216

logging level
invocation attribute 217
specifying 217

planning 216
LOBs 145
Locale 226
log file

activating 17, 214, 216
Cache Manager 192, 193, 194
controlling level 214, 216
for each cache 199
format 215, 218
Live Connection, names 217
maximum size 213, 215, 216, 218
rotation 215, 218

login and password, configuring
cliettes 36

looping, WHILE blocks 134

M
MACRO_FUNCTION block

calling functions 119
syntax 114

MACRO_PATH 25, 47
macro request

description 73
examples 75
syntax 75

macros
anatomy 90
blocks 92
conditional logic 132
declaration part 89
DEFINE block 92
description 1
developing 89
FUNCTION block 92
functions 113
generating HTML 124
HTML block 93
identifier scope 100
IF blocks 132
looping 134
navigation within and

between 94

macros (continued)
NOF plug-ins 235
presentation part 89
sample 9, 90
variables 99
WHILE blocks 134

MacroServlet
NOF plug-in 235

managing temporary LOBs 148
math functions 122
MAX_PROCESS 35, 36, 52
MBCS support for functions 18
MESSAGE block

description 117
example 118
processing 117
scope 117
syntax 117

MIN_PROCESS 35, 36, 52
miscellaneous variables 110
multiple report blocks 128

N
native language support for

functions 18
navigation, within and between

macros 94
Net.Data

configuring 5
files, access rights 59
invoking 73
macros, developing 89
overview 1
security mechanisms 65

Net.Data macros. See macros. 1
Net.Data servlets

NOF plug-ins
description 235
modifying properties 240
publishing servlets 240
setting up 236

Net.Data tables, stored
procedures 154

NetObjects Fusion (NOF) plug-ins
description 235
for macro and function

servlets 235
hardware and software

requirements 236
installing 236
modifying servlet properties 240
publishing 240
setting up 236

NOF (NetObjects Fusion)
plug-ins 235

Notices 245

252 Net.Data Administration and Programming Guide

NSAPI
configuring for Net.Data 44
invoking Net.Data 87

O
ODBC language environment

overview 140
restrictions 141
variables 141

Oracle language environment
overview 141
restrictions 141
setting up 30

P
parmeter markers

explicit use 143
implicit use 143

parts of a macro
declaration 89
presentation 89

passing parameters
Perl scripts 168
REXX programs 174
stored procedures 152
System language

environment 177
password and login, configuring

cliettes 36
path statements

configuring in the initialization
file 22

configuring with the
administration tool

adding 48
deleting 49
modifying 48

DTW_ATTACHMENT_PATH 22
DTW_UPLOAD_DIR 21
EXEC_PATH 23
FFI_PATH 24
HTML_PATH 17
INCLUDE_PATH 24
MACRO_PATH 25
protecting assets 65
update guidelines 22

performance
cache query all 206
error logging 210
Live Connection 182
optimizing language

environments 210
Perl language environment 212
REXX environment 175, 226

performance (continued)
REXX language

environment 210
SQL language environment 211
System language

environment 212
Perl language environment

calling built-in functions 168
overview 167
passing parameters 168
REPORT and MESSAGE

blocks 170
plug-ins, NetObjects Fusion 235
ports

Cache Manager 14, 193
Live Connection

configuration file 34
configuring with the

administration tool 49
prepare cache

overview 143
printing, disabling for default

reports 127
processing result sets, stored

procedures 152
protecting assets 61
publishing servlets with NOF

plug-ins 240

R
referencing variables 103
registries 161
relational database language

environment 140
REPORT and MESSAGE blocks

Perl scripts 170
REPORT block

stored procedures 153
REPORT blocks

default reports 128
description 126
examples 129
formatting data output 126
guidelines for multiple 131
header and footer

information 127
multiple 128
restrictions 131
scope 101
stored procedures 155

report formats, customizing 127
report variables 111
reports

default 128
generating multiple with one

function call 128

result sets
multiple

default reports 154
guidelines and

restrictions 131
processing, stored

procedures 152
single 153

RETURN_CODE variable 117, 139
REXX, improving performance 226
REXX language environment

calling programs 173
overview 171
passing parameters 174
performace on AIX 175

ROW block, identifier scope 101
running SQL statements 142

S
sample macro 240
scope, identifier

FUNCTION block 100
global 100
macro 100
REPORT block 101
ROW block 101

security
authentication 64
authorization 64
caching 190
encrypting database cliette

passwords 53
firewall 61
language environments 140
Net.Data mechanisms 65
network encryption 64
overview 61
specifying access rights 59, 140

servlets
Net.Data

modifying properties with
plug-in 240

setting up plug-in 236
NetObjects Fusion plug-ins 235
NOF plug-ins 235
publishing with NOF

plug-ins 240
Servlets

configuring for Net.Data 42
shared libraries

loading for language
environments on AIX 225

SQL language environment
overview 142
restrictions 142
variables 142

Index 253

SQLCODEs 139, 140
stanza

cache, configuring 195
Cache Manager, configuring 192

starting Net.Data 73
stored procedures

calling from macro 149
default reports 153, 154
multiple result sets 154
Net.Data tables 154
passing parameters 152
processing result sets 152
REPORT blocks 153, 155
single result sets 153
steps 151
valid data types 150

string functions 122
System language environment

calling programs 177
issuing commands 177
overview 177
passing parameters 177

T
table functions 123
table processing variables 111
table variables 109
temporary LOBs, managing 148
token sizes 99
trace flags, for Cache Manager 194
TRANSACTION_SCOPE 144
types, variable 105

U
Unicode 226
Unicode variable

with DTW_MBMODE 18, 19
uploading files 21, 78
URLs

defining variables 103
invoking Net.Data 76

user-defined functions 113
using prepare cache 143
using Web server APIs

invoking Net.Data 85
UTF-8 226

V
variables

conditional 105
configuration, statements

administration tool 58
cache machine name

(DTW_CACHE_HOST) 14
Cache Manager port

(DTW_CACHE_PORT) 14

variables (continued)
configuration, statements

(continued)
DB2 Instance

(DB2INSTANCE) 15
description 13
direct request enablement

(DTW_DIRECT_REQUEST) 16
e-mail SMTP server

(DTW_SMTP_SERVER) 19
edit masks

(DTW_CM_PORT) 15
error log level

(DTW_LOG_LEVEL) 17, 59
error log location

(DTW_LOG_DIR) 17
home directory 16, 58
initialization file 13
installation directory

(DTW_INST_DIR) 16, 58
native language support

(DTW_MBMODE) 18
removing extra blanks

(DTW_REMOVE_WS) 18
SHOWSQL enablement

(DTW_SHOWSQL) 18
SMTP server

(DTW_SMTP_SERVER) 19
Unicode variable

(DTW_UNICODE) 19
variable scope variable

(DTW_VARIABLE_SCOPE) 21
defining 101
description 99
dynamically-generated

references 103
environment 105
executable 106
generating names

dynamically 103
hidden 107
language environment 112
list 108
miscellaneous 110
referencing 103
report 111
scope 100
table 109
table processing 111
token sizes 99
types 99, 105

W
Web pages, caching 202

Web Registry functions 124

Web Registry language environment
calling built-in functions 162
overview 161

Web server
configuring for FastCGI 40
configuring for Web server

APIs 43
Web server APIs

configuring for Net.Data
APAPI 43
description 43
ISAPI 44
NSAPI 44

consideration 85
descriptions 85
invoking Net.Data

APAPI 86
ISAPI 86
NSAPI 87

WHILE blocks 134
white space, variable for removing

extra 18
word functions 122

254 Net.Data Administration and Programming Guide

����

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

	Contents
	Preface
	About Net.Data
	What's New in Version 7.2
	About This Book
	Who Should Read This Book
	About Examples in This Book

	How to send your comments

	Chapter 1. Introduction
	What is Net.Data?
	Why Use Net.Data?

	Chapter 2. Configuring Net.Data
	About the Net.Data Initialization File
	About the Net.Data Configuration Files for Optional Components
	The Live Connection Configuration File
	The Cache Manager Configuration File
	Common Sections of the Net.Data Initialization, Control, and Macro Files

	Customizing the Net.Data Initialization File
	Configuration Variable Statements
	Cache Manager Configuration Variables
	DB2INSTANCE: DB2 Instance Variable
	DTW_CM_PORT: Live Connection Port Number Variable
	DTW_DEFAULT_ERROR_MESSAGE: Specify Generic Error Messages
	DTW_DIRECT_REQUEST: Enable Direct Request Variable
	DTW_INST_DIR: Net.Data Installation Directory Variable
	HTML_PATH
	DTW_LOG_DIR and DTW_LOG_LEVEL: Error Log Variables
	DTW_LOG_LEVEL: Error Log Level Variable
	DTW_MBMODE: Native Language Support Variable
	DTW_REMOVE_WS: Variable for Removing Extra White Space
	DTW_SHOWSQL: Enable or Disable SHOWSQL Configuration Variable
	DTW_SMTP_SERVER: E-mail SMTP Server Variable
	DTW_UNICODE: Unicode Variable
	DTW_UPLOAD_DIR
	DTW_USE_DB2_PREPARE_CACHE
	DTW_VARIABLE_SCOPE: Variable Scope Variable

	Path Configuration Statements
	DTW_ATTACHMENT_PATH
	EXEC_PATH
	FFI_PATH
	INCLUDE_PATH
	MACRO_PATH

	Environment Configuration Statements

	Setting Up Net.Data Language Environments
	Setting up the Java Language Environment with Cliette
	Setting up the Oracle Language Environment

	Configuring Live Connection
	Configuring the Web Server for Use with CGI
	General Web Server Parameter Settings
	Configuring Net.Data for FastCGI
	Configuring Net.Data for use with Java Servlets
	Configuring Net.Data for Use with the Web Server APIs
	Configuring Net.Data with the Net.Data Administration Tool
	Before You Begin
	Starting the Administration Tool
	Configuring Path Statements
	Configuring Ports
	Configuring Cliettes
	Configuring Language Environments
	Defining Configuration Variables

	Granting Access Rights to Files Accessed by Net.Data

	Chapter 3. Keeping Your Assets Secure
	Using Firewalls
	Encrypting Your Data on the Network
	Using Authentication
	Using Authorization
	Using Net.Data Mechanisms
	Net.Data Configuration Variables
	Macro Development Techniques

	Chapter 4. Invoking Net.Data
	Types of Invocation Requests
	Invoking Net.Data with a Macro (Macro Request)
	HTML Links
	HTML Forms

	Invoking Net.Data without a Macro (Direct Request)
	Direct Request Syntax
	Direct Request Examples

	Invoking Net.Data through the Web Server APIs

	Chapter 5. Developing Net.Data Macros
	Anatomy of a Net.Data Macro
	The DEFINE Block
	The FUNCTION Block
	HTML Blocks
	XML Blocks

	Net.Data Macro Variables
	Identifier Scope
	Defining Variables
	Referencing Variables
	Variable Types
	Conditional Variables
	Environment Variables
	Executable Variables
	Hidden Variables
	List Variables
	Table Variables
	Miscellaneous Variables
	Table Processing Variables
	Report Variables
	Language Environment Variables

	Net.Data Functions
	Defining Functions
	Using Special Characters in Functions
	Message Blocks

	Calling Functions
	Calling Net.Data Built-in Functions
	General Purpose Functions
	Math Functions
	String Functions
	Word Functions
	Table Functions
	Flat File Functions
	Java Applet Functions
	Web Registry Functions

	Generating Document Markup
	HTML and XML Blocks
	Report Blocks
	REPORT Block Guidelines
	Example: Customizing a Report
	Multiple REPORT Blocks

	Conditional Logic and Looping in a Macro
	Conditional Logic: IF Blocks
	Looping Constructs: WHILE Blocks

	Chapter 6. Using Language Environments
	Overview of Net.Data-Supplied Language Environments
	Calling a Language Environment
	Guidelines for Handling Error Conditions
	Security

	Relational Database Language Environments
	ODBC Language Environment
	Oracle Language Environment
	SQL Language Environment
	Using DB2 Parameter Markers
	Managing Transactions in a Net.Data Application
	Using Large Objects
	Stored Procedures
	Stored Procedure Syntax
	Calling a Stored Procedure
	Passing Parameters
	Processing Result Sets from DB2 Stored Procedures

	Encoding DataLink URLs in Result Sets
	Relational Database Language Environment Examples

	Web Registry Language Environment
	Configuring the Web Registry Language Environment
	Calling Web Registry Built-in Functions
	Example

	Programming Language Environments
	Java Application Language Environment
	Configuring the Java Language Environment
	Calling Java Functions
	Java Language Environment File Structure
	Java Language Environment Example

	Perl Language Environment
	Configuring the Perl Language Environment
	Calling External Perl Scripts
	Passing Parameters
	REPORT and MESSAGE Blocks in FUNCTION Blocks
	Perl Language Environment Example

	REXX Language Environment
	Configuring the REXX Language Environment
	Executing REXX Programs
	Passing Parameters to REXX programs
	Improving Performance for the AIX operating system:
	REXX Language Environment Example

	System Language Environment
	Configuring the System Language Environment
	Issuing Commands and Calling Programs
	Passing Parameters to Programs
	System Language Environment Example

	Chapter 7. Improving Performance
	Using the Web Server APIs
	Using FastCGI
	Managing Connections
	About Live Connection
	Live Connection Advantages
	Should I Use Live Connection?
	Starting the Connection Manager
	Net.Data and Live Connection Process Flow

	Net.Data Caching
	About Web Page Caching
	About Net.Data Caching
	Net.Data Caching Terminology
	Net.Data Caching Concepts

	Net.Data Caching Restrictions
	Net.Data Caching Interfaces
	Planning for the Cache Manager
	Cache Errors
	Cache Identifiers

	Configuring the Cache Manager and Net.Data Caches
	Defining the Cache Manager
	Defining a Cache

	Starting and Stopping the Cache Manager
	Starting the Cache Manager
	Stopping the Cache Manager

	Caching Web Pages
	Caching a Page
	Advanced Caching: Determining Dynamically Whether to Cache

	The CACHEADM Command
	The Cache Log
	Configuring the Log
	Cache Log Format

	Setting the Error Log Level
	Optimizing the Language Environments
	REXX Language Environment
	SQL Language Environment
	Database Techniques
	SQL Language Environment Techniques

	System and Perl Language Environments

	Chapter 8. Net.Data Logging
	Logging Net.Data Error Messages
	Planning for the Net.Data Error Log
	Controlling the Net.Data Logging Level
	Types of Net.Data Error Messages Not Logged
	Net.Data Error Log File Size and Rotation
	Net.Data Error Log Format

	Logging Live Connection Cliette and Error Messages
	Planning for the Live Connection Log
	Controlling the Live Connection Logging Level
	Types of Live Connection Messages Not Logged
	Live Connection Log File Names
	Live Connection Log File Size and Rotation
	Live Connection Log Format

	Net.Data Trace Log
	Configuring Net.Data for Tracing
	Setting the Trace Log Directory
	Setting the Level of Trace Logging

	Trace Log Format
	Access Rights

	Appendix A. Bibliography
	Net.Data Technical Library

	Appendix B. Net.Data for AIX
	Loading Shared Libraries for Language Environments
	Improving Performance in the REXX Environment
	NLS Considerations

	Appendix C. Net.Data Wizards
	Before You Begin
	Running the Wizards

	Appendix D. Building SQL Statements with Net.Data SQLAssist
	Before You Begin
	Running Net.Data SQL Assist

	Appendix E. Using NetObjects Fusion NOF Plug-ins withNet.Data Servlets
	About the NetObjects Fusion Plug-in
	Installing the NetObjects Fusion Plug-in
	Setting Up the Net.Data Plug-in for NetObjects Fusion
	Modifying the Plug-in Properties
	Publishing Servlets with the NOF Plug-in

	Appendix F. Net.Data Sample Macro
	Notices
	Trademarks

	Index

