
Solution Brief
IBM Software IBM DB2 for z/OS

The value of IBM DB2 for
z/OS hash access for
OLTP transactions
Improve response times and reduce the cost of queries

The need to reduce costs and optimize business operations is among
the top priorities faced by many worldwide businesses today. Access to
single rows of data is essential to many high-volume online transaction
processing (OLTP) applications. When used in appropriate situations,
access to tables that are organized by hash has been demonstrated to
result in database CPU usage reduction of up to 37 percent and
reduction in get pages and synchronous I/Os, when compared to
traditional indexed data access.

Why hash organization?
Hash organization can reduce the elapsed time and resources—
including CPU time, memory and I/O—needed to access single rows
of data, by replacing more costly access methods, such as index access.

The new IBM® DB2® 10 for z/OS® solution uses hash organization
to improve response times and reduce the cost of queries that retrieve
single rows from a table containing unique keys. DB2 for z/OS can use
a unique value that identifies the data to efficiently compute the
probable physical location of a single row of data in the data pages of
the table space.

How it works
When you organize a table for hash access, DB2 applies a sophisticated
hash algorithm to the unique key value for each row to determine the
physical location of the row in the table space. The hash algorithm
distributes data values in a random fashion throughout the table space
for consistently optimal query performance.

Highlights:
•	 Helps reduce costs and improve overall

response time for access to single rows of
data

•	 Can improve response times and reduce
the cost of queries that retrieve single
rows from a table containing unique keys

•	 Can yield database CPU usage reduction
of up to 37 percent and reduction in get
pages and synchronous I/Os, compared
to traditional indexed data access

•	 Can reduce elapsed time and
resources—including CPU time, memory
and I/O—needed to access single rows of
data

•	 Can provide significant benefits to many
high-volume OLTP applications that need
to efficiently and quickly retrieve a single
row of data through a fully qualified
primary key

Solution Brief
IBM Software IBM DB2 for z/OS

2

Because different unique keys can have the same hash value,
the same physical location is sometimes identified for more
than one row of data. However, when DB2 encounters that
situation, it accounts for that and places one of the rows where
it can be efficiently accessed.

When queries specify equality predicates on the unique key
value that DB2 used to organize the data, DB2 can apply the
same hash algorithm to efficiently compute the physical
location of the row of data and retrieve that row. For example,
consider a bank’s high-volume OLTP applications that
routinely access the CUSTOMER_TABLE table to retrieve a
single customer’s row of information by using the following
query:

SELECT * FROM CUSTOMER_TABLE WHERE
CUSTOMER_NUMBER = 2378

The value of the CUSTOMER_NUMBER column is unique
in the CUSTOMER_TABLE table.

If the CUSTOMER_TABLE table is organized for hash
access, DB2 can apply the hash algorithm to the key value
“2378” to compute the probable physical location of the row
in a particular data page. Although some computation is
required to apply the hash algorithm, the cost of retrieving
the row is significantly reduced, and the bank benefits from
the savings.

Figure 1: Single-row access through hash.

By comparison, if index access is used to determine the
location of a row within the data pages, DB2 must traverse the
index pages to find the index page that contains information
about the location of the row. The result is greater CPU,
memory and I/O usage, especially if the index contains many
levels.

Figure 2: Single-row access through unique index.

Fast random access to rows
Hash access is particularly valuable for applications that
randomly access rows in a table. When an application uses
equality predicates on a unique key to locate a row, the savings
from using hash access can be substantial, particularly in cases
where the index access would have to traverse an index that is
many levels deep. Some examples of these kinds of accesses
are random lookups by bank or insurance policy account
numbers. Because the base technology of hash access results
in randomization of the rows within a fixed size hash data
area, hash access is not intended for accesses that currently
scan ranges of index keys, or that access tables varying
drastically in size. When used appropriately, hash access
provides very fast access to random individual rows in a table.

Proven cost reductions
IBM performance analysis has shown that a table organized by
hash spaces can provide significant cost savings when applied
in appropriate situations.

For example:

•	 Thirteen percent class 2 CPU usage reduction was observed
for a SELECT statement that retrieved all columns of a
single row from a table organized by hash, by using a fully
qualified key, as compared to access through an index (with
three index levels) on the same columns that defined the hash
key.

•	 Thirty-seven percent class 2 CPU usage reduction was
measured for 50,000 executions of a SELECT statement that
retrieved all columns of a single row from a table organized
by hash of the statement, as compared to access through an
index (with three index levels) on the same columns that
defined the hash key.

Solution Brief
IBM Software IBM DB2 for z/OS

3

•	 Nine percent class 2 CPU usage reduction was measured for
a SELECT statement that retrieved a subset of columns
from a table organized by hash, when compared to index-
only access (with three index levels) on all columns.

In each case, reduced get page and synchronous I/O
operations were also observed.

Some hash organization best practices
Evaluate the applications and workload thoroughly before
adopting hash organization. Hash-organized tables deliver the
most reductions and response-time improvements in certain
specific situations, which include the following:

•	 The table has a unique key.
•	 Queries that access the table specify equality predicates on

unique values to return a single row of data.
•	 Most access to the data in the table is truly random.

Applications that use range scans, or that depend on clustered
data, do not perform optimally with hash-organized tables.
You can use Instrumentation Facility Component Identifier
(IFCID) 199 to verify that access is truly random.

•	 The size of the data in the table is relatively stable, or the
maximum size of the data is known. The amount of space
that must be dedicated to a hash-organized table is fixed.

•	 Many rows fit on a single data page. When too few rows fit
within a single data page, additional space may be required to
achieve the benefits of hash organization.

•	 The table contains rows of relatively uniform size.
•	 The benefits of hash access are greatest when an index on the

table’s unique key would have more than three levels.

After adopting hash organization, monitor real-time statistics
to ensure that hash access is used, and tune the size of the
hash space.

Conclusion
The hash organization capabilities of DB2 10 for z/OS can
provide significant benefits to many high-volume OLTP
applications that need to efficiently and quickly retrieve a
single row of data through a fully qualified primary key. This
specialized capability performs best under specific conditions
which require evaluation before adoption. Hash access, when
used appropriately, can provide significant cost savings over
indexed data access.

For more information
To learn more about the IBM DB2 for z/OS hash access for
online transaction processing (OLTP) transactions solution,
please contact your IBM marketing representative or IBM
Business Partner, or visit the following website:
ibm.com/developerworks/data/library/dmmag/DMMag_2010_
Issue2/idug/index.html

Authors

•	 Paul McWilliams, DB2 for z/OS Information Developer
•	 Kalpana Shyam, DB2 for z/OS Software Developer
•	 Karelle Cornwell, DB2 for z/OS Software Developer
•	 Rebecca Poole, DB2 for z/OS Business Development

Executive
•	 Bob Lyle, DB2 for z/OS Software Developer, STSM

SWW14011-USEN-00

Please Recycle

© Copyright IBM Corporation 2011

IBM Global Services
Route 100
Somers, NY 10589
U.S.A.

Produced in the United States of America
August 2011
All Rights Reserved

IBM, the IBM logo, ibm.com, DB2, and z/OS are trademarks or registered
trademarks of International Business Machines Corporation in the
United States, other countries, or both. If these and other IBM
trademarked terms are marked on their first occurrence in this information
with a trademark symbol (® or ™), these symbols indicate U.S. registered
or common law trademarks owned by IBM at the time this information
was published. Such trademarks may also be registered or common law
trademarks in other countries. A current list of IBM trademarks is available
on the web at “Copyright and trademark information” at: ibm.com/legal/
copytrade.shtml.

Other product, company or service names may be trademarks or service
marks of others.

References in this publication to IBM products or services do not
imply that IBM intends to make them available in all countries in which
IBM operates.

