
1

© 2009 IBM Corporation© 2009 IBM Corporation

IMS and Java
for Application Modernization

Barbara Klein
IMS Product Manager
IBM Silicon Valley Lab, San Jose, California
bk@us.ibm.com

GSE UK Conference
November 4-5, 2009

This presentation discusses use of IMS and Java to modernize your applications.

2

2

IMS

© 2009 IBM Corporation

Agenda

Java bas ics
IMS Java basics
IMS Java Applications
IMS Database Access
DB2 Access
Application Interoperability
Technical Considerations
Customer Examples
Summary

I’ll be taking you quickly through some Java basics, introduce you to IMS Java
application support, Java access to IMS DB and DB2 databases, interoperability of Java
applications with other applications, some technical considerations in doing all this and
some examples of customers using Java with IMS.

3

3

IMS

© 2009 IBM Corporation

Java Basics

It’s another programming language!
It’s Object Oriented

– A Program is written as a set of “Classes”
A Class is made up of variables and methods

– A Class often relates to an entity in the real world (e.g. Customer,
Account, input message, etc), but can also be defined for
programmer convenience

An Object is a named occurrence of a class with values in the variables
A method can create objects of i ts own class or other classes
A method can execute methods of its own class or other classes, and
can reference data in the same or different classes/objects

First, lets look at Java basics.
Java is an Object oriented programming language that uses classes and methods to
define objects.

4

4

IMS

© 2009 IBM Corporation

Java Basics …

public class myClass {
int count;
myOtherClass myObject;
.......
public void main(String[] args){
...........

}
public int method2() {
int i;
...........
return i;

}
}

Class Definition

class variables

first method

another method
local variable

Execution of a Java program starts by running the “main” method of the specified class

Method definition includes the return parameter (or “void”) and the input parameters (in any)

Java programs consist of definitions, variables and methods. Execution of a Java
program starts by running the main program of the specified class. This is a sample
application, defining class definition and variables, and the methods. Methods can
inherit variables or use their own local variables.

5

5

IMS

© 2009 IBM Corporation

Java Class Libraries

The Java language is quite small and simple
– one of its strengths !

But it comes with a huge number of pre-wri tten classes
– ready-to-use java methods (and associated variables and constants) for

– file access
– working w ith a GUI
– data conversion
– mathematical functions
– accessing URLs
– getting date/t ime
– etc etc etc.

Classes are bundled in named “packages”

The Java class library is simple, and includes a large number of pre-written classe s of function in a
number of packages

6

6

IMS

© 2009 IBM Corporation

z/OS

SAF DFSMS

Address
Space

SMH

WLM

RRS

HFS

MVS
Dataset

ZFS

DB

z/OS UNIX

Language Environment

RACF

JVM

platform specific
code

(C code)

Shared C code

Java application

Shared Java code

awt

Posix interface
C runtime library

X11

net

sockets

bytecodes

bytecodes

This layer has
the calls to the
C runtime
library

C statements

Unicode

ASCII

EBCDIC

Jav a
Virtual

Machine

UNIX
System

Serv ices

z/OS Java

z/OS Java provides the facilities and environment for running Java
applications.
z/OS provides a Java Virtual Machine to run the Java applications, and the
System Services to support it. From the JVM z/OS provides access to Unix
services and vice versa. Java applications go thru C code to get the Unix
services. The System provides Java Native Interface for this. IMS will use
the Java Native Interface for DL/I access. The Hierarchical File server is the
equivalent of windows folders.

7

7

IMS

© 2009 IBM Corporation

z/OS Java …
Java Record I/O
– Class library , similar to jav a.io
– Prov ides record-oriented access on z/OS

– VSAM data sets (KS DS only), Non -VSA M record-oriente d data sets, System Catalog, PDS
directory

– DDName a nd GDGs support
– SPACE and DISP parameter suppo rt
– Navigational support fo r HFS directories

– zAAP eligible
– http://www- 03.ib m.co m/servers/eserver/zseries/soft ware/java/jrio/overview.html

JZOS
– A set of tools that includes a nativ e launcher f or running Jav a applications

directly as batch jobs or Started Tasks
– A set of Jav a methods that make access to traditional z/OS data and key system

serv ices directly av ailable f rom Jav a applications
– Additional system services include console communication, multiline WTO (write to ope rator), and

return code passing capability
– JZOS provides facilities for flexible configuration of the run-time e nviro nment, and it allows

intermediate data to be seen via SDS F
– Java applications can be fully integrated as job steps in order to aug ment e xisting batch

applications

z/OS Java provides
•a Java record I/O which consists of a class library and record oriented
access on z/OS,
•JZOS, a set of tools for running Java applications as batch or started tasks
ad a set of methods for making access to traditional data and system
services available from Java applications

8

8

IMS

© 2009 IBM Corporation

Why Use Java ?
Rapid Application Development

– Reduces Total Cost of Ow nership (TCO) and Total Time to Value (TTV)
Exploit existing marketplace, industry-sanctioned standards

– These are the slow est changing and most persistent
– JDBC and Java EE (w as J2EE) are standards w hich help to minimize

specif ic back-end know ledge of IMS
Exploit new and abundant skills in the marketplace and help
customers avoid problems due to the loss of traditional zOS skills
CPU cost has been reduced significantly with successive releases of
IBM’s SDK

– And Java MIPS are very cheap w ith System z Application Assist
Processor (zAAP)

Java allows you to reduce redundant development efforts, to take advantage of industry
standards and tools, and to leverage a larger pool of resources and technology.
Java is becoming improved for efficient and more economic use. And Java MIPS
can also be run on the zAAP processors.

IBM Java support for the new IBM zSeries Application Assist Processor (zAAP) for the
IBM zSeries servers allows Java workloads to transparently execute on the zAAP
processors without requiring application change. This allows you to integrate and run
Java workloads on the same server as your database at a significantly lower total
cost of ownership than previously possible. This helps reduce overall cost of
computing for Java applications, increase system productivity by reducing the
demands on general purpose processors, and makes capacity available for other
workloads.

9

9

IMS

© 2009 IBM Corporation

It’s not that different

Order
File

Customer
Accounts

Secur ities
Master

Quotes
Databas e

Java EE Traditional I MS

HTML MFS

JSF

JSP

Page Handler

Web
Ser vice

IMS TM
Serv ices

JCA or M Q

Validate Input

IMS DB
Serv ices

Beans
EJB’s
Serv ices

Defi nes scr eens , for ms
and for mats

Manages screen I /O
and applicati on fl ow

Screen and data
validati on

Business pr ocessi ng
and data I/O

Session
Bean

I/O areaSession
Management

Business
Logic

The standard Java runtime environment can be compared to the traditional
IMS environment.

10

10

IMS

© 2009 IBM Corporation

Agenda

Java bas ics
IMS Java basics
IMS Java Applications
IMS Database Access
DB2 Access
Application Interoperability
Technical Considerations
Customer Examples
Summary

So let’s look next at IMS and Java basics

11

11

IMS

© 2009 IBM Corporation

IMS Java Basics
A library of classes that allows you to wri te programs in java that access IMS
messages and/or IMS DBs (and DB2)

– Java IMS TM API – Offers IMS transaction processing support
– Java IMS DB API - Offers IMS database access support using the IMS Java hierarchic

database interface
– JDBC driver for IMS

– Implements Industry standards JDBC 2.0 API
– Offers SQL and XQuery support for IMS DB

A Java IMS application runtime environment in special dependent regions
– JMP and JBP regions

Language interoperability
– Ability for Java and OO COBOL/PL/I to invoke one another within the same transaction

DB2 interoperability
– Access an IMS and DB2 database in the same transaction

– Use either the DB2 JDBC or SQLJ drivers to access DB2
– IMS and DB2 activity in the same unit of work

XML support in IMS databases
– An extension of the JDBC interface can be used for storing and retrieving XML documents

in IMS databases

Java is the base for new application development and connectivit y.
IMS Java application support has enhanced the ability of our cus tomers and business partners to provide integrated on demand
business application devel opment with IMS. The object of this function is to provi de support for you to write Java applications and
run them as IMS applications using WebSphere workstation and host tools for development and testi ng.
IMS Java provi des a librar y of classes for access to IMS messages and data.
IMS provides access to IMS TM message queues and to IMS DB and DB2 data through JDBC.
Support is also provided for IMS DB access from CICS/zOS Java applications, DB2/z/OS Java Stored procedures and WebSphere
z/OS applications, opening IMS DB up to better integration and use across pl atforms and acr oss application environments. N ew
Java R egion T ypes wer e also being provi ded to replace initial support utilizing the High Performance Java Compiler. T he newer
support enhances the initial Java support to run with the new Scalabl e JVM, providing enhanced tool support for devel oping these
Java applications to run in IMS. New Java Tooling is provided, along with Java, Cobol, PL/I, and XML Interoperation. IMS support
for Java is augmented by IBM's Eclipse-based Application Devel opment tools for JEE programmers, as well as a broad array of
AIM tools designed to facilitate building Innovati ve SOA-based applications that combine the best of the z world with the best of the
Java world.
The Java cl ass librar y is simple, and i ncludes a large number of pre-written classes of function in a number of packages intitiall y for
the classic dri vers (shown below) and has since been providing more for the uni versal drivers:
com.ibm.ims.b ase - Provi des cl asses for basic IMS Java functi ons and for problem determination.
com.ibm.connector2.ims.db - Pr ovides classes for connecti ng to IMS databases from WebSphere Application Ser ver for z/OS.
com.ibm.ims.application - Provides classes for processi ng IMS messages, and performs commits and r ollbacks for JMP and
JBP applications.
com.ibm.ims.db - Provides classes for the JDBC driver and for the IMS Java hi erarchical database interface.
com.ibm.ims.rds - Pr ovides classes for client-side WebSphere Application Server support of remote database ser vices
com.ibm.ims.rds.host - Provides classes for server-side WebSphere Application Ser ver support of remote database services
com.ibm.ims.rds.util - Provides classes for storing data that is passed between the client and ser ver components for remote data
access support
com.ibm.ims.xms - Provides classes for storing and retrieving XML in Java applicati ons .
Additi onal information about the IMS Java cl ass librar y is in the IMS Java API Specification (Javadoc), available of f the
www.ibm.com/ims link to the IMS Java page.

12

12

IMS

© 2009 IBM Corporation

AERTDLI
Interface

CEETDLI
Interface

AIBTDLI
Interface

JNI

Java Dependent Region Resource Adapter Architecture

IMS
TM
API IMS Universal DL/I

Drive r

IMS Uni versal
JDBC Drive r

Customer Code

Java Class Library

Language Layer Interface to IMS

IMS DB Metad ataBusiness Logic

Mapping to
DL/I APIs

JDBC
interface

Java to C
interface

JMP/JBP App
using JDR RA

DL/I
Database

View

IMS Dep. Region
Transaction and

Message
Processing

COPYLIB

PSBs

DBDs DBDGEN

PSBGEN

ACBGEN

Java Dependent Region Resource Adapter Architecture
The IMS Java dependent region (JDR) resource adapter is a set of Java classes and
interfaces that support IMS database access and IMS message queue processing
within Java batch processing (JBP) and Java message processing (JMP) regions. To
access IMS message queues from your JMP and JBP applications, use the IMS Java
dependent region resource adapter. To access IMS databases from your JMP and JBP
applications, you can also use the IMS Universal JDBC driver and the IMS Universal
DL/I driver. This architecture, based on the IMS Open Database solution, supports Java
application development from simple up to advanced Java and IMS skill levels.
Along with the JDR resource adapter and IMS Universal drivers, your Java application
uses metadata classes, which describe the IMS database view to your Java application.
To generate these classes, use the IMS Enterprise Suite DLIModel utility plug-in. In
addition to generating the metadata classes, this utility generates an easy-to-read report
of the IMS database and an XMI description of the database.
Under the covers, the IMS solutions for Java development use the Java Native Interface
(JNI) to access lower-level C interfaces to get to the IMS functions.

13

13

IMS

© 2009 IBM Corporation

Agenda

Java bas ics
IMS Java basics
IMS Java Applications
IMS Database Access
DB2 Access
Application Interoperability
Technical Considerations
Customer Examples
Summary

We now look closer at the IMS Java applications

14

14

IMS

© 2009 IBM Corporation

IMS TM Java Dependent Regions
Tw o types of IMS Java Dependent Regions (JDR)

Java Message Processing (JMP) region
– Analogous to an MPP region for message driven applications
– New IMSJMP JOB that EXECs the new DFSJMP procedure
– DFSJMP procedure added to IMS.PROCLIB

• Similar to the DFSMPR procedure f or MPPs

Java Batch Processing (JBP) region
– Analogous to a non-message driven BMP f or non-message driven Java applications
– New IMSJBP JOB that EXECs the new DFSJBP procedure
– DFSJBP procedure added to IMS.PROCLIB

• Similar to the IMSBATCH procedure for BMPs

JMP regions and JBP regions can run applications that are w ritten in Java,
object-oriented COBOL and PL/I, or a combination of the tw o.
JMP regions and JBP applications can access DB2 for z/OS databases as
well as IMS databases.

JVM Support in IMS Dependent Regions
When IMS is your transaction manager, Java application programs run in IMS dependent regions that
have a persistent reusable Java Virtual Machine (JVM). Java applications can run in two types of regions:
Java Message Processing (JMP) and Java Batch Processing (JBP).
JMP (Java Message Processing)

For message-driven Java applications
New IMSJMP JOB that EXECs the new DFSJMP procedure
DFSJMP procedure added to IMS.PROCLIB

Similar to the DFSMPR procedure for MPPs
JBP (Java Batch Processing)

For non-message driven Java applications
New IMSJBP JOB that EXECs the new DFSJBP procedure
DFSJBP procedure added to IMS.PROCLIB

Similar to the IMSBATCH procedure for BMPs

15

15

IMS

© 2009 IBM Corporation

Java API for IMS TM

Java library provides an API for u se in Java
dependent regions

Perf orms traditional transaction processing

– Message queue processing (reading and writing)
– Transaction demarcation
– Program switching capabilities

• Easy integration of Jav a with existing assets

Remember that since the Java APIs are built on top of existing assembler
modules all traditional IMS functionality is supported via the Java libraries.

16

16

IMS

© 2009 IBM Corporation

More on the Java Dependent Regions

Regions designed specifically to handle Java workload
– IMS fully manages the JV M lifecycle

The persistence model of IMS dependent regions tailors to
JVM usage
– IMS dependent regions are typically up for long periods of time
– JV M init ialized w hen the dependent region is brought up

• JV M remains active and ready for Java w orkload until
dependent region is brought dow n

Shared cache feature of SDK 5/6
– Works very w ell w ith IMS
– Multiple dependent regions can share the same cache
– Caches can be configured to be accessed by a certain set of

applications
• Similar to ‘classes’ of IMS applications

Regions designed specifically to handle Java workload

IMS fully manages the JVM lifecycle
The persistence model of IMS dependent regions tailors to JVM usage

IMS dependent regions are typically up for long periods of
time
JVM initialized when the dependent region is brought up

JVM remains active and ready for Java workload until
dependent region is brought down

Shared cache feature of SDK 5/6

Works very well with IMS
Multiple dependent regions can share the same cache
Caches can be configured to be accessed by a certain set of
applications

Similar to ‘classes’ of IMS applications

17

17

IMS

© 2009 IBM Corporation

IMS TM Java Dependent Regions…

Each JDR contains a Java Virtual
Machine (JVM)

– Can only connect to one PSB at a
time (as always)

– Can run any mixture of Java and
Object Oriented COBOL

To enable class sharing use –
Xshareclasses:name= option
when starting a JVM

DFSJV MMS JVM

JMP

Object
Me mory

HEAP

JVM

JBP

LIBP ATH=j re/bin/j 9v m

DFSJV MEV

JVMOP MAS=

ENVIRON=

Shared Class Cache
-Xshareclasses:name=imsjvm

Object
Me mory

HEAP

XPLINK(ON)

JVMOPMAS=DFSJVMMS
Specifies the JVM options
ENVIRON=DFSJVMEV
Must contain the pathname to JVM
Must contain the pathname to the IMS Java native code
To enable class sharing use –Xshareclasses:-name= option when starting a JVM.
The -name=<name> connects a JVM to the specified name cache or creates the cache
if it does not already exist.
-Xscmx<size>[k|m|g] Specifies cache size. This option applies only if a cache is being
created and no cache of the same name exists.
Note shared class is not required.

18

18

IMS

© 2009 IBM Corporation

IMS TM Java Dependent Regions …

IBM SDK V5 for z/OS
– Required for IMS 10 JMP and JBP dependent regions
– Contains a re-engineered Java 2 virtual machine
– Provides cache class sharing

– Replaces persistent reusable function
– Multiple dependent regions can share the same cache
– Caches can be configured to be accessed by a certain set of

applications
– Similar to ‘classe s’ of IMS applications

– Simpler implementation
Benefits of IBM SDK V5 for z/OS

– Reduces virtual memory consumption
– Reduces JVM startup time
– Simpler setup

– Does not require separate “trusted” and “shareable” classpaths
IBM SDK V6 for z/OS

– Offering improved performance

z/OS delivers a complete Java 2 Software Developer Kit (SDK).
Previous versions of the SDK provided a reusable function to support transactional runtime
environments like IMS. This capability allowed the Java Virtual Machine (JVM) to be initialized
during IMS Java dependent region startup and to be “re-set” after the IMS application program
completed processing. This avoided the overhead of loading the JVM for each IMS application
program schedule.
The new SDK provides a Class Sharing capability to replace the persistent reusable function.
z/OS APAR OA11519 is recommended for cache class sharing.
Benefits of SDK V5:
Uses dynamic recompilation with 5 optimization levels

The busiest methods are optimized most aggressively
Provides enhanced “garbage collector”

To delete objects which are no longer in use
Avoids JVMs having to be reset for each transaction (more later)
Provides shared class caches

Shared by multiple JVMs

19

19

IMS

© 2009 IBM Corporation

PCB Name or label required for any application
Value of JAVA to be supplied for the LANG= parameter in the PSBGEN macro

– LANG=JAVA can also be supplied in the APPLCTN macro for GPSBs
– LANG=JAVA only required for JMP regions
– Specifying LANG=JAVA will result in the transaction being scheduled in a Java

dependent region
– When IMS receives the name of the transaction and looks up the PSB associated with the

transaction code, if JAVA is specif ied the transaction will be queued to execute in a Java
dependent region

PHONEAP PCB TYPE=DB,DB DNA ME =TELEDBD,PROCOPT=AP,KEYLE N=16

SENSE G NA ME=TELE ROOT,PARE NT=0,PROCOPT=AP

PSBGEN LANG=J AVA,PSBNA ME=J AV TES TJ,CMPAT=YES, OLIC=YES

END

APPLCTN PSB=J AV TES TJ,P GMTYPE=TP,SCHDTYP=PARA LLEL

TRANSACT CODE =JAVTRANJ,PRTY=(7,10,2),INQUIRY=NO, MODE =SNGL, X

MS GTYPE=(SNGLSE G, NONRESP ONSE,1)

IMS TM Java Dependent Regions …

To schedule into JVM, the application macro is the same and the application’s PSB is
used. During the PSBGen, the Java language is specified, indicating that this is to be
scheduled into JVM region. Class scheduling is the same as with other MPPs.

20

20

IMS

© 2009 IBM Corporation

Java Message Processing Applications
Before your JMP application can access the message queue, you must define input
and output message classes by sub classing
com.ibm.ims.application.IMSFieldMessage

– The subclass inherits all the data and methods of IMSFieldMessage
– You add the metadata that describes the message content

The IMS Java dependent region resource adapter provides the capability to
process IMSFieldMessage objects.

The follow ing code sample show s how to define an input message:

Constructor
Method

public c lass FindCarInput ex te nds I MSFi eldMessa ge {
fi nal s tatic DLI TypeI nfo[] fiel dI nfo = {

new DLI TypeI nfo("I nputMake ", DLI TypeInfo.CHAR, 1, 5),
new DLI TypeI nfo("I nputYear", DLI TypeI nfo.CHAR, 6, 4) };

public Fi ndCarInput() { /* me thod to crea te this ms g obj ect */
super(fieldI nfo, 9, fa lse); /* “fa lse” = not a SP A */ }

}

You do not define LL, ZZ or Trancode

This is an example of how we provide Java message classes, just as we would want to
define input-output message areas. For Cobol, you define the LL-ZZ, but for IMS Java,
these don’t need to be provided. IMS provides these as methods, defining the field
message. The Java Dependent Region resource adapter also supports scratchpad
areas (SPA) for conversations with Java.

21

21

IMS

© 2009 IBM Corporation

Applica tion a pp = Applica tionFactor y.crea teApplica tion();

Me ssageQue ue msg0 = a pp.ge tMes sage Que ue();

IOMe ssage inputMe ssa ge = a pp.getI OMe ssage(“clas s://Fi ndCarInput”);

String i nputMake;

while (ms gQ.getUni que(i nputMessa ge)) {

inputMake = inputMessa ge.getS tring("I nputMake ");

…

Processing Messages in a JMP Application

getString() is a method of the IOMessage interf ace
– It references mess age fields by name defined in metadata

– Simi lar ly ther e are m ethods (setString(), etc) for bui lding output m essage fie lds

Similar classes are also coded to def ine each subsequent input message segment, output
message segments, and a scratchpad area (SPA), as appropriate

A transaction begins when the JMP application receives an input message and ends
when the JMP application commits the results from processing the message.

To get an input message, the application calls the MessageQueue.getUnique method.
The following code example shows how an input message is processed in a JMP application:

When a program is scheduled, the “while” loops to get messages from the message
queue to get data for the message area.

22

22

IMS

© 2009 IBM Corporation

JMP Program Structure
IMS standard commit model no longer
requires explicit checkpoint/rollback using
the IMS DB Resource Adapter
Transaction class

Grouping of several classes including
– Message segments and SPA classes
– DLIDatabaseView class for IMS DB

metadata
– The class representing the transaction

itself instantiates itself and other classes,
gets the input message, controls
processing, sends reply message and
loops

Get Message
(Implicit checkpoint)

Process Message
Insert response
Loop back to get next
message

Consistent with
all other

Programming Languages

IMS Java Dependent Region programming does not require an explicit
checkpoint/rollback call using the IMS DB Resource Adapter Transaction class before
obtaining the next input message. It operates just like other languages now. This
reflects the changes of the JMP model back to the standard model, like COBOL, doing
synchpoint and get next.

23

23

IMS

© 2009 IBM Corporation

Agenda

Java bas ics
IMS Java basics
IMS Java Applications
IMS Database Access
DB2 Access
Application Interoperability
Technical Considerations
Customer Examples
Summary

Java database access is also provided to IMS databases

24

24

IMS

© 2009 IBM Corporation

IMS Solutions for Java Development
IMS 11 Open Database APIs JDBC 3.0

– IBM SDK V5 z/ OS
– CICS,DB2,WebSph ere

– IBM SDK V6 z/ OS
– IMS T M

IMS 9,10 Java D rive rs JDBC 2.1
IBM SDK V1 .3.1 I MS 9
IBM SDK V1 .4.2 I MS 9
IBM SDK V5 z/ OS I MS 10

M
P
P

B
M
P

I
F
P

C EET DLI I nterf ace

J NI
B ase

Ap
p D B

J DBC / SQ L

IM S J avaA pp
D LI
D atab ase
Vie w

C EET DLI I nterf ace

J NI
B ase

Ap
p D B

J DBC / SQ L

IM S J avaA pp
D LI
D atab ase
Vie w

JMP JBP

C EET DLI I nterf ace

J NI

B ase

A
pp

D B

J DBC / SQ L

IM S J ava
A pp

D LID atab ase
Vie w

C EET DLI I nterf ace

J NI

B ase

Ap
p D B

J DBC / SQ L

IM S J avaA pp
D LI
D atab ase
Vie wStored

Procedure EJB

IMS DB
DRA

ODBA

JCICS
C EET DLI I nterf ace

J NI

B ase

A
pp

D B

J DBC / SQ L

IM S J ava
A pp

D LID atab ase
Vie w

Java Virtual Machine Java Virtual Machine Java Virtual Machine

Java Virtual Machine

IMS DB Resource Ada pter and Distributed
Universal DB Resource Adapter Type 2 and Type 4

IMS DB Resource Ada pter and Universal
JDBC and DL/ I Type 2 an d Type 4 IMS DB Resource Ada pter and Universal

JDBC and DL/ I Type 2 an d Type 4

IMS Java Dependent Region Resource Ada pter
Universal JDBC and DL/ I Ty pe 2 an d Type 4

The IMS DB Resource Adapter enabled JDBC access to IMS DB from IMS TM JMP/JBP
environments, CICS Java application, DB2 Java Stored procedure, and Enterprise Java Beans
running on WebSphere and z/OS environments, but initially from within the same LPAR. Now the
IMS DB Resource Adapter has been extended to provide access from distributed, as well as, z/OS
environments.
IMS V9 requires SDK V1.4.2 for JMP and JBP regions, IMS DB Resource Adapter for CICS, DB2 or
WAS requires SDK V1.3.1 or higher.
IMS V10 requires SDK V5 for JMP and JBP regions, IMS DB Resource Adapter for CICS, DB2 or
WAS requires SDK V1.4.2 or higher.
JDK is a subset of SDK and is what is needed for writing and running Java programs. SDK consists
of Applications, debuggers, and documentation. 1.5 and 5, etc., are interchangeably used.
The IMS Universal drivers require Java Development Kit (JDK) 5.0 or later, CICS Transaction Server
for z/OS Version 3, DB2 for z/OS Version 9 or DB2 UDB for z/OS Version 8, WebSphere Application
Server for z/OS or WebSphere Application Server for distributed platforms Version 6.1, and JMP and
JBP regions. Java Development Kit JDK 6.0 or later can also be used.

25

IMS

© 2009 IBM Corporation

IMS 11 Connect Structure
with Supporting IMS Connectors

Expands IMS as the Enterprise Integration Focal Point
Provides a Connectivity Base for the Future

TCP/IP
Driver Call

Command Component
XML Adapter/Converters

Local PC
Driver

Interface Comm unic ation

Components
Comm unic ation

Components

IMS TM
Resource
Adapter

RYO/API
Soap
Gateway

Environments
Connecting with
other Application
and Data Servers,
using advanced
technology for
client and server
connectivity

Providing High Availability, Resilience, Performance, and Operations Ease,
advanced commands/messages, error checking/trace/diagnostics

Connecting IMS
Transactions,
Operations,
and Data

IMSPLEX
Driver

ODBM
Driver

OTMA
Driver

Key Message: IMS provides and continues to enhance the integrated IMS Connect
function.
IMS Connect function is part of the overall restructure of IMS for the 21st Century and is
architected as the base for all future IMS Connectivity. Much of the function of IMS
Connect can also be used with earlier IMS Versions so you can start to take advantage of
it before migrating your networks/applications/databases to IMS V9. The structure of IMS
Connect is designed such that drivers can be interchangeable. That is, alternatives for the
TCP/IP front end or OTMA back end interfaces are already being provided. These are
allowing IMS to exploit newer, additional, and enhanced protocols and/or interfaces.
Along with IMS Connect is provided the IMS Connector for Java for access from Java
applications, SOAP Gateway and parsers, and samples for other language access as
well.

With IMS Version 8, IMS extended its use of XCF for use by other IBM subsystems,
such as IMS Connect , for distributed operations access through the Structured Call
Interface to the Operations Manager from the DB2 Version 8 Control Center as a single
point of control.

With IMS Version 9 this function was integrated in.
With this structure IMS 11 Connect has evolved to also support direct distributed

database access to IMS DB from Java and other applications

26

26

IMS

© 2009 IBM Corporation

Distributed

Universal

DB
Resource

Adapter
J

C
A

1.5

T

C

P

I

P

WebS phere

S

O

A

P

LPAR A
z/OS

Distributed
IMS DBCTL

IMS

PC

LPAR B

LPAR C

XCF

TCP/IP

IMS DBCTL

IMS

PCS
C
I

O
D
B
A

Final Solution

DLI
TCP/IP

JDBC TCP/IP

Rol l Your Own

IMS DBCTL

IMS

PCS
C
I

O
D
B
A

Innov ativ e Improv ed
Usabil ity

Open
Standar ds

IMS Connect

T

C

P

I

P

S
C
I

S
C
I

O
D
B
A

ODB M

Distributed or z/OS Universal Drivers

IMS 11 Open Database Environment

This provides the ability to leverage IMS Connect as the complete gateway solution for IMS TM,
Operations, and now DB. IMS Connect is augmented to be an ODBM client. This allows distributed
applications to leverage the TCP/IP protocol to communicate with IMS Connect, which can then
access any database in the entire IMSplex.
IMS Connect becomes the IMS Gateway to both IMS TM and IMS DB.
WebSphere and DB2 Stored Procedures no longer have to be on the same LPAR with IMS when
they interface with the IMS ODBM (Open Database Manager) address space. The ODBM address
space must be on the same LPAR with IMS due to the use of the ODBA (Open Database Access)
interface.
Distributed clients would now have the option of going directly to IMS Connect for IMS DB requests.
Existing DB Resource Adapter applications are unaffected by Open Database. In order to exploit
Open Database from existing DB Resource Adapter applications, a migration to the JCA 1.5
programming model would have to be done.

27

27

IMS

© 2009 IBM Corporation

DLIModel Utility
IMS DB visualization tool

– Visualize an entire IMS PSB
– Can view each PCB individually

– Hierarchy, segments, fields, types, etc
IMS DB metadata generation tool

– Generates the necessary metadata
consumed at runtime by IMS DB
Resource Adapter, XML-DB support

– Database metadata
– XML schema

Bottom up tooling approach
– Parses PSB and DBD source
– Optionally COBOL copybook

definit ions of segments
An Eclipse 3.x plug-in IMS Java

Metadata
classes

COBOL
copybooks

Control
statements

DLIModel
Utility PSB

DBD

p ac kag e sam ple s. dea le rsh ip ;

i mp ort c om. ibm .i ms. db .*;
i mp ort c om. ibm .i ms. ba se. *;

p ub lic c las s A UT PSB 11 Dat ab ase Vi ew ext en ds DL IDa ta bas eVi ew {
// T he fol lo win g DLI Ty peI nf o[] ar ra y d es cri be s S egm en t: DE ALE R in PC B: AUT OL PCB
st at ic DLI Ty peI nf o[] A UTO LP CBD EAL ER Arr ay = {

new DL IT ype In fo("D eal er No" , D LI Typ eI nfo .C HAR , 1 , 4, "D LRN O"),
new DL IT ype In fo("D eal er Nam e", D LIT yp eIn fo .CH AR, 5 , 3 0, "D LR NAM E"),new DL IT ype In fo("D eal er Cit y", D LIT yp eIn fo .CH AR, 3 5, 10 , " CI TY"),
new DL IT ype In fo("D eal er Zip ", DL ITy pe Inf o. CHA R, 45 , 1 0, "Z IP "),
new DL IT ype In fo("D eal er Pho ne" , DLI Ty peI nf o.C HAR , 55, 7 , " PH ONE ")

};
st at ic DLI Se gme nt AU TO LPC BD EAL ERS eg men t= ne w DLI Seg me nt

(" De ale rS egm en t", "D EAL ER" ,A UTO LP CBD EA LER Arr ay ,61);
.. .

// A n a rra y of DL ISe gm ent In fo obj ec ts fo llo ws to de sc rib e the v iew f or PCB : AUT OL PCB
st at ic DLI Se gme nt Inf o[] A UT OLP CBa rr ay = {

new DL IS egm en tIn fo (AU TO LPC BDE AL ERS eg men t, DLI Dat ab ase Vi ew. RO OT) ,
new DL IS egm en tIn fo (AU TO LPC BMO DE LSe gm ent ,0),
new DL IS egm en tIn fo (AU TO LPC BOR DE RSe gm ent ,1),new DL IS egm en tIn fo (AU TO LPC BSA LE SSe gm ent ,1),
new DL IS egm en tIn fo (AU TO LPC BST OC KSe gm ent ,1),
new DL IS egm en tIn fo (AU TO LPC BST OC SAL ES egm en t,4),
new DL IS egm en tIn fo (AU TO LPC BSA LE SIN FS egm en t,5)

};

.. .

}

If y ou c an read
th is y ou do not
need g las s es ;

howev er th is is
jus t s i lly wri tting
to repres ent the

c ontrol
s ta tem ents that
are the input to

the uti l i ty .

XML
schemas

DBD
metadata

PSB
metadata

DAS
command

s
Deployable IMS
DB Web Service

artifacts
EAR
WSDL

Two v ersions of the IMS DLIModel utility hav e been made available: An IMS 9/10-shipped version that runs from
System Services or f rom the z/OS® BPXBATCH utility, and an IMS 10 and IMS Enterprise Suite version that can be
web downloadable as a plug-in to Eclipse. The GUI can be installed in an Eclipse 3.0.1 or 3.0.2 level tool. It can also
be installed in WebSphere Dev eloper f or z IDE.
In IMS 10, the IMS DLIModel utility has been enhanced to generate XMI f rom PSB and DBD source. The generated
XMI can also be used as input to the DLIModel utility. GSAM now uses the GSAMDLIDatabaseView IMS Jav a class
f or metadata inf ormation about the GSAM database. The DLIModel Utility now supports GSAM databases.
This chart shows the inputs and outputs of the DLIModel utility. The actions of the utility are directed by control
statements that y ou supply. PSB and DBD source members are read f rom their PDS or PDSE data sets and parsed
by the utility to build an in-memory object model of the database structure and the PSB’s v iew of that structure. Note
that the IMS COBOL copybooks can only be processed by the GUI and the BPXBATCH utility can only process
COBOL XMI representations of the COBOL copybooks. The utility generates various outputs that were requested
through control statements. You can specify to have an IMS Jav a metadata class be generated for the PSB
processed, together with a corresponding easy -to-read DLIModel Jav a Report for the Jav a programmer to use. You
can specify an XMI description of the entire in-memory model. One description cov ers PSB and all DBDs processed
in the run. You can also request a detailed trace file of the utility execution if one is necessary for problem resolution.
The DLIModel utility produces the necessary metadata classes needed to dev elop IMS Jav a applications. Howev er,
the Java developer needs only to reference the DLIModel Java Report f or inf ormation about the classes. The
DLIModel Java Report summarizes the structure of the IMS databases in a way that allows you to create IMS Jav a
applications and to code SQL queries against the databases. With the DLIModel Jav a Report, y ou do not have to
interpret the sy ntax of the IMS Jav a classes or ref er to the DBD or PSB source.
An XMI f ile, written in UTF-8 encoding, is produced by the utility if you specify genXMI=YES in the OPTIONS control
statement. It describes all of the PCBs and their referenced DBDs processed in the entire run of the utility. The XMI
that is produced by the utility is based on a metamodel of IMS database defined in UML. This model is a package
with a number of inheritance relationships to the OMG Common Warehouse Metamodel (CWM). Howev er, only the
IMS package itself is included and used in the DLIModel utility. The generated XML schema, written in UTF-8
encoding, is an XML document describing an IMS database based on a PCB. An XML schema is required to retriev e
or store XML in IMS. IMS uses an XML schema to v alidate an XML document that is being stored into or retrieved
f rom IMS. The XML schema, not the application program, determines structural layout of the parsed XML document
in the database during storage and the generated XML document during retrieval.

28

28

IMS

© 2009 IBM Corporation

Database Visualization (UML View
of the Database Metadata)

This shows an example of the GUI view that the DLIModel Utility provides of the
IMS Database Metadata.

29

29

IMS

© 2009 IBM Corporation

Graphical User Interface (GUI)
– Lever age Ecli pse, Ecli pse M odeling Framewor k (EMF) and Graphical Editor

Framewor k (GEF)
– Can be ins tall ed as a s tand-al one function or on top of other Ecli pse based products

(i.e. RAD 7.5, RDz 7.5, D ata Studio) using IBM Installation M anag er
IMS Database Visualization Tool

– User can visualize an entir e IM S PSB and D BD in a multi- page graphical editor.
• Each PC B can be vi ewed, saved and printed i ndi vidually. Each PC B editor shows

the IMS DB hi erarchy with the seg ments, fiel ds , fi eld types, etc.
– User can also search an entir e IM S PSB for a specific PC B, seg ment, or fiel d.

IMS Database Metadata Ge neration Tool
– It has been used to g ener ate the necessar y metadata that is consumed at r unti me by

the IMS Uni versal dri ver, XML-D B, XQuer y and IM S D B Web ser vices.
• DLID atabaseView for IMS Uni versal dri ver
• XML schema for XML DB and XQuer y
• Depl oyable arti fac ts (EAR and WSD L fil es) for IM S D B Web ser vices vi a the D AS

commands in a syntax assist and syntax highlig ht editor.
– This tooling curr entl y uses a bottom- up approach, parsi ng PSB and DBD source

using either C ontrol statements or Wizard panels. U ser can opti onall y i mport C OBOL
copybook and PL/I Include definiti ons to defi ne fi eld layouts for each segment.

IMS Enterprise Suite 1.1 DLIModel Utility Plug-in

DL/I Model Utility plug in provides a user friendly interface, simplifies IMS
metadata generation, eases IMS Java and XML database application
development and access, and offers a visual representation of IMS
databases. Enhancements ease use of this utility, and its users can now
import PL/I Include to redefine segment layout in IMS metadata, as well as
take advantage of the new IMS Universal JDBC driver. Enhancements also
include:

Export PSB graphical view as graphic files (JPG or BMP)
Auto select DBDs that referred by a PSB in wizard
Support PL/I Include Import
Add PROCOPT to IMS metadata for the IMS JDBC driver
Add Virtual Foreign Key view to the PSB graphical editor
Change GUI messages to match with product messages prefixes
Add the search capability to the PSB graphical view
Update the existing metadata with newly updated PSB/DBD source
Ship under the new IMS Enterprise Suite through IBM Installation
Manager

30

30

IMS

© 2009 IBM Corpor ation

IMS Java and IMS XML Databases

Two Types of IMS XML Database
– Decomposed or Virtual XML DB

– A standard IMS DB, which has
data automatically transformed
into XML
when retrieved (and v.v.)

– Intact XML DB
– Where XML data is stored without

transformation (i.e. with its XML
tags) on the IMS DB

Java API - retrieveXML() and
storeXML()
DLIModel utility - used to generate
XML schema from DBD

IMS PSB/DBD
Source

DLIModel
Utility

XML Sc hema

IM S Java
Applicat ion

XML Docu ment

IMS DB

Since IMS 9, it has been possible use an IMS database as an XML database. There
are two possible implementations.

Firstly, the IMS database can be a Virtual or Decomposed XML database. The
data in the database is absolutely standard IMS data. However, by using an XML
schema that describes how the IMS data would be represented in an XML
document, it is possible to transform the data between the XML document and the
IMS database in either direction. This is an extremely powerful feature of IMS, and
is simplified because both XML and IMS use hierarchical data structures, and hence
it is easy to map between the two formats. As mentioned earlier, the XML Schema
can be created by the DLIModel utility.

The second possibility is to use an IMS database to hold intact XML documents –
both the data and the XML tags are stored on the database.

In both cases, the XML document is stored or retrieved using JDBC.

31

31

IMS

© 2009 IBM Corpor ation

SELECT retr iev eXML(Empl oyee)
FROM employeeDB.Employee
WHER E Empl oyee.seri alNumber = ‘3A0140’

SELECT retr iev eXML(Empl oyee)
FROM employeeDB.Employee
WHER E Empl oyee.seri alNumber = ‘3A0140’

XML Data is retrieved and stored using an extension of JDBC

Examples:

Note: SELECT of XML still populates a result set. The XML document(s) will form one
column. You could select other things into other columns.

SELECT Employee.serialNumber, retrieveXML(Employee) FROM …

IN SERT INT O custXMLDB.Customer
(CustN o, storeXML()) VALUES (?,?)

IN SERT INT O custXMLDB.Customer
(CustN o, storeXML()) VALUES (?,?)

Build an XML document out of the
Employ ee Segment and all its Dependent
Segments in this PCB, f or the employ ee
with serial number 3A0140

custXMLDB is an intact XML DB. The root
segment is called “Customer”, and contains
a key field, “CustNo” and the f irst piece of
the XML document

IMS Java and IMS XML Databases …

To retrieve IMS data as an XML document, you would use the SQL SELECT
function, as usual. This will still return a result set – some columns can be used for
DB fields, and other columns can be used for XML documents. This requires a
“JDBC extension” to specify that an XML document is to be SELECTed rather than
a field. In the first example on the slide, the SELECT specifies a single value to be
SELECTed – “retrieveXML(Employee)” . The WHERE clause limits this to the
employee with serialNumber ‘3A0140’. So the result set will contain one column and
probably one row. The content will be the XML document created from the
EMPLOYEE segment and all its dependent segments in the employeeDB PCB
view.
The example in the middle of the slide shows a variation on this. In this case the
result set will contain two columns – the first will be the employee serial number and
the second the XML employee document.
The third example shows an INSERT of an XML document onto a customer
database. This is actually an example using an intact XML database, and so IMS
requires a separate root key value to be specified as well as the XML document
itself. Before executing the insert, the application will have to set the first “?” equal
to the customer key value, and the second “?” will be set equal to the customer XML
document. Then the SQL INSERT can be executed.

32

32

IMS

© 2009 IBM Corporation

IMS DB Resource Adapter XQuery API

XQuery is a language for querying XML data
– Result of query is itself an XML document

– Note XQuery is currently a read only language
IMS 10 XQuery support

– Supports Decomposed (Virtual) XML DB only

– Views result of SQL SELECT as the input document to be XQueried

– Allows any standard IMS DB to be queried with XQUERY

Supports the XQuery 1.0 and XPath 2.0 Data Model
– XQuery is based on the structure of XML to prov ide query capabilities

Extends IMS DB Resource Adapter A PI
– SELECT retrieveXML(<segment>, < xquer y>)
– FROM <pcb.segment>
– WHERE <predicate>

• Initially, the IMS XQUERY is i mplemented
via an SQL QUERY

You should use the WHERE clause to
reduce the amount of IMS data that is
searched

• At a l ater ti me, the XQUERY inter nal
processing will be enhanced to limit the
search to the necessary DB records

XQuery is a functional programming language that was designed by the World Wide Web
Consortium (W3C) to meet specific requirements for querying XML data.
XQuery is based on the structure of XML and leverages this structure to provide query
capabilities for the same range of data that XML stores.
The IMS DB Resource Adapter XQuery support extends the retrieveXML User Defined Function
(UDF) by adding a second parameter. The second parameter allows the passing of an XQuery
1.0 expression.
The expression is evaluated relative to the retrieveXML context and returned to the result set as
a CLOB value. This implementation views the entire IMS DB as an XML document and enables
the return of specific IMS data based on the XQuery. For IMS XQuery support the XQuery 1.0
and XPath 2.0 Data Model serves two purposes. First, it defines the information contained in the
input to be used by the IMS XQuery processor. Second, it defines all permissible values of
expressions in the XQuery, and XPath languages that can be evaluated by the IMS XQuery
processor. The IMS DB Resource Adapter is packaged in imsjava.jar. The IMS XQuery function
resides in a separate package (imsxquery.jar).
Benefits
IMS participates in industry standards
Can use Application Development tools that support XQuery
Can be used with existing IMS data and IMS XML Schemas
As GUIs are developed for front-ending XQUERY, the objective is that the target DB can be an
IMS database

33

IMS

© 2009 IBM Corporation

XML document

<xsd:annotation>
<xsd:appinfo>

<ims:DLI mode="store"
PSB=“MYPOPSB"
PCB=“MYPOPCB"
<xsd:element name=“A”>
<xsd:element name=“field1"

…

DLIModel Generated
XML schema

IMS database storage

<namelist>
<f1> </f 1>
<f2> </f 2>
<f3> </f 3>

.

.

.

AAf1(x)

BBB1

C1

D1B2

C2f6(Y)

D2

SELECT retrieveXML(B,
‘for $x in /B

where $x/@f1 = z
return <namelist>

{$x/B/f4}
</namelist>’)

FROM ….

WHERE ……

XML
CLOB

IMS DB Resource Adapter XQuery API …

Since IMS XQuery is an extension to IMS XML DB, existing DLIModel generated XML Schemas
can be used by the IMS XQuery processor to compose XML documents.

34

34

IMS

© 2009 IBM Corporation

Agenda

Java bas ics
IMS Java basics
IMS Java Applications
IMS Database Access
DB2 Access
Application Interoperability
Technical Considerations
Customer Examples
Summary

DB2 can also be accessed with IMS Java programs

35

35

IMS

© 2009 IBM Corporation

Accessing DB2 from IMS Java Program

IMS JMP and JBP regions use a different DB2 attachment facility from
other types of dependent region

– Recoverable Resource Manager Services attachment facility (RRSAF) rather than
the External Subsystem attachment facility (ESAF)

RRSAF supports attachment from IMS on one z/OS to DB2 on a
different z/OS

– The JDBC driver type should be specified when creating the connection
– Type 2 for DB2 on same z/OS
– Type 4 for DB2 (potentially) on a different z/OS

z/OS z/OS

DB2 DB2
IMS

JMPRRS AF

Type 2

RRS AF

Type 4

The IMS Java regions use a different DB2 attach facility from other IMS regions.
If using a distributed attachment, RRS provides the synchpoint management.

36

36

IMS

© 2009 IBM Corporation

Accessing DB2 from IMS Java Program …

All DB2 calls are part of one UOW
RRS set up in z/OS and activated in IMS (RRS=Y)
DB2 setup for using RRSAF from IMS required

– SSM member of IMSxxx.PROCLIBf or DB2 subsystem example
– SST=DB2,SSN=DB2E,COORD=RRS

– Add DB2 to trusted middleware
– Add DB2 to LIBPATH

– LIBPATH=/usr/lpp/db2/db2910_jdbc/lib
– Add the DB2 library to JMP region with the DFSDB2AF DD (which must all be

APF authorized libraries)
Plan w ith the name of the PSB/Program must be bound or RTT
Packages for all COBOL modules and the four DSNJDBCx
packages must be bound to the corresponding plan

Considerations for accessing DB2 from IMS Java programs are shown here.

37

37

IMS

© 2009 IBM Corporation

Agenda

Java bas ics
IMS Java basics
IMS Java Applications
IMS Database Access
DB2 Access
Application Interoperability
Technical Considerations
Customer Examples
Summary

We discussed IMS Java applications and database access. Next we’ll talk about
interoperability between applications.

38

38

IMS

© 2009 IBM Corporation

Integrating with Existing IMS Transactions

The goal should not be to rewrite all applications in Java
– Not even possible in many instances

– Java is not meant to replace existing applications
• Meant to complement them

Instead integrate the two environments
– Program sw itching (immediate and deferred)

• Betw een transactions in different languages

– COBOL/PL/I and Java language interoperability
• To exploit COBOL/PL/I subroutines in a Java program
• To exploit Java classes in COBOL/PL/I program

So now you might be thinking “Ok, great! I’m reducing the amount of code I write by
leveraging Java code. Wait a minute… am I making COBOL less relevant”. No this
works both ways you can also extend COBOL applications so that Java developers can
now access them. This means Java developers can take up a lot of the maintenance
and enhancement work on existing COBOL code. Yes, this may seem like it’s still not
helping the COBOL developer since it is shifting work to Java but it does. We’re moving
off the menial less interesting work and freeing up COBOL developers to create new
COBOL applications.

39

39

IMS

© 2009 IBM Corporation

zOS Language Interoperability

IBM’s Enterprise COBOL for z/OS V3R4 (or higher) and IBM
Enterprise PL/I for z/OS V3.8 (or higher) support in teroperability
between COBOL/PLI and Java

– When running in an IMS Java dependent region (JMP or JBP)

– When running in MPP & BMPs
Supported Scenarios

– Java Calls OO COBOL module (COBOL Compiler generates Java
Wrapper and Shared Library containing COBOL code)

– OO COBOL program can call Java Classes
– Procedural modules can be called from OO COBOL program

– PL/I modules can be called from Java through JNI (Java Wrapper
must be created)

IBMs Enterprise COBOL and Enterprise PL/I support interoperability between COBOL/
PL/I and Java applications

40

40

IMS

© 2009 IBM Corporation

Interoperability in Java Regions
IMS Java can be used to
call COBOL and PL/I
modules through JNI
In JMP/JBP IMS launches
JVM during region
initialization.

JMP same as MPP+JVM
JBP same as non-message
drvien BMP+JVM

TCP/IP or
SNA

IMS Application ServerIMS Application Server

IMS
TM

IMS JMP
Region

Java
Application Control

Region

IMS
Connect

IMS z/OS Platform

Server-Side
Presentation
Management

Server-Side
Business Logic

ClassforName(DLIDriver)
get.connection(IMS psb)

Select
From
Where
Close

Java
Application

ClassforName(DLIDriver)
get.connection(IMS psb)

Select
From
Where
Close

IMS JBP
Region

IMS DB
and/or
DB2

JDBC Driv ersJDBC Driv ers

OO COBOL
Class or PL/I

Module
…

JNI

IMS Java can be used to call COBOL and PL/I through the Java Native Interface.

41

41

IMS

© 2009 IBM Corporation

Java Class Libraries for IMS

Assembler Layer Interfaces to IMS

Java class libraries for IMS
- IMS uses JNI to interoperate between Java and IMS DL/I

Application

Application

Only AIB
Interface

AERTDLI
Interface

CEETDLI
Interface

AIBTDLI
Interface

JNI

IMS
TM
API IMS Univers al DL/I

Driv er

IMS Univ ers al
JDBC Driv er

JMP/JBP App
using JDR RA

DL/I
Databas e

View

Java Native Interface is shown here for use in accessing IMS procedural
code
Bottom – language interface (depending on the environment 3 interfaces) –
have to drop down to c (thin jni layer)
Base – 1-1 mapping of the way ims works under covers and in java build
SSAs & make db calls using DL/I
DB – really what is turning this in to our jdbc driver making sql calls
Application is running in an IMS dependent region and offers reading/writing
messages to ims message queue
Customer code doesn’t have to worry about the DL/I call, only JDBC
Dbview- added new stuff (XML)
Tooling – generates database view called dli model utility

42

42

IMS

© 2009 IBM Corporation

IMS MPR
Interoperability in MPRs

COBOL
– JV M created implic it
– Java code can be embedded

– Parameters to and from Java
prepared through JNI A PI

PL/I
– JV M created through JNI A PI

– Parameters to and from Java
prepared through JNI A PI

– Java class called w ith JNI
API

Mixed Case
COBOL Module
calls Java Class
or embeds Java

code

JV M
executing

Java Class

IMS MPR

PL/I Module
JV M

executing
Java Class

COBOL and PL/I applications in Message Processing Regions interoperate with JVM
excuting Java classes.

43

43

IMS

© 2009 IBM Corporation

Consuming Web Services…

IMS Java application callout capabilities
– Nativ ely, this capability exists in Jav a.

• Direct call (sy nchronous and asy nchronous)
• JAX-WS
• JAX-RPC

– References
• SC18- 7821 IM S Java Guide and R eference

WebSphere
Application Server

Web service

IMS JMP

Java
program

IMS Java applications can themselves call out to other applications.

44

44

IMS

© 2009 IBM Corporation

IMS Connect Solutions provide Interoperation between
IMS Applications and other Application Environments

IMS Connect provides the IMS interface for TCP/IP solutions

IMS SOA Integration Suite at http://www.ibm.com/ims

– IMS TM Resource Adapter
IMS MF S Web Support

– IMS SOAP Gateway
– IMS Web 2.0 Solution
– IMS Enterprise Suite

Write y our own clients

Other Vendor solutions

Existing IMS
transactions can be
integrated into the
SOA by implementing
a Web service as a
front-end access-point
interface

IMS Connect provides TCP/IP access to and from IMS.
For access to IMS through IMS Connect from a JEE environment, IMS provides the
IMS TM Resource Adapter (earlier known as he IMS Connector for Java) for access
from Java applications, SOAP Gateway and parsers, and samples for other
language access as well. Support for MFS is also available. Other solutions
providing access to IMS through IMS Connect include the IMS SOAP Gateway for
access from non-J2EE environments, IMS Web 2.0 support for Mashups, and many
more. solutions.

45

45

IMS

© 2009 IBM Corpor ation

Java Connector Architecture with IMS

WebSphere Application Server

Enter prise
Bean

IMSIMS
TM Resource TM Resource

AdapterAdapter

Managers:

• Connection
• Security
• Transaction

Web
Component

CCI
Application

Contrac t

SPI
System

Contrac ts

IMS Connect

IMS
Application

OTMA

TCP/IP

(z/OS, Windows, AIX, HP_U X,
Linux, zLi nux, and Solaris)

Web
Ser vice

IMS DB
XML DB

IMS

IMS TM Resource Adapter is supported with WebSphere servers such as WebSphere
Process Server and WebSphere Application Server for z/OS, Windows, AIX, HP_UX, Linux,
zLinux and Solaris.
IMS TM Resource Adapter is both scalable and flexible. You can configure your
environment to use IMS TM Resource Adapter in a distributed application server or, for
higher scalability, you can use IMS TM Resource Adapter in WAS for z/OS. Being a Java
workload, if you run WAS for zSeries, the workload is eligible for off-loading to a more cost-
effective zAAP processor.

46

46

IMS

© 2009 IBM Corpor ation

IMS 10 as Integration Focal Point - Callout Support
IMS 10 Asynchronous Callout
– Enable IMS applications to act as a client to asynchronously invoke Java EE

applications and Web Services
– Receiving output from external application is possible

IMS 10 SPE Synchronous Callout Support
– Enable IMS applications to invoke Java EE applications and Web Services,

and synchronously wait for the response

IMS
IMS App 1

z/OS
Initiating Client

IMS App 2

(ISRT ALTPCB) Request

Response

Hold
Q

IMS
Connect

IMS

IMS App

z/OS

Initiating Cl ientEJB/ MDB

WebSphere Application Server

Web Service

DL/I call
IMS

Connect

O
T
M
A

O
T
M
A

IMS
TM RA

IMS SOAP
Gateway

IMS
TM RA

EJB/ MDB
WebSphere Application Server

Web Service

IMS SOAP
Gateway

RYO

RYO

Key Message: IMS 10 Callout support enables IMS as the Integration Focal Point
One of the key customer requirements that we have heard regarding SOA support for IMS
is for Callout support, where an IMS application could call out to another application across
the IMS TM Resource Adapter to WebSphere server applications or to SOAP application
environments. IMS Callout support enables IMS applications as clients, interoperating with
business logic outside of the IMS environment. This support includes correlation mapping
between the callout request and the external application, enhanced security, and assistance
on destination routing. This support allows for better integration in an SOA environment.
For example, an application may need to know the current stock price, or may need to look
up the current sales tax rate.
Callout support has been provided for IMS 10, first as an asynchronous transaction, and
later as a synchronous call where the IMS application will wait for the response before
continuing. Synchronous callout support is being provided through the service process

47

47

IMS

© 2009 IBM Corporation

WebSphere
Application Server

IMS
SOAP

Gateway

IMS Connect
Roll-your-own

Application
(e.g. SAP)

IMS
Connect

IMS

OTMA
Descriptor

DLI ICA L cal l w/
Send-Rec eiv e

Send flow

Receive flow

EJB /
MDB

Web Service
Provider

(e.g. Microsoft
.NET)

IMS 10 Synchronous Callout Solution Highlights

IMS TM
Resource
Adapter

Java Mess age Servic e
(JMS) API

Java D epe nde nt R egio n
Applicatio n J MP/JBP

Callout can be provided from IMS Java and other IMS applications. Synchronous callout specially
addresse s the need for an IMS application to act as a client to go outbound synchronously to invoke
external application and receive the output back. This enhancement allows your IMS application to
invoke one of the following external applications and synchronously get the output back:
(1) an J2EE application (like an Enterprise Java Bean/EJB or an Message Driven Bean (MDB)) or
Web service providers running in the WebSphere Application Server using the IMS TM Resource
Adapter
(2) other Web service providers (e.g. l ike Microsoft .NET or SAP XI) using IMS SOAP Gateway
(3) any other applications (like RYO, SAP apps) using the IMS Connect interfaces
This diagram gives you a very high-level overview of the synchronous callout SPE.
The red arrow represents the send flow. From the right hand side of the diagram, an IMS application
makes a DLI call to send out a synchronous callout request. The OTMA descriptor function inside
IMS routes the callout request via IMS Connect to invoke one of the outbound destination as shown
in the boxes on the left – i.e. the WebSphere, Web Services or RYO applications. After the callout
request has been processed, the output data would be returned back to the same IMS transaction
instance as shown in the blue arrows.

48

48

IMS

© 2009 IBM Corporation

IMS Enterprise Suite 1.1 JMS API Support for
Synchronous Callout

Provides Java Me ssage Server (JMS) API for acce ssing IMS
Synchronou s Callout function.
– Enables business growth -- Allows more f lexibility in accessing cross

enterprise data and f unctionality f rom within IMS applications to meet growth
challenges.

– Exposes core IMS f unctionality through a Jav a standard interf ace - Makes IMS
f unction more accessible to application dev elopers with modern skill sets.

– Off ers standards-based approach - Exposes IMS industry leading transaction
managem ent capability through a Jav a standard interf ace, JMS

– IMS Callout f unction included in IMS; JMS API packaged with IMS Enterpr ise
Suite.

– Enables new application design f rameworks and patterns
– Sy nchronous callout support is the f irst IMS f unction to f ully embrace the JMS

standard in IMS application dev elopment.

The Java Message Server (JMS) API can be used for synchronous callout from an IMS Java
application. The IMS Enterprise Suite is providing the JMS API Jar file for this.
The JMS API improves programmer productivity by defining a common set of messaging concepts
and programming strategies that will be supported by all JMS technology-compliant messaging
systems. By making IMS a JMS provider we address the skil ls issue impacting client’s abil ity to
develop new applications which goes to revenue. Although heavily used by IMS customers, the DL/I
API isn’t an industry standard and skil ls may be limited. Providing modern standards based access
to IMS functions reduces customer costs.
Synchronous callout support is the first IMS function to fully embrace the JMS standard in IMS
application development. We are considering future enhancements to front-end IMS message queue
processing with the JMS interface.

49

49

IMS

© 2009 IBM Corporation

IMS Enterprise Suite 1.1 Connect API for Java
Simplifies interaction with IMS Connect and IMS

– Inter nall y creates IRM header for r eques t and i nter prets non- data response infor mati on
– Automati call y opens socket connecti ons to targ et IMS C onnect as needed
– Re-usable pr ofil es specify target IM S C onnec t and IM S and i nter acti on
– Allows client applications to provi de data in a variety of ways
– Lower-level calls pr ovi ded
– High-level execute call to open connec tion and perfor ms inter acti on on behal f of client
– Applications must call disconnec t() on all connec tions befor e ter mination
– Suppor ts IMS Connect PIN G and RACF password change commands
– Suppor ts all OTMA-supported IMS commands

IMS
Connect

API

Client
Application IMS

Connect
API

Client
Application

IMS
Connect

API
Client

Application

IMS
Connect

Windows or z/OS

Connection
and

TmInteraction
properties files

Connection
and

TmInteraction
properties files

I

O
T
M
A

IMS App

Load defaul t
property values

IMS App
IMS App

z/OS

IMS

TCP/IP

IBM is also enhancing IMS Connect use with the IMS Enterprise Suite Connect API
The IMS Enterprise Suite Connect API simplif ies design, dev elopment, and test of IMS access f or client TCP/IP
applications. Support f or Java applications in Windows and z/OS env ironments is provided initially with support
f or C applications in Windows environments being delivered next through the service process. The API
prov ides a customizable set of profiles that define the connections and ty pes of interactions to be performed
and high- and low-lev el methods f or perf orming these interactions. This simple API allows user-developed
applications to interact with IMS Connect while shielding the applications f rom the complexities of the IMS
Connect protocols by automatically generating the IMS Request Message header, interpreting the non-data
portions of response messages and opening socket connections on behalf of the applications. Using the
reusable prof iles, the API prov ides a simple way to describe the TCP/IP socket connections needed and the
interaction to be performed. In addition, it gives the client application f lexible ways to provide the data to be
sent including 1- and 2-dimensional byte arrays, Strings and arrays of Strings. For more direct control of an
interaction by a client application, limited, more granular, lower-lev el calls are provided which allow the client
application to explicitly open a socket connection and send and receiv e data to IMS Connect. The
disadv antage of using the lower-lev el send and receive calls is that you lose the benefit of the API creating the
message f or y ou and interpreting the non-data portions of the response.
The API will communicate with IMS Connect on behalf of the client. Upon request by the client application, f or
example in an execute() or connect() call, the API will create a connection for use by that application. The client
application does not need to deal directly with the connection, other than to keep track of it through the
Connection object so that the client can call disconnect() on the Connection object bef ore exiting. Of coarse in
Jav a, orphaned connections would ev entually be cleaned whenev er there are no longer any references to those
connection objects or when the application terminates. Howev er, f ailure to explicitly disconnect a socket bef ore
an application shuts down may lead to warning messages being displayed on the IMS Connect console when
TCP/IP closes a connection without the application or the API sending a disconnect request to IMS Connect.
In addition to IMS transactions, the initial release of the IMS Connect API will support the IMS Connect user
message exit-supported PING and RACF password change commands along with all IMS commands
supported by OTMA.
This f igure shows the environment in which the IMS Connect API can be used. It also depicts the f act that
multiple client applications that use the IMS Connect API can be invoked simultaneously. The API will
communicate with IMS Connect on behalf of the client applications.

50

50

IMS

© 2009 IBM Corporation

Agenda

Java bas ics
IMS Java basics
IMS Java Applications
IMS Database Access
DB2 Access
Application Interoperability
Technical Considerations
Customer Examples
Summary

There are some technical considerations you might want to be aware of in doing all this.

51

51

IMS

© 2009 IBM Corporation

IMS Java Basic Transaction Program Skeleton

DLIDatabaseView class
(IMS Java metadata)

Message format definition classes
(message metadata)

main application c lass(es)
(i.e. core transaction logic/ business logic)

1
2

3

Note: JBP applications cannot read messages from the message queue, but they can
write output messages to the queue.

52

52

IMS

© 2009 IBM Corporation

Developing Java Transaction Programs

Using Rational Developer for System z (RDz) enables the
Java code to be created and maintained on the host system

– Saves porting betw een development and test environments

BTS fully supports development of message driven Java
programs (JMPs) and Java Batch Programs (JBPs)

Debugging aided by IMS Java’s JVM Logging facility

A number of tooling can provide development assistance for IMS Java applications and
access to/from these and other applications.

53

53

IMS

© 2009 IBM Corporation

Technical Considerations: Language Interoperability

All Environments for COBOL/PLI Java in teroperability
– Do not mix Message Processing and Synchronization, use one language for both
– If same PCBs are used in both languages, they might have changed

• Especially important when integrating existing modules that expect a PCB with
a certain value

– AIB interface is used in Java (PCBs must have names)
– If subroutines require PCB pointers they can be created using INQY FIND call and

provided with CALL to subroutine

Here are some environmental considerations.

54

54

IMS

© 2009 IBM Corporation

For JMP or JBPs
– Java is the starting language
– PSB LANG=JAVA (required for JMP only)
– STOP run in COBOL causes application to end
– COBOL Local Storage instead of Working Storage
– JBP is non-message driven region so doesn’t read messages from message queues
– Program must start with a main method. COBOL class with main factory also meets

that requirement
– PCB name or label needs to be specified.

Technical Considerations: IMS Java Dependent Regions

Some considerations for running the IMS Java Regions

55

55

IMS

© 2009 IBM Corporation

Language Interoperability in MPPs
Solution for calling Java class from procedural program of any language

Requirements
– Enterprise COBOL f or z/OS V3R4 or higher

• Enterprise COBOL f or z/OS V4.2 provides support for Java 5 and 6, new XML,
Unicode and performance and usability enhancements.

– IBM Enterprise PL/I for z/OS V3.8 or higher
– IBM Java 4.2 SR3 or higher

How it works
JVM is created with f irst Java class invocation
JVM is destroyed at end of schedule

Schedule to first call is high due to JVM startup
Use WFI regions or dedicated transaction class

Create COBOL module that calls Java and link it with procedural caller (caller needs just
call statement)

Use of CEEUOPT member for custom LE Parameters requires LE caller

DB2 Access possible, but different UOW and using Ty pe-4 Connection only

Technical Considerations: IMS MPP Regions

The next few charts show how you might choose to run a JVM and interoperate with
Cobol from within an IMS MPP regions. This allows a COBOL application to invoke JVM
within an MPP region.

56

56

IMS

© 2009 IBM Corporation

COBOL
– IMS DL/I calls possible w ith no restrictions

– DB2 calls possible w ith no restrictions
Java

– IMS DL/I calls only w ith environment var iable
– com.ibm.ims.jdbcenv ironment=IMS
– Inc ludes message queue and system services calls due to check

for execution environment
– DB2 calls only possible w ith Type-4 Connection URL and w ithout

com.ibm.ims.jdbcenv ironment=IMS being set
– So any IMS DL/I calls and DB2 Database access can be used

mutually exclusive only
– That means w ith DB2 Type-4 being enabled, no IMS System

services calls can be made and thus e.g. no Message sending is
possible from Java

Technical Considerations: IMS MPP Regions …

Here are considerations for running Java and COBOL in the same region

57

57

IMS

© 2009 IBM Corporation

Java is compiled w ith DLL option and XPLINK(ON)
OO COBOL or Mixed Case COBOL is DLL compiled
Ex isting Modules might be NODLL and NODY NAM compiled
NODLL Module cannot call DLL Module dynamically and vice versa

– NODLL Module requires statically linked wrapper to be called from DLL

– DLL Module requires statically linked wrapper to be called f rom NODLL

– Free mixing of existing modules and Java classes requires two v ersions (DLL and
NODLL) of each module

PL/I Main requires PLIXOPT w ith XPLINK(ON)
IMS Dynamic LE Options feature (UPDA TE LE command) can be
used to set XPLINK(ON)

Technical Considerations: Language Environment

Some considerations are shown here for the language environment for this JVM within
the MPP region..

58

58

IMS

© 2009 IBM Corporation

Technical Considerations: Language Environment …

CEEUOPT module can be used to set
XPLINK(ON)

– POSIX(ON) is re quired

– Path to the E NV file is required

– Contains USS En viron ment va riables (LIBPATH,
PATH, CLASSPATH)

LE Settings and ENV File
– Locate the HFS pa th of th e JV M

e.g. /usr/lpp/ja va/J1.5/bin

– Create the ENV file in the HFS path
Edit the ENV file and according to you r
environ ment

//SYSIN DD *
TITLE 'CEEUOPT'

CEEUOPT CSECT
CEEUOPT AMODE ANY
CEEUOPT RMODE ANY

CEEXOPT XPLINK=(ON), X
POSIX=(ON), X
ENVAR=('_CEE_ENVFILE=/u/gaebler/hello/ENV')

END
//*

JAVA_HOME=/usr/lpp/java/J1.5
PATH=/bin:/usr/lpp/java/J1.5/bin:.
LIBPATH=/lib:/usr/lib:/usr/lpp/java/J1.5/bin/j9vm:/usr/lpp/java/J1.5/bin:/usr/
lpp/java/J1.5/bin/classic:/u/gaebler/hello
CLASSPATH=/u/gaebler/test.jar:/u/gaebler/hello

Some additional considerations are shown here for the language environment to launch
the JVM in the MPP. The CEE User option module is used to set the communications
link, XPLINK. And this shows the LE settings and Environment file.

59

59

IMS

© 2009 IBM Corporation

Agenda

Java bas ics
IMS Java basics
IMS Java Applications
IMS Database Access
DB2 Access
Application Interoperability
Technical Considerations
Customer Examples
Summary

The following show some customers using IMS and Java .

60

60

IMS

© 2009 IBM Corporation

Environment
Have been r unni ng a success ful airline ver y effici entl y and effecti vel y wi th IM S/D B2 on
z/OS as a backend technol og y and pl an to conti nue on that path
Why Sys tem z? R educed oper ati ng costs ; r educed oper ati onal and architectur al
complexi ty; ability to more easil y consolidate wor kl oad due to merger
Why IMS? Industr y proven; can handl e high vol umes of transac tions better than other
solutions ; excellent support from IBM

Business Objectives
Integrate critical applicati ons after merger
Impl ement a distributed applicati on fr ont end usi ng SOA on top of our existi ng z /OS

Solution
Impl ement IM S/JDBC on z/OS to migrate non-critical applications to distributed
technol ogies
Allows N WA to better manag e the risk of depl eti ng technical exper ts wi thi n
COBOL/D B2/IM S technol og y

Business Benefits
NWA’s technical infras truc ture i s much more open and abl e to integr ate with all
different types of technol ogies .
Smoother i ntegrati on of all critical applicati ons r unning on zOS after merger with D elta

Northwest Airlines
(now merged into Delta Airlines)

NWA’s System z Strategic Direction: Reduce operating costs; Reduce operational and
architectural complexity; Workload consolidation due to merger
The Strategic Infrastructure to Support their Goals: IMS for day to day operations; DB2 day to
day operations as well as for reporting; Other IM for System z products
Why IMS? Industry proven; Can handle high volumes of transactions and stil l perform better than
many relational databases; Excellent support from IBM
What we’ve accomplished: We have been running a successful airline very efficiently and
effectively with IMS/DB2 z/OS as a backend technology and planning to continue on that path. We
have been working with IBM to implement a distributed application front end using SOA on top of our
existing z/OS infrastructure. With the implementation of IMS/JDBC on z/OS, we have been able to
manage the risk of depleting technical experts within COBOL/DB2/IMS technology.
Benefits Realized: A familiar and proven technology which minimizes the risks. With IMS/JDBC on
z/OS, we are implementing a planned and well managed migration of non-critical applications to
distributed technologies, but sti ll running on z/OS. NWA’s technical infrastructure is much more open
and able to integrate with all different types of technologies.
Looking Ahead: With the help of IBM, our integration plans with Delta during merger are expected
to be much smoother with all the critical applications running on z/OS; Keep working with IBM’s On
Demand division to implement better and faster solutions; Keep running a premier global airline
successfully with existing technologies

61

61

IMS

© 2009 IBM Corporation

Canadian Bank

Challenge
Core banking sys tem written mostl y in COBOL
Lack of mar ketpl ace skills in or der to maintai n and develop
new applications within their cor e banki ng system
Need str ateg y to pr ovide new ser vice l ayers i n their core
banki ng sys tem – cannot rip and repl ace

Solution
Lever age the IM S JD BC dri ver as well as the cor e Java class libr aries for IMS
Inter oper ate between C OBOL and Java within the core banking system

New ser vices will be writ ten i n Java
Benefi t

Provi de the ability to move the cor e banki ng framewor k i nto a new era where Java is the
devel opment language of choice
Do N OT need to completel y replace decades of i nfr astr uctur e
Over ti me i njec t new Java ser vices i nto thi s fr amewor k
Time to mar ket for new apps dr amaticall y decr eased

Bank in Canada
Core banking system managed by IMS and written mostly in COBOL
Situation
Lack of marketplace skil ls in order to maintain and develop new applications within their core banking
system

Need strategy to provide new service layers in their core banking system – cannot rip and
replace

Solution
Leverage the JDBC driver for IMS as well as the core Java class libraries for IMS
Interoperate between COBOL and Java within the core banking system

New services will be written in Java
Value
Provide the ability to move the core banking framework into a new era where Java is the
development language of choice
Do NOT need to completely replace decades of infrastructure – this would fail and is simply not an
option
Over time inject new Java services into this framework
Time to market dramatically increased with the abundant skil lset available in the marketplace
IMS looks like any other database (from an application development perspective)
Standards, standards, standards

62

62

IMS

© 2009 IBM Corporation

German Bank
Challenge

– Mainly PL/I based with conv ersational transactions

– Purchased 3rd party credit checking technology as part of a Jav a
package

– Replaced existing PL/I-based transaction
– Wanted to deploy this in a Jav a Dependent Region and integrate

with existing PL/I applications

– Just another serv ice…
Solution

– Lev erage the def erred program switching support already in IMS
(and supported with in the Jav a class libraries) to switch conv ersation
iterations f rom MPP to JMP regions and back

– In production within a month with this solution

63

63

IMS

© 2009 IBM Corporation

And Many More European Customers…
Customer A

– Strategy to implement every business functionality as POJO (plain old Java object) which
is runtime independent code and could be run either in Pure Java JVM, JCICS, Java
Stored Procedure, IMS Java, WebSphere EJB, Java Servlet, + many other Java
runtimes.

– Migration of the IMS Batch to Java JBP
Customer B

– IMS Java for application for about two years
– Eclipse for development

Customer C
– Java in COBOL regions to callout to EJBs – One year production without issues

Customer D
– Core banking application under IMS – COBOL and Java

Customer E
– Start with running Java in COBOL regions

Customer F
– Java runtime for some integration scenarios that require calling Pure Java in IMS

And there are many more customers implementing IMS and Java.

64

64

IMS

© 2009 IBM Corporation

Agenda

Java bas ics
IMS Java basics
IMS Java Applications
IMS Database Access
DB2 Access
Application Interoperability
Technical Considerations
Customer Examples
Summary

65

65

IMS

© 2009 IBM Corporation

Getting More Information
Additional information can be accessed via the IMS home page at

http://www.ibm.com/ims

IMS SOA Integration Suite
– IMS DB resource adapters
– IMS XML DB
– IMS TM resource adapter
– IMS Enterprise Suite

• SOAP Gateway
• DLIM odel utility
• Connect API

WW IMS Conf erences and Seminars
– IMS Seminars coming to a city near y ou
– IMS Teleconf erences, with replay s av ailable
– Customized IMS off erings at ibmdds@us.ibm.com

66

66

IMS

© 2009 IBM Corporation

Unique Offering
Free application dev elopment workshop to learn how to easily and quickly
dev elop and run Jav a applications to access IMS data using SQL and DLI
APIs. which will al low y ou to more easily dev elop IMS appl ications,
ensuring that y our company ’s inv estments in IMS continue to pay div idends
f or y ears to come

Workshop Description:
Learn how to dev elop and run Jav a/JDBC applications against the IMS
database easily . Test driv e the newest application dev elopment API in
Jav a f or IMS™, In this workshop attendees wil l hav e the opportunity to
dev elop, debug, and run sample Jav a applications using Eclipse based
dev elopment IDE like Rational Dev eloper f or System z.

Target Audience:
Application Architects and Application Dev elopers who are responsible f or
Jav a applications.

Simplifying IMS Application Development using Java

We are currently offering some workshops, should you like to request one. This
Java one covers:
What is special about IMS & Java?
The IBM IMS™ hierarchical database has served as the backbone for industry-
leading companies demanding the highest performance, stability and reliability for
over 40 years now. Although the heart of this industry-proven data store has
changed little, IMS continues to make great strides in new application development,
connectivity, and data representation and its strategic role in an SOA environment.
This section will introduce you to IMS basics. Topic covered include: hierarchical
database, IMS hierarchical terms such as: IMS records, IMS segments, Fields, key
fields, search fields, etc. The IMS DLI application programming Interface (API) and
how to issue DLI calls to access IMS databases and how to issue the same DLI
calls in Java.
Tooling support for Application Development
The IMS Enterprise Suite DLIModel Utility is an Eclipse plug-in tool that generates
metadata that is consumed at runtime by the IMS Java/JDBC drivers. This session
demonstrates how the utility can easily create the metadata from existing PSB, DBD
and any COBOL or PL/I copybooks. The tool also generates visual depictions of
the IMS database hierarchy which helps during application development.
Writing applications in Java for IMS
Hands-on lab session that takes you through the steps for developing, deploying
and running a Java application accessing IMS data. You will be building and
executing applications to run in two runtime environments: Windows and in IMS
dependent regions using the IMS Universal Java API drivers. The beauty of the
Universal driver support is that there is virtually no code change required when

ti th li ti f ff i f l tf (lik Wi d) t th

67

67

IMS

© 2009 IBM Corporation

Summary
Java is another programming language for IMS alongside
COBOL, PL/I, C etc.
There is an increasing demand for Java to be used as a
general purpose language, including use on the mainframe

– single standard, most IT graduates know it
– easy and economical to f ind Java programmers

IMS Java in troduces the power of IMS TM/DB to Java
people, who can develop IMS transactions with workstation
tools (e.g. Eclipse) in Java
IMS transaction and JBP development is easy in java
IMS java performance is continually being enhanced

Java is just another programming language, but is receiving increasing demand for
enabling enterprise modernization. IMS Java brings the power of IMS TM and IMS DB
to the Java community and the standards and tools provided for it.

68

68

IMS

© 2009 IBM Corporation

© Copyright IBM Corpo ration 2008. All rights reserved.
U.S. Govern ment Users Rest ricted Rights - Use, duplication or disclosu re rest rict ed by GSA ADP S chedule
Contract with IBM Co rp.

THE INFORM ATION CONTAI NE D IN THIS PRESE NTATION IS P ROVIDE D FOR INFO RMATIO NAL P URPO SES
ONLY. WHILE EFFORTS WERE MADE TO VERIFY T HE COM PLETENESS AND ACCURACY OF THE
INFORM ATION CO NTAINED IN THIS P RES ENT ATION, IT IS PROVIDE D “AS IS” WITHO UT WARRANTY OF
ANY KIND, EXPRESS OR IMPLIE D. IN ADDITION, THIS INFO RMATIO N IS BAS ED O N IBM’S CURRE NT
PRODUCT PL ANS AND STRATEGY, WHI CH ARE S UBJE CT TO CHANGE BY IBM WITHO UT NOTICE. IBM
SHALL NOT BE RE SPONSIBLE FOR ANY DAM AGES ARISI NG OUT OF THE US E OF, OR OTHERWISE
RELATE D TO, THIS PRE SENT ATION OR ANY OTHER DOCUME NTATION. NOT HING CO NTAI NED I N THIS
PRESE NTATIO N IS INTENDE D TO, NOR SHALL HAVE THE EFFE CT OF, CRE ATING ANY W ARRANTIES OR
REP RESE NTATIONS FROM IBM (O R ITS SUP PLIERS OR LICENSO RS), OR ALTERI NG THE TERMS AND
CONDITIONS OF ANY AGREEME NT OR LICE NSE GOVE RNI NG THE USE OF IBM P RODUCTS AND/OR
SOFTWARE.

IBM, the IBM logo, and ibm.c om ar e tradem arks or registered trademarks of Inter nat ional B us iness Machines Corporation in
the United States, other c ountries, or both. If these and other IBM tradem ark ed ter ms ar e mark ed on their first occur rence in
this inf orm ation with a trademark sy mbol (® or ™), these sy mbols ind icat e U.S. regist ered or comm on law trademark s
owned by IBM at the time th is inform ation was publis hed. Suc h tradem arks m ay also be regist ered or comm on law
trademark s in other c ountries. A curr ent l ist of IBM tradem arks is available on the W eb at “ Copyright and trademark
infor mation” at www.ibm.com/ legal/copytrade.sht ml

Other company, pr oduct, or servic e names may be tradem arks or serv ic e mark s of others.

Disclaimer

