IMS and Java
for Application Modernization

Barbara Klein
IMS Product Manager |
IBM Silicon Valley Lab, San Jose, Califor
bk@us.ibm.com

GSE UK Conference
November 4-5, 2009

© 2009 IBM Corporation

This presentation discusses use of IMS and Java to modernize your applications.

Agenda (

)

- Java basics _ —

= IMS Java basics - —
—l_-'..r

= IMS Java Applications

= |MS Database Access ,
= DB2 Access aua
= Application Interoperability

= Technical Considerations

= Customer Examples

= Summary

2 © 2009 IBM Corporation

I'll be taking you quickly through some Java basics, introduce you to IMS Java
application support, Java access to IMS DB and DB2 databases, interoperability of Java
applications with other applications, some technical considerations in doing all this and
some examples of customers using Java with IMS.

Java Basics

It's another programming language!
It's Object Oriented

— A Program is written as a set of “Classes”
A Class is made up of variables and methods

— A Class often relates to an entity in the real world (e.g. Customer,
Account, input message, etc), but can also be defined for
programmer convenience

An Objectis a named occurrence of a class with values in the variables
A method can create objects of its own class or other classes

A method can execute methods of its own class or other classes, and
can reference data in the same or different classes/objects

3 © 2009 IBM Corporation

First, lets look at Java basics.

Java is an Object oriented programming language that uses classes and methods to
define objects.

| class variables >

another method

4

Java programs consist of definitions, variables and methods. Execution of a Java
program starts by running the main program of the specified class. This is a sample
application, defining class definition and variables, and the methods. Methods can

public class nmyd ass {

}

int count;
myCt her d ass nyj ect ;

public int method2() {
int i;

}

= Execution of a Java program starts by running the ‘main” method of the specified dass

= Method definition includes the return parameter (or “void”) and the input parameters (in any)

© 2009 IBM Corporation

inherit variables or use their own local variables.

Java Class Libraries

= The Java language is quite small and simple
— one of its strengths!

= Butit comes with a huge number of pre-written classes
— ready-to-use java methods (and associated variables and constants) for
— file access
working with a GUI
— data conversion

mathematical functions
accessing URLs
getting date/time

etc etc etc.

= Classes are bundled in named “packages”

5 © 2009 IBM Corporation

The Java dass libraryis simple, and indudes a large number of pre-written dasse s of functionin a
number of packages

Ih'-
[]
]

| ims

z/OS Java

Java application

Java
A .
sdp[;rcees s Virtual }
Machine bytecodesUnicode
Shared Java code
C staemerts

1

Language Environmen! This layer has
platfo pe the calls to the
SAF [ZIOSUNIX ode C runtime
ode a library

EBCDIC

X11

s
Posix interface
C runtimelibrary

6 © 2009 IBM Corporation

Z/OS Java provides the facilities and environment for running Java
applications.

Z/OS provides a Java Virtual Machine to run the Java applications, and the
System Services to supportit. From the JVM z/OS provides access to Unix
services and vice versa. Java applications go thru C code to get the Unix
services. The System provides Java Native Interface for this. IMS will use
the Java Native Interface for DL/l access. The Hierarchical File server is the
equivalent of windows folders.

|ivs EEnT
z/OS Java ...

= Java Record I/O
— Class library, similar to java.io
— Provides record-oriented access on Z/OS
— VSAMdata sets (KS DS only), Non-VSA Mrecord-oriente d data sets, System Catalog, PDS
directory
— DDName and GD Gs support
— SPACE and DISP parameter suppo rt
— Navigational support for HFS directories
— ZzAAP eligible

= JZOS
— A set of tools that includes a native launcher for running Jav a applications
directly as batch jobs or Started Tasks

— A set of Javamethods that make access to traditional ZOS data and key system

services directly available from Java applications

— Additional system services include console communication, multiine WTO (write to ope rator), and
return code passing capability

— JZOS provides facilities for flexible configuration of the run-time e nvironment, and it allows
intermediate data to be seen via SDSF

— Java applications can be fully integrated as job steps in order to augment e xisting batch
applications

7 ©2009 IBM Corporation

Z/OS Java provides

*a Java record I/O which consists of a class library and record oriented
access on z/OS,

*JZ0OS, a set of tools for running Java applications as batch or started tasks
ad a set of methods for making access to traditional data and system
services available from Java applications

Why Use Java ?

= Rapid Application Development
— Reduces Total Cost of Ow nership (TCO) and Total Time to Value (TTV)
= Exploitexisting marketplace, industry-sanctioned standards
— These are the slow est changing and most persistent
— JDBC and Java EE (was J2EE) are standards w hich help to minimize
specific back-end know ledge of IMS
= Exploit new and abundant skills in the marketplace and help
customers avoid problems due to the loss of traditional zOS skills
= CPU costhas been reduced significantly with successive releases of
IBM's SDK
— And Java MIPS are very cheap with System z Application Assist
Processor (zAAP)

8 © 2009 IBM Corporation

Java allows you to reduce redundant development efforts, to take advantage of industry
standards and tools, and to leverage a larger pool of resources and technology.
Java is becoming improved for efficient and more economic use. And Java MIPS
can also be run on the zAAP processors.

IBM Java support for the new IBM zSeries Application Assist Processor (zAAP) for the
IBM zSeries servers allows Java workloads to transparently execute on the zAAP
processors without requiring application change. This allows you to integrate and run
Java workloads on the same server as your database at a significantly lower total
cost of ownership than previously possible. This helps reduce overall cost of
computing for Java applications, increase system productivity by reducing the
demands on general purpose processors, and makes capacity available for other
workloads.

| ims
It’s not that different
Java EE Traditional I MS
Defines screens, forms
AT and formats
e

Manages screen 1/O
and application flow IMS TM

Services

Session *

Management

Screen and data

Page Handler

A _ validation
: - ecERm U EREE T EERREEEE
i| Servce Business processing

\4

and data I/O
JCA or MQ i EEEE ERER T ERER gy e

Beans
EJB’s
Services

IMS DB
Services

© 2009 IBM Corporation

The standard Java runtime environment can be compared to the traditional
IMS environment.

Agenda

= Java basics

= IMS Java basics —
= |IMS Java Applications

= |MS Database Access

= DB2 Access

= Application Interoperability

= Technical Considerations

= Customer Examples
= Summary

10

So let's look next at IMS and Java basics

© 2009 IBM Corporation

10

IMS Java Basics

= Alibraryofclasses that allows you to write programs in java that access IMS
messages and/or IMS DBs (and DB2)
— Java IMS TM API — Offers IMS transaction processing support
— Java IMS DB API - Offers IMS database access support using the IMS Java hierarchic
database interface
— JDBC driver for IMS
— Implements Industry standards JDBC 2.0 API
— Offers SQL and XQuery support for IMS DB
A Java IMS application runtime environmentin special dependent regions
— JMP and JBP regions
= Language interoperability
— Ability for Java and OO COBOL/PL/ to invoke one another within the same transaction
DB2 interoperability
— Accessan IMS and DB2 database in the same transaction
— Use either the DB2 JDBC or SQLJdriversto access DB2
— IMS and DB2 activity in the same unit of work
XML supportin IMS databases
— An extension of the JDBC interface can be used for storing and retrieving XML documents
in IMS databases

11 © 2009 IBM Corporation

Java isthe basefor new application development and connectivity.

IMS Java application support has enhanced the ability of our customers and business partners to provide integrated on demand
business application devel opment with IMS. The object of this functionis to provide support for you to write Java applications and
runthem as IMS applications using WebSphere workstation and host tools for development and testing.

IMS Java provides alibrary of classes for access to IMS messages and data.

IMS provides access to IMS TM message queues andtoIMS DB and DB2 data through JDBC.

Support is also provided for IMS DB access from CICS/zO S Java applications, DB2/z/OS Java Stored procedures and WebSphere
z/OS applications, opening IMS DB up to better integration and use across platforms and acr oss application environments. N ew
JavaRegion Types were also being provided to replace initial support utilizing the High Performance Java Compiler. The newer
support enhances the initial Java support to run with the new Scalable JVM, providing enhanced tool support for devel oping these
Java applications torunin IMS. NewJava Tooling is provided, along with Java, Cobol, PL/I, and XML Interoperation. IMS support
for Javais augmented by IBM's Eclipse-based Application Devel opment tools for JEE programmers, as well as a broad array of
AIM tools designed to facilitate building Innovative SOA-based applications that combine the best of the z world with the best of the
Java world.

The Javaclass libraryis simple, andincludes alarge number of pre-written classes of functionin a number of packages intitiall yfor
the classic drivers (shown below) and has since been providing more for the universal drivers:

com.ibm.ims.base - Provides classes for basic IMS Java functions and for problem determination.

com.ibm.connector2.ims.db - Provides classes for connecting to IMS databases from WebSphere Application Ser ver for z/OS.
com.ibm.ims.application - Provides classes for processing IMS messages, and performs commits and rollbacks for IMP and
JBP applications.

com.ibm.ims.db - Provides classes for the JDBC driver and for the IMS Java hierarchical database interface.

com.ibm.ims.rds - Provides classes for client-side WebSphere Application Server support of remote database services
com.ibm.ims.rds.host - Provides classes for server-side WebSphere Application Server support of remote database serices
com.ibm.ims.rds.util - Provides classes for storing data that is passed between the client and ser ver components for remote data
access support

com.ibm.ims.xms - Provides classes for storing and retrieving XML in Java applications .

Additi onal information about the IMS Java class libraryis in the IMS Java AP| Specification (Javadoc), available off the
www.ibm.conVims linktothe IMS Java page.

11

Java Dependent Region Resource Adapter Architecture

DBDs

—
PSBs

[copvis | W 2G5

) . IMS DB Metad ata ﬂ;ﬂ
Business Logic

IMS Dep. Region _ -/

Transaction and

Message IVMP/JBP App ?IB” | Customer Code %&w
Processing using JDR RA atabase

---------- [JwaClassLibray |

IMS Universal DL/I

Driver 4
N \ oy Language Lay er Interfaceto IMS @s
Mapping to CEETDLI AIBYDLI
DL/l APIs Interface Int%
Javato C
interface
JDBC
interface
12 © 2009 IBM Corporation

Java Dependent Region Resource Adapter Architecture

The IMS Java dependent region (JDR) resource adapter is aset of Java classes and
interfaces that support IMS database access and IMS message queue processing
within Java batch processing (JBP) and Java message processing (JMP) regions. To
access IMS message queues from your JMP and JBP applications, use the IMS Java
dependent region resource adapter. To access IMS databases from your JMP and JBP
applications, you can also use the IMS Universal JDBC driver and the IMS Universal
DL/l driver. This architecture, based on the IMS Open Database solution, supports Java
application development from simple up to advanced Java and IMS skill levels.

Along with the JDR resource adapter and IMS Universal drivers, your Java application
uses metadata classes, which describe the IMS database view to your Java application.
To generate these classes, use the IMS Enterprise Suite DLIModel utility plug-in. In
addition to generating the metadata classes, this utility generates an easy-to-read report
of the IMS database and an XMI description of the database.

Under the covers, the IMS solutions for Java development use the Java Native Interface
(INI) to access lower-level C interfaces to getto the IMS functions.

12

Agenda

= Java basics

= |IMS Java basics

= IMS Java Applications —
= |MS Database Access

= DB2 Access

= Application Interoperability

= Technical Considerations

= Customer Examples
= Summary

13

We now look closer at the IMS Java applications

© 2009 IBM Corporation

13

IMS TM Java Dependent Regions

= Two types of IMS Java Dependent Regions (JDR)
» Java Message Processing (JMP) region
— Analogous to an MPP region formessage driven applications
— NewIMSJMP JOB that EXECs the new DFSIMP procedure

— DFSJIMP procedure added to IMS.PROCLIB
« Similar to the DFSMPR procedurefor MPPs

» Java Batch Processing (JBP) region
— Analogous to a non-message driven BMP f or nonrmessage driven Java applications
— NewIMSJBPJOB that EXECs the new DFSIBP procedure
— DFSIBP procedure added toIMS.PROCLIB
« Similar to the IMSBATCH procedure for BMPs

= JMP regions and JBP regions can run applications that are w ritten in Java,
object-oriented COBOL and PL/I, or a combination of the two.

= JMP regions and JBP applications can access DB2 for z/OS databases as
well as IMS databases.

14 © 2009 IBM Corporation

JVM Support in IMS Dependent Regions

When IMS is your transaction manager, Java application programsrun in IMS dependent regions that
have a persistent reusable Java Virtual Machine (JVM). Java applications can run in two types of regions:
Java Message Processing (JMP) and Java Batch Processing (JBP).

JMP (Java Message Processing)
For message-driven Java applications
New IMSIMP JOB that EXECs the new DFSIJMP procedure
DFSJMP procedure added to IMS.PROCLIB
Similar to the DFSMPR procedure for MPPs
JBP (Java Batch Processing)
For non-message driven Java applications
New IMSJBP JOB that EXECs the new DFSJBP procedure
DFSJBP procedure added to IMS.PROCLIB
Similar to the IMSBAT CH procedure for BMPs

Ih'-
[]
]

| ms
Java API for IMS TM

» Java library provides an API for use in Java
dependent regions
= Performs traditional transaction processing

— Message queue processing (reading and writing)
— Transaction demarcation
— Program switching capabilities

» Easy integration of Java with existing assets

© 2009 IBM Corporation

Remember that since the Java APIs are built on top of existing assembler

modules all traditional IMS functionality is supported via the Java libraries.

15

More on the Java Dependent Regions

= Regions designed specifically to handle Java workload
— IMS fully manages the JV M lifecycle
= The persistence model of IMS dependent regions tailors to
JVMusage
— IMS dependent regions are typically up for long periods of time
— JVMinitialized w hen the dependent region is brought up
* JVMremains active and ready for Java w orkload until
dependent region is brought down
= Shared cache feature of SDK 5/6
— Works very wellwith IMS
— Multiple dependent regions can share the same cache
— Caches can be configured to be accessed by a certain set of
applications
« Similar to ‘classes’ of IMS applications

16 © 2009 IBM Corporation

Regions designed specifically to handle Java workload
IMS fully manages the JVM lifecycle

The persistence model of IMS dependent regions tailors to JVM usage
IMS dependent regions are typically up for long periods of
time
JVM initialized when the dependent region is brought up

JVM remains active and ready for Java workload until
dependent region is brought down

Shared cache feature of SDK 5/6
Works very well with IMS
Multiple dependent regions can share the same cache

Caches can be configured to be accessed by a certain set of
applications

Similar to ‘classes’ of IMS applications

IMS TM Java Dependent Regions...

= Each JDR contains a Java Virtual
. Shared Class Cache
MaChlne (JVM) IMP -Xshareclasses:name=imsjvm JBP
— Can only connect to one PSB ata
time (as always)

JVMOP MAS=
— Can run any mixture of Java and um um
Object Oriented COBOL) | DFSIVMMS —

= To enable class sharing use —
Xshareclasses:name= option

when starting a JVM Object :
Object
Me mory
Me mory
HEAP ENVIRON=
DFSJV MEV HEAP
LIBPATH=jre/bin/j9vm / XPLINK(ON)
E | © 2009 IBM Corporation

JVMOP MAS=DFSJVMMS

Specifies the JVM options
ENVIRON=DFSJVMEV

Must contain the pathname to JVM
Must contain the pathname to the IMS Java native code
To enable class sharing use —Xshareclasses:-name= option when starting a JVM.

The -name=<name> connects a JVM to the specified name cache or creates the cache
if it does not already exist.

-Xscmx<size>[k|m|g] Specifies cache size. This option applies onlyif a cache is being
created and no cache of the same name exists.

Note shared class is not required.

17

IMS TM Java Dependent Regions ...

= IBM SDK V5 for z/OS
— Required for IMS 10 JMP and JBP dependent regions
— Contains a re-engineered Java 2 virtual machine
— Provides cache dass sharing
— Replaces persistent reusable function
— Multiple dependentregions can share the same cache
— Cachescan be configured to be accessed by a certain set of
applications
— Similar to ‘dasse s of IMS applications
— Simpler implementation
= Benefits of IBM SDK V5 for z/OS
— Reduces virtual memory consumption
— Reduces JVM startup time
— Simpler setup
— Does not require separate “trusted” and “shareable” dasspaths
= IBM SDK V6 for z/OS
— Offering improved performance

18 © 2009 IBM Corporation

Z/OS delivers a complete Java 2 Software Developer Kit (SDK).

Previous versions of the SDK provided a reusable function to support transactional runtime
environments like IMS. This capability allowed the Java Virtual Machine (JVM) to be initialized
during IMS Java dependent region startup and to be “re-set” after the IMS application program
completed processing. This avoided the overhead of loading the JVM for each IMS application
program schedule.

The new SDK provides a Class Sharing capability to replace the persistent reusable function.
Z/OS APAR OA11519 is recommended for cache class sharing.

Benefits of SDK V5:
Uses dynamic recompilation with 5 optimization levels

The busiestmethods are optimized most aggressively
Provides enhanced “garbage collector”

To delete objects which are no longer in use
Avoids JVMs having to be reset for each transaction (more later)
Provides shared class caches

Shared by multiple JVMs

18

IMS TM Java Dependent Regions ...

= PCB Name or label required for any application
= Value of JAVA to be supplied for the LANG= parameterin the PSBGEN macro
— LANG=JAVA can also be supplied in the APPLCTN macro for GPSBs
— LANG=JAVA only required for IMP regions
— Spedifying LANG=JAVA will resultin the transaction being scheduled in a Java

dependent region
— When IMS receives the name of the transaction and looks upthe PSB associated with the
transactioncode, if JAVA is specified the transaction will be queued to execute in a Java
dependent region

APPLCTN PSB=J AV TES TJ,PGMTYPE=TP,SCHDTYP=PARALLEL
TRANSACT CODE =JAVTRANJ,PRTY=(7,10,2),INQUIRY=NO,MODE =SNGL, X
MS GTYPE=(SNGLSE G, NONRESP ONSE,1)

PHONEAP PCB TYPE=DB,DBDNAME=TELEDBD,PROCOPT=AP,KEYLE N=16
SENSE G NAME=TELE ROOT,PARENT=0,PROCOPT=AP

PSBGEN LANG=JAVA,PSBNAME=J AV TES TJ,CMPAT=YES,OLIC=YES

END

19 © 2009 IBM Corporation

To schedule into JVM, the application macro is the same and the application’s PSB is
used. During the PSBGen, the Java language is specified, indicating that this is to be
scheduled into JVM region. Class scheduling is the same as with other MPPs.

19

Java Message Processing Applications

= Before your JMP application can access the message queue, you must define input

and output message classes by sub classing
comibmins.application.|MF el dvessage

— The subclass inherits all the data and methods of IMSFieldMessage
— You addthe metadata that describes the message content

= The IMS Java dependent region resource adapter provides the capability to
process | M5Fi el dMessage Objects.

= The follow ing code sample show's how to define an input message:

public class FindCarlnput extends |MSField Message {
final static DLITypelnfo[] fieldinfo ={
new DLITypelnfo("InputMake", DLITypelnfo.CHAR, 1, 5),
new DLITypelnfo("InputYear", DLITypelnfo.CHAR, 6, 4)};

public FindCarIlnput(){ /* method to create this msg object*/
super(fieldinfo, 9, false);, /* “false” = nota SPA */ } Constructor

} Method

You do not define LL, ZZ or Trancode

20 © 2009 IBM Corporation

This is an example of how we provide Java message classes, just as we would want to
define input-outputmessage areas. For Cobol, you define the LL-ZZ, but for IMS Java,
these don't need to be provided. IMS provides these as methods, defining the field
message. The Java Dependent Region resource adapter also supports scratchpad
areas (SPA) for conversations with Java.

20

| IMs

Processing Messages in a JMP Application

= A transaction begins when the JMP application receives an input message and ends
when the JMP application commits the results from processing the message.

= To get an input message, the application calls the MessageQueue.getUnique method.
= The following code example shows how an inputmessage is processed in a JMP application:

Application app = ApplicationFactory.createApplication();

Me ssageQueue msg0 = app.getMes sage Queue();

IOMessage inputMessage =app.getitOMessage(“class://FindCarlnput”);
String i nputMake;

while (ms gQ.getUnique(inputMessage)) {
inputMake =inputMessage.getString("InputMake");

= get String() is amethod of the | Ovessage interface
- It references mess age fields by name defined in metadata

— Similarly there are methods (setString(), etc) for building output message fields

= Similar classes are also coded to define each subsequent input message segment, output
message segments, and a scratchpad area (SPA), as appropriate

]
It
|
|

I
:.EJ

21 © 2009 IBM Corporation

When a program is scheduled, the “while” loops to getmessages from the message

gueue to get data for the message area.

21

JMP Program Structure

= [MS standard commit model no longer
requires explicit checkpoint/rollback using
the IMS DB Resource Adapter
Transaction class

= Grouping of several classes including

— Message segments and SPA classes

— DLIDatabaseView class for IMS DB
metadata

— The class representing the transaction
itself instantiates itself and other classes,
gets the input message, controls
processing, sends reply message and
loops

22

> Get Message

(Implicit checkpoint)
Process Message
Insert response

Loop back to get next
message

Consistent with
all other
Programming Languages

© 2009 IBM Corporation

IMS Java Dependent Region programming does not require an explicit

checkpoint/rollback call using the IMS DB Resource Adapter Transaction class before

obtaining the next input message. It operates just like other languages now. This
reflects the changes of the JMP model back to the standard model, like COBOL, doing

synchpoint and get next.

22

Agenda

= Java basics

= IMS Java basics

= |IMS Java Applications

- IMS Database Access _
= DB2 Access

= Application Interoperability

= Technical Considerations

= Customer Examples

= Summary

23

Java database access is also provided to IMS databases

© 2009 IBM Corporation

23

[ivs LN
IMS Solutions for Java Development

= IMS 11 Open Database APIs JDBC 3.0 " IVS 9,10 Java Drivers JDBC 2.1
— IBMSDK V5 z/0S
— CICS,DB2,WebSphere
— IBMSDK V6 z/0S
- IMSTM

IBMSDK V1.3.1 IMS 9
IBMSDK V1.4.2 IMS 9
IBMSDK V5 7/ OS IMS 10

IMS DB Resource Ada pter and Universal
JDBC andDL/IType 2and Type 4

IMS DB Resource Ada pter and Universal
JDBC and DL/IType 2and Type 4

IMS DB Resource Ada pter and Distributed
Universal DB Resource Adapter Type 2 and Type 4

IMS Java Dependent Region Resource Ada pter
UniversalJDBC and DL/ITy pe 2and Type 4

© 2009 IBM Corporation

The IMS DB Resource Adapter enabled JDBC access to IMS DB from IMS TM JMP/JBP
environments, CICS Java application, DB2 Java Stored procedure, and Enterprise Java Beans
running on WebSphere and z/OS environments, butinitially from within the same LPAR. Now the
IMS DB Resource Adapter has been extended to provide access from distributed, as well as, z/OS
environments.

IMS V9 requires SDK V1.4.2 for IMP and JBP regions, IMS DB Resource Adapter for CICS, DB2 or
WAS requires SDK V1.3.1 or higher.

IMS V10 requires SDK V5 for JMP and JBP regions, IMS DB Resource Adapter for CICS, DB2 or
WAS requires SDK V1.4.2 or higher.

JDK isa subset of SDK and iswhatis needed for writing and running Java programs. SDK consists
of Applications, debuggers, and documentation. 1.5 and 5, etc., are interchangeably used.

The IMS Universal drivers require Java Development Kit (JDK) 5.0 or later, CICS Transaction Server
for z/OS Version 3, DB2 for z/OS Version 9 or DB2 UDB for z/OS Version 8, WebSphere Application
Server for zZ/OS or WebSphere Application Server for distributed platforms Version 6.1, and JMP and
JBP regions. Java Development Kit JDK 6.0 or later can also be used.

24

IMS 11 Connect Structure

with Supporting IMS Connectors
» Expands IMS as the Enterprise Integration Focal Point
» Provides a Connectivity Base for the Future

Environments
Connecting with - Command Component
other Application
and Data Servers, XML Adapter/Converters
using advanced
technologyfor ODBM
client and server TCP/P Driver
connectivity Driver
| IMSPLEX _
RYO/API Driver ~ Communicaton Coritneton | IDMVEE C‘%T&iil’é%&f
Soap Components Cowpeuzis | JOTNR Operations ,
Gateway Driver and Data

IMS ™™
Resource
Adapter

Providing High Availability, Resilience, Performance, and Operations Ease,
advanced commands/messages, error checking/trace/diagnostics

© 2009 IBM Corporation

Key Message: IMS provides and continues to enhance the integrated IMS Connect
function.
IMS Connect function is part of the overall restructure of IMS for the 21st Century and is
architected as the base forall future IMS Connectivity. Much of the function of IMS
Connect can also be used with earlier IMS Versions so you can start to take advantage of
it before migrating your networks/applications/databasesto IMS V9. The structure of IMS
Connectis designed such that drivers can be interchangeable. Thatis, altematives for the
TCP/IP front end or OT MA back end interfaces are already being provided. These are
allowing IMS to exploit newer, additional, and enhanced protocols and/or interfaces.
Along with IMS Connectis provided the IMS Connector for Java foraccess from Java
applications, SOAP Gateway and parsers, and samples for other language access as
well.

With IMS Version 8, IMS extended its use of XCF foruse by other IBM subsystems,

such asIMS Connect, for distributed operations access through the Structured Call
Interface to the Operations Manager from the DB2 Version 8 Control Centeras a single

point of control.
With IMS Version 9 this function was integrated in.

With this structure IMS 11 Connect has evolved to also support direct distributed
database accessto IMS DB from Java and other applications

| ivs LE
IMS 11 Open Database Environment

Innov ativ e Improv ed Open
Usability Standards
. . z/0S
Final Solution LPAR A
ODBM IMS
Distributed o e C
P | CTL 4 ws s
WebS phere —> A
Universal | ——
s DB T
o i?j‘:::“ e LPAR B IMS
: .k I -
P © |
" P \ CTL IMS DB
15
JCPIP

JDBC

-

CTL IMS DB

DLI

Roll Your Own

(

26 © 2009 IBM Corporation

This provides the ability to leverage IMS Connect as the complete gateway solution for IMS TM,
Operations, and now DB. IMS Connectis augmented to be an ODBM client. This allows distributed
applications to leverage the TCP/IP protocol to communicate with IMS Connect, which can then
access any database in the entire IMSplex.

IMS Connect becomes the IMS Gateway to both IMS TM and IMS DB.

WebSphere and DB2 Stored Procedures no longer have to be on the same LPAR with IMS when
they interface with the IMS ODBM (Open Database Manager) address space. The ODBM address

space must be on the same LPAR with IMS due to the use of the ODBA (Open Database Access)
interface.

Distributed clients would now have the option of going directly to IMS Connect for IMS DB requests.

Existing DB Resource Adapter applications are unaffected by Open Database. In order to exploit
Open Database from existing DB Resource Adapter applications, a migration to the JCA 1.5
programming model would have to be done.

26

DLIModel Utility

= |MS DB VI.SU&“ZﬂtIO.n tool DeployablelMS Con[,)]ﬁ]sand Stglzmglts COBOL
— Visualize an entire IMS PSB DB Web Service =
Can view each PCB individually artifacts copyDooks
— Hierarchy, segments, fields, types, etc 0.,"1
= IMS DB metadata generation tool < .ﬂ
— Generates the necessary metadata \
consumed at runtime by IMS DB

Resource Adapter, XML-DB support @\ D%Lpl/liti(;el
— Database metadata — ﬁ

— XML schema PSB

= Bottom up tooling approach mEtadV
— Parses PSB and DBD source @ \ (D
— Optionally COBOL copybook / x
definitions of segments DBdD
= An Eclipse 3.x plug-in metadata i IS Java
XML Metad ata
schemas classes
27 © 2009 IBM Corporation

Two v ersions of the IMS DLIModel utilty have been made available: An IMS 9/10-shipped version that runs from
System Sewices orfrom the ZOS® BPXBATCH tility, and an IMS 10 and IMS Enterprise Suite version that can be
web downloadable as a plug-into Eclipse. The GUI can be installed in an Eclipse 3.0.1 or 3.0.2 level tool. It can ako
be installed in WebSphere Dev eloperfor z IDE.

In IMS 10, the IMS DUModel utilty has been enhanced to generate XMl from PSB and DBD source. The generated
XMI can ako be used as input to the DUUModel utilty. GSAM now uses the GSAMDLIDatabaseView IMS Jav a class
for metadata inf ormation about the GSAM database. The DLIModel Utility now supports GSAM databases.

This chart shows the inputs and outputs of the DLIModel utility. The actions of the utility are directed by control
statements thaty ou supply. PSB and DBD source members are readfrom their PDS or PDSE data sets and parsed
by the utility to build anin-memory object model of the database structure and the PSB’s view of that structure. Note
that the IMS COBOL copybooks can only be processed by the GUI and the BPXBATCH utility can only process
COBOL XMI representations of the COBOL copybooks. The utilty generates various outputs that were requested
through control statements. Y ou can specify to have an IMS Java metadata class be generated for the PSB
processed, together with a corresponding easy to-read DLIModel Java Repott for the Java programmer to use. You
can specify an XMl description of the entire in-memory model. One description covers PSB and all DBDs processed
in the run. You can also request a detailed trace file of the utility execution if one is necessary for problem resolution.
The DLIModel utility produces the necessary metadata classes needed to dev elop IMS Jav a applications. Howev er,
the Java developer needs only to reference the DLIModel Java Reportfor information about the classes. The
DLIModel Java Report summarizes the structure of the IMS databases in a way that allows you to create IMS Java
applications and to code SQL queries against the databases. With the DLIModel Java Report, y ou do nat have to
interpret the sy ntax of the IMS Java classes or refer to the DBD or PSB source.

An XMl file, written in UTF-8 encoding, is produced by the utility if you specify genXMI=Y ES inthe OPTIONS control
statement. It describes all of the PCBs and their referenced DBDs processed in the entire run of the utilty. The XMI
that is produced by the utility is based on a metamodel of IMS database defined in UML. This model is a package
with a number of inheritance relationships to the OMG Common Warehouse Metamodel (CWM). Howev er, only the
IMS package itsef is included and used in the DLIModel utilty. The generated XML schema, written in UTF-8
encoding, is an XML document describing an IMS database based on a PCB. An XML schema is required to retrieve
or store XML in IMS. IMS uses an XML schematov alidate an XML document that is being stored into or retrieved
from IMS. The XML schema, not the application program, detemines structural layout of the parsed XML document
in the database during storage and the generated XML document during retrieval.

27

I
-

|ivs A
Database Visualization (UML View
of the Database Metadata)
EED
28 ©2009 IBM Corporation

This shows an example of the GUI view that the DLIModel Utility provides of the
IMS Database Metadata.

28

| ivs LE
IMS Enterprise Suite 1.1 DLIModel Utility Plug-in

= Graphical User Interface (G UI)
— Leverage Eclipse, Eclipse Modeling Framewor k(EMF) and Graphical Editor
Framework (GEF)
— Can be installed as astand-alone function or on top of other Eclipse based products
(i.e. RAD 7.5,RDz 7.5, Data Studio) using IBM Installation M anag er

= |MS Database Visualization Tool
— User canisualize an entireIMS PSB and DBD in a multi-page graphical editor.
Each PCBcan be viewed, saved and printedindividually. Each PCB editor shows
the IMS DB hierarchy withthe seg ments, fields, field types, etc.
— Usercan alsosearch an entireIMS PSB for a specific PCB, seg ment, or field.

= |MS Database Metadata Generation Tool
— It has been used togeneratethe necessary metadata thatis consumed at runtime by
the IMS Universal driver, XML-DB, XQuery andIMS DB Webservices.
* DLIDatabaseView for IMS Universal driver
XML schema for XML DB and XQuery
Deployable artifacts (EAR and WSD Lfiles) for IMS DB Web services viatheDAS
commands in a syntax assist and syntax highlig ht editor.
— This tooling currently uses a bottom-up approach, parsing PSB and DBD source
using either Control statements or Wizard panels. User can optionallyimport COBOL
copybook and PL/I Include definitions to definefield layouts for each segment.

29 © 2009 IBM Corporation

DL/l Model Utility plug in provides a user friendly interface, simplifies IMS
metadata generation, eases IMS Java and XML database application
development and access, and offers a visual representation of IMS
databases. Enhancements ease use of this utility, and its users can now
import PL/I Include to redefine segment layout in IMS metadata, as well as
take advantage of the new IMS Universal JDBC driver. Enhancements also
include:

Export PSB graphical view as graphic files (JPG or BMP)

Auto select DBDs that referred by a PSB in wizard

Support PL/l Include Import

Add PROCOPT to IMS metadata for the IMS JDBC driver

Add Virtual Foreign Key view to the PSB graphical editor

Change GUI messages to match with product messages prefixes
Add the search capability to the PSB graphical view

Update the existing metadata with newly updated PSB/DBD source

Ship under the new IMS Enterprise Suite through IBM Installation
Manager

IMS IEH
IMS Java and IMS XML Databases

= Two Types of IMS XML Database
— Decomposed or Virtual XML DB

- A Standard IMS DB-, \M]iCh has IMS PSB/DBD

data automatically transformed
into XML

when retrieved (and v.v.) LYk MSsava
Utility Applicat ion
— Intact XML DB

— Where XML data is stored withot
transfomation (.e. with its XML xwi schema
tags) on the IMS DB -y

XML Docu ment

i
= Java API - retrieve XML() and
storeXML()
= DLIModel utility - used to generate
XML schema from DBD
30 © 2009 IBM Corpor ation

Since IMS 9, it has been possible use an IMS database as an XML database. There
are two possible implementations.

Firstly, the IMS database can be a Virtual or Decomposed XML database. The
data in the database is absolutely standard IMS data. However, by using an XML
schema that describes how the IMS data would be represented in an XML
document, itis possible to transform the data between the XML document and the
IMS database in either direction. This is an extremely powerful feature of IMS, and
is simplified because both XML and IMS use hierarchical data structures, and hence
itis easyto map between the two formats. As mentioned earlier, the XML Schema
can be created by the DLIModel utility.

The second possibility is to use an IMS database to hold intact XML documents —
both the data and the XML tags are stored on the database.

In both cases, the XML document is stored or retrieved using JDBC.

30

IMS Java and IMS XML Databases ...

= XML Data is retrieved and stored using an extension of JDBC

= Examples:

» Build an XML document out of the

SELECT retriev eXML(Employee) Employ ee _Segr_nent and all its Dependent
FROM employeeDB.Employee Segments inthis PCB, forthe employ ee

) with serial number 3A0140
WHER E Empl oyee.serialNumber = ‘3A0140’

Note: SELECT of XML still populates aresult set. The XM. document(s) will form one
column. You could select other things into other columns.

SELECT Enpl oyee. seri al Nunber, retrieveXM(Enpl oyee) FROM ...

» custXMLDB is anintact XML DB. The root
segmernt is called “‘Customer”, and contains
INSERT INT O custXMLDB.Customer a key field, “CustNo” and thefirst piece of
(CustN o, storeXML()) VALUES (?,?) the XML document
31 © 2009 IBM Corpor ation

To retrieve IMS data as an XML document, you would use the SQL SELECT
function, as usual. This will still return a result set— some columns can be used for
DB fields, and other columns can be used for XML documents. This requires a
“JDBC extension” to specify that an XML document s to be SELECTed rather than
a field. In the first example on the slide, the SELECT specifies a single value to be
SELECTed - “retrieve XML(Employee)” . The WHERE clause limits this to the
employee with serialNumber ‘3A0140’. So the result set will contain one column and
probably one row. The content will be the XML document created from the
EMPLOYEE segment and all its dependentsegments in the employeeDB PCB
view.

The example in the middle of the slide shows a variation on this. In this case the
result set will contain two columns — the first will be the employee serial number and
the second the XML employee document.

The third example shows an INSERT of an XML document onto a customer
database. This is actually an example using an intact XML database, and so IMS
requires a separate root key value to be specified as well as the XML document
itself. Before executing the insert, the application will have to set the first“?” equal
to the customer key value, and the second “?” will be set equal to the customer XML
document. Then the SQL INSERT can be executed.

31

IMS DB Resource Adapter XQuery API

XQuery is a language for querying XML data
— Result of quety is itseff an XML document
— Note XQuery is currently aread only language
IMS 10 XQuery support
— Supports Decomposed (Virtual) XML DB only
— Views result of SQL SELECT as the input document to be XQueried
— Allows any standard IMS DB to be queried with XQUERY
Supports the XQuery 1.0 and XPath 2.0 Data Model
— XQuery is based on the structure of XML to provide query capabilities

Extends IMS DB Resource Adapter API

— SELECT retrieveXML(<segment>, < xquer y>) «Initially, the IMS XQUERY is implemented

— FROM <pch.segment> via an SQL QUERY
A » You should us e the WHERE clause to
— WHERE <predicate> reduce the amount of IMS data that is
searched
« At alater time, the XQUERY inter nal
processing will be enhanced to limit the
search to the necessary DB records

32 © 2009 IBM Corporation

XQueryis a functional programming language that was designed by the World Wide Web
Consortium (W3C) to meet specific requirements for querying XML data.

XQueryis based on the structure of XML and leverages this structure to provide query
capabilities for the same range of data that XML stores.

The IMS DB Resource Adapter XQuery support extends the retrieve XML User Defined Function
(UDF) by adding a second parameter. The second parameter allows the passing of an XQuery
1.0 expression.

The expression is evaluated relative to the retrieve XML context and returned to the result set as
a CLOB value. This implementation views the entire IMS DB as an XML document and enables
the return of specific IMS data based on the XQuery. For IMS XQuery support the XQuery 1.0
and XPath 2.0 Data Model serves two purposes. First, it defines the information contained in the
input to be used by the IMS XQuery processor. Second, it defines all pemissible values of
expressions in the XQuery, and XPath languages that can be evaluated by the IMS XQuery
processor. The IMS DB Resource Adapter is packaged in imsjava.jar. The IMS XQuery function
resides in a separate package (imsxquery.jar).

Benefits

IMS patrticipates in industry standards

Can use Application Development tools thatsupport XQuery

Can be used with existing IMS data and IMS XML Schemas

As GUIs are developed for front-ending XQUERY, the objective is that the target DB can be an
IMS database

32

IMS ——

IMS DB Resource Adapter XQuery API ...

XML document IMS database storage

SELECT retrieveXML(B,

‘for $x in /B
€= Where $X/@f1 =z
CLOB return <namelist>
{$x/B/f4}
</namelist>’)
FROM

<xgl:annatation>
WHERE xgd:gpinfo>
<ims:DLI mode="sore"
PSB="MY PCPSB"
PCB="MY FOPCB"
<xgl:element name="A">
<xg:element name="field1"

DLIModel Generated
XML schema

33 © 2009 IBM Corporation

Since IMS XQueryis an extension to IMS XML DB, existing DLIModel generated XML Schemas
can be used by the IMS XQuery processor to compose XML documents.

Agenda

= Java basics

= IMS Java basics

= |IMS Java Applications

= |MS Database Access

= DB2 Access

= Application Interoperability
= Technical Considerations
= Customer Examples

= Summary

34

DB2 can also be accessed with IMS Java programs

© 2009 IBM Corporation

34

Accessing DB2 from IMS Java Program

= IMS JMP and JBP regions use a different DB2 attachment facility from
other types of dependent region

— Recoverable Resource Manager Senvices attachment facility (RRSAF) rather than
the External Subsystem attachment facility (ESAF)

= RRSAF supports attachment from IMS on one z/OS to DB2 on a
different Z/OS
— The JDBCdriver type should be specified when creating the connection

— Type 2 for DB2 on same z/0OS
— Type 4 for DB2 (potentially) on a different z/OS

© 2009 IBM Corporation

The IMS Java regions use a different DB2 attach facility from other IMS regions.
If using a distributed attachment, RRS provides the synchpoint management.

35

Accessing DB2 from IMS Java Program ...

All DB2 calls are part of one UOW
= RRS setupin z/OS and activated in IMS (RRS=Y)
DB2 setup for using RRSAF from IMS required
— SSM member of IMSxxx.PROCLIBforDB2 subsystem example
— SST=DB2,SSN=DB2E,COORD=RRS
— Add DB2 to trusted middleware
— Add DB2 to LIBPATH
— LIBPATH=/usr/lpp/db2/db2910 jdbc/lib

— Addthe DB2 library to JMP region with the DFSDB2AF DD (whichmust all be
APF authorized libraries)

Plan with the name of the PSB/Program must be bound or RTT
= Packages for all COBOL modules and the four DSNJDBCx
packages must be bound to the corresponding plan

36 © 2009 IBM Corporation

Considerations for accessing DB2 from IMS Java programs are shown here.

36

Agenda (

e

= Java basics e

= IMS Java basics - —
—l_-'..r

= |IMS Java Applications

= |MS Database Access ,
- BB> Accens]aua
= Application Interoperability _

= Technical Considerations

= Customer Examples

= Summary

37 © 2009 IBM Corporation

We discussed IMS Java applications and database access. Next we’'ll talk about
interoperability between applications.

37

Integrating with Existing IMS Transactions

= The goal should not be to rewrite all applications in Java
— Not even possible in many instances

— Java is not meant to replace existing applications
* Meant to complement them

= Instead integrate the two environments
— Program switching (immediate and deferred)

» Betw een transactions in different languages

— COBOL/PL/I and Java language interoperability

* To exploit COBOL/PL/I subroutines in a Java program
» To exploit Java classes in COBOL/PL/I program

38 © 2009 IBM Corporation

So now you might be thinking “Ok, great! I'm reducing the amount of code | write by
leveraging Java code. Wait a minute... am | making COBOL less relevant”. No this
works both ways you can also extend COBOL applications so that Java developers can
now access them. This means Java developers can take up a lot of the maintenance
and enhancement work on existing COBOL code. Yes, this may seem like it's still not
helping the COBOL developersince it is shifting work to Java but it does. We’re moving
off the menial less interesting work and freeing up COBOL developers to create new
COBOL applications.

38

zOS Language Interoperability

= IBM's Enterprise COBOL for z/OS V3R4 (or higher) and IBM

Enterprise PL/I for z/OS V3.8 (or higher) supportinteroperability
between COBOL/PLIand Java

— When running in an IMS Java dependent region (JMP or JBP)
— When running in MPP & BMPs
= Supported Scenarios

— Java Calls OO COBOL module (COBOL Compiler generates Java
Wrapper and Shared Library containing COBOL code)

— OO COBOL programcan call Java Classes
— Procedural modules can be called from OO COBOL program

— PL/I modules can be called from Java through JNI (Java Wrap per
must be created)

39 © 2009 IBM Corporation

IBMs Enterprise COBOL and Enterprise PL/I support interoperability between COBOL/
PL/l and Java applications

39

Interoperability in Java Regions

ServerSide Server-Side
* IMS Java can be used to Presentation Business Logic
call COBOL and PL/I Management IMS Application Server

modules through JNI

IMS IMS JMP
= In JIMP/JBP IMS launches ™ Region IMS JBP
. . Region
JVMduring region
TNT . Java
initialization. o Application o
Region Clas sforNam e(DL IDriv er)
get.connection(IMS psb) Clas sforNam e(DL IDriv er)
Select get.connection(IMS psb)
From Select
e Fom
Where
IMS Close
TCPIIP or . ' :
SNA JDBC Drivers JDBC Drivers

= JMP same as MPP+JVM uﬂ
= JBP same as non-message ﬂ
drvien BMP+JVM S0t g

Module

40 © 2009 IBM Corporation

IMS Java can be used to call COBOL and PL/I through the Java Native Interface.

40

| vs LEM

Java class libraries for IMS

- IMS uses JNI to interoperate between Javaand IMS DL/I
- 4

Application

e 3 /Application

Driv er

IMS Universal DUI |Ja/a Class Libraries for IMSE
/

A JINI Vo 4
AERTDLI CEETDLI ABTDLI -
Interface Interface Interface

OnlyAIB
Interface

| Assembler Layer Interfaces to IMSE@*

41 © 2009 IBM Corporation

Java Native Interface is shown here for use in accessing IMS procedural
code

Bottom — language interface (depending on the environment 3 interfaces) —
have to drop down to c (thin jni layer)

Base — 1-1 mapping of the way ims works under covers and in java build
SSAs & make db calls using DL/I

DB —really whatis turning this in to our jdbc driver making sql calls

Application is running in an IMS dependent region and offers reading/writing
messages to ims message queue

Customer code doesn’t have to worry about the DL/I call, only JDBC
Dbview- added new stuff (XML)

Tooling — generates database view called dli model utility

41

Interoperability in MPRs

= COBOL
— JVMcreated implicit
— Java code can be embedded

— Parameters to and from Java
prepared through JNI API

= PL/I
— JV Mcreated through JNI API

— Parameters to and from Java
prepared through JNI API

— Java class called with INI
API

42

IMS MPR

~
g
&

-
4
-

IMS MPR

-
4
e
-
&

L]

© 2009 IBM Corporation

COBOL and PL/l applications in Message Processing Regions interoperate with JVM

excuting Java classes.

42

| ims

Consuming Web Services...
= IMS Java application callout capabili
« JAX-WS

* JAX-RPC
IMS JMP

ties

— Natively, this capability exists inJava.

»

» Direct call (sy nchronous and asy nchronous)

Web Sphere
Application Server

Java

— References
* SC18-7821IMS Java Guide and Reference

X

program <

Web service

Ih'-
[]
]

© 2009 IBM Corporation

IMS Java applications can themselves call out to other applications.

43

| ims LEM

IMS Connect Solutions provide Interoperation between
IMS Applications and other Application Environments

= IMS Connect providesthe IMS interface for TCP/IP solutions

» IMS SOA Integration Suite at http://www.ibm.com/ims

IMS TM Resource Adapter
= IMS MF S Web Support
— IMS SOAP Gateway
IMS Web 2.0 Solution Existing IMS

. . transactions can be
IMS Enterprlse Suite integrated into the
SOA by implementing
a Web senice as a
. . . front-end access-point
» Write y our own clients interface

» Other Vendor solutions

44 © 2009 IBM Corporation

IMS Connect provides TCP/IP access to and from IMS.

For access to IMS through IMS Connect from a JEE environment, IMS provides the
IMS TM Resource Adapter (eadier known as he IMS Connector for Java) for access
from Java applications, SOAP Gateway and parsers, and samples for other
language access as well. Support for MFS is also available. Other solutions
providing access to IMS through IMS Connect include the IMS SOAP Gateway for
access from non-J2EE environments, IMS Web 2.0 support for Mashups, and many
more. solutions.

Java Connector Architecture with IMS

WebSphere Application Server
(z/0S, Windows, AlX, HP_UX,

Web Linux, zLinux, and Solaris)
Component

Enter prise
Web Bean CCI

Service Application
Contract

Managers: SPI
e — System

Contracts IMS
TM Resource
Adapter

» Connection
* Security
* Transaction

45 © 2009 IBM Corpor ation

IMS TM Resource Adapter is supported with WebSphere servers such as WebSphere
Process Server and WebSphere Application Server for z

IMS TM Resource Adapter is both scalable and flexible. You can configure your
environmentto use IMS TM Resource Adapter in a distributed application server or, for
higher scalability, you can use IMS TM Resource Adapter in WAS for zZ/OS. Being a Java
workload, if you run WAS for zSeries, the workload is eligible for off-loading to a more cost-
effective zZAAP processor.

45

| ms

IMS 10 as Integration Focal Point - Callout Support

= IMS 10 Asynchronous Callout
— Enable IMS applications to act as aclient to asynchronously invoke Java EE

applications and Web Services
— Receiving output from external application is possible

10S
IMS ? Inifiating Client
IMS FoTy IMSFpp 1
4__ M
Connect ﬁ. A

(ISRT ALTPCB) Request
e | S IMS App 2
RYo -> Responsepp

IMS SOAP
Gateway

= |MS 10 SPE Synchronous Callout Support
— Enable IMS applications to invoke Java EE applications and Web Services,

and synchronously wait for the response
z/0S

WebSphere Application-Senser IMS
IMS —
Web Servi EJB/ MDB ™ RA _I@
< (0] M
IMS SOAP < IMS - S App
Sateway Connect v | DL call
RYO A

© 2009 IBM Corpor ation

46

Key Message: IMS 10 Callout support enables IMS as the Integration Focal Point

One of the key customer requirements that we have heard regarding SOA support for IMS
is for Callout support, where an IMS application could call out to another application across
the IMS TM Resource Adapter to WebSphere server applications or to SOAP application
environments. IMS Callout support enables IMS applications as clients, interoperating with
business logic outside of the IMS environment. This support includes correlation mapping
between the callout request and the external application, enhanced securty, and assistance
on destination routing. This support allows for better integration in an SOA environment.

For example, an application may need to know the currentstock price, ormay need to look
up the currentsales taxrate.
Callout support has been provided for IMS 10, first as an asynchronous transaction, and

later as a synchronous call where the IMS application will wait for the response before
continuing. Synchronous callout supportis being provided through the service process

46

| vs LEM
IMS 10 Synchronous Callout Solution Highlights

WebSphere

Application Server
EIB/ IMS T™
Resource
W Adapter v,
‘o,
.
‘A
‘
.

Java Mess age Seric e
(OMS) API

eb Service IMS
Provider (
eg. Microsoft]__ . . ____) Sl ---uuuu-n) IMS IMS DLI ICAL ctflllwl
NET) Caleiay Connect \ | Send-Receive
. OTMA k
..... ') Descripto] 7_’/"—
v I

— Send flow

Receive flow

47 © 2009 IBM Corporation

Callout can be provided from IMS Java and other IMS applications. Synchronous callout specially
addresse s the need for an IMS application to act as a clientto go outbound synchronously to invoke
external application and receive the output back This enhancement allows your IMS application to
invoke one of the following extemal applications and synchronously get the output back

(1) an J2EE application (ike an Enterprise Java Bean/EJB oran Message Driven Bean (MDB)) or
Web service providers running in the WebSphere Application Server using the IMS TM Resource
Adapter

(2) other Web service providers (e.g. like Microsoft .NET or SAP Xl) using IMS SOAP Gateway
(3) any other applications (like RYO, SAP apps) using the IMS Connect interfaces
This diagram gives you a very highdevel overview of the synchronous callout SPE.

The red arrow represents the send flow. From the right hand side of the diagram, an IMS application
makes a DLI call to send out a synchronous callout request. The OT MA descriptor function inside
IMS moutes the callout request via IMS Connect to invoke one of the outbound destination as shown
in the boxes on the left—i.e. the WebSphere, Web Senices or RYO applications. After the callout
request has been processed, the output data would be returned back to the same IMS transaction
instance as shown in the blue arrows.

| ivs LEnT
IMS Enterprise Suite 1.1 JMS API Support for
Synchronous Callout

= Provides Java Message Server (JMS) API for accessing IMS
Synchronous Callout function.

— Enables business growth -- Allows more flexibility in accessing cross
enterprise data and functionality from within IMS applications to meet growth
challenges.

— Exposes core IMS functionality through a Java standard interface - Makes IMS
function more accessible to application dev elopers with modern skill sets.

— Offers standards-based approach - Exposes IMS industry leading transaction
managem ent capability through a Java standard interface, JMS

— IMS Callout function included in IMS; JMS API packaged with IMS Enterprise
Suite.

— Enables new application design frameworks and patterns

— Synchronous callout support is the first IMS function to fuly embrace the JMS
standard in IMS application dev elopment.

48 © 2009 IBM Corporation

The Java Message Server (JMS) API can be used for synchronous callout from an IMS Java
application. The IMS Enterprise Suite is providing the JIMS API Jar file for this.

The JMS APl improves programmer productivity by defining a common set of messaging concepts
and programming strategies that will be supported by all IMS technology-compliant messaging
systems. By making IMS a JMS provider we address the skillsissue impacting dient’s ability to
develop new applications which goesto revenue. Although heavily used by IMS customers, the DL/
APlisn’t an industry standard and skills may be limited. Providing modern standards based access
to IMS functions reduces customer costs.

Synchronous callout support is the first IMS function to fully embrace the IMS standard in IMS
application development. We are consideting future enhancements to front-end IMS message queue
processing with the IMS interface.

48

| ivs LE
IMS Enterprise Suite 1.1 Connect API for Java

= Simplifiesinteraction with IMS Connect and IMS
— Internally creates IRM header for request andinter prets non-data response infor mation
— Automatically opens socket connections to targ et IMS Connect as needed
— Re-usable profiles specify targetIMS Connect and IM S and inter action
— Allows client applications to provide data in a variety of ways
— Lower-level calls provided
— High-level execute call to openconnection and performs interaction on behalf of client
— Applications must call disconnect() on all connections before termination
— Supports IMS Connect PING and RACF password change commands
— Supports all OTMA-supported IMS commands

Windows or z/OS

Client
Application

Ann

Ao

IMS ¢ >
Connect

Load default
property values

TCP/IP

Connection
and
Tminteraction
perties files

49 © 2009 IBM Corporation

IBMis also enhancing IMS Connect use with the IMS Enterprise Suite Connect API

The IMS Enterprise Suite Connect API simplifies design, development, and test of IMS accessfor client TCP/IP
applications. Supportfor Java applications in Windows and z/OS environments is provided initially with support
for C applications in Windows environments being delivered next through the service process. The API
provides a customizable set of prdfiles that define the connections and ty pes of interactions to be performed
and high- and low-lev el methods f or perf orming these interactions. This simple APl allows user-developed
applications to interact with IMS Connect while shieldin%the applications from the complexities of the IMS
Connect protocols by automatically generating the IMS Request Message header, interpreting the non-data
portions of response messages and opening socket connections_on behalf of the applications. Using the
reusable profiles, the API provides a simple way to describe the TCP/IP socket connections needed and the
interaction to be performed. In addition, it gives the client applicationflexible ways to provide the data to be
sent including 1- and 2-dimensional byte arrays, Strings and arrays of Strings. For more direct control of an
interaction by a client application, limited, more granular, lower-lev el calls are provided which allow the client
application to explicitly open a socket connection and send and receiv e data to IMS Connect. The

disadv antage of using the lower-lev el send and receive calls is that you lose the benéfit of the API creating the
messageforyou and interpreting the non-data portions of the response.

The API will conmunicate with IMS Connect on behalf of the client. Upon request by the client application, for
example in an execute() or connect() call, the API will create a connection for use by that application. The client
application does nat need to deal directly with the connection, other than to keep track of it through the
Connection object so that the client can call disconnect() on the Connection object bef ore exiting. Of coarse in
Jav a, orphaned connections would ev entually be cleaned whenev er there are no longer any references to those
connection objects or when the application terminates. Howev er, failure to explicitly disconnect a socket bef ore
an application shuts down may lead to warning m%sag?]% being displayed on the IMS Connect console when
TCP/IP closes a connection without the application or the API sending a disconnect request to IMS Connect.

In addition to IMS transactions, the initial release of the IMS Connect API will support the IMS Connect user
message exit-supported PING and RACF password change commands along with all IMS commands
supported by OTMA.

This figure shows the environment in which the IMS Connect APl can be used. It also depicts thefact that
multiple client applications that use the IMS Connect API can be invoked simultaneously. The API will
communicate with IMS Connect on behalf of the client applications.

49

Agenda (

e

= Java basics e

= IMS Java basics - —
—l_-'..r

= |IMS Java Applications

= |MS Database Access ,
- DB2 Access ava

= Application Interoperability

= Technical Considerations _

= Customer Examples
= Summary

50 © 2009 IBM Corporation

There are some technical considerations you might want to be aware of in doing all this.

50

IMS Java Basic Transaction Program Skeleton

Message format definition classes
DLIDatabaseView class e (message metadata)

(IMS Java metadata) /

A

‘ main application class(es)
(i.e. core transaction logic/ business logic)

51 © 2009 IBM Corporation

Note: JBP applications cannot read messages from the message queue, but they can
write outputmessages to the queue.

51

Developing Java Transaction Programs

= Using Rational Developer for System z (RDz) enables the
Java code to be created and maintained on the host system

— Saves porting betw een development and test environments

= BTS fully supports development of message driven Java
programs (JMPs) and Java Batch Programs (JBPs)

= Debugging aided by IMS Java’s JVM Logging facility

52 © 2009 IBM Corporation

Anumber of tooling can provide development assistance for IMS Java applications and
access to/ffrom these and other applications.

52

I
il

| IMs

Technical Considerations: Language Interoperability

= All Environments for COBOL/PLI Java interoperability
— Do not mix Message Processing and Synchronization, use one language for both
— If same PCBs are used in both languages, they might have changed

« Especiallyimportant when integrating existing modules that expect a PCB with
a certain value

— AlB interface isused in Java (PCBs must have names)

— If subroutines require PCB pointers they can be created using INQY FIND call and
provided with CALL to subroutine

53 © 2009 IBM Corporation

Here are some environmental considerations.

53

54

Technical Considerations: IMS Java Dependent Regions
* For JMP or JBPs

Javaisthe starting language

PSB LANG=JAVA (required for IMP only)

STOP runin COBOL causes application to end

COBOL Local Storage instead of Working Storage

JBP isnon-message driven region so doesn’t read messages from message queues

Program must start with a main method. COBOL dass with main factory also meets
that requirement

PCB name orlabel needsto be specified.

© 2009 IBM Corporation

Some considerations for running the IMS Java Regions

54

]
It
|
|

I
:.EJ

| IMs

Technical Considerations: IMS MPP Regions

= Language Interoperabilityin MPPs
» Solutionfor calling Java class from procedural program of any language
» Requirements
— Enterprise COBOLfor zZIOS V3R4 or higher
« Enterprise COBOLfor zZ/OS V4.2 provides supportfor Java 5 and 6, new XML,
Unicode and performance and usability enhancemernts.
— IBM Enterprise PU/Ifor z/OS V3.8 or higher
— IBMJava 4.2 SR3 or higher
= How it works
» JVM is created withfirst Java class invocation
» JVM is destroyed at end of schedule
» Schedule to firstcall is high due to JVM startup
» UseWFI regions or dedicated transaction class

» Create COBOL module that calls Java and link it with procedural caller (caller needs just
call statement)

» Use of CEEUOPT member for custom LE Parameters requires LE caller
» DB2 Access possible, but different UOW and using Ty pe-4 Connection only

55 © 2009 IBM Corporation

The next few charts show how you might choose to run a JVM and interoperate with
Cobol from within an IMS MPP regions. This allows a COBOL application to invoke JVM
within an MPP region.

Technical Considerations: IMS MPP Regions ...

= COBOL
— IMS DL/l calls possible with no restrictions

— DB2 calls possible with no restrictions

= Java
— IMS DL/l calls only with environment variable

— com.ibm.ims.jdbcenvironment=IMS
— Includes message queue and system services calls due to check
for execution environment
— DB2 calls only possible with Type-4 Connection URL and w ithout
com.ibm.ims.jdbcenvironment=IMS being set
— Soany IMS DL/Icalls and DB2 Database access can be used
mutually exclusive only
— That means with DB2 Type-4 being enabled, no IMS System

services calls can be made and thus e.g. no Message sending is
possible from Java

56

Here are considerations for running Java and COBOL in the same region

© 2009 IBM Corporation

56

Technical Considerations: Language Environment

= Java is compiled with DLL option and XPLINK(ON)

= OO COBOL or Mixed Case COBOL is DLL compiled

= Existing Modules might be NODLL and NODY NAM compiled

= NODLL Module cannot call DLL Module dynamically and vice versa
— NODLL Module requires statically linked wrapper to be caled from DLL
— DLL Module requires statically linked wrapper to be calledfrom NODLL

— Free mixing of existing modules and Java classes requires twov ersions (DLL and
NODLL) of each module

= PL/I Main requires PLIXOPT w ith XPLINK(ON)
= IMS Dynamic LE Options feature (UPDATE LE command) can be
used to set XPLINK(ON)

57 © 2009 IBM Corporation

Some considerations are shown here for the language environment for this JVM within
the MPP region..

57

Technical Considerations: Language Environment ...

= CEEUOPT module can be used to set = LE Settingsand ENV Fle
XPLINK(ON) ~ Locate the HFS path of the JVM
— POSIX(ON)is required e.g. /usr/lpp/java/d1.5/bin
— Path to the ENV file is required — Create the ENV file in the HFS path

Edit the ENV file and according to your
— Contains USS Environment variables (LIBPATH, environ ment
PATH, CLASSPATH)

/1 SYSI N DD *

CEEUCPT CSECT
CEEUCPT AMDDE ANY
CEEUCPT RMODE ANY

TITLE ' CEEUOPT'

CEEXOPT XPLI NK=(ON), X
POSI X=(ON) , X
ENVAR=(' _CEE_ENVFILE=/u/gaebl er/ hell o/ ENV)

END

58

Some additional considerations are shown here for the language environment to launch

AVA HOME=/usr /| pp/ javal/J1. 5
ATH=/ bi n: /usr /| pp/javal/Jl. 5/bi n:.

pp/java/J1.5/ bin/classic:/ulgaebler/hello

BPATH=/1ib:/ usr/lib:/usr/lpp/java/ J1.5/bin/j9vm /usr/|pp/java/Jl.5/ bin:/ usr/

ASSPATH=/ u/ gaebl er/test.j ar:/ u/ gaebl er/hel | o

© 2009 IBM Corporation

the JVMin the MPP. The CEE User option module is used to set the communications
link, XPLINK. And this shows the LE settings and Environment file.

58

Agenda

= Java basics

= IMS Java basics

= |IMS Java Applications

= |MS Database Access

= DB2 Access

= Application Interoperability
= Technical Considerations
= Customer Examples

= Summary

59

The following show some customers using IMS and Java .

© 2009 IBM Corporation

59

Northwest Airlines -
(now merged into Delta Airlines) !
Environment "nmwa |

x Have beenrunning a successful airline very efficiently and effectively with IMS/DB2 on

z/OS as a backend technology and plan to continue onthat path

x Why System z? Reduced operating costs; reduced operational and architectural
complexity; ability to more easily consolidate wor K oad due to merger

x Why IMS? Industry proven; can handle high volumes of transactions better than other
solutions; excellent support from IBM

Business Objectives

x Integrate critical applications after merger
x |Implement a distributed application front end using SOA ontop of our existing z/OS
Solution

x |Implement IMS/JDBC on z/OS to migrate non-critical applications to distributed
technol ogies

x Allows NWA to better manag e therisk of depleting technical experts within
COBOL/DB2/IMS technology

Business Benefits

x NWA's technical infrastructure is much more open and able to integr ate with all
different types of technol ogies .

x Smoother integration of all critical applications running onzOS after merger with Delta

60 © 2009 IBM Corporation

NWA'’s System z Strategic Direction: Reduce operating costs, Reduce operational and
architectural complexity; Workload consolidation due to merger

The Strategic Infrastructure to Support their Goals: IMS for day to day operations; DB2 day to
day operations as well as for reporting; Other IM for System z products

Why IMS? Industry proven; Can handle high volumes of transactions and still perform better than
many relational databases; Excellent support from IBM

What we’'ve accomplished: We have been running a successful airline very efficdently and
effectively with IMS/DB2 z/OS as a backend technology and planning to continue on that path. We
have been working with IBM to implement a distributed application front end using SOA on top of our
existing zZ/OS infrastructure. With the implementation of IMS/IJDBC on Z/OS, we have been able to
manage the risk of depleting technical experts within COBOL/DB2/IM S technology.

Benefits Realized: A familiar and proven technology which minimizes the risks. With IMS/JDBC on
z/OS, we are implementing a planned and well managed migration of non-critical applications to
distributed technologies, but still running on z/OS. NWA's technical infrastructure is much more open
and able to integrate with all different types of technologies.

Looking Ahead: With the help of IBM, our integration plans with Delta during merger are expected
to be much smoother with all the critical applications running on z/OS; Keep working with IBM’s On
Demand division to implement better and faster solutions;, Keep running a premier global aidine
successfully with existing technologies

60

Canadian Bank

Challenge
x Core banking system written mostly in COBOL
x Lack of marketplace skills in order to maintain and develop
new applications within their core banking system
x Need strateg yto provide newser\vicelayersintheir core
banking system —cannot rip and replace
Solution
x Leverage the IMS JDBC driver as well as the core Java class libraries for IMS
x Interoperate between COBOL and Java within the core banking system
x Newservices will be writtenin Java
Benefit
x Provide the ability to move the core banking frameworkinto a new era where Javais the
development language of choice
x DoNOT need to completely replace decades of infrastructure
x Qver timeinject new Javaservices into this framewor k
x Timeto market for new apps dramatically decreased

61 © 2009 IBM Corporation

Bank in Canada
Core banking system managed by IMS and written mostlyin COBOL
Situation

Lack of marketplace skillsin order to maintain and develop new applications within their core banking
system

Need strategy to provide new service layersin their core banking system — cannot rip and
replace

Solution
Leverage the JDBCdriver for IMS as well as the core Java dass libraries for IMS
Interoperate between COBOL and Java within the core banking system
New services will be written in Java
Value

Provide the ability to move the core banking framework into a new era where Java is the
development language of choice

Do NOT need to completely replace decades of infrastructure — this would fail and is simply not an
option

Over time inject new Java services into this framework

Time to market dramatically increased with the abundant skillset available in the marketplace

IMS looks like any other database (from an application development perspective)

Standards, standards, standards

61

Ih'-
[]
]

| ms
German Bank

= Challenge
— Mainly PL/I based with conv ersational transactions

— Purchased 3rd party credit checking technology as part of a Java
package
— Replaced existing PL/I-based transaction
— Wanted to deploy this in a Java Dependent Region and integrate
with existing PL/I applications
— Just another service...
= Solution

— Leverage the deferred program switching support already in IMS
(and supported within the Java class libraries) to switch conv ersation
iterations from MPP to JMP regions and back

— In production within a month with this solution

© 2009 IBM Corporation

62

And Many More European Customers...

= Customer A

— Strategy to implement every business functionality as POJO (plain old Java object) which
isruntime independent code and could be run either in Pure Java JVM, JCICS, Java
Stored Procedure, IMS Java, WebSphere EJB, Java Sendet, + many other Java
runtimes.

— Migration of the IMS Batch to Java JBP
= Customer B
— IMS Java for application for about two years
— Eclipse for development
= Customer C
— Javain COBOL regionsto calloutto EJBs— One year production without issues
= Customer D
— Core banking application under IMS — COBOL and Java
= Customer E
— Start with unning Java in COBOL regions
= Customer F
— Java runtime for some integration scenarios that require calling Pure Javain IMS

63 © 2009 IBM Corporation

And there are many more customers implementing IMS and Java.

63

Agenda

= Java basics

= IMS Java basics

= |IMS Java Applications

= |MS Database Access

= DB2 Access

= Application Interoperability
= Technical Considerations
= Customer Examples

= Summary

64

© 2009 IBM Corporation

64

Ih'-
[]
]

| ms

Getting More Information

Additional information can be accessed via the IMS home page at
http://www.ibm.com/ims

= IMS SOA Integration Suite
— IMS DB resource adapters
— IMS XML DB
— IMS TM resource adapter
— IMS Enterprise Suite
* SOAP Gateway

* DLIModel utility
« Connect API

= WW IMS Conferences and Seminars
— IMS Seminars coming to a city nearyou
— IMS Teleconferences, with replay s available
— Customized IMS offerings at ibmdds@us.ibm.com

65 © 2009 IBM Corporation

65

Unigue Offering

» Free application development workshop to learn how to easily and quickly
develop and run Java applications to access IMS data using SQL and DLI
APIs._which will allow y ou to more easily develop IMS applications,
ensuring that y our company’s investments in IMS continue to pay dividends
foryears to come

Workshop Description:

» Learn how to develop and run Java/JDBC applications against the IMS
database easily. Test drive the newest application development API in
JavaforIMS™, In this workshop attendees will hav e the opportunity to
develop, debug, and run sample Jav a applications using Eclipse based
development IDE like Rational Dev eloper for System z.

Target Audience:

> Application Architects and Application Dev elopers who are responsible for
Jav a applications.

We are currently offering some workshops, should you like to request one. This
Java one covers:

What is special about IMS & Java?

The IBM IMS™ hierarchical database has served as the backbone for industry-
leading companies demanding the highest performance, stability and reliability for
over 40 years now. Although the heart of this industry-proven data store has
changed little, IMS continues to make great strides in new application development,
connectivity, and data representation and its strategic role in an SOA environment.

This section will introduce you to IMS basics. Topic covered include: hierarchical
database, IMS hierarchical terms such as: IMS records, IMS segments, Fields, key
fields, search fields, etc. The IMS DLI application programming Interface (API) and
how to issue DLI calls to access IMS databases and how to issue the same DLI
calls in Java.

Tooling support for Application Development

The IMS Enterprise Suite DLIModel Utility is an Eclipse plug-in tool that generates
metadata that is consumed at runtime by the IMS Java/JDBC drivers. This session
demonstrates how the utility can easily create the metadata from existing PSB, DBD
and any COBOL or PL/I copybooks. The tool also generates visual depictions of
the IMS database hierarchy which helps during application development.

Writing applications in Java for IMS

Hands-on lab session that takes you through the steps for developing, deploying
and running a Java application accessing IMS data. You will be building and
executing applications to run in two runtime environments: Windows and in IMS
dependent regions using the IMS Universal Java API drivers. The beauty of the
Universal driver supportis that there is virtually no code change required when

66

Summary

= Java is another programming language for IMS alongside
COBOL, PL/I, C etc.
= There is an increasing demand for Java to be used as a

general purpose language, including use on the mainframe
— single standard, most IT graduates know it

— easy and economical to find Java programmers
= IMS Java introduces the power of IMS TM/DB to Java
people, who can develop IMS transactions with workstation
tools (e.g. Eclipse) in Java
= [MS transaction and JBP developmentis easyin java
= [MS java performance is continually being enhanced

67

© 2009 IBM Corporation

Java is just another programming language, but is receiving increasing demand for
enabling enterprise modemization. IMS Java brings the power of IMS TM and IMS DB

to the Java community and the standards and tools provided for it.

67

Disclaimer

© Copyright IBM Corpo ration 2008. All rights reserved.
U.S. Govern ment Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Co rp.

THE INFORMATION CONTAINED IN THIS PRESENTATION IS PROVIDED FOR INFO RMATIO NAL P URPO SES
ONLY. WHILE EFFORTS WERE MADE TO VERIFY THE COMPLETENESS AND ACCURACY OF THE
INFORMATION CO NTAINED IN THIS PRESENT ATION, IT IS PROVIDED “AS IS” WITHO UT WARRANTY OF
ANY KIND, EXPRESS OR IMPLIED. IN ADDITION, THIS INFO RMATION IS BASED ON IBM'S CURRENT
PRODUCT PL ANS AND STRATEGY, WHICH ARE SUBJECT TO CHANGE BY IBM WITHO UT NOTICE. IBM
SHALL NOT BE RESPONSIBLE FOR ANY DAMAGES ARISING OUT OF THE USE OF, OR OTHERWISE
RELATED TO, THIS PRESENT ATION OR ANY OTHER DOCUMENTATION. NOT HING CO NTAINED IN THIS
PRESENTATION IS INTENDED TO, NOR SHALL HAVE THE EFFECT OF, CREATING ANY WARRANTIES OR
REPRESENTATIONS FROM IBM (OR ITS SUPPLIERS OR LICENSORS), OR ALTERING THE TERMS AND
CONDITIONS OF ANY AGREEMENT OR LICENSE GOVERNING THE USE OF IBM PRODUCTS AND/OR
SOFTWARE.

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of Inter national B usiness Machines Corporation in
the United States, other countries, or both. If these and other IBM trademark ed terms are marked on their first occurrence in
this inf orm ation with a trademark symbol (® or ™), these symbols indicat e U.S. regist ered or common law trademark s
owned by IBM at the time this information was published. Such trademarks may also be regist ered or common law
trademark s in other countries. A current list of IBM trademarks is available on the W eb at “Copyright and trade mark

infor mation” at

Other company, product, or service names may be trademarks or service marks of others.

68 © 2009 IBM Corporation

68

